& RedHat

Red Hat OpenShift Data Science 1

Developing a data model

Understand the development and deployment workflow and deploy your data models
in intelligent applications

Last Updated: 2023-10-03






Red Hat OpenShift Data Science 1 Developing a data model

Understand the development and deployment workflow and deploy your data models in intelligent
applications



Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Understand the development and deployment workflow and deploy your data models in intelligent
applications.



Table of Contents

Table of Contents
CHAPTER 1. OVERVIEW OF DEVELOPING ADATAMODEL ... \vvvtt et 3

CHAPTER 2. CREATING A PYTHON S2I APPLICATION FOR OPENSHIFT DATASCIENCE  ................ 4
2.1. CREATING A PYTHON S2I APPLICATION FOR OPENSHIFT DATA SCIENCE FROM A GITHUB TEMPLATE

2.2. CREATING A PYTHON S2I APPLICATION FOR OPENSHIFT DATA SCIENCE USING COOKIECUTTER 4

CHAPTER 3. CONFIGURING USER ACCESS TO THE REMOTE GIT REPOSITORY ...t 7
CHAPTER 4. CREATING AN OPENSHIFT APPLICATION FROM A GIT REPOSITORY ........coiiviiiinnnn. 8
CHAPTER 5. BUILDING AN OPENSHIFT APPLICATION USING THEWEB CONSOLE .................... 10
CHAPTER 6. AUTOMATICALLY REBUILDING UPDATED APPLICATIONS USING WEBHOOKS ............ n
CHAPTER 7. CREATING OR IMPORTING ANOTEBOOKINJUPYTER ... ... 12

7.1. CREATING A NEW NOTEBOOK 12

7.2. UPLOADING AN EXISTING NOTEBOOK FILE FROM A GIT REPOSITORY USING JUPYTERLAB 12
CHAPTER 8. SAVING YOUR MODEL AS AN INDEPENDENT PYTHON FUNCTION ...........oooiian, 14

8.1. INSTALLING PYTHON PACKAGES ON YOUR NOTEBOOK SERVER 14
CHAPTER 9. TESTING YOUR PYTHON FUNCTION USING THE SAMPLE FLASK APPLICATION ......... 17
CHAPTER 10. PUSHING PROJECT CHANGES TO A GIT REPOSITORY ... ...t 18

CHAPTER 1. TESTING THE DEPLOYED APPLICATION ENDPOINT FOR YOUR PREDICTION FUNCTION 19



Red Hat OpenShift Data Science 1 Developing a data model




CHAPTER 1. OVERVIEW OF DEVELOPING A DATA MODEL

CHAPTER 1. OVERVIEW OF DEVELOPING A DATA MODEL

Read this section to understand the work required to develop and deploy an application that uses a
predictive model created using Red Hat OpenShift Data Science.

Your organization might split responsibility for this process between several roles, such as a data
scientist and an application developer, or this work might be done by a single role. An appropriate role is

noted for each step.

Table 1.1. Development tasks by role

Application Data

developer scientist

Task description

Create a Python S2I project in Git using an OpenShift Data Science
application template.

® Method 1: Use GitHub templates.

® Method 2: Use the CookieCutter project generator.

Configure user access to the Git projectso that data scientists can push to
and pull from the repository.

From this point, you can develop the model and the application that uses it simultaneously.

v

v

v
v
v
v
v
v
v
v

v v

Create an OpenShift application using the project repository.

Build the OpenShift applicationto verify your code.

Automate the build process using webhooks.

Launch Jupyter and either create orimport a notebook.

Import the application Git project into JupyterLab.

Develop and test your model using notebooks in JupyterLab.

Save your model as an independent Python functionin a separate Python file.

Update the requirements.txt file with dependencies your function requires

Test the function on your notebook server.

