
Red Hat JBoss Fuse 6.3

Tooling Tutorials

Tooling Tutorials

Last Updated: 2018-01-30

Red Hat JBoss Fuse 6.3 Tooling Tutorials

Tooling Tutorials

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide contains a number of simple tutorials that demonstrate how to use the tooling provided
by Red Hat JBoss Fuse Tooling to develop and test applications.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. USING THE FUSE TOOLING RESOURCE FILES
PREREQUISITES
DOWNLOADING THE RESOURCE FILES
INSTALLING THE PREFABRICATED ROUTING CONTEXT FILES

CHAPTER 2. TO CREATE A NEW ROUTE
GOALS
PREREQUISITES
CREATING THE FUSE INTEGRATION PROJECT
CREATING THE ROUTE
CREATING TEST MESSAGES
NEXT STEPS
FURTHER READING

CHAPTER 3. TO RUN A ROUTE
GOALS
PREREQUISITES
RUNNING THE ROUTE
VERIFYING THE ROUTE
FURTHER READING

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER
GOALS
PREREQUISITES
ADDING AND CONFIGURING A CONTENT-BASED ROUTER
ADDING AND CONFIGURING LOGGING
ADDING AND CONFIGURING MESSAGE HEADERS
ADDING AND CONFIGURING AN OTHERWISE BRANCH
NEXT STEPS
FURTHER READING

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT
GOALS
PREREQUISITES
RECONFIGURING THE EXISTING ROUTE FOR DIRECT CONNECTION
ADDING THE SECOND ROUTE
BUILDING AND CONFIGURING THE USA BRANCH OF THE SECOND ROUTE
BUILDING AND CONFIGURING THE GREAT BRITAIN BRANCH OF THE SECOND ROUTE
BUILDING AND CONFIGURING THE GERMANY BRANCH OF THE SECOND ROUTE
BUILDING AND CONFIGURING THE FRANCE BRANCH OF THE SECOND ROUTE
FINISHING UP
NEXT STEPS
FURTHER READING

CHAPTER 6. TO DEBUG A ROUTING CONTEXT
GOALS
PREREQUISITES
SETTING BREAKPOINTS
STEPPING THROUGH THE CBRROUTE ROUTING CONTEXT
CHANGING THE VALUE OF A VARIABLE
NEXT STEPS

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

4
4
4
4

6
6
6
7

12
16
19
19

20
20
20
20
21
22

23
23
23
23
25
27
30
36
37

38
38
38
38
39
40
47
51
55
58
60
61

62
62
62
62
64
69
76

77

Table of Contents

1

. .

. .

GOALS
PREREQUISITES
ACCESSING FUSE INTEGRATION PERSPECTIVE
STARTING MESSAGE TRACING
DROPPING MESSAGES ON THE RUNNING CBRROUTE PROJECT
INITIALIZING AND CONFIGURING MESSAGES VIEW
ARRANGING DIAGRAM VIEW
STEPPING THROUGH MESSAGE TRACES
FINISHING UP
NEXT STEPS

CHAPTER 8. TO TEST A ROUTE WITH JUNIT
OVERVIEW
GOALS
PREREQUISITES
CREATING THE SRC/TEST FOLDER
CREATING THE JUNIT TEST CASE
MODIFYING THE BLUEPRINTXMLTEST FILE
MODIFYING THE POM.XML FILE
RUNNING THE JUNIT TEST
FURTHER READING

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO JBOSS FUSE
GOALS
PREREQUISITES
DEFINING A RED HAT JBOSS FUSE SERVER
CONFIGURING THE PUBLISHING OPTIONS
STARTING THE RED HAT JBOSS FUSE SERVER
CONNECTING TO THE JBOSS FUSE 6.3 RUNTIME SERVER
UNINSTALLING THE CBRROUTE PROJECT

77
77
77
80
82
83
85
85
86
87

89
89
89
89
90
92
95
99

103
104

105
105
105
105
109
110
114
115

Red Hat JBoss Fuse 6.3 Tooling Tutorials

2

Table of Contents

3

CHAPTER 1. USING THE FUSE TOOLING RESOURCE FILES
Experienced users may want to focus only on the tutorials that demonstrate the tooling’s new
features. To do so, you need to download and install the requisite resource files. The prefabricated
message files are used by all tutorials, but the prefabricated routing context files are specific to
particular tutorials. With the exception of Chapter 2, To Create a New Route, using these prefabricated
resource files enables you to complete the remaining tutorials in any order. Without them, you must
complete each tutorial sequentially, as the code generated by one tutorial is the starting point for the
next tutorial.

PREREQUISITES

You must complete Chapter 2, To Create a New Route, to create the project, the new routing context,
and the folder that will hold the test messages. The code generated by this tutorial is used by
Chapter 3, To Run a Route and by Chapter 4, To Add a Content-Based Router.

DOWNLOADING THE RESOURCE FILES

Click here to download the jbds-10.1.zip file. Move it to a convenient location external to the
CBRroute project’s workspace, and unzip it. It contains two folders:

Messages

This folder contains six prefabricated message files named message1.xml, message2.xml,… ​,
message6.xml used in all of the tutorials. In Chapter 2, To Create a New Route, you will create
the directory in which to store these message files, and also learn how to create them.

blueprintContexts

This folder contains two prefabricated routing context files named blueprint5.xml, and
blueprint6.xml, which can be used in one or more of the tutorials:

Use prefabricated routing context file: To complete tutorials:

blueprint5.xml To Add Another Route to the CBR Routing
Context

blueprint6.xml To Debug a Routing Context

To Trace a Message Through a Route

To Test a Route with JUnit

To Publish a Fuse Project to Red Hat JBoss
Fuse

NOTE

blueprint5.xml is the routing context file generated by completing
Chapter 4, To Add a Content-Based Router.

INSTALLING THE PREFABRICATED ROUTING CONTEXT FILES

To install the blueprint#.xml files:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

4

https://github.com/FuseByExample/fuse-tooling-tutorials/archive/jbds-10.1.zip

1. Delete the existing blueprint.xml file from the CBRroute/src/main/resources/OSGI-
INF/blueprint/ folder.

2. Copy the blueprint#.xml file that corresponds to the tutorial that you want to complete to
the vacated CBRroute/src/main/resources/OSGI-INF/blueprint/ folder.

3. Rename the blueprint#.xml file blueprint.xml.

4. Follow the instructions for completing the target tutorial.

CHAPTER 1. USING THE FUSE TOOLING RESOURCE FILES

5

CHAPTER 2. TO CREATE A NEW ROUTE
This tutorial walks you through the process of creating a Fuse Integration project, adding a route to it,
and adding two endpoints to the route. It assumes that you have already set up your workspace and
that Red Hat JBoss Fuse Tooling is running inside Red Hat JBoss Developer Studio.

GOALS

In this tutorial you will:

Create a Fuse Integration project

Create a new routing context

Create a route

Add file endpoints to the route

Connect the endpoints

Configure the endpoints

Create a folder in your project to store test messages that you create for your route

Create the test messages

PREREQUISITES

JBoss Developer Studio 11.2 installed

Red Hat JBoss Fuse Tooling 10.2 installed in JBoss Developer Studio 11.2

In Developer Studio, select menu:Window[> > Preferences > > Fuse Tooling > > Editor >] and
confirm selection of this option: If enabled the ID values will be used for labels if existing .
This ensures that the label of the patterns and components that you place on the canvas will
be the same as the labels shown in these tutorials.

When you start Developer Studio for the first time, it opens in the JBoss perspective:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

6

NOTE

You can start this tutorial in the JBoss perspective or in the Fuse Integration
perspective. If you start it in the JBoss perspective, the tooling will ask to switch you to
the Fuse Integration perspective at the appropriate point in the tutorial.

CREATING THE FUSE INTEGRATION PROJECT

To create a Fuse Integration project:

1. From the menu bar, select menu:File[> > New > > Other > > JBoss Fuse > > Fuse Integration
Project >] and click Next to open the New Fuse Integration Project wizard:

CHAPTER 2. TO CREATE A NEW ROUTE

7

2. In the Project Name field, enter CBRroute.

3. Leave the Use default workspace location option as is.

4. Click Next to open the Select a Target Runtime page:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

8

5. Accept No Runtime selected for Target Runtime , and 2.18.1.redhat-000015 for Camel
Version.

NOTE

You will add the runtime later in the tutorial Chapter 9, To Publish a Fuse Project
to JBoss Fuse.

6. Click Next to open the Advanced Project Setup page:

CHAPTER 2. TO CREATE A NEW ROUTE

9

7. Leave the Start with an empty project and Blueprint DSL options selected.

8. Click Finish.
Fuse Tooling starts downloading from the Maven repository all of the files it needs to build the
project, and then adds the new project to Project Explorer.

If you are not in the Fuse Integration perspective, the tooling asks whether you want to switch
to it now:

9. Click Yes to open the new CBRroute project in the Fuse Integration perspective:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

10

The new CBRroute project contains everything needed to create and run routes. As shown in
Figure 2.1, “Generated project files” , the files generated for CBRroute include:

CBRroute/pom.xml (Maven project file)

CBRroute/src/main/resources/OSGI-INF/blueprint/blueprint.xml (Blueprint
XML file containing the routing rules)

Figure 2.1. Generated project files

CHAPTER 2. TO CREATE A NEW ROUTE

11

NOTE

Notice that the pom.xml entry in Project Explorer is decorated wth a
warning symbol.

You can safely ignore this warning or eliminate it by opening the pom.xml
file in the tooling’s XML editor, and delete the <version> element from
each dependency: camel-core, camel-blueprint, and camel-test-
blueprint. Save the pom.xml file.

CREATING THE ROUTE

To create the route:

1. Click the Design tab at the bottom, left of the canvas to return to the graphic display of the
route.

2. Drag a File component () from the Palette's Components drawer to the canvas, and
drop it in the Route_route1 container node.
The File component changes to a From _from1 node inside the Route_route1 container
node.

3. On the canvas, select the From _from1 node.
The Properties view, located below the canvas, displays the node’s property fields for editing.

4. In the Properties view, click the Advanced tab:

You need to create a folder for the project’s source data and enter that folder’s name in the
Directory Name field.

a. In Project Explorer, right-click CBRroute/src/ to open the context menu.

b. Select menu:[> New > > Folder >] to open the New Folder wizard:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

12

c. Check that CBRroute/src appears in the Enter or select the parent folder field.
Otherwise enter it manually, or select it from the graphical representation of the project’s
hierarchy.

d. In the Folder name field, enter data, and then click Finish.
The new data folder appears in Project Explorer, under the src folder:

5. In the Properties view, return to the From _from1 node’s Advanced tab.

6. In the Directory Name field, enter src/data:

CHAPTER 2. TO CREATE A NEW ROUTE

13

The path src/data is relative to the project’s directory.

7. On the Consumer tab, enable the Noop option by clicking its check box.
The Noop option prevents the message#.xml files being deleted from the src/data folder,
and it enables idempotency to ensure that each message#.xml file is consumed only once.

8. Select the Details tab to open the file node’s Details page.
The tooling automatically populates the Uri field with the Directory Name and Noop
properties you configured on the Advanced tab. It also populates the Id field with an
autogenerated ID (_from1):

9. Leave the autogenerated Id as is.

10. Drag another File component from the Palette's Components drawer and drop it in the
Route_route1 container node.
The File component changes to a To _to1 node inside the Route_route1 container node.

11. On the canvas, select the To _to1 node.
The Properties view, located below the canvas, displays the node’s property fields for editing.

