
Red Hat OpenStack Platform 10

Network Functions Virtualization Planning
Guide

Planning for NFV in Red Hat OpenStack Platform 10

Last Updated: 2020-05-26

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning
Guide

Planning for NFV in Red Hat OpenStack Platform 10

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide helps you plan your Red Hat OpenStack Platform 10 with NFV. It contains information to
allow you to successfully setup and install a NFV enabled Red Hat OpenStack Platform 10.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION

CHAPTER 2. SOFTWARE REQUIREMENTS
2.1. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS
2.2. SUPPORTED DRIVERS
2.3. COMPATIBILITY WITH THIRD PARTY SOFTWARE
2.4. SUBSCRIPTION BASICS

CHAPTER 3. HARDWARE
3.1. APPROVED HARDWARE
3.2. TESTED NICS
3.3. DISCOVERING YOUR NUMA NODE TOPOLOGY WITH HARDWARE INTROSPECTION
3.4. REVIEW BIOS SETTINGS

CHAPTER 4. NETWORK CONSIDERATIONS

CHAPTER 5. PLANNING YOUR SR-IOV DEPLOYMENT
5.1. HARDWARE PARTITIONING FOR A NFV SR-IOV DEPLOYMENT
5.2. TOPOLOGY OF A NFV SR-IOV DEPLOYMENT

5.2.1. NFV SR-IOV without HCI
5.2.2. NFV SR-IOV with HCI

CHAPTER 6. PLANNING YOUR OVS-DPDK DEPLOYMENT
6.1. HOW OVS-DPDK USES CPU PARTITIONING AND NUMA TOPOLOGY
6.2. UNDERSTANDING OVS-DPDK PARAMETERS

6.2.1. CPU Parameters
6.2.2. Memory Parameters
6.2.3. Networking Parameters
6.2.4. Other Parameters

6.3. TWO NUMA NODE EXAMPLE OVS-DPDK DEPLOYMENT
6.4. TOPOLOGY OF AN NFV OVS-DPDK DEPLOYMENT

CHAPTER 7. PERFORMANCE
7.1. CONFIGURING RX/TX QUEUE SIZE

Prerequisites
Procedure
Testing

CHAPTER 8. VHOST USER PORTS
8.1. MANUALLY CHANGING THE VHOST USER PORT MODE

CHAPTER 9. TECHNICAL SUPPORT

3

4
4
4
4
4

6
6
6
6

10

11

12
12
12
13
14

16
16
16
17
18

20
20
20
22

25
25
25
25
25

27
27

29

Table of Contents

1

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

2

CHAPTER 1. INTRODUCTION
Network Functions Virtualization (NFV) is a software-based solution that helps Communication Service
Providers (CSPs) to move beyond the traditional, proprietary hardware to achieve greater efficiency
and agility while reducing the operational costs.

For a high level overview of the NFV concepts, see the Network Functions Virtualization Product Guide .

For information on configuring SR-IOV and OVS-DPDK with Red Hat OpenStack Platform 10 director,
see the Network Functions Virtualization Configuration Guide .

CHAPTER 1. INTRODUCTION

3

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/network-functions-virtualization-product-guide/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/network-functions-virtualization-configuration-guide/

CHAPTER 2. SOFTWARE REQUIREMENTS
This chapter describes the software architecture, supported configurations and drivers, and subscription
details necessary for NFV.

2.1. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS

Red Hat OpenStack Platform 10 supports NFV deployments for SR-IOV and OVS-DPDK installation
using the director. Using the composable roles feature available in the Red Hat OpenStack Platform 10
director, you can create custom deployment roles. Hyper-converged Infrastructure (HCI), available with
limited support for this release, allows you to co-locate the Compute node with Red Hat Ceph Storage
nodes for distributed NFV. To increase the performance in HCI, CPU pinning is used. The HCI model
allows more efficient management in the NFV use cases. This release also provides OpenDaylight and
Real-Time KVM as technology preview features. OpenDaylight is an open source modular, multi-
protocol controller for Software-Defined Network (SDN) deployments. For more information on the
support scope for features marked as technology previews, see Technology Preview

2.2. SUPPORTED DRIVERS

For a complete list of supported drivers, see Component, Plug-In, and Driver Support in Red Hat
OpenStack Platform .

For a complete list of network adapters, see Network Adapter Feature Support in Red Hat Enterprise
Linux.

2.3. COMPATIBILITY WITH THIRD PARTY SOFTWARE

For a complete list of products and services tested, supported, and certified to perform with Red Hat
technologies (Red Hat OpenStack Platform), see Third Party Software compatible with Red Hat
OpenStack Platform. You can filter the list by product version and software category.

For a complete list of products and services tested, supported, and certified to perform with Red Hat
technologies (Red Hat Enterprise Linux), see Third Party Software compatible with Red Hat Enterprise
Linux. You can filter the list by product version and software category.

