
Ella Deon Lackey

JBoss Operations Network 3.0
Deploying Applications and
Content

for provisioning applications and managing content streams
Edition 3.0.1

JBoss Operations Network 3.0 Deploying Applications and Content

for provisioning applications and managing content streams
Edition 3.0.1

Ella Deon Lackey
dlackey@redhat.com

Legal Notice
Copyright © 2011 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-
ShareAlike 3.0 Unported License. If you distribute this document, or a modified version
of it, you must provide attribution to Red Hat, Inc. and provide a link to the original. If
the document is modified, all Red Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to
assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the
Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other
countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the
United States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European
Union and other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally
related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered
trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in
the United States and other countries and are used with the OpenStack Foundation's
permission. We are not affiliated with, endorsed or sponsored by the OpenStack
Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
JBoss Operations Network can control content for its resources in a number of different
ways: deploying and upgrading applications through provisioning; creating content
repositories; and defining content streams for resources, such as the JBoss Customer
Service Portal. This guide provides GUI-based procedures to manage content that can
be used by resources.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

Table of Contents
1. Summary: Using JBoss ON to Deploy Applications and Update Content

2. Provisioning Applications and Content
2.1. An Introduction to Provisioning Content Bundles
2.2. Extended Example: Provisioning Applications to a JBoss EAP Server (Planning)
2.3. Creating Ant Bundles
2.4. Provisioning Bundles
2.5. Bundles and JBoss ON Servers and Agents
2.6. Managing and Deploying Bundles with the JBoss ON CLI

3. Managing Resource-Level Content Updates
3.1. About Content
3.2. Creating a Content Source
3.3. Managing Repositories
3.4. Uploading Packages
3.5. Synchronizing Content Sources or Repositories
3.6. Tracking Content Versions for a Resource

4. Deploying Applications on Application Servers
4.1. Setting Permissions for Agent and Resource Users
4.2. Deploying EAR and WAR Files
4.3. Updating Applications
4.4. Deleting an Application

5. Document Information
5.1. Document History

Index

2

2
3
7
9

33
46
47

48
48
52
53
59
61
63

64
64
65
68
72

73
73

73

Table of Contents

1

1. Summary: Using JBoss ON to Deploy Applications and
Update Content

One of the core management tools for JBoss Operations Network is to create, update, or
remove content from its managed resources. Content can be anything associated with a
resource or configuration, such as text files, binary files like JARs, EARs, and WARs, patches,
and XML files. That content can be deployed on a managed resource to update that resource's
configuration, to create a child resource, or to deploy an entirely new application.

There are two ways to manage content for resources:

Resource-level content through the Content tabs

Provisioning applications through bundles

Resource-level content allows a specific managed resource, usually a JBoss application server or
a web server, to be associated with stored and versioned packages in named repositories.
These packages can be uploaded into JBoss ON (so JBoss ON is essentially the content
repository), they can be pulled from an external repository, or they can be discovered through
agent plug-ins. In other words, there are three actions that resource-level content management
can perform:

It can deliver packages, updates, and patches to a resource.

It can deploy content to a resource and even create a new child resource. This is particularly
useful with web and application servers which can have different contexts as children.

It can discover the current packages installed on a resource, creating a package digest that
administrators can use to manage that asset.

Resource-level content management is limited how far it can be used to create resources. That
is why JBoss ON has another system of deploying content, one that allows it to deploy full
application servers or to consistently apply content across multiple resources: provisioning
through bundles.

Bundles are added to the JBoss ON server, so they are not restricted to a single resource. They
are deployed to compatible groups of resources, either platforms or JBoss servers (or other
resource types which define a bundle target in their plug-in descriptor). This allows multiple
resources to be updated at once, using the same content.

Bundle provisioning also allows more flexible and complex deployment options:

Use Ant calls to perform operations before or after deploying the bundle

Allow user-defined values or edits to configuration at the time a bundle is provisioned

Have multiple versions of the same content bundle deployed and deployable to resources at
the same time

Revert to an earlier bundle version

2. Provisioning Applications and Content

Provisioning is a way that administrators can define and control applications, from development
to production. The ultimate effect of the provisioning system is simplifying how applications are
deployed. Administrators can control which versions of the same application are deployed to
different resources, from different content sources, within the same application definition (the
bundle definition). Resources can be reverted to different versions or jump ahead in

Deploying Applications and Content

2

deployment.

2.1. An Introduction to Provisioning Content Bundles

Provisioning takes one set of files (a bundle) and then pushes it to a platform or an application
server (the destination). There are more complex ways of defining the content, the
destinations, and the rules for that deployment, but the core of the way that provisioning
handles content is to take versioned bundles and send it to the designated resource.

Provisioning works with compatible groups, not individual resources. Administrators can define
groups based on disparate environments and consistently apply application changes (upgrades,
new deployments, or reversions) across all group members, simultaneously.

And the type of content which can be deployed, itself, is flexible. A bundle can contain raw
configuration files, scripts, ZIP archives, JAR files, or full application servers — the definition of
content is fairly loose.

This is in contrast to the resource-level content management in JBoss ON. The type of content
is relatively limited. Patches or configuration is applied per-resource. New applications can only
be deployed as children of existing resources and it has to be another resource type.

Provisioning focuses on application management, not purely resource management.

2.1.1. Bundles: Content and Recipes

A bundle is a set of content, packaged in an archive. In real life, a bundle is usually an
application, but it can also contain a set of configuration files, scripts, libraries, or any other
content required to set up an application or a resource.

The purpose of a bundle is to take that defined set of content and allow JBoss ON to copy it onto
a remote resource. The provisioning process basically builds the application on the targeted
resource, so in that sense, the bundle is an application distribution. Each bundle version has its
own recipe which tells JBoss ON what files exist in the bundle, any tokens which need to have
real values supplied at deployment, and how to handle the bundle and existing files on the
remote machine.

The recipe, configuration files, and content are all packaged together into the bundle. This is
usually a ZIP file, which the agent unpacks during provisioning.

As with other content managed in JBoss ON, the bundle is versioned. Different versions can be
deployed to different resources, which is good for handling different application streams in
different environments (say, QA and production). Versioning bundles also allows JBoss ON to
revert or upgrade bundles easily.

The bundle can contain almost any kind of content, but it has to follow a certain structure for it
to be properly deployed by JBoss ON. The recipe is an Ant build file called deploy.xml; this must
always be located in the top level of the bundle archive.

Past the placement of the recipe, the files and directories within the bundle can be located
anywhere in the archive. In fact, the files do not necessarily need to be included in the bundle
file at all; when the bundle is created, any or all files for the bundle can be pulled off a URL,
which allows the content to be taken from an SVN or GIT repository, FTP server, or website.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

3

Figure 1. Bundle Layout

The bundle archive can contain other archives, such as JAR, WAR, and ZIP files. Provisioning
uses Ant to build out bundles on the target machine, so any files which Ant can process can be
processed as part of the bundle. The Ant provisioning system can process WAR, JAR, and ZIP
archive files.

2.1.2. Destinations (and Bundle Deployments)

Uploading a bundle to JBoss ON does not push the bundle anywhere, so it is not automatically
associated with a resource or group. (Bundles, unlike content, is resource-independent. It exists
as its own definition in JBoss ON, apart from the inventory.) When the bundle is actually
provisioned, then the provisioning wizard prompts for the administrator to define the definition.

A destination is the place where bundles get deployed. The destination is the combination of
three elements:

A compatible resource group (of either platforms or JBoss servers)

A base location, which is the root directory to use to deploy the bundle. Resource plug-ins
define a base location for that specific resource type in the <bundle-target> element. This
can be the root directory or, for JBoss servers, common directories like the profile directory.
There may be multiple available base locations.

The deployment directory, which is a subdirectory beneath the base directory where the
bundle content is actually sent.

For example, an administrator wants to deploy a web application to a JBoss EAP 5 server, in the
deploy/myApp/ directory. The JBoss AS5 plug-in defines two possible base locations, one for the
installation directory and one for the profile directory. The administrator chooses the profile
directory, since the application is an exploded JAR file. The agent then derives the real,
absolute path of the application from those three elements:

Deploying Applications and Content

4

JBoss AS group + {$PROFILE_DIR} + deploy/myApp/

If the PROFILE_DIR is /opt/jbossas/default/server/, then the destination is:

/opt/jbossas/default/server/deploy/myApp/

If the same resource group contains a JBoss EAP instance running on a Windows server, with a
PROFILE_DIR of C:\jbossas\server\, then the path is derived slightly differently, appropriate
for the platform:

C:\jbossas\default\server\deploy\myApp

It is up to the agent, based on the platform and resource information for its inventory, to
determine the absolute path for the destination to which the bundle should be deployed.

Once a bundle is actually deployed to a destination, then that association — bundle version and
destination — is the bundle deployment.

Figure 2. Bundles, Versions, and Destinations

2.1.3. File Handling During Provisioning

1. Summary: Using JBoss ON to Deploy Applications and Update Content

5

A bundle file just contains a set of files and directories that should be pushed to a resource.
However, the provisioning process does not merely copy the files over to the deployment
directory; provisioning treats a bundle as, essentially, a template that defines the entire
content structure for the deployment directory.

For example, a bundle contains these files:

app.conf
lib/myapp.jar

If the deployment directory is deploy/, then the final directory configuration is going to be:

deploy/app.conf
deploy/lib/myapp.jar

By default, if there are any files in deploy/, then they will be removed before the bundle is
copied over, so that the deployment directory looks exactly the way the bundle is configured.

For an application-specific destination, like deploy/myApp/, then that behavior is totally
acceptable because the defined application content should be the only content in that
directory. However, bundles can contain a variety of different files and directories and can be
deployed almost anywhere on a platform or within a JBoss server. In a lot of deployment
scenarios, the deployment directory will have existing data that should be preserved.

The deployment directory is the root directory for the bundle. The bundle can define a
parameter that tells the provisioning process how to handle data in that root directory. The
manageRootDir option tells provisioning to delete everything and force the directory to match
the bundle content. In other words, the bundle defines the content and structure of the root
directory. Alternatively, if the data in that directory must be saved, the manageRootDir option
can be set to false, which means that provisioning will copy over the bundle and create the
appropriate files and subdirectories, but it will not manage (remove) the existing content in the
directory.

Note

Any existing content in the root directory is backed up before it is deleted, so it can be
restored later.

After the initial deployment, there can be instances where files are added to the deployment
directory, such as log files or additional data.

Within the deployment directory, the provisioning process overwrites any bundle-associated
files with the latest version and removes any files that are not part of the bundle. Log files,
other bundles files, and other data — as with the root directory — need to be preserved
between upgrades. Those known files and directories can be called out in the recipe using the
<rhq:ignore> element, which tells the provisioning process to ignore those files within the
deployment directory.

Setting these options in the recipe is described in Section 2.3.2.2, “Saving Files During
Provisioning”.

Deploying Applications and Content

6

Important

Purging a bundle deployment removes all of the bundle files from the target resources.

The exact files that are purged mirrors how the bundle manages the deployment
directory. By default, purging includes deleting the deployment directory
(manageRootDir=true). If the deployment directory is used by other applications – like
an app server deploy/ directory — then those other applications or files will also be
deleted. After purging, there is no live deployment and nothing to revert.

2.1.4. Requirements and Resource Types

By default, three resource types support bundles:

Platforms, all types

JBoss AS 4

JBoss AS 5 and any server which uses the JBoss AS 5 plug-in

Bundle support is defined in the plug-in descriptor, so custom plug-ins can be created that add
bundle support for those resource types. For examples of writing agent plug-ins with bundle
support, see "Writing Custom JBoss ON Plug-ins."