12. On the Details tab, enter file:target/messages/others in the Uri field, and _Others in
the Id field:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

14

NOTE

The tooling will create the target/messages/others folder at runtime.

13. In the Route_route1 container, select the From _from1 node and drag it’s connector arrow (

) over the To_Others node, then release it:

NOTE

The two file nodes are connected and aligned on the canvas according to the
route editor’s layout direction preference setting. The choices are Right and
Down (default).

NOTE

If you do not connect the nodes before you close the project, the tooling
automatically connects them when you reopen it.

14. Select File → Save to save the route.

15. Click the Source tab at bottom, left of the canvas to display the XML for the route. The
camelContext element will look like Example 2.1, “XML for CBRroute”:

Example 2.1. XML for CBRroute

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <camelContext id="_context1"
xmlns="http://camel.apache.org/schema/blueprint">
 <route id="_route1">
 <from id="_from1" uri="file:src/data?noop=true"/>
 <to id="_Others" uri="file:target/messages/others"/>
 </route>
 </camelContext>
</blueprint>

CHAPTER 2. TO CREATE A NEW ROUTE

15

CREATING TEST MESSAGES

Before you can run your route, you need to create test messages to send through it.

1. In Project Explorer, right-click CBRroute to open the context menu.

2. Click menu:New[> > Fuse Message >] to open the New File wizard:

3. Check that CBRroute/src/data appears in the Enter or select the parent folder field.
Otherwise enter it manually, or select it from the graphical representation of the project’s
hierarchy.

4. In the File Name: field, enter message1.xml.

5. Click Finish to open the test message, message1.xml in the Design tab:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

16

6. Click the Source tab at the bottom of the canvas:

CHAPTER 2. TO CREATE A NEW ROUTE

17

7. In the Source tab, enter this text:

<?xml version="1.0" encoding="UTF-8"?>

<order>
 <customer>
 <name>Brooklyn Zoo</name>
 <city>Brooklyn</city>
 <country>USA</country>
 </customer>
 <orderline>
 <animal>wombat</animal>
 <quantity>15</quantity>
 <maxAllowed>25</maxAllowed>
 </orderline>
</order>

NOTE

You can safely ignore the on the last line of the newly created
message1.xml file, which advises you that there are no grammar constraints
(DTD or XML Schema) referenced by the document.

8. Save the file, and close it.

9. If you haven’t already done so, download the prefabricated test message files (see Chapter 1,

Red Hat JBoss Fuse 6.3 Tooling Tutorials

18

Using the Fuse Tooling Resource Files for instructions). Copy message2.xml through
message6.xml into the newly created CBRroute/src/data folder. You will use all six test
messages in the remaining Fuse Tooling tutorials.
Table 2.1, “Preconstructed test messages” shows the contents of each remaining prefabricated
message file.

Table 2.1. Preconstructed test messages

msg# <name> <city> <country> <animal> <quantity
>

<maxAllo
wed>

2 San Diego
Zoo

San Diego USA giraffe 3 2

3 London
Zoo

London Great
Britain

penguin 12 20

4 Bristol Zoo Bristol Great
Britain

emu 5 4

5 Paris Zoo Paris France giraffe 2 2

6 Hellabrunn
Gardens

Munich Germany penguin 18 20

NEXT STEPS

After you have created and designed your route, you can run it by deploying it into your local Apache
Camel runtime, as described in Chapter 3, To Run a Route.

FURTHER READING

To learn more about using the editor, see the Editing a routing context in the route editor section in
"Tooling User Guide".

CHAPTER 2. TO CREATE A NEW ROUTE

19

https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.3/single/tooling_user_guide/index#RiderEditRoute

CHAPTER 3. TO RUN A ROUTE
This tutorial walks you through the process of running a route.

GOALS

In this tutorial you will:

Run a route as a Local Camel Context (without tests)

Send messages through the route

Examine the messages received by the endpoints

PREREQUISITES

To complete this tutorial you will need the CBRroute project created in Chapter 2, To Create a New
Route.

RUNNING THE ROUTE

To run the route:

1. Open the CBRroute project you created in the section called “Creating the Fuse Integration
project”.

2. In Project Explorer, select CBRroute/Camel Contexts/src/main/resources/OSGi-
INF/blueprint/blueprint.xml :

3. Right-click it to open the context menu, then select menu:Run As[> > Local Camel Context
(without tests) >].

Red Hat JBoss Fuse 6.3 Tooling Tutorials

20

NOTE

If you select Local Camel Context instead, the tooling automatically tries to run
the routing context against a supplied JUnit test. Because one does not exist,
the tooling reverts to running the routing context without tests. In the
Chapter 8, To Test a Route with JUnit tutorial, you will create a JUnit test case
and modify it specifically for testing the CBRroute project.

The Console panel opens to display log messages that reflect the progress of the project’s
execution. At the beginning, Maven downloads the resources necessary to update the local
Maven repository, which may take a few minutes.

Messages similar to the following at the end of the output indicate that the route executed
successfully:

...
[Blueprint Extender: 3] BlueprintCamelContext INFO Route: _route1
started and consuming from:Endpoint[file://src/data?noop=true]
[Blueprint Extender: 3] BlueprintCamelContext INFO Total 1 routes,
of which 1 are started.
[Blueprint Extender: 1] BlueprintCamelContext INFO Apache Camel
2.18.0.redhat-000015 (CamelContext: ...) started in 0.163 seconds
[Blueprint Extender: 3] BlueprintCamelContext INFO Apache Camel
2.18.0.redhat-000015 (CamelContext: ...) started in 0.918 seconds

4. To shutdown the route, click located at the top, right of the Console panel.

VERIFYING THE ROUTE

To verify that the route executed properly:

1. In Project Explorer, select CBRroute.

2. Right-click it to open the context menu, then select Refresh.

3. In Project Explorer, locate the folder target/messages/ and expand it:

4. Verify that the target/messages/others folder contains the six message files,
message1.xml through message6.xml.

CHAPTER 3. TO RUN A ROUTE

21

5. Double-click message1.xml to open it in the route editor’s Design tab, then select the
Source tab at the bottom, left of the canvas to see the XML code.
Its contents should match that shown in Example 3.1, “Contents of message1.xml” .

Example 3.1. Contents of message1.xml

<?xml version="1.0" encoding="UTF-8"?>

<order>
 <customer>
 <name>Brooklyn Zoo</name>
 <city>Brooklyn</city>
 <country>USA</country>
 </customer>
 <orderline>
 <animal>wombat</animal>
 <quantity>15</quantity>
 <maxAllowed>25</maxAllowed>
 </orderline>
</order>

FURTHER READING

To learn more about:

Configuring runtime profiles, see see the Editing a routing context in the route editor section
in "Tooling User Guide".

Deploying Apache Camel applications see Developing and Deploying Applications.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

22

https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.3/single/tooling_user_guide/index#RiderEditRoute
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.3/html/developing_and_deploying_applications/index

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER
This tutorial shows how to add a content-based router with logging to a route.

GOALS

In this tutorial you will:

Add a content-based router to your route

Configure the content-based router

Add a log endpoint to each output branch of the content-based router

Add a Set Header EIP after each log endpoint

Add an Otherwise branch to the content-based router

PREREQUISITES

To complete this tutorial you will need the CBRroute project you created in Chapter 2, To Create a New
Route.

ADDING AND CONFIGURING A CONTENT-BASED ROUTER

To add and configure a content-based router for your route:

1. In Project Explorer, double-click CBRroute/src/main/resources/OSGI-
INF/blueprint/blueprint.xml to open your CBRroute project.

2. On the canvas, select the To_Others node and then select the trash can above and to the
right to delete it.

3. In the Palette, open the Routing drawer and drag a Choice () pattern to the canvas and
drop it in the Route_route1 container.
The Route_route1 container expands to accommodate the Choice_choice1 node.

4. In the Route_route1 container, select the From_from1 node and drag its connector arrow
over the Choice_choice1 node, then release it:

5. In the Properties view, _choice1 appears in the Id field:

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

23

Leave the Id field as is.

6. From the Routing drawer, drag a When () pattern to the canvas and drop it on the
Choice_choice1 node:

The Choice_choice1 container expands to accommodate the When_when1 node. The
decorating the When_when1 node indicates that one or more required property values must be
set.

NOTE

The tooling prevents you from dropping a pattern at an invalid drop point in a
Route container.

7. On the canvas, select the When_when1 node, to open its properties in the Properties view:

8. Click the button in the Language field to open the list of available languages, and select
xpath:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

24

NOTE

Once you select the expression Language, the Properties view displays its
properties in an indented list directly below the Language field. The Id property
in this list sets the ID of the expression. The Id property following the
Description field sets the ID of the When node.

9. In the Expression field, enter /order/orderline/quantity/text() >
/order/orderline/maxAllowed/text().
This expression determines which messages will transit this path in the route.

10. Leave each of the remaining properties as is.
Enabling Trim removes any leading or trailing white spaces and line breaks from the message.

11. On the menu bar, click File → Save to save the routing context file.

12. Click the Source tab to view the XML for the route:

ADDING AND CONFIGURING LOGGING

To add logging to your route:

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

25

1. In the Palette, open the Components drawer and select a Log () component.

2. Drag the Log component to the canvas and drop it on the When_when1 node:

The When_when1 container expands to accommodate the Log_log1 node.

3. On the canvas, select the Log_log1 node to open its properties in the Properties view.

4. In the Message field, enter quantity requested exceeds the maximum allowed -
contact customer:

5. Leave each of the remaining properties as is.

NOTE

In the Fuse Integration perspective’s Messages view, the tooling inserts the
contents of the log node’s Id field in the Trace Node Id column for message
instances, when tracing is enabled on the route (see Chapter 7, To Trace a
Message Through a Route). In the Console, it adds the contents of the log node’s
Message field to the log data whenever the route runs.

6. On the menu bar, click File → Save to save the routing context file.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

26

ADDING AND CONFIGURING MESSAGE HEADERS

To add and configure message headers:

1. In the Palette, open the Transformation drawer and select a Set Header () pattern.

2. Drag the Set Header pattern to the canvas and drop it in the When_when1 container.
The When_when1 container expands to accommodate the SetHeader_setHeader1 node.

3. On the canvas, select the Log_log1 node and drag its connector arrow over the
SetHeader_setHeader1 node, and then release it:

4. On the canvas, select the SetHeader_setHeader1 node to open its properties in the
Properties view:

5. Click the button in the Language field to open the list of available languages, and select
constant:

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

27

6. In the Expression field, enter InvalidOrders.

7. In the Header Name field, enter Destination.

8. Leave each of the remaining properties as is.

9. In the Palette, open the Components drawer and select the File () component.

10. Drag the File component to the canvas and drop it in the When_when1 container.
The When_when1 container expands to accommodate the To_to1 node.

11. On the canvas, select the SetHeader_setHeader1 node and drag its connector arrow over
the To_to1 node, and then release it:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

28

12. On the canvas, select the To_to1 node to open its properties in the Properties view:

13. On the Details tab, replace directoryName with target/messages/invalidOrders in the
Uri field, and enter _Invalid in the Id field:

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

29

14. On the menu bar, click File → Save to save the routing context file.

15. Click the Source tab to view the XML for the route:

ADDING AND CONFIGURING AN OTHERWISE BRANCH

To add and configure the otherwise branch of your route:

1. In the Palette, open the Routing drawer and select the Otherwise () pattern.

2. Drag the Otherwise pattern to the canvas and drop it into the Choice_choice1 container:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

30

The Choice_choice1 container expands to accommodate the Otherwise_otherwise1
node.

