
Red Hat JBoss Fuse 6.3

Security Guide

Making it safe for your systems to work together

Last Updated: 2020-10-27

Red Hat JBoss Fuse 6.3 Security Guide

Making it safe for your systems to work together

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to secure the Red Hat JBoss Fuse container, the web console, message
brokers, routing and integration components, web and RESTful services, and it provides a tutorial
on LDAP authentication.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. SECURITY ARCHITECTURE
1.1. OSGI CONTAINER SECURITY
1.2. APACHE CAMEL SECURITY

CHAPTER 2. SECURING THE CONTAINER
2.1. JAAS AUTHENTICATION
2.2. ROLE-BASED ACCESS CONTROL
2.3. USING ENCRYPTED PROPERTY PLACEHOLDERS
2.4. ENABLING REMOTE JMX SSL

CHAPTER 3. SECURING THE JETTY HTTP SERVER
JETTY SERVER
CREATE X.509 CERTIFICATE AND PRIVATE KEY
ENABLING SSL/TLS FOR JETTY IN A STANDALONE CONTAINER
CUSTOMIZING ALLOWED TLS PROTOCOLS AND CIPHER SUITES
CONNECT TO THE SECURE CONSOLE
ADVANCED JETTY SECURITY CONFIGURATION
ENABLING SSL/TLS FOR JETTY IN A FABRIC
REFERENCES

CHAPTER 4. SECURING THE CAMEL ACTIVEMQ COMPONENT
4.1. SECURE ACTIVEMQ CONNECTION FACTORY
4.2. EXAMPLE CAMEL ACTIVEMQ COMPONENT CONFIGURATION

CHAPTER 5. SECURING THE CAMEL JETTY COMPONENT
5.1. ENABLING SSL/TLS SECURITY
5.2. BASIC AUTHENTICATION WITH JAAS

CHAPTER 6. CONFIGURING TRANSPORT SECURITY FOR CAMEL COMPONENTS

CHAPTER 7. SECURING THE CAMEL CXF COMPONENT
7.1. THE CAMEL CXF PROXY DEMONSTRATION
7.2. SECURING THE WEB SERVICES PROXY
7.3. DEPLOYING THE APACHE CAMEL ROUTE
7.4. SECURING THE WEB SERVICES CLIENT

CHAPTER 8. SECURING THE MANAGEMENT CONSOLE
8.1. CONTROLLING ACCESS TO THE FUSE MANAGEMENT CONSOLE

CHAPTER 9. LDAP AUTHENTICATION TUTORIAL
9.1. TUTORIAL OVERVIEW
9.2. SET-UP A DIRECTORY SERVER AND CONSOLE
9.3. ADD USER ENTRIES TO THE DIRECTORY SERVER
9.4. ENABLE LDAP AUTHENTICATION IN THE OSGI CONTAINER
9.5. ENABLE SSL/TLS ON THE LDAP CONNECTION

APPENDIX A. MANAGING CERTIFICATES
A.1. WHAT IS AN X.509 CERTIFICATE?
A.2. CERTIFICATION AUTHORITIES
A.3. CERTIFICATE CHAINING
A.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES
A.5. CREATING YOUR OWN CERTIFICATES

APPENDIX B. ASN.1 AND DISTINGUISHED NAMES

4
4
5

8
8

34
46
50

55
55
55
55
56
56
57
61

64

65
65
66

68
68
74

78

80
80
82
87
89

96
96

97
97
97

100
104

111

115
115
116
117
118

120

127

Table of Contents

1

. .

B.1. ASN.1
B.2. DISTINGUISHED NAMES

INDEX

127
127

130

Red Hat JBoss Fuse 6.3 Security Guide

2

Table of Contents

3

CHAPTER 1. SECURITY ARCHITECTURE

Abstract

In the OSGi container, it is possible to deploy applications supporting a variety of security features.
Currently, only the Java Authentication and Authorization Service (JAAS) is based on a common,
container-wide infrastructure. Other security features are provided separately by the individual products
and components deployed in the container.

NOTE

Red Hat provides a single sign-on option (Red Hat Single Sign-On 7.1) that works with
JAAS to enhance security for certain web client applications and services running inside
JBoss Fuse and Fuse administration services (SSH, JMX, and Fuse Management
Console). Red Hat Single Sign-On requires at least the patch version, 6.3.0 Roll Up 1, but
6.3.0 Roll Up 2 is recommended.

For details on installing and using Red Hat Single Sign-On on JBoss Fuse, see the Red
Hat Single Sign-On 7.1 Securing Applications and Services Guide.

1.1. OSGI CONTAINER SECURITY

Overview

Figure 1.1, “OSGi Container Security Architecture” shows an overview of the security infrastructure that
is used across the container and is accessible to all bundles deployed in the container. This common
security infrastructure currently consists of a mechanism for making JAAS realms (or login modules)
available to all application bundles.

Figure 1.1. OSGi Container Security Architecture

Red Hat JBoss Fuse 6.3 Security Guide

4

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.1/html-single/securing_applications_and_services_guide/#fuse_adapter

JAAS realms

A JAAS realm or login module is a plug-in module that provides authentication and authorization data to
Java applications, as defined by the Java Authentication and Authorization Service (JAAS)
specification.

Red Hat JBoss Fuse supports a special mechanism for defining JAAS login modules (in either a Spring
or a blueprint file), which makes the login module accessible to all bundles in the container. This makes it
easy for multiple applications running in the OSGi container to consolidate their security data into a
single JAAS realm.

karaf realm

The OSGi container has a predefined JAAS realm, the karaf realm. Red Hat JBoss Fuse uses the karaf
realm to provide authentication for remote administration of the OSGi runtime, for the Fuse
Management Console, and for JMX management. The karaf realm uses a simple file-based repository,
where authentication data is stored in the InstallDir/etc/users.properties file.

You can use the karaf realm in your own applications. Simply configure karaf as the name of the JAAS
realm that you want to use. Your application then performs authentication using the data from the
users.properties file.

Console port

You can administer the OSGi container remotely either by connecting to the console port with a Karaf
client or using the Karaf ssh:ssh command. The console port is secured by a JAAS login feature that
connects to the karaf realm. Users that try to connect to the console port will be prompted to enter a
username and password that must match one of the accounts from the karaf realm.

JMX port

You can manage the OSGi container by connecting to the JMX port (for example, using Java's
JConsole). The JMX port is also secured by a JAAS login feature that connects to the karaf realm.

Application bundles and JAAS security

Any application bundles that you deploy into the OSGi container can access the container's JAAS
realms. The application bundle simply references one of the existing JAAS realms by name (which
corresponds to an instance of a JAAS login module).

It is essential, however, that the JAAS realms are defined using the OSGi container's own login
configuration mechanism—by default, Java provides a simple file-based login configuration
implementation, but you cannot use this implementation in the context of the OSGi container.

1.2. APACHE CAMEL SECURITY

Overview

Figure 1.2, “Apache Camel Security Architecture” shows an overview of the basic options for securely
routing messages between Apache Camel endpoints.

Figure 1.2. Apache Camel Security Architecture

CHAPTER 1. SECURITY ARCHITECTURE

5

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html

Figure 1.2. Apache Camel Security Architecture

Alternatives for Apache Camel security

As shown in Figure 1.2, “Apache Camel Security Architecture” , you have the following options for
securing messages:

Endpoint security—part (a) shows a message sent between two routes with secure endpoints.
The producer endpoint on the left opens a secure connection (typically using SSL/TLS) to the
consumer endpoint on the right. Both of the endpoints support security in this scenario.

With endpoint security, it is typically possible to perform some form of peer authentication (and
sometimes authorization).

Payload security—part (b) shows a message sent between two routes where the endpoints are
both insecure. To protect the message from unauthorized snooping in this case, use a payload
processor that encrypts the message before sending and decrypts the message after it is
received.

A limitation of payload security is that it does not provide any kind of authentication or
authorization mechanisms.

Endpoint security

There are several Camel components that support security features. It is important to note, however,
that these security features are implemented by the individual components, not by the Camel core.
Hence, the kinds of security feature that are supported, and the details of their implementation, vary
from component to component. Some of the Camel components that currently support security are, as
follows:

JMS and ActiveMQ—SSL/TLS security and JAAS security for client-to-broker and broker-to-
broker communication.

Jetty—HTTP Basic Authentication and SSL/TLS security.

CXF—SSL/TLS security and WS-Security.

Crypto—creates and verifies digital signatures in order to guarantee message integrity.

Red Hat JBoss Fuse 6.3 Security Guide

6

Netty—SSL/TLS security.

MINA—SSL/TLS security.

Cometd—SSL/TLS security.

glogin and gauth—authorization in the context of Google applications.

Payload security

Apache Camel provides the following payload security implementations, where the encryption and
decryption steps are exposed as data formats on the marshal() and unmarshal() operations

the section called “XMLSecurity data format” .

the section called “Crypto data format” .

XMLSecurity data format

The XMLSecurity data format is specifically designed to encrypt XML payloads. When using this data
format, you can specify which XML element to encrypt. The default behavior is to encrypt all XML
elements. This feature uses a symmetric encryption algorithm.

For more details, see http://camel.apache.org/xmlsecurity-dataformat.html.

Crypto data format

The crypto data format is a general purpose encryption feature that can encrypt any kind of payload. It
is based on the Java Cryptographic Extension and implements only symmetric (shared-key) encryption
and decryption.

For more details, see http://camel.apache.org/crypto.html.

CHAPTER 1. SECURITY ARCHITECTURE

7

http://camel.apache.org/xmlsecurity-dataformat.html
http://camel.apache.org/crypto.html

CHAPTER 2. SECURING THE CONTAINER

Abstract

The Red Hat JBoss Fuse container is secured using JAAS. By defining JAAS realms, you can configure
the mechanism used to retrieve user credentials. You can also refine access to the container's
administrative interfaces by changing the default roles.

2.1. JAAS AUTHENTICATION

Abstract

The Java Authentication and Authorization Service (JAAS) provides a general framework for
implementing authentication in a Java application. The implementation of authentication is modular,
with individual JAAS modules (or plug-ins) providing the authentication implementations.

For background information about JAAS, see the JAAS Reference Guide.

2.1.1. Default JAAS Realm

Overview

This section describes how to manage user data for the default JAAS realm in a standalone container.

Default JAAS realm

The Red Hat JBoss Fuse container has a predefined JAAS realm, the karaf realm, which is used by
default to secure all aspects of the container.

How to integrate an application with JAAS

You can use the karaf realm in your own applications. Simply configure karaf as the name of the JAAS
realm that you want to use.

Default JAAS login modules

When you start JBoss Fuse for the first time, the container is configured as a standalone container and
uses the karaf default realm. In this default configuration, the karaf realm deploys four JAAS login
modules, which are enabled simultaneously. To see the deployed login modules, enter the jaas:realms
console command, as follows:

IMPORTANT

JBossFuse:karaf@root> jaas:realms
Index Realm Module Class
 1 karaf org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
 2 karaf org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule
 3 karaf org.apache.karaf.jaas.modules.audit.FileAuditLoginModule
 4 karaf org.apache.karaf.jaas.modules.audit.EventAdminAuditLoginModule

Red Hat JBoss Fuse 6.3 Security Guide

8

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html

IMPORTANT

In a standalone container, both the properties login module and the public key login
module are enabled. When JAAS authenticates a user, it tries first of all to authenticate
the user with the properties login module. If that fails, it then tries to authenticate the
user with the public key login module. If that module also fails, an error is raised.

NOTE

The FileAuditLoginModule login module and the EventAdminAuditLoginModule login
module are used to record an audit trail of successful and failed login attempts. These
login modules do not authenticate users.

IMPORTANT

For JAAS login modules that reference properties files, the reload behavior is conditional
and disabled by default. To enable the behavior, set the reload property to true as shown
in the example below:

Configuring users in the properties login module

The properties login module is used to store username/password credentials in a flat file format. To
create a new user in the properties login module, open the InstallDir/etc/users.properties file using a
text editor and add a line with the following syntax:

For example, to create the jdoe user with password, topsecret, and role, Administrator, you could
create an entry like the following:

Where the Administrator role gives full administrative privileges to the jdoe user.

Configuring user groups in the properties login module

Instead of (or in addition to) assigning roles directly to users, you also have the option of adding users to
user groups in the properties login module. To create a user group in the properties login module, open
the InstallDir/etc/users.properties file using a text editor and add a line with the following syntax:

For example, to create the admingroup user group with the roles, SuperUser and Administrator, you
could create an entry like the following:

<jaas:config name="PropertiesLogin">
 <jaas:module flags="required"
 className="org.apache.activemq.jaas.PropertiesLoginModule">
 reload=true
 org.apache.activemq.jaas.properties.user=users.properties
 org.apache.activemq.jaas.properties.group=groups.properties
 </jaas:module>
 </jaas:config>

Username=Password[,UserGroup|Role][,UserGroup|Role]...

jdoe=topsecret,Administrator

g\:GroupName=Role1,Role2,...

CHAPTER 2. SECURING THE CONTAINER

9

You could then add the majorclanger user to the admingroup, by creating the following user entry:

Configuring the public key login module

The public key login module is used to store SSH public key credentials in a flat file format. To create a
new user in the public key login module, open the InstallDir/etc/keys.properties file using a text editor
and add a line with the following syntax:

For example, you can create the jdoe user with the Administrator role by adding the following entry to
the InstallDir/etc/keys.properties file (on a single line):

IMPORTANT

Do not insert the entire contents of an id_rsa.pub file here. Insert just the block of
symbols which represents the public key itself.

Configuring user groups in the public key login module

Instead of (or in addition to) assigning roles directly to users, you also have the option of adding users to
user groups in the public key login module. To create a user group in the public key login module, open
the InstallDir/etc/keys.properties file using a text editor and add a line with the following syntax:

For example, to create the admingroup user group with the roles, SuperUser and Administrator, you
could create an entry like the following:

You could then add the jdoe user to the admingroup, by creating the following user entry:

g\:admingroup=SuperUser,Administrator

majorclanger=secretpass,_g_:admingroup

Username=PublicKey[,UserGroup|Role][,UserGroup|Role]...

jdoe=AAAAB3NzaC1kc3MAAACBAP1/U4EddRIpUt9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1AIlH
7WT2NWPq/xfW6MPbLm1Vs14E7
gB00b/JmYLdrmVClpJ+f6AR7ECLCT7up1/63xhv4O1fnfqimFQ8E+4P208UewwI1VBNaFpEy9nXzrith1y
rv8iIDGZ3RSAHHAAAAFQCX
YFCPFSMLzLKSuYKi64QL8Fgc9QAAAnEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0Hgmd
RWVeOutRZT+ZxBxCBgLRJFnEj6Ewo
FhO3zwkyjMim4TwWeotifI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfBpKL
Zl6Ae1UlZAFMO/7PSSoAAACB
AKKSU2PFl/qOLxIwmBZPPIcJshVe7bVUpFvyl3BbJDow8rXfskl8wO63OzP/qLmcJM0+JbcRU/53Jj7uyk
31drV2qxhIOsLDC9dGCWj4
7Y7TyhPdXh/0dthTRBy6bqGtRPxGa7gJov1xm/UuYYXPIUR/3x9MAZvZ5xvE0kYXO+rx,Administrat
or

g\:GroupName=Role1,Role2,...

g\:admingroup=SuperUser,Administrator

jdoe=AAAAB3NzaC1kc3MAAACBAP1/U4EddRIpUt9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1AIlH
7WT2NWPq/xfW6MPbLm1Vs14E7

Red Hat JBoss Fuse 6.3 Security Guide

10

Encrypting the stored passwords

By default, passwords are stored in the InstallDir/etc/users.properties file in plaintext format. To
protect the passwords in this file, you must set the file permissions of the users.properties file so that it
can be read only by administrators. To provide additional protection, you can optionally encrypt the
stored passwords using a message digest algorithm.

To enable the password encryption feature, edit the InstallDir/etc/org.apache.karaf.jaas.cfg file and
set the encryption properties as described in the comments. For example, the following settings would
enable basic encryption using the MD5 message digest algorithm:

NOTE

The encryption settings in the org.apache.karaf.jaas.cfg file are applied only to the
default karaf realm in a standalone container. The have no effect on a Fabric container
and no effect on a custom realm.

For more details about password encryption, see Section 2.1.8, “Encrypting Stored Passwords” .

Overriding the default realm

If you want to customise the JAAS realm, the most convenient approach to take is to override the
default karaf realm by defining a higher ranking karaf realm. This ensures that all of the Red Hat JBoss
Fuse security components switch to use your custom realm. For details of how to define and deploy
custom JAAS realms, see Section 2.1.2, “Defining JAAS Realms” .

2.1.2. Defining JAAS Realms

Overview

When defining a JAAS realm in the OSGi container, you cannot put the definitions in a conventional
JAAS login configuration file. Instead, the OSGi container uses a special jaas:config element for
defining JAAS realms in a blueprint configuration file. The JAAS realms defined in this way are made
available to all of the application bundles deployed in the container, making it possible to share the JAAS
security infrastructure across the whole container.

gB00b/JmYLdrmVClpJ+f6AR7ECLCT7up1/63xhv4O1fnfqimFQ8E+4P208UewwI1VBNaFpEy9nXzrith1y
rv8iIDGZ3RSAHHAAAAFQCX
YFCPFSMLzLKSuYKi64QL8Fgc9QAAAnEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0Hgmd
RWVeOutRZT+ZxBxCBgLRJFnEj6Ewo
FhO3zwkyjMim4TwWeotifI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfBpKL
Zl6Ae1UlZAFMO/7PSSoAAACB
AKKSU2PFl/qOLxIwmBZPPIcJshVe7bVUpFvyl3BbJDow8rXfskl8wO63OzP/qLmcJM0+JbcRU/53Jj7uyk
31drV2qxhIOsLDC9dGCWj4
7Y7TyhPdXh/0dthTRBy6bqGtRPxGa7gJov1xm/UuYYXPIUR/3x9MAZvZ5xvE0kYXO+rx,_g_:adming
roup

encryption.enabled = true
encryption.name = basic
encryption.prefix = {CRYPT}
encryption.suffix = {CRYPT}
encryption.algorithm = MD5
encryption.encoding = hexadecimal

CHAPTER 2. SECURING THE CONTAINER

11

http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixB

Namespace

The jaas:config element is defined in the http://karaf.apache.org/xmlns/jaas/v1.0.0 namespace. When
defining a JAAS realm you will need to include the line shown in Example 2.1, “JAAS Blueprint
Namespace”.

Example 2.1. JAAS Blueprint Namespace

Configuring a JAAS realm

The syntax for the jaas:config element is shown in Example 2.2, “Defining a JAAS Realm in Blueprint
XML”.

Example 2.2. Defining a JAAS Realm in Blueprint XML

The elements are used as follows:

jaas:config

Defines the JAAS realm. It has the following attributes:

name—specifies the name of the JAAS realm.

rank—specifies an optional rank for resolving naming conflicts between JAAS realms . When
two or more JAAS realms are registered under the same name, the OSGi container always
picks the realm instance with the highest rank. If you decide to override the default realm,
karaf, you should specify a rank of 100 or more, so that it overrides all of the previously
installed karaf realms (in the context of Fabric, you need to override the default
ZookeeperLoginModule, which has a rank of 99).

jaas:module

Defines a JAAS login module in the current realm. jaas:module has the following attributes:

className—the fully-qualified class name of a JAAS login module. The specified class must

xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0">

 <jaas:config name="JaasRealmName"
 [rank="IntegerRank"]>
 <jaas:module className="LoginModuleClassName"
 [flags="[required|requisite|sufficient|optional]"]>
 Property=Value
 ...
 </jaas:module>
 ...
 <!-- Can optionally define multiple modules -->
 ...
 </jaas:config>

</blueprint>

Red Hat JBoss Fuse 6.3 Security Guide

12

className—the fully-qualified class name of a JAAS login module. The specified class must
be available from the bundle classloader.

flags—determines what happens upon success or failure of the login operation. Table 2.1,
“Flags for Defining a JAAS Module” describes the valid values.

Table 2.1. Flags for Defining a JAAS Module

Value Description

required Authentication of this login module must
succeed. Always proceed to the next login
module in this entry, irrespective of success or
failure.

requisite Authentication of this login module must
succeed. If success, proceed to the next login
module; if failure, return immediately without
processing the remaining login modules.

sufficient Authentication of this login module is not
required to succeed. If success, return
immediately without processing the remaining
login modules; if failure, proceed to the next
login module.

optional Authentication of this login module is not
required to succeed. Always proceed to the
next login module in this entry, irrespective of
success or failure.

The contents of a jaas:module element is a space separated list of property settings, which are used
to initialize the JAAS login module instance. The specific properties are determined by the JAAS
login module and must be put into the proper format.

NOTE

You can define multiple login modules in a realm.

Converting standard JAAS login properties to XML

Red Hat JBoss Fuse uses the same properties as a standard Java login configuration file, however Red
Hat JBoss Fuse requires that they are specified slightly differently. To see how the Red Hat JBoss Fuse
approach to defining JAAS realms compares with the standard Java login configuration file approach,
consider how to convert the login configuration shown in Example 2.3, “Standard JAAS Properties” ,
which defines the PropertiesLogin realm using the Red Hat JBoss Fuse properties login module class,
PropertiesLoginModule:

Example 2.3. Standard JAAS Properties

PropertiesLogin {

CHAPTER 2. SECURING THE CONTAINER

13

The equivalent JAAS realm definition, using the jaas:config element in a blueprint file, is shown in
Example 2.4, “Blueprint JAAS Properties” .

Example 2.4. Blueprint JAAS Properties

IMPORTANT

You do not use double quotes for JAAS properties in the blueprint configuration.

Example

Red Hat JBoss Fuse also provides an adapter that enables you to store JAAS authentication data in an
X.500 server. Example 2.5, “Configuring a JAAS Realm” defines the LDAPLogin realm to use Red Hat
JBoss Fuse's LDAPLoginModule class, which connects to the LDAP server located at
ldap://localhost:10389.

Example 2.5. Configuring a JAAS Realm

 org.apache.activemq.jaas.PropertiesLoginModule required
 org.apache.activemq.jaas.properties.user="users.properties"
 org.apache.activemq.jaas.properties.group="groups.properties";
};

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <jaas:config name="PropertiesLogin">
 <jaas:module flags="required"
 className="org.apache.activemq.jaas.PropertiesLoginModule">
 org.apache.activemq.jaas.properties.user=users.properties
 org.apache.activemq.jaas.properties.group=groups.properties
 </jaas:module>
 </jaas:config>

</blueprint>

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <jaas:config name="LDAPLogin" rank="200">
 <jaas:module flags="required"
 className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connection.username=uid=admin,ou=system
 connection.password=secret
 connection.protocol=
 connection.url = ldap://localhost:10389
 user.base.dn = ou=users,ou=system

Red Hat JBoss Fuse 6.3 Security Guide

14

For a detailed description and example of using the LDAP login module, see Section 2.1.7, “JAAS LDAP
Login Module”.

2.1.3. JAAS Properties Login Module

Overview

The JAAS properties login module stores user data in a flat file format (where the stored passwords can
optionally be encrypted using a message digest algorithm). The user data can either be edited directly,
using a simple text editor, or managed using the jaas:* console commands.

For example, a standalone container uses the JAAS properties login module by default and stores the
associated user data in the InstallDir/etc/users.properties file.

Supported credentials

The JAAS properties login module authenticates username/password credentials, returning the list of
roles associated with the authenticated user.

Implementation classes

The following classes implement the JAAS properties login module:

org.apache.karaf.jaas.modules.properties.PropertiesLoginModule

Implements the JAAS login module.

org.apache.karaf.jaas.modules.properties.PropertiesBackingEngineFactory

Must be exposed as an OSGi service. This service makes it possible for you to manage the user data
using the jaas:* console commands from the Apache Karaf shell (see chapter "JAAS Console
Commands" in "Console Reference").

Options

The JAAS properties login module supports the following options:

users

Location of the user properties file.

 user.filter = (uid=%u)
 user.search.subtree = true
 role.base.dn = ou=users,ou=system
 role.filter = (uid=%u)
 role.name.attribute = ou
 role.search.subtree = true
 authentication = simple
 </jaas:module>
 </jaas:config>
</blueprint>

CHAPTER 2. SECURING THE CONTAINER

15

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Console_Reference/Consolejaas.html

Format of the user properties file

The user properties file is used to store username, password, and role data for the properties login
module. Each user is represented by a single line in the user properties file, where a line has the following
form:

User groups can also be defined in this file, where each user group is represented by a single line in the
following format:

For example, you can define the users, bigcheese and guest, and the user groups, admingroup and
guestgroup, as follows:

Sample Blueprint configuration

The following Blueprint configuration shows how to define a new karaf realm using the properties login
module, where the default karaf realm is overridden by setting the rank attribute to 200:

Username=Password[,UserGroup|Role][,UserGroup|Role]...

g\:GroupName=Role1[,Role2]...

Users
bigcheese=cheesepass,_g_:admingroup
guest=guestpass,_g_:guestgroup

Groups
g\:admingroup=SuperUser,Administrator
g\:guestgroup=Monitor

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <type-converters>
 <bean class="org.apache.karaf.jaas.modules.properties.PropertiesConverter"/>
 </type-converters>

<!--Allow usage of System properties, especially the karaf.base property-->
 <ext:property-placeholder
 placeholder-prefix="$[" placeholder-suffix="]"/>

 <jaas:config name="karaf" rank="200">
 <jaas:module flags="required"
className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule">
 users= $[karaf.base]/etc/users.properties
 </jaas:module>
 </jaas:config>

 <!-- The Backing Engine Factory Service for the PropertiesLoginModule -->
 <service interface="org.apache.karaf.jaas.modules.BackingEngineFactory">
 <bean class="org.apache.karaf.jaas.modules.properties.PropertiesBackingEngineFactory"/>

Red Hat JBoss Fuse 6.3 Security Guide

16

Remember to export the BackingEngineFactory bean as an OSGi service, so that the jaas:* console
commands can manage the user data.

2.1.4. JAAS OSGi Config Login Module

Overview

The JAAS OSGi config login modules leverages the OSGi Config Admin Service to store user data. This
login module is fairly similar to the JAAS properties login module (for example, the syntax of the user
entries is the same), but the mechanism for retrieving user data is based on the OSGi Config Admin
Service.

The user data can be edited directly by creating a corresponding OSGi configuration file,
etc/PersistentID.cfg or using any method of configuration that is supported by the OSGi Config Admin
Service. The jaas:* console commands are not supported, however.

Supported credentials

The JAAS OSGi config login module authenticates username/password credentials, returning the list of
roles associated with the authenticated user.

Implementation classes

The following classes implement the JAAS OSGi config login module:

org.apache.karaf.jaas.modules.osgi.OsgiConfigLoginModule

Implements the JAAS login module.

NOTE

There is no backing engine factory for the OSGi config login module, which means that
this module cannot be managed using the jaas:* console commands.

Options

The JAAS OSGi config login module supports the following options:

pid

The persistent ID of the OSGi configuration containing the user data. In the OSGi Config Admin
standard, a persistent ID references a set of related configuration properties.

Location of the configuration file

The location of the configuration file follows the usual convention where the configuration for the
persistent ID, PersistentID, is stored in the following file:

 </service>

</blueprint>

InstallDir/etc/PersistentID.cfg

CHAPTER 2. SECURING THE CONTAINER

17

Format of the configuration file

The PersistentID.cfg configuration file is used to store username, password, and role data for the OSGi
config login module. Each user is represented by a single line in the configuration file, where a line has
the following form:

NOTE

User groups are not supported in the JAAS OSGi config login module.

Sample Blueprint configuration

The following Blueprint configuration shows how to define a new karaf realm using the OSGi config
login module, where the default karaf realm is overridden by setting the rank attribute to 200:

In this example, the user data will be stored in the file,
InstallDir/etc/org.jboss.example.osgiconfigloginmodule.cfg, and it is not possible to edit the
configuration using the jaas:* console commands.

2.1.5. JAAS Public Key Login Module

Overview

The JAAS public key login module stores user data in a flat file format, which can be edited directly
using a simple text editor. The jaas:* console commands are not supported, however.

For example, a standalone container uses the JAAS public key login module by default and stores the
associated user data in the InstallDir/etc/keys.properties file.

Supported credentials

The JAAS public key login module authenticates SSH key credentials. When a user tries to log in, the
SSH protocol uses the stored public key to challenge the user. The user must possess the
corresponding private key in order to answer the challenge. If login is successful, the login module
returns the list of roles associated with the user.

Username=Password[,Role][,Role]...

