
Red Hat OpenStack Platform 16.1

Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an
OpenStack cloud

Last Updated: 2023-10-03

Red Hat OpenStack Platform 16.1 Director Installation and Usage

An end-to-end scenario on using Red Hat OpenStack Platform director to create an OpenStack
cloud

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Install Red Hat OpenStack Platform 16 in an enterprise environment using the Red Hat OpenStack
Platform director. This includes installing the director, planning your environment, and creating an
OpenStack environment with the director.

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION TO DIRECTOR
1.1. UNDERSTANDING THE UNDERCLOUD
1.2. UNDERSTANDING THE OVERCLOUD
1.3. UNDERSTANDING HIGH AVAILABILITY IN RED HAT OPENSTACK PLATFORM
1.4. UNDERSTANDING CONTAINERIZATION IN RED HAT OPENSTACK PLATFORM
1.5. WORKING WITH CEPH STORAGE IN RED HAT OPENSTACK PLATFORM

CHAPTER 2. PLANNING YOUR UNDERCLOUD
2.1. CONTAINERIZED UNDERCLOUD
2.2. PREPARING YOUR UNDERCLOUD NETWORKING
2.3. DETERMINING ENVIRONMENT SCALE
2.4. UNDERCLOUD DISK SIZING
2.5. VIRTUALIZATION SUPPORT
2.6. CHARACTER ENCODING CONFIGURATION
2.7. CONSIDERATIONS WHEN RUNNING THE UNDERCLOUD WITH A PROXY
2.8. UNDERCLOUD REPOSITORIES

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION
3.1. PREPARING THE UNDERCLOUD
3.2. REGISTERING THE UNDERCLOUD AND ATTACHING SUBSCRIPTIONS
3.3. ENABLING REPOSITORIES FOR THE UNDERCLOUD
3.4. INSTALLING DIRECTOR PACKAGES
3.5. INSTALLING CEPH-ANSIBLE
3.6. PREPARING CONTAINER IMAGES
3.7. CONTAINER IMAGE PREPARATION PARAMETERS
3.8. GUIDELINES FOR CONTAINER IMAGE TAGGING
3.9. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES
3.10. LAYERING IMAGE PREPARATION ENTRIES
3.11. EXCLUDING CEPH STORAGE CONTAINER IMAGES
3.12. MODIFYING IMAGES DURING PREPARATION
3.13. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
3.14. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
3.15. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
3.16. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD
4.1. CONFIGURING DIRECTOR
4.2. DIRECTOR CONFIGURATION PARAMETERS
4.3. CONFIGURING THE UNDERCLOUD WITH ENVIRONMENT FILES
4.4. COMMON HEAT PARAMETERS FOR UNDERCLOUD CONFIGURATION
4.5. CONFIGURING HIERADATA ON THE UNDERCLOUD
4.6. CONFIGURING THE UNDERCLOUD FOR BARE METAL PROVISIONING OVER IPV6
4.7. CONFIGURING UNDERCLOUD NETWORK INTERFACES
4.8. INSTALLING DIRECTOR
4.9. CONFIGURING THE CPU ARCHITECTURE FOR THE OVERCLOUD

4.9.1. Configuring POWER (ppc64le) as the single CPU architecture for the overcloud
4.9.2. Using Ceph Storage in a multi-architecture overcloud
4.9.3. Using composable services in a multi-architecture overcloud

4.10. OBTAINING IMAGES FOR OVERCLOUD NODES
4.10.1. Single CPU architecture overcloud images

8

9
9

10
12
12
13

14
14
14
15
16
16
17
17
19

23
23
24
25
25
25
26
26
30
31

33
34
34
35
36
36
37

41
41
41

47
48
48
49
52
54
55
55
55
56
58
58

Table of Contents

1

. .

. .

. .

4.10.2. Multiple CPU architecture overcloud images
4.10.3. Minimal overcloud image

4.11. SETTING A NAMESERVER FOR THE CONTROL PLANE
4.12. UPDATING THE UNDERCLOUD CONFIGURATION
4.13. UNDERCLOUD CONTAINER REGISTRY

CHAPTER 5. INSTALLING UNDERCLOUD MINIONS
5.1. UNDERCLOUD MINION
5.2. UNDERCLOUD MINION REQUIREMENTS
5.3. PREPARING A MINION
5.4. COPYING THE UNDERCLOUD CONFIGURATION FILES TO THE MINION
5.5. COPYING THE UNDERCLOUD CERTIFICATE AUTHORITY
5.6. CONFIGURING THE MINION
5.7. MINION CONFIGURATION PARAMETERS
5.8. INSTALLING THE MINION
5.9. VERIFYING THE MINION INSTALLATION

CHAPTER 6. PLANNING YOUR OVERCLOUD
6.1. NODE ROLES
6.2. OVERCLOUD NETWORKS
6.3. OVERCLOUD STORAGE
6.4. OVERCLOUD SECURITY
6.5. OVERCLOUD HIGH AVAILABILITY
6.6. CONTROLLER NODE REQUIREMENTS
6.7. COMPUTE NODE REQUIREMENTS
6.8. CEPH STORAGE NODE REQUIREMENTS
6.9. OBJECT STORAGE NODE REQUIREMENTS
6.10. OVERCLOUD REPOSITORIES
6.11. PROVISIONING METHODS

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD
7.1. REGISTERING NODES FOR THE OVERCLOUD
7.2. CREATING AN INVENTORY OF THE BARE-METAL NODE HARDWARE

7.2.1. Using director introspection to collect bare metal node hardware information
7.2.2. Manually configuring bare-metal node hardware information

7.3. TAGGING NODES INTO PROFILES
7.4. SETTING THE BOOT MODE TO UEFI MODE
7.5. ENABLING VIRTUAL MEDIA BOOT
7.6. DEFINING THE ROOT DISK FOR MULTI-DISK CLUSTERS
7.7. PROPERTIES THAT IDENTIFY THE ROOT DISK
7.8. USING THE OVERCLOUD-MINIMAL IMAGE TO AVOID USING A RED HAT SUBSCRIPTION ENTITLEMENT

7.9. CREATING ARCHITECTURE SPECIFIC ROLES
7.10. ENVIRONMENT FILES
7.11. CREATING AN ENVIRONMENT FILE THAT DEFINES NODE COUNTS AND FLAVORS
7.12. CREATING AN ENVIRONMENT FILE FOR UNDERCLOUD CA TRUST
7.13. DISABLING TSX ON NEW DEPLOYMENTS
7.14. DEPLOYMENT COMMAND
7.15. DEPLOYMENT COMMAND OPTIONS
7.16. INCLUDING ENVIRONMENT FILES IN AN OVERCLOUD DEPLOYMENT
7.17. RUNNING THE PRE-DEPLOYMENT VALIDATION
7.18. OVERCLOUD DEPLOYMENT OUTPUT
7.19. ACCESSING THE OVERCLOUD
7.20. RUNNING THE POST-DEPLOYMENT VALIDATION

60
61

62
63
64

65
65
65
66
68
68
69
69
72
72

74
74
75
77
78
78
79
80
80
81

82
87

89
89
92
92
94
97
98

100
101
102

103
104
104
105
106
107
108
108
114
115
116
116
117

Red Hat OpenStack Platform 16.1 Director Installation and Usage

2

. .

. .

. .

. .

. .

. .

CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE DEPLOYING THE OVERCLOUD
8.1. REGISTERING NODES FOR THE OVERCLOUD
8.2. CREATING AN INVENTORY OF THE BARE-METAL NODE HARDWARE

8.2.1. Using director introspection to collect bare metal node hardware information
8.2.2. Manually configuring bare-metal node hardware information

8.3. PROVISIONING BARE METAL NODES
8.4. SCALING UP BARE METAL NODES
8.5. SCALING DOWN BARE METAL NODES
8.6. BARE METAL NODE PROVISIONING ATTRIBUTES

Example syntax
Example syntax
Example syntax
Example syntax

CHAPTER 9. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED NODES
9.1. PRE-PROVISIONED NODE REQUIREMENTS
9.2. CREATING A USER ON PRE-PROVISIONED NODES
9.3. REGISTERING THE OPERATING SYSTEM FOR PRE-PROVISIONED NODES
9.4. CONFIGURING SSL/TLS ACCESS TO DIRECTOR
9.5. CONFIGURING NETWORKING FOR THE CONTROL PLANE
9.6. USING A SEPARATE NETWORK FOR PRE-PROVISIONED NODES
9.7. MAPPING PRE-PROVISIONED NODE HOSTNAMES
9.8. MAPPING NETWORK INTERFACES TO ALIASES
9.9. CONFIGURING CEPH STORAGE FOR PRE-PROVISIONED NODES
9.10. CREATING THE OVERCLOUD WITH PRE-PROVISIONED NODES
9.11. OVERCLOUD DEPLOYMENT OUTPUT
9.12. ACCESSING THE OVERCLOUD
9.13. SCALING PRE-PROVISIONED NODES

CHAPTER 10. DEPLOYING MULTIPLE OVERCLOUDS
10.1. DEPLOYING AN ADDITIONAL OVERCLOUD
10.2. MANAGING MULTIPLE OVERCLOUDS

CHAPTER 11. PERFORMING OVERCLOUD POST-INSTALLATION TASKS
11.1. CHECKING OVERCLOUD DEPLOYMENT STATUS
11.2. CREATING BASIC OVERCLOUD FLAVORS
11.3. CREATING A DEFAULT TENANT NETWORK
11.4. CREATING A DEFAULT FLOATING IP NETWORK
11.5. CREATING A DEFAULT PROVIDER NETWORK
11.6. CREATING ADDITIONAL BRIDGE MAPPINGS
11.7. VALIDATING THE OVERCLOUD
11.8. PROTECTING THE OVERCLOUD FROM REMOVAL

CHAPTER 12. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS
12.1. ACCESSING OVERCLOUD NODES THROUGH SSH
12.2. MANAGING CONTAINERIZED SERVICES
12.3. MODIFYING THE OVERCLOUD ENVIRONMENT
12.4. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
12.5. RUNNING THE DYNAMIC INVENTORY SCRIPT
12.6. REMOVING THE OVERCLOUD

CHAPTER 13. CONFIGURING THE OVERCLOUD WITH ANSIBLE
13.1. ANSIBLE-BASED OVERCLOUD CONFIGURATION (CONFIG-DOWNLOAD)
13.2. CONFIG-DOWNLOAD WORKING DIRECTORY

118
118
121
122
124
127
129
130
132
132
133
134
135

136
136
137
138
139
139
141

143
143
144
144
145
145
146

148
148
151

152
152
152
153
154
154
156
156
157

158
158
158
161

162
163
164

166
166
166

Table of Contents

3

. .

. .

. .

. .

. .

13.3. ENABLING ACCESS TO CONFIG-DOWNLOAD WORKING DIRECTORIES
13.4. CHECKING CONFIG-DOWNLOAD LOG
13.5. PERFORMING GIT OPERATIONS ON THE WORKING DIRECTORY
13.6. DEPLOYMENT METHODS THAT USE CONFIG-DOWNLOAD
13.7. RUNNING CONFIG-DOWNLOAD ON A STANDARD DEPLOYMENT
13.8. RUNNING CONFIG-DOWNLOAD WITH SEPARATE PROVISIONING AND CONFIGURATION
13.9. RUNNING CONFIG-DOWNLOAD WITH THE ANSIBLE-PLAYBOOK-COMMAND.SH SCRIPT
13.10. RUNNING CONFIG-DOWNLOAD WITH MANUALLY CREATED PLAYBOOKS
13.11. LIMITATIONS OF CONFIG-DOWNLOAD
13.12. CONFIG-DOWNLOAD TOP LEVEL FILES
13.13. CONFIG-DOWNLOAD TAGS
13.14. CONFIG-DOWNLOAD DEPLOYMENT STEPS

CHAPTER 14. MANAGING CONTAINERS WITH ANSIBLE
14.1. ENABLING THE TRIPLEO-CONTAINER-MANAGE ANSIBLE ROLE ON THE UNDERCLOUD
14.2. ENABLING THE TRIPLEO-CONTAINER-MANAGE ANSIBLE ROLE ON THE OVERCLOUD
14.3. PERFORMING OPERATIONS ON A SINGLE CONTAINER
14.4. TRIPLEO-CONTAINER-MANAGE ROLE VARIABLES

CHAPTER 15. USING THE VALIDATION FRAMEWORK
15.1. ANSIBLE-BASED VALIDATIONS
15.2. LISTING VALIDATIONS
15.3. RUNNING VALIDATIONS
15.4. VIEWING VALIDATION HISTORY
15.5. VALIDATION FRAMEWORK LOG FORMAT
15.6. IN-FLIGHT VALIDATIONS

CHAPTER 16. SCALING OVERCLOUD NODES
16.1. ADDING NODES TO THE OVERCLOUD
16.2. INCREASING NODE COUNTS FOR ROLES
16.3. REMOVING OR REPLACING COMPUTE NODES

16.3.1. Completing the removal of an unreachable Compute node
16.3.2. Deleting the network agents: workaround for bug
16.3.3. Replacing a removed Compute node

16.4. PRESERVING HOSTNAMES WHEN REPLACING NODES THAT USE PREDICTABLE IP ADDRESSES AND
HOSTNAMEMAP
16.5. REPLACING CEPH STORAGE NODES
16.6. REPLACING OBJECT STORAGE NODES
16.7. USING SKIP DEPLOY IDENTIFIER
16.8. BLOCKLISTING NODES

CHAPTER 17. REPLACING CONTROLLER NODES
17.1. PREPARING FOR CONTROLLER REPLACEMENT
17.2. REMOVING A CEPH MONITOR DAEMON
17.3. PREPARING THE CLUSTER FOR CONTROLLER NODE REPLACEMENT
17.4. REPLACING A CONTROLLER NODE
17.5. REPLACING A BOOTSTRAP CONTROLLER NODE
17.6. PRESERVING HOSTNAMES WHEN REPLACING NODES THAT USE PREDICTABLE IP ADDRESSES AND
HOSTNAMEMAP
17.7. TRIGGERING THE CONTROLLER NODE REPLACEMENT
17.8. CLEANING UP AFTER CONTROLLER NODE REPLACEMENT

CHAPTER 18. REBOOTING NODES
18.1. REBOOTING THE UNDERCLOUD NODE

167
167
167
168
169
169
171

173
175
176
177
177

179
179
180
181

182

185
185
185
186
187
187
188

189
189
191
191

195
198
199

200
203
203
204
205

207
207
209
210
212
213

213
217
218

221
221

Red Hat OpenStack Platform 16.1 Director Installation and Usage

4

. .

. .

. .

. .

. .

. .

18.2. REBOOTING CONTROLLER AND COMPOSABLE NODES
18.3. REBOOTING STANDALONE CEPH MON NODES
18.4. REBOOTING A CEPH STORAGE (OSD) CLUSTER
18.5. REBOOTING OBJECT STORAGE SERVICE (SWIFT) NODES
18.6. REBOOTING COMPUTE NODES

CHAPTER 19. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD
19.1. UNDERCLOUD AND OVERCLOUD SHUTDOWN ORDER
19.2. SHUTTING DOWN INSTANCES ON OVERCLOUD COMPUTE NODES
19.3. SHUTTING DOWN COMPUTE NODES
19.4. STOPPING SERVICES ON CONTROLLER NODES
19.5. SHUTTING DOWN CEPH STORAGE NODES
19.6. SHUTTING DOWN CONTROLLER NODES
19.7. SHUTTING DOWN THE UNDERCLOUD
19.8. PERFORMING SYSTEM MAINTENANCE
19.9. UNDERCLOUD AND OVERCLOUD STARTUP ORDER
19.10. STARTING THE UNDERCLOUD
19.11. STARTING CONTROLLER NODES
19.12. STARTING CEPH STORAGE NODES
19.13. STARTING COMPUTE NODES
19.14. STARTING INSTANCES ON OVERCLOUD COMPUTE NODES

CHAPTER 20. CONFIGURING CUSTOM SSL/TLS CERTIFICATES
20.1. INITIALIZING THE SIGNING HOST
20.2. CREATING A CERTIFICATE AUTHORITY
20.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
20.4. CREATING AN SSL/TLS KEY
20.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
20.6. CREATING THE SSL/TLS CERTIFICATE
20.7. ADDING THE CERTIFICATE TO THE UNDERCLOUD

CHAPTER 21. ADDITIONAL INTROSPECTION OPERATIONS
21.1. PERFORMING INDIVIDUAL NODE INTROSPECTION
21.2. PERFORMING NODE INTROSPECTION AFTER INITIAL INTROSPECTION
21.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE INFORMATION
21.4. RETRIEVING HARDWARE INTROSPECTION DETAILS

CHAPTER 22. AUTOMATICALLY DISCOVERING BARE METAL NODES
22.1. ENABLING AUTO-DISCOVERY
22.2. TESTING AUTO-DISCOVERY
22.3. USING RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

CHAPTER 23. CONFIGURING AUTOMATIC PROFILE TAGGING
23.1. POLICY FILE SYNTAX
23.2. POLICY FILE EXAMPLE
23.3. IMPORTING POLICY FILES

CHAPTER 24. CREATING WHOLE-DISK IMAGES
24.1. SECURITY HARDENING MEASURES
24.2. WHOLE DISK IMAGE WORKFLOW
24.3. DOWNLOADING THE BASE CLOUD IMAGE
24.4. ENABLING CONSISTENT INTERFACE NAMING
24.5. DISK IMAGE ENVIRONMENT VARIABLES
24.6. CUSTOMIZING THE DISK LAYOUT
24.7. MODIFYING THE PARTITIONING SCHEMA

221
222
222
223
224

226
226
226
227
227
228
229
229
229
230
230
230
231

232
232

234
234
234
235
235
235
236
237

239
239
239
239
241

246
246
246
247

249
249
251

252

254
254
254
255
255
255
257
257

Table of Contents

5

. .

. .

. .

. .

. .

. .

24.8. MODIFYING THE IMAGE SIZE
24.9. BUILDING THE WHOLE DISK IMAGE
24.10. UPLOADING THE WHOLE DISK IMAGE

CHAPTER 25. CONFIGURING DIRECT DEPLOY
25.1. CONFIGURING THE DIRECT DEPLOY INTERFACE ON THE UNDERCLOUD

CHAPTER 26. CREATING VIRTUALIZED CONTROL PLANES
26.1. VIRTUALIZED CONTROL PLANE ARCHITECTURE
26.2. PROVISIONING VIRTUALIZED CONTROLLERS USING THE RED HAT VIRTUALIZATION DRIVER

CHAPTER 27. PERFORMING ADVANCED CONTAINER IMAGE MANAGEMENT
27.1. PINNING CONTAINER IMAGES FOR THE UNDERCLOUD
27.2. PINNING CONTAINER IMAGES FOR THE OVERCLOUD

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS
28.1. TROUBLESHOOTING NODE REGISTRATION
28.2. TROUBLESHOOTING HARDWARE INTROSPECTION
28.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS
28.4. TROUBLESHOOTING OVERCLOUD CREATION AND DEPLOYMENT
28.5. TROUBLESHOOTING NODE PROVISIONING
28.6. TROUBLESHOOTING IP ADDRESS CONFLICTS DURING PROVISIONING
28.7. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
28.8. TROUBLESHOOTING OVERCLOUD CONFIGURATION
28.9. TROUBLESHOOTING CONTAINER CONFIGURATION
28.10. TROUBLESHOOTING COMPUTE NODE FAILURES
28.11. CREATING AN SOSREPORT
28.12. LOG LOCATIONS

CHAPTER 29. TIPS FOR UNDERCLOUD AND OVERCLOUD SERVICES
29.1. TUNING DEPLOYMENT PERFORMANCE
29.2. RUNNING SWIFT-RING-BUILDER IN A CONTAINER
29.3. CHANGING THE SSL/TLS CIPHER RULES FOR HAPROXY

CHAPTER 30. POWER MANAGEMENT DRIVERS
30.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)
30.2. REDFISH
30.3. DELL REMOTE ACCESS CONTROLLER (DRAC)
30.4. INTEGRATED LIGHTS-OUT (ILO)
30.5. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
30.6. RED HAT VIRTUALIZATION
30.7. MANUAL-MANAGEMENT DRIVER

260
261
262

263
263

264
264
265

268
268
269

271
271
271

273
274
275
276
277
278
278
281
282
282

283
283
283
283

285
285
285
285
286
286
287
287

Red Hat OpenStack Platform 16.1 Director Installation and Usage

6

Table of Contents

7

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat OpenStack Platform 16.1 Director Installation and Usage

8

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO DIRECTOR
The Red Hat OpenStack Platform (RHOSP) director is a toolset for installing and managing a complete
RHOSP environment. Director is based primarily on the OpenStack project TripleO. With director you
can install a fully-operational, lean, and robust RHOSP environment that can provision and control bare
metal systems to use as OpenStack nodes.

Director uses two main concepts: an undercloud and an overcloud. First you install the undercloud, and
then use the undercloud as a tool to install and configure the overcloud.

1.1. UNDERSTANDING THE UNDERCLOUD

The undercloud is the main management node that contains the Red Hat OpenStack Platform director
toolset. It is a single-system OpenStack installation that includes components for provisioning and
managing the OpenStack nodes that form your OpenStack environment (the overcloud). The
components that form the undercloud have multiple functions:

Environment planning

The undercloud includes planning functions that you can use to create and assign certain node roles.
The undercloud includes a default set of node roles that you can assign to specific nodes: Compute,
Controller, and various Storage roles. You can also design custom roles. Additionally, you can select
which Red Hat OpenStack Platform services to include on each node role, which provides a method
to model new node types or isolate certain components on their own host.

Bare metal system control

The undercloud uses the out-of-band management interface, usually Intelligent Platform
Management Interface (IPMI), of each node for power management control and a PXE-based
service to discover hardware attributes and install OpenStack on each node. You can use this feature
to provision bare metal systems as OpenStack nodes. For a full list of power management drivers,
see Chapter 30, Power management drivers .

Orchestration

The undercloud contains a set of YAML templates that represent a set of plans for your environment.
The undercloud imports these plans and follows their instructions to create the resulting OpenStack
environment. The plans also include hooks that you can use to incorporate your own customizations
as certain points in the environment creation process.

Undercloud components

CHAPTER 1. INTRODUCTION TO DIRECTOR

9

The undercloud uses OpenStack components as its base tool set. Each component operates within a
separate container on the undercloud:

OpenStack Identity (keystone) - Provides authentication and authorization for the director
components.

OpenStack Bare Metal (ironic) and OpenStack Compute (nova) - Manages bare metal
nodes.

OpenStack Networking (neutron) and Open vSwitch - Control networking for bare metal
nodes.

OpenStack Image Service (glance) - Stores images that director writes to bare metal
machines.

OpenStack Orchestration (heat) and Puppet - Provides orchestration of nodes and
configuration of nodes after director writes the overcloud image to disk.

OpenStack Workflow Service (mistral) - Provides a set of workflows for certain director-
specific actions, such as importing and deploying plans.

OpenStack Messaging Service (zaqar) - Provides a messaging service for the OpenStack
Workflow Service.

OpenStack Object Storage (swift) - Provides object storage for various OpenStack
Platform components, including:

Image storage for OpenStack Image Service

Introspection data for OpenStack Bare Metal

Deployment plans for OpenStack Workflow Service

1.2. UNDERSTANDING THE OVERCLOUD

The overcloud is the resulting Red Hat OpenStack Platform (RHOSP) environment that the undercloud
creates. The overcloud consists of multiple nodes with different roles that you define based on the
OpenStack Platform environment that you want to create. The undercloud includes a default set of
overcloud node roles:

Controller

Controller nodes provide administration, networking, and high availability for the OpenStack
environment. A recommended OpenStack environment contains three Controller nodes together in
a high availability cluster.
A default Controller node role supports the following components. Not all of these services are
enabled by default. Some of these components require custom or pre-packaged environment files to
enable:

OpenStack Dashboard (horizon)

OpenStack Identity (keystone)

OpenStack Compute (nova) API

OpenStack Networking (neutron)

Red Hat OpenStack Platform 16.1 Director Installation and Usage

10

OpenStack Image Service (glance)

OpenStack Block Storage (cinder)

OpenStack Object Storage (swift)

OpenStack Orchestration (heat)

OpenStack Shared File Systems (manila)

OpenStack Bare Metal (ironic)

OpenStack Load Balancing-as-a-Service (octavia)

OpenStack Key Manager (barbican)

MariaDB

Open vSwitch

Pacemaker and Galera for high availability services.

Compute

Compute nodes provide computing resources for the OpenStack environment. You can add more
Compute nodes to scale out your environment over time. A default Compute node contains the
following components:

OpenStack Compute (nova)

KVM/QEMU

OpenStack Telemetry (ceilometer) agent

Open vSwitch

Storage

Storage nodes provide storage for the OpenStack environment. The following list contains
information about the various types of Storage node in RHOSP:

Ceph Storage nodes - Used to form storage clusters. Each node contains a Ceph Object
Storage Daemon (OSD). Additionally, director installs Ceph Monitor onto the Controller
nodes in situations where you deploy Ceph Storage nodes as part of your environment.

Block storage (cinder) - Used as external block storage for highly available Controller nodes.
This node contains the following components:

OpenStack Block Storage (cinder) volume

OpenStack Telemetry agents

Open vSwitch.

Object storage (swift) - These nodes provide an external storage layer for OpenStack Swift.
The Controller nodes access object storage nodes through the Swift proxy. Object storage
nodes contain the following components:

OpenStack Object Storage (swift) storage

CHAPTER 1. INTRODUCTION TO DIRECTOR

11

OpenStack Telemetry agents

Open vSwitch.

1.3. UNDERSTANDING HIGH AVAILABILITY IN RED HAT OPENSTACK
PLATFORM

The Red Hat OpenStack Platform (RHOSP) director uses a Controller node cluster to provide highly
available services to your OpenStack Platform environment. For each service, director installs the same
components on all Controller nodes and manages the Controller nodes together as a single service. This
type of cluster configuration provides a fallback in the event of operational failures on a single Controller
node. This provides OpenStack users with a certain degree of continuous operation.

The OpenStack Platform director uses some key pieces of software to manage components on the
Controller node:

Pacemaker - Pacemaker is a cluster resource manager. Pacemaker manages and monitors the
availability of OpenStack components across all nodes in the cluster.

HAProxy - Provides load balancing and proxy services to the cluster.

Galera - Replicates the RHOSP database across the cluster.

Memcached - Provides database caching.

NOTE

From version 13 and later, you can use director to deploy High Availability for
Compute Instances (Instance HA). With Instance HA you can automate
evacuating instances from a Compute node when the Compute node fails.

1.4. UNDERSTANDING CONTAINERIZATION IN RED HAT OPENSTACK
PLATFORM

Each OpenStack Platform service on the undercloud and overcloud runs inside an individual Linux
container on their respective node. This containerization provides a method to isolate services, maintain
the environment, and upgrade Red Hat OpenStack Platform (RHOSP).

Red Hat OpenStack Platform 16.1 supports installation on the Red Hat Enterprise Linux 8.2 operating
system. Red Hat Enterprise Linux 8.2 no longer includes Docker and provides a new set of tools to
replace the Docker ecosystem. This means OpenStack Platform 16.1 replaces Docker with these new
tools for OpenStack Platform deployment and upgrades.

Podman

Pod Manager (Podman) is a container management tool. It implements almost all Docker CLI
commands, not including commands related to Docker Swarm. Podman manages pods, containers,
and container images. One of the major differences between Podman and Docker is that Podman
can manage resources without a daemon running in the background.
For more information about Podman, see the Podman website.

Buildah

Buildah specializes in building Open Containers Initiative (OCI) images, which you use in conjunction

Red Hat OpenStack Platform 16.1 Director Installation and Usage

12

https://podman.io/

with Podman. Buildah commands replicate the contents of a Dockerfile. Buildah also provides a
lower-level coreutils interface to build container images, so that you do not require a Dockerfile to
build containers. Buildah also uses other scripting languages to build container images without
requiring a daemon.
For more information about Buildah, see the Buildah website.

Skopeo

Skopeo provides operators with a method to inspect remote container images, which helps director
collect data when it pulls images. Additional features include copying container images from one
registry to another and deleting images from registries.

Red Hat supports the following methods for managing container images for your overcloud:

Pulling container images from the Red Hat Container Catalog to the image-serve registry on
the undercloud and then pulling the images from the image-serve registry. When you pull
images to the undercloud first, you avoid multiple overcloud nodes simultaneously pulling
container images over an external connection.

Pulling container images from your Satellite 6 server. You can pull these images directly from
the Satellite because the network traffic is internal.

This guide contains information about configuring your container image registry details and performing
basic container operations.

1.5. WORKING WITH CEPH STORAGE IN RED HAT OPENSTACK
PLATFORM

It is common for large organizations that use Red Hat OpenStack Platform (RHOSP) to serve thousands
of clients or more. Each OpenStack client is likely to have their own unique needs when consuming block
storage resources. Deploying glance (images), cinder (volumes), and nova (Compute) on a single node
can become impossible to manage in large deployments with thousands of clients. Scaling OpenStack
externally resolves this challenge.

However, there is also a practical requirement to virtualize the storage layer with a solution like Red Hat
Ceph Storage so that you can scale the RHOSP storage layer from tens of terabytes to petabytes, or
even exabytes of storage. Red Hat Ceph Storage provides this storage virtualization layer with high
availability and high performance while running on commodity hardware. While virtualization might seem
like it comes with a performance penalty, Ceph stripes block device images as objects across the cluster,
meaning that large Ceph Block Device images have better performance than a standalone disk. Ceph
Block devices also support caching, copy-on-write cloning, and copy-on-read cloning for enhanced
performance.

For more information about Red Hat Ceph Storage, see Red Hat Ceph Storage .

NOTE

For multi-architecture clouds, Red Hat supports only pre-installed or external Ceph
implementation. For more information, see Integrating an Overcloud with an Existing Red
Hat Ceph Cluster and Configuring the CPU architecture for the overcloud .

CHAPTER 1. INTRODUCTION TO DIRECTOR

13

https://buildah.io/
https://access.redhat.com/products/red-hat-ceph-storage
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/integrating_an_overcloud_with_an_existing_red_hat_ceph_storage_cluster/index

CHAPTER 2. PLANNING YOUR UNDERCLOUD
Before you configure and install director on the undercloud, you must plan your undercloud host to
ensure it meets certain requirements.

2.1. CONTAINERIZED UNDERCLOUD

The undercloud is the node that controls the configuration, installation, and management of your final
Red Hat OpenStack Platform (RHOSP) environment, which is called the overcloud. The undercloud runs
each RHOSP component service as a container. The undercloud uses these containerized services to
create a toolset named director, which you use to create and manage your overcloud.

Since both the undercloud and overcloud use containers, both use the same architecture to pull,
configure, and run containers. This architecture is based on the OpenStack Orchestration service (heat)
for provisioning nodes and uses Ansible to configure services and containers. It is useful to have some
familiarity with heat and Ansible to help you troubleshoot issues that you might encounter.

2.2. PREPARING YOUR UNDERCLOUD NETWORKING

The undercloud requires access to two main networks:

The Provisioning or Control Plane network, which is the network that director uses to provision
your nodes and access them over SSH when executing Ansible configuration. This network also
enables SSH access from the undercloud to overcloud nodes. The undercloud contains DHCP
services for introspection and provisioning other nodes on this network, which means that no
other DHCP services should exist on this network. The director configures the interface for this
network.

The External network, which enables access to OpenStack Platform repositories, container
image sources, and other servers such as DNS servers or NTP servers. Use this network for
standard access the undercloud from your workstation. You must manually configure an
interface on the undercloud to access the external network.

The undercloud requires a minimum of 2 x 1 Gbps Network Interface Cards: one for the Provisioning or
Control Plane network and one for the External network.

When you plan your network, review the following guidelines:

Red Hat recommends using one network for provisioning and the control plane and another
network for the data plane. Do not create provisioning and the control plane networks on top of
an OVS bridge.

The provisioning and control plane network can be configured on top of a Linux bond or on
individual interfaces. If you use a Linux bond, configure it as an active-backup bond type.

On non-controller nodes, the amount of traffic is relatively low on provisioning and control
plane networks, and they do not require high bandwidth or load balancing.

On Controllers, the provisioning and control plane networks need additional bandwidth. The
reason for increased bandwidth is that Controllers serve many nodes in other roles. More
bandwidth is also required when frequent changes are made to the environment.
For best performance, Controllers with more than 50 compute nodes—​or if more than four
bare metal nodes are provisioned simultaneously—​should have 4-10 times the bandwidth
than the interfaces on the non-controller nodes.

The undercloud should have a higher bandwidth connection to the provisioning network when

Red Hat OpenStack Platform 16.1 Director Installation and Usage

14

The undercloud should have a higher bandwidth connection to the provisioning network when
more than 50 overcloud nodes are provisioned.

Do not use the same Provisioning or Control Plane NIC as the one that you use to access the
director machine from your workstation. The director installation creates a bridge by using the
Provisioning NIC, which drops any remote connections. Use the External NIC for remote
connections to the director system.

The Provisioning network requires an IP range that fits your environment size. Use the following
guidelines to determine the total number of IP addresses to include in this range:

Include at least one temporary IP address for each node that connects to the Provisioning
network during introspection.

Include at least one permanent IP address for each node that connects to the Provisioning
network during deployment.

Include an extra IP address for the virtual IP of the overcloud high availability cluster on the
Provisioning network.

Include additional IP addresses within this range for scaling the environment.

To prevent a Controller node network card or network switch failure disrupting overcloud
services availability, ensure that the keystone admin endpoint is located on a network that uses
bonded network cards or networking hardware redundancy. If you move the keystone endpoint
to a different network, such as internal_api, ensure that the undercloud can reach the VLAN or
subnet. For more information, see the Red Hat Knowledgebase solution How to migrate
Keystone Admin Endpoint to internal_api network.

2.3. DETERMINING ENVIRONMENT SCALE

Before you install the undercloud, determine the scale of your environment. Include the following factors
when you plan your environment:

How many nodes do you want to deploy in your overcloud?

The undercloud manages each node within an overcloud. Provisioning overcloud nodes consumes
resources on the undercloud. You must provide your undercloud with enough resources to
adequately provision and control all of your overcloud nodes.

How many simultaneous operations do you want the undercloud to perform?

Most OpenStack services on the undercloud use a set of workers. Each worker performs an
operation specific to that service. Multiple workers provide simultaneous operations. The default
number of workers on the undercloud is determined by halving the total CPU thread count on the
undercloud. In this instance, thread count refers to the number of CPU cores multiplied by the hyper-
threading value. For example, if your undercloud has a CPU with 16 threads, then the director services
spawn 8 workers by default. Director also uses a set of minimum and maximum caps by default:

Service Minimum Maximum

OpenStack Orchestration (heat) 4 24

All other service 2 12

The undercloud has the following minimum CPU and memory requirements:

CHAPTER 2. PLANNING YOUR UNDERCLOUD

15

https://access.redhat.com/solutions/4911721

An 8-thread 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions. This
provides 4 workers for each undercloud service.

A minimum of 24 GB of RAM.

The ceph-ansible playbook consumes 1 GB resident set size (RSS) for every 10 hosts that
the undercloud deploys. If you want to use a new or existing Ceph cluster in your
deployment, you must provision the undercloud RAM accordingly.

To use a larger number of workers, increase the vCPUs and memory of your undercloud using the
following recommendations:

Minimum: Use 1.5 GB of memory for each thread. For example, a machine with 48 threads
requires 72 GB of RAM to provide the minimum coverage for 24 heat workers and 12 workers for
other services.

Recommended: Use 3 GB of memory for each thread. For example, a machine with 48 threads
requires 144 GB of RAM to provide the recommended coverage for 24 heat workers and 12
workers for other services.

2.4. UNDERCLOUD DISK SIZING

The recommended minimum undercloud disk size is 100 GB of available disk space on the root disk:

20 GB for container images

10 GB to accommodate QCOW2 image conversion and caching during the node provisioning
process

70 GB+ for general usage, logging, metrics, and growth

2.5. VIRTUALIZATION SUPPORT

Red Hat only supports a virtualized undercloud on the following platforms:

Platform Notes

Kernel-based Virtual Machine (KVM) Hosted by Red Hat Enterprise Linux 8, as listed on
certified hypervisors.

Red Hat Virtualization Hosted by Red Hat Virtualization 4.x, as listed on
certified hypervisors.

Microsoft Hyper-V Hosted by versions of Hyper-V as listed on the Red
Hat Customer Portal Certification Catalogue.

VMware ESX and ESXi Hosted by versions of ESX and ESXi as listed on the
Red Hat Customer Portal Certification Catalogue.

IMPORTANT

Red Hat OpenStack Platform 16.1 Director Installation and Usage

16

https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat OpenStack Platform
https://access.redhat.com/ecosystem/search/#/ecosystem/Red Hat OpenStack Platform

IMPORTANT

Red Hat OpenStack Platform director requires that the latest version of Red Hat
Enterprise Linux 8 is installed as the host operating system. This means your virtualization
platform must also support the underlying Red Hat Enterprise Linux version.

Virtual machine requirements

Resource requirements for a virtual undercloud are similar to those of a bare-metal undercloud.
Consider the various tuning options when provisioning such as network model, guest CPU capabilities,
storage backend, storage format, and caching mode.

Network considerations

Power management

The undercloud virtual machine (VM) requires access to the overcloud nodes' power management
devices. This is the IP address set for the pm_addr parameter when registering nodes.

Provisioning network

The NIC used for the provisioning network, ctlplane, requires the ability to broadcast and serve
DHCP requests to the NICs of the overcloud’s bare-metal nodes. Create a bridge that connects the
VM’s NIC to the same network as the bare metal NICs.

Allow traffic from an unknown address

You must configure your virtual undercloud hypervisor to prevent the hypervisor blocking the
undercloud from transmitting traffic from an unknown address. The configuration depends on the
platform you are using for your virtual undercloud:

Red Hat Enterprise Virtualization: Disable the anti-mac-spoofing parameter.

VMware ESX or ESXi:

On IPv4 ctlplane network: Allow forged transmits.

On IPv6 ctlplane network: Allow forged transmits, MAC address changes, and
promiscuous mode operation.
For more information about how to configure VMware ESX or ESXi, see Securing
vSphere Standard Switches on the VMware docs website.

You must power off and on the director VM after you apply these settings. Rebooting the VM is not
sufficient.

2.6. CHARACTER ENCODING CONFIGURATION

Red Hat OpenStack Platform has special character encoding requirements as part of the locale settings:

Use UTF-8 encoding on all nodes. Ensure the LANG environment variable is set to en_US.UTF-
8 on all nodes.

Avoid using non-ASCII characters if you use Red Hat Ansible Tower to automate the creation of
Red Hat OpenStack Platform resources.

2.7. CONSIDERATIONS WHEN RUNNING THE UNDERCLOUD WITH A
PROXY

CHAPTER 2. PLANNING YOUR UNDERCLOUD

17

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html

Running the undercloud with a proxy has certain limitations, and Red Hat recommends that you use Red
Hat Satellite for registry and package management.

However, if your environment uses a proxy, review these considerations to best understand the different
configuration methods of integrating parts of Red Hat OpenStack Platform with a proxy and the
limitations of each method.

System-wide proxy configuration

Use this method to configure proxy communication for all network traffic on the undercloud. To
configure the proxy settings, edit the /etc/environment file and set the following environment variables:

http_proxy

The proxy that you want to use for standard HTTP requests.

https_proxy

The proxy that you want to use for HTTPs requests.

no_proxy

A comma-separated list of domains that you want to exclude from proxy communications.

The system-wide proxy method has the following limitations:

The no_proxy variable primarily uses domain names (www.example.com), domain suffixes
(example.com), and domains with a wildcard (*.example.com). Most Red Hat OpenStack
Platform services interpret IP addresses in no_proxy but certain services, such as container
health checks, do not interpret IP addresses in the no_proxy environment variable due to
limitations with cURL and wget. To use a system-wide proxy with the undercloud, disable
container health checks with the container_healthcheck_disabled parameter in the
undercloud.conf file during installation. For more information, see BZ#1837458 - Container
health checks fail to honor no_proxy CIDR notation.

The maximum length of no_proxy is 1024 characters due to a fixed size buffer in the pam_env
PAM module.

Some containers bind and parse the environment variables in /etc/environments incorrectly,
which causes problems when running these services. For more information, see BZ#1916070 -
proxy configuration updates in /etc/environment files are not being picked up in containers
correctly and BZ#1918408 - mistral_executor container fails to properly set no_proxy
environment parameter.

dnf proxy configuration

Use this method to configure dnf to run all traffic through a proxy. To configure the proxy settings, edit
the /etc/dnf/dnf.conf file and set the following parameters:

proxy

The URL of the proxy server.

proxy_username

The username that you want to use to connect to the proxy server.

proxy_password

The password that you want to use to connect to the proxy server.

proxy_auth_method

The authentication method used by the proxy server.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

18

https://bugzilla.redhat.com/show_bug.cgi?id=1837458
https://bugzilla.redhat.com/show_bug.cgi?id=1916070
https://bugzilla.redhat.com/show_bug.cgi?id=1918408

For more information about these options, run man dnf.conf.

The dnf proxy method has the following limitations:

This method provides proxy support only for dnf.

The dnf proxy method does not include an option to exclude certain hosts from proxy
communication.

Red Hat Subscription Manager proxy

Use this method to configure Red Hat Subscription Manager to run all traffic through a proxy. To
configure the proxy settings, edit the /etc/rhsm/rhsm.conf file and set the following parameters:

proxy_hostname

Host for the proxy.

proxy_scheme

The scheme for the proxy when writing out the proxy to repo definitions.

proxy_port

The port for the proxy.

proxy_username

The username that you want to use to connect to the proxy server.

proxy_password

The password to use for connecting to the proxy server.

no_proxy

A comma-separated list of hostname suffixes for specific hosts that you want to exclude from proxy
communication.

For more information about these options, run man rhsm.conf.

The Red Hat Subscription Manager proxy method has the following limitations:

This method provides proxy support only for Red Hat Subscription Manager.

The values for the Red Hat Subscription Manager proxy configuration override any values set
for the system-wide environment variables.

Transparent proxy

If your network uses a transparent proxy to manage application layer traffic, you do not need to
configure the undercloud itself to interact with the proxy because proxy management occurs
automatically. A transparent proxy can help overcome limitations associated with client-based proxy
configuration in Red Hat OpenStack Platform.

2.8. UNDERCLOUD REPOSITORIES

Red Hat OpenStack Platform (RHOSP) 16.1 runs on Red Hat Enterprise Linux 8.2. As a result, you must
lock the content from these repositories to the respective Red Hat Enterprise Linux version.

NOTE

CHAPTER 2. PLANNING YOUR UNDERCLOUD

19

NOTE

If you synchronize repositories by using Red Hat Satellite, you can enable specific
versions of the Red Hat Enterprise Linux repositories. However, the repository label
remains the same despite the version you choose. For example, if you enable the 8.2
version of the BaseOS repository, the repository name includes the specific version that
you enabled, but the repository label is still rhel-8-for-x86_64-baseos-tus-rpms.

WARNING

Any repositories outside the ones specified here are not supported. Unless
recommended, do not enable any other products or repositories outside the ones
listed in the following tables or else you might encounter package dependency
issues. Do not enable Extra Packages for Enterprise Linux (EPEL).

Core repositories

The following table lists core repositories for installing the undercloud.

Name Repository Description of requirement

Red Hat Enterprise Linux 8.2 for
x86_64 - BaseOS (RPMs)
Telecommunications Update
Service (TUS)

rhel-8-for-x86_64-baseos-
tus-rpms

Base operating system repository
for x86_64 systems.

Red Hat Enterprise Linux 8.2 for
x86_64 - AppStream (RPMs)

rhel-8-for-x86_64-appstream-
tus-rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 8.2 for
x86_64 - High Availability (RPMs)
Telecommunications Update
Service (TUS)

rhel-8-for-x86_64-
highavailability-tus-rpms

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Red Hat Ansible Engine 2.9 for
RHEL 8 x86_64 (RPMs)

ansible-2.9-for-rhel-8-
x86_64-rpms

Ansible Engine for Red Hat
Enterprise Linux. Used to provide
the latest version of Ansible.

Advanced Virtualization for RHEL
8 x86_64 (RPMs)

advanced-virt-for-rhel-8-
x86_64-eus-rpms

Provides virtualization packages
for OpenStack Platform.

Red Hat Satellite Tools for RHEL
8 Server RPMs x86_64

satellite-tools-6.5-for-rhel-8-
x86_64-rpms

Tools for managing hosts with Red
Hat Satellite 6.

Red Hat OpenStack Platform 16.1
for RHEL 8 (RPMs)

openstack-16.1-for-rhel-8-
x86_64-rpms

Core Red Hat OpenStack
Platform repository, which
contains packages for Red Hat
OpenStack Platform director.



Red Hat OpenStack Platform 16.1 Director Installation and Usage

20

Red Hat Fast Datapath for RHEL
8 (RPMS)

fast-datapath-for-rhel-8-
x86_64-rpms

Provides Open vSwitch (OVS)
packages for OpenStack
Platform.

Name Repository Description of requirement

Ceph repositories

The following table lists Ceph Storage related repositories for the undercloud.

Name Repository Description of Requirement

Red Hat Ceph Storage Tools 4 for
RHEL 8 x86_64 (RPMs)

rhceph-4-tools-for-rhel-8-
x86_64-rpms

Provides tools for nodes to
communicate with the Ceph
Storage cluster. The undercloud
requires the ceph-ansible
package from this repository if
you plan to use Ceph Storage in
your overcloud or if you want to
integrate with an existing Ceph
Storage cluster.

IBM POWER repositories

The following table contains a list of repositories for RHOSP on POWER PC architecture. Use these
repositories in place of equivalents in the Core repositories.

Name Repository Description of requirement

Red Hat Enterprise Linux for IBM
Power, little endian - BaseOS
(RPMs)

rhel-8-for-ppc64le-baseos-
rpms

Base operating system repository
for ppc64le systems.

Red Hat Enterprise Linux 8 for
IBM Power, little endian -
AppStream (RPMs)

rhel-8-for-ppc64le-
appstream-rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 8 for
IBM Power, little endian - High
Availability (RPMs)

rhel-8-for-ppc64le-
highavailability-rpms

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Red Hat Fast Datapath for RHEL
8 IBM Power, little endian (RPMS)

fast-datapath-for-rhel-8-
ppc64le-rpms

Provides Open vSwitch (OVS)
packages for OpenStack
Platform.

Red Hat Ansible Engine 2.8 for
RHEL 8 IBM Power, little endian
(RPMs)

ansible-2.8-for-rhel-8-
ppc64le-rpms

Ansible Engine for Red Hat
Enterprise Linux. Provides the
latest version of Ansible.

CHAPTER 2. PLANNING YOUR UNDERCLOUD

21

Red Hat OpenStack Platform 16.1
for RHEL 8 (RPMs)

openstack-16.1-for-rhel-8-
ppc64le-rpms

Core Red Hat OpenStack
Platform repository for ppc64le
systems.

Name Repository Description of requirement

Red Hat OpenStack Platform 16.1 Director Installation and Usage

22

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION
To install and configure director, you must complete some preparation tasks to ensure you have
registered the undercloud to the Red Hat Customer Portal or a Red Hat Satellite server, you have
installed the director packages, and you have configured a container image source for the director to
pull container images during installation.

3.1. PREPARING THE UNDERCLOUD

Before you can install director, you must complete some basic configuration on the host machine.

Procedure

1. Log in to your undercloud as the root user.

2. Create the stack user:

[root@director ~]# useradd stack

3. Set a password for the user:

[root@director ~]# passwd stack

4. Disable password requirements when using sudo:

[root@director ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack
[root@director ~]# chmod 0440 /etc/sudoers.d/stack

5. Switch to the new stack user:

[root@director ~]# su - stack
[stack@director ~]$

6. Create directories for system images and heat templates:

[stack@director ~]$ mkdir ~/images
[stack@director ~]$ mkdir ~/templates

Director uses system images and heat templates to create the overcloud environment. Red Hat
recommends creating these directories to help you organize your local file system.

7. Check the base and full hostname of the undercloud:

[stack@director ~]$ hostname
[stack@director ~]$ hostname -f

If either of the previous commands do not report the correct fully-qualified hostname or report
an error, use hostnamectl to set a hostname:

[stack@director ~]$ sudo hostnamectl set-hostname undercloud.example.com
[stack@director ~]$ sudo hostnamectl set-hostname --transient undercloud.example.com

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

23

8. If you are not using a DNS server that can resolve the fully qualified domain name (FQDN) of
the undercloud host, edit the /etc/hosts and include an entry for the system hostname. The IP
address in /etc/hosts must match the address that you plan to use for your undercloud public
API. For example, if the system uses undercloud.example.com as the FQDN and uses 10.0.0.1
for its IP address, add the following line to the /etc/hosts file:

10.0.0.1 undercloud.example.com undercloud

9. If you plan for the Red Hat OpenStack Platform director to be on a separate domain than the
overcloud or its identity provider, then you must add the additional domains to /etc/resolv.conf:

search overcloud.com idp.overcloud.com

3.2. REGISTERING THE UNDERCLOUD AND ATTACHING
SUBSCRIPTIONS

Before you can install director, you must run subscription-manager to register the undercloud and
attach a valid Red Hat OpenStack Platform subscription.

Procedure

1. Log in to your undercloud as the stack user.

2. Register your system either with the Red Hat Content Delivery Network or with a Red Hat
Satellite. For example, run the following command to register the system to the Content
Delivery Network. Enter your Customer Portal user name and password when prompted:

[stack@director ~]$ sudo subscription-manager register

3. Find the entitlement pool ID for Red Hat OpenStack Platform (RHOSP) director:

[stack@director ~]$ sudo subscription-manager list --available --all --matches="Red Hat
OpenStack"
Subscription Name: Name of SKU
Provides: Red Hat Single Sign-On
 Red Hat Enterprise Linux Workstation
 Red Hat CloudForms
 Red Hat OpenStack
 Red Hat Software Collections (for RHEL Workstation)
 Red Hat Virtualization
SKU: SKU-Number
Contract: Contract-Number
Pool ID: Valid-Pool-Number-123456
Provides Management: Yes
Available: 1
Suggested: 1
Service Level: Support-level
Service Type: Service-Type
Subscription Type: Sub-type
Ends: End-date
System Type: Physical

4. Locate the Pool ID value and attach the Red Hat OpenStack Platform 16.1 entitlement:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

24

[stack@director ~]$ sudo subscription-manager attach --pool=Valid-Pool-Number-123456

5. Lock the undercloud to Red Hat Enterprise Linux 8.2:

$ sudo subscription-manager release --set=8.2

3.3. ENABLING REPOSITORIES FOR THE UNDERCLOUD

Enable the repositories that are required for the undercloud, and update the system packages to the
latest versions.

Procedure

1. Log in to your undercloud as the stack user.

2. Disable all default repositories, and enable the required Red Hat Enterprise Linux repositories:

[stack@director ~]$ sudo subscription-manager repos --disable=*
[stack@director ~]$ sudo subscription-manager repos --enable=rhel-8-for-x86_64-baseos-
tus-rpms --enable=rhel-8-for-x86_64-appstream-tus-rpms --enable=rhel-8-for-x86_64-
highavailability-tus-rpms --enable=ansible-2.9-for-rhel-8-x86_64-rpms --enable=openstack-
16.1-for-rhel-8-x86_64-rpms --enable=fast-datapath-for-rhel-8-x86_64-rpms --
enable=advanced-virt-for-rhel-8-x86_64-eus-rpms

These repositories contain packages that the director installation requires.

3. Set the container-tools repository module to version 2.0:

[stack@director ~]$ sudo dnf module reset container-tools
[stack@director ~]$ sudo dnf module enable -y container-tools:2.0

4. Perform an update on your system to ensure that you have the latest base system packages:

[stack@director ~]$ sudo dnf update -y
[stack@director ~]$ sudo reboot

3.4. INSTALLING DIRECTOR PACKAGES

Install packages relevant to Red Hat OpenStack Platform director.

Procedure

1. Install the command line tools for director installation and configuration:

[stack@director ~]$ sudo dnf install -y python3-tripleoclient

3.5. INSTALLING CEPH-ANSIBLE

The ceph-ansible package is required when you use Ceph Storage with Red Hat OpenStack Platform.

Procedure

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

25

1. Enable the Ceph Tools repository:

[stack@director ~]$ sudo subscription-manager repos --enable=rhceph-4-tools-for-rhel-8-
x86_64-rpms

2. Install the ceph-ansible package:

[stack@director ~]$ sudo dnf install -y ceph-ansible

3.6. PREPARING CONTAINER IMAGES

The undercloud installation requires an environment file to determine where to obtain container images
and how to store them. Generate and customize this environment file that you can use to prepare your
container images.

NOTE

If you need to configure specific container image versions for your undercloud, you must
pin the images to a specific version. For more information, see Pinning container images
for the undercloud.

Procedure

1. Log in to your undercloud host as the stack user.

2. Generate the default container image preparation file:

$ sudo openstack tripleo container image prepare default \
 --local-push-destination \
 --output-env-file containers-prepare-parameter.yaml

This command includes the following additional options:

--local-push-destination sets the registry on the undercloud as the location for container
images. This means that director pulls the necessary images from the Red Hat Container
Catalog and pushes them to the registry on the undercloud. Director uses this registry as
the container image source. To pull directly from the Red Hat Container Catalog, omit this
option.

--output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images. In this case, the name of the file is
containers-prepare-parameter.yaml.

NOTE

You can use the same containers-prepare-parameter.yaml file to define a
container image source for both the undercloud and the overcloud.

3. Modify the containers-prepare-parameter.yaml to suit your requirements.

3.7. CONTAINER IMAGE PREPARATION PARAMETERS

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the

Red Hat OpenStack Platform 16.1 Director Installation and Usage

26

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#ref_pinning-container-images-for-the-undercloud_assembly_performing-advanced-overcloud-container-image-management

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the
ContainerImagePrepare heat parameter. This parameter defines a list of strategies for preparing a set
of images:

parameter_defaults:
 ContainerImagePrepare:
 - (strategy one)
 - (strategy two)
 - (strategy three)
 ...

Each strategy accepts a set of sub-parameters that defines which images to use and what to do with the
images. The following table contains information about the sub-parameters that you can use with each
ContainerImagePrepare strategy:

Parameter Description

excludes List of regular expressions to exclude image names
from a strategy.

includes List of regular expressions to include in a strategy. At
least one image name must match an existing image.
All excludes are ignored if includes is specified.

modify_append_tag String to append to the tag for the destination image.
For example, if you pull an image with the tag 16.1.3-
5.161 and set the modify_append_tag to -hotfix,
the director tags the final image as 16.1.3-5.161-hotfix.

modify_only_with_labels A dictionary of image labels that filter the images
that you want to modify. If an image matches the
labels defined, the director includes the image in the
modification process.

modify_role String of ansible role names to run during upload but
before pushing the image to the destination registry.

modify_vars Dictionary of variables to pass to modify_role.

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

27

push_destination Defines the namespace of the registry that you want
to push images to during the upload process.

If set to true, the push_destination is set
to the undercloud registry namespace using
the hostname, which is the recommended
method.

If set to false, the push to a local registry
does not occur and nodes pull images
directly from the source.

If set to a custom value, director pushes
images to an external local registry.

If you set this parameter to false in production
environments while pulling images directly from Red
Hat Container Catalog, all overcloud nodes will
simultaneously pull the images from the Red Hat
Container Catalog over your external connection,
which can cause bandwidth issues. Only use false to
pull directly from a Red Hat Satellite Server hosting
the container images.

If the push_destination parameter is set to false
or is not defined and the remote registry requires
authentication, set the
ContainerImageRegistryLogin parameter to
true and include the credentials with the
ContainerImageRegistryCredentials
parameter.

pull_source The source registry from where to pull the original
container images.

set A dictionary of key: value definitions that define
where to obtain the initial images.

tag_from_label Use the value of specified container image metadata
labels to create a tag for every image and pull that
tagged image. For example, if you set
tag_from_label: {version}-{release}, director
uses the version and release labels to construct a
new tag. For one container, version might be set to
16.1.3 and release might be set to 5.161, which
results in the tag 16.1.3-5.161. Director uses this
parameter only if you have not defined tag in the set
dictionary.

Parameter Description

IMPORTANT

Red Hat OpenStack Platform 16.1 Director Installation and Usage

28

IMPORTANT

When you push images to the undercloud, use push_destination: true instead of
push_destination: UNDERCLOUD_IP:PORT. The push_destination: true method
provides a level of consistency across both IPv4 and IPv6 addresses.

The set parameter accepts a set of key: value definitions:

Key Description

ceph_image The name of the Ceph Storage container image.

ceph_namespace The namespace of the Ceph Storage container
image.

ceph_tag The tag of the Ceph Storage container image.

ceph_alertmanager_image

ceph_alertmanager_namespace

ceph_alertmanager_tag

The name, namespace, and tag of the Ceph Storage
Alert Manager container image.

ceph_grafana_image

ceph_grafana_namespace

ceph_grafana_tag

The name, namespace, and tag of the Ceph Storage
Grafana container image.

ceph_node_exporter_image

ceph_node_exporter_namespace

ceph_node_exporter_tag

The name, namespace, and tag of the Ceph Storage
Node Exporter container image.

ceph_prometheus_image

ceph_prometheus_namespace

ceph_prometheus_tag

The name, namespace, and tag of the Ceph Storage
Prometheus container image.

name_prefix A prefix for each OpenStack service image.

name_suffix A suffix for each OpenStack service image.

namespace The namespace for each OpenStack service image.

neutron_driver The driver to use to determine which OpenStack
Networking (neutron) container to use. Use a null
value to set to the standard neutron-server
container. Set to ovn to use OVN-based containers.

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

29

tag Sets a specific tag for all images from the source. If
not defined, director uses the Red Hat OpenStack
Platform version number as the default value. This
parameter takes precedence over the
tag_from_label value.

Key Description

NOTE

The container images use multi-stream tags based on the Red Hat OpenStack Platform
version. This means that there is no longer a latest tag.

3.8. GUIDELINES FOR CONTAINER IMAGE TAGGING

The Red Hat Container Registry uses a specific version format to tag all Red Hat OpenStack Platform
container images. This format follows the label metadata for each container, which is version-release.

version

Corresponds to a major and minor version of Red Hat OpenStack Platform. These versions act as
streams that contain one or more releases.

release

Corresponds to a release of a specific container image version within a version stream.

For example, if the latest version of Red Hat OpenStack Platform is 16.1.3 and the release for the
container image is 5.161, then the resulting tag for the container image is 16.1.3-5.161.

The Red Hat Container Registry also uses a set of major and minor version tags that link to the latest
release for that container image version. For example, both 16.1 and 16.1.3 link to the latest release in the
16.1.3 container stream. If a new minor release of 16.1 occurs, the 16.1 tag links to the latest release for
the new minor release stream while the 16.1.3 tag continues to link to the latest release within the 16.1.3
stream.

The ContainerImagePrepare parameter contains two sub-parameters that you can use to determine
which container image to download. These sub-parameters are the tag parameter within the set
dictionary, and the tag_from_label parameter. Use the following guidelines to determine whether to use
tag or tag_from_label.

The default value for tag is the major version for your OpenStack Platform version. For this
version it is 16.1. This always corresponds to the latest minor version and release.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 tag: 16.1
 ...

To change to a specific minor version for OpenStack Platform container images, set the tag to a
minor version. For example, to change to 16.1.2, set tag to 16.1.2.

parameter_defaults:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

30

 ContainerImagePrepare:
 - set:
 ...
 tag: 16.1.2
 ...

When you set tag, director always downloads the latest container image release for the version
set in tag during installation and updates.

If you do not set tag, director uses the value of tag_from_label in conjunction with the latest
major version.

parameter_defaults:
 ContainerImagePrepare:
 - set:
 ...
 # tag: 16.1
 ...
 tag_from_label: '{version}-{release}'

The tag_from_label parameter generates the tag from the label metadata of the latest
container image release it inspects from the Red Hat Container Registry. For example, the labels
for a certain container might use the following version and release metadata:

 "Labels": {
 "release": "5.161",
 "version": "16.1.3",
 ...
 }

The default value for tag_from_label is {version}-{release}, which corresponds to the version
and release metadata labels for each container image. For example, if a container image has
16.1.3 set for version and 5.161 set for release, the resulting tag for the container image is 16.1.3-
5.161.

The tag parameter always takes precedence over the tag_from_label parameter. To use
tag_from_label, omit the tag parameter from your container preparation configuration.

A key difference between tag and tag_from_label is that director uses tag to pull an image only
based on major or minor version tags, which the Red Hat Container Registry links to the latest
image release within a version stream, while director uses tag_from_label to perform a
metadata inspection of each container image so that director generates a tag and pulls the
corresponding image.

3.9. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES

The registry.redhat.io registry requires authentication to access and pull images. To authenticate with
registry.redhat.io and other private registries, include the ContainerImageRegistryCredentials and
ContainerImageRegistryLogin parameters in your containers-prepare-parameter.yaml file.

ContainerImageRegistryCredentials

Some container image registries require authentication to access images. In this situation, use the
ContainerImageRegistryCredentials parameter in your containers-prepare-parameter.yaml
environment file. The ContainerImageRegistryCredentials parameter uses a set of keys based on the

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

31

private registry URL. Each private registry URL uses its own key and value pair to define the username
(key) and password (value). This provides a method to specify credentials for multiple private registries.

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 my_username: my_password

In the example, replace my_username and my_password with your authentication credentials. Instead
of using your individual user credentials, Red Hat recommends creating a registry service account and
using those credentials to access registry.redhat.io content.

To specify authentication details for multiple registries, set multiple key-pair values for each registry in
ContainerImageRegistryCredentials:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 - push_destination: true
 set:
 namespace: registry.internalsite.com/...
 ...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'
 registry.internalsite.com:
 myuser2: '0th3rp@55w0rd!'
 '192.0.2.1:8787':
 myuser3: '@n0th3rp@55w0rd!'

IMPORTANT

The default ContainerImagePrepare parameter pulls container images from
registry.redhat.io, which requires authentication.

For more information, see Red Hat Container Registry Authentication .

ContainerImageRegistryLogin

The ContainerImageRegistryLogin parameter is used to control whether an overcloud node system
needs to log in to the remote registry to fetch the container images. This situation occurs when you
want the overcloud nodes to pull images directly, rather than use the undercloud to host images.

You must set ContainerImageRegistryLogin to true if push_destination is set to false or not used for
a given strategy.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

32

https://access.redhat.com/RegistryAuthentication

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: false
 set:
 namespace: registry.redhat.io/...
 ...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'
 ContainerImageRegistryLogin: true

However, if the overcloud nodes do not have network connectivity to the registry hosts defined in
ContainerImageRegistryCredentials and you set ContainerImageRegistryLogin to true, the
deployment might fail when trying to perform a login. If the overcloud nodes do not have network
connectivity to the registry hosts defined in the ContainerImageRegistryCredentials, set
push_destination to true and ContainerImageRegistryLogin to false so that the overcloud nodes
pull images from the undercloud.