2.1.5. Additional Ant References

Provisioning relies on Ant configuration and tasks, so a good understanding of the Ant build
process is beneficial. There are several resources for additional Ant information:

Apache Ant documentation main page

Apache Ant documentation for the build file

Liquibase Database Schema Tasks

Ant Contrib Tasks

2.2. Extended Example: Provisioning Applications to a JBoss EAP Server
(Planning)

The Setup

Tim the IT Guy at Example Co. has to manage the full application lifecycle for Example Music's
online band management application, MusicApp. There are two environments: one for QA and
one for the live site. Both environments contain a mix of Windows and Linux servers.

Tim wants to deploy the latest development version weekly to the QA environment, based on
the most current build in their development GIT repo. He wants the most stable version of the
application to be deployed to the production environment, based on a static package.

What to Do

The best plan for Tim is to work backwards, starting with the way he wants his ideal QA and
production environments to be configured.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

7

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.0/html-single/Writing_Custom_Plug-ins/index.html#bundles-example
http://ant.apache.org/manual/index.html
http://ant.apache.org/manual/using.html#buildfile
http://www.liquibase.org/manual/ant
http://sourceforge.net/projects/ant-contrib

Tim's first step is to identify his destinations, based on his environments. Because he has two
separate environments, he wants to create two separate groups, one for QA and one for
production. MusicApp runs on a JBoss server, so his compatible groups will be for the JBoss
AS/EAP resources rather than platforms.

Additionally, the needs for each of his environments is different:

The QA environment needs ...

New builds directly from the GIT repository, every week.

A completely clean directory to begin from with every deployment.

There is a separate QA environment for each of Example Co.'s web applications, so
MusicApp is the only application running on those specific servers.

The production environment needs ...

A stable build that can be safely stored in JBoss ON.

To save historic data. The production environment has both log directories and user-
supplied data directories that need to be preserved between application upgrades.

A couple of different web applications run on the same production servers.

The application itself is the same for both environments. Instance-specific configuration — port
numbers, the application name, the machine IP address — are based on tokens that are
realized when the application is deployed. The JAR files contained in the bundle should be
extracted at the time the application is deployed, with the exception of one client which site
members can either install or launch locally.

Tim decides to use different versions of the same bundle, labeling the QA versions as devel and
the production versions as stable.

There are some similarities between the devel and stable bundle recipes:

MusicApp should be deployed to the deploy/ directory, but because it is not the only
application that they run, it will have its own webapp context subdirectory. While this is not
strictly necessary in the devel environment (where MusicApp is the only application), this
maintains consistency with the final deployment destination.

Both recipes will configure the application JAR file, MusicApp.jar, to be exploded when it is
deployed.

The client archive file, MyMusic.jar, will not be exploded (<rhq:file ...
exploded="false">).

Tokens are defined in the raw configuration files and the recipe for the port numbers, IP
addresses, and application names.

And then there are differences in the recipes, related to how the devel and stable versions
should handle existing files.

The QA environment always requires a pristine deployment. This requires three settings:

The manageRootDir value is always true, so no existing files are preserved during the
initial deployment.

No <rhq:ignore> elements are set, so no generated files are preserved during an
upgrade.

Deploying Applications and Content

8

The cleanDeployment option is always set in the JBoss ON CLI script that automates
deployments. This removes all bundle-associated files in the directory before deploying
the new bundle.

The production environment needs to preserve its existing data between upgrades, which
requires two settings:

The manageRootDir value is always false, which preserves existing files during the initial
deployment.

Two <rhq:ignore> elements are set, one for the log directory and one for the data
directory containing the site member uploads.

The last significant action comes when the bundles are actually uploaded to JBoss ON.

Version 1 of the application is already stable and complete, so Tim creates the first bundle as a
stable version. He packages the deploy.xml with the other application files in a ZIP file and
uploads the entire bundle directly to JBoss ON, so it is stored in the JBoss ON database.

Version 2 is a devel version. The QA environment requires frequent updates based on the latest
build in GIT. Tim uploads the deploy.xml separately, but he points the provisioning wizard to
the GIT URL for all of the associated packages. When the bundle is deployed, JBoss ON takes
the packages from the repository.

The Results

Tim deployed version 1 of the bundle to the production environment, and he deployed version 2
to the QA environment.

This means that Tim has deployed different versions of the same application, pulled from
different sources, to different resources. If he ever has a problem with the production server,
he can simply revert it to the last stable version.

Additionally, he can script bundle deployments to the QA environment, so his tests can be fully
automated.

2.3. Creating Ant Bundles

Bundles are archive files that is stored on the server and then downloaded by an agent to
deploy to a platform or resource. A bundle distribution is comprised of two elements:

An Ant recipe file named deploy.xml

Any associated application files. These application files can be anything; commonly, they fall
into two categories:

Archive files (JAR or ZIP files)

Raw text configuration files, which can include tokens where users define the values when
the bundle is deployed

2.3.1. Using Templatized Configuration Files

A bundle can contain configuration files for an application. These configuration files can use
hard-coded values or they can use tokens that are filled in (automatically or with user-supplied
values) when the bundle is actually deployed.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

9

Note

For a user-defined token to be realized, it must be referenced in the recipe so that the
bundle deployment wizard will prompt for the value, using the <rhq:input-property>
key in the Ant recipe. For examples, see Section 2.3.2.4.2, “rhq:input-property” and
Example 1, “Simple Ant Recipe”.

User-defined tokens can be any property; the values are supplied through the provisioning UI
and inserted into the templatized configuration file.

The token key is a simple attribute-value assertion, with the input_field as the element in the UI
and the property being the value in the configuration file. The property of user-defined tokens
must contain only alphanumeric characters, an underscore (_), or a period (.); no other
characters are allowed.

input_field=@@property@@

For example, to set a port number token in a configuration file, define the property:

port=@@listener.port@@

The user-defined token then must be noted in the recipe, so that the provisioning process
knows to realize the phrase. To configure a property in an Ant recipe, add a <rhq:input-
property> key in the Ant XML file.

For example:

<rhq:input-property
 name="listener.port"
 ... />

The provisioning wizard prompts for a value for all of the user-defined tokens referenced in the
recipe.

Figure 3. Port Token During Provisioning

Along with user-defined variables that can be specified in the recipe file, there are variables
that are made implicitly available to recipes. These tokens can be used in a templatized file as
a user-defined variable without having to define the token template in the recipe itself.

Table 1. Variables Defined by JBoss ON

Deploying Applications and Content

10

Token Description
rhq.deploy.dir The directory location where the bundle will

be installed.
rhq.deploy.id A unique ID assigned to the specific bundle

deployment.
rhq.deploy.name The name of the bundle deployment.

Additionally, some tokens can be realized by the provisioning process pulling information from
the local system. These values, listed in Table 2, “System-Defined Tokens”, are taken either
from the Java API or from Java system properties. They can be inserted directly in the
templatized configuration file without having to put a corresponding entry in the recipe. For
example:

@@rhq.system.hostname@@

Table 2. System-Defined Tokens

Token Name Taken From... Java API
rhq.system.hostname Java API SystemInfo.getHostname()
rhq.system.os.name Java API SystemInfo.getOperatingSyst

emName()
rhq.system.os.version Java API SystemInfo.getOperatingSyst

emVersion()
rhq.system.os.type Java API SystemInfo.getOperatingSyst

emType().toString()
rhq.system.architecture Java API SystemInfo.getSystemArchite

cture()
rhq.system.cpu.count Java API SystemInfo.getNumberOfCpus

()
rhq.system.interfaces.java.ad
dress

Java API InetAddress.getByName(Syst
emInfo.getHostname()).getHo
stAddress()

rhq.system.interfaces.networ
k_adapter_name.mac

Java API NetworkAdapterInfo.getMacA
ddress()

rhq.system.interfaces.networ
k_adapter_name.type

Java API NetworkAdapterInfo.getType()

rhq.system.interfaces.networ
k_adapter_name.flags

Java API NetworkAdapterInfo.getAllFla
gs()

rhq.system.interfaces.networ
k_adapter_name.address

Java API NetworkAdapterInfo.getUnica
stAddresses().get(0).getHostA
ddress()

rhq.system.interfaces.networ
k_adapter_name.multicast.ad
dress

Java API NetworkAdapterInfo.getMultic
astAddresses().get(0).getHost
Address()

rhq.system.sysprop.java.io.t
mpdir

Java system property

rhq.system.sysprop.file.separ
ator

Java system property

rhq.system.sysprop.line.sepa
rator

Java system property

rhq.system.sysprop.path.sep
arator

Java system property

1. Summary: Using JBoss ON to Deploy Applications and Update Content

11

rhq.system.sysprop.java.hom
e

Java system property

rhq.system.sysprop.java.versi
on

Java system property

rhq.system.sysprop.user.time
zone

Java system property

rhq.system.sysprop.user.regi
on

Java system property

rhq.system.sysprop.user.cou
ntry

Java system property

rhq.system.sysprop.user.lang
uage

Java system property

Token Name Taken From... Java API

2.3.2. Creating Ant Recipes

Note

The process and guidelines for actually creating an Ant recipe are outside the scope of
this documentation. This document outlines the options and requirements for using Ant
recipes specifically to work with the JBoss ON provisioning system.

For basic instructions, options, and tutorials for writing Ant tasks, see the Apache Ant
documentation at http://ant.apache.org/manual/index.html.

Section 2.3.2.1, “Breakdown of an Ant Recipe”

Section 2.3.2.2, “Saving Files During Provisioning”

Section 2.3.2.3, “Using Ant Tasks”

Section 2.3.2.4, “A Reference of JBoss ON Ant Recipe Elements”

2.3.2.1. Breakdown of an Ant Recipe

The Ant recipe for JBoss ON bundles is the same basic file as a standard Apache Ant file and is
processed by an integrated Ant build system in JBoss ON. This Ant recipe file must be bundled
in the top directory of the distribution ZIP file and be named deploy.xml.

The JBoss ON Ant recipes allows all of the standard tasks that are available for Ant builds, which
provides flexibility in scripting a deployment for a complex application. The JBoss ON Ant recipe
must also provide additional information about the deployment that will be used by the
provisioning process; this includes information about the destination and, essentially, metadata
about the application itself.

Example 1. Simple Ant Recipe

For provisioning, the Ant recipe is more of a definition file than a true script file, although it
can call Ant targets and do pre- and post-provisioning operations. As with other Ant scripts,
the JBoss ON Ant recipe uses a standard XML file with a <project> root element and defined
targets and tasks. The elements defined in the <rhq:bundle> area pass metadata to the
JBoss ON provisioning system when the project is built.

Deploying Applications and Content

12

http://ant.apache.org/manual/index.html

The first part of the deploy.xml file simply identifies the file as an an script and references
the provisioning Ant elements.

<?xml version="1.0"?>
<project name="test-bundle" default="main"
 xmlns:rhq="antlib:org.rhq.bundle">

The next element identifies the specific bundle file itself. The provisioning system can
manage and deploy multiple versions of the same application; the <rhq:bundle> element
contains information about the specific version of the bundle (including, naturally enough, an
optional version number).

 <rhq:bundle name="Example App" version="2.4" description="an example
bundle">

All that is required for a recipe is the <rhq:bundle> element that defines the name of the
application. However, the bundle element contains all of the information about the
application and, importantly, how the provisioning system should handle content contained
in the application.

The first item to address is any templatized property that is used in a configuration file. This
is covered in Section 2.3.1, “Using Templatized Configuration Files”. Any token used in a
configuration file must be defined in the recipe for it to be realized (to have a value supplied)
during provisioning. For the port token defined in Section 2.3.1, “Using Templatized
Configuration Files”, the <rhq:input-property> element identifies it in the recipe. The name
argument is the input_field value in the token, the description argument gives the field
description used in the UI and the other arguments set whether the value is required, what
its allowed syntax is, and any default values to supply. (This doesn't list the files which use
tokens, only the tokens themselves.)