2.4. SUBSCRIPTION BASICS

To install Red Hat OpenStack Platform, you must register Red Hat OpenStack Platform director using
the Red Hat Subscription Manager, and subscribe to the required channels. See Registering your system
for details.

Procedure

1. Disable the default repositories.

subscription-manager repos --disable=*

2. Enable required repositories for Red Hat OpenStack Platform with NFV.

sudo subscription-manager repos \
--enable=rhel-7-server-rpms \
--enable=rhel-7-server-extras-rpms \

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

4

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/articles/1535373
https://access.redhat.com/articles/1390483
https://access.redhat.com/ecosystem/search/#/category/Software?page=3&sort=sortTitle asc&ecosystem=Red Hat OpenStack Platform
https://access.redhat.com/ecosystem/search/#/category/Software?sort=sortTitle asc&certifications=Red Hat Enterprise Linux 7&ecosystem=Red Hat Enterprise Linux
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/director_installation_and_usage/#sect-Registering_your_System

--enable=rhel-7-server-rh-common-rpms \
--enable=rhel-ha-for-rhel-7-server-rpms \
--enable=rhel-7-server-openstack-10-rpms

NOTE

To register your overcloud nodes, see Overcloud Registration.

CHAPTER 2. SOFTWARE REQUIREMENTS

5

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/advanced_overcloud_customization/#sect-Registering_the_Overcloud

CHAPTER 3. HARDWARE
This chapter describes the hardware details necessary for NFV, for example the approved hardware,
hardware capacity, topology and so on.

3.1. APPROVED HARDWARE

You can use Red Hat Technologies Ecosystem to check for a list of certified hardware, software, cloud
provider, component by choosing the category and then selecting the product version.

For a complete list of the certified hardware for Red Hat OpenStack Platform, see Red Hat OpenStack
Platform certified hardware.

3.2. TESTED NICS

For a list of tested NICs for NFV, see Network Adapter Support . (Customer Portal login required.)

3.3. DISCOVERING YOUR NUMA NODE TOPOLOGY WITH HARDWARE
INTROSPECTION

When you plan your deployment, you need to understand the NUMA topology of your Compute node to
partition the CPU and memory resources for optimum performance. To determine the NUMA
information, you can enable hardware introspection to retrieve this information from bare-metal nodes.

NOTE

You must install and configure the undercloud before you can retrieve NUMA information
through hardware introspection. See the Director Installation and Usage Guide for
details.

Retrieving Hardware Introspection Details

The Bare Metal service hardware inspection extras (inspection_extras) is enabled by default to retrieve
hardware details. You can use these hardware details to configure your overcloud. See Configuring the
Director for details on the inspection_extras parameter in the undercloud.conf file.

For example, the numa_topology collector is part of these hardware inspection extras and includes the
following information for each NUMA node:

RAM (in kilobytes)

Physical CPU cores and their sibling threads

NICs associated with the NUMA node

Use the openstack baremetal introspection data save _UUID_ | jq .numa_topology command to
retrieve this information, with the UUID of the bare-metal node.

The following example shows the retrieved NUMA information for a bare-metal node:

{
 "cpus": [
 {

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

6

https://access.redhat.com/ecosystem/
https://access.redhat.com/ecosystem/search/#/category/Server?sort=sortTitle asc&certifications=Red Hat OpenStack Platform 10&ecosystem=Red Hat Enterprise Linux
https://access.redhat.com/articles/3538141#network-adapter-support-2
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/director_installation_and_usage/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/director_installation_and_usage/chap-installing_the_undercloud#sect-Configuring_the_Director

 "cpu": 1,
 "thread_siblings": [
 1,
 17
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 10,
 26
],
 "numa_node": 1
 },
 {
 "cpu": 0,
 "thread_siblings": [
 0,
 16
],
 "numa_node": 0
 },
 {
 "cpu": 5,
 "thread_siblings": [
 13,
 29
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 15,
 31
],
 "numa_node": 1
 },
 {
 "cpu": 7,
 "thread_siblings": [
 7,
 23
],
 "numa_node": 0
 },
 {
 "cpu": 1,
 "thread_siblings": [
 9,
 25
],
 "numa_node": 1
 },
 {

CHAPTER 3. HARDWARE

7

 "cpu": 6,
 "thread_siblings": [
 6,
 22
],
 "numa_node": 0
 },
 {
 "cpu": 3,
 "thread_siblings": [
 11,
 27
],
 "numa_node": 1
 },
 {
 "cpu": 5,
 "thread_siblings": [
 5,
 21
],
 "numa_node": 0
 },
 {
 "cpu": 4,
 "thread_siblings": [
 12,
 28
],
 "numa_node": 1
 },
 {
 "cpu": 4,
 "thread_siblings": [
 4,
 20
],
 "numa_node": 0
 },
 {
 "cpu": 0,
 "thread_siblings": [
 8,
 24
],
 "numa_node": 1
 },
 {
 "cpu": 6,
 "thread_siblings": [
 14,
 30
],
 "numa_node": 1
 },
 {