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 namespace: registry.redhat.io/...
 ...
 ...
 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'
 ContainerImageRegistryLogin: false

3.10. LAYERING IMAGE PREPARATION ENTRIES

The value of the ContainerImagePrepare parameter is a YAML list. This means that you can specify
multiple entries. The following example demonstrates two entries where director uses the latest version
of all images except for the nova-api image, which uses the version tagged with 16.2-44:

ContainerImagePrepare:
- tag_from_label: "{version}-{release}"
 push_destination: true
 excludes:
 - nova-api
 set:
 namespace: registry.redhat.io/rhosp-rhel8
 name_prefix: openstack-
 name_suffix: ''
- push_destination: true
 includes:
 - nova-api
 set:
 namespace: registry.redhat.io/rhosp-rhel8
 tag: 16.2-44

The includes and excludes parameters use regular expressions to control image filtering for each

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

33

The includes and excludes parameters use regular expressions to control image filtering for each
entry. The images that match the includes strategy take precedence over excludes matches. The
image name must the includes or excludes regular expression value to be considered a match.

3.11. EXCLUDING CEPH STORAGE CONTAINER IMAGES

The default overcloud role configuration uses the default Controller, Compute, and Ceph Storage roles.
However, if you use the default role configuration to deploy an overcloud without Ceph Storage nodes,
director still pulls the Ceph Storage container images from the Red Hat Container Registry because the
images are included as a part of the default configuration.

If your overcloud does not require Ceph Storage containers, you can configure director to not pull the
Ceph Storage containers images from the Red Hat Container Registry.

Procedure

1. Edit the containers-prepare-parameter.yaml file to exclude the Ceph Storage containers:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 excludes:
 - ceph
 - prometheus
 set:
 … ​

The excludes parameter uses regular expressions to exclude any container images that contain
the ceph or prometheus strings.

2. Save the containers-prepare-parameter.yaml file.

3.12. MODIFYING IMAGES DURING PREPARATION

It is possible to modify images during image preparation, and then immediately deploy the overcloud
with modified images.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports modifying images during
preparation for RHOSP containers, not for Ceph containers.

Scenarios for modifying images include:

As part of a continuous integration pipeline where images are modified with the changes being
tested before deployment.

As part of a development workflow where local changes must be deployed for testing and
development.

When changes must be deployed but are not available through an image build pipeline. For
example, adding proprietary add-ons or emergency fixes.

To modify an image during preparation, invoke an Ansible role on each image that you want to modify.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

34

The role takes a source image, makes the requested changes, and tags the result. The prepare
command can push the image to the destination registry and set the heat parameters to refer to the
modified image.

The Ansible role tripleo-modify-image conforms with the required role interface and provides the
behaviour necessary for the modify use cases. Control the modification with the modify-specific keys in
the ContainerImagePrepare parameter:

modify_role specifies the Ansible role to invoke for each image to modify.

modify_append_tag appends a string to the end of the source image tag. This makes it obvious
that the resulting image has been modified. Use this parameter to skip modification if the
push_destination registry already contains the modified image. Change modify_append_tag
whenever you modify the image.

modify_vars is a dictionary of Ansible variables to pass to the role.

To select a use case that the tripleo-modify-image role handles, set the tasks_from variable to the
required file in that role.

While developing and testing the ContainerImagePrepare entries that modify images, run the image
prepare command without any additional options to confirm that the image is modified as you expect:

sudo openstack tripleo container image prepare \
 -e ~/containers-prepare-parameter.yaml

IMPORTANT

To use the openstack tripleo container image prepare command, your undercloud
must contain a running image-serve registry. As a result, you cannot run this command
before a new undercloud installation because the image-serve registry will not be
installed. You can run this command after a successful undercloud installation.

3.13. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES

NOTE

Red Hat OpenStack Platform (RHOSP) director supports updating existing packages on
container images for RHOSP containers, not for Ceph containers.

Procedure

The following example ContainerImagePrepare entry updates in all packages on the container
images by using the dnf repository configuration of the undercloud host:

ContainerImagePrepare:
- push_destination: true
 ...
 modify_role: tripleo-modify-image
 modify_append_tag: "-updated"
 modify_vars:
 tasks_from: yum_update.yml

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

35

 compare_host_packages: true
 yum_repos_dir_path: /etc/yum.repos.d
 ...

3.14. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES

You can install a directory of RPM files in your container images. This is useful for installing hotfixes,
local package builds, or any package that is not available through a package repository.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports installing additional RPM files
to container images for RHOSP containers, not for Ceph containers.

Procedure

The following example ContainerImagePrepare entry installs some hotfix packages on only the
nova-compute image:

ContainerImagePrepare:
- push_destination: true
 ...
 includes:
 - nova-compute
 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"
 modify_vars:
 tasks_from: rpm_install.yml
 rpms_path: /home/stack/nova-hotfix-pkgs
 ...

3.15. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE

You can specify a directory that contains a Dockerfile to make the required changes. When you invoke
the tripleo-modify-image role, the role generates a Dockerfile.modified file that changes the FROM
directive and adds extra LABEL directives.

NOTE

Red Hat OpenStack Platform (RHOSP) director supports modifying container images
with a custom Dockerfile for RHOSP containers, not for Ceph containers.

Procedure

1. The following example runs the custom Dockerfile on the nova-compute image:

ContainerImagePrepare:
- push_destination: true
 ...
 includes:
 - nova-compute
 modify_role: tripleo-modify-image
 modify_append_tag: "-hotfix"

Red Hat OpenStack Platform 16.1 Director Installation and Usage

36

 modify_vars:
 tasks_from: modify_image.yml
 modify_dir_path: /home/stack/nova-custom
 ...

2. The following example shows the /home/stack/nova-custom/Dockerfile file. After you run any
USER root directives, you must switch back to the original image default user:

FROM registry.redhat.io/rhosp-rhel8/openstack-nova-compute:latest

USER "root"

COPY customize.sh /tmp/
RUN /tmp/customize.sh

USER "nova"

3.16. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

Red Hat Satellite 6 offers registry synchronization capabilities. This provides a method to pull multiple
images into a Satellite server and manage them as part of an application life cycle. The Satellite also acts
as a registry for other container-enabled systems to use. For more information about managing
container images, see Managing Container Images in the Red Hat Satellite 6 Content Management
Guide.

The examples in this procedure use the hammer command line tool for Red Hat Satellite 6 and an
example organization called ACME. Substitute this organization for your own Satellite 6 organization.

NOTE

This procedure requires authentication credentials to access container images from
registry.redhat.io. Instead of using your individual user credentials, Red Hat
recommends creating a registry service account and using those credentials to access
registry.redhat.io content. For more information, see "Red Hat Container Registry
Authentication".

Procedure

1. Create a list of all container images:

$ sudo podman search --limit 1000 "registry.redhat.io/rhosp-rhel8/openstack" --format="{{
.Name }}" | sort > satellite_images
$ sudo podman search --limit 1000 "registry.redhat.io/rhceph" | grep rhceph-4-dashboard-
rhel8
$ sudo podman search --limit 1000 "registry.redhat.io/rhceph" | grep rhceph-4-rhel8
$ sudo podman search --limit 1000 "registry.redhat.io/openshift" | grep ose-prometheus

If you plan to install Ceph and enable the Ceph Dashboard, you need the following ose-
prometheus containers:

registry.redhat.io/openshift4/ose-prometheus-node-exporter:v4.6
registry.redhat.io/openshift4/ose-prometheus:v4.6
registry.redhat.io/openshift4/ose-prometheus-alertmanager:v4.6

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

37

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html/content_management_guide/managing_container_images
https://access.redhat.com/RegistryAuthentication

2. Copy the satellite_images file to a system that contains the Satellite 6 hammer tool.
Alternatively, use the instructions in the Hammer CLI Guide to install the hammer tool to the
undercloud.

3. Run the following hammer command to create a new product (OSP16.1 Containers) in your
Satellite organization:

$ hammer product create \
 --organization "ACME" \
 --name "OSP Containers"

This custom product will contain your images.

4. Add the overcloud container images from the satellite_images file:

$ while read IMAGE; do \
 IMAGE_NAME=$(echo $IMAGE | cut -d"/" -f3 | sed "s/openstack-//g") ; \
 IMAGE_NOURL=$(echo $IMAGE | sed "s/registry.redhat.io\///g") ; \
 hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name $IMAGE_NOURL \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name $IMAGE_NAME ; done < satellite_images

5. Add the Ceph Storage 4 container image:

$ hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name rhceph/rhceph-4-rhel8 \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name rhceph-4-rhel8

NOTE

If you want to install the Ceph dashboard, include --name rhceph-4-dashboard-
rhel8 in the hammer repository create command:

$ hammer repository create \
 --organization "ACME" \
 --product "OSP Containers" \
 --content-type docker \
 --url https://registry.redhat.io \
 --docker-upstream-name rhceph/rhceph-4-dashboard-rhel8 \
 --upstream-username USERNAME \
 --upstream-password PASSWORD \
 --name rhceph-4-dashboard-rhel8

Red Hat OpenStack Platform 16.1 Director Installation and Usage

38

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/hammer_cli_guide/index

6. Synchronize the container images:

$ hammer product synchronize \
 --organization "ACME" \
 --name "OSP Containers"

Wait for the Satellite server to complete synchronization.

NOTE

Depending on your configuration, hammer might ask for your Satellite server
username and password. You can configure hammer to automatically login using
a configuration file. For more information, see the Authentication section in the
Hammer CLI Guide .

7. If your Satellite 6 server uses content views, create a new content view version to incorporate
the images and promote it along environments in your application life cycle. This largely
depends on how you structure your application lifecycle. For example, if you have an
environment called production in your lifecycle and you want the container images to be
available in that environment, create a content view that includes the container images and
promote that content view to the production environment. For more information, see
Managing Content Views.

8. Check the available tags for the base image:

$ hammer docker tag list --repository "base" \
 --organization "ACME" \
 --lifecycle-environment "production" \
 --product "OSP Containers"

This command displays tags for the OpenStack Platform container images within a content view
for a particular environment.

9. Return to the undercloud and generate a default environment file that prepares images using
your Satellite server as a source. Run the following example command to generate the
environment file:

$ sudo openstack tripleo container image prepare default \
 --output-env-file containers-prepare-parameter.yaml

--output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images for the undercloud. In this case, the name
of the file is containers-prepare-parameter.yaml.

10. Edit the containers-prepare-parameter.yaml file and modify the following parameters:

push_destination - Set this to true or false depending on your chosen container image
management strategy. If you set this parameter to false, the overcloud nodes pull images
directly from the Satellite. If you set this parameter to true, the director pulls the images
from the Satellite to the undercloud registry and the overcloud pulls the images from the
undercloud registry.

namespace - The URL and port of the registry on the Satellite server. The default registry
port on Red Hat Satellite is 443.

name_prefix - The prefix is based on a Satellite 6 convention. This differs depending on

CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION

39

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/hammer_cli_guide/index#sect-CLI_Guide-Authentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.6/html-single/content_management_guide/index#Managing_Content_Views

name_prefix - The prefix is based on a Satellite 6 convention. This differs depending on
whether you use content views:

If you use content views, the structure is [org]-[environment]-[content view]-
[product]-. For example: acme-production-myosp16-osp_containers-.

If you do not use content views, the structure is [org]-[product]-. For example: acme-
osp_containers-.

ceph_namespace, ceph_image, ceph_tag - If you use Ceph Storage, include these
additional parameters to define the Ceph Storage container image location. Note that
ceph_image now includes a Satellite-specific prefix. This prefix is the same value as the
name_prefix option.

The following example environment file contains Satellite-specific parameters:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: false
 set:
 ceph_image: acme-production-myosp16_1-osp_containers-rhceph-4
 ceph_namespace: satellite.example.com:443
 ceph_tag: latest
 name_prefix: acme-production-myosp16_1-osp_containers-
 name_suffix: ''
 namespace: satellite.example.com:443
 neutron_driver: null
 tag: '{osp_curr_ver_no_beta}'
 ...

NOTE

To use a specific container image version stored on your Red Hat Satellite Server, set the
tag key-value pair to the specific version in the set dictionary. For example, to use the
{osp_curr_ver_no_beta}.2 image stream, set tag: {osp_curr_ver_no_beta}.2 in the set
dictionary.

You must define the containers-prepare-parameter.yaml environment file in the undercloud.conf
configuration file, otherwise the undercloud uses the default values:

container_images_file = /home/stack/containers-prepare-parameter.yaml

Red Hat OpenStack Platform 16.1 Director Installation and Usage

40

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD
To configure and install director, set the appropriate parameters in the undercloud.conf file and run
the undercloud installation command. After you have installed director, import the overcloud images
that director will use to write to bare metal nodes during node provisioning.

4.1. CONFIGURING DIRECTOR

The director installation process requires certain settings in the undercloud.conf configuration file,
which director reads from the home directory of the stack user. Complete the following steps to copy
default template as a foundation for your configuration.

Procedure

1. Copy the default template to the home directory of the stack user’s:

[stack@director ~]$ cp \
 /usr/share/python-tripleoclient/undercloud.conf.sample \
 ~/undercloud.conf

2. Edit the undercloud.conf file. This file contains settings to configure your undercloud. If you
omit or comment out a parameter, the undercloud installation uses the default value.

4.2. DIRECTOR CONFIGURATION PARAMETERS

The following list contains information about parameters for configuring the undercloud.conf file. Keep
all parameters within their relevant sections to avoid errors.

IMPORTANT

At minimum, you must set the container_images_file parameter to the environment file
that contains your container image configuration. Without this parameter properly set to
the appropriate file, director cannot obtain your container image rule set from the
ContainerImagePrepare parameter nor your container registry authentication details
from the ContainerImageRegistryCredentials parameter.

Defaults

The following parameters are defined in the [DEFAULT] section of the undercloud.conf file:

additional_architectures

A list of additional (kernel) architectures that an overcloud supports. Currently the overcloud
supports ppc64le architecture in addition to the default x86_64 architecture.

certificate_generation_ca

The certmonger nickname of the CA that signs the requested certificate. Use this option only if you
have set the generate_service_certificate parameter. If you select the local CA, certmonger
extracts the local CA certificate to /etc/pki/ca-trust/source/anchors/cm-local-ca.pem and adds the
certificate to the trust chain.

clean_nodes

Defines whether to wipe the hard drive between deployments and after introspection.

cleanup

Delete temporary files. Set this to False to retain the temporary files used during deployment. The

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

41

Delete temporary files. Set this to False to retain the temporary files used during deployment. The
temporary files can help you debug the deployment if errors occur.

container_cli

The CLI tool for container management. Leave this parameter set to podman. Red Hat Enterprise
Linux 8.2 only supports podman.

container_healthcheck_disabled

Disables containerized service health checks. Red Hat recommends that you enable health checks
and leave this option set to false.

container_images_file

Heat environment file with container image information. This file can contain the following entries:

Parameters for all required container images

The ContainerImagePrepare parameter to drive the required image preparation. Usually
the file that contains this parameter is named containers-prepare-parameter.yaml.

container_insecure_registries

A list of insecure registries for podman to use. Use this parameter if you want to pull images from
another source, such as a private container registry. In most cases, podman has the certificates to
pull container images from either the Red Hat Container Catalog or from your Satellite Server if the
undercloud is registered to Satellite.

container_registry_mirror

An optional registry-mirror configured that podman uses.

custom_env_files

Additional environment files that you want to add to the undercloud installation.

deployment_user

The user who installs the undercloud. Leave this parameter unset to use the current default user
stack.

discovery_default_driver

Sets the default driver for automatically enrolled nodes. Requires the enable_node_discovery
parameter to be enabled and you must include the driver in the enabled_hardware_types list.

enable_ironic; enable_ironic_inspector; enable_mistral; enable_nova; enable_tempest;
enable_validations; enable_zaqar

Defines the core services that you want to enable for director. Leave these parameters set to true.

enable_node_discovery

Automatically enroll any unknown node that PXE-boots the introspection ramdisk. New nodes use
the fake driver as a default but you can set discovery_default_driver to override. You can also use
introspection rules to specify driver information for newly enrolled nodes.

enable_novajoin

Defines whether to install the novajoin metadata service in the undercloud.

enable_routed_networks

Defines whether to enable support for routed control plane networks.

enable_swift_encryption

Defines whether to enable Swift encryption at-rest.

enable_telemetry

Defines whether to install OpenStack Telemetry services (gnocchi, aodh, panko) in the undercloud.
Set the enable_telemetry parameter to true if you want to install and configure telemetry services

Red Hat OpenStack Platform 16.1 Director Installation and Usage

42

automatically. The default value is false, which disables telemetry on the undercloud. This parameter
is required if you use other products that consume metrics data, such as Red Hat CloudForms.

WARNING

RBAC is not supported by every component. The Alarming service (aodh) and
Gnocchi do not take secure RBAC rules into account.

enabled_hardware_types

A list of hardware types that you want to enable for the undercloud.

generate_service_certificate

Defines whether to generate an SSL/TLS certificate during the undercloud installation, which is used
for the undercloud_service_certificate parameter. The undercloud installation saves the resulting
certificate /etc/pki/tls/certs/undercloud-[undercloud_public_vip].pem. The CA defined in the
certificate_generation_ca parameter signs this certificate.

heat_container_image

URL for the heat container image to use. Leave unset.

heat_native

Run host-based undercloud configuration using heat-all. Leave as true.

hieradata_override

Path to hieradata override file that configures Puppet hieradata on the director, providing custom
configuration to services beyond the undercloud.conf parameters. If set, the undercloud installation
copies this file to the /etc/puppet/hieradata directory and sets it as the first file in the hierarchy. For
more information about using this feature, see Configuring hieradata on the undercloud.

inspection_extras

Defines whether to enable extra hardware collection during the inspection process. This parameter
requires the python-hardware or python-hardware-detect packages on the introspection image.

inspection_interface

The bridge that director uses for node introspection. This is a custom bridge that the director
configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default
br-ctlplane.

inspection_runbench

Runs a set of benchmarks during node introspection. Set this parameter to true to enable the
benchmarks. This option is necessary if you intend to perform benchmark analysis when inspecting
the hardware of registered nodes.

ipa_otp

Defines the one-time password to register the undercloud node to an IPA server. This is required
when enable_novajoin is enabled.

ipv6_address_mode

IPv6 address configuration mode for the undercloud provisioning network. The following list contains
the possible values for this parameter:

dhcpv6-stateless - Address configuration using router advertisement (RA) and optional
information using DHCPv6.



CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

43

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#configuring-hieradata-on-the-undercloud

dhcpv6-stateful - Address configuration and optional information using DHCPv6.

ipxe_enabled

Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set this
parameter to false to use standard PXE.

local_interface

The chosen interface for the director Provisioning NIC. This is also the device that director uses for
DHCP and PXE boot services. Change this value to your chosen device. To see which device is
connected, use the ip addr command. For example, this is the result of an ip addr command:

2: em0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000
 link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic em0
 valid_lft 3462sec preferred_lft 3462sec
 inet6 fe80::5054:ff:fe75:2409/64 scope link
 valid_lft forever preferred_lft forever
3: em1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state DOWN
 link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff

In this example, the External NIC uses em0 and the Provisioning NIC uses em1, which is currently not
configured. In this case, set the local_interface to em1. The configuration script attaches this
interface to a custom bridge defined with the inspection_interface parameter.

local_ip

The IP address defined for the director Provisioning NIC. This is also the IP address that director
uses for DHCP and PXE boot services. Leave this value as the default 192.168.24.1/24 unless you
use a different subnet for the Provisioning network, for example, if this IP address conflicts with an
existing IP address or subnet in your environment.
For IPv6, the local IP address prefix length must be /64 to support both stateful and stateless
connections.

local_mtu

The maximum transmission unit (MTU) that you want to use for the local_interface. Do not exceed
1500 for the undercloud.

local_subnet

The local subnet that you want to use for PXE boot and DHCP interfaces. The local_ip address
should reside in this subnet. The default is ctlplane-subnet.

net_config_override

Path to network configuration override template. If you set this parameter, the undercloud uses a
JSON or YAML format template to configure the networking with os-net-config and ignores the
network parameters set in undercloud.conf. Use this parameter when you want to configure
bonding or add an option to the interface. For more information about customizing undercloud
network interfaces, see Configuring undercloud network interfaces.

networks_file

Networks file to override for heat.

output_dir

Directory to output state, processed heat templates, and Ansible deployment files.

overcloud_domain_name

The DNS domain name that you want to use when you deploy the overcloud.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

44

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#proc_configuring-undercloud-network-interfaces_installing-director-on-the-undercloud

NOTE

When you configure the overcloud, you must set the CloudDomain parameter to a
matching value. Set this parameter in an environment file when you configure your
overcloud.

roles_file

The roles file that you want to use to override the default roles file for undercloud installation. It is
highly recommended to leave this parameter unset so that the director installation uses the default
roles file.

scheduler_max_attempts

The maximum number of times that the scheduler attempts to deploy an instance. This value must
be greater or equal to the number of bare metal nodes that you expect to deploy at once to avoid
potential race conditions when scheduling.

service_principal

The Kerberos principal for the service using the certificate. Use this parameter only if your CA
requires a Kerberos principal, such as in FreeIPA.

subnets

List of routed network subnets for provisioning and introspection. The default value includes only the
ctlplane-subnet subnet. For more information, see Subnets.

templates

Heat templates file to override.

undercloud_admin_host

The IP address or hostname defined for director Admin API endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.
If the undercloud_admin_host is not in the same IP network as the local_ip, you must set the
ControlVirtualInterface parameter to the interface on which you want the admin APIs on the
undercloud to listen. By default, the admin APIs listen on the br-ctlplane interface. Set the
ControlVirtualInterface parameter in a custom environment file, and include the custom
environment file in the undercloud.conf file by configuring the custom_env_files parameter.

For information about customizing undercloud network interfaces, see Configuring undercloud
network interfaces.

undercloud_debug

Sets the log level of undercloud services to DEBUG. Set this value to true to enable DEBUG log
level.

undercloud_enable_selinux

Enable or disable SELinux during the deployment. It is highly recommended to leave this value set to
true unless you are debugging an issue.

undercloud_hostname

Defines the fully qualified host name for the undercloud. If set, the undercloud installation configures
all system host name settings. If left unset, the undercloud uses the current host name, but you must
configure all system host name settings appropriately.

undercloud_log_file

The path to a log file to store the undercloud install and upgrade logs. By default, the log file is
install-undercloud.log in the home directory. For example, /home/stack/install-undercloud.log.

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

45

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#proc_configuring-undercloud-network-interfaces_installing-director-on-the-undercloud

undercloud_nameservers

A list of DNS nameservers to use for the undercloud hostname resolution.

undercloud_ntp_servers

A list of network time protocol servers to help synchronize the undercloud date and time.

undercloud_public_host

The IP address or hostname defined for director Public API endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.
If the undercloud_public_host is not in the same IP network as the local_ip, you must set the
PublicVirtualInterface parameter to the public-facing interface on which you want the public APIs
on the undercloud to listen. By default, the public APIs listen on the br-ctlplane interface. Set the
PublicVirtualInterface parameter in a custom environment file, and include the custom environment
file in the undercloud.conf file by configuring the custom_env_files parameter.

For information about customizing undercloud network interfaces, see Configuring undercloud
network interfaces.

undercloud_service_certificate

The location and filename of the certificate for OpenStack SSL/TLS communication. Ideally, you
obtain this certificate from a trusted certificate authority. Otherwise, generate your own self-signed
certificate.

undercloud_timezone

Host timezone for the undercloud. If you do not specify a timezone, director uses the existing
timezone configuration.

undercloud_update_packages

Defines whether to update packages during the undercloud installation.

Subnets

Each provisioning subnet is a named section in the undercloud.conf file. For example, to create a
subnet called ctlplane-subnet, use the following sample in your undercloud.conf file:

[ctlplane-subnet]
cidr = 192.168.24.0/24
dhcp_start = 192.168.24.5
dhcp_end = 192.168.24.24
inspection_iprange = 192.168.24.100,192.168.24.120
gateway = 192.168.24.1
masquerade = true

You can specify as many provisioning networks as necessary to suit your environment.

IMPORTANT

Director cannot change the IP addresses for a subnet after director creates the subnet.

cidr

The network that director uses to manage overcloud instances. This is the Provisioning network,
which the undercloud neutron service manages. Leave this as the default 192.168.24.0/24 unless you
use a different subnet for the Provisioning network.

masquerade

Red Hat OpenStack Platform 16.1 Director Installation and Usage

46

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#proc_configuring-undercloud-network-interfaces_installing-director-on-the-undercloud

Defines whether to masquerade the network defined in the cidr for external access. This provides
the Provisioning network with network address translation (NAT) so that the Provisioning network
has external access through director.

NOTE

The director configuration also enables IP forwarding automatically using the relevant
sysctl kernel parameter.

dhcp_start; dhcp_end

The start and end of the DHCP allocation range for overcloud nodes. Ensure that this range contains
enough IP addresses to allocate your nodes.

dhcp_exclude

IP addresses to exclude in the DHCP allocation range.

dns_nameservers

DNS nameservers specific to the subnet. If no nameservers are defined for the subnet, the subnet
uses nameservers defined in the undercloud_nameservers parameter.

gateway

The gateway for the overcloud instances. This is the undercloud host, which forwards traffic to the
External network. Leave this as the default 192.168.24.1 unless you use a different IP address for
director or want to use an external gateway directly.

host_routes

Host routes for the Neutron-managed subnet for the overcloud instances on this network. This also
configures the host routes for the local_subnet on the undercloud.

inspection_iprange

Temporary IP range for nodes on this network to use during the inspection process. This range must
not overlap with the range defined by dhcp_start and dhcp_end but must be in the same IP subnet.

Modify the values of these parameters to suit your configuration. When complete, save the file.

4.3. CONFIGURING THE UNDERCLOUD WITH ENVIRONMENT FILES

You configure the main parameters for the undercloud through the undercloud.conf file. You can also
perform additional undercloud configuration with an environment file that contains heat parameters.

Procedure

1. Create an environment file named /home/stack/templates/custom-undercloud-params.yaml.

2. Edit this file and include your heat parameters. For example, to enable debugging for certain
OpenStack Platform services include the following snippet in the custom-undercloud-
params.yaml file:

parameter_defaults:
 Debug: True

Save this file when you have finished.

3. Edit your undercloud.conf file and scroll to the custom_env_files parameter. Edit the
parameter to point to your custom-undercloud-params.yaml environment file:

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

47

custom_env_files = /home/stack/templates/custom-undercloud-params.yaml

NOTE

You can specify multiple environment files using a comma-separated list.

The director installation includes this environment file during the next undercloud installation or
upgrade operation.

4.4. COMMON HEAT PARAMETERS FOR UNDERCLOUD
CONFIGURATION

The following table contains some common heat parameters that you might set in a custom
environment file for your undercloud.

Parameter Description

AdminPassword Sets the undercloud admin user password.

AdminEmail Sets the undercloud admin user email address.

Debug Enables debug mode.

Set these parameters in your custom environment file under the parameter_defaults section:

parameter_defaults:
 Debug: True
 AdminPassword: "myp@ssw0rd!"
 AdminEmail: "admin@example.com"

4.5. CONFIGURING HIERADATA ON THE UNDERCLOUD

You can provide custom configuration for services beyond the available undercloud.conf parameters
by configuring Puppet hieradata on the director.

Procedure

1. Create a hieradata override file, for example, /home/stack/hieradata.yaml.

2. Add the customized hieradata to the file. For example, add the following snippet to modify the
Compute (nova) service parameter force_raw_images from the default value of True to False:

nova::compute::force_raw_images: False

If there is no Puppet implementation for the parameter you want to set, then use the following
method to configure the parameter:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

48

nova::config::nova_config:
 DEFAULT/<parameter_name>:
 value: <parameter_value>

For example:

nova::config::nova_config:
 DEFAULT/network_allocate_retries:
 value: 20
 ironic/serial_console_state_timeout:
 value: 15

3. Set the hieradata_override parameter in the undercloud.conf file to the path of the new
/home/stack/hieradata.yaml file:

hieradata_override = /home/stack/hieradata.yaml

4.6. CONFIGURING THE UNDERCLOUD FOR BARE METAL
PROVISIONING OVER IPV6

If you have IPv6 nodes and infrastructure, you can configure the undercloud and the provisioning
network to use IPv6 instead of IPv4 so that director can provision and deploy Red Hat OpenStack
Platform onto IPv6 nodes. However, there are some considerations:

Dual stack IPv4/6 is not available.

Tempest validations might not perform correctly.

IPv4 to IPv6 migration is not available during upgrades.

Modify the undercloud.conf file to enable IPv6 provisioning in Red Hat OpenStack Platform.

Prerequisites

An IPv6 address on the undercloud. For more information, see Configuring an IPv6 address on
the undercloud in the IPv6 Networking for the Overcloud guide.

Procedure

1. Open your undercloud.conf file.

2. Specify the IPv6 address mode as either stateless or stateful:

[DEFAULT]
ipv6_address_mode = <address_mode>
...

Replace <address_mode> with dhcpv6-stateless or dhcpv6-stateful, based on the mode
that your NIC supports.

NOTE

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

49

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/ipv6_networking_for_the_overcloud/index#sect-pre-Configuring_an_IPv6_on_the_Undercloud

NOTE

When you use the stateful address mode, the firmware, chain loaders, and
operating systems might use different algorithms to generate an ID that the
DHCP server tracks. DHCPv6 does not track addresses by MAC, and does not
provide the same address back if the identifier value from the requester changes
but the MAC address remains the same. Therefore, when you use stateful
DHCPv6 you must also complete the next step to configure the network
interface.

3. If you configured your undercloud to use stateful DHCPv6, specify the network interface to use
for bare metal nodes:

[DEFAULT]
ipv6_address_mode = dhcpv6-stateful
ironic_enabled_network_interfaces = neutron,flat
...

4. Set the default network interface for bare metal nodes:

[DEFAULT]
...
ironic_default_network_interface = neutron
...

5. Specify whether or not the undercloud should create a router on the provisioning network:

[DEFAULT]
...
enable_routed_networks: <true/false>
...

Replace <true/false> with true to enable routed networks and prevent the undercloud
creating a router on the provisioning network. When true, the data center router must
provide router advertisements.

Replace <true/false> with false to disable routed networks and create a router on the
provisioning network.

6. Configure the local IP address, and the IP address for the director Admin API and Public API
endpoints over SSL/TLS:

[DEFAULT]
...
local_ip = <ipv6_address>
undercloud_admin_host = <ipv6_address>
undercloud_public_host = <ipv6_address>
...

Replace <ipv6_address> with the IPv6 address of the undercloud.

7. Optional: Configure the provisioning network that director uses to manage instances:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

50

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
...

Replace <ipv6_address> with the IPv6 address of the network to use for managing
instances when not using the default provisioning network.

Replace <ipv6_prefix> with the IP address prefix of the network to use for managing
instances when not using the default provisioning network.

8. Configure the DHCP allocation range for provisioning nodes:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
...

Replace <ipv6_address_dhcp_start> with the IPv6 address of the start of the network
range to use for the overcloud nodes.

Replace <ipv6_address_dhcp_end> with the IPv6 address of the end of the network
range to use for the overcloud nodes.

9. Optional: Configure the gateway for forwarding traffic to the external network:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
gateway = <ipv6_gateway_address>
...

Replace <ipv6_gateway_address> with the IPv6 address of the gateway when not using
the default gateway.

10. Configure the DHCP range to use during the inspection process:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
gateway = <ipv6_gateway_address>
inspection_iprange = <ipv6_address_inspection_start>,<ipv6_address_inspection_end>
...

Replace <ipv6_address_inspection_start> with the IPv6 address of the start of the
network range to use during the inspection process.

Replace <ipv6_address_inspection_end> with the IPv6 address of the end of the network
range to use during the inspection process.

NOTE

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

51

NOTE

This range must not overlap with the range defined by dhcp_start and
dhcp_end, but must be in the same IP subnet.

11. Configure an IPv6 nameserver for the subnet:

[ctlplane-subnet]
cidr = <ipv6_address>/<ipv6_prefix>
dhcp_start = <ipv6_address_dhcp_start>
dhcp_end = <ipv6_address_dhcp_end>
gateway = <ipv6_gateway_address>
inspection_iprange = <ipv6_address_inspection_start>,<ipv6_address_inspection_end>
dns_nameservers = <ipv6_dns>

Replace <ipv6_dns> with the DNS nameservers specific to the subnet.

4.7. CONFIGURING UNDERCLOUD NETWORK INTERFACES

Include custom network configuration in the undercloud.conf file to install the undercloud with specific
networking functionality. For example, some interfaces might not have DHCP. In this case, you must
disable DHCP for these interfaces in the undercloud.conf file so that os-net-config can apply the
configuration during the undercloud installation process.

Procedure

1. Log in to the undercloud host.

2. Create a new file undercloud-os-net-config.yaml and include the network configuration that
you require.
For more information, see Network interface reference.

Here is an example:

network_config:
- name: br-ctlplane
 type: ovs_bridge
 use_dhcp: false
 dns_servers: 192.168.122.1
 domain: lab.example.com
 ovs_extra:
 - "br-set-external-id br-ctlplane bridge-id br-ctlplane"
 addresses:
 - ip_netmask: 172.20.0.1/26
 members:
 - type: interface
 name: nic2

To create a network bond for a specific interface, use the following sample:

network_config:
- name: br-ctlplane
 type: ovs_bridge
 use_dhcp: false

Red Hat OpenStack Platform 16.1 Director Installation and Usage

52

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#ref_network-interface-reference_custom-network-interface-templates

 dns_servers: 192.168.122.1
 domain: lab.example.com
 ovs_extra:
 - "br-set-external-id br-ctlplane bridge-id br-ctlplane"
 addresses:
 - ip_netmask: 172.20.0.1/26
 members:
 - name: bond-ctlplane
 type: linux_bond
 use_dhcp: false
 bonding_options: "mode=active-backup"
 mtu: 1500
 members:
 - type: interface
 name: nic2
 - type: interface
 name: nic3

3. Include the path to the undercloud-os-net-config.yaml file in the net_config_override
parameter in the undercloud.conf file:

[DEFAULT]
...
net_config_override=undercloud-os-net-config.yaml
...

NOTE

Director uses the file that you include in the net_config_override parameter as
the template to generate the /etc/os-net-config/config.yaml file. os-net-config
manages the interfaces that you define in the template, so you must perform all
undercloud network interface customization in this file.

4. Install the undercloud.

Verification

After the undercloud installation completes successfully, verify that the /etc/os-net-
config/config.yaml file contains the relevant configuration:

network_config:
- name: br-ctlplane
 type: ovs_bridge
 use_dhcp: false
 dns_servers: 192.168.122.1
 domain: lab.example.com
 ovs_extra:
 - "br-set-external-id br-ctlplane bridge-id br-ctlplane"
 addresses:
 - ip_netmask: 172.20.0.1/26
 members:
 - type: interface
 name: nic2

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

53

4.8. INSTALLING DIRECTOR

Complete the following steps to install director and perform some basic post-installation tasks.

Procedure

1. Run the following command to install director on the undercloud:

[stack@director ~]$ openstack undercloud install

This command launches the director configuration script. Director installs additional packages,
configures its services according to the configuration in the undercloud.conf, and starts all the
RHOSP service containers. This script takes several minutes to complete.

The script generates two files:

undercloud-passwords.conf - A list of all passwords for the director services.

stackrc - A set of initialization variables to help you access the director command line tools.

2. Confirm that the RHOSP service containers are running:

[stack@director ~]$ sudo podman ps -a --format "{{.Names}} {{.Status}}"

The following command output indicates that the RHOSP service containers are running (Up):

memcached Up 3 hours (healthy)
haproxy Up 3 hours
rabbitmq Up 3 hours (healthy)
mysql Up 3 hours (healthy)
iscsid Up 3 hours (healthy)
keystone Up 3 hours (healthy)
keystone_cron Up 3 hours (healthy)
neutron_api Up 3 hours (healthy)
logrotate_crond Up 3 hours (healthy)
neutron_dhcp Up 3 hours (healthy)
neutron_l3_agent Up 3 hours (healthy)
neutron_ovs_agent Up 3 hours (healthy)
ironic_api Up 3 hours (healthy)
ironic_conductor Up 3 hours (healthy)
ironic_neutron_agent Up 3 hours (healthy)
ironic_pxe_tftp Up 3 hours (healthy)
ironic_pxe_http Up 3 hours (unhealthy)
ironic_inspector Up 3 hours (healthy)
ironic_inspector_dnsmasq Up 3 hours (healthy)
neutron-dnsmasq-qdhcp-30d628e6-45e6-499d-8003-28c0bc066487 Up 3 hours
...

3. To initialize the stack user to use the command line tools, run the following command:

[stack@director ~]$ source ~/stackrc

The prompt now indicates that OpenStack commands authenticate and execute against the
undercloud;

Red Hat OpenStack Platform 16.1 Director Installation and Usage

54

(undercloud) [stack@director ~]$

The director installation is complete. You can now use the director command line tools.

4.9. CONFIGURING THE CPU ARCHITECTURE FOR THE OVERCLOUD

Red Hat OpenStack Platform (RHOSP) configures the CPU architecture of an overcloud as x86_64 by
default. You can also deploy overcloud Compute nodes on POWER (ppc64le) hardware. For the
Compute node cluster, you can use the same architecture, or use a combination of x86_64 and ppc64le
systems.

NOTE

The undercloud, Controller nodes, Ceph Storage nodes, and all other systems are
supported only on x86_64 hardware.

4.9.1. Configuring POWER (ppc64le) as the single CPU architecture for the
overcloud

The default CPU architecture of the Compute nodes on an overcloud is x86_64. To deploy overcloud
Compute nodes on POWER (ppc64le) hardware, you can change the architecture to ppc64le.

NOTE

When your architecture includes POWER (ppc64le) nodes, RHOSP 16.1 supports only
PXE boot.

Procedure

1. Disable iPXE in the undercloud.conf file:

[DEFAULT]
ipxe_enabled = False

NOTE

This configuration causes any x86_64 nodes in your deployment to also boot in
PXE/legacy mode.

2. Install the undercloud:

[stack@director ~]$ openstack undercloud install

For more information, see Installing director on the undercloud .

3. Wait until the installation script completes.

4. Obtain and upload the images for the overcloud nodes. For more information, see Obtaining
images for overcloud nodes.

4.9.2. Using Ceph Storage in a multi-architecture overcloud

When you configure access to external Ceph in a multi-architecture cloud, set the

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

55

When you configure access to external Ceph in a multi-architecture cloud, set the
CephAnsiblePlaybook parameter to /usr/share/ceph-ansible/site.yml.sample and include your client
key and other Ceph-specific parameters.

For example:

parameter_defaults:
 CephAnsiblePlaybook: /usr/share/ceph-ansible/site.yml.sample
 CephClientKey: AQDLOh1VgEp6FRAAFzT7Zw+Y9V6JJExQAsRnRQ==
 CephClusterFSID: 4b5c8c0a-ff60-454b-a1b4-9747aa737d19
 CephExternalMonHost: 172.16.1.7, 172.16.1.8

4.9.3. Using composable services in a multi-architecture overcloud

The following services typically form part of the Controller node and are available for use in custom roles
as Technology Preview:

Block Storage service (cinder)

Image service (glance)

Identity service (keystone)

Networking service (neutron)

Object Storage service (swift)

NOTE

Red Hat does not support features in Technology Preview.

For more information about composable services, see composable services and custom roles in the
Advanced Overcloud Customization guide. Use the following example to understand how to move the
listed services from the Controller node to a dedicated ppc64le node:

(undercloud) [stack@director ~]$ rsync -a /usr/share/openstack-tripleo-heat-templates/. ~/templates
(undercloud) [stack@director ~]$ cd ~/templates/roles
(undercloud) [stack@director roles]$ cat <<EO_TEMPLATE >ControllerPPC64LE.yaml
###
Role: ControllerPPC64LE
###
- name: ControllerPPC64LE
 description: |
 Controller role that has all the controller services loaded and handles
 Database, Messaging and Network functions.
 CountDefault: 1
 tags:
 - primary
 - controller
 networks:
 - External
 - InternalApi
 - Storage
 - StorageMgmt
 - Tenant

Red Hat OpenStack Platform 16.1 Director Installation and Usage

56

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/#Roles

 # For systems with both IPv4 and IPv6, you may specify a gateway network for
 # each, such as ['ControlPlane', 'External']
 default_route_networks: ['External']
 HostnameFormatDefault: '%stackname%-controllerppc64le-%index%'
 ImageDefault: ppc64le-overcloud-full
 ServicesDefault:
 - OS::TripleO::Services::Aide
 - OS::TripleO::Services::AuditD
 - OS::TripleO::Services::CACerts
 - OS::TripleO::Services::CephClient
 - OS::TripleO::Services::CephExternal
 - OS::TripleO::Services::CertmongerUser
 - OS::TripleO::Services::CinderApi
 - OS::TripleO::Services::CinderBackendDellPs
 - OS::TripleO::Services::CinderBackendDellSc
 - OS::TripleO::Services::CinderBackendDellEMCUnity
 - OS::TripleO::Services::CinderBackendDellEMCVMAXISCSI
 - OS::TripleO::Services::CinderBackendDellEMCVNX
 - OS::TripleO::Services::CinderBackendDellEMCXTREMIOISCSI
 - OS::TripleO::Services::CinderBackendNetApp
 - OS::TripleO::Services::CinderBackendScaleIO
 - OS::TripleO::Services::CinderBackendVRTSHyperScale
 - OS::TripleO::Services::CinderBackup
 - OS::TripleO::Services::CinderHPELeftHandISCSI
 - OS::TripleO::Services::CinderScheduler
 - OS::TripleO::Services::CinderVolume
 - OS::TripleO::Services::Collectd
 - OS::TripleO::Services::Docker
 - OS::TripleO::Services::Fluentd
 - OS::TripleO::Services::GlanceApi
 - OS::TripleO::Services::GlanceRegistry
 - OS::TripleO::Services::Ipsec
 - OS::TripleO::Services::Iscsid
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Keystone
 - OS::TripleO::Services::LoginDefs
 - OS::TripleO::Services::MySQLClient
 - OS::TripleO::Services::NeutronApi
 - OS::TripleO::Services::NeutronBgpVpnApi
 - OS::TripleO::Services::NeutronSfcApi
 - OS::TripleO::Services::NeutronCorePlugin
 - OS::TripleO::Services::NeutronDhcpAgent
 - OS::TripleO::Services::NeutronL2gwAgent
 - OS::TripleO::Services::NeutronL2gwApi
 - OS::TripleO::Services::NeutronL3Agent
 - OS::TripleO::Services::NeutronLbaasv2Agent
 - OS::TripleO::Services::NeutronLbaasv2Api
 - OS::TripleO::Services::NeutronLinuxbridgeAgent
 - OS::TripleO::Services::NeutronMetadataAgent
 - OS::TripleO::Services::NeutronML2FujitsuCfab
 - OS::TripleO::Services::NeutronML2FujitsuFossw
 - OS::TripleO::Services::NeutronOvsAgent
 - OS::TripleO::Services::NeutronVppAgent
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::ContainersLogrotateCrond
 - OS::TripleO::Services::OpenDaylightOvs

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

57

 - OS::TripleO::Services::Rhsm
 - OS::TripleO::Services::RsyslogSidecar
 - OS::TripleO::Services::Securetty
 - OS::TripleO::Services::SensuClient
 - OS::TripleO::Services::SkydiveAgent
 - OS::TripleO::Services::Snmp
 - OS::TripleO::Services::Sshd
 - OS::TripleO::Services::SwiftProxy
 - OS::TripleO::Services::SwiftDispersion
 - OS::TripleO::Services::SwiftRingBuilder
 - OS::TripleO::Services::SwiftStorage
 - OS::TripleO::Services::Timezone
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::Tuned
 - OS::TripleO::Services::Vpp
 - OS::TripleO::Services::OVNController
 - OS::TripleO::Services::OVNMetadataAgent
 - OS::TripleO::Services::Ptp
EO_TEMPLATE
(undercloud) [stack@director roles]$ sed -i~ -e '/OS::TripleO::Services::\
(Cinder\|Glance\|Swift\|Keystone\|Neutron\)/d' Controller.yaml
(undercloud) [stack@director roles]$ cd ../
(undercloud) [stack@director templates]$ openstack overcloud roles generate \
 --roles-path roles -o roles_data.yaml \
 Controller Compute ComputePPC64LE ControllerPPC64LE BlockStorage ObjectStorage
CephStorage

4.10. OBTAINING IMAGES FOR OVERCLOUD NODES

Director requires several disk images to provision overcloud nodes:

An introspection kernel and ramdisk for bare metal system introspection over PXE boot.

A deployment kernel and ramdisk for system provisioning and deployment.

An overcloud kernel, ramdisk, and full image, which form a base overcloud system that director
writes to the hard disk of the node.

You can obtain and install the images you need based on your CPU architecture. You can also obtain
and install a basic image to provision a bare OS when you do not want to run any other Red Hat
OpenStack Platform (RHOSP) services or consume one of your subscription entitlements.

4.10.1. Single CPU architecture overcloud images

Your Red Hat OpenStack Platform (RHOSP) installation includes packages that provide you with the
following overcloud images for director:

overcloud-full

overcloud-full-initrd

overcloud-full-vmlinuz

These images are necessary for deployment of the overcloud with the default CPU architecture, x86-

Red Hat OpenStack Platform 16.1 Director Installation and Usage

58

These images are necessary for deployment of the overcloud with the default CPU architecture, x86-
64. Importing these images into director also installs introspection images on the director PXE server.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Install the rhosp-director-images and rhosp-director-images-ipa-x86_64 packages:

(undercloud) [stack@director ~]$ sudo dnf install rhosp-director-images rhosp-director-
images-ipa-x86_64

4. Create the images directory in the home directory of the stack user (/home/stack/images).

(undercloud) [stack@director ~]$ mkdir /home/stack/images

5. Extract the images archives to the images directory:

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ for i in /usr/share/rhosp-director-images/overcloud-
full-latest-16.1.tar /usr/share/rhosp-director-images/ironic-python-agent-latest-16.1.tar; do tar
-xvf $i; done

6. Import the images into director:

(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
/home/stack/images/

7. Verify that the images are uploaded:

(undercloud) [stack@director images]$ openstack image list
+--------------------------------------+------------------------+
| ID | Name |
+--------------------------------------+------------------------+
ef793cd0-e65c-456a-a675-63cd57610bd5	overcloud-full
9a51a6cb-4670-40de-b64b-b70f4dd44152	overcloud-full-initrd
4f7e33f4-d617-47c1-b36f-cbe90f132e5d	overcloud-full-vmlinuz
+--------------------------------------+------------------------+

8. Verify that director has copied the introspection PXE images to /var/lib/ironic/httpboot:

(undercloud) [stack@director images]$ ls -l /var/lib/ironic/httpboot
total 417296
-rwxr-xr-x. 1 root root 6639920 Jan 29 14:48 agent.kernel
-rw-r--r--. 1 root root 420656424 Jan 29 14:48 agent.ramdisk
-rw-r--r--. 1 42422 42422 758 Jan 29 14:29 boot.ipxe
-rw-r--r--. 1 42422 42422 488 Jan 29 14:16 inspector.ipxe

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

59

4.10.2. Multiple CPU architecture overcloud images

Your Red Hat OpenStack Platform (RHOSP) installation includes packages that provide you with the
following images that are necessary for deployment of the overcloud with the default CPU architecture,
x86-64:

overcloud-full

overcloud-full-initrd

overcloud-full-vmlinuz

Your RHOSP installation also includes packages that provide you with the following images that are
necessary for deployment of the overcloud with the POWER (ppc64le) CPU architecture:

ppc64le-overcloud-full

Importing these images into director also installs introspection images on the director PXE server.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Install the rhosp-director-images-all package:

(undercloud) [stack@director ~]$ sudo dnf install rhosp-director-images-all

4. Extract the archives to an architecture specific directory in the images directory in the home
directory of the stack user (/home/stack/images):

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ for arch in x86_64 ppc64le ; do mkdir $arch ; done
(undercloud) [stack@director images]$ for arch in x86_64 ppc64le ; do for i in
/usr/share/rhosp-director-images/overcloud-full-latest-16.1-${arch}.tar /usr/share/rhosp-
director-images/ironic-python-agent-latest-16.1-${arch}.tar ; do tar -C $arch -xf $i ; done ;
done

5. Import the images into director:

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
~/images/ppc64le --architecture ppc64le --whole-disk --http-boot
/var/lib/ironic/tftpboot/ppc64le
(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
~/images/ppc64le --architecture ppc64le --whole-disk --image-type ironic-python-agent --
http-boot /var/lib/ironic/httpboot/ppc64le
(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
~/images/x86_64/ --architecture x86_64 --http-boot /var/lib/ironic/tftpboot
(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
~/images/x86_64 --architecture x86_64 --image-type ironic-python-agent --http-boot
/var/lib/ironic/httpboot

Red Hat OpenStack Platform 16.1 Director Installation and Usage

60

6. Verify that the images are uploaded:

(undercloud) [stack@director images]$ openstack image list
+--------------------------------------+---------------------------+--------+
| ID | Name | Status |
+--------------------------------------+---------------------------+--------+
6a6096ba-8f79-4343-b77c-4349f7b94960	overcloud-full	active
de2a1bde-9351-40d2-bbd7-7ce9d6eb50d8	overcloud-full-initrd	active
67073533-dd2a-4a95-8e8b-0f108f031092	overcloud-full-vmlinuz	active
f0fedcd0-3f28-4b44-9c88-619419007a03	ppc64le-overcloud-full	active
+--------------------------------------+---------------------------+--------+

7. Verify that director has copied the introspection PXE images to /var/lib/ironic/tftpboot:

(undercloud) [stack@director images]$ ls -l /var/lib/ironic/tftpboot
/var/lib/ironic/tftpboot/ppc64le/
/var/lib/ironic/tftpboot:
total 422624
-rwxr-xr-x. 1 root root 6385968 Aug 8 19:35 agent.kernel
-rw-r--r--. 1 root root 425530268 Aug 8 19:35 agent.ramdisk
-rwxr--r--. 1 42422 42422 20832 Aug 8 02:08 chain.c32
-rwxr--r--. 1 42422 42422 715584 Aug 8 02:06 ipxe.efi
-rw-r--r--. 1 root root 22 Aug 8 02:06 map-file
drwxr-xr-x. 2 42422 42422 62 Aug 8 19:34 ppc64le
-rwxr--r--. 1 42422 42422 26826 Aug 8 02:08 pxelinux.0
drwxr-xr-x. 2 42422 42422 21 Aug 8 02:06 pxelinux.cfg
-rwxr--r--. 1 42422 42422 69631 Aug 8 02:06 undionly.kpxe

/var/lib/ironic/tftpboot/ppc64le/:
total 457204
-rwxr-xr-x. 1 root root 19858896 Aug 8 19:34 agent.kernel
-rw-r--r--. 1 root root 448311235 Aug 8 19:34 agent.ramdisk
-rw-r--r--. 1 42422 42422 336 Aug 8 02:06 default

4.10.3. Minimal overcloud image

You can use the overcloud-minimal image to provision a bare OS where you do not want to run any
other Red Hat OpenStack Platform (RHOSP) services or consume one of your subscription
entitlements.

Your RHOSP installation includes the overcloud-minimal package that provides you with the following
overcloud images for director:

overcloud-minimal

overcloud-minimal-initrd

overcloud-minimal-vmlinuz

NOTE

The default overcloud-full.qcow2 image is a flat partition image. However, you can also
import and use whole disk images. For more information, see Chapter 24, Creating
whole-disk images.

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

61

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. Install the overcloud-minimal package:

(undercloud) [stack@director ~]$ sudo dnf install rhosp-director-images-minimal

4. Extract the images archives to the images directory in the home directory of the stack user
(/home/stack/images):

(undercloud) [stack@director ~]$ cd ~/images
(undercloud) [stack@director images]$ tar xf /usr/share/rhosp-director-images/overcloud-
minimal-latest-16.1.tar

5. Import the images into director:

(undercloud) [stack@director images]$ openstack overcloud image upload --image-path
/home/stack/images/ --image-type os --os-image-name overcloud-minimal.qcow2

6. Verify that the images are uploaded:

(undercloud) [stack@director images]$ openstack image list
+--------------------------------------+---------------------------+
| ID | Name |
+--------------------------------------+---------------------------+
ef793cd0-e65c-456a-a675-63cd57610bd5	overcloud-full
9a51a6cb-4670-40de-b64b-b70f4dd44152	overcloud-full-initrd
4f7e33f4-d617-47c1-b36f-cbe90f132e5d	overcloud-full-vmlinuz
32cf6771-b5df-4498-8f02-c3bd8bb93fdd	overcloud-minimal
600035af-dbbb-4985-8b24-a4e9da149ae5	overcloud-minimal-initrd
d45b0071-8006-472b-bbcc-458899e0d801	overcloud-minimal-vmlinuz
+--------------------------------------+---------------------------+

4.11. SETTING A NAMESERVER FOR THE CONTROL PLANE

If you intend for the overcloud to resolve external hostnames, such as cdn.redhat.com, set a
nameserver on the overcloud nodes. For a standard overcloud without network isolation, the
nameserver is defined using the undercloud control plane subnet. Complete the following procedure to
define nameservers for the environment.

Procedure

1. Source the stackrc file to enable the director command line tools:

[stack@director ~]$ source ~/stackrc

2. Set the nameservers for the ctlplane-subnet subnet:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

62

(undercloud) [stack@director images]$ openstack subnet set --dns-nameserver
[nameserver1-ip] --dns-nameserver [nameserver2-ip] ctlplane-subnet

Use the --dns-nameserver option for each nameserver.

3. View the subnet to verify the nameserver:

(undercloud) [stack@director images]$ openstack subnet show ctlplane-subnet
+-------------------+---+
| Field | Value |
+-------------------+---+
...	
dns_nameservers	8.8.8.8
...	
+-------------------+---+

IMPORTANT

If you aim to isolate service traffic onto separate networks, the overcloud nodes must use
the DnsServers parameter in your network environment files. You must also set the
control plane nameserver and the DnsServers parameter to the same DNS server.

4.12. UPDATING THE UNDERCLOUD CONFIGURATION

If you need to change the undercloud configuration to suit new requirements, you can make changes to
your undercloud configuration after installation, edit the relevant configuration files and re-run the
openstack undercloud install command.

Procedure

1. Modify the undercloud configuration files. For example, edit the undercloud.conf file and add
the idrac hardware type to the list of enabled hardware types:

enabled_hardware_types = ipmi,redfish,idrac

2. Run the openstack undercloud install command to refresh your undercloud with the new
changes:

[stack@director ~]$ openstack undercloud install

Wait until the command runs to completion.

3. Initialize the stack user to use the command line tools,:

[stack@director ~]$ source ~/stackrc

The prompt now indicates that OpenStack commands authenticate and execute against the
undercloud:

(undercloud) [stack@director ~]$

4. Verify that director has applied the new configuration. For this example, check the list of
enabled hardware types:

CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD

63

(undercloud) [stack@director ~]$ openstack baremetal driver list
+---------------------+----------------------+
| Supported driver(s) | Active host(s) |
+---------------------+----------------------+
idrac	director.example.com
ipmi	director.example.com
redfish	director.example.com
+---------------------+----------------------+

The undercloud re-configuration is complete.

4.13. UNDERCLOUD CONTAINER REGISTRY

Red Hat Enterprise Linux 8.2 no longer includes the docker-distribution package, which installed a
Docker Registry v2. To maintain the compatibility and the same level of feature, the director installation
creates an Apache web server with a vhost called image-serve to provide a registry. This registry also
uses port 8787/TCP with SSL disabled. The Apache-based registry is not containerized, which means
that you must run the following command to restart the registry:

$ sudo systemctl restart httpd

You can find the container registry logs in the following locations:

/var/log/httpd/image_serve_access.log

/var/log/httpd/image_serve_error.log.

The image content is served from /var/lib/image-serve. This location uses a specific directory layout
and apache configuration to implement the pull function of the registry REST API.

The Apache-based registry does not support podman push nor buildah push commands, which means
that you cannot push container images using traditional methods. To modify images during deployment,
use the container preparation workflow, such as the ContainerImagePrepare parameter. To manage
container images, use the container management commands:

openstack tripleo container image list

Lists all images stored on the registry.

openstack tripleo container image show

Show metadata for a specific image on the registry.

openstack tripleo container image push

Push an image from a remote registry to the undercloud registry.

openstack tripleo container image delete

Delete an image from the registry.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

64

CHAPTER 5. INSTALLING UNDERCLOUD MINIONS
You can deploy additional undercloud minions to scale OpenStack Platform director services across
multiple hosts, which helps the performance when you deploy large overclouds. This feature is optional.

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

5.1. UNDERCLOUD MINION

An undercloud minion provides additional heat-engine and ironic-conductor services on a separate
host. These additional services support the undercloud with orchestration and provisioning operations.
The distribution of undercloud operations across multiple hosts provides more resources to run an
overcloud deployment, which can result in potentially faster and larger deployments.

5.2. UNDERCLOUD MINION REQUIREMENTS

Service requirements

The scaled heat-engine and ironic-conductor services on an undercloud minion use a set of workers.
Each worker performs operations specific to that service. Multiple workers provide simultaneous
operations. The default number of workers on the minion is determined by halving the total CPU thread
count of the minion host. In this instance, total thread count is the number of CPU cores multiplied by
the hyper-threading value. For example, if your minion has a CPU with 16 threads, then the minion
spawns 8 workers for each service by default. The minion also uses a set of minimum and maximum caps
by default:

Service Minimum Maximum

heat-engine 4 24

ironic-conductor 2 12

An undercloud minion has the following minimum CPU and memory requirements:

An 8-thread 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions. This
processor provides 4 workers for each undercloud service.

A minimum of 16 GB of RAM.

To use a larger number of workers, increase the vCPUs and memory count on the undercloud using a
ratio of 2 GB of RAM for each CPU thread. For example, a machine with 48 threads must have 96 GB of
RAM. This provides coverage for 24 heat-engine workers and 12 ironic-conductor workers.

Container image requirements

An undercloud minion does not host an internal container image registry. As a result, you must configure
the minion to use one of the following methods to obtain container images:

CHAPTER 5. INSTALLING UNDERCLOUD MINIONS

65

https://access.redhat.com/support/offerings/production/scope_moredetail

Pull the images directly from the Red Hat Container Image Registry (registry.redhat.io).

Pull images that you host on a Red Hat Satellite Server.

For both methods, you must to set push_destination: false as a part of the ContainerImagePrepare
heat parameter in your containers-prepare-parameter.yaml file.

5.3. PREPARING A MINION

Before you can install a minion, you must complete some basic configuration on the host machine:

A non-root user to execute commands.

A resolvable hostname

A Red Hat subscription

The command line tools for image preparation and minion installation

Procedure

1. Log in to the minion host as the root user.

2. Create the stack user:

[root@minion ~]# useradd stack

3. Set a password for the stack user:

[root@minion ~]# passwd stack

4. Disable password requirements when using sudo:

[root@minion ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a /etc/sudoers.d/stack
[root@minion ~]# chmod 0440 /etc/sudoers.d/stack

5. Switch to the new stack user:

[root@minion ~]# su - stack
[stack@minion ~]$

6. Check the base and full hostname of the minion:

[stack@minion ~]$ hostname
[stack@minion ~]$ hostname -f

If either of the previous commands do not report the correct fully-qualified hostname or report
an error, use hostnamectl to set a hostname:

[stack@minion ~]$ sudo hostnamectl set-hostname minion.example.com
[stack@minion ~]$ sudo hostnamectl set-hostname --transient minion.example.com

7. Edit the /etc/hosts file and include an entry for the system hostname. For example, if the

Red Hat OpenStack Platform 16.1 Director Installation and Usage

66

7. Edit the /etc/hosts file and include an entry for the system hostname. For example, if the
system is named minion.example.com and uses the IP address 10.0.0.1, add the following line
to the /etc/hosts file:

10.0.0.1 minion.example.com manager

8. Register your system either with the Red Hat Content Delivery Network or Red Hat Satellite.
For example, run the following command to register the system to the Content Delivery
Network. Enter your Customer Portal user name and password when prompted:

[stack@minion ~]$ sudo subscription-manager register

9. Find the entitlement pool ID for Red Hat OpenStack Platform (RHOSP) director:

[stack@minion ~]$ sudo subscription-manager list --available --all --matches="Red Hat
OpenStack"
Subscription Name: Name of SKU
Provides: Red Hat Single Sign-On
 Red Hat Enterprise Linux Workstation
 Red Hat CloudForms
 Red Hat OpenStack
 Red Hat Software Collections (for RHEL Workstation)
 Red Hat Virtualization
SKU: SKU-Number
Contract: Contract-Number
Pool ID: Valid-Pool-Number-123456
Provides Management: Yes
Available: 1
Suggested: 1
Service Level: Support-level
Service Type: Service-Type
Subscription Type: Sub-type
Ends: End-date
System Type: Physical

10. Locate the Pool ID value and attach the Red Hat OpenStack Platform 16.1 entitlement:

[stack@minion ~]$ sudo subscription-manager attach --pool=Valid-Pool-Number-123456

11. Disable all default repositories, and then enable the required Red Hat Enterprise Linux
repositories:

[stack@minion ~]$ sudo subscription-manager repos --disable=*
[stack@minion ~]$ sudo subscription-manager repos --enable=rhel-8-for-x86_64-baseos-
eus-rpms --enable=rhel-8-for-x86_64-appstream-eus-rpms --enable=rhel-8-for-x86_64-
highavailability-eus-rpms --enable=ansible-2.9-for-rhel-8-x86_64-rpms --enable=openstack-
16.1-for-rhel-8-x86_64-rpms --enable=fast-datapath-for-rhel-8-x86_64-rpms

These repositories contain packages that the minion installation requires.

12. Perform an update on your system to ensure that you have the latest base system packages:

[stack@minion ~]$ sudo dnf update -y
[stack@minion ~]$ sudo reboot

CHAPTER 5. INSTALLING UNDERCLOUD MINIONS

67

13. Install the command line tools for minion installation and configuration:

[stack@minion ~]$ sudo dnf install -y python3-tripleoclient

5.4. COPYING THE UNDERCLOUD CONFIGURATION FILES TO THE
MINION

The minion requires some configuration files from the undercloud so that the minion installation can
configure the minion services and register them with director:

tripleo-undercloud-outputs.yaml

tripleo-undercloud-passwords.yaml

Procedure

1. Log in to your undercloud as the stack user.

2. Copy the files from the undercloud to the minion:

$ scp ~/tripleo-undercloud-outputs.yaml ~/tripleo-undercloud-passwords.yaml
stack@<minion-host>:~/.

Replace <minion-host> with the hostname or IP address of the minion.

5.5. COPYING THE UNDERCLOUD CERTIFICATE AUTHORITY

If the undercloud uses SSL/TLS for endpoint encryption, the minion host must contain the certificate
authority that signed the undercloud SSL/TLS certificates. Depending on your undercloud
configuration, this certificate authority is one of the following:

An external certificate authority whose certificate is preloaded on the minion host. No action is
required.

