& RedHat

Red Hat JBoss Fuse 6.3

Apache CXF Development Guide

Develop applications with Apache CXF Web services

Last Updated: 2020-10-26

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Develop applications with Apache CXF Web services

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to developing Web services using Apache CXF.

Table of Contents

Table of Contents
PART . WRITING WSDL CONTRACTS .+ttt e e e et e e e e e e e e 10

CHAPTER 1. INTRODUCING WSDL CONTRACTS ... i i i, n
11. STRUCTURE OF AWSDL DOCUMENT il
1.2. WSDL ELEMENTS il

1.3. DESIGNING A CONTRACT 12
CHAPTER 2. DEFINING LOGICAL DATAUNITS .. i i e 13
2.1. INTRODUCTION TO LOGICAL DATA UNITS 13
2.2. MAPPING DATA INTO LOGICAL DATA UNITS 13
2.3. ADDING DATAUNITS TO A CONTRACT 14
2.4. XML SCHEMA SIMPLE TYPES 15
2.5. DEFINING COMPLEX DATA TYPES 16
2.6. DEFINING ELEMENTS 24
CHAPTER 3. DEFINING LOGICAL MESSAGESUSED BY ASERVICE i 26
OVERVIEW 26
MESSAGES AND PARAMETER LISTS 26
MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS 26
MESSAGE DESIGN FOR SOAP SERVICES 27
MESSAGE NAMING 27
MESSAGE PARTS 27
EXAMPLE 28
CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES ... i 30
OVERVIEW 30
PROCESS 30
PORT TYPES 30
OPERATIONS 30
OPERATION MESSAGES 31
RETURN VALUES 32
EXAMPLE 32
PART Il. WEB SERVICES BINDINGS i i e e 33
CHAPTER 5. UNDERSTANDING BINDINGSINWSDL ... i 34
OVERVIEW 34
PORT TYPES AND BINDINGS 34
THE WSDL ELEMENTS 34
ADDING TO A CONTRACT 34
SUPPORTED BINDINGS 35
CHAPTER 6. USING SOAP 1. TMESSAGES ... o i et 36
6.1. ADDING A SOAP 1.1 BINDING 36
6.2. ADDING SOAP HEADERS TO A SOAP 1.1 BINDING 38
CHAPTER 7. USING SOAP 1.2 MESSAGES i i 41
7.1. ADDING A SOAP 1.2 BINDING TO AWSDL DOCUMENT 41
7.2. ADDING HEADERS TO A SOAP 1.2 MESSAGE 43
CHAPTER 8. SENDING BINARY DATA USING SOAP WITH ATTACHMENTS ..., 48
OVERVIEW 48
NAMESPACE 48
CHANGING THE MESSAGE BINDING 48

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

DESCRIBING A MIME MULTIPART MESSAGE 48
EXAMPLE 49
CHAPTER 9. SENDING BINARY DATAWITHSOAP MTOM ... e 52
9.1. OVERVIEW OF MTOM 52
9.2. ANNOTATING DATA TYPES TO USE MTOM 52
9.3. ENABLING MTOM 55
CHAPTER10. USING XML DOCUMENTS ... i i i e it 58
XML BINDING NAMESPACE 58
HAND EDITING 58
XML MESSAGES ON THE WIRE 58
OVERRIDING THE BINDING'S ROOTNODE ATTRIBUTE SETTING 60
PART Ill. WEB SERVICES TRANSPORTS ... i i e 62
CHAPTER 11. UNDERSTANDING HOW ENDPOINTS AREDEFINEDINWSDL ...t 63
OVERVIEW 63
ENDPOINTS AND SERVICES 63
THE WSDL ELEMENTS 63
ADDING ENDPOINTS TO A CONTRACT 63
SUPPORTED TRANSPORTS 63
CHAPTER 12 USING HT TP . i i i e e it i ittt aieen, 65
12.1. ADDING A BASIC HTTP ENDPOINT 65
12.2. CONFIGURING A CONSUMER 67
12.3. CONFIGURING A SERVICE PROVIDER 74
12.4. CONFIGURING THE JETTY RUNTIME 79
12.5. CONFIGURING THE NETTY RUNTIME 83
12.6. USING THE HTTP TRANSPORT IN DECOUPLED MODE 87
CHAPTER13.USING SOAP OVER UMS .. i i e e ittt 92
13.1. BASIC CONFIGURATION 92
13.2. JMS URIS 94
13.3. WSDL EXTENSIONS 99
CHAPTER14. USING GENERIC JMS ... i i e e i 104
14.1. APPROACHES TO CONFIGURING JMS 104
14.2. USING THE JMS CONFIGURATION BEAN 104
14.3. OPTIMIZING CLIENT-SIDE JMS PERFORMANCE 12
14.4. CONFIGURING JMS TRANSACTIONS 13
14.5. USING WSDL TO CONFIGURE JMS 15
14.6. USING A NAMED REPLY DESTINATION 120
APPENDIX A. INTEGRATING WITH APACHE ACTIVEMQ ... e 122
OVERVIEW 122
THE INITIAL CONTEXT FACTORY 122
LOOKING UP THE CONNECTION FACTORY 122
SYNTAX FOR DYNAMIC DESTINATIONS 122
APPENDIX B. CONDUITS . i i i it i i et ii i, 124
OVERVIEW 124
CONDUIT LIFE-CYCLE 124
CONDUIT WEIGHT 124
PART IV. CONFIGURING WEB SERVICE ENDPOINTS i e 125

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS
15.1. CONFIGURING SERVICE PROVIDERS
15.2. CONFIGURING CONSUMER ENDPOINTS

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS
16.1. CONFIGURING JAX-RS SERVER ENDPOINTS
16.2. CONFIGURING JAX-RS CLIENT ENDPOINTS

Table of Contents

16.3. DEFINING REST SERVICES WITH THE MODEL SCHEMA

CHAPTER 17. APACHE CXF LOGGING
17.1. OVERVIEW OF APACHE CXF LOGGING
17.2. SIMPLE EXAMPLE OF USING LOGGING
17.3. DEFAULT LOGGING CONFIGURATION FILE

17.4. ENABLING LOGGING AT THE COMMAND LINE

17.5. LOGGING FOR SUBSYSTEMS AND SERVICES

17.6. LOGGING MESSAGE CONTENT

CHAPTER 18. DEPLOYING WS-ADDRESSING
18.1. INTRODUCTION TO WS-ADDRESSING
18.2. WS-ADDRESSING INTERCEPTORS
18.3. ENABLING WS-ADDRESSING

18.4. CONFIGURING WS-ADDRESSING ATTRIBUTES

CHAPTER 19. ENABLING RELIABLE MESSAGING
19.1. INTRODUCTION TO WS-RM
19.2. WS-RM INTERCEPTORS
19.3. ENABLING WS-RM
19.4. RUNTIME CONTROL
19.5. CONFIGURING WS-RM
19.6. CONFIGURING WS-RM PERSISTENCE

CHAPTER 20. ENABLING HIGH AVAILABILITY ...

20.1. INTRODUCTION TO HIGH AVAILABILITY
20.2. ENABLING HA WITH STATIC FAILOVER
20.3. CONFIGURING HA WITH STATIC FAILOVER

CHAPTER 21. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

21.1. LOAD BALANCING CLUSTER

126
135

140
152
156

161
161
162
163
166
166
168

171
171
171
172
173

175
175
177
178

181
183
190

21.2. FAILOVER CLUSTER

APPENDIX C. APACHE CXF BINDING IDS
TABLE OF BINDING IDS

APPENDIX D. USING THE MAVEN OSGI TOOLING
D.1. THE MAVEN BUNDLE PLUG-IN

D.2. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT

D.3. CONFIGURING THE BUNDLE PLUG-IN

PART V. DEVELOPING APPLICATIONS USING JAX-WS

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

22.1.INTRODUCTION TO JAX-WS SERVICE DEVELOPMENT

22.2. CREATING THE SEI
22.3. ANNOTATING THE CODE
22.4. GENERATING WSDL

218

219
219
219
221
243

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 23. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT

23.1. JAVA-FIRST CONSUMER DEVELOPMENT

23.2. CREATING A SERVICE OBJECT

23.3. ADDING A PORT TO A SERVICE

23.4. GETTING A PROXY FOR AN ENDPOINT
23.5.IMPLEMENTING THE CONSUMER'S BUSINESS LOGIC

CHAPTER 24. ASTARTING POINT WSDL CONTRACT

24.1. SAMPLE WSDL CONTRACT

CHAPTER 25. TOP-DOWN SERVICE DEVELOPMENT
25.1. OVERVIEW OF JAX-WS SERVICE PROVIDER DEVELOPMENT

25.2. GENERATING THE STARTING POINT CODE
25.3. IMPLEMENTING THE SERVICE PROVIDER

CHAPTER 26. DEVELOPING A CONSUMER FROM A WSDL CONTRACT

26.1. GENERATING THE STUB CODE
26.2. IMPLEMENTING A CONSUMER

CHAPTER 27. FINDING WSDL ATRUNTIME cooiiatt.
27.1. MECHANISMS FOR LOCATING THE WSDL DOCUMENT

27.2. INSTANTIATING A PROXY BY INJECTION
27.3. USING A JAX-WS CATALOG
27.4. USING A CONTRACT RESOLVER

CHAPTER 28. GENERIC FAULT HANDLINGol

28.1. RUNTIME FAULTS
28.2. PROTOCOL FAULTS

CHAPTER 29. PUBLISHING ASERVICE,

29.1. WHEN TO PUBLISH A SERVICE
29.2. APISUSED TO PUBLISH A SERVICE

29.3. PUBLISHING A SERVICE IN A PLAIN JAVA APPLICATION

29.4. PUBLISHING A SERVICE IN AN OSGI CONTAINER

CHAPTER 30. BASIC DATA BINDING CONCEPTS

30.1. INCLUDING AND IMPORTING SCHEMA DEFINITIONS
30.2. XML NAMESPACE MAPPING

30.3. THE OBJECT FACTORY

30.4. ADDING CLASSES TO THE RUNTIME MARSHALLER

CHAPTER 31 USING XML ELEMENTS ... i e it

OVERVIEW

XML SCHEMA MAPPING

JAVA MAPPING OF ELEMENTS WITH A NAMED TYPE
USING ELEMENTS WITH NAMED TYPES IN WSDL

JAVA MAPPING OF ELEMENTS WITH AN IN-LINE TYPE
JAVA MAPPING OF ABSTRACT ELEMENTS

JAVA MAPPING OF ELEMENTS WITH A DEFAULT VALUE

CHAPTER32.USINGSIMPLETYPES ...t

32.1. PRIMITIVE TYPES

32.2.SIMPLE TYPES DEFINED BY RESTRICTION
32.3. ENUMERATIONS

32.4.LISTS

32.5. UNIONS

246
246
248
250

251

253
253

256
256
256
258

260
260
261

267
267
267
269
270

274
274
275

277
277
277
279
281

284
284
286
288
289

291
291
291
293
294
294
295
295

297
297
299
302
304
306

Table of Contents

32.6. SIMPLE TYPE SUBSTITUTION 307
CHAPTER 33.USING COMPLEX TYPES ... i i e e e 309
33.1. BASIC COMPLEX TYPE MAPPING 309
33.2. ATTRIBUTES 313
33.3. DERIVING COMPLEX TYPES FROM SIMPLE TYPES 318
33.4. DERIVING COMPLEX TYPES FROM COMPLEX TYPES 320
33.5. OCCURRENCE CONSTRAINTS 323
33.6. USING MODEL GROUPS 328
CHAPTER 34.USING WILD CARD TYPES ... i i e e et 333
34.1. USING ANY ELEMENTS 333
34.2. USING THE XML SCHEMA ANYTYPE TYPE 337
34.3. USING UNBOUND ATTRIBUTES 339
CHAPTER 35. ELEMENT SUBSTITUTION ... i e e 342
35.1. SUBSTITUTION GROUPS IN XML SCHEMA 342
35.2. SUBSTITUTION GROUPS IN JAVA 344
35.3. WIDGET VENDOR EXAMPLE 350
CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED ...t 357
36.1. BASICS OF CUSTOMIZING TYPE MAPPINGS 357
36.2. SPECIFYING THE JAVA CLASS OF AN XML SCHEMA PRIMITIVE 359
36.3. GENERATING JAVA CLASSES FOR SIMPLE TYPES 365
36.4. CUSTOMIZING ENUMERATION MAPPING 367
36.5. CUSTOMIZING FIXED VALUE ATTRIBUTE MAPPING 371
36.6. SPECIFYING THE BASE TYPE OF AN ELEMENT OR AN ATTRIBUTE 373
CHAPTER 37.USING A JAXBCONTEXT OBJECT ...t 377
OVERVIEW 377
BEST PRACTICES 377
GETTING A JAXBCONTEXT OBJECT USING AN OBJECT FACTORY 377
GETTING A JAXBCONTEXT OBJECT USING PACKAGE NAMES 378
CHAPTER 38. DEVELOPING ASYNCHRONOUS APPLICATIONS i 379
38.1. TYPES OF ASYNCHRONOUS INVOCATION 379
38.2. WSDL FOR ASYNCHRONOUS EXAMPLES 379
38.3. GENERATING THE STUB CODE 380
38.4. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE POLLING APPROACH 384
38.5. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE CALLBACK APPROACH 386
38.6. CATCHING EXCEPTIONS RETURNED FROM A REMOTE SERVICE 389
CHAPTER 39. USING RAW XML MESSAGES e 392
39.1. USING XML IN A CONSUMER 392
39.2. USING XML IN A SERVICE PROVIDER 399
CHAPTER 40. WORKING WITH CONTEXTS ... ottt 407
40.1. UNDERSTANDING CONTEXTS 407
40.2. WORKING WITH CONTEXTS IN A SERVICE IMPLEMENTATION 410
40.3. WORKING WITH CONTEXTS IN A CONSUMER IMPLEMENTATION 416
40.4. WORKING WITH JMS MESSAGE PROPERTIES 419
CHAPTER 41. WRITING HANDLERS ... i e i 426
41.1. HANDLERS: AN INTRODUCTION 426
41.2. IMPLEMENTING A LOGICAL HANDLER 429
41.3. HANDLING MESSAGES IN A LOGICAL HANDLER 429

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

41.4. IMPLEMENTING A PROTOCOL HANDLER

41.5. HANDLING MESSAGES IN A SOAP HANDLER
41.6. INITIALIZING A HANDLER

41.7. HANDLING FAULT MESSAGES

41.8. CLOSING AHANDLER

41.9. RELEASING A HANDLER

41.10. CONFIGURING ENDPOINTS TO USE HANDLERS

APPENDIX E.MAVEN TOOLING REFERENCE i i
E.l. PLUG-IN SETUP
E.2. CXF-CODEGEN-PLUGIN
E.3. JAVA2WS

PART VI. DEVELOPING RESTFULWEB SERVICES i i

CHAPTER 42. INTRODUCTION TO RESTFULWEB SERVICES ... i
OVERVIEW
BASIC REST PRINCIPLES
RESOURCES
REST BEST PRACTICES
DESIGNING A RESTFUL WEB SERVICE
IMPLEMENTING REST WITH APACHE CXF
DATA BINDINGS

CHAPTER 43. CREATING RESOURCES ... o i i i et
43.1. INTRODUCTION
43.2. BASIC JAX-RS ANNOTATIONS
43.3. ROOT RESOURCE CLASSES
43.4. WORKING WITH RESOURCE METHODS
43.5. WORKING WITH SUB-RESOURCES
43.6. RESOURCE SELECTION METHOD

CHAPTER 44. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS
44.1. BASICS OF INJECTING DATA
44.2. USING JAX-RS APIS
44.3. PARAMETER CONVERTERS
44.4. USING APACHE CXF EXTENSIONS

CHAPTER 45. RETURNING INFORMATION TO THECONSUMER
451. RETURN TYPES
45.2. RETURNING PLAIN JAVA CONSTRUCTS
45.3. FINE TUNING AN APPLICATION'S RESPONSES
45.4. RETURNING ENTITIES WITH GENERIC TYPE INFORMATION
45.5. ASYNCHRONOUS RESPONSE

CHAPTER 46. JAX-RS 2.0 CLIENT APl .o e e et
46.1. INTRODUCTION TO THE JAX-RS 2.0 CLIENT API
46.2. BUILDING THE CLIENT TARGET
46.3. BUILDING THE CLIENT INVOCATION
46.4. PARSING REQUESTS AND RESPONSES
46.5. CONFIGURING THE CLIENT ENDPOINT
46.6. ASYNCHRONOUS PROCESSING ON THE CLIENT

CHAPTER 47. HANDLING EXCEPTIONS ... e e i
47.1. OVERVIEW OF JAX-RS EXCEPTION CLASSES

434
436
439
440

441

441
442

448
448
448
457

459

460
460
461
461
461
462
462

463
463
464
465
467
469
472

476
476
476
487
490

493
493
493
494
500

501

51
51
513
515
518
521
522

525
525

47.2. USING WEBAPPLICATIONEXCEPTION EXCEPTIONS TO REPORT ERRORS
47.3. JAX-RS 2.0 EXCEPTION TYPES
47.4. MAPPING EXCEPTIONS TO RESPONSES

CHAPTER 48.ENTITY SUPPORT .. i e i

OVERVIEW

NATIVELY SUPPORTED TYPES
CUSTOM READERS

CUSTOM WRITERS

REGISTERING READERS AND WRITERS

CHAPTER 49. GETTING AND USING CONTEXT INFORMATIONoooae.

49.1. INTRODUCTION TO CONTEXTS
49.2. WORKING WITH THE FULL REQUEST URI

CHAPTER 50. ANNOTATION INHERITANCE

OVERVIEW
INHERITANCE RULES
OVERRIDING INHERITED ANNOTATIONS

CHAPTER 51. EXTENDING JAX-RS ENDPOINTS WITH SWAGGER SUPPORT

51.1. STANDALONE CXF IMPLEMENTATIONS
51.2. JBOSS FUSE CXF IMPLEMENTATIONS

PART VII. DEVELOPING APACHE CXF INTERCEPTORS ...t

CHAPTER 52. INTERCEPTORS IN THE APACHE CXF RUNTIME

OVERVIEW

MESSAGE PROCESSING IN APACHE CXF
INTERCEPTORS

PHASES

INTERCEPTOR CHAINS

DEVELOPING INTERCEPTORS

CHAPTERS3. THEINTERCEPTORAPIS ... s

INTERFACES
ABSTRACT INTERCEPTOR CLASS

CHAPTER 54. DETERMINING WHEN THE INTERCEPTORISINVOKED

54.1. SPECIFYING THE INTERCEPTOR LOCATION
54.2. SPECIFYING AN INTERCEPTOR'S PHASE
54.3. CONSTRAINING AN INTERCEPTORS PLACEMENT IN A PHASE

CHAPTER 55. IMPLEMENTING THE INTERCEPTORS PROCESSING LOGIC

55.1. INTERCEPTOR FLOW
55.2. PROCESSING MESSAGES
55.3. UNWINDING AFTER AN ERROR

CHAPTER 56. CONFIGURING ENDPOINTS TO USE INTERCEPTORS

56.1. DECIDING WHERE TO ATTACH INTERCEPTORS
56.2. ADDING INTERCEPTORS USING CONFIGURATION
56.3. ADDING INTERCEPTORS PROGRAMMATICALLY

CHAPTER 57. MANIPULATING INTERCEPTOR CHAINSON THE FLY,

OVERVIEW
CHAIN LIFE-CYCLE

Table of Contents

526
527
529

................ 533

533
533
534
538
542

544
545

................. 551

551
551
551

................ 553

553
556

................ 559

560

561
562
563
563
563

................ 565

565
566

................ 567

567
567
569

................ 572

572
572
575

................ 576

576
577
579

................ 585

585
585

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

GETTING THE INTERCEPTOR CHAIN
ADDING INTERCEPTORS
REMOVING INTERCEPTORS

CHAPTER 58. JAX-RS 2.0 FILTERS AND INTERCEPTORS

58.1. INTRODUCTION TO JAX-RS FILTERS AND INTERCEPTORS

58.2. CONTAINER REQUEST FILTER
58.3. CONTAINER RESPONSE FILTER
58.4. CLIENT REQUEST FILTER

58.5. CLIENT RESPONSE FILTER
58.6. ENTITY READER INTERCEPTOR
58.7.ENTITY WRITER INTERCEPTOR
58.8. DYNAMIC BINDING

APPENDIX F. APACHE CXF MESSAGE PROCESSING PHASES e

INBOUND PHASES
OUTBOUND PHASES

APPENDIX G. APACHE CXF PROVIDED INTERCEPTORS
G.1. CORE APACHE CXF INTERCEPTORS
G.2. FRONT-ENDS
G.3. MESSAGE BINDINGS
G.4. OTHER FEATURES

APPENDIX H.INTERCEPTORPROVIDERS

OVERVIEW
LIST OF PROVIDERS

PART VIIl. APACHE CXF FEATURES

CHAPTER 59. BEAN VALIDATIONooaet

59.1. INTRODUCTION
59.2. DEVELOPING SERVICES WITH BEAN VALIDATION
59.3. CONFIGURING BEAN VALIDATION

585
585
586

588
588
590
596
600
604
607

612

616

619
619
620

621
621
621
623
627

630
630

632

633
633
636
639

Table of Contents

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

PART I. WRITING WSDL CONTRACTS

Abstract

This part describes how to define a Web service interface using WSDL.

10

CHAPTER 1. INTRODUCING WSDL CONTRACTS

CHAPTER 1. INTRODUCING WSDL CONTRACTS

Abstract

WSDL documents define services using Web Service Description Language and a number of possible
extensions. The documents have a logical part and a concrete part. The abstract part of the contract
defines the service in terms of implementation neutral data types and messages. The concrete part of
the document defines how an endpoint implementing a service will interact with the outside world.

The recommended approach to design services is to define your services in WSDL and XML Schema
before writing any code. When hand-editing WSDL documents you must make sure that the document
is valid, as well as correct. To do this you must have some familiarity with WSDL. You can find the
standard on the W3C web site, www.w3.0rg.

1.1. STRUCTURE OF A WSDL DOCUMENT

Overview

AWSDL document is, at its simplest, a collection of elements contained within a root definition element.
These elements describe a service and how an endpoint implementing that service is accessed.

A WSDL document has two distinct parts:
® Alogical part that defines the service in implementation neutral terms

® A concrete part that defines how an endpoint implementing the service is exposed on a network

The logical part

The logical part of a WSDL document contains the types, the message, and the portType elements. It
describes the service's interface and the messages exchanged by the service. Within the types element,
XML Schema is used to define the structure of the data that makes up the messages. A number of
message elements are used to define the structure of the messages used by the service. The portType
element contains one or more operation elements that define the messages sent by the operations
exposed by the service.

The concrete part

The concrete part of a WSDL document contains the binding and the service elements. It describes
how an endpoint that implements the service connects to the outside world. The binding elements
describe how the data units described by the message elements are mapped into a concrete, on-the-
wire data format, such as SOAP. The service elements contain one or more port elements which define
the endpoints implementing the service.

1.2. WSDL ELEMENTS
A WSDL document is made up of the following elements:
e definitions — The root element of a WSDL document. The attributes of this element specify

the name of the WSDL document, the document’s target namespace, and the shorthand
definitions for the namespaces referenced in the WSDL document.

1

http://www.w3.org/TR/wsdl

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

types — The XML Schema definitions for the data units that form the building blocks of the
messages used by a service. For information about defining data types see Chapter 2, Defining
Logical Data Units.

message — The description of the messages exchanged during invocation of a services
operations. These elements define the arguments of the operations making up your service. For
information on defining messages see Chapter 3, Defining Logical Messages Used by a Service .

portType — A collection of operation elements describing the logical interface of a service. For
information about defining port types see Chapter 4, Defining Your Logical Interfaces.

operation — The description of an action performed by a service. Operations are defined by the
messages passed between two endpoints when the operation is invoked. For information on
defining operations see the section called “Operations”.

binding — The concrete data format specification for an endpoint. A binding element defines
how the abstract messages are mapped into the concrete data format used by an endpoint. This
element is where specifics such as parameter order and return values are specified.

service — A collection of related port elements. These elements are repositories for organizing
endpoint definitions.

port — The endpoint defined by a binding and a physical address. These elements bring all of the
abstract definitions together, combined with the definition of transport details, and they define
the physical endpoint on which a service is exposed.

1.3. DESIGNING A CONTRACT

To design a WSDL contract for your services you must perform the following steps:

12

1.

2.

Define the data types used by your services.
Define the messages used by your services.
Define the interfaces for your services.

Define the bindings between the messages used by each interface and the concrete
representation of the data on the wire.

Define the transport details for each of the services.

CHAPTER 2. DEFINING LOGICAL DATA UNITS

CHAPTER 2. DEFINING LOGICAL DATA UNITS

Abstract

When describing a service in a WSDL contract complex data types are defined as logical units using XML
Schema.

2.1.INTRODUCTION TO LOGICAL DATA UNITS

When defining a service, the first thing you must consider is how the data used as parameters for the
exposed operations is going to be represented. Unlike applications that are written in a programming
language that uses fixed data structures, services must define their data in logical units that can be
consumed by any number of applications. This involves two steps:

1. Breaking the data into logical units that can be mapped into the data types used by the physical
implementations of the service

2. Combining the logical units into messages that are passed between endpoints to carry out the
operations

This chapter discusses the first step. Chapter 3, Defining Logical Messages Used by a Service discusses
the second step.

2.2. MAPPING DATA INTO LOGICAL DATA UNITS

Overview

The interfaces used to implement a service define the data representing operation parameters as XML
documents. If you are defining an interface for a service that is already implemented, you must translate
the data types of the implemented operations into discreet XML elements that can be assembled into
messages. If you are starting from scratch, you must determine the building blocks from which your
messages are built, so that they make sense from an implementation standpoint.

Available type systems for defining service data units

According to the WSDL specification, you can use any type system you choose to define data typesin a
WSDL contract. However, the W3C specification states that XML Schema is the preferred canonical
type system for a WSDL document. Therefore, XML Schema is the intrinsic type system in Apache CXF.

XML Schema as a type system

XML Schema is used to define how an XML document is structured. This is done by defining the
elements that make up the document. These elements can use native XML Schema types, like xsd:int, or
they can use types that are defined by the user. User defined types are either built up using
combinations of XML elements or they are defined by restricting existing types. By combining type
definitions and element definitions you can create intricate XML documents that can contain complex
data.

When used in WSDL XML Schema defines the structure of the XML document that holds the data used
to interact with a service. When defining the data units used by your service, you can define them as
types that specify the structure of the message parts. You can also define your data units as elements
that make up the message parts.

13

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Considerations for creating your data units

You might consider simply creating logical data units that map directly to the types you envision using
when implementing the service. While this approach works, and closely follows the model of building
RPC-style applications, it is not necessarily ideal for building a piece of a service-oriented architecture.

The Web Services Interoperability Organization’s WS-I basic profile provides a number of guidelines for
defining data units and can be accessed at http:;//www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-

24 html#WSDLTYPES. In addition, the W3C also provides the following guidelines for using XML
Schema to represent data types in WSDL documents:

® Use elements, not attributes.

® Do not use protocol-specific types as base types.

2.3. ADDING DATAUNITS TO ACONTRACT

Overview

Depending on how you choose to create your WSDL contract, creating new data definitions requires
varying amounts of knowledge. The Apache CXF GUI tools provide a number of aids for describing data
types using XML Schema. Other XML editors offer different levels of assistance. Regardless of the
editor you choose, it is a good idea to have some knowledge about what the resulting contract should
look like.

Procedure

Defining the data used in a WSDL contract involves the following steps:
1. Determine all the data units used in the interface described by the contract.
2. Create a types element in your contract.

3. Create a schema element, shown in Example 2.1, “Schema entry for a WSDL contract”, as a child
of the type element.

The targetNamespace attribute specifies the namespace under which new data types are
defined. Best practice is to also define the namespace that provides access to the target
namespace. The remaining entries should not be changed.

xmins="http://www.w3.0rg/2001/XMLSchema"
xmlins:xsd1="http://schemas.iona.com/bank.idl"

<schema targetNamespace="http://schemas.iona.com/bank.idl"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/">

‘ Example 2.1. Schema entry for a WSDL contract

4. For each complex type that is a collection of elements, define the data type using a
complexType element. See Section 2.5.1, “Defining data structures”.

5. For each array, define the data type using a complexType element. See Section 2.5.2, “Defining
arrays”.

14

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES

CHAPTER 2. DEFINING LOGICAL DATA UNITS

6. For each complex type that is derived from a simple type, define the data type using a
simpleType element. See Section 2.5.4, “Defining types by restriction”.

7. For each enumerated type, define the data type using a simpleType element. See
Section 2.5.5, "Defining enumerated types”.

8. For each element, define it using an element element. See Section 2.6, “Defining elements”.

2.4. XML SCHEMA SIMPLE TYPES

Overview

If a message part is going to be of a simple type it is not necessary to create a type definition for it.
However, the complex types used by the interfaces defined in the contract are defined using simple
types.

Entering simple types

XML Schema simple types are mainly placed in the element elements used in the types section of your
contract. They are also used in the base attribute of restriction elements and extension elements.

Simple types are always entered using the xsd prefix. For example, to specify that an element is of type

int, you would enter xsd:int in its type attribute as shown in Example 2.2, "“Defining an element with a
simple type”.

Example 2.2. Defining an element with a simple type

I <element name="simplelnt" type="xsd:int" />

Supported XSD simple types

Apache CXF supports the following XML Schema simple types:
® xsd:string
® xsd:normalizedString
® xsd:int
® xsd:unsignedint
® xsd:long
® xsd:unsignedlLong
® xsd:short
® xsd:unsignedShort
® xsd:float

® xsd:double

15

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

® xsd:boolean

® xsd:byte

® xsd:unsignedByte
® xsdinteger

® xsd:positivelnteger
® xsd:negativelnteger
® xsd:nonPositivelnteger
® xsd:nonNegativelnteger
® xsd:decimal

® xsd:dateTime

® xsd:itime

® xsd:date

® xsd:QName

® xsd:base64Binary
® xsd:hexBinary

® xsd:ID

® xsd:token

® xsd:language

® xsd:Name

® xsd:NCName

® xsd:NMTOKEN

® xsd:anySimpleType
® xsd:anyURI

® xsd:gYear

® xsd:gMonth

® xsd:gDay

® xsd:gYearMonth

® xsd:gMonthDay

2.5. DEFINING COMPLEX DATATYPES

16

CHAPTER 2. DEFINING LOGICAL DATA UNITS

Abstract

XML Schema provides a flexible and powerful mechanism for building complex data structures from its
simple data types. You can create data structures by creating a sequence of elements and attributes.
You can also extend your defined types to create even more complex types.

In addition to building complex data structures, you can also describe specialized types such as
enumerated types, data types that have a specific range of values, or data types that need to follow
certain patterns by either extending or restricting the primitive types.

2.5.1. Defining data structures

Overview

In XML Schema, data units that are a collection of data fields are defined using complexType elements.
Specifying a complex type requires three pieces of information:

1. The name of the defined type is specified in the name attribute of the complexType element.

2. The first child element of the complexType describes the behavior of the structure'’s fields
when it is put on the wire. See the section called “Complex type varieties” .

3. Each of the fields of the defined structure are defined in element elements that are
grandchildren of the complexType element. See the section called “Defining the parts of a
structure”.

For example, the structure shown in Example 2.3, “Simple Structure” is be defined in XML Schema as a
complex type with two elements.

string name;
int age;

Example 2.3. Simple Structure
struct personallnfo

{

I

Example 2.4, "A complex type” shows one possible XML Schema mapping for the structure shown in
Example 2.3, “Simple Structure” The structure defined in Example 2.4, “A complex type” generates a
message containing two elements: name and age.

<sequence>
<element name="name" type="xsd:string" />
<element name="age" type="xsd:int" />
</sequence>

<complexType name="personallnfo">
</complexType>

| Example 2.4. A complex type

17

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Complex type varieties

XML Schema has three ways of describing how the fields of a complex type are organized when
represented as an XML document and passed on the wire. The first child element of the complexType
element determines which variety of complex type is being used. Table 2.1, “Complex type descriptor
elements” shows the elements used to define complex type behavior.

Table 2.1. Complex type descriptor elements

Element Complex Type Behavior

sequence All of a complex type’s fields can be present and they
must be in the order in which they are specified in the
type definition.

all All of the complex type’s fields can be present but

they can be in any order.

choice Only one of the elements in the structure can be
placed in the message.

If the structure is defined using a choice element, as shown in Example 2.5, “Simple complex choice
type”, it generates a message with either a name element or an age element.

<choice>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int"/>
</choice>

<complexType name="personallnfo">
</complexType>

| Example 2.5. Simple complex choice type

Defining the parts of a structure

You define the data fields that make up a structure using element elements. Every complexType
element should contain at least one element element. Each element element in the complexType
element represents a field in the defined data structure.

To fully describe a field in a data structure, element elements have two required attributes:

® The name attribute specifies the name of the data field and it must be unique within the
defined complex type.

® The type attribute specifies the type of the data stored in the field. The type can be either one
of the XML Schema simple types, or any named complex type that is defined in the contract.

In addition to name and type, element elements have two other commonly used optional attributes:

minOcurrs and maxOccurs. These attributes place bounds on the number of times the field occurs in
the structure. By default, each field occurs only once in a complex type. Using these attributes, you can

18

CHAPTER 2. DEFINING LOGICAL DATA UNITS

change how many times a field must or can appear in a structure. For example, you can define a field,
previousJobs, that must occur at least three times, and no more than seven times, as shown in
Example 2.6, “Simple complex type with occurrence constraints” .

<all>
<element name="name" type="xsd:string"/>
<element name="age" type="xsd:int"/>
<element name="previousJobs" type="xsd:string:
minOccurs="3" maxOccurs="7"/>
</all>

<complexType name="personallnfo>
</complexType>

‘ Example 2.6. Simple complex type with occurrence constraints

You can also use the minOccurs to make the age field optional by setting the minOccurs to zero as
shown in Example 2.7, “Simple complex type with minOccurs set to zero” . In this case age can be
omitted and the data will still be valid.

<choice>

<element name="name" type="xsd:string"/>

<element name="age" type="xsd:int" minOccurs="0"/>
</choice>

<complexType name="personallnfo>
</complexType>

| Example 2.7. Simple complex type with minOccurs set to zero

Defining attributes

In XML documents attributes are contained in the element’s tag. For example, in the complexType
element name is an attribute. They are specified using the attribute element. It comes after the all,
sequence, or choice element and are a direct child of the complexType element. Example 2.8,
“Complex type with an attribute” shows a complex type with an attribute.

<all>
<element name="name" type="xsd:string"/>
<element name="previousJobs" type="xsd:string"
minOccurs="3" maxOccurs="7"/>
</all>
<attribute name="age" type="xsd:int" use="optional" />

<complexType name="personallnfo>
</complexType>

‘ Example 2.8. Complex type with an attribute

The attribute element has three attributes:

® name — Arequired attribute that specifies the string identifying the attribute.

19

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

e type — Specifies the type of the data stored in the field. The type can be one of the XML
Schema simple types.

® use — Specifies if the attribute is required or optional. Valid values are required or optional.

If you specify that the attribute is optional you can add the optional attribute default. The default
attribute allows you to specify a default value for the attribute.

2.5.2. Defining arrays

Overview

Apache CXF supports two methods for defining arrays in a contract. The first is define a complex type
with a single element whose maxOccurs attribute has a value greater than one. The second is to use
SOAP arrays. SOAP arrays provide added functionality such as the ability to easily define multi-
dimensional arrays and to transmit sparsely populated arrays.

Complex type arrays

Complex type arrays are a special case of a sequence complex type. You simply define a complex type
with a single element and specify a value for the maxOccurs attribute. For example, to define an array
of twenty floating point numbers you use a complex type similar to the one shown in Example 2.9,
"Complex type array”.

Example 2.9. Complex type array

<element name="averages" type="xsd:float" maxOccurs="20"/>

<complexType name="personallnfo">
</complexType>

You can also specify a value for the minOccurs attribute.

SOAP arrays

SOAP arrays are defined by deriving from the SOAP-ENC:Array base type using the wsdl:arrayType
element. The syntax for this is shown in Example 2.10, “Syntax for a SOAP array derived using
wsdl:arrayType”. Ensure that the definitions element declares xmins:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/".

<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"
wsdl:arrayType="ElementType<ArrayBounds>"/>
</restriction>
</complexContent>

<complexType name="TypeName">
</complexType>

‘ Example 2.10. Syntax for a SOAP array derived using wsdl:arrayType

20

CHAPTER 2. DEFINING LOGICAL DATA UNITS

Using this syntax, /ypeName specities the name ot the newly-detined array type. Elementlype specities
the type of the elements in the array. ArrayBounds specifies the number of dimensions in the array. To
specify a single dimension array use []; to specify a two-dimensional array use either [][] or [,]

For example, the SOAP Array, SOAPStrings, shown in Example 2.11, “Definition of a SOAP array”, defines
a one-dimensional array of strings. The wsdl:arrayType attribute specifies the type of the array
elements, xsd:string, and the number of dimensions, with []implying one dimension.

<complexContent>
<restriction base="SOAP-ENC:Array">
<attribute ref="SOAP-ENC:arrayType"
wsdl:array Type="xsd:string[]"/>
</restriction>
</complexContent>

<complexType name="SOAPStrings">
</complexType>

‘ Example 2.11. Definition of a SOAP array

You can also describe a SOAP Array using a simple element as described in the SOAP 1.1 specification.
The syntax for this is shown in Example 2.12, “Syntax for a SOAP array derived using an element” .

<complexContent>
<restriction base="SOAP-ENC:Array">
<sequence>
<element name="ElementName" type="ElementType"
maxOccurs="unbounded"/>
</sequence>
</restriction>
</complexContent>

<complexType name="TypeName">
</complexType>

| Example 2.12. Syntax for a SOAP array derived using an element

When using this syntax, the element’'s maxOccurs attribute must always be set to unbounded.

2.5.3. Defining types by extension

Like most major coding languages, XML Schema allows you to create data types that inherit some of
their elements from other data types. This is called defining a type by extension. For example, you could
create a new type called alienlnfo, that extends the personallnfo structure defined in Example 2.4, “A
complex type” by adding a new element called planet.

Types defined by extension have four parts:

1. The name of the type is defined by the name attribute of the complexType element.

2. The complexContent element specifies that the new type will have more than one element.

21

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

NOTE

If you are only adding new attributes to the complex type, you can use a
simpleContent element.

3. The type from which the new type is derived, called the base type, is specified in the base
attribute of the extension element.

4. The new type’s elements and attributes are defined in the extension element, the same as they
are for a regular complex type.

For example, alienlnfo is defined as shown in Example 2.13, “Type defined by extension”.

<complexContent>
<extension base="xsd1:personallnfo">
<sequence>
<element name="planet" type="xsd:string"/>
</sequence>
</extension>
</complexContent>

<complexType name="alieninfo">
</complexType>

‘ Example 2.13. Type defined by extension

2.5.4. Defining types by restriction

Overview

XML Schema allows you to create new types by restricting the possible values of an XML Schema simple
type. For example, you can define a simple type, SSN, which is a string of exactly nine characters. New
types defined by restricting simple types are defined using a simpleType element.

The definition of a type by restriction requires three things:
1. The name of the new type is specified by the name attribute of the simpleType element.

2. The simple type from which the new type is derived, called the base type, is specified in the
restriction element. See the section called “Specifying the base type”.

3. Therules, called facets, defining the restrictions placed on the base type are defined as children
of the restriction element. See the section called “Defining the restrictions”.

Specifying the base type

The base type is the type that is being restricted to define the new type. It is specified using a
restriction element. The restriction element is the only child of a simpleType element and has one
attribute, base, that specifies the base type. The base type can be any of the XML Schema simple
types.

For example, to define a new type by restricting the values of an xsd:int you use a definition like the one
shown in Example 2.14, “Using int as the base type”.

22

CHAPTER 2. DEFINING LOGICAL DATA UNITS

Example 2.14. Using int as the base type

<simpleType name="restrictedInt">
<restriction base="xsd:int">

</restriction>
</simpleType>

Defining the restrictions

The rules defining the restrictions placed on the base type are called facets. Facets are elements with
one attribute, value, that defines how the facet is enforced. The available facets and their valid value
settings depend on the base type. For example, xsd:string supports six facets, including:

® length

e minLength

e maxLength
e pattern

e whitespace
® enumeration

Each facet element is a child of the restriction element.

Example

Example 2.15, “SSN simple type description” shows an example of a simple type, SSN, which represents a
social security number. The resulting type is a string of the form xxx-xx-xxxx. <SSN>032-43-
9876<SSN> is a valid value for an element of this type, but <SSN>032439876</SSN> is not.

<restriction base="xsd:string">
<pattern value="\d{3}-\d{2}-\d{4}"/>
</restriction>

<simpleType name="SSN">
</simpleType>

| Example 2.15. SSN simple type description

2.5.5. Defining enumerated types

Overview

Enumerated types in XML Schema are a special case of definition by restriction. They are described by
using the enumeration facet which is supported by all XML Schema primitive types. As with enumerated
types in most modern programming languages, a variable of this type can only have one of the specified
values.

23

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Defining an enumeration in XML Schema

The syntax for defining an enumeration is shown in Example 2.16, “Syntax for an enumeration”.

<restriction base="EnumType">
<enumeration value="Case1Value"/>
<enumeration value="Case2Value"/>

<enumerat|on value="CaseNValue"/>
</restriction>

<simpleType name="EnumName">
</simpleType>

‘ Example 2.16. Syntax for an enumeration

EnumName specifies the name of the enumeration type. EnumType specifies the type of the case
values. CaseNValue, where N is any number one or greater, specifies the value for each specific case of
the enumeration. An enumerated type can have any number of case values, but because it is derived
from a simple type, only one of the case values is valid at a time.

Example

For example, an XML document with an element defined by the enumeration widgetSize, shown in
Example 2.17, "widgetSize enumeration”, would be valid if it contained <widgetSize>big</widgetSize>,
but it would not be valid if it contained <widgetSize>big,mungo</widgetSize>.

<restriction base="xsd:string">
<enumeration value="big"/>
<enumeration value="large"/>
<enumeration value="mungo"/>
</restriction>

<simpleType name="widgetSize">
</simpleType>

| Example 2.17. widgetSize enumeration

2.6. DEFINING ELEMENTS

Elements in XML Schema represent an instance of an element in an XML document generated from the
schema. The most basic element consists of a single element element. Like the element element used
to define the members of a complex type, they have three attributes:

® name — A required attribute that specifies the name of the element as it appears in an XML
document.

e type — Specifies the type of the element. The type can be any XML Schema primitive type or
any named complex type defined in the contract. This attribute can be omitted if the type has

an in-line definition.

e nillable — Specifies whether an element can be omitted from a document entirely. If nillable is
set to true, the element can be omitted from any document generated using the schema.

24

CHAPTER 2. DEFINING LOGICAL DATA UNITS

An element can also have an in-line type definition. In-line types are specified using either a
complexType element or a simpleType element. Once you specify if the type of data is complex or
simple, you can define any type of data needed using the tools available for each type of data. In-line
type definitions are discouraged because they are not reusable.

25

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A
SERVICE

Abstract

A service is defined by the messages exchanged when its operations are invoked. In a WSDL contract
these messages are defined using message element. The messages are made up of one or more parts
that are defined using part elements.

OVERVIEW

A service's operations are defined by specifying the logical messages that are exchanged when an
operation is invoked. These logical messages define the data that is passed over a network as an XML
document. They contain all of the parameters that are a part of a method invocation.

Logical messages are defined using the message element in your contracts. Each logical message
consists of one or more parts, defined in part elements.

TIP

While your messages can list each parameter as a separate part, the recommended practice is to use
only a single part that encapsulates the data needed for the operation.

MESSAGES AND PARAMETER LISTS

Each operation exposed by a service can have only one input message and one output message. The
input message defines all of the information the service receives when the operation is invoked. The
output message defines all of the data that the service returns when the operation is completed. Fault
messages define the data that the service returns when an error occurs.

In addition, each operation can have any number of fault messages. The fault messages define the data
that is returned when the service encounters an error. These messages usually have only one part that
provides enough information for the consumer to understand the error.

MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS

If you are defining an existing application as a service, you must ensure that each parameter used by the
method implementing the operation is represented in a message. You must also ensure that the return
value is included in the operation’s output message.

One approach to defining your messages is RPC style. When using RPC style, you define the messages
using one part for each parameter in the method’s parameter list. Each message part is based on a type
defined in the types element of the contract. Your input message contains one part for each input
parameter in the method. Your output message contains one part for each output parameter, plus a part
to represent the return value, if needed. If a parameter is both an input and an output parameter, it is
listed as a part for both the input message and the output message.

RPC style message definition is useful when service enabling legacy systems that use transports such as
Tibco or CORBA. These systems are designed around procedures and methods. As such, they are
easiest to model using messages that resemble the parameter lists for the operation being invoked.
RPC style also makes a cleaner mapping between the service and the application it is exposing.

26

CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A SERVICE

MESSAGE DESIGN FOR SOAP SERVICES

While RPC style is useful for modeling existing systems, the service's community strongly favors the
wrapped document style. In wrapped document style, each message has a single part. The message’s
part references a wrapper element defined in the types element of the contract. The wrapper element
has the following characteristics:

® |tisa complex type containing a sequence of elements. For more information see Section 2.5,
“Defining complex data types”.

e |[fitisawrapper for an input message:

o It has one element for each of the method's input parameters.

o Its name is the same as the name of the operation with which it is associated.
e [fitisawrapper for an output message:

o It has one element for each of the method'’s output parameters and one element for each of
the method's inout parameters.

o lts first element represents the method's return parameter.

o |ts name would be generated by appending Response to the name of the operation with
which the wrapper is associated.

MESSAGE NAMING

Each message in a contract must have a unique name within its namespace. It is recommended that you
use the following naming conventions:

® Messages should only be used by a single operation.
® |nput message names are formed by appending Request to the name of the operation.
® QOutput message names are formed by appending Response to the name of the operation.

® Fault message names should represent the reason for the fault.

MESSAGE PARTS
Message parts are the formal data units of the logical message. Each part is defined using a part

element, and is identified by a name attribute and either a type attribute or an element attribute that
specifies its data type. The data type attributes are listed in Table 3.1, “Part data type attributes”.

Table 3.1. Part data type attributes

Attribute Description

element="e/lem_name" The data type of the part is defined by an element
called elem_name.

type="type_name" The data type of the part is defined by a type called
type_name.

27

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Messages are allowed to reuse part names. For instance, if a method has a parameter, foo, that is passed
by reference oris an in/out, it can be a part in both the request message and the response message, as
shown in Example 3.1, “Reused part”.

Example 3.1. Reused part

<message name="fooRequest">
<part name="foo" type="xsd:int"/>

<message>

<message name="fooReply">
<part name="foo" type="xsd:int"/>

<message>

EXAMPLE

For example, imagine you had a server that stored personal information and provided a method that
returned an employee’s data based on the employee's ID number. The method signature for looking up
the data is similar to Example 3.2, “personalinfo lookup method”.

Example 3.2. personallnfo lookup method

I personallnfo lookup(long empld)

This method signature can be mapped to the RPC style WSDL fragment shown in Example 3.3, “RPC
WSDL message definitions”.

<part name="empld" type="xsd:int"/>
<message/>
<message name="personalLookupResponse>
<part name="return" element="xsd1:personallnfo"/>

<message name="personalLookupRequest">
<message/>

| Example 3.3. RPC WSDL message definitions

It can also be mapped to the wrapped document style WSDL fragment shown in Example 3.4, “Wrapped
document WSDL message definitions”.

<complexType>
<sequence>
<element name="emplD" type="xsd:int" />
</sequence>

Example 3.4. Wrapped document WSDL message definitions
</complexType>

<wsdl:types>
<xsd:schema ... >
<element name="personalLookup">

28

CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A SERVICE

</element>
<element name="personalLookupResponse">
<complexType>
<sequence>
<element name="return" type="personallnfo" />
</sequence>
</complexType>
</element>
</schema>
<fypes>
<wsdl:message name="personalLookupRequest">
<wsdl:part name="empld" element="xsd1:personalLookup"/>
<message/>
<wsdl:message name="personalLookupResponse">
<wsdl:part name="return" element="xsd1:personalLookupResponse"/>
<message/>

29

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES

Abstract

Logical service interfaces are defined using the portType element.

OVERVIEW

Logical service interfaces are defined using the WSDL portType element. The portType elementis a
collection of abstract operation definitions. Each operation is defined by the input, output, and fault
messages used to complete the transaction the operation represents. When code is generated to
implement the service interface defined by a portType element, each operation is converted into a
method containing the parameters defined by the input, output, and fault messages specified in the
contract.

PROCESS

To define a logical interface in a WSDL contract you must do the following:

1. Create a portType element to contain the interface definition and give it a unique name. See
the section called “Port types”.

2. Create an operation element for each operation defined in the interface. See the section called
“Operations”.

3. For each operation, specify the messages used to represent the operation’s parameter list,
return type, and exceptions. See the section called “Operation messages”.

PORT TYPES

A WSDL portType element is the root element in a logical interface definition. While many Web service
implementations map portType elements directly to generated implementation objects, a logical
interface definition does not specify the exact functionality provided by the the implemented service.
For example, a logical interface named ticketSystem can result in an implementation that either sells
concert tickets or issues parking tickets.

The portType element is the unit of a WSDL document that is mapped into a binding to define the
physical data used by an endpoint exposing the defined service.

Each portType element in a WSDL document must have a unique name, which is specified using the

name attribute, and is made up of a collection of operations, which are described in operation elements.
A WSDL document can describe any number of port types.

OPERATIONS
Logical operations, defined using WSDL operation elements, define the interaction between two
endpoints. For example, a request for a checking account balance and an order for a gross of widgets

can both be defined as operations.

Each operation defined within a portType element must have a unique name, specified using the name
attribute. The name attribute is required to define an operation.

30

CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES

OPERATION MESSAGES

Logical operations are made up of a set of elements representing the logical messages communicated
between the endpoints to execute the operation. The elements that can describe an operation are listed
in Table 4.1, “Operation message elements”.

Table 4.1. Operation message elements

Element Description

input Specifies the message the client endpoint sends to
the service provider when a request is made. The
parts of this message correspond to the input
parameters of the operation.

output Specifies the message that the service provider
sends to the client endpoint in response to a request.
The parts of this message correspond to any
operation parameters that can be changed by the
service provider, such as values passed by reference.
This includes the return value of the operation.

fault Specifies a message used to communicate an error
condition between the endpoints.

An operation is required to have at least one input or one output element. An operation can have both
input and output elements, but it can only have one of each. Operations are not required to have any
fault elements, but can, if required, have any number of fault elements.

The elements have the two attributes listed in Table 4.2, "Attributes of the input and output elements”.

Table 4.2. Attributes of the input and output elements

Attribute Description

hame Identifies the message so it can be referenced when
mapping the operation to a concrete data format.
The name must be unique within the enclosing port

type.

message Specifies the abstract message that describes the
data being sent or received. The value of the
message attribute must correspond to thename
attribute of one of the abstract messages defined in
the WSDL document.

It is not necessary to specify the name attribute for all input and output elements; WSDL provides a
default naming scheme based on the enclosing operation’s name. If only one element is used in the
operation, the element name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation with either Request or
Response respectively appended to the name.

31

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

RETURN VALUES

Because the operation element is an abstract definition of the data passed during an operation, WSDL
does not provide for return values to be specified for an operation. If a method returns a value it will be
mapped into the output element as the last part of that message.

EXAMPLE

For example, you might have an interface similar to the one shown in Example 4.1, “personallnfo lookup
interface”.

personallnfo lookup(in int emplD)

mterface personallnfoLookup
raises(idNotFound);

| Example 4.1. personallnfo lookup interface

This interface can be mapped to the port type in Example 4.2, “personallnfo lookup port type”.

Example 4.2. personalinfo lookup port type
<message name="personalLookupRequest">
<part name="empld" element="xsd1:personallLookup"/>

<message/>
<message name="personalLookupResponse">
<part name="return" element="xsd1:personalLookupResponse"/>
<message/>
<message name="idNotFoundException">
<part name="exception" element="xsd1:idNotFound"/>
<message/>
<portType name="personallnfoLookup">
<operation name="lookup">
<input name="emplD" message="tns:personalLookupRequest"/>
<output name="return" message="tns:personalLookupResponse"/>
<fault name="exception" message="tns:idNotFoundException"/>
</operation>
</portType>

32

PART Il. WEB SERVICES BINDINGS

PART Il. WEB SERVICES BINDINGS

Abstract

This part describes how to add Apache CXF bindings to a WSDL document.

33

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 5. UNDERSTANDING BINDINGS IN WSDL

Abstract

Bindings map the logical messages used to define a service into a concrete payload format that can be
transmitted and received by an endpoint.

OVERVIEW

Bindings provide a bridge between the logical messages used by a service to a concrete data format that
an endpoint uses in the physical world. They describe how the logical messages are mapped into a
payload format that is used on the wire by an endpoint. It is within the bindings that details such as
parameter order, concrete data types, and return values are specified. For example, the parts of a
message can be reordered in a binding to reflect the order required by an RPC call. Depending on the
binding type, you can also identify which of the message parts, if any, represent the return type of a
method.

PORT TYPES AND BINDINGS

Port types and bindings are directly related. A port type is an abstract definition of a set of interactions
between two logical services. A binding is a concrete definition of how the messages used to implement
the logical services will be instantiated in the physical world. Each binding is then associated with a set of
network details that finish the definition of one endpoint that exposes the logical service defined by the
port type.

To ensure that an endpoint defines only a single service, WSDL requires that a binding can only
represent a single port type. For example, if you had a contract with two port types, you could not write a
single binding that mapped both of them into a concrete data format. You would need two bindings.

However, WSDL allows for a port type to be mapped to several bindings. For example, if your contract
had a single port type, you could map it into two or more bindings. Each binding could alter how the parts
of the message are mapped or they could specify entirely different payload formats for the message.

THE WSDL ELEMENTS

Bindings are defined in a contract using the WSDL binding element. The binding element consists of
attributes like, name, that specifies a unique name for the binding and type that provides reference to
PortType. The value of this attribute is used to associate the binding with an endpoint as discussed in
Chapter 4, Defining Your Logical Interfaces.

The actual mappings are defined in the children of the binding element. These elements vary

depending on the type of payload format you decide to use. The different payload formats and the
elements used to specify their mappings are discussed in the following chapters.

ADDING TO A CONTRACT
Apache CXF provides command line tools that can generate bindings for predefined service interfaces.

The tools will add the proper elements to your contract for you. However, it is recommended that you
have some knowledge of how the different types of bindings work.

34

CHAPTER 5. UNDERSTANDING BINDINGS IN WSDL

You can also add a binding to a contract using any text editor. When hand editing a contract, you are
responsible for ensuring that the contract is valid.

SUPPORTED BINDINGS

Apache CXF supports the following bindings:
e SOAP 11
e SOAPI1.2
e CORBA

® Pure XML

35

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 6. USING SOAP 1.1 MESSAGES

Abstract

Apache CXF provides a tool to generate a SOAP 1.1 binding which does not use any SOAP headers.
However, you can add SOAP headers to your binding using any text or XML editor.

6.1. ADDING A SOAP 1.1 BINDING

Using wsdl2soap

To generate a SOAP 1.1 binding using wsdI2soap use the following command:
wsdl2soap { -i port-type-name } [-b binding-name][-d output-directory][-o output-file][-n soap-

body-namespace][-style (document/rpc)][-use (literal/encoded)][-v][[-verbose]| [-quiet]]
wsdlurl

NOTE

To use wsdl2soap you will need to download the Apache CXF distribution.

The command has the following options:

Option Interpretation

-i port-type-name Specifies the portType element for which a binding
is generated.

wsdlurl The path and name of the WSDL file containing the
portType element definition.

The tool has the following optional arguments:

Option Interpretation

-b binding-name Specifies the name of the generated SOAP binding.

-d output-directory Specifies the directory to place the generated WSDL
file.

-0 output-file Specifies the name of the generated WSDL file.

=N soap-body-namespace Specifies the SOAP body namespace when the style
is RPC.

-style (document/rpc) Specifies the encoding style (document or RPC) to

use in the SOAP binding. The default is document.

36

CHAPTER 6. USING SOAP 1.1 MESSAGES

Option Interpretation

-use (literal/encoded) Specifies the binding use (encoded or literal) to use
in the SOAP binding. The default is literal.

=V Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation
process.

The -i port-type-name and wsdlurl arguments are required. If the -style rpc argument is specified, the -
h soap-body-namspace argument is also required. All other arguments are optional and may be listed in
any order.

IMPORTANT

wsdl2soap does not support the generation of document/encoded SOAP bindings.

Example

If your system has an interface that takes orders and offers a single operation to process the orders it is
defined in a WSDL fragment similar to the one shown in Example 6.1, “Ordering System Interface”.

Example 6.1. Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:tns="http://widgetVendor.com/widgetOrderForm"
xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
xmins:xsd1="http://widgetVendor.com/types/widgetTypes"
xmIns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">

<part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">

<part name="price" type="xsd:float"/>
</message>
<message name="badSize">

<part name="numlInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>

37

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

</operation>
</portType>

<fault message="tns:badSize" name="sizeFault"/>
</definitions>

The SOAP binding generated for orderWidgets is shown in Example 6.2, “"SOAP 1.1 Binding for
orderWidgets”.

Example 6.2. SOAP 1.1 Binding fororderWidgets
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="document"/>
<input name="order">
<soap:body use="literal"/>
</input>
<output name="bill">
<soap:body use="literal"/>
</output>
<fault name="sizeFault">
<soap:body use="literal"/>
</ffault>
</operation>
</binding>

This binding specifies that messages are sent using the document/literal message style.

6.2. ADDING SOAP HEADERS TO A SOAP 1.1 BINDING

Overview

SOAP headers are defined by adding soap:header elements to your default SOAP 1.1 binding. The
soap:header element is an optional child of the input, output, and fault elements of the binding. The
SOAP header becomes part of the parent message. A SOAP header is defined by specifying a message
and a message part. Each SOAP header can only contain one message part, but you can insert as many
SOAP headers as needed.

Syntax

The syntax for defining a SOAP header is shown in Example 6.3, "SOAP Header Syntax”. The message
attribute of soap:header is the qualified name of the message from which the part being inserted into
the header is taken. The part attribute is the name of the message part inserted into the SOAP header.
Because SOAP headers are always document style, the WSDL message part inserted into the SOAP
header must be defined using an element. Together the message and the part attributes fully describe
the data to insert into the SOAP header.

Example 6.3. SOAP Header Syntax

I <binding name="headwig">

38

CHAPTER 6. USING SOAP 1.1 MESSAGES

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="weave">
<soap:operation soapAction="" style="document"/>
<input name="grain">
<soap:body ... />
<soap:header message="QName" part="partName'/>
</input>

</binding>

As well as the mandatory message and part attributes, soap:header also supports the hamespace, the
use, and the encodingStyle attributes. These attributes function the same for soap:header as they do
for soap:body.

Splitting messages between body and header

The message part inserted into the SOAP header can be any valid message part from the contract. It
can even be a part from the parent message which is being used as the SOAP body. Because it is unlikely
that you would want to send information twice in the same message, the SOAP binding provides a
means for specifying the message parts that are inserted into the SOAP body.

The soap:body element has an optional attribute, parts, that takes a space delimited list of part names.
When parts is defined, only the message parts listed are inserted into the SOAP body. You can then
insert the remaining parts into the SOAP header.

NOTE

When you define a SOAP header using parts of the parent message, Apache CXF
automatically fills in the SOAP headers for you.

Example

Example 6.4, "SOAP 1.1 Binding with a SOAP Header” shows a modified version of the orderWidgets
service shown in Example 6.1, “Ordering System Interface”. This version has been modified so that each
order has an xsd:base64binary value placed in the SOAP header of the request and response. The
SOAP header is defined as being the keyVal part from the widgetKey message. In this case you are
responsible for adding the SOAP header to your application logic because it is not part of the input or
output message.

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:tns="http://widgetVendor.com/widgetOrderForm"
xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
xmins:xsd1="http://widgetVendor.com/types/widgetTypes"
xmIns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

Example 6.4. SOAP 1.1 Binding with a SOAP Header
<types>

‘ <?xml version="1.0" encoding="UTF-8"7>

39

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmins="http://www.w3.0rg/2001/XMLSchema"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="keyElem" type="xsd:base64Binary"/>
</schema>
<fypes>
<message name="widgetOrder">

<part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">

<part name="price" type="xsd:float"/>
</message>
<message name="badSize">

<part name="numlInventory" type="xsd:int"/>
</message>
<message name="widgetKey">

<part name="keyVal" element="xsd1:keyElem"/>
</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap:operation soapAction="" style="document"/>
<input name="order">
<soap:body use="literal"/>
<soap:header message="tns:widgetKey" part="keyVal"/>
</input>
<output name="bill">
<soap:body use="literal"/>
<soap:header message="tns:widgetKey" part="keyVal"/>
</output>
<fault name="sizeFault">
<soap:body use="literal"/>
</ffault>
</operation>
</binding>

</definitions>

You can also modify Example 6.4, "SOAP 1.1 Binding with a SOAP Header” so that the header value is a
part of the input and output messages.

40

CHAPTER 7. USING SOAP 1.2 MESSAGES

CHAPTER 7. USING SOAP 1.2 MESSAGES

Abstract

Apache CXF provides tools to generate a SOAP 1.2 binding which does not use any SOAP headers. You
can add SOAP headers to your binding using any text or XML editor.

7.1. ADDING A SOAP 1.2 BINDING TO AWSDL DOCUMENT

Using wsdl2soap

NOTE

To use wsdl2soap you will need to download the Apache CXF distribution.

To generate a SOAP 1.2 binding using wsdl2soap use the following command:
wsdl2soap { -i port-type-name } [-b binding-name]{ -soapl12 } [-d output-directory][-o output-file]
[-n soap-body-namespace][-style (document/rpc)][-use (literal/encoded)][-v][[-verbose]|[-

quiet 1] wsdlurl

The tool has the following required arguments:

Option Interpretation

-i port-type-name Specifies the portType element for which a binding
is generated.

-soapi2 Specifies that the generated binding uses SOAP 1.2.

wsdlurl The path and name of the WSDL file containing the
portType element definition.

The tool has the following optional arguments:

Option Interpretation

-b binding-name Specifies the name of the generated SOAP binding.

-soapi2 Specifies that the generated binding will use SOAP
1.2.

-d output-directory Specifies the directory to place the generated WSDL
file.

-0 output-file Specifies the name of the generated WSDL file.

41

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Option Interpretation

=N soap-body-namespace Specifies the SOAP body namespace when the style
is RPC.
-style (document/rpc) Specifies the encoding style (document or RPC) to

use in the SOAP binding. The default is document.

-use (literal/encoded) Specifies the binding use (encoded or literal) to use
in the SOAP binding. The default is literal.

=V Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation
process.

The -i port-type-name and wsdlurl arguments are required. If the -style rpc argument is specified, the -
h soap-body-namspace argument is also required. All other arguments are optional and can be listed in
any order.

IMPORTANT

wsdl2soap does not support the generation of document/encoded SOAP 1.2 bindings.

Example

If your system has an interface that takes orders and offers a single operation to process the orders it is
defined in a WSDL fragment similar to the one shown in Example 7.1, “Ordering System Interface”.

Example 7.1. Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmins:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmins:tns="http://widgetVendor.com/widgetOrderForm"
xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
xmins:xsd1="http://widgetVendor.com/types/widgetTypes"
xmIns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">

<part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">

<part name="price" type="xsd:float"/>
</message>
<message name="badSize">

42

CHAPTER 7. USING SOAP 1.2 MESSAGES

<part name="numlInventory" type="xsd:int"/>
</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

</definitions>

The SOAP binding generated for orderWidgets is shown in Example 7.2, “SOAP 1.2 Binding for
orderWidgets”.

Example 7.2. SOAP 1.2 Binding for orderWidgets
<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap12:operation soapAction="" style="document"/>
<input name="order">
<soap12:body use="literal"/>
</input>
<output name="bill">
<wsoapi2:body use="literal"/>
</output>
<fault name="sizeFault">
<soap12:body use="literal"/>
</ffault>
</operation>
</binding>

This binding specifies that messages are sent using the document/literal message style.

7.2. ADDING HEADERS TO A SOAP 1.2 MESSAGE

Overview

SOAP message headers are defined by adding soap12:header elements to your SOAP 1.2 message.
The soap12:header element is an optional child of the input, output, and fault elements of the binding.
The SOAP header becomes part of the parent message. A SOAP header is defined by specifying a
message and a message part. Each SOAP header can only contain one message part, but you can insert
as many headers as needed.

Syntax

The syntax for defining a SOAP header is shown in Example 7.3, “"SOAP Header Syntax”.

I Example 7.3. SOAP Header Syntax

43

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

<binding name="headwig">
<soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="weave">
<soap12:operation soapAction="" style="documment"/>
<input name="grain">
<soapi2:body ... />
<soap12:header message="QName" part="partName"
use="literallencoded"
encodingStyle="encodingURI"
namespace="namespaceURI" />
</input>

</binding>

The soap12:header element’s attributes are described in Table 7.1, “soapi2:header Attributes”.

Table 7.1. soap12:header Attributes

Attribute Description

message A required attribute specifying the qualified name of
the message from which the part being inserted into
the header is taken.

part A required attribute specifying the name of the
message part inserted into the SOAP header.

use Specifies if the message parts are to be encoded
using encoding rules. If set to encoded the message
parts are encoded using the encoding rules specified
by the value of the encodingStyle attribute. If set
to literal, the message parts are defined by the
schema types referenced.

encodingStyle Specifies the encoding rules used to construct the
message.
namespace Defines the namespace to be assigned to the header

element serialized with use="encoded".

Splitting messages between body and header

The message part inserted into the SOAP header can be any valid message part from the contract. It
can even be a part from the parent message which is being used as the SOAP body. Because it is unlikely
that you would send information twice in the same message, the SOAP 1.2 binding provides a means for
specifying the message parts that are inserted into the SOAP body.

The soap12:body element has an optional attribute, parts, that takes a space delimited list of part

names. When parts is defined, only the message parts listed are inserted into the body of the SOAP 1.2
message. You can then insert the remaining parts into the message's header.

44

CHAPTER 7. USING SOAP 1.2 MESSAGES

NOTE

When you define a SOAP header using parts of the parent message, Apache CXF
automatically fills in the SOAP headers for you.

Example

Example 7.4, "SOAP 1.2 Binding with a SOAP Header"” shows a modified version of the orderWidgets
service shown in Example 7.1, “Ordering System Interface”. This version is modified so that each order
has an xsd:base64binary value placed in the header of the request and the response. The header is
defined as being the keyVal part from the widgetKey message. In this case you are responsible for
adding the application logic to create the header because it is not part of the input or output message.

Example 7.4. SOAP 1.2 Binding with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmins:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmins:tns="http://widgetVendor.com/widgetOrderForm"
xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
xmins:xsd1="http://widgetVendor.com/types/widgetTypes"
xmIns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmins="http://www.w3.0rg/2001/XMLSchema"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="keyElem" type="xsd:base64Binary"/>
</schema>
<fypes>

<message name="widgetOrder">

<part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">

<part name="price" type="xsd:float"/>
</message>
<message name="badSize">

<part name="numlInventory" type="xsd:int"/>
</message>
<message name="widgetKey">

<part name="keyVal" element="xsd1:keyElem"/>
</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">

45

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

<soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap12:operation soapAction="" style="document"/>
<input name="order">
<soap12:body use="literal"/>
<soap12:header message="tns:widgetKey" part="keyVal"/>
</input>
<output name="bill">
<soap12:body use="literal"/>
<soap12:header message="tns:widgetKey" part="keyVal"/>
</output>
<fault name="sizeFault">
<soap12:body use="literal"/>
</ffault>
</operation>
</binding>

</definitions>

You can modify Example 7.4, “SOAP 1.2 Binding with a SOAP Header” so that the header value is a part
of the input and output messages, as shown in Example 7.5, "SOAP 1.2 Binding for orderWidgets with a
SOAP Header”. In this case keyVal is a part of the input and output messages. In the soap12:body
elements the parts attribute specifies that keyVal should not be inserted into the body. However, it is
inserted into the header.

46

Example 7.5. SOAP 1.2 Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="widgetOrderForm.wsdl"
targetNamespace="http://widgetVendor.com/widgetOrderForm"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmins:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmins:tns="http://widgetVendor.com/widgetOrderForm"
xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
xmins:xsd1="http://widgetVendor.com/types/widgetTypes"
xmIns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
<schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
xmins="http://www.w3.0rg/2001/XMLSchema"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/">
<element name="keyElem" type="xsd:base64Binary"/>
</schema>
<fypes>

<message name="widgetOrder">
<part name="numOrdered" type="xsd:int"/>
<part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="widgetOrderBill">
<part name="price" type="xsd:float"/>
<part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="badSize">

CHAPTER 7. USING SOAP 1.2 MESSAGES

<part name="numlInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
<fault message="tns:badSize" name="sizeFault"/>
</operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
<soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="placeWidgetOrder">
<soap12:operation soapAction="" style="document"/>
<input name="order">
<soap12:body use="literal" parts="numOrdered"/>
<soap12:header message="tns:widgetOrder" part="keyVal"/>
</input>
<output name="bill">
<soap12:body use="literal" parts="bill"/>
<soap12:header message="tns:widgetOrderBill" part="keyVal"/>
</output>
<fault name="sizeFault">
<soap12:body use="literal"/>
</ffault>
</operation>
</binding>

</definitions>

47

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 8. SENDING BINARY DATA USING SOAP WITH
ATTACHMENTS

Abstract

SOAP attachments provide a mechanism for sending binary data as part of a SOAP message. Using
SOAP with attachments requires that you define your SOAP messages as MIME multipart messages.

OVERVIEW

SOAP messages generally do not carry binary data. However, the W3C SOAP 1.1 specification allows for
using MIME multipart/related messages to send binary data in SOAP messages. This technique is called
using SOAP with attachments. SOAP attachments are defined in the W3C's SOAP Messages with
Attachments Note.

NAMESPACE

The WSDL extensions used to define the MIME multipart/related messages are defined in the
namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed with mime. The entry in the

WSDL definitions element to set this up is shown in Example 8.1, “MIME Namespace Specificationin a
Contract”.