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

8

 "cpu": 3,
 "thread_siblings": [
 3,
 19
],
 "numa_node": 0
 },
 {
 "cpu": 2,
 "thread_siblings": [
 2,
 18
],
 "numa_node": 0
 }
],
 "ram": [
 {
 "size_kb": 66980172,
 "numa_node": 0
 },
 {
 "size_kb": 67108864,
 "numa_node": 1
 }
],
 "nics": [
 {
 "name": "ens3f1",
 "numa_node": 1
 },
 {
 "name": "ens3f0",
 "numa_node": 1
 },
 {
 "name": "ens2f0",
 "numa_node": 0
 },
 {
 "name": "ens2f1",
 "numa_node": 0
 },
 {
 "name": "ens1f1",
 "numa_node": 0
 },
 {
 "name": "ens1f0",
 "numa_node": 0
 },
 {
 "name": "eno4",
 "numa_node": 0
 },
 {

CHAPTER 3. HARDWARE

9

 "name": "eno1",
 "numa_node": 0
 },
 {
 "name": "eno3",
 "numa_node": 0
 },
 {
 "name": "eno2",
 "numa_node": 0
 }
]
}

3.4. REVIEW BIOS SETTINGS

The following listing describes the required BIOS settings for NFV:

C3 Power State - Disabled.

C6 Power State - Disabled.

MLC Streamer - Enabled.

MLC Spacial Prefetcher - Enabled.

DCU Data Prefetcher - Enabled.

DCA - Enabled.

CPU Power and Performance - Performance.

Memory RAS and Performance Config → NUMA Optimized - Enabled.

Turbo Boost - Disabled.

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

10

CHAPTER 4. NETWORK CONSIDERATIONS
The undercloud host requires at least the following networks:

Provisioning network - Provides DHCP and PXE boot functions to help discover bare metal
systems for use in the overcloud.

External network - A separate network for remote connectivity to all nodes. The interface
connecting to this network requires a routable IP address, either defined statically, or
dynamically through an external DHCP service.

The minimal overcloud network configuration includes:

Single NIC configuration - One NIC for the Provisioning network on the native VLAN and
tagged VLANs that use subnets for the different overcloud network types.

Dual NIC configuration - One NIC for the Provisioning network and the other NIC for the
External network.

Dual NIC configuration - One NIC for the Provisioning network on the native VLAN and the
other NIC for tagged VLANs that use subnets for the different overcloud network types.

Multiple NIC configuration - Each NIC uses a subnet for a different overcloud network type.

NOTE

The Provisioning network only uses the native VLAN.

The overcloud network configuration for Ceph (HCI), with NFV SR-IOV topology (see NFV SR-IOV with
HCI) includes:

3x1G ports, for director, provisioning OVS (isolated in case of SR-IOV)

6x10G, 2x10G for Ceph other for DPDK SR-IOV

NOTE

Ceph HCI is technology preview in Red Hat OpenStack Platform 10. For more
information on the support scope for features marked as technology previews, see
Technology Preview.

For more information on the networking requirements, see Networking Requirements .

CHAPTER 4. NETWORK CONSIDERATIONS

11

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage/#sect-Networking_Requirements

CHAPTER 5. PLANNING YOUR SR-IOV DEPLOYMENT
To optimize your SR-IOV deployment for NFV, you should understand how to set the individual OVS-
DPDK parameters based on your Compute node hardware.

See Discovering Your NUMA Node Topology to evaluate your hardware impact on the SR-IOV
parameters.

5.1. HARDWARE PARTITIONING FOR A NFV SR-IOV DEPLOYMENT

For SR-IOV, to achieve high performance, you need to partition the resources between the host and the
guest.

A typical topology includes 14 cores per NUMA node on dual socket Compute nodes. Both hyper-
threading (HT) and non-HT cores are supported. Each core has two sibling threads. One core is
dedicated to the host on each NUMA node. The VNF handles the SR-IOV interface bonding. All the
interrupt requests (IRQs) are routed on the host cores. The VNF cores are dedicated to the VNFs. They
provide isolation from other VNFs as well as isolation from the host. Each VNF has to fit on a single
NUMA node and use local SR-IOV NICs. This topology does not have a virtualization overhead. The
host, OpenStack Networking (neutron) and Compute (nova) configuration parameters are exposed in a
single file for ease, consistency and to avoid incoherences that are fatal to proper isolation, causing
preemption and packet loss. The host and virtual machine isolation depend on a tuned profile, which
takes care of the boot parameters and any OpenStack modifications based on the list of CPUs to
isolate.

5.2. TOPOLOGY OF A NFV SR-IOV DEPLOYMENT

The following image has two VNFs each with the management interface represented by mgt and the
dataplane interfaces. The management interface manages ssh access and so on. The dataplane
interfaces bonds the VNFs to DPDK to ensure high availability (VNFs bond the dataplane interfaces
using the DPDK library). The image also has two redundant provider networks. The Compute node has
two regular NICs bonded together and shared between the VNF management and the Red Hat
OpenStack Platform API management.