 <rhq:input-property
 name="listener.port"
 description="This is where the product will listen for
incoming messages"
 required="true"
 defaultValue="8080"
 type="integer"/>

There is a single element which identifies all of the content deployed by the bundle, the
<rhq:deployment-unit> element. The entire application — its name, included ZIP or JAR
files, configuration files, Ant targets — are all defined in the <rhq:deployment-unit> parent
element.

The name and any Ant targets are defined as arguments on <rhq:deployment-unit>
directly. In this, the name is appserver, and one preinstall target and one postinstall target
are set.

 <rhq:deployment-unit name="appserver"
preinstallTarget="preinstall" postinstallTarget="postinstall"
manageRootDir="false">

There is one other critical element on the <rhq:deployment-unit> element: the
manageRootDir argument. Provisioning doesn't simply copy over files; as described in
Section 2.1.3, “File Handling During Provisioning”, it remakes the directory to match what is
in the bundle. If there are any existing files in the deployment directory when the bundle is

1. Summary: Using JBoss ON to Deploy Applications and Update Content

13

first deployed, they are deleted by default. Setting manageRootDir to false means that the
provisioning process does not manage the deployment directory — meaning any existing
files are left alone when the bundle is deployed.

Any configuration file is identified in an <rhq:file> element. The name is the name of the
configuration file within the bundle, while the destinationFile is the relative (to the
deployment directory) path and filename of the file after it is deployed.

 <rhq:file name="test-v2.properties"
destinationFile="conf/test.properties" replace="true"/>

Bundles can contain archive files, either ZIP or JAR files. Every archive file is identified in an
<rhq:archive> element within the deployment-unit. The <rhq:archive> element does three
things:

Identify the archive file by name.

Define how to handle the archive. Simply put, it sets whether to copy the archive over to
the destination and then leave it as-is, still as an archive, or whether to extract the
archive once it is deployed. This is called exploding the archive. If an archive is exploded,
then a postinstall task can be called to move or edit files, as necessary.

Identify any files within the archive which contain tokens that need to be realized. This is
a child element, <rhq:fileset>. This can use wildcards to include types of files or files
within subdirectories or it can explicitly state which files to process.

 <rhq:archive name="MyApp.zip" exploded="true">
 <rhq:replace>
 <rhq:fileset>
 <include name="**/*.properties"/>
 </rhq:fileset>
 </rhq:replace>
 </rhq:archive>

Another possible child element sets how to handle any files within the deployment directory
that are not part of the bundle. For example, the application may generate log files or it may
allow users to upload content. By default, the provisioning process cleans out a directory
from non-bundle content every time a bundle is provisioned. However, logs, user-supplied
data, and other types of files are data that should remain intact after provisioning. Any files
or subdirectories which should be ignored by the provisioning process (and therefore
preserved) are identified in the <rhq:ignore> element. In this case, any *.log files within
the logs/ directory are saved.

 <rhq:ignore>
 <rhq:fileset>
 <include name="logs/*.log"/>
 </rhq:fileset>
 </rhq:ignore>
 </rhq:deployment-unit>
 </rhq:bundle>

This only applies to upgrading a bundle, meaning after the initial deployment.

The last elements set the Ant tasks to run before or after deploying the content, as identified
initially in the <rhq:deployment-unit> arguments. Most common Ant tasks are supported
(as described in Section 2.3.2.3, “Using Ant Tasks”). This uses a preinstall task to print which

Deploying Applications and Content

14

directory the bundle is being deployed to and whether the operation was successful. The
postinstall task prints a message when the deployment is complete.

<target name="main" />

 <target name="preinstall">
 <echo>Deploying Test Bundle v2.4 to ${rhq.deploy.dir}...</echo>
 <property name="preinstallTargetExecuted" value="true"/>
 <rhq:audit status="SUCCESS" action="Preinstall Notice"
info="Preinstalling to ${rhq.deploy.dir}" message="Another optional
message">
 Some additional, optional details regarding
 the deployment of ${rhq.deploy.dir}
 </rhq:audit>
 </target>

 <target name="postinstall">
 <echo>Done deploying Test Bundle v2.4 to ${rhq.deploy.dir}.</echo>
 <property name="postinstallTargetExecuted" value="true"/>
 </target>
</project>

Section 2.3.2.4, “A Reference of JBoss ON Ant Recipe Elements” lists the different JBoss ON
elements in the Ant recipe file. For information on standard Ant tasks, see the Apache Ant
documentation.

2.3.2.2. Saving Files During Provisioning

One important thing to consider with an Ant recipe is how to handle files in the deployment
directory. (This is touched on in Section 2.1.3, “File Handling During Provisioning”.)

By default, deploying or updating a bundle replaces everything in the deployment directory,
either by overwriting it or deleting it. The file handling rules are very similar to RPM package
upgrade rules. This is very simplified, but the provisioning process responds in one of two ways
to existing files the deployment directory:

1. The file in the current directory is also in the bundle. In this case, the bundle file always
overwrites the current file. (There is one exception to this. If the file in the bundle has
not been updated and is the same version as the local file, but the local file has
modifications. In that case, the local file is preserved.)

2. The file in the current directory does not exist in the bundle. In that case, the bundle
deletes the file in the current directory.

The behavior for #2, when a file is deleted, can be changed by settings in the Ant recipe.

There are three ways to manage if and how files are preserved during provisioning:
manageRootDir, <rhq:ignore>, and cleanDeployment.

manageRootDir

All of the information about the application being deployed is defined in the <rhq:deployment-
unit> element in a bundle recipe. The manageRootDir attribute on the <rhq:deployment-
unit> element sets how the provisioning process should handle existing files in the
deployment directory.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

15

http://ant.apache.org/manual/using.html#buildfile

The default value is manageRootDir=true which means that the provisioning process deletes
any other files in the root directory.

Alternately, the value can be set to false, which tells the provisioning process to ignore any
existing files in the root directory, as long as there is not a corresponding file in the bundle.

The manageRootDir attribute applies to both the initial deployment and upgrade operations, so
this can be used to preserve files that may exist in a directory before a bundle is ever deployed.

See Section 2.3.2.4.3, “rhq:deployment-unit”.

Note

When a bundle will no longer be used on a resource, it can be entirely removed from the
filesystem. This is called purging. The way that the provisioning system handles files
when purging a bundle mirrors that way that it handles files when provisioning a system.
By default, purging a bundle deletes everything in the deployment directory. If the
manageRootDir option is set in the bundle, then the provisioning process removes all of
the files and directories associated with the bundle and leaves unrelated files and
directories intact.

<rhq:ignore>

There can be files that are used or created by an application, apart from the bundle, which
need to be preserved after a bundle deployment. This can include things like log files, instance-
specific configuration files, or user-supplied content like images. These files can be ignored
during the provisioning process, which preserves the files instead of removing them.

To save files, use the <rhq:ignore> element and list the directories or files to preserve.

<rhq:ignore>
 <rhq:fileset>
 <include name="logs/*.log"/>
 </rhq:fileset>
</rhq:ignore>

The <rhq:ignore> element only applies when bundles are updated; it does not apply when a
bundle is initially provisioned.

Also, the <rhq:ignore> element only applies to file that exist outside the bundle. Any files that
are in the bundle will overwrite any corresponding files in the deployment directory, even if
they are specified in the <rhq:ignore> element.

See Section 2.3.2.4.10, “rhq:ignore”.

Clean Deployment

Both manageRootDir and <rhq:ignore> are set in the recipe. At the time that the bundle is
actually provisioned, there is an option to run a clean deployment. The clean deployment option
deletes everything in the deployment directory and provisions the bundle in a clean directory,
regardless of the manageRootDir and <rhq:ignore> settings in the recipe.

See Section 2.4.5, “Deploying a Bundle to a Clean Destination”.

2.3.2.3. Using Ant Tasks

Deploying Applications and Content

16

An Ant bundle distribution file is just an Ant recipe and its associated files. As Example 1,
“Simple Ant Recipe” shows, the Ant recipe is the expected deploy.xml file with some JBoss ON-
specific elements. An Ant bundle distribution file supports more complex Ant configuration,
including Ant tasks and targets.

2.3.2.3.1. Supported Ant Tasks

Any standard Ant task can be run as part of the Ant bundle provisioning (with the exception of
<antcall> and <macrodef>). This includes common commands like echo, mkdir, and touch —
whatever is required to deploy the content fully.

Important

The <antcall> element cannot be used with the Ant recipe. <antcall> calls a target
within the deploy.xml file, which loops back to the file, which calls the <antcall> task
again, which calls the deploy.xml file again. This creates an infinite loop.

To perform the same operations that would be done with <antcall>, use the <ant> task
to reference a separate XML file which contains the custom Ant targets. This is described
in Section 2.3.2.3.3, “Calling Ant Targets”.

Important

The macrodef call, and therefore macro definitions, are not supported with Ant bundles.

Along with the standard Ant tasks, Ant bundle recipes can use optional Ant tasks:

Liquibase Database Schema Tasks

Ant Contrib Tasks

2.3.2.3.2. Using Default, Pre-Install, and Post-Install Targets

As with other Ant tasks, the <project> allows a default target, which is required by the
provisioning system. This is a no-op because the Ant recipe mainly defines the metadata for
and identifies files used by the provisioning process. Other operations aren't necessary. This
target is required by Ant, even though it is a no-op target. Use pre- and post-install targets to
perform tasks with the bundle before and after it is unpacked.

For example:

<target name="main" />

Additionally, JBoss ON provisioning tasks can define both pre- and post-install targets. This
allows custom tasks, like simple progress messages or setting properties.

2.3.2.3.3. Calling Ant Targets

As mentioned in Section 2.3.2.3.1, “Supported Ant Tasks”, using <antcall> does not work in an
Ant bundle recipe; it self-referentially calls the <rhq:bundle> task in an infinite loop. However,
it is possible to process tasks that are outside the default target. This can be done using pre-
and post install targets (Section 2.3.2.3.2, “Using Default, Pre-Install, and Post-Install Targets”).

1. Summary: Using JBoss ON to Deploy Applications and Update Content

17

http://www.liquibase.org/manual/ant
http://sourceforge.net/projects/ant-contrib

1. In deploy.xml for the Ant recipe, add a <rhq:deployment-unit> element which
identifies the Ant target.

<rhq:deployment-unit name="jar" postinstallTarget="myExampleCall">

2. Then, define the target.

 <target name="myExampleCall">
 <ant antfile="another.xml" target="doSomething">
 <property name="param1" value="111"></property>
 </ant>
 </target>

3. Create a separate another.xml file in the same directory as the deploy.xml file. This
file contains the Ant task.

<?xml version="1.0"?>
<project name="another" default="main">
 <target name="doSomething">
 <echo>inside doSomething. param1=${param1}</echo>
 </target>
</project>

2.3.2.4. A Reference of JBoss ON Ant Recipe Elements

Section 2.3.2.4.1, “rhq:bundle”

Section 2.3.2.4.2, “rhq:input-property”

Section 2.3.2.4.3, “rhq:deployment-unit”

Section 2.3.2.4.4, “rhq:archive”

Section 2.3.2.4.5, “rhq:url-archive”

Section 2.3.2.4.6, “rhq:file”

Section 2.3.2.4.7, “rhq:url-file”

Section 2.3.2.4.8, “rhq:audit”

Section 2.3.2.4.9, “rhq:replace”

Section 2.3.2.4.10, “rhq:ignore”

Section 2.3.2.4.11, “rhq:fileset”

Section 2.3.2.4.12, “rhq:system-service”

Section 2.3.2.3.2, “Using Default, Pre-Install, and Post-Install Targets”

2.3.2.4.1. rhq:bundle

Contains the definition for the main JBoss ON-related Ant task that is required for any Ant
bundle recipe. This element defines basic information about the bundle and is the parent
element for all of the specific details about what is in the bundle and how it should be
provisioned.