3. On the canvas, select the Otherwise_otherwise1 node to open its properties in the
Properties.

4. In the Id field, enter _else2:

NOTE

The else2 node will eventually route to the terminal file: node
(file:target/messages/validOrders) any message that does not match
the XPath expression set for the When_when1 node.

5. In the Palette, open the Components drawer and select the Log () component.

6. Drag the Log component to the canvas and drop it on the Otherwise_else2 node:

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

31

The Otherwise-else2 container expands to accommodate the Log_log2 node.

7. On the canvas, select the Log_log2 node to open its properties in the Properties view.

8. In the Message field, enter valid order - process:

Leave each of the remaining properties as is.

9. In the Palette, open the Transformation drawer and select the Set Header pattern.

10. Drag the Set Header pattern to the canvas and drop it into the Otherwise_else2 container.
The Otherwise_else2 container expands to accommodate the SetHeader_setHeader2
node.

11. On the canvas, select the Log_log2 node and drag its connector arrow over the
SetHeader_setHeader2 node, and then release it:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

32

NOTE

You can collapse containers to free up space when the diagram becomes
congested. To do so, select the container you want to collapse, and then click its

 button:

To reopen the container, select it and then click its button:

Collapsing and expanding containers in the Design tab does not affect the
routing context file. It remains unchanged.

12. On the canvas, select the SetHeader_setHeader2 node to open its properties in the
Properties view.

13. Click the button in the Language field to open the list of available languages, and select
constant:

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

33

14. In the Expression field, enter Dispatcher.

15. In the Header Name field, enter Destination.

16. Leave each of the remaining properties as is.

17. In the Palette, open the Components drawer and select the File () component.

18. Drag the File component to the canvas and drop it into the Otherwise_else2 container.
The Otherwise_else2 container expands to accommodate the To_to1 node.

19. On the canvas, select the SetHeader_setHeader2 node, and drag its connector arrow over
the To_to1 node and then release it:

20. On the canvas, select the To_to1 node to open its properties in the Properties view.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

34

21. In the URI field, replace directoryName with target/messages/validOrders, and in the Id
field, enter _Valid:

22. On the menu bar, click File → Save to save the routing context file.
This is the completed content-based router with logs and message headers:

23. Click the Source tab at the bottom, left of the canvas to display the XML for the route.
The camelContext element will look like that shown in Example 4.1, “XML for content-based
router”.

Example 4.1. XML for content-based router

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

35

 <camelContext id="_context1"
xmlns="http://camel.apache.org/schema/blueprint">
 <route id="_route1">
 <from id="_from1" uri="file:src/data?noop=true"/>
 <choice id="_choice1">
 <when id="_when1">
 <xpath>order/orderline/quantity/text() >
/order/orderline/maxAllowed/text()</xpath>
 <log id="_log1" message="quantity requested exceeds
the maximum allowed - contact customer"/>
 <setHeader headerName="Destination"
id="_setHeader1">
 <constant>InvalidOrders</constant>
 </setHeader>
 <to id="_Invalid"
uri="file:target/messages/invalidOrders"/>
 </when>
 <otherwise id="_else2">
 <log id="_log2" message="valid order - process"/>
 <setHeader headerName="Destination"
id="_setHeader2">
 <constant>Dispatcher</constant>
 </setHeader>
 <to id="_Valid"
uri="file:target/messages/validOrders"/>
 </otherwise>
 </choice>
 </route>
 </camelContext>
</blueprint>

NEXT STEPS

You can run the new route as described in the section called “Running the route” .

After you run it, you can easily verify whether the route executed properly by checking the target
destinations in Project Explorer:

1. Select CBRroute.

2. Right-click it to open the context menu, then select Refresh.

3. Under the project root node (CBRroute), locate the folder target/messages/ and expand it.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

36

4. Check that the target/messages/invalidOrders folder contains message2.xml and
message4.xml.
In these messages, the value of the quantity element should exceed the value of the
maxAllowed element.

5. Check that the target/messages/validOrders folder contains the four message files that
contain valid orders: message1.xml, message3.xml , message5.xml and message6.xml.
In these messages, the value of the quantity element should be less than or equal to the
value of the maxAllowed element.

NOTE

To view message content, double-click each message to open it in the route
editor’s XML editor.

FURTHER READING

To learn more about message enrichment see:

Red Hat JBoss Fuse: Apache Camel Development Guide

Red Hat JBoss Fuse 6.3 documentation

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

37

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Apache_Camel_Development_Guide/index.html
https://access.redhat.com/documentation/en/red-hat-jboss-fuse/

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING
CONTEXT

This tutorial shows you how to add a second route to the blueprint.xml file in the CBRroute
project. The second route:

Takes messages directly from the terminal end of the first route’s otherwise branch

Sorts the messages according to customers' country

Sends each message to the corresponding country folder in the
CBRroute/target/messages folder.

GOALS

In this tutorial you will:

Reconfigure the existing route for direct connection to a second route

Add a second route to your <camelContext>

Configure the new route to take messages directly from the otherwise branch of the first
route

Add a content-based router to the new route

Add and configure a message header, logging, and target destination to each output branch of
the new route’s content-based router

PREREQUISITES

To complete this tutorial you will need the CBRroute project you modified in Chapter 4, To Add a
Content-Based Router.

NOTE

If you skipped any tutorial after Chapter 2, To Create a New Route, you can use the
prefabricated blueprint5.xml file to work through this tutorial (for details, see
Chapter 1, Using the Fuse Tooling Resource Files).

RECONFIGURING THE EXISTING ROUTE FOR DIRECT CONNECTION

To configure the existing route for direct connection with the new route:

1. Open your CBRroute/src/main/resources/OSGI-INF/blueprint/blueprint.xml in
the route editor.

2. On the canvas, select the Route_route1 container to open its properties in the Properties
view.

3. Scroll down to the Shutdown Route property and enter Default.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

38

4. On the canvas, select the terminal file node To_Valid to display its properties in the
Properties view.

5. In the Uri field, delete the existing text, and then enter direct:OrderFulfillment.

6. In the Id field, enter _Fulfill.

NOTE

Instead of repurposing the existing To_Valid terminal file node, you could have
replaced it with a Components → Direct component, configuring it with the same
property values as the repurposed To_Valid node.

ADDING THE SECOND ROUTE

To add a route to the routing context:

1. In the Palette, open the Routing drawer and select the Route () pattern.

2. Drag the Route pattern to the canvas and drop it next to the Route_route1 container:

The Route pattern becomes the Route_route2 container node on the canvas.

3. Click the Route_route2 container node to display its properties in the Properties view.

4. Leave each of the properties as is.

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

39

NOTE

As your multiroute routing context grows in complexity, you may want to focus the
route editor on an individual route while you work on it. To do so, in Project Explorer,
double-click the route you want the route editor to display on the canvas; for example
Route_route2:

To display all routes in the routing context on the canvas, double-click the project’s
.xml context file entry (src/main/resources/OSGI-INF/…​) at the top of the
Camel Contexts folder.

BUILDING AND CONFIGURING THE USA BRANCH OF THE SECOND
ROUTE

1. In the Palette, open the Components drawer and drag a Direct component () to the
canvas and drop it in the Route_route2 container:

The Route_route2 container expands to accommodate the From_from2 node.

2. On the canvas, select the From_from2 node to open its properties in the Properties view:

3. In the Uri field, replace name (following direct:) with OrderFulfillment, and in the Id
field, enter _direct:OrderFulfillment.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

40

4. In the Palette, open the Routing drawer and drag a Choice () pattern to the canvas and
drop it in the Route_route2 container.
The Route_route2 container expands to accommodate the Choice_choice2 node.

5. In the Route_route2 container, select the direct:OrderFulfillment node and drag its
connector arrow over the Choice_choice2 node, then release it:

6. In the Properties view, leave each of the Choice_choice2 node’s properties as is.

7. In the Palette, open the Routing drawer and drag a When () pattern to the canvas and
drop it in the Choice_choice2 container:

The Choice_choice2 container expands to accommodate the When_when2 node.

8. On the canvas, select the When_when2 node to open its properties in the Properties view:

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

41

9. Set the node’s properties this way:

Select xpath from the Language drop-down menu.

Enter /order/customer/country = 'USA' in the Expression field.

Leave Trim enabled.

Enter _when/usa in the Id field.

NOTE

Once you select the expression Language, the Properties view displays its
properties in an indented list directly below the Language field. The Id
property in this list sets the ID of the expression. The Id property following
the Description field sets the ID of the When node.

10. In the Palette, open the Transformation drawer and drag the Set Header pattern to the
canvas and drop on the When_when/usa node:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

42

The When_when/usa container expands to accommodate the SetHeader_setHeader3
node.

11. On the canvas, select the SetHeader_setHeader3 node to open its properties in the
Properties view:

12. Set the node’s properties this way:

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

43

Select constant from the Language drop-down menu.

Enter USA in the Expression field.

Leave Trim enabled.

Enter Destination in the Header Name field.

Enter _setHead_usa in the Id field.

13. In the Palette, open the Components drawer and drag a Log component () to the canvas
and drop it in the When_when/usa container.
The When_when/usa container expands to accommodate the Log_log3 node.

14. On the canvas, select the SetHeader_setHead_usa node and drag its connector arrow over
the Log_log3 node, then release it:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

44

15. On the canvas, select the Log_log3 node to open its properties in the Properties view:

16. In the Properties view:

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

45

Enter Valid order - ship animals to USA customer in the Message field.

Enter _usa in the Id field.

Leave Logging Level as is.

17. In the Palette, open the Components drawer and drag a File component () to the canvas
and drop it in the When_when/usa container.
The When_when/usa container expands to accommodate the To_to1 node.

18. On the canvas, select the Log_usa node and drag its connector arrow over the To_to1 node,
then release it:

19. In the Properties view:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

46

Replace directoryName with target/messages/USA in the Uri field.

Enter _US in the Id field.

20. On the menu bar, click File → Save to save the routing context file.
The USA branch of Route_route2 should look like this:

BUILDING AND CONFIGURING THE GREAT BRITAIN BRANCH OF THE
SECOND ROUTE

With Route_route2 displayed on the canvas:

1. In the Palette, open the Routing drawer and drag a When pattern () to the canvas and
drop it in the Choice_choice2 container:

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

47

The Choice_choice2 container expands to accommodate the When_when2 node.

2. On the canvas, select the When_when2 node to open its properties in the Properties view.

3. In the Properties view:

Select xpath from the Language drop-down menu.

Enter /order/customer/country = 'Great Britain' in the Expression field.

Leave Trim enabled.

Enter _when/gb in the Id field.

4. In the Palette, open the Transformation drawer and drag a Set Header pattern () to the
canvas and drop it on the When_when/gb node:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

48

The When_when/gb container expands to accommodate the SetHeader_setHeader3 node.

5. On the canvas, select the SetHeader_setHeader3 node to open its properties in the
Properties view.

6. In the Properties view:

Select constant from the Language drop-down menu.

Enter UK in the Expression field.

Leave Trim as is.

Enter Destination in the Header Name field.

Enter_setHead_uk in the Id field.

7. In the Palette, open the Components drawer and drag a Log pattern () to the canvas and
drop it in the When_when/gb container.
The When_when/gb container expands to accommodate the Log_log3 node.