Push your updates back to the remote Git project

Test the deployed application endpoint.


https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/creating-a-python-s2i-application-for-openshift-data-science#creating-a-python-s2i-application-for-openshift-data-science-from-a-github-template_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/creating-a-python-s2i-application-for-openshift-data-science#creating-a-python-s2i-application-for-openshift-data-science-using-cookiecutter_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/configuring-user-access-to-the-remote-git-repository_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/creating-an-openshift-application-from-a-git-repository_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/building-an-openshift-application-using-the-web-console_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/automatically-rebuilding-updated-applications-using-webhooks_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/getting_started_with_red_hat_openshift_data_science/creating-a-project-workbench_get-started#launching-jupyter-and-starting-a-notebook-server_get-started
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/creating_or_importing_a_notebook_in_jupyter#creating-a-new-notebook_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/creating_or_importing_a_notebook_in_jupyter#uploading-an-existing-notebook-file-from-a-git-repository-using-jupyterlab_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/creating_or_importing_a_notebook_in_jupyter#uploading-an-existing-notebook-file-from-a-git-repository-using-jupyterlab_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/saving-your-model-as-an-independent-python-function_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/saving-your-model-as-an-independent-python-function_deploy-models#installing-python-packages-on-your-notebook-server_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/testing-your-python-function-using-the-sample-flask-application_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/pushing-project-changes-to-a-git-repository_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/testing-the-deployed-application-endpoint-for-your-prediction-function_deploy-models

Red Hat OpenShift Data Science 1 Developing a data model

CHAPTER 2. CREATING A PYTHON S21 APPLICATION FOR
OPENSHIFT DATA SCIENCE

2.1. CREATING A PYTHON S2| APPLICATION FOR OPENSHIFT DATA
SCIENCE FROM A GITHUB TEMPLATE

You can create an application suitable for Red Hat OpenShift Data Science quickly by using Red Hat's
Python S2I application repository as a template in GitHub. Use the template to generate a new
repository with the same format, directory structure and files as an existing Red Hat OpenShift Data
Science repository.

Prerequisites

® You have a GitHub account.

® You have credentials to access the GitHub repository containing the relevant template that you
want to use.

Procedure

1. On GitHub, navigate to the main page of the template repository (Red Hat's Python S2I
application repository).

2. Click Use this template.

3. Optional: From the Owner list, select the account that you want to own the repository.
4. In the Repository namefield, enter a name for the new repository.

5. Optional: In the Description field, enter a description for the new repository.

6. Set the repository’s visibility level.

a. To ensure that the repository is visible to anyone, leave Public selected. By default, the
repository’s visibility is set to Public.

b. Click Private to restrict who can see and commit to the repository.

7. Optional: Select the Include all branches check box to copy the template repository’s branches
to your new repository.

8. Click Create repository from template

Verification

® The repository that you created from the template is visible and accessible from your GitHub
account.

2.2. CREATING APYTHON S2|I APPLICATION FOR OPENSHIFT DATA
SCIENCE USING COOKIECUTTER

You can create an application suitable for Red Hat OpenShift Data Science quickly by using
Cookiecutter. Cookiecutter is a Python library that creates a flexible, standardized project structure for


https://github.com/opendatahub-io/odh-s2i-project-simple

CHAPTER 2. CREATING APYTHON S2|I APPLICATION FOR OPENSHIFT DATA SCIENCE

your data science work. You can use Cookiecutter to further customize your project'’s repository. For
example, you can modify the repository’s directory structure to suit your project’s requirements.

Prerequisites

® Alaunched and running Jupyter server.
® You have a GitHub account.

® You have credentials to access the GitHub repository containing the template that you want to
use.

Procedure

1. In the JupyterLab interface, click File = New — Terminal.

2. In the terminal, run the pip install command to install Cookiecutter.

I pip install cookiecutter

3. Run the cookiecutter command to create a project from a Cookiecutter repository template.
I cookiecutter template-repository-URL

Replace template-repository-URL with the template repository’s URL:
https://github.com/opendatahub-io/odh-s2i-project-cookiecutter

4. When prompted, provide the following information:

a. A name for your project.

b. A name for your repository.

c. A name for the project'’s author.
d. A description for your project.

e. Your open source license file type.
The contents of the Cookiecutter template repository appear in the File Browser in the left
sidebar.