A director-generated self-signed certificate authority, which the director creates at /etc/pki/ca-
trust/source/anchors/cm-local-ca.pem. Copy this file to the minion host and include the file as
a part of the trusted certificate authorities for the minion host. This procedure uses this file as
an example.

A custom self-signed certificate authority, which you create with OpenSSL. Examples in this
document refer to this file as ca.crt.pem. Copy this file to the minion host and include the file as
a part of the trusted certificate authorities for the minion host.

Procedure

1. Log in to the minion host as the root user.

2. Copy the certificate authority file from the undercloud to the minion:

[root@minion ~]# scp \
 root@<undercloud-host>:/etc/pki/ca-trust/source/anchors/cm-local-ca.pem \
 /etc/pki/ca-trust/source/anchors/undercloud-ca.pem

Replace <undercloud-host> with the hostname or IP address of the undercloud.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

68

3. Update the trusted certificate authorities for the minion host:

[root@minion ~]# update-ca-trust enable
[root@minion ~]# update-ca-trust extract

5.6. CONFIGURING THE MINION

The minion installation process requires certain settings in the minion.conf configuration file, which the
minion reads from the home directory of the stack user. Complete the following steps to use the
default template as a foundation for your configuration.

Procedure

1. Log in to the minion host as the stack user.

2. Copy the default template to the home directory of the stack user:

[stack@minion ~]$ cp \
 /usr/share/python-tripleoclient/minion.conf.sample \
 ~/minion.conf

3. Edit the minion.conf file. This file contains settings to configure your minion. If you omit or
comment out a parameter, the minion installation uses the default value. Review the following
recommended parameters:

minion_hostname, which you set to the hostname of the minion.

minion_local_interface, which you set to the interface that connects to the undercloud
through the Provisioning Network.

minion_local_ip, which you set to a free IP address on the Provisioning Network.

minion_nameservers, which you set to the DNS nameservers so that the minion can
resolve hostnames.

enable_ironic_conductor, which defines whether to enable the ironic-conductor service.

enable_heat_engine, which defines whether to enable the heat-engine service.

NOTE

The default minion.conf file enables only the heat-engine service on the minion. To
enable the ironic-conductor service, set the enable_ironic_conductor parameter to
true.

5.7. MINION CONFIGURATION PARAMETERS

The following list contains information about parameters for configuring the minion.conf file. Keep all
parameters within their relevant sections to avoid errors.

Defaults

The following parameters are defined in the [DEFAULT] section of the minion.conf file:

cleanup

CHAPTER 5. INSTALLING UNDERCLOUD MINIONS

69

Cleanup temporary files. Set this parmaeter to False to leave the temporary files used during
deployment in place after the command is run. This is useful for debugging the generated files or if
errors occur.

container_cli

The CLI tool for container management. Leave this parameter set to podman. Red Hat Enterprise
Linux 8.2 only supports podman.

container_healthcheck_disabled

Disables containerized service health checks. Red Hat recommends that you enable health checks
and leave this option set to false.

container_images_file

Heat environment file with container image information. This file can contain the following entries:

Parameters for all required container images

The ContainerImagePrepare parameter to drive the required image preparation. Usually
the file that contains this parameter is named containers-prepare-parameter.yaml.

container_insecure_registries

A list of insecure registries for podman to use. Use this parameter if you want to pull images from
another source, such as a private container registry. In most cases, podman has the certificates to
pull container images from either the Red Hat Container Catalog or from your Satellite server if the
minion is registered to Satellite.

container_registry_mirror

An optional registry-mirror configured that podman uses.

custom_env_files

Additional environment file that you want to add to the minion installation.

deployment_user

The user who installs the minion. Leave this parameter unset to use the current default user stack.

enable_heat_engine

Defines whether to install the heat engine on the minion. The default is true.

enable_ironic_conductor

Defines whether to install the ironic conductor service on the minion. The default value is false. Set
this value to true to enable the ironic conductor service.

heat_container_image

URL for the heat container image that you want to use. Leave unset.

heat_native

Use native heat templates. Leave as true.

hieradata_override

Path to hieradata override file that configures Puppet hieradata on the director, providing custom
configuration to services beyond the minion.conf parameters. If set, the minion installation copies
this file to the /etc/puppet/hieradata directory and sets it as the first file in the hierarchy.

minion_debug

Set this value to true to enable the DEBUG log level for minion services.

minion_enable_selinux

Enable or disable SELinux during the deployment. It is highly recommended to leave this value set to
true unless you are debugging an issue.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

70

minion_enable_validations

Enable validation services on the minion.

minion_hostname

Defines the fully qualified host name for the minion. If set, the minion installation configures all
system host name settings. If left unset, the minion uses the current host name, but you must
configure all system host name settings appropriately.

minion_local_interface

The chosen interface for the Provisioning NIC on the undercloud. This is also the device that the
minion uses for DHCP and PXE boot services. Change this value to your chosen device. To see which
device is connected, use the ip addr command. For example, this is the result of an ip addr
command:

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen
1000
 link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
 inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic eth0
 valid_lft 3462sec preferred_lft 3462sec
 inet6 fe80::5054:ff:fe75:2409/64 scope link
 valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state DOWN
 link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff

In this example, the External NIC uses eth0 and the Provisioning NIC uses eth1, which is currently not
configured. In this case, set the local_interface to eth1. The configuration script attaches this
interface to a custom bridge defined with the inspection_interface parameter.

minion_local_ip

The IP address defined for the Provisioning NIC on the undercloud. This is also the IP address that
the minion uses for DHCP and PXE boot services. Leave this value as the default 192.168.24.1/24
unless you use a different subnet for the Provisioning network, for example, if the default IP address
conflicts with an existing IP address or subnet in your environment.

minion_local_mtu

The maximum transmission unit (MTU) that you want to use for the local_interface. Do not exceed
1500 for the minion.

minion_log_file

The path to a log file where you want to store the minion install and upgrade logs. By default, the log
file is install-minion.log in the home directory. For example, /home/stack/install-minion.log.

minion_nameservers

A list of DNS nameservers to use for the minion hostname resolution.

minion_ntp_servers

A list of network time protocol servers to help synchronize the minion date and time.

minion_password_file

The file that contains the passwords for the minion to connect to undercloud services. Leave this
parameter set to the tripleo-undercloud-passwords.yaml file copied from the undercloud.

minion_service_certificate

The location and filename of the certificate for OpenStack SSL/TLS communication. Ideally, you
obtain this certificate from a trusted certificate authority. Otherwise, generate your own self-signed
certificate.

minion_timezone

CHAPTER 5. INSTALLING UNDERCLOUD MINIONS

71

Host timezone for the minion. If you do not specify a timezone, the minion uses the existing timezone
configuration.

minion_undercloud_output_file

The file that contains undercloud configuration information that the minion can use to connect to
undercloud services. Leave this parameter set to the tripleo-undercloud-outputs.yaml file copied
from the undercloud.

net_config_override

The path to a network configuration override template. If you set this parameter, the minion uses a
JSON format template to configure the networking with os-net-config and ignores the network
parameters set in minion.conf. See /usr/share/python-tripleoclient/minion.conf.sample for an
example.

networks_file

Networks file to override for heat.

output_dir

Directory to output state, processed heat templates, and Ansible deployment files.

roles_file

The roles file that you want to use to override the default roles file for minion installation. It is highly
recommended to leave this parameter unset so that the minion installation uses the default roles file.

templates

Heat templates file to override.

5.8. INSTALLING THE MINION

Complete the following steps to install the minion.

Procedure

1. Log in to the minion host as the stack user.

2. Run the following command to install the minion:

[stack@minion ~]$ openstack undercloud minion install

This command launches the configuration script for the minion, installs additional packages, and
configures minion services according to the configuration in the minion.conf file. This script
takes several minutes to complete.

5.9. VERIFYING THE MINION INSTALLATION

Complete the following steps to confirm a successful minion installation.

Procedure

1. Log in to your undercloud as the stack user.

2. Source the stackrc file:

[stack@director ~]$ source ~/stackrc

3. If you enabled the heat engine service on the minion, verify that the heat-engine service from

Red Hat OpenStack Platform 16.1 Director Installation and Usage

72

3. If you enabled the heat engine service on the minion, verify that the heat-engine service from
the minion appears on the undercloud service list:

[stack@director ~]$ $ openstack orchestration service list

The command output displays a table with heat-engine workers for both the undercloud and
any minions.

4. If you enabled the ironic conductor service on the minion, verify that the ironic-conductor
service from the minion appears on the undercloud service list:

[stack@director ~]$ $ openstack baremetal conductor list

The command output displays a table with ironic-conductor services for both the undercloud
and any minions.

CHAPTER 5. INSTALLING UNDERCLOUD MINIONS

73

CHAPTER 6. PLANNING YOUR OVERCLOUD
The following section contains some guidelines for planning various aspects of your Red Hat OpenStack
Platform (RHOSP) environment. This includes defining node roles, planning your network topology, and
storage.

IMPORTANT

Do not rename your overcloud nodes after they have been deployed. Renaming a node
after deployment creates issues with instance management.

6.1. NODE ROLES

Director includes the following default node types to build your overcloud:

Controller

Provides key services for controlling your environment. This includes the dashboard (horizon),
authentication (keystone), image storage (glance), networking (neutron), orchestration (heat), and
high availability services. A Red Hat OpenStack Platform (RHOSP) environment requires three
Controller nodes for a highly available production-level environment.

NOTE

Use environments with one Controller node only for testing purposes, not for
production. Environments with two Controller nodes or more than three Controller
nodes are not supported.

Compute

A physical server that acts as a hypervisor and contains the processing capabilities required to run
virtual machines in the environment. A basic RHOSP environment requires at least one Compute
node.

Ceph Storage

A host that provides Red Hat Ceph Storage. Additional Ceph Storage hosts scale into a cluster. This
deployment role is optional.

Swift Storage

A host that provides external object storage to the OpenStack Object Storage (swift) service. This
deployment role is optional.

The following table contains some examples of different overclouds and defines the node types for
each scenario.

Table 6.1. Node Deployment Roles for Scenarios

 Controller Compute Ceph Storage Swift Storage Total

Small
overcloud

3 1 - - 4

Medium
overcloud

3 3 - - 6

Red Hat OpenStack Platform 16.1 Director Installation and Usage

74

Medium
overcloud with
additional
object storage

3 3 - 3 9

Medium
overcloud with
Ceph Storage
cluster

3 3 3 - 9

In addition, consider whether to split individual services into custom roles. For more information about
the composable roles architecture, see "Composable Services and Custom Roles" in the Advanced
Overcloud Customization guide.

Table 6.2. Node Deployment Roles for Proof of Concept Deployment

 Undercloud Controller Compute Ceph Storage Total

Proof of
concept

1 1 1 1 4

WARNING

The Red Hat OpenStack Platform maintains an operational Ceph Storage cluster
during day-2 operations. Therefore, some day-2 operations, such as upgrades or
minor updates of the Ceph Storage cluster, are not possible in deployments with
fewer than three MONs or three storage nodes. If you use a single Controller node
or a single Ceph Storage node, day-2 operations will fail.

6.2. OVERCLOUD NETWORKS

It is important to plan the networking topology and subnets in your environment so that you can map
roles and services to communicate with each other correctly. Red Hat OpenStack Platform (RHOSP)
uses the Openstack Networking (neutron) service, which operates autonomously and manages
software-based networks, static and floating IP addresses, and DHCP.

By default, director configures nodes to use the Provisioning / Control Plane for connectivity.
However, it is possible to isolate network traffic into a series of composable networks, that you can
customize and assign services.

In a typical RHOSP installation, the number of network types often exceeds the number of physical
network links. To connect all the networks to the proper hosts, the overcloud uses VLAN tagging to
deliver more than one network on each interface. Most of the networks are isolated subnets but some
networks require a Layer 3 gateway to provide routing for Internet access or infrastructure network
connectivity. If you use VLANs to isolate your network traffic types, you must use a switch that supports
802.1Q standards to provide tagged VLANs.

NOTE



CHAPTER 6. PLANNING YOUR OVERCLOUD

75

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/#Roles

NOTE

It is recommended that you deploy a project network (tunneled with GRE or VXLAN)
even if you intend to use a neutron VLAN mode with tunneling disabled at deployment
time. This requires minor customization at deployment time and leaves the option
available to use tunnel networks as utility networks or virtualization networks in the future.
You still create Tenant networks using VLANs, but you can also create VXLAN tunnels for
special-use networks without consuming tenant VLANs. It is possible to add VXLAN
capability to a deployment with a Tenant VLAN, but it is not possible to add a Tenant
VLAN to an existing overcloud without causing disruption.

Director also includes a set of templates that you can use to configure NICs with isolated composable
networks. The following configurations are the default configurations:

Single NIC configuration - One NIC for the Provisioning network on the native VLAN and
tagged VLANs that use subnets for the different overcloud network types.

Bonded NIC configuration - One NIC for the Provisioning network on the native VLAN and two
NICs in a bond for tagged VLANs for the different overcloud network types.

Multiple NIC configuration - Each NIC uses a subnet for a different overcloud network type.

You can also create your own templates to map a specific NIC configuration.

The following details are also important when you consider your network configuration:

During the overcloud creation, you refer to NICs using a single name across all overcloud
machines. Ideally, you should use the same NIC on each overcloud node for each respective
network to avoid confusion. For example, use the primary NIC for the Provisioning network and
the secondary NIC for the OpenStack services.

Set all overcloud systems to PXE boot off the Provisioning NIC, and disable PXE boot on the
External NIC and any other NICs on the system. Also ensure that the Provisioning NIC has PXE
boot at the top of the boot order, ahead of hard disks and CD/DVD drives.

All overcloud bare metal systems require a supported power management interface, such as an
Intelligent Platform Management Interface (IPMI), so that director can control the power
management of each node.

Make a note of the following details for each overcloud system: the MAC address of the
Provisioning NIC, the IP address of the IPMI NIC, IPMI username, and IPMI password. This
information is useful later when you configure the overcloud nodes.

If an instance must be accessible from the external internet, you can allocate a floating IP
address from a public network and associate the floating IP with an instance. The instance
retains its private IP but network traffic uses NAT to traverse through to the floating IP address.
Note that a floating IP address can be assigned only to a single instance rather than multiple
private IP addresses. However, the floating IP address is reserved for use only by a single
tenant, which means that the tenant can associate or disassociate the floating IP address with a
particular instance as required. This configuration exposes your infrastructure to the external
internet and you must follow suitable security practices.

To mitigate the risk of network loops in Open vSwitch, only a single interface or a single bond
can be a member of a given bridge. If you require multiple bonds or interfaces, you can configure
multiple bridges.

Red Hat recommends using DNS hostname resolution so that your overcloud nodes can

Red Hat OpenStack Platform 16.1 Director Installation and Usage

76

Red Hat recommends using DNS hostname resolution so that your overcloud nodes can
connect to external services, such as the Red Hat Content Delivery Network and network time
servers.

Red Hat recommends that the Provisioning interface, External interface, and any floating IP
interfaces be left at the default MTU of 1500. Connectivity problems are likely to occur
otherwise. This is because routers typically cannot forward jumbo frames across Layer 3
boundaries.

NOTE

You can virtualize the overcloud control plane if you are using Red Hat Virtualization
(RHV). For more information, see Creating virtualized control planes .

6.3. OVERCLOUD STORAGE

NOTE

Using LVM on a guest instance that uses a back end cinder-volume of any driver or back-
end type results in issues with performance, volume visibility and availability, and data
corruption. Use an LVM filter to mitigate visibility, availability, and data corruption issues.
For more information, see section 2 Block Storage and Volumes in the Storage Guide
and KCS article 3213311, "Using LVM on a cinder volume exposes the data to the compute
host."

Director includes different storage options for the overcloud environment:

Ceph Storage nodes

Director creates a set of scalable storage nodes using Red Hat Ceph Storage. The overcloud uses
these nodes for the following storage types:

Images - The Image service (glance) manages images for virtual machines. Images are
immutable. OpenStack treats images as binary blobs and downloads them accordingly. You
can use the Image service (glance) to store images in a Ceph Block Device.

Volumes - OpenStack manages volumes with the Block Storage service (cinder). The Block
Storage service (cinder) volumes are block devices. OpenStack uses volumes to boot virtual
machines, or to attach volumes to running virtual machines. You can use the Block Storage
service to boot a virtual machine using a copy-on-write clone of an image.

File Systems - Openstack manages shared file systems with the Shared File Systems
service (manila). Shares are backed by file systems. You can use manila to manage shares
backed by a CephFS file system with data on the Ceph Storage nodes.

Guest Disks - Guest disks are guest operating system disks. By default, when you boot a
virtual machine with the Compute service (nova), the virtual machine disk appears as a file
on the filesystem of the hypervisor (usually under /var/lib/nova/instances/<uuid>/). Every
virtual machine inside Ceph can be booted without using the Block Storage service (cinder).
As a result, you can perform maintenance operations easily with the live-migration process.
Additionally, if your hypervisor fails, it is also convenient to trigger nova evacuate and run
the virtual machine elsewhere.

IMPORTANT

CHAPTER 6. PLANNING YOUR OVERCLOUD

77

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/storage_guide/index#ch-cinder
https://access.redhat.com/solutions/3213311

IMPORTANT

For information about supported image formats, see Image Service in the
Creating and Managing Images guide.

For more information about Ceph Storage, see the Red Hat Ceph Storage Architecture
Guide.

Swift Storage nodes

Director creates an external object storage node. This is useful in situations where you need to scale
or replace Controller nodes in your overcloud environment but need to retain object storage outside
of a high availability cluster.

6.4. OVERCLOUD SECURITY

Your OpenStack Platform implementation is only as secure as your environment. Follow good security
principles in your networking environment to ensure that you control network access properly:

Use network segmentation to mitigate network movement and isolate sensitive data. A flat
network is much less secure.

Restrict services access and ports to a minimum.

Enforce proper firewall rules and password usage.

Ensure that SELinux is enabled.

For more information about securing your system, see the following Red Hat guides:

Security Hardening for Red Hat Enterprise Linux 8

Using SELinux for Red Hat Enterprise Linux 8

6.5. OVERCLOUD HIGH AVAILABILITY

To deploy a highly-available overcloud, director configures multiple Controller, Compute and Storage
nodes to work together as a single cluster. In case of node failure, an automated fencing and re-
spawning process is triggered based on the type of node that failed. For more information about
overcloud high availability architecture and services, see High Availability Deployment and Usage .

NOTE

Deploying a highly available overcloud without STONITH is not supported. You must
configure a STONITH device for each node that is a part of the Pacemaker cluster in a
highly available overcloud. For more information on STONITH and Pacemaker, see
Fencing in a Red Hat High Availability Cluster and Support Policies for RHEL High
Availability Clusters.

You can also configure high availability for Compute instances with director (Instance HA). This high
availability mechanism automates evacuation and re-spawning of instances on Compute nodes in case
of node failure. The requirements for Instance HA are the same as the general overcloud requirements,
but you must perform a few additional steps to prepare your environment for the deployment. For more
information about Instance HA and installation instructions, see the High Availability for Compute
Instances guide.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

78

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/creating_and_managing_images/ch-image-service
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html/architecture_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/using_selinux/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/high_availability_deployment_and_usage/
https://access.redhat.com/solutions/15575
https://access.redhat.com/articles/2881341
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/high_availability_for_compute_instances/

6.6. CONTROLLER NODE REQUIREMENTS

Controller nodes host the core services in a Red Hat OpenStack Platform environment, such as the
Dashboard (horizon), the back-end database server, the Identity service (keystone) authentication, and
high availability services.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

The minimum amount of memory is 32 GB. However, the amount of recommended memory depends
on the number of vCPUs, which is based on the number of CPU cores multiplied by hyper-threading
value. Use the following calculations to determine your RAM requirements:

Controller RAM minimum calculation:

Use 1.5 GB of memory for each vCPU. For example, a machine with 48 vCPUs should
have 72 GB of RAM.

Controller RAM recommended calculation:

Use 3 GB of memory for each vCPU. For example, a machine with 48 vCPUs should have
144 GB of RAM

For more information about measuring memory requirements, see "Red Hat OpenStack Platform
Hardware Requirements for Highly Available Controllers" on the Red Hat Customer Portal.

Disk Storage and layout

A minimum amount of 50 GB storage is required if the Object Storage service (swift) is not running
on the Controller nodes. However, the Telemetry and Object Storage services are both installed on
the Controllers, with both configured to use the root disk. These defaults are suitable for deploying
small overclouds built on commodity hardware. These environments are typical of proof-of-concept
and test environments. You can use these defaults to deploy overclouds with minimal planning, but
they offer little in terms of workload capacity and performance.
In an enterprise environment, however, the defaults could cause a significant bottleneck because
Telemetry accesses storage constantly. This results in heavy disk I/O usage, which severely impacts
the performance of all other Controller services. In this type of environment, you must plan your
overcloud and configure it accordingly.

Red Hat provides several configuration recommendations for both Telemetry and Object Storage.
For more information, see Deployment Recommendations for Specific Red Hat OpenStack Platform
Services.

Network Interface Cards

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server motherboard.

Virtualization support

Red Hat supports virtualized Controller nodes only on Red Hat Virtualization platforms. For more
information, see Creating virtualized control planes .

CHAPTER 6. PLANNING YOUR OVERCLOUD

79

https://access.redhat.com/articles/2431181
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/deployment_recommendations_for_specific_red_hat_openStack_platform_services

6.7. COMPUTE NODE REQUIREMENTS

Compute nodes are responsible for running virtual machine instances after they are launched. Compute
nodes require bare metal systems that support hardware virtualization. Compute nodes must also have
enough memory and disk space to support the requirements of the virtual machine instances that they
host.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions, and the
AMD-V or Intel VT hardware virtualization extensions enabled. It is recommended that this
processor has a minimum of 4 cores.

IBM POWER 8 processor.

Memory

A minimum of 6 GB of RAM for the host operating system, plus additional memory to accomodate
for the following considerations:

Add additional memory that you intend to make available to virtual machine instances.

Add additional memory to run special features or additional resources on the host, such as
additional kernel modules, virtual switches, monitoring solutions, and other additional
background tasks.

If you intend to use non-uniform memory access (NUMA), Red Hat recommends 8GB per
CPU socket node or 16 GB per socket node if you have more then 256 GB of physical RAM.

Configure at least 4 GB of swap space.

Disk space

A minimum of 50 GB of available disk space.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic.

Power management

Each Compute node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server motherboard.

6.8. CEPH STORAGE NODE REQUIREMENTS

Ceph Storage nodes are responsible for providing object storage in a Red Hat OpenStack Platform
environment.

For information about how to select a processor, memory, network interface cards (NICs), and disk
layout for Ceph Storage nodes, see Hardware selection recommendations for Red Hat Ceph Storage in
the Red Hat Ceph Storage Hardware Guide . Each Ceph Storage node also requires a supported power
management interface, such as Intelligent Platform Management Interface (IPMI) functionality on the
motherboard of the server.

NOTE

Red Hat OpenStack Platform 16.1 Director Installation and Usage

80

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html/hardware_guide/index

NOTE

Red Hat OpenStack Platform (RHOSP) director uses ceph-ansible, which does not
support installing the OSD on the root disk of Ceph Storage nodes. This means that you
need at least two disks for a supported Ceph Storage node.

Ceph Storage nodes and RHEL compatibility

RHOSP 16.1 is supported on RHEL 8.2. However, hosts that are mapped to the Ceph Storage
role update to the latest major RHEL release. Before upgrading to RHOSP 16.1 and later, review
the Red Hat Knowledgebase article Red Hat Ceph Storage: Supported configurations .

Placement Groups (PGs)

Ceph Storage uses placement groups (PGs) to facilitate dynamic and efficient object tracking
at scale. In the case of OSD failure or cluster rebalancing, Ceph can move or replicate a
placement group and its contents, which means a Ceph Storage cluster can rebalance and
recover efficiently.

The default placement group count that director creates is not always optimal, so it is important
to calculate the correct placement group count according to your requirements. You can use
the placement group calculator to calculate the correct count. To use the PG calculator, enter
the predicted storage usage per service as a percentage, as well as other properties about your
Ceph cluster, such as the number OSDs. The calculator returns the optimal number of PGs per
pool. For more information, see Placement Groups (PGs) per Pool Calculator.

Auto-scaling is an alternative way to manage placement groups. With the auto-scale feature,
you set the expected Ceph Storage requirements per service as a percentage instead of a
specific number of placement groups. Ceph automatically scales placement groups based on
how the cluster is used. For more information, see Auto-scaling placement groups in the Red
Hat Ceph Storage Strategies Guide.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards (NICs), although Red Hat recommends that
you use at least two NICs in a production environment. Use additional NICs for bonded
interfaces or to delegate tagged VLAN traffic. Use a 10 Gbps interface for storage nodes,
especially if you want to create a Red Hat OpenStack Platform (RHOSP) environment that
serves a high volume of traffic.

Power management

Each Controller node requires a supported power management interface, such as Intelligent
Platform Management Interface (IPMI) functionality on the motherboard of the server.

For more information about installing an overcloud with a Ceph Storage cluster, see the Deploying an
Overcloud with Containerized Red Hat Ceph guide.

6.9. OBJECT STORAGE NODE REQUIREMENTS

Object Storage nodes provide an object storage layer for the overcloud. The Object Storage proxy is

CHAPTER 6. PLANNING YOUR OVERCLOUD

81

https://access.redhat.com/articles/1548993
https://access.redhat.com/labs/cephpgc/
https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html/storage_strategies_guide/placement_groups_pgs#auto-scaling-placement-groups
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/

Object Storage nodes provide an object storage layer for the overcloud. The Object Storage proxy is
installed on Controller nodes. The storage layer requires bare metal nodes with multiple disks on each
node.

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Memory requirements depend on the amount of storage space. Use at minimum 1 GB of memory for
each 1 TB of hard disk space. For optimal performance, it is recommended to use 2 GB for each 1 TB
of hard disk space, especially for workloads with files smaller than 100GB.

Disk space

Storage requirements depend on the capacity needed for the workload. It is recommended to use
SSD drives to store the account and container data. The capacity ratio of account and container
data to objects is approximately 1 per cent. For example, for every 100TB of hard drive capacity,
provide 1TB of SSD capacity for account and container data.
However, this depends on the type of stored data. If you want to store mostly small objects, provide
more SSD space. For large objects (videos, backups), use less SSD space.

Disk layout

The recommended node configuration requires a disk layout similar to the following example:

/dev/sda - The root disk. Director copies the main overcloud image to the disk.

/dev/sdb - Used for account data.

/dev/sdc - Used for container data.

/dev/sdd and onward - The object server disks. Use as many disks as necessary for your
storage requirements.

Network Interface Cards

A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network interface cards for bonded
interfaces or to delegate tagged VLAN traffic.

Power management

Each Controller node requires a supported power management interface, such as an Intelligent
Platform Management Interface (IPMI) functionality, on the server motherboard.

6.10. OVERCLOUD REPOSITORIES

Red Hat OpenStack Platform (RHOSP) 16.1 runs on Red Hat Enterprise Linux 8.2. As a result, you must
lock the content from these repositories to the respective Red Hat Enterprise Linux version.

NOTE

If you synchronize repositories by using Red Hat Satellite, you can enable specific
versions of the Red Hat Enterprise Linux repositories. However, the repository label
remains the same despite the version you choose. For example, if you enable the 8.2
version of the BaseOS repository, the repository name includes the specific version that
you enabled, but the repository label is still rhel-8-for-x86_64-baseos-tus-rpms.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

82

WARNING

Any repositories outside the ones specified here are not supported. Unless
recommended, do not enable any other products or repositories outside the ones
listed in the following tables or else you might encounter package dependency
issues. Do not enable Extra Packages for Enterprise Linux (EPEL).

Controller node repositories

The following table lists core repositories for Controller nodes in the overcloud.

Name Repository Description of requirement

Red Hat Enterprise Linux 8.2 for
x86_64 - BaseOS (RPMs)
Telecommunications Update
Service (TUS)

rhel-8-for-x86_64-baseos-
tus-rpms

Base operating system repository
for x86_64 systems.

Red Hat Enterprise Linux 8.2 for
x86_64 - AppStream (RPMs)

rhel-8-for-x86_64-appstream-
tus-rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 8.2 for
x86_64 - High Availability (RPMs)
Telecommunications Update
Service (TUS)

rhel-8-for-x86_64-
highavailability-tus-rpms

High availability tools for Red Hat
Enterprise Linux.

Red Hat Ansible Engine 2.9 for
RHEL 8 x86_64 (RPMs)

ansible-2.9-for-rhel-8-
x86_64-rpms

Ansible Engine for Red Hat
Enterprise Linux. Used to provide
the latest version of Ansible.

Advanced Virtualization for RHEL
8 x86_64 (RPMs)

advanced-virt-for-rhel-8-
x86_64-eus-rpms

Provides virtualization packages
for OpenStack Platform.

Red Hat OpenStack Platform 16.1
for RHEL 8 (RPMs)

openstack-16.1-for-rhel-8-
x86_64-rpms

Core Red Hat OpenStack
Platform repository.

Red Hat Fast Datapath for RHEL
8 (RPMS)

fast-datapath-for-rhel-8-
x86_64-rpms

Provides Open vSwitch (OVS)
packages for OpenStack
Platform.

Red Hat Ceph Storage Tools 4 for
RHEL 8 x86_64 (RPMs)

rhceph-4-tools-for-rhel-8-
x86_64-rpms

Tools for Red Hat Ceph Storage 4
for Red Hat Enterprise Linux 8.

Red Hat Satellite Tools for RHEL
8 Server RPMs x86_64

satellite-tools-6.5-for-rhel-8-
x86_64-rpms

Tools for managing hosts with Red
Hat Satellite 6.

Compute and ComputeHCI node repositories



CHAPTER 6. PLANNING YOUR OVERCLOUD

83

The following table lists core repositories for Compute and ComputeHCI nodes in the overcloud.

Name Repository Description of requirement

Red Hat Enterprise Linux 8.2 for
x86_64 - BaseOS (RPMs)
Telecommunications Update
Service (TUS)

rhel-8-for-x86_64-baseos-
tus-rpms

Base operating system repository
for x86_64 systems.

Red Hat Enterprise Linux 8.2 for
x86_64 - AppStream (RPMs)

rhel-8-for-x86_64-appstream-
tus-rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 8.2 for
x86_64 - High Availability (RPMs)
Telecommunications Update
Service (TUS)

rhel-8-for-x86_64-
highavailability-tus-rpms

High availability tools for Red Hat
Enterprise Linux.

Red Hat Ansible Engine 2.9 for
RHEL 8 x86_64 (RPMs)

ansible-2.9-for-rhel-8-
x86_64-rpms

Ansible Engine for Red Hat
Enterprise Linux. Used to provide
the latest version of Ansible.

Advanced Virtualization for RHEL
8 x86_64 (RPMs)

advanced-virt-for-rhel-8-
x86_64-eus-rpms

Provides virtualization packages
for OpenStack Platform.

Red Hat OpenStack Platform 16.1
for RHEL 8 (RPMs)

openstack-16.1-for-rhel-8-
x86_64-rpms

Core Red Hat OpenStack
Platform repository.

Red Hat Fast Datapath for RHEL
8 (RPMS)

fast-datapath-for-rhel-8-
x86_64-rpms

Provides Open vSwitch (OVS)
packages for OpenStack
Platform.

Red Hat Ceph Storage Tools 4 for
RHEL 8 x86_64 (RPMs)

rhceph-4-tools-for-rhel-8-
x86_64-rpms

Tools for Red Hat Ceph Storage 4
for Red Hat Enterprise Linux 8.

Red Hat Satellite Tools for RHEL
8 Server RPMs x86_64

satellite-tools-6.5-for-rhel-8-
x86_64-rpms

Tools for managing hosts with Red
Hat Satellite 6.

Real Time Compute repositories

The following table lists repositories for Real Time Compute (RTC) functionality.

Name Repository Description of requirement

Red Hat OpenStack Platform 16.1 Director Installation and Usage

84

Red Hat Enterprise Linux 8 for
x86_64 - Real Time (RPMs)

rhel-8-for-x86_64-rt-rpms Repository for Real Time KVM
(RT-KVM). Contains packages to
enable the real time kernel.
Enable this repository for all
Compute nodes targeted for RT-
KVM. NOTE: You need a separate
subscription to a Red Hat
OpenStack Platform for Real
Time SKU to access this
repository.

Red Hat Enterprise Linux 8 for
x86_64 - Real Time for NFV
(RPMs)

rhel-8-for-x86_64-nfv-rpms Repository for Real Time KVM
(RT-KVM) for NFV. Contains
packages to enable the real time
kernel. Enable this repository for
all NFV Compute nodes targeted
for RT-KVM. NOTE: You need a
separate subscription to a Red
Hat OpenStack Platform for
Real Time SKU to access this
repository.

Name Repository Description of requirement

Ceph Storage node repositories

The following table lists Ceph Storage related repositories for the overcloud.

Name Repository Description of requirement

Red Hat Enterprise Linux 8.2 for
x86_64 - BaseOS (RPMs)
Telecommunications Update
Service (TUS)

rhel-8-for-x86_64-baseos-
tus-rpms

Base operating system repository
for x86_64 systems.

Red Hat Enterprise Linux 8.2 for
x86_64 - AppStream (RPMs)

rhel-8-for-x86_64-appstream-
tus-rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 8.2 for
x86_64 - High Availability (RPMs)
Telecommunications Update
Service (TUS)

rhel-8-for-x86_64-
highavailability-tus-rpms

High availability tools for Red Hat
Enterprise Linux. NOTE: If you
used the overcloud-full image
for your Ceph Storage role, you
must enable this repository. Ceph
Storage roles should use the
overcloud-minimal image,
which does not require this
repository.

CHAPTER 6. PLANNING YOUR OVERCLOUD

85

Red Hat Ansible Engine 2.9 for
RHEL 8 x86_64 (RPMs)

ansible-2.9-for-rhel-8-
x86_64-rpms

Ansible Engine for Red Hat
Enterprise Linux. Used to provide
the latest version of Ansible.

Red Hat OpenStack Platform 16.1
Director Deployment Tools for
RHEL 8 x86_64 (RPMs)

openstack-16.1-deployment-
tools-for-rhel-8-x86_64-rpms

Packages to help director
configure Ceph Storage nodes.
This repository is included with
standalone Ceph Storage
subscriptions. If you use a
combined OpenStack Platform
and Ceph Storage subscription,
use the openstack-16.1-for-
rhel-8-x86_64-rpms repository.

Red Hat OpenStack Platform 16.1
for RHEL 8 (RPMs)

openstack-16.1-for-rhel-8-
x86_64-rpms

Packages to help director
configure Ceph Storage nodes.
This repository is included with
combined OpenStack Platform
and Ceph Storage subscriptions.
If you use a standalone Ceph
Storage subscription, use the
openstack-16.1-deployment-
tools-for-rhel-8-x86_64-rpms
repository.

Red Hat Ceph Storage Tools 4 for
RHEL 8 x86_64 (RPMs)

rhceph-4-tools-for-rhel-8-
x86_64-rpms

Provides tools for nodes to
communicate with the Ceph
Storage cluster.

Red Hat Fast Datapath for RHEL
8 (RPMS)

fast-datapath-for-rhel-8-
x86_64-rpms

Provides Open vSwitch (OVS)
packages for OpenStack
Platform. If you are using OVS on
Ceph Storage nodes, add this
repository to the network
interface configuration (NIC)
templates.

Name Repository Description of requirement

IBM POWER repositories

The following table lists repositories for RHOSP on POWER PC architecture. Use these repositories in
place of equivalents in the Core repositories.

Name Repository Description of requirement

Red Hat Enterprise Linux for IBM
Power, little endian - BaseOS
(RPMs)

rhel-8-for-ppc64le-baseos-
rpms

Base operating system repository
for ppc64le systems.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

86

Red Hat Enterprise Linux 8 for
IBM Power, little endian -
AppStream (RPMs)

rhel-8-for-ppc64le-
appstream-rpms

Contains Red Hat OpenStack
Platform dependencies.

Red Hat Enterprise Linux 8 for
IBM Power, little endian - High
Availability (RPMs)

rhel-8-for-ppc64le-
highavailability-rpms

High availability tools for Red Hat
Enterprise Linux. Used for
Controller node high availability.

Red Hat Fast Datapath for RHEL
8 IBM Power, little endian (RPMS)

fast-datapath-for-rhel-8-
ppc64le-rpms

Provides Open vSwitch (OVS)
packages for OpenStack
Platform.

Red Hat Ansible Engine 2.8 for
RHEL 8 IBM Power, little endian
(RPMs)

ansible-2.8-for-rhel-8-
ppc64le-rpms

Ansible Engine for Red Hat
Enterprise Linux. Used to provide
the latest version of Ansible.

Red Hat OpenStack Platform 16.1
for RHEL 8 (RPMs)

openstack-16.1-for-rhel-8-
ppc64le-rpms

Core Red Hat OpenStack
Platform repository for ppc64le
systems.

Name Repository Description of requirement

6.11. PROVISIONING METHODS

There are three main methods that you can use to provision the nodes for your Red Hat OpenStack
Platform environment:

Provisioning with director

Red Hat OpenStack Platform director is the standard provisioning method. In this scenario, the
openstack overcloud deploy command performs both the provisioning and the configuration of
your deployment. For more information about the standard provisioning and deployment method,
see Chapter 7, Configuring a basic overcloud .

Provisioning with the OpenStack Bare Metal (ironic) service

In this scenario, you can separate the provisioning and configuration stages of the standard director
deployment into two distinct processes. This is useful if you want to mitigate some of the risk
involved with the standard director deployment and identify points of failure more efficiently. For
more information about this scenario, see Chapter 8, Provisioning bare metal nodes before deploying
the overcloud.

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not
fully supported by Red Hat. It should only be used for testing, and should not be
deployed in a production environment. For more information about Technology
Preview features, see Scope of Coverage Details.

Provisioning with an external tool

In this scenario, director controls the overcloud configuration on nodes that you pre-provision with an

CHAPTER 6. PLANNING YOUR OVERCLOUD

87

https://access.redhat.com/support/offerings/production/scope_moredetail

external tool. This is useful if you want to create an overcloud without power management control,
use networks that have DHCP/PXE boot restrictions, or if you want to use nodes that have a custom
partitioning layout that does not rely on the QCOW2 overcloud-full image. This scenario does not
use the OpenStack Compute (nova), OpenStack Bare Metal (ironic), or OpenStack Image (glance)
services for managing nodes.
For more information about this scenario, see Chapter 9, Configuring a basic overcloud with pre-
provisioned nodes.

IMPORTANT

You cannot combine pre-provisioned nodes with director-provisioned nodes.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

88

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD
An overcloud with a basic configuration contains no custom features. To configure a basic Red Hat
OpenStack Platform (RHOSP) environment, you must perform the following tasks:

Register the bare-metal nodes for your overcloud.

Provide director with an inventory of the hardware of the bare-metal nodes.

Tag each bare metal node with a resource class that matches the node to its designated role.

TIP

You can add advanced configuration options to this basic overcloud and customize it to your
specifications. For more information, see Advanced Overcloud Customization.

7.1. REGISTERING NODES FOR THE OVERCLOUD

Director requires a node definition template that specifies the hardware and power management details
of your nodes. You can create this template in JSON format, nodes.json, or YAML format, nodes.yaml.

Procedure

1. Create a template named nodes.json or nodes.yaml that lists your nodes. Use the following
JSON and YAML template examples to understand how to structure your node definition
template:

Example JSON template

{
 "nodes": [{
 "ports": [{
 "address": "aa:aa:aa:aa:aa:aa",
 "physical_network": "ctlplane",
 "local_link_connection": {
 "switch_id": "52:54:00:00:00:00",
 "port_id": "p0"
 }
 }],
 "name": "node01",
 "cpu": "4",
 "memory": "6144",
 "disk": "40",
 "arch": "x86_64",
 "pm_type": "ipmi",
 "pm_user": "admin",
 "pm_password": "p@55w0rd!",
 "pm_addr": "192.168.24.205"
 },
 {
 "ports": [{
 "address": "bb:bb:bb:bb:bb:bb",
 "physical_network": "ctlplane",
 "local_link_connection": {
 "switch_id": "52:54:00:00:00:00",

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

89

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/

 "port_id": "p0"
 }
 }],
 "name": "node02",
 "cpu": "4",
 "memory": "6144",
 "disk": "40",
 "arch": "x86_64",
 "pm_type": "ipmi",
 "pm_user": "admin",
 "pm_password": "p@55w0rd!",
 "pm_addr": "192.168.24.206"
 }
]
}

Example YAML template

nodes:
 - ports:
 - address: aa:aa:aa:aa:aa:aa
 physical_network: ctlplane
 local_link_connection:
 switch_id: 52:54:00:00:00:00
 port_id: p0
 name: "node01"
 cpu: 4
 memory: 6144
 disk: 40
 arch: "x86_64"
 pm_type: "ipmi"
 pm_user: "admin"
 pm_password: "p@55w0rd!"
 pm_addr: "192.168.24.205"
 - ports:
 - address: bb:bb:bb:bb:bb:bb
 physical_network: ctlplane
 local_link_connection:
 switch_id: 52:54:00:00:00:00
 port_id: p0
 name: "node02"
 cpu: 4
 memory: 6144
 disk: 40
 arch: "x86_64"
 pm_type: "ipmi"
 pm_user: "admin"
 pm_password: "p@55w0rd!"
 pm_addr: "192.168.24.206"

This template contains the following attributes:

name

The logical name for the node.

pm_type

Red Hat OpenStack Platform 16.1 Director Installation and Usage

90

The power management driver that you want to use. This example uses the IPMI driver
(ipmi).

NOTE

IPMI is the preferred supported power management driver. For more
information about supported power management types and their options, see
Chapter 30, Power management drivers . If these power management drivers
do not work as expected, use IPMI for your power management.

pm_user; pm_password

The IPMI username and password.

pm_addr

The IP address of the IPMI device.

pm_port (Optional)

The port to access the specific IPMI device.

address

(Optional) A list of MAC addresses for the network interfaces on the node. Use only the
MAC address for the Provisioning NIC of each system.

physical_network

(Optional) The physical network that is connected to the Provisioning NIC.

local_link_connection

(Optional) If you use IPv6 provisioning and LLDP does not correctly populate the local link
connection during introspection, you must include fake data with the switch_id and port_id
fields in the local_link_connection parameter. For more information on how to include fake
data, see Using director introspection to collect bare metal node hardware information .

cpu

(Optional) The number of CPUs on the node.

memory

(Optional) The amount of memory in MB.

disk

(Optional) The size of the hard disk in GB.

arch

(Optional) The system architecture.

IMPORTANT

When building a multi-architecture cloud, the arch key is mandatory to
distinguish nodes using x86_64 and ppc64le architectures.

2. After you create the template, run the following commands to verify the formatting and syntax:

$ source ~/stackrc
(undercloud)$ openstack overcloud node import --validate-only ~/nodes.json

IMPORTANT

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

91

IMPORTANT

You must also include the --http-boot /var/lib/ironic/tftpboot/ option for multi-
architecture nodes.

3. Save the file to the home directory of the stack user (/home/stack/nodes.json), then run the
following commands to import the template to director:

(undercloud)$ openstack overcloud node import ~/nodes.json

This command registers each node from the template into director. If you use UEFI boot mode,
you must also set the boot mode on each node. If you introspect your nodes without setting
UEFI boot mode, the nodes boot in legacy mode. For more information, see Setting the boot
mode to UEFI boot mode.

4. Wait for the node registration and configuration to complete. When complete, confirm that
director has successfully registered the nodes:

(undercloud)$ openstack baremetal node list

7.2. CREATING AN INVENTORY OF THE BARE-METAL NODE
HARDWARE

Director needs the hardware inventory of the nodes in your Red Hat OpenStack Platform (RHOSP)
deployment for profile tagging, benchmarking, and manual root disk assignment.

You can provide the hardware inventory to director by using one of the following methods:

Automatic: You can use director’s introspection process, which collects the hardware
information from each node. This process boots an introspection agent on each node. The
introspection agent collects hardware data from the node and sends the data back to director.
Director stores the hardware data in the OpenStack internal database.

Manual: You can manually configure a basic hardware inventory for each bare metal machine.
This inventory is stored in the Bare Metal Provisioning service (ironic) and is used to manage
and deploy the bare-metal machines.

The director automatic introspection process provides the following advantages over the manual
method for setting the Bare Metal Provisioning service ports:

Introspection records all of the connected ports in the hardware information, including the port
to use for PXE boot if it is not already configured in nodes.yaml.

Introspection sets the local_link_connection attribute for each port if the attribute is
discoverable using LLDP. When you use the manual method, you must configure
local_link_connection for each port when you register the nodes.

Introspection sets the physical_network attribute for the Bare Metal Provisioning service ports
when deploying a spine-and-leaf or DCN architecture.

7.2.1. Using director introspection to collect bare metal node hardware information

After you register a physical machine as a bare metal node, you can automatically add its hardware
details and create ports for each of its Ethernet MAC addresses by using director introspection.

TIP

Red Hat OpenStack Platform 16.1 Director Installation and Usage

92

TIP

As an alternative to automatic introspection, you can manually provide director with the hardware
information for your bare metal nodes. For more information, see Manually configuring bare metal node
hardware information.

Prerequisites

You have registered the bare-metal nodes for your overcloud.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Run the pre-introspection validation group to check the introspection requirements:

(undercloud)$ openstack tripleo validator run --group pre-introspection

4. Review the results of the validation report.

5. Optional: Review detailed output from a specific validation:

(undercloud)$ openstack tripleo validator show run --full <validation>

Replace <validation> with the UUID of the specific validation from the report that you want
to review.

IMPORTANT

A FAILED validation does not prevent you from deploying or running Red
Hat OpenStack Platform. However, a FAILED validation can indicate a
potential issue with a production environment.

6. Inspect the hardware attributes of each node. You can inspect the hardware attributes of all
nodes, or specific nodes:

Inspect the hardware attributes of all nodes:

(undercloud)$ openstack overcloud node introspect --all-manageable --provide

Use the --all-manageable option to introspect only the nodes that are in a managed
state. In this example, all nodes are in a managed state.

Use the --provide option to reset all nodes to an available state after introspection.

Inspect the hardware attributes of specific nodes:

(undercloud)$ openstack overcloud node introspect --provide <node1> [node2] [noden]

Use the --provide option to reset all the specified nodes to an available state after

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

93

Use the --provide option to reset all the specified nodes to an available state after
introspection.

Replace <node1>, [node2], and all nodes up to [noden] with the UUID of each node
that you want to introspect.

7. Monitor the introspection progress logs in a separate terminal window:

(undercloud)$ sudo tail -f /var/log/containers/ironic-inspector/ironic-inspector.log

IMPORTANT

Ensure that the introspection process runs to completion. Introspection usually
takes 15 minutes for bare metal nodes. However, incorrectly sized introspection
networks can cause it to take much longer, which can result in the introspection
failing.

8. Optional: If you have configured your undercloud for bare metal provisioning over IPv6, then you
need to also check that LLDP has set the local_link_connection for Bare Metal Provisioning
service (ironic) ports:

(undercloud)$ openstack baremetal port list --long -c UUID -c "Node UUID" -c "Local Link
Connection"

If the Local Link Connection field is empty for the port on your bare metal node, you must
populate the local_link_connection value manually with fake data. The following example
sets the fake switch ID to 52:54:00:00:00:00, and the fake port ID to p0:

(undercloud)$ openstack baremetal port set <port_uuid> \
--local-link-connection switch_id=52:54:00:00:00:00 \
--local-link-connection port_id=p0

Verify that the Local Link Connection field contains the fake data:

(undercloud)$ openstack baremetal port list --long -c UUID -c "Node UUID" -c "Local Link
Connection"

After the introspection completes, all nodes change to an available state.

7.2.2. Manually configuring bare-metal node hardware information

After you register a physical machine as a bare metal node, you can manually add its hardware details
and create bare-metal ports for each of its Ethernet MAC addresses. You must create at least one bare-
metal port before deploying the overcloud.

TIP

As an alternative to manual introspection, you can use the automatic director introspection process to
collect the hardware information for your bare metal nodes. For more information, see Using director
introspection to collect bare metal node hardware information.

Prerequisites

Red Hat OpenStack Platform 16.1 Director Installation and Usage

94

You have registered the bare-metal nodes for your overcloud.

You have configured local_link_connection for each port on the registered nodes in
nodes.json. For more information, see Registering nodes for the overcloud .

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Set the boot option to local for each registered node by adding boot_option':'local to the
capabilities of the node:

(undercloud)$ openstack baremetal node set \
 --property capabilities="boot_option:local" <node>

Replace <node> with the ID of the bare metal node.

4. Specify the deploy kernel and deploy ramdisk for the node driver:

(undercloud)$ openstack baremetal node set <node> \
 --driver-info deploy_kernel=<kernel_file> \
 --driver-info deploy_ramdisk=<initramfs_file>

Replace <node> with the ID of the bare metal node.

Replace <kernel_file> with the path to the .kernel image, for example,
file:///var/lib/ironic/httpboot/agent.kernel.

Replace <initramfs_file> with the path to the .initramfs image, for example,
file:///var/lib/ironic/httpboot/agent.ramdisk.

5. Update the node properties to match the hardware specifications on the node:

(undercloud)$ openstack baremetal node set <node> \
 --property cpus=<cpu> \
 --property memory_mb=<ram> \
 --property local_gb=<disk> \
 --property cpu_arch=<arch>

Replace <node> with the ID of the bare metal node.

Replace <cpu> with the number of CPUs.

Replace <ram> with the RAM in MB.

Replace <disk> with the disk size in GB.

Replace <arch> with the architecture type.

6. Optional: Specify the IPMI cipher suite for each node:

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

95

(undercloud)$ openstack baremetal node set <node> \
 --driver-info ipmi_cipher_suite=<version>

Replace <node> with the ID of the bare metal node.

Replace <version> with the cipher suite version to use on the node. Set to one of the
following valid values:

3 - The node uses the AES-128 with SHA1 cipher suite.

17 - The node uses the AES-128 with SHA256 cipher suite.

7. Optional: If you have multiple disks, set the root device hints to inform the deploy ramdisk which
disk to use for deployment:

(undercloud)$ openstack baremetal node set <node> \
 --property root_device='{"<property>": "<value>"}'

Replace <node> with the ID of the bare metal node.

Replace <property> and <value> with details about the disk that you want to use for
deployment, for example root_device='{"size": "128"}'
RHOSP supports the following properties:

model (String): Device identifier.

vendor (String): Device vendor.

serial (String): Disk serial number.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

wwn (String): Unique storage identifier.

wwn_with_extension (String): Unique storage identifier with the vendor extension
appended.

wwn_vendor_extension (String): Unique vendor storage identifier.

rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

name (String): The name of the device, for example: /dev/sdb1 Use this property only
for devices with persistent names.

NOTE

If you specify more than one property, the device must match all of those
properties.

8. Inform the Bare Metal Provisioning service of the node network card by creating a port with the
MAC address of the NIC on the provisioning network:

(undercloud)$ openstack baremetal port create --node <node_uuid> <mac_address>

Red Hat OpenStack Platform 16.1 Director Installation and Usage

96

Replace <node_uuid> with the unique ID of the bare metal node.

Replace <mac_address> with the MAC address of the NIC used to PXE boot.

9. Validate the configuration of the node:

(undercloud)$ openstack baremetal node validate <node>
+------------+--------+---+
| Interface | Result | Reason |
+------------+--------+---+
boot	False	Cannot validate image information for node
		a02178db-1550-4244-a2b7-d7035c743a9b
		because one or more parameters are missing
		from its instance_info. Missing are:
		['ramdisk', 'kernel', 'image_source']
console	None	not supported
deploy	False	Cannot validate image information for node
		a02178db-1550-4244-a2b7-d7035c743a9b
		because one or more parameters are missing
		from its instance_info. Missing are:
		['ramdisk', 'kernel', 'image_source']
inspect	None	not supported
management	True	
network	True	
power	True	
raid	True	
storage	True	
+------------+--------+---+

The validation output Result indicates the following:

False: The interface has failed validation. If the reason provided includes missing the
instance_info parameters [\'ramdisk', \'kernel', and \'image_source'], this might be
because the Compute service populates those missing parameters at the beginning of the
deployment process, therefore they have not been set at this point. If you are using a whole
disk image, then you might need to only set image_source to pass the validation.

True: The interface has passed validation.

None: The interface is not supported for your driver.

7.3. TAGGING NODES INTO PROFILES

After you register and inspect the hardware of each node, tag the nodes into specific profiles. These
profile tags match your nodes to flavors, which assigns the flavors to deployment roles. The following
example shows the relationships across roles, flavors, profiles, and nodes for Controller nodes:

Type Description

Role The Controller role defines how director configures
Controller nodes.

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

97

Flavor The control flavor defines the hardware profile for
nodes to use as controllers. You assign this flavor to
the Controller role so that director can decide
which nodes to use.

Profile The control profile is a tag you apply to the control
flavor. This defines the nodes that belong to the
flavor.

Node You also apply the control profile tag to individual
nodes, which groups them to the control flavor and,
as a result, director configures them using the
Controller role.

Type Description

Default profile flavors compute, control, swift-storage, ceph-storage, and block-storage are created
during undercloud installation and are usable without modification in most environments.

Procedure

1. To tag a node into a specific profile, add a profile option to the properties/capabilities
parameter for each node. For example, to tag a specific node to use a specific profile, use the
following commands:

(undercloud) $ NODE=<NODE NAME OR ID>
(undercloud) $ PROFILE=<PROFILE NAME>
(undercloud) $ openstack baremetal node set --property
capabilities="profile:$PROFILE,boot_option:local" $NODE

Set the $NODE variable to the name or UUID of the node.

Set the $PROFILE variable to the specific profile, such as control or compute.

The profile option in properties/capabilities includes the $PROFILE variable to tag the
node with the corresponding profile, such as profile:control or profile:compute.

Set the boot_option:local option to define how each node boots.

You can also retain existing capabilities values using an additional openstack baremetal node
show command and jq filtering:

(undercloud) $ openstack baremetal node set --property
capabilities="profile:$PROFILE,boot_option:local,$(openstack baremetal node show $NODE
-f json -c properties | jq -r .properties.capabilities | sed "s/boot_mode:[^,]*,//g")" $NODE

2. After you complete node tagging, check the assigned profiles or possible profiles:

(undercloud) $ openstack overcloud profiles list

7.4. SETTING THE BOOT MODE TO UEFI MODE

Red Hat OpenStack Platform 16.1 Director Installation and Usage

98

The default boot mode is Legacy BIOS mode. You can configure the nodes in your RHOSP deployment
to use UEFI boot mode instead of Legacy BIOS boot mode.

WARNING

Some hardware does not support Legacy BIOS boot mode. If you attempt to use
Legacy BIOS boot mode on hardware that does not support Legacy BIOS boot
mode your deployment might fail. To ensure that your hardware deploys
successfully, use UEFI boot mode.

NOTE

If you enable UEFI boot mode, you must build your own whole-disk image that includes a
partitioning layout and bootloader, along with the user image. For more information
about creating whole-disk images, see Creating whole-disk images .

Procedure

1. Set the following parameters in your undercloud.conf file:

ipxe_enabled = True

2. Save the undercloud.conf file and run the undercloud installation:

$ openstack undercloud install

Wait until the installation script completes.

3. Check the existing capabilities of each registered node:

$ openstack baremetal node show <node> -f json -c properties | jq -r .properties.capabilities

Replace <node> with the ID of the bare metal node.

4. Set the boot mode to uefi for each registered node by adding boot_mode:uefi to the existing
capabilities of the node:

$ openstack baremetal node set --property capabilities="boot_mode:uefi,<capability_1>,...,
<capability_n>" <node>

Replace <node> with the ID of the bare metal node.

Replace <capability_1>, and all capabilities up to <capability_n>, with each capability that
you retrieved in step 3.
For example, use the following command to set the boot mode to uefi with local boot:

$ openstack baremetal node set --property capabilities="boot_mode:uefi,boot_option:local"
<node>



CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

99

5. Set the boot mode to uefi for each bare metal flavor:

$ openstack flavor set --property capabilities:boot_mode='uefi' <flavor>

7.5. ENABLING VIRTUAL MEDIA BOOT

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

You can use Redfish virtual media boot to supply a boot image to the Baseboard Management
Controller (BMC) of a node so that the BMC can insert the image into one of the virtual drives. The
node can then boot from the virtual drive into the operating system that exists in the image.

Redfish hardware types support booting deploy, rescue, and user images over virtual media. The Bare
Metal service (ironic) uses kernel and ramdisk images associated with a node to build bootable ISO
images for UEFI or BIOS boot modes at the moment of node deployment. The major advantage of
virtual media boot is that you can eliminate the TFTP image transfer phase of PXE and use HTTP GET,
or other methods, instead.

To boot a node with the redfish hardware type over virtual media, set the boot interface to redfish-
virtual-media and, for UEFI nodes, define the EFI System Partition (ESP) image. Then configure an
enrolled node to use Redfish virtual media boot.

Prerequisites

Redfish driver enabled in the enabled_hardware_types parameter in the undercloud.conf file.

A bare metal node registered and enrolled.

IPA and instance images in the Image Service (glance).

For UEFI nodes, you must also have an EFI system partition image (ESP) available in the Image
Service (glance).

A bare metal flavor.

A network for cleaning and provisioning.

Procedure

1. Set the Bare Metal service (ironic) boot interface to redfish-virtual-media:

$ openstack baremetal node set --boot-interface redfish-virtual-media $NODE_NAME

Replace $NODE_NAME with the name of the node.

2. For UEFI nodes, set the boot mode to uefi:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

100

https://access.redhat.com/support/offerings/production/scope_moredetail

NODE=<NODE NAME OR ID> ; openstack baremetal node set --property
capabilities="boot_mode:uefi,$(openstack baremetal node show $NODE -f json -c properties
| jq -r .properties.capabilities | sed "s/boot_mode:[^,]*,//g")" $NODE

Replace $NODE with the name of the node.

NOTE

For BIOS nodes, do not complete this step.

3. For UEFI nodes, define the EFI System Partition (ESP) image:

$ openstack baremetal node set --driver-info bootloader=$ESP $NODE_NAME

Replace $ESP with the glance image UUID or URL for the ESP image, and replace
$NODE_NAME with the name of the node.

NOTE

For BIOS nodes, do not complete this step.

4. Create a port on the bare metal node and associate the port with the MAC address of the NIC
on the bare metal node:

$ openstack baremetal port create --pxe-enabled True --node $UUID $MAC_ADDRESS

Replace $UUID with the UUID of the bare metal node, and replace $MAC_ADDRESS with
the MAC address of the NIC on the bare metal node.

7.6. DEFINING THE ROOT DISK FOR MULTI-DISK CLUSTERS

Most Ceph Storage nodes use multiple disks. When nodes use multiple disks, director must identify the
root disk. By default, director writes the overcloud image to the root disk during the provisioning
process.

Use this procedure to identify the root device by serial number. For more information about other
properties you can use to identify the root disk, see Section 7.7, “Properties that identify the root disk” .

Procedure

1. Verify the disk information from the hardware introspection of each node. The following
command to displays the disk information of a node:

(undercloud)$ openstack baremetal introspection data save 1a4e30da-b6dc-499d-ba87-
0bd8a3819bc0 | jq ".inventory.disks"

For example, the data for one node might show three disks:

[
 {
 "size": 299439751168,
 "rotational": true,

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

101

 "vendor": "DELL",
 "name": "/dev/sda",
 "wwn_vendor_extension": "0x1ea4dcc412a9632b",
 "wwn_with_extension": "0x61866da04f3807001ea4dcc412a9632b",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380700",
 "serial": "61866da04f3807001ea4dcc412a9632b"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdb",
 "wwn_vendor_extension": "0x1ea4e13c12e36ad6",
 "wwn_with_extension": "0x61866da04f380d001ea4e13c12e36ad6",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380d00",
 "serial": "61866da04f380d001ea4e13c12e36ad6"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdc",
 "wwn_vendor_extension": "0x1ea4e31e121cfb45",
 "wwn_with_extension": "0x61866da04f37fc001ea4e31e121cfb45",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f37fc00",
 "serial": "61866da04f37fc001ea4e31e121cfb45"
 }
]

2. On the undercloud, set the root disk for a node. Include the most appropriate hardware attribute
value to define the root disk.

(undercloud)$ openstack baremetal node set --property root_device='{"serial":"
<serial_number>"}' <node-uuid>

For example, to set the root device to disk 2, which has the serial number
61866da04f380d001ea4e13c12e36ad6, enter the following command:

(undercloud)$ openstack baremetal node set --property root_device='{"serial":
"61866da04f380d001ea4e13c12e36ad6"}' 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0

NOTE

Configure the BIOS of each node to boot from the root disk that you choose.
Configure the boot order to boot from the network first, then from the root disk.

Director identifies the specific disk to use as the root disk. When you run the openstack overcloud
deploy command, director provisions and writes the overcloud image to the root disk.

7.7. PROPERTIES THAT IDENTIFY THE ROOT DISK

Red Hat OpenStack Platform 16.1 Director Installation and Usage

102

There are several properties that you can define to help director identify the root disk:

model (String): Device identifier.

vendor (String): Device vendor.

serial (String): Disk serial number.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

wwn (String): Unique storage identifier.

wwn_with_extension (String): Unique storage identifier with the vendor extension appended.

wwn_vendor_extension (String): Unique vendor storage identifier.

rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

name (String): The name of the device, for example: /dev/sdb1.

IMPORTANT

Use the name property only for devices with persistent names. Do not use name to set
the root disk for any other devices because this value can change when the node boots.

7.8. USING THE OVERCLOUD-MINIMAL IMAGE TO AVOID USING A
RED HAT SUBSCRIPTION ENTITLEMENT

By default, director writes the QCOW2 overcloud-full image to the root disk during the provisioning
process. The overcloud-full image uses a valid Red Hat subscription. However, you can also use the
overcloud-minimal image, for example, to provision a bare OS where you do not want to run any other
OpenStack services and consume your subscription entitlements.

A common use case for this occurs when you want to provision nodes with only Ceph daemons. For this
and similar use cases, you can use the overcloud-minimal image option to avoid reaching the limit of
your paid Red Hat subscriptions. For information about how to obtain the overcloud-minimal image,
see Obtaining images for overcloud nodes .

NOTE

A Red Hat OpenStack Platform (RHOSP) subscription contains Open vSwitch (OVS), but
core services, such as OVS, are not available when you use the overcloud-minimal
image. OVS is not required to deploy Ceph Storage nodes. Use linux_bond instead of
ovs_bond to define bonds. For more information about linux_bond, see Linux bonding
options.

Procedure

1. To configure director to use the overcloud-minimal image, create an environment file that
contains the following image definition:

parameter_defaults:
 <roleName>Image: overcloud-minimal

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

103

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#sect-Obtaining_Images_for_Overcloud_Nodes
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/index#linux-bonding-options

2. Replace <roleName> with the name of the role and append Image to the name of the role. The
following example shows an overcloud-minimal image for Ceph storage nodes:

parameter_defaults:
 CephStorageImage: overcloud-minimal

3. In the roles_data.yaml role definition file, set the rhsm_enforce parameter to False.

rhsm_enforce: False

4. Pass the environment file to the openstack overcloud deploy command.

NOTE

The overcloud-minimal image supports only standard Linux bridges and not OVS
because OVS is an OpenStack service that requires a Red Hat OpenStack Platform
subscription entitlement.