Example 8.1. MIME Namespace Specification in a Contract

I xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

CHANGING THE MESSAGE BINDING

In a default SOAP binding, the first child element of the input, output, and fault elements is a
soap:body element describing the body of the SOAP message representing the data. When using
SOAP with attachments, the soap:body element is replaced with a mime:multipartRelated element.

NOTE

€ WSDL does not support using mime:multipartRelated for fault messages.
The mime:multipartRelated element tells Apache CXF that the message body is a multipart message
that potentially contains binary data. The contents of the element define the parts of the message and

their contents. mime:multipartRelated elements contain one or more mime:part elements that
describe the individual parts of the message.

The first mime:part element must contain the soap:body element that would normally appear in a
default SOAP binding. The remaining mime:part elements define the attachments that are being sent
in the message.

DESCRIBING A MIME MULTIPART MESSAGE

48

http://www.w3.org/TR/SOAP-attachments

CHAPTER 8. SENDING BINARY DATA USING SOAP WITH ATTACHMENTS

MIME multipart messages are described using a mime:multipartRelated element that contains a
number of mime:part elements. To fully describe a MIME multipart message you must do the following:

1.

Inside the input or output message you are sending as a MIME multipart message, add a
mime:mulipartRelated element as the first child element of the enclosing message.

. Add a mime:part child element to the mime:multipartRelated element and set its hame

attribute to a unique string.

Add a soap:body element as the child of the mime:part element and set its attributes
appropriately.

NOTE

If the contract had a default SOAP binding, you can copy the soap:body
element from the corresponding message from the default binding into the
MIME multipart message.

Add another mime:part child element to the mime:multipartReleated element and set its
name attribute to a unique string.

Add a mime:content child element to the mime:part element to describe the contents of this
part of the message.

To fully describe the contents of a MIME message part the mime:content element has the
following attributes:

Table 8.1. mime:content Attributes

Attribute Description

part Specifies the name of the WSDL message part,
from the parent message definition, that is used
as the content of this part of the MIME multipart
message being placed on the wire.

type The MIME type of the data in this message part.
MIME types are defined as a type and a subtype
using the syntax type/subtype.

There are a number of predefined MIME types
such as image/jpeg and text/plain. The MIME
types are maintained by the Internet Assigned
Numbers Authority (IANA) and described in
detail in Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message
Bodies and Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types.

6. For each additional MIME part, repeat steps Step 4 and Step 5.

EXAMPLE

Example 8.2, "Contract using SOAP with Attachments” shows a WSDL fragment defining a service that
stores X-rays in JPEG format. The image data, xRay, is stored as an xsd:base64binary and is packed

49

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

into the MIME multipart message's second part, imageData. The remaining two parts of the input
message, patientName and patientNumber, are sent in the first part of the MIME multipart image as
part of the SOAP body.

Example 8.2. Contract using SOAP with Attachments
<?xml version="1.0" encoding="UTF-8"7>
<definitions name="XrayStorage"
targetNamespace="http://mediStor.org/x-rays"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmins:tns="http://mediStor.org/x-rays"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema">

<message name="storRequest">
<part name="patientName" type="xsd:string"/>
<part name="patientNumber" type="xsd:int"/>
<part name="xRay" type="xsd:base64Binary"/>
</message>
<message name="storResponse">
<part name="success" type="xsd:boolean"/>
</message>

<portType name="xRayStorage">
<operation name="store">
<input message="tns:storRequest" name="storRequest"/>
<output message="tns:storResponse" name="storResponse"/>
</operation>
</portType>

<binding name="xRayStorageBinding" type="tns:xRayStorage">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="store">
<soap:operation soapAction="" style="document"/>
<input name="storRequest">
<mime:multipartRelated>
<mime:part name="bodyPart">
<soap:body use="literal"/>
</mime:part>
<mime:part name="imageData">
<mime:content part="xRay" type="image/jpeq"/>
</mime:part>
</mime:multipartRelated>
</input>
<output name="storResponse">
<soap:body use="literal"/>
</output>
</operation>
</binding>

<service name="xRayStorageService">

<port binding="tns:xRayStorageBinding" name="xRayStoragePort">
<soap:address location="http://localhost:9000"/>

50

CHAPTER 8. SENDING BINARY DATA USING SOAP WITH ATTACHMENTS

</port>
</service>
</definitions>

51

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

Abstract

SOAP Message Transmission Optimization Mechanism (MTOM) replaces SOAP with attachments as a
mechanism for sending binary data as part of an XML message. Using MTOM with Apache CXF requires
adding the correct schema types to a service's contract and enabling the MTOM optimizations.

9.1. OVERVIEW OF MTOM

SOAP Message Transmission Optimization Mechanism (MTOM) specifies an optimized method for
sending binary data as part of a SOAP message. Unlike SOAP with Attachments, MTOM requires the
use of XML-binary Optimized Packaging (XOP) packages for transmitting binary data. Using MTOM to
send binary data does not require you to fully define the MIME Multipart/Related message as part of the
SOAP binding. It does, however, require that you do the following:

1. Annotate the data that you are going to send as an attachment.

You can annotate either your WSDL or the Java class that implements your data.
2. Enable the runtime's MTOM support.

This can be done either programmatically or through configuration.

3. Develop a DataHandler for the data being passed as an attachment.

NOTE

Developing DataHandlers is beyond the scope of this book.

9.2. ANNOTATING DATATYPES TO USE MTOM

Overview

In WSDL, when defining a data type for passing along a block of binary data, such as an image file or a
sound file, you define the element for the data to be of type xsd:base64Binary. By default, any element
of type xsd:base64Binary results in the generation of a byte[] which can be serialized using MTOM.
However, the default behavior of the code generators does not take full advantage of the serialization.

In order to fully take advantage of MTOM you must add annotations to either your service's WSDL
document or the JAXB class that implements the binary data structure. Adding the annotations to the
WSDL document forces the code generators to generate streaming data handlers for the binary data.
Annotating the JAXB class involves specifying the proper content types and might also involve
changing the type specification of the field containing the binary data.

WSDL first

Example 9.1, "Message for MTOM" shows a WSDL document for a Web service that uses a message
which contains one string field, one integer field, and a binary field. The binary field is intended to carry a
large image file, so it is not appropriate to send it as part of a normal SOAP message.

I Example 9.1. Message for MTOM

52

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

<?xml version="1.0" encoding="UTF-8"7>

<definitions name="XrayStorage"
targetNamespace="http://mediStor.org/x-rays"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmins:tns="http://mediStor.org/x-rays"
xmins:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:xsd1="http://mediStor.org/types/"

xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema">

<types>
<schema targetNamespace="http://mediStor.org/types/"
xmlins="http://www.w3.0rg/2001/XMLSchema">
<complexType name="xRayType">
<sequence>
<element name="patientName" type="xsd:string" />
<element name="patientNumber" type="xsd:int" />
<element name="imageData" type="xsd:base64Binary" />
</sequence>
</complexType>
<element name="xRay" type="xsd1:xRayType" />
</schema>
<fypes>

<message name="storRequest">

<part name="record" element="xsd1:xRay"/>
</message>
<message name="storResponse">

<part name="success" type="xsd:boolean"/>
</message>

<portType name="xRayStorage">
<operation name="store">
<input message="tns:storRequest" name="storRequest"/>
<output message="tns:storResponse" name="storResponse"/>
</operation>
</portType>

<binding name="xRayStorageSOAPBInding" type="tns:xRayStorage">
<soap12:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="store">
<soap12:operation soapAction="" style="document"/>
<input name="storRequest">
<soap12:body use="literal"/>
</input>
<output name="storResponse">
<soap12:body use="literal"/>
</output>
</operation>
</binding>

</definitions>

If you want to use MTOM to send the binary part of the message as an optimized attachment you must
add the xmime:expectedContentTypes attribute to the element containing the binary data. This

53

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

attribute is defined in the http://www.w3.0rg/2005/05/xmlImime namespace and specifies the MIME
types that the element is expected to contain. You can specify a comma separated list of MIME types.
The setting of this attribute changes how the code generators create the JAXB class for the data. For
most MIME types, the code generator creates a DataHandler. Some MIME types, such as those for
images, have defined mappings.

NOTE

The MIME types are maintained by the Internet Assigned Numbers Authority(IANA) and
are described in detail in Multipurpose Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies and Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types.

TIP

For most uses you specify application/octet-stream.

Example 9.2, “Binary Data for MTOM" shows how you can modify xRayType from Example 9.1, “"Message
for MTOM” for using MTOM.

Example 9.2. Binary Data for MTOM

<types>
<schema targetNamespace="http://mediStor.org/types/"
xmlins="http://www.w3.0rg/2001/XMLSchema"
xmlns:xmime="http://www.w3.0rg/2005/05/xmImime">
<complexType name="xRayType">
<sequence>
<element name="patientName" type="xsd:string" />
<element name="patientNumber" type="xsd:int" />
<element name="imageData" type="xsd:base64Binary"
xmime:expectedContentTypes="application/octet-stream"/>
</sequence>
</complexType>
<element name="xRay" type="xsd1:xRayType" />
</schema>
<fypes>

The generated JAXB class generated for xRayType no longer contains a byte[]. Instead the code
generator sees the xmime:expectedContentTypes attribute and generates a DataHandler for the
imageData field.

NOTE

You do not need to change the binding element to use MTOM. The runtime makes the
appropriate changes when the data is sent.

-

Java first

54

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

If you are doing Java first development you can make your JAXB class MTOM ready by doing the
following:

1. Make sure the field holding the binary data is a DataHandler.

2. Add the @XmIMimeType() annotation to the field containing the data you want to stream as an
MTOM attachment.

Example 9.3, “"JAXB Class for MTOM" shows a JAXB class annotated for using MTOM.

@XmlType

public class XRayType {
protected String patientName;
protected int patientNumber;
@XmIMimeType("application/octet-stream")
protected DataHandler imageData;

Example 9.3. JAXB Class for MTOM
}

9.3. ENABLING MTOM

By default the Apache CXF runtime does not enable MTOM support. It sends all binary data as either
part of the normal SOAP message or as an unoptimized attachment. You can activate MTOM support
either programmatically or through the use of configuration.

9.3.1. Using JAX-WS APIs

Overview

Both service providers and consumers must have the MTOM optimizations enabled. The JAX-WS APIs
offer different mechanisms for each type of endpoint.

Service provider

If you published your service provider using the JAX-WS APIs you enable the runtime's MTOM support
as follows:

1. Access the Endpoint object for your published service.

The easiest way to access the Endpoint object is when you publish the endpoint. For more
information see Chapter 29, Publishing a Service.

2. Get the SOAP binding from the Endpoint using its getBinding() method, as shown in
Example 9.4, "Getting the SOAP Binding from an Endpoint” .

Example 9.4. Getting the SOAP Binding from an Endpoint

// Endpoint ep is declared previously
SOAPBInding binding = (SOAPBInding)ep.getBinding();

55

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

You must cast the returned binding object to a SOAPBinding object to access the MTOM
property.

3. Set the binding's MTOM enabled property to true using the binding's setMTOMEnabled()
method, as shown in Example 9.5, “Setting a Service Provider's MTOM Enabled Property” .

Example 9.5. Setting a Service Provider's MTOM Enabled Property

I binding.setMTOMEnabled(true);

Consumer

To MTOM enable a JAX-WS consumer you must do the following:

1. Cast the consumer's proxy to a BindingProvider object.

TIP

For information on getting a consumer proxy see Chapter 23, Developing a Consumer Without a
WSDL Contract or Chapter 26, Developing a Consumer From a WSDL Contract .

2. Get the SOAP binding from the BindingProvider using its getBinding() method, as shown in
Example 9.6, “Getting a SOAP Binding from a BindingProvider".

Example 9.6. Getting a SOAP Binding from aBindingProvider

// BindingProvider bp declared previously
SOAPBInding binding = (SOAPBIinding)bp.getBinding();
3. Set the bindings MTOM enabled property to true using the binding's setMTOMEnabled()

method, as shown in Example 9.7, “Setting a Consumer's MTOM Enabled Property” .

Example 9.7. Setting a Consumer's MTOM Enabled Property

I binding.setMTOMEnabled(true);

9.3.2. Using configuration

Overview

If you publish your service using XML, such as when deploying to a container, you can enable your
endpoint's MTOM support in the endpoint's configuration file. For more information on configuring
endpoint's see Part IV, “Configuring Web Service Endpoints”.

Procedure

The MTOM property is set inside the jaxws:endpoint element for your endpoint. To enable MTOM do
the following:

56

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

1. Add a jaxws:property child element to the endpoint's jaxws:endpoint element.
2. Add a entry child element to the jaxws:property element.
3. Set the entry element's key attribute to mtom-enabled.

4. Set the entry element's value attribute to true.

Example

Example 9.8, “Configuration for Enabling MTOM" shows an endpoint that is MTOM enabled.

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmins:jaxws="http://cxf.apache.org/jaxws"

xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schema/jaxws.xsd">

<jaxws:endpoint id="xRayStorage"
implementor="demo.spring.xRayStorimpl"
address="http://localhost/xRayStorage">
<jaxws:properties>
<entry key="mtom-enabled" value="true"/>
</jaxws:properties>
</jaxws:endpoint>

Example 9.8. Configuration for Enabling MTOM
<beans xmlns="http://www.springframework.org/schema/beans"
</beans>

57

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 10. USING XML DOCUMENTS

Abstract

The pure XML payload format provides an alternative to the SOAP binding by allowing services to
exchange data using straight XML documents without the overhead of a SOAP envelope.

XML BINDING NAMESPACE

The extensions used to describe XML format bindings are defined in the namespace
http://cxf.apache.org/bindings/xformat. Apache CXF tools use the prefix xformat to represent the
XML binding extensions. Add the following line to your contracts:

I xmins:xformat ="http://cxf.apache.org/bindings/xformat”

HAND EDITING

To map an interface to a pure XML payload format do the following:

1. Add the namespace declaration to include the extensions defining the XML binding. See the
section called “XML binding namespace”.

2. Add a standard WSDL binding element to your contract to hold the XML binding, give the
binding a unique name, and specify the name of the WSDL portType element that represents
the interface being bound.

3. Add an xformat:binding child element to the binding element to identify that the messages
are being handled as pure XML documents without SOAP envelopes.

4. Optionally, set the xformat:binding element's rootNode attribute to a valid QName. For more
information on the effect of the rootNode attribute see the section called “XML messages on

the wire”.

5. For each operation defined in the bound interface, add a standard WSDL operation element to
hold the binding information for the operation's messages.

6. For each operation added to the binding, add the input, output, and fault children elements to
represent the messages used by the operation.

These elements correspond to the messages defined in the interface definition of the logical
operation.

7. Optionally add an xformat:body element with a valid rootNode attribute to the added input,
output, and fault elements to override the value of rootNode set at the binding level.

NOTE

If any of your messages have no parts, for example the output message for an operation
that returns void, you must set the rootNode attribute for the message to ensure that
the message written on the wire is a valid, but empty, XML document.

XML MESSAGES ON THE WIRE

58

CHAPTER 10. USING XML DOCUMENTS

When you specify that an interface’s messages are to be passed as XML documents, without a SOAP

envelope, you must take care to ensure that your messages form valid XML documents when they are
written on the wire. You also need to ensure that non-Apache CXF participants that receive the XML

documents understand the messages generated by Apache CXF.

A simple way to solve both problems is to use the optional rootNode attribute on either the global
xformat:binding element or on the individual message’s xformat:body elements. The rootNode
attribute specifies the QName for the element that serves as the root node for the XML document
generated by Apache CXF. When the rootNode attribute is not set, Apache CXF uses the root element
of the message part as the root element when using doc style messages, or an element using the
message part name as the root element when using rpc style messages.

For example, if the rootNode attribute is not set the message defined in Example 10.1, "Valid XML
Binding Message” would generate an XML document with the root element lineNumber.

<fypes>
<message name="operator">
<part name="lineNumber" element="ns1:operatorID"/>

<type ... >
<element name="operatorID" type="xsd:int"/>
</message>

‘ Example 10.1. Valid XML Binding Message

For messages with one part, Apache CXF will always generate a valid XML document even if the
rootNode attribute is not set. However, the message in Example 10.2, “Invalid XML Binding Message”
would generate an invalid XML document.

<element name="entryNum" type="xsd:int"/>
</fypes>
<message name="matildas">

<part name="dancing" element="ns1:pairName"/>

<part name="number" element="ns1:entryNum"/>

<types>
<element name="pairName" type="xsd:string"/>
</message>

| Example 10.2. Invalid XML Binding Message

Without the rootNode attribute specified in the XML binding, Apache CXF will generate an XML
document similar to Example 10.3, “Invalid XML Document” for the message defined in Example 10.2,
“Invalid XML Binding Message”. The generated XML document is invalid because it has two root
elements: pairName and entryNum.

Example 10.3. Invalid XML Document

I <pairName>

59

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Fred&Linda
</pairName>
<entryNum>

123
</entryNum>

If you set the rootNode attribute, as shown in Example 10.4, “XML Binding with rootNode set” Apache
CXF will wrap the elements in the specified root element. In this example, the rootNode attribute is
defined for the entire binding and specifies that the root element will be named entrants.

<input message="tns:matildas" name="contestant"/>
</operation>
</portType>

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
<xmlformat:binding rootNode="entrants"/>
<operation name="register">
<input name="contestant"/>
<output name="entered"/>

<portType name="danceParty">
<operation name="register">
</binding>

‘ Example 10.4. XML Binding with rootNode set

An XML document generated from the input message would be similar to Example 10.5, “XML
Document generated using the rootNode attribute”. Notice that the XML document now only has one
root element.

Example 10.5. XML Document generated using the rootNode attribute

<entrants>
<pairName>
Fred&Linda
<entryNum>
123
</entryNum>
</entrants>

OVERRIDING THE BINDING'S ROOTNODE ATTRIBUTE SETTING

You can also set the rootNode attribute for each individual message, or override the global setting for a
particular message, by using the xformat:body element inside of the message binding. For example, if
you wanted the output message defined in Example 10.4, “XML Binding with rootNode set” to have a
different root element from the input message, you could override the binding's root element as shown
in Example 10.6, "Using xformat:body”.

Example 10.6. Using xformat:body

I <binding name="matildaXMLBinding" type="tns:dancingMatildas">

60

<xmlformat:binding rootNode="entrants"/>
<operation name="register">
<input name="contestant"/>
<output name="entered">
<xformat:body rootNode="entryStatus" />
</output>
</operation>
</binding>

CHAPTER 10. USING XML DOCUMENTS

61

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

PART lll. WEB SERVICES TRANSPORTS

Abstract

This part describes how to add Apache CXF transports to a WSDL document.

62

CHAPTER 11. UNDERSTANDING HOW ENDPOINTS ARE DEFINED IN WSDL

CHAPTER 11. UNDERSTANDING HOW ENDPOINTS ARE
DEFINED IN WSDL

Abstract

Endpoints represent an instantiated service. They are defined by combining a binding and the
networking details used to expose the endpoint.

OVERVIEW

An endpoint can be thought of as a physical manifestation of a service. It combines a binding, which
specifies the physical representation of the logical data used by a service, and a set of networking
details that define the physical connection details used to make the service contactable by other
endpoints.

ENDPOINTS AND SERVICES

In the same way a binding can only map a single interface, an endpoint can only map to a single service.
However, a service can be manifested by any number of endpoints. For example, you could define a
ticket selling service that was manifested by four different endpoints. However, you could not have a
single endpoint that manifested both a ticket selling service and a widget selling service.

THE WSDL ELEMENTS

Endpoints are defined in a contract using a combination of the WSDL service element and the WSDL
port element. The service element is a collection of related port elements. The port elements define
the actual endpoints.

The WSDL service element has a single attribute, name, that specifies a unique name. The service
element is used as the parent element of a collection of related port elements. WSDL makes no
specification about how the port elements are related. You can associate the port elementsin any
manner you see fit.

The WSDL port element has a has a binding attribute, that specifies the binding used by the endpoint
and is a reference to the wsdl:binding element. It also includes the name attribute, which is a
mandatory attribute that provides a unique name among all ports. The port element is the parent

element of the elements that specify the actual transport details used by the endpoint. The elements
used to specify the transport details are discussed in the following sections.

ADDING ENDPOINTS TO A CONTRACT

Apache CXF provides command line tools that can generated endpoints for predefined service
interface and binding combinations.

The tools will add the proper elements to your contract for you. However, it is recommended that you
have some knowledge of how the different transports used in defining an endpoint work.

You can also add an endpoint to a contract using any text editor. When you hand edit a contract, you are
responsible for ensuring that the contract is valid.

SUPPORTED TRANSPORTS

63

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Endpoint definitions are built using extensions defined for each of the transports Apache CXF supports.
This includes the following transports:

e HTTP
e CORBA

® Java Messaging Service

64

CHAPTER12. USING HTTP

CHAPTER12. USING HTTP

Abstract

HTTP is the underlying transport for the Web. It provides a standardized, robust, and flexible platform
for communicating between endpoints. Because of these factors it is the assumed transport for most
WS-* specifications and is integral to RESTful architectures.

12.1. ADDING A BASIC HTTP ENDPOINT

Alternative HTTP runtimes
Apache CXF supports the following alternative HTTP runtime implementations:
e Jetty, which is described in detail in Section 12.4, “Configuring the Jetty Runtime”.

® Netty, which is described in detail in Section 12.5, “Configuring the Netty Runtime”.

Netty HTTP URL

Normally, a HTTP endpoint uses whichever HTTP runtime is included on the classpath (either Jetty or
Netty). If both the Jetty runtime and Netty runtime are included on the classpath, however, you need to
specify explicitly when you want to use the Netty runtime, because the Jetty runtime will be used by
default.

In the case where more than one HTTP runtime is available on the classpath, you can select the Netty
runtime by specifying the endpoint URL to have the following format:

I netty://http://RestOfURL

Payload types

There are three ways of specifying an HTTP endpoint’s address depending on the payload format you
are using.

® SOAP 1.1uses the standardized soap:address element.
® SOAP 1.2 uses the soap12:address element.

® All other payload formats use the http:address element.

NOTE

From Camel 2.16.0 release, Apache Camel CXF Payload supports stream cache out of
box.

L

SOAP 1.1

When you are sending SOAP 1.1 messages over HTTP you must use the SOAP 1.1 address element to
specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address as a
URL. The SOAP 1.1 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap/.

65

http://www.eclipse.org/jetty/
http://netty.io/

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Example 12.1, "SOAP 1.1 Port Element” shows a port element used to send SOAP 1.1 messages over
HTTP.

Example 12.1. SOAP 1.1 Port Element
<definitions ...
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...>
<service name="SOAP11Service">
<port binding="SOAP11Binding" name="SOAP11Port">
<soap:address location="http://artie.com/index.xml">

</port>
</service>

<definitions>

SOAP 1.2

When you are sending SOAP 1.2 messages over HTTP you must use the SOAP 1.2 address element to
specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address as a
URL. The SOAP 1.2 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap12/.

Example 12.2, "SOAP 1.2 Port Element” shows a port element used to send SOAP 1.2 messages over
HTTP.

<definitions ...
xmins:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" ... >
<service name="SOAP12Service">
<port binding="SOAP12Binding" name="SOAP12Port">
<soapi12:address location="http://artie.com/index.xml">
</port>
</service>

Example 12.2. SOAP 1.2 Port Element
</definitions>

Other messages types

When your messages are mapped to any payload format other than SOAP you must use the HTTP
address element to specify the endpoint’s address. It has one attribute, location, that specifies the
endpoint’s address as a URL. The HTTP address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/http/.

Example 12.3, "HTTP Port Element” shows a port element used to send an XML message.

Example 12.3. HTTP Port Element
xmins:http="http://schemas.xmlsoap.org/wsdl/http/" ... >

I <definitions ...

66

CHAPTER12. USING HTTP

<service name="HTTPService">
<port binding="HTTPBinding" name="HTTPPort">
<http:address location="http://artie.com/index.xml">
</port>
</service>
</definitions>

12.2. CONFIGURING A CONSUMER

12.2.1. Mechanisms for HTTP Consumer Endpoints

HTTP consumer endpoints can specify a number of HTTP connection attributes including whether the

endpoint automatically accepts redirect responses, whether the endpoint can use chunking, whether the

endpoint will request a keep-alive, and how the endpoint interacts with proxies. In addition to the HTTP
connection properties, an HTTP consumer endpoint can specify how it is secured.

A consumer endpoint can be configured using two mechanisms:
® Configuration

e WSDL
12.2.2. Using Configuration

Namespace

The elements used to configure an HTTP consumer endpoint are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix http-
conf. In order to use the HTTP configuration elements you must add the lines shown in Example 12.4,
"HTTP Consumer Configuration Namespace” to the beans element of your endpoint’'s configuration
file. In addition, you must add the configuration elements' namespace to the xsi:schemalocation
attribute.

xsi:schemalocation="...
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd

<beans ...
xmins:http-conf="http://cxf.apache.org/transports/http/configuration”
>

| Example 12.4. HTTP Consumer Configuration Namespace

Jetty runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Jetty runtime or the
Netty runtime.

The conduit element

67

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

You configure an HTTP consumer endpoint using the http-conf:conduit element and its children. The
http-conf:conduit element takes a single attribute, name, that specifies the WSDL port element
corresponding to the endpoint. The value for the name attribute takes the form portQName.http-
conduit. Example 12.5, "http-conf:conduit Element” shows the http-conf:conduit element that would
be used to add configuration for an endpoint that is specified by the WSDL fragment <port
binding="widgetSOAPBInding" name="widgetSOAPPort> when the endpoint's target namespace is
http://widgets.widgetvendor.net.

</http-conf:conduit>

Example 12.5. http-conf:conduit Element
| <http-conf:conduit name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-conduit">

The http-conf:conduit element has child elements that specify configuration information. They are
described in Table 12.1, “Elements Used to Configure an HTTP Consumer Endpoint” .

Table 12.1. Elements Used to Configure an HTTP Consumer Endpoint

Element Description

http-conf:client Specifies the HTTP connection properties such as
timeouts, keep-alive requests, content types, etc.
See the section called "The client element”

http-conf:authorization Specifies the parameters for configuring the basic
authentication method that the endpoint uses
preemptively.

The preferred approach is to supply a Basic
Authentication Supplier object.

http-conf:proxyAuthorization Specifies the parameters for configuring basic
authentication against outgoing HTTP proxy servers.

http-conf:tlsClientParameters Specifies the parameters used to configure
SSL/TLS.
http-conf:basicAuthSupplier Specifies the bean reference or class name of the

object that supplies the basic authentication
information used by the endpoint, either
preemptively or in response to a 401 HTTP
challenge.

http-conf:trustDecider Specifies the bean reference or class name of the
object that checks the HTTP(S) URLConnection
object to establish trust for a connection with an
HTTPS service provider before any information is
transmitted.

The client element

68

CHAPTER12. USING HTTP

The http-conf:client element is used to configure the non-security properties of a consumer endpoint's
HTTP connection. Its attributes, described in Table 12.2, "HTTP Consumer Configuration Attributes”,

specify the connection's properties.

Table 12.2. HTTP Consumer Configuration Attributes

Attribute Description

ConnectionTimeout

ReceiveTimeout

AutoRedirect

MaxRetransmits

AllowChunking

Accept

Specifies the amount of time, in milliseconds, that
the consumer attempts to establish a connection
before it times out. The default is 30000.

0 specifies that the consumer will continue to send
the request indefinitely.

Specifies the amount of time, in milliseconds, that
the consumer will wait for a response before it times
out. The default is 30000.

0 specifies that the consumer will wait indefinitely.

Specifies if the consumer will automatically follow a
server issued redirection. The default is false.

Specifies the maximum number of times a consumer
will retransmit a request to satisfy a redirect. The
default is =1 which specifies that unlimited
retransmissions are allowed.

Specifies whether the consumer will send requests
using chunking. The default is true which specifies
that the consumer will use chunking when sending
requests.

Chunking cannot be used if either of the following
are true:

e http-conf:basicAuthSupplier is
configured to provide credentials
preemptively.

e AutoRedirect is set to true.

In both cases the value of AllowChunking is
ignored and chunking is disallowed.

Specifies what media types the consumer is prepared
to handle. The value is used as the value of the HTTP
Accept property. The value of the attribute is
specified using multipurpose internet mail extensions
(MIME) types.

69

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Attribute Description

AcceptLanguage Specifies what language (for example, American
English) the consumer prefers for the purpose of
receiving a response. The value is used as the value
of the HTTP AcceptlLanguage property.

Language tags are regulated by the International
Organization for Standards (ISO) and are typically
formed by combining a language code, determined
by the ISO-639 standard, and country code,
determined by the ISO-3166 standard, separated by
a hyphen. For example, en-US represents American
English.

AcceptEncoding Specifies what content encodings the consumer is
prepared to handle. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). The value is used as the value of
the HTTP AcceptEncoding property.

ContentType Specifies the media type of the data being sent in the
body of a message. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType property. The default istext/xml.

For web services, this should be set to text/xml. If
the client is sending HTML form data to a CGl script,
this should be set to application/x-www-form-
urlencoded. If the HTTP POST request is bound to
a fixed payload format (as opposed to SOAP), the
content type is typically set to application/octet-
stream.

Host Specifies the Internet host and port number of the
resource on which the request is being invoked. The
value is used as the value of the HTTP Host property.

This attribute is typically not required. It is only
required by certain DNS scenarios or application
designs. For example, it indicates what host the client
prefers for clusters (that is, for virtual servers
mapping to the same Internet protocol (IP) address).

Connection Specifies whether a particular connection is to be
kept open or closed after each request/response
dialog. There are two valid values:

o Keep-Alive — Specifies that the consumer
wants the connection kept open after the
initial request/response sequence. If the
server honors it, the connection is kept open
until the consumer closes it.

o close(default) — Specifies that the

connection to the server is closed after each
request/response sequence.

70

CHAPTER12. USING HTTP

Attribute Description

CacheControl

Cookie

BrowserType

Referer

DecoupledEndpoint

ProxyServer

ProxyServerPort

Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a request from a consumer to a service
provider. See Section 12.2.4, "Consumer Cache
Control Directives”.

Specifies a static cookie to be sent with all requests.

Specifies information about the browser from which
the request originates. In the HTTP specification
from the World Wide Web consortium (W3C) this is
also known as the user-agent. Some servers optimize
based on the client that is sending the request.

Specifies the URL of the resource that directed the
consumer to make requests on a particular service.
The value is used as the value of the HTTP Referer

property.

This HTTP property is used when a request is the
result of a browser user clicking on a hyperlink rather
than typing a URL. This can allow the server to
optimize processing based upon previous task flow,
and to generate lists of back-links to resources for
the purposes of logging, optimized caching, tracing
of obsolete or mistyped links, and so on. However, it
is typically not used in web services applications.

If the AutoRedirect attribute is set totrue and the
request is redirected, any value specified in the
Referer attribute is overridden. The value of the
HTTP Referer property is set to the URL of the
service that redirected the consumer’s original
request.

Specifies the URL of a decoupled endpoint for the
receipt of responses over a separate provider-
>consumer connection. For more information on
using decoupled endpoints see, Section 12.6, “Using
the HTTP Transport in Decoupled Mode".

You must configure both the consumer endpoint and

the service provider endpoint to use WS-Addressing
for the decoupled endpoint to work.

Specifies the URL of the proxy server through which
requests are routed.

Specifies the port number of the proxy server
through which requests are routed.

71

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Attribute Description

ProxyServerType Specifies the type of proxy server used to route
requests. Valid values are:

o HTTP(default)
e SOCKS

Example

Example 12.6, "HTTP Consumer Endpoint Configuration” shows the configuration of an HTTP consumer
endpoint that wants to keep its connection to the provider open between requests, that will only
retransmit requests once per invocation, and that cannot use chunking streams.

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:http-conf="http://cxf.apache.org/transports/http/configuration”
xsi:schemalocation="http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<http-conf:conduit name="{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">
<http-conf:client Connection="Keep-Alive"
MaxRetransmits="1"
AllowChunking="false" />
</http-conf:conduit>

<beans xmlns="http://www.springframework.org/schema/beans"
</beans>

‘ Example 12.6. HTTP Consumer Endpoint Configuration

More information

For more information on HTTP conduits see Appendix B, Conduits.

12.2.3. Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP consumer endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the
prefix http-conf. In order to use the HTTP configuration elements you must add the line shown in
Example 12.7, "HTTP Consumer WSDL Element's Namespace” to the definitions element of your
endpoint's WSDL document.

Example 12.7. HTTP Consumer WSDL Element's Namespace

<definitions ...
xmins:http-conf="http://cxf.apache.org/transports/http/configuration”

72

CHAPTER12. USING HTTP

Jetty runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Jetty runtime or the
Netty runtime.

The client element

The http-conf:client element is used to specify the connection properties of an HTTP consumer in a
WSDL document. The http-conf:client element is a child of the WSDL port element. It has the same
attributes as the client element used in the configuration file. The attributes are described in Table 12.2,
"HTTP Consumer Configuration Attributes”.

Example

Example 12.8, “WSDL to Configure an HTTP Consumer Endpoint” shows a WSDL fragment that
configures an HTTP consumer endpoint to specify that it does not interact with caches.

<http-conf:client CacheControl="no-cache" />
</port>

</service>

Example 12.8. WSDL to Configure an HTTP Consumer Endpoint
<service ... >
<port ... >
<soap:address ... />

12.2.4. Consumer Cache Control Directives

Table 12.3, "http-conf:client Cache Control Directives” lists the cache control directives supported by an
HTTP consumer.

Table 12.3. http-conf:client Cache Control Directives

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

no-store Caches must not store either any part of a response
or any part of the request that invoked it.

max-age The consumer can accept a response whose age is
no greater than the specified time in seconds.

73

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Directive Behavior

max-stale The consumer can accept a response that has
exceeded its expiration time. If a value is assigned to
max-stale, it represents the number of seconds
beyond the expiration time of a response up to which
the consumer can still accept that response. If no
value is assigned, the consumer can accept a stale
response of any age.

min-fresh The consumer wants a response that is still fresh for
at least the specified number of seconds indicated.

no-transform Caches must not modify media type or location of
the content in a response between a provider and a
consumer.

only-if-cached Caches should return only responses that are

currently stored in the cache, and not responses that
need to be reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can adhere
to the behavior mandated by the standard directive.

12.3. CONFIGURING A SERVICE PROVIDER

12.3.1. Mechanisms for a HTTP Service Provider

HTTP service provider endpoints can specify a number of HTTP connection attributes including if it will
honor keep alive requests, how it interacts with caches, and how tolerant it is of errors in communicating
with a consumer.

A service provider endpoint can be configured using two mechanisms:

® Configuration

e WSDL
12.3.2. Using Configuration

Namespace

The elements used to configure an HTTP provider endpoint are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix http-
conf. In order to use the HTTP configuration elements you must add the lines shown in Example 12.9,
"HTTP Provider Configuration Namespace” to the beans element of your endpoint's configuration file.
In addition, you must add the configuration elements' namespace to the xsi:schemaLocation attribute.

I Example 12.9. HTTP Provider Configuration Namespace

74

CHAPTER12. USING HTTP

xsi:schemalocation="...
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd

o>

<beans ...
xmins:http-conf="http://cxf.apache.org/transports/http/configuration”

Jetty runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Jetty runtime or the
Netty runtime.

The destination element

You configure an HTTP service provider endpoint using the http-conf:destination element and its
children. The http-conf:destination element takes a single attribute, name, that specifies the WSDL
port element that corresponds to the endpoint. The value for the name attribute takes the form
portQName.http-destination. Example 12.10, “http-conf:destination Element” shows the http-
conf:destination element that is used to add configuration for an endpoint that is specified by the
WSDL fragment <port binding="widgetSOAPBInding" name="widgetSOAPPort> when the endpoint's
target namespace is http://widgets.widgetvendor.net.

destination">

</http-conf:destination>

Example 12.10. http-conf:destination Element
| <http-conf:destination name="{http://widgets/widgetvendor.net}widgetSOAPPort.http-

The http-conf:destination element has a number of child elements that specify configuration
information. They are described in Table 12.4, “"Elements Used to Configure an HTTP Service Provider
Endpoint”.

Table 12.4. Elements Used to Configure an HTTP Service Provider Endpoint

Element Description

http-conf:server Specifies the HTTP connection properties. See the
section called “The server element”.

http-conf:contextMatchStrategy Specifies the parameters that configure the context
match strategy for processing HTTP requests.

http-conf:fixedParameterOrder Specifies whether the parameter order of an HTTP
request handled by this destination is fixed.

The server element

75

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

The http-conf:server element is used to configure the properties of a service provider endpoint's HTTP
connection. Its attributes, described in Table 12.5, "HTTP Service Provider Configuration Attributes”,

specify the connection's properties.

Table 12.5. HTTP Service Provider Configuration Attributes

Attribute Description

ReceiveTimeout

SuppressClientSendErrors

SuppressClientReceiveErrors

HonorKeepAlive

RedirectURL

CacheControl

ContentLocation

ContentType

76

Sets the length of time, in milliseconds, the service
provider attempts to receive a request before the
connection times out. The default is 30000.

0 specifies that the provider will not timeout.

Specifies whether exceptions are to be thrown when
an error is encountered on receiving a request. The
default is false; exceptions are thrown on
encountering errors.

Specifies whether exceptions are to be thrown when
an error is encountered on sending a response to a
consumer. The default is false; exceptions are
thrown on encountering errors.

Specifies whether the service provider honors
requests for a connection to remain open after a
response has been sent. The default is false; keep-
alive requests are ignored.

Specifies the URL to which the client request should
be redirected if the URL specified in the client
request is no longer appropriate for the requested
resource. In this case, if a status code is not
automatically set in the first line of the server
response, the status code is set to 302 and the
status description is set to Object Moved. The
value is used as the value of the HTTP RedirectURL

property.

Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a response from a service provider to a
consumer. See Section 12.3.4, "Service Provider
Cache Control Directives”.

Sets the URL where the resource being sentin a
response is located.

Specifies the media type of the information being
sent in a response. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType location.

CHAPTER12. USING HTTP

Attribute Description

ContentEncoding Specifies any additional content encodings that have
been applied to the information being sent by the
service provider. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). Possible content encoding values
include zip, gzip, compress, deflate, and identity.
This value is used as the value of the HTTP
ContentEncoding property.

The primary use of content encodings is to allow
documents to be compressed using some encoding
mechanism, such as zip or gzip. Apache CXF
performs no validation on content codings. It is the
user’s responsibility to ensure that a specified
content coding is supported at application level.

ServerType Specifies what type of server is sending the response.
Values take the form program-name/version; for
example, Apache/1.2.5.

Example

Example 12.11, "HTTP Service Provider Endpoint Configuration” shows the configuration for an HTTP
service provider endpoint that honors keep-alive requests and suppresses all communication errors.

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:http-conf="http://cxf.apache.org/transports/http/configuration”
xsi:schemalocation="http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<http-conf:destination name="{http://apache.org/hello_world_soap_http}SoapPort.http-
destination">
<http-conf:server SuppressClientSendErrors="true"
SuppressClientReceiveErrors="true"
HonorKeepAlive="true" />
</http-conf:destination>

<beans xmlns="http://www.springframework.org/schema/beans"
</beans>

| Example 12.11. HTTP Service Provider Endpoint Configuration

12.3.3. Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP provider endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the
prefix http-conf. To use the HTTP configuration elements you must add the line shown in Example 12.12,

77

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

"HTTP Provider WSDL Element's Namespace” to the definitions element of your endpoint's WSDL
document.

Example 12.12. HTTP Provider WSDL Element's Namespace

<definitions ...
xmins:http-conf="http://cxf.apache.org/transports/http/configuration”

Jetty runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Jetty runtime or the
Netty runtime.

The server element

The http-conf:server element is used to specify the connection properties of an HTTP service provider
in a WSDL document. The http-conf:server element is a child of the WSDL port element. It has the
same attributes as the server element used in the configuration file. The attributes are described in
Table 12.5, "HTTP Service Provider Configuration Attributes” .

Example

Example 12,13, “WSDL to Configure an HTTP Service Provider Endpoint” shows a WSDL fragment that
configures an HTTP service provider endpoint specifying that it will not interact with caches.

<http-conf:server CacheControl="no-cache" />
</port>

</service>

Example 12.13. WSDL to Configure an HTTP Service Provider Endpoint
<service ... >
<port ... >
<soap:address ... />

12.3.4. Service Provider Cache Control Directives

Table 12.6, "http-conf:server Cache Control Directives” lists the cache control directives supported by
an HTTP service provider.

Table 12.6. http-conf:server Cache Control Directives

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

78

CHAPTER12. USING HTTP

Directive Behavior

public

private

no-store

no-transform

must-revalidate

proxy-revalidate

max-age

s-max-age

cache-extension

Any cache can store the response.

Public (shared) caches cannot store the response
because the response is intended for a single user. If
specific response header fields are specified with this
value, the restriction applies only to those header
fields within the response. If no response header
fields are specified, the restriction applies to the
entire response.

Caches must not store any part of the response or
any part of the request that invoked it.

Caches must not modify the media type or location
of the content in a response between a server and a
client.

Caches must revalidate expired entries that relate to
a response before that entry can be used in a
subsequent response.

Does the same as must-revalidate, except that it can
only be enforced on shared caches and is ignored by
private unshared caches. When using this directive,
the public cache directive must also be used.

Clients can accept a response whose age is no
greater that the specified number of seconds.

Does the same as max-age, except that it can only be
enforced on shared caches and is ignored by private
unshared caches. The age specified by s-max-age
overrides the age specified by max-age. When using
this directive, the proxy-revalidate directive must
also be used.

Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can adhere
to the behavior mandated by the standard directive.

12.4. CONFIGURING THE JETTY RUNTIME

Overview

The Jetty runtime is used by HTTP service providers and HTTP consumers using a decoupled endpoint.
The runtime's thread pool can be configured, and you can also set a number of the security settings for

an HTTP service provider through the Jetty runtime.

Maven dependency

79

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

If you use Apache Maven as your build system, you can add the Jetty runtime to your project by
including the following dependency in your project's pom.xml file:

<dependency>
<groupld>org.apache.cxf</groupld>
<artifactld>cxf-rt-transports-http-jetty</artifactld>
<version>${cxf-version}</version>
</dependency>

Namespace

The elements used to configure the Jetty runtime are defined in the namespace
http://cxf.apache.org/transports/http-jetty/configuration. It is commonly referred to using the prefix
httpj. In order to use the Jetty configuration elements you must add the lines shown in Example 12.14,
"Jetty Runtime Configuration Namespace” to the beans element of your endpoint's configuration file.
In addition, you must add the configuration elements' namespace to the xsi:schemaLocation attribute.

xsi:schemalocation="...
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd

o>

Example 12.14. Jetty Runtime Configuration Namespace
<beans ...
xmins:httpj="http://cxf.apache.org/transports/http-jetty/configuration”

The engine-factory element

The httpj:engine-factory element is the root element used to configure the Jetty runtime used by an
application. It has a single required attribute, bus, whose value is the name of the Bus that manages the
Jetty instances being configured.

NOTE

The value is typically exf which is the name of the default Bus instance.

The httpj:engine-factory element has three children that contain the information used to configure the
HTTP ports instantiated by the Jetty runtime factory. The children are described in Table 12.7,
“Elements for Configuring a Jetty Runtime Factory”.

Table 12.7. Elements for Configuring a Jetty Runtime Factory

Element Description

httpj:engine Specifies the configuration for a particular Jetty
runtime instance. See the section called “The engine
element”.

80

CHAPTER12. USING HTTP

Element Description

httpj:identifiedTLSServerParameters

httpj:identifiedThreadingParameters

The engine element

Specifies a reusable set of properties for securing an
HTTP service provider. It has a single attribute, id,
that specifies a unique identifier by which the
property set can be referred.

Specifies a reusable set of properties for controlling
a Jetty instance's thread pool. It has a single
attribute, id, that specifies a unique identifier by
which the property set can be referred.

See the section called “"Configuring the thread pool”

The httpj:engine element is used to configure specific instances of the Jetty runtime. It has a single
attribute, port, that specifies the number of the port being managed by the Jetty instance.

NOTE

You can specify a value of 0 for the port attribute. Any threading properties specified in
an httpj:engine element with its port attribute set to 0 are used as the configuration for
all Jetty listeners that are not explicitly configured.

Each httpj:engine element can have two children: one for configuring security properties and one for
configuring the Jetty instance's thread pool. For each type of configuration you can either directly
provide the configuration information or you can provide a reference to a set of configuration properties

defined in the parent httpj:engine-factory element.

The child elements used to provide the configuration properties are described in Table 12.8, "Elements

for Configuring a Jetty Runtime Instance”.

Table 12.8. Elements for Configuring a Jetty Runtime Instance

Element Description

httpj:tisServerParameters

httpj:tisServerParametersRef

httpj:threadingParameters

httpj:threadingParametersRef

Specifies a set of properties for configuring the
security used for the specific Jetty instance.

Refers to a set of security properties defined by a
identifiedTLSServerParameters element. Theid
attribute provides the id of the referred
identifiedTLSServerParameters element.

Specifies the size of the thread pool used by the
specific Jetty instance. See the section called
"Configuring the thread pool".

Refers to a set of properties defined by a
identifiedThreadingParameters element. Theid
attribute provides the id of the referred
identifiedThreadingParameters element.

81

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Configuring the thread pool

You can configure the size of a Jetty instance's thread pool by either:

® Specifying the size of the thread pool using a identifiedThreadingParameters element in the
engine-factory element. You then refer to the element using a threadingParametersRef
element.

® Specifying the size of the of the thread pool directly using a threadingParameters element.

The threadingParameters has two attributes to specify the size of a thread pool. The attributes are
described in Table 12.9, “Attributes for Configuring a Jetty Thread Pool” .

NOTE

The httpj:identifiedThreadingParameters element has a single child
threadingParameters element.

Table 12.9. Attributes for Configuring a Jetty Thread Pool

Attribute Description

minThreads Specifies the minimum number of threads available
to the Jetty instance for processing requests.

maxThreads Specifies the maximum number of threads available
to the Jetty instance for processing requests.

Example

Example 12.15, “Configuring a Jetty Instance” shows a configuration fragment that configures a Jetty
instance on port number 9001.

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:sec="http://cxf.apache.org/configuration/security"
xmins:http="http://cxf.apache.org/transports/http/configuration”
xmins:httpj="http://cxf.apache.org/transports/http-jetty/configuration”
xmlins:jaxws="http://java.sun.com/xml/ns/jaxws"
xsi:schemalocation="http://cxf.apache.org/configuration/security
http://cxf.apache.org/schemas/configuration/security.xsd
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

Example 12.15. Configuring a Jetty Instance
<beans xmins="http://www.springframework.org/schema/beans"
<httpj:engine-factory bus="cxf">
<httpj:identifiedTLSServerParameters id="secure">
<sec:keyManagers keyPassword="password">

82

CHAPTER12. USING HTTP

</httpj:identifiedTLSServerParameters>

<httpj:engine port="9001">
<httpj:tlsServerParametersRef id="secure" />
<httpj:threadingParameters minThreads="5"
maxThreads="15" />
</httpj:engine>
</httpj:engine-factory>

<sec:keyStore type="JKS" password="password"
file="certs/cherry.jks"/>

</sec:keyManagers>

</beans>

12.5. CONFIGURING THE NETTY RUNTIME

Overview

The Netty runtime is used by HTTP service providers and HTTP consumers using a decoupled endpoint.
The runtime's thread pool can be configured, and you can also set a number of the security settings for
an HTTP service provider through the Netty runtime.

Maven dependencies

If you use Apache Maven as your build system, you can add the server-side implementation of the Netty
runtime (for defining Web service endpoints) to your project by including the following dependency in
your project's pom.xml file:

<dependency>
<groupld>org.apache.cxf</groupld>
<artifactld>cxf-rt-transports-http-netty-server</artifactld>
<version>${cxf-version}</version>

</dependency>

You can add the client-side implementation of the Netty runtime (for defining Web service clients) to
your project by including the following dependency in your project's pom.xml file:

<dependency>
<groupld>org.apache.cxf</groupld>
<artifactld>cxf-rt-transports-http-netty-client</artifactld>
<version>${cxf-version}</version>

</dependency>

Namespace

The elements used to configure the Netty runtime are defined in the namespace
http://cxf.apache.org/transports/http-netty-server/configuration. It is commonly referred to using the
prefix httpn. In order to use the Netty configuration elements you must add the lines shown in

Example 12.16, “Netty Runtime Configuration Namespace” to the beans element of your endpoint's
configuration file. In addition, you must add the configuration elements' namespace to the
xsi:schemalocation attribute.

83

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

xsi:schemalocation="
http://cxf.apache. org/transports/http netty-server/configuration
http //cxf.apache.org/schemas/configuration/http-netty-server.xsd

<beans ..
xmlns httpn="http://cxf.apache.org/transports/http-netty-server/configuration”
>

| Example 12.16. Netty Runtime Configuration Namespace

The engine-factory element

The httpn:engine-factory element is the root element used to configure the Netty runtime used by an
application. It has a single required attribute, bus, whose value is the name of the Bus that manages the
Netty instances being configured.

NOTE

The value is typically exf, which is the name of the default Bus instance.

The httpn:engine-factory element has three children that contain the information used to configure
the HTTP ports instantiated by the Netty runtime factory. The children are described in Table 12.10,
“Elements for Configuring a Netty Runtime Factory”.

Table 12.10. Elements for Configuring a Netty Runtime Factory

Element Description

httpn:engine Specifies the configuration for a particular Netty
runtime instance. See the section called “The engine
element”.

httpn:identifiedTLSServerParameters Specifies a reusable set of properties for securing an

HTTP service provider. It has a single attribute, id,
that specifies a unique identifier by which the
property set can be referred.

httpn:identifiedThreadingParameters Specifies a reusable set of properties for controlling
a Netty instance's thread pool. It has a single
attribute, id, that specifies a unique identifier by
which the property set can be referred.

See the section called “"Configuring the thread pool”

The engine element

The httpn:engine element is used to configure specific instances of the Netty runtime. Table 12.11,
“Attributes for Configuring a Netty Runtime Instance” shows the attributes supported by the
httpn:engine element.

Table 12.11. Attributes for Configuring a Netty Runtime Instance

84

CHAPTER12. USING HTTP

Attribute Description

port

host

readldleTime

writeldleTime

maxChunkContentSize

Specifies the port used by the Netty HTTP server
instance. You can specify a value of 0 for the port
attribute. Any threading properties specified in an
engine element with its port attribute set to 0 are
used as the configuration for all Netty listeners that
are not explicitly configured.

Specifies the listen address used by the Netty HTTP
server instance. The value can be a hostname or an
IP address. If not specified, Netty HTTP server will
listen on all local addresses.

Specifies the maximum read idle time for a Netty
connection. The timer is reset whenever there are
any read actions on the underlying stream.

Specifies the maximum write idle time for a Netty
connection. The timer is reset whenever there are
any write actions on the underlying stream.

Specifies the maximum aggregated content size for a
Netty connection. The default value is TOMB.

A httpn:engine element has one child element for configuring security properties and one child element
for configuring the Netty instance's thread pool. For each type of configuration you can either directly
provide the configuration information or you can provide a reference to a set of configuration properties

defined in the parent httpn:engine-factory element.

The supported child elements of httpn:engine are shown in Table 12.12, “Elements for Configuring a

Netty Runtime Instance”.

Table 12.12. Elements for Configuring a Netty Runtime Instance

Element Description

httpn:tlsServerParameters

httpn:tisServerParametersRef

httpn:threadingParameters

httpn:threadingParametersRef

Specifies a set of properties for configuring the
security used for the specific Netty instance.

Refers to a set of security properties defined by a
identifiedTLSServerParameters element. Theid
attribute provides the id of the referred
identifiedTLSServerParameters element.

Specifies the size of the thread pool used by the
specific Netty instance. See the section called
"Configuring the thread pool”.

Refers to a set of properties defined by a
identifiedThreadingParameters element. Theid
attribute provides the id of the referred
identifiedThreadingParameters element.

85

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Element Description

httpn:sessionSupport When true, enables support for HTTP sessions.
Default is false.

httpn:reuseAddress Specifies a boolean value to set the ReuseAddress
TCP socket option. Default is false.

Configuring the thread pool

You can configure the size of a Netty instance's thread pool by either:

® Specifying the size of the thread pool using a identifiedThreadingParameters element in the
engine-factory element. You then refer to the element using a threadingParametersRef
element.

e Specifying the size of the of the thread pool directly using a threadingParameters element.

The threadingParameters element has one attribute to specify the size of a thread pool, as described
in Table 12.13, "Attributes for Configuring a Netty Thread Pool” .

NOTE

The httpn:identifiedThreadingParameters element has a single child
threadingParameters element.

Table 12.13. Attributes for Configuring a Netty Thread Pool

Attribute Description

threadPoolSize Specifies the number of threads available to the
Netty instance for processing requests.

Example

Example 12.17, “Configuring a Netty Instance” shows a configuration fragment that configures a variety
of Netty ports.

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:beans="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:h="http://cxf.apache.org/transports/http/configuration”
xmins:httpn="http://cxf.apache.org/transports/http-netty-server/configuration”

Example 12.17. Configuring a Netty Instance
xmins:sec="http://cxf.apache.org/configuration/security"

‘ <?xml version="1.0" encoding="UTF-8"7>

86

CHAPTER12. USING HTTP

>

<httpn:engine-factory bus="cx{">
<httpn:identifiedTLSServerParameters id="sample1">
<httpn:tisServerParameters jsseProvider="SUN" secureSocketProtocol="TLS">
<sec:clientAuthentication want="false" required="false"/>
</httpn:tisServerParameters>
</httpn:identified TLSServerParameters>

<httpn:identifiedThreadingParameters id="sampleThreading1">
<httpn:threadingParameters threadPoolSize="120"/>
</httpn:identifiedThreadingParameters>

<httpn:engine port="9000" readldle Time="30000" writeldleTime="90000">
<httpn:threadingParametersRef id="sampleThreading1"/>
</httpn:engine>

<httpn:engine port="0">
<httpn:threadingParameters threadPoolSize="400"/>
</httpn:engine>

<httpn:engine port="9001" readldleTime="40000" maxChunkContentSize="10000">
<httpn:threadingParameters threadPoolSize="99" />
<httpn:sessionSupport>true</httpn:sessionSupport>

</httpn:engine>

<httpn:engine port="9002">
<httpn:tisServerParameters>
<sec:clientAuthentication want="true" required="true"/>
</httpn:tisServerParameters>
</httpn:engine>

<httpn:engine port="9003">
<httpn:tisServerParametersRef id="sample1"/>
</httpn:engine>

</httpn:engine-factory>

xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/configuration/security
http://cxf.apache.org/schemas/configuration/security.xsd
http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://cxf.apache.org/transports/http-netty-server/configuration
http://cxf.apache.org/schemas/configuration/http-netty-server.xsd"
</beans>

12.6. USING THE HTTP TRANSPORT IN DECOUPLED MODE

Overview

In normal HTTP request/response scenarios, the request and the response are sent using the same

87

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

HTTP connection. The service provider processes the request and responds with a response containing
the appropriate HTTP status code and the contents of the response. In the case of a successful request,
the HTTP status code is set to 200.

In some instances, such as when using WS-RM or when requests take an extended period of time to
execute, it makes sense to decouple the request and response message. In this case the service
providers sends the consumer a 202 Accepted response to the consumer over the back-channel of the
HTTP connection on which the request was received. It then processes the request and sends the
response back to the consumer using a new decoupled server->client HTTP connection. The consumer
runtime receives the incoming response and correlates it with the appropriate request before returning
to the application code.

Configuring decoupled interactions

Using the HTTP transport in decoupled mode requires that you do the following:
1. Configure the consumer to use WS-Addressing.
See the section called "Configuring an endpoint to use WS-Addressing” .
2. Configure the consumer to use a decoupled endpoint.
See the section called “Configuring the consumer”.
3. Configure any service providers that the consumer interacts with to use WS-Addressing.

See the section called "Configuring an endpoint to use WS-Addressing” .

Configuring an endpoint to use WS-Addressing

Specify that the consumer and any service provider with which the consumer interacts use WS-
Addressing.

You can specify that an endpoint uses WS-Addressing in one of two ways:

® Adding the wswa:UsingAddressing element to the endpoint's WSDL port element as shown in
Example 12.18, “Activating WS-Addressing using WSDL" .

<port name="WidgetSOAPPort" binding="tns:WidgetSOAPBIinding">
<soap:address="http://widgetvendor.net/widgetSeller" />
<wswa:UsingAddressing xmlns:wswa="http://www.w3.0rg/2005/02/addressing/wsdl"/>
</port>
</service>

Example 12.18. Activating WS-Addressing using WSDL
‘ <service name="WidgetSOAPService">

® Adding the WS-Addressing policy to the endpoint's WSDL port element as shown in
Example 12.19, “Activating WS-Addressing using a Policy” .

I Example 12.19. Activating WS-Addressing using a Policy

88

CHAPTER12. USING HTTP

<service name="WidgetSOAPService">
<port name="WidgetSOAPPort" binding="tns:WidgetSOAPBIinding">
<soap:address="http://widgetvendor.net/widgetSeller" />
<wsp:Policy xmIns:wsp="http://www.w3.0rg/2006/07/ws-policy">
<wsam:Addressing xmIns:wsam="http://www.w3.0rg/2007/02/addressing/metadata">
<wsp:Policy/>
</wsam:Addressing>
</wsp:Policy>
</port>
</service>

NOTE

The WS-Addressing policy supersedes the wswa:UsingAddressing WSDL element.

Configuring the consumer

Configure the consumer endpoint to use a decoupled endpoint using the DecoupledEndpoint attribute
of the http-conf:conduit element.

Example 12.20, “Configuring a Consumer to Use a Decoupled HTTP Endpoint” shows the configuration
for setting up the endpoint defined in Example 12.18, “Activating WS-Addressing using WSDL" to use use
a decoupled endpoint. The consumer now receives all responses at
http://widgetvendor.net/widgetSellerinbox.

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:http="http://cxf.apache.org/transports/http/configuration”
xsi:schemalocation="http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<http:conduit name="{http://widgetvendor.net/services}WidgetSOAPPort.http-conduit">
<http:client DecoupledEndpoint="http://widgetvendor.net:9999/decoupled_endpoint" />
</http:conduit>

<beans xmins="http://www.springframework.org/schema/beans"
</beans>

‘ Example 12.20. Configuring a Consumer to Use a Decoupled HTTP Endpoint

How messages are processed

Using the HTTP transport in decoupled mode adds extra layers of complexity to the processing of HTTP
messages. While the added complexity is transparent to the implementation level code in an application,
it might be important to understand what happens for debugging reasons.

Figure 12.1, "Message Flow in for a Decoupled HTTP Transport” shows the flow of messages when using
HTTP in decoupled mode.

89

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Figure 12.1. Message Flow in for a Decoupled HTTP Transport

HTTP| |HTTP HTTP| |HTTP

Metwork

A request starts the following process:

90

1.

2.

The consumer implementation invokes an operation and a request message is generated.
The WS-Addressing layer adds the WS-A headers to the message.

When a decoupled endpoint is specified in the consumer's configuration, the address of the
decoupled endpoint is placed in the WS-A ReplyTo header.

The message is sent to the service provider.
The service provider receives the message.
The request message from the consumer is dispatched to the provider's WS-A layer.

Because the WS-A ReplyTo header is not set to anonymous, the provider sends back a message
with the HTTP status code set to 202, acknowledging that the request has been received.

The HTTP layer sends a 202 Accepted message back to the consumer using the original
connection's back-channel.

The consumer receives the 202 Accepted reply on the back-channel of the HTTP connection
used to send the original message.

When the consumer receives the 202 Accepted reply, the HTTP connection closes.

1.

12.

13.

14.

15.

CHAPTER12. USING HTTP

The request is passed to the service provider's implementation where the request is processed.

. When the response is ready, it is dispatched to the WS-A layer.

The WS-A layer adds the WS-Addressing headers to the response message.
The HTTP transport sends the response to the consumer's decoupled endpoint.
The consumer's decoupled endpoint receives the response from the service provider.

The response is dispatched to the consumer's WS-A layer where it is correlated to the proper
request using the WS-A RelatesTo header.

The correlated response is returned to the client implementation and the invoking call is
unblocked.

o1

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 13. USING SOAP OVER JMS

Abstract

Apache CXF implements the W3C standard SOAP/JMS transport. This standard is intended to provide
a more robust alternative to SOAP/HTTP services. Apache CXF applications using this transport should
be able to interoperate with applications that also implement the SOAP/JMS standard. The transport is
configured directly in an endpoint's WSDL.

NOTE: Support for the JMS 1.0.2 APIs has been removed in CXF 3.0. If you are using Red Hat JBoss
Fuse 6.2 or higher (includes CXF 3.0), your JMS provider must support the JMS 1.1 APIs.

13.1. BASIC CONFIGURATION

Overview

The SOAP over JMS protocol is defined by the World Wide Web Consortium(W3C) as a way of providing
a more reliable transport layer to the customary SOAP/HTTP protocol used by most services. The
Apache CXF implementation is fully compliant with the specification and should be compatible with any
framework that is also compliant.

This transport uses JNDI to find the JMS destinations. When an operation is invoked, the request is
packaged as a SOAP message and sent in the body of a JMS message to the specified destination.

To use the SOAP/JMS transport:
1. Specify that the transport type is SOAP/JMS.
2. Specify the target destination using a JMS URI.
3. Optionally, configure the JNDI connection.

4. Optionally, add additional JMS configuration.

Specifying the JMS transport type

You configure a SOAP binding to use the JMS transport when specifying the WSDL binding. You set the
soap:binding element's transport attribute to http://www.w3.0rg/2010/soapjms/. Example 131,
"SOAP over JMS binding specification” shows a WSDL binding that uses SOAP/JMS.

transport="http://www.w3.0rg/2010/soapjms/" />

Example 13.1. SOAP over JMS binding specification

<wsdl:binding ... >

<soap:binding style="document"
</wsdl:binding>

Specifying the target destination

You specify the address of the JMS target destination when specifying the WSDL port for the endpoint.

92

http://www.w3.org/TR/soapjms/

CHAPTER 13. USING SOAP OVER JMS

The address specification for a SOAP/JMS endpoint uses the same soap:address element and
attribute as a SOAP/HTTP endpoint. The difference is the address specification. JMS endpoints use a
JMS URI as defined in the URI Scheme for JMS 1.0.. Example 13.2, “JMS URI syntax” shows the syntax
fora JMS URI.

Example 13.2. JMS URI syntax

I jms:variant.destination? options

Table 13.1, “JMS URI variants” describes the available variants for the JMS URI.

Table 13.1. JMS URI variants

Variant Description

jndi Specifies that the destination name is a JNDI queue
name. When using this variant, you must provide the
configuration for accessing the JNDI provider.

jndi-topic Specifies that the destination name is a JNDI topic
name. When using this variant, you must provide the
configuration for accessing the JNDI provider.

queue Specifies that the destination is a queue name
resolved using JMS. The string provided is passed
into Session.createQueue() to create a
representation of the destination.

topic Specifies that the destination is a topic name
resolved using JMS. The string provided is passed
into Session.createTopic() to create a
representation of the destination.

The options portion of a JMS URI are used to configure the transport and are discussed in Section 13.2,
"JMS URIs".

Example 13.3, "SOAP/JMS endpoint address” shows the WSDL port entry for a SOAP/JMS endpoint
whose target destination is looked up using JNDI.

<wsdl:port ... >
<soap:address location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue” />

Example 13.3. SOAP/JMS endpoint address
</wsdl:port>

Configuring JNDI and the JMS transport

The SOAP/JMS provides several ways to configure the JNDI connection and the JMS transport:

93

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

® Using the JMS URI

® Using WSDL extensions

13.2. JMS URIS

Overview

When using SOAP/JMS, a JMS URI is used to specify the endpoint's target destination. The JMS URI
can also be used to configure JMS connection by appending one or more options to the URI. These
options are detailed in the IETF standard, URI Scheme for Java Message Service 1.0 . They can be used
to configure the JNDI system, the reply destination, the delivery mode to use, and other JMS
properties.

Syntax

As shown in Example 13.4, “Syntax for JMS URI options”, you can append one or more options to the end
of a JMS URI by separating them from the destination's address with a question mark(?). Multiple
options are separated by an ampersand(&). Example 13.4, “Syntax for JMS URI options” shows the
syntax for using multiple options in a JMS URI.

Example 13.4. Syntax for JMS URI options

I jms:variant.jmsAddress?optioni=value1&option2=value2&...optionN=valueN

JMS properties

Table 13.2, "JMS properties settable as URI options” shows the URI options that affect the JMS
transport layer.

Table 13.2. JMS properties settable as URI options

Property Default Description

conduitldSelectorPrefix [Optional] A string value that is
prefixed to all correlation IDs that
the conduit creates. The selector
can use it to listen for replies.

deliveryMode PERSISTENT Specifies whether to use JMS
PERSISTENT or
NON_PERSISTENT message
semantics. In the case of
PERSISTENT delivery mode, the
JMS broker stores messages in
persistent storage before
acknowledging them; whereas
NON_PERSISTENT messages
are keptin memory only.

94

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

Property

durableSubscriptionClientID

durableSubscriptionName

messageType

password

priority

receiveTimout

reconnectOnException

Default

byte

60000

true

CHAPTER 13. USING SOAP OVER JMS

Description

[Optional] Specifies the client
identifier for the connection. This
property is used to associate a
connection with a state that the
provider maintains on behalf of
the client. This enables
subsequent subscribers with the
same identity to resume the
subscription in the state that the
preceding subscriber left it.

[Optional] Specifies the name of
the subscription.

Specifies the JMS message type
used by CXF. Valid values are:

® byte
® text

® binary

[Optional] Specifies the password
for creating the connection.
Appending this property to the
URI is discouraged.

Specifies the JMS message
priority, which ranges from O
(lowest) to 9 (highest).

Specifies the time, in milliseconds,
the client will wait for a reply when
request/reply exchanges are
used.

[Deprecated in CXF 3.0] Specifies
whether the transport should
reconnect when exceptions occur.

As of 3.0, the transport will always

reconnect when an exception
occurs.

95

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

96

Property

replyToName

sessionTransacted

timeTolLive

topicReplyToName

Default

false

Description

[Optional] Specifies the reply
destination for queue messages.
The reply destination appears in
the JMSReplyTo header.
Setting this property is
recommended for applications
that have request-reply semantics
because the JMS provider will
assign a temporary reply queue if
one is not specified.

The value of this property is
interpreted according to the
variant specified in the JMS URI:

e jndi variant—the name
of the destination queue
resolved by JNDI

e queue variant—the
name of the destination
queue resolved using
JMS

Specifies the transaction type.
Valid values are:

o true—resource local
transactions

e false—JTA transactions

Specifies the time, in milliseconds,
after which the JMS provider will
discard the message. A value of 0
indicates an infinite lifetime.

[Optional] Specifies the reply
destination for topic messages.
The value of this property is
interpreted according to the
variant specified in the JMS URI:

e jndi-topic—the name of
the destination topic
resolved by JNDI

e topic—the name of the
destination topic
resolved by JMS

Property

useConduitldSelector

username

JNDI properties

CHAPTER 13. USING SOAP OVER JMS

Description

Specifies whether the conduit's
UUID will be used as the prefix for
all correlation IDs.

As all conduits are assigned a
unique UUID, setting this property
to true enables multiple
endpoints to share a JMS queue
or topic.

[Optional] Specifies the username
to use to create the connection.

Table 13.3, “JNDI properties settable as URI options” shows the URI options that can be used to

configure JNDI for this endpoint.

Table 13.3. JNDI properties settable as URI options

Property Description

jndiConnectionFactoryName

jndilnitialContextFactory

jndiTransactionManagerName

jndiURL

Additional JNDI properties

Specifies the JNDI name of the JMS connection
factory.

Specifies the fully qualified Java class name of the
JNDI provider (which must be of
javax.jms.InitialContextFactory type).
Equivalent to setting the
java.naming.factory.initial Java system property.

Specifies the name of the JTA transaction manager
that will be searched for in Spring, Blueprint, or JNDI.
If a transaction manager is found, JTA transactions
will be enabled. See the sessionTransacted JMS

property.

Specifies the URL that initializes the JNDI provider.
Equivalent to setting the
java.naming.provider.url Java system property.

The properties, java.naming.factory.initial and java.naming.provider.url, are standard properties,
which are required to initialize any JNDI provider. Sometimes, however, a JNDI provider might support
custom properties in addition to the standard ones. In this case, you can set an arbitrary JNDI property
by setting a URI option of the form jndi-PropertyName.

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

For example, if you were using SUN's LDAP implementation of JNDI, you could set the JNDI property,
java.naming.factory.control, in a JMS URIl as shown in Example 13.5, “Setting a JNDI property in a JMS
URI”.

Example 13.5. Setting a JNDI property in a JMS URI

jms:queue:FOO.BAR?jndi-
java.naming.factory.control=com.sun.jndi.ldap.ResponseControlFactory

Example

If the JMS provider is not already configured, it is possible to provide the requisite JNDI configuration
details in the URI using options (see Table 13.3, “JNDI properties settable as URI options”). For example,
to configure an endpoint to use the Apache ActiveMQ JMS provider and connect to the queue called
test.cxf.jmstransport.queue, use the URI shown in Example 13.6, “JMS URI that configures a JNDI
connection”.

?jndilnitialContextFactory=org.apache.activemaq.jndi.ActiveMQInitialContextFactory
&jndiConnectionFactoryName=ConnectionFactory

jms:jndi:dynamicQueues/test.cxf.jmstransport.queue
&jndiURL=tcp://localhost:61616

‘ Example 13.6. JMS URI that configures a JNDI connection

Publishing a service

The JAX-WS standard publish() method cannot be used to publish a SOAP/JMS service. Instead, you
must use the Apache CXF's JaxWsServerFactoryBean class as shown in Example 13.7, “Publishing a
SOAP/JMS service”.

Example 13.7. Publishing a SOAP/JMS service

tring address = "jms:jndi:dynamicQueues/test.cxf.jmstransport.queued”
+ "?jndilnitialContextFactory”
+ "=org.apache.activemq.jndi.ActiveMQlInitial ContextFactory"
+ "&jndiConnectionFactoryName=ConnectionFactory"
+ "&jndiURL=tcp://localhost:61500";
Hello implementor = new Hellolmpl();
axWsServerFactoryBean svrFactory = new JaxWsServerFactoryBean();
svrFactory.setServiceClass(Hello.class);
strFactory.setAddress(address);

svrFactory.setTransportld(JMSSpecConstants.SOAP_JMS_SPECIFICIATION_TRANSPORTID);

svrFactory.setServiceBean(implementor);
svrFactory.create();

The code in Example 13.7, “Publishing a SOAP/JMS service” does the following:

ﬂ Creates the JMS URI representing t he endpoint's address.