5. Create arepository in GitHub.

a. Inthe upper-right corner of the GitHub home page, click + - New repository.
The Create a new repositorypage opens.

b. In the Repository template field, select the template that you want to use.

c. Optional: Select the Include all branches check box to copy the template repository’s
branches to your new repository.

d. Inthe Owner field, select the repository owner’s user name.
e. Inthe Repository name field, enter a name for the repository.

f. Optional: In the Description field, enter a description of the repository.



Red Hat OpenShift Data Science 1 Developing a data model

6. Set the repository’s visibility level.

a.

To ensure that the repository is visible to anyone, leave Public selected. By default, the
repository’s visibility is set to Public.

Click Private to choose who can see and commit to the repository.

Click Create repository.

7. Clone the repository on your Jupyter server.

a.

In the JupyterLab interface, click Git = Clone a Repository.
The Clone a repo dialog appears.

Enter the URL of the repository that you want to clone.

Click Clone.
The cloned repository appears in the File Browser in the left sidebar.

In the File Browser, move the files and directories created by Cookiecutter to the
repository that you cloned.

8. Push your changes to the remote repository.

Verification

In the left sidebar, click Git ( ‘> ).

If you have untracked changes, in the Changes tab, hover the cursor over the Untracked

section bar and click

If you have files that contain changes, in the Changes tab, hover the cursor over the

Changed section bar and click

In the Required field, enter a summary of your changes.

In the Description field, enter a description of your changes.
Click Commit.

In the JupyterLab interface, click Git = Push to Remote to push your changes to the
remote repository.
The Git credentials required dialog opens.

Enter your credentials to access the remote repository.

Click OK.

® You can access the remote repository that you created from the template.

® You can see the changes that you pushed in the remote repository.



CHAPTER 3. CONFIGURING USER ACCESS TO THE REMOTE GIT REPOSITORY

CHAPTER 3. CONFIGURING USER ACCESS TO THE REMOTE
GIT REPOSITORY

Your data scientists and application developers need developer access to the remote Git repository to

push and pull data from the repository. The repository owner can add these users to the repository as
developers to enable this access.

For GitHub repositories, refer to the GitHub documentation:
® For personal repositories: Inviting collaborators

® For organization repositories: Adding organization members


https://docs.github.com/en/github/setting-up-and-managing-your-github-user-account/managing-access-to-your-personal-repositories/inviting-collaborators-to-a-personal-repository
https://docs.github.com/en/organizations/organizing-members-into-teams/adding-organization-members-to-a-team

Red Hat OpenShift Data Science 1 Developing a data model

CHAPTER 4. CREATING AN OPENSHIFT APPLICATION FROM

A GIT REPOSITORY

You can import code from a Git repository and use it to create, build, and deploy a Red Hat OpenShift
Data Science application on OpenShift Dedicated.

Prerequisites

You have logged in to the OpenShift Dedicated web console.
You are in the Developer perspective.

You have the appropriate roles and permissions in a project to create applications and other
workloads in OpenShift Dedicated.

You have a configured Git repository.

You have permissions for importing the Git repository.

Procedure

1.

In OpenShift Dedicated, select the project to create the application in, or create a new project
for the application.

In the +Add view, click From Gitto see the Import from Gitform.

In the Git section, enter the Git repository URL for the codebase you want to use to create an
application.

Optional: Click Show Advanced Git Optionsto add details such as:

e Git Reference to point to code in a specific branch, tag, or commit to be used to build the
application.

e Context Dirto specify the subdirectory for the application source code you want to use to
build the application.

® Source Secretto create a Secret Name with credentials for pulling your source code from
a private repository.

In the Builder section the appropriate builder image is detected and selected by default.