7.9. CREATING ARCHITECTURE SPECIFIC ROLES

When building a multi-architecture cloud, you must add any architecture specific roles to the
roles_data.yaml file. The following example includes the ComputePPC64LE role along with the default
roles:

openstack overcloud roles generate \
 --roles-path /usr/share/openstack-tripleo-heat-templates/roles -o ~/templates/roles_data.yaml \
 Controller Compute ComputePPC64LE BlockStorage ObjectStorage CephStorage

The Creating a Custom Role File section has information on roles.

7.10. ENVIRONMENT FILES

The undercloud includes a set of heat templates that form the plan for your overcloud creation. You can
customize aspects of the overcloud with environment files, which are YAML-formatted files that
override parameters and resources in the core heat template collection. You can include as many
environment files as necessary. However, the order of the environment files is important because the
parameters and resources that you define in subsequent environment files take precedence. Use the
following list as an example of the environment file order:

The number of nodes and the flavors for each role. It is vital to include this information for
overcloud creation.

The location of the container images for containerized OpenStack services.

Any network isolation files, starting with the initialization file (environments/network-
isolation.yaml) from the heat template collection, then your custom NIC configuration file, and
finally any additional network configurations. For more information, see the following chapters
in the Advanced Overcloud Customization guide:

"Basic network isolation"

"Custom composable networks"

"Custom network interface templates"

Red Hat OpenStack Platform 16.1 Director Installation and Usage

104

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/#sect-Creating_a_Custom_Roles_File
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/index#assembly_basic-network-isolation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/index#assembly_custom-composable-networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/index#assembly_custom-network-interface-templates

Any external load balancing environment files if you are using an external load balancer. For
more information, see External Load Balancing for the Overcloud .

Any storage environment files such as Ceph Storage, NFS, or iSCSI.

Any environment files for Red Hat CDN or Satellite registration.

Any other custom environment files.

NOTE

Open Virtual Networking (OVN) is the default networking mechanism driver in Red Hat
OpenStack Platform 16.1. If you want to use OVN with distributed virtual routing (DVR),
you must include the environments/services/neutron-ovn-dvr-ha.yaml file in the
openstack overcloud deploy command. If you want to use OVN without DVR, you must
include the environments/services/neutron-ovn-ha.yaml file in the openstack
overcloud deploy command.

Red Hat recommends that you organize your custom environment files in a separate directory, such as
the templates directory.

For more information about customizing advanced features for your overcloud, see the Advanced
Overcloud Customization guide.

IMPORTANT

A basic overcloud uses local LVM storage for block storage, which is not a supported
configuration. It is recommended to use an external storage solution, such as Red Hat
Ceph Storage, for block storage.

NOTE

The environment file extension must be .yaml or .template, or it will not be treated as a
custom template resource.

The next few sections contain information about creating some environment files necessary for your
overcloud.

7.11. CREATING AN ENVIRONMENT FILE THAT DEFINES NODE
COUNTS AND FLAVORS

By default, director deploys an overcloud with 1 Controller node and 1 Compute node using the
baremetal flavor. However, this is only suitable for a proof-of-concept deployment. You can override
the default configuration by specifying different node counts and flavors. For a small-scale production
environment, deploy at least 3 Controller nodes and 3 Compute nodes, and assign specific flavors to
ensure that the nodes have the appropriate resource specifications. Complete the following steps to
create an environment file named node-info.yaml that stores the node counts and flavor assignments.

Procedure

1. Create a node-info.yaml file in the /home/stack/templates/ directory:

(undercloud) $ touch /home/stack/templates/node-info.yaml

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

105

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/external_load_balancing_for_the_overcloud/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/

2. Edit the file to include the node counts and flavors that you need. This example contains 3
Controller nodes and 3 Compute nodes:

parameter_defaults:
 OvercloudControllerFlavor: control
 OvercloudComputeFlavor: compute
 ControllerCount: 3
 ComputeCount: 3

7.12. CREATING AN ENVIRONMENT FILE FOR UNDERCLOUD CA
TRUST

If your undercloud uses TLS and the Certificate Authority (CA) is not publicly trusted, you can use the
CA for SSL endpoint encryption that the undercloud operates. To ensure that the undercloud
endpoints are accessible to the rest of your deployment, configure your overcloud nodes to trust the
undercloud CA.

NOTE

For this approach to work, your overcloud nodes must have a network route to the public
endpoint on the undercloud. It is likely that you must apply this configuration for
deployments that rely on spine-leaf networking.

There are two types of custom certificates you can use in the undercloud:

User-provided certificates - This definition applies when you have provided your own
certificate. This can be from your own CA, or it can be self-signed. This is passed using the
undercloud_service_certificate option. In this case, you must either trust the self-signed
certificate, or the CA (depending on your deployment).

Auto-generated certificates - This definition applies when you use certmonger to generate
the certificate using its own local CA. Enable auto-generated certificates with the
generate_service_certificate option in the undercloud.conf file. In this case, director
generates a CA certificate at /etc/pki/ca-trust/source/anchors/cm-local-ca.pem and the
director configures the undercloud’s HAProxy instance to use a server certificate. Add the CA
certificate to the inject-trust-anchor-hiera.yaml file to present the certificate to OpenStack
Platform.

This example uses a self-signed certificate located in /home/stack/ca.crt.pem. If you use auto-
generated certificates, use /etc/pki/ca-trust/source/anchors/cm-local-ca.pem instead.

Procedure

1. Open the certificate file and copy only the certificate portion. Do not include the key:

$ vi /home/stack/ca.crt.pem

The certificate portion you need looks similar to this shortened example:

-----BEGIN CERTIFICATE-----
MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCSqGSIb3DQEBCwUAMGExCzAJBgNV
BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBwwHUmFsZWlnaDEQMA4GA1UECg

Red Hat OpenStack Platform 16.1 Director Installation and Usage

106

wH
UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBAMMCzE5Mi4xNjguMC4yMB4XDTE3
-----END CERTIFICATE-----

2. Create a new YAML file called /home/stack/inject-trust-anchor-hiera.yaml with the following
contents, and include the certificate you copied from the PEM file:

parameter_defaults:
 CAMap:
 undercloud-ca:
 content: |
 -----BEGIN CERTIFICATE-----
 MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCSqGSIb3DQEBCwUAMGExCzAJBgNV

BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBwwHUmFsZWlnaDEQMA4GA1UECg
wH

UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBAMMCzE5Mi4xNjguMC4yMB4XDTE3
 -----END CERTIFICATE-----

NOTE

The certificate string must follow the PEM format.

NOTE

The CAMap parameter might contain other certificates relevant to SSL/TLS
configuration.

Director copies the CA certificate to each overcloud node during the overcloud deployment. As a result,
each node trusts the encryption presented by the undercloud’s SSL endpoints. For more information
about environment files, see Section 7.16, “Including environment files in an overcloud deployment” .

7.13. DISABLING TSX ON NEW DEPLOYMENTS

From Red Hat Enterprise Linux 8.3 onwards, the kernel disables support for the Intel Transactional
Synchronization Extensions (TSX) feature by default.

You must explicitly disable TSX for new overclouds unless you strictly require it for your workloads or
third party vendors.

Set the KernelArgs heat parameter in an environment file.

parameter_defaults:
 ComputeParameters:
 KernelArgs: "tsx=off"

Include the environment file when you run your openstack overcloud deploy command.

Additional resources

"Guidance on Intel TSX impact on OpenStack guests (applies for RHEL 8.3 and above)"

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

107

https://access.redhat.com/solutions/6036141

7.14. DEPLOYMENT COMMAND

The final stage in creating your OpenStack environment is to run the openstack overcloud deploy
command to create the overcloud. Before you run this command, familiarize yourself with key options
and how to include custom environment files.

WARNING

Do not run openstack overcloud deploy as a background process. The overcloud
creation might hang mid-deployment if you run it as a background process.

7.15. DEPLOYMENT COMMAND OPTIONS

The following table lists the additional parameters for the openstack overcloud deploy command.

IMPORTANT

Some options are available in this release as a Technology Preview and therefore are not
fully supported by Red Hat. They should only be used for testing and should not be used
in a production environment. For more information about Technology Preview features,
see Scope of Coverage Details.

Table 7.1. Deployment command options

Parameter Description

--templates [TEMPLATES] The directory that contains the heat templates that
you want to deploy. If blank, the deployment
command uses the default template location at
/usr/share/openstack-tripleo-heat-templates/

--stack STACK The name of the stack that you want to create or
update

-t [TIMEOUT], --timeout [TIMEOUT] The deployment timeout duration in minutes

--libvirt-type [LIBVIRT_TYPE] The virtualization type that you want to use for
hypervisors



Red Hat OpenStack Platform 16.1 Director Installation and Usage

108

https://access.redhat.com/support/offerings/production/scope_moredetail

--ntp-server [NTP_SERVER] The Network Time Protocol (NTP) server that you
want to use to synchronize time. You can also specify
multiple NTP servers in a comma-separated list, for
example: --ntp-server
0.centos.pool.org,1.centos.pool.org. For a high
availability cluster deployment, it is essential that
your Controller nodes are consistently referring to
the same time source. Note that a typical
environment might already have a designated NTP
time source with established practices.

--no-proxy [NO_PROXY] Defines custom values for the environment variable
no_proxy, which excludes certain host names from
proxy communication.

--overcloud-ssh-user
OVERCLOUD_SSH_USER

Defines the SSH user to access the overcloud nodes.
Normally SSH access occurs through the heat-
admin user.

--overcloud-ssh-key OVERCLOUD_SSH_KEY Defines the key path for SSH access to overcloud
nodes.

--overcloud-ssh-network
OVERCLOUD_SSH_NETWORK

Defines the network name that you want to use for
SSH access to overcloud nodes.

-e [EXTRA HEAT TEMPLATE], --extra-
template [EXTRA HEAT TEMPLATE]

Extra environment files that you want to pass to the
overcloud deployment. You can specify this option
more than once. Note that the order of environment
files that you pass to the openstack overcloud
deploy command is important. For example,
parameters from each sequential environment file
override the same parameters from earlier
environment files.

--environment-directory A directory that contains environment files that you
want to include in deployment. The deployment
command processes these environment files in
numerical order, then alphabetical order.

-r ROLES_FILE Defines the roles file and overrides the default
roles_data.yaml in the --templates directory. The
file location can be an absolute path or the path
relative to --templates.

Parameter Description

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

109

-n NETWORKS_FILE Defines the networks file and overrides the default
network_data.yaml in the --templates directory. The
file location can be an absolute path or the path
relative to --templates.

-p PLAN_ENVIRONMENT_FILE Defines the plan Environment file and overrides the
default plan-environment.yaml in the --
templates directory. The file location can be an
absolute path or the path relative to --templates.

--no-cleanup Use this option if you do not want to delete
temporary files after deployment, and log their
location.

--update-plan-only Use this option if you want to update the plan without
performing the actual deployment.

--validation-errors-nonfatal The overcloud creation process performs a set of
pre-deployment checks. This option exits if any non-
fatal errors occur from the pre-deployment checks. It
is advisable to use this option as any errors can cause
your deployment to fail.

--validation-warnings-fatal The overcloud creation process performs a set of
pre-deployment checks. This option exits if any non-
critical warnings occur from the pre-deployment
checks. openstack-tripleo-validations

--dry-run Use this option if you want to perform a validation
check on the overcloud without creating the
overcloud.

--run-validations Use this option to run external validations from the
openstack-tripleo-validations package.

--skip-postconfig Use this option to skip the overcloud post-
deployment configuration.

--force-postconfig Use this option to force the overcloud post-
deployment configuration.

Parameter Description

Red Hat OpenStack Platform 16.1 Director Installation and Usage

110

--skip-deploy-identifier Use this option if you do not want the deployment
command to generate a unique identifier for the
DeployIdentifier parameter. The software
configuration deployment steps only trigger if there
is an actual change to the configuration. Use this
option with caution and only if you are confident that
you do not need to run the software configuration,
such as scaling out certain roles.

--answers-file ANSWERS_FILE The path to a YAML file with arguments and
parameters.

--disable-password-generation Use this option if you want to disable password
generation for the overcloud services.

--deployed-server Use this option if you want to deploy pre-provisioned
overcloud nodes. Used in conjunction with --
disable-validations.

--no-config-download, --stack-only Use this option if you want to disable the config-
download workflow and create only the stack and
associated OpenStack resources. This command
applies no software configuration to the overcloud.

--config-download-only Use this option if you want to disable the overcloud
stack creation and only run the config-download
workflow to apply the software configuration.

--output-dir OUTPUT_DIR The directory that you want to use for saved config-
download output. The directory must be writeable
by the mistral user. When not specified, director uses
the default, which is /var/lib/mistral/overcloud.

--override-ansible-cfg
OVERRIDE_ANSIBLE_CFG

The path to an Ansible configuration file. The
configuration in the file overrides any configuration
that config-download generates by default.

--config-download-timeout
CONFIG_DOWNLOAD_TIMEOUT

The timeout duration in minutes that you want to use
for config-download steps. If unset, director sets
the default to the amount of time remaining from the
--timeout parameter after the stack deployment
operation.

Parameter Description

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

111

--limit NODE1,NODE2 Use this option with a comma-separated list of nodes
to limit the config-download playbook execution to a
specific node or set of nodes. For example, the --
limit option can be useful for scale-up operations,
when you want to run config-download only on new
nodes. This argument might cause live migration of
instances between hosts to fail, see Running config-
download with the ansible-playbook-command.sh
script

--tags TAG1,TAG2 (Technology Preview) Use this option with a
comma-separated list of tags from the config-
download playbook to run the deployment with a
specific set of config-download tasks.

--skip-tags TAG1,TAG2 (Technology Preview) Use this option with a
comma-separated list of tags that you want to skip
from the config-download playbook.

Parameter Description

Run the following command to view a full list of options:

(undercloud) $ openstack help overcloud deploy

Some command line parameters are outdated or deprecated in favor of using heat template
parameters, which you include in the parameter_defaults section in an environment file. The following
table maps deprecated parameters to their heat template equivalents.

Table 7.2. Mapping deprecated CLI parameters to heat template parameters

Parameter Description Heat template parameter

--control-scale The number of Controller nodes
to scale out

ControllerCount

--compute-scale The number of Compute nodes to
scale out

ComputeCount

--ceph-storage-scale The number of Ceph Storage
nodes to scale out

CephStorageCount

--block-storage-scale The number of Block Storage
(cinder) nodes to scale out

BlockStorageCount

--swift-storage-scale The number of Object Storage
(swift) nodes to scale out

ObjectStorageCount

--control-flavor The flavor that you want to use
for Controller nodes

OvercloudControllerFlavor

Red Hat OpenStack Platform 16.1 Director Installation and Usage

112

--compute-flavor The flavor that you want to use
for Compute nodes

OvercloudComputeFlavor

--ceph-storage-flavor The flavor that you want to use
for Ceph Storage nodes

OvercloudCephStorageFlavo
r

--block-storage-flavor The flavor that you want to use
for Block Storage (cinder) nodes

OvercloudBlockStorageFlav
or

--swift-storage-flavor The flavor that you want to use
for Object Storage (swift) nodes

OvercloudSwiftStorageFlavo
r

--validation-errors-fatal The overcloud creation process
performs a set of pre-deployment
checks. This option exits if any
fatal errors occur from the pre-
deployment checks. It is advisable
to use this option because any
errors can cause your deployment
to fail.

No parameter mapping

--disable-validations Disable the pre-deployment
validations entirely. These
validations were built-in pre-
deployment validations, which
have been replaced with external
validations from the openstack-
tripleo-validations package.

No parameter mapping

--config-download Run deployment using the
config-download mechanism.
This is now the default and this
CLI options may be removed in
the future.

No parameter mapping

--rhel-reg Use this option to register
overcloud nodes to the Customer
Portal or Satellite 6.

RhsmVars

--reg-method Use this option to define the
registration method that you want
to use for the overcloud nodes.
satellite for Red Hat Satellite 6
or Red Hat Satellite 5, portal for
Customer Portal.

RhsmVars

--reg-org [REG_ORG] The organization that you want to
use for registration.

RhsmVars

Parameter Description Heat template parameter

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

113

--reg-force Use this option to register the
system even if it is already
registered.

RhsmVars

--reg-sat-url
[REG_SAT_URL]

The base URL of the Satellite
server to register overcloud
nodes. Use the Satellite HTTP
URL and not the HTTPS URL for
this parameter. For example, use
http://satellite.example.com and
not https://satellite.example.com.
The overcloud creation process
uses this URL to determine
whether the server is a Red Hat
Satellite 5 or Red Hat Satellite 6
server. If the server is a Red Hat
Satellite 6 server, the overcloud
obtains the katello-ca-
consumer-latest.noarch.rpm
file, registers with subscription-
manager, and installs katello-
agent. If the server is a Red Hat
Satellite 5 server, the overcloud
obtains the RHN-ORG-
TRUSTED-SSL-CERT file and
registers with rhnreg_ks.

RhsmVars

--reg-activation-key
[REG_ACTIVATION_KEY]

Use this option to define the
activation key that you want to
use for registration.

RhsmVars

Parameter Description Heat template parameter

These parameters are scheduled for removal in a future version of Red Hat OpenStack Platform.

7.16. INCLUDING ENVIRONMENT FILES IN AN OVERCLOUD
DEPLOYMENT

Use the -e option to include an environment file to customize your overcloud. You can include as many
environment files as necessary. However, the order of the environment files is important because the
parameters and resources that you define in subsequent environment files take precedence.

Any environment files that you add to the overcloud using the -e option become part of the stack
definition of the overcloud.

The following command is an example of how to start the overcloud creation using environment files
defined earlier in this scenario:

(undercloud) $ openstack overcloud deploy --templates \
 -e /home/stack/templates/node-info.yaml\
 -e /home/stack/containers-prepare-parameter.yaml \

Red Hat OpenStack Platform 16.1 Director Installation and Usage

114

http://satellite.example.com
https://satellite.example.com

 -e /home/stack/inject-trust-anchor-hiera.yaml \
 -r /home/stack/templates/roles_data.yaml \

This command contains the following additional options:

--templates

Creates the overcloud using the heat template collection in /usr/share/openstack-tripleo-heat-
templates as a foundation.

-e /home/stack/templates/node-info.yaml

Adds an environment file to define how many nodes and which flavors to use for each role.

-e /home/stack/containers-prepare-parameter.yaml

Adds the container image preparation environment file. You generated this file during the
undercloud installation and can use the same file for your overcloud creation.

-e /home/stack/inject-trust-anchor-hiera.yaml

Adds an environment file to install a custom certificate in the undercloud.

-r /home/stack/templates/roles_data.yaml

(Optional) The generated roles data if you use custom roles or want to enable a multi architecture
cloud. For more information, see Section 7.9, “Creating architecture specific roles” .

Director requires these environment files for re-deployment and post-deployment functions. Failure to
include these files can result in damage to your overcloud.

To modify the overcloud configuration at a later stage, perform the following actions:

1. Modify parameters in the custom environment files and heat templates.

2. Run the openstack overcloud deploy command again with the same environment files.

Do not edit the overcloud configuration directly because director overrides any manual configuration
when you update the overcloud stack.

7.17. RUNNING THE PRE-DEPLOYMENT VALIDATION

Run the pre-deployment validation group to check the deployment requirements.

Procedure

1. Source the stackrc file.

$ source ~/stackrc

2. This validation requires a copy of your overcloud plan. Upload your overcloud plan with all
necessary environment files. To upload your plan only, run the openstack overcloud deploy
command with the --update-plan-only option:

$ openstack overcloud deploy --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...
 --update-plan-only

3. Run the openstack tripleo validator run command with the --group pre-deployment option:

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

115

$ openstack tripleo validator run --group pre-deployment

4. If the overcloud uses a plan name that is different to the default overcloud name, set the plan
name with the --plan option:

$ openstack tripleo validator run --group pre-deployment \
 --plan myovercloud

5. Review the results of the validation report. To view detailed output from a specific validation,
run the openstack tripleo validator show run --full command against the UUID of the specific
validation from the report:

$ openstack tripleo validator show run --full <UUID>

IMPORTANT

A FAILED validation does not prevent you from deploying or running Red Hat OpenStack
Platform. However, a FAILED validation can indicate a potential issue with a production
environment.

7.18. OVERCLOUD DEPLOYMENT OUTPUT

When the overcloud creation completes, director provides a recap of the Ansible plays that were
executed to configure the overcloud:

PLAY RECAP ***
overcloud-compute-0 : ok=160 changed=67 unreachable=0 failed=0
overcloud-controller-0 : ok=210 changed=93 unreachable=0 failed=0
undercloud : ok=10 changed=7 unreachable=0 failed=0

Tuesday 15 October 2018 18:30:57 +1000 (0:00:00.107) 1:06:37.514 ******
==

Director also provides details to access your overcloud.

Ansible passed.
Overcloud configuration completed.
Overcloud Endpoint: http://192.168.24.113:5000
Overcloud Horizon Dashboard URL: http://192.168.24.113:80/dashboard
Overcloud rc file: /home/stack/overcloudrc
Overcloud Deployed

7.19. ACCESSING THE OVERCLOUD

Director generates a script to configure and help authenticate interactions with your overcloud from the
undercloud. Director saves this file, overcloudrc, in the home directory of the stack user. Run the
following command to use this file:

(undercloud) $ source ~/overcloudrc

This command loads the environment variables that are necessary to interact with your overcloud from
the undercloud CLI. The command prompt changes to indicate this:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

116

(overcloud) $

To return to interacting with the undercloud, run the following command:

(overcloud) $ source ~/stackrc
(undercloud) $

7.20. RUNNING THE POST-DEPLOYMENT VALIDATION

Run the post-deployment validation group to check the post-deployment state.

Procedure

1. Source the stackrc file.

$ source ~/stackrc

2. Run the openstack tripleo validator run command with the --group post-deployment option:

$ openstack tripleo validator run --group post-deployment

3. If the overcloud uses a plan name that is different to the default overcloud name, set the plan
name with the --plan option:

$ openstack tripleo validator run --group post-deployment \
 --plan myovercloud

4. Review the results of the validation report. To view detailed output from a specific validation,
run the openstack tripleo validator show run --full command against the UUID of the specific
validation from the report:

$ openstack tripleo validator show run --full <UUID>

IMPORTANT

A FAILED validation does not prevent you from deploying or running Red Hat OpenStack
Platform. However, a FAILED validation can indicate a potential issue with a production
environment.

CHAPTER 7. CONFIGURING A BASIC OVERCLOUD

117

CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE
DEPLOYING THE OVERCLOUD

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

The overcloud deployment process contains two primary operations:

Provisioning nodes

Deploying the overcloud

You can mitigate some of the risk involved with this process and identify points of failure more
efficiently if you separate these operations into distinct processes:

1. Provision your bare metal nodes.

a. Create a node definition file in yaml format.

b. Run the provisioning command, including the node definition file.

2. Deploy your overcloud.

a. Run the deployment command, including the heat environment file that the provisioning
command generates.

The provisioning process provisions your nodes and generates a heat environment file that contains
various node specifications, including node count, predictive node placement, custom images, and
custom NICs. When you deploy your overcloud, include this file in the deployment command.

IMPORTANT

You cannot combine pre-provisioned nodes with director-provisioned nodes.

8.1. REGISTERING NODES FOR THE OVERCLOUD

Director requires a node definition template that specifies the hardware and power management details
of your nodes. You can create this template in JSON format, nodes.json, or YAML format, nodes.yaml.

Procedure

1. Create a template named nodes.json or nodes.yaml that lists your nodes. Use the following
JSON and YAML template examples to understand how to structure your node definition
template:

Example JSON template

{
 "nodes": [{
 "ports": [{

Red Hat OpenStack Platform 16.1 Director Installation and Usage

118

https://access.redhat.com/support/offerings/production/scope_moredetail

 "address": "aa:aa:aa:aa:aa:aa",
 "physical_network": "ctlplane",
 "local_link_connection": {
 "switch_id": "52:54:00:00:00:00",
 "port_id": "p0"
 }
 }],
 "name": "node01",
 "cpu": "4",
 "memory": "6144",
 "disk": "40",
 "arch": "x86_64",
 "pm_type": "ipmi",
 "pm_user": "admin",
 "pm_password": "p@55w0rd!",
 "pm_addr": "192.168.24.205"
 },
 {
 "ports": [{
 "address": "bb:bb:bb:bb:bb:bb",
 "physical_network": "ctlplane",
 "local_link_connection": {
 "switch_id": "52:54:00:00:00:00",
 "port_id": "p0"
 }
 }],
 "name": "node02",
 "cpu": "4",
 "memory": "6144",
 "disk": "40",
 "arch": "x86_64",
 "pm_type": "ipmi",
 "pm_user": "admin",
 "pm_password": "p@55w0rd!",
 "pm_addr": "192.168.24.206"
 }
]
}

Example YAML template

nodes:
 - ports:
 - address: aa:aa:aa:aa:aa:aa
 physical_network: ctlplane
 local_link_connection:
 switch_id: 52:54:00:00:00:00
 port_id: p0
 name: "node01"
 cpu: 4
 memory: 6144
 disk: 40
 arch: "x86_64"
 pm_type: "ipmi"
 pm_user: "admin"
 pm_password: "p@55w0rd!"

CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE DEPLOYING THE OVERCLOUD

119

 pm_addr: "192.168.24.205"
 - ports:
 - address: bb:bb:bb:bb:bb:bb
 physical_network: ctlplane
 local_link_connection:
 switch_id: 52:54:00:00:00:00
 port_id: p0
 name: "node02"
 cpu: 4
 memory: 6144
 disk: 40
 arch: "x86_64"
 pm_type: "ipmi"
 pm_user: "admin"
 pm_password: "p@55w0rd!"
 pm_addr: "192.168.24.206"

This template contains the following attributes:

name

The logical name for the node.

pm_type

The power management driver that you want to use. This example uses the IPMI driver
(ipmi).

NOTE

IPMI is the preferred supported power management driver. For more
information about supported power management types and their options, see
Chapter 30, Power management drivers . If these power management drivers
do not work as expected, use IPMI for your power management.

pm_user; pm_password

The IPMI username and password.

pm_addr

The IP address of the IPMI device.

pm_port (Optional)

The port to access the specific IPMI device.

address

(Optional) A list of MAC addresses for the network interfaces on the node. Use only the
MAC address for the Provisioning NIC of each system.

physical_network

(Optional) The physical network that is connected to the Provisioning NIC.

local_link_connection

(Optional) If you use IPv6 provisioning and LLDP does not correctly populate the local link
connection during introspection, you must include fake data with the switch_id and port_id
fields in the local_link_connection parameter. For more information on how to include fake
data, see Using director introspection to collect bare metal node hardware information .

cpu

Red Hat OpenStack Platform 16.1 Director Installation and Usage

120

(Optional) The number of CPUs on the node.

memory

(Optional) The amount of memory in MB.

disk

(Optional) The size of the hard disk in GB.

arch

(Optional) The system architecture.

IMPORTANT

When building a multi-architecture cloud, the arch key is mandatory to
distinguish nodes using x86_64 and ppc64le architectures.

2. After you create the template, run the following commands to verify the formatting and syntax:

$ source ~/stackrc
(undercloud)$ openstack overcloud node import --validate-only ~/nodes.json

IMPORTANT

You must also include the --http-boot /var/lib/ironic/tftpboot/ option for multi-
architecture nodes.

3. Save the file to the home directory of the stack user (/home/stack/nodes.json), then run the
following commands to import the template to director:

(undercloud)$ openstack overcloud node import ~/nodes.json

This command registers each node from the template into director. If you use UEFI boot mode,
you must also set the boot mode on each node. If you introspect your nodes without setting
UEFI boot mode, the nodes boot in legacy mode. For more information, see Setting the boot
mode to UEFI boot mode.

4. Wait for the node registration and configuration to complete. When complete, confirm that
director has successfully registered the nodes:

(undercloud)$ openstack baremetal node list

8.2. CREATING AN INVENTORY OF THE BARE-METAL NODE
HARDWARE

Director needs the hardware inventory of the nodes in your Red Hat OpenStack Platform (RHOSP)
deployment for profile tagging, benchmarking, and manual root disk assignment.

You can provide the hardware inventory to director by using one of the following methods:

Automatic: You can use director’s introspection process, which collects the hardware
information from each node. This process boots an introspection agent on each node. The
introspection agent collects hardware data from the node and sends the data back to director.

CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE DEPLOYING THE OVERCLOUD

121

Director stores the hardware data in the OpenStack internal database.

Manual: You can manually configure a basic hardware inventory for each bare metal machine.
This inventory is stored in the Bare Metal Provisioning service (ironic) and is used to manage
and deploy the bare-metal machines.

The director automatic introspection process provides the following advantages over the manual
method for setting the Bare Metal Provisioning service ports:

Introspection records all of the connected ports in the hardware information, including the port
to use for PXE boot if it is not already configured in nodes.yaml.

Introspection sets the local_link_connection attribute for each port if the attribute is
discoverable using LLDP. When you use the manual method, you must configure
local_link_connection for each port when you register the nodes.

Introspection sets the physical_network attribute for the Bare Metal Provisioning service ports
when deploying a spine-and-leaf or DCN architecture.

8.2.1. Using director introspection to collect bare metal node hardware information

After you register a physical machine as a bare metal node, you can automatically add its hardware
details and create ports for each of its Ethernet MAC addresses by using director introspection.

TIP

As an alternative to automatic introspection, you can manually provide director with the hardware
information for your bare metal nodes. For more information, see Manually configuring bare metal node
hardware information.

Prerequisites

You have registered the bare-metal nodes for your overcloud.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Run the pre-introspection validation group to check the introspection requirements:

(undercloud)$ openstack tripleo validator run --group pre-introspection

4. Review the results of the validation report.

5. Optional: Review detailed output from a specific validation:

(undercloud)$ openstack tripleo validator show run --full <validation>

Replace <validation> with the UUID of the specific validation from the report that you want
to review.

IMPORTANT

Red Hat OpenStack Platform 16.1 Director Installation and Usage

122

IMPORTANT

A FAILED validation does not prevent you from deploying or running Red
Hat OpenStack Platform. However, a FAILED validation can indicate a
potential issue with a production environment.

6. Inspect the hardware attributes of each node. You can inspect the hardware attributes of all
nodes, or specific nodes:

Inspect the hardware attributes of all nodes:

(undercloud)$ openstack overcloud node introspect --all-manageable --provide

Use the --all-manageable option to introspect only the nodes that are in a managed
state. In this example, all nodes are in a managed state.

Use the --provide option to reset all nodes to an available state after introspection.

Inspect the hardware attributes of specific nodes:

(undercloud)$ openstack overcloud node introspect --provide <node1> [node2] [noden]

Use the --provide option to reset all the specified nodes to an available state after
introspection.

Replace <node1>, [node2], and all nodes up to [noden] with the UUID of each node
that you want to introspect.

7. Monitor the introspection progress logs in a separate terminal window:

(undercloud)$ sudo tail -f /var/log/containers/ironic-inspector/ironic-inspector.log

IMPORTANT

Ensure that the introspection process runs to completion. Introspection usually
takes 15 minutes for bare metal nodes. However, incorrectly sized introspection
networks can cause it to take much longer, which can result in the introspection
failing.

8. Optional: If you have configured your undercloud for bare metal provisioning over IPv6, then you
need to also check that LLDP has set the local_link_connection for Bare Metal Provisioning
service (ironic) ports:

(undercloud)$ openstack baremetal port list --long -c UUID -c "Node UUID" -c "Local Link
Connection"

If the Local Link Connection field is empty for the port on your bare metal node, you must
populate the local_link_connection value manually with fake data. The following example
sets the fake switch ID to 52:54:00:00:00:00, and the fake port ID to p0:

(undercloud)$ openstack baremetal port set <port_uuid> \
--local-link-connection switch_id=52:54:00:00:00:00 \
--local-link-connection port_id=p0

CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE DEPLOYING THE OVERCLOUD

123

Verify that the Local Link Connection field contains the fake data:

(undercloud)$ openstack baremetal port list --long -c UUID -c "Node UUID" -c "Local Link
Connection"

After the introspection completes, all nodes change to an available state.

8.2.2. Manually configuring bare-metal node hardware information

After you register a physical machine as a bare metal node, you can manually add its hardware details
and create bare-metal ports for each of its Ethernet MAC addresses. You must create at least one bare-
metal port before deploying the overcloud.

TIP

As an alternative to manual introspection, you can use the automatic director introspection process to
collect the hardware information for your bare metal nodes. For more information, see Using director
introspection to collect bare metal node hardware information.

Prerequisites

You have registered the bare-metal nodes for your overcloud.

You have configured local_link_connection for each port on the registered nodes in
nodes.json. For more information, see Registering nodes for the overcloud .

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Set the boot option to local for each registered node by adding boot_option':'local to the
capabilities of the node:

(undercloud)$ openstack baremetal node set \
 --property capabilities="boot_option:local" <node>

Replace <node> with the ID of the bare metal node.

4. Specify the deploy kernel and deploy ramdisk for the node driver:

(undercloud)$ openstack baremetal node set <node> \
 --driver-info deploy_kernel=<kernel_file> \
 --driver-info deploy_ramdisk=<initramfs_file>

Replace <node> with the ID of the bare metal node.

Replace <kernel_file> with the path to the .kernel image, for example,
file:///var/lib/ironic/httpboot/agent.kernel.

Replace <initramfs_file> with the path to the .initramfs image, for example,

Red Hat OpenStack Platform 16.1 Director Installation and Usage

124

Replace <initramfs_file> with the path to the .initramfs image, for example,
file:///var/lib/ironic/httpboot/agent.ramdisk.

5. Update the node properties to match the hardware specifications on the node:

(undercloud)$ openstack baremetal node set <node> \
 --property cpus=<cpu> \
 --property memory_mb=<ram> \
 --property local_gb=<disk> \
 --property cpu_arch=<arch>

Replace <node> with the ID of the bare metal node.

Replace <cpu> with the number of CPUs.

Replace <ram> with the RAM in MB.

Replace <disk> with the disk size in GB.

Replace <arch> with the architecture type.

6. Optional: Specify the IPMI cipher suite for each node:

(undercloud)$ openstack baremetal node set <node> \
 --driver-info ipmi_cipher_suite=<version>

Replace <node> with the ID of the bare metal node.

Replace <version> with the cipher suite version to use on the node. Set to one of the
following valid values:

3 - The node uses the AES-128 with SHA1 cipher suite.

17 - The node uses the AES-128 with SHA256 cipher suite.

7. Optional: If you have multiple disks, set the root device hints to inform the deploy ramdisk which
disk to use for deployment:

(undercloud)$ openstack baremetal node set <node> \
 --property root_device='{"<property>": "<value>"}'

Replace <node> with the ID of the bare metal node.

Replace <property> and <value> with details about the disk that you want to use for
deployment, for example root_device='{"size": "128"}'
RHOSP supports the following properties:

model (String): Device identifier.

vendor (String): Device vendor.

serial (String): Disk serial number.

hctl (String): Host:Channel:Target:Lun for SCSI.

size (Integer): Size of the device in GB.

CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE DEPLOYING THE OVERCLOUD

125

wwn (String): Unique storage identifier.

wwn_with_extension (String): Unique storage identifier with the vendor extension
appended.

wwn_vendor_extension (String): Unique vendor storage identifier.

rotational (Boolean): True for a rotational device (HDD), otherwise false (SSD).

name (String): The name of the device, for example: /dev/sdb1 Use this property only
for devices with persistent names.

NOTE

If you specify more than one property, the device must match all of those
properties.

8. Inform the Bare Metal Provisioning service of the node network card by creating a port with the
MAC address of the NIC on the provisioning network:

(undercloud)$ openstack baremetal port create --node <node_uuid> <mac_address>

Replace <node_uuid> with the unique ID of the bare metal node.

Replace <mac_address> with the MAC address of the NIC used to PXE boot.

9. Validate the configuration of the node:

(undercloud)$ openstack baremetal node validate <node>
+------------+--------+---+
| Interface | Result | Reason |
+------------+--------+---+
boot	False	Cannot validate image information for node
		a02178db-1550-4244-a2b7-d7035c743a9b
		because one or more parameters are missing
		from its instance_info. Missing are:
		['ramdisk', 'kernel', 'image_source']
console	None	not supported
deploy	False	Cannot validate image information for node
		a02178db-1550-4244-a2b7-d7035c743a9b
		because one or more parameters are missing
		from its instance_info. Missing are:
		['ramdisk', 'kernel', 'image_source']
inspect	None	not supported
management	True	
network	True	
power	True	
raid	True	
storage	True	
+------------+--------+---+

The validation output Result indicates the following:

False: The interface has failed validation. If the reason provided includes missing the
instance_info parameters [\'ramdisk', \'kernel', and \'image_source'], this might be

Red Hat OpenStack Platform 16.1 Director Installation and Usage

126

because the Compute service populates those missing parameters at the beginning of the
deployment process, therefore they have not been set at this point. If you are using a whole
disk image, then you might need to only set image_source to pass the validation.

True: The interface has passed validation.

None: The interface is not supported for your driver.

8.3. PROVISIONING BARE METAL NODES

Create a new YAML file ~/overcloud-baremetal-deploy.yaml, define the quantity and attributes of the
bare metal nodes that you want to deploy, and assign overcloud roles to these nodes. The provisioning
process creates a heat environment file that you can include in your openstack overcloud deploy
command.

Prerequisites

The undercloud is installed. For more information, see Installing director .

The bare metal nodes are introspected and available for provisioning and deployment. For more
information, see Registering nodes for the overcloud and Creating an inventory of the bare
metal node hardware.

Procedure

1. Source the stackrc undercloud credential file:

$ source ~/stackrc

2. Create a new ~/overcloud-baremetal-deploy.yaml file and define the node count for each role
that you want to provision. For example, to provision three Controller nodes and three Compute
nodes, use the following syntax:

- name: Controller
 count: 3
- name: Compute
 count: 3

3. In the ~/overcloud-baremetal-deploy.yaml file, define any predictive node placements,
custom images, custom NICs, or other attributes that you want to assign to your nodes. For
example, use the following example syntax to provision three Controller nodes on nodes
node00, node01, and node02, and three Compute nodes on node04, node05, and node06:

- name: Controller
 count: 3
 instances:
 - hostname: overcloud-controller-0
 name: node00
 - hostname: overcloud-controller-1
 name: node01
 - hostname: overcloud-controller-2
 name: node02
- name: Compute
 count: 3

CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE DEPLOYING THE OVERCLOUD

127

 instances:
 - hostname: overcloud-novacompute-0
 name: node04
 - hostname: overcloud-novacompute-1
 name: node05
 - hostname: overcloud-novacompute-2
 name: node06

By default, the provisioning process uses the overcloud-full image. You can use the image
attribute in the instances parameter to define a custom image:

- name: Controller
 count: 3
 instances:
 - hostname: overcloud-controller-0
 name: node00
 image:
 href: overcloud-custom

You can also override the default parameter values with the defaults parameter to avoid
manual node definitions for each node entry:

- name: Controller
 count: 3
 defaults:
 image:
 href: overcloud-custom
 instances:
 - hostname :overcloud-controller-0
 name: node00
 - hostname: overcloud-controller-1
 name: node01
 - hostname: overcloud-controller-2
 name: node02

For more information about the parameters, attributes, and values that you can use in your node
definition file, see Bare metal node provisioning attributes .

4. Run the provisioning command, specifying the ~/overcloud-baremetal-deploy.yaml file and
defining an output file with the --output option:

(undercloud)$ openstack overcloud node provision \
--stack stack \
--output ~/overcloud-baremetal-deployed.yaml \
~/overcloud-baremetal-deploy.yaml

The provisioning process generates a heat environment file with the name that you specify in
the --output option. This file contains your node definitions. When you deploy the overcloud,
include this file in the deployment command.

5. In a separate terminal, monitor your nodes to verify that they provision successfully. The
provisioning process changes the node state from available to active:

(undercloud)$ watch openstack baremetal node list

Use the metalsmith tool to obtain a unified view of your nodes, including allocations and

Red Hat OpenStack Platform 16.1 Director Installation and Usage

128

Use the metalsmith tool to obtain a unified view of your nodes, including allocations and
neutron ports:

(undercloud)$ metalsmith list

You can also use the openstack baremetal allocation command to verify association of nodes
to hostnames:

(undercloud)$ openstack baremetal allocation list

When your nodes are provisioned successfully, you can deploy the overcloud. For more information, see
Configuring a basic overcloud with pre-provisioned nodes .

8.4. SCALING UP BARE METAL NODES

To increase the count of bare metal nodes in an existing overcloud, increment the node count in the
~/overcloud-baremetal-deploy.yaml file and redeploy the overcloud.

Prerequisites

A successful undercloud installation. For more information, see Installing director .

A successful overcloud deployment. For more information, see Configuring a basic overcloud
with pre-provisioned nodes.

Bare metal nodes introspected and available for provisioning and deployment. For more
information, see Registering nodes for the overcloud and Creating an inventory of the bare-
metal node hardware.

Procedure

1. Source the stackrc undercloud credential file:

$ source ~/stackrc

2. Edit the ~/overcloud-baremetal-deploy.yaml file that you used to provision your bare metal
nodes, and increment the count parameter for the roles that you want to scale up. For example,
if your overcloud contains three Compute nodes, use the following snippet to increase the
Compute node count to 10:

- name: Controller
 count: 3
- name: Compute
 count: 10

You can also add predictive node placement with the instances parameter. For more
information about the parameters and attributes that are available, see Bare metal node
provisioning attributes.

3. Run the provisioning command, specifying the ~/overcloud-baremetal-deploy.yaml file and
defining an output file with the --output option:

(undercloud)$ openstack overcloud node provision \
--stack stack \

CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE DEPLOYING THE OVERCLOUD

129

--output ~/overcloud-baremetal-deployed.yaml \
~/overcloud-baremetal-deploy.yaml

4. Monitor the provisioning progress with the openstack baremetal node list command.

5. Deploy the overcloud, including the ~/overcloud-baremetal-deployed.yaml file that the
provisioning command generates, along with any other environment files relevant to your
deployment:

(undercloud)$ openstack overcloud deploy \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/deployed-server-
environment.yaml \
 -e ~/overcloud-baremetal-deployed.yaml \
 --deployed-server \
 --disable-validations \
 ...

8.5. SCALING DOWN BARE METAL NODES

Tag the nodes that you want to delete from the stack in the ~/overcloud-baremetal-deploy.yaml file,
redeploy the overcloud, and then include this file in the openstack overcloud node delete command
with the --baremetal-deployment option.

Prerequisites

A successful undercloud installation. For more information, see Chapter 4, Installing director on
the undercloud.

A successful overcloud deployment. For more information, see Chapter 9, Configuring a basic
overcloud with pre-provisioned nodes.

At least one bare metal node that you want to remove from the stack.

Procedure

1. Source the stackrc undercloud credential file:

$ source ~/stackrc

2. Edit the ~/overcloud-baremetal-deploy.yaml file that you used to provision your bare metal
nodes, and decrement the count parameter for the roles that you want to scale down. You must
also define the following attributes for each node that you want to remove from the stack:

The name of the node.

The hostname that is associated with the node.

The attribute provisioned: false.
For example, to remove the node overcloud-controller-1 from the stack, include the
following snippet in your ~/overcloud-baremetal-deploy.yaml file:

- name: Controller
 count: 2

Red Hat OpenStack Platform 16.1 Director Installation and Usage

130

 instances:
 - hostname: overcloud-controller-0
 name: node00
 - hostname: overcloud-controller-1
 name: node01
 # Removed from cluster due to disk failure
 provisioned: false
 - hostname: overcloud-controller-2
 name: node02

3. Run the provisioning command, specifying the ~/overcloud-baremetal-deploy.yaml file and
defining an output file with the --output option:

(undercloud)$ openstack overcloud node provision \
--stack stack \
--output ~/overcloud-baremetal-deployed.yaml \
~/overcloud-baremetal-deploy.yaml

4. Redeploy the overcloud and include the ~/overcloud-baremetal-deployed.yaml file that the
provisioning command generates, along with any other environment files relevant to your
deployment:

(undercloud)$ openstack overcloud deploy \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/deployed-server-
environment.yaml \
 -e ~/overcloud-baremetal-deployed.yaml \
 --deployed-server \
 --disable-validations \
 ...

After you redeploy the overcloud, the nodes that you define with the provisioned: false
attribute are no longer present in the stack. However, these nodes are still running in a
provisioned state.

NOTE

If you want to remove a node from the stack temporarily, you can deploy the
overcloud with the attribute provisioned: false and then redeploy the overcloud
with the attribute provisioned: true to return the node to the stack.

5. Run the openstack overcloud node delete command, including the ~/overcloud-baremetal-
deploy.yaml file with the --baremetal-deployment option.

(undercloud)$ openstack overcloud node delete \
--stack stack \
--baremetal-deployment ~/overcloud-baremetal-deploy.yaml

NOTE

Do not include the nodes that you want to remove from the stack as command
arguments in the openstack overcloud node delete command.

CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE DEPLOYING THE OVERCLOUD

131

8.6. BARE METAL NODE PROVISIONING ATTRIBUTES

Use the following tables to understand the parameters, attributes, and values that are available for you
to use when you provision bare metal nodes with the openstack baremetal node provision command.

Table 8.1. Role parameters

Parameter Value

name Mandatory role name

count The number of nodes that you want to provision for
this role. The default value is 1.

defaults A dictionary of default values for instances entry
properties. An instances entry property overrides
any defaults that you specify in the defaults
parameter.

instances A dictionary of values that you can use to specify
attributes for specific nodes. For more information
about supported properties in the instances
parameter, see Table 8.2, “instances and defaults
parameters”. The length of this list must not be
greater than the value of the count parameter.

hostname_format Overrides the default hostname format for this role.
The default format uses the lower case role name.
For example, the default format for the Controller
role is %stackname%-controller-%index%. Only
the Compute role does not follow the role name rule.
The Compute default format is %stackname%-
novacompute-%index%

Example syntax
In the following example, the name refers to the logical name of the node, and the hostname refers to
the generated hostname which is derived from the overcloud stack name, the role, and an incrementing
index. All Controller servers use a default custom image overcloud-full-custom and are on predictive
nodes. One of the Compute servers is placed predictively on node04 with custom host name
overcloud-compute-special, and the other 99 Compute servers are on nodes allocated automatically
from the pool of available nodes:

- name: Controller
 count: 3
 defaults:
 image:
 href: file:///var/lib/ironic/images/overcloud-full-custom.qcow2
 instances:
 - hostname: overcloud-controller-0
 name: node00
 - hostname: overcloud-controller-1
 name: node01
 - hostname: overcloud-controller-2

Red Hat OpenStack Platform 16.1 Director Installation and Usage

132

 name: node02
- name: Compute
 count: 100
 instances:
 - hostname: overcloud-compute-special
 name: node04

Table 8.2. instances and defaults parameters

Parameter Value

hostname If the hostname complies with the
hostname_format pattern then other properties
apply to the node allocated to this hostname.
Otherwise, you can use a custom hostname for this
node.

name The name of the node that you want to provision.

image Details of the image that you want to provision onto
the node. For more information about supported
properties in the image parameter, see Table 8.3,
“image parameters”.

capabilities Selection criteria to match the node capabilities.

nics List of dictionaries that represent requested NICs.
For more information about supported properties in
the nics parameter, see Table 8.4, “nic parameters”.

profile Selection criteria to use Advanced Profile Matching.

provisioned Boolean to determine whether this node is
provisioned or unprovisioned. The default value is
true. Use false to unprovision a node. For more
information, see Scaling down bare metal nodes.

resource_class Selection criteria to match the resource class of the
node. The default value is baremetal.

root_size_gb Size of the root partition in GiB. The default value is
49

swap_size_mb Size of the swap partition in MiB.

traits A list of traits as selection criteria to match the node
traits.

Example syntax
In the following example, all Controller servers use a custom default overcloud image overcloud-full-
custom. The Controller server overcloud-controller-0 is placed predictively on node00 and has custom

CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE DEPLOYING THE OVERCLOUD

133

root and swap sizes. The other two Controller servers are on nodes allocated automatically from the
pool of available nodes, and have default root and swap sizes:

- name: Controller
 count: 3
 defaults:
 image:
 href: file:///var/lib/ironic/images/overcloud-full-custom.qcow2
 instances:
 - hostname: overcloud-controller-0
 name: node00
 root_size_gb: 140
 swap_size_mb: 600

Table 8.3. image parameters

Parameter Value

href Glance image reference or URL of the root partition
or whole disk image. URL schemes supported are
file://, http://, and https://. If the value is not a valid
URL, this value must be a valid glance image
reference.

checksum When the href is a URL, this value must be the
SHA512 checksum of the root partition or whole disk
image.

kernel Glance image reference or URL of the kernel image.
Use this property only for partition images.

ramdisk Glance image reference or URL of the ramdisk
image. Use this property only for partition images.

Example syntax
In the following example, all three Controller servers are on nodes allocated automatically from the pool
of available nodes. All Controller servers in this environment use a default custom image overcloud-full-
custom:

- name: Controller
 count: 3
 defaults:
 image:
 href: file:///var/lib/ironic/images/overcloud-full-custom.qcow2
 checksum: 1582054665
 kernel: file:///var/lib/ironic/images/overcloud-full-custom.vmlinuz
 ramdisk: file:///var/lib/ironic/images/overcloud-full-custom.initrd

Table 8.4. nic parameters

Red Hat OpenStack Platform 16.1 Director Installation and Usage

134

Parameter Value

fixed_ip The specific IP address that you want to use for this
NIC.

network The neutron network where you want to create the
port for this NIC.

subnet The neutron subnet where you want to create the
port for this NIC.

port Existing Neutron port to use instead of creating a
new port.

Example syntax
In the following example, all three Controller servers are on nodes allocated automatically from the pool
of available nodes. All Controller servers in this environment use a default custom image overcloud-full-
custom and have specific networking requirements:

- name: Controller
 count: 3
 defaults:
 image:
 href: file:///var/lib/ironic/images/overcloud-full-custom.qcow2
 nics:
 network: custom-network
 subnet: custom-subnet

CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE DEPLOYING THE OVERCLOUD

135

CHAPTER 9. CONFIGURING A BASIC OVERCLOUD WITH PRE-
PROVISIONED NODES

This chapter contains basic configuration procedures that you can use to configure a Red Hat
OpenStack Platform (RHOSP) environment with pre-provisioned nodes. This scenario differs from the
standard overcloud creation scenarios in several ways:

You can provision nodes with an external tool and let the director control the overcloud
configuration only.

You can use nodes without relying on the director provisioning methods. This is useful if you
want to create an overcloud without power management control, or use networks with
DHCP/PXE boot restrictions.

The director does not use OpenStack Compute (nova), OpenStack Bare Metal (ironic), or
OpenStack Image (glance) to manage nodes.

Pre-provisioned nodes can use a custom partitioning layout that does not rely on the QCOW2
overcloud-full image.

This scenario includes only basic configuration with no custom features. However, you can add advanced
configuration options to this basic overcloud and customize it to your specifications with the instructions
in the Advanced Overcloud Customization guide.

IMPORTANT

You cannot combine pre-provisioned nodes with director-provisioned nodes.

9.1. PRE-PROVISIONED NODE REQUIREMENTS

Before you begin deploying an overcloud with pre-provisioned nodes, ensure that the following
configuration is present in your environment:

The director node that you created in Chapter 4, Installing director on the undercloud .

A set of bare metal machines for your nodes. The number of nodes required depends on the
type of overcloud you intend to create. These machines must comply with the requirements set
for each node type. These nodes require Red Hat Enterprise Linux 8.2 installed as the host
operating system. Red Hat recommends using the latest version available.

One network connection for managing the pre-provisioned nodes. This scenario requires
uninterrupted SSH access to the nodes for orchestration agent configuration.

One network connection for the Control Plane network. There are two main scenarios for this
network:

Using the Provisioning Network as the Control Plane, which is the default scenario. This
network is usually a layer-3 (L3) routable network connection from the pre-provisioned
nodes to director. The examples for this scenario use following IP address assignments:

Table 9.1. Provisioning Network IP assignments

Red Hat OpenStack Platform 16.1 Director Installation and Usage

136

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/index

Node name IP address

Director 192.168.24.1

Controller 0 192.168.24.2

Compute 0 192.168.24.3

Using a separate network. In situations where the director’s Provisioning network is a private
non-routable network, you can define IP addresses for nodes from any subnet and
communicate with director over the Public API endpoint. For more information about the
requirements for this scenario, see Section 9.6, “Using a separate network for pre-
provisioned nodes”.

All other network types in this example also use the Control Plane network for OpenStack
services. However, you can create additional networks for other network traffic types.

If any nodes use Pacemaker resources, the service user hacluster and the service group
haclient must have a UID/GID of 189. This is due to CVE-2018-16877. If you installed
Pacemaker together with the operating system, the installation creates these IDs automatically.
If the ID values are set incorrectly, follow the steps in the article OpenStack minor update / fast-
forward upgrade can fail on the controller nodes at pacemaker step with "Could not evaluate:
backup_cib" to change the ID values.

To prevent some services from binding to an incorrect IP address and causing deployment
failures, make sure that the /etc/hosts file does not include the node-name=127.0.0.1 mapping.

9.2. CREATING A USER ON PRE-PROVISIONED NODES

When you configure an overcloud with pre-provisioned nodes, director requires SSH access to the
overcloud nodes. On the pre-provisioned nodes, you must create a user with SSH key authentication
and configure passwordless sudo access for that user. After you create a user on pre-provisioned nodes,
you can use the --overcloud-ssh-user and --overcloud-ssh-key options with the openstack
overcloud deploy command to create an overcloud with pre-provisioned nodes.

By default, the values for the overcloud SSH user and overcloud SSH key are the stack user and
~/.ssh/id_rsa. To create the stack user, complete the following steps.

Procedure

1. On each overcloud node, create the stack user and set a password. For example, run the
following commands on the Controller node:

[root@controller-0 ~]# useradd stack
[root@controller-0 ~]# passwd stack # specify a password

2. Disable password requirements for this user when using sudo:

[root@controller-0 ~]# echo "stack ALL=(root) NOPASSWD:ALL" | tee -a
/etc/sudoers.d/stack
[root@controller-0 ~]# chmod 0440 /etc/sudoers.d/stack

3. After you create and configure the stack user on all pre-provisioned nodes, copy the stack

CHAPTER 9. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED NODES

137

https://access.redhat.com/security/cve/CVE-2018-16877
https://access.redhat.com/solutions/4669581

3. After you create and configure the stack user on all pre-provisioned nodes, copy the stack
user’s public SSH key from the director node to each overcloud node. For example, to copy the
director’s public SSH key to the Controller node, run the following command:

[stack@director ~]$ ssh-copy-id stack@192.168.24.2

IMPORTANT

To copy your SSH keys, you might have to temporarily set PasswordAuthentication Yes
in the SSH configuration of each overcloud node. After you copy the SSH keys, set
PasswordAuthentication No and use the SSH keys to authenticate in the future.

9.3. REGISTERING THE OPERATING SYSTEM FOR PRE-PROVISIONED
NODES

Each node requires access to a Red Hat subscription. Complete the following steps on each node to
register your nodes with the Red Hat Content Delivery Network.

IMPORTANT

Enable only the repositories listed. Additional repositories can cause package and
software conflicts. Do not enable any additional repositories.

Procedure

1. Run the registration command and enter your Customer Portal user name and password when
prompted:

[heat-admin@controller-0 ~]$ sudo subscription-manager register

2. Find the entitlement pool for Red Hat OpenStack Platform 16.1:

[heat-admin@controller-0 ~]$ sudo subscription-manager list --available --all --matches="Red
Hat OpenStack"

3. Use the pool ID located in the previous step to attach the Red Hat OpenStack Platform 16
entitlements:

[heat-admin@controller-0 ~]$ sudo subscription-manager attach --pool=pool_id

4. Disable all default repositories:

[heat-admin@controller-0 ~]$ sudo subscription-manager repos --disable=*

5. Enable the required Red Hat Enterprise Linux repositories.

a. For x86_64 systems, run the following command:

[heat-admin@controller-0 ~]$ sudo subscription-manager repos --enable=rhel-8-for-
x86_64-baseos-eus-rpms --enable=rhel-8-for-x86_64-appstream-eus-rpms --
enable=rhel-8-for-x86_64-highavailability-eus-rpms --enable=ansible-2.9-for-rhel-8-

Red Hat OpenStack Platform 16.1 Director Installation and Usage

138

x86_64-rpms --enable=openstack-16.1-for-rhel-8-x86_64-rpms --enable=fast-datapath-
for-rhel-8-x86_64-rpms --enable=advanced-virt-for-rhel-8-x86_64-rpms

b. For POWER systems, run the following command:

[heat-admin@controller-0 ~]$ sudo subscription-manager repos --enable=rhel-8-for-
ppc64le-baseos-rpms --enable=rhel-8-for-ppc64le-appstream-rpms --enable=rhel-8-for-
ppc64le-highavailability-rpms --enable=ansible-2.8-for-rhel-8-ppc64le-rpms --
enable=openstack-16-for-rhel-8-ppc64le-rpms --enable=fast-datapath-for-rhel-8-ppc64le-
rpms

6. Set the container-tools repository module to version 2.0:

[heat-admin@controller-0 ~]$ sudo dnf module disable -y container-tools:rhel8
[heat-admin@controller-0 ~]$ sudo dnf module enable -y container-tools:2.0

7. If the overcloud uses Ceph Storage nodes, enable the relevant Ceph Storage repositories:

[heat-admin@cephstorage-0 ~]$ sudo subscription-manager repos --enable=rhel-8-for-
x86_64-baseos-rpms --enable=rhel-8-for-x86_64-appstream-rpms --enable=rhel-8-for-
x86_64-highavailability-rpms --enable=ansible-2.9-for-rhel-8-x86_64-rpms --
enable=openstack-16.1-deployment-tools-for-rhel-8-x86_64-rpms

8. Lock each node to Red Hat Enterprise Linux 8.2 before you execute the dnf update:

[heat-admin@controller-0 ~]$ sudo subscription-manager release --set=8.2

9. Update your system to ensure you have the latest base system packages:

[heat-admin@controller-0 ~]$ sudo dnf update -y
[heat-admin@controller-0 ~]$ sudo reboot

The node is now ready to use for your overcloud.

9.4. CONFIGURING SSL/TLS ACCESS TO DIRECTOR

If the director uses SSL/TLS, the pre-provisioned nodes require the certificate authority file used to
sign the director’s SSL/TLS certificates. If you use your own certificate authority, perform the following
actions on each overcloud node.

Procedure

1. Copy the certificate authority file to the /etc/pki/ca-trust/source/anchors/ directory on each
pre-provisioned node.

2. Run the following command on each overcloud node:

[root@controller-0 ~]# sudo update-ca-trust extract

These steps ensure that the overcloud nodes can access the director’s Public API over SSL/TLS.

9.5. CONFIGURING NETWORKING FOR THE CONTROL PLANE

CHAPTER 9. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED NODES

139

The pre-provisioned overcloud nodes obtain metadata from director using standard HTTP requests.
This means all overcloud nodes require L3 access to either:

The director Control Plane network, which is the subnet that you define with the network_cidr
parameter in your undercloud.conf file. The overcloud nodes require either direct access to this
subnet or routable access to the subnet.

The director Public API endpoint, that you specify with the undercloud_public_host
parameter in your undercloud.conf file. This option is available if you do not have an L3 route to
the Control Plane or if you want to use SSL/TLS communication. For more information about
configuring your overcloud nodes to use the Public API endpoint, see Section 9.6, “Using a
separate network for pre-provisioned nodes”.

Director uses the Control Plane network to manage and configure a standard overcloud. For an
overcloud with pre-provisioned nodes, your network configuration might require some modification to
accommodate communication between the director and the pre-provisioned nodes.

Using network isolation

You can use network isolation to group services to use specific networks, including the Control Plane.
There are multiple network isolation strategies in the the Advanced Overcloud Customization guide.
You can also define specific IP addresses for nodes on the Control Plane. For more information about
isolating networks and creating predictable node placement strategies, see the following sections in the
Advanced Overcloud Customizations guide:

"Basic network isolation"

"Controlling Node Placement"

NOTE

If you use network isolation, ensure that your NIC templates do not include the NIC used
for undercloud access. These templates can reconfigure the NIC, which introduces
connectivity and configuration problems during deployment.

Assigning IP addresses

If you do not use network isolation, you can use a single Control Plane network to manage all services.
This requires manual configuration of the Control Plane NIC on each node to use an IP address within
the Control Plane network range. If you are using the director Provisioning network as the Control Plane,
ensure that the overcloud IP addresses that you choose are outside of the DHCP ranges for both
provisioning (dhcp_start and dhcp_end) and introspection (inspection_iprange).

During standard overcloud creation, director creates OpenStack Networking (neutron) ports and
automatically assigns IP addresses to the overcloud nodes on the Provisioning / Control Plane network.
However, this can cause director to assign different IP addresses to the ones that you configure
manually for each node. In this situation, use a predictable IP address strategy to force director to use
the pre-provisioned IP assignments on the Control Plane.

For example, you can use an environment file ctlplane-assignments.yaml with the following IP
assignments to implement a predictable IP strategy:

resource_registry:
 OS::TripleO::DeployedServer::ControlPlanePort: /usr/share/openstack-tripleo-heat-
templates/deployed-server/deployed-neutron-port.yaml

Red Hat OpenStack Platform 16.1 Director Installation and Usage

140

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/advanced_overcloud_customization/basic-network-isolation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/advanced_overcloud_customization/sect-controlling_node_placement

parameter_defaults:
 DeployedServerPortMap:
 controller-0-ctlplane:
 fixed_ips:
 - ip_address: 192.168.24.2
 subnets:
 - cidr: 192.168.24.0/24
 network:
 tags:
 192.168.24.0/24
 compute-0-ctlplane:
 fixed_ips:
 - ip_address: 192.168.24.3
 subnets:
 - cidr: 192.168.24.0/24
 network:
 tags:
 - 192.168.24.0/24

In this example, the OS::TripleO::DeployedServer::ControlPlanePort resource passes a set of
parameters to director and defines the IP assignments of your pre-provisioned nodes. Use the
DeployedServerPortMap parameter to define the IP addresses and subnet CIDRs that correspond to
each overcloud node. The mapping defines the following attributes:

1. The name of the assignment, which follows the format <node_hostname>-<network> where
the <node_hostname> value matches the short host name for the node, and <network>
matches the lowercase name of the network. For example: controller-0-ctlplane for controller-
0.example.com and compute-0-ctlplane for compute-0.example.com.

2. The IP assignments, which use the following parameter patterns:

fixed_ips/ip_address - Defines the fixed IP addresses for the control plane. Use multiple
ip_address parameters in a list to define multiple IP addresses.

subnets/cidr - Defines the CIDR value for the subnet.

A later section in this chapter uses the resulting environment file (ctlplane-assignments.yaml) as part
of the openstack overcloud deploy command.