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <jaas:config name="karaf" rank="200">
 <jaas:module flags="required"
className="org.apache.karaf.jaas.modules.osgi.OsgiConfigLoginModule">
 pid = org.jboss.example.osgiconfigloginmodule
 </jaas:module>
 </jaas:config>

</blueprint>

Red Hat JBoss Fuse 6.3 Security Guide

18

Implementation classes

The following classes implement the JAAS public key login module:

org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule

Implements the JAAS login module.

NOTE

There is no backing engine factory for the public key login module, which means that this
module cannot be managed using the jaas:* console commands.

Options

The JAAS public key login module supports the following options:

users

Location of the user properties file for the public key login module.

Format of the keys properties file

The keys.properties file is used to store username, public key, and role data for the public key login
module. Each user is represented by a single line in the keys properties file, where a line has the following
form:

Where the PublicKey is the public key part of an SSH key pair (typically found in a user's home directory
in ~/.ssh/id_rsa.pub in a UNIX system).

For example, to create the user jdoe with the Administrator role, you would create an entry like the
following:

IMPORTANT

Do not insert the entire contents of the id_rsa.pub file here. Insert just the block of
symbols which represents the public key itself.

User groups can also be defined in this file, where each user group is represented by a single line in the

Username=PublicKey[,UserGroup|Role][,UserGroup|Role]...

jdoe=AAAAB3NzaC1kc3MAAACBAP1/U4EddRIpUt9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1AIlH
7WT2NWPq/xfW6MPbLm1Vs14E7
gB00b/JmYLdrmVClpJ+f6AR7ECLCT7up1/63xhv4O1fnfqimFQ8E+4P208UewwI1VBNaFpEy9nXzrith1y
rv8iIDGZ3RSAHHAAAAFQCX
YFCPFSMLzLKSuYKi64QL8Fgc9QAAAnEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0Hgmd
RWVeOutRZT+ZxBxCBgLRJFnEj6Ewo
FhO3zwkyjMim4TwWeotifI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfBpKL
Zl6Ae1UlZAFMO/7PSSoAAACB
AKKSU2PFl/qOLxIwmBZPPIcJshVe7bVUpFvyl3BbJDow8rXfskl8wO63OzP/qLmcJM0+JbcRU/53Jj7uyk
31drV2qxhIOsLDC9dGCWj4
7Y7TyhPdXh/0dthTRBy6bqGtRPxGa7gJov1xm/UuYYXPIUR/3x9MAZvZ5xvE0kYXO+rx,Administrat
or

CHAPTER 2. SECURING THE CONTAINER

19

User groups can also be defined in this file, where each user group is represented by a single line in the
following format:

Sample Blueprint configuration

The following Blueprint configuration shows how to define a new karaf realm using the public key login
module, where the default karaf realm is overridden by setting the rank attribute to 200:

In this example, the user data will be stored in the file, InstallDir/etc/keys.properties, and it is not
possible to edit the configuration using the jaas:* console commands.

2.1.6. JAAS JDBC Login Module

Overview

The JAAS JDBC login module enables you to store user data in a database back-end, using Java
Database Connectivity (JDBC) to connect to the database. Hence, you can use any database that
supports JDBC to store your user data. To manage the user data, you can use either the native
database client tools or the jaas:* console commands (where the backing engine uses configured SQL
queries to perform the relevant database updates).

You can combine multiple login modules with each login module providing both the authentication and
authorization components. For example, you can combine default PropertiesLoginModule with
JDBCLoginModule to ensure access to the system.

NOTE

User groups are not supported in the JAAS JDBC login module.

Supported credentials

The JAAS JDBC Login Module authenticates username/password credentials, returning the list of roles

g\:GroupName=Role1[,Role2]...

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

<!--Allow usage of System properties, especially the karaf.base property-->
 <ext:property-placeholder
 placeholder-prefix="$[" placeholder-suffix="]"/>

 <jaas:config name="karaf" rank="200">
 <jaas:module flags="required"
className="org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule">
 users = $[karaf.base]/etc/keys.properties
 </jaas:module>
 </jaas:config>

</blueprint>

Red Hat JBoss Fuse 6.3 Security Guide

20

The JAAS JDBC Login Module authenticates username/password credentials, returning the list of roles
associated with the authenticated user.

Implementation classes

The following classes implement the JAAS JDBC Login Module:

org.apache.karaf.jaas.modules.jdbc.JDBCLoginModule

Implements the JAAS login module.

org.apache.karaf.jaas.modules.jdbc.JDBCBackingEngineFactory

Must be exposed as an OSGi service. This service makes it possible for you to manage the user data
using the jaas:* console commands from the Apache Karaf shell (see chapter "JAAS Console
Commands" in "Console Reference").

Options

The JAAS JDBC login module supports the following options:

datasource

The JDBC data source, specified either as an OSGi service or as a JNDI name. You can specify a data
source's OSGi service using the following syntax:

The ServiceInterfaceName is the interface or class that is exported by the data source's OSGi service
(usually javax.sql.DataSource).

Because multiple data sources can be exported as OSGi services in a container, it is usually
necessary to specify a filter, ServicePropertiesFilter, to select the particular data source that you
want. Filters on OSGi services are applied to the service property settings and follow a syntax that is
borrowed from LDAP filter syntax.

query.password

The SQL query that retrieves the user's password. The query can contain a single question mark
character, ?, which is substituted by the username at run time.

query.role

The SQL query that retrieves the user's roles. The query can contain a single question mark
character, ?, which is substituted by the username at run time.

insert.user

The SQL query that creates a new user entry. The query can contain two question marks, ?,
characters: the first question mark is substituted by the username and the second question mark is
substituted by the password at run time.

insert.role

The SQL query that adds a role to a user entry. The query can contain two question marks, ?,
characters: the first question mark is substituted by the username and the second question mark is
substituted by the role at run time.

osgi:ServiceInterfaceName[/ServicePropertiesFilter]

CHAPTER 2. SECURING THE CONTAINER

21

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Console_Reference/Consolejaas.html

delete.user

The SQL query that deletes a user entry. The query can contain a single question mark character, ?,
which is substituted by the username at run time.

delete.role

The SQL query that deletes a role from a user entry. The query can contain two question marks, ?,
characters: the first question mark is substituted by the username and the second question mark is
substituted by the role at run time.

delete.roles

The SQL query that deletes multiple roles from a user entry. The query can contain a single question
mark character, ?, which is substituted by the username at run time.

Example of setting up a JDBC login module

To set up a JDBC login module, perform the following main steps:

1. the section called “Create the database tables”

2. the section called “Create the data source”

3. the section called “Specify the data source as an OSGi service”

Create the database tables

Before you can set up the JDBC login module, you must set up a users table and a roles table in the
backing database to store the user data. For example, the following SQL commands show how to create
a suitable users table and roles table:

The users table stores username/password data and the roles table associates a username with one or
more roles.

Create the data source

To use a JDBC datasource with the JDBC login module, the correct approach to take is to create a data
source instance and export the data source as an OSGi service. The JDBC login module can then
access the data source by referencing the exported OSGi service. For example, you could create a
MySQL data source instance and expose it as an OSGi service (of javax.sql.DataSource type) using
code like the following in a Blueprint file:

CREATE TABLE users (
 username VARCHAR(255) NOT NULL,
 password VARCHAR(255) NOT NULL,
 PRIMARY KEY (username)
);
CREATE TABLE roles (
 username VARCHAR(255) NOT NULL,
 role VARCHAR(255) NOT NULL,
 PRIMARY KEY (username,role)
);

<blueprint xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Red Hat JBoss Fuse 6.3 Security Guide

22

The preceding Blueprint configuration should be packaged and installed in the container as an OSGi
bundle.

Specify the data source as an OSGi service

After the data source has been instantiated and exported as an OSGi service, you are ready to configure
the JDBC login module. In particular, the datasource option of the JDBC login module can reference
the data source's OSGi service using the following syntax:

Where javax.sql.DataSource is the interface type of the exported OSGi service and the filter,
(osgi.jndi.service.name=jdbc/karafdb), selects the particular javax.sql.DataSource instance whose
osgi.jndi.service.name service property has the value, jdbc/karafdb.

For example, you can use the following Blueprint configuration to override the karaf realm with a JDBC
login module that references the sample MySQL data source:

 xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <bean id="mysqlDatasource"
 class="com.mysql.jdbc.jdbc2.optional.MysqlDataSource">
 <property name="serverName" value="localhost"></property>
 <property name="databaseName" value="DBName"></property>
 <property name="port" value="3306"></property>
 <property name="user" value="DBUser"></property>
 <property name="password" value="DBPassword"></property>
 </bean>

 <service id="mysqlDS" interface="javax.sql.DataSource"
 ref="mysqlDatasource">
 <service-properties>
 <entry key="osgi.jndi.service.name" value="jdbc/karafdb"/>
 </service-properties>
 </service>
</blueprint>

osgi:javax.sql.DataSource/(osgi.jndi.service.name=jdbc/karafdb)

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

<!--Allow usage of System properties, especially the karaf.base property-->
 <ext:property-placeholder
 placeholder-prefix="$[" placeholder-suffix="]"/>

 <jaas:config name="karaf" rank="200">
 <jaas:module flags="required"
 className="org.apache.karaf.jaas.modules.jdbc.JDBCLoginModule">
 datasource = osgi:javax.sql.DataSource/(osgi.jndi.service.name=jdbc/karafdb)
 query.password = SELECT password FROM users WHERE username=?
 query.role = SELECT role FROM roles WHERE username=?
 insert.user = INSERT INTO users VALUES(?,?)
 insert.role = INSERT INTO roles VALUES(?,?)
 delete.user = DELETE FROM users WHERE username=?

CHAPTER 2. SECURING THE CONTAINER

23

NOTE

The SQL statements shown in the preceding configuration are in fact the default values
of these options. Hence, if you create user and role tables consistent with these SQL
statements, you could omit the options settings and rely on the defaults.

In addition to creating a JDBCLoginModule, the preceding Blueprint configuration also instantiates and
exports a JDBCBackingEngineFactory instance, which enables you to manage the user data using the
jaas:* console commands.

2.1.7. JAAS LDAP Login Module

Overview

The JAAS LDAP login module enables you to store user data in an LDAP database. To manage the
stored user data, use a standard LDAP client tool. The jaas:* console commands are not supported.

For more details about using LDAP with Red Hat JBoss Fuse see Chapter 9, LDAP Authentication
Tutorial.

NOTE

User groups are not supported in the JAAS LDAP login module.

IMPORTANT

In a Fuse Fabric, the Zookeeper login module must always be enabled. Hence, if you want
to enable the LDAP login module in a Fabric, both the Zookeeper login module and the
LDAP login module must be enabled. See Section 9.4, “Enable LDAP Authentication in
the OSGi Container” for details.

Supported credentials

The JAAS LDAP Login Module authenticates username/password credentials, returning the list of roles
associated with the authenticated user.

Implementation classes

The following classes implement the JAAS LDAP Login Module:

org.apache.karaf.jaas.modules.ldap.LDAPLoginModule

Implements the JAAS login module. It is preloaded in the container, so you do not need to install its

 delete.role = DELETE FROM roles WHERE username=? AND role=?
 delete.roles = DELETE FROM roles WHERE username=?
 </jaas:module>
 </jaas:config>

 <!-- The Backing Engine Factory Service for the JDBCLoginModule -->
 <service interface="org.apache.karaf.jaas.modules.BackingEngineFactory">
 <bean class="org.apache.karaf.jaas.modules.jdbc.JDBCBackingEngineFactory"/>
 </service>

</blueprint>

Red Hat JBoss Fuse 6.3 Security Guide

24

Implements the JAAS login module. It is preloaded in the container, so you do not need to install its
bundle.

NOTE

There is no backing engine factory for the LDAP Login Module, which means that this
module cannot be managed using the jaas:* console commands.

Options

The JAAS LDAP login module supports the following options:

authentication

Specifies the authentication method used when binding to the LDAP server. Valid values are

simple—bind with user name and password authentication, requiring you to set the
connection.username and connection.password properties.

none—bind anonymously. In this case the connection.username and connection.password
properties can be left unassigned.

NOTE

The connection to the directory server is used only for performing searches. In this
case, an anonymous bind is often preferred, because it is faster than an authenticated
bind (but you would also need to ensure that the directory server is sufficiently
protected, for example by deploying it behind a firewall).

connection.url

Specifies specify the location of the directory server using an ldap URL, ldap://Host:Port. You can
optionally qualify this URL, by adding a forward slash, /, followed by the DN of a particular node in the
directory tree. To enable SSL security on the connection, you need to specify the ldaps: scheme in
the URL—for example, ldaps://Host:Port. You can also specify multiple URLs, as a space-separated
list, for example:

connection.username

Specifies the DN of the user that opens the connection to the directory server. For example,
uid=admin,ou=system.

connection.password

Specifies the password that matches the DN from connection.username. In the directory server, the
password is normally stored as a userPassword attribute in the corresponding directory entry.

context.com.sun.jndi.ldap.connect.pool

If true, enables connection pooling for LDAP connections. Default is false.

context.com.sun.jndi.ldap.connect.timeout

Specifies the timeout for creating a TCP connection to the LDAP server, in units of milliseconds. We

connection.url=ldap://10.0.0.153:2389 ldap://10.10.178.20:389

CHAPTER 2. SECURING THE CONTAINER

25

Specifies the timeout for creating a TCP connection to the LDAP server, in units of milliseconds. We
recommend that you set this property explicitly, because the default value is infinite, which can result
in a hung connection attempt.

context.com.sun.jndi.ldap.read.timeout

Specifies the read timeout for an LDAP operation, in units of milliseconds. We recommend that you
set this property explicitly, because the default value is infinite.

context.java.naming.referral

An LDAP referral is a form of indirection supported by some LDAP servers. The LDAP referral is an
entry in the LDAP server which contains one or more URLs (usually referencing a node or nodes in
another LDAP server). The context.java.naming.referral property can be used to enable or disable
referral following. It can be set to one of the following values:

follow to follow the referrals (assuming it is supported by the LDAP server),

ignore to silently ignore all referrals,

throw to throw a PartialResultException whenever a referral is encountered.

disableCache

The user and role caches can be disabled by setting this property to true. Default is false.

initial.context.factory

Specifies the class of the context factory used to connect to the LDAP server. This must always be
set to com.sun.jndi.ldap.LdapCtxFactory.

role.base.dn

Specifies the DN of the subtree of the DIT to search for role entries. For example,
ou=groups,ou=system.

role.filter

Specifies the LDAP search filter used to locate roles. It is applied to the subtree selected by
role.base.dn. For example, (member=uid=%u). Before being passed to the LDAP search operation,
the value is subjected to string substitution, as follows:

%u is replaced by the user name extracted from the incoming credentials, and

%dn is replaced by the RDN of the corresponding user in the LDAP server (which was found
by matching against the user.filter filter).

%fqdn is replaced by the DN of the corresponding user in the LDAP server (which was
found by matching against the user.filter filter).

role.mapping

Specifies the mapping between LDAP groups and JAAS roles. If no mapping is specified, the default
mapping is for each LDAP group to map to the corresponding JAAS role of the same name. The role
mapping is specified with the following syntax:

Where each LDAP group, ldap-group, is specified by its Common Name (CN). Note that the

ldap-group=jaas-role(,jaas-role)*(;ldap-group=jaas-role(,jaas-role)*)*

Red Hat JBoss Fuse 6.3 Security Guide

26

Where each LDAP group, ldap-group, is specified by its Common Name (CN). Note that the
role.mapping option must be set to a non-empty value.

For example, given the LDAP groups, admin, devop, and tester, you could map them to JAAS roles,
as follows:

Since JBoss Fuse 6.3.0 R4, it is also possible to specify an LDAP group using its full Distinguished
Name (DN). For example:

role.name.attribute

Specifies the attribute type of the role entry that contains the name of the role/group. If you omit
this option, the role search feature is effectively disabled. For example, cn.

role.search.subtree

Specifies whether the role entry search scope includes the subtrees of the tree selected by
role.base.dn. If true, the role lookup is recursive (SUBTREE). If false, the role lookup is performed
only at the first level (ONELEVEL).

ssl

Specifies whether the connection to the LDAP server is secured using SSL. If connection.url starts
with ldaps:// SSL is used regardless of this property.

ssl.provider

Specifies the SSL provider to use for the LDAP connection. If not specified, the default SSL
provider is used.

ssl.protocol

Specifies the protocol to use for the SSL connection. You must set this property to TLSv1, in order
to prevent the SSLv3 protocol from being used (POODLE vulnerability).

ssl.algorithm

Specifies the algorithm used by the trust store manager. For example, PKIX.

ssl.keystore

The ID of the keystore that stores the LDAP client's own X.509 certificate (required only if SSL client
authentication is enabled on the LDAP server). The keystore must be deployed using a
jaas:keystore element (see the section called “Sample configuration for Apache DS”).

ssl.keyalias

The keystore alias of the LDAP client's own X.509 certificate (required only if there is more than one
certificate stored in the keystore specified by ssl.keystore).

ssl.truststore

The ID of the keystore that stores trusted CA certificates, which are used to verify the LDAP server's

role.mapping=admin=Administrator;devop=Administrator,Deployer;tester=Monitor

role.mapping=cn=admin,ou=groups,dc=example,dc=org=Administrator;cn=admin,ou=otherGroups,d
c=example,dc=org=Administrator,Deployer

CHAPTER 2. SECURING THE CONTAINER

27

The ID of the keystore that stores trusted CA certificates, which are used to verify the LDAP server's
certificate (the LDAP server's certificate chain must be signed by one of the certificates in the
truststore). The keystore must be deployed using a jaas:keystore element.

user.base.dn

Specifies the DN of the subtree of the DIT to search for user entries. For example,
ou=users,ou=system.

user.filter

Specifies the LDAP search filter used to locate user credentials. It is applied to the subtree selected
by user.base.dn. For example, (uid=%u). Before being passed to the LDAP search operation, the
value is subjected to string substitution, as follows:

%u is replaced by the user name extracted from the incoming credentials.

user.search.subtree

Specifies whether the user entry search scope includes the subtrees of the tree selected by
user.base.dn. If true, the user lookup is recursive (SUBTREE). If false, the user lookup is performed
only at the first level (ONELEVEL).

Sample configuration for Apache DS

The following Blueprint configuration shows how to define a new karaf realm using the LDAP login
module, where the default karaf realm is overridden by setting the rank attribute to 200, and the LDAP
login module connects to an Apache Directory Server:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <jaas:config name="karaf" rank="100">

 <jaas:module className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
flags="sufficient">
 debug=true

 <!-- LDAP Configuration -->
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
<!-- multiple LDAP servers can be specified as a space separated list of URLs -->
 connection.url=ldap://10.0.0.153:2389 ldap://10.10.178.20:389

<!-- authentication=none -->
 authentication=simple
 connection.username=cn=Directory Manager
 connection.password=directory

 <!-- User Info -->
 user.base.dn=dc=redhat,dc=com
 user.filter=(&(objectClass=InetOrgPerson)(uid=%u))
 user.search.subtree=true

Red Hat JBoss Fuse 6.3 Security Guide

28

NOTE

In order to enable SSL, you must remember to use the ldaps scheme in the
connection.url setting.

IMPORTANT

 <!-- Role/Group Info-->
 role.base.dn=dc=redhat,dc=com
 role.name.attribute=cn
<!--
 The 'dc=redhat,dc=com' used in the role.filter
 below is the user.base.dn.
-->
<!-- role.filter=(uniquemember=%dn,dc=redhat,dc=com) -->
 role.filter=(&(objectClass=GroupOfUniqueNames)(UniqueMember=%fqdn))
 role.search.subtree=true

<!-- role mappings - a ';' separated list -->
 role.mapping=JBossAdmin=admin;JBossMonitor=Monitor,viewer

<!-- LDAP context properties -->
 context.com.sun.jndi.ldap.connect.timeout=5000
 context.com.sun.jndi.ldap.read.timeout=5000

<!-- LDAP connection pooling -->
<!-- http://docs.oracle.com/javase/jndi/tutorial/ldap/connect/pool.html -->
<!-- http://docs.oracle.com/javase/jndi/tutorial/ldap/connect/config.html -->
 context.com.sun.jndi.ldap.connect.pool=true

<!-- How are LDAP referrals handled?

 Can be `follow`, `ignore` or `throw`. Configuring `follow` may not work on all LDAP servers,
`ignore` will
 silently ignore all referrals, while `throw` will throw a partial results exception if there is a referral.
-->
 context.java.naming.referral=ignore

<!-- SSL configuration -->
 ssl=false
 ssl.protocol=SSL
<!-- matches the keystore/truststore configured below -->
 ssl.truststore=ks
 ssl.algorithm=PKIX
<!-- The User and Role caches can be disabled - 6.3.0 179 and later -->
 disableCache=true
 </jaas:module>
 </jaas:config>

 <!-- Location of the SSL truststore/keystore
 <jaas:keystore name="ks" path="file:///${karaf.home}/etc/ldap.truststore"
keystorePassword="XXXXXX" />
-->
</blueprint>

CHAPTER 2. SECURING THE CONTAINER

29

IMPORTANT

You must set ssl.protocol to TLSv1, in order to protect against the Poodle vulnerability
(CVE-2014-3566)

Filter settings for different directory servers

The most significant differences between directory servers arise in connection with setting the filter
options in the LDAP login module. The precise settings depend ultimately on the organisation of your
DIT, but the following table gives an idea of the typical role filter settings required for different directory
servers:

Directory Server Typical Filter Settings

389-DS

Red Hat DS

MS Active Directory

Apache DS

OpenLDAP

NOTE

In the preceding table, the & symbol (representing the logical And operator) is escaped
as & because the option settings will be embedded in a Blueprint XML file.

2.1.8. Encrypting Stored Passwords

Overview

By default, the JAAS login modules store passwords in plaintext format. Although you can (and should)
protect such data by setting file permissions appropriately, you can provide additional protection to
passwords by storing them in an obscured format (using a message digest algorithm).

Red Hat JBoss Fuse provides a set of options for enabling password encryption, which can be combined
with any of the JAAS login modules (except the public key login module, where it is not needed).

IMPORTANT

user.filter=(&
(objectClass=InetOrgPerson)(uid=%u))
role.filter=(uniquemember=%fqdn)

user.filter=(&(objectCategory=person)
(samAccountName=%u))
role.filter=(uniquemember=%fqdn)

user.filter=(uid=%u)
role.filter=(member=uid=%u)

user.filter=(uid=%u)
role.filter=(member:=uid=%u)

Red Hat JBoss Fuse 6.3 Security Guide

30

https://access.redhat.com/articles/1232123

IMPORTANT

Although message digest algorithms are difficult to crack, they are not invulnerable to
attack (for example, see the Wikipedia article on cryptographic hash functions). Always
use file permissions to protect files containing passwords, in addition to using password
encryption.

Options

You can optionally enable password encryption for JAAS login modules by setting the following login
module properties. To do so, either edit the InstallDir/etc/org.apache.karaf.jaas.cfg file or deploy your
own blueprint file as described in the section called “Example of a login module with Jasypt encryption” .

encryption.enabled

Set to true, to enable password encryption.

encryption.name

Name of the encryption service, which has been registered as an OSGi service.

encryption.prefix

Prefix for encrypted passwords.

encryption.suffix

Suffix for encrypted passwords.

encryption.algorithm

Specifies the name of the encryption algorithm—for example, MD5 or SHA-1. You can specify one of
the following encryption algorithms:

MD2

MD5

SHA-1

SHA-256

SHA-384

SHA-512

encryption.encoding

Encrypted passwords encoding: hexadecimal or base64.

encryption.providerName (Jasypt only)

Name of the java.security.Provider instance that is to provide the digest algorithm.

encryption.providerClassName (Jasypt only)

Class name of the security provider that is to provide the digest algorithm

encryption.iterations (Jasypt only)

CHAPTER 2. SECURING THE CONTAINER

31

http://en.wikipedia.org/wiki/Cryptographic_hash_function

Number of times to apply the hash function recursively.

encryption.saltSizeBytes (Jasypt only)

Size of the salt used to compute the digest.

encryption.saltGeneratorClassName (Jasypt only)

Class name of the salt generator.

role.policy

Specifies the policy for identifying role principals. Can have the values, prefix or group.

role.discriminator

Specifies the discriminator value to be used by the role policy.

Encryption services

There are two encryption services provided by JBoss Fuse:

encryption.name = basic, described in the section called “Basic encryption service” ,

encryption.name = jasypt, described in the section called “Jasypt encryption” .

You can also create your own encryption service. To do so, you need to:

implement interface org.apache.karaf.jaas.modules.EncryptionService

and expose your implementation as OSGI service.

Following listing shows, how jasypt encryption service is exposed to OSGI container.

Basic encryption service

The basic encryption service is installed in the standalone container by default and you can reference it
by setting the encryption.name property to the value, basic. In the basic encryption service, the
message digest algorithms are provided by the SUN security provider (the default security provider in
the Oracle JDK).

Jasypt encryption

By default, the Jasypt encryption service is installed on standalone JBoss Fuse, but not on standalone

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <service interface="org.apache.karaf.jaas.modules.EncryptionService">
 <service-properties>
 <entry key="name" value="jasypt" />
 </service-properties>
 <bean class="org.apache.karaf.jaas.jasypt.impl.JasyptEncryptionService"/>
 </service>
 ...
</blueprint>

Red Hat JBoss Fuse 6.3 Security Guide

32

http://docs.oracle.com/javase/6/docs/technotes/guides/security/SunProviders.html#SUNProvider

By default, the Jasypt encryption service is installed on standalone JBoss Fuse, but not on standalone
JBoss A-MQ. To install it on JBoss A-MQ, install the jasypt-encryption feature, using the following
console command:

This command installs the requisite Jasypt bundles and exports Jasypt encryption as an OSGi service,
so that it is available for use by JAAS login modules. To access the Jasypt encryption service, set the
encryption.name property to the value, jasypt.

For more information about Jasypt encryption, see the Jasypt documentation.

Example of a login module with Jasypt encryption

Assuming that you have already installed the jasypt-encryption feature, you could deploy a properties
login module with Jasypt encryption using the following Blueprint configuration:

JBossA-MQ:karaf@root> features:install jasypt-encryption

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <type-converters>
 <bean class="org.apache.karaf.jaas.modules.properties.PropertiesConverter"/>
 </type-converters>

<!--Allow usage of System properties, especially the karaf.base property-->
 <ext:property-placeholder
 placeholder-prefix="$[" placeholder-suffix="]"/>

 <jaas:config name="karaf" rank="200">
 <jaas:module flags="required"
className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule">
 users = $[karaf.base]/etc/users.properties
 encryption.enabled = true
 encryption.name = jasypt
 encryption.algorithm = SHA-256
 encryption.encoding = base64
 encryption.iterations = 100000
 encryption.saltSizeBytes = 16
 encryption.prefix = {CRYPT}
 encryption.suffix = {CRYPT}
 </jaas:module>
 </jaas:config>

 <!-- The Backing Engine Factory Service for the PropertiesLoginModule -->
 <service interface="org.apache.karaf.jaas.modules.BackingEngineFactory">
 <bean class="org.apache.karaf.jaas.modules.properties.PropertiesBackingEngineFactory"/>
 </service>

 <!-- Enable automatic encryption of all user passwords
 in InstallDir/etc/users.properties file.
 No login required to activate.
 Encrypted passwords appear in the

CHAPTER 2. SECURING THE CONTAINER

33

http://www.jasypt.org/general-usage.html

2.2. ROLE-BASED ACCESS CONTROL

Abstract

This section describes the role-based access control (RBAC) feature, which is enabled by default in the
JBoss Fuse container. You can immediately start taking advantage of the RBAC feature, simply by
adding one of the standard roles (such as Deployer or Administrator) to a user's credentials. For more
advanced usage, you have the option of customizing the access control lists, in order to control exactly
what each role can do. Finally, you have the option of applying custom ACLs to your own OSGi services.

2.2.1. Overview of Role-Based Access Control

Overview

By default, the JBoss Fuse role-based access control protects access through the Fuse Management
Console, JMX connections, and the Karaf command console. To use the default levels of access control,
simply add any of the standard roles to your user authentication data (for example, by editing the
etc/users.properties file). You also have the option of customizing access control, by editing the
relevant Access Control List (ACL) files.

Mechanisms

Role-based access control in JBoss Fuse is based on the following mechanisms:

JMX Guard

The JBoss Fuse container is configured with a JMX guard, which intercepts every incoming JMX
invocation and filters the invocation through the configured JMX access control lists. The JMX
guard is configured at the JVM level, so it intercepts every JMX invocation, without exception.