In the General section:

a. Inthe Application field, enter a unique name for the application grouping. This must be
unique in the project.

b. The Name field is populated automatically based on the Git repository URL. This is used to
identify the resources created for this application.

In the Resources section, select Deployment Config, to create an OpenShift style application.

In the Advanced Options section:

a. The Create a route to the applicationcheckbox is selected by default so that you can
access your application using a publicly available URL.



CHAPTER 4. CREATING AN OPENSHIFT APPLICATION FROM A GIT REPOSITORY

If you do not want to expose your application on a public route, clear the checkbox.

b. Optional: Click Routing to display advanced routing options.

i. Customize the hostname for the route.

ii. Specify the path the router watches.
ii. Select the target port for traffic on the route.
iv. Configure transport security for the route.

c. Optional: Click Build configuration to display advanced build configuration options,
including any environment variables that your model requires to build.

d. Optional: Click Deployment configuration to display advanced deployment configuration
options, including any environment variables that your model requires in its deployment

environment.

e. Optional: Click Scaling to define the number of pods or application instances to deploy
initially.

f. Optional: Click Resource Limit to set the amount of CPU and Memory resources a
container is guaranteed or allowed to use when running.

g. Optional: Click Labels to add custom labels to your application.

9. Click Create to create the application and see its build status in the Topology view.

Verification

® You can view your application in the Topology view.

® Click the application and check the Resources tab of the application details pane. Look for a
success message under Builds, for example, Build #1 is complete.

Additional resources

® Creating applications using the Developer perspective
® Accessing the web console
® About the Developer perspective in the web console

® Default cluster roles


https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/building_applications/creating-applications#odc-creating-applications-using-developer-perspective
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/web_console/web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/web_console/web-console-overview#about-developer-perspective_web-console-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/authentication_and_authorization/using-rbac#default-roles_using-rbac

Red Hat OpenShift Data Science 1 Developing a data model

CHAPTER 5. BUILDING AN OPENSHIFT APPLICATION USING
THE WEB CONSOLE

You can manually tell OpenShift Dedicated to build an existing OpenShift application with the Start
Build button in the OpenShift Dedicated web console.

Prerequisites

® You have Developer access to OpenShift Dedicated.

® You have created an OpenShift Dedicated application.

Procedure
1. In OpenShift Dedicated, set the Project dropdown to your application project.
2. Click Topology.
3. Click on the application to see the application details pane.

4. Click the Start build button.

Additional resources

® Performing basic builds

® Automatically rebuilding updated applications using webhooks

10


https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/cicd/builds#basic-build-operations
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/automatically-rebuilding-updated-applications-using-webhooks_deploy-models

CHAPTER 6. AUTOMATICALLY REBUILDING UPDATED APPLICATIONS USING WEBHOOKS

CHAPTER 6. AUTOMATICALLY REBUILDING UPDATED
APPLICATIONS USING WEBHOOKS

You can configure an OpenShift application to automatically rebuild and redeploy whenever updates are
made to the Git repository that contains the application code. This ensures that the latest working
version of your application is always available.

Prerequisites

® An OpenShift application created using a GitHub repository as a source.

® Permissions to change webhook settings in the GitHub repository.

Procedure

1. In OpenShift Dedicated, change into the Developer perspective and set the Project dropdown
to the appropriate project.

2. Click Topology and click on your application to view the application details pane.

3. Under Builds, click the name of the build configuration, marked with BC, to view the build
configuration page.

4. Under Webhooks, locate the entry for GitHub and click Copy URL with Secret
5. Navigate to your project page in GitHub and click Settings.
6. Click Webhooks = Add webhook.

7. Enter the following details on the Add webhook page:

a. Paste the copied URL with secret into the Payload URL field.
b. Set Content type to application/json.
c. Leave all other options as the default.

d. Click Add webhook.

Verification

® Make an update to your application code and verify that the application rebuilds and deploys
correctly.