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

12

The image shows a VNF that leverages DPDK at an application level and has access to SR-IOV VF/PFs,
together for better availability or performance (depending on the fabric configuration). DPDK improves
performance, while the VF/PF DPDK bonds support failover (availability). The VNF vendor must ensure
their DPDK PMD driver supports the SR-IOV card that is being exposed as a VF/PF. The management
network uses OVS so the VNF sees a mgmt network device using the standard VirtIO drivers. Operators
can use that device to initially connect to the VNF and ensure their DPDK application bonds properly
the two VF/PFs.

5.2.1. NFV SR-IOV without HCI

The following image shows the topology for SR-IOV without HCI for the NFV use case. It consists of
Compute and Controller nodes with 1 Gbps NICs, and the Director node.

CHAPTER 5. PLANNING YOUR SR-IOV DEPLOYMENT

13

5.2.2. NFV SR-IOV with HCI

The following image shows the topology for SR-IOV with HCI for the NFV use case. It consists of
Compute OSD node with HCI and a Controller node with 1 or 10 Gbps NICs, and the Director node.

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

14

CHAPTER 5. PLANNING YOUR SR-IOV DEPLOYMENT

15

CHAPTER 6. PLANNING YOUR OVS-DPDK DEPLOYMENT
To optimize your OVS-DPDK deployment for NFV, you should understand how OVS-DPDK uses the
Compute node hardware (CPU, NUMA nodes, memory, NICs) and the considerations for determining
the individual OVS-DPDK parameters based on your Compute node.

See NFV Performance Considerations for a high-level introduction to CPUs and NUMA topology.

6.1. HOW OVS-DPDK USES CPU PARTITIONING AND NUMA
TOPOLOGY

OVS-DPDK partitions the hardware resources for host, guests, and OVS-DPDK itself. The OVS-DPDK
Poll Mode Drivers (PMDs) run DPDK active loops, which require dedicated cores. This means a list of
CPUs and Huge Pages are dedicated to OVS-DPDK.

A sample partitioning includes 16 cores per NUMA node on dual socket Compute nodes. The traffic
requires additional NICs since the NICs cannot be shared between the host and OVS-DPDK.

NOTE

DPDK PMD threads must be reserved on both NUMA nodes even if a NUMA node does
not have an associated DPDK NIC.

OVS-DPDK performance also depends on reserving a block of memory local to the NUMA node. Use
NICs associated with the same NUMA node that you use for memory and CPU pinning. Also ensure
both interfaces in a bond are from NICs on the same NUMA node.

6.2. UNDERSTANDING OVS-DPDK PARAMETERS

This section describes how OVS-DPDK uses parameters within the director
network_environment.yaml HEAT templates to configure the CPU and memory for optimum
performance. Use this information to evaluate the hardware support on your Compute nodes and how
best to partition that hardware to optimize your OVS-DPDK deployment.

NOTE

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

16

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/network_functions_virtualization_product_guide/ch-nfv_tuning_for_performance

NOTE

Assign sibling threads together when allocating logical CPUs to a given task.

See Discovering Your NUMA Node Topology to determine the CPU and NUMA nodes on your Compute
nodes. You use this information to map CPU and other parameters to support the host, guest instance,
and OVS-DPDK process needs.

6.2.1. CPU Parameters

OVS-DPDK uses the following CPU partitioning parameters:

NeutronDpdkCoreList

Provides the CPU cores that are used for the DPDK poll mode drivers (PMD). Choose CPU cores
that are associated with the local NUMA nodes of the DPDK interfaces. NeutronDpdkCoreList is
used for the pmd-cpu-mask value in Open vSwitch.

Pair the sibling threads together.

Exclude all cores from the HostCpusList

Avoid allocating the logical CPUs (both thread siblings) of the first physical core on both
NUMA nodes as these should be used for the HostCpusList parameter.

Performance depends on the number of physical cores allocated for this PMD Core list. On
the NUMA node which is associated with DPDK NIC, allocate the required cores.

For NUMA nodes with a DPDK NIC:

Determine the number of physical cores required based on the performance
requirement and include all the sibling threads (logical CPUs) for each physical core.

For NUMA nodes without DPDK NICs:

Allocate the sibling threads (logical CPUs) of one physical core (excluding the first
physical core of the NUMA node). You need a minimal DPDK poll mode driver on the
NUMA node even without DPDK NICs present to avoid failures in creating guest
instances.

NOTE

DPDK PMD threads must be reserved on both NUMA nodes even if a NUMA node does
not have an associated DPDK NIC.

NovaVcpuPinSet

Sets cores for CPU pinning. The Compute node uses these cores for guest instances.
NovaVcpuPinSet is used as the vcpu_pin_set value in the nova.conf file.

Exclude all cores from the NeutronDpdkCoreList and the HostCpusList.

Include all remaining cores.

Pair the sibling threads together.