 InstallDir/etc/users.properties file as values enclosed
 by {CRYPT}...{CRYPT} prefix/suffix pairs -->

 <bean init-method="init" destroy-method="destroy"
class="org.apache.karaf.jaas.modules.properties.AutoEncryptionSupport">
 <argument>
 <map>
 <entry key="org.osgi.framework.BundleContext"
 value-ref="blueprintBundleContext"/>
 <entry key="users" value="$[karaf.base]/etc/users.properties"/>
 <entry key="encryption.name" value="jasypt"/>
 <entry key="encryption.enabled" value="true"/>
 <entry key="encryption.prefix" value="{CRYPT}"/>
 <entry key="encryption.suffix" value="{CRYPT}"/>
 <entry key="encryption.algorithm" value="SHA-256"/>
 <entry key="encryption.encoding" value="base64"/>
 <entry key="encryption.iterations" value="100000"/>
 <entry key="encryption.saltSizeBytes" value="16"/>
 </map>
 </argument>
 </bean>

</blueprint>

Red Hat JBoss Fuse 6.3 Security Guide

34

OSGi Service Guard

For any OSGi service, it is possible to configure an OSGi service guard. The OSGi service guard is
implemented as a proxy object, which interposes itself between the client and the original OSGi
service. An OSGi service guard must be explicitly configured for each OSGi service: it is not installed
by default (except for the OSGi services that represent Karaf console commands, which are
preconfigured for you).

NOTE

If you change the configuration of RBAC, the changes propagation to Hawtio may take
up to 10 minutes due to cache update.

Types of protection

The JBoss Fuse implementation of role-based access control is capable of providing the following types
of protection:

Fuse Management Console (Hawtio)

Container access through the Fuse Management Console (Hawtio) is controlled by the JMX ACL
files. The REST/HTTP service that provides the Fuse Management Console is implemented using
Jolokia technology, which is layered above JMX. Hence, ultimately, all Fuse Management Console
invocations pass through JMX and are regulated by JMX ACLs.

JMX

Direct access to the container's JMX port is regulated by the JMX ACLs. Moreover, any additional
JMX ports opened by an application running in the container would also be regulated by the JMX
ACLs, because the JMX guard is set at the JVM level.

Karaf command console

Access to the Karaf command console is regulated by the command console ACL files. Access
control is applied no matter how the Karaf console is accessed. Whether accessing the command
console through the Fuse Management Console or through the SSH protocol, access control is
applied in both cases.

NOTE

In the special case where you start up the container directly at the command line (for
example, using the ./bin/fuse script) and no user authentication is performed, you
automatically get the roles specified by the karaf.local.roles property in the
etc/system.properties file.

OSGi services

For any OSGi service deployed in the container, you can optionally enable an ACL file, which restricts
method invocations to specific roles.

Adding roles to users

In the system of role-based access control, you can give users permissions by adding roles to their user
authentication data. For example, the following entry in the etc/users.properties file defines the admin
user and grants the Administrator and SuperUser roles.

CHAPTER 2. SECURING THE CONTAINER

35

You also have the option of defining user groups and then assigning users to a particular user group. For
example, you could define and use an admingroup user group as follows:

NOTE

User groups are not supported by every type of JAAS login module.

Standard roles

Table 2.2, “Standard Roles for Access Control” lists and describes the standard roles that are used
throughout the JMX ACLs and the command console ACLs.

Table 2.2. Standard Roles for Access Control

Roles Description

Monitor, Operator, Maintainer Grants read-only access to the container.

Deployer, Auditor Grants read-write access at the appropriate level for
ordinary users, who want to deploy and run
applications. But blocks access to sensitive container
configuration settings.

Administrator, SuperUser Grants unrestricted access to the container.

ACL files

The standard set of ACL files are located under the etc/auth/ directory of the JBoss Fuse installation, as
follows:

etc/auth/jmx.acl[.*].cfg

JMX ACL files.

etc/auth/org.apache.karaf.command.acl.*.cfg

Command console ACL files.

Customizing role-based access control

A complete set of JMX ACL files and command console ACL files are provided by default. You are free
to customize these ACLs as required to suit the requirements of your system.

You can create custom roles by editing the ACL files that are located under the etc/auth/ directory of
the JBoss Fuse installation. For more information see Customizing the JMX ACLs and Customizing the
Command Console ACLs

admin = secretpass,Administrator,SuperUser

admin = secretpass, _g_:admingroup

g\:admingroup = Administrator, SuperUser

Red Hat JBoss Fuse 6.3 Security Guide

36

https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.3/html/security_guide/esbsecurecontainer#RBAC-JMX
https://access.redhat.com/documentation/en-us/red_hat_jboss_fuse/6.3/html/security_guide/esbsecurecontainer#RBAC-Command

Customizing ACLs in a fabric environment

In a standalone enviroment, you can assign the custom roles by editing the ACL files. This process does
not work in a fabric enviroment as the ACL files in /etc/auth are over-written by the content stored in
profiles. Hence, to assign custom roles in a fabric environment, you can add ACL assignments to the acl
profile or jboss-fuse-full profile. For example,

Additional properties for controlling access

The system.properties file under the etc directory provides the following additional properties for
controlling access through the Karaf command console and the Fuse Management Console (Hawtio):

karaf.local.roles

Specifies the roles that apply when a user starts up the container console locally (for example, by
running the ./bin/fuse script).

hawtio.roles

Specifies the roles that are allowed to access the container through the Fuse Management Console.
This constraint is applied in addition to the access control defined by the JMX ACL files.

karaf.secured.command.compulsory.roles

Specifies the default roles required to invoke a Karaf console command, in case the console
command is not configured explicitly by a command ACL file,
etc/auth/org.apache.karaf.command.acl.*.cfg. A user must be configured with at least one of the
roles from the list in order to invoke the command. The value is specified as a comma-separated list
of roles.

2.2.2. Customizing the JMX ACLs

Overview

The JMX ACLs are stored in the OSGi Config Admin Service and are normally accessible as the files,
etc/auth/jmx.acl.*.cfg. This section explains how you can customize the JMX ACLs by editing these files
yourself.

Architecture

Figure 2.1, “Access Control Mechanism for JMX” shows an overview of the role-based access control
mechanism for JMX connections to the JBoss Fuse container.

Figure 2.1. Access Control Mechanism for JMX

fabric:profile-edit --pid org.apache.karaf.command.acl.fabric/container-start="Deployer, Auditor,
Administrator, SuperUser, admin, MyCustomRoleForStartingContainer" acls

CHAPTER 2. SECURING THE CONTAINER

37

Figure 2.1. Access Control Mechanism for JMX

How it works

JMX access control works by inserting a JMX Guard, which is configured through a JVM-wide
MBeanServerBuilder object. The Apache Karaf launching scripts have been modified to include the
following setting:

JMX access control is now applied as follows:

1. For every non-local JMX invocation, the JVM-wide MBeanServerBuilder calls into an OSGi
bundle that contains the JMX Guard.

2. The JMX Guard looks up the relevant ACL for the MBean the user is trying to access (where the
ACLs are stored in the OSGi Config Admin service).

3. The ACL returns the list of roles that are allowed to make this particular invocation on the
MBean.

4. The JMX Guard checks the list of roles against the current security subject (the user that is
making the JMX invocation), to see whether the current user has any of the required roles.

5. If no matching role is found, the JMX invocation is blocked and a java.lang.SecurityException
is raised.

Location of JMX ACL files

The JMX ACL files are located in the InstallDir/etc/auth directory, where the ACL file names obey the
following convention:

Technically, the ACLs are mapped to OSGi persistent IDs (PIDs), matching the pattern, jmx.acl[.*]. It

-Djavax.management.builder.initial=org.apache.karaf.management.boot.KarafMBeanServerBuilder

etc/auth/jmx.acl[.*].cfg

Red Hat JBoss Fuse 6.3 Security Guide

38

Technically, the ACLs are mapped to OSGi persistent IDs (PIDs), matching the pattern, jmx.acl[.*]. It
just so happens that the standalone container stores OSGi PIDs as files, PID.cfg, under the etc/
directory by default.

Mapping MBeans to ACL file names

The JMX Guard applies access control to every MBean class that is accessed through JMX (including
any MBeans you define in your own application code). The ACL file for a specific MBean class is derived
from the MBean's Object Name, by prefixing it with jmx.acl. For example, given the MBean whose
Object Name is given by org.apache.activemq:type=Broker, the corresponding PID would be:

In the case of a standalone container, the OSGi Config Admin service stores this PID data in the
following file:

ACL file format

Each line of a JMX ACL file is an entry in the following format:

Where Pattern is a pattern that matches a method invocation on an MBean, and the right-hand side of
the equals sign is a comma-separated list of roles that give a user permission to make that invocation. In
the simplest cases, the Pattern is simply a method name. For example, as in the following settings for
the org.apache.activemq.Broker MBean (from the jmx.acl.org.apache.activemq.Broker.cfg file):

It is also possible to use the wildcard character, *, to match multiple method names. For example, the
following entry gives permission to invoke all method names starting with set:

But the ACL syntax is also capable of defining much more fine-grained control of method invocations.
You can define patterns to match methods invoked with specific arguments or even arguments that
match a regular expression. For example, the ACL for the org.apache.karaf.config MBean package
exploits this capability to prevent ordinary users from modifying sensitive configuration settings. The
create method from this package is restricted, as follows:

In this case, the Deployer and Auditor roles generally have permission to invoke the create method, but
only the Administrator and SuperUser roles have permission to invoke create with a PID argument
matching jmx.acl.*, org.apache.karaf.command.acl.*, or org.apache.karaf.service.*.

jmx.acl.org.apache.activemq.Broker

etc/auth/jmx.acl.org.apache.activemq.Broker.cfg

Pattern = Role1[,Role2][,Role3]...

addConnector = Deployer, Auditor, Administrator, SuperUser
removeConnector = Deployer, Auditor, Administrator, SuperUser
enableStatistics = Deployer, Auditor, Administrator, SuperUser
addNetworkConnector = Deployer, Auditor, Administrator, SuperUser

set* = Deployer, Auditor, Administrator, SuperUser

create(java.lang.String)[/jmx[.]acl.*/] = Administrator, SuperUser
create(java.lang.String)[/org[.]apache[.]karaf[.]command[.]acl.+/] = Administrator, SuperUser
create(java.lang.String)[/org[.]apache[.]karaf[.]service[.]acl.+/] = Administrator, SuperUser
create(java.lang.String) = Deployer, Auditor, Administrator, SuperUser

CHAPTER 2. SECURING THE CONTAINER

39

For complete details of the ACL file format, please see the comments in the etc/auth/jmx.acl.cfg file.

ACL file hierarchy

Because it is often impractical to provide an ACL file for every single MBean, you have the option of
specifying an ACL file at the level of a Java package, which provides default settings for all of the
MBeans in that package. For example, the org.apache.activemq.Broker MBean could be affected by
ACL settings at any of the following PID levels:

Where the most specific PID (top of the list) takes precedence over the least specific PID (bottom of
the list).

Root ACL definitions

The root ACL file, jmx.acl.cfg, is a special case, because it supplies the default ACL settings for all
MBeans. The root ACL has the following settings by default:

This implies that the typical read method patterns (list*, get*, is*) are accessible to all standard roles,
but the typical write method patterns and other methods (set* and *) are accessible only to the
administrator roles, admin, Administrator, SuperUser.

Package ACL definitions

Many of the standard JMX ACL files provided in etc/auth/jmx.acl[.*].cfg apply to MBean packages. For
example, the ACL for the org.apache.camel.endpoints MBean package is defined with the following
permissions:

ACL for custom MBeans

If you define custom MBeans in your own application, these custom MBeans are automatically
integrated with the ACL mechanism and protected by the JMX Guard when you deploy them into the
container. By default, however, your MBeans are typically protected only by the default root ACL file,
jmx.acl.cfg. If you want to define a more fine-grained ACL for your MBean, create a new ACL file under
etc/auth, using the standard JMX ACL file naming convention.

For example, if your custom MBean class has the JMX Object Name, org.example:type=MyMBean,
create a new ACL file under the etc/auth directory called:

jmx.acl.org.apache.activemq.Broker
jmx.acl.org.apache.activemq
jmx.acl.org.apache
jmx.acl.org
jmx.acl

list* = viewer, Monitor, Operator, Maintainer,Deployer, Auditor, Administrator, SuperUser
get* = viewer, Monitor, Operator, Maintainer,Deployer, Auditor, Administrator, SuperUser
is* = viewer, Monitor, Operator, Maintainer,Deployer, Auditor, Administrator, SuperUser
set* = admin, Administrator, SuperUser
* = admin, Administrator, SuperUser

is* = Monitor, Operator, Maintainer, Deployer, Auditor, Administrator, SuperUser
get* = Monitor, Operator, Maintainer, Deployer, Auditor, Administrator, SuperUser
set* = Deployer, Auditor, Administrator, SuperUser

Red Hat JBoss Fuse 6.3 Security Guide

40

Dynamic configuration at run time

Because the OSGi Config Admin service is dynamic, you can change ACL settings while the system is
running, and even while a particular user is logged on. Hence, if you discover a security breach while the
system is running, you can immediately restrict access to certain parts of the system by editing the
relevant ACL file, without having to restart the container.

2.2.3. Customizing the Command Console ACLs

Overview

The command console ACLs are stored in the OSGi Config Admin Service and are normally accessible
as the files, etc/auth/org.apache.karaf.command.acl.*.cfg. This section explains how you can
customize the command console ACLs by editing these files yourself.

Architecture

Figure 2.2, “Access Control Mechanism for OSGi Services” shows an overview of the role-based access
control mechanism for OSGi services in the JBoss Fuse container.

Figure 2.2. Access Control Mechanism for OSGi Services

How it works

The mechanism for command console access control is, in fact, based on the generic access control
mechanism for OSGi services. It so happens that console commands are implemented and exposed as
OSGi services. The Karaf console itself discovers the available commands through the OSGi service
registry and accesses the commands as OSGi services. Hence, the access control mechanism for OSGi
services can be used to control access to console commands.

The mechanism for securing OSGi services is based on OSGi Service Registry Hooks. This is an
advanced OSGi feature that makes it possible to hide OSGi services from certain consumers and to
replace an OSGi service with a proxy service.

When a service guard is in place for a particular OSGi service, a client invocation on the OSGi service
proceeds as follows:

1. The invocation does not go directly to the requested OSGi service. Instead, the request is

jmx.acl.org.example.MyMBean.cfg

CHAPTER 2. SECURING THE CONTAINER

41

1. The invocation does not go directly to the requested OSGi service. Instead, the request is
routed to a replacement proxy service, which has the same service properties as the original
service (and some extra ones).

2. The service guard looks up the relevant ACL for the target OSGi service (where the ACLs are
stored in the OSGi Config Admin service).

3. The ACL returns the list of roles that are allowed to make this particular method invocation on
the service.

4. If no ACL is found for this command, the service guard defaults to the list of roles specified in
the karaf.secured.command.compulsory.roles property in the etc/system.properties file.

5. The service guard checks the list of roles against the current security subject (the user that is
making the method invocation), to see whether the current user has any of the required roles.

6. If no matching role is found, the method invocation is blocked and a
java.lang.SecurityException is raised.

7. Alternatively, if a matching role is found, the method invocation is delegated to the original OSGi
service.

Configuring default security roles

For any commands that do not have a corresponding ACL file, you specify a default list of security roles
by setting the karaf.secured.command.compulsory.roles property in the etc/system.properties file
(specified as a comma-separated list of roles).

Location of command console ACL files

The command console ACL files are located in the InstallDir/etc/auth directory, with the prefix,
org.apache.karaf.command.acl.

Mapping command scopes to ACL file names

The command console ACL file names obey the following convention:

Where the CommandScope corresponds to the prefix for a particular group of Karaf console
commands. For example, the features:install and features:uninstall commands belong to the features
command scope, which has the corresponding ACL file, org.apache.karaf.command.acl.features.cfg.

ACL file format

Each line of a command console ACL file is an entry in the following format:

Where Pattern is a pattern that matches a Karaf console command from the current command scope,
and the right-hand side of the equals sign is a comma-separated list of roles that give a user permission
to make that invocation. In the simplest cases, the Pattern is simply an unscoped command name. For
example, the org.apache.karaf.command.acl.features.cfg ACL file includes the following rules for the
features commands:

etc/auth/org.apache.karaf.command.acl.CommandScope.cfg

Pattern = Role1[,Role2][,Role3]...

Red Hat JBoss Fuse 6.3 Security Guide

42

IMPORTANT

If no match is found for a specific command name, it is assumed that no role is required
for this command and it can be invoked by any user.

You can also define patterns to match commands invoked with specific arguments or even arguments
that match a regular expression. For example, the org.apache.karaf.command.acl.osgi.cfg ACL file
exploits this capability to prevent ordinary users from invoking the osgi:start and osgi:stop commands
with the -f (force) flag (which must be specified to manage system bundles). This restriction is coded as
follows in the ACL file:

In this case, the Deployer and Auditor roles generally have permission to invoke the osgi:start and
osgi:stop commands, but only the Administrator and SuperUser roles have permission to invoke these
commands with the force option, -f.

For complete details of the ACL file format, please see the comments in the
etc/auth/org.apache.karaf.command.acl.osgi.cfg file.

Dynamic configuration at run time

The command console ACL settings are fully dynamic, which means you can change the ACL settings
while the system is running and the changes will take effect within a few seconds, even for users that are
already logged on.

2.2.4. Defining ACLs for OSGi Services

Overview

It is possible to define a custom ACL for any OSGi service (whether system level or application level). By
default, OSGi services do not have access control enabled (with the exception of the OSGi services that
expose Karaf console commands, which are pre-configured with command console ACL files). This
section explains how to define a custom ACL for an OSGi service and how to invoke methods on that
service using a specified role.

ACL file format

An OSGi service ACL file has one special entry, which identifies the OSGi service to which this ACL
applies, as follows:

Where the value of service.guard is an LDAP search filter that is applied to the registry of OSGi service

list = Monitor, Operator, Maintainer, Deployer, Auditor, Administrator, SuperUser
listRepositories = Monitor, Operator, Maintainer, Deployer, Auditor, Administrator, SuperUser
listUrl = Monitor, Operator, Maintainer, Deployer, Auditor, Administrator, SuperUser
info = Monitor, Operator, Maintainer, Deployer, Auditor, Administrator, SuperUser
install = Administrator,SuperUser
uninstall = Administrator,SuperUser

start[/.*[-][f].*/] = Administrator, SuperUser
start = Deployer, Auditor, Administrator, SuperUser
stop[/.*[-][f].*/] = Administrator, SuperUser
stop = Deployer, Auditor, Administrator, SuperUser

service.guard = (objectClass=InterfaceName)

CHAPTER 2. SECURING THE CONTAINER

43

Where the value of service.guard is an LDAP search filter that is applied to the registry of OSGi service
properties in order to pick out the matching OSGi service. The simplest type of filter,
(objectClass=InterfaceName), picks out an OSGi service with the specified Java interface name,
InterfaceName.

The remaining entries in the ACL file are of the following form:

Where Pattern is a pattern that matches a service method, and the right-hand side of the equals sign is a
comma-separated list of roles that give a user permission to make that invocation. The syntax of these
entries is essentially the same as the entries in a JMX ACL file—see the section called “ACL file format” .

How to define an ACL for a custom OSGi service

To define an ACL for a custom OSGi service, perform the following steps:

1. It is customary to define an OSGi service using a Java interface (you could use a regular Java
class, but this is not recommended). For example, consider the Java interface, MyService, which
we intend to expose as an OSGi service:

2. To expose the Java interface as an OSGi service, you would typically add a service element to
an OSGi Blueprint XML file (where the Blueprint XML file is typically stored under the
src/main/resources/OSGI-INF/blueprint directory in a Maven project). For example, assuming
that MyServiceImpl is the class that implements the MyService interface, you could expose the
MyService OSGi service as follows:

3. To define an ACL for the the OSGi service, you must create an OSGi Config Admin PID with the
prefix, org.apache.karaf.service.acl.

For example, in the case of a standalone container (where the OSGi Config Admin PIDs are
stored as .cfg files under the etc/auth/ directory), you can create the following ACL file for the
MyService OSGi service:

NOTE

Pattern = Role1[,Role2][,Role3]...

package org.example;

public interface MyService {
 void doit(String s);
}

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 default-activation="lazy">

 <bean id="myserviceimpl" class="org.example.MyServiceImpl"/>

 <service id="myservice" ref="myserviceimpl" interface="org.example.MyService"/>

</blueprint>

etc/auth/org.apache.karaf.service.acl.myservice.cfg

Red Hat JBoss Fuse 6.3 Security Guide

44

NOTE

It does not matter exactly how you name this file, as long as it starts with the
required prefix, org.apache.karaf.service.acl. The corresponding OSGi service
for this ACL file is actually specified by a property setting in this file (as you will
see in the next step).

4. Specify the contents of the ACL file in a format like the following:

The service.guard setting specifies the InterfaceName of the OSGi service (using the syntax
of an LDAP search filter, which is applied to the OSGi service properties). The other entries in
the ACL file consist of a method Pattern, which associates a matching method to the specified
roles. For example, you could define a simple ACL for the MyService OSGi service with the
following settings in the org.apache.karaf.service.acl.myservice.cfg file:

5. Finally, in order to enable the ACL for this OSGi service, you must edit the
karaf.secured.services property in the etc/system.properties file. The value of the
karaf.secured.services property has the syntax of an LDAP search filter (which gets applied to
the OSGi service properties). In general, to enable ACLs for an OSGi service, ServiceInterface,
you must modify this property as follows:

For example, to enable the MyService OSGi service:

CAUTION

The initial value of the karaf.secured.services property has the settings to enable the
command console ACLs. If you delete or corrupt these entries, the command console ACLs
might stop working.

How to invoke an OSGi service secured with RBAC

If you are writing Java code to invoke methods an a custom OSGi service (that is, implementing a client
of the OSGi service), you must use the Java security API to specify the role you are using to invoke the
service. For example, to invoke the MyService OSGi service using the Deployer role, you could use
code like the following:

service.guard = (objectClass=InterfaceName)
Pattern = Role1[,Role2][,Role3]...

service.guard = (objectClass=org.example.MyService)
doit = Deployer, Auditor, Administrator, SuperUser

karaf.secured.services=(|(objectClass=ServiceInterface)(...ExistingPropValue...))

karaf.secured.services=(|(objectClass=org.example.MyService)(&(osgi.command.scope=*)
(osgi.command.function=*)))

// Java
import javax.security.auth.Subject;
import org.apache.karaf.jaas.boot.principal.RolePrincipal;
// ...
Subject s = new Subject();
s.getPrincipals().add(new RolePrincipal("Deployer"));

CHAPTER 2. SECURING THE CONTAINER

45

NOTE

This example uses the Karaf role type,
org.apache.karaf.jaas.boot.principal.RolePrincipal. If necessary, you could use your
own custom role class instead, but in that case you would have to specify your roles using
the syntax className:roleName in the OSGi service's ACL file.

How to discover the roles required by an OSGi service

When you are writing code against an OSGi service secured by an ACL, it can sometimes be useful to
check what roles are allowed to invoke the service. For this purpose, the proxy service exports an
additional OSGi property, org.apache.karaf.service.guard.roles. The value of this property is a
java.util.Collection object, which contains a list of all the roles that could possibly invoke a method on
that service.

2.3. USING ENCRYPTED PROPERTY PLACEHOLDERS

Overview

When securing a container it is undesirable to use plain text passwords in configuration files. They create
easy to target security holes. One way to avoid this problem is to use encrypted property placeholders
when ever possible. This feature is supported both in Blueprint XML files and in Spring XML files.

How to use encrypted property placeholders

To use encrypted property placeholders in a Blueprint XML file or in a Spring XML file, perform the
following steps:

1. Download and install Jasypt, to gain access to the Jasypt listAlgorithms.sh, encrypt.sh and
decrypt.sh command-line tools.

NOTE

When installing the Jasypt command-line tools, don't forget to enable execute
permissions on the script files, by running chmod u+x ScriptName.sh.

2. Choose a master password and an encryption algorithm. To discover which algorithms are
supported in your current Java environment, run the listAlgorithms.sh Jasypt command-line
tool, as follows:

On Windows platforms, the script is listAlgorithms.bat. JBoss Fuse uses

Subject.doAs(s, new PrivilegedAction() {
 public Object run() {
 svc.doit("foo"); // invoke the service
 }
}

./listAlgorithms.sh
DIGEST ALGORITHMS: [MD2, MD5, SHA, SHA-256, SHA-384, SHA-512]

PBE ALGORITHMS: [PBEWITHMD5ANDDES, PBEWITHMD5ANDTRIPLEDES,
PBEWITHSHA1ANDDESEDE, PBEWITHSHA1ANDRC2_40]

Red Hat JBoss Fuse 6.3 Security Guide

46

http://jasypt.org/download.html

On Windows platforms, the script is listAlgorithms.bat. JBoss Fuse uses
PBEWithMD5AndDES by default.

3. Use the Jasypt encrypt command-line tool to encrypt your sensitive configuration values (for
example, passwords for use in configuration files). For example, the following command
encrypts the PlaintextVal value, using the specified algorithm and master password
MasterPass:

4. Create a properties file with encrypted values. For example, suppose you wanted to store some
LDAP credentials. You could create a file, etc/ldap.properties, with the following contents:

Example 2.6. Property File with an Encrypted Property

The encrypted property values (as generated in the previous step) are identified by wrapping in
the ENC() function.

5. (Blueprint XML only) Add the requisite namespaces to your Blueprint XML file:

Aries extensions—http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0

Apache Karaf Jasypt—http://karaf.apache.org/xmlns/jasypt/v1.0.0

Example 2.7, “Encrypted Property Namespaces” shows a Blueprint file with the requisite
namespaces.

Example 2.7. Encrypted Property Namespaces

6. Configure the location of the properties file for the property placeholder and configure the
Jasypt encryption algorithm .

Blueprint XML

Example 2.8, “Jasypt Blueprint Configuration” shows how to configure the ext:property-
placeholder element to read properties from the etc/ldap.properties file. The
enc:property-placeholder element configures Jasypt to use the PBEWithMD5AndDES
encryption algorithm and to read the master password from the
JASYPT_ENCRYPTION_PASSWORD environment variable.

Example 2.8. Jasypt Blueprint Configuration

./encrypt.sh input="PlaintextVal" algorithm=PBEWithMD5AndDES password=MasterPass

#ldap.properties
ldap.password=ENC(amIsvdqno9iSwnd7kAlLYQ==)
ldap.url=ldap://192.168.1.74:10389

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">
...
</blueprint>

CHAPTER 2. SECURING THE CONTAINER

47

Spring XML

Example 2.9, “Jasypt Spring Configuration” shows how to configure Jasypt to use the
PBEWithMD5AndDES encryption algorithm and to read the master password from the
JASYPT_ENCRYPTION_PASSWORD environment variable.

The EncryptablePropertyPlaceholderConfigurer bean is configured to read properties
from the etc/ldap.properties file and to read properties from the
io.fabric8.mq.fabric.ConfigurationProperties class (which defines the karaf.base
property, for example).

Example 2.9. Jasypt Spring Configuration

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">

 <ext:property-placeholder>
 <location>file:etc/ldap.properties</location>
 </ext:property-placeholder>

 <enc:property-placeholder>
 <enc:encryptor class="org.jasypt.encryption.pbe.StandardPBEStringEncryptor">
 <property name="config">
 <bean class="org.jasypt.encryption.pbe.config.EnvironmentStringPBEConfig">
 <property name="algorithm" value="PBEWithMD5AndDES" />
 <property name="passwordEnvName"
value="JASYPT_ENCRYPTION_PASSWORD" />
 </bean>
 </property>
 </enc:encryptor>
 </enc:property-placeholder>
...
</blueprint>

<bean id="environmentVariablesConfiguration"
class="org.jasypt.encryption.pbe.config.EnvironmentStringPBEConfig">
 <property name="algorithm" value="PBEWithMD5AndDES" />
 <property name="passwordEnvName"
value="JASYPT_ENCRYPTION_PASSWORD" />
</bean>

<bean id="configurationEncryptor"
class="org.jasypt.encryption.pbe.StandardPBEStringEncryptor">
 <property name="config" ref="environmentVariablesConfiguration" />
</bean>

<bean id="propertyConfigurer"
class="org.jasypt.spring31.properties.EncryptablePropertyPlaceholderConfigurer">
 <constructor-arg ref="configurationEncryptor" />
 <property name="location" value="file:${karaf.base}/etc/ldap.properties"/>
 <property name="properties">

Red Hat JBoss Fuse 6.3 Security Guide

48

7. Use the placeholders in your configuration file. The placeholders you use for encrypted
properties are the same as you use for regular properties. Use the syntax ${prop.name}.