98

CHAPTER 13. USING SOAP OVER JMS

e Instantiates a JaxWsServerFactoryBean to publish the service.
9 Sets the address field of the factory bean with the JMS URI of the service.

Q Specifies that the service created by the factory will use the SOAP/JMS transport.

Consuming a service

The standard JAX-WS APIs cannot be used to consume a SOAP/JMS service. Instead, you must use
the Apache CXF's JaxWsProxyFactoryBean class as shown in Example 13.8, “Consuming a SOAP/JMS
service”.

Example 13.8. Consuming a SOAP/JMS service

/[Java
public void invoke() throws Exception {
String address = "jms:jndi:dynamicQueues/test.cxf.jmstransport.queue3"
+ "?jndilnitialContextFactory"”
+ "=org.apache.activemq.jndi.ActiveMQlInitial ContextFactory"
+ "&jndiConnectionFactoryName=ConnectionFactory&jndiURL=tcp://localhost:61500";
JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();
Q factory.setAddress(address);

factory.setTransportld(JMSSpecConstants.SOAP_JMS_SPECIFICIATION_TRANSPORTID);
factory.setServiceClass(Hello.class);
Hello client = (Hello)factory.create();
String reply = client.sayHi(" HI");
System.out.printin(reply);
}

The code in Example 13.8, “Consuming a SOAP/JMS service” does the following:
ﬂ Creates the JMS URI representing t he endpoint's address.
9 Instantiates a JaxWsProxyFactoryBean to create the proxy.
g Sets the address field of the factory bean with the JMS URI of the service.

Q Specifies that the proxy created by the factory will use the SOAP/JMS transport.

13.3. WSDL EXTENSIONS

Overview

You can specify the basic configuration of the JMS transport by inserting WSDL extension elements
into the contract, either at binding scope, service scope, or port scope. The WSDL extensions enable
you to specify the properties for bootstrapping a JNDI InitialContext, which can then be used to look up
JMS destinations. You can also set some properties that affect the behavior of the JMS transport layer.

SOAP/JMS namespace

99

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

the SOAP/JMS WSDL extensions are defined in the http://www.w3.0rg/2010/soapjms/ namespace. To
use them in your WSDL contracts add the following setting to the wsdl:definitions element:

<wsdl:definitions ...
xmlins:soapjms="http://www.w3.0rg/2010/soapjms/"
>

WSDL extension elements

Table 13.4, "SOAP/JMS WSDL extension elements” shows all of the WSDL extension elements you can
use to configure the JMS transport.

Table 13.4. SOAP/JMS WSDL extension elements

Element Default Description
soapjms:jndilnitialContextFa Specifies the fully qualified Java
ctory class name of the JNDI provider.

Equivalent to setting the
java.naming.factory.initial
Java system property.

soapjms:jndiURL Specifies the URL that initializes
the JNDI provider. Equivalent to
setting the
java.naming.provider.url Java
system property.

soapjms:jndiContextParamet Specifies an additional property

er for creating the JNDI
InitialContext. Use the name
and value attributes to specify
the property.

soapjms:jndiConnectionFact Specifies the JNDI name of the

oryName JMS connection factory.

soapjms:deliveryMode PERSISTENT Specifies whether to use JMS
PERSISTENT or

NON_PERSISTENT message
semantics. In the case of
PERSISTENT delivery mode, the
JMS broker stores messages in
persistent storage before
acknowledging them; whereas
NON_PERSISTENT messages
are keptin memory only.

100

CHAPTER 13. USING SOAP OVER JMS

Element Default Description

soapjms:replyToName [Optional] Specifies the reply
destination for queue messages.
The reply destination appears in
the JMSReplyTo header.
Setting this property is
recommended for applications
that have request-reply semantics
because the JMS provider will
assign a temporary reply queue if
one is not specified.

The value of this property is
interpreted according to the
variant specified in the JMS URI:

e jndi variant—the name
of the destination queue
resolved by JNDI

e queue variant—the
name of the destination
queue resolved using

JMS
soapjms:priority 4 Specifies the JMS message
priority, which ranges from O
(lowest) to 9 (highest).
soapjms:timeToLive 0 Time, in milliseconds, after which

the JMS provider will discard the
message. A value of 0 represents
an infinite lifetime.

Configuration scopes

The WSDL elements placement in the WSDL contract effect the scope of the configuration changes on
the endpoints defined in the contract. The SOAP/JMS WSDL elements can be placed as children of
either the wsdl:binding element, the wsdl:service element, or the wsdl:port element. The parent of
the SOAP/JMS elements determine which of the following scopes the configuration is placed into.

Binding scope

You can configure the JMS transport at the binding scope by placing extension elements inside the
wsdl:binding element. Elements in this scope define the default configuration for all endpoints that
use this binding. Any settings in the binding scope can be overridden at the service scope or the port
scope.

Service scope
You can configure the JMS transport at the service scope by placing extension elements inside a

wsdl:service element. Elements in this scope define the default configuration for all endpoints in
this service. Any settings in the service scope can be overridden at the port scope.

Port scope

101

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

You can configure the JMS transport at the port scope by placing extension elements inside a
wsdl:port element. Elements in the port scope define the configuration for this port. They override
the defaults of the same extension elements defined at the service scope or at the binding scope.

Example

Example 13.9, “"WSDL contract with SOAP/JMS configuration” shows a WSDL contract for a SOAP/JMS
service. It configures the JNDI layer in the binding scope, the message delivery details in the service
scope, and the reply destination in the port scope.

Example 13.9. WSDL contract with SOAP/JMS configuration

<wsdl:definitions ...
ﬂ xmlns:soapjms="http://www.w3.0rg/2010/soapjms/"
>
<wsdl:binding name="JMSGreeterPortBinding" type="tns:JMSGreeterPortType">
<soapjms:jndilnitialContextFactory>
org.apache.activemq.jndi.ActiveMQlInitialContextFactory
</soapjms:jndilnitialContextFactory>
<soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>
<soapjms:jndiConnectionFactoryName>
ConnectionFactory
</soapjms:jndiConnectionFactoryName>
</wsdl:binding>
<wsdl:service name="JMSGreeterService">

Q <soapjms:deliveryMode>NON_PERSISTENT</soapjms:deliveryMode>
<soapjms:timeToLive>60000</soapjms:timeToLive>

<wsdl:port binding="tns:JMSGreeterPortBinding" name="GreeterPort">
Q <soap:address location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
<soapjms:replyToName>
dynamicQueues/greeterReply.queue
</soapjms:replyToName>
</wsdl:port>

</wsdl:service>

</wsdl:definitions>

The WSDL in Example 13.9, “WSDL contract with SOAP/JMS configuration” does the following:
ﬂ Declares the namespace for the SOAP/JMS extensions.
9 Configures the JNDI connections in the binding scope.

9 Sets the JMS delivery style to non-persistent and each message to live for one minute.

102

CHAPTER 13. USING SOAP OVER JMS

Q Specifies the target destination.

Configures the JMS transport so that reply messages are delivered on the greeterReply.queue
queue.

103

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 14. USING GENERIC JMS

Abstract

Apache CXF provides a generic implementation of a JMS transport. The generic JMS transport is not
restricted to using SOAP messages and allows for connecting to any application that uses JMS.

NOTE: Support for the JMS 1.0.2 APIs has been removed in CXF 3.0. If you are using Red Hat JBoss
Fuse 6.2 or higher (includes CXF 3.0), your JMS provider must support the JMS 1.1 APIs.

14.1. APPROACHES TO CONFIGURING JMS

The Apache CXF generic JMS transport can connect to any JMS provider and work with applications
that exchange JMS messages with bodies of either TextMessage or ByteMessage.

There are two ways to enable and configure the JMS transport:
® JMS configuration bean

e WSDL
14.2. USING THE JMS CONFIGURATION BEAN

Overview

To simplify JMS configuration and make it more powerful, Apache CXF uses a single JMS configuration
bean to configure JMS endpoints. The bean is implemented by the
org.apache.cxf.transport.jms.JMSConfiguration class. It can be used to either configure endpoint's
directly or to configure the JMS conduits and destinations.

Configuration namespace

The JMS configuration bean uses the Spring p-namespace to make the configuration as simple as
possible. To use this namespace you need to declare it in the configuration's root element as shown in
Example 14.1, “Declaring the Spring p-namespace”.

</beans>

Example 14.1. Declaring the Spring p-namespace
<beans ..
xmlns:p= ”http //www.springframework.org/schema/p"

Specifying the configuration

You specify the JMS configuration by defining a bean of class
org.apache.cxf.transport.jms.JMSConfiguration. The properties of the bean provide the
configuration settings for the transport.

104

http://docs.spring.io/spring/docs/3.0.x/spring-framework-reference/html/beans.html

CHAPTER 14. USING GENERIC JMS

IMPORTANT

In CXF 3.0, the JMS transport no longer has a dependency on Spring JMS, so some
Spring JMS-related options have been removed.

Table 14.1, "General JMS Configuration Properties” lists properties that are common to both providers
and consumers.

Table 14.1. General JMS Configuration Properties

Property Default Description

connectionFactory [Required] Specifies a reference
to a bean that defines a JMS
ConnectionFactory.

wraplnSingleConnectionFact true [pre v3.0] [Removed in CXF 3.0]

ory
[pre CXF 3.0] Specifies whether
to wrap the ConnectionFactory
with a Spring
SingleConnectionFactory.

Enable this property when using a
ConnectionFactory that does
not pool connections, as it will
improve the performance of the
JMS transport. This is so because
the JMS transport creates a new
connection for each message, and
the SingleConnectionFactory
is needed to cache the
connection, so it can be reused.

reconnectOnException false [Deprecated in CXF 3.0] CXF
always reconnects when an
exception occurs.

[pre CXF 3.0] Specifies whether
to create a new connection when
an exception occurs.

When wrapping the
ConnectionFactory with a
Spring
SingleConnectionFactory:

e true—on an exception,
create a new connection

Do not enable this option
when using a
PooledConnectionFactor
y, as this option only
returns the pooled
connection, but does not
reconnect.

o false—on an exception,
do not try to reconnect

105

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Property

targetDestination

replyDestination

destinationResolver

106

Default

DynamicDestinationResolver

Description

Specifies the JNDI name or
provider-specific name of a
destination.

Specifies the JMS name of the
JMS destination where replies are
sent. This property allows the use
of a user-defined destination for
replies. For more details see
Section 14.6, "Using a Named
Reply Destination”.

Specifies a reference to a Spring
DestinationResolver.

This property allows you to define
how destination names are
resolved to JMS destinations.
Valid values are:

e DynamicDestination
Resolver—resolve
destination names using
the features of the JMS
provider.

e JndiDestinationResol
ver—resolve destination
names using JNDI.

CHAPTER 14. USING GENERIC JMS

Property Default Description

transactionManager Specifies a reference to a Spring
transaction manager. This enables
the service to participate in JTA
transactions.

taskExecutor SimpleAsyncTaskExecutor [Removed in CXF 3.0]

[pre CXF 3.0] Specifies a
reference to a Spring
TaskExecutor. This is used in
listeners to decide how to handle
incoming messages.

useJmsi1 false [Removed in CXF 3.0] CXF 3.0
supports JMS 1.1 features only.

[pre CXF 3.0] Specifies whether
JMS 1.1 features are used. Valid
values are:

o true—JMS 1.1features

o false-UMS1.0.2
features

messageldEnabled true [Removed in CXF 3.0]

[pre CXF 3.0] Specifies whether
the JMS transport wants the JMS
broker to provide message IDs.
Valid values are:

o true—broker needs to
provide message IDs

o false—broker need not
provide message IDs

In this case, the endpoint
calls its message
producer's
setDisableMessagelD
() method with a value of
true. The broker is then
given a hint that it need
not generate message
IDs or add them to the
endpoint's messages.
The broker either accepts
the hint or ignores it.

107

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Property Default Description

messageTimestampEnabled true [Removed in CXF 3.0]

[pre CXF 3.0] Specifies whether
the JMS transport wants the JMS
broker to provide message time
stamps. Valid values are:

o true—broker needs to
provide message
timestamps

o false—broker need not
provide message
timestamps

In this case, the endpoint
calls its message
producer's
setDisableMessageTi
mestamp() method
with a value of true. The
broker is then given a
hint that it need not
generate time stamps or
add them to the
endpoint's messages.
The broker either accepts
the hint or ignores it.

cachelLevel -1 (feature disabled) [Removed in CXF 3.0]

[pre CXF 3.0] Specifies the level
of caching that the JMS listener
container may apply. Valid values
are:

e 0-CACHE_NONE

o 1-
CACHE_CONNECTION

e 2-CACHE_SESSION
e 3-CACHE_CONSUMER
e 4-CACHE_AUTO

For details, see Class

DefaultMessageListenerContaine
;

pubSubNoLocal false Specifies whether to receive your
own messages when using topics.

o true—do notreceive
your own messages

o false—receive your own
messages

108

http://docs.spring.io/spring-framework/docs/2.0.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html

CHAPTER 14. USING GENERIC JMS

Property Default Description

receiveTimeout 60000 Specifies the time, in milliseconds,
to wait for response messages.

explicitQosEnabled false Specifies whether the QoS
settings (such as priority,
persistence, time to live) are
explicitly set for each message
(true) or use the default values
(false).

deliveryMode 2 Specifies whether a message is
persistent. Valid values are:

o 1 (NON_PERSISTENT)—
messages are kept
memory only

e 2 (PERSISTENT)—
messages are persisted
to disk

priority 4 Specifies message priority. JMS
priority values range from 0
(lowest) to 9 (highest). See your
JMS provider's documentation for
details.

timeTolLive 0 (indefinitely) Specifies the time, in milliseconds,
before a message that has been
sent is discarded.

sessionTransacted false Specifies whether JMS
transactions are used.

concurrentConsumers 1 [Removed in CXF 3.0]

[pre CXF 3.0] Specifies the
minimum number of concurrent
consumers for the listener.

maxConcurrentConsumers 1 [Removed in CXF 3.0]
[pre CXF 3.0] Specifies the

maximum number of concurrent
consumers for the listener.

109

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Property Default

messageSelector

subscriptionDurable false

durableSubscriptionName

messageType text
pubSubDomain false
jmsProviderTibcoEms false

110

Description

Specifies the string value of the
selector used to filter incoming
messages. This property enables
multiple connections to share a
queue. For more information on
the syntax used to specify
message selectors, see the JMS
1.1 specification.

Specifies whether the server uses
durable subscriptions.

Specifies the name (string) used
to register the durable
subscription.

Specifies how the message data
will be packaged as a JMS
message. Valid values are:

o text—specifies that the
data will be packaged as
a TextMessage

e byte—specifies that the
data will be packaged as
an array of bytes

(byte[])

e binary—specifies that
the data will be packaged
as an ByteMessage

Specifies whether the target
destination is a topic or a queue.
Valid values are:

e true—topic

o false—queue

Specifies whether the JMS
provider is Tibco EMS.

When set to true, the principal in
the security context is populated
from the
JMS_TIBCO_SENDER header.

http://download.oracle.com/otndocs/jcp/7195-jms-1.1-fr-spec-oth-JSpec/

Property

useMessagelDAsCorrelationl
D

maxSuspendedContinuation
s

reconnectPercentOfMax

Default

false

-1 (feature disabled)

70

CHAPTER 14. USING GENERIC JMS

Description

[Removed in CXF 3.0]

Specifies whether JMS will use
the message ID to correlate
messages.

When set to true, the client sets a
generated correlation ID.

[CXF 3.0] Specifies the maximum
number of suspended
continuations the JMS destination
may have. When the current
number exceeds the specified
maximum, the
JMSListenerContainer is stopped.

[CXF 3.0] Specifies when to
restart the JMSListenerContainer
stopped for exceeding
maxSuspendedContinuation
S.

The listener container is restarted
when its current number of
suspended continuations falls
below the value of
(maxSuspendedContinuation
s *
reconnectPercentOfMax/100).

As shown in Example 14.2, “JMS configuration bean”, the bean's properties are specified as attributes to

the bean element. They are all declared in the Spring p namespace.

Example 14.2. JMS configuration bean

class="org.apache.cxf.transport.jms.JMSConfiguration”
p:connectionFactory="jmsConnectionFactory"
p:targetDestination="dynamicQueues/greeter.request.queue”

p:pubSubDomain="false" />

| <bean id="jmsConfig"

Applying the configuration to an endpoint

The JMSConfiguration bean can be applied directly to both server and client endpoints using the
Apache CXF features mechanism. To do so:

1. Set the endpoint's address attribute to jms://.

2. Add a jaxws:feature element to the endpoint's configuration.

3. Add a bean of type org.apache.cxf.transport.jms.JMSConfigFeature to the feature.

m

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

4. Set the bean element's p:jmsConfig-ref attribute to the ID of the JMSConfiguration bean.

Example 14.3, “Adding JMS configuration to a JAX-WS client” shows a JAX-WS client that uses the
JMS configuration from Example 14.2, "JMS configuration bean”.

serviceName="customer:CustomerServiceService"
endpointName="customer:CustomerServiceEndpoint"
address="jms://"
serviceClass="com.example.customerservice.CustomerService">

<jaxws:features>

<bean xmins="http://www.springframework.org/schema/beans"
class="org.apache.cxf.transport.jms.JMSConfigFeature"
p:jmsConfig-ref="jmsConfig"/>
</jaxws:features>

<jaxws:client id="CustomerService"
xmins:customer="http://customerservice.example.com/"
</jaxws:client>

‘ Example 14.3. Adding JMS configuration to a JAX-WS client

Applying the configuration to the transport

The JMSConfiguration bean can be applied to JMS conduits and JMS destinations using the
jms:jmsConfig-ref element. The jms:jmsConfig-ref element’s value is the ID of the JMSConfiguration
bean.

Example 14.4, "Adding JMS configuration to a JMS conduit” shows a JMS conduit that uses the JMS
configuration from Example 14.2, “JMS configuration bean”.

conduit">

<jms:jmsConfig-ref>jmsConf</jms:jmsConfig-ref>

<jms:conduit name="{http://cxf.apache.org/jms_conf_test}HelloWorldQueueBinMsgPort.jms-
</jms:conduit>

| Example 14.4. Adding JMS configuration to a JMS conduit

14.3. OPTIMIZING CLIENT-SIDE JMS PERFORMANCE

Overview

Two major settings affect the JMS performance of clients: pooling and synchronous receives.

Pooling

On the client side, CXF creates a new JMS session and JMS producer for each message. This is so
because neither session nor producer objects are thread safe. Creating a producer is especially time
intensive because it requires communicating with the server.

Pooling connection factories improves performance by caching the connection, session, and producer.

12

CHAPTER 14. USING GENERIC JMS

For ActiveMQ, configuring pooling is simple; for example:

import org.apache.activemq.ActiveMQConnectionFactory;
import org.apache.activemq.pool.PooledConnectionFactory;

ConnectionFactory cf = new ActiveMQConnectionFactory("tcp://localhost:61616");
PooledConnectionFactory pcf = new PooledConnectionFactory();

//Set expiry timeout because the default (0) prevents reconnection on failure
pcf.setExpiry Timeout(5000);
pcf.setConnectionFactory(cf);

JMSConfiguration jmsConfig = new JMSConfiguration();

jmsConfig.setConnectionFactory(pdf);

For more information on pooling, see "Appendix A Optimizing Performance of JMS Single- and
Multiple-Resource Transactions” in the Red Hat JBoss Fuse Transaction Guide

Avoiding synchronous receives

For request/reply exchanges, the JMS transport sends a request and then waits for a reply. Whenever
possible, request/reply messaging is implemented asynchronously using a JMS MessageL.istener.

However, CXF must use a synchronous Consumer.receive() method when it needs to share queues
between endpoints. This scenario requires the MessageListener to use a message selector to filter the
messages. The message selector must be known in advance, so the MessageListener is opened only
once.
Two cases in which the message selector cannot be known in advance should be avoided:
® When JMSMessagelD is used as the JMSCorrelationID
If the JMS properties useConduitldSelector and conduitSelectorPrefix are not set on the JMS
transport, the client does not set a JMSCorrelationld. This causes the server to use the
JMSMessageld of the request message as the JMSCorrelationld. As JMSMessagelD cannot be

known in advance, the client has to use a synchronous Consumer.receive() method.

Note that you must use the Consumer.receive() method with IBM JMS endpoints (their
default).

® The user sets the JMStype in the request message and then sets a custom JMSCorrelationlD.

Again, as the custom JMSCorrelationID cannot be known in advance, the client has to use a
synchronous Consumer.receive() method.

So the general rule is to avoid using settings that require using a synchronous receive.

14.4. CONFIGURING JMS TRANSACTIONS

Overview

CXF 3.0 supports both local JMS transactions and JTA transactions on CXF endpoints, when using one-
way messaging.

13

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Transaction_Guide/index.html

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Local transactions

Transactions using local resources roll back the JMS message only when an exception occurs. They do
not directly coordinate other resources, such as database transactions.

To set up alocal transaction, configure the endpoint as you normally would, and set the property
sessionTrasnsacted to true.

NOTE

For more information on transactions and pooling, see the Red Hat JBoss Fuse
Transaction Guide.

JTA transactions

Using JTA transactions, you can coordinate any number of XA resources. If a CXF endpoint is configured
for JTA transactions, it starts a transaction before calling the service implementation. The transaction
will be committed if no exception occurs. Otherwise, it will be rolled back.
In JTA transactions, a JMS message is consumed and the data written to a database. When an exception
occurs, both resources are rolled back, so either the message is consumed and the data is written to the
database, or the message is rolled back and the data is not written to the database.
Configuring JTA transactions requires two steps:

1. Defining a transaction manager

® bean method

o Define a transaction manager

<bean id="transactionManager"

class="org.apache.geronimo.transaction.manager.GeronimoTransactionManager"/>
o Set the name of the transaction manager in the JMS URI
I jms:queue:myqueue?jndiTransactionManager=TransactionManager

This example finds a bean with the ID TransactionManager.
® OSGireference method

o Look up the transaction manager as an OSGi service using Blueprint

<reference id="TransactionManager"
interface="javax.transaction.TransactionManager"/>

o Set the name of the transaction manager in the JMS URI
I jms:jndi:myqueue?jndiTransactionManager=java:comp/env/TransactionManager

This example looks up the transaction manager in JNDI.

14

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Transaction_Guide/index.html

CHAPTER 14. USING GENERIC JMS

2. Configuring a JCA pooled connection factory

Using Spring to define the JCA pooled connection factory:

<bean id="xacf" class="org.apache.activemq.ActiveMQXAConnectionFactory">
<property name="brokerURL" value="tcp://localhost:61616" />
</bean>

<bean id="ConnectionFactory"

class="org.apache.activemq.jms.pool.JcaPooledConnectionFactory">
<property name="transactionManager" ref="transactionManager" />
<property name="connectionFactory" ref="xacf" />

</bean>

In this example, the first bean defines an ActiveMQ XA connection factory, which is given to a
JcaPooledConnectionFactory. The JcaPooledConnectionFactory is then provided as the
default bean with id ConnectionFactory.

Note that the JcaPooledConnectionFactory looks like a normal ConnectionFactory. But when
a new connection and session are opened, it checks for an XA transaction and, if found,

automatically registers the JMS session as an XA resource. This allows the JMS session to
participate in the JMS transaction.

IMPORTANT

Directly setting an XA ConnectionFactory on the JMS transport will not work!

14.5. USING WSDL TO CONFIGURE JMS

14.5.1. JMS WSDL Extension Namespance

The WSDL extensions for defining a JMS endpoint are defined in the namespace
http://cxf.apache.org/transports/jms. In order to use the JMS extensions you will need to add the line
shown in Example 14.5, “JMS WSDL extension namespace” to the definitions element of your contract.

Example 14.5. JMS WSDL extension hamespace

I xmlns:jms="http://cxf.apache.org/transports/jms"

14.5.2. Basic JMS configuration

Overview

The JMS address information is provided using the jms:address element and its child, the
jms:JMSNamingProperties element. The jms:address element’s attributes specify the information
needed to identify the JMS broker and the destination. The jms:JMSNamingProperties element
specifies the Java properties used to connect to the JNDI service.

115

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

IMPORTANT

Information specified using the JMS feature will override the information in the
endpoint's WSDL file.

Specifying the JMS address

The basic configuration for a JMS endpoint is done by using a jms:address element as the child of your
service'’s port element. The jms:address element used in WSDL is identical to the one used in the
configuration file. Its attributes are listed in Table 14.2, “JMS endpoint attributes”.

Table 14.2. JMS endpoint attributes

Attribute Description

destinationStyle Specifies if the JMS destination is a JMS queue or a
JMS topic.

jndiConnectionFactoryName Specifies the JNDI name bound to the JMS
connection factory to use when connecting to the
JMS destination.

jmsDestinationName Specifies the JMS name of the JMS destination to

which requests are sent.

jmsReplyDestinationName Specifies the JMS name of the JMS destinations
where replies are sent. This attribute allows you to
use a user defined destination for replies. For more
details see Section 14.6, “Using a Named Reply
Destination”.

jndiDestinationName Specifies the JNDI name bound to the JMS
destination to which requests are sent.

jndiReplyDestinationName Specifies the JNDI name bound to the JMS
destinations where replies are sent. This attribute
allows you to use a user defined destination for
replies. For more details see Section 14.6, “Using a
Named Reply Destination”.

connectionUserName Specifies the user name to use when connecting to a
JMS broker.

connectionPassword Specifies the password to use when connecting to a
JMS broker.

The jms:address WSDL element uses a jms:JMSNamingProperties child element to specify
additional information needed to connect to a JNDI provider.

Specifying JNDI properties

To increase interoperability with JMS and JNDI providers, the jms:address element has a child element,

16

CHAPTER 14. USING GENERIC JMS

jms:JMSNamingProperties, that allows you to specify the values used to populate the properties used
when connecting to the JNDI provider. The jms:JMSNamingProperties element has two attributes:
name and value. name specifies the name of the property to set. value attribute specifies the value for
the specified property. jms:JMSNamingProperties element can also be used for specification of
provider specific properties.
The following is a list of common JNDI properties that can be set:

1. java.naming.factory.initial

2. java.naming.provider.url

3. java.naming.factory.object

4. java.naming.factory.state

5. java.naming.factory.url.pkgs

6. java.naming.dns.url

7. java.naming.authoritative

8. java.naming.batchsize

9. java.naming.referral

10. java.naming.security.protocol

1. java.naming.security.authentication

12. java.naming.security.principal

13. java.naming.security.credentials

14. java.naming.language

15. java.naming.applet

For more details on what information to use in these attributes, check your JNDI provider’s
documentation and consult the Java API reference material.

Example

Example 14.6, "JMS WSDL port specification” shows an example of a JMS WSDL port specification.

<port binding="tns:Greeter_ SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"
jndiDestinationName="dynamicQueues/test.Celtix.jmstransport”" >
<jms:JMSNamingProperty name="java.naming.factory.initial"
value="org.activemq.jndi.ActiveMQlInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"

Example 14.6. JMS WSDL port specification
value="tcp://localhost:61616" />

| <service name="JMSService">

17

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

</jms:address>
</port>

</service>

14.5.3. JMS client configuration

Overview

JMS consumer endpoints specify the type of messages they use. JMS consumer endpoint can use
either a JMS ByteMessage or a JMS TextMessage.

When using an ByteMessage the consumer endpoint uses a byte[] as the method for storing data into
and retrieving data from the JMS message body. When messages are sent, the message data, including
any formating information, is packaged into a byte[] and placed into the message body before it is
placed on the wire. When messages are received, the consumer endpoint will attempt to unmarshall the
data stored in the message body as if it were packed in a byte[].

When using a TextMessage, the consumer endpoint uses a string as the method for storing and
retrieving data from the message body. When messages are sent, the message information, including
any format-specific information, is converted into a string and placed into the JMS message body.
When messages are received the consumer endpoint will attempt to unmarshall the data stored in the
JMS message body as if it were packed into a string.

When native JMS applications interact with Apache CXF consumers, the JMS application is responsible
for interpreting the message and the formatting information. For example, if the Apache CXF contract
specifies that the binding used for a JMS endpoint is SOAP, and the messages are packaged as
TextMessage, the receiving JMS application will get a text message containing all of the SOAP
envelope information.

Specifying the message type

The type of messages accepted by a JMS consumer endpoint is configured using the optional
jms:client element. The jms:client element is a child of the WSDL port element and has one attribute:

Table 14.3. JMS Client WSDL Extensions

messageType Specifies how the message data will be packaged as
a JMS message. text specifies that the data will be
packaged as a TextMessage. binary specifies that
the data will be packaged as an ByteMessage.

Example

Example 14.7, "WSDL for a JMS consumer endpoint” shows the WSDL for configuring a JMS consumer
endpoint.

<port binding="tns:Greeter_SOAPBinding" name="SoapPort">
<jms:address jndiConnectionFactoryName="ConnectionFactory"

Example 14.7. WSDL for a JMS consumer endpoint
jndiDestinationName="dynamicQueues/test.Celtix.jmstransport”" >

| <service name="JMSService">

18

CHAPTER 14. USING GENERIC JMS

value="org.activemq.jndi.ActiveMQlInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"
value="tcp://localhost:61616" />
</jms:address>
<jms:client messageType="binary" />
</port>

<jms:JMSNamingProperty name="java.naming.factory.initial"
</service>

14.5.4. JMS provider configuration

Overview

JMS provider endpoints have a number of behaviors that are configurable. These include:
® how messages are correlated
® the use of durable subscriptions
e if the service uses local JMS transactions

® the message selectors used by the endpoint

Specifying the configuration

Provider endpoint behaviors are configured using the optional jms:server element. The jms:server
element is a child of the WSDL wsdl:port element and has the following attributes:

Table 14.4. JMS provider endpoint WSDL extensions

Attribute Description

useMessagelDAsCorrealationlD Specifies whether JMS will use the message ID to
correlate messages. The default is false.

durableSubscriberName Specifies the name used to register a durable
subscription.

messageSelector Specifies the string value of a message selector to
use. For more information on the syntax used to
specify message selectors, see the JMS 1.1
specification.

transactional Specifies whether the local JMS broker will create
transactions around message processing. The
defaultis false. [2]

[a] Currently, setting the transactional attribute to true is not supported by the runtime.

Example

19

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Example 14.8, "WSDL for a JMS provider endpoint” shows the WSDL for configuring a JMS provider
endpoint.

<jms:address jndiConnectionFactoryName="ConnectionFactory"
jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
<jms:JMSNamingProperty name="java.naming.factory.initial"
value="org.activemq.jndi.ActiveMQlInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"
value="tcp://localhost:61616" />
</jms:address>
<jms:server messageSelector="cxf_message_selector"
useMessagelDAsCorrelationID="true"
transactional="true"
durableSubscriberName="cxf subscriber" />
</port>

<service name="JMSService">
<port binding="tns:Greeter_ SOAPBinding" name="SoapPort">
</service>

| Example 14.8. WSDL for a JMS provider endpoint

14.6. USING A NAMED REPLY DESTINATION

Overview

By default, Apache CXF endpoints using JMS create a temporary queue for sending replies back and
forth. If you prefer to use named queues, you can configure the queue used to send replies as part of an
endpoint's JMS configuration.

Setting the reply destination name

You specify the reply destination using either the jmsReplyDestinationName attribute or the
jndiReplyDestinationName attribute in the endpoint's JMS configuration. A client endpoint will listen
for replies on the specified destination and it will specify the value of the attribute in the ReplyTo field
of all outgoing requests. A service endpoint will use the value of the jndiReplyDestinationName
attribute as the location for placing replies if there is no destination specified in the request’s ReplyTo
field.

Example

Example 14.9, "JMS Consumer Specification Using a Named Reply Queue” shows the configuration for a
JMS client endpoint.

<jms:address destinationStyle="queue"
jndiConnectionFactoryName="myConnectionFactory"
jndiDestinationName="myDestination"
jndiReplyDestinationName="myReplyDestination" >
<jms:JMSNamingProperty name="java.naming.factory.initial"

Example 14.9. JMS Consumer Specification Using a Named Reply Queue
value="org.apache.cxf.transport.jms.Mylnitial ContextFactory" />

‘ <jms:conduit name="{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">

120

CHAPTER 14. USING GENERIC JMS

<jms:JMSNamingProperty name="java.naming.provider.url"
value="tcp://localhost:61616" />
</jms:address>
</jms:conduit>

121

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

APPENDIX A. INTEGRATING WITH APACHE ACTIVEMQ

OVERVIEW

If you are using Apache ActiveMQ as your JMS provider, the JNDI name of your destinations can be
specified in a special format that dynamically creates JNDI bindings for queues or topics. This means
that it is not necessary to configure the JMS provider in advance with the JNDI bindings for your queues
or topics.

THE INITIAL CONTEXT FACTORY

The key to integrating Apache ActiveMQ with JNDI is the ActiveMQInitialContextFactory class. This
class is used to create a JNDI InitialContext instance, which you can then use to access JMS
destinations in the JMS broker.

Example A1, "SOAP/JMS WSDL to connect to Apache ActiveMQ" shows SOAP/JMS WSDL extensions
to create a JNDI InitialContext that is integrated with Apache ActiveMQ.

org.apache.activemq.jndi.ActiveMQInitialContextFactory
</soapjms:jndilnitialContextFactory>

<soapjms:jndilnitialContextFactory>
<soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>

‘ Example A.1. SOAP/JMS WSDL to connect to Apache ActiveMQ

In Example A.1, "SOAP/JMS WSDL to connect to Apache ActiveMQ" , the Apache ActiveMQ client
connects to the broker port located at tep://localhost:61616.

LOOKING UP THE CONNECTION FACTORY

As well as creating a JNDI InitialContext instance, you must specify the JNDI name that is bound to a
javax.jms.ConnectionFactory instance. In the case of Apache ActiveMQ, there is a predefined binding
in the InitialContext instance, which maps the JNDI name ConnectionFactory to an
ActiveMQConnectionFactory instance. Example A.2, "SOAP/JMS WSDL for specifying the Apache
ActiveMQ connection factory” shaows the SOAP/JMS extension element for specifying the Apache
ActiveMQ connection factory.

Example A.2. SOAP/JMS WSDL for specifying the Apache ActiveMQ connection factory

ConnectionFactory

<soapjms:jndiConnectionFactoryName>
</soapjms:jndiConnectionFactoryName>

SYNTAX FOR DYNAMIC DESTINATIONS

To access queues or topics dynamically, specify the destination's JNDI name as a JNDI composite name
in either of the following formats:

122

APPENDIX A. INTEGRATING WITH APACHE ACTIVEMQ

dynamicQueues/QueueName
dynamicTopics/ TopicName

QueueName and TopicName are the names that the Apache ActiveMQ broker uses. They are not
abstract JNDI names.

Example A.3, "WSDL port specification with a dynamically created queue” shows a WSDL port that uses
a dynamically created queue.

<jms:address jndiConnectionFactoryName="ConnectionFactory"
jndiDestinationName="dynamicQueues/greeter.request.queue” >
<jms:JMSNamingProperty name="java.naming.factory.initial"
value="org.activemq.jndi.ActiveMQlInitialContextFactory" />
<jms:JMSNamingProperty name="java.naming.provider.url"
value="tcp://localhost:61616" />
</jms:address>
</port>

<service name="JMSService">
<port binding="tns:GreeterBinding" name="JMSPort">
</service>

| Example A.3. WSDL port specification with a dynamically created queue

When the application attempts to open the JMS connection, Apache ActiveMQ will check to see if a
queue with the JNDI name greeter.request.queue exists. If it does not exist, it will create a new queue
and bind it to the JNDI name greeter.request.queue.

123

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

APPENDIX B. CONDUITS

Abstract

Conduits are a low-level piece of the transport architecture that are used to implement outbound
connections. Their behavior and life-cycle can effect system performance and processing load.

OVERVIEW

Conduits manage the client-side, or outbound, transport details in the Apache CXF runtime. They are
responsible for opening ports, establishing outbound connections, sending messages, and listening for
any responses between an application and a single external endpoint. If an application connects to
multiple endpoints, it will have one conduit instance for each endpoint.

Each transport type implements its own conduit using the Conduit interface. This allows for a
standardized interface between the application level functionality and the transports.

In general, you only need to worry about the conduits being used by your application when configuring
the client-side transport details. The underlying semantics of how the runtime handles conduits is,
generally, not something a developer needs to worry about.

However, there are cases when an understanding of conduit's can prove helpful:

® |mplementing a custom transport

® Advanced application tuning to manage limited resources

CONDUIT LIFE-CYCLE

Conduits are managed by the client implementation object. Once created, a conduit lives for the
duration of the client implementation object. The conduit's life-cycle is:

1. When the client implementation object is created, it is given a reference to a ConduitSelector
object.

2. When the client needs to send a message is request's a reference to a conduit from the conduit
selector.

If the message is for a new endpoint, the conduit selector creates a new conduit and passes it to
the client implementation. Otherwise, it passes the client a reference to the conduit for the
target endpoint.

3. The conduit sends messages when needed.

4. When the client implementation object is destroyed, all of the conduits associated with it are
destroyed.

CONDUIT WEIGHT

The weight of a conduit object depends on the transport implementation. HTTP conduits are extremely
light weight. JMS conduits are heavy because they are associated with the JMS Session object and one
or more JMSListenerContainer objects.

124

PART IV. CONFIGURING WEB SERVICE ENDPOINTS

PART IV. CONFIGURING WEB SERVICE ENDPOINTS

Abstract

This guide describes how to create Apache CXF endpoints in Red Hat JBoss Fuse.

125

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

Abstract

JAX-WS endpoints are configured using one of three Spring configuration elements. The correct
element depends on what type of endpoint you are configuring and which features you wish to use. For
consumers you use the jaxws:client element. For service providers you can use either the
jaxws:endpoint element or the jaxws:server element.

The information used to define an endpoint is typically defined in the endpoint's contract. You can use
the configuration element's to override the information in the contract. You can also use the
configuration elements to provide information that is not provided in the contract.

You must use the configuration elements to activate advanced features such as WS-RM. This is done by
providing child elements to the endpoint's configuration element. Note that when dealing with endpoints
developed using a Java-first approach it is likely that the SEIl serving as the endpoint's contract is lacking
information about the type of binding and transport to use.

15.1. CONFIGURING SERVICE PROVIDERS

15.1.1. Elements for Configuring Service Providers

Apache CXF has two elements that can be used to configure a service provider:
® Section 15.1.2, “Using the jaxws:endpoint Element”
® Section 15.1.3, “"Using the jaxws:server Element”

The differences between the two elements are largely internal to the runtime. The jaxws:endpoint
element injects properties into the org.apache.cxf.jaxws.Endpointimpl object created to support a
service endpoint. The jaxws:server element injects properties into the
org.apache.cxf.jaxws.support.JaxWsServerFactoryBean object created to support the endpoint.
The Endpointimpl object passes the configuration data to the JaxWsServerFactoryBean object. The
JaxWsServerFactoryBean object is used to create the actual service object. Because either
configuration element will configure a service endpoint, you can choose based on the syntax you prefer.

15.1.2. Using the jaxws:endpoint Element

Overview

The jaxws:endpoint element is the default element for configuring JAX-WS service providers. Its
attributes and children specify all of the information needed to instantiate a service provider. Many of
the attributes map to information in the service's contract. The children are used to configure
interceptors and other advanced features.

Identifying the endpoint being configured

For the runtime to apply the configuration to the proper service provider, it must be able to identify it.
The basic means for identifying a service provider is to specify the class that implements the endpoint.
This is done using the jaxws:endpoint element's implementor attribute.

126

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

For instances where different endpoint's share a common implementation, it is possible to provide
different configuration for each endpoint. There are two approaches for distinguishing a specific
endpoint in configuration:

® 3 combination of the serviceName attribute and the endpointName attribute

The serviceName attribute specifies the wsdl:service element defining the service's endpoint.
The endpointName attribute specifies the specific wsdl:port element defining the service's
endpoint. Both attributes are specified as QNames using the format ns:name. ns is the
namespace of the element and name is the value of the element's name attribute.

NOTE

If the wsdl:service element only has one wsdl:port element, the endpointName
attribute can be omitted.

the name attribute

The name attribute specifies the QName of the specific wsdl:port element defining the
service's endpoint. The QName is provided in the format {nsYocalPart ns is the namespace of
the wsdl:port element and /ocalPart is the value of the wsdl:port element’'s name attribute.

Attributes

The attributes of the jaxws:endpoint element configure the basic properties of the endpoint. These
properties include the address of the endpoint, the class that implements the endpoint, and the bus
that hosts the endpoint.

Table 15.1, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint Element”
describes the attribute of the jaxws:endpoint element.

Table 15.1. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint Element

Attribute Description

id

Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

implementor Specifies the class implementing the service. You can

specify the implementation class using either the
class name or an ID reference to a Spring bean
configuring the implementation class. This class must
be on the classpath.

implementorClass Specifies the class implementing the service. This

attribute is useful when the value provided to the
implementor attribute is a reference to a bean that
is wrapped using Spring AOP.

address Specifies the address of an HTTP endpoint. This

value overrides the value specified in the services
contract.

127

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Attribute Description

wsdlLocation Specifies the location of the endpoint's WSDL
contract. The WSDL contract's location is relative to
the folder from which the service is deployed.

endpointName Specifies the value of the service'swsdl:port
element's name attribute. It is specified as a QName
using the format ns:name where ns is the
namespace of the wsdl:port element.

serviceName Specifies the value of the service'swsdl:service
element's name attribute. It is specified as a QName
using the format ns:name where ns is the
namespace of the wsdl:service element.

publish Specifies if the service should be automatically
published. If this is set to false, the developer must
explicitly publish the endpoint as described in
Chapter 29, Publishing a Service.

bus Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

bindingUri Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in
Appendix C, Apache CXF Binding IDs.

name Specifies the stringified QName of the service's
wsdl:port element. It is specified as a QName using
the format {ns}localPart ns is the namespace of
the wsdl:port element and localPart is the value of
the wsdl:port element'sname attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false. Setting
this to true instructs the bean factory not to
instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before it can be instantiated.

128

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

Attribute Description

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs, such as Endpoint.publish() or
Service.getPort().

The default is false.
Setting this to true does the following:

@ Changes the internal name of the bean by
appending .jaxws-endpoint to its id

® Makes the bean abstract

publishedEndpointUrl The URL that is placed in theaddress element of
the generated WSDL. If this value is not specified,
the value of the address attribute is used. This
attribute is useful when the "public” URL is not be the
same as the URL on which the service is deployed.

In addition to the attributes listed in Table 15.1, “Attributes for Configuring a JAX-WS Service Provider
Using the jaxws:endpoint Element”, you might need to use multiple xmlns:shortName attributes to
declare the namespaces used by the endpointName and serviceName attributes.

Example

Example 15.1, “Simple JAX-WS Endpoint Configuration” shows the configuration for a JAX-WS endpoint
that specifies the address where the endpoint is published. The example assumes that you want to use
the defaults for all other values or that the implementation has specified values in the annotations.

schemaLocatlon "
http :/lcxf.apache. org/Jast http://cxf.apache.org/schemas/jaxws.xsd

<Jast endpoint id="example"
implementor="org.apache.cxf.example.Demolmpl"
address="http://localhost:8080/demo” />

<beans ..
xmins:j Jast "http://cxf.apache.org/jaxws"
</beans>

| Example 15.1. Simple JAX-WS Endpoint Configuration

Example 15.2, “"JAX-WS Endpoint Configuration with a Service Name” shows the configuration for a
JAX-WS endpoint whose contract contains two service definitions. In this case, you must specify which
service definition to instantiate using the serviceName attribute.

Example 15.2. JAX-WS Endpoint Configuration with a Service Name
xmins:jaxws="http://cxf.apache.org/jaxws"

I <beans ...

129

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

<jaxws:endpoint id="example2"
implementor="org.apache.cxf.example.Demolmpl"
serviceName="samp:demoService2"
xmlns:samp="http://org.apache.cxf/wsdl/example" />

schemaLocatlon "
http :/lcxf.apache. org/Jast http://cxf.apache.org/schemas/jaxws.xsd
</beans>

The xmlns:samp attribute specifies the namespace in which the WSDL service element is defined.
15.1.3. Using the jaxws:server Element

Overview

The jaxws:server element is an element for configuring JAX-WS service providers. It injects the
configuration information into the org.apache.cxf.jaxws.support.JaxWsServerFactoryBean. This is a
Apache CXF specific object. If you are using a pure Spring approach to building your services, you will not
be forced to use Apache CXF specific APIs to interact with the service.

The attributes and children of the jaxws:server element specify all of the information needed to
instantiate a service provider. The attributes specify the information that is required to instantiate an
endpoint. The children are used to configure interceptors and other advanced features.

Identifying the endpoint being configured

In order for the runtime to apply the configuration to the proper service provider, it must be able to
identify it. The basic means for identifying a service provider is to specify the class that implements the
endpoint. This is done using the jaxws:server element's serviceBean attribute.

For instances where different endpoint's share a common implementation, it is possible to provide
different configuration for each endpoint. There are two approaches for distinguishing a specific
endpoint in configuration:
® a3 combination of the serviceName attribute and the endpointName attribute
The serviceName attribute specifies the wsdl:service element defining the service's endpoint.
The endpointName attribute specifies the specific wsdl:port element defining the service's

endpoint. Both attributes are specified as QNames using the format ns:name. ns is the
namespace of the element and name is the value of the element's name attribute.

NOTE

If the wsdl:service element only has one wsdl:port element, the endpointName
attribute can be omitted.

® the name attribute

130

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

The name attribute specifies the QName of the specific wsdl:port element defining the
service's endpoint. The QName is provided in the format {nsYocalPart ns is the namespace of
the wsdl:port element and /ocalPart is the value of the wsdl:port element’'s name attribute.

Attributes

The attributes of the jaxws:server element configure the basic properties of the endpoint. These
properties include the address of the endpoint, the class that implements the endpoint, and the bus

that hosts the endpoint.

Table 15.2, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element”

describes the attribute of the jaxws:server element.

Table 15.2. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element

Attribute Description

id

serviceBean

serviceClass

address

wsdlLocation

endpointName

serviceName

publish

Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

Specifies the class implementing the service. You can
specify the implementation class using either the
class name or an ID reference to a Spring bean
configuring the implementation class. This class must
be on the classpath.

Specifies the class implementing the service. This
attribute is useful when the value provided to the
implementor attribute is a reference to a bean that
is wrapped using Spring AOP.

Specifies the address of an HTTP endpoint. This
value will override the value specified in the services
contract.

Specifies the location of the endpoint's WSDL
contract. The WSDL contract's location is relative to
the folder from which the service is deployed.

Specifies the value of the service'swsdl:port
element's name attribute. It is specified as a QName
using the format ns:name, where ns is the
namespace of the wsdl:port element.

Specifies the value of the service'swsdl:service
element's name attribute. It is specified as a QName
using the format ns:name, where ns is the
namespace of the wsdl:service element.

Specifies if the service should be automatically
published. If this is set to false, the developer must
explicitly publish the endpoint as described in
Chapter 29, Publishing a Service.

131

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Attribute Description

bus Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

bindingld Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in
Appendix C, Apache CXF Binding IDs.

hame Specifies the stringified QName of the service's
wsdl:port element. It is specified as a QName using
the format {ns}localPart where ns is the
namespace of the wsdl:port element and localPart
is the value of the wsdl:port element'shame
attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false. Setting
this to true instructs the bean factory not to
instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before the endpoint can be
instantiated.

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs, such as Endpoint.publish() or
Service.getPort().
The default is false.
Setting this to true does the following:

@ Changes the internal name of the bean by
appending .jaxws-endpoint to its id

® Makes the bean abstract

In addition to the attributes listed in Table 15.2, “Attributes for Configuring a JAX-WS Service Provider
Using the jaxws:server Element”, you might need to use multiple xmins:shortName attributes to
declare the namespaces used by the endpointName and serviceName attributes.

Example

132

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

Example 15.3, “Simple JAX-WS Server Configuration” shows the configuration for a JAX-WS endpoint
that specifies the address where the endpoint is published.

schemaLocatlon "
http :/lcxf.apache. org/Jast http://cxf.apache.org/schemas/jaxws.xsd

<Jast server id="exampleServer"
serviceBean="org.apache.cxf.example.Demolmpl"
address="http://localhost:8080/demo” />

<beans ..
xmins:j Jast "http://cxf.apache.org/jaxws"
</beans>

| Example 15.3. Simple JAX-WS Server Configuration

15.1.4. Adding Functionality to Service Providers

Overview

The jaxws:endpoint and the jaxws:server elements provide the basic configuration information
needed to instantiate a service provider. To add functionality to your service provider or to perform
advanced configuration you must add child elements to the configuration.

Child elements allow you to do the following:

® Change the endpoint's logging behavior

Add interceptors to the endpoint's messaging chain

Enable WS-Addressing features

Enable reliable messaging

Enable schema validation

Elements

Table 15.3, “Elements Used to Configure JAX-WS Service Providers” describes the child elements that
jaxws:endpoint supports.

Table 15.3. Elements Used to Configure JAX-WS Service Providers

Element Description

jaxws:handlers Specifies a list of JAX-WSHandler implementations
for processing messages. For more information on
JAX-WS Handler implementations see Chapter 41,
Writing Handlers.

133

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Element Description

jaxws:inlnterceptors Specifies a list of interceptors that process inbound
requests. For more information see Part VII,
"Developing Apache CXF Interceptors”.

jaxws:inFaultinterceptors Specifies a list of interceptors that process inbound
fault messages. For more information see Part VI,
"Developing Apache CXF Interceptors”.

jaxws:outlnterceptors Specifies a list of interceptors that process outbound
replies. For more information see Part VII,
"Developing Apache CXF Interceptors”.

jaxws:outFaultinterceptors Specifies a list of interceptors that process outbound
fault messages. For more information see Part VI,
"Developing Apache CXF Interceptors”.

jaxws:binding Specifies a bean configuring the message binding
used by the endpoint. Message bindings are
configured using implementations of the
org.apache.cxf.binding.BindingFactory
interface.[a]

jaxws:dataBinding L) Specifies the class implementing the data binding
used by the endpoint. This is specified using an
embedded bean definition.

jaxws:executor Specifies a Java executor that is used for the service.
This is specified using an embedded bean definition.

jaxws:features Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

jaxws:invoker Specifies an implementation of the
org.apache.cxf.service.lnvoker interface used
by the service. [€]

jaxws:properties Specifies a Spring map of properties that are passed
along to the endpoint. These properties can be used
to control features like enabling MTOM support.

jaxws:serviceFactory Specifies a bean configuring the
JaxWsServiceFactoryBean object used to
instantiate the service.

134

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

Element Description

[a] The SOAP binding is configured using the S0ap:soapBinding bean.
[b] The jaxws:endpoint element does not support the jaxws:dataBinding element.

[c] The Invoker implementation controls how a service is invoked. For example, it controls whether each request is
handled by a new instance of the service implementation or if state is preserved across invocations.

15.1.5. Enable Schema Validation on a JAX-WS Endpoint

Overview

You can set the schema-validation-enabled property to enable schema validation on a
jaxws:endpoint element or on a jaxws:server element. When schema validation is enabled, the
messages sent between client and server are checked for conformity to the schema. By default, schema
validation is turned off, because it has a significant impact on performance.

Example

To enable schema validation on a JAX-WS endpoint, set the schema-validation-enabled property in
the jaxws:properties child element of the jaxws:endpoint element or of the jaxws:server element.
For example, to enable schema validation on a jaxws:endpoint element:

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
wsdlLocation="wsdl/hello_world.wsdl"
createdFromAPI="true">
<jaxws:properties>
<entry key="schema-validation-enabled" value="BOTH" />
</jaxws:properties>
</jaxws:endpoint>

For the list of allowed values of the schema-validation-enabled property, see Table 22.10, “Schema
Validation Type Values”.

15.2. CONFIGURING CONSUMER ENDPOINTS

Overview

JAX-WS consumer endpoints are configured using the jaxws:client element. The element's attributes
provide the basic information necessary to create a consumer.

To add other functionality, like WS-RM, to the consumer you add children to the jaxws:client element.
Child elements are also used to configure the endpoint's logging behavior and to inject other properties
into the endpoint's implementation.

Basic Configuration Properties

The attributes described in Table 15.4, “Attributes Used to Configure a JAX-WS Consumer” provide the
basic information necessary to configure a JAX-WS consumer. You only need to provide values for the
specific properties you want to configure. Most of the properties have sensible defaults, or they rely on

135

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

information provided by the endpoint's contract.

Table 15.4. Attributes Used to Configure a JAX-WS Consumer

Attribute Description

address Specifies the HTTP address of the endpoint where
the consumer will make requests. This value overrides
the value set in the contract.

bindingld Specifies the ID of the message binding the
consumer uses. A list of valid binding IDs is provided
in Appendix C, Apache CXF Binding IDs.

bus Specifies the ID of the Spring bean configuring the
bus managing the endpoint.

endpointName Specifies the value of thewsdl:port element's
name attribute for the service on which the
consumer is making requests. It is specified as a
QName using the format ns:name, where ns is the
namespace of the wsdl:port element.

serviceName Specifies the value of thewsdl:service element's
name attribute for the service on which the
consumer is making requests. It is specified as a
QName using the format ns:name where ns is the
namespace of the wsdl:service element.

username Specifies the username used for simple
username/password authentication.

password Specifies the password used for simple
username/password authentication.

serviceClass Specifies the name of the service endpoint
interface(SEl).

wsdlLocation Specifies the location of the endpoint's WSDL
contract. The WSDL contract's location is relative to
the folder from which the client is deployed.

name Specifies the stringified QName of thewsdl:port
element for the service on which the consumer is
making requests. It is specified as a QName using the
format {ns}ocalPart where ns is the namespace of
the wsdl:port element and localPart is the value of
the wsdl:port element'sname attribute.

136

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

Attribute Description

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false. Setting
this to true instructs the bean factory not to
instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before it can be instantiated.

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs like Service.getPort().

The default is false.
Setting this to true does the following:

e Changes the internal name of the bean by
appending .jaxws-client to its id

® Makes the bean abstract

In addition to the attributes listed in Table 15.4, “Attributes Used to Configure a JAX-WS Consumer” , it
might be necessary to use multiple xmlns:shortName attributes to declare the namespaces used by
the endpointName and the serviceName attributes.

Adding functionality

To add functionality to your consumer or to perform advanced configuration, you must add child
elements to the configuration.

Child elements allow you to do the following:
e Change the endpoint's logging behavior
® Add interceptors to the endpoint's messaging chain
® FEnable WS-Addressing features
® Enable reliable messaging
® FEnable schema validation

Table 15.5, "Elements For Configuring a Consumer Endpoint” describes the child element's you can use
to configure a JAX-WS consumer.

Table 15.5. Elements For Configuring a Consumer Endpoint

Element Description

137

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Element Description

jaxws:binding Specifies a bean configuring the message binding
used by the endpoint. Message bindings are
configured using implementations of the
org.apache.cxf.binding.BindingFactory
interface.[a]

jaxws:dataBinding Specifies the class implementing the data binding
used by the endpoint. You specify this using an
embedded bean definition. The class implementing
the JAXB data binding is
org.apache.cxf.jaxb.JAXBDataBinding.

jaxws:features Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

jaxws:handlers Specifies a list of JAX-WSHandler implementations
for processing messages. For more information in
JAX-WS Handler implementations see Chapter 41,
Writing Handlers.

jaxws:inlnterceptors Specifies a list of interceptors that process inbound
responses. For more information see Part VI,
"Developing Apache CXF Interceptors”.

jaxws:inFaultinterceptors Specifies a list of interceptors that process inbound
fault messages. For more information see Part VI,
"Developing Apache CXF Interceptors”.

jaxws:outlnterceptors Specifies a list of interceptors that process outbound
requests. For more information see Part VI,
"Developing Apache CXF Interceptors”.

jaxws:outFaultinterceptors Specifies a list of interceptors that process outbound
fault messages. For more information see Part VI,
"Developing Apache CXF Interceptors”.

jaxws:properties Specifies a map of properties that are passed to the
endpoint.
jaxws:conduitSelector Specifies an

org.apache.cxf.endpoint.ConduitSelector
implementation for the client to use. A
ConduitSelector implementation will override the
default process used to select the Conduit object
that is used to process outbound requests.

[a] The SOAP binding is configured using the S0ap:soapBinding bean.

138

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

Example

Example 15.4, “Simple Consumer Configuration” shows a simple consumer configuration.

schemaLocatlon "
http :/lcxf.apache. org/Jast http://cxf.apache.org/schemas/jaxws.xsd

<Jast client id="bookClient"
serviceClass="org.apache.cxf.demo.BookClientimpl"
address="http://localhost:8080/books"/>

<beans ..
xmins:j Jast "http://cxf.apache.org/jaxws"
</beans>

| Example 15.4. Simple Consumer Configuration

Enable schema validation on a JAX-WS consumer

To enable schema validation on a JAX-WS consumer, set the schema-validation-enabled property in
the jaxws:properties child element of the jaxws:client element—for example:

<jaxws:client name="{http://apache.org/hello_world_soap_http}SoapPort"
createdFromAPI|="true">
<jaxws:properties>
<entry key="schema-validation-enabled" value="BOTH" />
</jaxws:properties>
</jaxws:client>

For the list of allowed values of the schema-validation-enabled property, see Table 22.10, “Schema
Validation Type Values”.

139

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS

Abstract

This chapter explains how to instantiate and configure JAX-RS server endpoints in Blueprint XML and in
Spring XML, and also how to instantiate and configure JAX-RS client endpoints (client proxy beans) in
XML

16.1. CONFIGURING JAX-RS SERVER ENDPOINTS

16.1.1. Defining a JAX-RS Server Endpoint

Basic server endpoint definition

To define a JAX-RS server endpoint in XML, you need to specify at least the following:

1. A jaxrs:server element, which is used to define the endpoint in XML. Note that the jaxrs:
namespace prefix maps to different namespaces in Blueprint and in Spring respectively.

2. The base URL of the JAX-RS service, using the address attribute of the jaxrs:server element.
Note that there are two different ways of specifying the address URL, which affects how the
endpoint gets deployed:

® As arelative URL —for example, /customers. In this case, the endpoint is deployed into the
default HTTP container, and the endpoint's base URL is implicitly obtained by combining
the CXF servlet base URL with the specified relative URL.

For example, if you deploy a JAX-RS endpoint to the JBoss Fuse container, the specified
/customers URL would get resolved to the URL, http://Hostname:8181/cxf/customers
(assuming that the container is using the default 8181 port).

® As an absolute URL —for example, http://0.0.0.0:8200/cxf/customers. In this case, a new
HTTP listener port is opened for the JAX-RS endpoint (if it is not already open). For
example, in the context of JBoss Fuse, a new Jetty container would implicitly be created to
host the JAX-RS endpoint. The special IP address, 0.0.0.0, acts as a wildcard, matching any
of the hostnames assigned to the current host (which can be useful on multi-homed host
machines).

3. One or more JAX-RS root resource classes, which provide the implementation of the JAX-RS
service. The simplest way to specify the resource classes is to list them inside a
jaxrs:serviceBeans element.

Blueprint example

The following Blueprint XML example shows how to define a JAX-RS endpoint, which specifies the
relative address, /customers (so that it deploys into the default HTTP container) and is implemented by
the service.CustomerService resource class:

<blueprint xmIns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:jaxrs="http://cxf.apache.org/blueprint/jaxrs"
xmins:cxf="http://cxf.apache.org/blueprint/core"
xsi:schemal.ocation="

140

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS

http://www.osgi.org/xmlins/blueprint/v1.0.0 https://www.osgi.org/xmins/blueprint/v1.0.0/blueprint.xsd
http://cxf.apache.org/blueprint/jaxrs http://cxf.apache.org/schemas/blueprint/jaxrs.xsd
http://cxf.apache.org/blueprint/core http://cxf.apache.org/schemas/blueprint/core.xsd

<cxf:bus>
<cxf:features>
<cxf:logging/>
</cxffeatures>
</cxf:bus>

<jaxrs:server id="customerService" address="/customers">
<jaxrs:serviceBeans>
<ref component-id="serviceBean" />
</jaxrs:serviceBeans>
</jaxrs:server>

<bean id="serviceBean" class="service.CustomerService"/>
</blueprint>

Blueprint XML namespaces

To define a JAX-RS endpoint in Blueprint, you typically require at least the following XML namespaces:

Prefix Namespace

(default) http://www.osgi.org/xmins/blueprint/v1.0.0
cxf http://cxf.apache.org/blueprint/core
jaxrs http://cxf.apache.org/blueprint/jaxrs

Spring example

The following Spring XML example shows how to define a JAX-RS endpoint, which specifies the relative
address, /customers (so that it deploys into the default HTTP container) and is implemented by the
service.CustomerService resource class:

<beans xmlns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:jaxrs="http://cxf.apache.org/jaxrs"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd">

<jaxrs:server id="customerService" address="/customers">
<jaxrs:serviceBeans>
<ref bean="serviceBean"/>
</jaxrs:serviceBeans>
</jaxrs:server>

141

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

<bean id="serviceBean" class="service.CustomerService"/>
</beans>

Spring XML namespaces

To define a JAX-RS endpoint in Spring, you typically require at least the following XML namespaces:

Prefix Namespace

(default) http://www.springframework.org/schema/bea
ns

cxf http://cxf.apache.org/core

jaxrs http://cxf.apache.org/jaxrs

Auto-discovery in Spring XML

(Spring only) Instead of specifying the JAX-RS root resource classes explicitly, Spring XML enables you
to configure auto-discovery, so that specific Java packages are searched for resource classes (classes
annotated by @Path) and all of the discovered resource classes are automatically attached to the
endpoint. In this case, you need to specify just the address attribute and the basePackages attribute in
the jaxrs:server element.

For example, to define a JAX-RS endpoint which uses all of the JAX-RS resource classes under the
a.b.c Java package, you can define the endpoint in Spring XML, as follows:

I <jaxrs:server address="/customers" basePackages="a.b.c"/>

The auto-discovery mechanism also discovers and installs into the endpoint any JAX-RS provider
classes that it finds under the specified Java packages.

Lifecycle management in Spring XML

(Spring only) Spring XML enables you to control the lifecycle of beans by setting the scope attribute on
a bean element. The following scope values are supported by Spring:
singleton

(Default) Creates a single bean instance, which is used everywhere and lasts for the entire lifetime of
the Spring container.

prototype

Creates a new bean instance every time the bean is injected into another bean or when a bean is
obtained by invoking getBean() on the bean registry.

request

(Only available in a Web-aware container) Creates a new bean instance for every request invoked on
the bean.

142

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS

session

(Only available in a Web-aware container) Creates a new bean for the lifetime of a single HTTP
session.

globalSession

(Only available in a Web-aware container) Creates a new bean for the lifetime of a single HTTP
session that is shared between portlets.

For more details about Spring scopes, please consult the Spring framework documentation on Bean
scopes.

Note that Spring scopes do not work properly, if you specify JAX-RS resource beans through the
jaxrs:serviceBeans element. If you specify the scope attribute on the resource beans in this case, the
scope attribute is effectively ignored.

In order to make bean scopes work properly within a JAX-RS server endpoint, you require a level of
indirection that is provided by a service factory. The simplest way to configure bean scopes is to specify
resource beans using the beanNames attribute on the jaxrs:server element, as follows:

<beans ... >
<jaxrs:server id="customerService" address="/servicel"
beanNames="customerBean1 customerBean2"/>

<bean id="customerBean1" class="demo.jaxrs.server.CustomerRootResource1"
scope="prototype"/>

<bean id="customerBean2" class="demo.jaxrs.server.CustomerRootResource2"
scope="prototype"/>
</beans>

Where the preceding example configures two resource beans, customerBean1 and customerBean2.
The beanNames attribute is specified as a space-separated list of resource bean IDs.

For the ultimate degree of flexibility, you have the option of defining service factory objects explicitly,
when you configure the JAX-RS server endpoint, using the jaxrs:serviceFactories element. This more
verbose approach has the advantage that you can replace the default service factory implementation
with your custom implementation, thus giving you ultimate control over the bean lifecycle. The following
example shows how to configure the two resource beans, customerBean1 and customerBean2, using
this approach:

<beans ... >
<jaxrs:server id="customerService" address="/servicel1">
<jaxrs:serviceFactories>
<ref bean="sfactory1" />
<ref bean="sfactory2" />
</jaxrs:serviceFactories>
</jaxrs:server>

<bean id="sfactory1" class="org.apache.cxf.jaxrs.spring.SpringResourceFactory">
<property name="beanld" value="customerBean1"/>

</bean>

<bean id="sfactory2" class="org.apache.cxf.jaxrs.spring.SpringResourceFactory">
<property name="beanld" value="customerBean2"/>

</bean>

143

http://docs.spring.io/spring-framework/docs/3.0.0.M4/reference/html/ch03s05.html

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

<bean id="customerBean1" class="demo.jaxrs.server.CustomerRootResource1"
scope="prototype"/>

<bean id="customerBean2" class="demo.jaxrs.server.CustomerRootResource2"
scope="prototype"/>

</beans>
NOTE
If you specify a non-singleton lifecycle, it is often a good idea to implement and register a
org.apache.cxf.service.lnvoker bean (where the instance can be registered by
- referencing it from a jaxrs:server/jaxrs:invoker element).

Attaching a WADL document

You can optionally associate a WADL document with the JAX-RS server endpoint using the
docLocation attribute on the jaxrs:server element. For example:

<jaxrs:server address="/rest" docLocation="wadl/bookStore.wadl">
<jaxrs:serviceBeans>
<bean class="org.bar.generated.BookStore"/>
</jaxrs:serviceBeans>
</jaxrs:server>

Schema validation

If you have some external XML schemas, for describing message content in JAX-B format, you can
associate these external schemas with the JAX-RS server endpoint through the
jaxrs:schemalLocations element.

For example, if you have associated the server endpoint with a WADL document and you also want to
enable schema validation on incoming messages, you can specify associated XML schema files as
follows:

<jaxrs:server address="/rest"
docLocation="wadl/bookStore.wadl">
<jaxrs:serviceBeans>
<bean class="org.bar.generated.BookStore"/>
</jaxrs:serviceBeans>
<jaxrs:schemalocations>
<jaxrs:schemalocation>classpath:/schemas/a.xsd</jaxrs:schemalocation>
<jaxrs:schemalocation>classpath:/schemas/b.xsd</jaxrs:schemalocation>
</jaxrs:schemalocations>
</jaxrs:server>

Alternatively, if you want to include all of the schema files, *.xsd, in a given directory, you can just specify
the directory name, as follows:

<jaxrs:server address="/rest"
docLocation="wadl/bookStore.wadl">
<jaxrs:serviceBeans>
<bean class="org.bar.generated.BookStore"/>
</jaxrs:serviceBeans>
<jaxrs:schemalocations>

144

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS

<jaxrs:schemalocation>classpath:/schemas/</jaxrs:schemalocation>
</jaxrs:schemalocations>
</jaxrs:server>

Specifying schemas in this way is generally useful for any kind of functionality that requires access to the
JAX-B schemas.

Specifying the data binding

You can use the jaxrs:dataBinding element to specify the data binding that encodes the message
body in request and reply messages. For example, to specify the JAX-B data binding, you could
configure a JAX-RS endpoint as follows:

<jaxrs:server id="jaxbbook" address="/jaxb">
<jaxrs:serviceBeans>
<ref bean="serviceBean" />
</jaxrs:serviceBeans>
<jaxrs:dataBinding>
<bean class="org.apache.cxf.jaxb.JAXBDataBinding"/>
</jaxrs:dataBinding>
</jaxrs:server>>

Or to specify the Aegis data binding, you could configure a JAX-RS endpoint as follows:

<jaxrs:server id="aegisbook" address="/aegis">
<jaxrs:serviceBeans>
<ref bean="serviceBean" />
</jaxrs:serviceBeans>
<jaxrs:dataBinding>
<bean class="org.apache.cxf.aegis.databinding.AegisDatabinding">
<property name="aegisContext">
<bean class="org.apache.cxf.aegis.AegisContext">
<property name="writeXsiTypes" value="true"/>
</bean>
</property>
</bean>
</jaxrs:dataBinding>
</jaxrs:server>

Using the JMS transport

Itis possible to configure JAX-RS to use a JMS messaging library as a transport protocol, instead of
HTTP. Because JMS itself is not a transport protocol, the actual messaging protocol depends on the
particular JMS implementation that you configure.

For example, the following Spring XML example shows how to configure a JAX-RS server endpoint to
use the JMS transport protocol:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:jms="http://cxf.apache.org/transports/jms"
xmins:jaxrs="http://cxf.apache.org/jaxrs"
xsi:schemal.ocation="

145

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

http://cxf.apache.org/transports/ims http://cxf.apache.org/schemas/configuration/jms.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxrs http://cxf.apache.org/schemas/jaxrs.xsd">

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer"/>
<bean id="ConnectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL"
value="tcp://localhost:${testutil.ports. EmbeddedJMSBrokerLauncher}" />
</bean>

<jaxrs:server xmlns:s="http://books.com"
serviceName="s:BookService"
transportld= "http://cxf.apache.org/transports/jms"
address="jms:queue:test.jmstransport.text?replyToName=test.jmstransport.response">
<jaxrs:serviceBeans>
<bean class="org.apache.cxf.systest.jaxrs.JMSBookStore"/>
</jaxrs:serviceBeans>
</jaxrs:server>

</beans>

Note the following points about the preceding example:

® JMS implementation—the JMS implementation is provided by the ConnectionFactory bean,
which instantiates an Apache ActiveMQ connection factory object. After you instantiate the
connection factory, it is automatically installed as the default JMS implementation layer.

® MS conduit or destination object—Apache CXF implicitly instantiates a JMS conduit object (to
represent a JMS consumer) or a JMS destination object (to represent a JMS provider). This
object must be uniquely identified by a QName, which is defined through the attribute setttings
xmlns:s="http://books.com" (defining the namespace prefix) and
serviceName="s:BookService" (defining the QName).

® Transport ID—to select the JMS transport, the transportld attribute must be set to
http://cxf.apache.org/transports/jms.

e MS address—the jaxrs:server/@address attribute uses a standardized syntax to specify the
JMS queue or JMS topic to send to. For details of this syntax, see
https://tools.ietf.org/id/draft-merrick-jms-uri-06.txt.