CHAPTER 6. PLANNING YOUR OVS-DPDK DEPLOYMENT

17

HostIsolatedCoreList

A set of CPU cores isolated from the host processes. This parameter is used as the isolated_cores
value in the cpu-partitioning-variable.conf file for the tuned-profiles-cpu-partitioning component.

Match the list of cores in NeutronDpdkCoreList and NovaVcpuPinSet.

Pair the sibling threads together.

HostCpusList

Provides CPU cores for non-datapath OVS-DPDK processes, such as handler and revalidator
threads. This parameter has no impact on overall data path performance on multi-NUMA node
hardware. This parameter is used for the dpdk-lcore-mask value in Open vSwitch and the cores are
shared with the host OS.

Allocate the first physical core (and sibling thread) from each NUMA node (even if the
NUMA node has no associated DPDK NIC).

These cores must be mutually exclusive from the list of cores in NeutronDpdkCoreList and
NovaVcpuPinSet.

6.2.2. Memory Parameters

OVS-DPDK uses the following memory parameters:

NovaReservedHostMemory

Reserves memory in MB for tasks on the host. This value is used by the Compute node as the
reserved_host_memory_mb value in nova.conf.

Use the static recommended value of 4096 MB.

NeutronDpdkSocketMemory

Specifies the amount of memory in MB to pre-allocate from the hugepage pool, per NUMA node, for
DPDK NICs. This value is used by Open vSwitch as the other_config:dpdk-socket-mem value.

Provide as a comma-separated list. The NeutronDpdkSocketMemory value is calculated
from the MTU value of each DPDK NIC on the NUMA node.

Round each MTU value to the nearest 1024 bytes (ROUNDUP_PER_MTU).

For a NUMA node without a DPDK NIC, use the static recommendation of 1024 MB (1GB)

The following equation approximates the value for NeutronDpdkSocketMemory:

MEMORY_REQD_PER_MTU = (ROUNDUP_PER_MTU + 800) * (4096 * 64) Bytes

800 is the overhead value

4096 * 64 is the number of packets in the mempool

Add the MEMORY_REQD_PER_MTU for each of the MTU values set on the NUMA node and
add another 512 MB as buffer. Round the value up to a multiple of 1024.

Sample Calculation - MTU 2000 and MTU 9000

DPDK NICs dpdk0 and dpdk1 are on the same NUMA node 0 and configured with MTUs 9000 and

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

18

DPDK NICs dpdk0 and dpdk1 are on the same NUMA node 0 and configured with MTUs 9000 and
2000 respectively. The sample calculation to derive the memory required is as follows:

1. Round off the MTU values to the nearest 1024 bytes.

The MTU value of 9000 becomes 9216 bytes.
The MTU value of 2000 becomes 2048 bytes.

2. Calculate the required memory for each MTU value based on these rounded byte values.

Memory required for 9000 MTU = (9216 + 800) * (4096*64) = 2625634304
Memory required for 2000 MTU = (2048 + 800) * (4096*64) = 746586112

3. Calculate the combined total memory required, in bytes.

2625634304 + 746586112 + 536870912 = 3909091328 bytes.

This calculation represents (Memory required for MTU of 9000) + (Memory required for MTU
of 2000) + (512 MB buffer).

4. Convert the total memory required into MB.

3909091328 / (1024*1024) = 3728 MB.

5. Round this value up to the nearest 1024.

3724 MB rounds up to 4096 MB.

6. Use this value to set NeutronDpdkSocketMemory.

Sample Calculation - MTU 2000

DPDK NICs dpdk0 and dpdk1 are on the same NUMA node 0 and configured with MTUs 2000 and 2000
respectively. The sample calculation to derive the memory required is as follows:

1. Round off the MTU values to the nearest 1024 bytes.

The MTU value of 2000 becomes 2048 bytes.

2. Calculate the required memory for each MTU value based on these rounded byte values.

Memory required for 2000 MTU = (2048 + 800) * (4096*64) = 746586112

3. Calculate the combined total memory required, in bytes.

746586112 + 536870912 = 1283457024 bytes.

This calculation represents (Memory required for MTU of 2000) + (512 MB buffer).

4. Convert the total memory required into MB.

 NeutronDpdkSocketMemory: “4096,1024”

CHAPTER 6. PLANNING YOUR OVS-DPDK DEPLOYMENT

19

1283457024 / (1024*1024) = 1224 MB.

5. Round this value up to the nearest 1024.

1224 MB rounds up to 2048 MB.

6. Use this value to set NeutronDpdkSocketMemory.

6.2.3. Networking Parameters

NeutronDpdkDriverType

Sets the driver type used by DPDK. Use the default of vfio-pci.

NeutronDatapathType

Datapath type for OVS bridges. DPDK uses the default value of netdev.

NeutronVhostuserSocketDir

Sets the vhost-user socket directory for OVS. Use /var/run/openvswitch for vhost server mode.