8. On the canvas, select the SetHeader_setHead_uk node and drag its connector arrow over
the Log_log3 node, and then release it:

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

49

9. On the canvas, select the Log_log3 node to open its properties in the Properties view.

10. In the Properties view:

Enter Valid order - ship animals to UK customer in the Message field.

Enter _uk in the Id field.

Leave the Logging Level as is.

11. From the Components drawer, drag a File pattern () to the canvas and drop it in the
When_when/gb container.
The When_when/gb container expands to accommodate the To_to1 node.

12. On the canvas, select the Log_uk node and drag its connector arrow over the To_to1 node,
and then release it:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

50

13. On the canvas, select the To_to1 node to open its properties in the Properties view.

14. In the Properties view:

Replace directoryName with target/messages/GreatBritain in the Uri field.

Enter _UK in the Id field.

15. On the menu bar, click File → Save to save the routing context file.
The Great Britain branch of Route_route2 should look like this:

BUILDING AND CONFIGURING THE GERMANY BRANCH OF THE
SECOND ROUTE

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

51

With Route_route2 displayed on the canvas:

1. In the Palette, open the Routing drawer and drag a When pattern () to the canvas and
drop it in the Choice_choice2 container:

The Choice_choice2 container expands to accommodate the When_when2 node.

2. On the canvas, select the When_when2 node to open its properties in the Properties view.

3. In the Properties view:

Select xpath from the Language drop-down menu.

Enter /order/customer/country = 'Germany' in the Expression field.

Leave Trim enabled.

Enter _when/ger in the Id field.

4. In the Palette, open the Transformation drawer and drag a Set Header pattern () to the
canvas and drop it on the When_when/ger node:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

52

The When_when/ger container expands to accommodate the SetHeader_setHeader3
node.

5. On the canvas, select the SetHeader_setHeader3 node to open its properties in the
Properties view.

6. In the Properties view:

Select constant from the Language drop-down menu.

Enter Germany in the Expression field.

Leave Trim as is.

Enter Destination in the Header Name field.

Enter_setHead_ger in the Id field.

7. In the Palette, open the Components drawer and drag a Log pattern () to the canvas and
drop it in the When_when/ger container.
The When_when/ger container expands to accommodate the Log_log3 node.

8. On the canvas, select the SetHeader_setHead_ger node and drag its connector arrow over
the Log_log3 node, and then release it:

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

53

9. On the canvas, select the Log_log3 node to open its properties in the Properties view.

10. In the Properties view:

Enter Valid order - ship animals to Germany customer in the Message field.

Enter _ger in the Id field.

Leave the Logging Level as is.

11. From the Components drawer, drag a File pattern () to the canvas and drop it in the
When_when/ger container.
The When_when/ger container expands to accommodate the To_to1 node.

12. On the canvas, select the Log_ger node and drag its connector arrow over the To_to1 node,
and then release it:

13. On the canvas, select the To_to1 node to open its properties in the Properties view.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

54

14. In the Properties view:

Replace directoryName with target/messages/Germany in the Uri field.

Enter _GER in the Id field.

15. On the menu bar, click File → Save to save the routing context file.
The Germany branch of Route_route2 should look like this:

BUILDING AND CONFIGURING THE FRANCE BRANCH OF THE SECOND
ROUTE

With Route_route2 displayed on the canvas:

1. In the Palette, open the *Routing drawer and drag an Otherwise pattern () to the
canvas and drop it in the Choice_choice2 container:

The Choice_choice2 container expands to accommodate the Otherwise_otherwise1
node.

2. On the canvas, select the Otherwise_otherwise1 node to open its properties in the
Properties view.

3. In the Properties view, enter _else/fr in the Id field.

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

55

4. In the Palette, open the Transformation drawer and drag a Set Header pattern () to the
canvas and drop it on the Otherwise_else/fr node:

The Otherwise_else/fr container expands to accommodate the SetHeader_setHeader3
node.

5. On the canvas, select the SetHeader_setHeader3 node to open its properties in the
Properties view.

6. In the Properties view:

Select constant from the Language drop-down menu.

Enter France in the Expression field.

Leave Trim as is.

Enter Destination in the Header Name field.

Enter_setHead_fr in the Id field.

7. In the Palette, open the Components drawer and drag a Log pattern () to the canvas and
drop it in the Otherwise_else/fr container.
The Otherwise_else/fr container expands to accommodate the Log_log3 node.

8. On the canvas, select the SetHeader_setHead_fr node and drag its connector arrow over
the Log_log3 node, and then release it:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

56

9. On the canvas, select the Log_log3 node to open its properties in the Properties view.

10. In the Properties view:

Enter Valid order - ship animals to France customer in the Message field.

Enter _fr in the Id field.

Leave the Logging Level as is.

11. From the Components drawer, drag a File pattern () to the canvas and drop it in the
Otherwise_else/fr container.
The Otherwise_else/fr container expands to accommodate the To_to1 node.

12. On the canvas, select the Log_fr node and drag its connector arrow over the To_to1 node,
and then release it:

13. On the canvas, select the To_to1 node to open its properties in the Properties view.

14. In the Properties view:

Replace directoryName with target/messages/France in the Uri field.

Enter _FR in the Id field.

15. On the menu bar, click File → Save to save the routing context file.
The France branch of Route_route2 should look like this:

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

57

FINISHING UP

1. If needed, on the menu bar, select File → Save to save the routing context.
The routes on the canvas should look like this:

image::./images/tutCBRRte1Completed.png[Completed first route in the CBRroute routing
context]

image::./images/tutCBRRte2Completed.png[Completed second route in the CBRroute routing
context]

2. Click the Source tab at the bottom, left of the canvas to display the XML for the route.
The camelContext element should look like that shown in Example 5.1, “XML for dual-route
content-based router”:

Example 5.1. XML for dual-route content-based router

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-blueprint.xsd">

 <camelContext id="_context1"
xmlns="http://camel.apache.org/schema/blueprint">
 <route id="_route1" shutdownRoute="Default">
 <from id="_from1" uri="file:src/data?noop=true"/>
 <choice id="_choice1">
 <when id="_when1">
 <xpath>/order/orderline/quantity/text() >
/order/orderline/maxAllowed/text()</xpath>
 <log id="_log1" message="quantity exceeds the
maximum allowed - contact customer"/>
 <setHeader headerName="Destination"
id="_setHeader1">
 <constant>InvalidOrders</constant>

Red Hat JBoss Fuse 6.3 Tooling Tutorials

58

 </setHeader>
 <to id="_Invalid"
uri="file:target/messages/invalidOrders"/>
 </when>
 <otherwise id="_else2">
 <log id="_log2" message="valid order -
process"/>
 <setHeader headerName="Destination"
id="_setHeader2">
 <constant>Dispatcher</constant>
 </setHeader>
 <to id="_Fulfill"
uri="direct:OrderFulfillment"/>
 </otherwise>
 </choice>
 </route>
 <route id="_route2">
 <from id="_direct:OrderFulfillment"
uri="direct:OrderFulfillment"/>
 <choice id="_choice2">
 <when id="_when/usa">
 <xpath>/order/customer/country = 'USA'</xpath>
 <setHeader headerName="Destination"
id="_setHead_usa">
 <constant>USA</constant>
 </setHeader>
 <log id="_usa" message="Valid order - ship to
USA customer"/>
 <to id="_US" uri="file:target/messages/USA"/>
 </when>
 <when id="_when/gb">
 <xpath>/order/customer/country = 'Great
Britain'</xpath>
 <setHeader headerName="Destination"
id="_setHead_uk">
 <constant>UK</constant>
 </setHeader>
 <log id="_uk" message="Valid order - ship
animals to UK customer"/>
 <to id="_UK"
uri="file:target/messages/GreatBritain"/>
 </when>
 <when id="_when/ger">
 <xpath>/order/customer/country =
'Germany'</xpath>
 <setHeader headerName="Destination"
id="_setHead_ger">
 <constant>Germany</constant>
 </setHeader>
 <log id="_ger" message="Valid order - ship to
Germany customer"/>
 <to id="_GER"
uri="file:target/messages/Germany"/>
 </when>
 <otherwise id="_else/fr">
 <setHeader headerName="Destination"

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

59

id="_setHead_fr">
 <constant>France</constant>
 </setHeader>
 <log id="_fr" message="Valid order - ship
animals to France customer"/>
 <to id="_FR"
uri="file:target/messages/France"/>
 </otherwise>
 </choice>
 </route>
 </camelContext>
</blueprint>

IMPORTANT

If the tooling added the attribute shutdownRoute=" " to the second route element
(<route id="route2">), delete that attribute. Otherwise, the CBRroute project
might fail to run.

NEXT STEPS

You can run the new route as described in the section called “Running the route” .

Check the end of the Console’s output. You should see these lines:

Check the target destinations in Project Explorer to verify that the routes executed properly:

1. Select CBRroute.

2. Right-click it to open the context menu, then select Refresh.

3. Expand the folder target/messages/ as shown in Figure 5.1, “Target message destinations
in Project Explorer”. The message*.xml files should be dispersed in your target destinations
like this:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

60

Figure 5.1. Target message destinations in Project Explorer

NOTE

To view message content, double-click a message to open it in the route view’s
XML editor.

FURTHER READING

To learn more about the Direct component see the Red Hat JBoss Fuse: Apache Camel Component
Reference at Red Hat JBoss Fuse 6.3 documentation

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

61

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Apache_Camel_Component_Reference/IDU-Direct.html

CHAPTER 6. TO DEBUG A ROUTING CONTEXT
This tutorial shows how to use the Camel debugger for only a locally running routing context. The
routing context and each node with a breakpoint set must have a unique ID. The tooling automatically
assigns a unique ID to the camelContext element and to components and patterns dropped on the
canvas, but you can change these IDs to customize your project.

GOALS

In this tutorial you will:

In the Design tab, set breakpoints on the nodes of interest in Route1

Switch to Route2, and set breakpoints on the nodes of interest

Invoke the Camel debugger

Step through the route, examining route and message variables as they change

Step through the route again, changing the value of message variables and observing the
effects

PREREQUISITES

To complete this tutorial you will need the CBRroute project you updated in Chapter 5, To Add
Another Route to the CBR Routing Context.

NOTE

If you skipped any tutorial after Chapter 2, To Create a New Route you can use the
prefabricated blueprintContext6.xml file to work through this tutorial (for details,
see Chapter 1, Using the Fuse Tooling Resource Files).

SETTING BREAKPOINTS

You can set both conditional and unconditional breakpoints, but in this tutorial, you will set
unconditional breakpoints only.

1. If necessary, open your CBRroute/src/main/resources/OSGI-
INF/blueprint/blueprint.xml in the route editor.

2. In Project Explorer, expand Camel Contexts/src/main/resources/OSGI-
INF/blueprint to expose both route entries.

3. Double-click the Route_route1 entry to switch focus to Route_route1 in the Design tab.

4. On the canvas, select the Choice_choice1 node, and then click its icon to set an
unconditional breakpoint:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

62

NOTE

In the route editor, you can disable or delete a specific breakpoint by clicking

the node’s icon or its icon, respectively. You can delete all set
breakpoints by right-clicking the canvas and selecting Delete all breakpoints .

5. Repeat [setBPstep] to set an unconditional breakpoint on the following Route_Route1
nodes:

Log_log1

SetHeader_setHeader1

To_Invalid

Log_log2

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

63

SetHeader_setHeader2

To_Fulfill

6. In Project Explorer, double-click Route_route2 under src/main/resources/OSGI-
INF/blueprint to open Route_route2 on the canvas.