Additional resources
® Triggering and modifying builds

® Creating webhooks

1


https://access.redhat.com/documentation/en-us/openshift_container_platform/4.13/html/cicd/builds#triggering-builds-build-hooks
https://docs.github.com/en/developers/webhooks-and-events/webhooks/creating-webhooks

Red Hat OpenShift Data Science 1 Developing a data model

CHAPTER 7. CREATING ORIMPORTING A NOTEBOOKIIN
JUPYTER

7.1. CREATING A NEW NOTEBOOK
You can create a new Jupyter notebook from an existing notebook container image to access its

resources and properties. The Start a notebook serverpage has a list of available container images
that you can run as a single-user notebook server.

Prerequisites

® Ensure that you have logged in to Red Hat OpenShift Data Science.
® Ensure that you have launched your notebook server and logged in to Jupyter.

® The notebook image exists in a registry, image stream, and is accessible.

Procedure

1. Click File » New = Notebook.

2. If prompted, select a kernel for your notebook from the list.
If you want to use a kernel, click Select. If you do not want to use a kernel, click No Kernel.

Verification

® Check that the notebook file is visible in the JupyterLab interface.

7.2. UPLOADING AN EXISTING NOTEBOOK FILE FROM A GIT
REPOSITORY USING JUPYTERLAB

You can use the JupyterLab user interface to clone a Git repository into your workspace to continue
your work or integrate files from an external project.

Prerequisites

® Alaunched and running Jupyter server.

® Read access for the Git repository you want to clone.

Procedure
1. Copy the HTTPS URL for the Git repository.

® On GitHub, click I Code = HTTPS and click the Clipboard button.

® On GitLab, click Clone and click the Clipboard button under Clone with HTTPS.

2. Inthe JupyterlLab interface click the Git Clone button ( *} ).

You can also click Git = Clone a repositoryin the menu, or click the Git icon ( 0 ) and click
the Clone a repository button.

12



CHAPTER 7. CREATING OR IMPORTING A NOTEBOOK IN JUPYTER

The Clone a repo dialog appears.

3. Enter the HTTPS URL of the repository that contains your notebook.

4. Click CLONE.

5. If prompted, enter your username and password for the Git repository.

Verification

® Check that the contents of the repository are visible in the file browser in JupyterLab, or run
the Is command in the Terminal to verify that the repository is shown as a directory.

13



Red Hat OpenShift Data Science 1 Developing a data model

CHAPTER 8. SAVING YOUR MODEL AS AN INDEPENDENT

PYTHON FUNCTION

Turn your data model into an independent Python function so that you can run it outside your notebook
server environment and use it in intelligent applications.

Prerequisites

You have access to the JupyterLab interface.
You have developed a prediction model in a Jupyter notebook.

Your Jupyter notebook is saved in a Git repository that was created from the Red Hat
OpenShift Data Science sample S2I application repositories.

Procedure

1.

2.

In JupyterLab, create a new prediction.py file.

Edit the prediction.py file to define a predict function based on the prediction model in your
Jupyter notebook.

® Include only the code required to make the prediction. For example, you do not need to
import libraries that only related to rendering plots in your Jupyter notebook.

e |f any new packages are required to run your prediction, update the contents of the
requirements.txt file and run pip install -r requirements.txt to install the new packages.

Test that you can run the independent Python function from your notebook by calling the
function in a new notebook cell, for example:

from prediction import predict
predict(data)

Verification

The predict function runs correctly and returns the expected output when called from the
notebook cell.

Additional resources

Installing Python packages on your notebook server

8.1. INSTALLING PYTHON PACKAGES ON YOUR NOTEBOOK SERVER

You can install Python packages that are not part of the default notebook server image by adding the
package and the version to a requirements.txt file and then running the pip install command in a
notebook cell.