6.2.4. Other Parameters

NovaSchedulerDefaultFilters

Provides an ordered list of filters that the Compute node uses to find a matching Compute node for
a requested guest instance.

ComputeKernelArgs

Provides multiple kernel arguments to /etc/default/grub for the Compute node at boot time. Add
the following based on your configuration:

hugepagesz: Sets the size of the hugepages on a CPU. This value can vary depending on
the CPU hardware. Set to 1G for OVS-DPDK deployments (default_hugepagesz=1GB
hugepagesz=1G). Check for the pdpe1gb CPU flag to ensure your CPU supports 1G.

lshw -class processor | grep pdpe1gb

hugepages count: Sets the number of hugepages available. This value depends on the
amount of host memory available. Use most of your available memory (excluding
NovaReservedHostMemory). You must also configure the hugepages count value within
the OpenStack flavor associated with your Compute nodes.

iommu: For Intel CPUs, add “intel_iommu=on iommu=pt”`

isolcpus: Sets the CPU cores to be tuned. This value matches HostIsolatedCoreList.

6.3. TWO NUMA NODE EXAMPLE OVS-DPDK DEPLOYMENT

This sample Compute node includes two NUMA nodes as follows:

NUMA 0 has cores 0-7. The sibling thread pairs are (0,1), (2,3), (4,5), and (6,7).

NUMA 1 has cores 8-15. The sibling thread pairs are (8,9), (10,11), (12,13), and (14,15).

 NeutronDpdkSocketMemory: “2048,1024”

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

20

Each NUMA node connects to a physical NIC (NIC1 on NUMA 0 and NIC2 on NUMA 1).

NOTE

Reserve the first physical cores (both thread pairs) on each NUMA node (0,1 and 8,9) for
non-datapath DPDK processes (HostCpusList).

This example also assumes a 1500 MTU configuration, so the OvsDpdkSocketMemory is the same for
all use cases:

NIC 1 for DPDK, with one physical core for PMD

In this use case, we allocate one physical core on NUMA 0 for PMD. We must also allocate one physical
core on NUMA 1, even though there is no DPDK enabled on the NIC for that NUMA node. The remaining
cores (not reserved for HostCpusList) are allocated for guest instances. The resulting parameter
settings are:

NIC 1 for DPDK, with two physical cores for PMD

In this use case, we allocate two physical cores on NUMA 0 for PMD. We must also allocate one physical
core on NUMA 1, even though there is no DPDK enabled on the NIC for that NUMA node. The remaining
cores (not reserved for HostCpusList) are allocated for guest instances. The resulting parameter
settings are:

NIC 2 for DPDK, with one physical core for PMD

In this use case, we allocate one physical core on NUMA 1 for PMD. We must also allocate one physical
core on NUMA 0, even though there is no DPDK enabled on the NIC for that NUMA node. The remaining
cores (not reserved for HostCpusList) are allocated for guest instances. The resulting parameter
settings are:

NIC 2 for DPDK, with two physical cores for PMD

OvsDpdkSocketMemory: “1024,1024”

NeutronDpdkCoreList: “'2,3,10,11'”
NovaVcpuPinSet: “4,5,6,7,12,13,14,15”

NeutronDpdkCoreList: “'2,3,4,5,10,11'”
NovaVcpuPinSet: “6,7,12,13,14,15”

NeutronDpdkCoreList: “'2,3,10,11'”
NovaVcpuPinSet: “4,5,6,7,12,13,14,15”

CHAPTER 6. PLANNING YOUR OVS-DPDK DEPLOYMENT

21

In this use case, we allocate two physical cores on NUMA 1 for PMD. We must also allocate one physical
core on NUMA 0, even though there is no DPDK enabled on the NIC for that NUMA node. The remaining
cores (not reserved for HostCpusList) are allocated for guest instances. The resulting parameter
settings are:

NIC 1 and NIC2 for DPDK, with two physical cores for PMD

In this use case, we allocate two physical cores on each NUMA node for PMD. The remaining cores (not
reserved for HostCpusList) are allocated for guest instances. The resulting parameter settings are:

NOTE

Red Hat recommends using 1 physical core per NUMA node.

6.4. TOPOLOGY OF AN NFV OVS-DPDK DEPLOYMENT

This sample OVS-DPDK deployment consists of two VNFs each with two interfaces, namely, the
management interface represented by mgt and the dataplane interface. In the OVS-DPDK deployment,
the VNFs run with inbuilt DPDK that supports the physical interface. OVS-DPDK takes care of the
bonding at the vSwitch level. In an OVS-DPDK deployment, it is recommended that you do not mix
kernel and OVS-DPDK NICs as it can lead to performance degradation. To separate the management
(mgt) network, connected to the Base provider network for the virtual machine, you need to ensure you
have additional NICs. The Compute node consists of two regular NICs for the OpenStack API
management that can be reused by the Ceph API but cannot be shared with any OpenStack tenant.