7. Repeat [setBPstep] to set an unconditional breakpoint on the following Route_Route2
nodes:

Choice_choice2

SetHeader_setHead_usa

Log_usa

To_US

SetHeader_setHead_uk

Log_uk

To_UK

SetHeader_setHead_ger

Log_ger

To_GER

SetHeader_setHead_fr

Log_fr

To_FR

STEPPING THROUGH THE CBRROUTE ROUTING CONTEXT

You can step through the routing context in two ways:

Step over () - Jumps to the next node of execution in the routing context, regardless of
breakpoints.

Resume () - Jumps to the next active breakpoint in the routing context.

NOTE

You can temporarily narrow then later re-expand the debugger’s focus by disabling and
re-enabling the breakpoints you set in the routing context. This enables you, for
example, to focus on problematic nodes in your routing context. To do so, open the
Breakpoints tab and clear the check box of each breakpoint you want to temporarily

disable. Then use to step through the route. The debugger will skip over the disabled
breakpoints.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

64

1. In Project Explorer, expand the root node CBRroute to expose the blueprint.xml file in
the Camel Contexts folder.

2. Right-click the blueprint.xml file to open its context menu, and then click menu:Debug
As… ​[> > Local Camel Context >].
The Camel debugger suspends execution at the first breakpoint it encounters and asks
whether you want to open Debug perspective now:

3. Click Yes.

NOTE

If you click No, the confirmation pane appears several more times. After the
third refusal, it disappears, and the Camel debugger resumes execution. To
interact with the debugger at this point, you need to open the Debug
perspective by clicking menu:Window[> > Open Perspective > > Debug >].

Debug perspective opens with the routing context suspended at _choice1 in Route1
[blueprint.xml] as shown in the Debug view:

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

65

NOTE

Breakpoints are held for a maximum of five minutes before the debugger
automatically resumes, moving on to the next breakpoint or to the end of the
routing context, whichever comes next.

4. In the Variables view, expand the nodes to expose the variables and values available for each
node.
As you step through the routing context, the variables whose values have changed since the
last breakpoint are highlighted in yellow. You may need to expand the nodes at each
breakpoint to reveal variables that have changed.

5. Click to step to the next breakpoint, _log2 in Route1 [blueprint.xml]:

6. Expand the nodes in the Variables view to examine the variables that have changed since the
last breakpoint at _choice1 in Route1 [blueprintxt.xml].

7. Click to step to the next breakpoint, _setHeader2 in Route1 [blueprint.xml].
Examine the variables that changed since the breakpoint at _log2 in Route1
[blueprint.xml].

Red Hat JBoss Fuse 6.3 Tooling Tutorials

66

8. In the Debug view, click _log2 in Route1 [blueprint.xml] to populate the Variables
view with the variable values from the breakpoint _log2 in Route1 [blueprint.xml] for
a quick comparison.
In the Debug view, you can switch between breakpoints within the same message flow to
quickly compare and monitor changing variable values in the Variables view.

NOTE

Message flows can vary in length. For messages that transit the
InvalidOrders branch of Route_route1, the message flow is short. For
messages that transit the ValidOrders branch of Route_route1, which
continues on to Route_route2, the message flow is longer.

9. Continue stepping through the routing context. When one message completes the routing
context and the next message enters it, the new message flow appears in the Debug view,
tagged with a new breadcrumb ID:

In this case, ID-janemurpheysmbp-home-55846-1471374645179-0-3 identifies the
second message flow, corresponding to message2.xml having entered the routing context.
Breadcrumb IDs are incremented by 2.

NOTE

Exchange and Message IDs are identical and remain unchanged throughout a
message’s passage through the routing context. Their IDs are constructed from
the message flow’s breadcrumb ID, and incremented by 1. So, in the case of
message2.xml, its ExchangeId and MessageId are ID-janemurpheysmbp-
home-55846-1471374645179-0-4.

10. When message3.xml enters the breakpoint _choice1 in Route_route1
[blueprint.xml], examine the Processor variables. The values displayed are the metrics
accumulated for message1.xml and message2.xml, which previously transited the routing
context:

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

67

Timing metrics are in milliseconds.

11. Continue stepping each message through the routing context, examining variables and console
output at each processing step. When message6.xml enters the breakpoint To_GER in
Route2 [blueprint.xml], the debugger begins shutting down the breadcrumb threads.

12. In the Menu bar, click to terminate the Camel debugger. This will cause the Console to
terminate, but you will have to manually clear the output.

NOTE

With a thread or endpoint selected under the Camel Context node in the Debug

view, you need to click twice - first to terminate the thread or endpoint and
second to terminate the Camel Context, thus the session.

13. In the Menu bar, right-click to open the context menu, and then select Close to
close Debug perspective.
Doing so automatically returns you to perspective from which you launched the Camel
debugger.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

68

14. In Project Explorer, open the project’s context menu, and select Refresh to refresh the
display.

NOTE

If you terminated the session prematurely, before all messages transited the
routing context, you might see, under the CBRroute/src/data folder, a
message like this: message3.xml.camelLock. You need to remove it before
you run the debugger on the project again. To do so, double-click the
.camelLock message to open its context menu, and then select Delete. When
asked, click OK to confirm deletion.

15. Expand the CBRroute/target/messages/* directories to check that the messages were
delivered to their expected destinations:

16. Leave the routing context as is, with all previous breakpoints set and enabled.

CHANGING THE VALUE OF A VARIABLE

In this session, you will add variables to a watch list to easily check how their values change as
messages pass through the routing context. You will also change the value of a variable in the body of
two messages and observe how the change affects each message’s route through the routing context.

1. Follow [startDebugger1] through [startDebugger3] in the section called “Stepping through the
CBRroute routing context” to rerun the Camel debugger on the CBRroute project.

2. With message1 stopped at the first breakpoint, _choice1 in Route1 [blueprint.xml],
add the variables NodeId and RouteId (in the Exchange category) and MessageBody and
CamelFileName (in the Message category) to the watch list.
For each of the four variables:

a. In the Variables view, expand the appropriate category to expose the target variable:

b. Right-click the variable (in this case, NodeId in the Exchange category) to open the
context menu and select Watch:

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

69

The Expressions tab opens, listing the variable you selected to watch:

c. Repeat [selectVariable] for each of the three remaining variables.

d. Switch back to the Variables view.

3. Step message1 through the routing context until it reaches the fourth breakpoint, _Fulfill
in Route1 [blueprint.xml].

4. In the Variables view, expand the Message category.

5. Repeat [selectVariable] to add the variable Destination to the watch list.
The Expressions view should now contain these variables:

NOTE

The pane below the list of variables displays the value of the selected variable.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

70

NOTE

The Expressions view retains all variables you add to the list until you explicitly
remove them.

6. Step message1 through the rest of the routing context.

7. Stop message2 at _choice1 in Route1 [blueprint.xml].

8. In the Variables view, expand the Message category to expose the MessageBody variable.

9. Right-click MessageBody to open its context menu, and select Change Value… ​:

10. Change the value of quantity from 3 to 2:

This changes the in-memory value only.

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

71

11. Click OK.

12. Switch to the Expressions view, and select the MessageBody variable.
The pane below the list of variables displays the entire body of message2, making it easy to
check the current value of order items:

NOTE

Creating a watch list makes it easy for you to quickly check the current value of
multiple variables of interest.

13. Click to step to the next breakpoint.
Instead of following the branch leading to To_Invalid, message2 now follows the branch
leading toTo_Fulfill and Route_route2:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

72

14. Step message2 through the routing context, checking the Debug view, the Variables view,
and the Console output at each step.

15. Stop message3 at _choice1 in Route1 [blueprint.xml].

16. Switch to the Breakpoints view, and disable all breakpoints (13) listed below _choice1:

17. Click to step to the next breakpoint:

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

73

The debugger jumps to _FulFill in Route1 [blueprint.xml].

18. Click again to step to the next breakpoint:

The debugger jumps to _UK in Route2 [blueprint.xml].

19. In the Breakpoints view, re-enable all disabled breakpoints.

20. Switch back to the Variables view.

21. Click to step to the next breakpoint, and stop message4 at _choice1 in Route1
[blueprint.xml].

22. Right-click MessageBody to open its context menu, and select Change Value… ​.

23. Change the value of quantity from 5 to 4:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

74

24. Click OK.

25. Switch to the Expressions view, and select the MessageBody variable to check the value of
quantity in the body of message4.

26. Repeat [varChgRestart1] and [varChgRestart2] to step message4 through the routing
context.

27. Click repeatedly to quickly step message5 and message6 through the routing context.

28. In the tool bar, click to terminate the Camel debugger:

This will also cause the Console to terminate, but you will have to click its button to clear
the output.

29. In the Menu bar, right-click to open the context menu, and then select Close to
close Debug perspective.
Doing so automatically returns you to the perspective from which you launched the Camel
debugger.

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

75

30. In Project Explorer, open the project’s context menu, and select Refresh to refresh the
display.

31. Expand the CBRroute/target/messages/* directories to check whether the messages
were delivered as expected:

You should see that no messages were sent to the invalidOrders. Instead, message2.xml
should appear in the USA folder, and message4.xml should appear the GreatBritain folder.

NEXT STEPS

Next you will trace messages through your routing context to see where you can optimize and fine
tune your routing context’s performance, as described in Chapter 7, To Trace a Message Through a
Route.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

76

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE
This tutorial shows you how to trace a message through a route.

GOALS

In this tutorial you will:

Run the CBRroute in the Fuse Integration perspective

Enable tracing on the CBRroute

Drop messages onto the CBRroute and track them through all route nodes

PREREQUISITES

To complete this tutorial you will need the CBRroute project you updated in Chapter 5, To Add
Another Route to the CBR Routing Context.

NOTE

If you skipped any tutorial after Chapter 2, To Create a New Route, you can use the
prefabricated blueprint6.xml file to work through this tutorial (for details, see
Chapter 1, Using the Fuse Tooling Resource Files).

ACCESSING FUSE INTEGRATION PERSPECTIVE

If you are not already working in Fuse Integration perspective:

1. Click the button on the right side of the tool bar, and then select Fuse Integration from the
list:

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

77

Fuse Integration perspective opens in the default layout:

2. Drag the JMX Navigator tab to the far right of the Terminal tab and drop it there:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

78

This arrangement provides more space for Diagram View to display the routing context’s
nodes graphically, which makes it easier for you to visually trace the path that messages take
in traversing the routing context.

NOTE

To make it easy to access a routing context .xml file, especially when a project
consists of multiple contexts, the tooling lists them under the Camel Contexts
folder in Project Explorer.

Additionally, all routes in a routing context are displayed as icons directly under
their context file entry. To display a single route in the routing context on the
canvas, double-click its icon in Project Explorer. To display all routes in the
routing context, double-click the context file entry.

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

79

STARTING MESSAGE TRACING

To start message tracing on the CBRroute project:

1. In Project Explorer, expand the CBRroute project to expose src/main/resources/OSGI-
INF/blueprint/blueprint.xml.

2. Right-click src/main/resources/OSGI-INF/blueprint/blueprint.xml to open the
context menu.

3. Select menu:Run As[> > Local Camel Context (without tests) >].

NOTE

If you select Local Camel Context, the tooling reverts to running without tests
because you have not yet created a JUnit test for the CBRroute project. You
will do that later in Chapter 8, To Test a Route with JUnit.