Extension mappings and language mappings

A JAX-RS server endpoint can be configured so that it automatically maps a file suffix (appearing in the
URL) to a MIME content type header, and maps a language suffix to a language type header. For
example, consider a HTTP request of the following form:

I GET /resource.xml
You can configure the JAX-RS server endpoint to map the .xml suffix automatically, as follows:

<jaxrs:server id="customerService" address="/">
<jaxrs:serviceBeans>
<bean class="org.apache.cxf.jaxrs.systests.CustomerService" />
</jaxrs:serviceBeans>

146

https://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS

<jaxrs:extensionMappings>
<entry key="json" value="application/json"/>
<entry key="xml" value="application/xml"/>
</jaxrs:extensionMappings>
</jaxrs:server>

When the preceding server endpoint receives the HTTP request, it automatically creates a new content
type header of type, application/xml, and strips the .xml suffix from the resource URL.

For the language mapping, consider a HTTP request of the following form:
I GET /resource.en

You can configure the JAX-RS server endpoint to map the .en suffix automatically, as follows:

<jaxrs:server id="customerService" address="/">
<jaxrs:serviceBeans>
<bean class="org.apache.cxf.jaxrs.systests.CustomerService" />
</jaxrs:serviceBeans>
<jaxrs:languageMappings>
<entry key="en" value="en-gb"/>
</jaxrs:languageMappings>
</jaxrs:server>

When the preceding server endpoint receives the HTTP request, it automatically creates a new accept
language header with the value, en-gb, and strips the .en suffix from the resource URL.

16.1.2. jaxrs:server Attributes

Attributes

Table 16.1, "JAX-RS Server Endpoint Attributes” describes the attributes available on the jaxrs:server
element.

Table 16.1. JAX-RS Server Endpoint Attributes

Attribute Description

id Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

address Specifies the address of an HTTP endpoint. This
value will override the value specified in the services
contract.

basePackages (Spring only) Enables auto-discovery, by specifying a

comma-separated list of Java packages, which are
searched to discover JAX-RS root resource classes
and/or JAX-RS provider classes.

147

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Attribute Description

beanNames Specifies a space-separated list of bean IDs of JAX-
RS root resource beans. In the context of Spring
XML, it is possible to define a root resource beans'
lifecycle by setting the scope attribute on the root
resource bean element.

bindingld Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in
Appendix C, Apache CXF Binding IDs.

bus Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

docLocation Specifies the location of an external WADL
document.
modelRef Specifies a model schema as a classpath resource

(for example, a URL of the form
classpath:/path/to/model.xml). For details of
how to define a JAX-RS model schema, see

Section 16.3, “Defining REST Services with the Model
Schema”.

publish Specifies if the service should be automatically
published. If set to false, the developer must
explicitly publish the endpoint.

publishedEndpointUrl Specifies the URL base address, which gets inserted
into the wadl:resources/@base attribute of the
auto-generated WADL interface.

serviceAnnotation (Spring only) Specifies the service annotation class
name for auto-discovery in Spring. When used in
combination with the basePackages property, this
option restricts the collection of auto-discovered
classes to include only the classes that are annotated
by this annotation type.

serviceClass Specifies the name of a JAX-RS root resource class
(which implements a JAX-RS service). In this case,
the class is instantiated by Apache CXF, not by
Blueprint or Spring. If you want to instantiate the
class in Blueprint or Spring, use the
jaxrs:serviceBeans child element instead.

148

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS

Attribute Description

serviceName Specifies the service QName (using the format
ns:name) for the JAX-RS endpoint in the special
case where a JMS transport is used. For details, see
the section called "Using the JMS transport”.

staticSubresourceResolution

If true, disables dynamic resolution of static sub-

resources. Default is false.

transportid

For selecting a non-standard transport layer (in place

of HTTP). In particular, you can select the JMS
transport by setting this property to
http://cxf.apache.org/transports/jms. For
details, see the section called "Using the JMS
transport”.

abstract (Spring only) Specifies if the bean is an abstract bean.
Abstract beans act as parents for concrete bean
definitions and are not instantiated. The default is
false. Setting this totrue instructs the bean factory
not to instantiate the bean.

depends-on (Spring only) Specifies a list of beans that the
endpoint depends on being instantiated before the
endpoint can be instantiated.

16.1.3. jaxrs:server Child Elements

Child elements

Table 16.2, "JAX-RS Server Endpoint Child Elements” describes the child elements of the jaxrs:server

element.

Table 16.2. JAX-RS Server Endpoint Child Elements

Element Description

jaxrs:executor Specifies a Java Executor (thread pool
implementation) that is used for the service. This is
specified using an embedded bean definition.

jaxrs:features Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

jaxrs:binding

Not used.

149

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Element Description

jaxrs:dataBinding Specifies the class implementing the data binding
used by the endpoint. This is specified using an
embedded bean definition. For more details, see the
section called “Specifying the data binding”.

jaxrs:ininterceptors Specifies a list of interceptors that process inbound
requests. For more information see Part VII,
"Developing Apache CXF Interceptors”.

jaxrs:inFaultinterceptors Specifies a list of interceptors that process inbound
fault messages. For more information see Part VI,
"Developing Apache CXF Interceptors”.

jaxrs:outinterceptors Specifies a list of interceptors that process outbound
replies. For more information see Part VII,
"Developing Apache CXF Interceptors”.

jaxrs:outFaultinterceptors Specifies a list of interceptors that process outbound
fault messages. For more information see Part VI,
"Developing Apache CXF Interceptors”.

jaxrs:invoker Specifies an implementation of the
org.apache.cxf.service.lnvoker interface used
by the service. [a]

jaxrs:serviceFactories Provides you with the maximum degree of control
over the lifecycle of the JAX-RS root resources
associated with this endpoint. The children of this
element (which must be instances of
org.apache.cxf.jaxrs.lifecycle.ResourceProvi
der type) are used to create JAX-RS root resource
instances.

jaxrs:properties Specifies a Spring map of properties that are passed
along to the endpoint. These properties can be used
to control features like enabling MTOM support.

jaxrs:serviceBeans The children of this element are instances of bean
element) or references to (ref element) JAX-RS
root resources. Note that in this case the scope
attribute (Spring only), if present in thebean
element, is ignored.

jaxrs:modelBeans Consists of a list of references to one or more
org.apache.cxf.jaxrs.model.UserResource
beans, which are the basic elements of a resource
model (corresponding to jaxrs:resource
elements). For details, see Section 16.3, "Defining
REST Services with the Model Schema”.

150

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS

Element Description

jaxrs:model

jaxrs:providers

jaxrs:extensionMappings

jaxrs:languageMappings

jaxrs:schemalocations

jaxrs:resourceComparator

jaxrs:resourceClasses

Defines a resource model directly in this endpoint
(that is, this jaxrs:model element can contain one
or more jaxrs:resource elements). For details, see
Section 16.3, “Defining REST Services with the Model
Schema”.

Enables you to register one or more custom JAX-RS
providers with this endpoint. The children of this
element are instances of (bean element) or
references to (ref element) JAX-RS providers.

When the URL of a REST invocation ends in a file
extension, you can use this element to associate it
automatically with a particular content type. For
example, the .xml file extension could be associated
with the application/xml content type. For details,
see the section called "Extension mappings and
language mappings”.

When the URL of a REST invocation ends in a
language suffix, you can use this element to map this
to a particular language. For example, the .en
language suffix could be associated with the en-GB
language. For details, see the section called
"Extension mappings and language mappings”.

Specifies one or more XML schemas used for
validating XML message content. This element can
contain one or more jaxrs:schemalocation
elements, each specifying the location of an XML
schema file (usually as a classpath URL). For
details, see the section called “Schema validation”,

Enables you to register a custom resource
comparator, which implements the algorithm used to
match an incoming URL path to a particular resource
class or method.

(Blueprint only) Can be used instead of the
jaxrs:server/@serviceClass attribute, if you
want to create multiple resources from class names.
The children of jaxrs:resourceClasses must be
class elements with aname attribute set to the
name of the resource class. In this case, the classes
are instantiated by Apache CXF, not by Blueprint or
Spring.

[a] The Invoker implementation controls how a service is invoked. For example, it controls whether each request is

handled by a new instance of the service implementation or if state is preserved across invocations.

151

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

16.2. CONFIGURING JAX-RS CLIENT ENDPOINTS

16.2.1. Defining a JAX-RS Client Endpoint

Injecting client proxies

The main point of instantiating a client proxy bean in an XML language (Blueprint XML or Spring XML) is
in order to inject it into another bean, which can then use the client proxy to invoke the REST service. To
create a client proxy bean in XML, use the jaxrs:client element.

Namespaces

The JAX-RS client endpoint is defined using a different XML namespace from the server endpoint. The
following table shows which namespace to use for which XML language:

XML Language Namespace for client endpoint

Blueprint http://cxf.apache.org/blueprint/jaxrs-client

Spring http://cxf.apache.org/jaxrs-client

Basic client endpoint definition

The following example shows how to create a client proxy bean in Blueprint XML or Spring XML.:

<jaxrs:client id="restClient"
address="http://localhost:8080/test/services/rest"
serviceClass="org.apache.cxf.systest.jaxrs.BookStoreJaxrsdJaxws"/>

Where you must set the following attributes to define the basic client endpoint:

id
The bean ID of the client proxy can be used to inject the client proxy into other beans in your XML
configuration.

address
The address attribute specifies the base URL of the REST invocations.

serviceClass

The serviceClass attribute provides a description of the REST service by specifying a root resource
class (annotated by @Path). In fact, thisis a server class, but it is not used directly by the client. The
specified class is used only for its metadata (through Java reflection and JAX-RS annotations),
which is used to construct the client proxy dynamically.

Specifying headers

You can add HTTP headers to the client proxy's invocations using the jaxrs:headers child elements, as
follows:

152

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS

<jaxrs:client id="restClient"
address="http://localhost:8080/test/services/rest"
serviceClass="org.apache.cxf.systest.jaxrs.BookStoreJaxrsJaxws"
inheritHeaders="true">
<jaxrs:headers>

<entry key="Accept" value="text/xml"/>

</jaxrs:headers>

</jaxrs:client>

16.2.2. jaxrs:client Attributes

Attributes

Table 16.3, “"JAX-RS Client Endpoint Attributes” describes the attributes available on the jaxrs:client
element.

Table 16.3. JAX-RS Client Endpoint Attributes

Attribute Description

address Specifies the HTTP address of the endpoint where
the consumer will make requests. This value overrides
the value set in the contract.

bindingld Specifies the ID of the message binding the
consumer uses. A list of valid binding IDs is provided
in Appendix C, Apache CXF Binding IDs.

bus Specifies the ID of the Spring bean configuring the
bus managing the endpoint.

inheritHeaders Specifies whether the headers set for this proxy will
be inherited, if a subresource proxy is created from
this proxy. Default is false.

username Specifies the username used for simple
username/password authentication.

password Specifies the password used for simple
username/password authentication.

modelRef Specifies a model schema as a classpath resource
(for example, a URL of the form
classpath:/path/to/model.xml). For details of
how to define a JAX-RS model schema, see
Section 16.3, "Defining REST Services with the Model
Schema”.

153

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Attribute Description

serviceClass Specifies the name of a service interface or a
resource class (that is annotated with @PATH), re-
using it from the JAX-RS server implementation. In
this case, the specified class is not invoked directly (it
is actually a server class). The specified class is used
only for its metadata (through Java reflection and
JAX-RS annotations), which is used to construct the
client proxy dynamically.

serviceName Specifies the service QName (using the format
ns:name) for the JAX-RS endpoint in the special
case where a JMS transport is used. For details, see
the section called "Using the JMS transport”.

threadSafe Specifies whether or not the client proxy is thread-
safe. Default is false.

transportid For selecting a non-standard transport layer (in place
of HTTP). In particular, you can select the JMS
transport by setting this property to
http://cxf.apache.org/transports/jms. For
details, see the section called “Using the JMS
transport”.

abstract (Spring only) Specifies if the bean is an abstract bean.
Abstract beans act as parents for concrete bean
definitions and are not instantiated. The default is
false. Setting this totrue instructs the bean factory
not to instantiate the bean.

depends-on (Spring only) Specifies a list of beans that the
endpoint depends on being instantiated before it can
be instantiated.

16.2.3. jaxrs:client Child Elements

Child elements

Table 16.4, "JAX-RS Client Endpoint Child Elements” describes the child elements of the jaxrs:client
element.

Table 16.4. JAX-RS Client Endpoint Child Elements

Element Description

jaxrs:executor

154

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS

Element Description

jaxrs:features

jaxrs:binding

jaxrs:dataBinding

jaxrs:ininterceptors

jaxrs:inFaultinterceptors

jaxrs:outlnterceptors

jaxrs:outFaultinterceptors

jaxrs:properties

jaxrs:providers

jaxrs:modelBeans

jaxrs:model

Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

Not used.

Specifies the class implementing the data binding
used by the endpoint. This is specified using an
embedded bean definition. For more details, see the
section called “Specifying the data binding”.

Specifies a list of interceptors that process inbound
responses. For more information see Part VI,
"Developing Apache CXF Interceptors”.

Specifies a list of interceptors that process inbound
fault messages. For more information see Part VI,
"Developing Apache CXF Interceptors”.

Specifies a list of interceptors that process outbound
requests. For more information see Part VII,
"Developing Apache CXF Interceptors”.

Specifies a list of interceptors that process outbound
fault messages. For more information see Part VI,
"Developing Apache CXF Interceptors”.

Specifies a map of properties that are passed to the
endpoint.

Enables you to register one or more custom JAX-RS
providers with this endpoint. The children of this
element are instances of (bean element) or
references to (ref element) JAX-RS providers.

Consists of a list of references to one or more
org.apache.cxf.jaxrs.model.UserResource
beans, which are the basic elements of a resource
model (corresponding to jaxrs:resource
elements). For details, see Section 16.3, "Defining
REST Services with the Model Schema”.

Defines a resource model directly in this endpoint
(thatis, a jaxrs:model element containing one or
more jaxrs:resource elements). For details, see
Section 16.3, "Defining REST Services with the Model
Schema”.

155

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Element Description

jaxrs:headers Used for setting headers on the outgoing message.
g going g
For details, see the section called "Specifying
headers”.
jaxrs:schemalocations Specifies one or more XML schemas used for
p

validating XML message content. This element can
contain one or more jaxrs:schemalocation
elements, each specifying the location of an XML
schema file (usually as a classpath URL). For
details, see the section called "Schema validation”,

16.3. DEFINING REST SERVICES WITH THE MODEL SCHEMA

RESTful services without annotations

The JAX-RS model schema makes it possible to define RESTful services without annotating Java
classes. That is, instead of adding annotations like @Path, @PathParam, @Consumes, @Produces,
and so on, directly to a Java class (or interface), you can provide all of the relevant REST metadatain a
separate XML file, using the model schema. This can be useful, for example, in cases where you are
unable to modify the Java source that implements the service.

Example model schema

Example 16.1, “Sample JAX-RS Model Schema” shows an example of a model schema that defines
service metadata for the BookStoreNoAnnotations root resource class.

Example 16.1. Sample JAX-RS Model Schema
<model xmlIns="http://cxf.apache.org/jaxrs">
<resource name="org.apache.cxf.systest.jaxrs.BookStoreNoAnnotations" path="bookstore"

produces="application/json" consumes="application/json">
<operation name="getBook" verb="GET" path="/books/{id}" produces="application/xml">
<param name="id" type="PATH"/>
</operation>
<operation name="getBookChapter" path="/books/{id}/chapter">
<param name="id" type="PATH"/>
</operation>
<operation name="updateBook" verb="PUT">
<param name="book" type="REQUEST_BODY"/>
</operation>
</resource>
<resource name="org.apache.cxf.systest.jaxrs.ChapterNoAnnotations">
<operation name="getltself" verb="GET"/>
<operation name="updateChapter" verb="PUT" consumes="application/xml">
<param name="content" type="REQUEST_BODY"/>
</operation>
</resource>
</model>

156

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS

Namespaces

The XML namespace that you use to define a model schema depends on whether you are defining the
corresponding JAX-RS endpoint in Blueprint XML or in Spring XML. The following table shows which
namespace to use for which XML language:

XML Language Namespace

Blueprint http://cxf.apache.org/blueprint/jaxrs

Spring http://cxf.apache.org/jaxrs

How to attach a model schema to an endpoint

To define and attach a model schema to an endpoint, perform the following steps:

1. Define the model schema, using the appropriate XML namespace for your chosen injection
platform (Blueprint XML or Spring XML).

2. Add the model schema file to your project's resources, so that the schema file is available on the
classpath in the final package (JAR, WAR, or OSGi bundle file).

NOTE

Alternatively, it is also possible to embed a model schema directly into a JAX-RS
endpoint, using the endpoint's jaxrs:model child element.

-

3. Configure the endpoint to use the model schema, by setting the endpoint's modelRef attribute
to the location of the model schema on the classpath (using a classpath URL).

4. If necessary, instantiate the root resources explicitly, using the jaxrs:serviceBeans element.
You can skip this step, if the model schema references root resource classes directly (instead of
referencing base interfaces).

Configuration of model schema referencing a class

If the model schema applies directly to root resource classes, there is no need to define any root
resource beans using the jaxrs:serviceBeans element, because the model schema automatically
instantiates the root resource beans.

For example, given that customer-resources.xml is a model schema that associates metadata with
customer resource classes, you could instantiate a customerService service endpoint as follows:

<jaxrs:server id="customerService"
address="/customers"
modelRef="classpath:/org/example/schemas/customer-resources.xml" />

Configuration of model schema referencing an interface

If the model schema applies to Java interfaces (which are the base interfaces of the root resources), you
must instantiate the root resource classes using the jaxrs:serviceBeans element in the endpoint.

157

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

For example, given that customer-interfaces.xml is a model schema that associates metadata with
customer interfaces, you could instantiate a customerService service endpoint as follows:

<jaxrs:server id="customerService"
address="/customers"
modelRef="classpath:/org/example/schemas/customer-interfaces.xml">
<jaxrs:serviceBeans>
<ref component-id="serviceBean" />
</jaxrs:serviceBeans>
</jaxrs:server>

<bean id="serviceBean" class="service.CustomerService"/>

Model Schema Reference

A model schema is defined using the following XML elements:

model

Root element of the model schema. If you need to reference the model schema (for example, from a
JAX-RS endpoint using the modelRef attribute), you should set the id attribute on this element.

model/resource

The resource element is used to associate metadata with a specific root resource class (or with a
corresponding interface). You can define the following attributes on the resource element:

Attribute Description

hame The name of the resource class (or corresponding
interface) to which this resource model is applied.

path The component of the REST URL path that maps
to this resource.

consumes Specifies the content type (Internet media type)
consumed by this resource—for example,
application/xml orapplication/json.

produces Specifies the content type (Internet media type)
produced by this resource—for example,
application/xml orapplication/json.

model/resource/operation

The operation element is used to associate metadata with Java methods. You can define the
following attributes on an operation element:

Attribute Description

hame The name of the Java method to which this
element is applied.

158

CHAPTER 16. CONFIGURING JAX-RS ENDPOINTS

Attribute Description

path

verb

consumes

produces

oneway

model/resource/operation/param

The component of the REST URL path that maps
to this method. This attribute value can include
parameter references, for example:
path="/books/{id}/chapter”, where {id}
extracts the value of the id parameter from the
path.

Specifies the HTTP verb that maps to this method.
Typically one of: GET, POST, PUT, or DELETE. I
the HTTP verb is not specified, it is assumed that
the Java method is a sub-resource locater, which
returns a reference to a sub-resource object
(where the sub-resource class must also be
provided with metadata using a resource
element).

Specifies the content type (Internet media type)
consumed by this operation—for example,
application/xml orapplication/json.

Specifies the content type (Internet media type)
produced by this operation—for example,
application/xml orapplication/json.

If true, configures the operation to beoneway,
meaning that no reply message is needed. Defaults
to false.

The param element is used extract a value from the REST URL and inject it into one of the method
parameters. You can define the following attributes on a param element:

Attribute Description

name

type

defaultValue

The name of the Java method parameter to which
this element is applied.

Specifies how the parameter value is extracted
from the REST URL or message. It can be set to
one of the following values: PATH, QUERY,
MATRIX, HEADER, COOKIE, FORM,
CONTEXT, REQUEST_BODY.

Default value to inject into the parameter, in case a
value could not be extracted from the REST URL
or message.

159

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Attribute Description

encoded Iftrue, the parameter value is injected in its URI
encoded form (that is, using %enn encoding).
Default is false. For example, when extracting a
parameter from the URL path,
/name/Joe%20Bloggs with encoded set totrue,
the parameter is injected as Joe%20Bloggs;
otherwise, the parameter would be injected as Joe
Bloggs.

160

CHAPTER 17. APACHE CXF LOGGING

CHAPTER 17. APACHE CXF LOGGING

Abstract

This chapter describes how to configure logging in the Apache CXF runtime.

17.1. OVERVIEW OF APACHE CXF LOGGING

Overview

Apache CXF uses the Java logging utility, java.util.logging. Logging is configured in a logging
configuration file that is written using the standard java.util.Properties format. To run logging on an
application, you can specify logging programmatically or by defining a property at the command that
points to the logging configuration file when you start the application.

Default properties file

Apache CXF comes with a default logging.properties file, which is located in your InstallDirletc
directory. This file configures both the output destination for the log messages and the message level
that is published. The default configuration sets the loggers to print message flagged with the
WARNING level to the console. You can either use the default file without changing any of the
configuration settings or you can change the configuration settings to suit your specific application.

Logging feature

Apache CXF includes a logging feature that can be plugged into your client or your service to enable
logging. Example 17.1, “Configuration for Enabling Logging” shows the configuration to enable the
logging feature.

<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>
</jaxws:features>

<jaxws:endpoint...>
</jaxws:endpoint>

| Example 17.1. Configuration for Enabling Logging

For more information, see Section 17.6, “Logging Message Content”.

Where to begin?

To run a simple example of logging follow the instructions outlined in a Section 17.2, “Simple Example of
Using Logging”.

For more information on how logging works in Apache CXF, read this entire chapter.

More information on java.util.logging

161

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

The java.util.logging utility is one of the most widely used Java logging frameworks. There is a lot of
information available online that describes how to use and extend this framework. As a starting point,
however, the following documents gives a good overview of java.util.logging:

® http://download.oracle.com/javase/1.5.0/docs/quide/logging/overview.html

® http://download.oracle.com/javase/1.5.0/docs/api/java/util/logging/package-summary.html

17.2. SIMPLE EXAMPLE OF USING LOGGING

Changing the log levels and output destination

To change the log level and output destination of the log messages in the wsdl_first sample application,
complete the following steps:

1. Run the sample server as described in the Running the demo using java section of the
README.txt file in the InstallDirlsamples/wsdl_first directory. Note that the server start
command specifies the default logging.properties file, as follows:

Platform Command

Windows start java -
Djava.util.logging.config.file=%CXF_HOM
E%\etc\logging.properties
demo.hw.server.Server

UNIX java -
Djava.util.logging.config.file=$CXF_HOM
E/etc/logging.properties
demo.hw.server.Server &

The default logging.properties file is located in the InstallDir/etc directory. It configures the
Apache CXF loggers to print WARNING level log messages to the console. As a result, you see
very little printed to the console.

2. Stop the server as described in the README.txt file.

3. Make a copy of the default logging.properties file, name it mylogging.properties file, and
save it in the same directory as the default logging.properties file.

4. Change the global logging level and the console logging levels in your mylogging.properties
file to INFO by editing the following lines of configuration:

Jlevel= INFO
java.util.logging.ConsoleHandler.level = INFO

5. Restart the server using the following command:

Platform Command

162

http://download.oracle.com/javase/1.5.0/docs/guide/logging/overview.html
http://download.oracle.com/javase/1.5.0/docs/api/java/util/logging/package-summary.html

CHAPTER 17. APACHE CXF LOGGING

Platform Command

Windows start java -
Djava.util.logging.config.file=%CXF_HOM
E%\etc\mylogging.properties
demo.hw.server.Server

UNIX java -
Djava.util.logging.config.file=$CXF_HOM
E/etc/mylogging.properties
demo.hw.server.Server &

Because you configured the global logging and the console logger to log messages of level
INFO, you see a lot more log messages printed to the console.

17.3. DEFAULT LOGGING CONFIGURATION FILE

17.3.1. Overview of Logging Configuration

The default logging configuration file, logging.properties, is located in the InstallDirletc directory. It
configures the Apache CXF loggers to print WARNING level messages to the console. If this level of
logging is suitable for your application, you do not have to make any changes to the file before using it.
You can, however, change the level of detail in the log messages. For example, you can change whether
log messages are sent to the console, to a file or to both. In addition, you can specify logging at the level
of individual packages.

NOTE

This section discusses the configuration properties that appear in the default
logging.properties file. There are, however, many other java.util.logging configuration
properties that you can set. For more information on the java.util.logging AP, see the
java.util.logging javadoc at:
http://download.oracle.com/javase/1.5/docs/api/java/util/logging/package-
summary.html.

17.3.2. Configuring Logging Output

Overview

The Java logging utility, java.util.logging, uses handler classes to output log messages. Table 17.],
“Java.utillogging Handler Classes” shows the handlers that are configured in the default
logging.properties file.

Table 17.1. Java.util.logging Handler Classes

Handler Class Outputs to

ConsoleHandler Outputs log messages to the console

FileHandler Outputs log messages to a file

163

http://download.oracle.com/javase/1.5/docs/api/java/util/logging/package-summary.html

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

IMPORTANT

The handler classes must be on the system classpath in order to be installed by the Java
VM when it starts. This is done when you set the Apache CXF environment.

Configuring the console handler

Example 17.2, "Configuring the Console Handler” shows the code for configuring the console logger.

Example 17.2. Configuring the Console Handler

I handlers= java.util.logging.ConsoleHandler

The console handler also supports the configuration properties shown in Example 17.3, “Console Handler
Properties”.

Example 17.3. Console Handler Properties

niava.utiI.Iogging.ConsoIeHandIer.IeveI = WARNING
eiava.util.logging.ConsoIeHandIer.formatter = java.util.logging.SimpleFormatter

The configuration properties shown in Example 17.3, “Console Handler Properties” can be explained as
follows:

ﬂ The console handler supports a separate log level configuration property. This allows you to limit
the log messages printed to the console while the global logging setting can be different (see
Section 17.3.3, "Configuring Logging Levels”). The default setting is WARNING.

Specifies the java.util.logging formatter class that the console handler class uses to format the
log messages. The default setting is the java.util.logging.SimpleFormatter.

Configuring the file handler

Example 17.4, "Configuring the File Handler” shows code that configures the file handler.

Example 17.4. Configuring the File Handler

I handlers= java.util.logging.FileHandler

The file handler also supports the configuration properties shown in Example 17.5, “File Handler
Configuration Properties”.

ava util.logging.FileHandler.limit = 50000
ava util.logging.FileHandler.count = 1

ava util.logging.FileHandler.pattern = %h/java%.u.log
°|ava util.logging.FileHandler.formatter = java.util.logging. XMLFormatter

‘ Example 17.5. File Handler Configuration Properties

164

CHAPTER 17. APACHE CXF LOGGING

The configuration properties shown in Example 17.5, “File Handler Configuration Properties” can be
explained as follows:

Specifies the location and pattern of the output file. The default setting is your home directory.

Specifies, in bytes, the maximum amount that the logger writes to any one file. The default setting
is 50000. If you set it to zero, there is no limit on the amount that the logger writes to any one file.

Specifies how many output files to cycle through. The default setting is 1.

o0 09

Specifies the java.util.logging formatter class that the file handler class uses to format the log
messages. The default setting is the java.util.logging.XMLFormatter.

Configuring both the console handler and the file handler

You can set the logging utility to output log messages to both the console and to a file by specifying the
console handler and the file handler, separated by a comma, as shown in Example 17.6, “Configuring
Both Console Logging and File Logging”.

Example 17.6. Configuring Both Console Logging and File Logging

I handlers= java.util.logging.FileHandler, java.util.logging.ConsoleHandler

17.3.3. Configuring Logging Levels

Logging levels

The java.util.logging framework supports the following levels of logging, from the least verbose to the
most verbose:

e SEVERE
e WARNING
e INFO

e CONFIG

e FINE

e FINER

o FINEST

Configuring the global logging level

To configure the types of event that are logged across all loggers, configure the global logging level as
shown in Example 17.7, "Configuring Global Logging Levels”.

I Example 17.7. Configuring Global Logging Levels

165

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

I I Jevel= WARNING

Configuring logging at an individual package level

The java.util.logging framework supports configuring logging at the level of an individual package. For
example, the line of code shown in Example 17.8, “Configuring Logging at the Package Level”
configures logging at a SEVERE level on classes in the com.xyz.foo package.

Example 17.8. Configuring Logging at the Package Level

I com.xyz.foo.level = SEVERE

17.4. ENABLING LOGGING AT THE COMMAND LINE

Overview

You can run the logging utility on an application by defining a java.util.logging.config.file property
when you start the application. You can either specify the default logging.properties file or a
logging.properties file that is unique to that application.

Specifying the log configuration file on application start-up

To specify logging on application start-up add the flag shown in Example 17.9, “Flag to Start Logging on
the Command Line” when starting the application.

Example 17.9. Flag to Start Logging on the Command Line

I -Djava.util.logging.config.file=myfile

17.5. LOGGING FOR SUBSYSTEMS AND SERVICES

Overview

You can use the com.xyz.foo.level configuration property described in the section called “Configuring
logging at an individual package level” to set fine-grained logging for specified Apache CXF logging
subsystems.

Apache CXF logging subsystems

Table 17.2, “Apache CXF Logging Subsystems” shows a list of available Apache CXF logging subsystems.

Table 17.2. Apache CXF Logging Subsystems

Subsystem Description

org.apache.cxf.aegis Aegis binding

166

CHAPTER 17. APACHE CXF LOGGING

Subsystem Description

org.apache.cxf.binding.coloc

org.apache.cxf.binding.http

org.apache.cxf.binding.jbi

org.apache.cxf.binding.object

org.apache.cxf.binding.soap

org.apache.cxf.binding.xml

org.apache.cxf.bus

org.apache.cxf.configuration

org.apache.cxf.endpoint

org.apache.cxf.interceptor

org.apache.cxf.jaxws

org.apache.cxf.jbi

org.apache.cxf.jca

org.apache.cxf.js

org.apache.cxf.transport.http

org.apache.cxf.transport.https

org.apache.cxf.transport.jbi

org.apache.cxf.transport.jms

org.apache.cxf.transport.local

org.apache.cxf.transport.servlet

org.apache.cxf.ws.addressing

colocated binding

HTTP binding

JBI binding

Java Object binding

SOAP binding

XML binding

Apache CXF bus

configuration framework

server and client endpoints

interceptors

Front-end for JAX-WS style message exchange,
JAX-WS handler processing, and interceptors
relating to JAX-WS and configuration

JBI container integration classes

JCA container integration classes

JavaScript front-end

HTTP transport

secure version of HTTP transport, using HTTPS

JBI transport

JMS transport

transport implementation using local file system

HTTP transport and servlet implementation for
loading JAX-WS endpoints into a servlet container

WS-Addressing implementation

167

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Subsystem Description

org.apache.cxf.ws.policy WS-Policy implementation
org.apache.cxf.ws.rm WS-ReliableMessaging (WS-RM) implementation
org.apache.cxf.ws.security.wss4j WSS4J security implementation

Example

The WS-Addressing sample is contained in the InstallDir'samples/ws_addressing directory. Logging is
configured in the logging.properties file located in that directory. The relevant lines of configuration
are shown in Example 17.10, “Configuring Logging for WS-Addressing”.

Example 17.10. Configuring Logging for WS-Addressing

| java.util.logging.ConsoleHandler.formatter = demos.ws_addressing.common.ConciseFormatter

org.apache.cxf.ws.addressing.soap.MAPCodec.level = INFO

The configuration in Example 17.10, “Configuring Logging for WS-Addressing” enables the snooping of
log messages relating to WS-Addressing headers, and displays them to the console in a concise form.

For information on running this sample, see the README.txt file located in the
InstallDir'samples/ws_addressing directory.

17.6. LOGGING MESSAGE CONTENT

Overview
You can log the content of the messages that are sent between a service and a consumer. For example,

you might want to log the contents of SOAP messages that are being sent between a service and a
consumer.

Configuring message content logging

To log the messages that are sent between a service and a consumer, and vice versa, complete the
following steps:

1. Add the logging feature to your endpoint's configuration.
2. Add the logging feature to your consumer's configuration.

3. Configure the logging system log INFO level messages.

Adding the logging feature to an endpoint

Add the logging feature your endpoint's configuration as shown in Example 17.11, “Adding Logging to
Endpoint Configuration”.

168

CHAPTER 17. APACHE CXF LOGGING

<jaxws:features>
<bean class="org.apache.cxf.feature.LoggingFeature"/>
</jaxws:features>

<jaxws:endpoint ...>
</jaxws:endpoint>

| Example 17.11. Adding Logging to Endpoint Configuration

The example XML shown in Example 17.11, “Adding Logging to Endpoint Configuration” enables the
logging of SOAP messages.
Adding the logging feature to a consumer

Add the logging feature your client's configuration as shown in Example 17.12, “Adding Logging to Client
Configuration”.

<bean class="org.apache.cxf.feature.LoggingFeature"/>
</jaxws:features>

Example 17.12. Adding Logging to Client Configuration
<jaxws:client ...>
<jaxws:features>

</jaxws:client>

The example XML shown in Example 17.12, “Adding Logging to Client Configuration” enables the logging
of SOAP messages.

Set logging to log INFO level messages

Ensure that the logging.properties file associated with your service is configured to log INFO level
messages, as shown in Example 17.13, “Setting the Logging Level to INFO" .

Example 17.13. Setting the Logging Level to INFO

Jlevel= INFO
java.util.logging.ConsoleHandler.level = INFO

Logging SOAP messages

To see the logging of SOAP messages modify the wsdl_first sample application located in the
InstallDir'samples/wsdl_first directory, as follows:

1. Add the jaxws:features element shown in Example 17.14, “"Endpoint Configuration for Logging
SOAP Messages” to the exf.xml configuration file located in the wsdl_first sample's directory:

Example 17.14. Endpoint Configuration for Logging SOAP Messages

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
createdFromAPI="true">

169

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide
<jaxws:properties>
<entry key="schema-validation-enabled" value="true" />
<jaxws:features>

</jaxws:properties>
<bean class="org.apache.cxf.feature.LoggingFeature"/>
</jaxws:features>
</jaxws:endpoint>

2. The sample uses the default logging.properties file, which is located in the InstallDir/etc
directory. Make a copy of this file and name it mylogging.properties.

3. In the mylogging.properties file, change the logging levels to INFO by editing the .level and
the java.util.logging.ConsoleHandler.level configuration properties as follows:

Jevel= INFO
java.util.logging.ConsoleHandler.level = INFO

4. Start the server using the new configuration settings in both the exf.xml file and the
mylogging.properties file as follows:

Platform Command

Windows start java -
Djava.util.logging.config.file=%CXF_HOM
E%\etc\mylogging.properties
demo.hw.server.Server

UNIX java -
Djava.util.logging.config.file=$CXF_HOM
E/etc/mylogging.properties
demo.hw.server.Server &

5. Start the hello world client using the following command:

Platform Command

Windows java -
Djava.util.logging.config.file=%CXF_HOM
E%\etc\mylogging.properties
demo.hw.client.Client
Awsdl\hello_world.wsdl

UNIX java -
Djava.util.logging.config.file=$CXF_HOM
E/etc/mylogging.properties
demo.hw.client.Client
/wsdl/hello_world.wsdl

The SOAP messages are logged to the console.

170

CHAPTER 18. DEPLOYING WS-ADDRESSING

CHAPTER 18. DEPLOYING WS-ADDRESSING

Abstract

Apache CXF supports WS-Addressing for JAX-WS applications. This chapter explains how to deploy
WS-Addressing in the Apache CXF runtime environment.

18.1. INTRODUCTION TO WS-ADDRESSING

Overview

WS-Addressing is a specification that allows services to communicate addressing information in a
transport neutral way. It consists of two parts:

® A structure for communicating a reference to a Web service endpoint

® A set of Message Addressing Properties (MAP) that associate addressing information with a
particular message
Supported specifications
Apache CXF supports both the WS-Addressing 2004/08 specification and the WS-Addressing
2005/03 specification.
Further information

For detailed information on WS-Addressing, see the 2004/08 submission at
http://www.w3.org/Submission/ws-addressing/.

18.2. WS-ADDRESSING INTERCEPTORS

Overview

In Apache CXF, WS-Addressing functionality is implemented as interceptors. The Apache CXF runtime
uses interceptors to intercept and work with the raw messages that are being sent and received. When a
transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the WS-Addressing interceptors are added to the application's interceptor chain,
any WS-Addressing information included with a message is processed.

WS-Addressing Interceptors

The WS-Addressing implementation consists of two interceptors, as described in Table 18.1, "WS-
Addressing Interceptors”.

Table 18.1. WS-Addressing Interceptors

Interceptor Description

171

http://www.w3.org/Submission/ws-addressing/

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Interceptor Description

org.apache.cxf.ws.addressing.MAPAggregat A logical interceptor responsible for aggregating the
or Message Addressing Properties (MAPSs) for outgoing
messages.

org.apache.cxf.ws.addressing.soap.MAPCod A protocol-specific interceptor responsible for
ec encoding and decoding the Message Addressing
Properties (MAPs) as SOAP headers.

18.3. ENABLING WS-ADDRESSING

Overview

To enable WS-Addressing the WS-Addressing interceptors must be added to the inbound and
outbound interceptor chains. This is done in one of the following ways:

® Apache CXF Features
® RMAssertion and WS-Policy Framework

® Using Policy Assertion in a WS-Addressing Feature

Adding WS-Addressing as a Feature

WS-Addressing can be enabled by adding the WS-Addressing feature to the client and the server
configuration as shown in Example 18.1, “client.xml and Adding WS-Addressing Feature to Client
Configuration” and Example 18.2, “server.xml and Adding WS-Addressing Feature to Server
Configuration” respectively.

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:jaxws="http://cxf.apache.org/jaxws"
xmins:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:client ...>
<jaxws:features>
<wsa:addressing/>
</jaxws:features>
</jaxws:client>

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
</beans>

| Example 18.1. client.xml and Adding WS-Addressing Feature to Client Configuration

Example 18.2. server.xml and Adding WS-Addressing Feature to Server Configuration

172

CHAPTER 18. DEPLOYING WS-ADDRESSING

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:jaxws="http://cxf.apache.org/jaxws"
xmins:wsa="http://cxf.apache.org/ws/addressing"
xsi:schemal.ocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint ...>
<jaxws:features>
<wsa:addressing/>
</jaxws:features>
</jaxws:endpoint>
</beans>

18.4. CONFIGURING WS-ADDRESSING ATTRIBUTES

Overview

The Apache CXF WS-Addressing feature element is defined in the namespace
http://cxf.apache.org/ws/addressing. It supports the two attributes described in Table 18.2, "WS-
Addressing Attributes”.

Table 18.2. WS-Addressing Attributes

Attribute Name Value

allowDuplicates A boolean that determines if duplicate MessagelDs
are tolerated. The default setting is true.

usingAddressingAdvisory A boolean that indicates if the presence of the
UsingAddressing element in the WSDL is advisory
only; that is, its absence does not prevent the
encoding of WS-Addressing headers.

Configuring WS-Addressing attributes

Configure WS-Addressing attributes by adding the attribute and the value you want to set it to the WS-
Addressing feature in your server or client configuration file. For example, the following configuration
extract sets the allowDublicates attribute to false on the server endpoint:

<beans ... xmins:wsa="http://cxf.apache.org/ws/addressing" ...>
<jaxws:endpoint ...>
<jaxws:features>
<wsa:addressing allowDuplicates="false"/>
</jaxws:features>
</jaxws:endpoint>
</beans>

173

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Using a WS-Policy assertion embedded in a feature

In Example 18.3, “"Using the Policies to Configure WS-Addressing” an addressing policy assertion to
enable non-anonymous responses is embedded in the policies element.

Example 18.3. Using the Policies to Configure WS-Addressing
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmins:wsa="http://cxf.apache.org/ws/addressing"

xmins:wsp="http://www.w3.0rg/2006/07/ws-policy"

xmins:policy="http://cxf.apache.org/policy-config"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd"

xmins:jaxws="http://cxf.apache.org/jaxws"

xsi:schemalocation="
http://www.w3.0rg/2006/07/ws-policy http://www.w3.0rg/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort"
createdFromAPI="true">
<jaxws:features>
<policy:policies>
<wsp:Policy xmins:wsam="http://www.w3.0rg/2007/02/addressing/metadata">
<wsam:Addressing>
<wsp:Policy>
<wsam:NonAnonymousResponses/>
</wsp:Policy>
</wsam:Addressing>
</wsp:Policy>
<policy:policies>
</jaxws:features>
</jaxws:endpoint>
</beans>

174

CHAPTER 19. ENABLING RELIABLE MESSAGING

CHAPTER 19. ENABLING RELIABLE MESSAGING

Abstract

Apache CXF supports WS-Reliable Messaging(WS-RM). This chapter explains how to enable and
configure WS-RM in Apache CXF.

19.1. INTRODUCTION TO WS-RM

Overview

WS-ReliableMessaging (WS-RM) is a protocol that ensures the reliable delivery of messagesin a
distributed environment. It enables messages to be delivered reliably between distributed applications in
the presence of software, system, or network failures.

For example, WS-RM can be used to ensure that the correct messages have been delivered across a
network exactly once, and in the correct order.

How WS-RM works
WS-RM ensures the reliable delivery of messages between a source and a destination endpoint. The
source is the initial sender of the message and the destination is the ultimate receiver, as shown in

Figure 19.1, “Web Services Reliable Messaging” .

Figure 19.1. Web Services Reliable Messaging

Initial Sender Ultimate Receiver
\ »
Application | Application
Source ") 4 Destination
S.nd -
Deliver
Y
RM RrM
Source m Destination
Transmit
|
Transmit - Recelve
Acknowledge

The flow of WS-RM messages can be described as follows:
1. The RM source sends a CreateSequence protocol message to the RM destination. This
contains a reference for the endpoint that receives acknowledgements (the wsrm:AcksTo

endpoint).

2. The RM destination sends a CreateSequenceResponse protocol message back to the RM
source. This message contains the sequence ID for the RM sequence session.

175

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

3. The RM source adds an RM Sequence header to each message sent by the application source.
This header contains the sequence ID and a unique message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the RM source by sending
messages that contain the RM SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination in an exactly-once-in-
order fashion.

7. The RM source retransmits a message that it has not yet received an acknowledgement.

The first retransmission attempt is made after a base retransmission interval. Successive
retransmission attempts are made, by default, at exponential back-off intervals or, alternatively,
at fixed intervals. For more details, see Section 19.5, “Configuring WS-RM”.

This entire process occurs symmetrically for both the request and the response message; that s, in the
case of the response message, the server acts as the RM source and the client acts as the RM
destination.

WS-RM delivery assurances

WS-RM guarantees reliable message delivery in a distributed environment, regardless of the transport
protocol used. Either the source or the destination endpoint logs an error if reliable delivery can not be
assured.

Supported specifications

Apache CXF supports the following versions of the WS-RM specification:

WS-ReliableMessaging 1.0

(Default) Corresponds to the February 2005 submission version, which is now out of date. For
reasons of backward compatibility, however, this version is used as the default.

Version 1.0 of WS-RM uses the following namespace:

I http://schemas.xmlsoap.org/ws/2005/02/rm/

This version of WS-RM can be used with either of the following WS-Addressing versions:

http://schemas.xmlsoap.org/ws/2004/08/addressing (default)
http://www.w3.0rg/2005/08/addressing

Strictly speaking, in order to comply with the February 2005 submission version of WS-RM, you
ought to use the first of these WS-Addressing versions (which is the default in Apache CXF). But
most other Web service implementations have switched to the more recent WS-Addressing
specification, so Apache CXF allows you to choose the WS-A version, to facilitate interoperability
(see Section 19.4, “Runtime Control").

WS-ReliableMessaging 1.1/1.2

Corresponds to the official 1.1/1.2 Web Services Reliable Messaging specification.

Versions 1.1and 1.2 of WS-RM uses the following namespace:

176

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsrm/200702

CHAPTER 19. ENABLING RELIABLE MESSAGING

I http://docs.oasis-open.org/ws-rx/wsrm/200702

The 1.1and 1.2 versions of WS-RM use the following WS-Addressing version:

I http://www.w3.0rg/2005/08/addressing

Selecting the WS-RM version

You can select which WS-RM specification version to use, as follows:

Server side

On the provider side, Apache CXF adapts to whichever version of WS-ReliableMessaging is used by
the client and responds appropriately.

Client side

On the client side, the WS-RM version is determined either by the namespace that you use in the
client configuration (see Section 19.5, “Configuring WS-RM") or by overriding the WS-RM version at
run time, using the runtime control options (see Section 19.4, “Runtime Control").

19.2. WS-RM INTERCEPTORS

Overview

In Apache CXF, WS-RM functionality is implemented as interceptors. The Apache CXF runtime uses
interceptors to intercept and work with the raw messages that are being sent and received. When a
transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the application's interceptor chain includes the WS-RM interceptors, the application
can participate in reliable messaging sessions. The WS-RM interceptors handle the collection and
aggregation of the message chunks. They also handle all of the acknowledgement and retransmission
logic.

Apache CXF WS-RM Interceptors

The Apache CXF WS-RM implementation consists of four interceptors, which are described in Table 19.1,
“Apache CXF WS-ReliableMessaging Interceptors”.

Table 19.1. Apache CXF WS-ReliableMessaging Interceptors

Interceptor Description

org.apache.cxf.ws.rm.RMOutinterceptor Deals with the logical aspects of providing reliability
guarantees for outgoing messages.

Responsible for sending the CreateSequence
requests and waiting for their
CreateSequenceResponse responses.

Also responsible for aggregating the sequence

properties—ID and message number—for an
application message.

177

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Interceptor Description

org.apache.cxf.ws.rm.RMininterceptor

org.apache.cxf.ws.rm.RMCapturelnintercepto
r

org.apache.cxf.ws.rm.RMDeliverylnterceptor

org.apache.cxf.ws.rm.soap.RMSoaplintercept
or

org.apache.cxf.ws.rm.Retransmissioninterce
ptor

Responsible for intercepting and processing RM
protocol messages and
SequenceAcknowledgement messages that are
piggybacked on application messages.

Caching incoming messages for persistent storage.

Assuring InOrder delivery of messages to the
application.

Responsible for encoding and decoding the reliability
properties as SOAP headers.

Responsible for creating copies of application
messages for future resending.

Enabling WS-RM

The presence of the WS-RM interceptors on the interceptor chains ensures that WS-RM protocol
messages are exchanged when necessary. For example, when intercepting the first application message
on the outbound interceptor chain, the RMOutinterceptor sends a CreateSequence request and waits
to process the original application message until it receives the CreateSequenceResponse response. In
addition, the WS-RM interceptors add the sequence headers to the application messages and, on the
destination side, extract them from the messages. It is not necessary to make any changes to your
application code to make the exchange of messages reliable.

For more information on how to enable WS-RM, see Section 19.3, “Enabling WS-RM" .

Configuring WS-RM Attributes

You control sequence demarcation and other aspects of the reliable exchange through configuration.
For example, by default Apache CXF attempts to maximize the lifetime of a sequence, thus reducing the
overhead incurred by the out-of-band WS-RM protocol messages. To enforce the use of a separate
sequence per application message configure the WS-RM source’s sequence termination policy (setting
the maximum sequence length to 1).

For more information on configuring WS-RM behavior, see Section 19.5, “Configuring WS-RM".

19.3. ENABLING WS-RM

Overview

To enable reliable messaging, the WS-RM interceptors must be added to the interceptor chains for both
inbound and outbound messages and faults. Because the WS-RM interceptors use WS-Addressing, the
WS-Addressing interceptors must also be present on the interceptor chains.

You can ensure the presence of these interceptors in one of two ways:

® Explicitly, by adding them to the dispatch chains using Spring beans

178

CHAPTER 19. ENABLING RELIABLE MESSAGING

® |mplicitly, using WS-Policy assertions, which cause the Apache CXF runtime to transparently add
the interceptors on your behalf.

Spring beans: explicitly adding interceptors

To enable WS-RM add the WS-RM and WS-Addressing interceptors to the Apache CXF bus, or to a
consumer or service endpoint using Spring bean configuration. This is the approach taken in the WS-RM
sample that is found in the InstallDir'samples/ws_rm directory. The configuration file, ws-rm.cxf,
shows the WS-RM and WS-Addressing interceptors being added one-by-one as Spring beans (see
Example 19.1, “Enabling WS-RM Using Spring Beans”).

Example 19.1. Enabling WS-RM Using Spring Beans
<?xml version="1.0" encoding="UTF-8"7>
0<beans xmins="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/

beans http://www.springframework.org/schema/beans/spring-beans.xsd">
<bean id="mapAggregator" class="org.apache.cxf.ws.addressing.MAPAggregator"/>
<bean id="mapCodec" class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>
<bean id="rmLogicalOut" class="org.apache.cxf.ws.rm.RMOutInterceptor">
<property name="bus" ref="cxf"/>
</bean>
<bean id="rmLogicalln" class="org.apache.cxf.ws.rm.RMIninterceptor">
<property name="bus" ref="cxf"/>
</bean>
<bean id="rmCodec" class="org.apache.cxf.ws.rm.soap.RMSoaplnterceptor"/>
<bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">
<property name="inInterceptors">
<list>
<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalln"/>
<ref bean="rmCodec"/>
</list>
</property>
<property name="inFaultinterceptors">
<list>
<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalln"/>
<ref bean="rmCodec"/>
</list>
</property>
<property name="outInterceptors">
<list>
<ref bean="mapAggregator"/>
<ref bean="mapCodec"/>
<ref bean="rmLogicalOut"/>
<ref bean="rmCodec"/>
</list>
</property>
<property name="outFaultInterceptors">
<list>
<ref bean="mapAggregator">

179

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

<ref bean="mapCodec"/>
<ref bean="rmLogicalOut"/>
<ref bean="rmCodec"/>
</list>
</property>
</bean>
</beans>

The code shown in Example 19.1, “Enabling WS-RM Using Spring Beans” can be explained as follows:

SO 906 o O O

A Apache CXF configuration file is a Spring XML file. You must include an opening Spring beans
element that declares the namespaces and schema files for the child elements that are
encapsulated by the beans element.

Configures each of the WS-Addressing interceptors—MAPAggregator and MAPCodec. For more
information on WS-Addressing, see Chapter 18, Deploying WS-Addressing.

Configures each of the WS-RM interceptors—RMOutinterceptor, RMIninterceptor, and
RMSoaplinterceptor.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound messages.
Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound faults.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound
messages.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound faults.

WS-Policy framework: implicitly adding interceptors

The WS-Policy framework provides the infrastructure and APIs that allow you to use WS-Policy. It is
compliant with the November 2006 draft publications of the Web Services Policy 1.5—Framework and
Web Services Policy 1.5—Attachment specifications.

To enable WS-RM using the Apache CXF WS-Policy framework, do the following:

180

1. Add the policy feature to your client and server endpoint. Example 19.2, “Configuring WS-RM
using WS-Policy” shows a reference bean nested within a jaxws:feature element. The reference
bean specifies the AddressingPolicy, which is defined as a separate element within the same
configuration file.

</jaxws:client>
<wsp:Policy wsu:ld="AddressingPolicy"
xmlns:wsam="http://www.w3.0rg/2007/02/addressing/metadata">
<wsam:Addressing>
<wsp:Policy>

Example 19.2. Configuring WS-RM using WS-Policy
<ref bean="AddressingPolicy"/>
<wsam:NonAnonymousResponses/>

<jaxws:client>
<jaxws:features>
</jaxws:features>

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

CHAPTER 19. ENABLING RELIABLE MESSAGING

</wsp:Policy>
</wsam:Addressing>
</wsp:Policy>

2. Add a reliable messaging policy to the wsdl:service element—or any other WSDL element that
can be used as an attachment point for policy or policy reference elements—to your WSDL file,
as shown in Example 19.3, “Adding an RM Policy to Your WSDL File” .

xmins:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd">
<wsam:Addressing xmIns:wsam="http://www.w3.0rg/2007/02/addressing/metadata">
<wsp:Policy/>
</wsam:Addressing>
<wsrmp:RMAssertion
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
<wsrmp:BaseRetransmissioninterval Milliseconds="10000"/>
</wsrmp:RMAssertion>
</wsp:Policy>

<wsdl:service name="ReliableGreeterService">
<wsdl:port binding="tns:GreeterSOAPBInding" name="GreeterPort">
<soap:address location="http://localhost:9020/SoapContext/GreeterPort"/>
<wsp:PolicyReference URI="#RM" xmIns:wsp="http://www.w3.0rg/2006/07/ws-
policy"/>
</wsdl:port>

<wsp:Policy wsu:ld="RM"
xmlns:wsp="http://www.w3.0rg/2006/07/ws-policy"
</wsdl:service>

Example 19.3. Adding an RM Policy to Your WSDL File

19.4. RUNTIME CONTROL

Overview

Several message context property values can be set in client code to control WS-RM at runtime, with
key values defined by public constants in the org.apache.cxf.ws.rm.RMManager class.

Runtime control options

The following table lists the keys defined by the org.apache.cxf.ws.rm.RMManager class.

Key Description

WSRM_VERSION_PROPERTY String WS-RM version namespace
(http://schemas.xmlsoap.org/ws/2005/02/rm/
or http://docs.oasis-open.org/ws-
rx/wsrm/200702).

181

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Key

WSRM_WSA_VERSION_PROPERTY

WSRM_LAST_MESSAGE_PROPERTY

WSRM_INACTIVITY_TIMEOUT_PROPERTY

WSRM_RETRANSMISSION_INTERVAL_PROP
ERTY

WSRM_EXPONENTIAL_BACKOFF_PROPER
TY

WSRM_ACKNOWLEDGEMENT_INTERVAL_P
ROPERTY

Controlling WS-RM through JMX

Description

String WS-Addressing version namespace
(http://schemas.xmlsoap.org/ws/2004/08/addr
essing or
http://www.w3.0rg/2005/08/addressing) - this
property is ignored unless you're using the
http://schemas.xmlsoap.org/ws/2005/02/rm/
RM namespace).

Boolean value true to tell the WS-RM code that the
last message is being sent, allowing the code to close
the WS-RM sequence and release resources (as of
the 3.0.0 version of CXF, the WS-RM will close the
RM sequence by default, when you close your client).

Long inactivity timeout in milliseconds.

Long base retransmission interval in milliseconds.

Boolean exponential back-off flag.

Long acknowledgement interval in milliseconds.

You can also monitor and control many aspects of WS-RM using the JMX Management features of
Apache CXF. The full list of JMX operations is defined by org.apache.cxf.ws.rm.ManagedRMManager
and org.apache.cxf.ws.rm.ManagedRMEndpoint, but these operations include viewing the current RM
state down to the individual message level. You can also use JXM to close or terminate a WS-RM
sequence, and to receive notification of when previously-sent messages are acknowledged by the

remote RM endpoint.

Example of JMX control

For example, if you have the JMX server enabled in your client configuration, you could use the following
code to track the last acknowledgement number received:

// Java

private static class AcknowledgementListener implements NotificationListener {

private volatile long lastAcknowledgement;

@Override

public void handleNotification(Notification notification, Object handback) {
if (notification instanceof AcknowledgementNotification) {
AcknowledgementNotification ack = (AcknowledgementNotification)notification;
lastAcknowledgement = ack.getMessageNumber();

}
}

182

CHAPTER 19. ENABLING RELIABLE MESSAGING

// initialize client

// attach to JMX bean for notifications

// NOTE: you must have sent at least one message to initialize RM before executing this code
Endpoint ep = ClientProxy.getClient(client).getEndpoint();

InstrumentationManager im = bus.getExtension(InstrumentationManager.class);
MBeanServer mbs = im.getMBeanServer();

RMManager clientManager = bus.getExtension(RMManager.class);

ObjectName name = RMUtils.getManagedObjectName(clientManager, ep);
System.out.printin("Looking for endpoint name " + name);

AcknowledgementListener listener = new AcknowledgementListener();
mbs.addNotificationListener(name, listener, null, null);

// send messages using RM with acknowledgement status reported to listener

19.5. CONFIGURING WS-RM

19.5.1. Configuring Apache CXF-Specific WS-RM Attributes

Overview

To configure the Apache CXF-specific attributes, use the rmManager Spring bean. Add the following to
your configuration file:

e The http://cxf.apache.org/ws/rm/manager namespace to your list of namespaces.

e AnrmManager Spring bean for the specific attribute that your want to configure.

Example 19.4, "Configuring Apache CXF-Specific WS-RM Attributes” shows a simple example.

<beans xmlns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/ws/rm/manager http://cxf.apache.org/schemas/configuration/wsrm-
manager.xsd">

<wsrm-mgr:rmManager>
<!--
... Your configuration goes here
->
</wsrm-mgr:rmManager>

‘ Example 19.4. Configuring Apache CXF-Specific WS-RM Attributes

Children of the rmManager Spring bean

Table 19.2, “Children of the rmManager Spring Bean” shows the child elements of the rmManager
Spring bean, defined in the http://cxf.apache.org/ws/rm/manager namespace.

183

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Table 19.2. Children of the rmManager Spring Bean

Element Description

RMAssertion An element of typeRMAssertion

deliveryAssurance An element of typeDeliveryAssuranceType that
describes the delivery assurance that should apply

sourcePolicy An element of typeSourcePolicyType that allows you
to configure details of the RM source

destinationPolicy An element of typeDestinationPolicy Type that
allows you to configure details of the RM destination

Example

For an example, see the section called “Maximum unacknowledged messages threshold” .
19.5.2. Configuring Standard WS-RM Policy Attributes

Overview

You can configure standard WS-RM policy attributes in one of the following ways:
® RMAssertion in rmManager Spring bean
® Policy within a feature
e WSDL file

® [External attachment

WS-Policy RMAssertion Children

Table 19.3, “Children of the WS-Policy RMAssertion Element” shows the elements defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 19.3. Children of the WS-Policy RMAssertion Element

Name Description

InactivityTimeout Specifies the amount of time that must pass without
receiving a message before an endpoint can consider
an RM sequence to have been terminated due to

inactivity.

184

BaseRetransmissionlinterval

ExponentialBackoff

Acknowledgementinterval

More detailed reference information

CHAPTER 19. ENABLING RELIABLE MESSAGING

Name Description

Sets the interval within which an acknowledgement
must be received by the RM Source for a given
message. If an acknowledgement is not received
within the time set by the
BaseRetransmissionlnterval, the RM Source will
retransmit the message.

Indicates the retransmission interval will be adjusted
using the commonly known exponential backoff
algorithm (Tanenbaum).

For more information, see Computer Networks,
Andrew S. Tanenbaum, Prentice Hall PTR, 2003.

In WS-RM, acknowledgements are sent on return
messages or sent stand-alone. If a return message is
not available to send an acknowledgement, an RM
Destination can wait for up to the acknowledgement
interval before sending a stand-alone
acknowledgement. If there are no unacknowledged
messages, the RM Destination can choose not to
send an acknowledgement.

For more detailed reference information, including descriptions of each element’s sub-elements and
attributes, please refer to http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd.

RMAssertion in rmManager Spring bean

You can configure standard WS-RM policy attributes by adding an RMAssertion within a Apache CXF
rmManager Spring bean. This is the best approach if you want to keep all of your WS-RM configuration
in the same configuration file; that is, if you want to configure Apache CXF-specific attributes and

standard WS-RM policy attributes in the same file.

For example, the configuration in Example 19.5, “Configuring WS-RM Attributes Using an RMAssertion in

an rmManager Spring Bean” shows:

® Astandard WS-RM policy attribute, BaseRetransmissioninterval, configured using an
RMAssertion within an rmManager Spring bean.

® An Apache CXF-specific RM attribute, intraMessageThreshold, configured in the same

configuration file.

Example 19.5. Configuring WS-RM Attributes Using an RMAssertion in an rmManager Spring

Bean

<beans xmins:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
xmins:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"

>

<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">

<wsrm-policy:RMAssertion>

185

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

</wsrm-policy:RMAssertion>
<wsrm-mgr:destinationPolicy>
<wsrm-mgr:acksPolicy intraMessageThreshold="0" />
</wsrm-mgr:destinationPolicy>
</wsrm-mgr:rmManager>

<wsrm-policy:BaseRetransmissioninterval Milliseconds="4000"/>
</beans>

Policy within a feature

You can configure standard WS-RM policy attributes within features, as shown in Example 19.6,
“Configuring WS-RM Attributes as a Policy within a Feature”.

Example 19.6. Configuring WS-RM Attributes as a Policy within a Feature
<xml version="1.0" encoding="UTF-8"7>
<beans xmlns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmins:wsa="http://cxf.apache.org/ws/addressing"
xmlns:wsp="http://www.w3.0rg/2006/07/ws-policy"
xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd"
xmlins:jaxws="http://cxf.apache.org/jaxws"
xsi:schemalocation="
http://www.w3.0rg/2006/07/ws-policy http://www.w3.0rg/2006/07/ws-policy.xsd
http://cxf.apache.org/ws/addressing http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<jaxws:endpoint name="{http://cxf.apache.org/greeter_control}GreeterPort"
createdFromAPI="true">
<jaxws:features>
<wsp:Policy>
<wsrm:RMAssertion xmins:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
<wsrm:Acknowledgementinterval Milliseconds="200" />
</wsrm:RMAssertion>
<wsam:Addressing xmIns:wsam="http://www.w3.0rg/2007/02/addressing/metadata">
<wsp:Policy>
<wsam:NonAnonymousResponses/>
</wsp:Policy>
</wsam:Addressing>
</wsp:Policy>
</jaxws:features>
</jaxws:endpoint>
</beans>

WSDL file
If you use the WS-Policy framework to enable WS-RM, you can configure standard WS-RM policy

attributes in a WSDL file. This is a good approach if you want your service to interoperate and use WS-
RM seamlessly with consumers deployed to other policy-aware Web services stacks.

186

CHAPTER 19. ENABLING RELIABLE MESSAGING

For an example, see the section called “WS-Policy framework: implicitly adding interceptors” where the
base retransmission interval is configured in the WSDL file.

External attachment

You can configure standard WS-RM policy attributes in an external attachment file. This is a good
approach if you cannot, or do not want to, change your WSDL file.

Example 19.7, “Configuring WS-RM in an External Attachment” shows an external attachment that
enables both WS-A and WS-RM (base retransmission interval of 30 seconds) for a specific EPR.

xmlns:wsa="http://www.w3.0rg/2005/08/addressing">
<wsp:PolicyAttachment>
<wsp:AppliesTo>
<wsa:EndpointReference>
<wsa:Address>http://localhost:9020/SoapContext/GreeterPort</wsa:Address>
</wsa:EndpointReference>
</wsp:AppliesTo>
<wsp:Policy>
<wsam:Addressing xmIns:wsam="http://www.w3.0rg/2007/02/addressing/metadata">
<wsp:Policy/>
</wsam:Addressing>
<wsrmp:RMAssertion xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
<wsrmp:BaseRetransmissioninterval Milliseconds="30000"/>
</wsrmp:RMAssertion>
</wsp:Policy>
</wsp:PolicyAttachment>

<attachments xmins:wsp="http://www.w3.0rg/2006/07/ws-policy"
</attachments>/

‘ Example 19.7. Configuring WS-RM in an External Attachment

19.5.3. WS-RM Configuration Use Cases

Overview

This subsection focuses on configuring WS-RM attributes from a use case point of view. Where an
attribute is a standard WS-RM policy attribute, defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/ namespace, only the example of setting itin an
RMAssertion within an rmManager Spring bean is shown. For details of how to set such attributes as a
policy within a feature; in a WSDL file, or in an external attachment, see Section 19.5.2, “Configuring
Standard WS-RM Policy Attributes”.
The following use cases are covered:

® Base retransmission interval

® Exponential backoff for retransmission

® Acknowledgement interval

® Maximum unacknowledged messages threshold

187

http://schemas.xmlsoap.org/ws/2005/02/rm/policy/

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

® Maximum length of an RM sequence

® Message delivery assurance policies

Base retransmission interval

The BaseRetransmissionlnterval element specifies the interval at which an RM source retransmits a
message that has not yet been acknowledged. It is defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd schema file. The default value is 3000
milliseconds.

Example 19.8, "Setting the WS-RM Base Retransmission Interval” shows how to set the WS-RM base
retransmission interval.

<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
<wsrm-policy:RMAssertion>
<wsrm-policy:BaseRetransmissioninterval Milliseconds="4000"/>
</wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>

<beans xmins:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
</beans>

‘ Example 19.8. Setting the WS-RM Base Retransmission Interval

Exponential backoff for retransmission

The ExponentialBackoff element determines if successive retransmission attempts for an
unacknowledged message are performed at exponential intervals.

The presence of the ExponentialBackoff element enables this feature. An exponential backoff ratio of
2 is used by default.

Example 19.9, "Setting the WS-RM Exponential Backoff Property” shows how to set the WS-RM
exponential backoff for retransmission.

<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
<wsrm-policy:RMAssertion>
<wsrm-policy:ExponentialBackoff="4"/>
</wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>

<beans xmins:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
</beans>

‘ Example 19.9. Setting the WS-RM Exponential Backoff Property

Acknowledgement interval

The Acknowledgementinterval element specifies the interval at which the WS-RM destination sends
asynchronous acknowledgements. These are in addition to the synchronous acknowledgements that it

188

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

CHAPTER 19. ENABLING RELIABLE MESSAGING

sends on receipt of an incoming message. The default asynchronous acknowledgement interval is 0
milliseconds. This means that if the Acknowledgementinterval is not configured to a specific value,
acknowledgements are sent immediately (that is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM destination only if both of the following conditions
are met:

® The RM destination is using a non-anonymous wsrm:acksTo endpoint.

® The opportunity to piggyback an acknowledgement on a response message does not occur
before the expiry of the acknowledgement interval.

Example 19.10, “Setting the WS-RM Acknowledgement Interval” shows how to set the WS-RM
acknowledgement interval.

<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
<wsrm-policy:RMAssertion>
<wsrm-policy:Acknowledgementinterval Milliseconds="2000"/>
</wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>

<beans xmins:wsrm-policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
</beans>

‘ Example 19.10. Setting the WS-RM Acknowledgement Interval

Maximum unacknowledged messages threshold

The maxUnacknowledged attribute sets the maximum number of unacknowledged messages that can
accrue per sequence before the sequence is terminated.

Example 19.11, “Setting the WS-RM Maximum Unacknowledged Message Threshold” shows how to set
the WS-RM maximum unacknowledged messages threshold.

<wsrm-mgr:reliableMessaging>
<wsrm-mgr:sourcePolicy>
<wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />
</wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>

<beans xmins:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
</beans>

‘ Example 19.11. Setting the WS-RM Maximum Unacknowledged Message Threshold

Maximum length of an RM sequence

The maxLength attribute sets the maximum length of a WS-RM sequence. The default value is 0, which
means that the length of a WS-RM sequence is unbound.

189

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

When this attribute is set, the RM endpoint creates a new RM sequence when the limit is reached, and
after receiving all of the acknowledgements for the previously sent messages. The new message is sent
using a newsequence.

Example 19.12, “Setting the Maximum Length of a WS-RM Message Sequence” shows how to set the
maximum length of an RM sequence.

<wsrm-mgr:reliableMessaging>
<wsrm-mgr:sourcePolicy>
<wsrm-mgr:sequenceTerminationPolicy maxLength="100" />
</wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>

<beans xmins:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
</beans>

‘ Example 19.12. Setting the Maximum Length of a WS-RM Message Sequence

Message delivery assurance policies

You can configure the RM destination to use the following delivery assurance policies:

® AtMostOnce — The RM destination delivers the messages to the application destination only
once. If a message is delivered more than once an error is raised. It is possible that some
messages in a sequence may not be delivered.

® AtLeastOnce — The RM destination delivers the messages to the application destination at
least once. Every message sent will be delivered or an error will be raised. Some messages might
be delivered more than once.

® [nOrder — The RM destination delivers the messages to the application destination in the order
that they are sent. This delivery assurance can be combined with the AtMostOnce or
AtLeastOnce assurances.

Example 19.13, “Setting the WS-RM Message Delivery Assurance Policy” shows how to set the WS-RM
message delivery assurance.

<wsrm-mgr:reliableMessaging>
<wsrm-mgr:deliveryAssurance>

<wsrm-mgr:AtLeastOnce />
</wsrm-mgr:deliveryAssurance>

</wsrm-mgr:reliableMessaging>

<beans xmins:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
</beans>

‘ Example 19.13. Setting the WS-RM Message Delivery Assurance Policy

19.6. CONFIGURING WS-RM PERSISTENCE

Overview

190

CHAPTER 19. ENABLING RELIABLE MESSAGING

The Apache CXF WS-RM features already described in this chapter provide reliability for cases such as
network failures. WS-RM persistence provides reliability across other types of failure such as an RM
source or an RM destination crash.

WS-RM persistence involves storing the state of the various RM endpoints in persistent storage. This
enables the endpoints to continue sending and receiving messages when they are reincarnated.

Apache CXF enables WS-RM persistence in a configuration file. The default WS-RM persistence store is
JDBC-based. For convenience, Apache CXF includes Derby for out-of-the-box deployment. In addition,
the persistent store is also exposed using a Java API. To implement your own persistence mechanism,
you can implement one using this API with your preferred DB.

IMPORTANT

WS-RM persistence is supported for oneway calls only, and it is disabled by default.

How it works

Apache CXF WS-RM persistence works as follows:

® At the RM source endpoint, an outgoing message is persisted before transmission. It is evicted
from the persistent store after the acknowledgement is received.

® After arecovery from crash, it recovers the persisted messages and retransmits until all the
messages have been acknowledged. At that point, the RM sequence is closed.

® At the RM destination endpoint, an incoming message is persisted, and upon a successful store,
the acknowledgement is sent. When a message is successfully dispatched, it is evicted from the
persistent store.

® After arecovery from a crash, it recovers the persisted messages and dispatches them. It also
brings the RM sequence to a state where new messages are accepted, acknowledged, and
delivered.

Enabling WS-persistence

To enable WS-RM persistence, you must specify the object implementing the persistent store for WS-
RM. You can develop your own or you can use the JDBC based store that comes with Apache CXF.

The configuration shown in Example 19.14, “Configuration for the Default WS-RM Persistence Store”
enables the JDBC-based store that comes with Apache CXF.