Deploying Applications and Content

18

Element Attributes

Attribute Description Optional or Required
name The name given to the

bundle.
Required

version The version string for this
specific bundle. Bundles can
have the same name, but
each bundle of that name
must have a unique version
string. These version strings
normally conform to an OSGi
style of versioning, such as
1.0 or 1.2.FINAL.

Required

description A readable description of this
specific bundle version.

Optional

Example

<rhq:bundle name="example" version="1.0" description="an example bundle">

2.3.2.4.2. rhq:input-property

Adds a property to the bundle task that defines a template token that must have its value
supplied by a user at the time the bundle is deployed. This is similar to standard Ant properties.

Note

All of the system properties listed in Table 2, “System-Defined Tokens” and the Ant-
specific tokens in Table 1, “Variables Defined by JBoss ON” are available to be used as
templatized tokens in bundle configuration without having to set a <rhq:input-
property> definition.

All input properties set some parameter that must have its value defined by a user when the
bundle is provisioned on a resource, and the fields to enter those values are automatically
generated in the JBoss ON UI bundle deployment wizard.

Element Attributes

Attribute Description Optional or Required
name The name of the user-defined

property. Within the recipe,
this property can be referred
to by this name, in the format
${property_name}.

Required

description A readable description of the
property. This is the text
string displayed in the JBoss
ON bundle UI when the
bundle is deployed.

Required

1. Summary: Using JBoss ON to Deploy Applications and Update Content

19

type Sets the syntax accepted for
the user-defined value. There
are several different options:

string
longString
long
password
file
directory
boolean
integer
float
double

Required

required Sets whether the property is
required or optional for
configuration. The default
value is false, which means
the property is optional. If this
argument isn't given, then it
is assumed that the property
is optional.

Optional

defaultValue Gives a value for the property
to use if the user does not
define a value when the
bundle is deployed.

Optional

Attribute Description Optional or Required

Example

<rhq:input-property
 name="listener.port"
 description="This is where the product will listen for incoming
messages"
 required="true"
 defaultValue="8080"
 type="integer"/>

See Also

Section 2.3.2.4.4, “rhq:archive”

Section 2.3.2.4.6, “rhq:file”

2.3.2.4.3. rhq:deployment-unit

Defines the bundle content — such as applications or configuration files — being deployed by
the bundle. A deployment unit can be simple text files, archives, or a full software product,
including an application server, web server, or database. A deployment unit can have multiple
archive and configuration files associated with it.

Only a single deployment unit is provisioned at a time by the provisioning process, so there can
be only one <rhq:deployment-unit> element in a bundle recipe.

Element Attributes

Deploying Applications and Content

20

Attribute Description Optional or Required
name The name of the application. Required
manageRootDir Sets whether JBoss ON should

manage all files in the top
root directory (deployment
directory) where the bundle is
deployed. If false, any
unrelated files found in the
top deployment directory are
ignored and will not be
overwritten or removed when
future bundle updates are
deployed. The default is true.

Optional

preinstallTarget An Ant target that is invoked
before the deployment unit is
installed.

Optional

postinstallTarget An Ant target that is invoked
after the deployment unit is
installed.

Optional

Example

<rhq:deployment-unit name="appserver" preinstallTarget="preinstall"
postinstallTarget="postinstall">

See Also

Section 2.3.2.3.2, “Using Default, Pre-Install, and Post-Install Targets”

2.3.2.4.4. rhq:archive

Defines any archive file that is associated with deploying the application. An archive can be a
ZIP or JAR file. A bundle doesn't require an archive file, so this element is optional.

Element Attributes

Attribute Description Optional or Required
name The filename of the archive

file to include in the bundle.

Important

If the archive file is
packaged with the Ant
recipe file inside the
bundle distribution ZIP
file, then the name must
contain the relative
path to the location of
the archive file in the
ZIP file.

Required

1. Summary: Using JBoss ON to Deploy Applications and Update Content

21

exploded Sets whether the archive's
contents will be extracted and
stored into the bundle
destination directory (true) or
whether to store the files in
the same relative directory as
is given in the name attribute
(false). If the files are
exploded, they are extracted
starting in the deployment
directory. Post-install targets
can be used to move files
after they have been
extracted.

Optional
Attribute Description Optional or Required

Example

<rhq:archive name="file.zip">
 <rhq:replace>
 <rhq:fileset>
 <include name="**/*.properties"/>
 </rhq:fileset>
 </rhq:replace>
</rhq:archive>

See Also

Section 2.3.2.4.2, “rhq:input-property”

Section 2.3.2.4.11, “rhq:fileset”

Section 2.3.2.4.9, “rhq:replace”

2.3.2.4.5. rhq:url-archive

Defines remote archive to use, which is accessed through the given URL. This is similar to
rhq:archive except that the server accesses the archive over the network rather than
including the archive directly in the bundle distribution file.

Element Attributes

Attribute Description Optional or Required

Deploying Applications and Content

22

url Gives the URL to the location
of the archive file. The
archive is downloaded and
installed in the deployment
directory.

Note

For the bundle to be
successfully deployed,
the URL must be
accessible to all agent
machines where this
bundle is to be
deployed. If an agent
cannot access the URL,
it cannot pull down the
archive and thus
cannot deploy it on the
machine.

Required

exploded If true, the archive's contents
will be extracted and stored
into the bundle destination
directory; if false, the zip file
will be compressed and stored
in the top level destination
directory.

Note

If the files are
exploded, they are
extracted starting in
the deployment
directory. Post-install
targets can be used to
move files after they
have been extracted.

Optional

Attribute Description Optional or Required

Example

1. Summary: Using JBoss ON to Deploy Applications and Update Content

23

<rhq:url-archive url="http://server.example.com/apps/files/archive.zip">
 <rhq:replace>
 <rhq:fileset>
 <include name="**/*.properties"/>
 </rhq:fileset>
 </rhq:replace>
</rhq:url-archive>

See Also

Section 2.3.2.4.4, “rhq:archive”

Section 2.3.2.4.2, “rhq:input-property”

Section 2.3.2.4.11, “rhq:fileset”

Section 2.3.2.4.9, “rhq:replace”

2.3.2.4.6. rhq:file

Contains the information to identify and process configuration files for the application which
have token values that must be realized. Normally, configuration files are copied directly from
the bundle package into the deployment directory. The <rhq:file> element calls out files that
require processing before they should be copied to the destination. The attributes on the
<rhq:file> element set the name of the raw file in the bundle distribution ZIP file and the
name of the target file that it should be copied to.

Raw files can be included with the archive files that contain properties or configuration for the
application. These configuration files can be templatized with user-defined or system-defined
tokens, like those listed in Section 2.3.1, “Using Templatized Configuration Files”. Any
templatized files that are included in the bundle distribution file that are templatized must be
listed in the Ant recipe so that they are processed and the tokens are realized.

Element Attributes

Attribute Description Optional or Required
name The name of the raw

configuration file.

Important

If the configuration file
is packaged with the
Ant recipe file inside
the bundle distribution
ZIP file, then the name
must contain the
relative path to the
location of the file
within the ZIP file.

Required

Deploying Applications and Content

24

destinationFile The full path and filename for
the file on the destination
resource. Relative paths must
be relative to the final
deployment directory
(defined in the
rhq.deploy.dir parameter
when the bundle is deployed).
It is also possible to use
absolute paths, as long as
both the directory and the
filename are specified.

Note

If the destinationDir
attribute is used, the
destinationFile
attribute cannot be
used.

Required, unless
destinationDir is used

destinationDir The directory where this file is
to be copied. If this is a
relative path, it is relative to
the deployment directory
given by the user when the
bundle is deployed. If this is
an absolute path, that is the
location on the filesystem
where the file will be copied.
This attribute sets the
directory for the file to be
copied to. The actual file
name is set in the name
attribute.

If the destinationFile
attribute is used, the
destinationDir attribute
cannot be used.

Required, unless
destinationFile is used

replace Indicates whether the file is
templatized and requires
additional processing to
realize the token values.

Required

Attribute Description Optional or Required

Example

1. Summary: Using JBoss ON to Deploy Applications and Update Content

25

<rhq:file name="test-v2.properties" destinationFile="subdir/test.properties"
replace="true"/>

If neither the destinationDir nor the destinationFile attribute is used, then the raw file is
placed in the same location under the deployment directory as its location in the bundle
distribution.

2.3.2.4.7. rhq:url-file

As with rhq:file, contains the information to identify and process configuration files for the
application which have token values that must be realized. This option specifies a remote file
which is downloaded from the given URL, rather than being included in the bundle archive.

Element Attributes

Attribute Description Optional or Required
url Gives the URL to the

templatized file. The file is
downloaded and installed in
the deployment directory.

Note

For the bundle to be
successfully deployed,
the URL must be
accessible to all agent
machines where this
bundle is to be
deployed. If an agent
cannot access the URL,
it cannot pull down the
archive and thus
cannot deploy it on the
machine.

Required

Deploying Applications and Content

26

destinationFile The full path and filename for
the file on the destination
resource. Relative paths must
be relative to the final
deployment directory
(defined in the
rhq.deploy.dir parameter
when the bundle is deployed).
It is also possible to use
absolute paths, as long as
both the directory and the
filename are specified.

Note

If the destinationDir
attribute is used, the
destinationFile
attribute cannot be
used.

This attribute must give both
the path name and the file
name.

Required, unless
destinationDir is used

destinationDir The directory where this file is
to be copied. If this is a
relative path, it is relative to
the deployment directory
given by the user when the
bundle is deployed. If this is
an absolute path, that is the
location on the filesystem
where the file will be copied.
This attribute sets the
directory for the file to be
copied to. The actual file
name is set in the name
attribute.

If the destinationFile
attribute is used, the
destinationDir attribute
cannot be used.

Required, unless
destinationFile is used

replace Indicates whether the file is
templatized and requires
additional processing to
realize the token values.

Required

Attribute Description Optional or Required

1. Summary: Using JBoss ON to Deploy Applications and Update Content

27

Example

<rhq:url-file url="http://server.example.com/apps/files/test.conf"
destinationFile="subdir/test.properties" replace="true"/>

If neither the destinationDir nor the destinationFile attribute is used, then the raw file is
placed in the same location under the deployment directory as its location in the bundle
distribution.

See Also

Section 2.3.2.4.6, “rhq:file”

2.3.2.4.8. rhq:audit

Sets custom audit trail messages to use during the provisioning process. This is useful with
complex recipes that perform some additional custom tasks. As the tasks are processed, the
rhq:audit configuration sends information to the server about the additional processing steps
and their results.

Element Attributes

Attribute Description Optional or Required
status The status of the processing.

The possible values are
SUCCESS, WARN, and
FAILURE. The default is
SUCCESS.

Optional

action The name of the processing
step.

Required

info A short summary of what the
action is doing, such as the
name of the target of the
action or an affected
filename.

Optional

message A brief text string which
provides additional
information about the action.

Optional

Example

<rhq:audit status="SUCCESS" action="Preinstall Notice" info="Preinstalling
to ${rhq.deploy.dir}" message="Another optional message">
 Some additional, optional details regarding
 the deployment of ${rhq.deploy.dir}
</rhq:audit>

2.3.2.4.9. rhq:replace

Lists templatized files, in children <rhq:fileset> elements, contained in the archive which
need to have token values realized when the archive is deployed.

Deploying Applications and Content

28

Any file which uses a token that must be replaced with a real value is a templatized file. When
the provisioning process runs, the token value is substituted with the defined value. This
element lists all of the files which are templatized; the only files which are processed by the
provisioning system for token substitution are the ones listed in the <rhq:replace> element.

Example

<rhq:archive name="file.zip">
 <rhq:replace>
 <rhq:fileset>
 <include name="**/*.properties"/>
 </rhq:fileset>
 </rhq:replace>
</rhq:archive>

See Also

Section 2.3.2.4.11, “rhq:fileset”

Section 2.3.2.4.4, “rhq:archive”

2.3.2.4.10. rhq:ignore

Lists files in the deployment directory which should not be deleted when a new bundle is
deployed. This only applies to upgrade operations, not to the initial deployment of a
bundle.