4. In JMX Navigator, expand Local Processes.
When you first expand Local Processes, you see the node maven[Id][Disconnected]:

When you click this node, it changes to Local Camel Context[Id][Disconnected]
(retaining the same Id as its predecessor):

Red Hat JBoss Fuse 6.3 Tooling Tutorials

80

5. Double click Local Camel Context[Id][Disconnected] to connect to it, and then
expand the elements of your route:

6. Right-click the _context1 node to open the context menu, and select Start Tracing:

The tooling displays a graphical representation of your routing context in Diagram View:

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

81

DROPPING MESSAGES ON THE RUNNING CBRROUTE PROJECT

To drop messages on the running CBRroute project:

1. In Project Explorer, expand CBRroute/src/data, so you can access the message files
(message1.xml through message6.xml):

2. Drag message1.xml and drop it on the _context1>Endpoints>file>src/data?
noop=true node in JMX Navigator:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

82

As the message traverses the route, the tooling traces and records its passage at each step.
To update Diagram View with the new message count, you need to click the _context1 node
in JMX Navigator.

NOTE

The Local Camel Context[xxx] tree collapses to the _context1 node
after you drop the next message on the input src/data?noop=true node. You
need not re-expand it. When dragging the other messages, hover over each node
in the tree to expose the next node, until you reach the src/data?noop=true
node. Then drop the message on it. This method prevents the tooling from
redrawing the graphical representation in Diagram View.

INITIALIZING AND CONFIGURING MESSAGES VIEW

You need to initialize Messages View before it will display message traces. You also need to configure
the columns in Messages View if you want them to persist across all message traces.

1. Switch from Console to Messages View.

2. Click the _context1 node in JMX Navigator to initialize Messages View with
message1.xml's details.

NOTE

You can control columnar layout in all of the tooling’s tables. Use the drag
method to temporarily rearrange tabular format. For example, drag a column’s
border rule to expand or contract its width. To hide a column, totally contract its
borders. Drag the column header to relocate a column within the table. For your
arrangement to persist, you must use the menu:View Menu[> > Configure
Columns… ​ >] method instead.

3. In Messages View, click the icon on the panel’s menu bar, and select Configure Columns… ​
to open the Configure Columns wizard:

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

83

NOTE

Notice that the message header, Destination, which you set for the messages in
your routing context, appears in the list.

You can include or exclude items from Messages View by selecting or deselecting them. You
can rearrange the columnar order in which items appear in Messages View by highlighting
individual, selected items and moving them up or down in the list.

4. In the Configure Columns wizard, select and order the columns this way:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

84

These columns and their order will persist in Messages View until you change them again.

ARRANGING DIAGRAM VIEW

To see all message flow paths clearly, you’ll probably need to rearrange the nodes by dragging them to
fit neatly in Diagram View. You may also need to adjust the size of the other views and tabs in Red Hat
JBoss Developer Studio to allow Diagram View to expand.

STEPPING THROUGH MESSAGE TRACES

To step through the message traces:

1. In Messages View, click the (Refresh button) on top, right of the panel’s menu bar to
populate the view with message1.xml's message traces.
Each time you drop a message on the input src node in JMX Navigator, you need to refresh
Messages View to populate it with the message traces.

2. Click one of the message traces to see more details about it in Properties view:

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

85

The tooling displays the details about a message trace (including message headers when they
are set) in the top half of the Properties view and the contents of the message instance in the
bottom half of the Properties view. So, if your application sets headers at any step within a
route, you can check the Message Details to see whether they were set as expected.

You can step through the message instances by highlighting each one to see how a particular
message traversed the route and whether it was processed as expected at each step in the
route.

In Diagram View, the associated step in the route is highlighted:

FINISHING UP

1. Drag message2.xml and drop it on the_context1>Endpoints>file>src/data?
noop=true node in JMX Navigator.
Hover over each node in the tree until you expose the src/data?noop=true node, then drop
message2.xml on it.

2. Switch from Console to Messages View.

3. In Messages View, click the (Refresh button) on top, right of the panel’s menu bar to
populate the view with message2.xml's message traces.

NOTE

You can repeat [msg1drag] through [msgView] for the remaining messages in
CBRroute/src/data/ at any time, as long as tracing remains enabled.

On each subsequent drop, remember to click the (Refresh button) on the
panel’s menu bar to populate Messages View with the new message traces.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

86

The tooling draws the route in Diagram View, tagging paths exiting a processing step with
timing and performance metrics (in milliseconds). Only the metric Total exchanges is
displayed in the diagram:

Hovering over the displayed metrics reveals additional metrics about message flow:

Mean time the step took to process a message

Maximum time the step took to process a message

Minimum time the step took to process a message

4. When done:

In JMX Navigator, right-click _context1 and select Stop Tracing Context from the
context menu.

Open the Console and click the button in the upper right of the panel to stop the

Console. Then click the button to clear console output.

NEXT STEPS

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

87

After you create a JUnit test case for your project, you can run your project as a Local Camel
Context, instead of Local Camel Context (without tests). See Chapter 8, To Test a Route
with JUnit for details.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

88

CHAPTER 8. TO TEST A ROUTE WITH JUNIT
This tutorial shows you how to use the New Camel Test Case wizard to create a test case for your
route and then test the route.

OVERVIEW

The New Camel Test Case wizard generates a boilerplate JUnit test case. When you create or modify a
route (for example, adding more processors to it), you create or modify the generated test case to add
expectations and assertions specific to the route you created or updated.This ensures that the test is
valid for the route.

GOALS

In this tutorial you will:

Create the /src/test/ folder to store the JUnit test case

Generate the JUnit test case for the CBRroute project

Modify the newly generated JUnit test case

Modify the CBRroute project’s pom.xml file

Run the CBRroute with the new JUnit test case

Observe the output

PREREQUISITES

To complete this tutorial you need the CBRroute project you used in Chapter 7, To Trace a Message
Through a Route

NOTE

If you skipped any tutorial after Chapter 2, To Create a New Route, you can use the
prefabricated blueprintContext6.xml file to work through this tutorial (for details,
see Chapter 1, Using the Fuse Tooling Resource Files).

Delete any trace-generated messages from the CBRroute project’s /src/data/ directory and
/target/messages/ subdirectories in Project Explorer. Trace-generated messages begin with the
ID- prefix. For example, Figure 8.1, “Trace-generated messages” shows six trace-generated messages:

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

89

Figure 8.1. Trace-generated messages

Select all trace-generated messages in batch, right-click to open the context menu, and select Delete.

CREATING THE SRC/TEST FOLDER

Before you create a JUnit test case for the CBRroute project, you must create a folder for it that is
included in the build path:

1. In Project Explorer, right-click the CBRroute project’s root to open the context menu, and
then select menu:New[> > Folder >].

2. In the New Folder dialog, in the project tree pane, expand the CBRroute node and select the
src folder.
Make sure CBRroute/src appears in the Enter or select the parent folder field.

3. In Folder name, enter /test/java:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

90

4. Click Finish.
In Project Explorer, the new src/test/java folder appears under the
src/main/resources folder:

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

91

5. Verify that the new /src/test/java folder is included in the build path.

a. In Project Explorer, right-click the /src/test/java folder to open the context menu.

b. Select Build Path to see the menu options:
The menu option Remove from Build Path verifies that the /src/test/java folder is
currently included in the build path:

CREATING THE JUNIT TEST CASE

To create a JUnit test case for the CBRroute project:

1. In Project Explorer, select src/test/java.

2. Right-click it to open the context menu, and then select menu:New[> > Camel Test Case >]:

3. In the Camel JUnit Test Case wizard, make sure the Source folder field contains

CBRroute/src/test/java. To find the proper folder, click .

Red Hat JBoss Fuse 6.3 Tooling Tutorials

92

4. In the Package field, enter tutorial.cbr.route. This is the package that will include the
new test case.

5. Next to the Camel XML file under test field, click Browse to open a file explorer configured to
screen for XML files, and then select the CBRroute project’s blueprint.xml file:

6. Click OK.

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

93

NOTE

The Name field defaults to BlueprintXmlTest.

7. Click Next to open the Test Endpoints page.

8. By default, all endpoints are selected and will be included in the test case. Click Finish.

NOTE

If prompted, add JUnit to the build path.

The artifacts for the test are added to your project and appear in Project Explorer under
src/test/java. The class implementing the test case opens in the tooling’s Java editor:

package tutorial.cbr.route;

import org.apache.camel.EndpointInject;
import org.apache.camel.Produce;
import org.apache.camel.ProducerTemplate;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.test.blueprint.CamelBlueprintTestSupport;
import org.junit.Test;

public class BlueprintXmlTest extends CamelBlueprintTestSupport {

 // TODO Create test message bodies that work for the route(s) being
tested
 // Expected message bodies

 protected object[] expectBodies = {
 "<something id='1'>expectedBody1</something>",
 "<something id='2'>expectedBody2</something>";

 // Templates to send to input endpoints
 @Produce(uri = "file:src/data?noop=true")
 protected ProducerTemplate inputEndpoint;
 @Produce(uri = "direct:OrderFulfillment")
 protected ProducerTemplate input2Endpoint;

 // Mock endpoints used to consume messages from the output endpoints and
 // then perform assertions
 @EndpointInject(uri = "mock:output")
 protected MockEndpoint outputEndpoint;
 @EndpointInject(uri = "mock:output2")
 protected MockEndpoint output2Endpoint;
 @EndpointInject(uri = "mock:output3")
 protected MockEndpoint output3Endpoint;
 @EndpointInject(uri = "mock:output4")
 protected MockEndpoint output4Endpoint;
 @EndpointInject(uri = "mock:output5")
 protected MockEndpoint output5Endpoint;
 @EndpointInject(uri = "mock:output6")
 protected MockEndpoint output6Endpoint;

Red Hat JBoss Fuse 6.3 Tooling Tutorials

94

 @Test
 public void testCamelRoute() throws Exception {
 // Create routes from the output endpoints to our mock endpoints so we
can
 // assert expectations
 context.addRoutes(new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("file:target/messages/invalidOrders").to(outputEndpoint);
 from("file:target/messages/GreatBritain").to(output3Endpoint);
 from("file:target/messages/Germany").to(output4Endpoint);
 from("file:target/messages/USA").to(output2Endpoint);
 from("file:target/messages/France").to(output5Endpoint);
 }
 });

 // Define some expectations

 // TODO Ensure expectations make sense for the route(s) we're testing
 outputEndpoint.expectedBodiesReceivedInAnyOrder(expectedBodies);

 // Send some messages to input endpoints
 for (Object expectedBody : expectedBodies) {
 inputEndpoint.sendBody(expectedBody);
 }

 // Validate our expectations
 assertMockEndpointsSatisfied();
 }

 @Override
 protected String getBlueprintDescriptor() {
 return "OSGI-INF/blueprint/blueprint.xml";
 }

}

This generated JUnit test case is insufficient for the CBRroute project, and it will fail to run
successfully. You need to modify it and the project’s pom.xml, as described in the section called
“Modifying the BlueprintXmlTest file” and the section called “Modifying the pom.xml file” .

MODIFYING THE BLUEPRINTXMLTEST FILE

You must modify the BlueprintXmlTest.java file to:

Import several classes that support required file functions

Create variables for holding the content of the various source .xml files

Read the content of the source .xml files

Define appropriate expectations

1. In Project Explorer, expand the CBRroute project to expose the
BlueprintXmlTest.java file:

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

95

2. Double-click BlueprintXmlTest.java to open the file in the tooling’s Java editor.

3. In the Java editor, click the expand button next to import
org.apache.camel.EndpointInject; to expand the list.

4. Add the two lines shown below. Adding the first line will cause an error that will be resolved
when you update the pom.xml file as instructed in the next section.