<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
<property name="store" ref="RMTxStore"/>

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>
</wsrm-mgr:rmManager>

‘ Example 19.14. Configuration for the Default WS-RM Persistence Store

Configuring WS-persistence

The JDBC-based store that comes with Apache CXF supports the properties shown in Table 19.4,
"JDBC Store Properties”.

191

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Table 19.4. JDBC Store Properties

Attribute Name Type Default Setting

driverClassName String org.apache.derby.jdbc.Embe
ddedDriver

userName String null

passWord String null

url String jdbc:derby:rmdb;create=true

The configuration shown in Example 19.15, “Configuring the JDBC Store for WS-RM Persistence”
enables the JDBC-based store that comes with Apache CXF, while setting the driverClassName and url
to non-default values.

<property name="driverClassName" value="com.acme.jdbc.Driver"/>
<property name="url" value="jdbc:acme:rmdb;create=true"/>

<bean id="RMTxStore" class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
</bean>

‘ Example 19.15. Configuring the JDBC Store for WS-RM Persistence

192

CHAPTER 20. ENABLING HIGH AVAILABILITY

CHAPTER 20. ENABLING HIGH AVAILABILITY

Abstract

This chapter explains how to enable and configure high availability in the Apache CXF runtime.

20.1. INTRODUCTION TO HIGH AVAILABILITY

Overview

Scalable and reliable applications require high availability to avoid any single point of failure in a
distributed system. You can protect your system from single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the same service. Together these
act as a single logical service. Clients invoke requests on the replicated service, and Apache CXF delivers
the requests to one of the member replicas. The routing to a replica is transparent to the client.

HA with static failover

Apache CXF supports high availability (HA) with static failover in which replica details are encoded in the
service WSDL file. The WSDL file contains multiple ports, and can contain multiple hosts, for the same
service. The number of replicas in the cluster remains static as long as the WSDL file remains
unchanged. Changing the cluster size involves editing the WSDL file.

20.2. ENABLING HA WITH STATIC FAILOVER

Overview
To enable HA with static failover, you must do the following:
1. Encode replica details in your service WSDL file

2. Add the clustering feature to your client configuration

Encode replica details in your service WSDL file

You must encode the details of the replicas in your cluster in your service WSDL file. Example 20.1,
“Enabling HA with Static Failover: WSDL File” shows a WSDL file extract that defines a service cluster of
three replicas.

Example 20.1. Enabling HA with Static Failover: WSDL File

wsdl:service name="ClusteredService">
9 <wsdl:port binding="tns:Greeter_SOAPBIinding" name="Replical">
<soap:address location="http://localhost:9001/SoapContext/Replical"/>
</wsdl:port>

<wsdl:port binding="tns:Greeter_SOAPBIinding" name="Replica2">

<soap:address location="http://localhost:9002/SoapContext/Replica2"/>
</wsdl:port>

193

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Q <wsdl:port binding="tns:Greeter_SOAPBIinding" name="Replica3">
<soap:address location="http://localhost:9003/SoapContext/Replica3"/>
</wsdl:port>

</wsdl:service>

The WSDL extract shown in Example 20.1, “Enabling HA with Static Failover: WSDL File” can be
explained as follows:

ﬂ Defines a service, ClusterService, which is exposed on three ports:

1. Replica1

2. Replica2

3. Replica3
9 Defines Replical to expose the ClusterService as a SOAP over HTTP endpoint on port 9001.
9 Defines Replica2 to expose the ClusterService as a SOAP over HTTP endpoint on port 9002.

Q Defines Replica3 to expose the ClusterService as a SOAP over HTTP endpoint on port 9003.

Add the clustering feature to your client configuration

In your client configuration file, add the clustering feature as shown in Example 20.2, “Enabling HA with
Static Failover: Client Configuration”.

Example 20.2. Enabling HA with Static Failover: Client Configuration

<?xml version="1.0" encoding="UTF-8"7?>
<beans xmiIns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:jaxws="http://cxf.apache.org/jaxws"
xmins:clustering="http://cxf.apache.org/clustering"
xsi:schemalocation="http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replical"
createdFromAPI="true">
<jaxws:features>
<clustering:failover/>
</jaxws:features>
</jaxws:client>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica2"
createdFromAPI="true">
<jaxws:features>
<clustering:failover/>
</jaxws:features>
</jaxws:client>

194

CHAPTER 20. ENABLING HIGH AVAILABILITY

createdFromAPI="true">
<jaxws:features>
<clustering:failover/>
</jaxws:features>
</jaxws:client>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"
</beans>

20.3. CONFIGURING HA WITH STATIC FAILOVER

Overview

By default, HA with static failover uses a sequential strategy when selecting a replica service if the
original service with which a client is communicating becomes unavailable, or fails. The sequential
strategy selects a replica service in the same sequential order every time it is used. Selection is
determined by Apache CXF's internal service model and results in a deterministic failover pattern.

Configuring a random strategy

You can configure HA with static failover to use a random strategy instead of the sequential strategy
when selecting a replica. The random strategy selects a random replica service each time a service
becomes unavailable, or fails. The choice of failover target from the surviving members in a cluster is
entirely random.

To configure the random strategy, add the configuration shown in Example 20.3, “Configuring a
Random Strategy for Static Failover” to your client configuration file.

Example 20.3. Configuring a Random Strategy for Static Failover

<beans ...>
ﬂ <bean id="Random" class="org.apache.cxf.clustering.RandomStrategy"/>

<jaxws:client name="{http://apache.org/hello_world_soap_http}Replica3"
createdFromAPI="true">
<jaxws:features>
<clustering:failover>
9 <clustering:strategy>
<ref bean="Random"/>
</clustering:strategy>
</clustering:failover>
</jaxws:features>
</jaxws:client>
</beans>

The configuration shown in Example 20.3, “Configuring a Random Strategy for Static Failover” can be
explained as follows:

ﬂ Defines a Random bean and implementation class that implements the random strategy.

195

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Q Specifies that the random strategy is used when selecting a replica.

196

CHAPTER 21. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

CHAPTER 21. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

Abstract

When all of your servers and clients are deployed within the same fabric, you can use an alternative
mechanism for implementing high availability cluster, which works by exploiting the fabric registry.
Because all the parts of the application must be deployed on the same fabric, this mechanism is suitable
for deployment on a LAN.

21.1. LOAD BALANCING CLUSTER

21.1.1. Introduction to Load Balancing

Overview

The fabric load balancing mechanism exploits the fact that fabric provides a distributed fabric registry,
which is accessible to all of the container in the fabric. This makes it possible to use the fabric registry as
a discovery mechanism for locating WS endpoints in the fabric. By storing all of the endpoint addresses
belonging to a particular cluster under the same registry node, any WS clients in the fabric can easily
discover the location of the endpoints in the cluster.

Fuse Fabric

A fabric is a distributed collection of containers that share a common database of configuration settings
(the fabric registry). Every container in the fabric has a fabric agent deployed in it, which manages the
container and redeploys applications to the container whenever a new profile is assigned to the
container (a profile is the basic deployment unit in a fabric).

Load-balancing cluster

Figure 21.1, “Fabric Load Balancing for Apache CXF" gives an overview of the fabric load balancing
mechanism for Apache CXF endpoints.

197

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Figure 21.1. Fabric Load Balancing for Apache CXF

Server 1

<jaxws:endpoint id="HTTPEndpoint"
address="http://localhost:8185/Foco" ... />

|

Server 2

<jaxws:endpoint id="HTTPEndpoint"
address="http://localhost:8186/Fo0" ... />

AN

Fabric registry publish
- D
Path Published URIs
> demo/1b http://localhost:8185/Foo -
http://localhost:8186/Foo
lookup _)

WS Client

<jaxws:client id="ClientProxyBeanID"

address="http://dummyaddress"

In this example, two WS servers are created, with the URIs, http://localhost:8185/Foo and
http://localhost:8186/Fo0. For both of these servers, the load balancer feature is configured to store
the cluster endpoints under the path, demo/lb, in the fabric registry.

Now, when the WS client starts, it is configured to look up the cluster path, demo/lb, in the fabric

registry. Because the demo/lb path is associated with multiple endpoint addresses, fabric implements a
random load balancing algorithm to choose one of the available URIs to connect to.

FabricLoadBalancerFeature

The fabric load balancer feature is implemented by the following class:

I io.fabric8.cxf.FabricLoadBalancerFeature

The FabricLoadBalancerFeature class exposes the following bean properties:

fabricPath

This property specifies a node in the fabric registry (specified relative to the base node,
/fabric/cxf/endpoints) that is used to store the data for a particular endpoint cluster.

curator
A proxy reference to the OSGi service exposed by the fabric agent (of type,

org.apache.curator.framework.CuratorFramework).

maximumConnectionTimeout

198

CHAPTER 21. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

The maximum length of time to attempt to connect to the fabric agent, specified in milliseconds.
The default is 10000 (10 seconds).

connectionRetryTime

How long to wait between connection attempts, specified in milliseconds. The default is 100.

loadBalanceStrategy

By implementing a bean of type io.fabric8.cxf.LoadBalanceStrategy and setting this property, you
can customise the load balancing algorithm used by the load balancing feature.

Prerequisites

To use the fabric load balancer feature in your application, your project must satisfy the following
prerequisites:

® the section called “"Maven dependency”.
® the section called "OSGi package import”.
® the section called "Fabric deployment”.

® the section called “Required feature”.

Maven dependency

The fabric load balancer feature requires the fabric-cxf Maven artifact. Add the following dependency
to your project's POM file:

<dependency>
<groupld>io.fabric8</groupld>
<artifactld>fabric-cxf</artifactld>
<version>6.3.0.redhat-xxx</version>
</dependency>

OSGi package import

If you are packaging your project as an OSGi bundle, you must add io.fabric8.cxf to the list of imported
packages. For example, using the Maven bundle plug-in, you can specify this package import by adding
io.fabric8.cxf to the comma-separated list in the Import-Package element, as follows:

<plugin>

<groupld>org.apache.felix</groupld>

<artifactld>maven-bundle-plugin</artifactld>

<version>2.2.0</version>

<extensions>true</extensions>

<configuration>

<instructions>

<Bundle-SymbolicName>${project.artifactld}</Bundle-SymbolicName>
<Import-Package>

io.fabric8.cxf,

*

199

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

</Import-Package>

</instructions>
</configuration>
</plugin>
Fabric deployment

When you come to deploy your application into a Red Hat JBoss Fuse container, you must deploy it into
a fabric. The fabric load balancer feature is not supported in a standalone container.

Required feature

The fabric load balancer requires the fabric-cxf Apache Karaf feature to be installed in the container. In
the context of a fabric, this means you must add the fabric-cxf feature to the relevant deployment
profile. For example, if you are using the exf-Ib-server profile to deploy a load-balancing WS server, you
can add the fabric-cxf feature by entering the following console command:

I JBossFuse:karaf@root> profile-edit -f fabric-cxf cxf-Ib-server

21.1.2. Configure the Server

Overview

To configure a WS server to use fabric load balancing, you must configure a fabric load balancer feature
and install it in the default Apache CXF bus instance. This section describes how to configure the load
balancer feature in Spring XML and in blueprint XML.

Prerequisites

For the basic prerequisites to build a fabric load-balancing WS server, see the section called
“Prerequisites”.

Blueprint XML

The following fragment from a blueprint XML file shows how to add the fabric load balancer feature,
FabricLoadBalancerFeature, to an Apache CXF bus. Any Apache CXF endpoints subsequently created
on this bus will automatically have the load-balancer feature enabled.

<blueprint xmlns="http://www.osgi.org/xmIns/blueprint/v1.0.0"

xmins:cxf="http://cxf.apache.org/blueprint/core"

<reference id="curator"
interface="org.apache.curator.framework.CuratorFramework" />

<l-- The FabricFailOverFeature will try to access other service endpoint with round rad -->
<bean id="fabricLoadBalancerFeature" class="io.fabric8.cxf.FabricLoadBalancerFeature">
<property name="curator" ref="curator" />
<property name="fabricPath" value="cxf/demo" />
</bean>

200

CHAPTER 21. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

<!-- setup the feature on the bus to help publish the services to the fabric-->
<cxf:bus bus="cx{">
<cxf:features>
<ref component-id="fabricLoadBalancerFeature"/>
</cxf:features>
</cxf:bus>

</blueprint>
The following beans are used to install the fabric load-balancer feature:

curator reference

The curator reference is a proxy of the local fabric agent, which it accesses through the
org.apache.curator.framework.CuratorFramework interface. This reference is needed in order to
integrate the load balancer feature with the underlying fabric.

FabricLoadBalancerFeature bean
The FabricLoadBalancerFeature bean is initialized with the following properties:

curator

Areference to the Apache Curator client, CuratorFramework.

fabricPath

The path of a node in the fabric registry, where the cluster data is stored (for example, the
addresses of the endpoints in the load-balancing cluster). The node path is specified relative to
the base node, /fabric/cxf/endpoints.

Apache CXF bus

The cxf:bus element installs the fabric load balancer feature in the default bus instance.

Example using Blueprint XML

Example 21.1, "WS Server with Fabric Load Balancer Feature” shows a complete Blueprint XML example
of a WS endpoint configured to use the fabric load balancing feature.

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:cxf="http://cxf.apache.org/blueprint/core"
xmins:jaxws="http://cxf.apache.org/blueprint/jaxws"
xmlns:cm="http://aries.apache.org/blueprint/xmins/blueprint-cm/v1.0.0"
xsi:schemal.ocation="
http://www.osgi.org/xmlIns/blueprint/v1.0.0
https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
http://cxf.apache.org/schemas/blueprint/core
http://cxf.apache.org/schemas/blueprint/core.xsd
http://cxf.apache.org/blueprint/jaxws
http://cxf.apache.org/blueprint/jaxws.xsd

>

| Example 21.1. WS Server with Fabric Load Balancer Feature

| <blueprint xmlns="http://www.osgi.org/xmIns/blueprint/v1.0.0"

201

https://curator.apache.org/

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

<reference id="curator" interface="org.apache.curator.framework.CuratorFramework" />

<l-- The FabricFailOverFeature will try to access other service endpoint with round rad -->
<bean id="fabicLoadBalancerFeature" class="io.fabric8.cxf.FabricLoadBalancerFeature">
<property name="curator" ref="curator" />
<property name="fabricPath" value="cxf/demo" />
</bean>

<!-- setup the feature on the bus to help publish the services to the fabric-->
<cxf:bus bus="cx{">
<cxf:features>
<ref component-id="fabicLoadBalancerFeature"/>
</cxf:features>
</cxf:bus>

<bean id="hello1" class="io.fabric8.demo.cxf.server.Hellolmpl">
<property name="hello" value="Hi"/>
</bean>

<bean id="hello2" class="io.fabric8.demo.cxf.server.Hellolmpl">
<property name="hello" value="Hello"/>
</bean>

<l--

TODO: We should use address in the form of http://$[bind.address]:$[app1.port)/server/serveri,
but currently only fuseenterprise

has appX.port system properties defined

-->

<!-- publish the service with the address of fail, cxf client will get the simulated IOException -->
<jaxws:server id="service1" serviceClass="io.fabric8.demo.cxf.Hello"
address="http://localhost:9000/server/serveri">
<jaxws:serviceBean>
<ref component-id="hello1" />
</jaxws:serviceBean>
</jaxws:server>

<jaxws:server id="service2" serviceClass="io.fabric8.demo.cxf.Hello"
address="http://localhost:9000/server/server2">
<jaxws:serviceBean>
<ref component-id="hello2" />
</jaxws:serviceBean>
</jaxws:server>

</blueprint>

The preceding Spring XML configuration consists of the following main sections:

202

® Fpabling the fabric load balancing feature —the fabric load balancing feature is installed in the

default bus instance, as previously described. In this example, the fabricPath property is set to
the value, cxf/demo.

® Creating the WS endpoints—create the WS endpoints in the usual way, using the jaxws:server

element (this can be used as an alternative to the jaxws:endpoint element). By default, this

CHAPTER 21. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

endpoint is automatically associated with the default bus instance, which has load balancing
enabled.

21.1.3. Configure the Client

Overview

To configure a WS client to use fabric load balancing, you must install the fabric load balancer feature
directly in the client proxy instance. This section describes how to configure the load balancer feature in
Blueprint XML, and by programming in Java.

Prerequisites

For the basic prerequisites to build a fabric load-balancing WS client, see the section called
"Prerequisites”.

Blueprint XML

The following fragment from a blueprint XML file shows how to add the fabric load balancer feature,
FabricLoadBalancerFeature, directly into a WS client proxy instance.

<blueprint xmlns="http://www.osgi.org/xmlIns/blueprint/v1.0.0"

xmins:jaxws="http://cxf.apache.org/blueprint/jaxws"
xmins:cxf="http://cxf.apache.org/blueprint/core”

<!-- Create a client proxy, with load balancing enabled -->
<jaxws:client id="ClientProxyBeanID"
address="http://dummyaddress"
serviceClass="SE[">
<jaxws:features>
<ref component-id="fabricLoadBalancerFeature" />
</jaxws:features>
</jaxws:client>

<reference id="curator"
interface="org.apache.curator.framework.CuratorFramework" />

<l-- The FabricFailOverFeature will try to access other service endpoint with round rad -->
<bean id="fabricLoadBalancerFeature" class="io.fabric8.cxf.FabricLoadBalancerFeature">
<property name="curator" ref="curator" />
<property name="fabricPath" value="ZKPath" />
</bean>

</blueprint>
The fabric load balancer feature is installed directly into the WS client proxy by inserting it as a child of
the jaxws:features element (or, as in this case, by inserting a bean reference to the actual instance).

The following beans are used to initialise the fabric load-balancer feature:

curator reference

203

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

The curator reference is a proxy of the local fabric agent, which it accesses through the
org.apache.curator.framework.CuratorFramework interface. This reference is needed in order to
integrate the load balancer feature with the underlying fabric.

FabricLoadBalancerFeature bean
The FabricLoadBalancerFeature bean is initialized with the following properties:

curator

A reference to the Apache Curator client, curator.

fabricPath

The path of a node in the fabric registry, where the cluster data is stored (for example, the
addresses of the endpoints in the load-balancing cluster). The node path is specified relative to
the base node, /fabric/cxf/endpoints.

Java

As an alternative to using XML configuration, you can enable the fabric load balancing feature on the
client side by programming directly in Java. The following example shows how to enable fabric load
balancing on a proxy for the Hello Web service.

/l Java
package io.fabric8.demo.cxf.client;

import org.apache.cxf.feature.AbstractFeature;

import org.apache.cxf.frontend.ClientProxyFactoryBean;
import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
import io.fabric8.cxf.FabricLoadBalancerFeature;

import io.fabric8.demo.cxf.Hello;

import java.util.ArrayList;
import java.util.List;

public class Client {
private Hello hello;

public void initializeHelloProxy() {
// The feature will try to create a zookeeper client itself
/I by checking the system property of zookeeper.url
FabricLoadBalancerFeature feature = new FabricLoadBalancerFeature();
/I Feature will use this path to locate the service
feature.setFabricPath("demo/lb");

ClientProxyFactoryBean clientFactory = new JaxWsProxyFactoryBean();
clientFactory.setServiceClass(ClientProxyFactoryBean.class);

// The address is not the actual address that the client will access
clientFactory.setAddress("http://dummyaddress”);

List<AbstractFeature> features = new ArrayList<AbstractFeature>();

features.add(feature);
// we need to setup the feature on the client factory

204

CHAPTER 21. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

clientFactory.setFeatures(features);

// Create the proxy of Hello
hello = clientFactory.create(Hello.class);

}

public static void main(String args[]) {
initializeHelloProxy();

In this example, the fabricPath property is set to the value, demo/lb (which matches the example value
used by the server in Example 21.1, “WS Server with Fabric Load Balancer Feature”).

The address that the client proxy accesses is set to a dummy value, http://dummyaddress, because this
value is not used. When the client is initialized, the load balancer feature substitutes the address value
retrieved from the demo/lb node of the fabric registry.

21.2. FAILOVER CLUSTER

Overview

A failover cluster in Fuse Fabric is based on an ordered list of WS endpoints that are registered under a
particular node in the fabric registry. A client detects the failure of a master endpoint by catching the
exception that occurs when it tries to make an invocation. When that happens, the client automatically
moves to the next available endpoint in the cluster.

Failover cluster

Figure 21.2, "Fabric Failover for Apache CXF" gives an overview of the fabric failover mechanism for
Apache CXF endpoints.

205

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Figure 21.2. Fabric Failover for Apache CXF

Server 1 (master)

(}jast:endpoint 1d="HTTPEndpoint"

NN

address="http://localhost:8185/Foo" />
Server 2 (slave) publish
<Jaxws:endpoint 1d="HTTPEndpoint" \\ s
address="http://localhost:8186/Fco" />)) \
Fabric registry publish
4 A
Path Published URIs
> demo/fo http://localhost:8185/Foo |«
http://localhost:8186/Foo |«
lookup _)
WS Client

<jaxws:client id="ClientProxyBeanID"
address="http://dummyaddress"

)

In this example, two WS servers are created, with the URIs, http://localhost:8185/Foo and
http://localhost:8186/Fo0. In both servers, the failover feature is configured to store the cluster
endpoints under the path, demo/fo, in the fabric registry. The cluster endpoints stored under demo/fo
are ordered. The first endpoint in the cluster is the master and all of the other endpoints are slaves.

The failover algorithm works as follows:

1. When the WS client starts, it is configured to look up the cluster path, demo/fo, in the fabric
registry. The failover feature initially returns the first address registered under demo/fo (the

master).

2. At some point, the master server could fail. The client determines whether the master has failed
by catching the exception that occurs when it tries to make an invocation: if the caught
exception matches one of the exceptions in a specified list (by default, just the
java.io.lOException), the master is deemed to have failed and the client now ignores the

corresponding address entry under demo/fo.

3. The client selects the next address entry under demo/fo and attempts to connect to that

server. Assuming that this server is healthy, it is effectively the new master.

4. At some point in the future, if the failed old master is restarted successfully, it creates a new
address entry under demo/fo after the existing entries, and is then available to clients, in case

the other server (or servers) fail.

FabricFailOverFeature

The fabric failover feature is implemented by the following class:

206

CHAPTER 21. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

I io.fabric8.cxf.FabricFailOverFeature

The FabricFailOverFeature class exposes the following bean properties:

fabricPath

This property specifies a node in the fabric registry (specified relative to the base node,
/fabric/cxf/endpoints) that is used to store the data for a particular endpoint cluster.

curator

A proxy reference to the OSGi service (of type,
org.apache.curator.framework.CuratorFramework) for the Apache Curator client, which is
exposed by the fabric agent.

maximumConnectionTimeout

The maximum length of time to attempt to connect to the fabric agent, specified in milliseconds.
The default is 10000 (10 seconds).

connectionRetryTime

How long to wait between connection attempts, specified in milliseconds. The default is 100.

exceptions

A semicolon-separated list of exceptions that signal to the client that a server has failed. If not set,
this property defaults to java.io.lOException.

For example, you could set the exceptions property to a value like the following:

I java.io.lOException;javax.xml.ws.soap.SOAPFaultException

Blueprint XML

The configuration of WS servers and WS clients in the failover case is similar to the load balancing case
(see Section 21.1.2, “Configure the Server” and Section 21.1.3, “Configure the Client”), except that
instead of instantiating and referencing a FabricLoadBalancerFeature bean, you must instantiate and
reference a FabricFailOverFeature bean.

In blueprint XML you can create a FabricFailOverFeature bean instance as follows:

<blueprint xmlns="http://www.osgi.org/xmIns/blueprint/v1.0.0"

xmins:cxf="http://cxf.apache.org/blueprint/core"

<!-- Reference the fabric agent -->
<reference id="curator"
interface="org.apache.curator.framework.CuratorFramework" />

<!-- Create the Fabric load balancer feature -->
<bean id="failoverFeature"
class="io.fabric8.cxf.FabricFailOverFeature">
<property name="curator" ref="curator" />

207

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

<property name="fabricPath" value="ZKPath" />
</bean>

</blueprint>

Remember to customise the value of the fabricPath property and to reference the appropriate bean ID
(failoverFeature in the preceding example).

208

APPENDIX C. APACHE CXF BINDING IDS

APPENDIX C. APACHE CXF BINDING IDS

TABLE OF BINDING IDS

Table C.1. Binding IDs for Message Bindings

Binding ID

CORBA http://cxf.apache.org/bindings/corba

HTTP/REST http://apache.org/cxf/binding/http

SOAP 1.1 http://schemas.xmlsoap.org/wsdl/soap/http

SOAP 11w/ MTOM http://schemas.xmisoap.org/wsdl/soap/http?
mtom=true

SOAP 12 http://www.w3.0rg/2003/05/soap/bindings/HT
TP/

SOAP 12w/ MTOM http://www.w3.0rg/2003/05/soap/bindings/HT

TP/?mtom=true

XML http://cxf.apache.org/bindings/xformat

209

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

APPENDIX D. USING THE MAVEN OSGI TOOLING

Abstract

Manually creating a bundle, or a collection of bundles, for a large project can be cumbersome. The
Maven bundle plug-in makes the job easier by automating the process and providing a number of
shortcuts for specifying the contents of the bundle manifest.

D.1. THE MAVEN BUNDLE PLUG-IN

The Red Hat JBoss Fuse OSGi tooling uses the Maven bundle plug-in from Apache Felix. The bundle
plug-in is based on the bnd tool from Peter Kriens. It automates the construction of OSGi bundle
manifests by introspecting the contents of the classes being packaged in the bundle. Using the
knowledge of the classes contained in the bundle, the plug-in can calculate the proper values to
populate the Import-Packages and the Export-Package properties in the bundle manifest. The plug-in
also has default values that are used for other required properties in the bundle manifest.

To use the bundle plug-in, do the following:
1. Add the bundle plug-in to your project's POM file.

2. Configure the plug-in to correctly populate your bundle's manifest.

D.2. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT

Overview

A Maven project for building an OSGi bundle can be a simple single level project. It does not require any
sub-projects. However, it does require that you do the following:

1. Add the bundle plug-in to your POM.

2. Instruct Maven to package the results as an OSGi bundle.

NOTE
There are several Maven archetypes you can use to set up your project with the
appropriate settings.

Directory structure

A project that constructs an OSGi bundle can be a single level project. It only requires that you have a
top-level POM file and a src folder. As in all Maven projects, you place all Java source code in the
src/java folder, and you place any non-Java resources in the src/resources folder.

Non-Java resources include Spring configuration files, JBI endpoint configuration files, and WSDL
contracts.

210

https://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Bnd/Bnd

APPENDIX D. USING THE MAVEN OSGI TOOLING

NOTE

Red Hat JBoss Fuse OSGi projects that use Apache CXF, Apache Camel, or another
Spring configured bean also include a beans.xml file located in the
src/resources/META-INF/spring folder.

Adding a bundle plug-in

Before you can use the bundle plug-in you must add a dependency on Apache Felix. After you add the
dependency, you can add the bundle plug-in to the plug-in portion of the POM.

Example D.1, “Adding an OSGi bundle plug-in to a POM" shows the POM entries required to add the
bundle plug-in to your project.

Example D.1. Adding an OSGi bundle plug-in to a POM

<dependencies>
<dependency>
<groupld>org.apache.felix</groupld>
<artifactld>org.osgi.core</artifactld>
<version>1.0.0</version>
</dependency>

</dependencies>

<build>
<plugins>
<plugin>
<groupld>org.apache.felix</groupld>
<artifactld>maven-bundle-plugin</artifactld>
<configuration>
<instructions>
9 <Bundle-SymbolicName>${pom.artifactld}</Bundle-SymbolicName>
Q <Ilmport-Package>*,org.apache.camel.osgi</Import-Package>
<Private-Package>org.apache.servicemix.examples.camel</Private-Package>
</instructions>
</configuration>
</plugin>
</plugins>
</build>

The entries in Example D.1, “Adding an OSGi bundle plug-in to a POM"” do the following:
ﬂ Adds the dependency on Apache Felix
9 Adds the bundle plug-in to your project
9 Configures the plug-in to use the project's artifact ID as the bundle's symbolic name

Q Configures the plug-in to include all Java packages imported by the bundled classes; also imports
the org.apache.camel.osgi package

21

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

a Configures the plug-in to bundle the listed class, but not to include them in the list of exported
packages

NOTE

Edit the configuration to meet the requirements of your project.

For more information on configuring the bundle plug-in, see Section D.3, “Configuring the Bundle Plug-
In”.

Activating a bundle plug-in

To have Maven use the bundle plug-in, instruct it to package the results of the project as a bundle. Do
this by setting the POM file's packaging element to bundle.

Useful Maven archetypes

There are several Maven archetypes available to generate a project that is preconfigured to use the
bundle plug-in:

® the section called “Spring OSGi archetype”
® the section called "Apache CXF code-first archetype”
® the section called "Apache CXF wsdl-first archetype”

® the section called "Apache Camel archetype”

Spring OSGi archetype

The Spring OSGi archetype creates a generic project for building an OSGi project using Spring DM, as
shown:

I org.springframework.osgi/spring-bundle-osgi-archetype/1.1.2
You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupld=org.springframework.osgi -DarchetypeArtifactld=spring-
osgi-bundle-archetype -DarchetypeVersion=1.12 -Dgroupld=groupld -Dartifactid=artifactld -
Dversion=version

Apache CXF code-first archetype

The Apache CXF code-first archetype creates a project for building a service from Java, as shown:
I org.apache.servicemix.tooling/servicemix-osgi-cxf-code-first-archetype/2008.01.0.3-fuse

You invoke the archetype using the following command:

212

APPENDIX D. USING THE MAVEN OSGI TOOLING

mvn archetype:create -DarchetypeGroupld=org.apache.servicemix.tooling -
DarchetypeAtrtifactld=spring-osgi-bundle-archetype -DarchetypeVersion=2008.01.0.3-fuse -
Dgroupld=groupld -Dartifactld=artifactld -Dversion=version

Apache CXF wsdl-first archetype

The Apache CXF wsdl-first archetype creates a project for creating a service from WSDL, as shown:
I org.apache.servicemix.tooling/servicemix-osgi-cxf-wsdl-first-archetype/2008.01.0.3-fuse
You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupld=org.apache.servicemix.tooling -
DarchetypeAtrtifactld=servicemix-osgi-cxf-wsdl-first-archetype -DarchetypeVersion=2008.01.0.3-fuse
-Dgroupld=groupld -Dartifactld=artifactld -Dversion=version

Apache Camel archetype

The Apache Camel archetype creates a project for building a route that is deployed into JBoss Fuse, as
shown:

I org.apache.servicemix.tooling/servicemix-osgi-camel-archetype/2008.01.0.3-fuse
You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupld=org.apache.servicemix.tooling -
DarchetypeAtrtifactld=servicemix-osgi-camel-archetype -DarchetypeVersion=2008.01.0.3-fuse -
Dgroupld=groupld -Dartifactld=artifactld -Dversion=version

D.3. CONFIGURING THE BUNDLE PLUG-IN

Overview

A bundle plug-in requires very little information to function. All of the required properties use default
settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will probably want to modify some
of the values. You can specify most of the properties inside the plug-in's instructions element.

Configuration properties

Some of the commonly used configuration properties are:
® Bundle-SymbolicName
® Bundle-Name
® Bundle-Version

® Export-Package

213

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

® Private-Package

® |mport-Package

Setting a bundle's symbolic name

By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupl/d +"." +
artifactld, with the following exceptions:

e |f groupl/d has only one section (no dots), the first package name with classes is returned.

For example, if the group Id is commons-logging:commons-logging, the bundle's symbolic
name is org.apache.commons.logging.

e |f artifactl/d is equal to the last section of groupld, then groupldis used.

For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven,
the bundle's symbolic name is org.apache.maven.

e |f artifactld starts with the last section of groupld, that portion is removed.

For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven-
core, the bundle's symbolic name is org.apache.maven.core.

To specify your own value for the bundle's symbolic name, add a Bundle-SymbolicName child in the
plug-in's instructions element, as shown in Example D.2.

<artifactld>maven-bundle-plugin</artifactld>

<configuration>

<instructions>
<Bundle-SymbolicName>${project.artifactld}</Bundle-SymbolicName>

</instructions>
</configuration>

<plugin>
<groupld>org.apache.felix</groupld>
</plugin>

| Example D.2. Setting a bundle's symbolic name

Setting a bundle's name

By default, a bundle's name is set to ${project.name}.

To specify your own value for the bundle's name, add a Bundle-Name child to the plug-in's instructions
element, as shown in Example D.3.

<artifactld>maven-bundle-plugin</artifactld>
<configuration>

Example D.3. Setting a bundle's name
<instructions>

<plugin>
<groupld>org.apache.felix</groupld>

214

</instructions>
</configuration>

<Bundle-Name>JoeFred</Bundle-Name>
</plugin>

Setting a bundle's version

APPENDIX D. USING THE MAVEN OSGI TOOLING

By default, a bundle's version is set to ${project.version}. Any dashes (-) are replaced with dots (.) and
the number is padded up to four digits. For example, 4.2-SNAPSHOT becomes 4.2.0.SNAPSHOT.

To specify your own value for the bundle's version, add a Bundle-Version child to the plug-in's

instructions element, as shown in Example D.4.
Example D.4. Setting a bundle's version
<plugin>
<groupld>org.apache.felix</groupld>
<artifactld>maven-bundle-plugin</artifactld>
<configuration>
<instructions>

<Bundle-Version>1.0.3.1</Bundle-Version>
</instructions>

</configuration>
</plugin>

Specifying exported packages

By default, the OSGi manifest's Export-Package list is populated by all of the packages in your local
Java source code (under sre/main/java), except for the deault package, ., and any packages containing

.impl or .internal.

IMPORTANT

If you use a Private-Package element in your plug-in configuration and you do not
specify a list of packages to export, the default behavior includes only the packages listed
in the Private-Package element in the bundle. No packages are exported.

The default behavior can result in very large packages and in exporting packages that should be kept
private. To change the list of exported packages you can add an Export-Package child to the plug-in's

instructions element.

The Export-Package element specifies a list of packages that are to be included in the bundle and that
are to be exported. The package names can be specified using the * wildcard symbol. For example, the
entry com.fuse.demo.* includes all packages on the project's classpath that start with com.fuse.demo.

You can specify packages to be excluded be prefixing the entry with !. For example, the entry
lcom.fuse.demo.private excludes the package com.fuse.demo.private.

215

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

When excluding packages, the order of entries in the list is important. The list is processed in order from
the beginning and any subsequent contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except the package
com.fuse.demo.private, list the packages using:

I lcom.fuse.demo.private,com.fuse.demo.*

However, if you list the packages using com.fuse.demo.* lcom.fuse.demo.private, then
com.fuse.demo.private is included in the bundle because it matches the first pattern.

Specifying private packages

If you want to specify a list of packages to include in a bundle without exporting them, you can add a
Private-Package instruction to the bundle plug-in configuration. By default, if you do not specify a
Private-Package instruction, all packages in your local Java source are included in the bundle.

IMPORTANT

If a package matches an entry in both the Private-Package element and the Export-
Package element, the Export-Package element takes precedence. The package is
added to the bundle and exported.

The Private-Package element works similarly to the Export-Package element in that you specify a list
of packages to be included in the bundle. The bundle plug-in uses the list to find all classes on the
project's classpath that are to be included in the bundle. These packages are packaged in the bundle, but
not exported (unless they are also selected by the Export-Package instruction).

Example D.5 shows the configuration for including a private package in a bundle

<artifactld>maven-bundle-plugin</artifactld>

<configuration>

<instructions>
<Private-Package>org.apache.cxf.wsdIFirst.impl</Private-Package>

</instructions>
</configuration>

<plugin>
<groupld>org.apache.felix</groupld>
</plugin>

| Example D.5. Including a private package in a bundle

Specifying imported packages

By default, the bundle plug-in populates the OSGi manifest's Import-Package property with a list of all
the packages referred to by the contents of the bundle.

While the default behavior is typically sufficient for most projects, you might find instances where you

want to import packages that are not automatically added to the list. The default behavior can also
result in unwanted packages being imported.

216

APPENDIX D. USING THE MAVEN OSGI TOOLING

To specify a list of packages to be imported by the bundle, add an Import-Package child to the plug-in's
instructions element. The syntax for the package list is the same as for the Export-Package element
and the Private-Package element.

IMPORTANT

When you use the Import-Package element, the plug-in does not automatically scan the
bundle's contents to determine if there are any required imports. To ensure that the
contents of the bundle are scanned, you must place an * as the last entry in the package
list.

Example D.6 shows the configuration for specifying the packages imported by a bundle

Example D.6. Specifying the packages imported by a bundle
<plugin>
<groupld>org.apache.felix</groupld>
<artifactld>maven-bundle-plugin</artifactld>

<configuration>
<instructions>
<Import-Package>javax.jws,

javax.wsdl,
org.apache.cxf.bus,
org.apache.cxf.bus.spring,
org.apache.cxf.bus.resource,
org.apache.cxf.configuration.spring,
org.apache.cxf.resource,
org.springframework.beans.factory.config,

</Import-Package>
</instructions>

</configuration>
</plugin>

More information

For more information on configuring a bundle plug-in, see:
® "Managing OSGi Dependencies”
® Apache Felix documentation

® Peter Kriens' aQute Software Consultancy web site

217

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.3/html/Managing_OSGi_Dependencies/
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

PART V. DEVELOPING APPLICATIONS USING JAX-WS

Abstract

This guide describes how to develop Web services using the standard JAX-WS APIs.

218

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

Abstract

There are many instances where you have Java code that already implements a set of functionality that
you want to expose as part of a service oriented application. You may also simply want to avoid using
WSDL to define your interface. Using JAX-WS annotations, you can add the information required to
service enable a Java class. You can also create a Service Endpoint Interface (SEI) that can be used in
place of a WSDL contract. If you want a WSDL contract, Apache CXF provides tools to generate a
contract from annotated Java code.

22.1. INTRODUCTION TO JAX-WS SERVICE DEVELOPMENT

To create a service starting from Java you must do the following:

1. Create a Service Endpoint Interface (SEI) that defines the methods you want to expose as a
service.

NOTE

You can work directly from a Java class, but working from an interface is the
recommended approach. Interfaces are better suited for sharing with the
developers who are responsible for developing the applications consuming your
service. The interface is smaller and does not provide any of the service's
implementation details.

2. Add the required annotations to your code.

3. Generate the WSDL contract for your service.

e NOTE
If you intend to use the SEI as the service's contract, it is not necessary to
i generate a WSDL contract.

4. Publish the service as a service provider.

22.2. CREATING THE SEI

Overview

The service endpoint interface (SEI) is the piece of Java code that is shared between a service
implementation and the consumers that make requests on that service. The SEI defines the methods
implemented by the service and provides details about how the service will be exposed as an endpoint.
When starting with a WSDL contract, the SEl is generated by the code generators. However, when
starting from Java, it is the developer's responsibility to create the SEI.

There are two basic patterns for creating an SEI:

® Green field development — In this pattern, you are developing a new service without any existing
Java code or WSDL. It is best to start by creating the SEI. You can then distribute the SEI to any

219

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

developers that are responsible for implementing the service providers and consumers that use
the SEI.

NOTE
The recommended way to do green field service development is to start by

creating a WSDL contract that defines the service and its interfaces. See
Chapter 24, A Starting Point WSDL Contract.

-

® Service enablement — In this pattern, you typically have an existing set of functionality that is
implemented as a Java class, and you want to service enable it. This means that you must do
two things:

1. Create an SEl that contains only the operations that are going to be exposed as part of the
service.

2. Modify the existing Java class so that it implements the SEI.

NOTE

Although you can add the JAX-WS annotations to a Java class, it is not
recommended.

Writing the interface

The SEl is a standard Java interface. It defines a set of methods that a class implements. It can also
define a number of member fields and constants to which the implementing class has access.

In the case of an SEl the methods defined are intended to be mapped to operations exposed by a
service. The SEl corresponds to a wsdl:portType element. The methods defined by the SEI correspond
to wsdl:operation elements in the wsdl:portType element.

NOTE

JAX-WS defines an annotation that allows you to specify methods that are not exposed
as part of a service. However, the best practice is to leave those methods out of the SEI.

Example 22.1, "Simple SEI” shows a simple SEI for a stock updating service.

Example 22.1. Simple SEI
package com.fusesource.demo;
public interface quoteReporter

{
public Quote getQuote(String ticker);
}

Implementing the interface

220

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

Because the SEl is a standard Java interface, the class that implements it is a standard Java class. If you
start with a Java class you must modify it to implement the interface. If you start with the SEI, the
implementation class implements the SEI.

Example 22.2, “Simple Implementation Class” shows a class for implementing the interface in
Example 22.1, "Simple SEI”.

Example 22.2. Simple Implementation Class
package com.fusesource.demo;
import java.util.”;
public class stockQuoteReporter implements quoteReporter

{
public Quote getQuote(String ticker)
{

Quote retVal = new Quote();
retVal.setID(ticker);

retVal.setVal(Board.check(ticker));l 1]
Date retDate = new Date();
retVal.setTime(retDate.toString());
return(retVal);

}

22.3. ANNOTATING THE CODE

22.3.1. Overview of JAX-WS Annotations

The JAX-WS annotations specify the metadata used to map the SEI to a fully specified service
definition. Among the information provided in the annotations are the following:

® The target namespace for the service.

® The name of the class used to hold the request message
® The name of the class used to hold the response message
e |f an operation is a one way operation

® The binding style the service uses

® The name of the class used for any custom exceptions

® The namespaces under which the types used by the service are defined

221

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

NOTE

Most of the annotations have sensible defaults and it is not necessary to provide values
for them. However, the more information you provide in the annotations, the better your
service definition is specified. A well-specified service definition increases the likelihood
that all parts of a distributed application will work together.

22.3.2. Required Annotations

Overview

In order to create a service from Java code you are only required to add one annotation to your code.
You must add the @WebService annotation on both the SEl and the implementation class.

The @WebService annotation

The @WebService annotation is defined by the javax.jws.WebService interface and it is placed on an
interface or a class that is intended to be used as a service. @WebService has the properties described
in Table 22.1, "@WebService Properties”

Table 22.1. @WebService Properties

Property Description

name Specifies the name of the service interface. This
property is mapped to the hame attribute of the
wsdl:portType element that defines the service's
interface in a WSDL contract. The defaultis to
append PortType to the name of the
implementation class. [a]

targetNamespace Specifies the target namespace where the service is
defined. If this property is not specified, the target
namespace is derived from the package name.

serviceName Specifies the name of the published service. This
property is mapped to the hame attribute of the
wsdl:service element that defines the published
service. The default is to use the name of the
service's implementation class. [a]

wsdlLocation Specifies the URL where the service's WSDL contract
is stored. This must be specified using a relative URL.
The default is the URL where the service is deployed.

endpointinterface Specifies the full name of the SEI that the
implementation class implements. This property is
only specified when the attribute is used on a service
implementation class.

222

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

Property Description

portName Specifies the name of the endpoint at which the
service is published. This property is mapped to the
name attribute of thewsdl:port element that
specifies the endpoint details for a published service.
The default is the append Port to the name of the
service's implementation class.[a]

[a] When you generate WSDL from an SEl the interface’s name is used in place of the implementation class' name.

NOTE
It is not necessary to provide values for any of the @WebService annotation's
- properties. However, it is recommended that you provide as much information as you can.
Annotating the SEI

The SEl requires that you add the @WebService annotation. Because the SEl is the contract that
defines the service, you should specify as much detail as possible about the service in the
@WebService annotation's properties.

Example 22.3, “Interface with the @WebService Annotation” shows the interface defined in
Example 22.1, "Simple SEI” with the @WebService annotation.

Example 22.3. Interface with the @WebService Annotation

package com.fusesource.demo;
import javax.jws.*;

WebService(name="quoteUpdater",
9 targetNamespace="http:\\demos.redhat.com",
serviceName="updateQuoteService",
Q wsdlLocation="http:\\demos.redhat.com\quoteExampleService?wsdl",
portName="updateQuotePort")
public interface quoteReporter
{
public Quote getQuote(String ticker);

}

The @WebService annotation in Example 22.3, “Interface with the @WebService Annotation” does the
following:

ﬂ Specifies that the value of the name attribute of the wsdl:portType element defining the service
interface is quoteUpdater.

9 Specifies that the target namespace of the service is http:\\demos.redhat.com.

9 Specifies that the value of the name of the wsdl:service element defining the published service is
updateQuoteService.

223

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Q Specifies that the service will publish its WSDL contract at
http:\\demos.redhat.com\quoteExampleService?wsdI.

6 Specifies that the value of the name attribute of the wsdl:port element defining the endpoint
exposing the service is updateQuotePort.

Annotating the service implementation

In addition to annotating the SEI with the @WebService annotation, you also must annotate the service
implementation class with the @WebService annotation. When adding the annotation to the service
implementation class you only need to specify the endpointinterface property. As shown in

Example 22.4, “Annotated Service Implementation Class” the property must be set to the full name of
the SEI.

public class stockQuoteReporter implements quoteReporter

{
public Quote getQuote(String ticker)

{

package org.eric.demo;

import javax.jws.*;

@WebService(endpointinterface="com.fusesource.demo.quoteReporter")
}

‘ Example 22.4. Annotated Service Implementation Class

22.3.3. Optional Annotations

Abstract

While the @WebService annotation is sufficient for service enabling a Java interface or a Java class, it
does not fully describe how the service will be exposed as a service provider. The JAX-WS programming
model uses a number of optional annotations for adding details about your service, such as the binding it
uses, to the Java code. You add these annotations to the service's SEI.

The more details you provide in the SEI the easier it is for developers to implement applications that can
use the functionality it defines. It also makes the WSDL documents generated by the tools more
specific.

22.3.3.1. Defining the Binding Properties with Annotations

Overview

If you are using a SOAP binding for your service, you can use JAX-WS annotations to specify a number
of the bindings properties. These properties correspond directly to the properties you can specify in a
service's WSDL contract. Some of the settings, such as the parameter style, can restrict how you
implement a method. These settings can also effect which annotations can be used when annotating
method parameters.

224

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

The @SOAPBIinding annotation

The @SOAPBInding annotation is defined by the javax.jws.soap.SOAPBinding interface. It provides
details about the SOAP binding used by the service when it is deployed. If the @SOAPBinding
annotation is not specified, a service is published using a wrapped doc/literal SOAP binding.

You can put the @SOAPBInding annotation on the SEl and any of the SEI's methods. When it is used
on a method, setting of the method's @SOAPBIinding annotation take precedence.

Table 22.2, "@SOAPBinding Properties” shows the properties for the @SOAPBinding annotation.

Table 22.2. @SOAPBinding Properties

Property Values

style Style.DOCUMENT (default)
Style.RPC

use Use.LITERAL (default)
Use.ENCODED!?]

parameterSty|e [b] Pal‘ameteI‘Style.BARE
ParameterStyle. WRAPPED
(default)

Description

Specifies the style of the SOAP
message. If RPC style is specified,
each message part within the
SOAP body is a parameter or
return value and appears inside a
wrapper element within the
soap:body element. The
message parts within the wrapper
element correspond to operation
parameters and must appear in
the same order as the parameters
in the operation. If DOCUMENT
style is specified, the contents of
the SOAP body must be a valid
XML document, but its form is not
as tightly constrained.

Specifies how the data of the
SOAP message is streamed.

Specifies how the method
parameters, which correspond to
message parts in a WSDL
contract, are placed into the
SOAP message body. If BARE is
specified, each parameter is
placed into the message body as
a child element of the message
root. If WRAPPED is specified,
all of the input parameters are
wrapped into a single element on
a request message and all of the
output parameters are wrapped
into a single element in the
response message.

225

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Property Values Description

[a]Us€.ENCODED is not currently supported.

[b] If you set the style to RPC you must use the WRAPPED parameter style.

Document bare style parameters

Document bare style is the most direct mapping between Java code and the resulting XML
representation of the service. When using this style, the schema types are generated directly from the
input and output parameters defined in the operation's parameter list.

You specify you want to use bare document\literal style by using the @SOAPBinding annotation with
its style property set to Style.DOCUMENT, and its parameterStyle property set to
ParameterStyle.BARE.

To ensure that an operation does not violate the restrictions of using document style when using bare
parameters, your operations must adhere to the following conditions:

® The operation must have no more than one input or input/output parameter.

e |f the operation has a return type other than void, it must not have any output or input/output
parameters.

e |f the operation has a return type of void, it must have no more than one output or input/output
parameter.

NOTE

Any parameters that are placed in the SOAP header using the @WebParam annotation
or the @WebResult annotation are not counted against the number of allowed
parameters.

Document wrapped parameters

Document wrapped style allows a more RPC like mapping between the Java code and the resulting XML
representation of the service. When using this style, the parameters in the method's parameter list are
wrapped into a single element by the binding. The disadvantage of this is that it introduces an extra-
layer of indirection between the Java implementation and how the messages are placed on the wire.

To specify that you want to use wrapped document\literal style use the @SOAPBinding annotation
with its style property set to Style.DOCUMENT, and its parameterStyle property set to
ParameterStyle. WRAPPED.

You have some control over how the wrappers are generated by using the the section called “The
@RequestWrapper annotation” annotation and the the section called “The @ResponseWrapper
annotation” annotation.

Example

Example 22.5, “Specifying a Document Bare SOAP Binding with the SOAP Binding Annotation” shows
an SEI that uses document bare SOAP messages.

226

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

import javax.jws.soap.*;
import javax.jws.soap.SOAPBInding.*;

@WebService(name="quoteReporter")
@SOAPBInding(parameterStyle=ParameterStyle.BARE)
public interface quoteReporter

{

package org.eric.demo;
import javax.jws.*;
}

‘ Example 22.5. Specifying a Document Bare SOAP Binding with the SOAP Binding Annotation

22.3.3.2. Defining Operation Properties with Annotations

Overview

When the runtime maps your Java method definitions into XML operation definitions it provides details
such as:

® What the exchanged messages look like in XML
e |f the message can be optimized as a one way message

® The namespaces where the messages are defined

The @WebMethod annotation

The @WebMethod annotation is defined by the javax.jws.WebMethod interface. It is placed on the
methods in the SEI. The @WebMethod annotation provides the information that is normally
represented in the wsdl:operation element describing the operation to which the method is associated.

Table 22.3, "“@WebMethod Properties” describes the properties of the @WebMethod annotation.

Table 22.3. @WebMethod Properties

Property Description

operationName Specifies the value of the associated
wsdl:operation element'sname. The default value
is the name of the method.

action Specifies the value of the soapAction attribute of
the soap:operation element generated for the
method. The default value is an empty string.

exclude Specifies if the method should be excluded from the
service interface. The default is false.

227

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

The @RequestWrapper annotation

The @RequestWrapper annotation is defined by the javax.xml.ws.RequestWrapper interface. It is
placed on the methods in the SEI. The @RequestWrapper annotation specifies the Java class
implementing the wrapper bean for the method parameters of the request message starting a message
exchange. It also specifies the element names, and namespaces, used by the runtime when marshalling
and unmarshalling the request messages.

Table 22.4, "@RequestWrapper Properties” describes the properties of the @RequestWrapper
annotation.

Table 22.4. @RequestWrapper Properties

Property Description

localName Specifies the local name of the wrapper element in
the XML representation of the request message. The
default value is either the name of the method, or the
value of the the section called “The @WebMethod
annotation” annotation's operationName property.

targetNamespace Specifies the namespace under which the XML
wrapper element is defined. The default value is the
target namespace of the SEI.

className Specifies the full name of the Java class that
implements the wrapper element.

NOTE

Only the className property is required.

IMPORTANT

If the method is also annotated with the @SOAPBInding annotation, and its
parameterStyle property is set to ParameterStyle.BARE, this annotation is ignored.

The @ResponseWrapper annotation

The @ResponseWrapper annotation is defined by the javax.xml.ws.ResponseWrapper interface. It is
placed on the methods in the SEI. The @ResponseWrapper specifies the Java class implementing the
wrapper bean for the method parameters in the response message in the message exchange. It also
specifies the element names, and namespaces, used by the runtime when marshaling and unmarshalling
the response messages.

Table 22.5, "@ResponseWrapper Properties” describes the properties of the @ResponseWrapper
annotation.

Table 22.5. @ResponseWrapper Properties

Property Description

228

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

Property Description

localName Specifies the local name of the wrapper element in
the XML representation of the response message.
The default value is either the name of the method
with Response appended, or the value of thethe
section called “The @WebMethod annotation”
annotation's operationName property with
Response appended.

targetNamespace Specifies the namespace where the XML wrapper
element is defined. The default value is the target
namespace of the SEI.

className Specifies the full name of the Java class that
implements the wrapper element.

NOTE

Only the className property is required.

IMPORTANT

If the method is also annotated with the @SOAPBInding annotation and its
parameterStyle property is set to ParameterStyle.BARE, this annotation is ignored.

The @WebFault annotation

The @WebFault annotation is defined by the javax.xml.ws.WebFault interface. It is placed on
exceptions that are thrown by your SEI. The @WebFault annotation is used to map the Java exception
to a wsdl:fault element. This information is used to marshall the exceptions into a representation that
can be processed by both the service and its consumers.

Table 22.6, “@WebFault Properties” describes the properties of the @WebFault annotation.

Table 22.6. @WebFault Properties
Property Description
name Specifies the local name of the fault element.

targetNamespace Specifies the namespace under which the fault
element is defined. The default value is the target
namespace of the SEI.

faultName Specifies the full name of the Java class that
implements the exception.

IMPORTANT

The name property is required.

229

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

The @Oneway annotation

The @Oneway annotation is defined by the javax.jws.Oneway interface. It is placed on the methods in
the SEI that will not require a response from the service. The @Oneway annotation tells the run time
that it can optimize the execution of the method by not waiting for a response and by not reserving any
resources to process a response.

This annotation can only be used on methods that meet the following criteria:
® They return void
® They have no parameters that implement the Holder interface

® They do not throw any exceptions that can be passed back to a consumer

Example

Example 22.6, "SEl with Annotated Methods” shows an SEI with its methods annotated.

Example 22.6. SEl with Annotated Methods
package com.fusesource.demo;
import javax.jws.*;
import javax.xml.ws.*;
@WebService(name="quoteReporter")

public interface quoteReporter
{
@WebMethod(operationName="getStockQuote")
@RequestWrapper(targetNamespace="http://demo.redhat.com/types",
className="java.lang.String")
@ResponseWrapper(targetNamespace="http://demo.redhat.com/types",
className="org.eric.demo.Quote")
public Quote getQuote(String ticker);

}

22.3.3.3. Defining Parameter Properties with Annotations

Overview

The method parameters in the SEI correspond to the wsdl:message elements and their wsdl:part
elements. JAX-WS provides annotations that allow you to describe the wsdl:part elements that are
generated for the method parameters.

The @WebParam annotation

The @WebParam annotation is defined by the javax.jws.WebParam interface. It is placed on the
parameters of the methods defined in the SEI. The @WebParam annotation allows you to specify the
direction of the parameter, if the parameter will be placed in the SOAP header, and other properties of
the generated wsdl:part.

Table 22.7, "@WebParam Properties” describes the properties of the @WebParam annotation.

230

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

Table 22.7. @WebParam Properties

Property Values Description

name Specifies the name of the
parameter as it appears in the
generated WSDL document. For
RPC bindings, this is the name of
the wsdl:part representing the
parameter. For document
bindings, this is the local name of
the XML element representing
the parameter. Per the JAX-WS
specification, the default is argN,
where Nis replaced with the zero-
based argument index (i.e., argO,
argl, etc.).

targetNamespace Specifies the namespace for the
parameter. It is only used with
document bindings where the
parameter maps to an XML
element. The default is to use the
service's namespace.

mode Mode.IN (default)t?! Specifies the direction of the
parameter.
Mode.OUT
Mode.INOUT
header false (default) Specifies if the parameter is
passed as part of the SOAP
true header.
partName Specifies the value of thename

attribute of the wsdl:part
element for the parameter. This
property is used for document
style SOAP bindings.

[a] Any parameter that implements the Holder interface is mapped to Mode.INOUT by default.

The @WebResult annotation

The @WebResult annotation is defined by the javax.jws.WebResult interface. It is placed on the
methods defined in the SEI. The @WebResult annotation allows you to specify the properties of the
wsdl:part that is generated for the method's return value.

Table 22.8, "@WebResult Properties” describes the properties of the @WebResult annotation.

Table 22.8. @WebResult Properties

231

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Property Description

name Specifies the name of the return value as it appears
in the generated WSDL document. For RPC
bindings, this is the name of the wsdl:part
representing the return value. For document
bindings, this is the local name of the XML element
representing the return value. The default value is
return.

targetNamespace Specifies the namespace for the return value. It is
only used with document bindings where the return
value maps to an XML element. The default is to use
the service's namespace.

header Specifies if the return value is passed as part of the
SOAP header.
partName Specifies the value of thename attribute of the

wsdl:part element for the return value. This
property is used for document style SOAP bindings.

Example

Example 22.7, “Fully Annotated SEI” shows an SEI that is fully annotated.
@WebService(targetNamespace="http://demo.redhat.com",
name="quoteReporter")

Example 22.7. Fully Annotated SEI
package com.fusesource.demo;
import javax.jws.*;
import javax.xml.ws.*;
import javax.jws.soap.”;
import javax.jws.soap.SOAPBInding.*;
@SOAPBInding(style=Style.RPC, use=Use.LITERAL)

import javax.jws.WebParam.*;
public interface quoteReporter
{
@WebMethod(operationName="getStockQuote")
@RequestWrapper(targetNamespace="http://demo.redhat.com/types",
className="java.lang.String")
@ResponseWrapper(targetNamespace="http://demo.redhat.com/types",
className="org.eric.demo.Quote")
@WebResult(targetNamespace="http://demo.redhat.com/types",
name="updatedQuote")
public Quote getQuote(
@WebParam(targetNamespace="http://demo.redhat.com/types",
name="stockTicker",
mode=Mode.IN)

232

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

String ticker
);
}

22.3.4. Apache CXF Annotations
22.3.4.1. WSDL Documentation

@WSDLDocumentation annotation

The @WSDLDocumentation annotation is defined by the
org.apache.cxf.annotations.WSDLDocumentation interface. It can be placed on the SEI or the SEI
methods.

This annotation enables you to add documentation, which will then appear within wsdl:documentation
elements after the SEl is converted to WSDL. By default, the documentation elements appear inside the
port type, but you can specify the placement property to make the documentation appear at other
locations in the WSDL file. Table 22.9, "@WSDLDocumentation properties” shows the properties
supported by the @WSDLDocumentation annotation.

Table 22.9. @ WSDLDocumentation properties

Property Description

value (Required) A string containing the documentation
text.
placement (Optional) Specifies where in the WSDL file this

documentation is to appear. For the list of possible
placement values, see the section called "Placement
in the WSDL contract”.

faultClass (Optional) If the placement is set to be
FAULT _MESSAGE,
PORT_TYPE_OPERATION_FAULT, or
BINDING_OPERATION_FAULT, you must also
set this property to the Java class that represents
the fault.

@WSDLDocumentationCollection annotation

The @WSDLDocumentationCollection annotation is defined by the
org.apache.cxf.annotations.WSDLDocumentationCollection interface. It can be placed on the SEI or
the SEI methods.

This annotation is used to insert multiple documentation elements at a single placement location or at
various placement locations.

Placement in the WSDL contract

233

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

| o specity where the documentation should appear in the WSDL contract, you can specity the
placement property, which is of type WSDLDocumentation.Placement. The placement can have one
of the following values:

e WSDLDocumentation.Placement.BINDING

e WSDLDocumentation.Placement.BINDING_OPERATION

o WSDLDocumentation.Placement.BINDING_OPERATION_FAULT

o WSDLDocumentation.Placement.BINDING_OPERATION_INPUT

o WSDLDocumentation.Placement.BINDING_OPERATION_OUTPUT

e WSDLDocumentation.Placement.DEFAULT

o WSDLDocumentation.Placement.FAULT _MESSAGE

o WSDLDocumentation.Placement.INPUT_MESSAGE

o WSDLDocumentation.Placement.OUTPUT_MESSAGE

e WSDLDocumentation.Placement.PORT_TYPE

e WSDLDocumentation.Placement.PORT_TYPE_OPERATION

e WSDLDocumentation.Placement.PORT_TYPE_OPERATION_FAULT

o WSDLDocumentation.Placement.PORT_TYPE_OPERATION_INPUT

e WSDLDocumentation.Placement.PORT_TYPE_OPERATION_OUTPUT

e WSDLDocumentation.Placement.SERVICE

o WSDLDocumentation.Placement.SERVICE_PORT

e WSDLDocumentation.Placement.TOP

Example of @ WSDLDocumentation

Example 22.8, "Using @ WSDLDocumentation” shows how to add a @WSDLDocumentation annotation
to the SEl and to one of its methods.

public interface HelloWorld {
@WSDLDocumentation("A traditional form of greeting")
String sayHi(@WebParam(name = "text") String text);

@WebService
@WSDLDocumentation("A very simple example of an SEI")
}

| Example 22.8. Using @ WSDLDocumentation

When WSDL, shown in Example 22.9, “"WSDL generated with documentation”, is generated from the SEI
in Example 22.8, “Using @ WSDLDocumentation”, the default placements of the documentation
elements are, respectively, PORT_TYPE and PORT_TYPE_OPERATION.

234

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

Example 22.9. WSDL generated with documentation
<wsdl:documentation>A very simple example of an SEl</wsdl:documentation>
<wsdl:operation name="sayHi">
<wsdl:input name="sayHi" message="tns:sayHi">
</wsdl:input>
<wsdl:output name="sayHiResponse" message="tns:sayHiResponse">
</wsdl:output>

</wsdl:operation>
</wsdl:portType>

<wsdl:definitions ... >

<wsdl:portType name="HelloWorld">

<wsdl:documentation>A traditional form of greeting</wsdl:documentation>
</wsdl:definitions>

Example of @ WSDLDocumentationCollection

Example 22.10, “"Using @ WSDLDocumentationCollection” shows how to add a
@WSDLDocumentationCollection annotation to an SEI.

@WSDLDocumentation("A very simple example of an SEI"),

@WSDLDocumentation(value = "My top level documentation”,
placement = WSDLDocumentation.Placement. TOP),

@WSDLDocumentation(value = "Binding documentation”,
placement = WSDLDocumentation.Placement.BINDING)

publlc interface HelloWorld {
@WSDLDocumentation("A traditional form of Geeky greeting")

@WebService
@WSDLDocumentatlonCoIIectlon(
String sayHi(@WebParam(name = "text") String text);

‘ Example 22.10. Using @ WSDLDocumentationCollection

22.3.4.2. Schema Validation of Messages

@SchemaValidation annotation

The @SchemaValidation annotation is defined by the
org.apache.cxf.annotations.SchemaValidation interface. It can be placed on the SEl and on individual
SEl methods.

This annotation turns on schema validation of the XML messages sent to this endpoint. This can be

useful for testing purposes, when you suspect there is a problem with the format of incoming XML
messages. By default, validation is disabled, because it has a significant impact on performance.

235

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Schema validation type

The schema validation behaviour is controlled by the type parameter, whose value is an enumeration of
org.apache.cxf.annotations.SchemaValidation.SchemaValidationType type. Table 22.10, “Schema
Validation Type Values” shows the list of available validation types.

Table 22.10. Schema Validation Type Values

Type Description

IN Apply schema validation to incoming messages on
client and server.

ouT Apply schema validation to outgoing messages on
client and server.

BOTH Apply schema validation to both incoming and
outgoing messages on client and server.

NONE All schema validation is disabled.

REQUEST Apply schema validation to Request messages—that
is, causing validation to be applied to outgoing client
messages and to incoming server messages.

RESPONSE Apply schema validation to Response messages—that
is, causing validation to be applied to incoming client
messages, and outgoing server messages.

Example

The following example shows how to enable schema validation of messages for endpoints based on the
MyService SEI. Note how the annotation can be applied to the SEl as a whole, as well as to individual
methods in the SEI.

@WebService
@SchemaValidation(type = SchemaValidationType.BOTH)
public interface MyService {

Foo validateBoth(Bar data);

@SchemaValidation(type = SchemaValidationType.NONE)
Foo validateNone(Bar data);

@SchemaValidation(type = SchemaValidationType.IN)
Foo validateln(Bar data);

@SchemaValidation(type = SchemaValidationType.OUT)
Foo validateOut(Bar data);

@SchemaValidation(type = SchemaValidationType.REQUEST)
Foo validateRequest(Bar data);

236

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

@SchemaValidation(type = SchemaValidationType.RESPONSE)
Foo validateResponse(Bar data);

}

22.3.4.3. Specifying the Data Binding

@DataBinding annotation

The @DataBinding annotation is defined by the org.apache.cxf.annotations.DataBinding interface. It
is placed on the SEI.

This annotation is used to associate a data binding with the SEI, replacing the default JAXB data

binding. The value of the @DataBinding annotation must be the class that provides the data binding,
ClassName.class.

Supported data bindings

The following data bindings are currently supported by Apache CXF:
e org.apache.cxf.jaxb.JAXBDataBinding
(Default) The standard JAXB data binding.
e org.apache.cxf.sdo.SDODataBinding
The Service Data Objects (SDO) data binding is based on the Apache Tuscany SDO
implementation. If you want to use this data binding in the context of a Maven build, you need to
add a dependency on the exf-rt-databinding-sdo artifact.

e org.apache.cxf.aegis.databinding.AegisDatabinding

If you want to use this data binding in the context of a Maven build, you need to add a
dependency on the cxf-rt-databinding-aegis artifact.

e org.apache.cxf.xmlbeans.XmiBeansDataBinding

If you want to use this data binding in the context of a Maven build, you need to add a
dependency on the cxf-rt-databinding-xmlbeans artifact.

e org.apache.cxf.databinding.source.SourceDataBinding
This data binding belongs to the Apache CXF core.
e org.apache.cxf.databinding.stax.StaxDataBinding

This data binding belongs to the Apache CXF core.

Example

Example 22.11, “Setting the data binding” shows how to associate the SDO binding with the HelloWorld
SEI

Example 22.11. Setting the data binding

I @WebService

237

https://jaxb.dev.java.net/
http://tuscany.apache.org/sdo-overview.html

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

public interface HelloWorld {
String sayHi(@WebParam(name = "text") String text);

@DataBinding(org.apache.cxf.sdo.SDODataBinding.class)
}

22.3.4.4. Compressing Messages

@GZIP annotation

The @GZIP annotation is defined by the org.apache.cxf.annotations.GZIP interface. It is placed on the
SEI.

Enables GZIP compression of messages. GZIP is a negotiated enhancement. That is, an initial request
from a client will not be gzipped, but an Accept header will be added and, if the server supports GZIP
compression, the response will be gzipped and any subsequent requests will be also.

Table 2211, "@GZIP Properties” shows the optional properties supported by the @GZIP annotation.

Table 22.11. @ GZIP Properties

Property Description

threshold Messages smaller than the size specified by this
property are not gzipped. Default is -1 (no limit).

@FastIinfoset

The @FastInfoset annotation is defined by the org.apache.cxf.annotations.Fastinfoset interface. It is
placed on the SEI.

Enables the use of Fastinfoset format for messages. Fastinfoset is a binary encoding format for XML,
which aims to optimize both the message size and the processing performance of XML messages. For
more details, see the following Sun article on Fast Infoset.

Fastinfoset is a negotiated enhancement. That is, an initial request from a client will not be in FastInfoset
format, but an Accept header will be added and, if the server supports Fastinfoset, the response will be
in Fastinfoset and any subsequent requests will be also.

Table 22.12, "@FastIinfoset Properties” shows the optional properties supported by the @Fastinfoset
annotation.

Table 22.12. @FastInfoset Properties

Property Description

force A boolean property that forces the use of Fastinfoset
format, instead of negotiating. When true, force the
use of FastInfoset format; otherwise, negotiate.
Default is false.

Example of @GZIP

238

http://www.oracle.com/technetwork/java/fastinfoset-139262.html

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

Example 22.12, “"Enabling GZIP" shows how to enable GZIP compression for the HelloWorld SEI.

@GZIP
public interface HelloWorld {
String sayHi(@WebParam(name = "text") String text);

@WebService
}

| Example 22.12. Enabling GZIP

Exampe of @FastInfoset

Example 22.13, "Enabling FastInfoset” shows how to enable the Fastinfoset format for the HelloWorld
SEI.

@FastInfoset
public interface HelloWorld {
String sayHi(@WebParam(name = "text") String text);

@WebService
!

| Example 22.13. Enabling FastInfoset

22.3.4.5. Enable Logging on an Endpoint

@Logging annotation

The @Logging annotation is defined by the org.apache.cxf.annotations.Logging interface. It is
placed on the SEI.

This annotation enables logging for all endpoints associated with the SEI. Table 22.13, “@Logging
Properties” shows the optional properties you can set in this annotation.

Table 22.13. @Logging Properties

Property Description

limit Specifies the size limit, beyond which the message is
truncated in the logs. Default is 64K.

inLocation Specifies the location to log incoming messages. Can
be either <stderr>, <stdout>, <loggers, or a
filename. Default is <loggers.

outLocation Specifies the location to log outgoing messages. Can
be either <stderr>, <stdout>, <loggers, or a
filename. Default is <loggers.

Example

239

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Example 22.14, "Logging configuration using annotations” shows how to enable logging for the
HelloWorld SEI, where incoming messages are sent to <stdout> and outgoing messages are sent to
<loggers.

@Logging(limit=16000, inLocation="<stdout>")
public interface HelloWorld {
String sayHi(@WebParam(name = "text") String text);

@WebService
}

| Example 22.14. Logging configuration using annotations

22.3.4.6. Adding Properties and Policies to an Endpoint

Abstract

Both properties and policies can be used to associate configuration data with an endpoint. The essential
difference between them is that properties are a Apache CXF specific configuration mechanism whereas
policies are a standard WSDL configuration mechanism. Policies typically originate from WS
specifications and standards and they are normally set by defining wsdl:policy elements that appear in
the WSDL contract. By contrast, properties are Apache CXF-specific and they are normally set by
defining jaxws:properties elements in the Apache CXF Spring configuration file.

Itis also possible, however, to define property settings and WSDL policy settings in Java using
annotations, as described here.

22.3.4.6.1. Adding properties

@EndpointProperty annotation

The @EndpointProperty annotation is defined by the org.apache.cxf.annotations.EndpointProperty
interface. It is placed on the SEI.