Once an application is deployed, instance-specific files — like data files or logs — can be
created and should be retained if the application is ever upgraded. This element, much like
<rhq:replace>, contains a list of files or directories in the instance to save.

Note

If a file is ignored in the recipe, then the file is not deleted when the bundle is deployed.
However, if a file of the same name exists in the bundle, then the local file is overwritten.

Do not attempt to ignore files that are packaged in the bundle. Only files generated by the
applications, such as log and data files, should be ignored by the provisioning process since
they should be preserved for the upgraded instance.

Important

It is possible to deploy one bundle to a subdirectory of another bundle (such as Bundle A
is deployed to /opt/myapp and Bundle B to /opt/myapp/webapp1).

In that case, set the recipe in Bundle A to ignore the directory to which Bundle B will be
deployed. This prevents updates or reversions for Bundle A from overwriting the
configuration from Bundle B.

Example

1. Summary: Using JBoss ON to Deploy Applications and Update Content

29

<rhq:ignore>
 <rhq:fileset>
 <include name="logs/*.log"/>
 </rhq:fileset>
</rhq:ignore>

See Also

Section 2.3.2.4.11, “rhq:fileset”

2.3.2.4.11. rhq:fileset

Provides a list of files.

Two JBoss ON elements — <rhq:replace> and <rhq:ignore> — define file lists in either the
archive file or the deployment directory. This element contains the list of files.

Child Element

Child Element Description
<include name=filename /> The filename of the file. For <rhq:replace>,

this is a file within the archive (JAR or ZIP) file
which is templatized and must have its token
values realized. For <rhq:ignore>, this is a
file in the application's deployment directory
which should be ignored and preserved when
the bundle is upgraded.

Example

<rhq:replace>
 <rhq:fileset>
 <include name="**/*.properties"/>
 </rhq:fileset>
</rhq:replace>

See Also

Section 2.3.2.4.10, “rhq:ignore”

Section 2.3.2.4.9, “rhq:replace”

2.3.2.4.12. rhq:system-service

Points to a script file to launch as part of the provisioning process. This is usually an init file or
similar file that can be used by the deployed application to set the application up as a system
service.

Element Attributes

Attribute Description Optional or Required
name The name of the script. Required

Deploying Applications and Content

30

scriptFile The filename of the script. If
the script file is packaged
with the Ant recipe file inside
the bundle distribution ZIP
file, then the scriptFile
must contain the relative path
to the location of the file in
the ZIP file.

Required

configFile The name of any
configuration or properties
file used by the script. If the
configuration file is packaged
with the Ant recipe file inside
the bundle distribution ZIP
file, then the configFile
must contain the relative path
to the location of the file in
the ZIP file.

Optional

overwriteScript Sets whether to overwrite
any existing init file to
configure the application as a
system service.

Optional

startLevels Sets the run level for the
application service.

Optional

startPriority Sets the start order or priority
for the application service.

Optional

stopPriority Sets the stop order or priority
for the application service.

Optional

Attribute Description Optional or Required

Example

<rhq:system-service name="example-bundle-init" scriptFile="example-init-
script"
 configFile="example-init-config" overwriteScript="true"
 startLevels="3,4,5" startPriority="80" stopPriority="20"/>

2.3.3. Creating an Associated Archive File

The application that is being deployed itself has to be built into an archive file of some kind.
JBoss ON allows JAR and ZIP formats. The bundle archive file can also include raw files that are
used to configuration the application, such as XML, .conf, and text files. These can be
templatized to supply user- and system-specific information (as described in Section 2.3.1,
“Using Templatized Configuration Files”).

Any required archive or file must be referenced in the recipe so that the server knows to copy it
during deployment.

The bundle files can be uploaded and stored in the JBoss ON server or they can be zipped up,
with the recipe files, into a single distribution file.

2.3.4. Testing Bundle Packages

1. Summary: Using JBoss ON to Deploy Applications and Update Content

31

Ant recipes can be complex, so it's important (and useful) to test a bundle before deploying it.
JBoss ON includes a command-line tool that can be used to test Ant provisioning bundles
quickly.

2.3.4.1. Installing the Bundle Deployer Tool

This tool can be downloaded and installed on any machine, independent of any JBoss ON server
or agent.

1. Click the Administration tab in the top menu.

2. Select the Downloads in the left menu table.

3. Scroll to the Bundle Deployer Download section, and click the package download link.

4. Save the .zip file into the directory where the bundle tool should be installed, such as
/opt/.

5. Unzip the packages.

cd /opt/

unzip rhq-bundle-deployer-version.zip

2.3.4.2. Using the Bundle Deployer Tool

Important

This bundle deployment tool is only to test the provisioning process and deployed
application. This tool does not interact with the JBoss ON server or agent, so JBoss ON is
unaware of any applications deployed with this tool and cannot manage them.

1. Unzip the bundle distribution package to check (or copy an unzipped directory that
contains the application files). For example:

mkdir /tmp/test-bundle
cd /tmp/test-bundle
unzip MyBundle.zip

Deploying Applications and Content

32

2. Open the top directory of the bundle distribution, where the deploy.xml Ant recipe file
is.

3. Set the bundle deployer tool location in the PATH.

PATH="/opt/rhq-bundle-deployer-3.0.0/bin:$PATH"

4. Run the bundle deploy tool, and use the format -Dinput_properties to pass the values to
user-defined tokens in the templatized files. For example:

rhq-ant -Drhq.deploy.dir=/opt/exampleApp -Dlistener.port=7081

This installs the application in /opt/exampleApp and sets a port value of 7081.

Note

Optionally, use the rhq.deploy.id attribute to set an identifier for the
deployment. The default is 0, which means a new deployment. When bundles are
deployed in the UI, the server assigns a unique ID to the deployment. Using the
rhq.deploy.id attribute on a new deployment simulates the server's ID
assignment.

Using the rhq.deploy.id attribute if there is already a previous deployment
allows you to test the upgrade performance of the bundle. Performing an upgrade
requires a new, unique ID number.

2.4. Provisioning Bundles

2.4.1. Uploading Bundles to JBoss ON

All of the files associated with a distribution — the recipe, any JARs or ZIPs, and any
configuration files — have to be accessible to JBoss ON. Either the files need to be uploaded
and stored in the JBoss ON database or a URL to the packages needs to be configured.

Note

If the files are all combined in a single ZIP file to upload, then the recipe file must be in
the top level of the package.

1. In the top menu, click the Bundles tab.

2. Scroll to the bottom of the window and click the New button.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

33

3. Upload the distribution package or the recipe file.

Deploying Applications and Content

34

There are three options on how the bundle distribution is made available to the JBoss
ON server:

URL points to any URL, such as an FTP site or SVN or GIT repo, where there is a
complete bundle distribution file available.

Note

Using an SVN or GIT repo allows you to pull the packages directly from a build
system.

Upload uploads a single bundle distribution file (which includes both the recipe an all
associated files) from the local system to the JBoss ON server.

Recipe uploads a recipe file only, and then any additional files required for the
bundle are uploaded separately. This option includes an edit field where the
uploaded recipe can be edited before it is sent to the server.

Note

When uploading a recipe file separately than the bundle archive files, every
closing tag be explicitly stated (meaning every entry must have the format
<tag></tag>, not the abbreviated format <tag />). Otherwise, the recipe may
be incorrectly interpreted in the text box and fail to upload to the server.

The XML must be well-formed, or the recipe fails validation and the upload
fails.

Additionally, the Recipe option's upload button does not work on Internet
Explorer. To add a recipe file using this option with Internet Explorer, copy the
entire recipe file and paste it directly into the text box.

4. In the next screen, upload any associated files that were not uploaded previously. For
the URL and Upload, all of the files are usually uploaded in a single file, so there is
nothing to do on this screen. For the Recipe option, all of the files listed in the recipe
must be uploaded manually at this step.

5. The final screen shows all of the information for the new bundle. Click Finish to save

1. Summary: Using JBoss ON to Deploy Applications and Update Content

35

the new bundle.

2.4.2. Deploying Bundles to a Resource

Bundles are deployed to resources by deploying the bundle to a JBoss ON group. Any
compatible group that contains resources which support bundles (platforms and JBoss AS
resources by default) is automatically listed as an option for the destination.

For platforms, the groups cannot contain different operating systems and architectures.
However, the same bundle distribution file and properties can be used for any platform because
the provisioning process will automatically format the deployment directory and provisioned
files to match the platform's architecture.

1. In the top menu, click the Bundles tab.

2. Scroll to the bottom of the window and click the Deploy button.

Alternatively, click the name of the bundle in the list, and then click the deploy button
at the top of the bundle page.

3. Select the bundles to deploy from the list on the left and use the arrows to move them
to the box on the right.

Deploying Applications and Content

36

4. Once the bundles are selected, define the destination information.

The destination is a combination of the resources the bundle is deployed on and the
directory to which is it deployed. Each destination is uniquely defined for each bundle.

To define the destination, first select the resource group from the Resource drop-down
menu. The resource group identifies the type of resource to which the bundle is being
deployed, and the resource type defines other deployment parameters. When the group
is selected, then the base location is defined. For a platform, this is the root directory.
For a JBoss AS instance, it is the installation directory. For custom resources, the base
location is defined in the plug-in descriptor.

Note

If you haven't created a compatible group or if you want to create a new group
specifically for this bundle deployment, click the + icon to create the group. Then,
continue with the provisioning process.

Set the actual deployment directory to which to deploy the bundle. This directory is a
relative path to the plug-in-defined base location.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

37

5. Select the version of the bundle to deploy. If there are multiple versions of a bundle
available, then any of those versions can be selected. There are also quick options to
deploy the latest version or the currently deployed version.

6. If there are any user-defined properties, then they are entered in the fields in the next
page. User-defined properties are configured in the bundle recipe using tokens.

Deploying Applications and Content

38

7. Fill in the information about the specific deployment instance. The checkbox sets the
option on whether to overwrite anything in the existing deployment directory or
whether to preserve any existing files.

8. The final screen shows the progress for deploying the packages. Click Finish to
complete the deployment.

2.4.3. Viewing the Bundle Deployment History

A bundle has two areas of information: one for its versions and one for its destinations (places
where it is deployed). The main bundle entry shows only those two things, the versions and the
destinations. The version area is a way to track and control the content of the bundle, while the
destinations area is a way to track and control the process of deploying bundles.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

39

Figure 4. Bundles, Versions, and Destinations

Selecting a version under the main bundle entry shows its recipe (on the Summary tab) and a
list of all of the files associated with that particular version (on the Files tab). The Deployments
tab shows every destination, with timestamps and comments, that that particular version of
the bundle has been deployed to.

Figure 5. Deployment Information for a Version

Deploying Applications and Content

40

A destination entry shows only a list of versions that have been deployed to that destination. In
a sense, the destination area is the best areas to track the audit history of an application. Along
with shows the history of deployments and updates, the destinations area is the place where
new versions can be deployed or reverted most directly.

Figure 6. Deployment History for a Destinations

2.4.4. Reverting a Deployed Bundle

Ant bundles can be rolled back to a previous version number or a previous deployment of that
bundle. This provides some extra protection and flexibility when deploying and managing
applications, particularly for testing and production systems.

1. In the top menu, click the Bundles tab.

2. In the left navigation window, expand the bundle node, and then open the
Destinations folder beneath it.

3. Select the destination from the left navigation.

4. In the main window for the destination, click the Revert button.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

41

5. The next page shows the summary of the current deployment and the immediate
previous deployment, which it will be reverted to.

Deploying Applications and Content

42

6. Add any notes to the revert action. Optionally, select the checkbox to clean the
deployment directory and install the previous version fresh.