5. Scroll down to the lines that follow directly after // Expected message bodies.

6. Replace those lines — protected Object[] expectedBodies={ …​…​
expectedBody2</something>"}; —  with the protected String body#; lines
shown here:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

96

7. Scroll down to the line public void testCamelRoute() throws Exception {, and
insert directly after it the lines body# = FileUtils.readFileToString(new
File("src/data/message#.xml"), "UTF-8"); shown below. These lines will
indicate an error until you update the pom.xml file as instructed in the next section.

8. Scroll down to the lines that follow directly after // TODO Ensure expectations
make sense for the route(s) we’re testing.

9. Replace the block of code that begins with
outputEndpoint.expectedBodiesReceivedInAnyOrder(expectedBodies); and
ends with … ​inputEndpoint.sendBody(expectedBody); } with the lines shown here:

Leave the remaining code as is.

10. Save the file.

11. Check that your updated BlueprintXmlTest.java file has the required modifications. It
should look something like this:

package tutorial.cbr.route;

import org.apache.camel.EndpointInject;
import org.apache.camel.Produce;
import org.apache.camel.ProducerTemplate;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.test.blueprint.CamelBlueprintTestSupport;
import org.apache.commons.io.FileUtils;

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

97

import org.junit.Test;

import java.io.File;

public class BlueprintXmlTest extends CamelBlueprintTestSupport {

 // TODO Create test message bodies that work for the route(s)
being tested
 // Expected message bodies

 // To assert that everything works as it should, you must read
 // the content of the created xml files
 protected String body1;
 protected String body2;
 protected String body3;
 protected String body4;
 protected String body5;
 protected String body6;

 // Templates to send to input endpoints
 @Produce(uri = "file:src/data?noop=true")
 protected ProducerTemplate inputEndpoint;
 // Mock endpoints used to consume messages from the output
endpoints
 // and then perform assertions
 @EndpointInject(uri = "mock:output")
 protected MockEndpoint outputEndpoint;
 @EndpointInject(uri = "mock:output2")
 protected MockEndpoint output2Endpoint;
 @EndpointInject(uri = "mock:output3")
 protected MockEndpoint output3Endpoint;
 @EndpointInject(uri = "mock:output4")
 protected MockEndpoint output4Endpoint;
 @EndpointInject(uri = "mock:output5")
 protected MockEndpoint output5Endpoint;

 @Test
 public void testCamelRoute() throws Exception {
 // Easy way of reading content of xml files to String object,
but you must
 // add a dependency to the commons-io project to the CBRroute
pom.xml file
 body1 = FileUtils.readFileToString(new
File("src/data/message1.xml"), "UTF-8");
 body3 = FileUtils.readFileToString(new
File("src/data/message3.xml"), "UTF-8");
 body5 = FileUtils.readFileToString(new
File("src/data/message5.xml"), "UTF-8");
 body6 = FileUtils.readFileToString(new
File("src/data/message6.xml"), "UTF-8");

 // Invalid Orders
 body2 = FileUtils.readFileToString(new
File("src/data/message2.xml"), "UTF-8");
 body4 = FileUtils.readFileToString(new
File("src/data/message4.xml"), "UTF-8");

Red Hat JBoss Fuse 6.3 Tooling Tutorials

98

 context.addRoutes(new RouteBuilder() {
 @Override
 public void configure() throws Exception {

from("file:target/messages/invalidOrders").to(outputEndpoint);

from("file:target/messages/GreatBritain").to(output3Endpoint);
 from("file:target/messages/Germany").to(output4Endpoint);
 from("file:target/messages/USA").to(output2Endpoint);
 from("file:target/messages/France").to(output5Endpoint);
 }
 });

 // Define some expectations

 // TODO Ensure expectations make sense for the route(s) we're
testing
 // Invalid Orders
 outputEndpoint.expectedBodiesReceived(body2, body4);

 //For each country, one order
 output2Endpoint.expectedBodiesReceived(body1);
 output3Endpoint.expectedBodiesReceived(body3);
 output4Endpoint.expectedBodiesReceived(body6);
 output5Endpoint.expectedBodiesReceived(body5);

 // Validate our expectations
 assertMockEndpointsSatisfied();
 }

 @Override
 protected String getBlueprintDescriptor() {
 return "OSGI-INF/blueprint/blueprint.xml";
 }

}

MODIFYING THE POM.XML FILE

You need to add a dependency on the commons-io project to the CBRroute project’s pom.xml file:

1. In Project Explorer, double-click pom.xml, located below the target folder, to open the file
in the tooling’s XML editor.

2. Click the pom.xml tab at the bottom of the page to open the file for editing.

3. Add these lines to the end of the <dependencies> section:

<dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>2.5</version>
 <scope>test</scope>
</dependency>

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

99

4. Save the file.
The contents of the entire pom.xml file should look like this:

<?xml version="1.0" encoding="UTF-8"?>

<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd"
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <modelVersion>4.0.0</modelVersion>
 <groupId>co</groupId>
 <artifactId>camel-blueprint</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 <packaging>bundle</packaging>
 <name>Camel Blueprint Quickstart</name>
 <description>Empty Camel Blueprint Example</description>

 <licenses>
 <license>
 <name>Apache License, Version 2.0</name>
 <url>http://www.apache.org/licenses/LICENSE-2.0.html</url>
 <distribution>repo</distribution>
 </license>
 </licenses>

 <properties>
 <camel.version>2.18.1.redhat-000015</camel.version>
 <project.reporting.outputEncoding>UTF-
8</project.reporting.outputEncoding>
 <version.maven-bundle-plugin>2.3.7<</version.maven-bundle-
plugin>
 <jboss.fuse.bom.version>6.3.0.redhat-
187</jboss.fuse.bom.version>
 <project.build.sourceEncoding>UTF-
8</project.build.sourceEncoding>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.fuse.bom</groupId>
 <artifactId>jboss-fuse-parent</artifactId>
 <version>${jboss.fuse.bom.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 <version>${camel.version}</version>
 </dependency>

Red Hat JBoss Fuse 6.3 Tooling Tutorials

100

 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-blueprint</artifactId>
 <version>${camel.version}</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-test-blueprint</artifactId>
 <version>${camel.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>2.5</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <repositories>
 <repository>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>fuse-public-repository</id>
 <name>FuseSource Community Release Repository</name>

<url>https://repo.fusesource.com/nexus/content/groups/public</url>
 </repository>
 <repository>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>red-hat-ga-repository</id>
 <name>Red Hat GA Repository</name>
 <url>https://maven.repository.redhat.com/ga</url>

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

101

 </repository>
 <repository>
 <id>fuse-ea</id>
 <url>http://download.eng.brq.redhat.com/brewroot/repos/jb-
fuse-6.2-build/latest/maven</url>
 </repository>
 <repository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 </repository>
 </repositories>

 <pluginRepositories>
 <pluginRepository>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>fuse-public-repository</id>
 <name>FuseSource Community Release Repository</name>

<url>https://repo.fusesource.com/nexus/content/groups/public</url>
 </pluginRepository>
 <pluginRepository>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>red-hat-ga-repository</id>
 <name>Red Hat GA Repository</name>
 <url>https://maven.repository.redhat.com/ga<url>
 </pluginRepository>
 <pluginRepository>
 <id>fuse-ea</id>
 <url>http://download.eng.brq.redhat.com/brewroot/repos/jb-
fuse-6.2-build/latest/maven</url>
 </pluginRepository>
 <pluginRepository>
 <id>redhat-ea-repository</id>
 <url>https://maven.repository.redhat.com/earlyaccess/all</url>
 </pluginRepository>
 <pluginRepository>
 <id>camelStaging</id>

<url>https://repository.jboss.org/nexus/content/repositories/fusesou
rce_releases_external-2384</url>
 </pluginRepository>
 </pluginRepositories>

 <build>

Red Hat JBoss Fuse 6.3 Tooling Tutorials

102

 <defaultGoal>install</defaultGoal>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>${version.maven-bundle-plugin}</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>CBRroute</Bundle-SymbolicName>
 <Bundle-Name>Empty Camel Blueprint Example [CBRroute]
</Bundle-Name>
 </instructions>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.5.1</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <version>3.0.1</version>
 <configuration>
 <encoding>UTF-8</encoding>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-maven-plugin</artifactId>
 <version>${camel.version}</version>
 <configuration>
 <useBlueprint>true</useBlueprint>
 </configuration>
 </plugin>
 </plugins>
 </build>

</project>

RUNNING THE JUNIT TEST

To run the test:

1. Switch to JBoss perspective to free up more workspace.

2. Select the project root, CBRroute, in the Project Explorer.

3. Open the context menu.

4. Select menu:Run As[> JUnit Test].

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

103

NOTE

By default, the JUnit view opens in the sidebar. (To provide a better view, drag it
to the bottom, right panel that displays the Console, Servers, and Properties
tabs.)

5. If the test runs successfully, you’ll see something like this:

NOTE

Sometimes the test fails the first time JUnit is run on a project. Rerunning the
test ususally results in a successful outcome.

When the test does fail, you’ll see something like this:

NOTE

JUnit will fail if your execution environment is not set to Java SE 8 or 7. The
message bar at the top of the JUnit tab will display an error message indicating
that it cannot find the correct SDK.

To resolve the issue, open the project’s context menu, and select menu:Run As[
> > Run Configurations > > JRE >]. Click the Environments button next to the
Execution environment field to locate and select a Java SE 8 or 7 environment.

6. Examine the output and take action to resolve any test failures.

To see more of the errors displayed in the JUnit panel, click on the panel’s menu bar to
maximize the view.

Before you run the JUnit test case again, delete any JUnit-generated test messages from the
CBRroute project’s /src/data folder in Project Explorer (see Figure 8.1, “Trace-generated
messages”).

FURTHER READING

To learn more about JUnit testing see JUnit.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

104

http://www.junit.org/

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO JBOSS FUSE
This tutorial walks you through the process of publishing an Apache Camel project to Red Hat JBoss
Fuse. It assumes that you have an instance of Red Hat JBoss Fuse installed on the same machine on
which you are running the Red Hat JBoss Fuse Tooling.

GOALS

In this tutorial you will:

Define a Red Hat JBoss Fuse server

Configure the publishing options

Start up the Red Hat JBoss Fuse server and publish the CBRroute project

Connect to the Red Hat JBoss Fuse server

Verify whether the CBRroute project’s bundle was successfully built and published

Uninstall the CBRroute project

PREREQUISITES

To complete this tutorial you will need:

Access to a Red Hat JBoss Fuse 6.3 instance

The CBRroute project you updated in Chapter 8, To Test a Route with JUnit

DEFINING A RED HAT JBOSS FUSE SERVER

To define a server:

1. Open Fuse Integration perspective.

2. Click the Servers tab in the lower, right panel to open the Servers view.

3. Click the link No servers are available. Click this link to create a new server… ​ to open the
Define a New Server page.

NOTE

To define a new server when one is already defined, right-click inside the
Servers view to open the context menu, and then select menu:New[> > Server
>].

4. Expand the JBoss Fuse node to expose the available server options:

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO JBOSS FUSE

105

5. Click JBoss Fuse 6.3 Server .

6. Accept the defaults for Server’s host name (localhost) and Server name (JBoss Fuse 6.3
Runtime Server), and then click Next to open the JBoss Fuse Runtime page:

Red Hat JBoss Fuse 6.3 Tooling Tutorials

106

NOTE

If you do not have JBoss Fuse 6.3 already installed, you can download it now
using the Download and install runtime… ​ link.