NeutronDpdkCoreList: “'2,3,10,11,12,13'”
NovaVcpuPinSet: “4,5,6,7,14,15”

NeutronDpdkCoreList: “'2,3,4,5,10,11,12,13'”
NovaVcpuPinSet: “6,7,14,15”

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

22

NFV OVS-DPDK Topology

The following image shows the topology for OVS_DPDK for the NFV use case. It consists of Compute
and Controller nodes with 1 or 10 Gbps NICs, and the Director node.

CHAPTER 6. PLANNING YOUR OVS-DPDK DEPLOYMENT

23

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

24

CHAPTER 7. PERFORMANCE
Red Hat OpenStack Platform 10 director configures the Compute nodes to enforce resource
partitioning and fine tuning to achieve line rate performance for the guest VNFs. The key performance
factors in the NFV use case are throughput, latency and jitter.

DPDK-accelerated OVS enables high performance packet switching between physical NICs and virtual
machines. OVS 2.5 with DPDK 2.2 adds support for vhost-user multiqueue allowing scalable
performance. OVS-DPDK provides line rate performance for guest VNFs.

SR-IOV networking provides enhanced performance characteristics, including improved throughput for
specific networks and virtual machines.

Other important features for performance tuning include huge pages, NUMA alignment, host isolation
and CPU pinning. VNF flavors require huge pages for better performance. Host isolation and CPU
pinning improve NFV performance and prevent spurious packet loss.

For more details on these features and performance tuning for NFV, see NFV Tuning for Performance.

7.1. CONFIGURING RX/TX QUEUE SIZE

You can experience packet loss at high packet rates above 3.5mpps for many reasons, such as:

a network interrupt

a SMI

packet processing latency in the Virtual Network Function

To prevent packet loss, increase the queue size from the default of 256 to a maximum of 1024.

Prerequisites

To configure RX, ensure that you have libvirt v2.3 and QEMU v2.7.

To configure TX, ensure that you have libvirt v3.7 and QEMU v2.10.

Procedure

To increase the RX and TX queue size, include the following lines in the parameter_defaults:
section of a relevant director role. Here is an example with ComputeOvsDpdk role:

parameter_defaults:
 ComputeOvsDpdkParameters:
 -NovaLibvirtRxQueueSize: 1024
 -NovaLibvirtTxQueueSize: 1024

Testing

You can observe the values for RX queue size and TX queue size in the nova.conf file:

[libvirt]
rx_queue_size=1024
tx_queue_size=1024

You can check the values for RX queue size and TX queue size in the VM instance XML file

CHAPTER 7. PERFORMANCE

25

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/network-functions-virtualization-product-guide/#ch-NFV_Tuning_for_Performance

You can check the values for RX queue size and TX queue size in the VM instance XML file
generated by libvirt on the compute host.

<devices>
 <interface type='vhostuser'>
 <mac address='56:48:4f:4d:5e:6f'/>
 <source type='unix' path='/tmp/vhost-user1' mode='server'/>
 <model type='virtio'/>
 <driver name='vhost' rx_queue_size='1024' tx_queue_size='1024' />
 <address type='pci' domain='0x0000' bus='0x00' slot='0x10' function='0x0'/>
 </interface>
</devices>

To verify the values for RX queue size and TX queue size, use the following command on a KVM
host:

$ virsh dumpxml <vm name> | grep queue_size

You can check for improved performance, such as 3.8 mpps/core at 0 frame loss.

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

26

CHAPTER 8. VHOST USER PORTS
vHost user ports are DPDK-backed datapaths for instances with two modes:

dpdkvhostuser

dpdkvhostuserclient

In dpdkvhostuser mode, Open vSwitch (OVS) acts as a server which creates the vHost user socket.
OVS shares the socket with QEMU, the client. In this mode, if OVS is restarted, VM instances connected
to it will need to be rebooted to regain connectivity.

As of OVS 2.9, dpdkvhostuserclient is used instead. In this mode the QEMU creates and shares the
vHost socket as a server, and OVS connects as the client. If OVS is restarted in this mode, it will
automatically reconnect to all existing VMs.

8.1. MANUALLY CHANGING THE VHOST USER PORT MODE

DPDK vHost user ports are created exclusively with dpdkvhostuserclient mode since RHOSP 10
maintenance release RHSA-2018:2102, with no option to change this behavior. The usage of
dpdkvhostuser mode for existing instances is still supported, however it is recommended to transition
to dpdkvhostuserclient mode.

Change to the new dpdkvhostuserclient mode on existing instances by cold migrating them to another
host after updating the overcloud to OVS 2.9.

NOTE

If you have instances configured with CPU pinning, set the
cpu_pinning_migration_quick_fail parameter in nova.conf to false. This will allow CPU
pinning to be recalculated for a higher chance of migration success. Prior to attempting a
live migration of instances with CPU pinning, contact Red Hat support.

openstack server migrate <server_id>
openstack server resize --confirm <server id>

NOTE

Prior to RHOSP10 maintenance release RHBA-2019:0074, the cold migration may fail
when the NUMATopologyFilter value is included in the NovaSchedulerDefaultFilters
parameter in nova.conf. This behavior can be prevented by ensuring you are at the latest
maintenance release, which includes the cpu_pinning_migration_quick_fail option for
Nova. See Red Hat OpenStack Platform 10 Release Notes for more information.