7. Click Finish on the final screen to complete the rollback.

2.4.5. Deploying a Bundle to a Clean Destination

A bundle can be deployed to a destination where there may already be an application, files, or
even a previous bundle deployment. When deploying a new bundle, there are two options for
how the provisioning process handles the update:

Preserve the existing files and directories, with appropriate upgrades, according to the
recipe configuration (Section 2.3.2.2, “Saving Files During Provisioning”)

Completely overwrite the existing files and deploy the bundle in an empty directory

To deploy the bundle in a clean directory, then select the Clean Deploy checkbox when
running through the deployment wizard in Section 2.4.2, “Deploying Bundles to a Resource”.

2.4.6. Purging a Bundle from a Resource

Purging a bundle removes all of the files associated with the bundle from all of the target
resources. However, this does not remove the bundle from the JBoss ON database, so it can be
easily re-deployed to the same resources later or to other resources.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

43

Important

The exact files that are purged mirrors how the bundle manages the deployment
directory. By default, purging includes deleting the deployment directory
(manageRootDir=true). If the deployment directory is used by other applications – like
an app server deploy/ directory — then those other applications or files will also be
deleted. After purging, there is no live deployment and nothing to revert.

1. In the top menu, click the Bundles tab.

2. In the left navigation window, expand the bundle node, and then open the
Destinations folder beneath it.

3. Select the destination from the left navigation.

4. In the main window for the destination, click the Purge button.

5. When prompted, confirm that you want to remove the bundled application and
configuration from the target resources.

2.4.7. Upgrading Ant Bundles

The bundle upgrade process decides whether to upgrade (meaning, overwrite) files within the
application's deployment directory by comparing the MD5 hash codes on the files. There are
several different upgrade scenarios:

Deploying Applications and Content

44

If the hash code on the new file is different than the original file and there are no local
modifications, then JBoss ON installs the new file over the existing file.

If the hash code on the new file is different than the original file and there are local
modifications, then JBoss ON backs up the original file and installs the new file.

If the hash code on the new file and the original file is the same and there are local
modifications on the original file, then the provisioning process preserves the original file, in
place.

If there was no file in the previous bundle but there is one in the new bundle, then the new
file is used and any file that was added manually is backed up.

Backed up files are saved to a backup/ directory within the deployment's destination directory.
If the original file was located outside the application's directory (like, it was stored according
to an absolute location rather than a relative location), then it is saved in an ext-backup/
directory within the deployment's destination directory.

Note

If a file is ignored in the recipe, then the file is left unchanged. Never ignore files
packaged in the bundle. Only files generated by the applications, such as log and data
files, should be ignored by the provisioning process since they should be preserved for
the upgraded instance.

If a completely fresh installation is required, then it is possible to run a clean deployment.
This is described in Section 2.4.5, “Deploying a Bundle to a Clean Destination”.

2.4.8. Deleting a Bundle from the JBoss ON Server

Deleting a bundle removes all of its recipes and associated files from the JBoss ON database.
The deployed applications or configuration remain intact on the target resources.

1. In the top menu, click the Bundles tab.

2. In the left navigation window, expand the bundle node, and then open the
Destinations folder beneath it.

3. Select the destination from the left navigation.

4. In the main window for the destination, click the Delete button.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

45

5. When prompted, confirm that you want to delete the bundle.

2.5. Bundles and JBoss ON Servers and Agents

2.5.1. Resource Support and the Agent Resource Plug-in

Whether provisioning is supported is defined in the resource type. For a resource type to allow
provisioning, the resource plug-in descriptor must defined a bundle target. That is the indication
to the agent the provisioning is supported.

The <bundle-target> element simply defines allowed base directories for the resource which
can be used as base directories in the bundle definition.

<server name="JBossAS:JBossAS Server" ...>
 <bundle-target>
 <destination-base-dir name="Library Directory" description="Where the
jar libraries are">
 <value-context>pluginConfiguration</value-context>
 <value-name>lib.dir</value-name>
 </destination-base-dir>
 <destination-base-dir name="Deploy Directory" description="Where the
deployments are">
 <value-context>pluginConfiguration</value-context>
 <value-name>deploy.dir</value-name>
 </destination-base-dir>
 </bundle-target>
</server>

Every resource plug-in descriptor defines a base directory, the root for all deployments, apart
from provisioning configuration. For platforms, this is the root directory. For servers, it is usually
the installation directory. The <bundle-target> can use the already-configured base directory
or it can set different directories to use. In the example, two directories — the deploy/ and

Deploying Applications and Content

46

lib/ directories — are given as supported base directories. When a bundle definition is created,
the wizard offers the choice of which directory to use.

2.5.2. Server-Side and Agent Plug-ins for Recipe Types

By default, JBoss ON supports one type of recipe, an Ant build file. However, other types of
recipes could be supported because the recipe type is defined in a pair of plug-ins, one for the
server and one for the agent.

The server-side plug-in tells the JBoss ON server how to manage bundles and destinations for
that type of recipe.

The agent plug-in creates a child resource for the platform which is used to perform
provisioning operations on the platform or target resource. For example, Ant bundles are
actually deployed by the special JBoss ON resource, Ant Bundle Handler. This resource is added
automatically to platforms as a child resource to enable Ant-based provisioning.

Note

Since recipe type support is implemented on the agent side through a special resource,
that resource must exist in the JBoss ON inventory for it to perform provisioning. For
example, without the Ant bundle handler in the inventory for a platform, JBoss ON cannot
perform provisioning on that platform.

Administrators do not have to interact directly with the Ant bundle handler resource, but
that child resource must be present in the platform's inventory for Ant provisioning to
work.

2.6. Managing and Deploying Bundles with the JBoss ON CLI

Both uploading bundles to JBoss ON and deploying bundles to resources can be performed
using the JBoss ON CLI.

The ability to script bundle deployments is very powerful, because it allows content or
configuration updates, even new application servers, to be deployed automatically based on
activity in other resources across JBoss ON. This is particularly useful with using JBoss ON CLI
scripts in response to an alert:

A new JBoss application server can be deployed when an existing JBoss server experiences a
heavy load or decreased performance.

Configuration files for a selected snapshot image can be immediately deployed to a platform
or JBoss server to remedy configuration drift, in response to a drift alert.

A new web context can be deployed when another web is disabled within a mod_cluster
domain.

Scripting also allows updates to be applied on schedule, such as having daily or weekly
scheduled updates to a QE environment — which is also useful because the bundle content can
be pulled from a GIT or SVN repository used by a build system first, and then deployed for
testing.

The bundles API is in the Javadocs at https://access.redhat.com/documentation/en-
US/Red_Hat_JBoss_Operations_Network/3.1/html/API/ch01.html.

1. Summary: Using JBoss ON to Deploy Applications and Update Content

47

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Operations_Network/3.1/html/API/ch01.html

3. Managing Resource-Level Content Updates

JBoss Operations Network can be used to store and deploy content to resources. This can be
done to apply updates and patches (as with JBoss AS servers) or to set up repositories used for
provisioning applications and deploying custom software.

3.1. About Content

Content for a resource can be almost anything, such as WAR and EAR files, configuration files,
or scripts. JBoss ON provides a central framework to associate content, repositories, and
resources in the inventory.

3.1.1. What Content Is: Packages

A package is anything that is installed on a platform or for a server or application. This can be
an RPM, a JAR file, or even just a configuration file. A package simply provides some form of
content for a resource. Packages can be sent to a resource through a JBoss ON-recognized
repository or simply by uploading the package to the JBoss ON server and then sending it to
the resource.

A resource can only be associated with or manage content if the resource plug-in identifies that
content is available and the type of content that is supported. For example, application and web
servers like JBoss AS/EAP and Tomcat support EAR, WAR, and JAR files as content; platforms
support content like RPMs; but a database like PostgreSQL does not support any content types.

In a sense, content is both the software bits, scripts, or configuration files associated with a
resource and also a resource itself. When content is added to a resource, it becomes a child
resource in the JBoss ON hierarchy — but it can be managed, reverted, updated, or replaced by
uploading new software bits. The parent resource (such as the application server) supports
content; the child resource is a content backed resource.

Content can be added to a resource either by manually creating a child resource (and
uploading the packages) or by adding the package to a content source and deploying it to the
parent resource. The agent can also actively check for new content as part of its discovery scan
and add any discovered content to its inventory. The agent's recurring package discovery scan
has a default interval of 24 hours, as with the services scan.

3.1.2. Where Content Comes From: Providers and Repositories

Content sources are developers and distributors of content. Sources can be external third party
software developers or internal development teams that create custom content. The type of
content available from sources includes both software packages (such as RPMs or configuration
scripts) and updates (version upgrades, patches, and errata).

A repository is a user-defined collection of software packages, which can come from one or
multiple content sources. A repository may contain packages for an application or family of
applications or for a specific purpose, like repositories for laptop configuration and repositories
for installing web servers.

Repositories aren't siloed, separate containers for packages; they are essentially views that
show a subset of available packages. All packages are stored in the JBoss ON database. A JBoss
ON repository is a way of grouping those packages, both to make it easier to administer with
resources and to provide a mechanism of access control for users (Section 3.1.4, “Authorization
to Repositories and Packages”).

Deploying Applications and Content

48

Resources can be subscribed to content repositories that are configured in JBoss ON, which
provides a smooth and reliable mechanism for delivering consistent, administrator-configured
content to resources.

3.1.3. Package Versions and History

Packages are versioned within JBoss ON itself. When a package is added to a resource or
content source, the installer prompts for a version number; this is used as the UI display
number.

This display version number is not required; if it is not given, then the JBoss ON server derives a
number based on a calculated SHA-256 checksum for the package and the specification version
and the implementation version in the META-INF/MANIFEST.MF file (for EARs and WARs).

SPEC(IMPLMENTATION)[sha256=abcd1234]

Figure 7. Package Version Numbers

For example, for a META-INF/MANIFEST.MF file with these version numbers:

Manifest-Version: 1.0
Created-By: Apache Maven
Specification-Title: My Example App
Specification-Version: 1.0.0-GA
Specification-Vendor: Example, Corp.
Implementation-Title: My Example App
Implementation-Version: 1.x
Implementation-Vendor-Id: org.example
Implementation-Vendor: Example, Corp.
...

This creates a version number for the package like this:

1.0.0-GA(1.x)[sha256=abcd1234]

If the META-INF/MANIFEST.MF file does not contain one of the specification version or the
implementation version, then only one is used. For example, if only the implementation version
is given:

3. Managing Resource-Level Content Updates

49

(1.x)[sha256=abcd1234]

If no version number is given, then the SHA is used as the identifier. (The SHA is used as the
identifier internally, anyway.)

[sha256=abcd1234]

For exploded WARs and EARs, the calculated SHA-256 checksum is added to the MANIFEST.MF
file. This allows the agent to check the file during discovery scans to verify the version of the
package quickly.

Manifest-Version: 1.0
Created-By: Apache Maven
RHQ-Sha256: 570f196c4a1025a717269d16d11d6f37
...

For unexploded (archived) content, the checksum is recalculated with every package discovery
scan and compared to the checksum in inventory.

Note

Exploded WARs and EARs can be deployed on JBoss and Tomcat servers. Because the
content deployment process edits the META-INF/MANIFEST.MF file, the deployed content
is not exactly identical to the content packages that were uploaded.

A clear versioning system makes it possible to handle package lifecycles in a clear and
effective way. Updated content can be tracked as it is deployed, updates can be applied
consistently, and packages can be reverted to a previous version. The same repository can also
contain different versions of the same package, making it possible to apply different versions to
different resources.

Note

Package versions from different content sources can be associated with the same
repository.

Whenever a package is installed on a resource, it is recorded in the content history for the
resource and the package. Since there can be multiple files associated with a single package,
then there can be multiple files recorded in the content history, all associated with that
package version.