14


https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/working_on_data_science_projects/working-on-data-science-projects_nb-server#installing-python-packages-on-your-notebook-server_nb-server

CHAPTER 8. SAVING YOUR MODEL AS AN INDEPENDENT PYTHON FUNCTION

NOTE
You can also install packages directly, but Red Hat recommends using a requirements.txt
file so that the packages stated in the file can be easily re-used across different

notebooks. In addition, using a requirements.txt file is also useful when using a S2I build
to deploy a model.

Prerequisites

® | oginto Jupyter and open a notebook.

Procedure
1. Create a new text file using one of the following methods:

® Click + to open a new launcher and click Text file.
® ClickFile » New — Text File.

2. Rename the text file to requirements.txt.

a. Right-click on the name of the file and click Rename Text. The Rename File dialog opens.
b. Enter requirements.txt in the New Name field and click Rename.

3. Add the packages to install to the requirements.txt file.

I altair

You can specify the exact version to install by using the == (equal to) operator, for example:

I altair==4.1.0

NOTE

Red Hat recommends specifying exact package versions to enhance the stability
of your notebook server over time. New package versions can introduce
undesirable or unexpected changes in your environment’s behavior.

To install multiple packages at the same time, place each package on a separate line.

4. Install the packages in requirements.txt to your server using a notebook cell.

a. Create a new cell in your notebook and enter the following command:

I Ipip install -r requirements.txt

b. Run the cell by pressing Shift and Enter.

15



Red Hat OpenShift Data Science 1 Developing a data model

IMPORTANT

This installs the package on your notebook server, but you must still run the
import directive in a code cell to use the package in your code.

I import altair
Verification

e Confirm that the packages in requirements.txt appear in the list of packages installed on the
notebook server. See Viewing Python packages installed on your notebook server for details.

16


https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/working_on_data_science_projects/working-on-data-science-projects_nb-server#viewing-python-packages-installed-on-your-notebook-server_nb-server

CHAPTER 9. TESTING YOUR PYTHON FUNCTION USING THE SAMPLE FLASK APPLICATION

CHAPTER 9. TESTING YOUR PYTHON FUNCTION USING THE
SAMPLE FLASK APPLICATION

You should test that your independent Python function works as expected before it goes into your
application.

Prerequisites

® You have created an application from one of the S2I sample repositories by following the
instructions in one of the following sections:

o Creating a Python S2I application for OpenShift Data Science from a GitHub template
o Creating a Python S2I application for OpenShift Data Science using Cookiecutter

® You have created a separate function for your model by following the instructions in Saving your
model as an independent Python function.

Procedure

1. In JupyterLab, open the run_flask.ipynb notebook file.

2. Run all cells in the notebook by clicking Cell = Run All.
This starts the Flask application.

Verification

® Open a terminal in JupyterLab by clicking File = New — Terminal and run the following
command:

curl -X POST -H "Content-Type: application/json" --data '{"data" : "hello world"}'
http://localhost:5000/prediction

Alternatively, enter the following in a new notebook cell and run the cell.

lcurl -X POST -H "Content-Type: application/json" --data '{"data" : "hello world"}'
http://localhost:5000/prediction

If no changes have been made to the sample app, you see a response in the browser similar to
{"prediction" : "not implemented™}.

17


https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/creating-a-python-s2i-application-for-openshift-data-science#creating-a-python-s2i-application-for-openshift-data-science-from-a-github-template_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/creating-a-python-s2i-application-for-openshift-data-science#creating-a-python-s2i-application-for-openshift-data-science-using-cookiecutter_deploy-models
https://access.redhat.com/documentation/en-us/red_hat_openshift_data_science/1/html/developing_a_data_model/saving-your-model-as-an-independent-python-function_deploy-models

Red Hat OpenShift Data Science 1 Developing a data model

CHAPTER 10. PUSHING PROJECT CHANGES TO AGIT
REPOSITORY

To build and deploy your application in a production environment, upload your work to a remote Git
repository.

Prerequisites

® You have opened a notebook in the JupyterLab interface.
® You have already added the relevant Git repository to your notebook server.
® You have permission to push changes to the relevant Git repository.