This annotation adds Apache CXF-specific configuration settings to an endpoint. Endpoint properties
can also be specified in a Spring configuration file. For example, to configure WS-Security on an
endpoint, you could add endpoint properties using the jaxws:properties element in a Spring
configuration file as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:jaxws="http://cxf.apache.org/jaxws"
>

<jaxws:endpoint
id="MyService"
address="https://localhost:9001/MyService"
serviceName="interop:MyService"
endpointName="interop:MyServiceEndpoint"
implementor="com.foo.MyService">

<jaxws:properties>
<entry key="ws-security.callback-handler" value="interop.client. UTPasswordCallback"/>

240

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

<entry key="ws-security.signature.properties" value="etc/keystore.properties"/>

<entry key="ws-security.encryption.properties" value="etc/truststore.properties"/>

<entry key="ws-security.encryption.username" value="useReqSigCert"/>
</jaxws:properties>

</jaxws:endpoint>
</beans>

Alternatively, you could specify the preceding configuration settings in Java by adding
@EndpointProperty annotations to the SEI, as shown in Example 22.15, “Configuring WS-Security
Using @EndpointProperty Annotations”.

@WebService
@EndpointProperty(name="ws-security.callback-handler"
value="interop.client. UTPasswordCallback")
@EndpointProperty(name="ws-security.signature.properties" value="etc/keystore.properties")
@EndpointProperty(name="ws-security.encryption.properties” value="etc/truststore.properties")
@EndpointProperty(name="ws-security.encryption.username" value="useReqSigCert")
public interface HelloWorld {
String sayHi(@WebParam(name = "text") String text);

Example 22.15. Configuring WS-Security Using @EndpointProperty Annotations
}

@EndpointProperties annotation

The @EndpointProperties annotation is defined by the
org.apache.cxf.annotations.EndpointProperties interface. It is placed on the SEI.

This annotation provides a way of grouping multiple @EndpointProperty annotations into a list. Using
@EndpointProperties, it is possible to re-write Example 22.15, “Configuring WS-Security Using
@EndpointProperty Annotations” as shown in Example 22.16, “Configuring WS-Security Using an
@EndpointProperties Annotation”.

{

@EndpointProperty(name="ws-security.callback-handler"
value="interop.client. UTPasswordCallback"),
@EndpointProperty(name="ws-security.signature.properties" value="etc/keystore.properties"),
@EndpointProperty
@EndpointProperty
}
public interface HelloWorld {
String sayHi(@WebParam(name = "text") String text);

name="ws-security.encryption.properties" value="etc/truststore.properties"),
name="ws-security.encryption.username" value="useReqSigCert")

@WebService

@EndpointProperties(
(
(

Example 22.16. Configuring WS-Security Using an @EndpointProperties Annotation
}

22.3.4.6.2. Adding policies

241

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

@Policy annotation

The @Policy annotation is defined by the org.apache.cxf.annotations.Policy interface. It can be
placed on the SEl or the SEI methods.

This annotation is used to associate a WSDL policy with an SEl or an SEI method. The policy is specified
by providing a URI that references an XML file containing a standard wsdl:policy element. If a WSDL
contract is to be generated from the SEI (for example, using the java2ws command-line tool), you can
specify whether or not you want to include this policy in the WSDL.

Table 22.14, "@Policy Properties” shows the properties supported by the @Policy annotation.

Table 22.14. @Policy Properties

Property Description

uri (Required) The location of the file containing the
policy definition.

includeinWSDL (Optional) Whether to include the policy in the
generated contract, when generating WSDL. Default
is true.

placement (Optional) Specifies where in the WSDL file this

documentation is to appear. For the list of possible
placement values, see the section called "Placement
in the WSDL contract”.

faultClass (Optional) If the placement is set to be
BINDING_OPERATION_FAULT or
PORT_TYPE_OPERATION_FAULT, you must
also set this property to specify which fault this policy
applies to. The value is the Java class that represents
the fault.

@Policies annotation

The @Policies annotation is defined by the org.apache.cxf.annotations.Policies interface. It can be
placed on the SEl or thse SEI methods.

This annotation provides a way of grouping multiple @Policy annotations into a list.

Placement in the WSDL contract

To specify where the policy should appear in the WSDL contract, you can specify the placement
property, which is of type Policy.Placement. The placement can have one of the following values:

Policy.Placement.BINDING
Policy.Placement.BINDING_OPERATION
Policy.Placement.BINDING_OPERATION_FAULT
Policy.Placement.BINDING_OPERATION_INPUT
Policy.Placement.BINDING_OPERATION_OUTPUT
Policy.Placement.DEFAULT
Policy.Placement.PORT_TYPE

242

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

Policy.Placement.PORT_TYPE_OPERATION
Policy.Placement.PORT_TYPE_OPERATION_FAULT
Policy.Placement.PORT_TYPE_OPERATION_INPUT
Policy.Placement.PORT_TYPE_OPERATION_OUTPUT
Policy.Placement.SERVICE
Policy.Placement.SERVICE_PORT

Example of @Policy

The following example shows how to associate WSDL policies with the HelloWorld SEI and how to
associate a policy with the sayHi method. The policies themselves are stored in XML files in the file
system, under the annotationpolicies directory.

@WebService
@Policy(uri = "annotationpolicies/TestimplPolicy.xml",
placement = Policy.Placement.SERVICE_PORT),
@Policy(uri = "annotationpolicies/TestPortTypePolicy.xml",
placement = Policy.Placement.PORT_TYPE)
public interface HelloWorld {
@Policy(uri = "annotationpolicies/TestOperationPTPolicy.xml",
placement = Policy.Placement.PORT_TYPE_OPERATION),
String sayHi(@WebParam(name = "text") String text);

}

Example of @Policies

You can use the @Policies annotation to group multiple @Policy annotations into a list, as shown in
the following example:

@WebService
@Policies({
@Policy(uri = "annotationpolicies/TestImplPolicy.xml",
placement = Policy.Placement.SERVICE_PORT),
@Policy(uri = "annotationpolicies/TestPortTypePolicy.xml",
placement = Policy.Placement.PORT_TYPE)
)
public interface HelloWorld {
@Policy(uri = "annotationpolicies/TestOperationPTPolicy.xml",
placement = Policy.Placement.PORT_TYPE_OPERATION),
String sayHi(@WebParam(name = "text") String text);

}

22.4. GENERATING WSDL

Using Maven

Once your code is annotated, you can generate a WSDL contract for your service using the java2ws
Maven plug-in's -wsdl option. For a detailed listing of options for the java2ws Maven plug-in see
Section E.3, "java2ws”.

Example 22.17, "Generating WSDL from Java” shows how to set up the java2ws Maven plug-in to
generate WSDL.

243

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Example 22.17. Generating WSDL from Java

<plugin>
<groupld>org.apache.cxf</groupld>
<artifactld>cxf-java2ws-plugin</artifactid>
<version>${cxf.version}</version>
<executions>
<execution>
<id>process-classes</id>
<phase>process-classes</phase>
<configuration>
<classNamex>className</className>
<genWsdl>true</genWsdI>
</configuration>
<goals>
<goal>java2ws</goal>
</goals>
</execution>
</executions>
</plugin>

NOTE

Replace the value of className with the qualified className.

Example

Example 22.18, "Generated WSDL from an SEI” shows the WSDL contract that is generated for the SEI
shown in Example 22.7, “Fully Annotated SEI".

Example 22.18. Generated WSDL from anSEl

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://demo.eric.org/"
xmins:tns="http://demo.eric.org/"
xmlns:ns1=""
xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
xmlns:ns2="http://demo.eric.org/types"
xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/">
<wsdl:types>
<xsd:schema>
<xs:complexType name="quote">
<xs:sequence>
<xs:element name="ID" type="xs:string" minOccurs="0"/>
<xs:element name="time" type="xs:string" minOccurs="0"/>
<xs:element name="val" type="xs:float"/>
</xs:sequence>
</xs:complexType>
</xsd:schema>
</wsdl:types>
<wsdl:message name="getStockQuote">
<wsdl:part name="stockTicker" type="xsd:string">

244

CHAPTER 22. BOTTOM-UP SERVICE DEVELOPMENT

</wsdl:part>
</wsdl:message>
<wsdl:message name="getStockQuoteResponse">
<wsdl:part name="updatedQuote" type="tns:quote">
</wsdl:part>
</wsdl:message>
<wsdl:portType name="quoteReporter">
<wsdl:operation name="getStockQuote">
<wsdl:input name="getQuote" message="tns:getStockQuote">
</wsdl:input>
<wsdl:output name="getQuoteResponse" message="tns:getStockQuoteResponse">
</wsdl:output>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="quoteReporterBinding" type="tns:quoteReporter">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getStockQuote">
<soap:operation style="rpc" />
<wsdl:input name="getQuote">
<soap:body use="literal" />
</wsdl:input>
<wsdl:output name="getQuoteResponse">
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="quoteReporterService">
<wsdl:port name="quoteReporterPort" binding="tns:quoteReporterBinding">
<soap:address location="http://localhost:9000/quoteReporterService" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

[1] Board is an assumed class whose implementation is left to the reader.

245

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 23. DEVELOPING A CONSUMER WITHOUT A WSDL
CONTRACT

Abstract

You do not need a WSDL contract to develop a service consumer. You can create a service consumer
from an annotated SEI. Along with the SEl you need to know the address at which the endpoint exposing
the service is published, the QName of the service element that defines the endpoint exposing the
service, and the QName of the port element defining the endpoint on which your consumer makes
requests. This information can be specified in the SEl's annotations or provided separately.

23.1. JAVA-FIRST CONSUMER DEVELOPMENT

To create a consumer without a WSDL contract you must do the following:
1. Create a Service object for the service on which the consumer will invoke operations.
2. Add a port to the Service object.
3. Geta proxy for the service using the Service object's getPort() method.

4. Implement the consumer's business logic.

23.2. CREATING A SERVICE OBJECT

Overview

The javax.xml.ws.Service class represents the wsdl:service element which contains the definition of
all of the endpoints that expose a service. As such, it provides methods that allow you to get endpoints,
defined by wsdl:port elements, that are proxies for making remote invocations on a service.

NOTE

The Service class provides the abstractions that allow the client code to work with Java
types as opposed to working with XML documents.

The create() methods

The Service class has two static create() methods that can be used to create a new Service object. As
shown in Example 23.1, “Service create() Methods”, both of the create() methods take the QName of
the wsdl:service element the Service object will represent, and one takes a URI specifying the location
of the WSDL contract.

NOTE

All services publish their WSDL contracts. For SOAP/HTTP services the URI is usually the
URI for the service appended with ?wsdl.

Example 23.1. Service create() Methods

public static Service create(URL wsdlLocation,

246

CHAPTER 23. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT

QName serviceName)
throws WebServiceException;
public static Service create(QName serviceName)
throws WebServiceException;

The value of the serviceName parameter is a QName. The value of its namespace part is the target
namespace of the service. The service's target namespace is specified in the targetNamespace
property of the @WebService annotation. The value of the QName's local part is the value of
wsdl:service element's name attribute. You can determine this value in one of the following ways:

1. Itis specified in the serviceName property of the @WebService annotation.
2. You append Service to the value of the name property of the @WebService annotation.

3. You append Service to the name of the SEI.

IMPORTANT

Programmatically-created CXF consumers deployed in OSGi environments require
special handling to avoid the likelihood of incurring ClassNotFoundExceptions. For each
bundle that contains programmatically-created CXF consumers, you need to create a
singleton CXF default bus and ensure that all of the bundle's CXF consumers use it.
Without this safeguard, one bundle could be assigned the CXF default bus created in
another bundle, which could cause the inheriting bundle to fail.

For example, suppose bundle A did not explicitly set a CXF default bus and was assigned
the CXF default bus created in bundle B. If the CXF bus in bundle A needed to be
configured with additional features (such as SSL or WS-Security) or needed to load
certain classes or resources from the application in bundle A, it would fail. This is so
because the CXF bus instance sets a thread context class loader (TCCL) as the bundle
class loader of the bundle that created it (in this case bundle B). Furthermore, certain
frameworks, such as wss4j (implements WS-Security in CXF) use the TCCL to load
resources, such as calback handler classes or other property files, from inside the bundle.
Because bundle A is assigned bundle B's default CXF bus and it's TCCL, the wss4j layer
cannot load the required resources from bundle A, which results in
ClassNotFoundException errors.

To create the singleton CXF default bus, insert this code:
I BusFactory.setThreadDefaultBus(BusFactory.newlnstance().createBus());

at the beginning of the main method that creates the service object, as shown in the
section called "Example”.

Example

Example 23.2, “Creating a Service Object” shows code for creating a Service object for the SEI shown
in Example 22.7, “Fully Annotated SEI”.

| Example 23.2. Creating a Service Object

| package com.fusesource.demo;

import javax.xml.namespace.QName;

247

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

import javax.xml.ws.Service;

public class Client

{

public static void main(String args[])

{
BusFactory.setThreadDefaultBus(BusFactory.newlnstance().createBus());
QName serviceName = new QName("http://demo.redhat.com", "stockQuoteReporter");
9 Service s = Service.create(serviceName);
}
}

The code in Example 23.2, “Creating a Service Object” does the following:
ﬂ Creates a singleton CXF default bus that is available to all CXF consumers of the service.

9 Builds the QName for the service using the targetNamespace property and the name property of
the @WebService annotation.

g Calls the single parameter create() method to create a new Service object.

NOTE

Using the single parameter create() frees you from having any dependencies on
accessing a WSDL contract.

23.3. ADDING APORT TO ASERVICE

Overview

The endpoint information for a service is defined in a wsdl:port element, and the Service object creates
a proxy instance for each of the endpoints defined in a WSDL contract, if one is specified. If you do not
specify a WSDL contract when you create your Service object, the Service object has no information
about the endpoints that implement your service, and therefore cannot create any proxy instances. In
this case, you must provide the Service object with the information needed to represent a wsdl:port
element using the addPort() method.

The addPort() method

The Service class defines an addPort() method, shown in Example 23.3, “The addPort() Method”, that
is used in cases where there is no WSDL contract available to the consumer implementation. The
addPort() method allows you to give a Service object the information, which is typically stored in a
wsdl:port element, necessary to create a proxy for a service implementation.

Example 23.3. The addPort() Method

void addPort(QName portName,
String bindingld,

String endpointAddress)

throws WebServiceException;

248

CHAPTER 23. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT

The value of the portName is a QName. The value of its namespace part is the target namespace of the
service. The service's target namespace is specified in the targetNamespace property of the
@WebService annotation. The value of the QName's local part is the value of wsdl:port element's
name attribute. You can determine this value in one of the following ways:

1. Specify it in the portName property of the @WebService annotation.
2. Append Port to the value of the name property of the @WebService annotation.
3. Append Port to the name of the SEI.

The value of the bindingld parameter is a string that uniquely identifies the type of binding used by the
endpoint. For a SOAP binding you use the standard SOAP namespace:
http://schemas.xmlsoap.org/soap/. If the endpoint is not using a SOAP binding, the value of the
bindingld parameter is determined by the binding developer.

The value of the endpointAddress parameter is the address where the endpoint is published. For a
SOAP/HTTP endpoint, the address is an HTTP address. Transports other than HTTP use different
address schemes.

Example

Example 23.4, “Adding a Port to a Service Object” shows code for adding a port to the Service object
created in Example 23.2, “Creating a Service Object”.

Example 23.4. Adding a Port to aService Object

package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client

{

public static void main(String args[])

{

QName portName = new QName("http://demo.redhat.com”, "stockQuoteReporterPort");
9 s.addPort(portName,
"http://schemas.xmlsoap.org/soap/",
Q "http://localhost:9000/StockQuote™):;

—

The code in Example 23.4, “Adding a Port to a Service Object” does the following:
ﬂ Creates the QName for the portName parameter.
g Calls the addPort() method.

9 Specifies that the endpoint uses a SOAP binding.

249

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Q Specifies the address where the endpoint is published.

23.4. GETTING A PROXY FOR AN ENDPOINT

Overview

A service proxy is an object that provides all of the methods exposed by a remote service and handles all
of the details required to make the remote invocations. The Service object provides service proxies for
all of the endpoints it is aware of through the getPort() method. Once you have a service proxy, you can
invoke its methods. The proxy forwards the invocation to the remote service endpoint using the
connection details specified in the service's contract.

The getPort() method

The getPort() method, shown in Example 23.5, “The getPort() Method”, returns a service proxy for the
specified endpoint. The returned proxy is of the same class as the SEI.

Example 23.5. The getPort() Method

public <T> T getPort(QName portName,
Class<T> serviceEndpointinterface)
throws WebServiceException;

The value of the portName parameter is a QName that identifies the wsdl:port element that defines
the endpoint for which the proxy is created. The value of the serviceEndpointinterface parameter is
the fully qualified name of the SEI.

NOTE

When you are working without a WSDL contract the value of the portName parameter is
typically the same as the value used for the portName parameter when calling addPort().

Example

Example 23.6, “Getting a Service Proxy” shows code for getting a service proxy for the endpoint added
in Example 23.4, “Adding a Port to a Service Object”.

Example 23.6. Getting a Service Proxy
package com.fusesource.demo;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client

{

public static void main(String argsl])

{

quoteReporter proxy = s.getPort(portName, quoteReporter.class);

250

CHAPTER 23. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT

.
}

23.5. IMPLEMENTING THE CONSUMER'S BUSINESS LOGIC

Overview

Once you instantiate a service proxy for a remote endpoint, you can invoke its methods as if it were a
local object. The calls block until the remote method completes.

NOTE

If a method is annotated with the @OneWay annotation, the call returns immediately.

Example

Example 23.7, "Consumer Implemented without a WSDL Contract” shows a consumer for the service
defined in Example 22.7, “Fully Annotated SEI".

Example 23.7. Consumer Implemented without a WSDL Contract

package com.fusesource.demo;

import java.io.File;

import java.net.URL;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client

{

public static void main(String args[])

{
QName serviceName = new QName("http://demo.eric.org", "stockQuoteReporter");
ﬂ Service s = Service.create(serviceName);

QName portName = new QName("http://demo.eric.org", "stockQuoteReporterPort");
s.addPort(portName, "http://schemas.xmlsoap.org/soap/",
"http://localhost:9000/EricStockQuote");

9 quoteReporter proxy = s.getPort(portName, quoteReporter.class);
Quote quote = proxy.getQuote("ALPHA");

System.out.printin("Stock "+quote.getID()+" is worth "+quote.getVal()+" as of
"+quote.getTime());

}
}

The code in Example 23.7, "Consumer Implemented without a WSDL Contract” does the following:

ﬂ Creates a Service object.

251

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

9 Adds an endpoint definition to the Service object.
9 Gets a service proxy from the Service object.

Q Invokes an operation on the service proxy.

252

CHAPTER 24. ASTARTING POINT WSDL CONTRACT

CHAPTER 24. ASTARTING POINT WSDL CONTRACT

24.1. SAMPLE WSDL CONTRACT

Example 24.1, "HelloWorld WSDL Contract” shows the HelloWorld WSDL contract. This contract defines
a single interface, Greeter, in the wsdl:portType element. The contract also defines the endpoint which
will implement the service in the wsdl:port element.

Example 24.1. HelloWorld WSDL Contract
<?xml version="1.0" encoding=";UTF-8"?>
<wsdl:definitions name="HelloWorld"
targetNamespace="http://apache.org/hello_world_soap_http"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlins:tns="http://apache.org/hello_world_soap_http"
xmlns:x1="http://apache.org/hello_world_soap_http/types"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_soap_http/types"
xmins="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">
<element name="sayHiResponse">
<complexType>
<sequence>
<element name="responseType" type="string"/>
</sequence>
</complexType>
</element>
<element name="greetMe">
<complexType>
<sequence>
<element name="requestType" type="string"/>
</sequence>
</complexType>
</element>
<element name="greetMeResponse">
<complexType>
<sequence>
<element name="responseType" type="string"/>
</sequence>
</complexType>
</element>
<element name="greetMeOneWay">
<complexType>
<sequence>
<element name="requestType" type="string"/>
</sequence>
</complexType>
</element>
<element name="pingMe">
<complexType/>
</element>
<element name="pingMeResponse">

253

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide
<complexType/>
</element>
<element name="faultDetail">
<complexType>
<sequence>
<element name="minor" type="short"/>
<element name="major" type="short"/>
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>
<wsdl:message name="sayHiRequest">
<wsdl:part element="x1:sayHi" name="in"/>
</wsdl:message>
<wsdl:message name="sayHiResponse">
<wsdl:part element="x1:sayHiResponse" name="out"/>
</wsdl:message>
<wsdl:message name="greetMeRequest">
<wsdl:part element="x1:greetMe" name="in"/>
</wsdl:message>
<wsdl:message name="greetMeResponse">
<wsdl:part element="x1:greetMeResponse" hame="out"/>
</wsdl:message>
<wsdl:message name="greetMeOneWayRequest">
<wsdl:part element="x1:greetMeOneWay" name="in"/>
</wsdl:message>
<wsdl:message name="pingMeRequest">
<wsdl:part name="in" element="x1:pingMe"/>
</wsdl:message>
<wsdl:message name="pingMeResponse">
<wsdl:part name="out" element="x1:pingMeResponse"/>
</wsdl:message>
<wsdl:message name="pingMeFault">
<wsdl:part name="faultDetail" element="x1:faultDetail"/>
</wsdl:message>
<wsdl:portType name="Greeter">
<wsdl:operation name="sayHi">
<wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>

<wsdl:output message="tns:sayHiResponse" nhame="sayHiResponse"/>
</wsdl:operation>

<wsdl:operation name="greetMe">
<wsdl:input message="tns:greetMeRequest" name="greetMeRequest"/>
<wsdl:output message="tns:greetMeResponse" name="greetMeResponse"/>
</wsdl:operation>

<wsdl:operation name="greetMeOneWay">
<wsdl:input message="tns:greetMeOneWayRequest" name="greetMeOneWayRequest"/>
</wsdl:operation>

<wsdl:operation name="pingMe">

<wsdl:input name="pingMeRequest" message="tns:pingMeRequest"/>
<wsdl:output name="pingMeResponse" message="tns:pingMeResponse"/>

254

CHAPTER 24. ASTARTING POINT WSDL CONTRACT

<wsdl:fault name="pingMeFault" message="tns:pingMeFault"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="Greeter_SOAPBinding" type="tns:Greeter">
</wsdl:binding>
<wsdl:service name="SOAPService">
<wsdl:port binding="tns:Greeter_SOAPBIinding" name="SoapPort">
<soap:address location="http://localhost:9000/SoapContext/SoapPort"/>
</wsdl:port>

</wsdl:service>
</wsdl:definitions>

The Greeter interface defined in Example 24.1, “HelloWorld WSDL Contract” defines the following
operations:

ﬂ sayHi — Has a single output parameter, of xsd:string.

9 greetMe — Has an input parameter, of xsd:string, and an output parameter, of xsd:string.

9 greetMeOneWay — Has a single input parameter, of xsd:string. Because this operation has no
output parameters, it is optimized to be a oneway invocation (that is, the consumer does not wait

for a response from the server).

Q pingMe — Has no input parameters and no output parameters, but it can raise a fault exception.

255

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 25. TOP-DOWN SERVICE DEVELOPMENT

Abstract

In the top-down method of developing a service provider you start from a WSDL document that defines
the operations and methods the service provider will implement. Using the WSDL document, you
generate starting point code for the service provider. Adding the business logic to the generated code is
done using normal Java programming APlIs.

25.1. OVERVIEW OF JAX-WS SERVICE PROVIDER DEVELOPMENT
Once you have a WSDL document, the process for developing a JAX-WS service provider is as follows:
1. Generate starting point code.
2. Implement the service provider's operations.

3. Publish the implemented service.

25.2. GENERATING THE STARTING POINT CODE

Overview

JAX-WS specifies a detailed mapping from a service defined in WSDL to the Java classes that will
implement that service as a service provider. The logical interface, defined by the wsdl:portType
element, is mapped to a service endpoint interface (SEI). Any complex types defined in the WSDL are
mapped into Java classes following the mapping defined by the Java Architecture for XML Binding
(JAXB) specification. The endpoint defined by the wsdl:service element is also generated into a Java
class that is used by consumers to access service providers implementing the service.

The exf-codegen-plugin Maven plug-in generates this code. It also provides options for generating
starting point code for your implementation. The code generator provides a number of options for
controlling the generated code.

Running the code generator

Example 25.1, “Service Code Generation” shows how to use the code generator to generate starting
point code for a service.

Example 25.1. Service Code Generation
<plugin>
<groupld>org.apache.cxf</groupld>
<version>${cxf.version}</version>

<artifactld>cxf-codegen-plugin</artifactid>
<executions>

<execution>
<id>generate-sources</id>
<phase>generate-sources</phase>
<configuration>
<sourceRoot>outputDir</sourceRoot>
<wsdlOptions>

256

CHAPTER 25. TOP-DOWN SERVICE DEVELOPMENT

<wsdIOption>
<wsdI>wsdl</wsdl>
<extraargs>
<extraarg>-server</extraarg>
<extraarg>-impl</extraarg>
</extraargs>
</wsdIOption>
</wsdlOptions>
</configuration>
<goals>
<goal>wsdl2java</goal>
</goals>
</execution>

</executions>
</plugin>

This does the following:

® The -impl option generates a shell implementation class for each wsdl:portType elementin the
WSDL contract.

® The -server option generates a simple main() to run your service provider as a stand alone
application.

® The sourceRoot specifies that the generated code is written to a directory called outputDir.
e wsdl element specifies the WSDL contract from which code is generated.

For a complete list of the options for the code generator see Section E.2, “cxf-codegen-plugin”.

Generated code

Table 25.1, “Generated Classes for a Service Provider” describes the files generated for creating a
service provider.

Table 25.1. Generated Classes for a Service Provider

File Description

portTypeName.java The SELI. This file contains the interface your service
provider implements. You should not edit this file.

serviceName.java The endpoint. This file contains the Java class
consumers use to make requests on the service.

portTypeNamelmpl.java The skeleton implementation class. Modify this file to
build your service provider.

portTypeNameServer.java A basic server mainline that allows you to deploy your
service provider as a stand alone process. For more
information see Chapter 29, Publishing a Service.

257

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

In addition, the code generator will generate Java classes for all of the types defined in the WSDL
contract.

Generated packages

The generated code is placed into packages based on the namespaces used in the WSDL contract. The
classes generated to support the service (based on the wsdl:portType element, the wsdl:service
element, and the wsdl:port element) are placed in a package based on the target namespace of the
WSDL contract. The classes generated to implement the types defined in the types element of the
contract are placed in a package based on the targetNamespace attribute of the types element.

The mapping algorithm is as follows:
1. The leading http:// or urn:// are stripped off the namespace.
2. If the first string in the namespace is a valid Internet domain, for example it ends in .com or
.gov, then the leading www. is stripped off the string, and the two remaining components are

flipped.

3. If the final string in the namespace ends with a file extension of the pattern .xxx or .xx, then the
extension is stripped.

4. The remaining strings in the namespace are appended to the resulting string and separated by
dots.

5. All letters are made lowercase.

25.3. IMPLEMENTING THE SERVICE PROVIDER

Generating the implementation code

You generate the implementation class used to build your service provider with the code generator's -
impl flag.

NOTE

If your service's contract includes any custom types defined in XML Schema, you must
ensure that the classes for the types are generated and available.

For more information on using the code generator see Section E.2, “cxf-codegen-plugin”.

Generated code

The implementation code consists of two files:
e portTypeName.java — The service interface(SEI) for the service.

e portTypeNamelmpl.java — The class you will use to implement the operations defined by the
service.

Implement the operation's logic

To provide the business logic for your service's operations complete the stub methods in
portTypeNamelmpl.java. You usually use standard Java to implement the business logic. If your service

258

CHAPTER 25. TOP-DOWN SERVICE DEVELOPMENT

uses custom XML Schema types, you must use the generated classes for each type to manipulate them.
There are also some Apache CXF specific APIs that can be used to access some advanced features.

Example

For example, an implementation class for the service defined in Example 24.1, “HelloWorld WSDL
Contract” may look like Example 25.2, “Implementation of the Greeter Service”. Only the code portions
highlighted in bold must be inserted by the programmer.

Example 25.2. Implementation of the Greeter Service
package demo.hw.server;
import org.apache.hello_world_soap_http.Greeter;
@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",

targetNamespace = "http://apache.org/hello_world_soap_http",
endpointinterface = "org.apache.hello_world_soap_http.Greeter")

public class Greeterlmpl implements Greeter {

public String greetMe(String me) {
System.out.printin("Executing operation greetMe");
System.out.printin("Message received: " + me + "\n");
return "Hello " + me;

}

public void greetMeOneWay(String me) {
System.out.printin("Executing operation greetMeOneWay\n");
System.out.printin("Hello there " + me);

}

public String sayHi() {
System.out.printin("Executing operation sayHi\n");
return "Bonjour";

}

public void pingMe() throws PingMeFault {
FaultDetail faultDetail = new FaultDetail();
faultDetail.setMajor((short)2);
faultDetail.setMinor((short)1);
System.out.printin("Executing operation pingMe, throwing PingMeFault exception\n™);
throw new PingMeFault("PingMeFault raised by server”, faultDetail);

—

259

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 26. DEVELOPING A CONSUMER FROM A WSDL
CONTRACT

Abstract

One way of creating a consumer is to start from a WSDL contract. The contract defines the operations,
messages, and transport details of the service on which a consumer makes requests. The starting point
code for the consumer is generated from the WSDL contract. The functionality required by the
consumer is added to the generated code.

26.1. GENERATING THE STUB CODE

Overview

The cxf-codegen-plugin Maven plug-in generates the stub code from the WSDL contract. The stub
code provides the supporting code that is required to invoke operations on the remote service.

For consumers, the exf-codegen-plugin Maven plug-in generates the following types of code:
® Stub code — Supporting files for implementing a consumer.

® Starting point code — Sample code that connects to the remote service and invokes every
operation on the remote service.

Generating the consumer code
To generate consumer code use the cxf-codegen-plugin Maven plug-in. Example 26.1, “Consumer
Code Generation” shows how to use the code generator to generate consumer code.
<execution>
<id>generate-sources</id>
<phase>generate-sources</phase>
<wsdlOptions>
<wsdIOption>
<wsdI>wsdl</wsdl>

Example 26.1. Consumer Code Generation
<plugin>
<groupld>org.apache.cxf</groupld>
<artifactld>cxf-codegen-plugin</artifactid>
<version>${cxf.version}</version>
<executions>
<configuration>
<sourceRoot>outputDir</sourceRoot>
<extraargs>
<extraarg>-client</extraarg>
</extraargs>
</wsdIOption>
</wsdlOptions>
</configuration>

<goals>
<goal>wsdl2java</goal>

260

CHAPTER 26. DEVELOPING A CONSUMER FROM A WSDL CONTRACT

</goals>
</execution>
</executions>
</plugin>

Where outputDir is the location of a directory where the generated files are placed and wsdl specifies
the WSDL contract's location. The -client option generates starting point code for the consumer's
main() method.

For a complete list of the arguments available for the exf-codegen-plugin Maven plug-in see
Section E.2, “cxf-codegen-plugin”.
Generated code

The code generation plug-in generates the following Java packages for the contract shown in
Example 24.1, “HelloWorld WSDL Contract”:

® org.apache.hello_world_soap_http — This package is generated from the
http://apache.org/hello_world_soap_http target namespace. All of the WSDL entities defined
in this namespace (for example, the Greeter port type and the SOAPService service) map to
Java classes this Java package.

® org.apache.hello_world_soap_http.types — This package is generated from the
http://apache.org/hello_world_soap_http/types target namespace. All of the XML types
defined in this namespace (that is, everything defined in the wsdl:types element of the
HelloWorld contract) map to Java classes in this Java package.

The stub files generated by the cxf-codegen-plugin Maven plug-in fall into the following categories:

® (Classes representing WSDL entities in the org.apache.hello_world_soap_http package. The
following classes are generated to represent WSDL entities:

o Greeter — A Java interface that represents the Greeter wsdl:portType element. In JAX-
WS terminology, this Java interface is the service endpoint interface (SEI).

o SOAPService — A Java service class (extending javax.xml.ws.Service) that represents the
SOAPService wsdl:service element.

o PingMeFault — A Java exception class (extending java.lang.Exception) that represents
the pingMeFault wsdl:fault element.

® C(Classes representing XML types in the org.objectweb.hello_world_soap_http.types package. In

the HelloWorld example, the only generated types are the various wrappers for the request and
reply messages. Some of these data types are useful for the asynchronous invocation model.

26.2. IMPLEMENTING A CONSUMER

Overview
To implement a consumer when starting from a WSDL contract, you must use the following stubs:
® Service class

e SE|

261

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Using these stubs, the consumer code instantiates a service proxy to make requests on the remote
service. It also implements the consumer's business logic.

Generated service class

Example 26.2, “Outline of a Generated Service Class” shows the typical outline of a generated service

class, ServiceName_Servicel2], which extends the javax.xml.ws.Service base class.

| Example 26.2. Outline of a Generated Service Class

@WebServiceClient(name="..." targetNamespace="..."
wsdlLocation="...")

public class ServiceName extends javax.xml.ws.Service

public ServiceName(URL wsdlLocation, QName serviceName) { }

public ServiceName() { }

// Available only if you specify "-fe cxf' option in wsdlZjava

public ServiceName(Bus bus) { }

@WebEndpoint(name="...")
public SEI getPortName() { }

{
}

The ServiceName class in Example 26.2, “Outline of a Generated Service Class” defines the following
methods:

262

ServiceName(URL wsdlLocation, QName serviceName) — Constructs a service object based
on the data in the wsdl:service element with the QName ServiceName service in the WSDL
contract that is obtainable from wsdlLocation.

ServiceName() — The default constructor. It constructs a service object based on the service
name and the WSDL contract that were provided at the time the stub code was generated (for
example, when running the wsdl2java tool). Using this constructor presupposes that the WSDL
contract remains available at a specified location.

ServiceName(Bus bus) — (CXF specific) An additional constructor that enables you to specify
the Bus instance used to configure the Service. This can be useful in the context of a multi-
threaded application, where multiple Bus instances can be associated with different threads.
This constructor provides a simple way of ensuring that the Bus that you specify is the one that
is used with this Service. Only available if you specify the -fe exf option when invoking the
wsdl2java tool.

getPortName() — Returns a proxy for the endpoint defined by the wsdl:port element with the
name attribute equal to PortName. A getter method is generated for every wsdl:port element
defined by the ServiceName service. A wsdl:service element that contains multiple endpoint
definitions results in a generated service class with multiple getPortName() methods.

CHAPTER 26. DEVELOPING A CONSUMER FROM A WSDL CONTRACT

Service endpoint interface

For every interface defined in the original WSDL contract, you can generate a corresponding SEI. A
service endpoint interface is the Java mapping of a wsdl:portType element. Each operation defined in
the original wsdl:portType element maps to a corresponding method in the SEI. The operation's
parameters are mapped as follows:

1. The input parameters are mapped to method arguments.
2. The first output parameter is mapped to a return value.

3. If there is more than one output parameter, the second and subsequent output parameters map
to method arguments (moreover, the values of these arguments must be passed using Holder

types).

For example, Example 26.3, “The Greeter Service Endpoint Interface” shows the Greeter SEI, which is
generated from the wsdl:portType element defined in Example 24.1, “HelloWorld WSDL Contract”. For
simplicity, Example 26.3, “The Greeter Service Endpoint Interface” omits the standard JAXB and JAX-
WS annotations.

public interface Greeter
{
public String sayHi();
public String greetMe(String requestType);
public void greetMeOneWay(String requestType);
public void pingMe() throws PingMeFault;

package org.apache.hello_world_soap_http;
}

‘ Example 26.3. The Greeter Service Endpoint Interface

Consumer main function

Example 26.4, "Consumer Implementation Code” shows the code that implements the HelloWorld
consumer. The consumer connects to the SoapPort port on the SOAPService service and then
proceeds to invoke each of the operations supported by the Greeter port type.

Example 26.4. Consumer Implementation Code
package demo.hw.client;
import java.io.File;
import java.net.URL;

import javax.xml.namespace.QName;

import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.SOAPService;

public final class Client {
private static final QName SERVICE_NAME =

new QName("http://apache.org/hello_world_soap_http",
"SOAPService");

263

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

264

private Client()

{
}

public static void main(String args[]) throws Exception

{
ﬂ if (args.length == 0)

{

System.out.printin("please specify wsdl");
System.exit(1);
}

URL wsdIURL;
File wsdIFile = new File(args[0]);
if (wsdlFile.exists())

{
wsdIURL = wsdlFile.toURLY();

}

else

{
wsdIURL = new URL(args[0]);

}

System.out.printin(wsdlURL);
SOAPService ss = new SOAPService(wsdlURL,SERVICE_NAME);
Greeter port = ss.getSoapPort();
String resp;

System.out.printin("Invoking sayHi...");
resp = port.sayHi();
System.out.printin("Server responded with: " + resp);
System.out.printin();

System.out.printin("Invoking greetMe...");

resp = port.greetMe(System.getProperty("user.name"));
System.out.printin("Server responded with: " + resp);
System.out.printin();

System.out.printin("Invoking greetMeOneWay...");
port.greetMeOneWay(System.getProperty("user.name"));
System.out.printin("No response from server as method is OneWay");
System.out.printin();

Gtry{

—

}

System.out.printin("Invoking pingMe, expecting exception...");
port.pingMe();
} catch (PingMeFault ex) {
System.out.printin("Expected exception: PingMeFault has occurred.");
System.out.printin(ex.toString());

}
System.exit(0);

CHAPTER 26. DEVELOPING A CONSUMER FROM A WSDL CONTRACT

The Client.main() method from Example 26.4, “Consumer Implementation Code” proceeds as follows:

Provided that the Apache CXF runtime classes are on your classpath, the runtime is implicitly
initialized. There is no need to call a special function to initialize Apache CXF.

The consumer expects a single string argument that gives the location of the WSDL contract for
HelloWorld. The WSDL contract's location is stored in wsdIURL.

You create a service object using the constructor that requires the WSDL contract's location and
service name.

Call the appropriate getPortName() method to obtain an instance of the required port. In this case,
the SOAPService service supports only the SoapPort port, which implements the Greeter service

endpoint interface.

The consumer invokes each of the methods supported by the Greeter service endpoint interface.

Q® o6 o o 9o

In the case of the pingMe() method, the example code shows how to catch the PingMeFault fault
exception.

Client proxy generated with -fe cxf option

If you generate your client proxy by specifying the -fe exf option in wsdl2java (thereby selecting the cxf
frontend), the generated client proxy code is better integrated with Java 7. In this case, when you call a
getServiceNamePort() method, you get back a type that is a sub-interface of the SEl and implements
the following additional interfaces:

e java.lang.AutoCloseable
e javax.xml.ws.BindingProvider (JAX-WS 2.0)
e org.apache.cxf.endpoint.Client

To see how this simplifies working with a client proxy, consider the following Java code sample, written
using a standard JAX-WS proxy object:

// Programming with standard JAX-WS proxy object
/
(ServiceNamePortType port = service.getServiceNamePort();
((BindingProvider)port).getRequestContext()

.put(BindingProvider. ENDPOINT_ADDRESS PROPERTY, address);
port.serviceMethod(...);
((Closeable)port).close();

And compare the preceding code with the following equivalent code sample, written using code
generated by the exf frontend:

// Programming with proxy generated using "-fe cxf' option

/

try (ServiceNamePortTypeProxy port = service.getServiceNamePort()) {
port.getRequestContext().put(BindingProvider. ENDPOINT_ADDRESS PROPERTY, address);
port.serviceMethod(...);

}

265

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

[2]f the name attribute of thewsdl:service element ends inService the _Service is not used.

266

CHAPTER 27. FINDING WSDL AT RUNTIME

CHAPTER 27. FINDING WSDL AT RUNTIME

Abstract

Hard coding the location of WSDL documents into an application is not scalable. In real deployment
environments, you will want to allow the WSDL document's location be resolved at runtime. Apache CXF
provides a number of tools to make this possible.

27.1. MECHANISMS FOR LOCATING THE WSDL DOCUMENT

When developing consumers using the JAX-WS APIs you are must provide a hard coded path to the
WSDL document that defines your service. While this is OK in a small environment, using hard coded
paths does not work well in enterprise deployments.

To address this issue, Apache CXF provides three mechanisms for removing the requirement of using
hard coded paths:

® inject a configured proxy object

use a JAX-WS catalog

® use a contract resolver

NOTE

Injecting the proxy into your implementation code is generally the best option because it
is the easiest to implement. It requires only a client endpoint and a configuration file for
injecting and instantiating the service proxy.

27.2. INSTANTIATING A PROXY BY INJECTION

Overview

Apache CXF's use of the Spring Framework allows you to avoid the hassle of using the JAX-WS APlIs to
create service proxies. It allows you to define a client endpoint in a configuration file and then inject a
proxy directly into the implementation code. When the runtime instantiates the implementation object,
it will also instantiate a proxy for the external service based on the configuration. The implementation is
handed by reference to the instantiated proxy.

Because the proxy is instantiated using information in the configuration file, the WSDL location does not

need to be hard coded. It can be changed at deployment time. You can also specify that the runtime
should search the application's classpath for the WSDL.

Procedure

To inject a proxy for an external service into a service provider's implementation do the following:

1. Deploy the required WSDL documents in a well known location that all parts of the application
can access.

267

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

NOTE

If you are deploying the application as a WAR file, it is recommended that you
place all of the WSDL documents and XML Schema documents in the WEB-
INF/wsdl folder of the WAR.

NOTE

If you are deploying the application as a JAR file, it is recommended that you
place all of the WSDL documents and XML Schema documents in the META-
INF/wsdl folder of the JAR.

2. Configure a JAX-WS client endpoint for the proxy that is being injected.

3. Inject the proxy into your service provide using the @Resource annotation.

Configuring the proxy

You configure a JAX-WS client endpoint using the jaxws:client element in you application's
configuration file. This tells the runtime to instantiate a org.apache.cxf.jaxws.JaxWsClientProxy
object with the specified properties. This object is the proxy that will be injected into the service
provider.

At a minimum you need to provide values for the following attributes:
e jd—Specifies the ID used to identify the client to be injected.
e serviceClass—Specifies the SEI of the service on which the proxy makes requests.

Example 27.1, “Configuration for a Proxy to be Injected into a Service Implementation” shows the
configuration for a JAX-WS client endpoint.

schemalocation="...
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
>
<jaxws:client id="bookClient"
serviceClass="org.apache.cxf.demo.BookService"

wsdlLocation="classpath:books.wsdl"/>

<beans ...
xmins:jaxws="http://cxf.apache.org/jaxws"
</beans>

| Example 27.1. Configuration for a Proxy to be Injected into a Service Implementation

NOTE

In Example 27.1, "Configuration for a Proxy to be Injected into a Service Implementation”
the wsdlLocation attribute instructs the runtime to load the WSDL from the classpath. If
books.wsdl is on the classpath, the runtime will be able to find it.

268

CHAPTER 27. FINDING WSDL AT RUNTIME

For more information on configuring a JAX-WS client see Section 15.2, “Configuring Consumer
Endpoints”.
Coding the provider implementation

You inject the configured proxy into a service implementation as a resource using the @Resource as
shown in Example 27.2, “Injecting a Proxy into a Service Implementation” .

targetNamespace = "http://apache.org/hello_world_soap_http",
endpointinterface = "org.apache.hello_world_soap_http.Greeter")
public class Storelmpl implements Store {

@Resource(name="bookClient")

package demo.hw.server;

import org.apache.hello_world_soap_http.Greeter;

@javax.jws.WebService(portName = "SoapPort", serviceName = "SOAPService",
private BookService proxy;

Example 27.2. Injecting a Proxy into a Service Implementation
}

The annotation's name property corresponds to the value of the JAX-WS client's id attribute. The
configured proxy is injected into the BookService object declared immediately after the annotation.
You can use this object to make invocations on the proxy's external service.

27.3. USING A JAX-WS CATALOG

Overview

The JAX-WS specification mandates that all implementations support:
a standard catalog facility to be used when resolving any Web service document that is
part of the description of a Web service, specifically WSDL and XML Schema

documents.

This catalog facility uses the XML catalog facility specified by OASIS. All of the JAX-WS APIs and
annotation that take a WSDL URI use the catalog to resolve the WSDL document's location.

This means that you can provide an XML catalog file that rewrites the locations of your WSDL
documents to suite specific deployment environments.

Writing the catalog

JAX-WS catalogs are standard XML catalogs as defined by the OASIS XML Catalogs 1.1 specification.
They allow you to specify mapping:

® adocument's public identifier and/or a system identifier to a URL.

® the URI of aresource to another URI.

269

https://www.oasis-open.org/committees/download.php/14041/xml-catalogs.html

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Table 27.1, "Common JAX-WS Catalog Elements” lists some common elements used for WSDL location
resolution.

Table 27.1. Common JAX-WS Catalog Elements

Element Description

uri Maps a URI to an alternate URI.

rewriteURI Rewrites the beginning of a URI. For example, this
element allows you to map all URIs that start with
http://cxf.apache.org to URIs that start with
classpath:.

uriSuffix Maps a URI to an alternate URI based on the suffix of
the original URI. For example you could map all URIs
that end in foo.xsd to classpath:foo.xsd.

Packaging the catalog

The JAX-WS specification mandates that the catalog used to resolve WSDL and XML Schema
documents is assembled using all available resources named META-INF/jax-ws-catalog.xml. If your
application is packaged into a single JAR, or WAR, you can place the catalog into a single file.

If your application is packaged as multiple JARs, you can split the catalog into a number of files. Each
catalog file could be modularized to only deal with WSDLs accessed by the code in the specific JARs.

27.4. USING A CONTRACT RESOLVER

Overview

The most involved mechanism for resolving WSDL document locations at runtime is to implement your
own custom contract resolver. This requires that you provide an implementation of the Apache CXF
specific ServiceContractResolver interface. You also need to register your custom resolver with the
bus.

Once properly registered, the custom contract resolver will be used to resolve the location of any
required WSDL and schema documents.

Implementing the contract resolver

A contract resolver is an implementation of the org.apache.cxf.endpoint.ServiceContractResolver
interface. As shown in Example 27.3, “ServiceContractResolver Interface”, this interface has a single
method, getContractLocation(), that needs to be implemented. getContractLocation() takes the
QName of a service and returns the URI for the service's WSDL contract.

URI getContractLocation(QName gname);

Example 27.3. ServiceContractResolver Interface
{
}

| public interface ServiceContractResolver

270

CHAPTER 27. FINDING WSDL AT RUNTIME

The logic used to resolve the WSDL contract's location is application specific. You can add logic that
resolves contract locations from a UDDI registry, a database, a custom location on a file system, or any
other mechanism you choose.

Registering the contract resolver programmatically

Before the Apache CXF runtime will use your contract resolver, you must register it with a contract
resolver registry. Contract resolver registries implement the
org.apache.cxf.endpoint.ServiceContractResolverRegistry interface. However, you do not need to
implement your own registry. Apache CXF provides a default implementation in the
org.apache.cxf.endpoint.ServiceContractResolverRegistrylmpl class.
To register a contract resolver with the default registry you do the following:

1. Get areference to the default bus object.

2. Get the service contract registry from the bus using the bus' getExtension() method.

3. Create aninstance of your contract resolver.

4. Register your contract resolver with the registry using the registry's register() method.

Example 27.4, "Registering a Contract Resolver” shows the code for registering a contract resolver with
the default registry.

Example 27.4. Registering a Contract Resolver

usFactory bf=BusFactory.newlnstance();
Bus bus=Dbf.createBus();

ServiceContractResolverRegistry registry = bus.getExtension(ServiceContractResolverRegistry);

QJarServiceContractResoIver resolver = new JarServiceContractResolver();

Qregistry.register(resolver);

The code in Example 27.4, “"Registering a Contract Resolver” does the following:
ﬂ Gets a bus instance.
9 Gets the bus' contract resolver registry.
g Creates an instance of a contract resolver.

Q Registers the contract resolver with the registry.

Registering a contract resolver using configuration

You can also implement a contract resolver so that it can be added to a client through configuration.
The contract resolver is implemented in such a way that when the runtime reads the configuration and
instantiates the resolver, the resolver registers itself. Because the runtime handles the initialization, you

271

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

can decide at runtime if a client needs to use the contract resolver.

To implement a contract resolver so that it can be added to a client through configuration do the
following:

1. Add an init() method to your contract resolver implementation.

2. Add logic to your init() method that registers the contract resolver with the contract resolver
registry as shown in Example 27.4, “Registering a Contract Resolver”.

3. Decorate the init() method with the @PostConstruct annotation.

public class UddiResolver implements ServiceContractResolver

{

Example 27.5, “Service Contract Resolver that can be Registered Using Configuration” shows a contract
private Bus bus;
@PostConstruct

resolver implementation that can be added to a client using configuration.
Example 27.5. Service Contract Resolver that can be Registered Using Configuration
import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.xml.namespace.QName;
import org.apache.cxf.Bus;
import org.apache.cxf.BusFactory;
public void init()
{

BusFactory bf=BusFactory.newlnstance();
Bus bus=Dbf.createBus();
if (null = bus)
{
ServiceContractResolverRegistry resolverRegistry =
bus.getExtension(ServiceContractResolverRegistry.class);
if (resolverRegistry != null)
{
resolverRegistry.register(this);
}
}
}

public URI getContractLocation(QName serviceName)

{

.
}

To register the contract resolver with a client you need to add a bean element to the client's
configuration. The bean element's class attribute is the name of the class implementing the contract
resolver.

272

CHAPTER 27. FINDING WSDL AT RUNTIME

Example 27.6, “Bean Configuring a Contract Resolver” shows a bean for adding a configuration resolver
implemented by the org.apache.cxf.demos.myContractResolver class.

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemal.ocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

<beans xmins="http://www.springframework.org/schema/beans"
<bean id="myResolver" class="org.apache.cxf.demos.myContractResolver" />

Example 27.6. Bean Configuring a Contract Resolver
</beans>

Contract resolution order

When a new proxy is created, the runtime uses the contract registry resolver to locate the remote
service's WSDL contract. The contract resolver registry calls each contract resolver's
getContractLocation() method in the order in which the resolvers were registered. It returns the first
URI returned from one of the registered contract resolvers.

If you registered a contract resolver that attempted to resolve the WSDL contract at a well known
shared file system, it would be the only contract resolver used. However, if you subsequently registered
a contract resolver that resolved WSDL locations using a UDDI registry, the registry could use both
resolvers to locate a service's WSDL contract. The registry would first attempt to locate the contract
using the shared file system contract resolver. If that contract resolver failed, the registry would then
attempt to locate it using the UDDI contract resolver.

273

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 28. GENERIC FAULT HANDLING

Abstract

The JAX-WS specification defines two types of faults. One is a generic JAX-WS runtime exception. The

other is a protocol specific class of exceptions that is thrown during message processing.

28.1. RUNTIME FAULTS

Overview

Most of the JAX-WS APIs throw a generic javax.xml.ws.WebServiceException exception.

APIs that throw WebServiceException

Table 28.1, “"APIs that Throw WebServiceException” lists some of the JAX-WS APIs that can throw the

generic WebServiceException exception.

Table 28.1. APIs that ThrowWebServiceException

API

Binding.setHandlerChain()

BindingProvider.getEndpointReference()

Dispatch.invoke()

Dispatch.invokeAsync()

Dispatch.invokeOneWay()

LogicalMessage.getPayload()

LogicalMessage.setPayload()

274

Reason

There is an error in the handler chain configuration.

The specified class is not assigned from a
W3CEndpointReference.

There is an error in the Dispatch instance's
configuration or an error occurred while
communicating with the service.

There is an error in the Dispatch instance's
configuration.

There is an error in the Dispatch instance's
configuration or an error occurred while
communicating with the service.

An error occurred when using a supplied
JAXBContext to unmarshall the payload. The
cause field of the WebServiceException
contains the original JAXBEXxception.

An error occurred when setting the payload of the
message. If the exception is thrown when using a
JAXBContext, the cause field of the
WebServiceException contains the original
JAXBException.

CHAPTER 28. GENERIC FAULT HANDLING

API Reason

WebServiceContext.getEndpointReference() The specified class is not assigned from a
W3CEndpointReference.

28.2. PROTOCOL FAULTS

Overview

Protocol exceptions are thrown when an error occurs during the processing of a request. All synchronous
remote invocations can throw a protocol exception. The underlying cause occurs either in the
consumer's message handling chain or in the service provider.

The JAX-WS specification defines a generic protocol exception. It also specifies a SOAP-specific
protocol exception and an HTTP-specific protocol exception.

Types of protocol exceptions

The JAX-WS specification defines three types of protocol exception. Which exception you catch
depends on the transport and binding used by your application.

Table 28.2, “Types of Generic Protocol Exceptions” describes the three types of protocol exception and
when they are thrown.

Table 28.2. Types of Generic Protocol Exceptions

Exception Class When Thrown

javax.xml.ws.ProtocolException This exception is the generic protocol exception. It
can be caught regardless of the protocol in use. It
can be cast into a specific fault type if you are using
the SOAP binding or the HTTP binding. When using
the XML binding in combination with the HTTP or
JMS transports, the generic protocol exception
cannot be cast into a more specific fault type.

javax.xml.ws.soap.SOAPFaultException This exception is thrown by remote invocations when
using the SOAP binding. For more information see
the section called "Using the SOAP protocol
exception”.

javax.xml.ws.http.HTTPException This exception is thrown when using the Apache CXF
HTTP binding to develop RESTful Web services. For
more information see Part VI, “Developing RESTful
Web Services”.

Using the SOAP protocol exception

The SOAPFaultException exception wraps a SOAP fault. The underlying SOAP fault is stored in the
fault field as a javax.xml.soap.SOAPFault object.

275

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

If a service implementation needs to throw an exception that does not fit any of the custom exceptions
created for the application, it can wrap the fault in a SOAPFaultException using the exceptions creator
and throw it back to the consumer. Example 28.1, “Throwing a SOAP Protocol Exception” shows code for
creating and throwing a SOAPFaultException if the method is passed an invalid parameter.

tlckers length()<3)

SOAPFault fault = SOAPFactory.newlnstance().createFault();
fault.setFaultString("Ticker too short");

publlc Quote getQuote(String ticker)
throw new SOAPFaultException(fault);

| Example 28.1. Throwing a SOAP Protocol Exception

When a consumer catches a SOAPFaultException exception they can retrieve the underlying cause of
the exception by examining the wrapped SOAPFault exception. As shown in Example 28.2, "Getting the
Fault from a SOAP Protocol Exception”, the SOAPFault exception is retrieved using the
SOAPFaultException exception's getFault() method.

try
proxy getQuote(ticker);
catch (SOAPFaultException sfe)

Example 28.2. Getting the Fault from a SOAP Protocol Exception
SOAPFauIt fault = sfe.getFault();

276

CHAPTER 29. PUBLISHING A SERVICE

CHAPTER 29. PUBLISHING A SERVICE

Abstract

When you want to deploy a JAX-WS service as a standalone Java application, you must explicitly
implement the code that publishes the service provider.

29.1. WHEN TO PUBLISH A SERVICE

Apache CXF provides a number of ways to publish a service as a service provider. How you publish a
service depends on the deployment environment you are using. Many of the containers supported by
Apache CXF do not require writing logic for publishing endpoints. There are two exceptions:

® deploying a server as a standalone Java application
® deploying a server into an OSGi container without Blueprint

For detailed information in deploying applications into the supported containers see Part |V,
“Configuring Web Service Endpoints”.

29.2. APISUSED TO PUBLISH A SERVICE

Overview

The javax.xml.ws.Enddpoint class does the work of publishing a JAX-WS service provider. To
publishing an endpoint do the following:

1. Create an Endpoint object for your service provider.
2. Publish the endpoint.
3. Stop the endpoint when application shuts down.

The Endpoint class provides methods for creating and publishing service providers. It also provides a
method that can create and publish a service provider in a single method call.

Instantiating an service provider

A service provider is instantiated using an Endpoint object. You instantiate an Endpoint object for your
service provider using one of the following methods:

e static Endpoint create(Object implementor);
This create() method returns an Endpoint for the specified service implementation. The
Endpoint object is created using the information provided by the implementation class'
javax.xml.ws.BindingType annotation, if it is present. If the annotation is not present, the
Endpoint uses a default SOAP 1.1/HTTP binding.

e static Endpoint create(URI bindingID,
Object implementor);
This create() method returns an Endpoint object for the specified implementation object using
the specified binding. This method overrides the binding information provided by the
javax.xml.ws.BindingType annotation, if it is present. If the bindinglD cannot be resolved, or it

277

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

is null, the binding specified in the javax.xml.ws.BindingType is used to create the Endpoint.
If neither the bindingID or the javax.xml.ws.BindingType can be used, the Endpoint is
created using a default SOAP 1.1/HTTP binding.

e static Endpoint publish(String address,
Object implementor);
The publish() method creates an Endpoint object for the specified implementation, and
publishes it. The binding used for the Endpoint object is determined by the URL scheme of the
provided address. The list of bindings available to the implementation are scanned for a
binding that supports the URL scheme. If one is found the Endpoint object is created and
published. If one is not found, the method fails.

TIP

Using publish() is the same as invoking one of the create() methods, and then invoking the
publish() method used in publish to an address.

IMPORTANT

The implementation object passed to any of the Endpoint creation methods must either
be an instance of a class annotated with javax.jws.WebService and meeting the
requirements for being an SEl implementation or it must be an instance of a class
annotated with javax.xml.ws.WebServiceProvider and implementing the Provider
interface.

Publishing a service provider

You can publish a service provider using either of the following Endpoint methods:

e void publish(String address);
This publish() method publishes the service provider at the address specified.

IMPORTANT

The address's URL scheme must be compatible with one of the service
provider's bindings.

e void publish(Object serverContext);
This publish() method publishes the service provider based on the information provided in the
specified server context. The server context must define an address for the endpoint, and the
context must also be compatible with one of the service provider's available bindings.

Stopping a published service provider

When the service provider is no longer needed you should stop it using its stop() method. The stop()
method, shown in Example 29.1, “Method for Stopping a Published Endpoint”, shuts down the endpoint
and cleans up any resources it is using.

Example 29.1. Method for Stopping a Published Endpoint

void stop();

278

CHAPTER 29. PUBLISHING A SERVICE

IMPORTANT

Once the endpoint is stopped it cannot be republished.

29.3. PUBLISHING A SERVICE IN A PLAIN JAVA APPLICATION

Overview

When you want to deploy your application as a plain java application you need to implement the logic for
publishing your endpoints in the application's main() method. Apache CXF provides you two options for
writing your application's main() method.

® use the main() method generated by the wsdl2java tool

® write a custom main() method that publishes the endpoints

Generating a Server Mainline

The code generators -server flag makes the tool generate a simple server mainline. The generated
server mainline, as shown in Example 29.2, “Generated Server Mainline”, publishes one service provider
for each port element in the specified WSDL contract.

For more information see Section E.2, “cxf-codegen-plugin”.

Example 29.2, “Generated Server Mainline” shows a generated server mainline.
protected GreeterServer() throws Exception {
System.out.printin("Starting Server");
Object implementor = new GreeterImpl();

Example 29.2. Generated Server Mainline
package org.apache.hello_world_soap_http;
import javax.xml.ws.Endpoint;
public class GreeterServer {
String address = "http://localhost:9000/SoapContext/SoapPort";

Endpoint.publish(address, implementor);

}

public static void main(String args[]) throws Exception {
new GreeterServer();
System.out.printin("Server ready...");

Thread.sleep(5 * 60 * 1000);
System.out.printin("Server exiting");
System.exit(0);

——

The code in Example 29.2, “Generated Server Mainline” does the following:

279

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

ﬂ Instantiates a copy of the service implementation object.

9 Creates the address for the endpoint based on the contents of the address child of the wsdl:port
element in the endpoint's contract.

g Publishes the endpoint.

Writing a Server Mainline

If you used the Java first development model or you do not want to use the generated server mainline
you can write your own. To write your server mainline you must do the following:

1. Instantiate an javax.xml.ws.Endpoint object for the service provider.

2. Create an optional server context to use when publishing the service provider.
3. Publish the service provider using one of the publish() methods.

4. Stop the service provider when the application is ready to exit.

Example 29.3, “Custom Server Mainline” shows the code for publishing a service provider.

Example 29.3. Custom Server Mainline
package org.apache.hello_world_soap_http;
import javax.xml.ws.Endpoint;
public class GreeterServer

}

public static void main(String args[]) throws Exception

{

{
protected GreeterServer() throws Exception
{
Greeterlmpl impl = new Greeterlmpl();
Endpoint endpt.create(impl);
6 endpt.publish("http://localhost:9000/SoapContext/SoapPort");
boolean done = false;

Q while(/done)
{

}...

endpt.stop();
System.exit(0);

—

The code in Example 29.3, “Custom Server Mainline” does the following:

280

CHAPTER 29. PUBLISHING A SERVICE

Instantiates a copy of the service's implementation object.

Creates an unpublished Endpoint for the service implementation.

Publishes the service provider at http://localhost:9000/SoapContext/SoapPort.
Loops until the server should be shutdown.

Stops the published endpoint.

00009

29.4. PUBLISHING A SERVICE IN AN OSGI CONTAINER

Overview

When you develop an application that will be deployed into an OSGi container, you need to coordinate
the publishing and stopping of your endpoints with the life-cycle of the bundle in which it is packaged.
You want your endpoints published when the bundle is started and you want the endpoints stopped
when the bundle is stopped.

You tie your endpoints life-cycle to the bundle's life-cycle by implementing an OSGi bundle activator. A
bundle activator is used by the OSGi container to create the resource for a bundle when it is started. The
container also uses the bundle activator to clean up the bundles resources when it is stopped.

The bundle activator interface

You create a bundle activator for your application by implementing the
org.osgi.framework.BundleActivator interface. The BundleActivator interface, shown in
Example 29.4, "Bundle Activator Interface”, it has two methods that need to be implemented.

public void start(BundleContext context)
throws java.lang.Exception;

public void stop(BundleContext context)
throws java.lang.Exception;

Example 29.4. Bundle Activator Interface
interface BundleActivator

{

}

The start() method is called by the container when it starts the bundle. This is where you instantiate and
publish the endpoints.

The stop() method is called by the container when it stops the bundle. This is where you would stop the
endpoints.

Implementing the start method

The bundle activator's start method is where you publish your endpoints. To publish your endpoints the
start method must do the following:

1. Instantiate an javax.xml.ws.Endpoint object for the service provider.

281

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

2. Create an optional server context to use when publishing the service provider.
3. Publish the service provider using one of the publish() methods.

Example 29.5, “Bundle Activator Start Method for Publishing an Endpoint” shows code for publishing a
service provider.

Example 29.5. Bundle Activator Start Method for Publishing an Endpoint

package com.widgetvendor.osgi;

import javax.xml.ws.Endpoint;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class widgetActivator implements BundleActivator

{
private Endpoint endpt;

public void start(BundleContext context)
{
WidgetOrderIimpl impl = new WidgetOrderImpl();
endpt = Endpoint.create(impl);
endpt.publish("http://localhost:9000/SoapContext/SoapPort");
}

—

The code in Example 29.5, “Bundle Activator Start Method for Publishing an Endpoint” does the
following:

ﬂ Instantiates a copy of the service's implementation object.
9 Creates an unpublished Endpoint for the service implementation.

9 Publish the service provider at http://localhost:9000/SoapContext/SoapPort.

Implementing the stop method

The bundle activator's stop method is where you clean up the resources used by your application. Its
implementation should include logic for stopping all of the endpoint's published by the application.

Example 29.6, "“Bundle Activator Stop Method for Stopping an Endpoint” shows a stop method for
stopping a published endpoint.

| Example 29.6. Bundle Activator Stop Method for Stopping an Endpoint

| package com.widgetvendor.osgi;

import javax.xml.ws.Endpoint;

282

CHAPTER 29. PUBLISHING A SERVICE

{
private Endpoint endpt;
public void stop(BundleContext context)
{

endpt.stop();
}

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
public class widgetActivator implements BundleActivator
}

Informing the container

You must add inform the container that the application's bundle includes a bundle activator. You do this
by adding the Bundle-Activator property to the bundle's manifest. This property tells the container
which class in the bundle to use when activating the bundle. Its value is the fully qualified name of the

class implementing the bundle activator.

Example 29.7, “Bundle Activator Manifest Entry” shows a manifest entry for a bundle whose activator is
implemented by the class com.widgetvendor.osgi.widgetActivator.

Example 29.7. Bundle Activator Manifest Entry

I Bundle-Activator: com.widgetvendor.osgi.widgetActivator

283

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 30. BASIC DATA BINDING CONCEPTS

Abstract

There are a number of general topics that apply to how Apache CXF handles type mapping.

30.1. INCLUDING AND IMPORTING SCHEMA DEFINITIONS

Overview

Apache CXF supports the including and importing of schema definitions, using the include and import
schema tags. These tags enable you to insert definitions from external files or resources into the scope
of a schema element. The essential difference between including and importing is:

® |ncluding brings in definitions that belong to the same target namespace as the enclosing
schema element.

® |mporting brings in definitions that belong to a different target namespace from the enclosing
schema element.

xsd:include syntax

The include directive has the following syntax:
I <include schemalocation="anyURI" />

The referenced schema, given by anyURI, must either belong to the same target namespace as the
enclosing schema, or not belong to any target namespace at all. If the referenced schema does not
belong to any target namespace, it is automatically adopted into the enclosing schema’s namespace
when it is included.

Example 30.1, "Example of a Schema that Includes Another Schema” shows an example of an XML
Schema document that includes another XML Schema document.

xmins:tns="http://schemas.redhat.com/tests/schema_parser"
xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
xmins="http://schemas.xmlsoap.org/wsdl/">
<types>
<schema targetNamespace="http://schemas.redhat.com/tests/schema_parser"
xmins="http://www.w3.0rg/2001/XMLSchema">
<include schemalocation="included.xsd"/>
<complexType hame="IncludingSequence">
<sequence>
<element name="includedSeq" type="tns:IncludedSequence"/>
</sequence>
</complexType>

Example 30.1. Example of a Schema that Includes Another Schema
</schema>

‘ <definitions targetNamespace="http://schemas.redhat.com/tests/schema_parser"

284

CHAPTER 30. BASIC DATA BINDING CONCEPTS
<fypes>
</definitions>

Example 30.2, "Example of an Included Schema” shows the contents of the included schema file.

xmins="http://www.w3.0rg/2001/XMLSchema">
<!-- Included type definitions -->
<complexType name="IncludedSequence">
<sequence>
<element name="varint" type="int"/>
<element name="varString" type="string"/>
</sequence>
</complexType>

<schema targetNamespace="http://schemas.redhat.com/tests/schema_parser"
</schema>

| Example 30.2. Example of an Included Schema

xsd:import syntax

The import directive has the following syntax:

<import namespace="namespaceAnyURI"
schemalocation="schemaAnyURI' />

The imported definitions must belong to the namespaceAnyURI target namespace. If namespaceAnyUR/
is blank or remains unspecified, the imported schema definitions are unqualified.

Example 30.3, “"Example of a Schema that Imports Another Schema” shows an example of an XML
Schema that imports another XML Schema.

xmins:tns="http://schemas.redhat.com/tests/schema_parser"
xmins:imp="http://schemas.redhat.com/tests/imported_types"
xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">
<types>
<schema targetNamespace="http://schemas.redhat.com/tests/schema_parser"
xmins="http://www.w3.0rg/2001/XMLSchema">
<import namespace="http://schemas.redhat.com/tests/imported_types"
schemalocation="included.xsd"/>
<complexType name="IncludingSequence">
<sequence>
<element name="includedSeq" type="imp:IncludedSequence"/>
</sequence>
</complexType>

Example 30.3. Example of a Schema that Imports Another Schema
</schema>

‘ <definitions targetNamespace="http://schemas.redhat.com/tests/schema_parser"

285

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide
<fypes>
</definitions>

Example 30.4, "Example of an Imported Schema” shows the contents of the imported schema file.

xmins="http://www.w3.0rg/2001/XMLSchema">
<!-- Included type definitions -->
<complexType name="IncludedSequence">
<sequence>
<element name="varint" type="int"/>
<element name="varString" type="string"/>
</sequence>
</complexType>

<schema targetNamespace="http://schemas.redhat.com/tests/imported_types"
</schema>

| Example 30.4. Example of an Imported Schema

Using non-referenced schema documents

Using types defined in a schema document that is not referenced in the service's WSDL document is a
three step process:

1. Convert the schema document to a WSDL document using the xsd2wsdl tool.

2. Generate Java for the types using the wsdl2java tool on the generated WSDL document.

IMPORTANT

You will get a warning from the wsdl2java tool stating that the WSDL document
does not define any services. You can ignore this warning.

3. Add the generated classes to your classpath.

30.2. XML NAMESPACE MAPPING

Overview

XML Schema type, group, and element definitions are scoped using namespaces. The namespaces
prevent possible naming clashes between entities that use the same name. Java packages serve a
similar purpose. Therefore, Apache CXF maps the target namespace of a schema document into a
package containing the classes necessary to implement the structures defined in the schema document.

Package naming

The name of the generated package is derived from a schema's target namespace using the following
algorithm:

1. The URI scheme, if present, is stripped.

286

CHAPTER 30. BASIC DATA BINDING CONCEPTS

NOTE

Apache CXF will only strip the http:, https:, and urn: schemes.

For example, the namespace http:\\www.widgetvendor.com\types\widgetTypes.xsd
becomes \\widgetvendor.com\types\widgetTypes.xsd.

2. The trailing file type identifier, if present, is stripped.

For example, \www.widgetvendor.com\types\widgetTypes.xsd becomes
\\widgetvendor.com\types\widgetTypes.

3. The resulting string is broken into a list of strings using / and : as separators.

So, \www.widgetvendor.com\types\widgetTypes becomes the list
{"www.widegetvendor.com”, "types", "widgetTypes"}.

4. If the first string in the list is an internet domain name, it is decomposed as follows:
a. The leading www. is stripped.
b. The remaining string is split into its component parts using the . as the separator.
c. The order of the list is reversed.

So, {"www.widegetvendor.com”, "types", "widgetTypes"} becomes {"com",

"widegetvendor", "types”, "widgetTypes"}

NOTE

Internet domain names end in one of the following: .com, .net, .edu, .org, .gov,
or in one of the two-letter country codes.

5. The strings are converted into all lower case.

So, {"com", "widegetvendor", "types", "widgetTypes"} becomes {"com", "widegetvendor",

"types", "widgettypes"}.
6. The strings are normalized into valid Java package name components as follows:

a. If the strings contain any special characters, the special characters are converted to an
underscore().

b. If any of the strings are a Java keyword, the keyword is prefixed with an underscore(_).
c. If any of the strings begin with a numeral, the string is prefixed with an underscore().
7. The strings are concatenated using . as a separator.