8. Make sure that the jasypt-encryption feature is installed in the container. If necessary, install
the jasypt-encryption feature with the following console command:

9. Shut down the container, by entering the following command:

10. Carefully restart the container and deploy your secure application, as follows:

1. Open a command window (first command window) and enter the following commands to
start the JBoss Fuse container in the background:

2. Open a second command window and start the client utility, to connect to the container
running in the background:

Where Username and Password are valid JAAS user credentials for logging on to the
container console.

3. In the second command window, use the console to install your secure application that uses
encrypted property placeholders. Check that the application has launched successfully (for
example, using the osgi:list command to check its status).

4. After the secure application has started up, go back to the first command window and unset
the JASYPT_ENCRYPTION_PASSWORD environment variable.

IMPORTANT

Unsetting the JASYPT_ENCRYPTION_PASSWORD environment variable
ensures there will be minimum risk of exposing the master password. The
Jasypt library retains the master password in encrypted form in memory.

Blueprint XML example

Example 2.10, “Jasypt Example in Blueprint XML” shows an example of an LDAP JAAS realm configured
in Blueprint XML, using Jasypt encrypted property placeholders.

Example 2.10. Jasypt Example in Blueprint XML

 <bean class="io.fabric8.mq.fabric.ConfigurationProperties"/>
 </property>
</bean>

JBossFuse:karaf@root> features:install jasypt-encryption

JBossFuse:karaf@root> shutdown

export JASYPT_ENCRYPTION_PASSWORD="your super secret master pass phrase"
./bin/start

./bin/client -u Username -p Password

CHAPTER 2. SECURING THE CONTAINER

49

The ${ldap.password} placeholder is replaced with the decrypted value of the ldap.password property
from the etc/ldap.properties properties file.

2.4. ENABLING REMOTE JMX SSL

Overview

Red Hat JBoss Fuse provides a JMX port that allows remote monitoring and management of Fuse
containers using MBeans. By default, however, the credentials that you send over the JMX connection
are unencrypted and vulnerable to snooping. To encrypt the JMX connection and protect against
password snooping, you need to secure JMX communications by configuring JMX over SSL.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">

 <ext:property-placeholder>
 <location>file:etc/ldap.properties</location>
 </ext:property-placeholder>

 <enc:property-placeholder>
 <enc:encryptor class="org.jasypt.encryption.pbe.StandardPBEStringEncryptor">
 <property name="config">
 <bean class="org.jasypt.encryption.pbe.config.EnvironmentStringPBEConfig">
 <property name="algorithm" value="PBEWithMD5AndDES" />
 <property name="passwordEnvName" value="JASYPT_ENCRYPTION_PASSWORD" />
 </bean>
 </property>
 </enc:encryptor>
 </enc:property-placeholder>

 <jaas:config name="karaf" rank="200">
 <jaas:module className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
flags="required">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 debug=true
 connectionURL=${ldap.url}
 connectionUsername=cn=mqbroker,ou=Services,ou=system,dc=jbossfuse,dc=com
 connectionPassword=${ldap.password}
 connectionProtocol=
 authentication=simple
 userRoleName=cn
 userBase = ou=User,ou=ActiveMQ,ou=system,dc=jbossfuse,dc=com
 userSearchMatching=(uid={0})
 userSearchSubtree=true
 roleBase = ou=Group,ou=ActiveMQ,ou=system,dc=jbossfuse,dc=com
 roleName=cn
 roleSearchMatching= (member:=uid={1})
 roleSearchSubtree=true
 </jaas:module>
 </jaas:config>

</blueprint>

Red Hat JBoss Fuse 6.3 Security Guide

50

To configure JMX over SSL, perform the following steps:

1. Create the jbossweb.keystore file

2. Create and deploy the keystore.xml file

3. Add the required properties to org.apache.karaf.management.cfg

4. Restart the container

After you have configured JMX over SSL access, you should test the connection.

WARNING

If you are planning to enable SSL/TLS security, you must ensure that you explicitly
disable the SSLv3 protocol, in order to safeguard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and
JBoss A-MQ 6.x.

NOTE

If you configure JMX over SSL while Red Hat JBoss Fuse is running, you will need to
restart it.

Prerequisites

If you haven't already done so, you need to:

Set your JAVA_HOME environment variable

Configure a JBoss Fuse user with the Administrator role

Edit the <installDir>/jboss-fuse-6.3.0.redhat-xxx/etc/users.properties file and add the
following entry, on a single line:

This creates a new user with username, admin, password, YourPassword, and the
Administrator role.

Create the jbossweb.keystore file

Open a command prompt and make sure you are in the etc/ directory of your JBoss Fuse installation:

At the command line, using a -dname value (Distinguished Name) appropriate for your application, type
this command:



admin=YourPassword,Administrator

cd <installDir>/jboss-fuse-6.3.0.redhat-xxx/etc

CHAPTER 2. SECURING THE CONTAINER

51

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

IMPORTANT

Type the entire command on a single command line.

The command returns output that looks like this:

$JAVA_HOME/bin/keytool -genkey -v -alias jbossalias -keyalg RSA -keysize 1024 -keystore
jbossweb.keystore -validity 3650 -keypass JbossPassword -storepass JbossPassword -dname
"CN=127.0.0.1, OU=RedHat Software Unit, O=RedHat, L=Boston, S=Mass, C=USA"

Generating 1,024 bit RSA key pair and self-signed certificate (SHA256withRSA) with a validity of
3,650 days
 for: CN=127.0.0.1, OU=RedHat Software Unit, O=RedHat, L=Boston, ST=Mass, C=USA
New certificate (self-signed):
[
[
 Version: V3
 Subject: CN=127.0.0.1, OU=RedHat Software Unit, O=RedHat, L=Boston, ST=Mass, C=USA
 Signature Algorithm: SHA256withRSA, OID = 1.2.840.113549.1.1.11

 Key: Sun RSA public key, 1024 bits
 modulus:
1123086025790567043604962990501918169461098372864273201795342440080393808

1594100776075008647459910991413806372800722947670166407814901754459100720279046

3944621813738177324031064260382659483193826177448762030437669318391072619867218
 036972335210839062722456085328301058362052369248473659880488338711351959835357
 public exponent: 65537
 Validity: [From: Thu Jun 05 12:19:52 EDT 2014,
 To: Sun Jun 02 12:19:52 EDT 2024]
 Issuer: CN=127.0.0.1, OU=RedHat Software Unit, O=RedHat, L=Boston, ST=Mass, C=USA
 SerialNumber: [4666e4e6]

Certificate Extensions: 1
[1]: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: AC 44 A5 F2 E6 2F B2 5A 5F 88 FE 69 60 B4 27 7D .D.../.Z_..i`.'.
0010: B9 81 23 9C ..#.
]
]

]
 Algorithm: [SHA256withRSA]
 Signature:
0000: 01 1D 95 C0 F2 03 B0 FD CF 3A 1A 14 F5 2E 04 E5 :......
0010: DD 18 DD 0E 24 60 00 54 35 AE FE 36 7B 38 69 4C $`.T5..6.8iL
0020: 1E 85 0A AF AE 24 1B 40 62 C9 F4 E5 A9 02 CD D3 $.@b.......
0030: 91 57 60 F6 EF D6 A4 84 56 BA 5D 21 11 F7 EA 09 .W`.....V.]!....
0040: 73 D5 6B 48 4A A9 09 93 8C 05 58 91 6C D0 53 81 s.kHJ.....X.l.S.
0050: 39 D8 29 59 73 C4 61 BE 99 13 12 89 00 1C F8 38 9.)Ys.a........8
0060: E2 BF D5 3C 87 F6 3F FA E1 75 69 DF 37 8E 37 B5 ...<..?..ui.7.7.
0070: B7 8D 10 CC 9E 70 E8 6D C2 1A 90 FF 3C 91 84 50 p.m....<..P

Red Hat JBoss Fuse 6.3 Security Guide

52

Check whether <installDir>/jboss-fuse-6.3.0.redhat-xxx/etc now contains the file jbossweb.keystore.

Create and deploy the keystore.xml file

1. Using your favorite xml editor, create and save the keystore.xml file in the <installDir>/jboss-
fuse-6.3.0.redhat-xxx/etc directory.

2. Include this text in the file:

3. Deploy the keystore.xml file to the container, by copying it into the <installDir>/jboss-fuse-
6.3.0.redhat-xxx/deploy directory (the hot deploy directory).

NOTE

Subsequently, if you need to undeploy the keystore.xml file, you can do so by
deleting the keystore.xml file from the deploy/ directory while the Karaf
container is running.

Add the required properties to org.apache.karaf.management.cfg

Edit the <installDir>/jboss-fuse-6.3.0.redhat-xxx/etc/org.apache.karaf.management.cfg file to
include these properties at the end of the file:

IMPORTANT

You must set secureProtocol to TLSv1, in order to protect against the Poodle
vulnerability (CVE-2014-3566)

Restart the JBoss Fuse container

You must restart the JBoss Fuse container for the new JMX SSL/TLS settings to take effect.

Testing the Secure JMX connection

]
[Storing jbossweb.keystore]

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0">
 <jaas:keystore name="sample_keystore"
 rank="1"
 path="file:etc/jbossweb.keystore"
 keystorePassword="JbossPassword"
 keyPasswords="jbossalias=JbossPassword" />
</blueprint>

secured = true
secureProtocol = TLSv1
keyAlias = jbossalias
keyStore = sample_keystore
trustStore = sample_keystore

CHAPTER 2. SECURING THE CONTAINER

53

https://access.redhat.com/articles/1232123

1. Open a command prompt and make sure you are in the etc/ directory of your JBoss Fuse
installation:

2. Open a terminal, and start up JConsole by entering this command:

Where the -J-Djavax.net.ssl.trustStore option specifies the location of the
jbossweb.keystore file (make sure this location is specified correctly, or the SSL/TLS
handshake will fail). The -J-Djavax.net.debug=ssl setting enables logging of SSL/TLS
handshake messages, so you can verify that SSL/TLS has been successfully enabled.

IMPORTANT

Type the entire command on the same command line.

3. When JConsole opens, select the option Remote Process in the New Connection wizard.

4. Under the Remote Process option, enter the following value for the service:jmx:<protocol>:
<sap> connection URL:

And fill in the Username, and Password fields with valid JAAS credentials (as set in the
etc/users.properties file):

cd <installDir>/jboss-fuse-6.3.0.redhat-xxx/etc

jconsole -J-Djavax.net.debug=ssl -J-Djavax.net.ssl.trustStore=jbossweb.keystore -J-
Djavax.net.ssl.trustStoreType=JKS -J-Djavax.net.ssl.trustStorePassword=JbossPassword

service:jmx:rmi://localhost:44444/jndi/rmi://localhost:1099/karaf-root

Username: admin
Password: YourPassword

Red Hat JBoss Fuse 6.3 Security Guide

54

CHAPTER 3. SECURING THE JETTY HTTP SERVER

Abstract

You can configure the built-in Jetty HTTP server to use SSL/TLS security by adding the relevant
configuration properties to the etc/org.ops4j.pax.web.cfg configuration file. In particular, you can add
SSL/TLS security to the Fuse Management Console in this way.

JETTY SERVER

The JBoss Fuse container is pre-configured with a Jetty server, which acts as a general-purpose HTTP
server and HTTP servlet container. Through a single HTTP port (by default, http://Host:8181), the Jetty
container can host multiple services, for example:

Fuse Management Console (by default, http://Host:8181/hawtio)

Apache CXF Web services endpoints (by default, http://Host:8181/cxf, if the host and port are
left unspecified in the endpoint configuration)

Some Apache Camel endpoints

If you use the default Jetty server for all of your HTTP endpoints, you can conveniently add SSL/TLS
security to these HTTP endpoints by following the steps described here.

CREATE X.509 CERTIFICATE AND PRIVATE KEY

Before you can enable SSL, you must create an X.509 certificate and private key for the Web console.
The certificate and private key must be in Java keystore format. For details of how to create a signed
certificate and private key, see Appendix A, Managing Certificates.

ENABLING SSL/TLS FOR JETTY IN A STANDALONE CONTAINER

To enable SSL/TLS for Jetty in a standalone (non-Fabric) Karaf container:

1. Open etc/org.ops4j.pax.web.cfg in a text editor.

2. Replace the original content of the etc/org.ops4j.pax.web.cfg file with the following settings:

Where the new settings disable the existing insecure HTTP port (on 8181) and enable a new

Configures the SMX Web Console to use SSL
org.ops4j.pax.web.config.file=etc/jetty.xml

org.osgi.service.http.enabled=false
org.osgi.service.http.port=8181

org.ops4j.pax.web.session.cookie.httpOnly=true

org.osgi.service.http.secure.enabled=true
org.osgi.service.http.port.secure=8443
org.ops4j.pax.web.ssl.keystore=etc/alice.ks
org.ops4j.pax.web.ssl.password=alicepass
org.ops4j.pax.web.ssl.keypassword=alicepass

CHAPTER 3. SECURING THE JETTY HTTP SERVER

55

Where the new settings disable the existing insecure HTTP port (on 8181) and enable a new
secure HTTPS port (on 8443).

3. Customize the SSL/TLS settings in etc/org.ops4j.pax.web.cfg as follows:

org.osgi.service.http.port.secure

Specifies the TCP port number of the secure HTTPS port.

org.ops4j.pax.web.ssl.keystore

The location of the Java keystore file on the file system. Relative paths are resolved relative
to the KARAF_HOME environment variable (by default, the install directory).

org.ops4j.pax.web.ssl.password

The store password that unlocks the Java keystore file.

org.ops4j.pax.web.ssl.keypassword

The key password that decrypts the private key stored in the keystore (usually the same as
the store password).

4. Restart the JBoss Fuse container, in order for the configuration changes to take effect.

CUSTOMIZING ALLOWED TLS PROTOCOLS AND CIPHER SUITES

You can customize the allowed TLS protocols and cipher suites by setting the following properties in the
etc/org.ops4j.pax.web.cfg file:

org.ops4j.pax.web.ssl.protocols.included

Specifies a list of allowed TLS/SSL protocols.

org.ops4j.pax.web.ssl.protocols.excluded

Specifies a list of disallowed TLS/SSL protocols.

org.ops4j.pax.web.ssl.ciphersuites.included

Specifies a list of allowed TLS/SSL cipher suites.

org.ops4j.pax.web.ssl.ciphersuites.excluded

Specifies a list of disallowed TLS/SSL cipher suites.

For full details of the available protocols and cipher suites, consult the appropriate JVM documentation
and security provider documentation. For example, for Java 7, see Java Cryptography Architecture
Oracle Providers Documentation for Java Platform Standard Edition 7.

CONNECT TO THE SECURE CONSOLE

After configuring SSL security for the Jetty server in the Pax Web configuration file, you should be able
to open the Fuse Management Console by browsing to the following URL:

https://Host:8443/hawtio

Red Hat JBoss Fuse 6.3 Security Guide

56

https://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html

NOTE

Remember to type the https: scheme, instead of http:, in this URL.

Initially, the browser will warn you that you are using an untrusted certificate. Skip this warning and you
will be presented with the login screen for the Fuse Management Console.

ADVANCED JETTY SECURITY CONFIGURATION

In order to have more control over the Jetty security settings, you can enable Jetty security by
modifying the configuration settings in the etc/jetty.xml file. This approach gives you access to the full
Jetty security API:

1. Open etc/org.ops4j.pax.web.cfg in a text editor.

2. Disable the insecure HTTP port by adding the org.osgi.service.http.enabled and setting it to
false; and enable the secure HTTPS port by adding the org.osgi.service.http.secure.enabled and
setting it to true. Change the value of org.ops4j.pax.web.config.file to reference the file,
etc/jetty-ssl.xml (which you will create in the next step).

The etc/org.ops4j.pax.web.cfg file should now have the following contents:

3. Create a new file, etc/jetty-ssl.xml, with the following contents:

Configures the SMX Web Console to use SSL
org.ops4j.pax.web.config.file=etc/jetty-ssl.xml

org.osgi.service.http.enabled=false
org.osgi.service.http.port=8181

org.ops4j.pax.web.session.cookie.httpOnly=true

org.osgi.service.http.secure.enabled=true

<?xml version="1.0"?>
<!DOCTYPE Configure PUBLIC "-//Jetty//Configure//EN"
"http://www.eclipse.org/jetty/configure_9_0.dtd">

<Configure id="Server" class="org.eclipse.jetty.server.Server">

 <!-- == -->
 <!-- Set connectors -->
 <!-- == -->
 <!-- One of each type! -->
 <!-- == -->

 <!-- Use this connector for many frequently idle connections
 and for threadless continuations. -->
 <New id="httpConfig"
 class="org.eclipse.jetty.server.HttpConfiguration">
 <Set name="secureScheme">https</Set>
 <Set name="securePort">
 <Property name="jetty.secure.port" default="8443" />
 </Set>
 <Set name="outputBufferSize">32768</Set>

CHAPTER 3. SECURING THE JETTY HTTP SERVER

57

 <Set name="requestHeaderSize">8192</Set>
 <Set name="responseHeaderSize">8192</Set>
 <Set name="sendServerVersion">true</Set>
 <Set name="sendDateHeader">false</Set>
 <Set name="headerCacheSize">512</Set>
 </New>

 <!-- == -->
 <!-- Configure Authentication Realms -->
 <!-- Realms may be configured for the entire server here, or -->
 <!-- they can be configured for a specific web app in a context -->
 <!-- configuration (see $(jetty.home)/contexts/test.xml for an -->
 <!-- example). -->
 <!-- == -->
 <Call name="addBean">
 <Arg>
 <New class="org.eclipse.jetty.jaas.JAASLoginService">
 <Set name="name">karaf</Set>
 <Set name="loginModuleName">karaf</Set>
 <Set name="roleClassNames">
 <Array type="java.lang.String">
 <Item>
 org.apache.karaf.jaas.boot.principal.RolePrincipal
 </Item>
 </Array>
 </Set>
 </New>
 </Arg>
 </Call>

 <New id="sslHttpConfig"
 class="org.eclipse.jetty.server.HttpConfiguration">
 <Arg><Ref refid="httpConfig"/></Arg>
 <Call name="addCustomizer">
 <Arg>
 <New class="org.eclipse.jetty.server.SecureRequestCustomizer"/>
 </Arg>
 </Call>
 </New>

 <New id="sslContextFactory"
 class="org.eclipse.jetty.util.ssl.SslContextFactory">
 <Set name="KeyStorePath">
 /home/jdoe/Programs/JBossFuse/jboss-fuse-6.3.0.redhat-xxx/etc/alice.ks
 </Set>
 <Set name="KeyStorePassword">alicepass</Set>
 <Set name="KeyManagerPassword">alicepass</Set>
 <!--Set name="TrustStorePath">
 <Property name="jetty.base" default="." />
 <Property name="jetty.truststore"
 default="quickstarts/switchyard/demos/policy-security-basic/connector.jks"/>
 </Set>
 <Set name="TrustStorePassword">
 <Property name="jetty.truststore.password" default="changeit"/>
 </Set-->

Red Hat JBoss Fuse 6.3 Security Guide

58

 <Set name="EndpointIdentificationAlgorithm"></Set>
 <Set name="NeedClientAuth">
 <Property name="jetty.ssl.needClientAuth" default="false"/>
 </Set>
 <Set name="WantClientAuth">
 <Property name="jetty.ssl.wantClientAuth" default="false"/>
 </Set>
 <!-- Disable SSLv3 to protect against POODLE bug -->
 <Set name="ExcludeProtocols">
 <Array type="java.lang.String">
 <Item>SSLv3</Item>
 </Array>
 </Set>
 <Set name="ExcludeCipherSuites">
 <Array type="String">
 <Item>SSL_RSA_WITH_DES_CBC_SHA</Item>
 <Item>SSL_DHE_RSA_WITH_DES_CBC_SHA</Item>
 <Item>SSL_DHE_DSS_WITH_DES_CBC_SHA</Item>
 <Item>SSL_RSA_EXPORT_WITH_RC4_40_MD5</Item>
 <Item>SSL_RSA_EXPORT_WITH_DES40_CBC_SHA</Item>
 <Item>SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA</Item>
 <Item>SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA</Item>
 </Array>
 </Set>
 </New>

 <Call id="httpsConnector" name="addConnector">
 <Arg>
 <New class="org.eclipse.jetty.server.ServerConnector">
 <Arg name="server"><Ref refid="Server" /></Arg>
 <Arg name="acceptors" type="int">
 <Property name="ssl.acceptors" default="-1"/>
 </Arg>
 <Arg name="selectors" type="int">
 <Property name="ssl.selectors" default="-1"/>
 </Arg>
 <Arg name="factories">
 <Array type="org.eclipse.jetty.server.ConnectionFactory">
 <Item>
 <New class="org.eclipse.jetty.server.SslConnectionFactory">
 <Arg name="next">http/1.1</Arg>
 <Arg name="sslContextFactory">
 <Ref refid="sslContextFactory"/>
 </Arg>
 </New>
 </Item>
 <Item>
 <New class="org.eclipse.jetty.server.HttpConnectionFactory">
 <Arg name="config"><Ref refid="sslHttpConfig"/></Arg>
 </New>
 </Item>
 </Array>
 </Arg>
 <Set name="name">0.0.0.0:8443</Set>
 <Set name="host"><Property name="jetty.host" /></Set>
 <Set name="port">

CHAPTER 3. SECURING THE JETTY HTTP SERVER

59

IMPORTANT

The preceding configuration explicitly disables the SSLv3 protocol, in order to
safeguard against the Poodle vulnerability (CVE-2014-3566). For more details,
see Disabling SSLv3 in JBoss Fuse 6.x and JBoss A-MQ 6.x .

4. (Optional) If you prefer, you can use a system property to help you specify the location of the
Java keystore file. For example, instead of setting the KeyStorePath property explicitly (in the
preceding etc/jetty-ssl.xml configuration):

You could use the karaf.home system property to specify the location of the keystore file
relative to the JBoss Fuse install directory:

5. Customize the properties of the SslContextFactory instance defined in the etc/jetty-ssl.xml
file, as follows:

KeyStorePath

The location of the Java keystore file on the file system. Relative paths are resolved relative
to the KARAF_HOME environment variable (by default, the install directory).

KeyStorePassword

The store password that unlocks the Java keystore file.

KeyManagerPassword

 <Property name="https.port" default="8443" />
 </Set>
 <Set name="idleTimeout">
 <Property name="https.timeout" default="30000"/>
 </Set>
 <Set name="soLingerTime">
 <Property name="https.soLingerTime" default="-1"/>
 </Set>
 <Set name="acceptorPriorityDelta">
 <Property name="ssl.acceptorPriorityDelta" default="0"/>
 </Set>
 <Set name="selectorPriorityDelta">
 <Property name="ssl.selectorPriorityDelta" default="0"/>
 </Set>
 <Set name="acceptQueueSize">
 <Property name="https.acceptQueueSize" default="0"/>
 </Set>
 </New>
 </Arg>
 </Call>

</Configure>

<Set name="KeyStorePath">/home/jdoe/Documents/jetty.ks</Set>

<Set name="KeyStorePath">
 <SystemProperty name="karaf.home"/>/etc/jetty.ks
</Set>

Red Hat JBoss Fuse 6.3 Security Guide

60

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

The key password that decrypts the private key stored in the keystore (usually the same as
the store password).

6. Restart the JBoss Fuse container, in order for the configuration changes to take effect.

NOTE

The Apache Karaf container does not automatically detect changes in the
etc/jetty-ssl.xml file. Hence, if you make subsequent edits to the etc/jetty-
ssl.xml file, you must also update the etc/org.ops4j.pax.web.cfg file (by making
a trivial edit or using the UNIX touch command), in order to force Apache Karaf
to reload the etc/jetty-ssl.xml file.

ENABLING SSL/TLS FOR JETTY IN A FABRIC

Securing Jetty in a Fabric is slightly more complicated than securing Jetty in a standalone Karaf
container, because each container must also be configured as a secure client of the Jetty HTTP server.
For example, whenever a new container is provisioned in a Fabric, it downloads artifacts by connecting to
the Maven proxy through the Jetty HTTPS port on the root container. Hence, each container in the
Fabric must be configured to trust the HTTPS connection to the root container (by configuring a trust
store).

NOTE

The procedure described here assumes that you are about to create a Fabric from
scratch. It is generally not feasible to add SSL/TLS security to a pre-existing Fabric,
because this puts you in a Catch-22 situation with respect to provisioning the containers.

To enable SSL/TLS for Jetty in a Fabric:

1. Under the root container's installation directory, create the new directory, etc/certs.

2. In the etc/certs directory, create a new self-signed certificate and private key using the Java
keytool utility, as follows:

After executing this command, the key pair is stored in the alice.ks keystore file under the alias,
alice. Pay particular attention to the Hostname value and the PUBLIC_IP value: the specified
Hostname must be the name of the host where the root container is deployed and PUBLIC_IP
is the public IP address. The other Fabric containers will check that the certificate's Common
Name (CN) matches the root container's host name during the SSL/TLS handshake.

For a more detailed explanation of key pairs and instructions for (optionally) signing the
resulting certificate with a Certificate Authority (CA), see Appendix A, Managing Certificates.

NOTE

keytool -genkeypair -keyalg RSA -dname "CN=Hostname" -ext
SubjectAlternativeName=ip:PUBLIC_IP -validity 365 -keystore alice.ks -alias alice -keypass
KeyPass -storepass StorePass

CHAPTER 3. SECURING THE JETTY HTTP SERVER

61

NOTE

If there are multiple containers (Fabric servers) in the Fabric ensemble, you must
create and deploy a separate key pair for each container in the ensemble, where
the specified Hostname matches the respective container host. The other
containers in the Fabric must then be configured to trust all of the ensemble
certificates (which you could do, for example, by adding all of the ensemble
certificates to a trust store file accessible to the other containers).

3. Start up the root container:

4. Create a new fabric, by entering a console command like the following:

IMPORTANT

The Hostname value specifed in fabric:create must be exactly the same
Hostname value that was assigned to the CN field of the certificate in step 2.
Otherwise, when you create a new child container, the hostname check will fail
during the SSL/TLS handshake and the child container will fail to provision.

NOTE

In a production system (and for any long-running demonstration system), the
Fabric server must be deployed on a host that has a static IP address.

5. Edit the Jetty Web server properties for the org.ops4j.pax.web persistent ID in the default
profile. You can edit these properties either from the Fuse Management Console (by navigating
to http://localhost:8181/hawtio in your browser) or using the built-in editor at the console:

Add the following settings to the existing content of the org.ops4j.pax.web.properties
resource:

./bin/fuse

JBossFuse:karaf@root> fabric:create --new-user AdminUser
 --new-user-password AdminPass
 --new-user-role Administrator
 --global-resolver manualip
 --resolver manualip
 --manual-ip Hostname
 --zookeeper-password ZooPass
 --wait-for-provisioning

JBossFuse:karaf@root> profile-edit --resource org.ops4j.pax.web.properties default

...
org.osgi.service.http.enabled=false

org.osgi.service.http.secure.enabled=true
org.osgi.service.http.port.secure=${port:8443,8543}
org.ops4j.pax.web.ssl.keystore=AbsolutePathToKeystoreFile
org.ops4j.pax.web.ssl.password=StorePass
org.ops4j.pax.web.ssl.keypassword=KeyPass

Red Hat JBoss Fuse 6.3 Security Guide

62

Customize the org.ops4j.pax.web settings as follows:

org.osgi.service.http.enabled

Set to false, to disable the insecure Jetty HTTP port.

org.osgi.service.http.secure.enabled

Set to true, to enable the secure Jetty HTTPS port.

org.osgi.service.http.port.secure

Specifies the TCP port number of the secure HTTPS port. You should use the Fabric port
service (see section "The Port Service" in "Fabric Guide"), which enables you to specify a
range of ports for this setting, ${port:8443,8543}. This ensure that any child containers are
automatically allocated unique port numbers.

org.ops4j.pax.web.ssl.keystore

The location of the Java keystore file on the file system. This should be specified as an
absolute pathname, to ensure that both the root container and child containers can locate
the keystore file (child containers evaluate relatives paths differently from the root
container). For example, a typical setting might look like this:

org.ops4j.pax.web.ssl.password

The store password that unlocks the Java keystore file.

org.ops4j.pax.web.ssl.keypassword

The key password that decrypts the private key stored in the keystore (usually the same as
the store password).

6. Create a truststore file for the child containers. There are a few different approaches you can
take when creating the truststore:

The simplest option is to use the keystore file—for example, etc/certs/alice.ks—directly as
the truststore.