NOTE

If you have already defined a JBoss Fuse 6.3 server, the tooling skips this page,
and instead displays the configuration details page shown in [configDetails].

7. Accept the default for Name (JBoss Fuse 6.3 Runtime).

8. Click Browse next to the Home Directory field, to navigate to the JBoss Fuse 6.3 installation
and select it.

9. Select the runtime JRE from the drop-down menu next to Execution Environment.
Select either JavaSE-1.8 (recommended) or JavaSE-1.7. If neither appears as an option, click
the Environments… ​ button and select either version from the list.

NOTE

The JBoss Fuse 6.3 server requires Java 8 (recommended) or Java 7. To select
either version for the Execution Environment, you must have previously
installed it.

10. Leave the Alternate JRE option as is.

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO JBOSS FUSE

107

11. Click Next to save the runtime definition for JBoss Fuse 6.3 Server and open the JBoss Fuse
server configuration details page:

12. Accept the default for SSH Port (8101).
The runtime uses the SSH port to connect to the server’s Karaf shell. If this default is
incorrect, you can discover the correct port number by looking in the Red Hat JBoss Fuse
installDir/etc/org.apache.karaf.shell.cfg file.

13. In User Name, enter the name used to log into the server.
This is a user name stored in the Red Hat JBoss Fuse installDir/etc/users.properties file.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

108

NOTE

If the default user has been activated (uncommented) in the
/etc/users.properties file, the tooling autofills User Name and Password
with the default user’s name and password, as shown in [configDetails].

If one has not been set, you can either add one to that file using the format
user=password,role (for example, joe=secret,Administrator), or you can set one
using the karaf jaas command set:

jaas:realms — to list the realms

jaas:manage --index 1 — to edit the first (server) realm

jaas:useradd <username> <password> — to add a user and associated password

jaas:roleadd <username> Administrator — to specify the new user’s role

jaas:update — to update the realm with the new user information
If a jaas realm has already been selected for the server, you can discover the user name by
issuing the command JBossFuse:karaf@root>jaas:users.

14. In Password:, enter the password required for User name to log into the server.
This is the password set either in Red Hat JBoss Fuse’s installDir/etc/users.properties
file or by the karaf jaas commands.

15. Click Finish.
JBoss Fuse 6.3 Runtime Server [stopped, Synchronized] appears in the Servers view.

16. In the Servers view, expand JBoss Fuse 6.3 Runtime Server [stopped, Synchronized] :

JMX[Disconnected] appears as a node under JBoss Fuse 6.3 Runtime Server [stopped,
Synchronized] entry.

CONFIGURING THE PUBLISHING OPTIONS

Using publishing options, you can configure how and when your CBRroute project is published to a
running server:

Automatically, immediately upon saving changes made to the project

Automatically, at configured intervals after you have changed and saved the project

Manually, when you select a publish operation

In this tutorial, you are going to configure immediate publishing upon saving changes to the CBRroute
project. To do so:

1. In the Servers view, double-click the JBoss Fuse 6.3 Runtime Server [stopped,
Synchronized] entry to display its overview:

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO JBOSS FUSE

109

2. On the server’s Overview page, expand the Publishing section to expose the options.
Make sure the option Automatically publish when resources change is enabled.

Change the value of Publishing interval to speed up or delay publishing the project when
changes have been made.

NOTE

To configure manual publishing:

Enable the Never publish automatically option on the server’s Overview
page.

Disable the If server started, publish changes immediately option
on the server’s Add and Remove page.

Then to manually publish changes made to selective resources configured on the
running server, use the Full Publish option on the resource’s context menu in the
Servers view. The Incremental Publish option is not supported and clicking it results in
a full publish.

STARTING THE RED HAT JBOSS FUSE SERVER

This section provides instructions for starting the Fuse server and then assigning the CBRroute
module to it for immediate publishing.

1. In the Servers view, select JBoss Fuse 6.3 Runtime Server and click to start it.

IMPORTANT

A warning that the host identification has changed may appear. Click yes to
replace the key only if the JBoss Fuse 6.3 server runtime is installed on the
same machine where Red Hat JBoss Fuse Tooling is running! Otherwise click no
and contact your system administrator.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

110

2. Wait a few seconds for JBoss Fuse 6.3 Server to start up. When it does:

The Terminal view displays the JBoss Fuse splash screen:

Servers view displays:

JMX Navigator displays JBoss Fuse 6.3 Runtime Server[Disconnected] :

3. In the Servers view, right-click JBoss Fuse 6.3 Runtime Server [Started] to open the context
menu.

4. Select Add and Remove to open the Add and Remove page:

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO JBOSS FUSE

111

Make sure the option If server is started, publish changes immediately is checked.

5. Select CBRroute and click Add to assign it to the JBoss Fuse server;

Red Hat JBoss Fuse 6.3 Tooling Tutorials

112

6. Click Finish.

JBoss Fuse 6.3 Runtime Server [Started, Synchronized]

NOTE

For a server, synchronized means that all modules published on the server
are identical to their local counterparts.

CBRroute [Started, Synchronized]

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO JBOSS FUSE

113

NOTE

For a module, synchronized means that the published module is identical to
its local counterpart. Because automatic publishing is enabled, changes
made to the CBRroute project are published in seconds (according to the
value of the Publishing interval).

JMX[Disconnected]

CONNECTING TO THE JBOSS FUSE 6.3 RUNTIME SERVER

When you connect to the JBoss Fuse 6.3 Runtime Server , you can see the published elements of your
CBRroute project and interact with them. The instructions in this section will show a display such as
the following:

1. In the Servers view, double-click JMX[Disconnected] to connect to the runtime server.

2. Expand the Camel folder in the Servers view or JMX Navigator to expose the elements of the
CBRroute.
You can interact with the CBRroute routing context using either the Servers view or JMX
Navigator, but JMX Navigator provides more room to expand the routing context’s nodes,
making it easier for you to access them.

NOTE

Once the _context1 node appears in JMX Navigator under Server
Connections (or in the Servers view under JMX[Connected]), you can start
tracing on it, as described in Chapter 7, To Trace a Message Through a Route.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

114

3. Click the Bundles node to populate the Properties view with the list of bundles installed on
the JBoss Fuse 6.3 Runtime Server :

Start typing CBRroute in the Properties view’s Search field to quickly determine whether
your project’s CBRroute bundle is included in the list. Note that it is the last bundle in the list,
identified by its Symbolic Name , CBRroute, which is the name you gave your project when
you created it.

NOTE

Alternatively, you can issue the osgi:list command in the Terminal view to
see a generated list of bundles installed on the JBoss Fuse server runtime. The
tooling uses a different naming scheme for OSGi bundles displayed by the
osgi:list command. In this case, the command returns Empty Camel
Blueprint Project [CBRroute], which appears at the end of the list of
installed bundles.

In the <build> section of project’s pom.xml file, you can find the bundle’s
symbolic name and its bundle name (OSGi) listed in the maven-bundle-
plugin entry:

UNINSTALLING THE CBRROUTE PROJECT

NOTE

You do not need to disconnect the JMX connection or stop the server to uninstall a
published resource.

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO JBOSS FUSE

115

To remove the CBRroute resource from the JBoss Fuse runtime server:

1. In the Servers view, right-click JBoss Fuse 6.3 Runtime Server to open the context menu.

2. Select Add and Remove :

3. In the Configured column, select CBRroute, and then click Remove to move the CBRroute
resource to the Available column.

4. Click Finish.

5. In the Servers view, right-click JMX[Connected] to open the context menu, and then click
Refresh.
The Camel tree under JMX[Connected] disappears.

NOTE

In JMX Navigator, the Camel tree under Server Connections > JBoss Fuse 6.3
Runtime Server[Connected] also disappears.

Red Hat JBoss Fuse 6.3 Tooling Tutorials

116

6. With the Bundles page displayed, start typing CBRroute` in the Properties view’s Search
field to verify that the bundle has been removed.

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO JBOSS FUSE

117

	Table of Contents
	CHAPTER 1. USING THE FUSE TOOLING RESOURCE FILES
	PREREQUISITES
	DOWNLOADING THE RESOURCE FILES
	INSTALLING THE PREFABRICATED ROUTING CONTEXT FILES

	CHAPTER 2. TO CREATE A NEW ROUTE
	GOALS
	PREREQUISITES
	CREATING THE FUSE INTEGRATION PROJECT
	CREATING THE ROUTE
	CREATING TEST MESSAGES
	NEXT STEPS
	FURTHER READING

	CHAPTER 3. TO RUN A ROUTE
	GOALS
	PREREQUISITES
	RUNNING THE ROUTE
	VERIFYING THE ROUTE
	FURTHER READING

	CHAPTER 4. TO ADD A CONTENT-BASED ROUTER
	GOALS
	PREREQUISITES
	ADDING AND CONFIGURING A CONTENT-BASED ROUTER
	ADDING AND CONFIGURING LOGGING
	ADDING AND CONFIGURING MESSAGE HEADERS
	ADDING AND CONFIGURING AN OTHERWISE BRANCH
	NEXT STEPS
	FURTHER READING

	CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT
	GOALS
	PREREQUISITES
	RECONFIGURING THE EXISTING ROUTE FOR DIRECT CONNECTION
	ADDING THE SECOND ROUTE
	BUILDING AND CONFIGURING THE USA BRANCH OF THE SECOND ROUTE
	BUILDING AND CONFIGURING THE GREAT BRITAIN BRANCH OF THE SECOND ROUTE
	BUILDING AND CONFIGURING THE GERMANY BRANCH OF THE SECOND ROUTE
	BUILDING AND CONFIGURING THE FRANCE BRANCH OF THE SECOND ROUTE
	FINISHING UP
	NEXT STEPS
	FURTHER READING

	CHAPTER 6. TO DEBUG A ROUTING CONTEXT
	GOALS
	PREREQUISITES
	SETTING BREAKPOINTS
	STEPPING THROUGH THE CBRROUTE ROUTING CONTEXT
	CHANGING THE VALUE OF A VARIABLE
	NEXT STEPS

	CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE
	GOALS
	PREREQUISITES
	ACCESSING FUSE INTEGRATION PERSPECTIVE
	STARTING MESSAGE TRACING
	DROPPING MESSAGES ON THE RUNNING CBRROUTE PROJECT
	INITIALIZING AND CONFIGURING MESSAGES VIEW
	ARRANGING DIAGRAM VIEW
	STEPPING THROUGH MESSAGE TRACES
	FINISHING UP
	NEXT STEPS

	CHAPTER 8. TO TEST A ROUTE WITH JUNIT
	OVERVIEW
	GOALS
	PREREQUISITES
	CREATING THE SRC/TEST FOLDER
	CREATING THE JUNIT TEST CASE
	MODIFYING THE BLUEPRINTXMLTEST FILE
	MODIFYING THE POM.XML FILE
	RUNNING THE JUNIT TEST
	FURTHER READING

	CHAPTER 9. TO PUBLISH A FUSE PROJECT TO JBOSS FUSE
	GOALS
	PREREQUISITES
	DEFINING A RED HAT JBOSS FUSE SERVER
	CONFIGURING THE PUBLISHING OPTIONS
	STARTING THE RED HAT JBOSS FUSE SERVER
	CONNECTING TO THE JBOSS FUSE 6.3 RUNTIME SERVER
	UNINSTALLING THE CBRROUTE PROJECT