So, {"com", "widegetvendor", "types", "widgettypes"} becomes the package name
com.widgetvendor.types.widgettypes.

The XML Schema constructs defined in the namespace

http:\\www.widgetvendor.com\types\widgetTypes.xsd are mapped to the Java package
com.widgetvendor.types.widgettypes.

287

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Package contents

A JAXB generated package contains the following:
® A classimplementing each complex type defined in the schema
For more information on complex type mapping see Chapter 33, Using Complex Types.
® Anenum type for any simple types defined using the enumeration facet
For more information on how enumerations are mapped see Section 32.3, “Enumerations”.
® A public ObjectFactory class that contains methods for instantiating objects from the schema
For more information on the ObjectFactory class see Section 30.3, “The Object Factory”.

e A package-info.java file that provides metadata about the classes in the package

30.3. THE OBJECT FACTORY

Overview

JAXB uses an object factory to provide a mechanism for instantiating instances of JAXB generated
constructs. The object factory contains methods for instantiating all of the XML schema defined
constructs in the package's scope. The only exception is that enumerations do not get a creation
method in the object factory.

Complex type factory methods

For each Java class generated to implement an XML schema complex type, the object factory contains
a method for creating an instance of the class. This method takes the form:

I typeName create typeName();

For example, if your schema contained a complex type named widgetType, Apache CXF generates a
class called WidgetType to implement it. Example 30.5, “Complex Type Object Factory Entry” shows
the generated creation method in the object factory.

WidgetType createWidgetType()

{
return new WidgetType();
}

Example 30.5. Complex Type Object Factory Entry
public class ObjectFactory

{

}

Element factory methods

288

CHAPTER 30. BASIC DATA BINDING CONCEPTS

For elements that are declared in the schema's global scope, Apache CXF inserts a factory method into
the object factory. As discussed in Chapter 31, Using XML Elements, XML Schema elements are mapped
to JAXBElement<T> objects. The creation method takes the form:

I public JAXBElement<elementType> create elementName(elementType value);

For example if you have an element named comment of type xsd:string, Apache CXF generates the
object factory method shown in Example 30.6, “Element Object Factory Entry”

@XmIEIementDecI(namespace ="...", name = "comment")
public JAXBElement<String> createComment(Strmg value) {

publlc class ObjectFactory
return new JAXBElement<String>(_Comment_QNAME, String.class, null, value);

‘ Example 30.6. Element Object Factory Entry

30.4. ADDING CLASSES TO THE RUNTIME MARSHALLER

Overview

When the Apache CXF runtime reads and writes XML data it uses a map that associates the XML
Schema types with their representative Java types. By default, the map contains all of the types defined
in the target namespace of the WSDL contract's schema element. It also contains any types that are
generated from the namespaces of any schemas that are imported into the WSDL contract.

The addition of types from namespaces other than the schema namespace used by an application's
schema element is accomplished using the @XmISeeAlso annotation. If your application needs to work
with types that are generated outside the scope of your application's WSDL document, you can edit the
@XmlSeeAlso annotation to add them to the JAXB map.

Using the @XmISeeAlso annotation

The @XmISeeAlso annotation can be added to the SEI of your service. It contains a comma separated
list of classes to include in the JAXB context. Example 30.7, “Syntax for Adding Classes to the JAXB
Context” shows the syntax for using the @XmlISeeAlso annotation.

@WebService()
@XmISeeAlso({Class1.class, Class2.class, ..., ClassN.class})

import javax.xml.bind.annotation.XmiSeeAlso;
publlc class GeneratedSEl {

| Example 30.7. Syntax for Adding Classes to the JAXB Context

289

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

TIP

In cases where you have access to the JAXB generated classes, it is more efficient to use the

ObjectFactory classes generated to support the needed types. Including the ObjectFactory class
includes all of the classes that are known to the object factory.

Example

Example 30.8, “Adding Classes to the JAXB Context” shows an SEl annotated with @XmISeeAlso.

@WebSerwce()

@XmlSeeAlso({org.apache.schemas.types.test.ObjectFactory.class,

org.apache.schemas.tests.group_test.ObjectFactory.class})

|mport javax.xml.bind.annotation.XmlSeeAlso;
publlc interface Foo {

‘ Example 30.8. Adding Classes to the JAXB Context

290

CHAPTER 31. USING XML ELEMENTS

CHAPTER 31. USING XML ELEMENTS

Abstract

XML Schema elements are used to define an instance of an element in an XML document. Elements are
defined either in the global scope of an XML Schema document, or they are defined as a member of a
complex type. When they are defined in the global scope, Apache CXF maps them to a JAXB element
class that makes manipulating them easier.

OVERVIEW

An element instance in an XML document is defined by an XML Schema element element in the global
scope of an XML Schema document To make it easier for Java developers to work with elements,
Apache CXF maps globally scoped elements to either a special JAXB element class or to a Java class
that is generated to match its content type.

How the element is mapped depends on if the element is defined using a named type referenced by the
type attribute or if the element is defined using an in-line type definition. Elements defined with in-line
type definitions are mapped to Java classes.

TIP

It is recommended that elements are defined using a named type because in-line types are not reusable
by other elements in the schema.

XML SCHEMA MAPPING

In XML Schema elements are defined using element elements. element elements has one required
attribute. The name specifies the name of the element as it appears in an XML document.

In addition to the name attribute element elements have the optional attributes listed in Table 31,
“Attributes Used to Define an Element”.

Table 31.1. Attributes Used to Define an Element

Attribute Description

type Specifies the type of the element. The type can be
any XML Schema primitive type or any named
complex type defined in the contract. If this attribute
is not specified, you will need to include an in-line
type definition.

nillable Specifies if an element can be left out of a document
entirely. If nillable is set to true, the element can be
omitted from any document generated using the
schema.

291

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Attribute Description

abstract Specifies if an element can be used in an instance
document. true indicates that the element cannot
appear in the instance document. Instead, another
element whose substitutionGroup attribute
contains the QName of this element must appear in
this element's place. For information on how this
attribute effects code generation see the section
called "Java mapping of abstract elements”.

substitutionGroup Specifies the name of an element that can be
substituted with this element. For more information
on using type substitution see Chapter 35, Element
Substitution.

default Specifies a default value for an element. For
information on how this attribute effects code
generation see the section called “Java mapping of
elements with a default value”.

fixed Specifies a fixed value for the element.

Example 311, “Simple XML Schema Element Definition” shows a simple element definition.

Example 31.1. Simple XML Schema Element Definition

I <element name="joeFred" type="xsd:string" />

An element can also define its own type using an in-line type definition. In-line types are specified using
either a complexType element or a simpleType element. Once you specify whether the type of data is
complex or simple, you can define any type of data needed using the tools available for each type of
data.

Example 31.2, “XML Schema Element Definition with an In-Line Type” shows an element definition with
an in-line type definition.

<sequence>
<element name="numWheels" type="xsd:int" />
<element name="brand" type="xsd:string" />
</sequence>
</complexType>

<element name="skate">
<complexType>
</element>

‘ Example 31.2. XML Schema Element Definition with an In-Line Type

292

CHAPTER 31. USING XML ELEMENTS

JAVA MAPPING OF ELEMENTS WITH A NAMED TYPE

By default, globally defined elements are mapped to JAXBElement<T> objects where the template
class is determined by the value of the element element's type attribute. For primitive types, the
template class is derived using the wrapper class mapping described in the section called “Wrapper
classes”. For complex types, the Java class generated to support the complex type is used as the
template class.

To support the mapping and to relieve the developer of unnecessary worry about an element's QName,
an object factory method is generated for each globally defined element, as shown in Example 31.3,
"Object Factory Method for a Globally Scoped Element”.

@XmlElementDecl(namespace = "targetNamespace", name = "localName")

public class ObjectFactory {
private final static QName _name _QNAME = new QName("targetNamespace", "localName");
public JAXBElement<type> create name(type value);

| Example 31.3. Object Factory Method for a Globally Scoped Element

For example, the element defined in Example 31.1, “Simple XML Schema Element Definition” results in
the object factory method shown in Example 31.4, “Object Factory for a Simple Element” .

@XmlElementDecl(namespace = "...", name = "joeFred")

public class ObjectFactory {
private final static QName _JoeFred_QNAME = new QName("...", "joeFred");
public JAXBElement<String> createJoeFred(Strmg value);

| Example 31.4. Object Factory for a Simple Element

Example 31.5, “Using a Globally Scoped Element” shows an example of using a globally scoped element
in Java.

Example 31.5. Using a Globally Scoped Element

JAXBElement<String> element = createJoeFred("Green");
String color = element.getValue();

293

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

USING ELEMENTS WITH NAMED TYPES IN WSDL

If a globally scoped element is used to define a message part, the generated Java parameter is not an
instance of JAXBElement<T>. Instead it is mapped to a regular Java type or class.

Given the WSDL fragment shown in Example 31.6, “"WSDL Using an Element as a Message Part” , the
resulting method has a parameter of type String.

Example 31.6. WSDL Using an Element as a Message Part
<?xml version="1.0" encoding=";UTF-8"?>
<wsdl:definitions name="HelloWorld"
targetNamespace="http://apache.org/hello_world_soap_http"

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:tns="http://apache.org/hello_world_soap_http"
xmlins:x1="http://apache.org/hello_world_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema">
<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_soap_http/types
xmins="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"><element name="sayHi">
<element name="sayHi" type="string"/>
<element name="sayHiResponse" type="string"/>
</schema>
</wsdl:types>

<wsdl:message name="sayHiRequest">

<wsdl:part element="x1:sayHi" name="in"/>
</wsdl:message>
<wsdl:message name="sayHiResponse">

<wsdl:part element="x1:sayHiResponse" name="out"/>
</wsdl:message>

<wsdl:portType name="Greeter">
<wsdl:operation name="sayHi">
<wsdl:iinput message="tns:sayHiRequest" name="sayHiRequest"/>
<wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>

</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

Example 31.7, "Java Method Using a Global Element as a Part” shows the generated method signature
for the sayHi operation.

Example 31.7. Java Method Using a Global Element as a Part

String sayHi(String in);

JAVA MAPPING OF ELEMENTS WITH AN IN-LINE TYPE

294

CHAPTER 31. USING XML ELEMENTS

When an element is defined using an in-line type, it is mapped to Java following the same rules used for

mapping other types to Java. The rules for simple types are described in Chapter 32, Using Simple
Types. The rules for complex types are described in Chapter 33, Using Complex Types.

When a Java class is generated for an element with an in-line type definition, the generated class is

decorated with the @XmIRootElement annotation. The @XmIRootElement annotation has two useful

properties: name and namespace. These attributes are described in Table 31.2, “Properties for the
@XmlRootElement Annotation”.

Table 31.2. Properties for the @XmIRootElement Annotation

Property Description

name Specifies the value of the XML Schemaelement
element's name attribute.

namespace Specifies the namespace in which the element is
defined. If this element is defined in the target
namespace, the property is not specified.

The @XmlIRootElement annotation is not used if the element meets one or more of the following
conditions:

® The element's nillable attribute is set to true

® The elementis the head element of a substitution group

For more information on substitution groups see Chapter 35, Element Substitution.

JAVA MAPPING OF ABSTRACT ELEMENTS

When the element's abstract attribute is set to true the object factory method for instantiating
instances of the type is not generated. If the element is defined using an in-line type, the Java class
supporting the in-line type is generated.

JAVA MAPPING OF ELEMENTS WITH A DEFAULT VALUE

When the element's default attribute is used the defaultValue property is added to the generated
@XmlElementDecl annotation. For example, the element defined in Example 31.8, “XML Schema
Element with a Default Value” results in the object factory method shown in Example 31.9, “Object
Factory Method for an Element with a Default Value”.

Example 31.8. XML Schema Element with a Default Value

I <element name="size" type="xsd:int" default="7"/>

Example 31.9. Object Factory Method for an Element with a Default Value

@XmlElementDecl(namespace = "...", name = "size", defaultValue = "7")
public JAXBElement<Integer> createUnionJoe(Integer value) {
return new JAXBElement<Integer>(_Size_ QNAME, Integer.class, null, value);

295

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

"

296

CHAPTER 32. USING SIMPLE TYPES

CHAPTER 32. USING SIMPLE TYPES

Abstract

XML Schema simple types are either XML Schema primitive types like xsd:int, or are defined using the
simpleType element. They are used to specify elements that do not contain any children or attributes.
They are generally mapped to native Java constructs and do not require the generation of special
classes to implement them. Enumerated simple types do not result in generated code because they are
mapped to Java enum types.

32.1. PRIMITIVE TYPES

Overview

When a message part is defined using one of the XML Schema primitive types, the generated
parameter's type is mapped to a corresponding Java native type. The same pattern is used when
mapping elements that are defined within the scope of a complex type. The resulting field is of the
corresponding Java native type.

Mappings

Table 32.1, "XML Schema Primitive Type to Java Native Type Mapping” lists the mapping between XML
Schema primitive types and Java native types.

Table 32.1. XML Schema Primitive Type to Java Native Type Mapping

XML Schema Type Java Type

xsd:string String
xsd:integer Biginteger
xsd:int int

xsd:long long
xsd:short short
xsd:decimal BigDecimal
xsd:float float
xsd:double double
xsd:boolean boolean
xsd:byte byte

297

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

XML Schema Type Java Type

xsd:QName QName

xsd:dateTime XMLGregorianCalendar
xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedint long

xsd:unsignedShort int

xsd:unsignedByte short

xsd:time XMLGregorianCalendar
xsd:date XMLGregorianCalendar
xsd:g XMLGregorianCalendar
xsd:anySimpleType [2] Object
xsd:anySimpleType [F] String

xsd:duration Duration

xsd:NOTATION QName

[a] For elements of this type.

[b] For attributes of this type.

Wrapper classes

Mapping XML Schema primitive types to Java primitive types does not work for all possible XML
Schema constructs. Several cases require that an XML Schema primitive type is mapped to the Java
primitive type's corresponding wrapper type. These cases include:

o An element element with its nillable attribute set to true as shown:

<element name="finned" type="xsd:boolean"
nillable="true" />

e An element element with its minOccurs attribute set to 0 and its maxOccurs attribute set to
1, or its maxOccurs attribute not specified, as shown :

298

CHAPTER 32. USING SIMPLE TYPES

I <element name="plane" type="xsd:string" minOccurs="0" />

e An attribute element with its use attribute set to optional, or not specified, and having neither
its default attribute nor its fixed attribute specified, as shown:

<element name="date">
<complexType>
<sequence/>
<attribute name="calType" type="xsd:string"
use="optional" />
</complexType>
</element>

Table 32.2, “Primitive Schema Type to Java Wrapper Class Mapping” shows how XML Schema primitive
types are mapped into Java wrapper classes in these cases.

Table 32.2. Primitive Schema Type to Java Wrapper Class Mapping

Schema Type Java Type

xsd:int java.lang.Integer
xsd:long java.lang.Long
xsd:short java.lang.Short
xsd:float java.lang.Float
xsd:double java.lang.Double
xsd:boolean java.lang.Boolean
xsd:byte java.lang.Byte
xsd:unsignedByte java.lang.Short
xsd:unsignedShort java.lang.Integer
xsd:unsignedint java.lang.Long
xsd:unsignedLong java.math.Biginteger
xsd:duration java.lang.String

32.2. SIMPLE TYPES DEFINED BY RESTRICTION

Overview

299

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

XML Schema allows you to create simple types by deriving a new type from another primitive type or
simple type. Simple types are described using a simpleType element.

The new types are described by restricting the base type with one or more facets. These facets limit the
possible valid values that can be stored in the new type. For example, you could define a simple type,

SSN, which is a string of exactly 9 characters.

Each of the primitive XML Schema types has their own set of optional facets.

Procedure
To define your own simple type do the following:
1. Determine the base type for your new simple type.

2. Determine what restrictions define the new type based on the available facets for the chosen
base type.

3. Using the syntax shown in this section, enter the appropriate simpleType element into the
types section of your contract.

Defining a simple type in XML Schema

Example 32.1, “Simple type syntax” shows the syntax for describing a simple type.

<restriction base="baseType">
<facet value="value" />
<facet value="value" />

</restriction>

<simpleType name="typeName">
</simpleType>

| Example 32.1. Simple type syntax

The type description is enclosed in a simpleType element and identified by the value of the name
attribute. The base type from which the new simple type is being defined is specified by the base
attribute of the xsd:restriction element. Each facet element is specified within the restriction element.
The available facets and their valid settings depend on the base type. For example, xsd:string has a
number of facets including:

® length

e minLength

e maxLength

® pattern

o whitespace
Example 32.2, “Postal Code Simple Type “ shows the definition for a simple type that represents the

two-letter postal code used for US states. It can only contain two, uppercase letters. TX is a valid value,
but tx or tX are not valid values.

300

CHAPTER 32. USING SIMPLE TYPES

Example 32.2. Postal Code Simple Type

<xsd:simpleType name="postalCode">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]{2}" />
</xsd:restriction>
</xsd:simpleType>

Mapping to Java

Apache CXF maps user-defined simple types to the Java type of the simple type’s base type. So, any
message using the simple type postalCode, shown in Example 32.2, “Postal Code Simple Type “, is
mapped to a String because the base type of postalCode is xsd:string. For example, the WSDL
fragment shown in Example 32.3, “Credit Request with Simple Types” results in a Java method, state(),
that takes a parameter, postalCode, of String.

<part name="postalCode" type="postalCode" />
</message>

<portType name="postalSupport">
<operation name="state">
<input message="tns:stateRequest" name="stateRec" />
<output message="tns:stateResponse" name="credResp" />
</operation>

<message name="stateRequest">
</portType>

| Example 32.3. Credit Request with Simple Types

Enforcing facets

By default, Apache CXF does not enforce any of the facets that are used to restrict a simple type.
However, you can configure Apache CXF endpoints to enforce the facets by enabling schema validation.

To configure Apache CXF endpoints to use schema validation set the schema-validation-enabled
property to true. Example 32.4, “Service Provider Configured to Use Schema Validation” shows the
configuration for a service provider that uses schema validation

wsdlLocation="wsdl/hello_world.wsdl"
createdFromAPI="true">
<jaxws:properties>
<entry key="schema-validation-enabled" value="BOTH" />
</jaxws:properties>

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
</jaxws:endpoint>

| Example 32.4. Service Provider Configured to Use Schema Validation

301

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

For more information on configuring schema validation, see Table 22.10, “Schema Validation Type
Values”.

32.3. ENUMERATIONS

Overview

In XML Schema, enumerated types are simple types that are defined using the xsd:enumeration facet.
Unlike atomic simple types, they are mapped to Java enums.

Defining an enumerated type in XML Schema

Enumerations are a simple type using the xsd:enumeration facet. Each xsd:enumeration facet defines
one possible value for the enumerated type.

Example 32.5, "XML Schema Defined Enumeration” shows the definition for an enumerated type. It has
the following possible values:

® big
® Jlarge
® mungo

e gargantuan

Example 32.5. XML Schema Defined Enumeration

<simpleType name="widgetSize">
<restriction base="xsd:string">
<enumeration value="big"/>
<enumeration value="large"/>
<enumeration value="mungo"/>
<enumeration value="gargantuan'/>
</restriction>

Mapping to Java

XML Schema enumerations where the base type is xsd:string are automatically mapped to Java enum
type. You can instruct the code generator to map enumerations with other base types to Java enum
types by using the customizations described in Section 36.4, "Customizing Enumeration Mapping”.

The enum type is created as follows:

1. The name of the type is taken from the name attribute of the simple type definition and
converted to a Java identifier.

In general, this means converting the first character of the XML Schema's name to an
uppercase letter. If the first character of the XML Schema's name is an invalid character, an

underscrore () is prepended to the name.

2. For each enumeration facet, an enum constant is generated based on the value of the value
attribute.

302

CHAPTER 32. USING SIMPLE TYPES

The constant's name is derived by converting all of the lowercase letters in the value to their
uppercase equivalent.

3. A constructor is generated that takes the Java type mapped from the enumeration's base type.

4. A public method called value() is generated to access the facet value that is represented by an
instance of the type.

The return type of the value() method is the base type of the XML Schema type.

5. A public method called fromValue() is generated to create an instance of the enum type based
on a facet value.

The parameter type of the value() method is the base type of the XML Schema type.
6. The class is decorated with the @XmIEnum annotation.

The enumerated type defined in Example 32.5, “XML Schema Defined Enumeration” is mapped to the
enum type shown in Example 32.6, “Generated Enumerated Type for a String Bases XML Schema
Enumeration”.

Example 32.6. Generated Enumerated Type for a String Bases XML Schema Enumeration
@XmlType(name = "widgetSize")
@XmIEnum
public enum WidgetSize {

@XmlEnumValue("big")
BIG("big"),
@XmlEnumValue("large")
LARGE("large"),
@XmlEnumValue("mungo”)
MUNGO("mungo"),
@XmlEnumValue("gargantuan”)
GARGANTUAN("gargantuan™);
private final String value;

WidgetSize(String v) {
value = v;

}

public String value() {
return value;

}

public static WidgetSize fromValue(String v) {
for (WidgetSize c: WidgetSize.values()) {
if (c.value.equals(v)) {
return c;

}
}
throw new lllegalArgumentException(v);

}
}

303

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

32.4.LISTS

Overview

XML Schema supports a mechanism for defining data types that are a list of space separated simple
types. An example of an element, primeList, using a list type is shown in Example 32.7, “List Type
Example”.

Example 32.7. List Type Example

I <primeList>1 357 9 11 13<\primeList>

XML Schema list types are generally mapped to Java List<T> objects. The only variation to this pattern
is when a message part is mapped directly to an instance of an XML Schema list type.

Defining list types in XML Schema

XML Schema list types are simple types and as such are defined using a simpleType element. The most
common syntax used to define a list type is shown in Example 32.8, “Syntax for XML Schema List
Types”.

<list itemType="atomicType">
<facet value="value" />
<facet value="value" />

</list>

<simpleType name="listType">
</simpleType>

| Example 32.8. Syntax for XML Schema List Types

The value given for atomicType defines the type of the elements in the list. It can only be one of the built
in XML Schema atomic types, like xsd:int or xsd:string, or a user-defined simple type that is not a list.

In addition to defining the type of elements listed in the list type, you can also use facets to further
constrain the properties of the list type. Table 32.3, “List Type Facets” shows the facets used by list
types.

Table 32.3. List Type Facets

Facet Effect

length Defines the number of elements in an instance of the
list type.
minLength Defines the minimum number of elements allowed in

an instance of the list type.

304

CHAPTER 32. USING SIMPLE TYPES

Facet Effect

maxLength Defines the maximum number of elements allowed in
an instance of the list type.

enumeration Defines the allowable values for elements in an
instance of the list type.

pattern Defines the lexical form of the elements in an
instance of the list type. Patterns are defined using
regular expressions.

For example, the definition for the simpleList element shown in Example 32.7, “List Type Example”, is
shown in Example 32.9, “Definition of a List Type".

<listitemType="int"/>
</simpleType>

<simpleType name="primeListType">
<element name="primeList" type="primeListType"/>

‘ Example 32.9. Definition of a List Type

In addition to the syntax shown in Example 32.8, “Syntax for XML Schema List Types” you can also
define a list type using the less common syntax shown in Example 32.10, “Alternate Syntax for List
Types”.

<simpleType>
<restriction base="atomicType">
<facet value="value"/>
<facet value="value"/>

</restriction>
</simpleType>
</list>

<simpleType name="listType">
<list>
</simpleType>

| Example 32.10. Alternate Syntax for List Types

Mapping list type elements to Java

When an element is defined a list type, the list type is mapped to a collection property. A collection
property is a Java List<T> object. The template class used by the List<T> is the wrapper class mapped
from the list's base type. For example, the list type defined in Example 32.9, “Definition of a List Type” is
mapped to a List<Integers.

For more information on wrapper type mapping see the section called “Wrapper classes”.

305

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Mapping list type parameters to Java

When a message part is defined as a list type, or is mapped to an element of a list type, the resulting
method parameter is mapped to an array instead of a List<T> object. The base type of the array is the
wrapper class of the list type's base class.

</simpleType>
<part name="inputData" element="xsd1:primeList" />

For example, the WSDL fragment in Example 32.11, “WSDL with a List Type Message Part” results in the
<element name="primeList" type="primeListType"/>
</schemas>
</message>
<message name="numResponse">;

method signature shown in Example 32.12, “Java Method with a List Type Parameter”.
<fypes>
<part name="outputData" type="xsd:int">

Example 32.11. WSDL with a List Type Message Part
<definitions ...>
<types ...>
<schema ... >
<simpleType name="primeListType">
<listitemType="int"/>
<message name="numRequest">

<portType name="numberService">
<operation name="primeProcessor">
<input name="numRequest" message="tns:numRequest" />
<output name="numResponse" message="tns:numResponse" />
</operation>

</portType>

</definitions>

public interface NumberService {

@XmlList
@WebResult(name = "outputData", targetNamespace = "", partName = "outputData")
@WebMethod
public int primeProcessor(
@WebParam(partName = "inputData”, name = "primeList"”, targetNamespace = "...")
java.lang.Integer[] inputData
);

Example 32.12. Java Method with a List Type Parameter
}

32.5. UNIONS

306

CHAPTER 32. USING SIMPLE TYPES

Overview

In XML Schema, a union is a construct that allows you to describe a type whose data can be one of a
number of simple types. For example, you can define a type whose value is either the integer 1 or the
string first. Unions are mapped to Java Strings.

Defining in XML Schema

XML Schema unions are defined using a simpleType element. They contain at least one union element
that defines the member types of the union. The member types of the union are the valid types of data
that can be stored in an instance of the union. They are defined using the union element's
memberTypes attribute. The value of the memberTypes attribute contains a list of one or more
defined simple type names. Example 32.13, “Simple Union Type” shows the definition of a union that can
store either an integer or a string.

Example 32.13. Simple Union Type

<union memberTypes="xsd:string xsd:int" />

<simpleType name="orderNumUnion">
</simpleType>

In addition to specifying named types as a member type of a union, you can also define an anonymous
simple type as a member type of a union. This is done by adding the anonymous type definition inside of
the union element. Example 32.14, “Union with an Anonymous Member Type” shows an example of a
union containing an anonymous member type that restricts the possible values of a valid integer to the
range 1through 10.

<union memberTypes="xsd:string">
<simpleType>
<restriction base="xsd:int">
<mininclusive value="1" />
<maxInclusive value="10" />
</restriction>
</simpleType>
</union>

<simpleType name="restrictedOrderNumUnion">
</simpleType>

| Example 32.14. Union with an Anonymous Member Type

Mapping to Java

XML Schema union types are mapped to Java String objects. By default, Apache CXF does not validate
the contents of the generated object. To have Apache CXF validate the contents you will must
configure the runtime to use schema validation as described in the section called “Enforcing facets”.

32.6. SIMPLE TYPE SUBSTITUTION

Overview

307

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

XML allows for simple type substitution between compatible types using the xsi:type attribute. The
default mapping of simple types to Java primitive types, however, does not fully support simple type
substitution. The runtime can handle basic simple type substitution, but information is lost. The code
generators can be customized to generate Java classes that facilitate lossless simple type substitution.

Default mapping and marshaling

Because Java primitive types do not support type substitution, the default mapping of simple types to
Java primitive types presents problems for supporting simple type substitution. The Java virtual
machine will balk if an attempt is made to pass a shortinto a variable that expects an int even though
the schema defining the types allows it.

To get around the limitations imposed by the Java type system, Apache CXF allows for simple type
substitution when the value of the element's xsi:type attribute meets one of the following conditions:

® |t specifies a primitive type that is compatible with the element’'s schema type.

® |t specifies a type that derives by restriction from the element’s schema type.

® |t specifies a complex type that derives by extension from the element’s schema type.
When the runtime does the type substitution it does not retain any knowledge of the type specified in
the element's xsi:type attribute. If the type substitution is from a complex type to a simple type, only

the value directly related to the simple type is preserved. Any other elements and attributes added by
extension are lost.

Supporting lossless type substitution

You can customize the generation of simple types to facilitate lossless support of simple type
substitution in the following ways:

e Set the globalBindings customization element's mapSimpleTypeDef to true.

This instructs the code generator to create Java value classes for all named simple types
defined in the global scope.

For more information see Section 36.3, “Generating Java Classes for Simple Types” .
® Add ajavaType element to the globalBindings customization element.

This instructs the code generators to map all instances of an XML Schema primitive type to s
specific class of object.

For more information see Section 36.2, “Specifying the Java Class of an XML Schema
Primitive”.

® Add a baseType customization element to the specific elements you want to customize.
The baseType customization element allows you to specify the Java type generated to
represent a property. To ensure the best compatibility for simple type substitution, use

java.lang.Object as the base type.

For more information see Section 36.6, “Specifying the Base Type of an Element or an
Attribute”.

308

CHAPTER 33. USING COMPLEX TYPES

CHAPTER 33. USING COMPLEX TYPES

Abstract

Complex types can contain multiple elements and they can have attributes. They are mapped into Java
classes that can hold the data represented by the type definition. Typically, the mapping is to a bean
with a set of properties representing the elements and the attributes of the content model.

33.1. BASIC COMPLEX TYPE MAPPING

Overview

XML Schema complex types define constructs containing more complex information than a simple type.
The most simple complex types define an empty element with an attribute. More intricate complex types
are made up of a collection of elements.

By default, an XML Schema complex type is mapped to a Java class, with a member variable to
represent each element and attribute listed in the XML Schema definition. The class has setters and
getters for each member variable.

Defining in XML Schema

XML Schema complex types are defined using the complexType element. The complexType element
wraps the rest of elements used to define the structure of the data. It can appear either as the parent
element of a named type definition, or as the child of an element element anonymously defining the
structure of the information stored in the element. When the complexType element is used to define a
named type, it requires the use of the name attribute. The nhame attribute specifies a unique identifier
for referencing the type.

Complex type definitions that contain one or more elements have one of the child elements described in
Table 33.1, “Elements for Defining How Elements Appear in a Complex Type” . These elements
determine how the specified elements appear in an instance of the type.

Table 33.1. Elements for Defining How Elements Appear in a Complex Type

Element Description

all All of the elements defined as part of the complex
type must appear in an instance of the type.
However, they can appear in any order.

choice Only one of the elements defined as part of the
complex type can appear in an instance of the type.

sequence All of the elements defined as part of the complex
type must appear in an instance of the type, and they
must also appear in the order specified in the type
definition.

309

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

NOTE

If a complex type definition only uses attributes, you do not need one of the elements
described in Table 33.1, “Elements for Defining How Elements Appear in a Complex
Type”.

After deciding how the elements will appear, you define the elements by adding one or more element
element children to the definition.

Example 33.1, “XML Schema Complex Type” shows a complex type definition in XML Schema.

<sequence>
<element name="name" type="xsd:string" />
<element name="street" type="xsd:short" />
<element name="city" type="xsd:string" />
<element name="state" type="xsd:string" />
<element name="zipCode" type="xsd:string" />
</sequence>

<complexType name="sequence">
</complexType>

‘ Example 33.1. XML Schema Complex Type

Mapping to Java

XML Schema complex types are mapped to Java classes. Each element in the complex type definition is
mapped to a member variable in the Java class. Getter and setter methods are also generated for each
element in the complex type.

All generated Java classes are decorated with the @XmIType annotation. If the mapping is for a named
complex type, the annotations name is set to the value of the complexType element's name attribute.

If the complex type is defined as part of an element definition, the value of the @XmIType annotation's
name property is the value of the element element's name attribute.

NOTE
As described in the section called “Java mapping of elements with an in-line type” , the

generated class is decorated with the @XmIRootElement annotation if it is generated
for a complex type defined as part of an element definition.

To provide the runtime with guidelines indicating how the elements of the XML Schema complex type
should be handled, the code generators alter the annotations used to decorate the class and its member
variables.

All Complex Type

All complex types are defined using the all element. They are annotated as follows:
® The @XmIType annotation's propOrder property is empty.
® FEach element is decorated with the @XmlElement annotation.

e The @XmIElement annotation's required property is set to true.

310

CHAPTER 33. USING COMPLEX TYPES

Example 33.2, “Mapping of an All Complex Type"” shows the mapping for an all complex type with two
elements.

Example 33.2. Mapping of an All Complex Type
@XmlIType(name = "all", propOrder = {
publlc class All {
@XmlElement(required = true)
protected BigDecimal amount;

protected String type;

public BigDecimal getAmount() {

@XmlElement(required = true)
return amount;
}

public void setAmount(BigDecimal value) {
this.amount = value;

}

public String getType() {
return type;

}

public void setType(String value) {
this.type = value;

}

Choice Complex Type

Choice complex types are defined using the choice element. They are annotated as follows:

® The @XmIType annotation's propOrder property lists the names of the elements in the
order they appear in the XML Schema definition.

® None of the member variables are annotated.

Example 33.3, “Mapping of a Choice Complex Type” shows the mapping for a choice complex type
with two elements.

"address",
"floater"

public class Choice {

protected Sequence address;

Example 33.3. Mapping of a Choice Complex Type
protected Float floater;

| @XmlType(name = "choice", propOrder = {

31

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

public Sequence getAddress() {
return address;
}
public void setAddress(Sequence value) {
this.address = value;
}
public Float getFloater() {

return floater;

}

}

public void setFloater(Float value) {
this.floater = value;

}

Sequence Complex Type

A sequence complex type is defined using the sequence element. It is annotated as follows:

® The @XmIType annotation's propOrder property lists the names of the elements in the
order they appear in the XML Schema definition.

® FEach elementis decorated with the @XmlElement annotation.
e The @XmIElement annotation's required property is set to true.

Example 33.4, "Mapping of a Sequence Complex Type"” shows the mapping for the complex type
defined in Example 33.1, “XML Schema Complex Type”.

Example 33.4. Mapping of a Sequence Complex Type
@XmlType(name = "sequence", propOrder = {
"name",
"street”,
"city",
"state",
"zipCode"
}

public class Sequence {

@XmlElement(required = true)
protected String name;
protected short street;
@XmlElement(required = true)
protected String city;
@XmlElement(required = true)
protected String state;
@XmlElement(required = true)
protected String zipCode;

public String getName() {
return name;

312

}

}

public void setName(String value) {
this.name = value;

}

public short getStreet() {
return street;

}

public void setStreet(short value) {
this.street = value;

}

public String getCity() {
return city;

}

public void setCity(String value) {
this.city = value;

}

public String getState() {
return state;

}

public void setState(String value) {
this.state = value;

}

public String getZipCode() {
return zipCode;

}

public void setZipCode(String value) {
this.zipCode = value;

}

33.2. ATTRIBUTES

Overview

CHAPTER 33. USING COMPLEX TYPES

Apache CXF supports the use of attribute elements and attributeGroup elements within the scope of a
complexType element. When defining structures for an XML document attribute declarations provide a
means of adding information that is specified within the tag, not the value that the tag contains. For
example, when describing the XML element <value currency="euro">410<\value> in XML Schema the
currency attribute is described using an attribute element as shown in Example 33.5, “XML Schema
Defining and Attribute”.

The attributeGroup element allows you to define a group of reusable attributes that can be referenced
by all complex types defined by the schema. For example, if you are defining a series of elements that all
use the attributes category and pubDate, you could define an attribute group with these attributes and

313

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

reference them in all the elements that use them. This is shown in Example 33.7, "Attribute Group
Definition”.

When describing data types for use in developing application logic, attributes whose use attribute is set
to either optional or required are treated as elements of a structure. For each attribute declaration
contained within a complex type description, an element is generated in the class for the attribute, along
with the appropriate getter and setter methods.

Defining an attribute in XML Schema

An XML Schema attribute element has one required attribute, name, that is used to identify the
attribute. It also has four optional attributes that are described in Table 33.2, “Optional Attributes Used
to Define Attributes in XML Schema”.

Table 33.2. Optional Attributes Used to Define Attributes in XML Schema

Attribute Description

use Specifies if the attribute is required. Valid values are
required, optional, orprohibited. optional is the
default value.

type Specifies the type of value the attribute can take. If it
is not used the schema type of the attribute must be
defined in-line.

default Specifies a default value to use for the attribute. It is
only used when the attribute element'suse
attribute is set to optional.

fixed Specifies a fixed value to use for the attribute. It is
only used when the attribute element'suse
attribute is set to optional.

Example 33.5, “XML Schema Defining and Attribute” shows an attribute element defining an attribute,
currency, whose value is a string.

<xsd:attribute name="currency" type="xsd:string
use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

<element name="value">

<complexType>

<xsd:extension base="xsd:integer">
</xsd:element>

Example 33.5. XML Schema Defining and Attribute
<xsd:simpleContent>

314

CHAPTER 33. USING COMPLEX TYPES

If the type attribute is omitted from the attribute element, the format of the data must be described in-

line. Example 33.6, "Attribute with an In-Line Data Description” shows an attribute element for an
attribute, category, that can take the values autobiography, non-fiction, or fiction.

<simpleType>
<restriction base="xsd:string">
<enumeration value="autobiography"/>
<enumeration value="non-fiction"/>
<enumeration value="fiction"/>
</restriction>
</simpleType>

<attribute name="category" use="required">
</attribute>

‘ Example 33.6. Attribute with an In-Line Data Description

Using an attribute group in XML Schema

Using an attribute group in a complex type definition is a two step process:

1. Define the attribute group.

An attribute group is defined using an attributeGroup element with a number of attribute child
elements. The attributeGroup requires a hame attribute that defines the string used to refer to
the attribute group. The attribute elements define the members of the attribute group and are
specified as shown in the section called "Defining an attribute in XML Schema” . Example 33.7,
“Attribute Group Definition” shows the description of the attribute group catalogindecies. The
attribute group has two members: category, which is optional, and pubDate, which is required.

<attribute name="category" type="catagoryType" />
<attribute name="pubDate" type="dateTime"
use="required" />

<attributeGroup name="catalogIndices">
</attributeGroup>

| Example 33.7. Attribute Group Definition

. Use the attribute group in the definition of a complex type.

You use attribute groups in complex type definitions by using the attributeGroup element with
the ref attribute. The value of the ref attribute is the name given the attribute group that you
want to use as part of the type definition. For example if you want to use the attribute group
cataloglndecies in the complex type dvdType, you would use <attributeGroup
ref="catalogindecies" /> as shown in Example 33.8, “Complex Type with an Attribute Group” .

<sequence>
<element name="title" type="xsd:string" />
<element name="director" type="xsd:string" />

Example 33.8. Complex Type with an Attribute Group
<element name="numCopies" type="xsd:int" />

| <complexType name="dvdType">

315

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

</sequence>
<attributeGroup ref="cataloglndices" />
</complexType>

Mapping attributes to Java

Attributes are mapped to Java in much the same way that member elements are mapped to Java.
Required attributes and optional attributes are mapped to member variables in the generated Java
class. The member variables are decorated with the @XmlAttribute annotation. If the attribute is
required, the @XmlAttribute annotation's required property is set to true.

The complex type defined in Example 33.9, “techDoc Description ” is mapped to the Java class shown in
Example 33.10, “techDoc Java Class".

Example 33.9. techDoc Description

<complexType name="techDoc">
<all>
<element name="product" type="xsd:string" />
<element name="version" type="xsd:short" />
</all>
<attribute name="usefullness" type="xsd:float"
use="optional" default="0.01" />
</complexType>

Example 33.10. techDoc Java Class
@XmlType(name = "techDoc", propOrder = {

Y

public class TechDoc {

@XmlElement(required = true)
protected String product;
protected short version;
@XmlAttribute

protected Float usefullness;

public String getProduct() {
return product;

}

public void setProduct(String value) {
this.product = value;

}

public short getVersion() {
return version;

}

public void setVersion(short value) {
this.version = value;

316

CHAPTER 33. USING COMPLEX TYPES

public void setUsefullness(Float value) {
this.usefullness = value;

public float getUsefullness() {
if (usefullness == null) {
return 0.01F;
}else {
return usefullness;

As shown in Example 33.10, “techDoc Java Class”, the default attribute and the fixed attribute instruct
the code generators to add code to the getter method generated for the attribute. This additional code
ensures that the specified value is returned if no value is set.

IMPORTANT

The fixed attribute is treated the same as the default attribute. If you want the fixed
attribute to be treated as a Java constant you can use the customization described in
Section 36.5, "Customizing Fixed Value Attribute Mapping”.

Mapping attribute groups to Java

Attribute groups are mapped to Java as if the members of the group were explicitly used in the type
definition. If the attribute group has three members, and it is used in a complex type, the generated class
for that type will include a member variable, along with the getter and setter methods, for each member
of the attribute group. For example, the complex type defined in Example 33.8, “Complex Type with an
Attribute Group”, Apache CXF generates a class containing the member variables category and
pubDate to support the members of the attribute group as shown in Example 33.11, “dvdType Java
Class”.

Example 33.11. dvdType Java Class
@XmIType(name = "dvdType", propOrder = {
"title",
"director",
numCopies"
publlc class DvdType {

@XmlElement(required = true)

protected String title;
@XmlElement(required = true)

protected String director;

protected int numCopies;

@XmlAttribute

protected CatagoryType category;
@XmlAttribute(required = true)
@XmlSchemaType(name = "dateTime")

317

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

protected XMLGregorianCalendar pubDate;

public String getTitle() {
return title;

}

public void setTitle(String value) {
this.title = value;

}

public String getDirector() {
return director;

}

public void setDirector(String value) {
this.director = value;

}

public int getNumCopies() {
return numCopies;

}

}
public void setNumCopies(int value) {
this.numCopies = value;

}

public CatagoryType getCatagory() {
return catagory;

}

public void setCatagory(CatagoryType value) {
this.catagory = value;

}

public XMLGregorianCalendar getPubDate() {
return pubDate;

}

public void setPubDate(XMLGregorianCalendar value) {
this.pubDate = value;

}

33.3. DERIVING COMPLEX TYPES FROM SIMPLE TYPES

Overview
Apache CXF supports derivation of a complex type from a simple type. A simple type has, by definition,
neither sub-elements nor attributes. Hence, one of the main reasons for deriving a complex type from a

simple type is to add attributes to the simple type.

There are two ways of deriving a complex type from a simple type:

318

CHAPTER 33. USING COMPLEX TYPES

® By extension

® By restriction

Derivation by extension

Example 33.12, "Deriving a Complex Type from a Simple Type by Extension” shows an example of a
complex type, internationalPrice, derived by extension from the xsd:decimal primitive type to include a
currency attribute.

<simpleContent>
<extension base="xsd:decimal">
<attribute name="currency" type="xsd:string"/>
</extension>
</simpleContent>

<complexType name="internationalPrice">
</complexType>

| Example 33.12. Deriving a Complex Type from a Simple Type by Extension

The simpleContent element indicates that the new type does not contain any sub-elements. The
extension element specifies that the new type extends xsd:decimal.

Derivation by restriction

Example 33.13, “Deriving a Complex Type from a Simple Type by Restriction” shows an example of a
complex type, idType, that is derived by restriction from xsd:string. The defined type restricts the
possible values of xsd:stringto values that are ten characters in length. It also adds an attribute to the

type.

<simpleContent>
<restriction base="xsd:string">
<length value="10" />
<attribute name="expires" type="xsd:dateTime" />
</restriction>
</simpleContent>

<complexType name="idType">
</complexType>

‘ Example 33.13. Deriving a Complex Type from a Simple Type by Restriction

As in Example 33.12, “Deriving a Complex Type from a Simple Type by Extension” the simpleContent
element signals that the new type does not contain any children. This example uses a restriction
element to constrain the possible values used in the new type. The attribute element adds the element
to the new type.

Mapping to Java

A complex type derived from a simple type is mapped to a Java class that is decorated with the
@XmIType annotation. The generated class contains a member variable, value, of the simple type from
which the complex type is derived. The member variable is decorated with the @XmlValue annotation.

319

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

The class also has a getValue() method and a setValue() method. In addition, the generated class has a
member variable, and the associated getter and setter methods, for each attribute that extends the
simple type.

Example 33.14, "idType Java Class” shows the Java class generated for the idType type defined in
Example 33.13, “Deriving a Complex Type from a Simple Type by Restriction” .

Example 33.14. idType Java Class

@XmlType(name = "idType", propOrder = {
"value"

)

public class IdType {
@XmlValue
protected String value;
@XmlAttribute
@XmlSchemaType(name = "dateTime")

public String getValue() {

protected XMLGregorianCalendar expires;
return value;
}

public void setValue(String value) {
this.value = value;

}

public XMLGregorianCalendar getExpires() {
return expires;

}

public void setExpires(XMLGregorianCalendar value) {
this.expires = value;

}
}

33.4. DERIVING COMPLEX TYPES FROM COMPLEX TYPES

Overview

Using XML Schema, you can derive new complex types by either extending or restricting other complex
types using the complexContent element. When generating the Java class to represent the derived
complex type, Apache CXF extends the base type’s class. In this way, the generated Java code
preserves the inheritance hierarchy intended in the XML Schema.

Schema syntax

You derive complex types from other complex types by using the complexContent element, and either
the extension element or the restriction element. The complexContent element specifies that the
included data description includes more than one field. The extension element and the restriction

320

CHAPTER 33. USING COMPLEX TYPES

element, which are children of the complexContent element, specify the base type being modified to
create the new type. The base type is specified by the base attribute.

Extending a complex type

To extend a complex type use the extension element to define the additional elements and attributes
that make up the new type. All elements that are allowed in a complex type description are allowable as
part of the new type's definition. For example, you can add an anonymous enumeration to the new type,
or you can use the choice element to specify that only one of the new fields can be valid at a time.

Example 33.15, “Deriving a Complex Type by Extension” shows an XML Schema fragment that defines
two complex types, widgetOrderinfo and widgetOrderBilllnfo. widgetOrderBillinfo is derived by
extending widgetOrderinfo to include two new elements: orderNumber and amtDue.

Example 33.15. Deriving a Complex Type by Extension
<complexType name="widgetOrderInfo">
<sequence>
<element name="amount" type="xsd:int"/>

<element name="order_date" type="xsd:dateTime"/>
<element name="type" type="xsd1:widgetSize"/>
<element name="shippingAddress" type="xsd1:Address"/>
</sequence>
<attribute name="rush" type="xsd:boolean" use="optional" />
</complexType>
<complexType name="widgetOrderBilllnfo">
<complexContent>
<extension base="xsd1:widgetOrderinfo">
<sequence>
<element name="amtDue" type="xsd:decimal"/>
<element name="orderNumber" type="xsd:string"/>
</sequence>
<attribute name="paid" type="xsd:boolean"
default="false" />
</extension>
</complexContent>
</complexType>

Restricting a complex type

To restrict a complex type use the restriction element to limit the possible values of the base type's
elements or attributes. When restricting a complex type you must list all of the elements and attributes
of the base type. For each element you can add restrictive attributes to the definition. For example, you
can add amaxOccurs attribute to an element to limit the number of times it can occur. You can also use
the fixed attribute to force one or more of the elements to have predetermined values.

Example 33.16, "Defining a Complex Type by Restriction” shows an example of defining a complex type
by restricting another complex type. The restricted type, wallawallaAddress, can only be used for

addresses in Walla Walla, Washington because the values for the city element, the state element, and
the zipCode element are fixed.

Example 33.16. Defining a Complex Type by Restriction

321

</sequence>
</complexType>

<element name="street" type="xsd:short"
maxOccurs="3"/>

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide
<complexType name="Address">
<sequence>
<element name="name" type="xsd:string"/>
<element name="street" type="xsd:short" maxOccurs="3"/>
<element name="city" type="xsd:string"/>
<element name="state" type="xsd:string"/>
<element name="zipCode" type="xsd:string"/>
<complexType name="wallawallaAddress">
<complexContent>
<restriction base="xsd1:Address">
<sequence>
<element name="name" type="xsd:string"/>
<element name="city" type="xsd:string"
fixed="WallaWalla"/>
<element name="state" type="xsd:string"
fixed="WA" />
<element name="zipCode" type="xsd:string"
fixed="99362" />
</sequence>
</restriction>

</complexContent>
</complexType>

Mapping to Java

As it does with all complex types, Apache CXF generates a class to represent complex types derived
from another complex type. The Java class generated for the derived complex type extends the Java
class generated to support the base complex type. The base Java class is also modified to include the
@XmISeeAlso annotation. The base class' @XmlISeeAlso annotation lists all of the classes that extend
the base class.

When the new complex type is derived by extension, the generated class will include member variables
for all of the added elements and attributes. The new member variables will be generated according to
the same mappings as all other elements.

When the new complex type is derived by restriction, the generated class will have no new member
variables. The generated class will simply be a shell that does not provide any additional functionality. It
is entirely up to you to ensure that the restrictions defined in the XML Schema are enforced.

For example, the schema in Example 33.15, “Deriving a Complex Type by Extension” results in the
generation of two Java classes: WidgetOrderinfo and WidgetBillOrderinfo. WidgetOrderBilllnfo
extends WidgetOrderinfo because widgetOrderBillinfo is derived by extension from widgetOrderInfo.
Example 33.17, “WidgetOrderBilllnfo” shows the generated class for widgetOrderBillinfo.

@XmlType(name = "widgetOrderBillinfo", propOrder = {
"amtDue",

Example 33.17. WidgetOrderBillinfo
"orderNumber"

b

322

CHAPTER 33. USING COMPLEX TYPES

}

public void setAmtDue(BigDecimal value) {
this.amtDue = value;

return amtDue;
!

return orderNumber;
!

public void setOrderNumber(String value) {
this.orderNumber = value;

}

public boolean isPaid() {
if (paid == null) {
return false;
} else {
return paid;

}
}

public void setPaid(Boolean value) {
this.paid = value;

public class WidgetOrderBilllnfo
extends WidgetOrderInfo
{
@XmlElement(required = true)
protected BigDecimal amtDue;
@XmlElement(required = true)
protected String orderNumber;
@XmlAttribute
protected Boolean paid;
public BigDecimal getAmtDue() {
public String getOrderNumber() {
}
}

33.5. OCCURRENCE CONSTRAINTS

33.5.1. Schema Elements Supporting Occurrence Constraints

XML Schema allows you to specify the occurrence constraints on four of the XML Schema elements
that make up a complex type definition:

® Section 33.5.2, “Occurrence Constraints on the All Element”
® Section 33.5.3, “Occurrence Constraints on the Choice Element”
® Section 33.5.4, “"Occurrence Constraints on Elements”

® Section 33.5.5, “Occurrence Constraints on Sequences”

323

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

33.5.2. Occurrence Constraints on the All Element

XML Schema

Complex types defined with the all element do not allow for multiple occurrences of the structure
defined by the all element. You can, however, make the structure defined by the all element optional by
setting its minOccurs attribute to 0.

Mapping to Java

Setting the all element's minOccurs attribute to 0 has no effect on the generated Java class.
33.5.3. Occurrence Constraints on the Choice Element

Overview

By default, the results of a choice element can only appear once in an instance of a complex type. You
can change the number of times the element chosen to represent the structure defined by a choice
element is allowed to appear using its minOccurs attribute and its mxOccurs attribute. Using these
attributes you can specify that the choice type can occur zero to an unlimited number of times in an
instance of a complex type. The element chosen for the choice type does not need to be the same for
each occurrence of the type.

Using in XML Schema

The minOccurs attribute specifies the minimum number of times the choice type must appear. Its value
can be any positive integer. Setting the minOccurs attribute to 0 specifies that the choice type does
not need to appear inside an instance of the complex type.

The maxOccurs attribute specifies the maximum number of times the choice type can appear. Its value
can be any non-zero, positive integer or unbounded. Setting the maxOccurs attribute to unbounded
specifies that the choice type can appear an infinite number of times.

Example 33.18, “Choice Occurrence Constraints” shows the definition of a choice type, ClubEvent, with
choice occurrence constraints. The choice type overall can be repeated O to unbounded times.

<choice minOccurs="0" maxOccurs="unbounded">
<element name="MemberName" type="xsd:string"/>
<element name="GuestName" type="xsd:string"/>
</choice>

<complexType name="ClubEvent">
</complexType>

| Example 33.18. Choice Occurrence Constraints

Mapping to Java

Unlike single instance choice structures, XML Schema choice structures that can occur multiple times
are mapped to a Java class with a single member variable. This single member variable is a List<T>
object that holds all of the data for the multiple occurrences of the sequence. For example, if the
sequence defined in Example 33.18, “"Choice Occurrence Constraints” occurred two times, then the list
would have two items.

324

CHAPTER 33. USING COMPLEX TYPES

The name of the Java class' member variable is derived by concatenating the names of the member
elements. The element names are separated by Or and the first letter of the variable name is converted
to lower case. For example, the member variable generated from Example 33.18, “Choice Occurrence
Constraints” would be named memberNameOrGuestName.

The type of object stored in the list depends on the relationship between the types of the member
elements. For example:

e |f the member elements are of the same type the generated list will contain JAXBElement<T>
objects. The base type of the JAXBElement<T> objects is determined by the normal mapping
of the member elements' type.

e |f the member elements are of different types and their Java representations implement a
common interface, the list will contains objects of the common interface.

e |f the member elements are of different types and their Java representations extend a common
base class, the list will contains objects of the common base class.

® |f none of the other conditions are met, the list will contain Object objects.

The generated Java class will only have a getter method for the member variable. The getter method
returns a reference to the live list. Any modifications made to the returned list will effect the actual
object.

The Java class is decorated with the @XmIType annotation. The annotation's name property is set to
the value of the name attribute from the parent element of the XML Schema definition. The
annotation's propOrder property contains the single member variable representing the elements in the
sequence.

The member variable representing the elements in the choice structure are decorated with the
@XmlElements annotation. The @XmIElements annotation contains a comma separated list of
@XmlElement annotations. The list has one @XmlElement annotation for each member element
defined in the XML Schema definition of the type. The @XmlIElement annotations in the list have their
name property set to the value of the XML Schema element element's nhame attribute and their type
property set to the Java class resulting from the mapping of the XML Schema element element's type.

Example 33.19, “Java Representation of Choice Structure with an Occurrence Constraint” shows the
Java mapping for the XML Schema choice structure defined in Example 33.18, “Choice Occurrence
Constraints”.

"memberNameOrGuestName"

)
public class ClubEvent {

@XmlElementRefs({
@XmlElementRef(name = "GuestName", type = JAXBElement.class),
@XmlElementRef(name = "MemberName", type = JAXBElement.class)

)

protected List<JAXBElement<String>> memberNameOrGuestName;
public List<JAXBElement<String>> getMemberNameOrGuestName() {

if (memberNameOrGuestName == null) {

Example 33.19. Java Representation of Choice Structure with an Occurrence Constraint
memberNameOrGuestName = new ArrayList<JAXBElement<String>>();

| @XmlIType(name = "ClubEvent", propOrder = {

325

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

}
return this.memberNameOrGuestName;
}
}

minOccurs set to O

If only the minOccurs element is specified and its value is 0, the code generators generate the Java
class as if the minOccurs attribute were not set.

33.5.4. Occurrence Constraints on Elements

Overview

You can specify how many times a specific element in a complex type appears using the element
element's minOccurs attribute and maxOccurs attribute. The default value for both attributesis 1.

minOccurs set to O

When you set one of the complex type's member element's minOccurs attribute to 0, the
@XmlElement annotation decorating the corresponding Java member variable is changed. Instead of
having its required property set to true, the @XmlElement annotation's required property is set to
false.

minOccurs set to a value greater than 1

In XML Schema you can specify that an element must occur more than once in an instance of the type
by setting the element element's minOccurs attribute to a value greater than one. However, the
generated Java class will not support the XML Schema constraint. Apache CXF generates the
supporting Java member variable as if the minOccurs attribute were not set.

Elements with maxOccurs set

When you want a member element to appear multiple times in an instance of a complex type, you set the
element's maxOccurs attribute to a value greater than 1. You can set the maxOccurs attribute's value
to unbounded to specify that the member element can appear an unlimited number of times.

The code generators map a member element with the maxOccurs attribute set to a value greater than 1
to a Java member variable that is a List<T> object. The base class of the list is determined by mapping
the element's type to Java. For XML Schema primitive types, the wrapper classes are used as described
in the section called "Wrapper classes”. For example, if the member element is of type xsd:int the
generated member variable is a List<Integers object.

33.5.5. Occurrence Constraints on Sequences

Overview

By default, the contents of a sequence element can only appear once in an instance of a complex type.
You can change the number of times the sequence of elements defined by a sequence element is
allowed to appear using its minOccurs attribute and its maxOccurs attribute. Using these attributes

326

CHAPTER 33. USING COMPLEX TYPES

you can specify that the sequence type can occur zero to an unlimited number of times in an instance of
a complex type.

Using XML Schema

The minOccurs attribute specifies the minimum number of times the sequence must occur in an
instance of the defined complex type. Its value can be any positive integer. Setting the minOccurs
attribute to 0 specifies that the sequence does not need to appear inside an instance of the complex

type.

The maxOccurs attribute specifies the upper limit for how many times the sequence can occur in an
instance of the defined complex type. Its value can be any non-zero, positive integer or unbounded.
Setting the maxOccurs attribute to unbounded specifies that the sequence can appear an infinite
number of times.

Example 33.20, “Sequence with Occurrence Constraints” shows the definition of a sequence type,
Culturelnfo, with sequence occurrence constraints. The sequence can be repeated O to 2 times.

<sequence minOccurs="0" maxOccurs="2">
<element name="Name" type="string"/>
<element name="Lcid" type="int"/>
</sequence>

<complexType name="Culturelnfo">
</complexType>

| Example 33.20. Sequence with Occurrence Constraints

Mapping to Java

Unlike single instance sequences, XML Schema sequences that can occur multiple times are mapped to
a Java class with a single member variable. This single member variable is a List<T> object that holds all
of the data for the multiple occurrences of the sequence. For example, if the sequence defined in
Example 33.20, "Sequence with Occurrence Constraints” occurred two times, then the list would have
four items.

The name of the Java class' member variable is derived by concatenating the names of the member
elements. The element names are separated by And and the first letter of the variable name is
converted to lower case. For example, the member variable generated from Example 33.20, “Sequence
with Occurrence Constraints” is named nameAndLcid.

The type of object stored in the list depends on the relationship between the types of the member
elements. For example:

e |f the member elements are of the same type the generated list will contain JAXBElement<T>
objects. The base type of the JAXBElement<T> objects is determined by the normal mapping

of the member elements' type.

® |f the member elements are of different types and their Java representations implement a
common interface, the list will contains objects of the common interface.

e |f the member elements are of different types and their Java representations extend a common
base class, the list will contain objects of the common base class.

® |f none of the other conditions are met, the list will contain Object objects.

327

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

The generated Java class only has a getter method for the member variable. The getter method returns
a reference to the live list. Any modifications made to the returned list effects the actual object.

The Java class is decorated with the @XmIType annotation. The annotation's name property is set to
the value of the name attribute from the parent element of the XML Schema definition. The
annotation's propOrder property contains the single member variable representing the elements in the
sequence.

The member variable representing the elements in the sequence are decorated with the
@XmlElements annotation. The @XmlElements annotation contains a comma separated list of
@XmlElement annotations. The list has one @XmIElement annotation for each member element
defined in the XML Schema definition of the type. The @XmlElement annotations in the list have their
name property set to the value of the XML Schema element element's hame attribute and their type
property set to the Java class resulting from the mapping of the XML Schema element element's type.

Example 33.21, "Java Representation of Sequence with an Occurrence Constraint” shows the Java
mapping for the XML Schema sequence defined in Example 33.20, “Sequence with Occurrence
Constraints”.

)

public class Culturelnfo {

@XmlElements({
@XmlElement(name = "Name", type = String.class),
@XmlElement(name = "Lcid", type = Integer.class)

)

protected List<Serializable> nameAndLcid;

public List<Serializable> getNameAndLcid() {
if (nameAndLcid == null) {
nameAndLcid = new ArrayList<Serializable>();

}

return this.nameAndLcid;

@XmIType(name = "Culturelnfo", propOrder = {
"nameAndLcid"
}

Example 33.21. Java Representation of Sequence with an Occurrence Constraint
}

minOccurs set to O

If only the minOccurs element is specified and its value is 0, the code generators generate the Java
class as if the minOccurs attribute is not set.

33.6. USING MODEL GROUPS

Overview

XML Schema model groups are convenient shortcuts that allows you to reference a group of elements
from a user-defined complex type.For example, you can define a group of elements that are common to
several types in your application and then reference the group repeatedly. Model groups are defined

328

CHAPTER 33. USING COMPLEX TYPES

using the group element, and are similar to complex type definitions. The mapping of model groups to
Java is also similar to the mapping for complex types.

Defining a model group in XML Schema

You define a model group in XML Schema using the group element with the name attribute. The value
of the name attribute is a string that is used to refer to the group throughout the schema. The group
element, like the complexType element, can have the sequence element, the all element, or the
choice element as its immediate child.

Inside the child element, you define the members of the group using element elements. For each
member of the group, specify one element element. Group members can use any of the standard
attributes for the element element including minOccurs and maxOccurs. So, if your group has three
elements and one of them can occur up to three times, you define a group with three element elements,
one of which uses maxOccurs="3". Example 33.22, “XML Schema Model Group” shows a model group
with three elements.

<sequence>
<element name="name" type="xsd:string" />
<element name="clubNum" type="xsd:long" />
<element name="seatPref" type="xsd:string"
maxOccurs="3" />
</sequence>

<group name="passenger">
</group>

‘ Example 33.22. XML Schema Model Group

Using a model group in a type definition

Once a model group has been defined, it can be used as part of a complex type definition. To use a
model group in a complex type definition, use the group element with the ref attribute. The value of the
ref attribute is the name given to the group when it was defined. For example, to use the group defined
in Example 33.22, “XML Schema Model Group” you use <group ref="tns:passenger" /> as shown in
Example 33.23, “Complex Type with a Model Group” .

<sequence>
<group ref="tns:passenger" />
<element name="origin" type="xsd:string" />
<element name="destination" type="xsd:string" />
<element name="fltNum" type="xsd:long" />
</sequence>

<complexType name="reservation">
</complexType>

‘ Example 33.23. Complex Type with a Model Group

When a model group is used in a type definition, the group becomes a member of the type. So an
instance of reservation has four member elements. The first element is the passenger element and it
contains the member elements defined by the group shown in Example 33.22, “XML Schema Model

329

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Group”. An example of an instance of reservation is shown in Example 33.24, “Instance of a Type with a
Model Group”.

<seatPref>isle1</seatPref>
</passenger>
<origin>LAX</origin>
<destination>FRA</destination>
<fltNum>34567 </fltNum>

Example 33.24. Instance of a Type with a Model Group

<reservation>

<passenger>

<name>A. Smart</name>

<clubNum>99</clubNum>
</reservation>

Mapping to Java

By default, a model group is only mapped to Java artifacts when it is included in a complex type
definition. When generating code for a complex type that includes a model group, Apache CXF simply
includes the member variables for the model group into the Java class generated for the type. The
member variables representing the model group are annotated based on the definitions of the model

group.

Example 33.25, “Type with a Group” shows the Java class generated for the complex type defined in
Example 33.23, “Complex Type with a Model Group” .

Example 33.25. Type with a Group
@XmlIType(name = "reservation”, propOrder = {
"name",
"clubNum",
"seatPref",
"origin",
"destination”,
"fltNum"
)

public class Reservation {

@XmlElement(required = true)
protected String name;
protected long clubNum;
@XmlElement(required = true)
protected List<String> seatPref;
@XmlElement(required = true)
protected String origin;
@XmlElement(required = true)
protected String destination;
protected long fltNum;

public String getName() {
return name;

}

330

public void setName(String value) {
this.name = value;

}

public long getClubNum() {
return clubNum;

}

public void setClubNum(long value) {
this.clubNum = value;

}

public List<String> getSeatPref() {
if (seatPref == null) {
seatPref = new ArrayList<String>();

}

return this.seatPref;

}

public String getOrigin() {
return origin;

}

public void setOrigin(String value) {
this.origin = value;

}

public String getDestination() {
return destination;

}

public void setDestination(String value) {
this.destination = value;

}

public long getFItNum() {
return fltNum;

}

public void setFItNum(long value) {
this.fltNum = value;

}

Multiple occurrences

CHAPTER 33. USING COMPLEX TYPES

You can specify that the model group appears more than once by setting the group element's

maxOccurs attribute to a value greater than one. To allow for multiple occurrences of the model group
Apache CXF maps the model group to a List<T> object. The List<T> object is generated following the
rules for the group's first child:

If the group is defined using a sequence element see Section 33.5.5, “Occurrence Constraints

on Sequences”.

331

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

® |f the group is defined using a choice element see Section 33.5.3, “Occurrence Constraints on
the Choice Element”.

332

CHAPTER 34. USING WILD CARD TYPES

CHAPTER 34. USING WILD CARD TYPES

Abstract

There are instances when a schema author wants to defer binding elements or attributes to a defined
type. For these cases, XML Schema provides three mechanisms for specifying wild card place holders.
These are all mapped to Java in ways that preserve their XML Schema functionality.

34.1. USING ANY ELEMENTS

Overview

The XML Schema any element is used to create a wild card place holder in complex type definitions.
When an XML element is instantiated for an XML Schema any element, it can be any valid XML element.
The any element does not place any restrictions on either the content or the name of the instantiated
XML element.

For example, given the complex type defined in Example 34.1, “XML Schema Type Defined with an Any
Element” you can instantiate either of the XML elements shown in Example 34.2, “XML Document with
an Any Element”.

<complexType>
<sequence>
<any />
<element name="rank" type="xsd:int" />
</sequence>
</complexType>

<element name="FlyBoy">
</element>

‘ Example 34.1. XML Schema Type Defined with an Any Element

<rank>2</rank>
</element>
<FlyBoy>
<viper>Mark ll<Niper>
<rank>1</rank>

<FlyBoy>
<leardet>CL-215<«/learJet>
</element>

‘ Example 34.2. XML Document with an Any Element

XML Schema any elements are mapped to either a Java Object object or a Java org.w3c.dom.Element
object.

Specifying in XML Schema

333

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

The any element can be used when defining sequence complex types and choice complex types. In
most cases, the any element is an empty element. It can, however, take an annotation element as a
child.

Table 34.1, “Attributes of the XML Schema Any Element” describes the any element's attributes.

Table 34.1. Attributes of the XML Schema Any Element

Attribute Description

namespace Specifies the namespace of the elements that can be
used to instantiate the element in an XML document.
The valid values are:

##any

Specifies that elements from any namespace can
be used. This is the default.

#tother

Specifies that elements from any namespace
other than the parent element's namespace can
be used.

#Htlocal

Specifies elements without a namespace must be
used.

#itargetNamespace

Specifies that elements from the parent
element's namespace must be used.

A space delimited list of URIs,##local, and
#ittargetNamespace

Specifies that elements from any of the listed
namespaces can be used.

maxOccurs Specifies the maximum number of times an instance
of the element can appear in the parent element. The
default value is 1. To specify that an instance of the
element can appear an unlimited number of times,
you can set the attribute's value to unbounded.

minOccurs Specifies the minimum number of times an instance
of the element can appear in the parent element. The
default value is 1.

334

CHAPTER 34. USING WILD CARD TYPES

Attribute Description

processContents Specifies how the element used to instantiate the
any element should be validated. Valid values are:

strict

Specifies that the element must be validated
against the proper schema. This is the default
value.

lax

Specifies that the element should be validated
against the proper schema. If it cannot be
validated, no errors are thrown.

skip
Specifies that the element should not be
validated.

Example 34.3, "Complex Type Defined with an Any Element” shows a complex type defined with an any
element

<sequence>
<any processContents="lax" />
<element name="to" type="xsd:string" />
<element name="from" type="xsd:string" />
</sequence>

<complexType name="surprisePackage">
</complexType>

| Example 34.3. Complex Type Defined with an Any Element

Mapping to Java

XML Schema any elements result in the creation of a Java property named any. The property has
associated getter and setter methods. The type of the resulting property depends on the value of the
element's processContents attribute. If the any element’'s processContents attribute is set to skip,
the element is mapped to a org.w3c.dom.Element object. For all other values of the processContents
attribute an any element is mapped to a Java Object object.

The generated property is decorated with the @XmlAnyElement annotation. This annotation has an
optional lax property that instructs the runtime what to do when marshaling the data. Its default value is
false which instructs the runtime to automatically marshal the datainto a org.w3c.dom.Element object.
Setting lax to true instructs the runtime to attempt to marshal the data into JAXB types. When the any
element's processContents attribute is set to skip, the lax property is set to its default value. For all
other values of the processContents attribute, lax is set to true.

Example 34.4, “Java Class with an Any Element” shows how the complex type defined in Example 34.3,
"Complex Type Defined with an Any Element” is mapped to a Java class.

I Example 34.4. Java Class with an Any Element

335

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

public class SurprisePackage {
}

@XmlAnyElement(lax = true)
protected Object any;
@XmlElement(required = true)
protected String to;
@XmlElement(required = true)
protected String from;

public Object getAny() {
return any;

(S

public void setAny(Object value) {
this.any = value;

(S

public String getTo() {
return to;

}

public void setTo(String value) {
this.to = value;

}

public String getFrom() {
return from;

}

public void setFrom(String value) {
this.from = value;

}

Marshalling

If the Java property for an any element has its lax set to false, or the property is not specified, the
runtime makes no attempt to parse the XML data into JAXB objects. The data is always stored in a

DOM Element object.

If the Java property for an any element has its lax set to true, the runtime attempts to marshal the XML
data into the appropriate JAXB objects. The runtime attempts to identify the proper JAXB classes

using the following procedure:

1.

2.

3.

336

It checks the element tag of the XML element against the list of elements known to the runtime.
If it finds a match, the runtime marshals the XML data into the proper JAXB class for the

element.

It checks the XML element's xsi:type attribute. If it finds a match, the runtime marshals the
XML element into the proper JAXB class for that type.

If it cannot find a match it marshals the XML data into a DOM Element object.

CHAPTER 34. USING WILD CARD TYPES

Usually an application's runtime knows about all of the types generated from the schema's included in its
contract. This includes the types defined in the contract's wsdl:types element, any data types added to
the contract through inclusion, and any types added to the contract through importing other schemas.
You can also make the runtime aware of additional types using the @XmlSeeAlso annotation which is
described in Section 30.4, “Adding Classes to the Runtime Marshaller”.

Unmarshalling

If the Java property for an any element has its lax set to false, or the property is not specified, the
runtime will only accept DOM Element objects. Attempting to use any other type of object will result in
a marshalling error.