If you need to trust multiple certificates, extract the alice certificate from the alice.ks
truststore and add it to an existing truststore file which contains all of the other certificates
you want to trust.

If you signed the alice certificate with a CA, you can add the CA certificate to the truststore
file.

7. The current instructions apply to a fabric that has only one container in its ensemble (the root
container). If you set up a fabric with three ensemble servers, however, you would need to make
sure that you configure the truststores so that each ensemble server trusts the other two. For
example, with three ensemble servers:

Add public keys from servers 1 and 2 to truststore for server 3.

Add public keys from servers 2 and 3 to truststore for server 1.

org.ops4j.pax.web.ssl.keystore=/opt/servers/jboss-fuse-6.3.0.redhat-xxx/etc/certs/alice.ks

CHAPTER 3. SECURING THE JETTY HTTP SERVER

63

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Fabric_Guide/Ports-Service.html

Add public keys from servers 3 and 1 to truststore for server 2.

Alternatively, if you have set up a certificate authority (CA), a more practical approach would be
to sign all of the certificates with the same CA certificate and then put the CA certificate into
the truststore (that is, in this case only the CA certificate needs to be in the truststore and the
same truststore can be used on all of the hosts).

8. Shut down the root container (for example, by entering shutdown -f at the console) and
specify the truststore and truststore password on the root container. To specify the truststore
as a JVM argument, edit the root container's etc/setenv file and add the following line:

Where this example assumes you are using the alice.ks file directly as the truststore.

9. Restart the root container. Search the log (for example, by entering the log:display console
command) and look for a line like the following:

This gives you the port number of the secure Jetty Web server. You can login to the Fuse
Management Console using this port—for example, using a URL like the following (not forgetting
to specify the scheme as https):

10. You can now create a new child container with Jetty security enabled, by specifying the
truststore and truststore password as JVM arguments when you create the child container. For
example, assuming that you are using the alice.ks file directly as a truststore, you can create a
secure child container with a command like the following:

11. Check the provision status of the new child using the fabric:container-list console command
(or by monitoring the Container tab of the Fuse Management Console). If the child fails to
provision, check the logs of both the root container and the child container for errors.

REFERENCES

The Jetty server provides flexible and sophisticated options for configuring security. You can exploit
these advanced options by editing the etc/jetty-ssl.xml file and configuring it as described in the Jetty
security documentation:

Configuring SSL

API documentation (all Jetty versions)

EXTRA_JAVA_OPTS="-Djavax.net.ssl.trustStore=/opt/servers/jboss-fuse-6.3.0.redhat-
xxx/etc/certs/alice.ks -Djavax.net.ssl.trustStorePassword=StorePass"

17:37:35,576 | INFO | pool-3-thread-1 | JettyServerImpl | 117 -
org.ops4j.pax.web.pax-web-jetty - 4.2.6 | Pax Web available at [0.0.0.0]:[8453]

https://Host:8543

JBossFuse:karaf@root> container-create-child --jvm-opts='-
Djavax.net.ssl.trustStore=/opt/servers/jboss-fuse-6.3.0.redhat-xxx/etc/certs/alice.ks -
Djavax.net.ssl.trustStorePassword=StorePass' --profile fabric root child

Red Hat JBoss Fuse 6.3 Security Guide

64

https://www.eclipse.org/jetty/documentation/9.2.10.v20150310/configuring-ssl.html
http://download.eclipse.org/jetty/stable-9/apidocs/

CHAPTER 4. SECURING THE CAMEL ACTIVEMQ COMPONENT

Abstract

The Camel ActiveMQ component enables you to define JMS endpoints in your routes that can connect
to an Apache ActiveMQ broker. In order to make your Camel ActiveMQ endpoints secure, you must
create an instance of a Camel ActiveMQ component that uses a secure connection factory.

4.1. SECURE ACTIVEMQ CONNECTION FACTORY

Overview

Apache Camel provides an Apache ActiveMQ component for defining Apache ActiveMQ endpoints in a
route. The Apache ActiveMQ endpoints are effectively Java clients of the broker and you can either
define a consumer endpoint (typically used at the start of a route to poll for JMS messages) or define a
producer endpoint (typically used at the end or in the middle of a route to send JMS messages to a
broker).

When the remote broker is secure (SSL security, JAAS security, or both), the Apache ActiveMQ
component must be configured with the required client security settings.

Programming the security properties

Apache ActiveMQ enables you to program SSL security settings (and JAAS security settings) by
creating and configuring an instance of the ActiveMQSslConnectionFactory JMS connection factory.
Programming the JMS connection factory is the correct approach to use in the context of the
containers such as OSGi, J2EE, Tomcat, and so on, because these settings are local to the application
using the JMS connection factory instance.

NOTE

A standalone broker can configure SSL settings using Java system properties . For clients
deployed in a container, however, this is not a practical approach, because the
configuration must apply only to individual bundles, not the entire OSGi container. A
Camel ActiveMQ endpoint is effectively a kind of Apache ActiveMQ Java client, so this
restriction applies also to Camel ActiveMQ endpoints.

Defining a secure connection factory

Example 4.1, “Defining a Secure Connection Factory Bean” shows how to create a secure connection
factory bean in Spring XML, enabling both SSL/TLS security and JAAS authentication.

Example 4.1. Defining a Secure Connection Factory Bean

<bean id="jmsConnectionFactory"
 class="org.apache.activemq.ActiveMQSslConnectionFactory">
 <property name="brokerURL" value="ssl://localhost:61617" />
 <property name="userName" value="Username"/>
 <property name="password" value="Password"/>
 <property name="trustStore" value="/conf/client.ts"/>
 <property name="trustStorePassword" value="password"/>
</bean>

CHAPTER 4. SECURING THE CAMEL ACTIVEMQ COMPONENT

65

The following properties are specified on the ActiveMQSslConnectionFactory class:

brokerURL

The URL of the remote broker to connect to, where this example connects to an SSL-enabled
OpenWire port on the local host. The broker must also define a corresponding transport connector
with compatible port settings.

userName and password

Any valid JAAS login credentials, Username and Password.

trustStore

Location of the Java keystore file containing the certificate trust store for SSL connections. The
location is specified as a classpath resource. If a relative path is specified, the resource location is
relative to the org/jbossfuse/example directory on the classpath.

trustStorePassword

The password that unlocks the keystore file containing the trust store.

It is also possible to specify keyStore and keyStorePassword properties, but these would only be
needed, if SSL mutual authentication is enabled (where the client presents an X.509 certificate to the
broker during the SSL handshake).

4.2. EXAMPLE CAMEL ACTIVEMQ COMPONENT CONFIGURATION

Overview

This section describes how to initialize and configure a sample Camel ActiveMQ component instance,
which you can then use to define ActiveMQ endpoints in a Camel route. This makes it possible for a
Camel route to send or receive messages from a broker.

Prerequisites

The camel-activemq feature, which defines the bundles required for the Camel ActiveMQ component,
is not installed by default. To install the camel-activemq feature, enter the following console command:

Sample Camel ActiveMQ component

The following Spring XML sample shows a complete configuration of a Camel ActiveMQ component
that has both SSL/TLS security and JAAS authentication enabled. The Camel ActiveMQ component
instance is defined to with the activemqssl bean ID, which means it is associated with the activemqssl
scheme (which you use when defining endpoints in a Camel route).

JBossFuse:karaf@root> features:install camel-activemq

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
 ...
 <!--

Red Hat JBoss Fuse 6.3 Security Guide

66

Sample Camel route

The following Camel route defines a sample endpoint that sends messages securely to the security.test
queue on the broker, using the activemqssl scheme to reference the Camel ActiveMQ component
defined in the preceding example:

 Configure the activemqssl component:
 -->
 <bean id="jmsConnectionFactory"
 class="org.apache.activemq.ActiveMQSslConnectionFactory">
 <property name="brokerURL" value="ssl://localhost:61617" />
 <property name="userName" value="Username"/>
 <property name="password" value="Password"/>
 <property name="trustStore" value="/conf/client.ts"/>
 <property name="trustStorePassword" value="password"/>
 </bean>

 <bean id="pooledConnectionFactory"
 class="org.apache.activemq.pool.PooledConnectionFactory">
 <property name="maxConnections" value="8" />
 <property name="maximumActive" value="500" />
 <property name="connectionFactory" ref="jmsConnectionFactory" />
 </bean>

 <bean id="jmsConfig" class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="pooledConnectionFactory"/>
 <property name="transacted" value="false"/>
 <property name="concurrentConsumers" value="10"/>
 </bean>

 <bean id="activemqssl"
 class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="configuration" ref="jmsConfig"/>
 </bean>

</beans>

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
 ...
 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="timer://myTimer?fixedRate=true&period=5000"/>
 <transform><constant>Hello world!</constant></transform>
 <to uri="activemqssl:security.test"/>
 </route>
 </camelContext>
 ...
</beans>

CHAPTER 4. SECURING THE CAMEL ACTIVEMQ COMPONENT

67

CHAPTER 5. SECURING THE CAMEL JETTY COMPONENT

Abstract

5.1. ENABLING SSL/TLS SECURITY

Overview

This section explains how to enable SSL/TLS security on the Apache Camel Jetty component, which is
used to create a HTTPS Web server. The key step is to customize the Jetty component by setting the
sslSocketConnectorProperties property, which configures SSL/TLS. You must also change the
protocol scheme on the Jetty URI from http to https.

Tutorial steps

To configure SSL/TLS security for a Camel Jetty endpoint deployed in the OSGi container, perform the
following steps:

1. the section called “Generate a Maven project” .

2. the section called “Customize the POM file” .

3. the section called “Install sample keystore files” .

4. the section called “Configure Jetty with SSL/TLS” .

5. the section called “Build the bundle” .

6. the section called “Install the camel-jetty feature” .

7. the section called “Deploy the bundle” .

8. the section called “Test the bundle” .

9. the section called “Uninstall the bundle” .

Generate a Maven project

The maven-archetype-quickstart archetype creates a generic Maven project, which you can then
customize for whatever purpose you like. To generate a Maven project with the coordinates,
org.jbossfuse.example:jetty-security, enter the following command:

The result of this command is a directory, ProjectDir/jetty-security, containing the files for the
generated project.

NOTE

mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes -
DarchetypeArtifactId=maven-archetype-quickstart -DgroupId=org.jbossfuse.example -
DartifactId=jetty-security

Red Hat JBoss Fuse 6.3 Security Guide

68

NOTE

Be careful not to choose a group ID for your artifact that clashes with the group ID of an
existing product! This could lead to clashes between your project's packages and the
packages from the existing product (because the group ID is typically used as the root of
a project's Java package names).

Customize the POM file

You must customize the POM file in order to generate an OSGi bundle. Follow the POM customization
steps described in section "Generating a Bundle Project" in "Deploying into Apache Karaf" .

Alternatively, edit the jetty-security/pom.xml file and replace its contents with the following XML code:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>org.jbossfuse.example</groupId>
 <artifactId>jetty-security</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>bundle</packaging>

 <name>jetty-security</name>
 <url>http://maven.apache.org</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.11</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.3.7</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>
 ${project.groupId}.${project.artifactId}
 </Bundle-SymbolicName>
 <Import-Package>*</Import-Package>
 </instructions>

CHAPTER 5. SECURING THE CAMEL JETTY COMPONENT

69

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Deploying_into_Apache_Karaf/BuildBundle.html#Build-ModifyMaven

Install sample keystore files

In a convenient location, create the clientKeystore.jks key pair and the serviceKeystore.jks key pair
using the Java keytool utility, as follows:

Copy the clientKeystore.jks certificate and the serviceKeystore.jks certificate to the
EsbInstallDir/etc/certs directory (where you will need to create the etc/certs sub-directory). After
copying, you should have the following directory structure under EsbInstallDir/etc/:

Where clientKeystore.jks, and serviceKeystore.jks are the keystores that are used in this
demonstration.

WARNING

The demonstration key store and trust store are provided for testing purposes only.
Do not deploy these certificates in a production system. To set up a genuinely secure
SSL/TLS system, you must generate custom certificates, as described in
Appendix A, Managing Certificates.

 </configuration>
 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

</project>

keytool -genkeypair -keyalg RSA -dname "CN=Client, OU=Engineering, O=Red Hat, ST=Dublin,
C=IE" -validity 365 -alias client -keypass KeyPass -keystore clientKeystore.jks -storepass StorePass

keytool -genkeypair -keyalg RSA -dname "CN=Service, OU=Engineering, O=Red Hat, ST=Dublin,
C=IE" -validity 365 -alias service -keypass KeyPass -keystore serviceKeystore.jks -storepass
StorePass

EsbInstallDir/etc/
 |
 \--certs/
 |
 \--clientKeystore.jks
 serviceKeystore.jks



Red Hat JBoss Fuse 6.3 Security Guide

70

Configure Jetty with SSL/TLS

The Jetty Web server is created by defining a Jetty endpoint at the start of an Apache Camel route.
The route is then responsible for processing the incoming HTTP request and generating a reply. The
current example simply sends back a small HTML page in the reply. For a more realistic application, you
would typically process the incoming message using a bean, which accesses the message through the
Java servlet API.

Create the following directory to hold the Spring configuration files:

In the spring directory that you just created, use your favourite text editor to create the file, jetty-
spring.xml, containing the following XML configuration:

ProjectDir/jetty-security/src/main/resources/META-INF/spring

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://activemq.apache.org/schema/core http://activemq.apache.org/schema/core/activemq-core-
5.4.0.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd">

 <bean id="jetty" class="org.apache.camel.component.jetty9.JettyHttpComponent9">
 <property name="sslContextParameters" ref="sslContextParameters" />
 </bean>

 <sslContextParameters id="sslContextParameters"
xmlns="http://camel.apache.org/schema/spring">
 <secureSocketProtocols>
 <!-- Do NOT enable SSLv3 (POODLE vulnerability) -->
 <secureSocketProtocol>TLSv1</secureSocketProtocol>
 <secureSocketProtocol>TLSv1.1</secureSocketProtocol>
 <secureSocketProtocol>TLSv1.2</secureSocketProtocol>
 </secureSocketProtocols>
 <keyManagers keyPassword="KeyPass">
 <keyStore resource="etc/certs/serviceKeystore.jks" password="StorePass"/>
 </keyManagers>
 <trustManagers>
 <keyStore resource="etc/certs/serviceKeystore.jks" password="StorePass"/>
 </trustManagers>
 </sslContextParameters>

 <camelContext trace="true" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="jetty:https://0.0.0.0:8282/services?matchOnUriPrefix=true"/>
 <transform>
 <constant><html><body>Hello from Fuse ESB server</body></html></constant>
 </transform>
 </route>
 </camelContext>

</beans>

CHAPTER 5. SECURING THE CAMEL JETTY COMPONENT

71

The jetty bean defines a new instance of the Apache Camel Jetty component, overriding the default
component defined in the camel-jetty JAR file. This Jetty component is configured using the
sslContextParameters element, as follows:

secureSocketProtocols

Explicitly lists the SSL/TLS protocols supported by the Jetty server.

IMPORTANT

This configuration explicitly disables the SSLv3 protocol, in order to safeguard against
the Poodle vulnerability (CVE-2014-3566). For more details, see Disabling SSLv3 in
JBoss Fuse 6.x and JBoss A-MQ 6.x.

keyManagers/@keyPassword

The password that decrypts the private key stored in the keystore (usually having the same value as
password).

keyManagers/keyStore/@resource

The location of the Java keystore file (in JKS format) containing the Jetty server's own X.509
certificate and private key. This location is specified on the filesystem (not on the classpath), relative
to the directory where the OSGi container is started.

keyManagers/keyStore/@password

The keystore password that unlocks the keystore.

trustManagers/@resource

The location of the Java keystore file containing one or more trusted certificates (that is, the CA
certificates that have been used to sign X.509 certificates from trusted clients). This location is
specified on the filesystem (not on the classpath), relative to the directory where the OSGi container
is started.

Strictly speaking, this property is not needed, if clients do not send certificates to the Jetty service.

trustManagers/@password

The keystore password that unlocks the truststore trust store.

You must also modify the URI at the start of the route (the uri attribute of the from element). Make
sure that the scheme of the URI matches the secure Jetty component, jetty, that you have just created.
You must also change the protocol scheme from http to https.

NOTE

Always double-check you have changed the protocol scheme to https. This is such a small
change, it is easy to forget.

Build the bundle

Use Maven to build the bundle. Open a command prompt, switch the current directory to
ProjectDir/jetty-security, and enter the following command:

Red Hat JBoss Fuse 6.3 Security Guide

72

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

This command builds the bundle and installs it in your local Maven repository.

Install the camel-jetty feature

If you have not already done so, start up the JBoss Fuse console (and container instance) by entering
the following command in a new command prompt:

The camel-jetty feature, which defines the bundles required for the Camel/Jetty component, is not
installed by default. To install the camel-jetty feature, enter the following console command:

Deploy the bundle

To deploy and activate the bundle, enter the following console command:

The preceding command loads the bundle from your local Maven repository. You might need to
configure the Mvn URL handler with the location of your local Maven repository, if the bundle cannot be
found (see section "Mvn URL Handler" in "Deploying into Apache Karaf").

Test the bundle

To test the Jetty service, enter the following curl command at a comand-line prompt:

NOTE

Don't forget to use https: instead of http: in the URL!

The -k flag allows curl to skip the SSL certificate check (that is, checking that the received server
certificate is signed by a local CA certificate), so that the server identity is not verified. You should
receive the following HTTP response:

Uninstall the bundle

To uninstall the broker bundle, you need to know its bundle ID, BundleID, in which case you can uninstall it
by entering the following console command:

mvn install -Dmaven.test.skip=true

./bin/fuse

JBossFuse:karaf@root> features:install camel-jetty

JBossFuse:karaf@root> osgi:install -s mvn:org.jbossfuse.example/jetty-security/1.0-SNAPSHOT

curl https://localhost:8282/services -k

<html><body>Hello from Fuse ESB server</body></html>

JBossFuse:karaf@root> osgi:uninstall BundleID

CHAPTER 5. SECURING THE CAMEL JETTY COMPONENT

73

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Deploying_into_Apache_Karaf/UrlHandlers-Maven.html

5.2. BASIC AUTHENTICATION WITH JAAS

Overview

The HTTP BASIC authentication protocol is a simple username/password authentication mechanism
that is integrated into HTTP and is supported by most Web browsers. To enable BASIC authentication in
Jetty, you use the Jetty security API, which enables BASIC authentication by associating a security
handler with the Jetty endpoint.

Jetty also enables you to plug in a JAAS login module to perform the credentials check. Using this
feature, it is possible to integrate credentials checking with any JAAS realm provided by the Red Hat
JBoss Fuse OSGi container. In the example shown here, the Jetty authentication is integrated with the
default JAAS realm, karaf.

Prerequisites

This example builds on the project created in Section 5.1, “Enabling SSL/TLS Security” . You must
complete the steps in the Jetty SSL/TLS example before proceeding with this tutorial.

NOTE

In any case, it is highly recommended that you always enable SSL/TLS in combination
with BASIC authentication, in order to protect against password snooping.

Authentication steps

To configure HTTP BASIC authentication for a Camel Jetty endpoint deployed in the OSGi container,
perform the following steps:

1. the section called “Add the Jetty security handler configuration” .

2. the section called “Modify Camel Jetty endpoint” .

3. the section called “Add required package imports to POM” .

4. the section called “Build the bundle” .

5. the section called “Install the required features” .

6. the section called “Deploy the bundle” .

7. the section called “Test the bundle” .

Add the Jetty security handler configuration

In the jetty-security project, edit the jetty-spring.xml file from the src/main/resources/META-
INF/spring directory. To configure the Jetty security handler with BASIC authentication, add the
following bean definitions:

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
 ...
 <!-- -->
 <bean id="loginService" class="org.eclipse.jetty.jaas.JAASLoginService">

Red Hat JBoss Fuse 6.3 Security Guide

74

Two aspects of Jetty authentication are configured by the preceding bean definitions:

HTTP BASIC authentication—the constraint bean enables HTTP BASIC authentication on the
Jetty security handler. The roles property (of String[] type) is used to define which roles have
access to the Jetty container. In this example, this property is set to Administrator, so only
users with the Administrator role can access this Jetty container.

JAAS login service—the loginService bean specifies that the requisite authentication data is
extracted from a JAAS realm. The loginModuleName property specifies that the Jetty login
service uses the karaf JAAS realm, which is the OSGi container's default JAAS realm (see
Section 1.1, “OSGi Container Security”).

Modify Camel Jetty endpoint

After creating the Jetty securityHandler bean, you must modify the Jetty endpoint URI in the Apache
Camel route, so that it hooks into the security handler. To add the security handler to the Jetty
endpoint, set the handlers option equal to the security handler's bean ID, as shown in the following
example:

 <property name="name" value="Your Services Realm"/>
 <property name="loginModuleName" value="karaf"/>
 <property name="roleClassNames">
 <list>
 <value>org.apache.karaf.jaas.boot.principal.RolePrincipal</value>
 </list>
 </property>
 </bean>

 <bean id="identityService" class="org.eclipse.jetty.security.DefaultIdentityService"/>

 <bean id="constraint" class="org.eclipse.jetty.util.security.Constraint">
 <property name="name" value="BASIC"/>
 <property name="roles" value="Administrator"/>
 <property name="authenticate" value="true"/>
 </bean>

 <bean id="constraintMapping" class="org.eclipse.jetty.security.ConstraintMapping">
 <property name="constraint" ref="constraint"/>
 <property name="pathSpec" value="/*"/>
 </bean>

 <bean id="securityHandler" class="org.eclipse.jetty.security.ConstraintSecurityHandler">
 <property name="authenticator">
 <bean class="org.eclipse.jetty.security.authentication.BasicAuthenticator"/>
 </property>
 <property name="constraintMappings">
 <list>
 <ref bean="constraintMapping"/>
 </list>
 </property>
 <property name="loginService" ref="loginService"/>
 <property name="identityService" ref="identityService"/>
 </bean>
 ...
</beans>

CHAPTER 5. SECURING THE CAMEL JETTY COMPONENT

75

NOTE

URI options must be separated by the & entity, instead of the plain & character, in
the context of an XML file.

Add required package imports to POM

Edit the jetty-security project's POM file, jetty-security/pom.xml. Further down the POM file, in the
configuration of the Maven bundle plug-in, modify the bundle instructions to import additional Java
packages, as follows:

NOTE

<beans ...>
 <camelContext trace="true" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from
uri="jetty:https://0.0.0.0:8282/services?handlers=securityHandler&matchOnUriPrefix=true"/>
 <transform>
 <constant><html><body>Hello from Fuse ESB server</body></html></constant>
 </transform>
 </route>
 </camelContext>
</beans>

<project ... >
 ...
 <build>
 ...
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>
 ${project.groupId}.${project.artifactId}
 </Bundle-SymbolicName>
 <Import-Package>
 javax.security.auth,
 javax.security.auth.callback,
 javax.security.auth.login,
 javax.security.auth.spi,
 org.apache.karaf.jaas.modules,
 org.apache.karaf.jaas.boot.principal,
 org.eclipse.jetty.jaas,
 org.eclipse.jetty.security,
 *
 </Import-Package>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
 </build>
 ...
</project>

Red Hat JBoss Fuse 6.3 Security Guide

76

NOTE

These extra imports are required, because the Maven bundle plug-in is not capable of
scanning Spring files to determine their package dependencies automatically.

Build the bundle

Use Maven to build the bundle. Open a command prompt, switch the current directory to
ProjectDir/jetty-security, and enter the following command:

Install the required features

If you have not already done so, start up the JBoss Fuse container by entering the following command in
a new command prompt:

If not already installed, install the camel-jetty feature using the following console command:

Deploy the bundle

To deploy and activate the bundle, enter the following console command:

Test the bundle

To test the Jetty service, enter the following curl command at a comand-line prompt:

NOTE

Don't forget to use https: instead of http: in the URL!

The --user option is needed to specify the BASIC authentication credentials. For the Username and
Password values, specify valid JAAS credentials (the valid credentials you can use for this step are
specified in the EsbInstallDir/etc/users.properties file). You should now receive the following HTTP
reply message:

mvn clean install -Dmaven.test.skip=true

./bin/fuse

karaf@root> features:install camel-jetty

JBossFuse:karaf@root> osgi:install -s mvn:org.jbossfuse.example/jetty-security/1.0-SNAPSHOT

curl https://0.0.0.0:8282/services -k --user Username:Password

<html><body>Hello from Fuse ESB server</body></html>

CHAPTER 5. SECURING THE CAMEL JETTY COMPONENT

77

CHAPTER 6. CONFIGURING TRANSPORT SECURITY FOR
CAMEL COMPONENTS

Abstract

Camel provides the Java Secure Socket Extension (JSSE) Utility API as a common way to configure
Camel components to use Transport Layer Security (TLS). The main JSSE utility class is
org.apache.util.jsse.SSLContextParameters. To configure TLS settings, you pass an instance of this
class to a Camel component. You can configure an SSLContextParameters object by using pure Java
or by using Spring or Blueprint XML.

The following code is an example of using Spring XML to configure an SSLContextParameters object:

This shows the toplevel sslContextParameters element with keyManagers and trustManagers child
elements. The keyManagers element configures the key store while the trustManagers element
configures the trust store. For details about key stores and trust stores, see the Apache Camel
documentation for the JSSE utility.

With this in place, you can reference the sslContextParameters bean in your endpoint URI. The
following route runs a netty4 HTTPS endpoint. The ssl option is required. For example:

The following code provides an example of how to configure transport security in Java:

<sslContextParameters id="sslContextParameters" xmlns="http://camel.apache.org/schema/spring">
 <keyManagers keyPassword="secret1">
 <keyStore resource="./my_keystore.jks" password="secret2" />
 </keyManagers>
 <trustManagers>
 <keyStore resource="./my_truststore.jks" password="secret2" />
 </trustManagers>
</sslContextParameters>

<route>
 <from uri="netty4:https://localhost:8080/early?
sslContextParametersRef=#sslContextParameters&ssl=true"/>
 <transform>
 <constant>Hi</constant>
 </transform>
</route>

@Override
protected JndiRegistry createRegistry() throws Exception {
 KeyStoreParameters ksp = new KeyStoreParameters();
 ksp.setResource("./my_keystore.jks");
 ksp.setPassword("secret1");
 KeyManagersParameters kmp = new KeyManagersParameters();
 kmp.setKeyPassword("secret2");
 kmp.setKeyStore(ksp);
 KeyStoreParameters tsp = new KeyStoreParameters();
 tsp.setResource("./my_truststore.jks");
 tsp.setPassword("secret2");
 TrustManagersParameters tmp = new TrustManagersParameters();
 tmp.setKeyStore(tsp);

Red Hat JBoss Fuse 6.3 Security Guide

78

http://camel.apache.org/camel-configuration-utilities.html

The Java route for a netty4 HTTPS endpoint looks like the following. The ssl option is required.

In Camel, to call these HTTPS endpoints, also provide the sslContextParameters object that contains a
trusted certificate. The following example reuses the server sslContextParameters object. In this
example, the URI syntax is the same for the producer. For example:

If you do not provide an sslContextParameters object that contains a valid trust store then the server
does not allow a connection and Camel throws an execution exception - CamelExecutionException.

 SSLContextParameters sslContextParameters = new SSLContextParameters();
 sslContextParameters.setKeyManagers(kmp);
 sslContextParameters.setTrustManagers(tmp);
 JndiRegistry registry = super.createRegistry();
 registry.bind("sslContextParameters", sslContextParameters);

 return registry;
}

from("netty4:https://localhost:8080/early?sslContextParametersRef=
 #sslContextParameters&ssl=true").transform().constant("Hi");

String reply =
 template.requestBody(
 "netty4:https://localhost:8080/early?ssl=true&sslContextParametersRef=
 sslContextParameters", "Hi Camel!", String.class);

CHAPTER 6. CONFIGURING TRANSPORT SECURITY FOR CAMEL COMPONENTS

79

CHAPTER 7. SECURING THE CAMEL CXF COMPONENT

Abstract

This chapter explains how to enable SSL/TLS security on a Camel CXF endpoint, using the Camel CXF
proxy demonstration as the starting point. The Camel CXF component enables you to add Apache CXF
endpoints to your Apache Camel routes. This makes it possible to simulate a Web service in Apache
Camel or you could interpose a route between a WS client and a Web service to perform additional
processing (which is the case considered here).