9.6. USING A SEPARATE NETWORK FOR PRE-PROVISIONED NODES

By default, director uses the Provisioning network as the overcloud Control Plane. However, if this
network is isolated and non-routable, nodes cannot communicate with the director Internal API during
configuration. In this situation, you might need to define a separate network for the nodes and configure
them to communicate with the director over the Public API.

There are several requirements for this scenario:

The overcloud nodes must accommodate the basic network configuration from Section 9.5,
“Configuring networking for the control plane”.

You must enable SSL/TLS on the director for Public API endpoint usage. For more information,
see Section 4.2, “Director configuration parameters” and Chapter 20, Configuring custom
SSL/TLS certificates.

You must define an accessible fully qualified domain name (FQDN) for director. This FQDN

CHAPTER 9. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED NODES

141

You must define an accessible fully qualified domain name (FQDN) for director. This FQDN
must resolve to a routable IP address for the director. Use the undercloud_public_host
parameter in the undercloud.conf file to set this FQDN.

The examples in this section use IP address assignments that differ from the main scenario:

Table 9.2. Provisioning network IP assignments

Node Name IP address or FQDN

Director (Internal API) 192.168.24.1 (Provisioning Network and Control
Plane)

Director (Public API) 10.1.1.1 / director.example.com

Overcloud Virtual IP 192.168.100.1

Controller 0 192.168.100.2

Compute 0 192.168.100.3

The following sections provide additional configuration for situations that require a separate network for
overcloud nodes.

IP address assignments

The method for IP assignments is similar to Section 9.5, “Configuring networking for the control plane” .
However, since the Control Plane is not routable from the deployed servers, you must use the
DeployedServerPortMap parameter to assign IP addresses from your chosen overcloud node subnet,
including the virtual IP address to access the Control Plane. The following example is a modified version
of the ctlplane-assignments.yaml environment file from Section 9.5, “Configuring networking for the
control plane” that accommodates this network architecture:

resource_registry:
 OS::TripleO::DeployedServer::ControlPlanePort: /usr/share/openstack-tripleo-heat-
templates/deployed-server/deployed-neutron-port.yaml
 OS::TripleO::Network::Ports::ControlPlaneVipPort: /usr/share/openstack-tripleo-heat-
templates/deployed-server/deployed-neutron-port.yaml
 OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml
 OS::TripleO::Network::Ports::OVNDBsVipPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/noop.yaml 1

parameter_defaults:
 NeutronPublicInterface: eth1
 DeployedServerPortMap:
 control_virtual_ip:
 fixed_ips:
 - ip_address: 192.168.100.1
 subnets:
 - cidr: 24
 controller-0-ctlplane:
 fixed_ips:
 - ip_address: 192.168.100.2

Red Hat OpenStack Platform 16.1 Director Installation and Usage

142

1

 subnets:
 - cidr: 24
 compute-0-ctlplane:
 fixed_ips:
 - ip_address: 192.168.100.3
 subnets:
 - cidr: 24

The RedisVipPort and OVNDBsVipPort resources are mapped to network/ports/noop.yaml. This
mapping is necessary because the default Redis and OVNDBs VIP addresses come from the
Control Plane. In this situation, use a noop to disable this Control Plane mapping.

9.7. MAPPING PRE-PROVISIONED NODE HOSTNAMES

When you configure pre-provisioned nodes, you must map heat-based hostnames to their actual
hostnames so that ansible-playbook can reach a resolvable host. Use the HostnameMap to map these
values.

Procedure

1. Create an environment file, for example hostname-map.yaml, and include the HostnameMap
parameter and the hostname mappings. Use the following syntax:

parameter_defaults:
 HostnameMap:
 [HEAT HOSTNAME]: [ACTUAL HOSTNAME]
 [HEAT HOSTNAME]: [ACTUAL HOSTNAME]

The [HEAT HOSTNAME] usually conforms to the following convention: [STACK NAME]-
[ROLE]-[INDEX]:

parameter_defaults:
 HostnameMap:
 overcloud-controller-0: controller-00-rack01
 overcloud-controller-1: controller-01-rack02
 overcloud-controller-2: controller-02-rack03
 overcloud-novacompute-0: compute-00-rack01
 overcloud-novacompute-1: compute-01-rack01
 overcloud-novacompute-2: compute-02-rack01

2. Save the hostname-map.yaml file.

9.8. MAPPING NETWORK INTERFACES TO ALIASES

In Red Hat OpenStack Platform 16.1, overcloud network interface mapping does not happen
automatically on pre-provisioned nodes. Instead, you must define the mapping manually in the /etc/os-
net-config/mapping.yaml file on each pre-provisioned node.

Procedure

1. Log in to each pre-provisioned node.

2. Create the /etc/os-net-config/mapping.yaml file and include the details of your interface

CHAPTER 9. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED NODES

143

2. Create the /etc/os-net-config/mapping.yaml file and include the details of your interface
mapping:

interface_mapping:
 nic1: em1
 nic2: em2

9.9. CONFIGURING CEPH STORAGE FOR PRE-PROVISIONED NODES

Complete the following steps on the undercloud host to configure ceph-ansible for nodes that are
already deployed.

Procedure

1. On the undercloud host, create an environment variable, OVERCLOUD_HOSTS, and set the
variable to a space-separated list of IP addresses of the overcloud hosts that you want to use as
Ceph clients:

export OVERCLOUD_HOSTS="192.168.1.8 192.168.1.42"

2. The default overcloud plan name is overcloud. If you use a different name, create an
environment variable OVERCLOUD_PLAN to store your custom name:

export OVERCLOUD_PLAN="<custom-stack-name>"

Replace <custom-stack-name> with the name of your stack.

3. Run the enable-ssh-admin.sh script to configure a user on the overcloud nodes that Ansible
can use to configure Ceph clients:

bash /usr/share/openstack-tripleo-heat-templates/deployed-server/scripts/enable-ssh-
admin.sh

When you run the openstack overcloud deploy command, Ansible configures the hosts that you define
in the OVERCLOUD_HOSTS variable as Ceph clients.

9.10. CREATING THE OVERCLOUD WITH PRE-PROVISIONED NODES

The overcloud deployment uses the standard CLI methods from Section 7.14, “Deployment command”.
For pre-provisioned nodes, the deployment command requires some additional options and
environment files from the core heat template collection:

--disable-validations - Use this option to disable basic CLI validations for services not used
with pre-provisioned infrastructure. If you do not disable these validations, the deployment fails.

environments/deployed-server-environment.yaml - Include this environment file to create
and configure the pre-provisioned infrastructure. This environment file substitutes the
OS::Nova::Server resources with OS::Heat::DeployedServer resources.

The following command is an example overcloud deployment command with the environment files
specific to the pre-provisioned architecture:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy \

Red Hat OpenStack Platform 16.1 Director Installation and Usage

144

 --disable-validations \
 -e /usr/share/openstack-tripleo-heat-templates/environments/deployed-server-environment.yaml \
 -e /home/stack/templates/hostname-map.yaml \
 --overcloud-ssh-user stack \
 --overcloud-ssh-key ~/.ssh/id_rsa \
 <OTHER OPTIONS>

The --overcloud-ssh-user and --overcloud-ssh-key options are used to SSH into each overcloud node
during the configuration stage, create an initial tripleo-admin user, and inject an SSH key into
/home/tripleo-admin/.ssh/authorized_keys. To inject the SSH key, specify the credentials for the
initial SSH connection with --overcloud-ssh-user and --overcloud-ssh-key (defaults to ~/.ssh/id_rsa).
To limit exposure to the private key that you specify with the --overcloud-ssh-key option, director
never passes this key to any API service, such as heat or the Workflow service (mistral), and only the
director openstack overcloud deploy command uses this key to enable access for the tripleo-admin
user.

9.11. OVERCLOUD DEPLOYMENT OUTPUT

When the overcloud creation completes, director provides a recap of the Ansible plays that were
executed to configure the overcloud:

PLAY RECAP ***
overcloud-compute-0 : ok=160 changed=67 unreachable=0 failed=0
overcloud-controller-0 : ok=210 changed=93 unreachable=0 failed=0
undercloud : ok=10 changed=7 unreachable=0 failed=0

Tuesday 15 October 2018 18:30:57 +1000 (0:00:00.107) 1:06:37.514 ******
==

Director also provides details to access your overcloud.

Ansible passed.
Overcloud configuration completed.
Overcloud Endpoint: http://192.168.24.113:5000
Overcloud Horizon Dashboard URL: http://192.168.24.113:80/dashboard
Overcloud rc file: /home/stack/overcloudrc
Overcloud Deployed

9.12. ACCESSING THE OVERCLOUD

Director generates a script to configure and help authenticate interactions with your overcloud from the
undercloud. Director saves this file, overcloudrc, in the home directory of the stack user. Run the
following command to use this file:

(undercloud) $ source ~/overcloudrc

This command loads the environment variables that are necessary to interact with your overcloud from
the undercloud CLI. The command prompt changes to indicate this:

(overcloud) $

To return to interacting with the undercloud, run the following command:

CHAPTER 9. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED NODES

145

(overcloud) $ source ~/stackrc
(undercloud) $

9.13. SCALING PRE-PROVISIONED NODES

The process for scaling pre-provisioned nodes is similar to the standard scaling procedures in
Chapter 16, Scaling overcloud nodes . However, the process to add new pre-provisioned nodes differs
because pre-provisioned nodes do not use the standard registration and management process from
OpenStack Bare Metal (ironic) and OpenStack Compute (nova).

Scaling up pre-provisioned nodes

When scaling up the overcloud with pre-provisioned nodes, you must configure the orchestration agent
on each node to correspond to the director node count.

Perform the following actions to scale up overcloud nodes:

1. Prepare the new pre-provisioned nodes according to Section 9.1, “Pre-provisioned node
requirements”.

2. Scale up the nodes. For more information, see Chapter 16, Scaling overcloud nodes .

3. After you execute the deployment command, wait until the director creates the new node
resources and launches the configuration.

Scaling down pre-provisioned nodes

When scaling down the overcloud with pre-provisioned nodes, follow the scale down instructions in
Chapter 16, Scaling overcloud nodes .

In scale-down operations, you can use hostnames for both OSP provisioned or pre-provisioned nodes.
You can also use the UUID for OSP provisioned nodes. However, there is no UUID for pre-provisoned
nodes, so you always use hostnames. Pass the hostname or UUID value to the openstack overcloud
node delete command.

Procedure

1. Identify the name of the node that you want to remove.

$ openstack stack resource list overcloud -n5 --filter
type=OS::TripleO::ComputeDeployedServerServer

2. Pass the corresponding node name from the stack_name column to the openstack overcloud
node delete command:

$ openstack overcloud node delete --stack <overcloud> <stack>

Replace <overcloud> with the name or UUID of the overcloud stack.

Replace <stack_name> with the name of the node that you want to remove. You can
include multiple node names in the openstack overcloud node delete command.

3. Ensure that the openstack overcloud node delete command runs to completion:

$ openstack stack list

Red Hat OpenStack Platform 16.1 Director Installation and Usage

146

The status of the overcloud stack shows UPDATE_COMPLETE when the delete operation is
complete.

After you remove overcloud nodes from the stack, power off these nodes. In a standard deployment, the
bare metal services on the director control this function. However, with pre-provisioned nodes, you must
either manually shut down these nodes or use the power management control for each physical system.
If you do not power off the nodes after removing them from the stack, they might remain operational
and reconnect as part of the overcloud environment.

After you power off the removed nodes, reprovision them to a base operating system configuration so
that they do not unintentionally join the overcloud in the future

NOTE

Do not attempt to reuse nodes previously removed from the overcloud without first
reprovisioning them with a fresh base operating system. The scale down process only
removes the node from the overcloud stack and does not uninstall any packages.

Removing a pre-provisioned overcloud

To remove an entire overcloud that uses pre-provisioned nodes, see Section 12.6, “Removing the
overcloud” for the standard overcloud remove procedure. After you remove the overcloud, power off all
nodes and reprovision them to a base operating system configuration.

NOTE

Do not attempt to reuse nodes previously removed from the overcloud without first
reprovisioning them with a fresh base operating system. The removal process only
deletes the overcloud stack and does not uninstall any packages.

CHAPTER 9. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED NODES

147

CHAPTER 10. DEPLOYING MULTIPLE OVERCLOUDS

IMPORTANT

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

You can use a single undercloud node to deploy and manage multiple overclouds. Each overcloud is a
unique heat stack that does not share stack resources. This can be useful for environments where a 1:1
ratio of underclouds to overclouds creates an unmanageable amount of overhead. For example, Edge,
multi-site, and multi-product environments.

The overcloud environments in a multiple overcloud deployment are completely separate, and you can
use the source command to switch between the environments. Each overcloud has a unique credential
file which is created by the deployment process. To interact with an overcloud, you must source the
appropriate credential file.

If you use the Bare Metal Provisioning service (ironic) for bare metal provisioning, all overclouds must be
on the same provisioning network. If it is not possible to use the same provisioning network, you can use
the deployed servers method to deploy multiple overclouds with routed networks. In this scenario, you
must ensure that the value in the HostnameMap parameter matches the stack name for each
overcloud.

To deploy multiple overclouds on a single undercloud, you must perform the following tasks:

1. Deploy the undercloud. For more information, Part I. Director installation and configuration .

2. Deploy your first overcloud. For more information, see Part II. Basic overcloud deployment .

3. Deploy your additional overclouds by creating a new set of environment files for the new
overcloud and specifying the core heat templates together with the new configuration files and
a new stack name in the deployment command.

10.1. DEPLOYING AN ADDITIONAL OVERCLOUD

You can deploy more than one overcloud on a single undercloud. The following procedure illustrates
how to create and deploy a new overcloud, overcloud-two, on an existing Red Hat OpenStack Platform
(RHOSP) deployment that has an existing overcloud, overcloud-one.

Prerequisites

An undercloud.

One or more overclouds.

Nodes that are available for your additional overcloud.

Custom networks for additional overclouds so that each overcloud has a unique network in the
resulting stack.

Procedure

Red Hat OpenStack Platform 16.1 Director Installation and Usage

148

https://access.redhat.com/support/offerings/production/scope_moredetail
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/director_installation_and_configuration
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/basic_overcloud_deployment

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. Create a new directory for the additional overcloud that you want to deploy:

(undercloud)$ mkdir ~/overcloud-two

4. Copy the network_data.yaml file from the existing overcloud to the new directory for the
additional overcloud:

(undercloud)$ cp network_data.yaml ~/overcloud-two/network_data.yaml

5. Open the ~/overcloud-two/network_data.yaml file and update name_lower to a unique name
for the the additional overcloud network:

- name: InternalApi
 name_lower: internal_api_cloud_2
 ...

6. Add service_net_map_replace if not already present, and set the value to the default value of
the additional overcloud network:

- name: InternalApi
 name_lower: internal_api_cloud_2
 service_net_map_replace: internal_api

7. Specify the VLAN IDs for each subnet on the additional overcloud:

- name: InternalApi
 ...
 vip: true
 vlan: 21
 ip_subnet: '172.21.0.0/24'
 allocation_pools: [{'start': '172.21.0.4', 'end': '172.21.0.250'}]
 ipv6_subnet: 'fd00:fd00:fd00:2001::/64'
 ipv6_allocation_pools: [{'start': 'fd00:fd00:fd00:2001::10', 'end':
'fd00:fd00:fd00:2001:ffff:ffff:ffff:fffe'}]
 mtu: 1500
- name: Storage
 ...

8. Specify the IP address of the gateway for the overcloud-two external network:

- name: External
 ...
 gateway_ip: <ip_address>
 ...

Replace <ip_address> with the IP address of the gateway for the overcloud-two external
network, for example, 10.0.10.1.

CHAPTER 10. DEPLOYING MULTIPLE OVERCLOUDS

149

9. Create a network configuration file for the additional overcloud that overrides the default
isolated network configuration provided in the /usr/share/openstack-tripleo-heat-
templates/environments/network-environment.yaml file, for example,
network_overrides.yaml.

10. Open the ~/overcloud-two/network_overrides.yaml file and add the IP address of the
overcloud-two DNS server:

parameter_defaults:
 ...
 DnsServers:
 - <ip_address>
 ...

Replace <ip_address> with the IP address of the overcloud-two DNS server, for example,
10.0.10.2.

11. If your deployment uses predictable IP addresses, then configure the IP addresses for the
overcloud-two nodes in a new network IP address mapping file, ips-from-pool-overcloud-
two.yaml:

parameter_defaults:
 ControllerIPs:
 ...
 internal_api_cloud_2:
 - 192.168.1.10
 - 192.168.1.11
 - 192.168.1.12
 ...
 external_cloud_2:
 - 10.0.1.41
 ...

12. Add your overcloud-two environment files to the stack with your other environment files and
deploy the additional overcloud:

(undercloud)$ openstack overcloud deploy --templates \
 --stack overcloud-two \
 -n ~/overcloud-two/network_data.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/net-single-nic-with-vlans.yaml
\
 -e ~/overcloud-two/network_overrides.yaml \
 -e [your environment files] \
 ...

The deployment process creates overcloud-tworc for interacting with and managing
overcloud-two.

13. To interact with your additional overcloud, source the overcloud credential file:

$ source overcloud-tworc

Red Hat OpenStack Platform 16.1 Director Installation and Usage

150

10.2. MANAGING MULTIPLE OVERCLOUDS

Each overcloud that you deploy uses the same set of core heat templates /usr/share/openstack-
tripleo-heat-templates. Red Hat recommends that you do not modify or duplicate these templates,
because using a non-standard set of core templates can introduce issues with updates and upgrades.

Instead, for ease of management when you deploy or maintain multiple overclouds, create separate
directories of environment files specific to each cloud. When you run the deploy command for each
cloud, include the core heat templates together with the cloud-specific environment files that you
create separately. For example, create the following directories for the undercloud and two overclouds:

~stack/undercloud

Contains the environment files specific to the undercloud.

~stack/overcloud-one

Contains the environment files specific to the first overcloud.

~stack/overcloud-two

Contains the environment files specific to the second overcloud.

When you deploy or redeploy overcloud-one or overcloud-two, include the core heat templates in the
deploy command with the --templates option, and then specify any additional environment files from
the cloud-specific environment file directories.

Alternatively, create a repository in a version control system and use branches for each deployment. For
more information, see the Using Customized Core Heat Templates section of the Advanced Overcloud
Customization guide.

Use the following command to view a list of overcloud plans that are available:

$ openstack overcloud plan list

Use the following command to view a list of overclouds that are currently deployed:

$ openstack stack list

CHAPTER 10. DEPLOYING MULTIPLE OVERCLOUDS

151

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/index#sect-Using_Customized_Overcloud_Heat_Templates

CHAPTER 11. PERFORMING OVERCLOUD POST-
INSTALLATION TASKS

This chapter contains information about tasks to perform immediately after you create your overcloud.
These tasks ensure your overcloud is ready to use.

11.1. CHECKING OVERCLOUD DEPLOYMENT STATUS

To check the deployment status of the overcloud, use the openstack overcloud status command. This
command returns the result of all deployment steps.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Run the deployment status command:

$ openstack overcloud status

The output of this command displays the status of the overcloud:

+-----------+---------------------+---------------------+-------------------+
| Plan Name | Created | Updated | Deployment Status |
+-----------+---------------------+---------------------+-------------------+
| overcloud | 2018-05-03 21:24:50 | 2018-05-03 21:27:59 | DEPLOY_SUCCESS |
+-----------+---------------------+---------------------+-------------------+

If your overcloud uses a different name, use the --plan argument to select an overcloud with a
different name:

$ openstack overcloud status --plan my-deployment

11.2. CREATING BASIC OVERCLOUD FLAVORS

Validation steps in this guide assume that your installation contains flavors. If you have not already
created at least one flavor, complete the following steps to create a basic set of default flavors that
have a range of storage and processing capabilities:

Procedure

1. Source the overcloudrc file:

$ source ~/overcloudrc

2. Run the openstack flavor create command to create a flavor. Use the following options to
specify the hardware requirements for each flavor:

--disk

Defines the hard disk space for a virtual machine volume.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

152

--ram

Defines the RAM required for a virtual machine.

--vcpus

Defines the quantity of virtual CPUs for a virtual machine.

3. The following example creates the default overcloud flavors:

$ openstack flavor create m1.tiny --ram 512 --disk 0 --vcpus 1
$ openstack flavor create m1.smaller --ram 1024 --disk 0 --vcpus 1
$ openstack flavor create m1.small --ram 2048 --disk 10 --vcpus 1
$ openstack flavor create m1.medium --ram 3072 --disk 10 --vcpus 2
$ openstack flavor create m1.large --ram 8192 --disk 10 --vcpus 4
$ openstack flavor create m1.xlarge --ram 8192 --disk 10 --vcpus 8

NOTE

Use $ openstack flavor create --help to learn more about the openstack flavor create
command.

11.3. CREATING A DEFAULT TENANT NETWORK

The overcloud requires a default Tenant network so that virtual machines can communicate internally.

Procedure

1. Source the overcloudrc file:

$ source ~/overcloudrc

2. Create the default Tenant network:

(overcloud) $ openstack network create default

3. Create a subnet on the network:

(overcloud) $ openstack subnet create default --network default --gateway 172.20.1.1 --
subnet-range 172.20.0.0/16

4. Confirm the created network:

(overcloud) $ openstack network list
+-----------------------+-------------+--------------------------------------+
| id | name | subnets |
+-----------------------+-------------+--------------------------------------+
| 95fadaa1-5dda-4777... | default | 7e060813-35c5-462c-a56a-1c6f8f4f332f |
+-----------------------+-------------+--------------------------------------+

These commands create a basic Networking service (neutron) network named default. The overcloud
automatically assigns IP addresses from this network to virtual machines using an internal DHCP
mechanism.

CHAPTER 11. PERFORMING OVERCLOUD POST-INSTALLATION TASKS

153

11.4. CREATING A DEFAULT FLOATING IP NETWORK

To access your virtual machines from outside of the overcloud, you must configure an external network
that provides floating IP addresses to your virtual machines.

This procedure contains two examples. Use the example that best suits your environment:

Native VLAN (flat network)

Non-Native VLAN (VLAN network)

Both of these examples involve creating a network with the name public. The overcloud requires this
specific name for the default floating IP pool. This name is also important for the validation tests in
Section 11.7, “Validating the overcloud”.

By default, Openstack Networking (neutron) maps a physical network name called datacentre to the br-
ex bridge on your host nodes. You connect the public overcloud network to the physical datacentre
and this provides a gateway through the br-ex bridge.

Prerequisites

A dedicated interface or native VLAN for the floating IP network.

Procedure

1. Source the overcloudrc file:

$ source ~/overcloudrc

2. Create the public network:

Create a flat network for a native VLAN connection:

(overcloud) $ openstack network create public --external --provider-network-type flat --
provider-physical-network datacentre

Create a vlan network for non-native VLAN connections:

(overcloud) $ openstack network create public --external --provider-network-type vlan --
provider-physical-network datacentre --provider-segment 201

Use the --provider-segment option to define the VLAN that you want to use. In this
example, the VLAN is 201.

3. Create a subnet with an allocation pool for floating IP addresses. In this example, the IP range is
10.1.1.51 to 10.1.1.250:

(overcloud) $ openstack subnet create public --network public --dhcp --allocation-pool
start=10.1.1.51,end=10.1.1.250 --gateway 10.1.1.1 --subnet-range 10.1.1.0/24

Ensure that this range does not conflict with other IP addresses in your external network.

11.5. CREATING A DEFAULT PROVIDER NETWORK

A provider network is another type of external network connection that routes traffic from private

Red Hat OpenStack Platform 16.1 Director Installation and Usage

154

A provider network is another type of external network connection that routes traffic from private
tenant networks to external infrastructure network. The provider network is similar to a floating IP
network but the provider network uses a logical router to connect private networks to the provider
network.

This procedure contains two examples. Use the example that best suits your environment:

Native VLAN (flat network)

Non-Native VLAN (VLAN network)

By default, Openstack Networking (neutron) maps a physical network name called datacentre to the br-
ex bridge on your host nodes. You connect the public overcloud network to the physical datacentre
and this provides a gateway through the br-ex bridge.

Procedure

1. Source the overcloudrc file:

$ source ~/overcloudrc

2. Create the provider network:

Create a flat network for a native VLAN connection:

(overcloud) $ openstack network create provider --external --provider-network-type flat --
provider-physical-network datacentre --share

Create a vlan network for non-native VLAN connections:

(overcloud) $ openstack network create provider --external --provider-network-type vlan -
-provider-physical-network datacentre --provider-segment 201 --share

Use the --provider-segment option to define the VLAN that you want to use. In this
example, the VLAN is 201.

These example commands create a shared network. It is also possible to specify a tenant instead
of specifying --share so that only the tenant has access to the new network.

+ If you mark a provider network as external, only the operator may create ports on that
network.

3. Add a subnet to the provider network to provide DHCP services:

(overcloud) $ openstack subnet create provider-subnet --network provider --dhcp --
allocation-pool start=10.9.101.50,end=10.9.101.100 --gateway 10.9.101.254 --subnet-range
10.9.101.0/24

4. Create a router so that other networks can route traffic through the provider network:

(overcloud) $ openstack router create external

5. Set the external gateway for the router to the provider network:

(overcloud) $ openstack router set --external-gateway provider external

CHAPTER 11. PERFORMING OVERCLOUD POST-INSTALLATION TASKS

155

6. Attach other networks to this router. For example, run the following command to attach a
subnet subnet1 to the router:

(overcloud) $ openstack router add subnet external subnet1

This command adds subnet1 to the routing table and allows traffic from virtual machines using
subnet1 to route to the provider network.

11.6. CREATING ADDITIONAL BRIDGE MAPPINGS

Floating IP networks can use any bridge, not just br-ex, provided that you map the additional bridge
during deployment.

For example, to map a new bridge called br-floating to the floating physical network, include the
NeutronBridgeMappings parameter in an environment file:

parameter_defaults:
 NeutronBridgeMappings: "datacentre:br-ex,floating:br-floating"

With this method, you can create separate external networks after creating the overcloud. For example,
to create a floating IP network that maps to the floating physical network, run the following commands:

$ source ~/overcloudrc
(overcloud) $ openstack network create public --external --provider-physical-network floating --
provider-network-type vlan --provider-segment 105
(overcloud) $ openstack subnet create public --network public --dhcp --allocation-pool
start=10.1.2.51,end=10.1.2.250 --gateway 10.1.2.1 --subnet-range 10.1.2.0/24

11.7. VALIDATING THE OVERCLOUD

The overcloud uses the OpenStack Integration Test Suite (tempest) tool set to conduct a series of
integration tests. This section contains information about preparations for running the integration tests.
For full instructions about how to use the OpenStack Integration Test Suite, see the OpenStack
Integration Test Suite Guide.

The Integration Test Suite requires a few post-installation steps to ensure successful tests.

Procedure

1. If you run this test from the undercloud, ensure that the undercloud host has access to the
Internal API network on the overcloud. For example, add a temporary VLAN on the undercloud
host to access the Internal API network (ID: 201) using the 172.16.0.201/24 address:

$ source ~/stackrc
(undercloud) $ sudo ovs-vsctl add-port br-ctlplane vlan201 tag=201 -- set interface vlan201
type=internal
(undercloud) $ sudo ip l set dev vlan201 up; sudo ip addr add 172.16.0.201/24 dev vlan201

2. Run the integration tests as described in the OpenStack Integration Test Suite Guide .

3. After completing the validation, remove any temporary connections to the overcloud Internal

Red Hat OpenStack Platform 16.1 Director Installation and Usage

156

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/openstack_integration_test_suite_guide/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/openstack_integration_test_suite_guide/

3. After completing the validation, remove any temporary connections to the overcloud Internal
API. In this example, use the following commands to remove the previously created VLAN on
the undercloud:

$ source ~/stackrc
(undercloud) $ sudo ovs-vsctl del-port vlan201

11.8. PROTECTING THE OVERCLOUD FROM REMOVAL

Set a custom policy for heat to protect your overcloud from being deleted.

Procedure

1. Create an environment file called prevent-stack-delete.yaml.

2. Set the HeatApiPolicies parameter:

parameter_defaults:
 HeatApiPolicies:
 heat-deny-action:
 key: 'actions:action'
 value: 'rule:deny_everybody'
 heat-protect-overcloud:
 key: 'stacks:delete'
 value: 'rule:deny_everybody'

IMPORTANT

The heat-deny-action is a default policy that you must include in your undercloud
installation.

3. Add the prevent-stack-delete.yaml environment file to the custom_env_files parameter in
the undercloud.conf file:

custom_env_files = prevent-stack-delete.yaml

4. Run the undercloud installation command to refresh the configuration:

$ openstack undercloud install

This environment file prevents you from deleting any stacks in the overcloud, which means you cannot
perform the following functions:

Delete the overcloud

Remove individual Compute nor Ceph Storage nodes

Replace Controller nodes

To enable stack deletion, remove the prevent-stack-delete.yaml file from the custom_env_files
parameter and run the openstack undercloud install command.

CHAPTER 11. PERFORMING OVERCLOUD POST-INSTALLATION TASKS

157

CHAPTER 12. PERFORMING BASIC OVERCLOUD
ADMINISTRATION TASKS

This chapter contains information about basic tasks you might need to perform during the lifecycle of
your overcloud.

12.1. ACCESSING OVERCLOUD NODES THROUGH SSH

You can access each overcloud node through the SSH protocol.

Each overcloud node contains a heat-admin user.

The stack user on the undercloud has key-based SSH access to the heat-admin user on each
overcloud node.

All overcloud nodes have a short hostname that the undercloud resolves to an IP address on the
control plane network. Each short hostname uses a .ctlplane suffix. For example, the short
name for overcloud-controller-0 is overcloud-controller-0.ctlplane

Prerequisites

A deployed overcloud with a working control plane network.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the overcloudrc file:

$ source ~/stackrc

3. Find the name of the node that you want to access:

(undercloud) $ openstack server list

4. Connect to the node as the heat-admin user and use the short hostname of the node:

(undercloud) $ ssh heat-admin@overcloud-controller-0.ctlplane

12.2. MANAGING CONTAINERIZED SERVICES

Red Hat OpenStack Platform (RHOSP) runs services in containers on the undercloud and overcloud
nodes. In certain situations, you might need to control the individual services on a host. This section
contains information about some common commands you can run on a node to manage containerized
services.

Listing containers and images

To list running containers, run the following command:

$ sudo podman ps

To include stopped or failed containers in the command output, add the --all option to the command:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

158

$ sudo podman ps --all

To list container images, run the following command:

$ sudo podman images

Inspecting container properties

To view the properties of a container or container images, use the podman inspect command. For
example, to inspect the keystone container, run the following command:

$ sudo podman inspect keystone

Managing containers with Systemd services

Previous versions of OpenStack Platform managed containers with Docker and its daemon. In
OpenStack Platform 16, the Systemd services interface manages the lifecycle of the containers. Each
container is a service and you run Systemd commands to perform specific operations for each container.

NOTE

It is not recommended to use the Podman CLI to stop, start, and restart containers
because Systemd applies a restart policy. Use Systemd service commands instead.

To check a container status, run the systemctl status command:

$ sudo systemctl status tripleo_keystone
● tripleo_keystone.service - keystone container
 Loaded: loaded (/etc/systemd/system/tripleo_keystone.service; enabled; vendor preset: disabled)
 Active: active (running) since Fri 2019-02-15 23:53:18 UTC; 2 days ago
 Main PID: 29012 (podman)
 CGroup: /system.slice/tripleo_keystone.service
 └─29012 /usr/bin/podman start -a keystone

To stop a container, run the systemctl stop command:

$ sudo systemctl stop tripleo_keystone

To start a container, run the systemctl start command:

$ sudo systemctl start tripleo_keystone

To restart a container, run the systemctl restart command:

$ sudo systemctl restart tripleo_keystone

Because no daemon monitors the containers status, Systemd automatically restarts most containers in
these situations:

Clean exit code or signal, such as running podman stop command.

Unclean exit code, such as the podman container crashing after a start.

CHAPTER 12. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS

159

Unclean signals.

Timeout if the container takes more than 1m 30s to start.

For more information about Systemd services, see the systemd.service documentation.

NOTE

Any changes to the service configuration files within the container revert after restarting
the container. This is because the container regenerates the service configuration based
on files on the local file system of the node in /var/lib/config-data/puppet-generated/.
For example, if you edit /etc/keystone/keystone.conf within the keystone container and
restart the container, the container regenerates the configuration using /var/lib/config-
data/puppet-generated/keystone/etc/keystone/keystone.conf on the local file system
of the node, which overwrites any the changes that were made within the container
before the restart.

Monitoring podman containers with Systemd timers

The Systemd timers interface manages container health checks. Each container has a timer that runs a
service unit that executes health check scripts.

To list all OpenStack Platform containers timers, run the systemctl list-timers command and limit the
output to lines containing tripleo:

$ sudo systemctl list-timers | grep tripleo
Mon 2019-02-18 20:18:30 UTC 1s left Mon 2019-02-18 20:17:26 UTC 1min 2s ago
tripleo_nova_metadata_healthcheck.timer tripleo_nova_metadata_healthcheck.service
Mon 2019-02-18 20:18:33 UTC 4s left Mon 2019-02-18 20:17:03 UTC 1min 25s ago
tripleo_mistral_engine_healthcheck.timer tripleo_mistral_engine_healthcheck.service
Mon 2019-02-18 20:18:34 UTC 5s left Mon 2019-02-18 20:17:23 UTC 1min 5s ago
tripleo_keystone_healthcheck.timer tripleo_keystone_healthcheck.service
Mon 2019-02-18 20:18:35 UTC 6s left Mon 2019-02-18 20:17:13 UTC 1min 15s ago
tripleo_memcached_healthcheck.timer tripleo_memcached_healthcheck.service
(...)

To check the status of a specific container timer, run the systemctl status command for the
healthcheck service:

$ sudo systemctl status tripleo_keystone_healthcheck.service
● tripleo_keystone_healthcheck.service - keystone healthcheck
 Loaded: loaded (/etc/systemd/system/tripleo_keystone_healthcheck.service; disabled; vendor
preset: disabled)
 Active: inactive (dead) since Mon 2019-02-18 20:22:46 UTC; 22s ago
 Process: 115581 ExecStart=/usr/bin/podman exec keystone /openstack/healthcheck (code=exited,
status=0/SUCCESS)
 Main PID: 115581 (code=exited, status=0/SUCCESS)

Feb 18 20:22:46 undercloud.localdomain systemd[1]: Starting keystone healthcheck...
Feb 18 20:22:46 undercloud.localdomain podman[115581]: {"versions": {"values": [{"status": "stable",
"updated": "2019-01-22T00:00:00Z", "..."}]}]}}
Feb 18 20:22:46 undercloud.localdomain podman[115581]: 300 192.168.24.1:35357 0.012 seconds
Feb 18 20:22:46 undercloud.localdomain systemd[1]: Started keystone healthcheck.

To stop, start, restart, and show the status of a container timer, run the relevant systemctl command

Red Hat OpenStack Platform 16.1 Director Installation and Usage

160

https://www.freedesktop.org/software/systemd/man/systemd.service.html

To stop, start, restart, and show the status of a container timer, run the relevant systemctl command
against the .timer Systemd resource. For example, to check the status of the
tripleo_keystone_healthcheck.timer resource, run the following command:

$ sudo systemctl status tripleo_keystone_healthcheck.timer
● tripleo_keystone_healthcheck.timer - keystone container healthcheck
 Loaded: loaded (/etc/systemd/system/tripleo_keystone_healthcheck.timer; enabled; vendor preset:
disabled)
 Active: active (waiting) since Fri 2019-02-15 23:53:18 UTC; 2 days ago

If the healthcheck service is disabled but the timer for that service is present and enabled, it means that
the check is currently timed out, but will be run according to timer. You can also start the check manually.

NOTE

The podman ps command does not show the container health status.

Checking container logs

OpenStack Platform 16 introduces a new logging directory /var/log/containers/stdout that contains the
standard output (stdout) all of the containers, and standard errors (stderr) consolidated in one single
file for each container.

Paunch and the container-puppet.py script configure podman containers to push their outputs to the
/var/log/containers/stdout directory, which creates a collection of all logs, even for the deleted
containers, such as container-puppet-* containers.

The host also applies log rotation to this directory, which prevents huge files and disk space issues.

In case a container is replaced, the new container outputs to the same log file, because podman uses
the container name instead of container ID.

You can also check the logs for a containerized service with the podman logs command. For example,
to view the logs for the keystone container, run the following command:

$ sudo podman logs keystone

Accessing containers

To enter the shell for a containerized service, use the podman exec command to launch /bin/bash. For
example, to enter the shell for the keystone container, run the following command:

$ sudo podman exec -it keystone /bin/bash

To enter the shell for the keystone container as the root user, run the following command:

$ sudo podman exec --user 0 -it <NAME OR ID> /bin/bash

To exit the container, run the following command:

exit

12.3. MODIFYING THE OVERCLOUD ENVIRONMENT

CHAPTER 12. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS

161

You can modify the overcloud to add additional features or alter existing operations. To modify the
overcloud, make modifications to your custom environment files and heat templates, then rerun the
openstack overcloud deploy command from your initial overcloud creation. For example, if you created
an overcloud using Section 7.14, “Deployment command”, rerun the following command:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates \
 -e ~/templates/node-info.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e ~/templates/network-environment.yaml \
 -e ~/templates/storage-environment.yaml \
 --ntp-server pool.ntp.org

Director checks the overcloud stack in heat, and then updates each item in the stack with the
environment files and heat templates. Director does not recreate the overcloud, but rather changes the
existing overcloud.

IMPORTANT

Removing parameters from custom environment files does not revert the parameter
value to the default configuration. You must identify the default value from the core heat
template collection in /usr/share/openstack-tripleo-heat-templates and set the value in
your custom environment file manually.

If you want to include a new environment file, add it to the openstack overcloud deploy command with
the`-e` option. For example:

$ source ~/stackrc
(undercloud) $ openstack overcloud deploy --templates \
 -e ~/templates/new-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e ~/templates/network-environment.yaml \
 -e ~/templates/storage-environment.yaml \
 -e ~/templates/node-info.yaml \
 --ntp-server pool.ntp.org

This command includes the new parameters and resources from the environment file into the stack.

IMPORTANT

It is not advisable to make manual modifications to the overcloud configuration because
director might overwrite these modifications later.

12.4. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD

You can migrate virtual machines from an existing OpenStack environment to your Red Hat OpenStack
Platform (RHOSP) environment.

Procedure

1. On the existing OpenStack environment, create a new image by taking a snapshot of a running
server and download the image:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

162

$ openstack server image create instance_name --name image_name
$ openstack image save image_name --file exported_vm.qcow2

2. Copy the exported image to the undercloud node:

$ scp exported_vm.qcow2 stack@192.168.0.2:~/.

3. Log in to the undercloud as the stack user.

4. Source the overcloudrc file:

$ source ~/overcloudrc

5. Upload the exported image into the overcloud:

(overcloud) $ openstack image create imported_image --file exported_vm.qcow2 --disk-
format qcow2 --container-format bare

6. Launch a new instance:

(overcloud) $ openstack server create imported_instance --key-name default --flavor
m1.demo --image imported_image --nic net-id=net_id

IMPORTANT

These commands copy each virtual machine disk from the existing OpenStack
environment to the new Red Hat OpenStack Platform. QCOW snapshots lose their
original layering system.

This process migrates all instances from a Compute node. You can now perform maintenance on the
node without any instance downtime. To return the Compute node to an enabled state, run the
following command:

$ source ~/overcloudrc
(overcloud) $ openstack compute service set [hostname] nova-compute --enable

12.5. RUNNING THE DYNAMIC INVENTORY SCRIPT

Director can run Ansible-based automation in your Red Hat OpenStack Platform (RHOSP) environment.
Director uses the tripleo-ansible-inventory command to generate a dynamic inventory of nodes in your
environment.

Procedure

1. To view a dynamic inventory of nodes, run the tripleo-ansible-inventory command after
sourcing stackrc:

$ source ~/stackrc
(undercloud) $ tripleo-ansible-inventory --list

Use the --list option to return details about all hosts. This command outputs the dynamic

CHAPTER 12. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS

163

Use the --list option to return details about all hosts. This command outputs the dynamic
inventory in a JSON format:

{"overcloud": {"children": ["controller", "compute"], "vars": {"ansible_ssh_user": "heat-admin"}},
"controller": ["192.168.24.2"], "undercloud": {"hosts": ["localhost"], "vars":
{"overcloud_horizon_url": "http://192.168.24.4:80/dashboard", "overcloud_admin_password":
"abcdefghijklm12345678", "ansible_connection": "local"}}, "compute": ["192.168.24.3"]}

2. To execute Ansible playbooks on your environment, run the ansible command and include the
full path of the dynamic inventory tool using the -i option. For example:

(undercloud) $ ansible [HOSTS] -i /bin/tripleo-ansible-inventory [OTHER OPTIONS]

Replace [HOSTS] with the type of hosts that you want to use to use:

controller for all Controller nodes

compute for all Compute nodes

overcloud for all overcloud child nodes. For example, controller and compute nodes

undercloud for the undercloud

"*" for all nodes

Replace [OTHER OPTIONS] with additional Ansible options.

Use the --ssh-extra-args='-o StrictHostKeyChecking=no' option to bypass
confirmation on host key checking.

Use the -u [USER] option to change the SSH user that executes the Ansible
automation. The default SSH user for the overcloud is automatically defined using the
ansible_ssh_user parameter in the dynamic inventory. The -u option overrides this
parameter.

Use the -m [MODULE] option to use a specific Ansible module. The default is
command, which executes Linux commands.

Use the -a [MODULE_ARGS] option to define arguments for the chosen module.

IMPORTANT

Custom Ansible automation on the overcloud is not part of the standard overcloud stack.
Subsequent execution of the openstack overcloud deploy command might override
Ansible-based configuration for OpenStack Platform services on overcloud nodes.

12.6. REMOVING THE OVERCLOUD

To remove the overcloud, run the openstack overcloud delete command.

Procedure

1. Delete an existing overcloud:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

164

$ source ~/stackrc
(undercloud) $ openstack overcloud delete overcloud

2. Confirm that the overcloud is no longer present in the output of the openstack stack list
command:

(undercloud) $ openstack stack list

Deletion takes a few minutes.

3. When the deletion completes, follow the standard steps in the deployment scenarios to recreate
your overcloud.

CHAPTER 12. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS

165

CHAPTER 13. CONFIGURING THE OVERCLOUD WITH ANSIBLE
Ansible is the main method to apply the overcloud configuration. This chapter provides information
about how to interact with the overcloud Ansible configuration.

Although director generates the Ansible playbooks automatically, it is a good idea to familiarize yourself
with Ansible syntax. For more information about using Ansible, see https://docs.ansible.com/.

NOTE

Ansible also uses the concept of roles, which are different to OpenStack Platform
director roles. Ansible roles form reusable components of playbooks, whereas director
roles contain mappings of OpenStack services to node types.

13.1. ANSIBLE-BASED OVERCLOUD CONFIGURATION (CONFIG-
DOWNLOAD)

The config-download feature is the method that director uses to configure the overcloud. Director
uses config-download in conjunction with OpenStack Orchestration (heat) and OpenStack Workflow
Service (mistral) to generate the software configuration and apply the configuration to each overcloud
node. Although heat creates all deployment data from SoftwareDeployment resources to perform the
overcloud installation and configuration, heat does not apply any of the configuration. Heat only
provides the configuration data through the heat API. When director creates the stack, a mistral
workflow queries the heat API to obtain the configuration data, generate a set of Ansible playbooks, and
applies the Ansible playbooks to the overcloud.

As a result, when you run the openstack overcloud deploy command, the following process occurs:

Director creates a new deployment plan based on openstack-tripleo-heat-templates and
includes any environment files and parameters to customize the plan.

Director uses heat to interpret the deployment plan and create the overcloud stack and all
descendant resources. This includes provisioning nodes with the OpenStack Bare Metal service
(ironic).

Heat also creates the software configuration from the deployment plan. Director compiles the
Ansible playbooks from this software configuration.

Director generates a temporary user (tripleo-admin) on the overcloud nodes specifically for
Ansible SSH access.

Director downloads the heat software configuration and generates a set of Ansible playbooks
using heat outputs.

Director applies the Ansible playbooks to the overcloud nodes using ansible-playbook.

13.2. CONFIG-DOWNLOAD WORKING DIRECTORY

Director generates a set of Ansible playbooks for the config-download process. These playbooks are
stored in a working directory in the /var/lib/mistral/. This directory is named after the name of the
overcloud, which is overcloud by default.

The working directory contains a set of sub-directories named after each overcloud role. These sub-
directories contain all tasks relevant to the configuration of the nodes in the overcloud role. These sub-
directories also contain additional sub-directories named after each specific node. These sub-

Red Hat OpenStack Platform 16.1 Director Installation and Usage

166

https://docs.ansible.com/

directories contain node-specific variables to apply to the overcloud role tasks. As a result, the
overcloud roles within the working directory use the following structure:

─ /var/lib/mistral/overcloud
 |
 ├── Controller
 │ ├── overcloud-controller-0
 | ├── overcloud-controller-1
 │ └── overcloud-controller-2
 ├── Compute
 │ ├── overcloud-compute-0
 | ├── overcloud-compute-1
 │ └── overcloud-compute-2
 ...

Each working directory is a local Git repository that records changes after each deployment operation.
Use the local Git repositories to track configuration changes between each deployment.

13.3. ENABLING ACCESS TO CONFIG-DOWNLOAD WORKING
DIRECTORIES

The mistral user in the OpenStack Workflow service (mistral) containers own all files in the
/var/lib/mistral/ working directories. You can grant the stack user on the undercloud access to all files in
this directory. This helps with performing certain operations within the directory.

Procedure

1. Use the setfacl command to grant the stack user on the undercloud access to the files in the
/var/lib/mistral directory:

$ sudo setfacl -R -m u:stack:rwx /var/lib/mistral
$ sudo chmod -R og-rwx /var/lib/mistral/.ssh

This command retains mistral user access to the directory.

13.4. CHECKING CONFIG-DOWNLOAD LOG

During the config-download process, Ansible creates a log file on the undercloud in the config-
download working directory.

Procedure

1. View the log with the less command within the config-download working directory. The
following example uses the overcloud working directory:

$ less /var/lib/mistral/overcloud/ansible.log

13.5. PERFORMING GIT OPERATIONS ON THE WORKING DIRECTORY

The config-download working directory is a local Git repository. Every time a deployment operation
runs, director adds a Git commit to the working directory with the relevant changes. You can perform
Git operations to view configuration for the deployment at different stages and compare the

CHAPTER 13. CONFIGURING THE OVERCLOUD WITH ANSIBLE

167

configuration with different deployments.

Be aware of the limitations of the working directory. For example, if you use Git to revert to a previous
version of the config-download working directory, this action affects only the configuration in the
working directory. It does not affect the following configurations:

The overcloud data schema: Applying a previous version of the working directory software
configuration does not undo data migration and schema changes.

The hardware layout of the overcloud: Reverting to previous software configuration does not
undo changes related to overcloud hardware, such as scaling up or down.

The heat stack: Reverting to earlier revisions of the working directory has no effect on the
configuration stored in the heat stack. The heat stack creates a new version of the software
configuration that applies to the overcloud. To make permanent changes to the overcloud,
modify the environment files applied to the overcloud stack before you rerun the openstack
overcloud deploy command.

Complete the following steps to compare different commits of the config-download working directory.

Procedure

1. Change to the config-download working directory for your overcloud. In this example, the
working directory is for the overcloud named overcloud:

$ cd /var/lib/mistral/overcloud

2. Run the git log command to list the commits in your working directory. You can also format the
log output to show the date:

$ git log --format=format:"%h%x09%cd%x09"
a7e9063 Mon Oct 8 21:17:52 2018 +1000
dfb9d12 Fri Oct 5 20:23:44 2018 +1000
d0a910b Wed Oct 3 19:30:16 2018 +1000
...

By default, the most recent commit appears first.

3. Run the git diff command against two commit hashes to see all changes between the
deployments:

$ git diff a7e9063 dfb9d12

13.6. DEPLOYMENT METHODS THAT USE CONFIG-DOWNLOAD

There are four main methods that use config-download in the context of an overcloud deployment:

Standard deployment

Run the openstack overcloud deploy command to automatically run the configuration stage after
the provisioning stage. This is the default method when you run the openstack overcloud deploy
command.

Separate provisioning and configuration

Run the openstack overcloud deploy command with specific options to separate the provisioning
and configuration stages.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

168

Run the ansible-playbook-command.sh script after a deployment

Run the openstack overcloud deploy command with combined or separate provisioning and
configuration stages, then run the ansible-playbook-command.sh script supplied in the config-
download working directory to re-apply the configuration stage.

Provision nodes, manually create config-download, and run Ansible

Run the openstack overcloud deploy command with a specific option to provision nodes, then run
the ansible-playbook command with the deploy_steps_playbook.yaml playbook.

13.7. RUNNING CONFIG-DOWNLOAD ON A STANDARD DEPLOYMENT

The default method for executing config-download is to run the openstack overcloud deploy
command. This method suits most environments.

Prerequisites

A successful undercloud installation.

Overcloud nodes ready for deployment.

Heat environment files that are relevant to your specific overcloud customization.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Run the deployment command. Include any environment files that you require for your
overcloud:

$ openstack overcloud deploy \
 --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...

4. Wait until the deployment process completes.

During the deployment process, director generates the config-download files in a /var/lib/mistral/
working directory. After the deployment process finishes, view the Ansible playbooks in the working
directory to see the tasks director executed to configure the overcloud.

13.8. RUNNING CONFIG-DOWNLOAD WITH SEPARATE PROVISIONING
AND CONFIGURATION

The openstack overcloud deploy command runs the heat-based provisioning process and then the
config-download configuration process. You can also run the deployment command to execute each
process individually. Use this method to provision your overcloud nodes as a distinct process so that you
can perform any manual pre-configuration tasks on the nodes before you run the overcloud
configuration process.

CHAPTER 13. CONFIGURING THE OVERCLOUD WITH ANSIBLE

169

Prerequisites

A successful undercloud installation.

Overcloud nodes ready for deployment.

Heat environment files that are relevant to your specific overcloud customization.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Run the deployment command with the --stack-only option. Include any environment files you
require for your overcloud:

$ openstack overcloud deploy \
 --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...
 --stack-only

4. Wait until the provisioning process completes.

5. Enable SSH access from the undercloud to the overcloud for the tripleo-admin user. The
config-download process uses the tripleo-admin user to perform the Ansible-based
configuration:

$ openstack overcloud admin authorize

6. Perform any manual pre-configuration tasks on nodes. If you use Ansible for configuration, use
the tripleo-admin user to access the nodes.

7. Run the deployment command with the --config-download-only option. Include any
environment files required for your overcloud:

$ openstack overcloud deploy \
 --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...
 --config-download-only

8. Wait until the configuration process completes.

During the configuration stage, director generates the config-download files in a /var/lib/mistral/
working directory. After the deployment process finishes, view the Ansible playbooks in the working
directory to see the tasks director executed to configure the overcloud.

13.9. RUNNING CONFIG-DOWNLOAD WITH THE ANSIBLE-

Red Hat OpenStack Platform 16.1 Director Installation and Usage

170

13.9. RUNNING CONFIG-DOWNLOAD WITH THE ANSIBLE-
PLAYBOOK-COMMAND.SH SCRIPT

When you deploy the overcloud, either with the standard method or a separate provisioning and
configuration process, director generates a working directory in /var/lib/mistral/. This directory contains
the playbooks and scripts necessary to run the configuration process again.

Prerequisites

An overcloud deployed with the one of the following methods:

Standard method that combines provisioning and configuration process

Separate provisioning and configuration processes

Procedure

1. Log in to the undercloud host as the stack user.

2. Change to the directory of the Ansible playbook:

$ cd /var/lib/mistral/overcloud/

3. Change the owner of /var/lib/mistral/.ssh directory to the stack user.

$ sudo chown stack. -R /var/lib/mistral/.ssh/

4. Run the ansible-playbook-command.sh command to run the overcloud configuration:

$ sudo ./ansible-playbook-command.sh

5. Change the owner of /var/lib/mistral/.ssh directory to the mistral user. This is required to
ensure that the ansible-playbook command running inside the mistral_executor container is
successful.

$ sudo chown 42430:42430 -R /var/lib/mistral/.ssh/

6. Run the script again as the mistral user.
You can pass additional Ansible arguments to this script, which are then passed unchanged to
the ansible-playbook command. This means that you can use other Ansible features, such as
check mode (--check), limiting hosts (--limit), or overriding variables (-e). For example:

$./ansible-playbook-command.sh --limit Controller

CHAPTER 13. CONFIGURING THE OVERCLOUD WITH ANSIBLE

171

WARNING

When --limit is used to deploy at scale, only hosts included in the execution
are added to the SSH known_hosts file across the nodes. Therefore, some
operations, such as live migration, may not work across nodes that are not in
the known_hosts file.

7. Wait until the configuration process completes.

Additional information

The working directory contains a playbook called deploy_steps_playbook.yaml, which
manages the overcloud configuration tasks. To view this playbook, run the following command:

$ less deploy_steps_playbook.yaml

The playbook uses various task files contained in the working directory. Some task files are
common to all OpenStack Platform roles and some are specific to certain OpenStack Platform
roles and servers.

The working directory also contains sub-directories that correspond to each role that you define
in your overcloud roles_data file. For example:

$ ls Controller/

Each OpenStack Platform role directory also contains sub-directories for individual servers of
that role type. The directories use the composable role hostname format:

$ ls Controller/overcloud-controller-0

The Ansible tasks in deploy_steps_playbook.yaml are tagged. To see the full list of tags, use
the CLI option --list-tags with ansible-playbook:

$ ansible-playbook -i tripleo-ansible-inventory.yaml --list-tags deploy_steps_playbook.yaml

Then apply tagged configuration using the --tags, --skip-tags, or --start-at-task with the
ansible-playbook-command.sh script:

$./ansible-playbook-command.sh --tags overcloud

1. When you run the config-download playbooks against the overcloud, you might receive a
message regarding the SSH fingerprint for each host. To avoid these messages, include --
ssh-common-args="-o StrictHostKeyChecking=no" when you run the ansible-
playbook-command.sh script:

$./ansible-playbook-command.sh --tags overcloud --ssh-common-args="-o
StrictHostKeyChecking=no"

13.10. RUNNING CONFIG-DOWNLOAD WITH MANUALLY CREATED



Red Hat OpenStack Platform 16.1 Director Installation and Usage

172

13.10. RUNNING CONFIG-DOWNLOAD WITH MANUALLY CREATED
PLAYBOOKS

You can create your own config-download files outside of the standard workflow. For example, you can
run the openstack overcloud deploy command with the --stack-only option to provision the nodes,
and then manually apply the Ansible configuration separately.

Prerequisites

A successful undercloud installation.

Overcloud nodes ready for deployment.

Heat environment files that are relevant to your specific overcloud customization.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Run the deployment command with the --stack-only option. Include any environment files
required for your overcloud:

$ openstack overcloud deploy \
 --templates \
 -e environment-file1.yaml \
 -e environment-file2.yaml \
 ...
 --stack-only

4. Wait until the provisioning process completes.

5. Enable SSH access from the undercloud to the overcloud for the tripleo-admin user. The
config-download process uses the tripleo-admin user to perform the Ansible-based
configuration:

$ openstack overcloud admin authorize

6. Generate the config-download files:

$ openstack overcloud config download \
 --name overcloud \
 --config-dir ~/config-download

--name is the name of the overcloud that you want to use for the Ansible file export.

--config-dir is the location where you want to save the config-download files.

7. Change to the directory that contains your config-download files:

$ cd ~/config-download

CHAPTER 13. CONFIGURING THE OVERCLOUD WITH ANSIBLE

173

8. Generate a static inventory file:

$ tripleo-ansible-inventory \
 --stack <overcloud> \
 --ansible_ssh_user heat-admin \
 --static-yaml-inventory inventory.yaml

Replace <overcloud> with the name of your overcloud.

9. Use the config-download files and the static inventory file to perform a configuration. To
execute the deployment playbook, run the ansible-playbook command:

$ ansible-playbook \
 -i inventory.yaml \
 -e gather_facts=true \
 -e @global_vars.yaml \
 --private-key ~/.ssh/id_rsa \
 --become \
 ~/config-download/deploy_steps_playbook.yaml

10. Wait until the configuration process completes.

11. To generate an overcloudrc file manually from this configuration, run the following command:

$ openstack action execution run \
 --save-result \
 --run-sync \
 tripleo.deployment.overcloudrc \
 '{"container":"overcloud"}' \
 | jq -r '.["result"]["overcloudrc.v3"]' > overcloudrc.v3

12. Manually set the deployment status to success:

$ openstack workflow execution create
tripleo.deployment.v1.set_deployment_status_success '{"plan": "<OVERCLOUD>"}'

Replace <OVERCLOUD> with the name of your overcloud.

Additional information

The config-download directory contains a playbook called deploy_steps_playbook.yaml,
which runs the overcloud configuration. To view this playbook, run the following command:

$ less deploy_steps_playbook.yaml

The playbook uses various task files contained in the working directory. Some task files are
common to all OpenStack Platform roles and some are specific to certain OpenStack Platform
roles and servers.

The config-download directory also contains sub-directories that correspond to each role that
you define in your overcloud roles_data file. For example:

$ ls Controller/

Each OpenStack Platform role directory also contains sub-directories for individual servers of

Red Hat OpenStack Platform 16.1 Director Installation and Usage

174

Each OpenStack Platform role directory also contains sub-directories for individual servers of
that role type. The directories use the composable role hostname format:

$ ls Controller/overcloud-controller-0

The Ansible tasks in deploy_steps_playbook.yaml are tagged. To see the full list of tags, use
the CLI option --list-tags with ansible-playbook:

$ ansible-playbook -i tripleo-ansible-inventory.yaml --list-tags deploy_steps_playbook.yaml

Then apply tagged configuration using the --tags, --skip-tags, or --start-at-task with the
ansible-playbook-command.sh script:

$ ansible-playbook \
 -i inventory.yaml \
 -e gather_facts=true \
 -e @global_vars.yaml \
 --private-key ~/.ssh/id_rsa \
 --become \
 --tags overcloud \
 ~/config-download/deploy_steps_playbook.yaml

1. When you run the config-download playbooks against the overcloud, you might receive a
message regarding the SSH fingerprint for each host. To avoid these messages, include --
ssh-common-args="-o StrictHostKeyChecking=no" to your ansible-playbook
command:

$ ansible-playbook \
 -i inventory.yaml \
 -e gather_facts=true \
 -e @global_vars.yaml \
 --private-key ~/.ssh/id_rsa \
 --ssh-common-args="-o StrictHostKeyChecking=no" \
 --become \
 --tags overcloud \
 ~/config-download/deploy_steps_playbook.yaml

13.11. LIMITATIONS OF CONFIG-DOWNLOAD

The config-download feature has some limitations:

When you use ansible-playbook CLI arguments such as --tags, --skip-tags, or --start-at-task, do
not run or apply deployment configuration out of order. These CLI arguments are a convenient
way to rerun previously failed tasks or to iterate over an initial deployment. However, to
guarantee a consistent deployment, you must run all tasks from deploy_steps_playbook.yaml
in order.

You can not use the --start-at-task arguments for certain tasks that use a variable in the task
name. For example, the --start-at-task arguments does not work for the following Ansible task:

- name: Run puppet host configuration for step {{ step }}

If your overcloud deployment includes a director-deployed Ceph Storage cluster, you cannot

CHAPTER 13. CONFIGURING THE OVERCLOUD WITH ANSIBLE

175

If your overcloud deployment includes a director-deployed Ceph Storage cluster, you cannot
skip step1 tasks when you use the --check option unless you also skip external_deploy_steps
tasks.

You can set the number of parallel Ansible tasks with the --forks option. However, the
performance of config-download operations degrades after 25 parallel tasks. For this reason,
do not exceed 25 with the --forks option.

13.12. CONFIG-DOWNLOAD TOP LEVEL FILES

The following file are important top level files within a config-download working directory.

Ansible configuration and execution

The following files are specific to configuring and executing Ansible within the config-download
working directory.

ansible.cfg

Configuration file used when running ansible-playbook.

ansible.log

Log file from the last run of ansible-playbook.

ansible-errors.json

JSON structured file that contains any deployment errors.

ansible-playbook-command.sh

Executable script to rerun the ansible-playbook command from the last deployment operation.

ssh_private_key

Private SSH key that Ansible uses to access the overcloud nodes.

tripleo-ansible-inventory.yaml

Ansible inventory file that contains hosts and variables for all the overcloud nodes.

overcloud-config.tar.gz

Archive of the working directory.

Playbooks

The following files are playbooks within the config-download working directory.

deploy_steps_playbook.yaml

Main deployment steps. This playbook performs the main configuration operations for your
overcloud.

pre_upgrade_rolling_steps_playbook.yaml

Pre upgrade steps for major upgrade

upgrade_steps_playbook.yaml

Major upgrade steps.

post_upgrade_steps_playbook.yaml

Post upgrade steps for major upgrade.

update_steps_playbook.yaml

Minor update steps.

fast_forward_upgrade_playbook.yaml

Fast forward upgrade tasks. Use this playbook only when you want to upgrade from one long-life

Red Hat OpenStack Platform 16.1 Director Installation and Usage

176

Fast forward upgrade tasks. Use this playbook only when you want to upgrade from one long-life
version of Red Hat OpenStack Platform to the next.

13.13. CONFIG-DOWNLOAD TAGS

The playbooks use tagged tasks to control the tasks that they apply to the overcloud. Use tags with the
ansible-playbook CLI arguments --tags or --skip-tags to control which tasks to execute. The following
list contains information about the tags that are enabled by default:

facts

Fact gathering operations.

common_roles

Ansible roles common to all nodes.

overcloud

All plays for overcloud deployment.

pre_deploy_steps

Deployments that happen before the deploy_steps operations.

host_prep_steps

Host preparation steps.

deploy_steps

Deployment steps.

post_deploy_steps

Steps that happen after the deploy_steps operations.

external

All external deployment tasks.

external_deploy_steps

External deployment tasks that run on the undercloud only.

13.14. CONFIG-DOWNLOAD DEPLOYMENT STEPS

The deploy_steps_playbook.yaml playbook configures the overcloud. This playbook applies all
software configuration that is necessary to deploy a full overcloud based on the overcloud deployment
plan.

This section contains a summary of the different Ansible plays used within this playbook. The play names
in this section are the same names that are used within the playbook and that are displayed in the
ansible-playbook output. This section also contains information about the Ansible tags that are set on
each play.