Note

Versioning only matters to content knit with a resource, like EARs and WARs. Other types
of content stored in content sources (like CLI scripts used for alerting) do not track
versions. Content deployed in bundles handles versioning through the bundle definition,
not the content system.

Deploying Applications and Content

50

3.1.4. Authorization to Repositories and Packages

There are a lot of reasons that users need to be able to access content in repositories. The
most common is to manage packages on resources, but there are other reasons, too, like using
the server CLI scripts in a repository to respond to alerts.

JBoss ON provides a way to balance the need for clear and simple access to content with the
need to protect private or sensitive information. JBoss ON defines clear authorization rules for
content repositories.

Every user has the ability to create repositories and to upload packages to them — regardless
of the permissions for that user.

When a repository is created, there are settings which control access to them:

Owner sets write access to a repository. It assigns the repository to belong to a specific
user. If no user is specified, then only users with the manage repositories permission have
the right to access those repositories.

Private sets read (download) access to the repository. It sets whether the repository can be
viewed by anyone or only by the owner and users with the manage repositories permission.
Public repositories are viewable by everyone, regardless of the owner.

Figure 8. Repository Ownership and Access Settings

Repo managers (users with the manage repositories permission) can change the ownership and
privacy settings of a repository. Users without the manage repositories permission can change
the privacy settings but they cannot change the ownership; the repository is always owned by
them or managed by the repo manager.

Note

Be very careful when switching public repositories to private. Any operations which relied
on those repositories, such as running server CLI scripts in response to alerts, will no
longer work if the privileges of the user are insufficient to access the repository.

3. Managing Resource-Level Content Updates

51

JBoss ON uses the repositories access control permission to define users with administrative
access to repositories. Any user with that permission can manage any configured repository,
regardless of who the repository's owner is. Repositories without an owner can only be
managed by users with the repositories permission. Lastly, only users with this permission can
associate a content source with a repository; all other users must add packages to the
repository manually.

3.2. Creating a Content Source

1. In the top menu, click the Administration tab.

2. In the Content menu table on the left, select the Content Sources item.

3. Below the list of current content sources, click the CREATE NEW button.

4. Select the content source type, which defines how the content is delivered from the
source. A content source type can be a remote URL, an HTTP server, a yum repository,
or local disk.

5. When the content source type is selected, a form automatically opens to fill in the basic
details and configuration for the resource. These basic details identify the content
source in the JBoss ON server and are the same for each content source type, while the
configuration is specific to the content source type.

Deploying Applications and Content

52

Give a unique name and optional description for the content source provider.

The schedule sets how frequently the content in the JBoss ON database is updated by
the content source; this uses a standard Quartz Cron Syntax.

The lazy load setting sets whether to download packages only when they are
installed (Yes) or if all packages should be download immediately.

The download mode sets how the content is stored in JBoss ON. The default is
DATABASE, which stores all packages in the JBoss ON database instance. The other
options are to store the packages on a network filesystem or not to store them at all.

6. Fill in the other configuration information for the content source. The required
information varies depending on the content source type. This is going to require some
kind of connection information, such as a URL or directory path, and possibly
authentication information, like a username and password.

3.3. Managing Repositories

A repository is essentially a mapping between the data in a content source and specific
resources in the JBoss ON inventory.

3.3.1. Creating a Repository

1. In the top menu, click the Administration tab.

2. In the Content menu table on the left, select the Repositories item.

3. Below the list of current repositories, click the CREATE NEW button.

3. Managing Resource-Level Content Updates

53

http://www.opensymphony.com/quartz/wikidocs/CronTriggers Tutorial.html

4. Fill in the name and a description. Additionally, set the authorization restrictions for the
repository by setting an owner for the repo and whether it is public or private.

Only users with the repositories permission can set an owner. All repositories created by
users without the repositories permission automatically belong to that user.

5. Click Save.

6. On the Repositories page, click the name of the new repository in the list.

7. Optional. To change the default synchronization schedule, click the Edit button and
enter a new schedule, in a cron format, in the Sync Schedule field.

8. Add content sources to supply content to the repository, as in Section 3.3.2.1,
“Associating Content Sources with a Repository”.

More than one content source can supply content to a repository.

9. Associate resources with the repository, as in Section 3.3.3, “Associating Resources with
the Repository”. A resource can only receive packages from a repository if it is
associated with the repository.

Note

You can search for specific resources or types of resources and subscribe multiple
resources at once.

3.3.2. Linking Content Sources to Repositories

Deploying Applications and Content

54

There are a couple of ways to map the repositories to the right content sources. A repository
can be subscribed to multiple content sources by editing the repository configuration. A
content source can be added to multiple repositories simultaneously by importing the content
source.

3.3.2.1. Associating Content Sources with a Repository

1. In the top menu, click the Administration tab.

2. In the Content menu table on the left, select the Repositories item.

3. On the Repositories page, click the name of the repository in the list.

4. In the Content Sources section of the repository's details page, click the Associate
button to add existing content sources to the repository.

5. Select checkboxes next to the content sources to associate with the repository.

3. Managing Resource-Level Content Updates

55

6. Click the ASSOCIATE SELECTED button.

3.3.2.2. Importing a Content Source into Repositories

If the same content source will be associated with multiple repositories, the content source can
be imported into all of them simultaneously.

1. In the top menu, click the Administration tab.

2. In the Content menu table on the left, select the Repositories item.

3. On the Repositories page, click the IMPORT button.

4. Select the radio button by the name of the content source to import.

5. When the content source is selected, then a list of available repositories for that content
source automatically opens. In the Available repositories.... area, select the
checkbox by the name of each repository to associate with the content source.

6. Click the IMPORT SELECTED button.

Deploying Applications and Content

56

Note

As described in Section 3.1.2, “Where Content Comes From: Providers and Repositories”,
a repository is a user-defined view of a subset of packages stored in the JBoss ON
database. A repository is not a separate container.

When adding a package to one repository through the UI, it may fail with an error
claiming that the package already exists, even if the package isn't in the specified
repository. This is because a package with the same name exists in another repository
and it causes a collision in the database.

It is currently not possible to have the same package in two repositories or to move or
share a package between repositories.

It is possible to work around this issue by using CLI scripts. The JBoss ON CLI scripts store
the username of the person uploading the package in the package version data
automatically. If a person has access to all of the packages one has uploaded, then it is
possible to extrapolate which repository contains the package and then manage the
package there.

3.3.3. Associating Resources with the Repository

Content can only be sent to a resource if that resource is first associated with a repository. A
resource-repository association can be made by editing the resource entry or by editing the
repository entry.

3.3.3.1. Adding Resources to a Repository

1. In the top menu, click the Administration tab.

2. In the Content menu table on the left, select the Repositories item.

3. On the Repositories page, click the name of the repository to edit.

4. In the Resources section, click the SUBSCRIBE button to add resources to the repository.

3. Managing Resource-Level Content Updates

57

5. Select checkboxes next to the resources to associate with the repository. It is possible
to filter the list of resources by name or by type.

6. Click the SUBSCRIBE SELECTED button.

Deploying Applications and Content

58

3.3.3.2. Managing the Repositories for a Resource

A few resource types, like platforms, have content tabs in their configuration which allows them
to control their content subscriptions.

1. Select the resource type in the Resources menu table on the left, and then browse or
search for the resource.

2. Click the Content tab of the resource.

3. Open the Subscriptions subtab.

4. The Available Repositories section has a list of repositories that the resource isn't
subscribed to. Click the checkboxes by all of the repositories to subscribe the resource
to.

5. Click ADD SUBSCRIPTIONS.

The same process can be used to unsubscribe a resource from content repositories.

3.4. Uploading Packages

3. Managing Resource-Level Content Updates

59

Packages can be pulled from a content source, but individual packages can also be uploaded
directly to the JBoss ON server. A variety of package types are supported, including JAR files,
RPMs, basic scripts, JBoss ON CLI scripts, and patches.

1. In the top menu, click the Administration tab.

2. In the Content menu table on the left, select the Repositories item.

3. On the Repositories page, click the name of the repository in the list.

4. Scroll to the bottom of the page, to the Upload Packages section.

5. Click the Upload File button to upload the package.

6. In the pop-up window, click the Add button to browse to the package, then click the
Upload button.

7. Some information about the package is automatically filled in, including the name and a
default UI version number. Set the package type, architecture, and any other necessary
information.

Deploying Applications and Content

60

If a version number is set, then this value is displayed in the UI. If not, then a version
number is calculated, based on the spec version and implementation version in
MANIFEST.MF (for EARs and WARs) or the calculated SHA-256 value for the package
itself. Internally, the package is identified by the SHA value.

SPEC(IMPLMENTATION)[sha256=abcd1234]

Note

For exploded content for EARs and WARs, the calculated SHA-256 version number
is written into the MANIFEST.MF file.

8. Click the CREATE PACKAGE button to finish adding the package to the repository.

3.5. Synchronizing Content Sources or Repositories

The original source of content is external to JBoss ON, and the content packages are pulled into
JBoss ON and stored. Any changes that are made at the original content source need to be
pulled into JBoss ON by synchronizing the two sources.

Likewise, any changes in the content source are carried over to the repository when the source
and repository are synchronized.

3.5.1. Scheduling Synchronization

Synchronization is already scheduled in the content source entry in JBoss ON. This schedule
has the standard cron format.

* * * * * [sync-command]
- - - - -
| | | | |
| | | | +----- Day of Week (0=Sunday ... 6=Saturday)
| | | +------- Month (1 - 12)
| | +--------- Date (1 - 31)
| +----------- Hour (0 - 23)
+------------- Minute (0 - 59)

3. Managing Resource-Level Content Updates

61

For example, to synchronize the source with JBoss ON on Tuesday and Friday at 3am:

0 3 * * 2,5

The Quartz documentation explains the cron syntax in more detail.

To edit the schedule synchronization times for a source:

1. In the top menu, click the Administration tab.

2. In the Content menu table on the left, select either the Content Sources
orRepositories item.

3. Click the name of the item to edit.

4. Reset the cron schedule in the Sync Schedule field.

5. Click Save.

3.5.2. Manually Synchronizing Content Sources or Resources

If a major change happens to the content source, then the changes can be manually sent over
to the JBoss ON server by initiating a synchronization manually.

1. In the top menu, click the Administration tab.

2. In the Content menu table on the left, select the Content Sources or Repositories
item.

3. Click the name of the item to edit.

Deploying Applications and Content

62

http://www.opensymphony.com/quartz/wikidocs/CronTriggers Tutorial.html

4. Click the Synchronize button. All of the synchronization attempts, with the outcome of
the operation, are listed at the bottom of the screen.

Note

You can test the connection to a source or repository by clicking the Test Connection
button. This ensures that the JBoss ON server can connect to the content source before
attempting to pull down the packages.

To synchronize multiple sources, stay on the main content sources or repositories page, select
the checkbox by each of the content sources to synchronize, and click the Sync Selected
button.

3.6. Tracking Content Versions for a Resource

Every time a package is installed on a resource through a repository, the resource shows the
operation. This includes even installation failures. The content package history for a resource is
viewable in the Content tab, under the History subtab.

3. Managing Resource-Level Content Updates

63

Figure 9. Package History for a Resource

The package history shows both the time the operation was initiated and completed and the
user who initiated it. This is valuable for auditing changes, correlating incidents and response,
and tracking resource configuration.

4. Deploying Applications on Application Servers

Applications such as EAR and WAR files that are deployed on an application server are cross
between a child resource (of the application server) and content that is managed in a
repository.

For these content-backed resources, the child resource is created first, by uploading a package
to the JBoss server. After that, they are managed like content, with updated packages added to
a content repo and then applied to the application server.

4.1. Setting Permissions for Agent and Resource Users

The assumption is that the JBoss ON agent and resources like a JBoss server or Tomcat server
run as the same system user. This allows the agent and the application server itself to manage
resource content and configuration simultaneously.