You can check that an instance’s vHost user port is in dpdkvhostuserclient mode. Identify and log in to
the hypervisor node where the instance resides.

Run the following:

compute-0# virsh dumpxml <instance name> | less

Identify the interface of type vhostuser and check that mode is set to server.

CHAPTER 8. VHOST USER PORTS

27

https://access.redhat.com/errata/product/191/ver=10/rhel---7/x86_64/RHSA-2018:2102
https://access.redhat.com/errata/RHBA-2019:0074
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html/release_notes/

...
<interface type='vhostuser'>
<model type='virtio'/>
<source type='unix' path='<path-to-socket>' mode='<client|server>'/>
</interface>
...

Red Hat OpenStack Platform 10 Network Functions Virtualization Planning Guide

28

CHAPTER 9. TECHNICAL SUPPORT
The following table includes additional Red Hat documentation for reference:

The Red Hat OpenStack Platform documentation suite can be found here: Red Hat OpenStack
Platform 10 Documentation Suite

Table 9.1. List of Available Documentation

Component Reference

Red Hat Enterprise Linux Red Hat OpenStack Platform is supported on Red Hat Enterprise
Linux 7.3. For information on installing Red Hat Enterprise Linux,
see the corresponding installation guide at: Red Hat Enterprise
Linux.

Red Hat OpenStack Platform To install OpenStack components and their dependencies, use the
Red Hat OpenStack Platform director. The director uses a basic
OpenStack installation as the undercloud to install, configure and
manage the OpenStack nodes in the final overcloud. Be aware that
you will need one extra host machine for the installation of the
undercloud, in addition to the environment necessary for the
deployed overcloud. For detailed instructions, see Red Hat
OpenStack Platform director Installation and Usage.

For information on configuring advanced features for a Red Hat
OpenStack Platform enterprise environment using the Red Hat
OpenStack Platform director such as network isolation, storage
configuration, SSL communication, and general configuration
method, see Advanced Overcloud Customization.

You can also manually install the Red Hat OpenStack Platform
components, see Manual Installation Procedures.

NFV Documentation For a high level overview of the NFV concepts, see the Network
Functions Virtualization Product Guide.

For information on configuring SR-IOV and OVS-DPDK with Red
Hat OpenStack Platform 10 director, see the Network Functions
Virtualization Configuration Guide.

CHAPTER 9. TECHNICAL SUPPORT

29

https://access.redhat.com/documentation/en/red-hat-openstack-platform/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/manual-installation-procedures/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/network-functions-virtualization-product-guide/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/network-functions-virtualization-configuration-guide/

	Table of Contents
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. SOFTWARE REQUIREMENTS
	2.1. SUPPORTED CONFIGURATIONS FOR NFV DEPLOYMENTS
	2.2. SUPPORTED DRIVERS
	2.3. COMPATIBILITY WITH THIRD PARTY SOFTWARE
	2.4. SUBSCRIPTION BASICS

	CHAPTER 3. HARDWARE
	3.1. APPROVED HARDWARE
	3.2. TESTED NICS
	3.3. DISCOVERING YOUR NUMA NODE TOPOLOGY WITH HARDWARE INTROSPECTION
	3.4. REVIEW BIOS SETTINGS

	CHAPTER 4. NETWORK CONSIDERATIONS
	CHAPTER 5. PLANNING YOUR SR-IOV DEPLOYMENT
	5.1. HARDWARE PARTITIONING FOR A NFV SR-IOV DEPLOYMENT
	5.2. TOPOLOGY OF A NFV SR-IOV DEPLOYMENT
	5.2.1. NFV SR-IOV without HCI
	5.2.2. NFV SR-IOV with HCI

	CHAPTER 6. PLANNING YOUR OVS-DPDK DEPLOYMENT
	6.1. HOW OVS-DPDK USES CPU PARTITIONING AND NUMA TOPOLOGY
	6.2. UNDERSTANDING OVS-DPDK PARAMETERS
	6.2.1. CPU Parameters
	6.2.2. Memory Parameters
	6.2.3. Networking Parameters
	6.2.4. Other Parameters

	6.3. TWO NUMA NODE EXAMPLE OVS-DPDK DEPLOYMENT
	6.4. TOPOLOGY OF AN NFV OVS-DPDK DEPLOYMENT

	CHAPTER 7. PERFORMANCE
	7.1. CONFIGURING RX/TX QUEUE SIZE
	Prerequisites
	Procedure
	Testing

	CHAPTER 8. VHOST USER PORTS
	8.1. MANUALLY CHANGING THE VHOST USER PORT MODE

	CHAPTER 9. TECHNICAL SUPPORT