Gather facts from undercloud

Fact gathering for the undercloud node.
Tags: facts

Gather facts from overcloud

Fact gathering for the overcloud nodes.
Tags: facts

Load global variables

CHAPTER 13. CONFIGURING THE OVERCLOUD WITH ANSIBLE

177

Loads all variables from global_vars.yaml.
Tags: always

Common roles for TripleO servers

Applies common Ansible roles to all overcloud nodes, including tripleo-bootstrap for installing
bootstrap packages, and tripleo-ssh-known-hosts for configuring ssh known hosts.
Tags: common_roles

Overcloud deploy step tasks for step 0

Applies tasks from the deploy_steps_tasks template interface.
Tags: overcloud, deploy_steps

Server deployments

Applies server-specific heat deployments for configuration such as networking and hieradata.
Includes NetworkDeployment, <Role>Deployment, <Role>AllNodesDeployment, etc.
Tags: overcloud, pre_deploy_steps

Host prep steps

Applies tasks from the host_prep_steps template interface.
Tags: overcloud, host_prep_steps

External deployment step [1,2,3,4,5]

Applies tasks from the external_deploy_steps_tasks template interface. Ansible runs these tasks only
against the undercloud node.
Tags: external, external_deploy_steps

Overcloud deploy step tasks for [1,2,3,4,5]

Applies tasks from the deploy_steps_tasks template interface.
Tags: overcloud, deploy_steps

Overcloud common deploy step tasks [1,2,3,4,5]

Applies the common tasks performed at each step, including puppet host configuration, container-
puppet.py, and paunch (container configuration).
Tags: overcloud, deploy_steps

Server Post Deployments

Applies server specific heat deployments for configuration performed after the 5-step deployment
process.
Tags: overcloud, post_deploy_steps

External deployment Post Deploy tasks

Applies tasks from the external_post_deploy_steps_tasks template interface. Ansible runs these
tasks only against the undercloud node.
Tags: external, external_deploy_steps

Red Hat OpenStack Platform 16.1 Director Installation and Usage

178

CHAPTER 14. MANAGING CONTAINERS WITH ANSIBLE

NOTE

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

Red Hat OpenStack Platform 16.1 uses Paunch to manage containers. However, you can also use the
Ansible role tripleo-container-manage to perform management operations on your containers. If you
want to use the tripleo-container-manage role, you must first disable Paunch. With Paunch disabled,
director uses the Ansible role automatically, and you can also write custom playbooks to perform
specific container management operations:

Collect the container configuration data that heat generates. The tripleo-container-manage
role uses this data to orchestrate container deployment.

Start containers.

Stop containers.

Update containers.

Delete containers.

Run a container with a specific configuration.

Although director performs container management automatically, you might want to customize a
container configuration, or apply a hotfix to a container without redeploying the overcloud.

NOTE

This role supports only Podman container management.

Prerequisites

A successful undercloud installation. For more information, see Section 4.8, “Installing director” .

14.1. ENABLING THE TRIPLEO-CONTAINER-MANAGE ANSIBLE ROLE
ON THE UNDERCLOUD

NOTE

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

Paunch is the default container management mechanism in Red Hat OpenStack Platform 16.1. However,
you can also use the tripleo-container-manage Ansible role. If you want to use this role, you must
disable Paunch.

CHAPTER 14. MANAGING CONTAINERS WITH ANSIBLE

179

https://access.redhat.com/support/offerings/production/scope_moredetail
https://access.redhat.com/support/offerings/production/scope_moredetail

Prerequisites

A host machine with a base operating system and the python3-tripleoclient package installed.
For more information, see Chapter 3, Preparing for director installation .

Procedure

1. Log in to the undercloud host as the stack user.

2. Set the undercloud_enable_paunch parameter to false in the undercloud.conf file:

undercloud_enable_paunch: false

3. Run the openstack undercloud install command:

$ openstack undercloud install

14.2. ENABLING THE TRIPLEO-CONTAINER-MANAGE ANSIBLE ROLE
ON THE OVERCLOUD

NOTE

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

Paunch is the default container management mechanism in Red Hat OpenStack Platform 16.1. However,
you can also use the tripleo-container-manage Ansible role. If you want to use this role, you must
disable Paunch.

Prerequisites

A successful undercloud installation. For more information, see Chapter 4, Installing director on
the undercloud.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc credentials file:

$ source ~/stackrc

3. Include the /usr/share/openstack-tripleo-heat-templates/environments/disable-
paunch.yaml file in the overcloud deployment command, along with any other environment
files that are relevant for your deployment:

(undercloud) [stack@director ~]$ openstack overcloud deploy --templates \
 -e /usr/share/openstack-tripleo-heat-templates/environments/disable-paunch.yaml
 -e <other_environment_files>
 ...

Red Hat OpenStack Platform 16.1 Director Installation and Usage

180

https://access.redhat.com/support/offerings/production/scope_moredetail

14.3. PERFORMING OPERATIONS ON A SINGLE CONTAINER

NOTE

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

You can use the tripleo-container-manage role to manage all containers, or a specific container. If you
want to manage a specific container, you must identify the container deployment step and the name of
the container configuration JSON file so that you can target the specific container with a custom
Ansible playbook.

Prerequisites

A successful undercloud installation. For more information, see Chapter 4, Installing director on
the undercloud.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the overcloudrc credential file:

$ source ~/overcloudrc

3. Identify the container deployment step. You can find the container configuration for each step
in the /var/lib/tripleo-config/container-startup-config/step_{1,2,3,4,5,6} directory.

4. Identify the JSON configuration file for the container. You can find the container configuration
file in the relevant step_* directory. For example, the configuration file for the HAProxy
container in step 1 is /var/lib/tripleo-config/container-startup-config/step_1/haproxy.json.

5. Write a suitable Ansible playbook. For example, to replace the HAProxy container image, use the
following sample playbook:

- hosts: localhost
 become: true
 tasks:
 - name: Manage step_1 containers using tripleo-ansible
 block:
 - name: "Manage HAproxy container at step 1 with tripleo-ansible"
 include_role:
 name: tripleo-container-manage
 vars:
 tripleo_container_manage_systemd_order: true
 tripleo_container_manage_config_patterns: 'haproxy.json'
 tripleo_container_manage_config: "/var/lib/tripleo-config/container-startup-
config/step_1"
 tripleo_container_manage_config_id: "tripleo_step1"
 tripleo_container_manage_config_overrides:
 haproxy:
 image: registry.redhat.io/tripleomaster/<HAProxy-container>:hotfix

CHAPTER 14. MANAGING CONTAINERS WITH ANSIBLE

181

https://access.redhat.com/support/offerings/production/scope_moredetail

For more information about the variables that you can use with the tripleo-container-manage
role, see Section 14.4, “tripleo-container-manage role variables”.

6. Run the playbook:

(overcloud) [stack@director]$ ansible-playbook <custom_playbook>.yaml

If you want to execute the playbook without applying any changes, include the --check option in
the ansible-playbook command:

(overcloud) [stack@director]$ ansible-playbook <custom_playbook>.yaml --check

If you want to identify the changes that your playbook makes to your containers without
applying the changes, include the --check and --diff options in the ansible-playbook
command:

(overcloud) [stack@director]$ ansible-playbook <custom_playbook>.yaml --check --diff

14.4. TRIPLEO-CONTAINER-MANAGE ROLE VARIABLES

NOTE

This feature is available in this release as a Technology Preview , and therefore is not fully
supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see
Scope of Coverage Details.

The tripleo-container-manage Ansible role contains the following variables:

Table 14.1. Role variables

Name Default value Description

tripleo_container_manage_check_
puppet_config

false Use this variable if you want
Ansible to check Puppet container
configurations. Ansible can
identify updated container
configuration using the
configuration hash. If a container
has a new configuration from
Puppet, set this variable to true
so that Ansible can detect the
new configuration and add the
container to the list of containers
that Ansible must restart.

tripleo_container_manage_cli podman Use this variable to set the
command line interface that you
want to use to manage
containers. The tripleo-
container-manage role
supports only Podman.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

182

https://access.redhat.com/support/offerings/production/scope_moredetail

tripleo_container_manage_concur
rency

1 Use this variable to set the
number of containers that you
want to manage concurrently.

tripleo_container_manage_config /var/lib/tripleo-config/ Use this variable to set the path to
the container configuration
directory.

tripleo_container_manage_config_
id

tripleo Use this variable to set the ID of a
specific configuration step. For
example, set this value to
tripleo_step2 to manage
containers for step two of the
deployment.

tripleo_container_manage_config_
patterns

*.json Use this variable to set the bash
regular expression that identifies
configuration files in the
container configuration directory.

tripleo_container_manage_debug false Use this variable to enable or
disable debug mode. Run the
tripleo-container-manage role
in debug mode if you want to run
a container with a specific one-
time configuration, to output the
container commands that manage
the lifecycle of containers, or to
run no-op container management
operations for testing and
verification purposes.

tripleo_container_manage_health
check_disable

false Use this variable to enable or
disable healthchecks.

tripleo_container_manage_log_pa
th

/var/log/containers/stdouts Use this variable to set the stdout
log path for containers.

tripleo_container_manage_system
d_order

false Use this variable to enable or
disable systemd shutdown
ordering with Ansible.

tripleo_container_manage_system
d_teardown

true Use this variable to trigger the
cleanup of obsolete containers.

Name Default value Description

CHAPTER 14. MANAGING CONTAINERS WITH ANSIBLE

183

tripleo_container_manage_config_
overrides

{} Use this variable to override any
container configuration. This
variable takes a dictionary of
values where each key is the
container name and the
parameters that you want to
override, for example, the
container image or user. This
variable does not write custom
overrides to the JSON container
configuration files and any new
container deployments, updates,
or upgrades revert to the content
of the JSON configuration file.

tripleo_container_manage_valid_e
xit_code

[] Use this variable to check if a
container returns an exit code.
This value must be a list, for
example, [0,3].

Name Default value Description

Red Hat OpenStack Platform 16.1 Director Installation and Usage

184

CHAPTER 15. USING THE VALIDATION FRAMEWORK
Red Hat OpenStack Platform includes a validation framework that you can use to verify the
requirements and functionality of the undercloud and overcloud. The framework includes two types of
validations:

Manual Ansible-based validations, which you execute through the openstack tripleo validator
command set.

Automatic in-flight validations, which execute during the deployment process.

You must understand which validations you want to run, and skip validations that are not relevant to your
environment. For example, the pre-deployment validation includes a test for TLS-everywhere. If you do
not intend to configure your environment for TLS-everywhere, this test fails. Use the --validation
option in the openstack tripleo validator run command to refine the validation according to your
environment.

15.1. ANSIBLE-BASED VALIDATIONS

During the installation of Red Hat OpenStack Platform director, director also installs a set of playbooks
from the openstack-tripleo-validations package. Each playbook contains tests for certain system
requirements and a set of groups that define when to run the test:

no-op

Validations that run a no-op (no operation) task to verify to workflow functions correctly. These
validations run on both the undercloud and overcloud.

prep

Validations that check the hardware configuration of the undercloud node. Run these validation
before you run the openstack undercloud install command.

openshift-on-openstack

Validations that check that the environment meets the requirements to be able to deploy OpenShift
on OpenStack.

pre-introspection

Validations to run before the nodes introspection using Ironic Inspector.

pre-deployment

Validations to run before the openstack overcloud deploy command.

post-deployment

Validations to run after the overcloud deployment has finished.

pre-upgrade

Validations to validate your OpenStack deployment before an upgrade.

post-upgrade

Validations to validate your OpenStack deployment after an upgrade.

15.2. LISTING VALIDATIONS

Run the openstack tripleo validator list command to list the different types of validations available.

Procedure

CHAPTER 15. USING THE VALIDATION FRAMEWORK

185

1. Source the stackrc file.

$ source ~/stackrc

2. Run the openstack tripleo validator list command:

To list all validations, run the command without any options:

$ openstack tripleo validator list

To list validations in a group, run the command with the --group option:

$ openstack tripleo validator list --group prep

NOTE

For a full list of options, run openstack tripleo validator list --help.

15.3. RUNNING VALIDATIONS

To run a validation or validation group, use the openstack tripleo validator run command. To see a full
list of options, use the openstack tripleo validator run --help command.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Create and validate a static inventory file called inventory.yaml.

$ tripleo-ansible-inventory --static-yaml-inventory inventory.yaml
$ openstack tripleo validator run --group pre-introspection -i inventory.yaml

3. Enter the openstack tripleo validator run command:

To run a single validation, enter the command with the --validation option and the name of
the validation. For example, to check the undercloud memory requirements, enter --
validation check-ram:

$ openstack tripleo validator run --validation check-ram

If the overcloud uses a plan name that is different to the default overcloud name, set the
plan name with the --plan option:

$ openstack tripleo validator run --validation check-ram --plan myovercloud

To run multiple specific validations, use the --validation option with a comma-separated list
of the validations that you want to run. For more information about viewing the list of
available validations, see Listing validations.

To run all validations in a group, enter the command with the --group option:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

186

$ openstack tripleo validator run --group prep

To view detailed output from a specific validation, run the openstack tripleo validator
show run --full command against the UUID of the specific validation from the report:

$ openstack tripleo validator show run --full <UUID>

15.4. VIEWING VALIDATION HISTORY

Director saves the results of each validation after you run a validation or group of validations. View past
validation results with the openstack tripleo validator show history command.

Prerequisites

You have run a validation or group of validations.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. View a list of all validations:

$ openstack tripleo validator show history

To view history for a specific validation type, run the same command with the --validation
option:

$ openstack tripleo validator show history --validation ntp

3. View the log for a specific validation UUID with the openstack tripleo validator show run --full
command:

$ openstack tripleo validator show run --full 7380fed4-2ea1-44a1-ab71-aab561b44395

15.5. VALIDATION FRAMEWORK LOG FORMAT

After you run a validation or group of validations, director saves a JSON-formatted log from each
validation in the /var/logs/validations directory. You can view the file manually or use the openstack
tripleo validator show run --full command to display the log for a specific validation UUID.

Each validation log file follows a specific format:

<UUID>_<Name>_<Time>

UUID

The Ansible UUID for the validation.

Name

The Ansible name for the validation.

Time

CHAPTER 15. USING THE VALIDATION FRAMEWORK

187

The start date and time for when you ran the validation.

Each validation log contains three main parts:

plays

stats

validation_output

plays

The plays section contains information about the tasks that the director performed as part of the
validation:

play

A play is a group of tasks. Each play section contains information about that particular group of
tasks, including the start and end times, the duration, the host groups for the play, and the validation
ID and path.

tasks

The individual Ansible tasks that director runs to perform the validation. Each tasks section contains
a hosts section, which contains the action that occurred on each individual host and the results from
the execution of the actions. The tasks section also contains a task section, which contains the
duration of the task.

stats

The stats section contains a basic summary of the outcome of all tasks on each host, such as the tasks
that succeeded and failed.

validation_output

If any tasks failed or caused a warning message during a validation, the validation_output contains the
output of that failure or warning.

15.6. IN-FLIGHT VALIDATIONS

Red Hat OpenStack Platform includes in-flight validations in the templates of composable services. In-
flight validations verify the operational status of services at key steps of the overcloud deployment
process.

In-flight validations run automatically as part of the deployment process. Some in-flight validations also
use the roles from the openstack-tripleo-validations package.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

188

CHAPTER 16. SCALING OVERCLOUD NODES
If you want to add or remove nodes after the creation of the overcloud, you must update the overcloud.

WARNING

Do not use openstack server delete to remove nodes from the overcloud. Follow
the procedures in this section to remove and replace nodes correctly.

NOTE

Ensure that your bare metal nodes are not in maintenance mode before you begin scaling
out or removing an overcloud node.

Use the following table to determine support for scaling each node type:

Table 16.1. Scale support for each node type

Node type Scale up? Scale down? Notes

Controller N N You can replace
Controller nodes using
the procedures in
Chapter 17, Replacing
Controller nodes.

Compute Y Y

Ceph Storage nodes Y N You must have at least 1
Ceph Storage node
from the initial
overcloud creation.

Object Storage nodes Y Y

IMPORTANT

Ensure that you have at least 10 GB free space before you scale the overcloud. This free
space accommodates image conversion and caching during the node provisioning
process.

16.1. ADDING NODES TO THE OVERCLOUD

Complete the following steps to add more nodes to the director node pool.

NOTE



CHAPTER 16. SCALING OVERCLOUD NODES

189

NOTE

A fresh installation of Red Hat OpenStack Platform does not include certain updates,
such as security errata and bug fixes. As a result, if you are scaling up a connected
environment that uses the Red Hat Customer Portal or Red Hat Satellite Server, RPM
updates are not applied to new nodes. To apply the latest updates to the overcloud
nodes, you must do one of the following:

Complete an overcloud update of the nodes after the scale-out operation.

Use the virt-customize tool to modify the packages to the base overcloud
image before the scale-out operation. For more information, see the Red Hat
Knowledgebase solution Modifying the Red Hat Linux OpenStack Platform
Overcloud Image with virt-customize.

Procedure

1. Create a new JSON file called newnodes.json that contains details of the new node that you
want to register:

{
 "nodes":[
 {
 "mac":[
 "dd:dd:dd:dd:dd:dd"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.207"
 },
 {
 "mac":[
 "ee:ee:ee:ee:ee:ee"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"ipmi",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.168.24.208"
 }
]
}

2. Register the new nodes:

$ source ~/stackrc
$ openstack overcloud node import newnodes.json

Red Hat OpenStack Platform 16.1 Director Installation and Usage

190

https://access.redhat.com/articles/1556833

3. After you register the new nodes, launch the introspection process for each new node:

$ openstack overcloud node introspect <node_UUID> --provide

Replace <node_UUID> with the UUID of the node to add. This process detects and
benchmarks the hardware properties of the nodes.

4. Configure the image properties for the node:

$ openstack overcloud node configure <node_UUID>

16.2. INCREASING NODE COUNTS FOR ROLES

Complete the following steps to scale overcloud nodes for a specific role, such as a Compute node.

Procedure

1. Tag each new node with the role you want. For example, to tag a node with the Compute role,
run the following command:

$ openstack baremetal node set --property capabilities='profile:compute,boot_option:local'
<node_UUID>

Replace <node_UUID> with the UUID of the node to tag.

2. To scale the overcloud, you must edit the environment file that contains your node counts and
re-deploy the overcloud. For example, to scale your overcloud to 5 Compute nodes, edit the
ComputeCount parameter:

parameter_defaults:
 ...
 ComputeCount: 5
 ...

3. Rerun the deployment command with the updated file, which in this example is called node-
info.yaml:

$ openstack overcloud deploy --templates \
 -e /home/stack/templates/node-info.yaml \
 -e [..]

Ensure that you include all environment files and options from your initial overcloud creation.
This includes the same scale parameters for non-Compute nodes.

4. Wait until the deployment operation completes.

16.3. REMOVING OR REPLACING COMPUTE NODES

In some situations you need to remove a Compute node from the overcloud. For example, you might
need to replace a problematic Compute node or remove a group of Compute nodes to scale down your
cloud. When you delete a Compute node the node’s index is added by default to the blocklist to prevent
the index being reused during scale out operations.

You can replace a removed Compute node after you have removed the node from your overcloud

CHAPTER 16. SCALING OVERCLOUD NODES

191

You can replace a removed Compute node after you have removed the node from your overcloud
deployment.

Prerequisites

The Compute service is disabled on the nodes that you want to remove to prevent the nodes
from scheduling new instances. To confirm that the Compute service is disabled, use the
following command to list the compute services:

(overcloud)$ openstack compute service list

If the Compute service is not disabled then disable the Compture service:

(overcloud)$ openstack compute service set <hostname> nova-compute --disable

Replace <hostname> with the hostname of the Compute node to disable.

TIP

Use the --disable-reason option to add a short explanation on why the service is being
disabled. This is useful if you intend to redeploy the Compute service.

The workloads on the Compute nodes have been migrated to other Compute nodes. For more
information, see Migrating virtual machine instances between Compute nodes .

If Instance HA is enabled, choose one of the following options:

If the Compute node is accessible, log in to the Compute node as the root user and
perform a clean shutdown with the shutdown -h now command.

If the Compute node is not accessible, log in to a Controller node as the root user, disable
the STONITH device for the Compute node, and shut down the bare metal node:

$ sudo pcs stonith disable <compute_UUID>

Source the stackrc undercloud credentials file and power off the baremetal node:

$ source ~/stackrc
(undercloud)$ openstack baremetal node power off <compute_UUID>

Replace <compute_UUID> with the UUID of the Compute node to remove.

Procedure

1. Source the stackrc undercloud credentials file:

$ source ~/stackrc

2. Identify the name of the overcloud stack:

(undercloud)$ openstack stack list

3. Identify the UUIDs or hostnames of the Compute nodes that you want to delete:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

192

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/configuring_the_compute_service_for_instance_creation/assembly_managing-instances_managing-instances#assembly_migrating-virtual-machine-instances-between-compute-nodes_migrating-instances

(undercloud)$ openstack server list

4. Optional: Run the overcloud deploy command with the --update-plan-only option to update
the plans with the most recent configurations from the templates. This ensures that the
overcloud configuration is up-to-date before you delete any Compute nodes:

(undercloud)$ openstack overcloud deploy --stack <overcloud> --update-plan-only \
 --templates \
 -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
 -e /home/stack/templates/network-environment.yaml \
 -e /home/stack/templates/storage-environment.yaml \
 -e /home/stack/templates/rhel-registration/environment-rhel-registration.yaml \
 -e [...]

Replace <overcloud> with the name of the overcloud stack.

NOTE

You must update the overcloud plans if you updated the overcloud node
blocklist. For more information about adding overcloud nodes to the blocklist,
see Blocklisting nodes.

5. Delete the Compute nodes from the stack:

(undercloud)$ openstack overcloud node delete --stack <overcloud> \
 <node_1> ... [node_n]

Replace <overcloud> with the name of the overcloud stack.

Replace <node_1>, and optionally all nodes up to [node_n], with the Compute service
hostname or UUID of the Compute nodes you want to delete. Do not use a mix of UUIDs
and hostnames. Use either only UUIDs or only hostnames.

NOTE

If the node has already been powered off, this command returns a WARNING
message:

Ansible failed, check log at /var/lib/mistral/overcloud/ansible.log
WARNING: Scale-down configuration error. Manual cleanup of some
actions may be necessary. Continuing with node removal.

To address the issues caused by the powered off node, nodes manually,
complete steps 1 through 8 in Completing the removal of an unreachable
Compute node, and then proceed with the next step in this procedure.

6. Wait until the Compute nodes are deleted.

7. Delete the network agents for each node that you deleted:

(undercloud)$ source ~/overcloudrc
(overcloud)$ for AGENT in $(openstack network agent list \
 --host <scaled_down_node> -c ID -f value) ; \

CHAPTER 16. SCALING OVERCLOUD NODES

193

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/assembly_scaling-overcloud-nodes#proc_removing-a-compute-node-manually_scaling-overcloud-nodes

 do openstack network agent delete $AGENT ; done

Replace <scaled down node> with the hostname of the node that you deleted.

8. Check the command output. Because of a bug in RHOSP 16.1.7 and older, you might see a
message indicating that the agents could not be deleted.

Bad agent request: OVN agents cannot be deleted.

If you do not see a Bad agent request message, proceed to the next step.

If you see a Bad agent request message, go to Deleting the network agents: workaround for
bug. After completing the workaround procedure, return here and proceed to the next step.

9. Check the status of the overcloud stack when the node deletion is complete:

(overcloud)$ source ~/stackrc
(undercloud)$ openstack stack list

Table 16.2. Result

Status Description

UPDATE_COMPLETE The Compute node deletion completed
successfully. Proceed to the next step.

UPDATE_FAILED The Compute node deletion failed.

A common reason for a failed Compute node
deletion is an unreachable IPMI interface on a
node that you want to remove.

When the deletion fails, you must complete the
process manually. Proceed to Completing the
removal of an unreachable Compute node to
complete the Compute node removal.

10. If Instance HA is enabled, perform the following actions:

a. Clean up the Pacemaker resources for the Compute node:

$ sudo pcs resource delete <compute_UUID>
$ sudo cibadmin -o nodes --delete --xml-text '<node id="<compute_UUID>"/>'
$ sudo cibadmin -o fencing-topology --delete --xml-text '<fencing-level target="
<compute_UUID>"/>'
$ sudo cibadmin -o status --delete --xml-text '<node_state id="<compute_UUID>"/>'
$ sudo cibadmin -o status --delete-all --xml-text '<node id="<compute_UUID>"/>' --force

b. Delete the STONITH device for the node:

$ sudo pcs stonith delete <compute_UUID>

11. If you are not replacing the removed Compute nodes on the overcloud, then decrease the

Red Hat OpenStack Platform 16.1 Director Installation and Usage

194

ComputeCount parameter in the environment file that contains your node counts. This file is
usually named node-info.yaml. For example, decrease the node count from four nodes to three
nodes if you removed one node:

parameter_defaults:
 ...
 ComputeCount: 3

Decreasing the node count ensures that director does not provision any new nodes when you
run openstack overcloud deploy.

If you are replacing the removed Compute node on your overcloud deployment, see Replacing a
removed Compute node.

16.3.1. Completing the removal of an unreachable Compute node

If the openstack overcloud node delete command failed due to an unreachable node, then you must
manually complete the removal of the Compute node from the overcloud.

Prerequisites

Performing the Removing or replacing a Compute node procedure returned a status of
UPDATE_FAILED.

Procedure

1. Identify the UUID of the overcloud stack:

(undercloud)$ openstack stack list

2. Identify the UUID of the node that you want to manually delete:

(undercloud)$ openstack baremetal node list

3. Set the node that you want to delete to maintenance mode:

(undercloud)$ openstack baremetal node maintenance set <UUID>

Replace <UUID> with the UUID of the node to put into maintenance mode.

4. Wait for the Compute service to synchronize its state with the Bare Metal service. This can take
up to four minutes.

5. Source the overcloud configuration:

(undercloud)$ source ~/overcloudrc

6. Confirm that the Compute service is disabled on the deleted node on the overcloud, to prevent
the node from scheduling new instances:

(overcloud)$ openstack compute service list

If the Compute service is not disabled then disable it:

CHAPTER 16. SCALING OVERCLOUD NODES

195

(overcloud)$ openstack compute service set <hostname> nova-compute --disable

Replace <hostname> with the hostname of the Compute node.

TIP

Use the --disable-reason option to add a short explanation on why the service is being
disabled. This is useful if you intend to redeploy the Compute service.

7. Remove the Compute service from the deleted Compute node:

(overcloud)$ openstack compute service delete <service_id>

Replace <service_id> with the ID of the Compute service that was running on the deleteed
node.

8. Remove the deleted Compute service as a resource provider from the Placement service:

(overcloud)$ openstack resource provider list
(overcloud)$ openstack resource provider delete <UUID>

9. Source the undercloud configuration:

(overcloud)$ source ~/stackrc

10. Delete the Compute node from the stack:

(undercloud)$ openstack overcloud node delete --stack <overcloud> <node>

Replace <overcloud> with the name or UUID of the overcloud stack.

Replace <node> with the Compute service hostname or UUID of the Compute node that
you want to delete.

NOTE

If the node has already been powered off, this command returns a WARNING
message:

Ansible failed, check log at `/var/lib/mistral/overcloud/ansible.log`
WARNING: Scale-down configuration error. Manual cleanup of some
actions may be necessary. Continuing with node removal.

You can ignore this message.

11. Wait for the overcloud node to be deleted.

12. Source the overcloud configuration:

(undercloud)$ source ~/overcloudrc

13. Delete the network agents for the node that you deleted:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

196

(overcloud)$ for AGENT in $(openstack network agent list \
 --host <scaled_down_node> -c ID -f value) ; \
 do openstack network agent delete $AGENT ; done

Replace <scaled_down_node> with the name of the node you deleted.

14. Check the command output. Because of a bug in RHOSP 16.1.7 and older, you might see a
message indicating that the agents could not be deleted.

Bad agent request: OVN agents cannot be deleted.

If you do not see this message, proceed to the next step.

If you see this message, complete the procedure in Deleting the network agents: workaround for
bug. After completing the workaround procedure, return here and proceed to the next step.

15. Source the undercloud configuration:

(overcloud)$ source ~/stackrc

16. Check the status of the overcloud stack when the node deletion is complete:

(undercloud)$ openstack stack list

Table 16.3. Result

Status Description

UPDATE_COMPLETE The Compute node deletion completed
successfully. Proceed to the next step.

UPDATE_FAILED The Compute node deletion failed.

If the Compute node deletion fails while the
node is in maintenance mode, then the problem
might be with the hardware. Check the
hardware.

17. If Instance HA is enabled, perform the following actions:

a. Clean up the Pacemaker resources for the node:

$ sudo pcs resource delete <scaled_down_node>
$ sudo cibadmin -o nodes --delete --xml-text '<node id="<scaled_down_node>"/>'
$ sudo cibadmin -o fencing-topology --delete --xml-text '<fencing-level target="
<scaled_down_node>"/>'
$ sudo cibadmin -o status --delete --xml-text '<node_state id="<scaled_down_node>"/>'
$ sudo cibadmin -o status --delete-all --xml-text '<node id="<scaled_down_node>"/>' --
force

b. Delete the STONITH device for the node:

$ sudo pcs stonith delete <device-name>

CHAPTER 16. SCALING OVERCLOUD NODES

197

18. If you are not replacing the removed Compute node on the overcloud, then decrease the
ComputeCount parameter in the environment file that contains your node counts. This file is
usually named node-info.yaml. For example, decrease the node count from four nodes to three
nodes if you removed one node:

parameter_defaults:
 ...
 ComputeCount: 3
 ...

Decreasing the node count ensures that director does not provision any new nodes when you
run openstack overcloud deploy.

If you are replacing the removed Compute node on your overcloud deployment, see Replacing a
removed Compute node.

16.3.2. Deleting the network agents: workaround for bug

After you remove a Compute node, you must delete the associated network agent. If your deployment
uses RHOSP 16.1.7 or earlier, a bug prevents you from deleting network agents as expected. See
BZ1788336-ovn-controllers are listed as agents but cannot be removed .

With this bug, when you attempt to delete the agent as instructed, the Networking service displays the
following error message:

Bad agent request: OVN agents cannot be deleted.

If you see that error message, perform the following steps to delete the agent.

Prerequisites

Your attempt to delete network agents after removing a Compute node failed, as indicated by
the following error message:

Bad agent request: OVN agents cannot be deleted.

Procedure

1. List the overcloud nodes:

(undercloud)$ openstack server list

2. Log into a Controller node as a user with root privileges.

$ ssh heat-admin@controller-0.ctlplane

3. If you have not done so already, set up command aliases to simplify access to the ovn-sbctl
command on the ovn_controller container. For more information, see Creating aliases for OVN
troubleshooting commands.

4. Obtain the IP address from the ovn-controller.log file:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

198

https://bugzilla.redhat.com/show_bug.cgi?id=1788336
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/networking_guide/neutron-troubleshoot_rhosp-network#ovn-db-aliases-creating_neutron-troubleshoot

$ sudo less /var/log/containers/openvswitch/ovn-controller.log

If ovn-controller.log is empty try ovn-controller.log.1.

5. Confirm that the IP address is correct:

$ ovn-sbctl list encap |grep -a3 <IP_address_from_ovn-controller.log>

Replace <IP_address_from_ovn-controller.log> with the IP address from the controller log file.

6. Delete the chassis that contains the IP address:

$ ovn-sbctl chassis-del <chassis-name>

Replace <chassis-id> with the chassis_name value from the output of the ovn-sbctl list encap
command in the previous step.

7. Check the Chassis_Private table to confirm that chassis has been removed:

$ ovn-sbctl find Chassis_private chassis="[]"

8. If any chasis are listed, remove each with the following command:

$ ovn-sbctl destroy Chassis_Private <listed_name>

Replace <listed_name> with the name of the chassis to delete.

9. Return to the procedure to complete the removal of the Compute node.

16.3.3. Replacing a removed Compute node

To replace a removed Compute node on your overcloud deployment, you can register and inspect a new
Compute node or re-add the removed Compute node. You must also configure your overcloud to
provision the node.

Procedure

1. Optional: To reuse the index of the removed Compute node, configure the
RemovalPoliciesMode and the RemovalPolicies parameters for the role to replace the
denylist when a Compute node is removed:

parameter_defaults:
 <RoleName>RemovalPoliciesMode: update
 <RoleName>RemovalPolicies: [{'resource_list': []}]

2. Replace the removed Compute node:

To add a new Compute node, register, inspect, and tag the new node to prepare it for
provisioning. For more information, see Configuring a basic overcloud .

To re-add a Compute node that you removed manually, remove the node from
maintenance mode:

$ openstack baremetal node maintenance unset <node_uuid>

CHAPTER 16. SCALING OVERCLOUD NODES

199

3. Rerun the openstack overcloud deploy command that you used to deploy the existing
overcloud.

4. Wait until the deployment process completes.

5. Confirm that director has successfully registered the new Compute node:

$ openstack baremetal node list

6. If you performed step 1 to set the RemovalPoliciesMode for the role to update, then you must
reset the RemovalPoliciesMode for the role to the default value, append, to add the Compute
node index to the current denylist when a Compute node is removed:

parameter_defaults:
 <RoleName>RemovalPoliciesMode: append

7. Rerun the openstack overcloud deploy command that you used to deploy the existing
overcloud.

16.4. PRESERVING HOSTNAMES WHEN REPLACING NODES THAT USE
PREDICTABLE IP ADDRESSES AND HOSTNAMEMAP

If you configured your overcloud to use predictable IP addresses, and HostNameMap to map heat-
based hostnames to the hostnames of pre-provisioned nodes, then you must configure your overcloud
to map the new replacement node index to an IP address and hostname.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Retrieve the physical_resource_id and the removed_rsrc_list for the resource you want to
replace:

$ openstack stack resource show <stack> <role>

Replace <stack> with the name of the stack the resource belongs to, for example,
overcloud.

Replace <role> with the name of the role that you want to replace the node for, for
example, Compute.
Example output:

+------------------------+---+
| Field | Value |
+------------------------+---+
| attributes | {u'attributes': None, u'refs': None, u'refs_map': None, |
| | u'removed_rsrc_list': [u'2', u'3']} | 1
| creation_time | 2017-09-05T09:10:42Z |
| description | |

Red Hat OpenStack Platform 16.1 Director Installation and Usage

200

1 The removed_rsrc_list lists the indexes of nodes that have already been removed for
the resource.

4. Retrieve the resource_name to determine the maximum index that heat has applied to a node
for this resource:

$ openstack stack resource list <physical_resource_id>

Replace <physical_resource_id> with the ID you retrieved in step 3.

5. Use the resource_name and the removed_rsrc_list to determine the next index that heat will
apply to a new node:

If removed_rsrc_list is empty, then the next index will be (current_maximum_index) + 1.

If removed_rsrc_list includes the value (current_maximum_index) + 1, then the next index
will be the next available index.

6. Retrieve the ID of the replacement bare-metal node:

$ openstack baremetal node list

7. Update the capability of the replacement node with the new index:

$ openstack baremetal node set --property capabilities='node:<role>-
<index>,boot_option:local' <node>

Replace <role> with the name of the role that you want to replace the node for, for
example, compute.

Replace <index> with the index calculated in step 5.

links	[{u'href': u'http://192.168.24.1:8004/v1/bd9e6da805594de9
	8d4a1d3a3ee874dd/stacks/overcloud/1c7810c4-8a1e-
	4d61-a5d8-9f964915d503/resources/Compute', u'rel':
	u'self'}, {u'href': u'http://192.168.24.1:8004/v1/bd9e6da
	805594de98d4a1d3a3ee874dd/stacks/overcloud/1c7810c4-8a1e-
	4d61-a5d8-9f964915d503', u'rel': u'stack'}, {u'href': u'h
	ttp://192.168.24.1:8004/v1/bd9e6da805594de98d4a1d3a3ee874
	dd/stacks/overcloud-Compute-zkjccox63svg/7632fb0b-
	80b1-42b3-9ea7-6114c89adc29', u'rel': u'nested'}]
logical_resource_id	Compute
physical_resource_id	7632fb0b-80b1-42b3-9ea7-6114c89adc29
required_by	[u'AllNodesDeploySteps',
	u'ComputeAllNodesValidationDeployment',
	u'AllNodesExtraConfig', u'ComputeIpListMap',
	u'ComputeHostsDeployment', u'UpdateWorkflow',
	u'ComputeSshKnownHostsDeployment', u'hostsConfig',
	u'SshKnownHostsConfig', u'ComputeAllNodesDeployment']
resource_name	Compute
resource_status	CREATE_COMPLETE
resource_status_reason	state changed
resource_type	OS::Heat::ResourceGroup
updated_time	2017-09-05T09:10:42Z
+------------------------+---+

CHAPTER 16. SCALING OVERCLOUD NODES

201

1

2

3

4

Replace <node> with the ID of the bare metal node.

The Compute scheduler uses the node capability to match the node on deployment.

8. Assign a hostname to the new node by adding the index to the HostnameMap configuration, for
example:

parameter_defaults:
 ControllerSchedulerHints:
 'capabilities:node': 'controller-%index%'
 ComputeSchedulerHints:
 'capabilities:node': 'compute-%index%'
 HostnameMap:
 overcloud-controller-0: overcloud-controller-prod-123-0
 overcloud-controller-1: overcloud-controller-prod-456-0 1
 overcloud-controller-2: overcloud-controller-prod-789-0
 overcloud-controller-3: overcloud-controller-prod-456-0 2
 overcloud-compute-0: overcloud-compute-prod-abc-0
 overcloud-compute-3: overcloud-compute-prod-abc-3 3
 overcloud-compute-8: overcloud-compute-prod-abc-3 4

Node that you are removing and replacing with the new node.

New node.

Node that you are removing and replacing with the new node.

New node.

NOTE

Do not delete the mapping for the removed node from HostnameMap.

9. Add the IP address for the replacement node to the end of each network IP address list in your
network IP address mapping file, ips-from-pool-all.yaml. In the following example, the IP
address for the new index, overcloud-controller-3, is added to the end of the IP address list for
each ControllerIPs network, and is assigned the same IP address as overcloud-controller-1
because it replaces overcloud-controller-1. The IP address for the new index, overcloud-
compute-8, is also added to the end of the IP address list for each ComputeIPs network, and is
assigned the same IP address as the index it replaces, overcloud-compute-3:

parameter_defaults:
 ControllerIPs:
 ...
 internal_api:
 - 192.168.1.10 1
 - 192.168.1.11 2
 - 192.168.1.12 3
 - 192.168.1.11 4
 ...
 storage:
 - 192.168.2.10

Red Hat OpenStack Platform 16.1 Director Installation and Usage

202

1

2

3

4

5

6

7

 - 192.168.2.11
 - 192.168.2.12
 - 192.168.2.11
 ...

 ComputeIPs:
 ...
 internal_api:
 - 172.17.0.10 5
 - 172.17.0.11 6
 - 172.17.0.11 7
 ...
 storage:
 - 172.17.0.10
 - 172.17.0.11
 - 172.17.0.11
 ...

IP address assigned to index 0, host name overcloud-controller-prod-123-0.

IP address assigned to index 1, host name overcloud-controller-prod-456-0. This node is
replaced by index 3. Do not remove this entry.

IP address assigned to index 2, host name overcloud-controller-prod-789-0.

IP address assigned to index 3, host name overcloud-controller-prod-456-0. This is the
new node that replaces index 1.

IP address assigned to index 0, host name overcloud-compute-0.

IP address assigned to index 1, host name overcloud-compute-3. This node is replaced by
index 2. Do not remove this entry.

IP address assigned to index 2, host name overcloud-compute-8. This is the new node
that replaces index 1.

16.5. REPLACING CEPH STORAGE NODES

You can use director to replace Ceph Storage nodes in a director-created cluster. For more information,
see the Deploying an Overcloud with Containerized Red Hat Ceph guide.

16.6. REPLACING OBJECT STORAGE NODES

Follow the instructions in this section to understand how to replace Object Storage nodes without
impact to the integrity of the cluster. This example involves a three-node Object Storage cluster in
which you want to replace the node overcloud-objectstorage-1 node. The goal of the procedure is to
add one more node and then remove the overcloud-objectstorage-1 node. The new node replaces the
overcloud-objectstorage-1 node.

Procedure

1. Increase the Object Storage count using the ObjectStorageCount parameter. This parameter is
usually located in node-info.yaml, which is the environment file that contains your node counts:

CHAPTER 16. SCALING OVERCLOUD NODES

203

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/

parameter_defaults:
 ObjectStorageCount: 4

The ObjectStorageCount parameter defines the quantity of Object Storage nodes in your
environment. In this example, scale the quantity of Object Storage nodes from 3 to 4.

2. Run the deployment command with the updated ObjectStorageCount parameter:

$ source ~/stackrc
$ openstack overcloud deploy --templates -e node-info.yaml <environment_files>

After the deployment command completes, the overcloud contains an additional Object Storage
node.

3. Replicate data to the new node. Before you remove a node, in this case, overcloud-
objectstorage-1, wait for a replication pass to finish on the new node. Check the replication
pass progress in the /var/log/swift/swift.log file. When the pass finishes, the Object Storage
service should log entries similar to the following example:

Mar 29 08:49:05 localhost *object-server: Object replication complete.*
Mar 29 08:49:11 localhost *container-server: Replication run OVER*
Mar 29 08:49:13 localhost *account-server: Replication run OVER*

4. To remove the old node from the ring, reduce the ObjectStorageCount parameter to omit the
old node. In this example, reduce the ObjectStorageCount parameter to 3:

parameter_defaults:
 ObjectStorageCount: 3

5. Create a new environment file named remove-object-node.yaml. This file identifies and
removes the specified Object Storage node. The following content specifies the removal of
overcloud-objectstorage-1:

parameter_defaults:
 ObjectStorageRemovalPolicies:
 [{'resource_list': ['1']}]

6. Include both the node-info.yaml and remove-object-node.yaml files in the deployment
command:

$ openstack overcloud deploy --templates -e node-info.yaml <environment_files> -e remove-
object-node.yaml

Director deletes the Object Storage node from the overcloud and updates the rest of the nodes on the
overcloud to accommodate the node removal.

IMPORTANT

Include all environment files and options from your initial overcloud creation. This includes
the same scale parameters for non-Compute nodes.

16.7. USING SKIP DEPLOY IDENTIFIER

Red Hat OpenStack Platform 16.1 Director Installation and Usage

204

During a stack update operation puppet, by default, reapplies all manifests. This can result in a time
consuming operation, which may not be required.

To override the default operation, use the skip-deploy-identifier option.

openstack overcloud deploy --skip-deploy-identifier

Use this option if you do not want the deployment command to generate a unique identifier for the
DeployIdentifier parameter. The software configuration deployment steps only trigger if there is an
actual change to the configuration. Use this option with caution and only if you are confident that you do
not need to run the software configuration, such as scaling out certain roles.

NOTE

If there is a change to the puppet manifest or hierdata, puppet will reapply all manifests
even when --skip-deploy-identifier is specified.

16.8. BLOCKLISTING NODES

You can exclude overcloud nodes from receiving an updated deployment. This is useful in scenarios
where you want to scale new nodes and exclude existing nodes from receiving an updated set of
parameters and resources from the core heat template collection. This means that the blocklisted
nodes are isolated from the effects of the stack operation.

Use the DeploymentServerBlacklist parameter in an environment file to create a blocklist.

Setting the blocklist

The DeploymentServerBlacklist parameter is a list of server names. Write a new environment file, or
add the parameter value to an existing custom environment file and pass the file to the deployment
command:

parameter_defaults:
 DeploymentServerBlacklist:
 - overcloud-compute-0
 - overcloud-compute-1
 - overcloud-compute-2

NOTE

The server names in the parameter value are the names according to OpenStack
Orchestration (heat), not the actual server hostnames.

Include this environment file with your openstack overcloud deploy command:

$ source ~/stackrc
$ openstack overcloud deploy --templates \
 -e server-blocklist.yaml \
 -e [...]

Heat blocklists any servers in the list from receiving updated heat deployments. After the stack
operation completes, any blocklisted servers remain unchanged. You can also power off or stop the os-
collect-config agents during the operation.

CHAPTER 16. SCALING OVERCLOUD NODES

205

WARNING

Exercise caution when you blocklist nodes. Only use a blocklist if you fully
understand how to apply the requested change with a blocklist in effect. It
is possible to create a hung stack or configure the overcloud incorrectly
when you use the blocklist feature. For example, if cluster configuration
changes apply to all members of a Pacemaker cluster, blocklisting a
Pacemaker cluster member during this change can cause the cluster to fail.

Do not use the blocklist during update or upgrade procedures. Those
procedures have their own methods for isolating changes to particular
servers.

When you add servers to the blocklist, further changes to those nodes are
not supported until you remove the server from the blocklist. This includes
updates, upgrades, scale up, scale down, and node replacement. For
example, when you blocklist existing Compute nodes while scaling out the
overcloud with new Compute nodes, the blocklisted nodes miss the
information added to /etc/hosts and /etc/ssh/ssh_known_hosts. This can
cause live migration to fail, depending on the destination host. The
Compute nodes are updated with the information added to /etc/hosts and
/etc/ssh/ssh_known_hosts during the next overcloud deployment where
they are no longer blocklisted. Do not modify the /etc/hosts and
/etc/ssh/ssh_known_hosts files manually. To modify the /etc/hosts and
/etc/ssh/ssh_known_hosts files, run the overcloud deploy command as
described in the Clearing the Blocklist section.

Clearing the blocklist

To clear the blocklist for subsequent stack operations, edit the DeploymentServerBlacklist to use an
empty array:

parameter_defaults:
 DeploymentServerBlacklist: []

WARNING

Do not omit the DeploymentServerBlacklist parameter. If you omit the parameter,
the overcloud deployment uses the previously saved value.





Red Hat OpenStack Platform 16.1 Director Installation and Usage

206

CHAPTER 17. REPLACING CONTROLLER NODES
In certain circumstances a Controller node in a high availability cluster might fail. In these situations, you
must remove the node from the cluster and replace it with a new Controller node.

Complete the steps in this section to replace a Controller node. The Controller node replacement
process involves running the openstack overcloud deploy command to update the overcloud with a
request to replace a Controller node.

IMPORTANT

The following procedure applies only to high availability environments. Do not use this
procedure if you are using only one Controller node.

17.1. PREPARING FOR CONTROLLER REPLACEMENT

Before you replace an overcloud Controller node, it is important to check the current state of your Red
Hat OpenStack Platform environment. Checking the current state can help avoid complications during
the Controller replacement process. Use the following list of preliminary checks to determine if it is safe
to perform a Controller node replacement. Run all commands for these checks on the undercloud.

Procedure

1. Check the current status of the overcloud stack on the undercloud:

$ source stackrc
(undercloud)$ openstack stack list --nested

The overcloud stack and its subsequent child stacks should have either a
CREATE_COMPLETE or UPDATE_COMPLETE.

2. Install the database client tools:

(undercloud)$ sudo dnf -y install mariadb

3. Configure root user access to the database:

(undercloud)$ sudo cp /var/lib/config-data/puppet-generated/mysql/root/.my.cnf /root/.

4. Perform a backup of the undercloud databases:

(undercloud)$ mkdir /home/stack/backup
(undercloud)$ sudo mysqldump --all-databases --quick --single-transaction | gzip >
/home/stack/backup/dump_db_undercloud.sql.gz

5. Check that your undercloud contains 10 GB free storage to accommodate for image caching
and conversion when you provision the new node:

(undercloud)$ df -h

6. If you are reusing the IP address for the new controller node, ensure that you delete the port
used by the old controller:

CHAPTER 17. REPLACING CONTROLLER NODES

207

(undercloud)$ openstack port delete <port>

7. Check the status of Pacemaker on the running Controller nodes. For example, if 192.168.0.47 is
the IP address of a running Controller node, use the following command to view the Pacemaker
status:

(undercloud)$ ssh heat-admin@192.168.0.47 'sudo pcs status'

The output shows all services that are running on the existing nodes and that are stopped on
the failed node.

8. Check the following parameters on each node of the overcloud MariaDB cluster:

wsrep_local_state_comment: Synced

wsrep_cluster_size: 2
Use the following command to check these parameters on each running Controller node. In
this example, the Controller node IP addresses are 192.168.0.47 and 192.168.0.46:

(undercloud)$ for i in 192.168.0.46 192.168.0.47 ; do echo "*** $i ***" ; ssh heat-
admin@$i "sudo podman exec \$(sudo podman ps --filter name=galera-bundle -q) mysql
-e \"SHOW STATUS LIKE 'wsrep_local_state_comment'; SHOW STATUS LIKE
'wsrep_cluster_size';\""; done

9. Check the RabbitMQ status. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to view the RabbitMQ status:

(undercloud)$ ssh heat-admin@192.168.0.47 "sudo podman exec \$(sudo podman ps -f
name=rabbitmq-bundle -q) rabbitmqctl cluster_status"

The running_nodes key should show only the two available nodes and not the failed node.

10. If fencing is enabled, disable it. For example, if 192.168.0.47 is the IP address of a running
Controller node, use the following command to check the status of fencing:

(undercloud)$ ssh heat-admin@192.168.0.47 "sudo pcs property show stonith-enabled"

Run the following command to disable fencing:

(undercloud)$ ssh heat-admin@192.168.0.47 "sudo pcs property set stonith-enabled=false"

11. Check the Compute services are active on the director node:

(undercloud)$ openstack hypervisor list

The output should show all non-maintenance mode nodes as up.

12. Ensure all undercloud containers are running:

(undercloud)$ sudo podman ps

13. Stop all the nova_* containers running on the failed Controller node:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

208

[root@controller-0 ~]$ sudo systemctl stop tripleo_nova_api.service
[root@controller-0 ~]$ sudo systemctl stop tripleo_nova_api_cron.service
[root@controller-0 ~]$ sudo systemctl stop tripleo_nova_compute.service
[root@controller-0 ~]$ sudo systemctl stop tripleo_nova_conductor.service
[root@controller-0 ~]$ sudo systemctl stop tripleo_nova_metadata.service
[root@controller-0 ~]$ sudo systemctl stop tripleo_nova_placement.service
[root@controller-0 ~]$ sudo systemctl stop tripleo_nova_scheduler.service

14. Optional: If you are using the Bare Metal Service (ironic) as the virt driver, you must manually
update the service entries in your cell database for any bare metal instances whose
instances.host is set to the controller that you are removing. Contact Red Hat Support for
assistance.

NOTE

This manual update of the cell database when using Bare Metal Service (ironic) as
the virt driver is a temporary workaround to ensure the nodes are rebalanced,
until BZ2017980 is complete.

17.2. REMOVING A CEPH MONITOR DAEMON

If your Controller node is running a Ceph monitor service, complete the following steps to remove the
ceph-mon daemon.

NOTE

Adding a new Controller node to the cluster also adds a new Ceph monitor daemon
automatically.

Procedure

1. Connect to the Controller node that you want to replace and become the root user:

ssh heat-admin@192.168.0.47
sudo su -

NOTE

If the Controller node is unreachable, skip steps 1 and 2 and continue the
procedure at step 3 on any working Controller node.

2. Stop the monitor:

systemctl stop ceph-mon@<monitor_hostname>

For example:

systemctl stop ceph-mon@overcloud-controller-1

3. Disconnect from the Controller node that you want to replace.

4. Connect to one of the existing Controller nodes.

CHAPTER 17. REPLACING CONTROLLER NODES

209

https://bugzilla.redhat.com/show_bug.cgi?id=2017980

ssh heat-admin@192.168.0.46
sudo su -

5. Remove the monitor from the cluster:

sudo podman exec -it ceph-mon-controller-0 ceph mon remove overcloud-controller-1

6. On all Controller nodes, remove the v1 and v2 monitor entries from /etc/ceph/ceph.conf. For
example, if you remove controller-1, then remove the IPs and hostname for controller-1.
Before:

mon host = [v2:172.18.0.21:3300,v1:172.18.0.21:6789],
[v2:172.18.0.22:3300,v1:172.18.0.22:6789],[v2:172.18.0.24:3300,v1:172.18.0.24:6789]
mon initial members = overcloud-controller-2,overcloud-controller-1,overcloud-controller-0

After:

mon host = [v2:172.18.0.21:3300,v1:172.18.0.21:6789],
[v2:172.18.0.24:3300,v1:172.18.0.24:6789]
mon initial members = overcloud-controller-2,overcloud-controller-0

NOTE

Director updates the ceph.conf file on the relevant overcloud nodes when you
add the replacement Controller node. Normally, director manages this
configuration file exclusively and you should not edit the file manually. However,
you can edit the file manually if you want to ensure consistency in case the other
nodes restart before you add the new node.

7. (Optional) Archive the monitor data and save the archive on another server:

mv /var/lib/ceph/mon/<cluster>-<daemon_id> /var/lib/ceph/mon/removed-<cluster>-
<daemon_id>

17.3. PREPARING THE CLUSTER FOR CONTROLLER NODE
REPLACEMENT

Before you replace the old node, you must ensure that Pacemaker is not running on the node and then
remove that node from the Pacemaker cluster.

Procedure

1. To view the list of IP addresses for the Controller nodes, run the following command:

(undercloud) $ openstack server list -c Name -c Networks
+------------------------+-----------------------+
| Name | Networks |
+------------------------+-----------------------+
| overcloud-compute-0 | ctlplane=192.168.0.44 |
| overcloud-controller-0 | ctlplane=192.168.0.47 |

Red Hat OpenStack Platform 16.1 Director Installation and Usage

210

| overcloud-controller-1 | ctlplane=192.168.0.45 |
| overcloud-controller-2 | ctlplane=192.168.0.46 |
+------------------------+-----------------------+

2. If the old node is still reachable, log in to one of the remaining nodes and stop pacemaker on the
old node. For this example, stop pacemaker on overcloud-controller-1:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs status | grep -w Online | grep -w
overcloud-controller-1"
(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs cluster stop overcloud-controller-1"

NOTE

In case the old node is physically unavailable or stopped, it is not necessary to
perform the previous operation, as pacemaker is already stopped on that node.

3. After you stop Pacemaker on the old node, delete the old node from the pacemaker cluster.
The following example command logs in to overcloud-controller-0 to remove overcloud-
controller-1:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs cluster node remove overcloud-
controller-1"

If the node that that you want to replace is unreachable (for example, due to a hardware failure),
run the pcs command with additional --skip-offline and --force options to forcibly remove the
node from the cluster:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs cluster node remove overcloud-
controller-1 --skip-offline --force"

4. After you remove the old node from the pacemaker cluster, remove the node from the list of
known hosts in pacemaker:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs host deauth overcloud-controller-1"

You can run this command whether the node is reachable or not.

5. To ensure that the new Controller node uses the correct STONITH fencing device after the
replacement, delete the old devices from the node by entering the following command:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs stonith delete
<stonith_resource_name>"

Replace <stonith_resource_name> with the name of the STONITH resource that
corresponds to the old node. The resource name uses the the format <resource_agent>-
<host_mac>. You can find the resource agent and the host MAC address in the
FencingConfig section of the fencing.yaml file.

6. The overcloud database must continue to run during the replacement procedure. To ensure
that Pacemaker does not stop Galera during this procedure, select a running Controller node
and run the following command on the undercloud with the IP address of the Controller node:

(undercloud) $ ssh heat-admin@192.168.0.47 "sudo pcs resource unmanage galera-bundle"

CHAPTER 17. REPLACING CONTROLLER NODES

211

17.4. REPLACING A CONTROLLER NODE

To replace a Controller node, identify the index of the node that you want to replace.

If the node is a virtual node, identify the node that contains the failed disk and restore the disk
from a backup. Ensure that the MAC address of the NIC used for PXE boot on the failed server
remains the same after disk replacement.

If the node is a bare metal node, replace the disk, prepare the new disk with your overcloud
configuration, and perform a node introspection on the new hardware.

If the node is a part of a high availability cluster with fencing, you might need recover the Galera
nodes separately. For more information, see the article How Galera works and how to rescue
Galera clusters in the context of Red Hat OpenStack Platform.

Complete the following example steps to replace the overcloud-controller-1 node with the overcloud-
controller-3 node. The overcloud-controller-3 node has the ID 75b25e9a-948d-424a-9b3b-
f0ef70a6eacf.

IMPORTANT

To replace the node with an existing bare metal node, enable maintenance mode on the
outgoing node so that the director does not automatically reprovision the node.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Identify the index of the overcloud-controller-1 node:

$ INSTANCE=$(openstack server list --name overcloud-controller-1 -f value -c ID)

3. Identify the bare metal node associated with the instance:

$ NODE=$(openstack baremetal node list -f csv --quote minimal | grep $INSTANCE | cut -f1
-d,)

4. Set the node to maintenance mode:

$ openstack baremetal node maintenance set $NODE

5. If the Controller node is a virtual node, run the following command on the Controller host to
replace the virtual disk from a backup:

$ cp <VIRTUAL_DISK_BACKUP> /var/lib/libvirt/images/<VIRTUAL_DISK>

Replace <VIRTUAL_DISK_BACKUP> with the path to the backup of the failed virtual disk,
and replace <VIRTUAL_DISK> with the name of the virtual disk that you want to replace.
If you do not have a backup of the outgoing node, you must use a new virtualized node.

If the Controller node is a bare metal node, complete the following steps to replace the disk
with a new bare metal disk:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

212

https://access.redhat.com/solutions/3215501

a. Replace the physical hard drive or solid state drive.

b. Prepare the node with the same configuration as the failed node.

6. List unassociated nodes and identify the ID of the new node:

$ openstack baremetal node list --unassociated

7. Tag the new node with the control profile:

(undercloud) $ openstack baremetal node set --property
capabilities='profile:control,boot_option:local' 75b25e9a-948d-424a-9b3b-f0ef70a6eacf

17.5. REPLACING A BOOTSTRAP CONTROLLER NODE

If you want to replace the Controller node that you use for bootstrap operations and keep the node
name, complete the following steps to set the name of the bootstrap Controller node after the
replacement process.

Procedure

1. Find the name of the bootstrap Controller node by running the following command:

ssh tripleo-admin@CONTROLLER_IP "sudo hiera -c /etc/puppet/hiera.yaml
pacemaker_short_bootstrap_node_name"

Replace CONTROLLER_IP with the IP address of any active Controller node.

2. Check if your environment files include the ExtraConfig section. If the ExtraConfig parameter
does not exist, create the following environment file ~/templates/bootstrap-controller.yaml
and add the following content:

parameter_defaults:
 ExtraConfig:
 pacemaker_short_bootstrap_node_name: NODE_NAME
 mysql_short_bootstrap_node_name: NODE_NAME

Replace NODE_NAME with the name of an existing Controller node that you want to use in
bootstrap operations after the replacement process.
If your environment files already include the ExtraConfig parameter, add only the lines that
set the pacemaker_short_bootstrap_node_name and
mysql_short_bootstrap_node_name parameters.

3. Follow the steps to trigger the Controller node replacement and include the environment files
in the overcloud deploy command. For more information, see Triggering the Controller node
replacement.

For information about troubleshooting the bootstrap Controller node replacement, see the article
Replacement of the first Controller node fails at step 1 if the same hostname is used for a new node .

17.6. PRESERVING HOSTNAMES WHEN REPLACING NODES THAT USE
PREDICTABLE IP ADDRESSES AND HOSTNAMEMAP

If you configured your overcloud to use predictable IP addresses, and HostNameMap to map heat-

CHAPTER 17. REPLACING CONTROLLER NODES

213

https://access.redhat.com/solutions/5662621

If you configured your overcloud to use predictable IP addresses, and HostNameMap to map heat-
based hostnames to the hostnames of pre-provisioned nodes, then you must configure your overcloud
to map the new replacement node index to an IP address and hostname.

Procedure

1. Log in to the undercloud as the stack user.

2. Source the stackrc file:

$ source ~/stackrc

3. Retrieve the physical_resource_id and the removed_rsrc_list for the resource you want to
replace:

$ openstack stack resource show <stack> <role>

Replace <stack> with the name of the stack the resource belongs to, for example,
overcloud.

Replace <role> with the name of the role that you want to replace the node for, for
example, Compute.
Example output:

+------------------------+---+
| Field | Value |
+------------------------+---+
| attributes | {u'attributes': None, u'refs': None, u'refs_map': None, |
| | u'removed_rsrc_list': [u'2', u'3']} | 1
creation_time	2017-09-05T09:10:42Z
description	
links	[{u'href': u'http://192.168.24.1:8004/v1/bd9e6da805594de9
	8d4a1d3a3ee874dd/stacks/overcloud/1c7810c4-8a1e-
	4d61-a5d8-9f964915d503/resources/Compute', u'rel':
	u'self'}, {u'href': u'http://192.168.24.1:8004/v1/bd9e6da
	805594de98d4a1d3a3ee874dd/stacks/overcloud/1c7810c4-8a1e-
	4d61-a5d8-9f964915d503', u'rel': u'stack'}, {u'href': u'h
	ttp://192.168.24.1:8004/v1/bd9e6da805594de98d4a1d3a3ee874
	dd/stacks/overcloud-Compute-zkjccox63svg/7632fb0b-
	80b1-42b3-9ea7-6114c89adc29', u'rel': u'nested'}]
logical_resource_id	Compute
physical_resource_id	7632fb0b-80b1-42b3-9ea7-6114c89adc29
required_by	[u'AllNodesDeploySteps',
	u'ComputeAllNodesValidationDeployment',
	u'AllNodesExtraConfig', u'ComputeIpListMap',
	u'ComputeHostsDeployment', u'UpdateWorkflow',
	u'ComputeSshKnownHostsDeployment', u'hostsConfig',
	u'SshKnownHostsConfig', u'ComputeAllNodesDeployment']
resource_name	Compute
resource_status	CREATE_COMPLETE
resource_status_reason	state changed
resource_type	OS::Heat::ResourceGroup
updated_time	2017-09-05T09:10:42Z
+------------------------+---+

Red Hat OpenStack Platform 16.1 Director Installation and Usage

214

1 The removed_rsrc_list lists the indexes of nodes that have already been removed for
the resource.

4. Retrieve the resource_name to determine the maximum index that heat has applied to a node
for this resource:

$ openstack stack resource list <physical_resource_id>

Replace <physical_resource_id> with the ID you retrieved in step 3.

5. Use the resource_name and the removed_rsrc_list to determine the next index that heat will
apply to a new node:

If removed_rsrc_list is empty, then the next index will be (current_maximum_index) + 1.

If removed_rsrc_list includes the value (current_maximum_index) + 1, then the next index
will be the next available index.

6. Retrieve the ID of the replacement bare-metal node:

$ openstack baremetal node list

7. Update the capability of the replacement node with the new index:

$ openstack baremetal node set --property capabilities='node:<role>-
<index>,boot_option:local' <node>

Replace <role> with the name of the role that you want to replace the node for, for
example, compute.

Replace <index> with the index calculated in step 5.

Replace <node> with the ID of the bare metal node.

The Compute scheduler uses the node capability to match the node on deployment.

8. Assign a hostname to the new node by adding the index to the HostnameMap configuration, for
example:

parameter_defaults:
 ControllerSchedulerHints:
 'capabilities:node': 'controller-%index%'
 ComputeSchedulerHints:
 'capabilities:node': 'compute-%index%'
 HostnameMap:
 overcloud-controller-0: overcloud-controller-prod-123-0
 overcloud-controller-1: overcloud-controller-prod-456-0 1
 overcloud-controller-2: overcloud-controller-prod-789-0
 overcloud-controller-3: overcloud-controller-prod-456-0 2
 overcloud-compute-0: overcloud-compute-prod-abc-0
 overcloud-compute-3: overcloud-compute-prod-abc-3 3
 overcloud-compute-8: overcloud-compute-prod-abc-3 4

CHAPTER 17. REPLACING CONTROLLER NODES

215

1

2

3

4

1

2

Node that you are removing and replacing with the new node.