However, if the agent user is different than the resource user, then there can be problems
when one entity makes a configuration change and the other attempts a change later.

For example, when deploying an application, the deployment operation is initiated by the agent
and the content is supplied through the agent, and then the application server completes the
actual deployment. When deleting an application, the application server handles the
undeployment by itself.

Deploying Applications and Content

64

If a WAR file is deployed exploded without a MANIFEST.MF file, the agent creates one when it
writes the SHA-256 value for the package. When the JBoss AS server tries to remove the WAR
application later (and the JBoss AS user is different than the agent user), then the removal fails.
The JBoss AS server cannot delete the MANIFEST.MF file. The agent then rediscovers the
application directory and re-initiates the deployment operation for the removed WAR.

Note

This situation only occurs when the application is exploded and does not contain the
MANIFEST.MF file — meaning, a situation where the agent creates a file within the
deployment directory. Even if the agent and JBoss AS users are different, this situation
does not occur if the application is not exploded or where the agent does not write any
files.

This situation can be avoided. If the agent user and resource user are different, then change
the system settings:

1. Add the agent user and the resource user to the same primary group.

2. Set the umask value for the agent user to give read and write permissions, such as 660.
For example:

vim /home/rhqagent/.bashrc

umask 660

4.2. Deploying EAR and WAR Files

1. Search for the JBoss server instance to which to deploy the EAR or WAR.

2. On the details page for the selected JBoss server instance, open the Inventory tab.

3. In the Create New menu at the bottom, select the item for - Web Application (WAR)
or - Enterprise Application (EAR) , as appropriate.

4. Enter the version number.

4. Deploying Applications on Application Servers

65

This is not used for the resource. The actual version number is calculated based on the
spec version and implementation version in MANIFEST.MF, if any are given, or the
caluclated SHA-256 value for the package itself:

SPEC(IMPLMENTATION)[sha256=abcd1234]

If no version numbers are defined in MANIFEST.MF, then the SHA value is used. The SHA
value is always used to identify the package version internally.

Note

When the EAR or WAR file is exploded after it is deployed, the MANIFEST.MF file is
updated to include the calculated SHA version number. For example:

Manifest-Version: 1.0
Created-By: Apache Maven
RHQ-Sha256: 570f196c4a1025a717269d16d11d6f37
...

For more information on package versioning, see "Deploying Applications and Content".

5. Upload the EAR/WAR file.

Deploying Applications and Content

66

../../html/Deploying_Applications_and_Content/managing-packages.html#pkg-versions

6. Enter the information for the application to be deployed.

Whether the file should be exploded (unzipped) when it is deployed.

The path to the directory to which to deploy the EAR or WAR package. The
destination directory is relative to the JBoss server instance installation directory; this
cannot contain an absolute path or go up a parent directory.

Whether to back up any existing file with the same name in the target directory.

Once the EAR/WAR file is confirmed, the new child resource is listed in the Child History
subtab of the Inventory tab.

4. Deploying Applications on Application Servers

67

Figure 10. WAR Child Resource

4.3. Updating Applications

After the EAR or WAR resource is created, changes are treated like updated content packages.
Updating the EAR/WAR resource is the same as uploading and applying new packages to that
EAR/WAR resource entry.

1. Browse to the EAR or WAR resource in the JBoss ON UI.

2. In the EAR or WAR resource details page, open the Content tab, and click the New
subtab.

Deploying Applications and Content

68

3. Click the UPLOAD NEW PACKAGE button.

4. Click the UPLOAD FILE button.

5. In the pop-up window, click the Add button, and browse the local filesystem to the
updated WAR or EAR file to be uploaded.

4. Deploying Applications on Application Servers

69

6. Click the UPLOAD button to load the file and dismiss the window.

7. In the main form, select the repository where the WAR or EAR file package should be
stored. If one exists, select an existing repository or a subscribed repository for the
resource. Otherwise, create a new repository.

8. Optionally, set the version number for the EAR/WAR package.

If this is set, then this value is displayed in the UI. If not, then a version number is
calculated, based on the spec version and implementation version in MANIFEST.MF, if
any are given, or the calculated SHA-256 value for the package itself. Internally, the
package is identified by the SHA value.

SPEC(IMPLMENTATION)[sha256=abcd1234]

For more information on package versioning, see "Deploying Applications and Content".

9. Confirm the details for the new package, then click CONTINUE.

Deploying Applications and Content

70

../../html/Deploying_Applications_and_Content/managing-packages.html#pkg-versions

When the package is successfully uploaded, the UI redirects to the history page on the Content
tab.

4. Deploying Applications on Application Servers

71

Figure 11. Deployment History for a Resource

4.4. Deleting an Application

Deleting an EAR/WAR application is the same as deleting the currently deployed package
associated with that EAR/WAR resource entry.

1. Browse to the EAR or WAR resource in the JBoss ON UI.

2. In the EAR or WAR resource details page, open the Content tab, and click the Deployed
subtab.

3. Select the checkbox by the EAR/WAR package, and click the DELETE SELECTED button.

Deploying Applications and Content

72

5. Document Information

This guide is part of the overall set of guides for users and administrators of JBoss ON. Our goal
is clarity, completeness, and ease of use.

5.1. Document History

Revision 3.0.1-5 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

Revision 3.0.1-0 March 18, 2012 Ella Deon Lackey
Updates for JBoss Operations Network 3.0.1.

Revision 3.0-1 January 26, 2012 Ella Deon Lackey
Edits to the bundle section based on feedback from John Mazzitelli, Jay Shaughnessy, Charles
Crouch, and other SME's.

Revision 3.0-0 December 7, 2011 Ella Deon Lackey
Initial release of JBoss ON 3.0.

Index

A
access controls

- to repositories, Authorization to Repositories and Packages

Ant
- recipe example, Breakdown of an Ant Recipe
- recipes, Creating Ant Recipes
- upgrading bundles, Upgrading Ant Bundles

authorization
- to repositories, Authorization to Repositories and Packages

B

5. Document Information

73

bundles
- and the CLI, Managing and Deploying Bundles with the JBoss ON CLI
- Ant, Creating Ant Recipes
- Ant recipe, Breakdown of an Ant Recipe
- creating, Creating Ant Bundles
- creating associated archive files, Creating an Associated Archive File
- deleting a bundle from a resource, Purging a Bundle from a Resource
- deleting from the server, Deleting a Bundle from the JBoss ON Server
- deploying to a clean destination, Deploying a Bundle to a Clean Destination
- deploying to a resource, Deploying Bundles to a Resource
- destinations, Destinations (and Bundle Deployments)
- reverting deployed bundles, Reverting a Deployed Bundle
- template configuration, Using Templatized Configuration Files
- testing deployment, Testing Bundle Packages
- upgrading, Upgrading Ant Bundles
- uploading, Uploading Bundles to JBoss ON
- viewing deployment history, Viewing the Bundle Deployment History

C
CLI, Managing and Deploying Bundles with the JBoss ON CLI
content, Summary: Using JBoss ON to Deploy Applications and Update Content

- authorization, Authorization to Repositories and Packages
- packages, About Content
- providers, About Content
- resources, About Content

content sources
- associating with repositories, Associating Content Sources with a Repository
- creating, Creating a Content Source
- importing, Linking Content Sources to Repositories
- importing multiple content sources into multiple repositories, Importing a
Content Source into Repositories
- manually synchronizing, Manually Synchronizing Content Sources or Resources
- scheduling synchronization, Scheduling Synchronization
- synchronization, Synchronizing Content Sources or Repositories

D
deployment

- bundles on resources, Deploying Bundles to a Resource
- bundles to clean destinations, Deploying a Bundle to a Clean Destination
- testing bundles, Testing Bundle Packages
- view bundle history, Viewing the Bundle Deployment History

I
importing

- content sources, Linking Content Sources to Repositories
- content sources into multiple repositories, Importing a Content Source into
Repositories

P
packages

- authorization, Authorization to Repositories and Packages

R

Deploying Applications and Content

74

recipes
- Ant, Creating Ant Recipes

repositories
- associating with content sources, Associating Content Sources with a Repository
- associating with resources, Associating Resources with the Repository
- authorization, Authorization to Repositories and Packages
- creating, Creating a Repository
- importing content sources into multiple repositories, Importing a Content Source
into Repositories
- managing, Managing Repositories
- managing content, About Content
- managing repositories on resources, Managing the Repositories for a Resource
- synchronizing and content sources, Synchronizing Content Sources or
Repositories

resources
- and managing repositories, Managing the Repositories for a Resource
- associating with repositories, Associating Resources with the Repository
- child

- EAR and WAR, Deploying EAR and WAR Files

- child types, Deploying Applications on Application Servers
- packages, About Content

S
synchronization

- content sources, Synchronizing Content Sources or Repositories
- repositories and content sources, Synchronizing Content Sources or Repositories
- scheduling and content sources, Scheduling Synchronization

5. Document Information

75

	Table of Contents
	1. Summary: Using JBoss ON to Deploy Applications and Update Content
	2. Provisioning Applications and Content
	2.1. An Introduction to Provisioning Content Bundles
	2.1.1. Bundles: Content and Recipes
	2.1.2. Destinations (and Bundle Deployments)
	2.1.3. File Handling During Provisioning
	2.1.4. Requirements and Resource Types
	2.1.5. Additional Ant References

	2.2. Extended Example: Provisioning Applications to a JBoss EAP Server (Planning)
	2.3. Creating Ant Bundles
	2.3.1. Using Templatized Configuration Files
	2.3.2. Creating Ant Recipes
	2.3.2.1. Breakdown of an Ant Recipe
	2.3.2.2. Saving Files During Provisioning
	2.3.2.3. Using Ant Tasks
	2.3.2.4. A Reference of JBoss ON Ant Recipe Elements

	2.3.3. Creating an Associated Archive File
	2.3.4. Testing Bundle Packages
	2.3.4.1. Installing the Bundle Deployer Tool
	2.3.4.2. Using the Bundle Deployer Tool

	2.4. Provisioning Bundles
	2.4.1. Uploading Bundles to JBoss ON
	2.4.2. Deploying Bundles to a Resource
	2.4.3. Viewing the Bundle Deployment History
	2.4.4. Reverting a Deployed Bundle
	2.4.5. Deploying a Bundle to a Clean Destination
	2.4.6. Purging a Bundle from a Resource
	2.4.7. Upgrading Ant Bundles
	2.4.8. Deleting a Bundle from the JBoss ON Server

	2.5. Bundles and JBoss ON Servers and Agents
	2.5.1. Resource Support and the Agent Resource Plug-in
	2.5.2. Server-Side and Agent Plug-ins for Recipe Types

	2.6. Managing and Deploying Bundles with the JBoss ON CLI

	3. Managing Resource-Level Content Updates
	3.1. About Content
	3.1.1. What Content Is: Packages
	3.1.2. Where Content Comes From: Providers and Repositories
	3.1.3. Package Versions and History
	3.1.4. Authorization to Repositories and Packages

	3.2. Creating a Content Source
	3.3. Managing Repositories
	3.3.1. Creating a Repository
	3.3.2. Linking Content Sources to Repositories
	3.3.2.1. Associating Content Sources with a Repository
	3.3.2.2. Importing a Content Source into Repositories

	3.3.3. Associating Resources with the Repository
	3.3.3.1. Adding Resources to a Repository
	3.3.3.2. Managing the Repositories for a Resource

	3.4. Uploading Packages
	3.5. Synchronizing Content Sources or Repositories
	3.5.1. Scheduling Synchronization
	3.5.2. Manually Synchronizing Content Sources or Resources

	3.6. Tracking Content Versions for a Resource

	4. Deploying Applications on Application Servers
	4.1. Setting Permissions for Agent and Resource Users
	4.2. Deploying EAR and WAR Files
	4.3. Updating Applications
	4.4. Deleting an Application

	5. Document Information
	5.1. Document History

	Index