7.1. THE CAMEL CXF PROXY DEMONSTRATION

Overview

In order to explain how to secure a Camel CXF endpoint in OSGi, this tutorial builds on an example
available from the standalone distribution of Apache Camel, the Camel CXF proxy demonstration.
Figure 7.1, “Camel CXF Proxy Overview” gives an overview of how this demonstration works

Figure 7.1. Camel CXF Proxy Overview

The report incident Web service, which is implemented by the RealWebServiceBean, receives details of
an incident (for example, a traffic accident) and returns a tracking code to the client. Instead of sending
its requests directly to the real Web service, however, the WS client connects to a Camel CXF endpoint,
which is interposed between the WS client and the real Web service. The Apache Camel route performs
some processing on the WSDL message (using the enrichBean) before forwarding it to the real Web
service.

WARNING

If you enable SSL/TLS security, you must ensure that you explicitly disable the
SSLv3 protocol, in order to safeguard against the Poodle vulnerability (CVE-2014-
3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and JBoss A-MQ
6.x.

Modifications

In order to demonstrate how to enable SSL/TLS on a Camel CXF endpoint in the context of OSGi, this
chapter contains instructions on how to modify the basic demonstration as follows:



Red Hat JBoss Fuse 6.3 Security Guide

80

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

1. SSL/TLS security is enabled on the connection between the WS client and the Camel CXF
endpoint.

2. The Apache Camel route and the RealWebServiceBean bean are both deployed into the OSGi
container.

Obtaining the demonstration code

The Camel CXF proxy demonstration is available only from the standalone distribution of Apache
Camel, which is included in the InstallDir/extras directory. Using a standard archive utility, expand the
Camel archive file and extract the contents to a convenient location on your filesystem.

Assuming that you have installed Apache Camel in CamelInstallDir, you can find the Camel CXF proxy
demonstration in the following directory:

Obtaining the sample certificates

This demonstration needs X.509 certificates. In a real deployment, you should generate these
certificates yourself using a private certificate authority. For this demonstration, however, we use some
sample certificates from the Apache CXF wsdl_first_http example. This demonstration is available from
the standalone distribution of Apache CXF, which is included in the InstallDir/extras directory. Using a
standard archive utility, expand the CXF archive file and extract the contents to a convenient location
on your filesystem.

Assuming that you have installed Apache CXF in CXFInstallDir, you can find the wsdl_first_http
demonstration in the following directory:

Physical part of the WSDL contract

The physical part of the WSDL contract refers to the wsdl:service and wsdl:port elements. These
elements specify the transport details that are needed to connect to a specific Web services endpoint.
For the purposes of this demonstration, this is the most interesting part of the contract and it is shown in
Example 7.1, “The ReportIncidentEndpointService WSDL Service” .

Example 7.1. The ReportIncidentEndpointService WSDL Service

CamelInstallDir/examples/camel-example-cxf-proxy

CXFInstallDir/samples/wsdl_first_http

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 ...
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://reportincident.example.camel.apache.org">
 ...
 <!-- Service definition -->
 <wsdl:service name="ReportIncidentEndpointService">
 <wsdl:port name="ReportIncidentEndpoint" binding="tns:ReportIncidentBinding">
 <soap:address location="http://localhost:9080/camel-example-cxf-
proxy/webservices/incident"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

CHAPTER 7. SECURING THE CAMEL CXF COMPONENT

81

NOTE

The address URL appearing in the WSDL contract (the value of the soap:address
element's location attribute) is not important here, because the application code
overrides the default value of the address URL.

WSDL addressing details

A WS client needs three pieces of information to connect to a WSDL service: the WSDL service name ,
the WSDL port name , and the address URL of the Web service. The following addressing details are
used to connect to the proxy Web service and to the real Web service in this example:

WSDL service name

The full QName of the WSDL service is as follows:

WSDL port name

The full QName of the WSDL port is as follows:

Address URL

The address URL of the proxy Web service endpoint (which uses the HTTPS protocol) is as follows:

NOTE

The preceding address is specified when the reportIncident bean is created using a
cxf:cxfEndpoint element in the bundle's Spring configuration file,
src/main/resources/META-INF/spring/camel-config.xml.

The address URL of the real Web service endpoint (using the HTTP protocol) is as follows:

NOTE

The preceding address is specified when the realWebService bean is created in the
bundle's Spring configuration file, src/main/resources/META-INF/spring/camel-
config.xml.

7.2. SECURING THE WEB SERVICES PROXY

{http://reportincident.example.camel.apache.org}ReportIncidentEndpointService

{http://reportincident.example.camel.apache.org}ReportIncidentEndpoint

https://localhost:9080/camel-example-cxf-proxy/webservices/incident

http://localhost:9081/real-webservice

Red Hat JBoss Fuse 6.3 Security Guide

82

Overview

This section explains how to enable SSL/TLS security on the Camel CXF endpoint, which acts as a proxy
for the real Web service. Assuming that you already have the X.509 certificates available, all that is
required is to add a block of configuration data to the Spring configuration file (where the configuration
data is contained in a httpj:engine-factory element). There is just one slightly subtle aspect to this,
however: you need to understand how the Camel CXF endpoint gets associated with the SSL/TLS
configuration details.

Implicit configuration

A WS endpoint can be configured by creating the endpoint in Spring and then configuring SSL/TLS
properties on its Jetty container. The configuration can be somewhat confusing, however, for the
following reason: the Jetty container (which is configured by a httpj:engine-factory element in Spring)
does not explicitly reference the WS endpoints it contains and the WS endpoints do not explicitly
reference the Jetty container either. The connection between the Jetty container and its contained
endpoints is established implicitly, in that they are both configured to use the same TCP port, as
illustrated by Figure 7.2, “WS Endpoint Implicitly Configured by httpj:engine-factory Element” .

Figure 7.2. WS Endpoint Implicitly Configured by httpj:engine-factory Element

The connection between the Web service endpoint and the httpj:engine-factory element is established
as follows:

1. The Spring container loads and parses the file containing the httpj:engine-factory element.

2. When the httpj:engine-factory bean is created, a corresponding entry is created in the registry,
storing a reference to the bean. The httpj:engine-factory bean is also used to initialize a Jetty
container that listens on the specified TCP port.

3. When the WS endpoint is created, it scans the registry to see if it can find a httpj:engine-
factory bean with the same TCP port as the TCP port in the endpoint's address URL.

4. If one of the beans matches the endpoint's TCP port, the WS endpoint installs itself into the
corresponding Jetty container. If the Jetty container has SSL/TLS enabled, the WS endpoint
shares those security settings.

Steps to add SSL/TLS security to the Jetty container

To add SSL/TLS security to the Jetty container, thereby securing the WS proxy endpoint, perform the
following steps:

CHAPTER 7. SECURING THE CAMEL CXF COMPONENT

83

1. the section called “Add certificates to the bundle resources” .

2. the section called “Modify POM to switch off resource filtering” .

3. the section called “Instantiate the CXF Bus” .

4. the section called “Add the httpj:engine-factory element to Spring configuration” .

5. the section called “Define the cxfcore:, sec: and httpj: prefixes” .

6. the section called “Modify proxy address URL to use HTTPS” .

Add certificates to the bundle resources

The certificates used in this demonstration are taken from a sample in the Apache CXF 3.1.5.redhat-
630xxx product. If you install the standalone version of Apache CXF (available in the InstallDir/extras/
directory), you will find the sample certificates in the
CXFInstallDir/samples/wsdl_first_https/src/main/config directory.

Copy the clientKeystore.jks and serviceKeystore.jks keystores from the
CXFInstallDir/samples/wsdl_first_https/src/main/config directory to the
CamelInstallDir/examples/camel-example-cxf-proxy/src/main/resources/certs directory (you must
first create the certs sub-directory).

Modify POM to switch off resource filtering

Including the certificates directly in the bundle as resource is the most convenient way to deploy them.
But when you deploy certificates as resources in a Maven project, you must remember to disable Maven
resource filtering, which corrupts binary files.

To disable filtering of .jks files in Maven, open the project POM file, CamelInstallDir/examples/camel-
example-cxf-proxy/pom.xml, with a text editor and add the following resources element as a child of
the build element:

<?xml version="1.0" encoding="UTF-8"?>
...
<project ...>
 ...
 <build>
 <plugins>
 ...
 </plugins>

 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 <excludes>
 <exclude>**/*.jks</exclude>
 </excludes>
 </resource>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>false</filtering>
 <includes>
 <include>**/*.jks</include>

Red Hat JBoss Fuse 6.3 Security Guide

84

Instantiate the CXF Bus

You should instantiate the CXF bus explicitly in the Spring XML (this ensures that it will be available to
the Jetty container, which is instantiated by the httpj:engine-factory element in the next step). Edit the
camel-config.xml file in the src/main/resources/META-INF/spring directory, adding the cxfcore:bus
element as a child of the beans element, as follows:

NOTE

The cxfcore: namespace prefix will be defined in a later step.

Add the httpj:engine-factory element to Spring configuration

To configure the Jetty container that listens on TCP port 9080 to use SSL/TLS security, edit the
camel-config.xml file in the src/main/resources/META-INF/spring directory, adding the httpj:engine-
factory element as shown in Example 7.2, “httpj:engine-factory Element with SSL/TLS Enabled” .

In this example, the required attribute of the sec:clientAuthentication element is set to false, which
means that a connecting client is not required to present an X.509 certificate to the server during the
SSL/TLS handshake (although it may do so, if it has such a certificate).

Example 7.2. httpj:engine-factory Element with SSL/TLS Enabled

 </includes>
 </resource>
 </resources>
 </build>

</project>

<beans ... >
 ...
 <cxfcore:bus/>
 ...
</beans>

<beans ... >
 ...
 <httpj:engine-factory bus="cxf">
 <httpj:engine port="${proxy.port}">
 <httpj:tlsServerParameters secureSocketProtocol="TLSv1">
 <sec:keyManagers keyPassword="skpass">
 <sec:keyStore resource="certs/serviceKeystore.jks" password="sspass" type="JKS"/>
 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore resource="certs/serviceKeystore.jks" password="sspass" type="JKS"/>
 </sec:trustManagers>
 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>
 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>
 <sec:clientAuthentication want="true" required="false"/>

CHAPTER 7. SECURING THE CAMEL CXF COMPONENT

85

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to protect
against the Poodle vulnerability (CVE-2014-3566)

Define the cxfcore:, sec: and httpj: prefixes

Define the cxfcore:, sec: and httpj: namespace prefixes, which appear in the definitions of the
cxfcore:bus element and the httpj:engine-factory element, by adding the following highlighted lines to
the beans element in the camel-config.xml file:

NOTE

It is essential to specify the locations of the
http://cxf.apache.org/configuration/security schema and the
http://cxf.apache.org/transports/http-jetty/configuration schema in the
xsi:schemaLocation attribute. These will not automatically be provided by the OSGi
container.

Modify proxy address URL to use HTTPS

The proxy endpoint at the start of the Apache Camel route is configured by the cxf:cxfEndpoint
element in the camel-config.xml file. By default, this proxy endpoint is configured to use the HTTP
protocol. You must modify the address URL to use the secure HTTPS protocol instead, however. In the

 </httpj:tlsServerParameters>
 </httpj:engine>
 </httpj:engine-factory>

</beans>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xmlns:cxf="http://camel.apache.org/schema/cxf"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:cxfcore="http://cxf.apache.org/core"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd
 http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/camel-cxf.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd
 http://cxf.apache.org/configuration/security
http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd
 ">

Red Hat JBoss Fuse 6.3 Security Guide

86

https://access.redhat.com/articles/1232123

camel-config.xml file, edit the address attribute of the cxf:cxfEndpoint element, replacing the http:
prefix by the https: prefix, as shown in the following fragment:

Notice also that the address URL is configured to use the TCP port, ${proxy.port} (which has the value
9080 by default). This TCP port value is the same as the value set for the Jetty container (configured by
the http:engine-factory element), thus ensuring that this endpoint is deployed into the Jetty container.
The attributes of the cxf:cxfEndpoint specify the WSDL addressing details as described in the section
called “WSDL addressing details”:

serviceName

Specifies the WSDL service name.

endpointName

Specifies the WSDL port name.

address

Specifies the address URL of the proxy Web service.

7.3. DEPLOYING THE APACHE CAMEL ROUTE

Overview

The Maven POM file in the basic Camel CXF proxy demonstration is already configured to generate an
OSGi bundle. Hence, after building the demonstration using Maven, the demonstration bundle (which
contains the Apache Camel route and the RealWebServicesBean bean) is ready for deployment into
the OSGi container.

Prerequisites

Before deploying the Apache Camel route into the OSGi container, you must configure the proxy Web
service to use SSL/TLS security, as described in the previous section, Section 7.2, “Securing the Web
Services Proxy”.

Steps to deploy the Camel route

To deploy the Web services proxy demonstration into the OSGi container, perform the following steps:

1. the section called “Build the demonstration” .

2. the section called “Start the OSGi container” .

<beans ...>
 ...
 <cxf:cxfEndpoint id="reportIncident"
 address="https://localhost:${proxy.port}/camel-example-cxf-proxy/webservices/incident"
 endpointName="s:ReportIncidentEndpoint"
 serviceName="s:ReportIncidentEndpointService"
 wsdlURL="etc/report_incident.wsdl"
 xmlns:s="http://reportincident.example.camel.apache.org"/>
 ...
</beans>

CHAPTER 7. SECURING THE CAMEL CXF COMPONENT

87

3. the section called “Install the required features” .

4. the section called “Deploy the bundle” .

5. the section called “Check the console output” .

Build the demonstration

Use Maven to build and install the demonstration as an OSGi bundle. Open a command prompt, switch
the current directory to CamelInstallDir/examples/camel-example-cxf-proxy, and enter the following
command:

Start the OSGi container

If you have not already done so, start up the Karaf console (and container instance) by entering the
following command in a new command prompt:

Install the required features

The camel-cxf feature, which defines the bundles required for the Camel/CXF component, is not
installed by default. To install the camel-cxf feature, enter the following console command:

You also need the camel-http feature, which defines the bundles required for the Camel/HTTP
component. To install the camel-http feature, enter the following console command:

Deploy the bundle

Deploy the camel-example-cxf-proxy bundle, by entering the following console command:

NOTE

In this case, it is preferable to deploy the bundle directly using install, rather than using
hot deploy, so that you can see the bundle output on the console screen.

If you have any difficulty using the mvn URL handler, see section "Mvn URL Handler" in
"Deploying into Apache Karaf" for details of how to set it up.

Check the console output

After the bundle is successfully deployed, you should see output like the following in the console

mvn install -Dmaven.test.skip=true

./fuse

JBossFuse:karaf@root> features:install camel-cxf

JBossFuse:karaf@root> features:install camel-http

JBossFuse:karaf@root> install -s mvn:org.apache.camel/camel-example-cxf-proxy/2.17.0.redhat-
630xxx

Red Hat JBoss Fuse 6.3 Security Guide

88

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Deploying_into_Apache_Karaf/UrlHandlers-Maven.html

After the bundle is successfully deployed, you should see output like the following in the console
window:

7.4. SECURING THE WEB SERVICES CLIENT

Overview

In the basic Camel CXF proxy demonstration, the Web services client is actually implemented as a JUnit
test under the src/test directory. This means that the client can easily be run using the Maven
command, mvn test. To enable SSL/TLS security on the client, the Java implementation of the test
client is completely replaced and a Spring file, containing the SSL/TLS configuration, is added to the
src/test/resources/META-INF/spring directory. Before describing the steps you need to perform to set
up the client, this section explains some details of the client's Java code and Spring configuration.

Implicit configuration

Apart from changing the URL scheme on the endpoint address to https:, most of the configuration to
enable SSL/TLS security on a client proxy is contained in a http:conduit element in Spring
configuration. The way in which this configuration is applied to the client proxy, however, is potentially
confusing, for the following reason: the http:conduit element does not explicitly reference the client
proxy and the client proxy does not explicitly reference the http:conduit element. The connection
between the http:conduit element and the client proxy is established implicitly, in that they both
reference the same WSDL port, as illustrated by Figure 7.3, “Client Proxy Implicitly Configured by
http:conduit Element”.

Figure 7.3. Client Proxy Implicitly Configured by http:conduit Element

The connection between the client proxy and the http:conduit element is established as follows:

1. The client loads and parses the Spring configuration file containing the http:conduit element.

2. When the http:conduit bean is created, a corresponding entry is created in the registry, which
stores a reference to the bean under the specified WSDL port name (where the name is stored
in QName format).

3. When the JAX-WS client proxy is created, it scans the registry to see if it can find a
http:conduit bean associated with the proxy's WSDL port name. If it finds such a bean, it
automatically injects the configuration details into the proxy.

JBossFuse:karaf@root> Starting real web service...
Started real web service at: http://localhost:9081/real-webservice

CHAPTER 7. SECURING THE CAMEL CXF COMPONENT

89

Certificates needed on the client side

The client is configured with the following clientKeystore.jks keystore file from the
src/main/resources/certs directory. This keystore contains two entries, as follows:

Trusted cert entry

A trusted certificate entry containing the CA certificate that issued and signed both the server
certificate and the client certificate.

Private key entry

A private key entry containing the client's own X.509 certificate and private key. In fact, this
certificate is not strictly necessary to run the current example, because the server does not require
the client to send a certificate during the TLS handshake (see Example 7.2, “httpj:engine-factory
Element with SSL/TLS Enabled”).

Loading Spring definitions into the client

The example client is not deployed directly into a Spring container, but it requires some Spring
definitions in order to define a secure HTTP conduit. So how can you create the Spring definitions
without a Spring container? It turns out that it is easy to read Spring definitions into a Java-based client
using the org.apache.cxf.bus.spring.SpringBusFactory class.

The following code shows how to read Spring definitions from the file, META-INF/spring/cxf-client.xml,
and create an Apache CXF Bus object that incorporates those definitions:

Creating the client proxy

In principle, there are several different ways of creating a WSDL proxy: you could use the JAX-WS API to
create a proxy based on the contents of a WSDL file; you could use the JAX-WS API to create a proxy
without a WSDL file; or you could use the Apache CXF-specific class, JaxWsProxyFactoryBean, to
create a proxy.

For this SSL/TLS client, the most convenient approach is to use the JAX-WS API to create a proxy
without using a WSDL file, as shown in the following Java sample:

// Java
import org.apache.cxf.bus.spring.SpringBusFactory;
...
protected void startCxfBus() throws Exception {
 bf = new SpringBusFactory();
 Bus bus = bf.createBus("META-INF/spring/cxf-client.xml");
 bf.setDefaultBus(bus);
}

// Java
import javax.xml.ws.Service;
import org.apache.camel.example.reportincident.ReportIncidentEndpoint;
...
// create the webservice client and send the request
Service s = Service.create(SERVICE_NAME);
s.addPort(
 PORT_NAME,
 "http://schemas.xmlsoap.org/soap/",

Red Hat JBoss Fuse 6.3 Security Guide

90

NOTE

In this example, you cannot use the JaxWsProxyFactoryBean approach to create a
proxy, because a proxy created in this way fails to find the HTTP conduit settings
specified in the Spring configuration file.

The SERVICE_NAME and PORT_NAME constants are the QNames of the WSDL service and the
WSDL port respectively, as defined in Example 7.1, “The ReportIncidentEndpointService WSDL Service” .
The ADDRESS_URL string has the same value as the proxy Web service address and is defined as
follows:

In particular, note that the address must be defined with the URL scheme, https, which selects HTTP
over SSL/TLS.

Steps to add SSL/TLS security to the client

To define a JAX-WS client with SSL/TLS security enabled, perform the following steps:

1. the section called “Create the Java client as a test case” .

2. the section called “Add the http:conduit element to Spring configuration” .

3. the section called “Run the client” .

Create the Java client as a test case

Example 7.3, “ReportIncidentRoutesTest Java client” shows the complete code for a Java client that is
implemented as a JUnit test case. This client replaces the existing test,
ReportIncidentRoutesTest.java, in the src/test/java/org/apache/camel/example/reportincident sub-
directory of the examples/camel-example-cxf-proxy demonstration.

To add the client to the CamelInstallDir/examples/camel-example-cxf-proxy demonstration, go to
the src/test/java/org/apache/camel/example/reportincident sub-directory, move the existing
ReportIncidentRoutesTest.java file to a backup location, then create a new
ReportIncidentRoutesTest.java file and paste the code from Example 7.3, “ReportIncidentRoutesTest
Java client” into this file.

Example 7.3. ReportIncidentRoutesTest Java client

 ADDRESS_URL
);
ReportIncidentEndpoint client =
 s.getPort(PORT_NAME, ReportIncidentEndpoint.class);

private static final String ADDRESS_URL =
 "https://localhost:9080/camel-example-cxf-proxy/webservices/incident";

// Java
package org.apache.camel.example.reportincident;

import org.apache.camel.spring.Main;
import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
import org.junit.Test;

CHAPTER 7. SECURING THE CAMEL CXF COMPONENT

91

import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import org.apache.cxf.Bus;
import org.apache.cxf.bus.spring.SpringBusFactory;
import org.apache.camel.example.reportincident.ReportIncidentEndpoint;
import org.apache.camel.example.reportincident.ReportIncidentEndpointService;

import static org.junit.Assert.assertEquals;

/**
 * Unit test of our routes
 */
public class ReportIncidentRoutesTest {

 private static final QName SERVICE_NAME
 = new QName("http://reportincident.example.camel.apache.org",
"ReportIncidentEndpointService");

 private static final QName PORT_NAME =
 new QName("http://reportincident.example.camel.apache.org", "ReportIncidentEndpoint");

 private static final String WSDL_URL = "file:src/main/resources/etc/report_incident.wsdl";

 // should be the same address as we have in our route
 private static final String ADDRESS_URL = "https://localhost:9080/camel-example-cxf-
proxy/webservices/incident";

 protected SpringBusFactory bf;

 protected void startCxfBus() throws Exception {
 bf = new SpringBusFactory();
 Bus bus = bf.createBus("META-INF/spring/cxf-client.xml");
 bf.setDefaultBus(bus);
 }

 @Test
 public void testRendportIncident() throws Exception {
 startCxfBus();
 runTest();
 }

 protected void runTest() throws Exception {

 // create input parameter
 InputReportIncident input = new InputReportIncident();
 input.setIncidentId("123");
 input.setIncidentDate("2008-08-18");
 input.setGivenName("Claus");
 input.setFamilyName("Ibsen");
 input.setSummary("Bla");
 input.setDetails("Bla bla");
 input.setEmail("davsclaus@apache.org");
 input.setPhone("0045 2962 7576");

Red Hat JBoss Fuse 6.3 Security Guide

92

Add the http:conduit element to Spring configuration

Example 7.4, “http:conduit Element with SSL/TLS Enabled” shows the Spring configuration that defines
a http:conduit element for the ReportIncidentEndpoint WSDL port. The http:conduit element is
configured to enable SSL/TLS security for any client proxies that use the specified WSDL port.

To add the Spring configuration to the client test case, create the src/test/resources/META-INF/spring
sub-directory, use your favorite text editor to create the file, cxf-client.xml, and then paste the
contents of Example 7.4, “http:conduit Element with SSL/TLS Enabled” into the file.

Example 7.4. http:conduit Element with SSL/TLS Enabled

 // create the webservice client and send the request
 Service s = Service.create(SERVICE_NAME);
 s.addPort(PORT_NAME, "http://schemas.xmlsoap.org/soap/", ADDRESS_URL);
 ReportIncidentEndpoint client = s.getPort(PORT_NAME, ReportIncidentEndpoint.class);

 OutputReportIncident out = client.reportIncident(input);

 // assert we got a OK back
 assertEquals("OK;456", out.getCode());
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://camel.apache.org/schema/cxf"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/camel-cxf.xsd
 http://cxf.apache.org/configuration/security
http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
 ">

 <http:conduit name="
{http://reportincident.example.camel.apache.org}ReportIncidentEndpoint.http-conduit">
 <http:tlsClientParameters disableCNCheck="true" secureSocketProtocol="TLSv1">
 <sec:keyManagers keyPassword="ckpass">
 <sec:keyStore password="cspass" type="JKS"
 resource="certs/clientKeystore.jks" />
 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore password="cspass" type="JKS"
 resource="certs/clientKeystore.jks" />
 </sec:trustManagers>
 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>
 <sec:include>.*_WITH_DES_.*</sec:include>

CHAPTER 7. SECURING THE CAMEL CXF COMPONENT

93

Please note the following points about the preceding configuration:

The http: and sec: namespace prefixes are needed to define the http:conduit element. In the
xsi:schemaLocation element, it is also essential to specify the locations of the corresponding
http://cxf.apache.org/configuration/security and
http://cxf.apache.org/transports/http/configuration namespaces.

The disableCNCheck attribute of the http:tlsClientParameters element is set to true. This
means that the client does not check whether the Common Name in the server's X.509
certificate matches the server hostname. For more details, see Appendix A, Managing
Certificates.

IMPORTANT

Disabling the CN check is not recommended in a production deployment.

In the sec:keystore elements, the certificate locations are specified using the resource
attribute, which finds the certificates on the classpath. When Maven runs the test, it
automatically makes the contents of src/main/resources available on the classpath, so that the
certificates can be read from the src/main/resources/certs directory.

NOTE

You also have the option of specifying a certificate location using the file
attribute, which looks in the filesystem. But the resource attribute is more
suitable for use with applications packaged in bundles.

The sec:cipherSuitesFilter element is configured to exclude cipher suites matching
.*_WITH_NULL_.* and .*_DH_anon_.*. These cipher suites are effectively incomplete and are
not intended for normal use.

IMPORTANT

It is recommended that you always exclude the ciphers matching
.*_WITH_NULL_.* and .*_DH_anon_.*.

The secureSocketProtocol attribute should be set to TLSv1, to match the server protocol and
to ensure that the SSLv3 protocol is not used (POODLE security vulnerability (CVE-2014-
3566)).

Run the client

Because the client is defined as a test case, you can run the client using the standard Maven test goal.

 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>
 </http:tlsClientParameters>
 </http:conduit>

</beans>

Red Hat JBoss Fuse 6.3 Security Guide

94

https://access.redhat.com/articles/1232123

Because the client is defined as a test case, you can run the client using the standard Maven test goal.
To run the client, open a new command window, change directory to CamelInstallDir/examples/camel-
example-cxf-proxy, and enter the following Maven command:

If the test runs successfully, you should see the following output in the OSGi console window:

mvn test

Incident was 123, changed to 456

Invoked real web service: id=456 by Claus Ibsen

CHAPTER 7. SECURING THE CAMEL CXF COMPONENT

95

CHAPTER 8. SECURING THE MANAGEMENT CONSOLE

Abstract

The default setting for Access-Control-Allow-Origin header for the JBoss Fuse Management Console
permits unrestricted sharing. To restrict access to the JBoss Fuse Management Console, create an
access management file which contains a list of the allowed origin URLs. To implement the restrictions,
add a system property that references the access management file

8.1. CONTROLLING ACCESS TO THE FUSE MANAGEMENT CONSOLE

Create an access management file called access-management.xml in <installDir>/etc/. The access
management file must contain <allow-origin> sections within a <cors> section. The <allow-origin>
section can contain the origin URL provided by browsers with the Origin: header, or a wildcard
specification with *. For example:

Add the following line to JBoss Fuse config script ./bin/setenv, adding the path to the access
management file.

When the command ./bin/fuse is executed, the access management file is referenced and used to
restrict access to the JBoss Fuse Management Console.

<cors>
 <!-- Allow cross origin access from www.jolokia.org ... -->
 <allow-origin>http://www.jolokia.org</allow-origin>
 <!-- ... and all servers from jmx4perl.org with any protocol -->
 <allow-origin>*://*.jmx4perl.org</allow-origin>
 <!-- optionally allow access to web console from localhost -->
 <allow-origin>http://localhost:8181/*</allow-origin>
 <!-- Check for the proper origin on the server side, too -->
 <strict-checking/>
</cors>

export EXTRA_JAVA_OPTS='-Djolokia.policyLocation=file:etc/access-management.xml'

Red Hat JBoss Fuse 6.3 Security Guide

96

CHAPTER 9. LDAP AUTHENTICATION TUTORIAL

Abstract

This tutorial explains how to set up an X.500 directory server and configure the OSGi container to use
LDAP authentication.

9.1. TUTORIAL OVERVIEW

Goals

In this tutorial you will:

Install 389 Directory Server

Add user entries to the LDAP server

Add groups to manage security roles

Configure JBoss Fuse to use LDAP authentication

Configure JBoss Fuse to use roles for authorization

Configure SSL/TLS connections to the LDAP server

9.2. SET-UP A DIRECTORY SERVER AND CONSOLE

Overview

This stage of the tutorial explains how to install the X.500 directory server and the management
console from the Fedora 389 Directory Server project. If you already have access to a 389 Directory
Server instance, you can skip the instructions for installing the 389 Directory Server and install the 389
Management Console instead.