New node.

Node that you are removing and replacing with the new node.

New node.

NOTE

Do not delete the mapping for the removed node from HostnameMap.

9. Add the IP address for the replacement node to the end of each network IP address list in your
network IP address mapping file, ips-from-pool-all.yaml. In the following example, the IP
address for the new index, overcloud-controller-3, is added to the end of the IP address list for
each ControllerIPs network, and is assigned the same IP address as overcloud-controller-1
because it replaces overcloud-controller-1. The IP address for the new index, overcloud-
compute-8, is also added to the end of the IP address list for each ComputeIPs network, and is
assigned the same IP address as the index it replaces, overcloud-compute-3:

parameter_defaults:
 ControllerIPs:
 ...
 internal_api:
 - 192.168.1.10 1
 - 192.168.1.11 2
 - 192.168.1.12 3
 - 192.168.1.11 4
 ...
 storage:
 - 192.168.2.10
 - 192.168.2.11
 - 192.168.2.12
 - 192.168.2.11
 ...

 ComputeIPs:
 ...
 internal_api:
 - 172.17.0.10 5
 - 172.17.0.11 6
 - 172.17.0.11 7
 ...
 storage:
 - 172.17.0.10
 - 172.17.0.11
 - 172.17.0.11
 ...

IP address assigned to index 0, host name overcloud-controller-prod-123-0.

IP address assigned to index 1, host name overcloud-controller-prod-456-0. This node is
replaced by index 3. Do not remove this entry.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

216

3

4

5

6

7

IP address assigned to index 2, host name overcloud-controller-prod-789-0.

IP address assigned to index 3, host name overcloud-controller-prod-456-0. This is the
new node that replaces index 1.

IP address assigned to index 0, host name overcloud-compute-0.

IP address assigned to index 1, host name overcloud-compute-3. This node is replaced by
index 2. Do not remove this entry.

IP address assigned to index 2, host name overcloud-compute-8. This is the new node
that replaces index 1.

17.7. TRIGGERING THE CONTROLLER NODE REPLACEMENT

Complete the following steps to remove the old Controller node and replace it with a new Controller
node.

Procedure

1. Determine the UUID of the Controller node that you want to remove and store it in the
<NODEID> variable. Ensure that you replace <node_name> with the name of the node that you
want to remove:

(undercloud)[stack@director ~]$ NODEID=$(openstack server list -f value -c ID --name
<node_name>)

2. To identify the Heat resource ID, enter the following command:

(undercloud)[stack@director ~]$ openstack stack resource show overcloud ControllerServers
-f json -c attributes | jq --arg NODEID "$NODEID" -c '.attributes.value | keys[] as $k | if .[$k]
== $NODEID then "Node index \($k) for \(.[$k])" else empty end'

3. Create the following environment file ~/templates/remove-controller.yaml and include the
node index of the Controller node that you want to remove:

parameters:
 ControllerRemovalPolicies:
 [{'resource_list': ['<node_index>']}]

4. Enter the overcloud deployment command, and include the remove-controller.yaml
environment file and any other environment files relevant to your environment:

(undercloud) $ openstack overcloud deploy --templates \
 -e /home/stack/templates/remove-controller.yaml \
 [OTHER OPTIONS]

NOTE

CHAPTER 17. REPLACING CONTROLLER NODES

217

NOTE

Include -e ~/templates/remove-controller.yaml only for this instance of the
deployment command. Remove this environment file from subsequent
deployment operations.

Include ~/templates/bootstrap-controller.yaml if you are replacing a
bootstrap Controller node and want to keep the node name. For more
information, see Replacing a bootstrap Controller node .

5. Director removes the old node, creates a new node, and updates the overcloud stack. You can
check the status of the overcloud stack with the following command:

(undercloud)$ openstack stack list --nested

6. When the deployment command completes, confirm that the old node is replaced with the new
node:

(undercloud) $ openstack server list -c Name -c Networks
+------------------------+-----------------------+
| Name | Networks |
+------------------------+-----------------------+
overcloud-compute-0	ctlplane=192.168.0.44
overcloud-controller-0	ctlplane=192.168.0.47
overcloud-controller-2	ctlplane=192.168.0.46
overcloud-controller-3	ctlplane=192.168.0.48
+------------------------+-----------------------+

The new node now hosts running control plane services.

17.8. CLEANING UP AFTER CONTROLLER NODE REPLACEMENT

After you complete the node replacement, complete the following steps to finalize the Controller
cluster.

Procedure

1. Log into a Controller node.

2. Enable Pacemaker management of the Galera cluster and start Galera on the new node:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource refresh galera-bundle
[heat-admin@overcloud-controller-0 ~]$ sudo pcs resource manage galera-bundle

3. Perform a final status check to ensure that the services are running correctly:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs status

NOTE

If any services have failed, use the pcs resource refresh command to resolve
and restart the failed services.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

218

4. Exit to director:

[heat-admin@overcloud-controller-0 ~]$ exit

5. Source the overcloudrc file so that you can interact with the overcloud:

$ source ~/overcloudrc

6. Check the network agents in your overcloud environment:

(overcloud) $ openstack network agent list

7. If any agents appear for the old node, remove them:

(overcloud) $ for AGENT in $(openstack network agent list --host overcloud-controller-
1.localdomain -c ID -f value) ; do openstack network agent delete $AGENT ; done

8. If necessary, add your router to the L3 agent host on the new node. Use the following example
command to add a router named r1 to the L3 agent using the UUID 2d1c1dc1-d9d4-4fa9-b2c8-
f29cd1a649d4:

(overcloud) $ openstack network agent add router --l3 2d1c1dc1-d9d4-4fa9-b2c8-
f29cd1a649d4 r1

9. Clean the cinder services.

a. List the cinder services:

(overcloud) $ openstack volume service list

b. Log in to a controller node, connect to the cinder-api container and use the cinder-
manage service remove command to remove leftover services:

[heat-admin@overcloud-controller-0 ~]$ sudo podman exec -it cinder_api cinder-manage
service remove cinder-backup <host>
[heat-admin@overcloud-controller-0 ~]$ sudo podman exec -it cinder_api cinder-manage
service remove cinder-scheduler <host>

10. Clean the RabbitMQ cluster.

a. Log into a Controller node.

b. Use the podman exec command to launch bash, and verify the status of the RabbitMQ
cluster:

[heat-admin@overcloud-controller-0 ~]$ podman exec -it rabbitmq-bundle-podman-0
bash
[heat-admin@overcloud-controller-0 ~]$ rabbitmqctl cluster_status

c. Use the rabbitmqctl command to forget the replaced controller node:

[heat-admin@overcloud-controller-0 ~]$ rabbitmqctl forget_cluster_node <node_name>

11. If you replaced a bootstrap Controller node, you must remove the environment file

CHAPTER 17. REPLACING CONTROLLER NODES

219

11. If you replaced a bootstrap Controller node, you must remove the environment file
~/templates/bootstrap-controller.yaml after the replacement process, or delete the
pacemaker_short_bootstrap_node_name and mysql_short_bootstrap_node_name
parameters from your existing environment file. This step prevents director from attempting to
override the Controller node name in subsequent replacements. For more information, see
Replacing a bootstrap controller node .

Red Hat OpenStack Platform 16.1 Director Installation and Usage

220

CHAPTER 18. REBOOTING NODES
You might need to reboot the nodes in the undercloud and overcloud. Use the following procedures to
understand how to reboot different node types.

If you reboot all nodes in one role, it is advisable to reboot each node individually. If you reboot
all nodes in a role simultaneously, service downtime can occur during the reboot operation.

If you reboot all nodes in your OpenStack Platform environment, reboot the nodes in the
following sequential order:

Recommended node reboot order

1. Reboot the undercloud node.

2. Reboot Controller and other composable nodes.

3. Reboot standalone Ceph MON nodes.

4. Reboot Ceph Storage nodes.

5. Reboot Object Storage service (swift) nodes.

6. Reboot Compute nodes.

18.1. REBOOTING THE UNDERCLOUD NODE

Complete the following steps to reboot the undercloud node.

Procedure

1. Log in to the undercloud as the stack user.

2. Reboot the undercloud:

$ sudo reboot

3. Wait until the node boots.

18.2. REBOOTING CONTROLLER AND COMPOSABLE NODES

Reboot Controller nodes and standalone nodes based on composable roles, and exclude Compute
nodes and Ceph Storage nodes.

Procedure

1. Log in to the node that you want to reboot.

2. Optional: If the node uses Pacemaker resources, stop the cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs cluster stop

3. Reboot the node:

CHAPTER 18. REBOOTING NODES

221

[heat-admin@overcloud-controller-0 ~]$ sudo reboot

4. Wait until the node boots.

Verfication

1. Verify that the services are enabled.

a. If the node uses Pacemaker services, check that the node has rejoined the cluster:

[heat-admin@overcloud-controller-0 ~]$ sudo pcs status

b. If the node uses Systemd services, check that all services are enabled:

[heat-admin@overcloud-controller-0 ~]$ sudo systemctl status

c. If the node uses containerized services, check that all containers on the node are active:

[heat-admin@overcloud-controller-0 ~]$ sudo podman ps

18.3. REBOOTING STANDALONE CEPH MON NODES

Complete the following steps to reboot standalone Ceph MON nodes.

Procedure

1. Log in to a Ceph MON node.

2. Reboot the node:

$ sudo reboot

3. Wait until the node boots and rejoins the MON cluster.

Repeat these steps for each MON node in the cluster.

18.4. REBOOTING A CEPH STORAGE (OSD) CLUSTER

Complete the following steps to reboot a cluster of Ceph Storage (OSD) nodes.

Procedure

1. Log in to a Ceph MON or Controller node and disable Ceph Storage cluster rebalancing
temporarily:

$ sudo podman exec -it ceph-mon-controller-0 ceph osd set noout
$ sudo podman exec -it ceph-mon-controller-0 ceph osd set norebalance

NOTE

Red Hat OpenStack Platform 16.1 Director Installation and Usage

222

NOTE

If you have a multistack or distributed compute node (DCN) architecture, you
must specify the cluster name when you set the noout and norebalance flags.
For example: sudo podman exec -it ceph-mon-controller-0 ceph osd set
noout --cluster <cluster_name>

2. Select the first Ceph Storage node that you want to reboot and log in to the node.

3. Reboot the node:

$ sudo reboot

4. Wait until the node boots.

5. Log in to the node and check the cluster status:

$ sudo podman exec -it ceph-mon-controller-0 ceph status

Check that the pgmap reports all pgs as normal (active+clean).

6. Log out of the node, reboot the next node, and check its status. Repeat this process until you
have rebooted all Ceph Storage nodes.

7. When complete, log in to a Ceph MON or Controller node and re-enable cluster rebalancing:

$ sudo podman exec -it ceph-mon-controller-0 ceph osd unset noout
$ sudo podman exec -it ceph-mon-controller-0 ceph osd unset norebalance

NOTE

If you have a multistack or distributed compute node (DCN) architecture, you
must specify the cluster name when you unset the noout and norebalance flags.
For example: sudo podman exec -it ceph-mon-controller-0 ceph osd set
noout --cluster <cluster_name>

8. Perform a final status check to verify that the cluster reports HEALTH_OK:

$ sudo podman exec -it ceph-mon-controller-0 ceph status

18.5. REBOOTING OBJECT STORAGE SERVICE (SWIFT) NODES

The following procedure reboots Object Storage service (swift) nodes. Complete the following steps for
every Object Storage node in your cluster.

Procedure

1. Log in to an Object Storage node.

2. Reboot the node:

$ sudo reboot

CHAPTER 18. REBOOTING NODES

223

3. Wait until the node boots.

4. Repeat the reboot for each Object Storage node in the cluster.

18.6. REBOOTING COMPUTE NODES

Complete the following steps to reboot Compute nodes. To ensure minimal downtime of instances in
your Red Hat OpenStack Platform environment, this procedure also includes instructions about
migrating instances from the Compute node that you want to reboot. This involves the following
workflow:

Decide whether to migrate instances to another Compute node before rebooting the node.

Select and disable the Compute node you want to reboot so that it does not provision new
instances.

Migrate the instances to another Compute node.

Reboot the empty Compute node.

Enable the empty Compute node.

Prerequisites

Before you reboot the Compute node, you must decide whether to migrate instances to another
Compute node while the node is rebooting.

Review the list of migration constraints that you might run into when migrating virtual machine instances
between Compute nodes. For more information, see Migration constraints in Configuring the Compute
Service for Instance Creation.

If you cannot migrate the instances, you can set the following core template parameters to control the
state of the instances after the Compute node reboots:

NovaResumeGuestsStateOnHostBoot

Determines whether to return instances to the same state on the Compute node after reboot. When
set to False, the instances remain down and you must start them manually. Default value is: False

NovaResumeGuestsShutdownTimeout

Number of seconds to wait for an instance to shut down before rebooting. It is not recommended to
set this value to 0. Default value is: 300

For more information about overcloud parameters and their usage, see Overcloud Parameters.

Procedure

1. Log in to the undercloud as the stack user.

2. List all Compute nodes and their UUIDs:

$ source ~/stackrc
(undercloud) $ openstack server list --name compute

Identify the UUID of the Compute node that you want to reboot.

3. From the undercloud, select a Compute node. Disable the node:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

224

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/configuring_the_compute_service_for_instance_creation/assembly_managing-instances_managing-instances#con_migration-constraints_migrating-instances
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/overcloud_parameters/index#compute-nova-parameters

$ source ~/overcloudrc
(overcloud) $ openstack compute service list
(overcloud) $ openstack compute service set <hostname> nova-compute --disable

4. List all instances on the Compute node:

(overcloud) $ openstack server list --host <hostname> --all-projects

5. If you decide not to migrate instances, skip to this step.

6. If you decide to migrate the instances to another Compute node, use one of the following
commands:

Migrate the instance to a different host:

(overcloud) $ openstack server migrate <instance_id> --live <target_host> --wait

Let nova-scheduler automatically select the target host:

(overcloud) $ nova live-migration <instance_id>

Live migrate all instances at once:

$ nova host-evacuate-live <hostname>

NOTE

The nova command might cause some deprecation warnings, which are safe
to ignore.

7. Wait until migration completes.

8. Confirm that the migration was successful:

(overcloud) $ openstack server list --host <hostname> --all-projects

9. Continue to migrate instances until none remain on the chosen Compute node.

10. Log in to the Compute node and reboot the node:

[heat-admin@overcloud-compute-0 ~]$ sudo reboot

11. Wait until the node boots.

12. Re-enable the Compute node:

$ source ~/overcloudrc
(overcloud) $ openstack compute service set <hostname> nova-compute --enable

13. Check that the Compute node is enabled:

(overcloud) $ openstack compute service list

CHAPTER 18. REBOOTING NODES

225

CHAPTER 19. SHUTTING DOWN AND STARTING UP THE
UNDERCLOUD AND OVERCLOUD

If you must perform maintenance on the undercloud and overcloud, you must shut down and start up
the undercloud and overcloud nodes in a specific order to ensure minimal issues when your start your
overcloud.

Prerequisites

A running undercloud and overcloud

19.1. UNDERCLOUD AND OVERCLOUD SHUTDOWN ORDER

To shut down the Red Hat OpenStack Platform environment, you must shut down the overcloud and
undercloud in the following order:

1. Shut down instances on overcloud Compute nodes

2. Shut down Compute nodes

3. Stop all high availability and OpenStack Platform services on Controller nodes

4. Shut down Ceph Storage nodes

5. Shut down Controller nodes

6. Shut down the undercloud

19.2. SHUTTING DOWN INSTANCES ON OVERCLOUD COMPUTE
NODES

As a part of shutting down the Red Hat OpenStack Platform environment, shut down all instances on
Compute nodes before shutting down the Compute nodes.

Prerequisites

An overcloud with active Compute services

Procedure

1. Log in to the undercloud as the stack user.

2. Source the credentials file for your overcloud:

$ source ~/overcloudrc

3. View running instances in the overcloud:

$ openstack server list --all-projects

4. Stop each instance in the overcloud:

$ openstack server stop <INSTANCE>

Red Hat OpenStack Platform 16.1 Director Installation and Usage

226

Repeat this step for each instance until you stop all instances in the overcloud.

19.3. SHUTTING DOWN COMPUTE NODES

As a part of shutting down the Red Hat OpenStack Platform environment, log in to and shut down each
Compute node.

Prerequisites

Shut down all instances on the Compute nodes

Procedure

1. Log in as the root user to a Compute node.

2. Shut down the node:

shutdown -h now

3. Perform these steps for each Compute node until you shut down all Compute nodes.

19.4. STOPPING SERVICES ON CONTROLLER NODES

As a part of shutting down the Red Hat OpenStack Platform environment, stop services on the
Controller nodes before shutting down the nodes. This includes Pacemaker and systemd services.

Prerequisites

An overcloud with active Pacemaker services

Procedure

1. Log in as the root user to a Controller node.

2. Stop the Pacemaker cluster.

pcs cluster stop --all

This command stops the cluster on all nodes.

3. Wait until the Pacemaker services stop and check that the services stopped.

a. Check the Pacemaker status:

pcs status

b. Check that no Pacemaker services are running in Podman:

podman ps --filter "name=.*-bundle.*"

4. Stop the Red Hat OpenStack Platform services:

CHAPTER 19. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD

227

systemctl stop 'tripleo_*'

5. Wait until the services stop and check that services are no longer running in Podman:

podman ps

19.5. SHUTTING DOWN CEPH STORAGE NODES

As a part of shutting down the Red Hat OpenStack Platform environment, disable Ceph Storage
services then log in to and shut down each Ceph Storage node.

Prerequisites

A healthy Ceph Storage cluster

Ceph MON services are running on standalone Ceph MON nodes or on Controller nodes

Procedure

1. Log in as the root user to a node that runs Ceph MON services, such as a Controller node or a
standalone Ceph MON node.

2. Check the health of the cluster. In the following example, the podman command runs a status
check within a Ceph MON container on a Controller node:

sudo podman exec -it ceph-mon-controller-0 ceph status

Ensure that the status is HEALTH_OK.

3. Set the noout, norecover, norebalance, nobackfill, nodown, and pause flags for the cluster.
In the following example, the podman commands set these flags through a Ceph MON
container on a Controller node:

sudo podman exec -it ceph-mon-controller-0 ceph osd set noout
sudo podman exec -it ceph-mon-controller-0 ceph osd set norecover
sudo podman exec -it ceph-mon-controller-0 ceph osd set norebalance
sudo podman exec -it ceph-mon-controller-0 ceph osd set nobackfill
sudo podman exec -it ceph-mon-controller-0 ceph osd set nodown
sudo podman exec -it ceph-mon-controller-0 ceph osd set pause

4. Shut down each Ceph Storage node:

a. Log in as the root user to a Ceph Storage node.

b. Shut down the node:

shutdown -h now

c. Perform these steps for each Ceph Storage node until you shut down all Ceph Storage
nodes.

5. Shut down any standalone Ceph MON nodes:

a. Log in as the root user to a standalone Ceph MON node.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

228

b. Shut down the node:

shutdown -h now

c. Perform these steps for each standalone Ceph MON node until you shut down all
standalone Ceph MON nodes.

Additional resources

"What is the procedure to shutdown and bring up the entire ceph cluster?"

19.6. SHUTTING DOWN CONTROLLER NODES

As a part of shutting down the Red Hat OpenStack Platform environment, log in to and shut down each
Controller node.

Prerequisites

Stop the Pacemaker cluster

Stop all Red Hat OpenStack Platform services on the Controller nodes

Procedure

1. Log in as the root user to a Controller node.

2. Shut down the node:

shutdown -h now

3. Perform these steps for each Controller node until you shut down all Controller nodes.

19.7. SHUTTING DOWN THE UNDERCLOUD

As a part of shutting down the Red Hat OpenStack Platform environment, log in to the undercloud node
and shut down the undercloud.

Prerequisites

A running undercloud

Procedure

1. Log in to the undercloud as the stack user.

2. Shut down the undercloud:

$ sudo shutdown -h now

19.8. PERFORMING SYSTEM MAINTENANCE

After you completely shut down the undercloud and overcloud, perform any maintenance to the

CHAPTER 19. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD

229

https://access.redhat.com/solutions/2139301

After you completely shut down the undercloud and overcloud, perform any maintenance to the
systems in your environment and then start up the undercloud and overcloud.

19.9. UNDERCLOUD AND OVERCLOUD STARTUP ORDER

To start the Red Hat OpenStack Platform environment, you must start the undercloud and overcloud in
the following order:

1. Start the undercloud

2. Start Controller nodes

3. Start Ceph Storage nodes

4. Start Compute nodes

5. Start instances on overcloud Compute nodes

19.10. STARTING THE UNDERCLOUD

As a part of starting the Red Hat OpenStack Platform environment, power on the undercloud node, log
in to the undercloud, and check the undercloud services.

Prerequisites

A powered down undercloud

Procedure

1. Power on the undercloud and wait until the undercloud boots.

Verification

1. Log in to the undercloud as the stack user.

2. Check the services on the undercloud:

$ systemctl list-units 'tripleo_*'

3. Source the credential file for your undercloud and run the validation command to check that all
services and containers are active and healthy.

$ source stackrc
$ openstack tripleo validator run --validation service-status --limit undercloud

Additional resources

Using the validation framework

19.11. STARTING CONTROLLER NODES

As a part of starting the Red Hat OpenStack Platform environment, power on each Controller node and
check the non-Pacemaker services on the node.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

230

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#using-the-validation-framework

Prerequisites

Powered down Controller nodes

Procedure

1. Power on each Controller node.

Verification

1. Log in to each Controller node as the root user.

2. Check the services on the Controller node:

$ systemctl -t service

Only non-Pacemaker based services are running.

3. Wait until the Pacemaker services start and check that the services started:

$ pcs status

NOTE

If your environment uses Instance HA, the Pacemaker resources do not start until
you start the Compute nodes or perform a manual unfence operation with the
pcs stonith confirm <compute_node> command. You must run this command
on each Compute node that uses Instance HA.

19.12. STARTING CEPH STORAGE NODES

As a part of starting the Red Hat OpenStack Platform environment, power on the Ceph MON and Ceph
Storage nodes and enable Ceph Storage services.

Prerequisites

A powered down Ceph Storage cluster

Ceph MON services are enabled on powered down standalone Ceph MON nodes or on
powered on Controller nodes

Procedure

1. If your environment has standalone Ceph MON nodes, power on each Ceph MON node.

2. Power on each Ceph Storage node.

3. Log in as the root user to a node that runs Ceph MON services, such as a Controller node or a
standalone Ceph MON node.

4. Check the status of the cluster nodes. In the following example, the podman command runs a
status check within a Ceph MON container on a Controller node:

sudo podman exec -it ceph-mon-controller-0 ceph status

CHAPTER 19. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD

231

Ensure that each node is powered on and connected.

5. Unset the noout, norecover, norebalance, nobackfill, nodown and pause flags for the cluster.
In the following example, the podman commands unset these flags through a Ceph MON
container on a Controller node:

sudo podman exec -it ceph-mon-controller-0 ceph osd unset noout
sudo podman exec -it ceph-mon-controller-0 ceph osd unset norecover
sudo podman exec -it ceph-mon-controller-0 ceph osd unset norebalance
sudo podman exec -it ceph-mon-controller-0 ceph osd unset nobackfill
sudo podman exec -it ceph-mon-controller-0 ceph osd unset nodown
sudo podman exec -it ceph-mon-controller-0 ceph osd unset pause

Verification

1. Check the health of the cluster. In the following example, the podman command runs a status
check within a Ceph MON container on a Controller node:

sudo podman exec -it ceph-mon-controller-0 ceph status

Ensure the status is HEALTH_OK.

Additional resources

"What is the procedure to shutdown and bring up the entire ceph cluster?"

19.13. STARTING COMPUTE NODES

As a part of starting the Red Hat OpenStack Platform environment, power on each Compute node and
check the services on the node.

Prerequisites

Powered down Compute nodes

Procedure

1. Power on each Compute node.

Verification

1. Log in to each Compute as the root user.

2. Check the services on the Compute node:

$ systemctl -t service

19.14. STARTING INSTANCES ON OVERCLOUD COMPUTE NODES

As a part of starting the Red Hat OpenStack Platform environment, start the instances on on Compute
nodes.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

232

https://access.redhat.com/solutions/2139301

Prerequisites

An active overcloud with active nodes

Procedure

1. Log in to the undercloud as the stack user.

2. Source the credentials file for your overcloud:

$ source ~/overcloudrc

3. View running instances in the overcloud:

$ openstack server list --all-projects

4. Start an instance in the overcloud:

$ openstack server start <INSTANCE>

CHAPTER 19. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD

233

CHAPTER 20. CONFIGURING CUSTOM SSL/TLS
CERTIFICATES

You can manually configure the undercloud to use SSL/TLS for communication over public endpoints.
When you manually configure undercloud endpoints with SSL/TLS, you are creating secure endpoints as
a proof-of-concept. Red Hat recommends using a certificate authority solution.

When you use a certificate authority (CA) solution, you have production ready solutions such as a
certificate renewals, certificate revocation lists (CRLs), and industry accepted cryptography. For
information on using Red Hat Identity Manager (IdM) as a CA, see Implementing TLS-e with Ansible .

If want to you use a SSL certificate with your own certificate authority, you must complete the following
configuration steps.

20.1. INITIALIZING THE SIGNING HOST

The signing host is the host that generates and signs new certificates with a certificate authority. If you
have never created SSL certificates on the chosen signing host, you might need to initialize the host so
that it can sign new certificates.

Procedure

1. The /etc/pki/CA/index.txt file contains records of all signed certificates. Ensure that the
filesystem path and index.txt file are present:

$ sudo mkdir -p /etc/pki/CA
$ sudo touch /etc/pki/CA/index.txt

2. The /etc/pki/CA/serial file identifies the next serial number to use for the next certificate to
sign. Check if this file exists. If the file does not exist, create a new file with a new starting value:

$ echo '1000' | sudo tee /etc/pki/CA/serial

20.2. CREATING A CERTIFICATE AUTHORITY

Normally you sign your SSL/TLS certificates with an external certificate authority. In some situations, you
might want to use your own certificate authority. For example, you might want to have an internal-only
certificate authority.

Procedure

1. Generate a key and certificate pair to act as the certificate authority:

$ openssl genrsa -out ca.key.pem 4096
$ openssl req -key ca.key.pem -new -x509 -days 7300 -extensions v3_ca -out ca.crt.pem

2. The openssl req command requests certain details about your authority. Enter these details at
the prompt. These commands create a certificate authority file called ca.crt.pem.

3. Set the certificate location as the value for the PublicTLSCAFile parameter in the enable-
tls.yaml file. When you set the certificate location as the value for the PublicTLSCAFile
parameter, you ensure that the CA certificate path is added to the clouds.yaml authentication

Red Hat OpenStack Platform 16.1 Director Installation and Usage

234

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/advanced_overcloud_customization/assembly_enabling-ssl-tls-on-internal-and-public-endpoints-with-identity-management#proc_implementing-tls-e-with-ansible_enabling-ssl-tls-on-internal-and-public-endpoints-with-identity-management

file.

parameter_defaults:
 PublicTLSCAFile: /etc/pki/ca-trust/source/anchors/cacert.pem

20.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS

For any external clients aiming to communicate using SSL/TLS, copy the certificate authority file to
each client that requires access to your Red Hat OpenStack Platform environment.

Procedure

1. Copy the certificate authority to the client system:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/

2. After you copy the certificate authority file to each client, run the following command on each
client to add the certificate to the certificate authority trust bundle:

$ sudo update-ca-trust extract

20.4. CREATING AN SSL/TLS KEY

Enabling SSL/TLS on an OpenStack environment requires an SSL/TLS key to generate your
certificates.

Procedure

1. Run the following command to generate the SSL/TLS key (server.key.pem):

$ openssl genrsa -out server.key.pem 2048

20.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST

Complete the following steps to create a certificate signing request.

Procedure

1. Copy the default OpenSSL configuration file:

$ cp /etc/pki/tls/openssl.cnf .

2. Edit the new openssl.cnf file and configure the SSL parameters that you want to use for
director. An example of the types of parameters to modify include:

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
countryName = Country Name (2 letter code)

CHAPTER 20. CONFIGURING CUSTOM SSL/TLS CERTIFICATES

235

countryName_default = AU
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Queensland
localityName = Locality Name (eg, city)
localityName_default = Brisbane
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Red Hat
commonName = Common Name
commonName_default = 192.168.0.1
commonName_max = 64

[v3_req]
Extensions to add to a certificate request
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]
IP.1 = 192.168.0.1
DNS.1 = instack.localdomain
DNS.2 = vip.localdomain
DNS.3 = 192.168.0.1

Set the commonName_default to one of the following entries:

If you are using an IP address to access director over SSL/TLS, use the
undercloud_public_host parameter in the undercloud.conf file.

If you are using a fully qualified domain name to access director over SSL/TLS, use the
domain name.

Edit the alt_names section to include the following entries:

IP - A list of IP addresses that clients use to access director over SSL.

DNS - A list of domain names that clients use to access director over SSL. Also include the
Public API IP address as a DNS entry at the end of the alt_names section.

NOTE

For more information about openssl.cnf, run the man openssl.cnf command.

3. Run the following command to generate a certificate signing request (server.csr.pem):

$ openssl req -config openssl.cnf -key server.key.pem -new -out server.csr.pem

Ensure that you include your OpenStack SSL/TLS key with the -key option.

This command generates a server.csr.pem file, which is the certificate signing request. Use this file to
create your OpenStack SSL/TLS certificate.

20.6. CREATING THE SSL/TLS CERTIFICATE

To generate the SSL/TLS certificate for your OpenStack environment, the following files must be
present:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

236

openssl.cnf

The customized configuration file that specifies the v3 extensions.

server.csr.pem

The certificate signing request to generate and sign the certificate with a certificate authority.

ca.crt.pem

The certificate authority, which signs the certificate.

ca.key.pem

The certificate authority private key.

Procedure

1. Run the following command to create a certificate for your undercloud or overcloud:

$ sudo openssl ca -config openssl.cnf -extensions v3_req -days 3650 -in server.csr.pem -out
server.crt.pem -cert ca.crt.pem -keyfile ca.key.pem

This command uses the following options:

-config

Use a custom configuration file, which is the openssl.cnf file with v3 extensions.

-extensions v3_req

Enabled v3 extensions.

-days

Defines how long in days until the certificate expires.

-in'

The certificate signing request.

-out

The resulting signed certificate.

-cert

The certificate authority file.

-keyfile

The certificate authority private key.

This command creates a new certificate named server.crt.pem. Use this certificate in conjunction with
your OpenStack SSL/TLS key

20.7. ADDING THE CERTIFICATE TO THE UNDERCLOUD

Complete the following steps to add your OpenStack SSL/TLS certificate to the undercloud trust
bundle.

Procedure

1. Run the following command to combine the certificate and key:

$ cat server.crt.pem server.key.pem > undercloud.pem

This command creates a undercloud.pem file.

CHAPTER 20. CONFIGURING CUSTOM SSL/TLS CERTIFICATES

237

2. Copy the undercloud.pem file to a location within your /etc/pki directory and set the necessary
SELinux context so that HAProxy can read it:

$ sudo mkdir /etc/pki/undercloud-certs
$ sudo cp ~/undercloud.pem /etc/pki/undercloud-certs/.
$ sudo semanage fcontext -a -t etc_t "/etc/pki/undercloud-certs(/.*)?"
$ sudo restorecon -R /etc/pki/undercloud-certs

3. Add the undercloud.pem file location to the undercloud_service_certificate option in the
undercloud.conf file:

undercloud_service_certificate = /etc/pki/undercloud-certs/undercloud.pem

Do not set or enable the generate_service_certificate and certificate_generation_ca
parameters. Director uses these parameters to automatically generate a certificate instead of
using the undercloud.pem certificate you created manually.

4. Add the certificate authority that signed the certificate to the list of trusted Certificate
Authorities on the undercloud so that different services within the undercloud have access to
the certificate authority:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

To verify the certificate authority was added to the undercloud, use openssl to check the trust
bundle:

$ openssl crl2pkcs7 -nocrl -certfile /etc/pki/tls/certs/ca-bundle.crt | openssl pkcs7 -print_certs
-text | grep <CN of the CA issuer> -A 10 -B 10

Replace <CN of the CA issuer> with the common name of the issuer of the CA. This
command outputs the main certificate details, including the validity dates.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

238

CHAPTER 21. ADDITIONAL INTROSPECTION OPERATIONS
In some situations, you might want to perform introspection outside of the standard overcloud
deployment workflow. For example, you might want to introspect new nodes or refresh introspection
data after replacing hardware on existing unused nodes.

21.1. PERFORMING INDIVIDUAL NODE INTROSPECTION

To perform a single introspection on an available node, set the node to management mode and perform
the introspection.

Procedure

1. Set all nodes to a manageable state:

(undercloud) $ openstack baremetal node manage [NODE UUID]

2. Perform the introspection:

(undercloud) $ openstack overcloud node introspect [NODE UUID] --provide

After the introspection completes, the node changes to an available state.

21.2. PERFORMING NODE INTROSPECTION AFTER INITIAL
INTROSPECTION

After an initial introspection, all nodes enter an available state due to the --provide option. To perform
introspection on all nodes after the initial introspection, set the node to management mode and
perform the introspection.

Procedure

1. Set all nodes to a manageable state

(undercloud) $ for node in $(openstack baremetal node list --fields uuid -f value) ; do
openstack baremetal node manage $node ; done

2. Run the bulk introspection command:

(undercloud) $ openstack overcloud node introspect --all-manageable --provide

After the introspection completes, all nodes change to an available state.

21.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE
INFORMATION

Network introspection retrieves link layer discovery protocol (LLDP) data from network switches. The
following commands show a subset of LLDP information for all interfaces on a node, or full information
for a particular node and interface. This can be useful for troubleshooting. Director enables LLDP data
collection by default.

CHAPTER 21. ADDITIONAL INTROSPECTION OPERATIONS

239

Procedure

1. To get a list of interfaces on a node, run the following command:

(undercloud) $ openstack baremetal introspection interface list [NODE UUID]

For example:

(undercloud) $ openstack baremetal introspection interface list c89397b7-a326-41a0-907d-
79f8b86c7cd9
+-----------+-------------------+------------------------+-------------------+----------------+
| Interface | MAC Address | Switch Port VLAN IDs | Switch Chassis ID | Switch Port ID |
+-----------+-------------------+------------------------+-------------------+----------------+
p2p2	00:0a:f7:79:93:19	[103, 102, 18, 20, 42]	64:64:9b:31:12:00	510
p2p1	00:0a:f7:79:93:18	[101]	64:64:9b:31:12:00	507
em1	c8:1f:66:c7:e8:2f	[162]	08:81:f4:a6:b3:80	515
em2	c8:1f:66:c7:e8:30	[182, 183]	08:81:f4:a6:b3:80	559
+-----------+-------------------+------------------------+-------------------+----------------+

2. To view interface data and switch port information, run the following command:

(undercloud) $ openstack baremetal introspection interface show [NODE UUID]
[INTERFACE]

For example:

(undercloud) $ openstack baremetal introspection interface show c89397b7-a326-41a0-
907d-79f8b86c7cd9 p2p1
+--------------------------------------+--
--+
| Field | Value
|
+--------------------------------------+--
--+
| interface | p2p1
|
| mac | 00:0a:f7:79:93:18
|
| node_ident | c89397b7-a326-41a0-907d-79f8b86c7cd9
|
| switch_capabilities_enabled | [u'Bridge', u'Router']
|
| switch_capabilities_support | [u'Bridge', u'Router']
|
| switch_chassis_id | 64:64:9b:31:12:00
|
| switch_port_autonegotiation_enabled | True
|
| switch_port_autonegotiation_support | True
|
| switch_port_description | ge-0/0/2.0
|
| switch_port_id | 507
|
| switch_port_link_aggregation_enabled | False

Red Hat OpenStack Platform 16.1 Director Installation and Usage

240

|
| switch_port_link_aggregation_id | 0
|
| switch_port_link_aggregation_support | True
|
| switch_port_management_vlan_id | None
|
| switch_port_mau_type | Unknown
|
| switch_port_mtu | 1514
|
| switch_port_physical_capabilities | [u'1000BASE-T fdx', u'100BASE-TX fdx', u'100BASE-
TX hdx', u'10BASE-T fdx', u'10BASE-T hdx', u'Asym and Sym PAUSE fdx'] |
| switch_port_protocol_vlan_enabled | None
|
| switch_port_protocol_vlan_ids | None
|
| switch_port_protocol_vlan_support | None
|
| switch_port_untagged_vlan_id | 101
|
| switch_port_vlan_ids | [101]
|
| switch_port_vlans | [{u'name': u'RHOS13-PXE', u'id': 101}]
|
| switch_protocol_identities | None
|
| switch_system_name | rhos-compute-node-sw1
|
+--------------------------------------+--
--+

21.4. RETRIEVING HARDWARE INTROSPECTION DETAILS

The Bare Metal service hardware-inspection-extras feature is enabled by default, and you can use it to
retrieve hardware details for overcloud configuration. For more information about the
inspection_extras parameter in the undercloud.conf file, see Configuring the Director.

For example, the numa_topology collector is part of the hardware-inspection extras and includes the
following information for each NUMA node:

RAM (in kilobytes)

Physical CPU cores and their sibling threads

NICs associated with the NUMA node

Procedure

To retrieve the information listed above, substitute <UUID> with the UUID of the bare-metal
node to complete the following command:

openstack baremetal introspection data save <UUID> | jq .numa_topology

The following example shows the retrieved NUMA information for a bare-metal node:

CHAPTER 21. ADDITIONAL INTROSPECTION OPERATIONS

241

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/installing-the-undercloud#configuring-the-director

{
 "cpus": [
 {
 "cpu": 1,
 "thread_siblings": [
 1,
 17
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 10,
 26
],
 "numa_node": 1
 },
 {
 "cpu": 0,
 "thread_siblings": [
 0,
 16
],
 "numa_node": 0
 },
 {
 "cpu": 5,
 "thread_siblings": [
 13,
 29
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 15,
 31
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 7,
 23
],
 "numa_node": 0
 },
 {
 "cpu": 1,
 "thread_siblings": [
 9,
 25
],

Red Hat OpenStack Platform 16.1 Director Installation and Usage

242

 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 6,
 22
],
 "numa_node": 0
 },
 {
 "cpu": 3,
 "thread_siblings": [
 11,
 27
],
 "numa_node": 1
 },
 {
 "cpu": 5,
 "thread_siblings": [
 5,
 21
],
 "numa_node": 0
 },
 {
 "cpu": 4,
 "thread_siblings": [
 12,
 28
],
 "numa_node": 1
 },
 {
 "cpu": 4,
 "thread_siblings": [
 4,
 20
],
 "numa_node": 0
 },
 {
 "cpu": 0,
 "thread_siblings": [
 8,
 24
],
 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 14,
 30
],

CHAPTER 21. ADDITIONAL INTROSPECTION OPERATIONS

243

 "numa_node": 1
 },
 {
 "cpu": 3,
 "thread_siblings": [
 3,
 19
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 2,
 18
],
 "numa_node": 0
 }
],
 "ram": [
 {
 "size_kb": 66980172,
 "numa_node": 0
 },
 {
 "size_kb": 67108864,
 "numa_node": 1
 }
],
 "nics": [
 {
 "name": "ens3f1",
 "numa_node": 1
 },
 {
 "name": "ens3f0",
 "numa_node": 1
 },
 {
 "name": "ens2f0",
 "numa_node": 0
 },
 {
 "name": "ens2f1",
 "numa_node": 0
 },
 {
 "name": "ens1f1",
 "numa_node": 0
 },
 {
 "name": "ens1f0",
 "numa_node": 0
 },
 {
 "name": "eno4",

Red Hat OpenStack Platform 16.1 Director Installation and Usage

244

 "numa_node": 0
 },
 {
 "name": "eno1",
 "numa_node": 0
 },
 {
 "name": "eno3",
 "numa_node": 0
 },
 {
 "name": "eno2",
 "numa_node": 0
 }
]
}

CHAPTER 21. ADDITIONAL INTROSPECTION OPERATIONS

245

CHAPTER 22. AUTOMATICALLY DISCOVERING BARE METAL
NODES

You can use auto-discovery to register overcloud nodes and generate their metadata, without the need
to create an instackenv.json file. This improvement can help to reduce the time it takes to collect
information about a node. For example, if you use auto-discovery, you do not to collate the IPMI IP
addresses and subsequently create the instackenv.json.

22.1. ENABLING AUTO-DISCOVERY

Enable and configure Bare Metal auto-discovery to automatically discover and import nodes that join
your provisioning network when booting with PXE.

Procedure

1. Enable Bare Metal auto-discovery in the undercloud.conf file:

enable_node_discovery = True
discovery_default_driver = ipmi

enable_node_discovery - When enabled, any node that boots the introspection ramdisk
using PXE is enrolled in the Bare Metal service (ironic) automatically.

discovery_default_driver - Sets the driver to use for discovered nodes. For example, ipmi.

2. Add your IPMI credentials to ironic:

a. Add your IPMI credentials to a file named ipmi-credentials.json. Replace the
SampleUsername, RedactedSecurePassword, and bmc_address values in this example
to suit your environment:

[
 {
 "description": "Set default IPMI credentials",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true}
],
 "actions": [
 {"action": "set-attribute", "path": "driver_info/ipmi_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/ipmi_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/ipmi_address",
 "value": "{data[inventory][bmc_address]}"}
]
 }
]

3. Import the IPMI credentials file into ironic:

$ openstack baremetal introspection rule import ipmi-credentials.json

22.2. TESTING AUTO-DISCOVERY

Red Hat OpenStack Platform 16.1 Director Installation and Usage

246

PXE boot a node that is connected to your provisioning network to test the Bare Metal auto-discovery
feature.

Procedure

1. Power on the required nodes.

2. Run the openstack baremetal node list command. You should see the new nodes listed in an
enrolled state:

$ openstack baremetal node list
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+
| UUID | Name | Instance UUID | Power State | Provisioning State |
Maintenance |
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+
| c6e63aec-e5ba-4d63-8d37-bd57628258e8 | None | None | power off | enroll |
False |
| 0362b7b2-5b9c-4113-92e1-0b34a2535d9b | None | None | power off | enroll |
False |
+--------------------------------------+------+---------------+-------------+--------------------+------------
-+

3. Set the resource class for each node:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node set $NODE --resource-class baremetal ; done

4. Configure the kernel and ramdisk for each node:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node manage $NODE ; done
$ openstack overcloud node configure --all-manageable

5. Set all nodes to available:

$ for NODE in `openstack baremetal node list -c UUID -f value` ; do openstack baremetal
node provide $NODE ; done

22.3. USING RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

If you have a heterogeneous hardware environment, you can use introspection rules to assign
credentials and remote management credentials. For example, you might want a separate discovery rule
to handle your Dell nodes that use DRAC.

Procedure

1. Create a file named dell-drac-rules.json with the following contents:

[
 {
 "description": "Set default IPMI credentials",

CHAPTER 22. AUTOMATICALLY DISCOVERING BARE METAL NODES

247

 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true},
 {"op": "ne", "field": "data://inventory.system_vendor.manufacturer",
 "value": "Dell Inc."}
],
 "actions": [
 {"action": "set-attribute", "path": "driver_info/ipmi_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/ipmi_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/ipmi_address",
 "value": "{data[inventory][bmc_address]}"}
]
 },
 {
 "description": "Set the vendor driver for Dell hardware",
 "conditions": [
 {"op": "eq", "field": "data://auto_discovered", "value": true},
 {"op": "eq", "field": "data://inventory.system_vendor.manufacturer",
 "value": "Dell Inc."}
],
 "actions": [
 {"action": "set-attribute", "path": "driver", "value": "idrac"},
 {"action": "set-attribute", "path": "driver_info/drac_username",
 "value": "SampleUsername"},
 {"action": "set-attribute", "path": "driver_info/drac_password",
 "value": "RedactedSecurePassword"},
 {"action": "set-attribute", "path": "driver_info/drac_address",
 "value": "{data[inventory][bmc_address]}"}
]
 }
]

Replace the user name and password values in this example to suit your environment:

2. Import the rule into ironic:

$ openstack baremetal introspection rule import dell-drac-rules.json

Red Hat OpenStack Platform 16.1 Director Installation and Usage

248

CHAPTER 23. CONFIGURING AUTOMATIC PROFILE TAGGING
The introspection process performs a series of benchmark tests. The director saves the data from these
tests. You can create a set of policies that use this data in various ways:

The policies can identify underperforming or unstable nodes and isolate these nodes from use
in the overcloud.

The policies can define whether to tag nodes into specific profiles automatically.

23.1. POLICY FILE SYNTAX

Policy files use a JSON format that contains a set of rules. Each rule defines a description, a condition,
and an action. A description is a plain text description of the rule, a condition defines an evaluation using
a key-value pattern, and an action is the performance of the condition.

Description

A description is a plain text description of the rule.

Example:

"description": "A new rule for my node tagging policy"

Conditions

A condition defines an evaluation using the following key-value pattern:

field

Defines the field to evaluate:

memory_mb - The amount of memory for the node in MB.

cpus - The total number of threads for the node CPU.

cpu_arch - The architecture of the node CPU.

local_gb - The total storage space of the node root disk.

op

Defines the operation to use for the evaluation. This includes the following attributes:

eq - Equal to

ne - Not equal to

lt - Less than

gt - Greater than

le - Less than or equal to

ge - Greater than or equal to

in-net - Checks that an IP address is in a given network

CHAPTER 23. CONFIGURING AUTOMATIC PROFILE TAGGING

249

matches - Requires a full match against a given regular expression

contains - Requires a value to contain a given regular expression

is-empty - Checks that field is empty

invert

Boolean value to define whether to invert the result of the evaluation.

multiple

Defines the evaluation to use if multiple results exist. This parameter includes the following
attributes:

any - Requires any result to match

all - Requires all results to match

first - Requires the first result to match

value

Defines the value in the evaluation. If the field and operation result in the value, the condition return a
true result. Otherwise, the condition returns a false result.

Example:

"conditions": [
 {
 "field": "local_gb",
 "op": "ge",
 "value": 1024
 }
],

Actions

If a condition is true, the policy performs an action. The action uses the action key and additional keys
depending on the value of action:

fail - Fails the introspection. Requires a message parameter for the failure message.

set-attribute - Sets an attribute on an ironic node. Requires a path field, which is the path to an
ironic attribute (for example, /driver_info/ipmi_address), and a value to set.

set-capability - Sets a capability on an ironic node. Requires name and value fields, which are
the name and the value for a new capability. This replaces the existing value for this capability.
For example, use this to define node profiles.

extend-attribute - The same as set-attribute but treats the existing value as a list and appends
value to it. If the optional unique parameter is set to True, nothing is added if the given value is
already in a list.

Example:

"actions": [
 {
 "action": "set-capability",

Red Hat OpenStack Platform 16.1 Director Installation and Usage

250

 "name": "profile",
 "value": "swift-storage"
 }
]

23.2. POLICY FILE EXAMPLE

The following is an example JSON file (rules.json) that contains introspection rules:

[
 {
 "description": "Fail introspection for unexpected nodes",
 "conditions": [
 {
 "op": "lt",
 "field": "memory_mb",
 "value": 4096
 }
],
 "actions": [
 {
 "action": "fail",
 "message": "Memory too low, expected at least 4 GiB"
 }
]
 },
 {
 "description": "Assign profile for object storage",
 "conditions": [
 {
 "op": "ge",
 "field": "local_gb",
 "value": 1024
 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "profile",
 "value": "swift-storage"
 }
]
 },
 {
 "description": "Assign possible profiles for compute and controller",
 "conditions": [
 {
 "op": "lt",
 "field": "local_gb",
 "value": 1024
 },
 {
 "op": "ge",
 "field": "local_gb",
 "value": 40

CHAPTER 23. CONFIGURING AUTOMATIC PROFILE TAGGING

251

 }
],
 "actions": [
 {
 "action": "set-capability",
 "name": "compute_profile",
 "value": "1"
 },
 {
 "action": "set-capability",
 "name": "control_profile",
 "value": "1"
 },
 {
 "action": "set-capability",
 "name": "profile",
 "value": null
 }
]
 }
]

This example consists of three rules:

Fail introspection if memory is lower than 4096 MiB. You can apply these types of rules if you
want to exclude certain nodes from your cloud.

Nodes with a hard drive size 1 TiB and bigger are assigned the swift-storage profile
unconditionally.

Nodes with a hard drive less than 1 TiB but more than 40 GiB can be either Compute or
Controller nodes. You can assign two capabilities (compute_profile and control_profile) so
that the openstack overcloud profiles match command can later make the final choice. For
this process to succeed, you must remove the existing profile capability, otherwise the existing
profile capability has priority.

The profile matching rules do not change any other nodes.

NOTE

Using introspection rules to assign the profile capability always overrides the existing
value. However, [PROFILE]_profile capabilities are ignored for nodes that already have a
profile capability.

23.3. IMPORTING POLICY FILES

To import policy files to director, complete the following steps.

Procedure

1. Import the policy file into director:

$ openstack baremetal introspection rule import rules.json

2. Run the introspection process:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

252

$ openstack overcloud node introspect --all-manageable

3. After introspection completes, check the nodes and their assigned profiles:

$ openstack overcloud profiles list

4. If you made a mistake in introspection rules, run the following command to delete all rules:

$ openstack baremetal introspection rule purge

CHAPTER 23. CONFIGURING AUTOMATIC PROFILE TAGGING

253

CHAPTER 24. CREATING WHOLE-DISK IMAGES
The main overcloud image is a flat partition image that contains no partitioning information or
bootloader. Director uses a separate kernel and ramdisk when it boots nodes and creates a basic
partitioning layout when it writes the overcloud image to disk. However, you can create a whole- disk
image, which includes a partitioning layout, bootloader, and hardened security.

IMPORTANT

The following process uses the director image building feature. Red Hat only supports
images that use the guidelines contained in this section. Custom images built outside of
these specifications are not supported.

24.1. SECURITY HARDENING MEASURES

The whole disk image includes extra security hardening measures necessary for Red Hat OpenStack
Platform deployments where security is an important feature.

Security recommendations for image creation

The /tmp directory is mounted on a separate volume or partition and has the rw, nosuid, nodev,
noexec, and relatime flags.

The /var, /var/log and the /var/log/audit directories are mounted on separate volumes or
partitions, with the rw and relatime flags.

The /home directory is mounted on a separate partition or volume and has the rw, nodev, and
relatime flags.

Include the following changes to the GRUB_CMDLINE_LINUX setting:

To enable auditing, add the audit=1 kernel boot flag.

To disable the kernel support for USB using boot loader configuration, add nousb.

To remove the insecure boot flags, remove crashkernel=auto.

Blacklist insecure modules (usb-storage, cramfs, freevxfs, jffs2, hfs, hfsplus, squashfs, udf,
vfat) and prevent these modules from loading.

Remove any insecure packages like telnet from the image because they are installed by default.

24.2. WHOLE DISK IMAGE WORKFLOW

To build a whole disk image, complete the following workflow:

1. Download a base Red Hat Enterprise Linux 8.2 image.

2. Set the environment variables specific to registration.

3. Customize the image by modifying the partition schema and the size.

4. Create the image.

5. Upload the image to director.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

254

24.3. DOWNLOADING THE BASE CLOUD IMAGE

Before you build a whole disk image, you must download an existing cloud image of Red Hat Enterprise
Linux to use as a basis.

Procedure

1. Navigate to the Red Hat Enterprise Linux 8.2 download page. Red Hat OpenStack Platform 16.2
is supported on Red Hat Enterprise Linux 8.2.

https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.4/x86_64/product-
software

NOTE

Enter your Customer Portal login details if a prompt appears.

2. Click Download Now next to Red Hat Enterprise Linux 8.2 KVM Guest Image.

24.4. ENABLING CONSISTENT INTERFACE NAMING

Consistent network interface device naming is disabled in the KVM guest image by default. Use virt-
customize to enable consistent naming.

Procedure

1. Move the KVM guest image to /var/lib/libvirt/images:

$ sudo mv <kvm_guest_image> /var/lib/libvirt/images/

2. Start libvirtd:

$ sudo systemctl start libvirtd

3. Enable consistent interface naming in the KVM guest image:

$ sudo virt-customize -a /var/lib/libvirt/images/<kvm guest image> --edit
/etc/default/grub:s/net.ifnames=0/net.ifnames=1/

4. Stop libvirtd:

$ sudo systemctl stop libvirtd

24.5. DISK IMAGE ENVIRONMENT VARIABLES

As a part of the disk image building process, the director requires a base image and registration details
to obtain packages for the new overcloud image. Define these attributes with the following Linux
environment variables.

NOTE

CHAPTER 24. CREATING WHOLE-DISK IMAGES

255

https://access.redhat.com/downloads/content/479/ver=/rhel---8/8.4/x86_64/product-software

NOTE

The image building process temporarily registers the image with a Red Hat subscription
and unregisters the system when the image building process completes.

To build a disk image, set Linux environment variables that suit your environment and requirements:

DIB_LOCAL_IMAGE

Sets the local image that you want to use as the basis for your whole disk image.

REG_ACTIVATION_KEY

Use an activation key instead of login details as part of the registration process.

REG_AUTO_ATTACH

Defines whether to attach the most compatible subscription automatically.

REG_BASE_URL

The base URL of the content delivery server that contains packages for the image. The default
Customer Portal Subscription Management process uses https://cdn.redhat.com. If you use a Red
Hat Satellite 6 server, set this parameter to the base URL of your Satellite server.

REG_ENVIRONMENT

Registers to an environment within an organization.

REG_METHOD

Sets the method of registration. Use portal to register a system to the Red Hat Customer Portal. Use
satellite to register a system with Red Hat Satellite 6.

REG_ORG

The organization where you want to register the images.

REG_POOL_ID

The pool ID of the product subscription information.

REG_PASSWORD

Sets the password for the user account that registers the image.

REG_RELEASE

Sets the Red Hat Enterprise Linux minor release version. You must use it with the
REG_AUTO_ATTACH or the REG_POOL_ID environment variable.

REG_REPOS

A comma-separated string of repository names. Each repository in this string is enabled through
subscription-manager.
Use the following repositories for a security hardened whole disk image:

rhel-8-for-x86_64-baseos-eus-rpms

rhel-8-for-x86_64-appstream-eus-rpms

rhel-8-for-x86_64-highavailability-eus-rpms

ansible-2.9-for-rhel-8-x86_64-rpms

fast-datapath-for-rhel-8-x86_64-rpms

openstack-16.1-for-rhel-8-x86_64-rpms

Red Hat OpenStack Platform 16.1 Director Installation and Usage

256

REG_SAT_URL

The base URL of the Satellite server to register overcloud nodes. Use the Satellite HTTP URL and
not the HTTPS URL for this parameter. For example, use http://satellite.example.com and not
https://satellite.example.com.

REG_SERVER_URL

Sets the host name of the subscription service to use. The default host name is for the Red Hat
Customer Portal at subscription.rhn.redhat.com. If you use a Red Hat Satellite 6 server, set this
parameter to the host name of your Satellite server.

REG_USER

Sets the user name for the account that registers the image.

Use the following set of example commands to export a set of environment variables and temporarily
register a local QCOW2 image to the Red Hat Customer Portal:

$ export DIB_LOCAL_IMAGE=./rhel-8.2-x86_64-kvm.qcow2
$ export REG_METHOD=portal
$ export REG_USER=<your_name>
$ export REG_PASSWORD=<your_password>
$ export REG_RELEASE="8.2"
$ export REG_POOL_ID=<pool_id>
$ export REG_REPOS="rhel-8-for-x86_64-baseos-eus-rpms \
 rhel-8-for-x86_64-appstream-eus-rpms \
 rhel-8-for-x86_64-highavailability-eus-rpms \
 ansible-2.9-for-rhel-8-x86_64-rpms \
 fast-datapath-for-rhel-8-x86_64-rpms \
 openstack-16.1-for-rhel-8-x86_64-rpms"

24.6. CUSTOMIZING THE DISK LAYOUT

The default security hardened image size is 20G and uses predefined partitioning sizes. However, you
must modify the partitioning layout to accommodate overcloud container images. Complete the steps in
the following sections to increase the image size to 40G. You can modify the partitioning layout and
disk size to further suit your needs.

To modify the partitioning layout and disk size, perform the following steps:

Modify the partitioning schema using the DIB_BLOCK_DEVICE_CONFIG environment
variable.

Modify the global size of the image by updating the DIB_IMAGE_SIZE environment variable.

24.7. MODIFYING THE PARTITIONING SCHEMA

You can modify the partitioning schema to alter the partitioning size, create new partitions, or remove
existing partitions. Use the following environment variable to define a new partitioning schema:

$ export DIB_BLOCK_DEVICE_CONFIG='<yaml_schema_with_partitions>'

BIOS example

The following YAML structure represents the modified logical volume partitioning layout to
accommodate enough space to pull overcloud container images:

CHAPTER 24. CREATING WHOLE-DISK IMAGES

257

http://satellite.example.com
https://satellite.example.com

export DIB_BLOCK_DEVICE_CONFIG='''
- local_loop:
 name: image0
- partitioning:
 base: image0
 label: mbr
 partitions:
 - name: root
 flags: [boot,primary]
 size: 40G
- lvm:
 name: lvm
 base: [root]
 pvs:
 - name: pv
 base: root
 options: ["--force"]
 vgs:
 - name: vg
 base: ["pv"]
 options: ["--force"]
 lvs:
 - name: lv_root
 base: vg
 extents: 23%VG
 - name: lv_tmp
 base: vg
 extents: 4%VG
 - name: lv_var
 base: vg
 extents: 45%VG
 - name: lv_log
 base: vg
 extents: 23%VG
 - name: lv_audit
 base: vg
 extents: 4%VG
 - name: lv_home
 base: vg
 extents: 1%VG
- mkfs:
 name: fs_root
 base: lv_root
 type: xfs
 label: "img-rootfs"
 mount:
 mount_point: /
 fstab:
 options: "rw,relatime"
 fsck-passno: 1
- mkfs:
 name: fs_tmp
 base: lv_tmp
 type: xfs
 mount:
 mount_point: /tmp

Red Hat OpenStack Platform 16.1 Director Installation and Usage

258

 fstab:
 options: "rw,nosuid,nodev,noexec,relatime"
 fsck-passno: 2
- mkfs:
 name: fs_var
 base: lv_var
 type: xfs
 mount:
 mount_point: /var
 fstab:
 options: "rw,relatime"
 fsck-passno: 2
- mkfs:
 name: fs_log
 base: lv_log
 type: xfs
 mount:
 mount_point: /var/log
 fstab:
 options: "rw,relatime"
 fsck-passno: 3
- mkfs:
 name: fs_audit
 base: lv_audit
 type: xfs
 mount:
 mount_point: /var/log/audit
 fstab:
 options: "rw,relatime"
 fsck-passno: 4
- mkfs:
 name: fs_home
 base: lv_home
 type: xfs
 mount:
 mount_point: /home
 fstab:
 options: "rw,nodev,relatime"
 fsck-passno: 2
'''

Use this sample YAML content as a basis for the partition schema of your image. Modify the partition
sizes and layout to suit your needs.

NOTE

You must define the correct partition sizes for the image because you cannot resize them
after the deployment.

UEFI example

The following YAML structure represents the modified logical volume partitioning layout to
accommodate enough space to pull overcloud container images:

export DIB_BLOCK_DEVICE_CONFIG='''

CHAPTER 24. CREATING WHOLE-DISK IMAGES

259

- local_loop:
 name: image0
- partitioning:
 base: image0
 label: gpt
 partitions:
 - name: ESP
 type: 'EF00'
 size: 200MiB
 - name: BSP
 type: 'EF02'
 size: 1MiB
 - name: ROOT
 type: '8300'
 size: 100%
- mkfs:
 name: fs_esp
 base: ESP
 type: vfat
 mount:
 mount_point: /boot/efi
 fstab:
 options: "defaults"
 fsck-passno: 1
- mkfs:
 name: fs_root
 label: "img-rootfs"
 base: ROOT
 type: xfs
 mount:
 mount_point: /
 fstab:
 options: "defaults"
 fsck-passno: 1
'''

Use this sample YAML content as a basis for the partition schema of your image. Modify the partition
sizes and layout to suit your environment.

NOTE

You must define the correct partition sizes for the image before deployment because
you cannot resize them after the deployment.

24.8. MODIFYING THE IMAGE SIZE

The global sum of the modified partitioning schema might exceed the default disk size (20G). In this
situation, you might need to modify the image size. To modify the image size, edit the configuration
files that create the image.

Procedure

1. Create a copy of the /usr/share/openstack-tripleo-common/image-yaml/overcloud-
hardened-images-python3.yaml:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

260

1

cp /usr/share/openstack-tripleo-common/image-yaml/overcloud-hardened-images-
python3.yaml \
/home/stack/overcloud-hardened-images-python3-custom.yaml

NOTE

For UEFI whole disk images, use /usr/share/openstack-tripleo-common/image-
yaml/overcloud-hardened-images-uefi-python3.yaml.

2. Edit the DIB_IMAGE_SIZE in the configuration file and adjust the values as necessary:

...

environment:
 DIB_PYTHON_VERSION: '3'
 DIB_MODPROBE_BLACKLIST: 'usb-storage cramfs freevxfs jffs2 hfs hfsplus squashfs udf
vfat bluetooth'
 DIB_BOOTLOADER_DEFAULT_CMDLINE: 'nofb nomodeset vga=normal console=tty0
console=ttyS0,115200 audit=1 nousb'
 DIB_IMAGE_SIZE: '40' 1
 COMPRESS_IMAGE: '1'

Adjust this value to the new total disk size.

3. Optional. To configure a proxy, you must also include the http_proxy and https:_proxy
environment variables:

environment:
 http_proxy: <proxy_server>
 https_proxy: <proxy_server>

Replace <proxy_server> with the address of your proxy.

4. Save the file.

IMPORTANT

When you deploy the overcloud, the director creates a RAW version of the overcloud
image. This means your undercloud must have enough free space to accommodate the
RAW image. For example, if you set the security hardened image size to 40G, you must
have 40G of space available on the undercloud hard disk.

IMPORTANT

When director writes the image to the physical disk, it creates a 64MB configuration drive
primary partition at the end of the disk. When you create your whole disk image, ensure
that the size of the physical disk accommodates this extra partition.

24.9. BUILDING THE WHOLE DISK IMAGE

After you set the environment variables and customize the image, create the image using the
openstack overcloud image build command.

CHAPTER 24. CREATING WHOLE-DISK IMAGES

261

1

2

3

Procedure

1. Run the openstack overcloud image build command with all necessary configuration files.

openstack overcloud image build \
--image-name overcloud-hardened-full \ 1
--config-file /home/stack/overcloud-hardened-images-python3-custom.yaml \ 2
--config-file /usr/share/openstack-tripleo-common/image-yaml/overcloud-hardened-images-
rhel8.yaml 3

For UEFI whole disk images, use overcloud-hardened-uefi-full.