® You have installed the Git version control extension.

Procedure

1. Click File = Save Allto save any unsaved changes.

2. Click the Giticon ( ‘} ) to open the Git pane in the JupyterLab interface.

3. Confirm that your changed files appear under Changed.
If your changed files appear under Untracked, click Git = Simple Staging to enable a simplified
Git process.

4. Commit your changes.

a. Ensure that all files under Changed have a blue checkmark beside them.
b. In the Summary field, enter a brief description of the changes you made.
c. Click Commit.

5. Click Git = Push to Remote to push your changes to the remote repository.

6. When prompted, enter your Git credentials and click OK.

Verification

® Your most recently pushed changes are visible in the remote Git repository.

18



CHAPTER 11. TESTING THE DEPLOYED APPLICATION ENDPOINT FOR YOUR PREDICTION FUNCTION

CHAPTER 1. TESTING THE DEPLOYED APPLICATION
ENDPOINT FOR YOUR PREDICTION FUNCTION

After you deploy your application, you can test that your prediction function works properly at the
deployed endpoint.

Prerequisites

® Your application is built and deployed with your prediction function included.

® You know the web address for the application containing your prediction function.

Procedure

1. Open a terminal in JupyterLab by clicking File - New — Terminal.

2. Run the following command, replacing <application-url> with the web address for the
application, for example, http://myapp-myproject.apps.mycluster.abc1.s1.devshift.org.

curl -X POST -H "Content-Type: application/json" --data '{"data" : "hello world"}' <application-
url>/predictions

For example:

curl -X POST -H "Content-Type: application/json" --data '{"data" : "hello world"}' http://myapp-
myproject.apps.mycluster.abci.s1.devshift.org/predictions

Alternatively, enter ! followed by the same command in a new notebook cell and run the cell.

lcurl -X POST -H "Content-Type: application/json" --data '{"data" : "hello world"}' <application-
url>/predictions

Verification

® The endpoint is working if you receive a response from the application, such as {"predictions™ :
"not implemented"}.

19



	Table of Contents
	CHAPTER 1. OVERVIEW OF DEVELOPING A DATA MODEL
	CHAPTER 2. CREATING A PYTHON S2I APPLICATION FOR OPENSHIFT DATA SCIENCE
	2.1. CREATING A PYTHON S2I APPLICATION FOR OPENSHIFT DATA SCIENCE FROM A GITHUB TEMPLATE
	2.2. CREATING A PYTHON S2I APPLICATION FOR OPENSHIFT DATA SCIENCE USING COOKIECUTTER

	CHAPTER 3. CONFIGURING USER ACCESS TO THE REMOTE GIT REPOSITORY
	CHAPTER 4. CREATING AN OPENSHIFT APPLICATION FROM A GIT REPOSITORY
	CHAPTER 5. BUILDING AN OPENSHIFT APPLICATION USING THE WEB CONSOLE
	CHAPTER 6. AUTOMATICALLY REBUILDING UPDATED APPLICATIONS USING WEBHOOKS
	CHAPTER 7. CREATING OR IMPORTING A NOTEBOOK IN JUPYTER
	7.1. CREATING A NEW NOTEBOOK
	7.2. UPLOADING AN EXISTING NOTEBOOK FILE FROM A GIT REPOSITORY USING JUPYTERLAB

	CHAPTER 8. SAVING YOUR MODEL AS AN INDEPENDENT PYTHON FUNCTION
	8.1. INSTALLING PYTHON PACKAGES ON YOUR NOTEBOOK SERVER

	CHAPTER 9. TESTING YOUR PYTHON FUNCTION USING THE SAMPLE FLASK APPLICATION
	CHAPTER 10. PUSHING PROJECT CHANGES TO A GIT REPOSITORY
	CHAPTER 11. TESTING THE DEPLOYED APPLICATION ENDPOINT FOR YOUR PREDICTION FUNCTION