Prerequisites

If you are installing on a Red Hat Enterprise Linux platform, you must first install the Extra Packages for
Enterprise Linux (EPEL). See the installation notes under RHEL/Cent OS/ EPEL (RHEL 6, RHEL 7,
Cent OS 6, Cent OSý7) on the fedoraproject.org site.

Install 389 Directory Server

If you do not have access to an existing 389 Directory Server instance, you can install 389 Directory
Server on your local machine, as follows:

1. On Red Hat Enterprise Linux and Fedora platforms, use the standard yum package
management utility to install 389 Directory Server . Enter the following command at a command
prompt (you must have administrator privileges on your machine):

NOTE

sudo yum install 389-ds

CHAPTER 9. LDAP AUTHENTICATION TUTORIAL

97

http://directory.fedoraproject.org/index.html
https://fedoraproject.org/wiki/EPEL
http://directory.fedoraproject.org/docs/389ds/download.html#rhelcentosepel-rhel-6-rhel-7-centos-6-centos-7

NOTE

The required 389-ds and 389-console RPM packages are available for Fedora,
RHEL6+EPEL, and CentOS7+EPEL platforms. At the time of writing, the 389-
console package is not yet available for RHEL 7.

2. After installing the 389 directory server packages, enter the following command to configure
the directory server:

The script is interactive and prompts you to provide the basic configuration settings for the 389
directory server. When the script is complete, it automatically launches the 389 directory server
in the background.

3. For more details about how to install 389 Directory Server , see the Download page.

Install 389 Management Console

If you already have access to a 389 Directory Server instance, you only need to install the 389
Management Console, which enables you to log in and manage the server remotely. You can install the
389 Management Console, as follows:

On Red Hat Enterprise Linux and Fedora platforms —use the standard yum package
management utility to install the 389 Management Console. Enter the following command at a
command prompt (you must have administrator privileges on your machine):

On Windows platforms—see the Windows Console download instructions from
fedoraproject.org.

Connect the console to the server

To connect the 389 Directory Server Console to the LDAP server:

1. Enter the following command to start up the 389 Management Console:

2. A login dialog appears. Fill in the LDAP login credentials in the User ID and Password fields,
and customize the hostname in the Administration URL field to connect to your 389
management server instance (port 9830 is the default port for the 389 management server
instance).

sudo setup-ds-admin.pl

sudo yum install 389-console

389-console

Red Hat JBoss Fuse 6.3 Security Guide

98

http://directory.fedoraproject.org/docs/389ds/download.html
http://directory.fedoraproject.org/docs/389ds/download.html#windows-console

3. The 389 Management Console window appears. Select the Servers and Applications tab.

4. In the left-hand pane, drill down to the Directory Server icon.

5. Select the Directory Server icon in the left-hand pane and click Open, to open the 389
Directory Server Console.

6. In the 389 Directory Server Console, click the Directory tab, to view the Directory Information
Tree (DIT).

7. Expand the root node, YourDomain (usually named after a hostname, and shown as
localdomain in the following screenshot), to view the DIT.

CHAPTER 9. LDAP AUTHENTICATION TUTORIAL

99

9.3. ADD USER ENTRIES TO THE DIRECTORY SERVER

Overview

The basic prerequisite for using LDAP authentication with the OSGi container is to have an X.500
directory server running and configured with a collection of user entries. For many use cases, you will
also want to configure a number of groups to manage user roles.

Alternative to adding user entries

If you already have user entries and groups defined in your LDAP server, you might prefer to map the
existing LDAP groups to JAAS roles using the roles.mapping property in the LDAPLoginModule
configuration, instead of creating new entries. For details, see Section 2.1.7, “JAAS LDAP Login
Module”.

Goals

In this portion of the tutorial you will

Add three user entries to the LDAP server

Add four groups to the LDAP server

Adding user entries

Perform the following steps to add user entries to the directory server:

1. Ensure that the LDAP server and console are running. See Section 9.2, “Set-up a Directory
Server and Console”.

2. In the Directory Server Console, click on the Directory tab, and drill down to the People node,
under the YourDomain node (where YourDomain is shown as localdomain in the following
screenshots).

Red Hat JBoss Fuse 6.3 Security Guide

100

3. Right-click the People node, and select New → User from the context menu, to open the
Create New User dialog.

4. Select the User tab in the left-hand pane of the Create New User dialog.

5. Fill in the fields of the User tab, as follows:

a. Set the First Name field to John.

b. Set the Last Name field to Doe.

c. Set the User ID field to jdoe.

d. Enter the password, secret, in the Password field.

e. Enter the password, secret, in the Confirm Password field.

CHAPTER 9. LDAP AUTHENTICATION TUTORIAL

101

6. Click OK.

7. Add a user Jane Doe by following Step 3 to Step 6.

In Step 5.e , use janedoe for the new user's User ID and use the password, secret, for the
password fields.

8. Add a user Camel Rider by following Step 3 to Step 6.

In Step 5.e , use crider for the new user's User ID and use the password, secret, for the
password fields.

Adding groups for the roles

To add the groups that define the roles:

1. In the Directory tab of the Directory Server Console, drill down to the Groups node, under the
YourDomain node.

2. Right-click the Groups node, and select New → Group from the context menu, to open the
Create New Group dialog.

3. Select the General tab in the left-hand pane of the Create New Group dialog.

4. Fill in the fields of the General tab, as follows:

a. Set the Group Name field to Administrator.

b. Optionally, enter a description in the Description field.

Red Hat JBoss Fuse 6.3 Security Guide

102

5. Select the Members tab in the left-hand pane of the Create New Group dialog.

6. Click Add to open the Search users and groups dialog.

CHAPTER 9. LDAP AUTHENTICATION TUTORIAL

103

7. In the Search field, select Users from the drop-down menu, and click the Search button.

8. From the list of users that is now displayed, select John Doe.

9. Click OK, to close the Search users and groups dialog.

10. Click OK, to close the Create New Group dialog.

11. Add a Deployer role by following Step 2 to Step 10 .

In Step 4, enter Deployer in the Group Name field.

In Step 8 , select Jane Doe.

12. Add a Monitor role by following Step 2 to Step 10 .

In Step 4, enter Monitor in the Group Name field.

In Step 8 , select Camel Rider.

9.4. ENABLE LDAP AUTHENTICATION IN THE OSGI CONTAINER

Overview

This section explains how to configure an LDAP realm in the OSGi container. The new realm overrides
the default karaf realm, so that the container authenticates credentials based on user entries stored in
the X.500 directory server.

References

More detailed documentation is available on LDAP authentication, as follows:

LDAPLoginModule options—are described in detail in Section 2.1.7, “JAAS LDAP Login Module” .

Configurations for other directory servers —this tutorial covers only 389-DS. For details of how
to configure other directory servers, such as Microsoft Active Directory, see the section called
“Filter settings for different directory servers”.

Red Hat JBoss Fuse 6.3 Security Guide

104

http://directory.fedoraproject.org/index.html

Procedure for standalone OSGi container

To enable LDAP authentication in a standalone OSGi container:

1. Ensure that the X.500 directory server is running.

2. Start Red Hat JBoss Fuse by entering the following command in a terminal window:

./bin/fuse

3. Create a file called ldap-module.xml.

4. Copy Example 9.1, “JAAS Realm for Standalone” into ldap-module.xml.

Example 9.1. JAAS Realm for Standalone

You must customize the following settings in the ldap-module.xml file:

connection.url

Set this URL to the actual location of your directory server instance. Normally, this URL has
the format, ldap://Hostname:Port. For example, the default port for the 389 Directory
Server is IP port 389.

connection.username

Specifies the username that is used to authenticate the connection to the directory server.
For 389 Directory Server, the default is usually cn=Directory Manager.

connection.password

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <jaas:config name="karaf" rank="200">
 <jaas:module flags="required"
 className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connection.url=ldap://Hostname:Port
 connection.username=cn=Directory Manager
 connection.password=LDAPPassword
 connection.protocol=
 user.base.dn=ou=People,dc=localdomain
 user.filter=(&(objectClass=inetOrgPerson)(uid=%u))
 user.search.subtree=true
 role.base.dn=ou=Groups,dc=localdomain
 role.name.attribute=cn
 role.filter=(uniquemember=%fqdn)
 role.search.subtree=true
 authentication=simple
 </jaas:module>
 </jaas:config>
</blueprint>

CHAPTER 9. LDAP AUTHENTICATION TUTORIAL

105

Specifies the password part of the credentials for connecting to the directory server.

authentication

You can specify either of the following alternatives for the authentication protocol:

simple implies that user credentials are supplied and you are obliged to set the
connection.username and connection.password options in this case.

none implies that authentication is not performed. There is no need to set the
connection.username and connection.password options in this case.

This login module creates a JAAS realm called karaf, which is the same name as the default
JAAS realm used by JBoss Fuse. By redefining this realm with a rank attribute value greater
than 0, it overrides the standard karaf realm which has the rank 0 (but note that in the context
of Fabric, the default karaf realm has a rank of 99, so you need to define a new realm with rank
100 or greater to override the default realm in a fabric).

For more details about how to configure JBoss Fuse to use LDAP, see Section 2.1.7, “JAAS
LDAP Login Module”.

IMPORTANT

When setting the JAAS properties above, do not enclose the property values in
double quotes.

5. To deploy the new LDAP module, copy the ldap-module.xml into the JBoss Fuse deploy/
directory.

The LDAP module is automatically activated.

NOTE

Subsequently, if you need to undeploy the LDAP module, you can do so by
deleting the ldap-module.xml file from the deploy/ directory while the Karaf
container is running.

Procedure for a Fabric

To enable LDAP authentication in a Fabric (affecting all of the containers in the current fabric):

1. Ensure that the X.500 directory server is running.

2. If your local Fabric container is not already running, start it now, by entering the following
command in a terminal window:

./bin/fuse

NOTE

If the Fabric container you want to connect to is running on a remote host, you
can connect to it using the client command-line utility in the InstallDir/bin
directory.

Red Hat JBoss Fuse 6.3 Security Guide

106

3. Create a new version of the Fabric profile data, by entering the following console command:

NOTE

In effect, this command creates a new branch named 1.1 in the Git repository
underlying the ZooKeeper registry.

4. Create the new profile resource, ldap-module.xml (a Blueprint configuration file), in version 1.1
of the default profile, as follows:

The built-in profile editor opens automatically, which you can use to edit the contents of the
ldap-module.xml resource.

5. Copy Example 9.2, “JAAS Realm for Fabric” into the ldap-module.xml resource, customizing
the configuration properties, as necessary.

Example 9.2. JAAS Realm for Fabric

JBossFuse:karaf@root> version-create
Created version: 1.1 as copy of: 1.0

JBossFuse:karaf@root> profile-edit --resource ldap-module.xml default 1.1

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0">

 <command-bundle xmlns="http://karaf.apache.org/xmlns/shell/v1.0.0">
 <command name="jasypt/encrypt">
 <action class="io.fabric8.fabric.jaas.EncryptPasswordCommand" />
 </command>
 </command-bundle>

 <!-- AdminConfig property place holder for the org.apache.karaf.jaas -->
 <cm:property-placeholder persistent-id="io.fabric8.fabric.jaas"
 update-strategy="reload">
 <cm:default-properties>
 <cm:property name="encryption.name" value="" />
 <cm:property name="encryption.enabled" value="true" />
 <cm:property name="encryption.prefix" value="{CRYPT}" />
 <cm:property name="encryption.suffix" value="{CRYPT}" />
 <cm:property name="encryption.algorithm" value="MD5" />
 <cm:property name="encryption.encoding" value="hexadecimal" />
 </cm:default-properties>
 </cm:property-placeholder>

 <jaas:config name="karaf" rank="200">
 <jaas:module className="io.fabric8.jaas.ZookeeperLoginModule"
 flags="sufficient">
 path = /fabric/authentication/users
 encryption.name = ${encryption.name}
 encryption.enabled = ${encryption.enabled}

CHAPTER 9. LDAP AUTHENTICATION TUTORIAL

107

You must customize the following settings in the ldap-module.xml file:

connection.url

Set this URL to the actual location of your directory server instance. Normally, this URL has
the format, ldap://Hostname:Port. You must be sure to use a hostname that is accessible to
all of the containers in the fabric (hence, you cannot use localhost as the hostname here).
The default port for the 389 Directory Server is IP port 389.

connection.username

Specifies the username that is used to authenticate the connection to the directory server.
For 389 Directory Server, the default is usually cn=Directory Manager.

connection.password

Specifies the password part of the credentials for connecting to the directory server.

authentication

You can specify either of the following alternatives for the authentication protocol:

simple implies that user credentials are supplied and you are obliged to set the
connection.username and connection.password options in this case.

none implies that authentication is not performed. There is no need to set the
connection.username and connection.password options in this case.

 encryption.prefix = ${encryption.prefix}
 encryption.suffix = ${encryption.suffix}
 encryption.algorithm = ${encryption.algorithm}
 encryption.encoding = ${encryption.encoding}
 </jaas:module>
 <jaas:module className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
 flags="sufficient">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connection.url=ldap://Hostname:Port
 connection.username=cn=Directory Manager
 connection.password=LDAPPassword
 connection.protocol=
 user.base.dn=ou=People,dc=localdomain
 user.filter=(&(objectClass=inetOrgPerson)(uid=%u))
 user.search.subtree=true
 role.base.dn=ou=Groups,dc=localdomain
 role.name.attribute=cn
 role.filter=(uniquemember=%fqdn)
 role.search.subtree=true
 authentication=simple
 </jaas:module>
 </jaas:config>

 <!-- The Backing Engine Factory Service for the ZookeeperLoginModule -->
 <service interface="org.apache.karaf.jaas.modules.BackingEngineFactory">
 <bean class="io.fabric8.jaas.ZookeeperBackingEngineFactory" />
 </service>
</blueprint>

Red Hat JBoss Fuse 6.3 Security Guide

108

This login module creates a JAAS realm called karaf, which is the same name as the default
JAAS realm used by Red Hat JBoss Fuse. By redefining this realm with a rank of 200, it
overrides all of the previously installed karaf realms (in the context of Fabric, you need to
override the default ZookeeperLoginModule, which has a rank of 99).

IMPORTANT

Pay particular attention to the value of the rank to ensure that it is higher than all
previously installed karaf realms. If the rank is not sufficiently high, the new realm
will not be used by the fabric.

IMPORTANT

When setting the JAAS properties above, do not enclose the property values in
double quotes.

IMPORTANT

In a Fabric, the Zookeeper login module must be enabled, in addition to the LDAP
login module. This is because Fabric uses the Zookeeper login module internally,
to support authentication between ensemble servers. With the configuration
shown here, Fabric tries to authenticate first of all against the Zookeeper login
module and, if that step fails, it tries to authenticate against the LDAP login
module.

6. Save and close the ldap-module.xml resource by typing Ctrl-S and Ctrl-X.

7. Edit the agent properties of version 1.1 of the default profile, adding an instruction to deploy the
Blueprint resource file defined in the previous step. Enter the following console command:

The built-in profile editor opens automatically. Add the following line to the agent properties:

Save and close the agent properties by typing Ctrl-S and Ctrl-X.

8. The new LDAP realm is not activated, until you upgrade a container to use the new version, 1.1.
To activate LDAP on a single container (for example, on a container called root), enter the
following console command:

To activate LDAP on all containers in the fabric, enter the following console command:

IMPORTANT

JBossFuse:karaf@root> profile-edit default 1.1

bundle.ldap-realm=blueprint:profile:ldap-module.xml

JBossFuse:karaf@root> container-upgrade 1.1 root

JBossFuse:karaf@root> container-upgrade --all 1.1

CHAPTER 9. LDAP AUTHENTICATION TUTORIAL

109

IMPORTANT

It is advisable to upgrade just a single container initially, to make sure that
everything is working properly. This is particularly important, if you have only
remote access to the fabric: if you upgrade all of the containers at once, you
might not be able to reconnect to the fabric.

9. To check that the LDAP realm is activated, enter the following console command:

If the output of this command lists the ZookeperLoginModule, this means the LDAP realm is
not yet activated. It might take a minute or so for activation of the LDAP realm to complete.

Test the LDAP authentication

Test the new LDAP realm by connecting to the running container using the JBoss Fuse client utility, as
follows:

1. Open a new command prompt.

2. Change directory to the JBoss Fuse InstallDir/bin directory.

3. Enter the following command to log on to the running container instance using the identity
jdoe:

client -u jdoe -p secret

You should successfully log into the container's remote console. At the command console, type
jaas: followed by the [Tab] key (to activate content completion):

You should see that jdoe has access to all of the jaas commands (which is consistent with the
Administrator role).

4. Log off the remote console by entering the logout command.

5. Enter the following command to log on to the running container instance using the identity
janedoe:

client -u janedoe -p secret

You should successfully log into the container's remote console. At the command console, type
jaas: followed by the [Tab] key (to activate content completion):

JBossFuse:karaf@root> jaas-realms
Index Realm Module Class
 1 karaf org.apache.karaf.jaas.modules.ldap.LDAPLoginModule

JBossFuse:jdoe@root> jaas:
jaas:cancel jaas:groupadd jaas:groupcreate
jaas:groupdel jaas:grouproleadd jaas:grouproledel
jaas:groups jaas:manage jaas:pending
jaas:realms jaas:roleadd jaas:roledel
jaas:update jaas:useradd jaas:userdel
jaas:users

Red Hat JBoss Fuse 6.3 Security Guide

110

You should see that janedoe has access to almost all of the jaas commands, except for
jaas:update (which is consistent with the Deployer role).

6. Log off the remote console by entering the logout command.

7. Enter the following command to log on to the running container instance using the identity
crider:

client -u crider -p secret

You should successfully log into the container's remote console. At the command console, type
jaas: followed by the [Tab] key (to activate content completion):

You should see that crider has access to only three of the jaas commands (which is consistent
with the Monitor role).

8. Log off the remote console by entering the logout command.

9.5. ENABLE SSL/TLS ON THE LDAP CONNECTION

Overview

This tutorial explains how to enable SSL/TLS security on the connection between the LDAP login
module and the Apache Directory Server.

The Apache Directory Server is already configured with an SSL endpoint. The default configuration
creates an LDAPS endpoint that listens on the IP port 10636. The directory server automatically
generates a self-signed X.509 certificate which it uses to identify itself during the SSL/TLS handshake.

IMPORTANT

You can use the default SSL configuration for simple demonstrations, but it is not
suitable for real deployments. For advice on how to configure a real deployment, see the
section called “Tightening up security”.

Procedure

To enable SSL/TLS security on the connection to the Apache Directory Server:

1. Obtain a copy of the server's self-signed certificate.

a. Using a Web browser , navigate to the following URL:

JBossFuse:janedoe@root> jaas:
jaas:cancel jaas:groupadd jaas:groupcreate
jaas:groupdel jaas:grouproleadd jaas:grouproledel
jaas:groups jaas:manage jaas:pending
jaas:realms jaas:roleadd jaas:roledel
jaas:useradd jaas:userdel jaas:users

JBossFuse:janedoe@root> jaas:
jaas:groupcreate jaas:groups jaas:realms

CHAPTER 9. LDAP AUTHENTICATION TUTORIAL

111

IMPORTANT

Remember to specify the scheme as https, not just http.

The Web browser now signals an error, because the certificate it receives from the server is
untrusted. In the case of Firefox, you will see the following error in the browser window:

Figure 9.1. Obtaining the Certificate

b. Click I Understand the Risks.

c. Click Add Exception.

The Add Security Exception dialog opens.

d. In the Add Security Exception dialog, click Get Certificate.

e. Click View.

The Certificate Viewer dialog opens.

f. In the Certificate Viewer dialog, select the Details tab.

g. Click Export.

The Save Certificate To File dialog opens.

h. In the Save Certificate To File dialog, use the drop-down list to set the Save as type to
X.509 Certificate (DER).

i. Save the certificate, ApacheDS.der, to a convenient location on the filesystem.

2. Convert the DER format certificate into a keystore.

https://localhost:10636

Red Hat JBoss Fuse 6.3 Security Guide

112

a. From a command prompt, change directory to the directory where you have stored the
ApacheDS.der file.

b. Enter the following keytool command:

keytool -import -file ApacheDS.der -alias server -keystore truststore.ks -storepass secret

3. Copy the newly created keystore file, truststore.ks, into the JBoss Fuse etc/ directory.

4. Open the ldap-module.xml file you created in Section 9.4, “Enable LDAP Authentication in the
OSGi Container” in a text editor.

5. Edit the connection.url to use ldaps://localhost:10636.

6. Add the highlighted lines in Example 9.3, “LDAP Configuration for Using SSL/TLS” .

Example 9.3. LDAP Configuration for Using SSL/TLS

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <!-- Example configuration for using LDAP based authentication.
 This example uses an JAAS LoginModule from Karaf.
 It supports authentication of users and also supports
 retrieving user roles for authorization.

 Note, this config overwrite the default karaf domain
 that is defined inside some JAR file
 by using a rank > 99 attribute.
 -->
 <jaas:config name="karaf" rank="200">
 <jaas:module className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
flags="required">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connection.username=uid=admin,ou=system
 connection.password=secret
 connection.protocol=
 connection.url = ldaps://localhost:10636
 user.base.dn = ou=users,ou=system
 user.filter = (uid=%u)
 user.search.subtree = true
 role.base.dn = ou=users,ou=system
 role.filter = (uid=%u)
 role.name.attribute = ou
 role.search.subtree = true
 authentication = simple
 ssl.protocol=TLSv1
 ssl.truststore=truststore
 ssl.algorithm=PKIX
 </jaas:module>
 </jaas:config>

CHAPTER 9. LDAP AUTHENTICATION TUTORIAL

113

7. Copy the ldap-module.xml file into the Red Hat JBoss Fuse deploy/ directory.

The LDAP module is automatically activated.

8. Test the new LDAP realm by connecting to the running container using the JBoss Fuse client
utility.

a. Open a new command prompt.

b. Change to the JBoss Fuse install directory.

c. Enter the following command to log on to the running container instance using the identity
jdoe:

client -u jdoe -p secret

You should successfully log into the container's remote console because jdoe does have
the admin role.

Tightening up security

The SSL set-up described here is suitable only as a proof-of-concept demonstration. For a real
deployment, you must make the following changes to tighten up security:

Delete all entries from the Red Hat JBoss Fuse's etc/users.properties file.

If the ldap-module.xml bundle fails to start up properly, JAAS authentication reverts to the
built-in file-based karaf realm, which takes its user data from the users.properties file.

Disable the insecure LDAP endpoint on the Apache Directory Server.

Create and deploy a properly signed X.509 certificate on the Apache Directory Server.

See Appendix A, Managing Certificates.

Make sure that the LDAP server is configured to use the TLSv1 protocol (POODLE
vulnerability). Do not enable the SSLv3 protocol. For more information, see Poodle vulnerability
(CVE-2014-3566).

Apache Directory Server Reference

For more details of how to configure SSL/TLS security on the Apache Directory Server, see How to
enable SSL.

 <jaas:keystore name="truststore"
 path="file:///InstallDir/etc/truststore.ks" keystorePassword="secret" />
</blueprint>

Red Hat JBoss Fuse 6.3 Security Guide

114

https://access.redhat.com/articles/1232123
http://directory.apache.org/apacheds/basic-ug/3.3-enabling-ssl.html

APPENDIX A. MANAGING CERTIFICATES

Abstract

TLS authentication uses X.509 certificates—a common, secure and reliable method of authenticating
your application objects. You can create X.509 certificates that identify your Red Hat JBoss Fuse
applications.

A.1. WHAT IS AN X.509 CERTIFICATE?

Role of certificates

An X.509 certificate binds a name to a public key value. The role of the certificate is to associate a public
key with the identity contained in the X.509 certificate.

Integrity of the public key

Authentication of a secure application depends on the integrity of the public key value in the
application's certificate. If an impostor replaces the public key with its own public key, it can impersonate
the true application and gain access to secure data.

To prevent this type of attack, all certificates must be signed by a certification authority (CA). A CA is a
trusted node that confirms the integrity of the public key value in a certificate.

Digital signatures

A CA signs a certificate by adding its digital signature to the certificate. A digital signature is a message
encoded with the CA’s private key. The CA’s public key is made available to applications by distributing a
certificate for the CA. Applications verify that certificates are validly signed by decoding the CA’s digital
signature with the CA’s public key.

WARNING

The supplied demonstration certificates are self-signed certificates. These
certificates are insecure because anyone can access their private key. To secure
your system, you must create new certificates signed by a trusted CA.

Contents of an X.509 certificate

An X.509 certificate contains information about the certificate subject and the certificate issuer (the CA
that issued the certificate). A certificate is encoded in Abstract Syntax Notation One (ASN.1), a
standard syntax for describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In more detail, a certificate
includes:

A subject distinguished name (DN) that identifies the certificate owner.



APPENDIX A. MANAGING CERTIFICATES

115

The public key associated with the subject.

X.509 version information.

A serial number that uniquely identifies the certificate.

An issuer DN that identifies the CA that issued the certificate.

The digital signature of the issuer.

Information about the algorithm used to sign the certificate.

Some optional X.509 v.3 extensions; for example, an extension exists that distinguishes
between CA certificates and end-entity certificates.

Distinguished names

A DN is a general purpose X.500 identifier that is often used in the context of security.

See Appendix B, ASN.1 and Distinguished Names for more details about DNs.

A.2. CERTIFICATION AUTHORITIES

A.2.1. Introduction to Certificate Authorities

A CA consists of a set of tools for generating and managing certificates and a database that contains all
of the generated certificates. When setting up a system, it is important to choose a suitable CA that is
sufficiently secure for your requirements.

There are two types of CA you can use:

commercial CAs are companies that sign certificates for many systems.

private CAs are trusted nodes that you set up and use to sign certificates for your system only.

A.2.2. Commercial Certification Authorities

Signing certificates

There are several commercial CAs available. The mechanism for signing a certificate using a commercial
CA depends on which CA you choose.

Advantages of commercial CAs

An advantage of commercial CAs is that they are often trusted by a large number of people. If your
applications are designed to be available to systems external to your organization, use a commercial CA
to sign your certificates. If your applications are for use within an internal network, a private CA might be
appropriate.

Criteria for choosing a CA

Before choosing a commercial CA, consider the following criteria:

What are the certificate-signing policies of the commercial CAs?

Red Hat JBoss Fuse 6.3 Security Guide

116

Are your applications designed to be available on an internal network only?

What are the potential costs of setting up a private CA compared to the costs of subscribing to
a commercial CA?

A.2.3. Private Certification Authorities

Choosing a CA software package

If you want to take responsibility for signing certificates for your system, set up a private CA. To set up a
private CA, you require access to a software package that provides utilities for creating and signing
certificates. Several packages of this type are available.

OpenSSL software package

One software package that allows you to set up a private CA is OpenSSL, http://www.openssl.org. The
OpenSSL package includes basic command line utilities for generating and signing certificates.
Complete documentation for the OpenSSL command line utilities is available at
http://www.openssl.org/docs.

Setting up a private CA using OpenSSL

To set up a private CA, see the instructions in Section A.5, “Creating Your Own Certificates” .

Choosing a host for a private certification authority

Choosing a host is an important step in setting up a private CA. The level of security associated with the
CA host determines the level of trust associated with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Red Hat JBoss Fuse applications,
use any host that the application developers can access. However, when you create the CA certificate
and private key, do not make the CA private key available on any hosts where security-critical
applications run.

Security precautions

If you are setting up a CA to sign certificates for applications that you are going to deploy, make the CA
host as secure as possible. For example, take the following precautions to secure your CA:

Do not connect the CA to a network.

Restrict all access to the CA to a limited set of trusted users.

Use an RF-shield to protect the CA from radio-frequency surveillance.

A.3. CERTIFICATE CHAINING

Certificate chain

A certificate chain is a sequence of certificates, where each certificate in the chain is signed by the
subsequent certificate.

Figure A.1, “A Certificate Chain of Depth 2” shows an example of a simple certificate chain.

Figure A.1. A Certificate Chain of Depth 2

APPENDIX A. MANAGING CERTIFICATES

117

http://www.openssl.org
http://www.openssl.org/docs

Figure A.1. A Certificate Chain of Depth 2

Self-signed certificate

The last certificate in the chain is normally a self-signed certificate—a certificate that signs itself.

Chain of trust

The purpose of a certificate chain is to establish a chain of trust from a peer certificate to a trusted CA
certificate. The CA vouches for the identity in the peer certificate by signing it. If the CA is one that you
trust (indicated by the presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

Certificates signed by multiple CAs

A CA certificate can be signed by another CA. For example, an application certificate could be signed by
the CA for the finance department of Progress Software, which in turn is signed by a self-signed
commercial CA.