The overcloud-hardened-images-python3-custom.yaml file is the custom configuration
file that contains the new disk size. If you are not using a different custom disk size, use the
original /usr/share/openstack-tripleo-common/image-yaml/overcloud-hardened-
images-python3.yaml file instead. For standard UEFI whole disk images, use overcloud-
hardened-images-uefi-python3.yaml.

For UEFI whole disk images, use overcloud-hardened-images-uefi-rhel8.yaml.

This command creates an image called overcloud-hardened-full.qcow2, which contains all the
necessary security features.

24.10. UPLOADING THE WHOLE DISK IMAGE

Upload the image to the OpenStack Image (glance) service and start using it from the Red Hat
OpenStack Platform director. To upload a security hardened image, complete the following steps:

1. Rename the newly generated image and move the image to your images directory:

mv overcloud-hardened-full.qcow2 ~/images/overcloud-full.qcow2

2. Remove all the old overcloud images:

openstack image delete overcloud-full
openstack image delete overcloud-full-initrd
openstack image delete overcloud-full-vmlinuz

3. Upload the new overcloud image:

openstack overcloud image upload --image-path /home/stack/images --whole-disk

If you want to replace an existing image with the security hardened image, use the --update-existing
flag. This flag overwrites the original overcloud-full image with a new security hardened image.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

262

CHAPTER 25. CONFIGURING DIRECT DEPLOY
When provisioning nodes, director mounts the overcloud base operating system image on an iSCSI
mount and then copies the image to disk on each node. Direct deploy is an alternative method that
writes disk images from a HTTP location directly to disk on bare metal nodes.

25.1. CONFIGURING THE DIRECT DEPLOY INTERFACE ON THE
UNDERCLOUD

The iSCSI deploy interface is the default deploy interface. However, you can enable the direct deploy
interface to download an image from a HTTP location to the target disk.

NOTE

Your overcloud node memory tmpfs must have at least 8GB of RAM.

Procedure

1. Create or modify a custom environment file /home/stack/undercloud_custom_env.yaml and
specify the IronicDefaultDeployInterface.

parameter_defaults:
 IronicDefaultDeployInterface: direct

2. By default, the Bare Metal service (ironic) agent on each node obtains the image stored in the
Object Storage service (swift) through a HTTP link. Alternatively, ironic can stream this image
directly to the node through the ironic-conductor HTTP server. To change the service that
provides the image, set the IronicImageDownloadSource to http in the
/home/stack/undercloud_custom_env.yaml file:

parameter_defaults:
 IronicDefaultDeployInterface: direct
 IronicImageDownloadSource: http

3. Include the custom environment file in the DEFAULT section of the undercloud.conf file.

custom_env_files = /home/stack/undercloud_custom_env.yaml

4. Perform the undercloud installation:

$ openstack undercloud install

CHAPTER 25. CONFIGURING DIRECT DEPLOY

263

CHAPTER 26. CREATING VIRTUALIZED CONTROL PLANES
A virtualized control plane is a control plane located on virtual machines (VMs) rather than on bare metal.
Use a virtualized control plane reduce the number of bare metal machines that you require for the
control plane.

This chapter explains how to virtualize your Red Hat OpenStack Platform (RHOSP) control plane for the
overcloud using RHOSP and Red Hat Virtualization.

26.1. VIRTUALIZED CONTROL PLANE ARCHITECTURE

Use director to provision an overcloud using Controller nodes that are deployed in a Red Hat
Virtualization cluster. You can then deploy these virtualized controllers as the virtualized control plane
nodes.

NOTE

Virtualized Controller nodes are supported only on Red Hat Virtualization.

The following architecture diagram illustrates how to deploy a virtualized control plane. Distribute the
overcloud with the Controller nodes running on VMs on Red Hat Virtualization and run the Compute and
Storage nodes on bare metal.

NOTE

Run the OpenStack virtualized undercloud on Red Hat Virtualization.

Virtualized control plane architecture

The OpenStack Bare Metal Provisioning service (ironic) includes a driver for Red Hat Virtualization VMs,
staging-ovirt. You can use this driver to manage virtual nodes within a Red Hat Virtualization
environment. You can also use it to deploy overcloud controllers as virtual machines within a Red Hat
Virtualization environment.

Benefits and limitations of virtualizing your RHOSP overcloud control plane

Although there are a number of benefits to virtualizing your RHOSP overcloud control plane, this is not
an option in every configuration.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

264

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#sect-Red_Hat_Virtualization

Benefits

Virtualizing the overcloud control plane has a number of benefits that prevent downtime and improve
performance.

You can allocate resources to the virtualized controllers dynamically, using hot add and hot
remove to scale CPU and memory as required. This prevents downtime and facilitates increased
capacity as the platform grows.

You can deploy additional infrastructure VMs on the same Red Hat Virtualization cluster. This
minimizes the server footprint in the data center and maximizes the efficiency of the physical
nodes.

You can use composable roles to define more complex RHOSP control planes and allocate
resources to specific components of the control plane.

You can maintain systems without service interruption with the VM live migration feature.

You can integrate third-party or custom tools that Red Hat Virtualization supports.

Limitations

Virtualized control planes limit the types of configurations that you can use.

Virtualized Ceph Storage nodes and Compute nodes are not supported.

Block Storage (cinder) image-to-volume is not supported for back ends that use Fiber Channel.
Red Hat Virtualization does not support N_Port ID Virtualization (NPIV). Therefore, Block
Storage (cinder) drivers that need to map LUNs from a storage back end to the controllers,
where cinder-volume runs by default, do not work. You must create a dedicated role for cinder-
volume and use the role to create physical nodes instead of including it on the virtualized
controllers. For more information, see Composable Services and Custom Roles.

26.2. PROVISIONING VIRTUALIZED CONTROLLERS USING THE RED
HAT VIRTUALIZATION DRIVER

Complete the following steps to provision a virtualized RHOSP control plane for the overcloud using
RHOSP and Red Hat Virtualization.

Prerequisites

You must have a 64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

You must have the following software already installed and configured:

Red Hat Virtualization. For more information, see Red Hat Virtualization Documentation
Suite.

Red Hat OpenStack Platform (RHOSP). For more information, see Director Installation and
Usage.

You must have the virtualized Controller nodes prepared in advance. These requirements are
the same as for bare metal Controller nodes. For more information, see Controller Node
Requirements.

You must have the bare metal nodes being used as overcloud Compute nodes, and the storage
nodes, prepared in advance. For hardware specifications, see the Compute Node Requirements

CHAPTER 26. CREATING VIRTUALIZED CONTROL PLANES

265

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/advanced_overcloud_customization/index#Roles
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#controller-node-requirements
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#compute-node-requirements

and Ceph Storage Node Requirements . To deploy overcloud Compute nodes on POWER
(ppc64le) hardware, see Red Hat OpenStack Platform for POWER .

You must have the logical networks created, and your cluster of host networks ready to use
network isolation with multiple networks. For more information, see Logical Networks.

You must have the internal BIOS clock of each node set to UTC to prevent issues with future-
dated file timestamps when hwclock synchronizes the BIOS clock before applying the timezone
offset.

TIP

To avoid performance bottlenecks, use composable roles and keep the data plane services on the bare
metal Controller nodes.

Procedure

1. To enable the staging-ovirt driver in director, add the driver to the enabled_hardware_types
parameter in the undercloud.conf configuration file:

enabled_hardware_types = ipmi,redfish,ilo,idrac,staging-ovirt

2. Verify that the undercloud contains the staging-ovirt driver:

(undercloud) [stack@undercloud ~]$ openstack baremetal driver list

If you have configured the undercloud correctly, this command returns the following result:

 +---------------------+-----------------------+
 | Supported driver(s) | Active host(s) |
 +---------------------+-----------------------+
idrac	localhost.localdomain
ilo	localhost.localdomain
ipmi	localhost.localdomain
pxe_drac	localhost.localdomain
pxe_ilo	localhost.localdomain
pxe_ipmitool	localhost.localdomain
redfish	localhost.localdomain
staging-ovirt	localhost.localdomain

3. Update the overcloud node definition template, for example, nodes.json, to register the VMs
hosted on Red Hat Virtualization with director. For more information, see Registering Nodes for
the Overcloud. Use the following key:value pairs to define aspects of the VMs that you want to
deploy with your overcloud:

Table 26.1. Configuring the VMs for the overcloud

Key Set to this value

pm_type OpenStack Bare Metal Provisioning (ironic)
service driver for oVirt/RHV VMs, staging-
ovirt.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

266

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#ceph-storage-node-requirements
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#appe-OSP_on_POWER
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html/administration_guide/chap-logical_networks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#proc_registering-nodes-for-the-overcloud_basic

pm_user Red Hat Virtualization Manager username.

pm_password Red Hat Virtualization Manager password.

pm_addr Hostname or IP of the Red Hat Virtualization
Manager server.

pm_vm_name Name of the virtual machine in Red Hat
Virtualization Manager where the controller is
created.

Key Set to this value

For example:

{
 "nodes": [
 {
 "name":"osp13-controller-0",
 "pm_type":"staging-ovirt",
 "mac":[
 "00:1a:4a:16:01:56"
],
 "cpu":"2",
 "memory":"4096",
 "disk":"40",
 "arch":"x86_64",
 "pm_user":"admin@internal",
 "pm_password":"password",
 "pm_addr":"rhvm.example.com",
 "pm_vm_name":"{osp_curr_ver}-controller-0",
 "capabilities": "profile:control,boot_option:local"
 },
 ...
 }

Configure one Controller on each Red Hat Virtualization Host

4. Configure an affinity group in Red Hat Virtualization with "soft negative affinity" to ensure high
availability is implemented for your controller VMs. For more information, see Affinity Groups.

5. Open the Red Hat Virtualization Manager interface, and use it to map each VLAN to a separate
logical vNIC in the controller VMs. For more information, see Logical Networks.

6. Set no_filter in the vNIC of the director and controller VMs, and restart the VMs, to disable the
MAC spoofing filter on the networks attached to the controller VMs. For more information, see
Virtual Network Interface Cards .

7. Deploy the overcloud to include the new virtualized controller nodes in your environment:

(undercloud) [stack@undercloud ~]$ openstack overcloud deploy --templates

CHAPTER 26. CREATING VIRTUALIZED CONTROL PLANES

267

https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html-single/virtual_machine_management_guide/index#sect-Affinity_Groups
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html/administration_guide/chap-logical_networks
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.3/html-single/administration_guide/index#sect-Virtual_Network_Interface_Cards

CHAPTER 27. PERFORMING ADVANCED CONTAINER IMAGE
MANAGEMENT

The default container image configuration suits most environments. In some situations, your container
image configuration might require some customization, such as version pinning.

27.1. PINNING CONTAINER IMAGES FOR THE UNDERCLOUD

In certain circumstances, you might require a set of specific container image versions for your
undercloud. In this situation, you must pin the images to a specific version. To pin your images, you must
generate and modify a container configuration file, and then combine the undercloud roles data with the
container configuration file to generate an environment file that contains a mapping of services to
container images. Then include this environment file in the custom_env_files parameter in the
undercloud.conf file.

Procedure

1. Log in to the undercloud host as the stack user.

2. Run the openstack tripleo container image prepare default command with the --output-env-
file option to generate a file that contains the default image configuration:

$ sudo openstack tripleo container image prepare default \
--output-env-file undercloud-container-image-prepare.yaml

3. Modify the undercloud-container-image-prepare.yaml file according to the requirements of
your environment.

a. Remove the tag: parameter so that director can use the tag_from_label: parameter.
Director uses this parameter to identify the latest version of each container image, pull each
image, and tag each image on the container registry in director.

b. Remove the Ceph labels for the undercloud.

c. Ensure that the neutron_driver: parameter is empty. Do not set this parameter to OVN
because OVN is not supported on the undercloud.

d. Include your container image registry credentials:

ContainerImageRegistryCredentials:
 registry.redhat.io
 myser: 'p@55w0rd!'

NOTE

You cannot push container images to the undercloud registry on new
underclouds because the image-serve registry is not installed yet. You must
set the push_destination value to false, or use a custom value, to pull
images directly from source. For more information, see Container image
preparation parameters.

4. Generate a new container image configuration file that uses the undercloud roles file combined
with your custom undercloud-container-image-prepare.yaml file:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

268

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#container-image-preparation-parameters

$ sudo openstack tripleo container image prepare \
-r /usr/share/openstack-tripleo-heat-templates/roles_data_undercloud.yaml \
-e undercloud-container-image-prepare.yaml \
--output-env-file undercloud-container-images.yaml

The undercloud-container-images.yaml file is an environment file that contains a mapping of
service parameters to container images. For example, OpenStack Identity (keystone) uses the
ContainerKeystoneImage parameter to define its container image:

ContainerKeystoneImage: undercloud.ctlplane.localdomain:8787/rhosp-rhel8/openstack-
keystone:16.1.4-5

Note that the container image tag matches the {version}-{release} format.

5. Include the undercloud-container-images.yaml file in the custom_env_files parameter in the
undercloud.conf file. When you run the undercloud installation, the undercloud services use the
pinned container image mapping from this file.

27.2. PINNING CONTAINER IMAGES FOR THE OVERCLOUD

In certain circumstances, you might require a set of specific container image versions for your overcloud.
In this situation, you must pin the images to a specific version. To pin your images, you must create the
containers-prepare-parameter.yaml file, use this file to pull your container images to the undercloud
registry, and generate an environment file that contains a pinned image list.

For example, your containers-prepare-parameter.yaml file might contain the following content:

parameter_defaults:
 ContainerImagePrepare:
 - push_destination: true
 set:
 name_prefix: openstack-
 name_suffix: ''
 namespace: registry.redhat.io/rhosp-rhel8
 neutron_driver: ovn
 tag_from_label: '{version}-{release}'

 ContainerImageRegistryCredentials:
 registry.redhat.io:
 myuser: 'p@55w0rd!'

The ContainerImagePrepare parameter contains a single rule set. This rule set must not include the
tag parameter and must rely on the tag_from_label parameter to identify the latest version and release
of each container image. Director uses this rule set to identify the latest version of each container
image, pull each image, and tag each image on the container registry in director.

Procedure

1. Run the openstack tripleo container image prepare command, which pulls all images from the
source defined in the containers-prepare-parameter.yaml file. Include the --output-env-file to
specify the output file that will contain the list of pinned container images:

$ sudo openstack tripleo container image prepare -e /home/stack/templates/containers-
prepare-parameter.yaml --output-env-file overcloud-images.yaml

CHAPTER 27. PERFORMING ADVANCED CONTAINER IMAGE MANAGEMENT

269

The overcloud-images.yaml file is an environment file that contains a mapping of service
parameters to container images. For example, OpenStack Identity (keystone) uses the
ContainerKeystoneImage parameter to define its container image:

ContainerKeystoneImage: undercloud.ctlplane.localdomain:8787/rhosp-rhel8/openstack-
keystone:16.2.4-5

Note that the container image tag matches the {version}-{release} format.

2. Include the containers-prepare-parameter.yaml and overcloud-images.yaml files in that
specific order with your environment file collection when you run the openstack overcloud
deploy command:

$ openstack overcloud deploy --templates \
 ...
 -e /home/stack/containers-prepare-parameter.yaml \
 -e /home/stack/overcloud-images.yaml \
 ...

The overcloud services use the pinned images listed in the overcloud-images.yaml file.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

270

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS
Errors can occur at certain stages of the director processes. This section contains some information
about diagnosing common problems.

28.1. TROUBLESHOOTING NODE REGISTRATION

Issues with node registration usually occur due to issues with incorrect node details. In these situations,
validate the template file containing your node details and correct the imported node details.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Run the node import command with the --validate-only option. This option validates your node
template without performing an import:

(undercloud) $ openstack overcloud node import --validate-only ~/nodes.json
Waiting for messages on queue 'tripleo' with no timeout.

Successfully validated environment file

3. To fix incorrect details with imported nodes, run the openstack baremetal commands to
update node details. The following example shows how to change networking details:

a. Identify the assigned port UUID for the imported node:

$ source ~/stackrc
(undercloud) $ openstack baremetal port list --node [NODE UUID]

b. Update the MAC address:

(undercloud) $ openstack baremetal port set --address=[NEW MAC] [PORT UUID]

c. Configure a new IPMI address on the node:

(undercloud) $ openstack baremetal node set --driver-info ipmi_address=[NEW IPMI
ADDRESS] [NODE UUID]

28.2. TROUBLESHOOTING HARDWARE INTROSPECTION

You must run the introspection process to completion. However, ironic-inspector times out after a
default one hour period if the inspection ramdisk does not respond. Sometimes this indicates a bug in
the inspection ramdisk but usually this time-out occurs due to an environment misconfiguration,
particularly BIOS boot settings.

To diagnose and resolve common environment misconfiguration issues, complete the following steps:

Procedure

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS

271

1. Source the stackrc file:

$ source ~/stackrc

2. Director uses OpenStack Object Storage (swift) to save the hardware data that it obtains
during the introspection process. If this service is not running, the introspection can fail. Check
all services related to OpenStack Object Storage to ensure that the service is running:

(undercloud) $ sudo systemctl list-units tripleo_swift*

3. Ensure that your nodes are in a manageable state. The introspection does not inspect nodes in
an available state, which is meant for deployment. If you want to inspect nodes that are in an
available state, change the node status to manageable state before introspection:

(undercloud) $ openstack baremetal node manage [NODE UUID]

4. Configure temporary access to the introspection ramdisk. You can provide either a temporary
password or an SSH key to access the node during introspection debugging. Complete the
following procedure to configure ramdisk access:

a. Run the openssl passwd -1 command with a temporary password to generate an MD5
hash:

(undercloud) $ openssl passwd -1 mytestpassword
1enjRSyIw$/fYUpJwr6abFy/d.koRgQ/

b. Edit the /var/lib/ironic/httpboot/inspector.ipxe file, find the line starting with kernel, and
append the rootpwd parameter and the MD5 hash:

kernel http://192.2.0.1:8088/agent.kernel ipa-inspection-callback-
url=http://192.168.0.1:5050/v1/continue ipa-inspection-collectors=default,extra-
hardware,logs systemd.journald.forward_to_console=yes BOOTIF=${mac} ipa-debug=1
ipa-inspection-benchmarks=cpu,mem,disk
rootpwd="1enjRSyIw$/fYUpJwr6abFy/d.koRgQ/" selinux=0

Alternatively, append your public SSH key to the sshkey parameter.

NOTE

Include quotation marks for both the rootpwd and sshkey parameters.

5. Run the introspection on the node:

(undercloud) $ openstack overcloud node introspect [NODE UUID] --provide

Use the --provide option to change the node state to available after the introspection
completes.

6. Identify the IP address of the node from the dnsmasq logs:

(undercloud) $ sudo tail -f /var/log/containers/ironic-inspector/dnsmasq.log

7. If an error occurs, access the node using the root user and temporary access details:

Red Hat OpenStack Platform 16.1 Director Installation and Usage

272

$ ssh root@192.168.24.105

Access the node during introspection to run diagnostic commands and troubleshoot the
introspection failure.

8. To stop the introspection process, run the following command:

(undercloud) $ openstack baremetal introspection abort [NODE UUID]

You can also wait until the process times out.

NOTE

Red Hat OpenStack Platform director retries introspection three times after the
initial abort. Run the openstack baremetal introspection abort command at
each attempt to abort the introspection completely.

28.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS

The OpenStack Workflow (mistral) service groups multiple OpenStack tasks into workflows. Red Hat
OpenStack Platform uses a set of these workflows to perform common functions across the director,
including bare metal node control, validations, plan management, and overcloud deployment.

For example, when you run the openstack overcloud deploy command, the OpenStack Workflow
service executes two workflows. The first workflow uploads the deployment plan:

Removing the current plan files
Uploading new plan files
Started Mistral Workflow. Execution ID: aef1e8c6-a862-42de-8bce-073744ed5e6b
Plan updated

The second workflow starts the overcloud deployment:

Deploying templates in the directory /tmp/tripleoclient-LhRlHX/tripleo-heat-templates
Started Mistral Workflow. Execution ID: 97b64abe-d8fc-414a-837a-1380631c764d
2016-11-28 06:29:26Z [overcloud]: CREATE_IN_PROGRESS Stack CREATE started
2016-11-28 06:29:26Z [overcloud.Networks]: CREATE_IN_PROGRESS state changed
2016-11-28 06:29:26Z [overcloud.HeatAuthEncryptionKey]: CREATE_IN_PROGRESS state
changed
2016-11-28 06:29:26Z [overcloud.ServiceNetMap]: CREATE_IN_PROGRESS state changed
...

The OpenStack Workflow service uses the following objects to track the workflow:

Actions

A particular instruction that OpenStack performs when an associated task runs. Examples include
running shell scripts or performing HTTP requests. Some OpenStack components have in-built
actions that OpenStack Workflow uses.

Tasks

Defines the action to run and the result of running the action. These tasks usually have actions or
other workflows associated with them. When a task completes, the workflow directs to another task,
usually depending on whether the task succeeded or failed.

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS

273

Workflows

A set of tasks grouped together and executed in a specific order.

Executions

Defines a particular action, task, or workflow running.

OpenStack Workflow also provides robust logging of executions, which helps to identify issues with
certain command failures. For example, if a workflow execution fails, you can identify the point of failure.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. List the workflow executions that have the failed state ERROR:

(undercloud) $ openstack workflow execution list | grep "ERROR"

3. Get the UUID of the failed workflow execution (for example, dffa96b0-f679-4cd2-a490-
4769a3825262) and view the execution and output:

(undercloud) $ openstack workflow execution show dffa96b0-f679-4cd2-a490-4769a3825262
(undercloud) $ openstack workflow execution output show dffa96b0-f679-4cd2-a490-
4769a3825262

4. These commands return information about the failed task in the execution. The openstack
workflow execution show command also displays the workflow that was used for the execution
(for example, tripleo.plan_management.v1.publish_ui_logs_to_swift). You can view the full
workflow definition with the following command:

(undercloud) $ openstack workflow definition show
tripleo.plan_management.v1.publish_ui_logs_to_swift

This is useful for identifying where in the workflow a particular task occurs.

5. View action executions and their results using a similar command syntax:

(undercloud) $ openstack action execution list
(undercloud) $ openstack action execution show 8a68eba3-0fec-4b2a-adc9-5561b007e886
(undercloud) $ openstack action execution output show 8a68eba3-0fec-4b2a-adc9-
5561b007e886

This is useful for identifying a specific action that causes issues.

28.4. TROUBLESHOOTING OVERCLOUD CREATION AND
DEPLOYMENT

The initial creation of the overcloud occurs with the OpenStack Orchestration (heat) service. If an
overcloud deployment fails, use the OpenStack clients and service log files to diagnose the failed
deployment.

Procedure

Red Hat OpenStack Platform 16.1 Director Installation and Usage

274

1. Source the stackrc file:

$ source ~/stackrc

2. Run the deployment failures command:

$ openstack overcloud failures

3. Run the following command to display the details of the failure:

(undercloud) $ openstack stack failures list <OVERCLOUD_NAME> --long

Replace <OVERCLOUD_NAME> with the name of your overcloud.

4. Run the following command to identify the stacks that failed:

(undercloud) $ openstack stack list --nested --property status=FAILED

28.5. TROUBLESHOOTING NODE PROVISIONING

The OpenStack Orchestration (heat) service controls the provisioning process. If node provisioning fails,
use the OpenStack clients and service log files to diagnose the issues.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Check the bare metal service to see all registered nodes and their current status:

(undercloud) $ openstack baremetal node list

+----------+------+---------------+-------------+-----------------+-------------+
| UUID | Name | Instance UUID | Power State | Provision State | Maintenance |
+----------+------+---------------+-------------+-----------------+-------------+
| f1e261...| None | None | power off | available | False |
| f0b8c1...| None | None | power off | available | False |
+----------+------+---------------+-------------+-----------------+-------------+

All nodes available for provisioning should have the following states set:

Maintenance set to False.

Provision State set to available before provisioning.

3. If a node does not have Maintenance set to False or Provision State set to available, then use
the following table to identify the problem and the solution:

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS

275

Problem Cause Solution

Maintenance
sets itself to
True
automatically.

The director cannot access the power
management for the nodes.

Check the credentials for node power
management.

Provision State
is set to
available but
nodes do not
provision.

The problem occurred before bare
metal deployment started.

Check the node details including the
profile and flavor mapping. Check
that the node hardware details are
within the requirements for the flavor.

Provision State
is set to wait
call-back for a
node.

The node provisioning process has not
yet finished for this node.

Wait until this status changes.
Otherwise, connect to the virtual
console of the node and check the
output.

Provision State
is active and
Power State is
power on but
the nodes do not
respond.

The node provisioning has finished
successfully and there is a problem
during the post-deployment
configuration step.

Diagnose the node configuration
process. Connect to the virtual
console of the node and check the
output.

Provision State
is error or
deploy failed.

Node provisioning has failed. View the bare metal node details with
the openstack baremetal node
show command and check the
last_error field, which contains error
description.

Additional resources

Bare-metal node provisioning states

28.6. TROUBLESHOOTING IP ADDRESS CONFLICTS DURING
PROVISIONING

Introspection and deployment tasks fail if the destination hosts are allocated an IP address that is
already in use. To prevent these failures, you can perform a port scan of the Provisioning network to
determine whether the discovery IP range and host IP range are free.

Procedure

1. Install nmap:

$ sudo dnf install nmap

2. Use nmap to scan the IP address range for active addresses. This example scans the
192.168.24.0/24 range, replace this with the IP subnet of the Provisioning network (using CIDR
bitmask notation):

Red Hat OpenStack Platform 16.1 Director Installation and Usage

276

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/bare_metal_provisioning/index#ref_bare-metal-node-provisioning-states_bare-metal-post-deployment

$ sudo nmap -sn 192.168.24.0/24

3. Review the output of the nmap scan. For example, you should see the IP address of the
undercloud, and any other hosts that are present on the subnet:

$ sudo nmap -sn 192.168.24.0/24

Starting Nmap 6.40 (http://nmap.org) at 2015-10-02 15:14 EDT
Nmap scan report for 192.168.24.1
Host is up (0.00057s latency).
Nmap scan report for 192.168.24.2
Host is up (0.00048s latency).
Nmap scan report for 192.168.24.3
Host is up (0.00045s latency).
Nmap scan report for 192.168.24.5
Host is up (0.00040s latency).
Nmap scan report for 192.168.24.9
Host is up (0.00019s latency).
Nmap done: 256 IP addresses (5 hosts up) scanned in 2.45 seconds

If any of the active IP addresses conflict with the IP ranges in undercloud.conf, you must either
change the IP address ranges or release the IP addresses before you introspect or deploy the
overcloud nodes.

28.7. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS

Sometimes the /var/log/nova/nova-conductor.log contains the following error:

NoValidHost: No valid host was found. There are not enough hosts available.

This error occurs when the Compute Scheduler cannot find a bare metal node that is suitable for
booting the new instance. This usually means that there is a mismatch between resources that the
Compute service expects to find and resources that the Bare Metal service advertised to Compute. To
check that there is a mismatch error, complete the following steps:

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Check that the introspection succeeded on the node. If the introspection fails, check that each
node contains the required ironic node properties:

(undercloud) $ openstack baremetal node show [NODE UUID]

Check that the properties JSON field has valid values for keys cpus, cpu_arch, memory_mb
and local_gb.

3. Ensure that the Compute flavor that is mapped to the node does not exceed the node
properties for the required number of nodes:

(undercloud) $ openstack flavor show [FLAVOR NAME]

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS

277

4. Run the openstack baremetal node list command to ensure that there are sufficient nodes in
the available state. Nodes in manageable state usually signify a failed introspection.

5. Run the openstack baremetal node list command and ensure that the nodes are not in
maintenance mode. If a node changes to maintenance mode automatically, the likely cause is an
issue with incorrect power management credentials. Check the power management credentials
and then remove maintenance mode:

(undercloud) $ openstack baremetal node maintenance unset [NODE UUID]

6. If you are using automatic profile tagging, check that you have enough nodes that correspond
to each flavor and profile. Run the openstack baremetal node show command on a node and
check the capabilities key in the properties field. For example, a node tagged for the Compute
role contains the profile:compute value.

7. You must wait for node information to propagate from Bare Metal to Compute after
introspection. However, if you performed some steps manually, there might be a short period of
time when nodes are not available to the Compute service (nova). Use the following command
to check the total resources in your system:

(undercloud) $ openstack hypervisor stats show

28.8. TROUBLESHOOTING OVERCLOUD CONFIGURATION

Red Hat OpenStack Platform director uses Ansible to configure the overcloud. Complete the following
steps to diagnose Ansible playbook errors (config-download) on the overcloud.

Procedure

1. Ensure that the stack user has access to the files in the /var/lib/mistral directory on the
undercloud:

$ sudo setfacl -R -m u:stack:rwx /var/lib/mistral

This command retains mistral user access to the directory.

2. Change to the working directory for the config-download files. This is usually
/var/lib/mistral/overcloud/.

$ cd /var/lib/mistral/overcloud/

3. Search the ansible.log file for the point of failure.

$ less ansible.log

Make a note of the step that failed.

4. Find the step that failed in the config-download playbooks within the working directory to
identify the action that ocurred.

28.9. TROUBLESHOOTING CONTAINER CONFIGURATION

Red Hat OpenStack Platform director uses paunch to launch containers, podman to manage

Red Hat OpenStack Platform 16.1 Director Installation and Usage

278

Red Hat OpenStack Platform director uses paunch to launch containers, podman to manage
containers, and puppet to create container configuration. This procedure shows how to diagnose a
container when errors occur.

Accessing the host

1. Source the stackrc file:

$ source ~/stackrc

2. Get the IP address of the node with the container failure.

(undercloud) $ openstack server list

3. Log in to the node:

(undercloud) $ ssh heat-admin@192.168.24.60

4. Change to the root user:

$ sudo -i

Identifying failed containers

1. View all containers:

$ podman ps --all

Identify the failed container. The failed container usually exits with a non-zero status.

Checking container logs

1. Each container retains standard output from its main process. Use this output as a log to help
determine what actually occurs during a container run. For example, to view the log for the
keystone container, run the following command:

$ sudo podman logs keystone

In most cases, this log contains information about the cause of a container failure.

2. The host also retains the stdout log for the failed service. You can find the stdout logs in
/var/log/containers/stdouts/. For example, to view the log for a failed keystone container, run
the following command:

$ cat /var/log/containers/stdouts/keystone.log

Inspecting containers

In some situations, you might need to verify information about a container. For example, use the
following command to view keystone container data:

$ sudo podman inspect keystone

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS

279

This command returns a JSON object containing low-level configuration data. You can pipe the output
to the jq command to parse specific data. For example, to view the container mounts for the keystone
container, run the following command:

$ sudo podman inspect keystone | jq .[0].Mounts

You can also use the --format option to parse data to a single line, which is useful for running commands
against sets of container data. For example, to recreate the options used to run the keystone container,
use the following inspect command with the --format option:

$ sudo podman inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range .Mounts}} -v
{{.Source}}:{{.Destination}}:{{ join .Options "," }}{{end}} -ti {{.Config.Image}}' keystone

NOTE

The --format option uses Go syntax to create queries.

Use these options in conjunction with the podman run command to recreate the container for
troubleshooting purposes:

$ OPTIONS=$(sudo podman inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range
.Mounts}} -v {{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}'
keystone)
$ sudo podman run --rm $OPTIONS /bin/bash

Running commands in a container

In some cases, you might need to obtain information from within a container through a specific Bash
command. In this situation, use the following podman command to execute commands within a running
container. For example, run the podman exec command to run a command inside the keystone
container:

$ sudo podman exec -ti keystone <COMMAND>

NOTE

The -ti options run the command through an interactive pseudoterminal.

Replace <COMMAND> with the command you want to run. For example, each container has a
health check script to verify the service connection. You can run the health check script for
keystone with the following command:

$ sudo podman exec -ti keystone /openstack/healthcheck

To access the container shell, run podman exec using /bin/bash as the command you want to run inside
the container:

$ sudo podman exec -ti keystone /bin/bash

Viewing a container filesystem

1. To view the file system for the failed container, run the podman mount command. For

Red Hat OpenStack Platform 16.1 Director Installation and Usage

280

1. To view the file system for the failed container, run the podman mount command. For
example, to view the file system for a failed keystone container, run the following command:

$ podman mount keystone

This provides a mounted location to view the filesystem contents:

/var/lib/containers/storage/overlay/78946a109085aeb8b3a350fc20bd8049a08918d74f573396d
7358270e711c610/merged

This is useful for viewing the Puppet reports within the container. You can find these reports in
the var/lib/puppet/ directory within the container mount.

Exporting a container

When a container fails, you might need to investigate the full contents of the file. In this case, you can
export the full file system of a container as a tar archive. For example, to export the keystone container
file system, run the following command:

$ sudo podman export keystone -o keystone.tar

This command creates the keystone.tar archive, which you can extract and explore.

28.10. TROUBLESHOOTING COMPUTE NODE FAILURES

Compute nodes use the Compute service to perform hypervisor-based operations. This means the
main diagnosis for Compute nodes revolves around this service.

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Get the IP address of the Compute node that contains the failure:

(undercloud) $ openstack server list

3. Log in to the node:

(undercloud) $ ssh heat-admin@192.168.24.60

4. Change to the root user:

$ sudo -i

5. View the status of the container:

$ sudo podman ps -f name=nova_compute

6. The primary log file for Compute nodes is /var/log/containers/nova/nova-compute.log. If
issues occur with Compute node communication, use this file to begin the diagnosis.

7. If you perform maintenance on the Compute node, migrate the existing instances from the host

CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS

281

7. If you perform maintenance on the Compute node, migrate the existing instances from the host
to an operational Compute node, then disable the node.

28.11. CREATING AN SOSREPORT

If you need to contact Red Hat for support with Red Hat OpenStack Platform, you might need to
generate an sosreport. For more information about creating an sosreport, see:

"How to collect all required logs for Red Hat Support to investigate an OpenStack issue"

28.12. LOG LOCATIONS

Use the following logs to gather information about the undercloud and overcloud when you troubleshoot
issues.

Table 28.1. Logs on both the undercloud and overcloud nodes

Information Log location

Containerized service logs /var/log/containers/

Standard output from containerized services /var/log/containers/stdouts

Ansible configuration logs /var/lib/mistral/overcloud/ansible.log

Table 28.2. Additional logs on the undercloud node

Information Log location

Command history for openstack overcloud
deploy

/home/stack/.tripleo/history

Undercloud installation log /home/stack/install-undercloud.log

Table 28.3. Additional logs on the overcloud nodes

Information Log location

Cloud-Init Log /var/log/cloud-init.log

High availability log /var/log/pacemaker.log

Red Hat OpenStack Platform 16.1 Director Installation and Usage

282

https://access.redhat.com/solutions/2055933

CHAPTER 29. TIPS FOR UNDERCLOUD AND OVERCLOUD
SERVICES

This section provides advice on tuning and managing specific OpenStack services on the undercloud.

29.1. TUNING DEPLOYMENT PERFORMANCE

Red Hat OpenStack Platform director uses OpenStack Orchestration (heat) to conduct the main
deployment and provisioning functions. Heat uses a series of workers to execute deployment tasks. To
calculate the default number of workers, the director heat configuration halves the total CPU thread
count of the undercloud. In this instance, thread count refers to the number of CPU cores multiplied by
the hyper-threading value. For example, if your undercloud has a CPU with 16 threads, heat spawns 8
workers by default. The director configuration also uses a minimum and maximum cap by default:

Service Minimum Maximum

OpenStack Orchestration (heat) 4 24

However, you can set the number of workers manually with the HeatWorkers parameter in an
environment file:

heat-workers.yaml

parameter_defaults:
 HeatWorkers: 16

undercloud.conf

custom_env_files: heat-workers.yaml

29.2. RUNNING SWIFT-RING-BUILDER IN A CONTAINER

To manage your Object Storage (swift) rings, use the swift-ring-builder commands inside the server
containers:

swift_object_server

swift_container_server

swift_account_server

For example, to view information about your swift object rings, run the following command:

$ sudo podman exec -ti -u swift swift_object_server swift-ring-builder /etc/swift/object.builder

You can run this command on both the undercloud and overcloud nodes.

29.3. CHANGING THE SSL/TLS CIPHER RULES FOR HAPROXY

If you enabled SSL/TLS in the undercloud (see Section 4.2, “Director configuration parameters”), you

CHAPTER 29. TIPS FOR UNDERCLOUD AND OVERCLOUD SERVICES

283

If you enabled SSL/TLS in the undercloud (see Section 4.2, “Director configuration parameters”), you
might want to harden the SSL/TLS ciphers and rules that are used with the HAProxy configuration. This
hardening helps to avoid SSL/TLS vulnerabilities, such as the POODLE vulnerability.

Set the following hieradata using the hieradata_override undercloud configuration option:

tripleo::haproxy::ssl_cipher_suite

The cipher suite to use in HAProxy.

tripleo::haproxy::ssl_options

The SSL/TLS rules to use in HAProxy.

For example, you might want to use the following cipher and rules:

Cipher: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-
POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-
AES256-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-
AES128-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-
CBC3-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-
SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-
SHA:DES-CBC3-SHA:!DSS

Rules: no-sslv3 no-tls-tickets

Create a hieradata override file (haproxy-hiera-overrides.yaml) with the following content:

tripleo::haproxy::ssl_cipher_suite: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-
CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-
AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-
SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-
SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-
CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-
SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS
tripleo::haproxy::ssl_options: no-sslv3 no-tls-tickets

NOTE

The cipher collection is one continuous line.

Set the hieradata_override parameter in the undercloud.conf file to use the hieradata override file
you created before you ran openstack undercloud install:

[DEFAULT]
...
hieradata_override = haproxy-hiera-overrides.yaml
...

Red Hat OpenStack Platform 16.1 Director Installation and Usage

284

https://access.redhat.com/solutions/1291123

CHAPTER 30. POWER MANAGEMENT DRIVERS
Although IPMI is the main method that director uses for power management control, director also
supports other power management types. This appendix contains a list of the power management
features that director supports. Use these power management settings when you register nodes for the
overcloud. For more information, see Registering nodes for the overcloud .

30.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)

The standard power management method when you use a baseboard management controller (BMC).

pm_type

Set this option to ipmi.

pm_user; pm_password

The IPMI username and password.

pm_addr

The IP address of the IPMI controller.

pm_port (Optional)

The port to connect to the IPMI controller.

30.2. REDFISH

A standard RESTful API for IT infrastructure developed by the Distributed Management Task Force
(DMTF)

pm_type

Set this option to redfish.

pm_user; pm_password

The Redfish username and password.

pm_addr

The IP address of the Redfish controller.

pm_system_id

The canonical path to the system resource. This path must include the root service, version, and the
path/unique ID for the system. For example: /redfish/v1/Systems/CX34R87.

redfish_verify_ca

If the Redfish service in your baseboard management controller (BMC) is not configured to use a
valid TLS certificate signed by a recognized certificate authority (CA), the Redfish client in ironic fails
to connect to the BMC. Set the redfish_verify_ca option to false to mute the error. However, be
aware that disabling BMC authentication compromises the access security of your BMC.

30.3. DELL REMOTE ACCESS CONTROLLER (DRAC)

DRAC is an interface that provides out-of-band remote management features including power
management and server monitoring.

pm_type

Set this option to idrac.

pm_user; pm_password

CHAPTER 30. POWER MANAGEMENT DRIVERS

285

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/director_installation_and_usage/index#proc_registering-nodes-for-the-overcloud_basic

The DRAC username and password.

pm_addr

The IP address of the DRAC host.

30.4. INTEGRATED LIGHTS-OUT (ILO)

iLO from Hewlett-Packard is an interface that provides out-of-band remote management features
including power management and server monitoring.

pm_type

Set this option to ilo.

pm_user; pm_password

The iLO username and password.

pm_addr

The IP address of the iLO interface.

To enable this driver, add ilo to the enabled_hardware_types option in your
undercloud.conf and rerun openstack undercloud install.

HP nodes must have a minimum ILO firmware version of 1.85 (May 13 2015) for successful
introspection. Director has been successfully tested with nodes using this ILO firmware
version.

Using a shared iLO port is not supported.

30.5. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER
(IRMC)

Fujitsu iRMC is a Baseboard Management Controller (BMC) with integrated LAN connection and
extended functionality. This driver focuses on the power management for bare metal systems
connected to the iRMC.

IMPORTANT

iRMC S4 or higher is required.

pm_type

Set this option to irmc.

pm_user; pm_password

The username and password for the iRMC interface.

pm_addr

The IP address of the iRMC interface.

pm_port (Optional)

The port to use for iRMC operations. The default is 443.

pm_auth_method (Optional)

The authentication method for iRMC operations. Use either basic or digest. The default is basic

pm_client_timeout (Optional)

Red Hat OpenStack Platform 16.1 Director Installation and Usage

286

Timeout (in seconds) for iRMC operations. The default is 60 seconds.

pm_sensor_method (Optional)

Sensor data retrieval method. Use either ipmitool or scci. The default is ipmitool.

To enable this driver, add irmc to the enabled_hardware_types option in your
undercloud.conf and rerun the openstack undercloud install command.

30.6. RED HAT VIRTUALIZATION

This driver provides control over virtual machines in Red Hat Virtualization (RHV) through its RESTful
API.

pm_type

Set this option to staging-ovirt.

pm_user; pm_password

The username and password for your RHV environment. The username also includes the
authentication provider. For example: admin@internal.

pm_addr

The IP address of the RHV REST API.

pm_vm_name

The name of the virtual machine to control.

mac

A list of MAC addresses for the network interfaces on the node. Use only the MAC address for the
Provisioning NIC of each system.

To enable this driver, add staging-ovirt to the enabled_hardware_types option in your
undercloud.conf and rerun the openstack undercloud install command.

30.7. MANUAL-MANAGEMENT DRIVER

Use the manual-management driver to control bare metal devices that do not have power
management. Director does not control the registered bare metal devices, and you must perform
manual power operations at certain points in the introspection and deployment processes.

IMPORTANT

This option is available only for testing and evaluation purposes. It is not recommended
for Red Hat OpenStack Platform enterprise environments.

pm_type

Set this option to manual-management.

This driver does not use any authentication details because it does not control power
management.

To enable this driver, add manual-management to the enabled_hardware_types option in
your undercloud.conf and rerun the openstack undercloud install command.

In your instackenv.json node inventory file, set the pm_type to manual-management for

CHAPTER 30. POWER MANAGEMENT DRIVERS

287

In your instackenv.json node inventory file, set the pm_type to manual-management for
the nodes that you want to manage manually.

Introspection

When performing introspection on nodes, manually start the nodes after running the openstack
overcloud node introspect command. Ensure the nodes boot through PXE.

If you have enabled node cleaning, manually reboot the nodes after the Introspection
completed message appears and the node status is clean wait for each node when you run the
openstack baremetal node list command. Ensure the nodes boot through PXE.

After the introspection and cleaning process completes, shut down the nodes.

Deployment

When performing overcloud deployment, check the node status with the openstack baremetal
node list command. Wait until the node status changes from deploying to wait call-back and
then manually start the nodes. Ensure the nodes boot through PXE.

After the overcloud provisioning process completes, the nodes will shut down. You must boot
the nodes from disk to start the configuration process. To check the completion of provisioning,
check the node status with the openstack baremetal node list command, and wait until the
node status changes to active for each node. When the node status is active, manually boot
the provisioned overcloud nodes.

Red Hat OpenStack Platform 16.1 Director Installation and Usage

288

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO DIRECTOR
	1.1. UNDERSTANDING THE UNDERCLOUD
	1.2. UNDERSTANDING THE OVERCLOUD
	1.3. UNDERSTANDING HIGH AVAILABILITY IN RED HAT OPENSTACK PLATFORM
	1.4. UNDERSTANDING CONTAINERIZATION IN RED HAT OPENSTACK PLATFORM
	1.5. WORKING WITH CEPH STORAGE IN RED HAT OPENSTACK PLATFORM

	CHAPTER 2. PLANNING YOUR UNDERCLOUD
	2.1. CONTAINERIZED UNDERCLOUD
	2.2. PREPARING YOUR UNDERCLOUD NETWORKING
	2.3. DETERMINING ENVIRONMENT SCALE
	2.4. UNDERCLOUD DISK SIZING
	2.5. VIRTUALIZATION SUPPORT
	2.6. CHARACTER ENCODING CONFIGURATION
	2.7. CONSIDERATIONS WHEN RUNNING THE UNDERCLOUD WITH A PROXY
	2.8. UNDERCLOUD REPOSITORIES

	CHAPTER 3. PREPARING FOR DIRECTOR INSTALLATION
	3.1. PREPARING THE UNDERCLOUD
	3.2. REGISTERING THE UNDERCLOUD AND ATTACHING SUBSCRIPTIONS
	3.3. ENABLING REPOSITORIES FOR THE UNDERCLOUD
	3.4. INSTALLING DIRECTOR PACKAGES
	3.5. INSTALLING CEPH-ANSIBLE
	3.6. PREPARING CONTAINER IMAGES
	3.7. CONTAINER IMAGE PREPARATION PARAMETERS
	3.8. GUIDELINES FOR CONTAINER IMAGE TAGGING
	3.9. OBTAINING CONTAINER IMAGES FROM PRIVATE REGISTRIES
	3.10. LAYERING IMAGE PREPARATION ENTRIES
	3.11. EXCLUDING CEPH STORAGE CONTAINER IMAGES
	3.12. MODIFYING IMAGES DURING PREPARATION
	3.13. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
	3.14. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
	3.15. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
	3.16. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

	CHAPTER 4. INSTALLING DIRECTOR ON THE UNDERCLOUD
	4.1. CONFIGURING DIRECTOR
	4.2. DIRECTOR CONFIGURATION PARAMETERS
	4.3. CONFIGURING THE UNDERCLOUD WITH ENVIRONMENT FILES
	4.4. COMMON HEAT PARAMETERS FOR UNDERCLOUD CONFIGURATION
	4.5. CONFIGURING HIERADATA ON THE UNDERCLOUD
	4.6. CONFIGURING THE UNDERCLOUD FOR BARE METAL PROVISIONING OVER IPV6
	4.7. CONFIGURING UNDERCLOUD NETWORK INTERFACES
	4.8. INSTALLING DIRECTOR
	4.9. CONFIGURING THE CPU ARCHITECTURE FOR THE OVERCLOUD
	4.9.1. Configuring POWER (ppc64le) as the single CPU architecture for the overcloud
	4.9.2. Using Ceph Storage in a multi-architecture overcloud
	4.9.3. Using composable services in a multi-architecture overcloud

	4.10. OBTAINING IMAGES FOR OVERCLOUD NODES
	4.10.1. Single CPU architecture overcloud images
	4.10.2. Multiple CPU architecture overcloud images
	4.10.3. Minimal overcloud image

	4.11. SETTING A NAMESERVER FOR THE CONTROL PLANE
	4.12. UPDATING THE UNDERCLOUD CONFIGURATION
	4.13. UNDERCLOUD CONTAINER REGISTRY

	CHAPTER 5. INSTALLING UNDERCLOUD MINIONS
	5.1. UNDERCLOUD MINION
	5.2. UNDERCLOUD MINION REQUIREMENTS
	5.3. PREPARING A MINION
	5.4. COPYING THE UNDERCLOUD CONFIGURATION FILES TO THE MINION
	5.5. COPYING THE UNDERCLOUD CERTIFICATE AUTHORITY
	5.6. CONFIGURING THE MINION
	5.7. MINION CONFIGURATION PARAMETERS
	5.8. INSTALLING THE MINION
	5.9. VERIFYING THE MINION INSTALLATION

	CHAPTER 6. PLANNING YOUR OVERCLOUD
	6.1. NODE ROLES
	6.2. OVERCLOUD NETWORKS
	6.3. OVERCLOUD STORAGE
	6.4. OVERCLOUD SECURITY
	6.5. OVERCLOUD HIGH AVAILABILITY
	6.6. CONTROLLER NODE REQUIREMENTS
	6.7. COMPUTE NODE REQUIREMENTS
	6.8. CEPH STORAGE NODE REQUIREMENTS
	6.9. OBJECT STORAGE NODE REQUIREMENTS
	6.10. OVERCLOUD REPOSITORIES
	6.11. PROVISIONING METHODS

	CHAPTER 7. CONFIGURING A BASIC OVERCLOUD
	7.1. REGISTERING NODES FOR THE OVERCLOUD
	7.2. CREATING AN INVENTORY OF THE BARE-METAL NODE HARDWARE
	7.2.1. Using director introspection to collect bare metal node hardware information
	7.2.2. Manually configuring bare-metal node hardware information

	7.3. TAGGING NODES INTO PROFILES
	7.4. SETTING THE BOOT MODE TO UEFI MODE
	7.5. ENABLING VIRTUAL MEDIA BOOT
	7.6. DEFINING THE ROOT DISK FOR MULTI-DISK CLUSTERS
	7.7. PROPERTIES THAT IDENTIFY THE ROOT DISK
	7.8. USING THE OVERCLOUD-MINIMAL IMAGE TO AVOID USING A RED HAT SUBSCRIPTION ENTITLEMENT
	7.9. CREATING ARCHITECTURE SPECIFIC ROLES
	7.10. ENVIRONMENT FILES
	7.11. CREATING AN ENVIRONMENT FILE THAT DEFINES NODE COUNTS AND FLAVORS
	7.12. CREATING AN ENVIRONMENT FILE FOR UNDERCLOUD CA TRUST
	7.13. DISABLING TSX ON NEW DEPLOYMENTS
	7.14. DEPLOYMENT COMMAND
	7.15. DEPLOYMENT COMMAND OPTIONS
	7.16. INCLUDING ENVIRONMENT FILES IN AN OVERCLOUD DEPLOYMENT
	7.17. RUNNING THE PRE-DEPLOYMENT VALIDATION
	7.18. OVERCLOUD DEPLOYMENT OUTPUT
	7.19. ACCESSING THE OVERCLOUD
	7.20. RUNNING THE POST-DEPLOYMENT VALIDATION

	CHAPTER 8. PROVISIONING BARE METAL NODES BEFORE DEPLOYING THE OVERCLOUD
	8.1. REGISTERING NODES FOR THE OVERCLOUD
	8.2. CREATING AN INVENTORY OF THE BARE-METAL NODE HARDWARE
	8.2.1. Using director introspection to collect bare metal node hardware information
	8.2.2. Manually configuring bare-metal node hardware information

	8.3. PROVISIONING BARE METAL NODES
	8.4. SCALING UP BARE METAL NODES
	8.5. SCALING DOWN BARE METAL NODES
	8.6. BARE METAL NODE PROVISIONING ATTRIBUTES
	Example syntax
	Example syntax
	Example syntax
	Example syntax

	CHAPTER 9. CONFIGURING A BASIC OVERCLOUD WITH PRE-PROVISIONED NODES
	9.1. PRE-PROVISIONED NODE REQUIREMENTS
	9.2. CREATING A USER ON PRE-PROVISIONED NODES
	9.3. REGISTERING THE OPERATING SYSTEM FOR PRE-PROVISIONED NODES
	9.4. CONFIGURING SSL/TLS ACCESS TO DIRECTOR
	9.5. CONFIGURING NETWORKING FOR THE CONTROL PLANE
	9.6. USING A SEPARATE NETWORK FOR PRE-PROVISIONED NODES
	9.7. MAPPING PRE-PROVISIONED NODE HOSTNAMES
	9.8. MAPPING NETWORK INTERFACES TO ALIASES
	9.9. CONFIGURING CEPH STORAGE FOR PRE-PROVISIONED NODES
	9.10. CREATING THE OVERCLOUD WITH PRE-PROVISIONED NODES
	9.11. OVERCLOUD DEPLOYMENT OUTPUT
	9.12. ACCESSING THE OVERCLOUD
	9.13. SCALING PRE-PROVISIONED NODES

	CHAPTER 10. DEPLOYING MULTIPLE OVERCLOUDS
	10.1. DEPLOYING AN ADDITIONAL OVERCLOUD
	10.2. MANAGING MULTIPLE OVERCLOUDS

	CHAPTER 11. PERFORMING OVERCLOUD POST-INSTALLATION TASKS
	11.1. CHECKING OVERCLOUD DEPLOYMENT STATUS
	11.2. CREATING BASIC OVERCLOUD FLAVORS
	11.3. CREATING A DEFAULT TENANT NETWORK
	11.4. CREATING A DEFAULT FLOATING IP NETWORK
	11.5. CREATING A DEFAULT PROVIDER NETWORK
	11.6. CREATING ADDITIONAL BRIDGE MAPPINGS
	11.7. VALIDATING THE OVERCLOUD
	11.8. PROTECTING THE OVERCLOUD FROM REMOVAL

	CHAPTER 12. PERFORMING BASIC OVERCLOUD ADMINISTRATION TASKS
	12.1. ACCESSING OVERCLOUD NODES THROUGH SSH
	12.2. MANAGING CONTAINERIZED SERVICES
	12.3. MODIFYING THE OVERCLOUD ENVIRONMENT
	12.4. IMPORTING VIRTUAL MACHINES INTO THE OVERCLOUD
	12.5. RUNNING THE DYNAMIC INVENTORY SCRIPT
	12.6. REMOVING THE OVERCLOUD

	CHAPTER 13. CONFIGURING THE OVERCLOUD WITH ANSIBLE
	13.1. ANSIBLE-BASED OVERCLOUD CONFIGURATION (CONFIG-DOWNLOAD)
	13.2. CONFIG-DOWNLOAD WORKING DIRECTORY
	13.3. ENABLING ACCESS TO CONFIG-DOWNLOAD WORKING DIRECTORIES
	13.4. CHECKING CONFIG-DOWNLOAD LOG
	13.5. PERFORMING GIT OPERATIONS ON THE WORKING DIRECTORY
	13.6. DEPLOYMENT METHODS THAT USE CONFIG-DOWNLOAD
	13.7. RUNNING CONFIG-DOWNLOAD ON A STANDARD DEPLOYMENT
	13.8. RUNNING CONFIG-DOWNLOAD WITH SEPARATE PROVISIONING AND CONFIGURATION
	13.9. RUNNING CONFIG-DOWNLOAD WITH THE ANSIBLE-PLAYBOOK-COMMAND.SH SCRIPT
	13.10. RUNNING CONFIG-DOWNLOAD WITH MANUALLY CREATED PLAYBOOKS
	13.11. LIMITATIONS OF CONFIG-DOWNLOAD
	13.12. CONFIG-DOWNLOAD TOP LEVEL FILES
	13.13. CONFIG-DOWNLOAD TAGS
	13.14. CONFIG-DOWNLOAD DEPLOYMENT STEPS

	CHAPTER 14. MANAGING CONTAINERS WITH ANSIBLE
	14.1. ENABLING THE TRIPLEO-CONTAINER-MANAGE ANSIBLE ROLE ON THE UNDERCLOUD
	14.2. ENABLING THE TRIPLEO-CONTAINER-MANAGE ANSIBLE ROLE ON THE OVERCLOUD
	14.3. PERFORMING OPERATIONS ON A SINGLE CONTAINER
	14.4. TRIPLEO-CONTAINER-MANAGE ROLE VARIABLES

	CHAPTER 15. USING THE VALIDATION FRAMEWORK
	15.1. ANSIBLE-BASED VALIDATIONS
	15.2. LISTING VALIDATIONS
	15.3. RUNNING VALIDATIONS
	15.4. VIEWING VALIDATION HISTORY
	15.5. VALIDATION FRAMEWORK LOG FORMAT
	15.6. IN-FLIGHT VALIDATIONS

	CHAPTER 16. SCALING OVERCLOUD NODES
	16.1. ADDING NODES TO THE OVERCLOUD
	16.2. INCREASING NODE COUNTS FOR ROLES
	16.3. REMOVING OR REPLACING COMPUTE NODES
	16.3.1. Completing the removal of an unreachable Compute node
	16.3.2. Deleting the network agents: workaround for bug
	16.3.3. Replacing a removed Compute node

	16.4. PRESERVING HOSTNAMES WHEN REPLACING NODES THAT USE PREDICTABLE IP ADDRESSES AND HOSTNAMEMAP
	16.5. REPLACING CEPH STORAGE NODES
	16.6. REPLACING OBJECT STORAGE NODES
	16.7. USING SKIP DEPLOY IDENTIFIER
	16.8. BLOCKLISTING NODES

	CHAPTER 17. REPLACING CONTROLLER NODES
	17.1. PREPARING FOR CONTROLLER REPLACEMENT
	17.2. REMOVING A CEPH MONITOR DAEMON
	17.3. PREPARING THE CLUSTER FOR CONTROLLER NODE REPLACEMENT
	17.4. REPLACING A CONTROLLER NODE
	17.5. REPLACING A BOOTSTRAP CONTROLLER NODE
	17.6. PRESERVING HOSTNAMES WHEN REPLACING NODES THAT USE PREDICTABLE IP ADDRESSES AND HOSTNAMEMAP
	17.7. TRIGGERING THE CONTROLLER NODE REPLACEMENT
	17.8. CLEANING UP AFTER CONTROLLER NODE REPLACEMENT

	CHAPTER 18. REBOOTING NODES
	18.1. REBOOTING THE UNDERCLOUD NODE
	18.2. REBOOTING CONTROLLER AND COMPOSABLE NODES
	18.3. REBOOTING STANDALONE CEPH MON NODES
	18.4. REBOOTING A CEPH STORAGE (OSD) CLUSTER
	18.5. REBOOTING OBJECT STORAGE SERVICE (SWIFT) NODES
	18.6. REBOOTING COMPUTE NODES

	CHAPTER 19. SHUTTING DOWN AND STARTING UP THE UNDERCLOUD AND OVERCLOUD
	19.1. UNDERCLOUD AND OVERCLOUD SHUTDOWN ORDER
	19.2. SHUTTING DOWN INSTANCES ON OVERCLOUD COMPUTE NODES
	19.3. SHUTTING DOWN COMPUTE NODES
	19.4. STOPPING SERVICES ON CONTROLLER NODES
	19.5. SHUTTING DOWN CEPH STORAGE NODES
	19.6. SHUTTING DOWN CONTROLLER NODES
	19.7. SHUTTING DOWN THE UNDERCLOUD
	19.8. PERFORMING SYSTEM MAINTENANCE
	19.9. UNDERCLOUD AND OVERCLOUD STARTUP ORDER
	19.10. STARTING THE UNDERCLOUD
	19.11. STARTING CONTROLLER NODES
	19.12. STARTING CEPH STORAGE NODES
	19.13. STARTING COMPUTE NODES
	19.14. STARTING INSTANCES ON OVERCLOUD COMPUTE NODES

	CHAPTER 20. CONFIGURING CUSTOM SSL/TLS CERTIFICATES
	20.1. INITIALIZING THE SIGNING HOST
	20.2. CREATING A CERTIFICATE AUTHORITY
	20.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
	20.4. CREATING AN SSL/TLS KEY
	20.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
	20.6. CREATING THE SSL/TLS CERTIFICATE
	20.7. ADDING THE CERTIFICATE TO THE UNDERCLOUD

	CHAPTER 21. ADDITIONAL INTROSPECTION OPERATIONS
	21.1. PERFORMING INDIVIDUAL NODE INTROSPECTION
	21.2. PERFORMING NODE INTROSPECTION AFTER INITIAL INTROSPECTION
	21.3. PERFORMING NETWORK INTROSPECTION FOR INTERFACE INFORMATION
	21.4. RETRIEVING HARDWARE INTROSPECTION DETAILS

	CHAPTER 22. AUTOMATICALLY DISCOVERING BARE METAL NODES
	22.1. ENABLING AUTO-DISCOVERY
	22.2. TESTING AUTO-DISCOVERY
	22.3. USING RULES TO DISCOVER DIFFERENT VENDOR HARDWARE

	CHAPTER 23. CONFIGURING AUTOMATIC PROFILE TAGGING
	23.1. POLICY FILE SYNTAX
	23.2. POLICY FILE EXAMPLE
	23.3. IMPORTING POLICY FILES

	CHAPTER 24. CREATING WHOLE-DISK IMAGES
	24.1. SECURITY HARDENING MEASURES
	24.2. WHOLE DISK IMAGE WORKFLOW
	24.3. DOWNLOADING THE BASE CLOUD IMAGE
	24.4. ENABLING CONSISTENT INTERFACE NAMING
	24.5. DISK IMAGE ENVIRONMENT VARIABLES
	24.6. CUSTOMIZING THE DISK LAYOUT
	24.7. MODIFYING THE PARTITIONING SCHEMA
	24.8. MODIFYING THE IMAGE SIZE
	24.9. BUILDING THE WHOLE DISK IMAGE
	24.10. UPLOADING THE WHOLE DISK IMAGE

	CHAPTER 25. CONFIGURING DIRECT DEPLOY
	25.1. CONFIGURING THE DIRECT DEPLOY INTERFACE ON THE UNDERCLOUD

	CHAPTER 26. CREATING VIRTUALIZED CONTROL PLANES
	26.1. VIRTUALIZED CONTROL PLANE ARCHITECTURE
	26.2. PROVISIONING VIRTUALIZED CONTROLLERS USING THE RED HAT VIRTUALIZATION DRIVER

	CHAPTER 27. PERFORMING ADVANCED CONTAINER IMAGE MANAGEMENT
	27.1. PINNING CONTAINER IMAGES FOR THE UNDERCLOUD
	27.2. PINNING CONTAINER IMAGES FOR THE OVERCLOUD

	CHAPTER 28. TROUBLESHOOTING DIRECTOR ERRORS
	28.1. TROUBLESHOOTING NODE REGISTRATION
	28.2. TROUBLESHOOTING HARDWARE INTROSPECTION
	28.3. TROUBLESHOOTING WORKFLOWS AND EXECUTIONS
	28.4. TROUBLESHOOTING OVERCLOUD CREATION AND DEPLOYMENT
	28.5. TROUBLESHOOTING NODE PROVISIONING
	28.6. TROUBLESHOOTING IP ADDRESS CONFLICTS DURING PROVISIONING
	28.7. TROUBLESHOOTING "NO VALID HOST FOUND" ERRORS
	28.8. TROUBLESHOOTING OVERCLOUD CONFIGURATION
	28.9. TROUBLESHOOTING CONTAINER CONFIGURATION
	28.10. TROUBLESHOOTING COMPUTE NODE FAILURES
	28.11. CREATING AN SOSREPORT
	28.12. LOG LOCATIONS

	CHAPTER 29. TIPS FOR UNDERCLOUD AND OVERCLOUD SERVICES
	29.1. TUNING DEPLOYMENT PERFORMANCE
	29.2. RUNNING SWIFT-RING-BUILDER IN A CONTAINER
	29.3. CHANGING THE SSL/TLS CIPHER RULES FOR HAPROXY

	CHAPTER 30. POWER MANAGEMENT DRIVERS
	30.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)
	30.2. REDFISH
	30.3. DELL REMOTE ACCESS CONTROLLER (DRAC)
	30.4. INTEGRATED LIGHTS-OUT (ILO)
	30.5. FUJITSU INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
	30.6. RED HAT VIRTUALIZATION
	30.7. MANUAL-MANAGEMENT DRIVER