Figure A.2, “A Certificate Chain of Depth 3” shows what this certificate chain looks like.

Figure A.2. A Certificate Chain of Depth 3

Trusted CAs

An application can accept a peer certificate, provided it trusts at least one of the CA certificates in the
signing chain.

A.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES

Overview

The HTTPS specification mandates that HTTPS clients must be capable of verifying the identity of the
server. This can potentially affect how you generate your X.509 certificates. The mechanism for
verifying the server identity depends on the type of client. Some clients might verify the server identity
by accepting only those server certificates signed by a particular trusted CA. In addition, clients can
inspect the contents of a server certificate and accept only the certificates that satisfy specific
constraints.

In the absence of an application-specific mechanism, the HTTPS specification defines a generic
mechanism, known as the HTTPS URL integrity check , for verifying the server identity. This is the
standard mechanism used by Web browsers.

Red Hat JBoss Fuse 6.3 Security Guide

118

HTTPS URL integrity check

The basic idea of the URL integrity check is that the server certificate's identity must match the server
host name. This integrity check has an important impact on how you generate X.509 certificates for
HTTPS: the certificate identity (usually the certificate subject DN’s common name) must match the host
name on which the HTTPS server is deployed.

The URL integrity check is designed to prevent man-in-the-middle attacks.

Reference

The HTTPS URL integrity check is specified by RFC 2818, published by the Internet Engineering Task
Force (IETF) at http://www.ietf.org/rfc/rfc2818.txt.

How to specify the certificate identity

The certificate identity used in the URL integrity check can be specified in one of the following ways:

Using commonName

Using subectAltName

Using commonName

The usual way to specify the certificate identity (for the purpose of the URL integrity check) is through
the Common Name (CN) in the subject DN of the certificate.

For example, if a server supports secure TLS connections at the following URL:

The corresponding server certificate would have the following subject DN:

Where the CN has been set to the host name, www.redhat.com.

For details of how to set the subject DN in a new certificate, see Section A.5, “Creating Your Own
Certificates”.

Using subjectAltName (multi-homed hosts)

Using the subject DN’s Common Name for the certificate identity has the disadvantage that only one
host name can be specified at a time. If you deploy a certificate on a multi-homed host, however, you
might find it is practical to allow the certificate to be used with any of the multi-homed host names. In
this case, it is necessary to define a certificate with multiple, alternative identities, and this is only
possible using the subjectAltName certificate extension.

For example, if you have a multi-homed host that supports connections to either of the following host
names:

https://www.redhat.com/secure

C=IE,ST=Co. Dublin,L=Dublin,O=RedHat,
OU=System,CN=www.redhat.com

www.redhat.com
www.jboss.org

APPENDIX A. MANAGING CERTIFICATES

119

http://www.ietf.org/rfc/rfc2818.txt

Then you can define a subjectAltName that explicitly lists both of these DNS host names. If you
generate your certificates using the openssl utility, edit the relevant line of your openssl.cnf
configuration file to specify the value of the subjectAltName extension, as follows:

Where the HTTPS protocol matches the server host name against either of the DNS host names listed
in the subjectAltName (the subjectAltName takes precedence over the Common Name).

The HTTPS protocol also supports the wildcard character, *, in host names. For example, you can define
the subjectAltName as follows:

This certificate identity matches any three-component host name in the domain jboss.org.

WARNING

You must never use the wildcard character in the domain name (and you must take
care never to do this accidentally by forgetting to type the dot, ., delimiter in front
of the domain name). For example, if you specified *jboss.org, your certificate
could be used on any domain that ends in the letters jboss.

A.5. CREATING YOUR OWN CERTIFICATES

Abstract

This chapter describes the techniques and procedures to set up your own private Certificate Authority
(CA) and to use this CA to generate and sign your own certificates.

WARNING

Creating and managing your own certificates requires an expert knowledge of
security. While the procedures described in this chapter can be convenient for
generating your own certificates for demonstration and testing environments, it is
not recommended to use these certificates in a production environment.

A.5.1. Install the OpenSSL Utilities

Installing OpenSSL on RHEL and Fedora platforms

On Red Hat Enterprise Linux (RHEL) 5 and 6 and Fedora platforms, are made available as an RPM

subjectAltName=DNS:www.redhat.com,DNS:www.jboss.org

subjectAltName=DNS:*.jboss.org





Red Hat JBoss Fuse 6.3 Security Guide

120

On Red Hat Enterprise Linux (RHEL) 5 and 6 and Fedora platforms, are made available as an RPM
package. To install OpenSSL, enter the following command (executed with administrator privileges):

Source code distribution

The source distribution of OpenSSL is available from http://www.openssl.org/docs. The OpenSSL
project provides source code distributions only. You cannot download a binary install of the OpenSSL
utilities from the OpenSSL Web site.

A.5.2. Set Up a Private Certificate Authority

Overview

If you choose to use a private CA you need to generate your own certificates for your applications to
use. The OpenSSL project provides free command-line utilities for setting up a private CA, creating
signed certificates, and adding the CA to your Java keystore.

WARNING

Setting up a private CA for a production environment requires a high level of
expertise and extra care must be taken to protect the certificate store from
external threats.

Steps to set up a private Certificate Authority

To set up your own private Certificate Authority:

1. Create the directory structure for the CA, as follows:

2. Using a text editor, create the file, X509CA/openssl.cfg, and add the following contents to this
file:

Example A.1. OpenSSL Configuration

yum install openssl



X509CA/demoCA
X509CA/demoCA/private
X509CA/demoCA/certs
X509CA/demoCA/newcerts
X509CA/demoCA/crl

#
SSLeay example configuration file.
This is mostly being used for generation of certificate requests.
#

RANDFILE = ./.rnd

APPENDIX A. MANAGING CERTIFICATES

121

http://www.openssl.org/docs

##
[req]
default_bits = 2048
default_keyfile = keySS.pem
distinguished_name = req_distinguished_name
encrypt_rsa_key = yes
default_md = sha1

[req_distinguished_name]
countryName = Country Name (2 letter code)

organizationName = Organization Name (eg, company)

commonName = Common Name (eg, YOUR name)

##
[ca]
default_ca = CA_default # The default ca section

##
[CA_default]

dir = ./demoCA # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
#unique_subject = no # Set to 'no' to allow creation of
 # several certificates with same subject.
new_certs_dir = $dir/newcerts # default place for new certs.

certificate = $dir/cacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/cakey.pem# The private key
RANDFILE = $dir/private/.rand # private random number file

name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

default_days = 365 # how long to certify for
default_crl_days = 30 # how long before next CRL
default_md = md5 # which md to use.
preserve = no # keep passed DN ordering

policy = policy_anything

[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

Red Hat JBoss Fuse 6.3 Security Guide

122

IMPORTANT

The preceding openssl.cfg configuration file is provided as a demonstration only .
In a production environment, this configuration file would need to be carefully
elaborated by an engineer with a high level of security expertise, and actively
maintained to protect against evolving security threats.

3. Initialize the demoCA/serial file, which must have the initial contents 01 (zero one). Enter the
following command:

4. Initialize the demoCA/index.txt, which must initially be completely empty. Enter the following
command:

5. Create a new self-signed CA certificate and private key with the command:

You are prompted for a pass phrase for the CA private key and details of the CA distinguished
name as shown in Example A.2, “Creating a CA Certificate” .

Example A.2. Creating a CA Certificate

Generating a 2048 bit RSA private key
...+++
.................+++
writing new private key to 'demoCA/private/cakey.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:DE
Organization Name (eg, company) []:Red Hat
Common Name (eg, YOUR name) []:Scooby Doo

NOTE

The security of the CA depends on the security of the private key file and the
private key pass phrase used in this step.

You must ensure that the file names and location of the CA certificate and private key,

echo 01 > demoCA/serial

touch demoCA/index.txt

openssl req -x509 -new -config openssl.cfg -days 365 -out demoCA/cacert.pem -keyout
demoCA/private/cakey.pem

APPENDIX A. MANAGING CERTIFICATES

123

You must ensure that the file names and location of the CA certificate and private key,
cacert.pem and cakey.pem, are the same as the values specified in openssl.cfg.

A.5.3. Create a CA Trust Store File

Overview

A trust store file is commonly required on the client side of an SSL/TLS connection, in order to verify a
server's identity. A trust store file can also be used to check digital signatures (for example, to check that
a signature was made using the private key corresponding to one of the trusted certificates in the trust
store file).

Steps to create a CA trust store

To add one of more CA certificates to a trust store file:

1. Assemble the collection of trusted CA certificates that you want to deploy.

The trusted CA certificates can be obtained from public CAs or private CAs. The trusted CA
certificates can be in any format that is compatible with the Java keystore utility; for example,
PEM format. All you need are the certificates themselves—the private keys and passwords are
not required.

2. Add a CA certificate to the trust store using the keytool -import command.

Enter the following command to add the CA certificate, cacert.pem, in PEM format, to a JKS
trust store.

Where truststore.ts is a keystore file containing CA certificates. If this file does not already
exist, the keytool command creates it. The CAAlias is a convenient identifier for the imported
CA certificate and StorePass is the password required to access the keystore file.

3. Repeat the previous step to add all of the CA certificates to the trust store.

A.5.4. Generate and Sign a New Certificate

Overview

In order for a certificate to be useful in the real world, it must be signed by a CA, which vouches for the
authenticity of the certificate. This facilitates a scalable solution for certificate verification, because it
means that a single CA certificate can be used to verify a large collection of certificates.

Steps to generate and sign a new certificate

To generate and sign a new certificate, using your own private CA, perform the following steps:

1. Generate a certificate and private key pair using the keytool -genkeypair command, as follows:

Because the specified keystore, alice.ks, did not exist prior to issuing the command implicitly

keytool -import -file cacert.pem -alias CAAlias -keystore truststore.ts -storepass StorePass

keytool -genkeypair -keyalg RSA -dname "CN=Alice, OU=Engineering, O=Red Hat,
ST=Dublin, C=IE" -validity 365 -alias alice -keypass KeyPass -keystore alice.ks -storepass
StorePass

Red Hat JBoss Fuse 6.3 Security Guide

124

Because the specified keystore, alice.ks, did not exist prior to issuing the command implicitly
creates a new keystore and sets its password to StorePass.

The -dname and -validity flags define the contents of the newly created X.509 certificate.

NOTE

When specifying the certificate's Distinguished Name (through the -dname
parameter), you must be sure to observe any policy constraints specified in the
openssl.cfg file. If those policy constraints are not heeded, you will not be able to
sign the certificate using the CA (in the next steps).

NOTE

It is essential to generate the key pair with the -keyalg RSA option (or a key
algorithm of similar strength). The default key algorithm uses a combination of
DSA encryption and SHA-1 signature. But the SHA-1 algorithm is no longer
regarded as sufficiently secure and modern Web browsers will reject certificates
signed using SHA-1. When you select the RSA key algorithm, the keytool utility
uses an SHA-2 algorithm instead.

2. Create a certificate signing request using the keystore -certreq command.

Create a new certificate signing request for the alice.ks certificate and export it to the
alice_csr.pem file, as follows:

3. Sign the CSR using the openssl ca command.

Sign the CSR for the Alice certificate, using your private CA, as follows:

You will prompted to enter the CA private key pass phrase you used when creating the CA (in
Step 5).

For more details about the openssl ca command see
http://www.openssl.org/docs/apps/ca.html#.

4. Convert the signed certificate to PEM only format using the openssl x509 command with the -
outform option set to PEM. Enter the following command:

5. Concatenate the CA certificate file and the converted, signed certificate file to form a
certificate chain. For example, on Linux and UNIX platforms, you can concatenate the CA
certificate file and the signed Alice certificate, alice_signed.pem, as follows:

6. Import the new certificate's full certificate chain into the Java keystore using the keytool -

keytool -certreq -alias alice -file alice_csr.pem -keypass KeyPass -keystore alice.ks -
storepass StorePass

openssl ca -config openssl.cfg -days 365 -in alice_csr.pem -out alice_signed.pem

openssl x509 -in alice_signed.pem -out alice_signed.pem -outform PEM

cat demoCA/cacert.pem alice_signed.pem > alice.chain

APPENDIX A. MANAGING CERTIFICATES

125

http://www.openssl.org/docs/apps/ca.html#

6. Import the new certificate's full certificate chain into the Java keystore using the keytool -
import command. Enter the following command:

keytool -import -file alice.chain -keypass KeyPass -keystore alice.ks -storepass StorePass

Red Hat JBoss Fuse 6.3 Security Guide

126

APPENDIX B. ASN.1 AND DISTINGUISHED NAMES

Abstract

The OSI Abstract Syntax Notation One (ASN.1) and X.500 Distinguished Names play an important role
in the security standards that define X.509 certificates and LDAP directories.

B.1. ASN.1

Overview

The Abstract Syntax Notation One (ASN.1) was defined by the OSI standards body in the early 1980s to
provide a way of defining data types and structures that are independent of any particular machine
hardware or programming language. In many ways, ASN.1 can be considered a forerunner of modern
interface definition languages, such as the OMG's IDL and WSDL, which are concerned with defining
platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards (for example, SNMP, X.509,
and LDAP). In particular, ASN.1 is ubiquitous in the field of security standards. The formal definitions of
X.509 certificates and distinguished names are described using ASN.1 syntax. You're not required to
have detailed knowledge of ASN.1 syntax to use these security standards, but you need to be aware that
ASN.1 is used for the basic definitions of most security-related data types.

BER

The OSI's Basic Encoding Rules (BER) define how to translate an ASN.1 data type into a sequence of
octets (binary representation). The role played by BER with respect to ASN.1 is, therefore, similar to the
role played by GIOP with respect to the OMG IDL.

DER

The OSI's Distinguished Encoding Rules (DER) are a specialization of the BER. The DER consists of the
BER plus some additional rules to ensure that the encoding is unique (BER encodings are not).

References

You can read more about ASN.1 in the following standards documents:

ASN.1 is defined in the ITU X.208 specification.

BER is defined in the ITU X.209 specification.

B.2. DISTINGUISHED NAMES

Overview

Historically, distinguished names (DN) are defined as the primary keys in an X.500 directory structure.
However, DNs have come to be used in many other contexts as general purpose identifiers. In Apache
CXF, DNs occur in the following contexts:

X.509 certificates—for example, one of the DNs in a certificate identifies the owner of the

APPENDIX B. ASN.1 AND DISTINGUISHED NAMES

127

http://www.omg.org/spec/IDL/
https://www.itu.int/rec/T-REC-X.208/en
https://www.itu.int/rec/T-REC-X.209/en

X.509 certificates—for example, one of the DNs in a certificate identifies the owner of the
certificate (the security principal).

LDAP—DNs are used to locate objects in an LDAP directory tree.

String representation of DN

Although a DN is formally defined in ASN.1, there is also an LDAP standard that defines a UTF-8 string
representation of a DN (see RFC 2253). The string representation provides a convenient basis for
describing the structure of a DN.

NOTE

The string representation of a DN does not provide a unique representation of DER-
encoded DN. Hence, a DN that is converted from string format back to DER format does
not always recover the original DER encoding.

DN string example

The following string is a typical example of a DN:

Structure of a DN string

A DN string is built up from the following basic elements:

OID .

Attribute Types .

AVA .

RDN .

OID

An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely identifies a grammatical construct in
ASN.1.

Attribute types

The variety of attribute types that can appear in a DN is theoretically open-ended, but in practice only a
small subset of attribute types are used. Table B.1, “Commonly Used Attribute Types” shows a selection
of the attribute types that you are most likely to encounter:

Table B.1. Commonly Used Attribute Types

String Representation X.500 Attribute Type Size of Data Equivalent OID

C countryName 2 2.5.4.6

O organizationName 1...64 2.5.4.10

C=US,O=IONA Technologies,OU=Engineering,CN=A. N. Other

Red Hat JBoss Fuse 6.3 Security Guide

128

https://www.ietf.org/rfc/rfc2253.txt

OU organizationalUnitName 1...64 2.5.4.11

CN commonName 1...64 2.5.4.3

ST stateOrProvinceName 1...64 2.5.4.8

L localityName 1...64 2.5.4.7

STREET streetAddress

DC domainComponent

UID userid

String Representation X.500 Attribute Type Size of Data Equivalent OID

AVA

An attribute value assertion (AVA) assigns an attribute value to an attribute type. In the string
representation, it has the following syntax:

For example:

Alternatively, you can use the equivalent OID to identify the attribute type in the string representation
(see Table B.1, “Commonly Used Attribute Types”). For example:

RDN

A relative distinguished name (RDN) represents a single node of a DN (the bit that appears between the
commas in the string representation). Technically, an RDN might contain more than one AVA (it is
formally defined as a set of AVAs). However, this almost never occurs in practice. In the string
representation, an RDN has the following syntax:

Here is an example of a (very unlikely) multiple-value RDN:

Here is an example of a single-value RDN:

<attr-type>=<attr-value>

CN=A. N. Other

2.5.4.3=A. N. Other

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

OU=Eng1+OU=Eng2+OU=Eng3

OU=Engineering

APPENDIX B. ASN.1 AND DISTINGUISHED NAMES

129

INDEX
A

Abstract Syntax Notation One (see ASN.1)

ASN.1, Contents of an X.509 certificate, ASN.1 and Distinguished Names

attribute types, Attribute types

AVA, AVA

OID, OID

RDN, RDN

attribute value assertion (see AVA)

AVA, AVA

B

Basic Encoding Rules (see BER)

BER, BER

C

CA, Integrity of the public key

choosing a host, Choosing a host for a private certification authority

commercial CAs, Commercial Certification Authorities

list of trusted, Trusted CAs

multiple CAs, Certificates signed by multiple CAs

private CAs, Private Certification Authorities

security precautions, Security precautions

certificates

chaining, Certificate chain

peer, Chain of trust

public key, Contents of an X.509 certificate

self-signed, Self-signed certificate

signing, Integrity of the public key

X.509, Role of certificates

chaining of certificates, Certificate chain

D

DER, DER

Red Hat JBoss Fuse 6.3 Security Guide

130

Distinguished Encoding Rules (see DER)

distinguished names

definition, Overview

DN

definition, Overview

string representation, String representation of DN

J

JAAS

configuration syntax, Configuring a JAAS realm

converting to blueprint, Converting standard JAAS login properties to XML

namespace, Namespace

jaas:config, Configuring a JAAS realm

jaas:module, Configuring a JAAS realm

JMX SSL connection, enabling, Enabling Remote JMX SSL

M

multiple CAs, Certificates signed by multiple CAs

O

OpenSSL, OpenSSL software package

P

peer certificate, Chain of trust

public keys, Contents of an X.509 certificate

R

RDN, RDN

relative distinguished name (see RDN)

root certificate directory, Trusted CAs

S

self-signed certificate, Self-signed certificate

signing certificates, Integrity of the public key

SSLeay, OpenSSL software package

INDEX

131

T

trusted CAs, Trusted CAs

X

X.500, ASN.1 and Distinguished Names

X.509 certificate

definition, Role of certificates

Red Hat JBoss Fuse 6.3 Security Guide

132

	Table of Contents
	CHAPTER 1. SECURITY ARCHITECTURE
	1.1. OSGI CONTAINER SECURITY
	Overview
	JAAS realms
	karaf realm
	Console port
	JMX port
	Application bundles and JAAS security

	1.2. APACHE CAMEL SECURITY
	Overview
	Alternatives for Apache Camel security
	Endpoint security
	Payload security
	XMLSecurity data format
	Crypto data format

	CHAPTER 2. SECURING THE CONTAINER
	2.1. JAAS AUTHENTICATION
	2.1.1. Default JAAS Realm
	Overview
	Default JAAS realm
	How to integrate an application with JAAS
	Default JAAS login modules
	Configuring users in the properties login module
	Configuring user groups in the properties login module
	Configuring the public key login module
	Configuring user groups in the public key login module
	Encrypting the stored passwords
	Overriding the default realm

	2.1.2. Defining JAAS Realms
	Overview
	Namespace
	Configuring a JAAS realm
	Converting standard JAAS login properties to XML
	Example

	2.1.3. JAAS Properties Login Module
	Overview
	Supported credentials
	Implementation classes
	Options
	Format of the user properties file
	Sample Blueprint configuration

	2.1.4. JAAS OSGi Config Login Module
	Overview
	Supported credentials
	Implementation classes
	Options
	Location of the configuration file
	Format of the configuration file
	Sample Blueprint configuration

	2.1.5. JAAS Public Key Login Module
	Overview
	Supported credentials
	Implementation classes
	Options
	Format of the keys properties file
	Sample Blueprint configuration

	2.1.6. JAAS JDBC Login Module
	Overview
	Supported credentials
	Implementation classes
	Options
	Example of setting up a JDBC login module
	Create the database tables
	Create the data source
	Specify the data source as an OSGi service

	2.1.7. JAAS LDAP Login Module
	Overview
	Supported credentials
	Implementation classes
	Options
	Sample configuration for Apache DS
	Filter settings for different directory servers

	2.1.8. Encrypting Stored Passwords
	Overview
	Options
	Encryption services
	Basic encryption service
	Jasypt encryption
	Example of a login module with Jasypt encryption

	2.2. ROLE-BASED ACCESS CONTROL
	2.2.1. Overview of Role-Based Access Control
	Overview
	Mechanisms
	Types of protection
	Adding roles to users
	Standard roles
	ACL files
	Customizing role-based access control
	Customizing ACLs in a fabric environment
	Additional properties for controlling access

	2.2.2. Customizing the JMX ACLs
	Overview
	Architecture
	How it works
	Location of JMX ACL files
	Mapping MBeans to ACL file names
	ACL file format
	ACL file hierarchy
	Root ACL definitions
	Package ACL definitions
	ACL for custom MBeans
	Dynamic configuration at run time

	2.2.3. Customizing the Command Console ACLs
	Overview
	Architecture
	How it works
	Configuring default security roles
	Location of command console ACL files
	Mapping command scopes to ACL file names
	ACL file format
	Dynamic configuration at run time

	2.2.4. Defining ACLs for OSGi Services
	Overview
	ACL file format
	How to define an ACL for a custom OSGi service
	How to invoke an OSGi service secured with RBAC
	How to discover the roles required by an OSGi service

	2.3. USING ENCRYPTED PROPERTY PLACEHOLDERS
	Overview
	How to use encrypted property placeholders
	Blueprint XML example

	2.4. ENABLING REMOTE JMX SSL
	Overview
	Prerequisites
	Create the jbossweb.keystore file
	Create and deploy the keystore.xml file
	Add the required properties to org.apache.karaf.management.cfg
	Restart the JBoss Fuse container
	Testing the Secure JMX connection

	CHAPTER 3. SECURING THE JETTY HTTP SERVER
	JETTY SERVER
	CREATE X.509 CERTIFICATE AND PRIVATE KEY
	ENABLING SSL/TLS FOR JETTY IN A STANDALONE CONTAINER
	CUSTOMIZING ALLOWED TLS PROTOCOLS AND CIPHER SUITES
	CONNECT TO THE SECURE CONSOLE
	ADVANCED JETTY SECURITY CONFIGURATION
	ENABLING SSL/TLS FOR JETTY IN A FABRIC
	REFERENCES

	CHAPTER 4. SECURING THE CAMEL ACTIVEMQ COMPONENT
	4.1. SECURE ACTIVEMQ CONNECTION FACTORY
	Overview
	Programming the security properties
	Defining a secure connection factory

	4.2. EXAMPLE CAMEL ACTIVEMQ COMPONENT CONFIGURATION
	Overview
	Prerequisites
	Sample Camel ActiveMQ component
	Sample Camel route

	CHAPTER 5. SECURING THE CAMEL JETTY COMPONENT
	5.1. ENABLING SSL/TLS SECURITY
	Overview
	Tutorial steps
	Generate a Maven project
	Customize the POM file
	Install sample keystore files
	Configure Jetty with SSL/TLS
	Build the bundle
	Install the camel-jetty feature
	Deploy the bundle
	Test the bundle
	Uninstall the bundle

	5.2. BASIC AUTHENTICATION WITH JAAS
	Overview
	Prerequisites
	Authentication steps
	Add the Jetty security handler configuration
	Modify Camel Jetty endpoint
	Add required package imports to POM
	Build the bundle
	Install the required features
	Deploy the bundle
	Test the bundle

	CHAPTER 6. CONFIGURING TRANSPORT SECURITY FOR CAMEL COMPONENTS
	CHAPTER 7. SECURING THE CAMEL CXF COMPONENT
	7.1. THE CAMEL CXF PROXY DEMONSTRATION
	Overview
	Modifications
	Obtaining the demonstration code
	Obtaining the sample certificates
	Physical part of the WSDL contract
	WSDL addressing details

	7.2. SECURING THE WEB SERVICES PROXY
	Overview
	Implicit configuration
	Steps to add SSL/TLS security to the Jetty container
	Add certificates to the bundle resources
	Modify POM to switch off resource filtering
	Instantiate the CXF Bus
	Add the httpj:engine-factory element to Spring configuration
	Define the cxfcore:, sec: and httpj: prefixes
	Modify proxy address URL to use HTTPS

	7.3. DEPLOYING THE APACHE CAMEL ROUTE
	Overview
	Prerequisites
	Steps to deploy the Camel route
	Build the demonstration
	Start the OSGi container
	Install the required features
	Deploy the bundle
	Check the console output

	7.4. SECURING THE WEB SERVICES CLIENT
	Overview
	Implicit configuration
	Certificates needed on the client side
	Loading Spring definitions into the client
	Creating the client proxy
	Steps to add SSL/TLS security to the client
	Create the Java client as a test case
	Add the http:conduit element to Spring configuration
	Run the client

	CHAPTER 8. SECURING THE MANAGEMENT CONSOLE
	8.1. CONTROLLING ACCESS TO THE FUSE MANAGEMENT CONSOLE

	CHAPTER 9. LDAP AUTHENTICATION TUTORIAL
	9.1. TUTORIAL OVERVIEW
	Goals

	9.2. SET-UP A DIRECTORY SERVER AND CONSOLE
	Overview
	Prerequisites
	Install 389 Directory Server
	Install 389 Management Console
	Connect the console to the server

	9.3. ADD USER ENTRIES TO THE DIRECTORY SERVER
	Overview
	Alternative to adding user entries
	Goals
	Adding user entries
	Adding groups for the roles

	9.4. ENABLE LDAP AUTHENTICATION IN THE OSGI CONTAINER
	Overview
	References
	Procedure for standalone OSGi container
	Procedure for a Fabric
	Test the LDAP authentication

	9.5. ENABLE SSL/TLS ON THE LDAP CONNECTION
	Overview
	Procedure
	Tightening up security
	Apache Directory Server Reference

	APPENDIX A. MANAGING CERTIFICATES
	A.1. WHAT IS AN X.509 CERTIFICATE?
	Role of certificates
	Integrity of the public key
	Digital signatures
	Contents of an X.509 certificate
	Distinguished names

	A.2. CERTIFICATION AUTHORITIES
	A.2.1. Introduction to Certificate Authorities
	A.2.2. Commercial Certification Authorities
	Signing certificates
	Advantages of commercial CAs
	Criteria for choosing a CA

	A.2.3. Private Certification Authorities
	Choosing a CA software package
	OpenSSL software package
	Setting up a private CA using OpenSSL
	Choosing a host for a private certification authority
	Security precautions

	A.3. CERTIFICATE CHAINING
	Certificate chain
	Self-signed certificate
	Chain of trust
	Certificates signed by multiple CAs
	Trusted CAs

	A.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES
	Overview
	HTTPS URL integrity check
	Reference
	How to specify the certificate identity
	Using commonName
	Using subjectAltName (multi-homed hosts)

	A.5. CREATING YOUR OWN CERTIFICATES
	A.5.1. Install the OpenSSL Utilities
	Installing OpenSSL on RHEL and Fedora platforms
	Source code distribution

	A.5.2. Set Up a Private Certificate Authority
	Overview
	Steps to set up a private Certificate Authority

	A.5.3. Create a CA Trust Store File
	Overview
	Steps to create a CA trust store

	A.5.4. Generate and Sign a New Certificate
	Overview
	Steps to generate and sign a new certificate

	APPENDIX B. ASN.1 AND DISTINGUISHED NAMES
	B.1. ASN.1
	Overview
	BER
	DER
	References

	B.2. DISTINGUISHED NAMES
	Overview
	String representation of DN
	DN string example
	Structure of a DN string
	OID
	Attribute types
	AVA
	RDN

	INDEX