If the Java property for an any element has its lax set to true, the runtime uses its internal map between
Java data types and the XML Schema constructs they represent to determine the XML structure to
write to the wire. If the runtime knows the class and can map it to an XML Schema construct, it writes out
the data and inserts an xsi:type attribute to identify the type of data the element contains.

If the runtime cannot map the Java object to a known XML Schema construct, it will throw a marshaling
exception. You can add types to the runtime's map using the @XmlSeeAlso annotation which is
described in Section 30.4, “Adding Classes to the Runtime Marshaller”.

34.2. USING THE XML SCHEMA ANYTYPE TYPE

Overview

The XML Schema type xsd:anyType is the root type for all XML Schema types. All of the primitives are
derivatives of this type, as are all user defined complex types. As a result, elements defined as being of
xsd:anyType can contain data in the form of any of the XML Schema primitives as well as any complex
type defined in a schema document.

In Java the closest matching type is the Object class. It is the class from which all other Java classes are
sub-typed.

Using in XML Schema

You use the xsd:anyType type as you would any other XML Schema complex type. It can be used as the
value of an element element'’s type element. It can also be used as the base type from which other types
are defined.

Example 34.5, “Complex Type with a Wild Card Element” shows an example of a complex type that
contains an element of type xsd:anyType.

<sequence>
<element name="name" type="xsd:string" />
<element name="ship" type="xsd:anyType" />
</sequence>

<complexType name="wildStar">
</complexType>

| Example 34.5. Complex Type with a Wild Card Element

Mapping to Java

337

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Elements that are of type xsd:anyType are mapped to Object objects. Example 34.6, “"Java
Representation of a Wild Card Element” shows the mapping of Example 34.5, “Complex Type with a
Wild Card Element” to a Java class.

Example 34.6. Java Representation of a Wild Card Element
public class WildStar {

@XmlElement(required = true)
protected String name;
@XmlElement(required = true)
protected Object ship;

public String getName() {
return name;

}

public void setName(String value) {
this.name = value;

}

public Object getShip() {
return ship;

(S

public void setShip(Object value) {
this.ship = value;

[

}

This mapping allows you to place any data into the property representing the wild card element. The
Apache CXF runtime handles the marshaling and unmarshaling of the data into usable Java
representation.

Marshalling

When Apache CXF marshals XML data into Java types, it attempts to marshal anyType elements into
known JAXB objects. To determine if it is possible to marshal an anyType element into a JAXB
generated object, the runtime inspects the element's xsi:type attribute to determine the actual type
used to construct the data in the element. If the xsi:type attribute is not present, the runtime attempts
to identify the element's actual data type by introspection. If the element's actual data type is
determined to be one of the types known by the application's JAXB context, the element is marshaled
into a JAXB object of the proper type.

If the runtime cannot determine the actual data type of the element, or the actual data type of the
element is not a known type, the runtime marshals the content into a org.w3c.dom.Element object. You
will then need to work with the element's content using the DOM APis.

An application's runtime usually knows about all of the types generated from the schema's included in its
contract. This includes the types defined in the contract's wsdl:types element, any data types added to
the contract through inclusion, and any types added to the contract through importing other schema
documents. You can also make the runtime aware of additional types using the @XmlISeeAlso
annotation which is described in Section 30.4, “Adding Classes to the Runtime Marshaller”.

338

CHAPTER 34. USING WILD CARD TYPES

Unmarshalling

When Apache CXF unmarshals Java types into XML data, it uses an internal map between Java data
types and the XML Schema constructs they represent to determine the XML structure to write to the
wire. If the runtime knows the class and can map the class to an XML Schema construct, it writes out the
data and inserts an xsi:type attribute to identify the type of data the element contains. If the data is
stored in a org.w3c.dom.Element object, the runtime writes the XML structure represented by the
object but it does not include an xsi:type attribute.

If the runtime cannot map the Java object to a known XML Schema construct, it throws a marshaling
exception. You can add types to the runtime's map using the @XmlSeeAlso annotation which is
described in Section 30.4, "Adding Classes to the Runtime Marshaller”.

34.3. USING UNBOUND ATTRIBUTES

Overview

XML Schema has a mechanism that allows you to leave a place holder for an arbitrary attribute in a
complex type definition. Using this mechanism, you can define a complex type that can have any
attribute. For example, you can create a type that defines the elements <robot name="epsilon" />,
<robot age="10000" />, or <robot type="weevil" /> without specifying the three attributes. This can be
particularly useful when flexibility in your data is required.

Defining in XML Schema

Undeclared attributes are defined in XML Schema using the anyAttribute element. It can be used
wherever an attribute element can be used. The anyAttribute element has no attributes, as shown in
Example 34.7, “Complex Type with an Undeclared Attribute” .

<sequence>
<element name="name" type="xsd:string" />
<element name="rate" type="xsd:float" />
</sequence>
<anyAttribute />

<complexType name="arbitter">
</complexType>

| Example 34.7. Complex Type with an Undeclared Attribute

The defined type, arbitter, has two elements and can have one attribute of any type. The elements three
elements shown in Example 34.8, "Examples of Elements Defined with a Wild Card Attribute” can all be
generated from the complex type arbitter.

Example 34.8. Examples of Elements Defined with a Wild Card Attribute

<lawyer type="divorce"><names>...</name><rate>...</rate></lawyer>

<officer rank="12"><name>...</name><rate>...</rate></officer>
<judge><names>...</name><rate>...</rate></judge>

Mapping to Java

339

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

When a complex type containing an anyAttribute element is mapped to Java, the code generator adds
a member called otherAttributes to the generated class. otherAttributes is of type

java.util. Map<QName, String> and it has a getter method that returns a live instance of the map.
Because the map returned from the getter is live, any modifications to the map are automatically
applied. Example 34.9, “Class for a Complex Type with an Undeclared Attribute” shows the class
generated for the complex type defined in Example 34.7, “Complex Type with an Undeclared Attribute” .

Example 34.9. Class for a Complex Type with an Undeclared Attribute
public class Arbitter {
@XmlElement(required = true)

protected String name;
protected float rate;

@XmlAnyAttribute
private Map<QName, String> otherAttributes = new HashMap<QName, String>();

public String getName() {
return name;

}

public void setName(String value) {
this.name = value;

}

public float getRate() {
return rate;

}

public void setRate(float value) {
this.rate = value;

}

public Map<QName, String> getOtherAttributes() {
return otherAttributes;

[

}

Working with undeclared attributes

The otherAttributes member of the generated class expects to be populated with a Map object. The
map is keyed using QNames. Once you get the map, you can access any attributes set on the object
and set new attributes on the object.

Example 34.10, "Working with Undeclared Attributes” shows sample code for working with undeclared
attributes.

Example 34.10. Working with Undeclared Attributes

340

CHAPTER 34. USING WILD CARD TYPES
Arbitter judge = new Arbitter();
°|\/Iap<QName, String> otherAtts = judge.getOtherAttributes();

Name at1 = new QName("test.apache.org", "house");
QName at2 = new QName("test.apache.org", "veteran");

therAtts.put(at1, "Cape");
otherAtts.put(at2, "false");

QString vetStatus = otherAtts.get(at2);

The code in Example 34.10, “Working with Undeclared Attributes” does the following:
Gets the map containing the undeclared attributes.
Creates QNames to work with the attributes.

Sets the values for the attributes into the map.

-

Retrieves the value for one of the attributes.

341

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 35. ELEMENT SUBSTITUTION

Abstract

XML Schema substitution groups allow you to define a group of elements that can replace a top level, or
head, element. This is useful in cases where you have multiple elements that share a common base type
or with elements that need to be interchangeable.

35.1. SUBSTITUTION GROUPS IN XML SCHEMA

Overview

A substitution group is a feature of XML schema that allows you to specify elements that can replace
another element in documents generated from that schema. The replaceable element is called the head
element and must be defined in the schema’s global scope. The elements of the substitution group must
be of the same type as the head element or a type that is derived from the head element’s type.

In essence, a substitution group allows you to build a collection of elements that can be specified using a
generic element. For example, if you are building an ordering system for a company that sells three
types of widgets you might define a generic widget element that contains a set of common data for all
three widget types. Then you can define a substitution group that contains a more specific set of data
for each type of widget. In your contract you can then specify the generic widget element as a message
part instead of defining a specific ordering operation for each type of widget. When the actual message
is built, the message can contain any of the elements of the substitution group.

Syntax

Substitution groups are defined using the substitutionGroup attribute of the XML Schema element
element. The value of the substitutionGroup attribute is the name of the element that the element
being defined replaces. For example, if your head element is widget, adding the attribute
substitutionGroup="widget" to an element named woodWidget specifies that anywhere a widget
element is used, you can substitute a woodWidget element. This is shown in Example 35.1, “Using a
Substitution Group”.

Example 35.1. Using a Substitution Group

<element name="woodWidget" type="xsd:string"

<element name="widget" type="xsd:string" />
substitutionGroup="widget" />

Type restrictions

The elements of a substitution group must be of the same type as the head element or of a type derived
from the head element'’s type. For example, if the head element is of type xsd:int all members of the
substitution group must be of type xsd:int or of a type derived from xsd:int. You can also define a
substitution group similar to the one shown in Example 35.2, “Substitution Group with Complex Types”
where the elements of the substitution group are of types derived from the head element’s type.

Example 35.2. Substitution Group with Complex Types

342

<complexType name="widgetType">
<sequence>
<element name="shape" type="xsd:string" />
<element name="color" type="xsd:string" />
</sequence>
</complexType>
<complexType name="woodWidgetType">
<complexContent>
<extension base="widgetType">
<sequence>
<element name="woodType" type="xsd:string" />
</sequence>
</extension>
</complexContent>
</complexType>
<complexType name="plasticWidgetType">
<complexContent>
<extension base="widgetType">
<sequence>
<element name="moldProcess" type="xsd:string" />
</sequence>
</extension>
</complexContent>
</complexType>
<element name="widget" type="widgetType" />
<element name="woodWidget" type="woodWidgetType"
substitutionGroup="widget" />
<element name="plasticWidget" type="plasticWidgetType"
substitutionGroup="widget" />
<complexType name="partType">
<sequence>
<element ref="widget" />
</sequence>
</complexType>
<element name="part" type="partType" />

CHAPTER 35. ELEMENT SUBSTITUTION

The head element of the substitution group, widget, is defined as being of type widgetType. Each
element of the substitution group extends widgetType to include data that is specific to ordering that
type of widget.

Based on the schema in Example 35.2, “Substitution Group with Complex Types”, the part elements in
Example 35.3, “XML Document using a Substitution Group” are valid.

Example 35.3. XML Document using a Substitution Group

<part>
<widget>
<shape>round</shape>
<color>blue</color>
</widget>
</part>
<part>
<plasticWidget>
<shape>round</shape>

343

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide
<part>
<color>blue</color>

<color>blue</color>
<moldProcess>sandCast</moldProcess>
</plasticWidget>
<woodWidget>
<woodType>elm</woodType>

</part>
<shape>round</shape>
</woodWidget>
</part>

Abstract head elements

You can define an abstract head element that can never appear in a document produced using your
schema. Abstract head elements are similar to abstract classes in Java because they are used as the
basis for defining more specific implementations of a generic class. Abstract heads also prevent the use
of the generic element in the final product.

You declare an abstract head element by setting the abstract attribute of an element element to true,
as shown in Example 35.4, “Abstract Head Definition”. Using this schema, a valid review element can
contain either a positiveComment element or a negativeComment element, but cannot contain a
comment element.

<element name="positiveComment" type="xsd:string"
substitutionGroup="comment" />
<element name="negtiveComment" type="xsd:string"
substitutionGroup="comment" />
<element name="review">
<complexContent>
<all>
<element name="custName" type="xsd:string" />
<element name="impression" ref="comment" />
</all>
</complexContent>

Example 35.4. Abstract Head Definition
<element name="comment" type="xsd:string" abstract="true" />
</element>

35.2. SUBSTITUTION GROUPS IN JAVA

Overview

Apache CXF, as specified in the JAXB specification, supports substitution groups using Java's native
class hierarchy in combination with the ability of the JAXBElement class' support for wildcard
definitions. Because the members of a substitution group must all share a common base type, the
classes generated to support the elements' types also share a common base type. In addition, Apache
CXF maps instances of the head element to JAXBElement<? extends T> properties.

344

CHAPTER 35. ELEMENT SUBSTITUTION

Generated object factory methods

The object factory generated to support a package containing a substitution group has methods for
each of the elements in the substitution group. For each of the members of the substitution group,
except for the head element, the @XmlElementDecl annotation decorating the object factory method
includes two additional properties, as described in Table 35.1, “Properties for Declaring a JAXB Element
is a Member of a Substitution Group”.

Table 35.1. Properties for Declaring a JAXB Element is a Member of a Substitution Group

Property Description

substitutionHeadNamespace Specifies the namespace where the head element is
defined.

substitutionHeadName Specifies the value of the head element'sname
attribute.

The object factory method for the head element of the substitution group's @XmlElementDecl
contains only the default namespace property and the default name property.

In addition to the element instantiation methods, the object factory contains a method for instantiating
an object representing the head element. If the members of the substitution group are all of complex
types, the object factory also contains methods for instantiating instances of each complex type used.

Example 35.5, “Object Factory Method for a Substitution Group” shows the object factory method for
the substitution group defined in Example 35.2, “Substitution Group with Complex Types”.

Example 35.5. Object Factory Method for a Substitution Group
public class ObjectFactory {
private final static QName _Widget. QNAME = new QName(...);

private final static QName _PlasticWidget. QNAME = new QName(...);
private final static QName _WoodWidget. QNAME = new QName(...);

public ObjectFactory() {
}

public WidgetType createWidgetType() {
return new WidgetType();

}

public PlasticWidgetType createPlasticWidgetType() {
return new PlasticWidgetType();

}

public WoodWidgetType createWoodWidgetType() {
return new WoodWidgetType();

}

@XmlElementDecl(namespace="...", name = "widget")
public JAXBElement<WidgetType> createWidget(WidgetType value) {
return new JAXBElement<WidgetType>(_Widget QNAME, WidgetType.class, null, value);

345

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

public JAXBElement<PlasticWidgetType> createPlasticWidget(PlasticWidgetType value) {
return new JAXBElement<PlasticWidgetType>(_PlasticWidget. QNAME,
PlasticWidgetType.class, null, value);

}

@XmlElementDecl(namespace = "...", name = "woodWidget", substitutionHeadNamespace =
"...", substitutionHeadName = "widget")
public JAXBElement<WoodWidgetType> createWoodWidget(WoodWidgetType value) {
return new JAXBElement<WoodWidgetType>(_ WoodWidget. QNAME,
WoodWidgetType.class, null, value);

}

}
@XmlElementDecl(namespace = "...", name = "plasticWidget", substitutionHeadNamespace =
"...", substitutionHeadName = "widget")
}

Substitution groups in interfaces

If the head element of a substitution group is used as a message part in one of an operation's messages,
the resulting method parameter will be an object of the class generated to support that element. It will
not necessarily be an instance of the JAXBElement<? extends T> class. The runtime relies on Java's
native type hierarchy to support the type substitution, and Java will catch any attempts to use
unsupported types.

To ensure that the runtime knows all of the classes needed to support the element substitution, the SEI
is decorated with the @XmlISeeAlso annotation. This annotation specifies a list of classes required by
the runtime for marshalling. Fore more information on using the @XmlSeeAlso annotation see
Section 30.4, “Adding Classes to the Runtime Marshaller”.

Example 35.7, “"Generated Interface Using a Substitution Group” shows the SEI generated for the
interface shown in Example 35.6, “"WSDL Interface Using a Substitution Group” . The interface uses the
substitution group defined in Example 35.2, “Substitution Group with Complex Types”.

Example 35.6. WSDL Interface Using a Substitution Group
<message name="widgetMessage">
<part name="widgetPart" element="xsd1:widget" />
</message>
<message name="numWidgets">
<part name="numlinventory" type="xsd:int" />
</message>
<message name="badSize">
<part name="numlinventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order" />
<output message="tns:widgetOrderBill" name="bill" />
<fault message="tns:badSize" name="sizeFault" />
</operation>
<operation name="checkWidgets">
<input message="tns:widgetMessage" name="request" />

346

CHAPTER 35. ELEMENT SUBSTITUTION

</operation>

<output message="tns:numWidgets" name="response" />
</portType>

@XmlSeeAlso({com.widgetvendor.types.widgettypes.ObjectFactory.class})
public interface OrderWidgets {

@WebService(targetNamespace = "...", name = "orderWidgets")
@SOAPBInding(parameterStyle = SOAPBIinding.ParameterStyle.BARE)
@WebResult(hame = "numinventory”, targetNamespace = "", partName = "numlinventory")
@WebMethod
public int checkWidgets(
@WebParam(partName = "widgetPart", name = "widget", targetNamespace ="...")
com.widgetvendor.types.widgettypes.WidgetType widgetPart
);

Example 35.7. Generated Interface Using a Substitution Group
}

TIP

The SEIl shown in Example 35.7, “Generated Interface Using a Substitution Group” lists the object
factory in the @XmlSeeAlso annotation. Listing the object factory for a namespace provides access to
all of the generated classes for that namespace.

Substitution groups in complex types

When the head element of a substitution group is used as an element in a complex type, the code
generator maps the element to a JAXBElement<? extends T> property. It does not map itto a
property containing an instance of the generated class generated to support the substitution group.

For example, the complex type defined in Example 35.8, “Complex Type Using a Substitution Group”
results in the Java class shown in Example 35.9, "Java Class for a Complex Type Using a Substitution
Group”. The complex type uses the substitution group defined in Example 35.2, “Substitution Group
with Complex Types”.

Example 35.8. Complex Type Using a Substitution Group

<complexType name="widgetOrderInfo">
<sequence>
<element name="amount" type="xsd:int"/>
<element ref="xsd1:widget"/>
</sequence>
</complexType>

Example 35.9. Java Class for a Complex Type Using a Substitution Group

@XmlAccessorType(XmlAccessType.FIELD)
@XmIType(name = "widgetOrderinfo", propOrder = {"amount","widget",})

347

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

public class WidgetOrderinfo {
protected int amount;
@XmiElementRef(name = "widget", namespace = "...", type = JAXBElement.class)

protected JAXBElement<? extends WidgetType> widget;
public int getAmount() {
return amount;

}

public void setAmount(int value) {
this.amount = value;

}

public JAXBElement<? extends WidgetType> getWidget() {
return widget;

}

public void setWidget(JAXBElement<? extends WidgetType> value) {
this.widget = ((JAXBElement<? extends WidgetType>) value);

}
}

Setting a substitution group property

How you work with a substitution group depends on whether the code generator mapped the group to a
straight Java class or to a JAXBElement<? extends T> class. When the element is simply mapped to an
object of the generated value class, you work with the object the same way you work with other Java
objects that are part of a type hierarchy. You can substitute any of the subclasses for the parent class.
You can inspect the object to determine its exact class, and cast it appropriately.

TIP

The JAXB specification recommends that you use the object factory methods for instantiating objects
of the generated classes.

When the code generators create a JAXBElement<? extends T> object to hold instances of a
substitution group, you must wrap the element's value in a JAXBElement<? extends T> object. The
best method to do this is to use the element creation methods provided by the object factory. They
provide an easy means for creating an element based on its value.

Example 35.10, “Setting a Member of a Substitution Group” shows code for setting an instance of a
substitution group.

lasticWidgetType pWidget = of.createPlasticWidgetType();
pWidget.setShape = "round’;
pWidget.setColor = "green";

Example 35.10. Setting a Member of a Substitution Group
pWidget.setMoldProcess = "injection";

‘ @ viectFactory of = new ObjectFactory();

QJAXBEIemenkPIasticWidgetType> widget = of.createPlasticWidget(pWidget);

348

CHAPTER 35. ELEMENT SUBSTITUTION

QWidgetOrderInfo order = of.createWidgetOrderInfo();
aorder.setWidget(widget);

The code in Example 35.10, “Setting a Member of a Substitution Group” does the following:
ﬂ Instantiates an object factory.
Instantiates a PlasticWidgetType object.
Instantiates a JAXBElement<PlasticWidgetType> object to hold a plastic widget element.

Instantiates a WidgetOrderinfo object.

D000

Sets the WidgetOrderinfo object’'s widget to the JAXBElement object holding the plastic widget
element.

Getting the value of a substitution group property

The object factory methods do not help when extracting the element's value from a JAXBElement<?
extends T> object. You must to use the JAXBElement<? extends T> object's getValue() method. The
following options determine the type of object returned by the getValue() method:

e Use the isInstance() method of all the possible classes to determine the class of the element's
value object.

e Use the JAXBElement<? extends T> object's getName() method to determine the element's
name.

The getName() method returns a QName. Using the local name of the element, you can
determine the proper class for the value object.

e Use the JAXBElement<? extends T> object's getDeclaredType() method to determine the
class of the value object.

The getDeclaredType() method returns the Class object of the element's value object.

' WARNING
A There is a possibility that the getDeclaredType() method will return the

base class for the head element regardless of the actual class of the value
object.

Example 35.11, “Getting the Value of a Member of the Substitution Group” shows code retrieving the
value from a substitution group. To determine the proper class of the element's value object the
example uses the element's getName() method.

I Example 35.11. Getting the Value of a Member of the Substitution Group

349

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

String elementName = order.getWidget().getName().getLocalPart();
if (elementName.equals("woodWidget")
{

WoodWidgetType widget=order.getWidget().getValue();

}

else if (elementName.equals("plasticWidget")

{
PlasticWidgetType widget=order.getWidget().getValue();

}

else
{

WidgetType widget=order.getWidget().getValue();
}

35.3. WIDGET VENDOR EXAMPLE

35.3.1. Widget Ordering Interface

This section shows an example of substitution groups being used in Apache CXF to solve a real world
application. A service and consumer are developed using the widget substitution group defined in
Example 35.2, “Substitution Group with Complex Types”. The service offers two operations:
checkWidgets and placeWidgetOrder. Example 35.12, “Widget Ordering Interface” shows the interface
for the ordering service.

Example 35.12. Widget Ordering Interface
<message name="widgetOrder">
<part name="widgetOrderForm" type="xsd1:widgetOrderinfo"/>

</message>
<message name="widgetOrderBill">
<part name="widgetOrderConformation"
type="xsd1:widgetOrderBillinfo"/>
</message>
<message name="widgetMessage">
<part name="widgetPart" element="xsd1:widget" />
</message>
<message name="numWidgets">
<part name="numlInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
<operation name="placeWidgetOrder">
<input message="tns:widgetOrder" name="order"/>
<output message="tns:widgetOrderBill" name="bill"/>
</operation>
<operation name="checkWidgets">
<input message="tns:widgetMessage" name="request" />
<output message="tns:numWidgets" name="response" />
</operation>
</portType>

Example 35.13, “Widget Ordering SEI” shows the generated Java SEI for the interface.

350

CHAPTER 35. ELEMENT SUBSTITUTION

Example 35.13. Widget Ordering SEI

@WebService(targetNamespace = "http://widgetVendor.com/widgetOrderForm", name =
"orderWidgets")
@XmlSeeAlso({com.widgetvendor.types.widgettypes.ObjectFactory.class})

public interface OrderWidgets {

@SOAPBInding(parameterStyle = SOAPBIinding.ParameterStyle.BARE)
@WebResult(hame = "numinventory”, targetNamespace = "", partName = "numlinventory")
@WebMethod
public int checkWidgets(
@WebParam(partName = "widgetPart", name = "widget", targetNamespace =
"http://widgetVendor.com/types/widgetTypes")
com.widgetvendor.types.widgettypes.WidgetType widgetPart

);

@SOAPBInding(parameterStyle = SOAPBIinding.ParameterStyle.BARE)

@WebResult(hame = "widgetOrderConformation”, targetNamespace = "", partName =
"widgetOrderConformation")
@WebMethod

public com.widgetvendor.types.widgettypes.WidgetOrderBillinfo placeWidgetOrder(
@WebParam(partName = "widgetOrderForm", name = "widgetOrderForm",
targetNamespace = "")
com.widgetvendor.types.widgettypes.WidgetOrderinfo widgetOrderForm
) throws BadSize;

}

NOTE

Because the example only demonstrates the use of substitution groups, some of the
business logic is not shown.

35.3.2. The checkWidgets Operation

Overview

checkWidgets is a simple operation that has a parameter that is the head member of a substitution
group. This operation demonstrates how to deal with individual parameters that are members of a
substitution group. The consumer must ensure that the parameter is a valid member of the substitution
group. The service must properly determine which member of the substitution group was sent in the
request.

Consumer implementation

The generated method signature uses the Java class supporting the type of the substitution group's
head element. Because the member elements of a substitution group are either of the same type as the
head element or of a type derived from the head element's type, the Java classes generated to support
the members of the substitution group inherit from the Java class generated to support the head
element. Java's type hierarchy natively supports using subclasses in place of the parent class.

Because of how Apache CXF generates the types for a substitution group and Java's type hierarchy,

the client can invoke checkWidgets() without using any special code. When developing the logic to
invoke checkWidgets() you can pass in an object of one of the classes generated to support the widget

351

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

substitution group.

Example 35.14, “Consumer Invoking checkWidgets()” shows a consumer invoking checkWidgets().

Example 35.14. Consumer Invoking checkWidgets()
System.out.printin("What type of widgets do you want to order?");
System.out.printin("1 - Normal");

System.out.printin("2 - Wood");
System.out.printin("3 - Plastic");
System.out.printin("Selection [1-3]");

==

String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);
switch (widgetType)
{

case'1"

{

WidgetType widget = new WidgetType();

break;
}
case 2"
{
WoodWidgetType widget = new WoodWidgetType();

break;
}
case '3"
{
PlasticWidgetType widget = new PlasticWidgetType();

break;
}
default :
System.out.printin("Invaid Widget Selection!!");

}

proxy.checkWidgets(widgets);

Service implementation

The service's implementation of checkWidgets() gets a widget description as a WidgetType object,
checks the inventory of widgets, and returns the number of widgets in stock. Because all of the classes
used to implement the substitution group inherit from the same base class, you can implement
checkWidgets() without using any JAXB specific APls.

All of the classes generated to support the members of the substitution group for widget extend the
WidgetType class. Because of this fact, you can use instanceof to determine what type of widget was
passed in and simply cast the widgetPart object into the more restrictive type if appropriate. Once you
have the proper type of object, you can check the inventory of the right kind of widget.

Example 35.15, “Service Implementation of checkWidgets()” shows a possible implementation.

352

CHAPTER 35. ELEMENT SUBSTITUTION

Example 35.15. Service Implementation of checkWidgets()

public int checkWidgets(WidgetType widgetPart)

{
if (widgetPart instanceof WidgetType)

{
return checkWidgetlnventory(widgetType);

}
else if (widgetPart instanceof WoodWidgetType)

{
WoodWidgetType widget = (WoodWidgetType)widgetPart;
return checkWoodWidgetinventory(widget);

}
else if (widgetPart instanceof PlasticWidgetType)

{
PlasticWidgetType widget = (PlasticWidgetType)widgetPart;
return checkPlasticWidgetInventory(widget);
}
}

35.3.3. The placeWidgetOrder Operation

Overview

placeWidgetOrder uses two complex types containing the substitution group. This operation
demonstrates to use such a structure in a Java implementation. Both the consumer and the service must
get and set members of a substitution group.

Consumer implementation

To invoke placeWidgetOrder() the consumer must construct a widget order containing one element of
the widget substitution group. When adding the widget to the order, the consumer should use the
object factory methods generated for each element of the substitution group. This ensures that the
runtime and the service can correctly process the order. For example, if an order is being placed for a
plastic widget, the ObjectFactory.createPlasticWidget() method is used to create the element before
adding it to the order.

Example 35.16, “Setting a Substitution Group Member” shows consumer code for setting the widget
property of the WidgetOrderinfo object.

WidgetOrderInfo order = new of.createWidgetOrderInfo();

System.out.printin();

System.out.printin("What color widgets do you want to order?");
String color = reader.readLine();

System.out.printin();

System.out.printin("What shape widgets do you want to order?");

Example 35.16. Setting a Substitution Group Member
String shape = reader.readLine();

| ObjectFactory of = new ObjectFactory();

353

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

System.out.printin();

System.out.printin("What type of widgets do you want to order?");
System.out.printin("1 - Normal");

System.out.printin("2 - Wood");

System.out.printin("3 - Plastic");

System.out.printin("Selection [1-3]");

String selection = reader.readLine();

String trimmed = selection.trim();

char widgetType = trimmed.charAt(0);

switch (widgetType)
{

case '1"

{
WidgetType widget = of.createWidgetType();
widget.setColor(color);
widget.setShape(shape);
JAXB<WidgetType> widgetElement = of.createWidget(widget);
order.setWidget(widgetElement);
break;

}

case 2"

{
WoodWidgetType woodWidget = of.createWoodWidgetType();
woodWidget.setColor(color);
woodWidget.setShape(shape);
System.out.printin();
System.out.printin("What type of wood are your widgets?");
String wood = reader.readLine();
woodWidget.setWoodType(wood);
JAXB<WoodWidgetType> widgetElement = of.createWoodWidget(woodWidget);
order.setWoodWidget(widgetElement);
break;

}

case '3"

{
PlasticWidgetType plasticWidget = of.createPlasticWidgetType();
plasticWidget.setColor(color);
plasticWidget.setShape(shape);
System.out.printin();
System.out.printin("What type of mold to use for your

widgets?");

String mold = reader.readLine();
plasticWidget.setMoldProcess(mold);
JAXB<WidgetType> widgetElement = of.createPlasticWidget(plasticWidget);
order.setPlasticWidget(widgetElement);
break;

}

default :
System.out.printin("Invaid Widget Selection!!");

}

Service implementation

The placeWidgetOrder() method receives an order in the form of a WidgetOrderinfo object, processes

354

CHAPTER 35. ELEMENT SUBSTITUTION

the order, and returns a bill to the consumer in the form of a WidgetOrderBillinfo object. The orders
can be for a plain widget, a plastic widget, or a wooden widget. The type of widget ordered is
determined by what type of object is stored in widgetOrderForm object's widget property. The widget
property is a substitution group and can contain a widget element, a woodWidget element, or a
plasticWidget element.

The implementation must determine which of the possible elements is stored in the order. This can be
accomplished using the JAXBElement<? extends T> object's getName() method to determine the
element's QName. The QName can then be used to determine which element in the substitution group
is in the order. Once the element included in the bill is known, you can extract its value into the proper
type of object.

Example 35.17, “Implementation of placeWidgetOrder()” shows a possible implementation.

Example 35.17. Implementation of placeWidgetOrder()
public com.widgetvendor.types.widgettypes.WidgetOrderBilllnfo
placeWidgetOrder(WidgetOrderinfo widgetOrderForm)
{
ﬂ ObjectFactory of = new ObjectFactory();

9 WidgetOrderBillinfo bill = new WidgetOrderBillinfo()

/I Copy the shipping address and the number of widgets
/I ordered from widgetOrderForm to bill

9 int numOrdered = widgetOrderForm.getAmount();

String elementName = widgetOrderForm.getWidget().getName().getLocalPart();
© i (elementName.equals("woodWidget")
{
WoodWidgetType widget=order.getWidget().getValue();
buildWoodWidget(widget, numQOrdered);

// Add the widget info to bill
JAXBElement<WoodWidgetType> widgetElement = of.createWoodWidget(widget);
6 bill.setWidget(widgetElement);

float amtDue = numOrdered * 0.75;
Q bill.setAmountDue(amtDue);

}

else if (elementName.equals("plasticWidget")

{
PlasticWidgetType widget=order.getWidget().getValue();

buildPlasticWidget(widget, numOrdered);

// Add the widget info to bill
JAXBElement<PlasticWidgetType> widgetElement = of.createPlasticWidget(widget);
bill.setWidget(widgetElement);

float amtDue = numOrdered * 0.90;
bill.setAmountDue(amtDue);

}

else

{

355

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

WidgetType widget=order.getWidget().getValue();
buildWidget(widget, numOrdered);

// Add the widget info to bill
JAXBElement<WidgetType> widgetElement = of.createWidget(widget);
bill.setWidget(widgetElement);

float amtDue = numOrdered * 0.30;
bill.setAmountDue(amtDue);

}

return(bill);

}

The code in Example 35.17, “Implementation of placeWidgetOrder()” does the following:

9909902909000

356

Instantiates an object factory to create elements.

Instantiates a WidgetOrderBilllnfo object to hold the bill.

Gets the number of widgets ordered.

Gets the local name of the element stored in the order.

Checks to see if the element is a woodWidget element.

Extracts the value of the element from the order to the proper type of object.
Creates a JAXBElement<T> object placed into the bill.

Sets the bill object's widget property.

Sets the bill object's amountDue property.

CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED

CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED

Abstract

The default JAXB mappings address most of the cases encountered when using XML Schema to define
the objects for a Java application. For instances where the default mappings are insufficient, JAXB
provides an extensive customization mechanism.

36.1. BASICS OF CUSTOMIZING TYPE MAPPINGS

Overview

The JAXB specification defines a number of XML elements that customize how Java types are mapped
to XML Schema constructs. These elements can be specified in-line with XML Schema constructs. If you
cannot, or do not want to, modify the XML Schema definitions, you can specify the customizations in
external binding document.

Namespace

The elements used to customize the JAXB data bindings are defined in the namespace
http://java.sun.com/xml/ns/jaxb. You must add a namespace declaration similar to the one shown in
Example 36.1, “"JAXB Customization Namespace”. This is added to the root element of all XML
documents defining JAXB customizations.

Example 36.1. JAXB Customization Namespace

I xmins:jaxb="http://java.sun.com/xml/ns/jaxb"

Version declaration

When using the JAXB customizations, you must indicate the JAXB version being used. This is done by
adding a jaxb:version attribute to the root element of the external binding declaration. If you are using
in-line customization, you must include the jaxb:version attribute in the schema element containing
the customizations. The value of the attribute is always 2.0.

Example 36.2, “Specifying the JAXB Customization Version” shows an example of the jaxb:version
attribute used in a schema element.

Example 36.2. Specifying the JAXB Customization Version

<schema...
jaxb:version="2.0">

Using in-line customization

The most direct way to customize how the code generators map XML Schema constructs to Java
constructs is to add the customization elements directly to the XML Schema definitions. The JAXB
customization elements are placed inside the xsd:appinfo element of the XML schema construct that is

357

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

being modified.

Example 36.3, "Customized XML Schema” shows an example of a schema containing an in-line JAXB
customization.

xmins="http://www.w3.0rg/2001/XMLSchema"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">
<complexType name="size">
<annotation>
<appinfo>
<jaxb:class name="widgetSize" />
</appinfo>
</annotation>
<sequence>
<element name="longSize" type="xsd:string" />
<element name="numberSize" type="xsd:int" />
</sequence>
</complexType>

Example 36.3. Customized XML Schema
<schema targetNamespace="http://widget.com/types/widgetTypes"
<schema>

Using an external binding declaration

When you cannot, or do not want to, make changes to the XML Schema document that defines your
type, you can specify the customizations using an external binding declaration. An external binding
declaration consists of a number of nested jaxb:bindings elements. Example 36.4, “JAXB External
Binding Declaration Syntax” shows the syntax of an external binding declaration.

xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
jaxb:version="2.0">
<jaxb:bindings [schemalocation="schemaUr!" | wsdlLocation="wsadlUr">
<jaxb:bindings node="nodeXPath">
binding declaration
</jaxb:bindings>

</jaxb:bindings>

<jaxb:bindings xmins:jaxb="http://java.sun.com/xml/ns/jaxb"
<jaxb:bindings>

| Example 36.4. JAXB External Binding Declaration Syntax

The schemalocation attribute and the wsdlLocation attribute are used to identify the schema
document to which the modifications are applied. Use the schemalLocation attribute if you are
generating code from a schema document. Use the wsdlLocation attribute if you are generating code
from a WSDL document.

The node attribute is used to identify the specific XML schema construct that is to be modified. It is an
XPath statement that resolves to an XML Schema element.

358

CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED

Given the schema document widgetSchema.xsd, shown in Example 36.5, “XML Schema File”, the
external binding declaration shown in Example 36.6, “External Binding Declaration” modifies the
generation of the complex type size.

xmlins="http://www.w3.0rg/2001/XMLSchema"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/"
version="1.0">
<complexType name="size">
<sequence>
<element name="longSize" type="xsd:string" />
<element name="numberSize" type="xsd:int" />
</sequence>
</complexType>

Example 36.5. XML Schema File
<schema targetNamespace="http://widget.com/types/widgetTypes"
<schema>

xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
jaxb:version="2.0">
<jaxb:bindings schemalocation="wsdlSchema.xsd">
<jaxb:bindings node="xsd:complexType[@name='size']">
<jaxb:class name="widgetSize" />
</jaxb:bindings>
</jaxb:bindings>

<jaxb:bindings xmins:jaxb="http://java.sun.com/xml/ns/jaxb"
<jaxb:bindings>

‘ Example 36.6. External Binding Declaration

To instruct the code generators to use the external binging declaration use the wsdl2java tool's -b
binding-file option, as shown below:

I wsdl2java -b widgetBinding.xml widget.wsdl

36.2. SPECIFYING THE JAVA CLASS OF AN XML SCHEMA PRIMITIVE

Overview

By default, XML Schema types are mapped to Java primitive types. While this is the most logical
mapping between XML Schema and Java, it does not always meet the requirements of the application
developer. You might want to map an XML Schema primitive type to a Java class that can hold extra
information, or you might want to map an XML primitive type to a class that allows for simple type
substitution.

The JAXB javaType customization element allows you to customize the mapping between an XML
Schema primitive type and a Java primitive type. It can be used to customize the mappings at both the
global level and the individual instance level. You can use the javaType element as part of a simple type
definition or as part of a complex type definition.

When using the javaType customization element you must specify methods for converting the XML

359

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

representation of the primitive type to and from the target Java class. Some mappings have default
conversion methods. For instances where there are no default mappings, Apache CXF provides JAXB
methods to ease the development of the required methods.

Syntax

The javaType customization element takes four attributes, as described in Table 36.1, “Attributes for
Customizing the Generation of a Java Class for an XML Schema Type".

Table 36.1. Attributes for Customizing the Generation of a Java Class for an XML Schema Type

Attribute Required Description

hame Yes Specifies the name of the Java
class to which the XML Schema
primitive type is mapped. It must
be either a valid Java class name
or the name of a Java primitive
type. You must ensure that this
class exists and is accessible to
your application. The code
generator does not check for this
class.

xmlType No Specifies the XML Schema
primitive type that is being
customized. This attribute is only
used when the javaType element
is used as a child of the
globalBindings element.

parseMethod No Specifies the method responsible
for parsing the string-based XML
representation of the data into an
instance of the Java class. For
more information see the section
called "Specifying the converters”.

printMethod No Specifies the method responsible
for converting a Java object to
the string-based XML
representation of the data. For
more information see the section
called "Specifying the converters”.

The javaType customization element can be used in three ways:
® To modify all instances of an XML Schema primitive type — The javaType element modifies all
instances of an XML Schema type in the schema document when it is used as a child of the

globalBindings customization element. When it is used in this manner, you must specify a value
for the xmlIType attribute that identifies the XML Schema primitive type being modified.

360

CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED

Example 36.7, “"Global Primitive Type Customization” shows an in-line global customization that
instructs the code generators to use java.lang.Integer for all instances of xsd:short in the
schema.

xmins="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">
<annotation>
<appinfo>
<jaxb:globalBindings ...>
<jaxb:javaType name="java.lang.Integer"
xmlType="xsd:short" />
</globalBindings
</appinfo>
</annotation>

<schema targetNamespace="http://widget.com/types/widgetTypes"
</schema>

| Example 36.7. Global Primitive Type Customization

® To modify a simple type definition — The javaType element modifies the class generated for all
instances of an XML simple type when it is applied to a named simple type definition. When
using the javaType element to modify a simple type definition, do not use the xmiType
attribute.

Example 36.8, “Binding File for Customizing a Simple Type"” shows an external binding file that
modifies the generation of a simple type named zipCode.

xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
jaxb:version="2.0">
<jaxb:bindings wsdlLocation="widgets.wsdl">
<jaxb:bindings node="xsd:simpleType[@name="zipCode']">
<jaxb:javaType name="com.widgetVendor.widgetTypes.zipCodeType"
parseMethod="com.widgetVendor.widgetTypes.support.parseZipCode"
printMethod="com.widgetVendor.widgetTypes.support.printZipCode" />
</jaxb:bindings>
</jaxb:bindings>

<jaxb:bindings xmins:jaxb="http://java.sun.com/xml/ns/jaxb"
<jaxb:bindings>

| Example 36.8. Binding File for Customizing a Simple Type

® To modify an element or attribute of a complex type definition — The javaType can be applied
to individual parts of a complex type definition by including it as part of a JAXB property
customization. The javaType element is placed as a child to the property's baseType element.
When using the javaType element to modify a specific part of a complex type definition, do not
use the xmlType attribute.

Example 36.9, “Binding File for Customizing an Element in a Complex Type” shows a binding file
that modifies an element of a complex type.

361

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
jaxb:version="2.0">
<jaxb:bindings schemalocation="enumMap.xsd">
<jaxb:bindings node="xsd:ComplexType[@name="widgetOrderinfo']">
<jaxb:bindings node="xsd:element[@name="'cost']">
<jaxb:property>
<jaxb:baseType>
<jaxb:javaType name="com.widgetVendor.widgetTypes.costType
parseMethod="parseCost"
printMethod="printCost" >
</jaxb:baseType>
</jaxb:property>
</jaxb:bindings>
</jaxb:bindings>
</jaxb:bindings>
<jaxb:bindings>

Example 36.9. Binding File for Customizing an Element in a Complex Type
‘ <jaxb:bindings xmins:jaxb="http://java.sun.com/xml/ns/jaxb"

For more information on using the baseType element see Section 36.6, “Specifying the Base
Type of an Element or an Attribute”.

Specifying the converters

The Apache CXF cannot convert XML Schema primitive types into random Java classes. When you use
the javaType element to customize the mapping of an XML Schema primitive type, the code generator
creates an adapter class that is used to marshal and unmarshal the customized XML Schema primitive
type. A sample adapter class is shown in Example 36.10, “JAXB Adapter Class”.

publrc javaType unmarshal(String value)

return (parseMethod(value));

Example 36.10. JAXB Adapter Class
publlc class Adapter1 extends XmlAdapter<String, javaType>
publrc String marshal(javaType value)

return (printMethod(value));

parseMethod and printMethod are replaced by the value of the corresponding parseMethod attribute
and printMethod attribute. The values must identify valid Java methods. You can specify the method's
name in one of two ways:

e A fully qualified Java method name in the form of packagename.ClassName.methodName

® Asimple method name in the form of methodName

362

CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED

When you only provide a simple method name, the code generator assumes that the method
exists in the class specified by the javaType element's name attribute.

IMPORTANT

The code generators do not generate parse or print methods. You are responsible for
supplying them. For information on developing parse and print methods see the section
called “Implementing converters”.

If a value for the parseMethod attribute is not provided, the code generator assumes that the Java class
specified by the name attribute has a constructor whose first parameter is a Java String object. The
generated adapter's unmarshal() method uses the assumed constructor to populate the Java object
with the XML data.

If a value for the printMethod attribute is not provided, the code generator assumes that the Java class
specified by the name attribute has a toString() method. The generated adapter's marshal() method
uses the assumed toString() method to convert the Java object to XML data.

If the javaType element's name attribute specifies a Java primitive type, or one of the Java primitive's
wrapper types, the code generators use the default converters. For more information on default
converters see the section called “Default primitive type converters” .

What is generated

As mentioned in the section called “Specifying the converters”, using the javaType customization
element triggers the generation of one adapter class for each customization of an XML Schema
primitive type. The adapters are named in sequence using the pattern AdapterN. If you specify two
primitive type customizations, the code generators create two adapter classes: Adapter1 and
Adapter2.

The code generated for an XML schema construct depends on whether the effected XML Schema
construct is a globally defined element or is defined as part of a complex type.

When the XML Schema construct is a globally defined element, the object factory method generated
for the type is modified from the default method as follows:

® The method is decorated with an @XmlJavaTypeAdapter annotation.

The annotation instructs the runtime which adapter class to use when processing instances of
this element. The adapter class is specified as a class object.

e The default type is replaced by the class specified by the javaType element's name attribute.

Example 36.11, “Customized Object Factory Method for a Global Element” shows the object factory
method for an element affected by the customization shown in Example 36.7, “Global Primitive Type
Customization”.

@XmlJavaTypeAdapter(org.w3._2001.xmIschema.Adapter1.class)
public JAXBElement<Integer> createShorty(Integer value) {

@XmlElementDecl(namespace = "http://widgetVendor.com/types/widgetTypes", name = "shorty")
return new JAXBElement<Integer>(_Shorty QNAME, Integer.class, null, value);

Example 36.11. Customized Object Factory Method for a Global Element
}

363

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

When the XML Schema construct is defined as part of a complex type, the generated Java property is
modified as follows:

® The property is decorated with an @XmlJavaTypeAdapter annotation.

The annotation instructs the runtime which adapter class to use when processing instances of
this element. The adapter class is specified as a class object.

® The property's @XmlElement includes a type property.

The value of the type property is the class object representing the generated object's default
base type. In the case of XML Schema primitive types, the class is String.

® The property is decorated with an @XmlISchemaType annotation.
The annotation identifies the XML Schema primitive type of the construct.
e The default type is replaced by the class specified by the javaType element's name attribute.

Example 36.12, “Customized Complex Type” shows the object factory method for an element affected
by the customization shown in Example 36.7, “Global Primitive Type Customization”.

Example 36.12. Customized Complex Type
public class NumInventory {
@XmlElement(required = true, type = String.class)

@XmlJavaTypeAdapter(Adapteri.class)
@XmISchemaType(name = "short")
protected Integer numLeft;
@XmlElement(required = true)

protected String size;

public Integer getNumLeft() {
return numLeft;

}

public void setNumLeft(Integer value) {
this.numLeft = value;

}

public String getSize() {
return size;

}

public void setSize(String value) {
this.size = value;

}
}

Implementing converters

The Apache CXF runtime does not know how to convert XML primitive types to and from the Java class

364

CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED

specified by the javaType element, except that it should call the methods specified by the
parseMethod attribute and the printMethod attribute. You are responsible for providing
implementations of the methods the runtime calls. The implemented methods must be capable of
working with the lexical structures of the XML primitive type.

To simplify the implementation of the data conversion methods, Apache CXF provides the
javax.xml.bind.DatatypeConverter class. This class provides methods for parsing and printing all of the
XML Schema primitive types. The parse methods take string representations of the XML data and they
return an instance of the default type defined in Table 32.1, “XML Schema Primitive Type to Java Native
Type Mapping”. The print methods take an instance of the default type and they return a string
representation of the XML data.

The Java documentation for the DatatypeConverter class can be found at
https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/DatatypeConverter.html.

Default primitive type converters

When specifying a Java primitive type, or one of the Java primitive type Wrapper classes, in the
javaType element's name attribute, it is not necessary to specify values for the parseMethod attribute
or the printMethod attribute. The Apache CXF runtime substitutes default converters if no values are
provided.

The default data converters use the JAXB DatatypeConverter class to parse the XML data. The default
converters will also provide any type casting necessary to make the conversion work.

36.3. GENERATING JAVA CLASSES FOR SIMPLE TYPES

Overview

By default, named simple types do not result in generated types unless they are enumerations. Elements
defined using a simple type are mapped to properties of a Java primitive type.

There are instances when you need to have simple types generated into Java classes, such as is when
you want to use type substitution.

To instruct the code generators to generate classes for all globally defined simple types, set the
globalBindings customization element's mapSimpleTypeDef to true.

Adding the customization

To instruct the code generators to create Java classes for named simple types add the globalBinding
element's mapSimpleTypeDef attribute and set its value to true.

Example 36.13, “in-Line Customization to Force Generation of Java Classes for SimpleTypes” shows an
in-line customization that forces the code generator to generate Java classes for named simple types.

xmins="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">

Example 36.13. in-Line Customization to Force Generation of Java Classes for SimpleTypes
<annotation>

‘ <schema targetNamespace="http://widget.com/types/widgetTypes"

365

https://docs.oracle.com/javase/8/docs/api/javax/xml/bind/DatatypeConverter.html

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

</appinfo>
</annotation>

<appinfo>
<jaxb:globalBindings mapSimpleTypeDef="true" />
</schema>

Example 36.14, “Binding File to Force Generation of Constants” shows an external binding file that
customizes the generation of simple types.

xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
jaxb:version="2.0">
<jaxb:bindings schemalocation="types.xsd">
<jaxb:globalBindings mapSimpleTypeDef="true" />
<jaxb:bindings>

<jaxb:bindings xmins:jaxb="http://java.sun.com/xml/ns/jaxb"
<jaxb:bindings>

| Example 36.14. Binding File to Force Generation of Constants

IMPORTANT

This customization only affects named simple types that are defined in the global scope.

Generated classes

The class generated for a simple type has one property called value. The value property is of the Java
type defined by the mappings in Section 32.1, “Primitive Types”. The generated class has a getter and a
setter for the value property.

Example 36.16, “Customized Mapping of a Simple Type” shows the Java class generated for the simple
type defined in Example 36.15, “Simple Type for Customized Mapping”.

<restriction base="xsd:string">
<maxLength value="10"/>
</restriction>

<simpleType name="simpleton">
</simpleType>

| Example 36.15. Simple Type for Customized Mapping

@XmIType(name = "simpleton”, propOrder = {"value"})
public class Simpleton {

@XmlValue

Example 36.16. Customized Mapping of a Simple Type
protected String value;

‘ @XmlAccessorType(XmlAccessType.FIELD)

366

CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED

this.value = value;

public String getValue() {
return value;
}
public void setValue(String value) {
}
}

36.4. CUSTOMIZING ENUMERATION MAPPING

Overview

If you want enumerated types that are based on a schema type other than xsd:string, you must instruct
the code generator to map it. You can also control the name of the generated enumeration constants.

The customization is done using the jaxb:typesafeEnumClass element along with one or more
jaxb:typesafeEnumMember elements.

There might also be instances where the default settings for the code generator cannot create valid
Java identifiers for all of the members of an enumeration. You can customize how the code generators
handle this by using an attribute of the globalBindings customization.

Member name customizer

If the code generator encounters a naming collision when generating the members of an enumeration or
if it cannot create a valid Java identifier for a member of the enumeration, the code generator, by
default, generates a warning and does not generate a Java enum type for the enumeration.

You can alter this behavior by adding the globalBinding element's typesafeEnumMemberName
attribute. The typesafeEnumMemberName attribute's values are described in Table 36.2, “Values for
Customizing Enumeration Member Name Generation”.

Table 36.2. Values for Customizing Enumeration Member Name Generation

Value Description

skipGeneration(default) Specifies that the Javaenum type is not generated
and generates a warning.

generateName Specifies that member names will be generated
following the pattern VALUE_N. N starts off at one,
and is incremented for each member of the
enumeration.

generateError Specifies that the code generator generates an error
when it cannot map an enumeration to a Java enum

type.

367

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Example 36.17, “Customization to Force Type Safe Member Names” shows an in-line customization that
forces the code generator to generate type safe member names.

xmlins="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">
<annotation>
<appinfo>
<jaxb:globalBindings typesafeEnumMemberName="generateName" />
</appinfo>
</annotation>

<schema targetNamespace="http://widget.com/types/widgetTypes"
</schema>

‘ Example 36.17. Customization to Force Type Safe Member Names

Class customizer

The jaxb:typesafeEnumClass element specifies that an XML Schema enumeration should be mapped
to a Java enum type. It has two attributes that are described in Table 36.3, “Attributes for Customizing a
Generated Enumeration Class”. When the jaxb:typesafeEnumClass element is specified in-line, it must
be placed inside the xsd:annotation element of the simple type it is modifying.

Table 36.3. Attributes for Customizing a Generated Enumeration Class

Attribute Description

hame Specifies the name of the generated Javaenum
type. This value must be a valid Java identifier.

map Specifies if the enumeration should be mapped to a
Java enum type. The default value istrue.

Member customizer

The jaxb:typesafeEnumMember element specifies the mapping between an XML Schema
enumeration facet and a Java enum type constant. You must use one jaxb:typesafeEnumMember
element for each enumeration facet in the enumeration being customized.

When using in-line customization, this element can be used in one of two ways:

® |t can be placed inside the xsd:annotation element of the enumeration facet it is modifying.

® They can all be placed as children of the jaxb:typesafeEnumClass element used to customize
the enumeration.

The jaxb:typesafeEnumMember element has a name attribute that is required. The name attribute
specifies the name of the generated Java enum type constant. It's value must be a valid Java identifier.

The jaxb:typesafeEnumMember element also has a value attribute. The value is used to associate the

368

CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED

enumeration facet with the proper jaxb:typesafeEnumMember element. The value of the value
attribute must match one of the values of an enumeration facets' value attribute. This attribute is
required when you use an external binding specification for customizing the type generation, or when
you group the jaxb:typesafeEnumMember elements as children of the jaxb:typesafeEnumClass
element.

Examples

Example 36.18, “In-line Customization of an Enumerated Type” shows an enumerated type that uses in-
line customization and has the enumeration's members customized separately.

Example 36.18. In-line Customization of an Enumerated Type
<schema targetNamespace="http://widget.com/types/widgetTypes"
xmins="http://www.w3.0rg/2001/XMLSchema"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">
<simpleType name="widgetInteger">

<annotation>
<appinfo>
<jaxb:typesafeEnumClass />
</appinfo>
</annotation>
<restriction base="xsd:int">
<enumeration value="1">
<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="one" />
</appinfo>
</annotation>
</enumeration>
<enumeration value="2">
<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="two" />
</appinfo>
</annotation>
</enumeration>
<enumeration value="3">
<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="three" />
</appinfo>
</annotation>
</enumeration>
<enumeration value="4">
<annotation>
<appinfo>
<jaxb:typesafeEnumMember name="four" />
</appinfo>
</annotation>
</enumeration>

369

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

</restriction>
</simpleType>

<schema>

Example 36.19, “In-line Customization of an Enumerated Type Using a Combined Mapping” shows an
enumerated type that uses in-line customization and combines the member's customization in the class
customization.

Example 36.19. In-line Customization of an Enumerated Type Using a Combined Mapping
<schema targetNamespace="http://widget.com/types/widgetTypes"
xmins="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">
<simpleType name="widgetInteger">
<annotation>
<appinfo>
<jaxb:typesafeEnumClass>
<jaxb:typesafeEnumMember value="1" name="one" />
<jaxb:typesafeEnumMember value="2" name="two" />
<jaxb:typesafeEnumMember value="3" name="three" />
<jaxb:typesafeEnumMember value="4" name="four" />
</jaxb:typesafeEnumClass>
</appinfo>
</annotation>
<restriction base="xsd:int">
<enumeration value="1" />
<enumeration value="2" />
<enumeration value="3" />
<enumeration value="4" >
</restriction>
</simpleType>
<schema>

Example 36.20, “Binding File for Customizing an Enumeration” shows an external binding file that
customizes an enumerated type.

xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
jaxb:version="2.0">
<jaxb:bindings schemalocation="enumMap.xsd">
<jaxb:bindings node="xsd:simpleType[@name='widgetInteger">
<jaxb:typesafeEnumClass>
<jaxb:typesafeEnumMember value="1" name="one" />
<jaxb:typesafeEnumMember value="2" name="two" />
<jaxb:typesafeEnumMember value="3" name="three" />
<jaxb:typesafeEnumMember value="4" name="four" />

Example 36.20. Binding File for Customizing an Enumeration
</jaxb:typesafeEnumClass>

‘ <jaxb:bindings xmins:jaxb="http://java.sun.com/xml/ns/jaxb"

370

CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED

</jaxb:bindings>
</jaxb:bindings>
<jaxb:bindings>

36.5. CUSTOMIZING FIXED VALUE ATTRIBUTE MAPPING

Overview

By default, the code generators map attributes defined as having a fixed value to normal properties.
When using schema validation, Apache CXF can enforce the schema definition (see Table 22.10,
“Schema Validation Type Values”). However, using schema validation increases message processing
time.

Another way to map attributes that have fixed values to Java is to map them to Java constants. You can
instruct the code generator to map fixed value attributes to Java constants using the globalBindings
customization element. You can also customize the mapping of fixed value attributes to Java constants
at a more localized level using the property element.

Global customization

You can alter this behavior by adding the globalBinding element's fixedAttributeAsConstantProperty
attribute. Setting this attribute to true instructs the code generator to map any attribute defined using
fixed attribute to a Java constant.

Example 36.21, “in-Line Customization to Force Generation of Constants” shows an in-line
customization that forces the code generator to generate constants for attributes with fixed values.

xmins="http://www.w3.0rg/2001/XMLSchema"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">
<annotation>
<appinfo>
<jaxb:globalBindings fixedAttributeAsConstantProperty="true" />
</appinfo>
</annotation>

<schema targetNamespace="http://widget.com/types/widgetTypes"
</schema>

‘ Example 36.21. in-Line Customization to Force Generation of Constants

Example 36.22, “Binding File to Force Generation of Constants” shows an external binding file that
customizes the generation of fixed attributes.

xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
jaxb:version="2.0">

Example 36.22. Binding File to Force Generation of Constants
<jaxb:bindings schemalocation="types.xsd">

| <jaxb:bindings xmins:jaxb="http://java.sun.com/xml/ns/jaxb"

371

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

<jaxb:bindings>

<jaxb:globalBindings fixedAttributeAsConstantProperty="true" />
<jaxb:bindings>

Local mapping

You can customize attribute mapping on a per-attribute basis using the property element's
fixedAttributeAsConstantProperty attribute. Setting this attribute to true instructs the code
generator to map any attribute defined using fixed attribute to a Java constant.

Example 36.23, “In-Line Customization to Force Generation of Constants” shows an in-line
customization that forces the code generator to generate constants for a single attribute with a fixed
value.

xmins="http://www.w3.0rg/2001/XMLSchema"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
jaxb:version="2.0">
<complexType name="widgetAttr">
<sequence>

</sequence>
<attribute name="fixer" type="xsd:int" fixed="7">
<annotation>
<appinfo>
<jaxb:property fixedAttributeAsConstantProperty="true" />
</appinfo>
</annotation>
</attribute>
</complexType>

<schema targetNamespace="http://widget.com/types/widgetTypes"
</schema>

| Example 36.23. In-Line Customization to Force Generation of Constants

Example 36.24, "Binding File to Force Generation of Constants” shows an external binding file that
customizes the generation of a fixed attribute.

xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
jaxb:version="2.0">
<jaxb:bindings schemalocation="types.xsd">
<jaxb:bindings node="xsd:complexType[@name="'widgetAttr']">
<jaxb:bindings node="xsd:attribute[@name="fixer']">
<jaxb:property fixedAttributeAsConstantProperty="true" />
</jaxb:bindings>
</jaxb:bindings>
</jaxb:bindings>

Example 36.24. Binding File to Force Generation of Constants
<jaxb:bindings>

‘ <jaxb:bindings xmins:jaxb="http://java.sun.com/xml/ns/jaxb"

372

CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED

Java mapping

In the default mapping, all attributes are mapped to standard Java properties with getter and setter
methods. When this customization is applied to an attribute defined using the fixed attribute, the
attribute is mapped to a Java constant, as shown in Example 36.25, “Mapping of a Fixed Value Attribute
to a Java Constant”.

Example 36.25. Mapping of a Fixed Value Attribute to a Java Constant

@XmlAttribute
public final static type NAME = value;

type is determined by mapping the base type of the attribute to a Java type using the mappings
described in Section 32.1, "Primitive Types”.

NAME is determined by converting the value of the attribute element’'s name attribute to all capital
letters.

value is determined by the value of the attribute element's fixed attribute.

For example, the attribute defined in Example 36.23, “In-Line Customization to Force Generation of
Constants” is mapped as shown in Example 36.26, “Fixed Value Attribute Mapped to a Java Constant”

public class WidgetAttr {

@XmlAttribute

@XmlRootElement(name = "widgetAttr")
public final static int FIXER = 7;

| Example 36.26. Fixed Value Attribute Mapped to a Java Constant

36.6. SPECIFYING THE BASE TYPE OF AN ELEMENT OR AN
ATTRIBUTE

Overview

Occasionally you need to customize the class of the object generated for an element, or for an attribute
defined as part of an XML Schema complex type. For example, you might want to use a more
generalized class of object to allow for simple type substitution.

One way to do this is to use the JAXB base type customization. It allows a developer, on a case by case
basis, to specify the class of object generated to represent an element or an attribute. The base type

373

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

customization allows you to specify an alternate mapping between the XML Schema construct and the
generated Java object. This alternate mapping can be a simple specialization or a generalization of the
default base class. It can also be a mapping of an XML Schema primitive type to a Java class.

Customization usage

To apply the JAXB base type property to an XML Schema construct use the JAXB baseType
customization element. The baseType customization element is a child of the JAXB property element,
so it must be properly nested.

Depending on how you want to customize the mapping of the XML Schema construct to Java object,
you add either the baseType customization element's hame attribute, or a javaType child element. The
name attribute is used to map the default class of the generated object to another class within the

same class hierarchy. The javaType element is used when you want to map XML Schema primitive types
to a Java class.

IMPORTANT

You cannot use both the hame attribute and a javaType child element in the same
baseType customization element.

Specializing or generalizing the default mapping

The baseType customization element's name attribute is used to redefine the class of the generated
object to a class within the same Java class hierarchy. The attribute specifies the fully qualified name of
the Java class to which the XML Schema construct is mapped. The specified Java class must be either a
super-class or a sub-class of the Java class that the code generator normally generates for the XML
Schema construct. For XML Schema primitive types that map to Java primitive types, the wrapper class
is used as the default base class for the purpose of customization.

For example, an element defined as being of xsd:int uses java.lang.Integer as its default base class. The
value of the name attribute can specify any super-class of Integer such as Number or Object.

TIP

For simple type substitution, the most common customization is to map the primitive types to an Object
object.

Example 36.27, “In-Line Customization of a Base Type"” shows an in-line customization that maps one
element in a complex type to a Java Object object.

<all>
<element name="amount" type="xsd:int" />
<element name="shippingAdress" type="Address">
<annotation>
<appinfo>
<jaxb:property>
<jaxb:baseType name="java.lang.Object" />
</jaxb:property>
</appinfo>

Example 36.27. In-Line Customization of a Base Type
</annotation>

‘ <complexType name="widgetOrderInfo">

374

CHAPTER 36. CUSTOMIZING HOW TYPES ARE GENERATED

</element>
<element name="type" type="xsd:string"/>

</all>
</complexType>

Example 36.28, "External Binding File to Customize a Base Type” shows an external binding file for the
customization shown in Example 36.27, “In-Line Customization of a Base Type”.

xmlins:xsd="http:// www.w3.0rg/2001/XMLSchema"
jaxb:version="2.0">
<jaxb:bindings schemalocation="enumMap.xsd">
<jaxb:bindings node="xsd:ComplexType[@name="widgetOrderinfo']">
<jaxb:bindings node="xsd:element[@name="shippingAddress'">
<jaxb:property>
<jaxb:baseType name="java.lang.Object" />
</jaxb:property>
</jaxb:bindings>
</jaxb:bindings>
</jaxb:bindings>

<jaxb:bindings xmins:jaxb="http://java.sun.com/xml/ns/jaxb"
<jaxb:bindings>

‘ Example 36.28. External Binding File to Customize a Base Type

The resulting Java object's @XmlElement annotation includes a type property. The value of the type
property is the class object representing the generated object's default base type. In the case of XML
Schema primitive types, the class is the wrapper class of the corresponding Java primitive type.

Example 36.29, "Java Class with a Modified Base Class” shows the class generated based on the
schema definition in Example 36.28, “External Binding File to Customize a Base Type" .

Example 36.29. Java Class with a Modified Base Class
public class WidgetOrderinfo {

protected int amount;

@XmlElement(required = true)

protected String type;

@XmlElement(required = true, type = Address.class)
protected Object shippingAddress;

public Object getShippingAddress() {
return shippingAddress;

}

public void setShippingAddress(Object value) {
this.shippingAddress = value;

}
}

375

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Usage with javaType

The javaType element can be used to customize how elements and attributes defined using XML
Schema primitive types are mapped to Java objects. Using the javaType element provides a lot more
flexibility than simply using the baseType element's name attribute. The javaType element allows you
to map a primitive type to any class of object.

For a detailed description of using the javaType element, see Section 36.2, “Specifying the Java Class
of an XML Schema Primitive”.

376

CHAPTER 37. USING A JAXBCONTEXT OBJECT

CHAPTER 37. USING A uaxscontext OBJECT

Abstract

The JAXBContext object allows the Apache CXF's runtime to transform data between XML elements
and Java object. Application developers need to instantiate a JAXBContext object they want to use
JAXB objects in message handlers and when implementing consumers that work with raw XML
messages.

OVERVIEW

The JAXBContext object is a low-level object used by the runtime. It allows the runtime to convert
between XML elements and their corresponding Java representations. An application developer
generally does not need to work with JAXBContext objects. The marshaling and unmarshaling of XML
data is typically handled by the transport and binding layers of a JAX-WS application.

However, there are instances when an application will need to manipulate the XML message content
directly. In two of these instances:

® |mplementing consumers that use raw XML data
® Working with messages in a handler

You will need instantiate a JAXBContext object using one of the two available
JAXBContext.newlnstance() methods.

BEST PRACTICES

JAXBContext objects are resource intensive to instantiate. It is recommended that an application create
as few instances as possible. One way to do this is to create a single JAXBContext object that can
manage all of the JAXB objects used by your application and share it among as many parts of your
application as possible.

TIP

JAXBContext objects are thread safe.

GETTING A JAXBCONTEXT OBJECT USING AN OBJECT FACTORY

The JAXBContext class provides a newlnstance() method, shown in Example 37.1, “Getting a JAXB
Context Using Classes”, that takes a list of classes that implement JAXB objects.

Example 37.1. Getting a JAXB Context Using Classes

static JAXBContext newlnstance(Class... classesToBeBound)
throws JAXBException;

The returned JAXBODbiject object will be able to marshal and unmarshal data for the JAXB object
implemented by the classes passed into the method. It will also be able to work with any classes that are
statically referenced from any of the classes passed into the method.

377

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

While it is possible to pass the name of every JAXB class used by your application to the newlnstance()
method it is not efficient. A more efficient way to accomplish the same goal is to pass in the object
factory, or object factories, generated for your application. The resulting JAXBContext object will be
able to manage any JAXB classes the specified object factories can instantiate.

GETTING A JAXBCONTEXT OBJECT USING PACKAGE NAMES

The JAXBContext class provides a newlnstance() method, shown in Example 37.2, "Getting a JAXB
Context Using Classes”, that takes a colon (:) seperated list of package names. The specified packages
should contain JAXB objects derived from XML Schema.

Example 37.2. Getting a JAXB Context Using Classes

static JAXBContext newlnstance(String contextPath)
throws JAXBException;

The returned JAXBContext object will be able to marshal and unmarshal data for all of the JAXB
objects implemented by the classes in the specified packages.

378

CHAPTER 38. DEVELOPING ASYNCHRONOUS APPLICATIONS

CHAPTER 38. DEVELOPING ASYNCHRONOUS
APPLICATIONS

Abstract

JAX-WS provides an easy mechanism for accessing services asynchronously. The SEI can specify
additional methods that can be used to access a service asynchronously. The Apache CXF code
generators generate the extra methods for you. You simply add the business logic.

38.1. TYPES OF ASYNCHRONOUS INVOCATION

In addition to the usual synchronous mode of invocation, Apache CXF supports two forms of
asynchronous invocation:

® Polling approach — To invoke the remote operation using the polling approach, you call a
method that has no output parameters, but returns a javax.xml.ws.Response object. The
Response object (which inherits from the javax.util.concurrency.Future interface) can be
polled to check whether or not a response message has arrived.

® Callback approach — To invoke the remote operation using the callback approach, you call a
method that takes a reference to a callback object (of javax.xml.ws.AsyncHandler type) as
one of its parameters. When the response message arrives at the client, the runtime calls back
on the AsyncHandler object, and gives it the contents of the response message.

38.2. WSDL FOR ASYNCHRONOUS EXAMPLES

Example 38.1, “"WSDL Contract for Asynchronous Example” shows the WSDL contract that is used for
the asynchronous examples. The contract defines a single interface, GreeterAsync, which contains a
single operation, greetMeSometime.

Example 38.1. WSDL Contract for Asynchronous Example
<?xml version="1.0" encoding="UTF-8"?><wsdl:definitions
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:tns="http://apache.org/hello_world_async_soap_http"
xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://apache.org/hello_world_async_soap_http"
name="HelloWorld">
<wsdl:types>
<schema targetNamespace="http://apache.org/hello_world_async_soap_http/types"
xmins="http://www.w3.0rg/2001/XMLSchema"
xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
elementFormDefault="qualified">
<element name="greetMeSometime">
<complexType>
<sequence>
<element name="requestType" type="xsd:string"/>
</sequence>
</complexType>

379

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

</element>
<element name="greetMeSometimeResponse">
<complexType>
<sequence>
<element name="responseType"
type="xsd:string"/>
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>
<wsdl:message name="greetMeSometimeRequest">
<wsdl:portType name="GreeterAsync">

<wsdl:part name="in" element="x1:greetMeSometime"/>
</wsdl:message>
<wsdl:message name="greetMeSometimeResponse">
<wsdl:part name="out"
element="x1:greetMeSometimeResponse"/>
</wsdl:message>
<wsdl:operation name="greetMeSometime">
<wsdl:input name="greetMeSometimeRequest"
message="tns:greetMeSometimeRequest"/>
<wsdl:output name="greetMeSometimeResponse"
message="tns:greetMeSometimeResponse"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="GreeterAsync_SOAPBinding"
type="tns:GreeterAsync">

</wsdl:binding>

<wsdl:service name="SOAPService">
<wsdl:port name="SoapPort"
binding="tns:GreeterAsync_SOAPBIinding">
<soap:address location="http://localhost:9000/SoapContext/SoapPort"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

38.3. GENERATING THE STUB CODE

Overview

The asynchronous style of invocation requires extra stub code for the dedicated asynchronous methods
defined on the SEI. This special stub code is not generated by default. To switch on the asynchronous
feature and generate the requisite stub code, you must use the mapping customization feature from the
WSDL 2.0 specification.

Customization enables you to modify the way the Maven code generation plug-in generates stub code.
In particular, it enables you to modify the WSDL-to-Java mapping and to switch on certain features.

380

CHAPTER 38. DEVELOPING ASYNCHRONOUS APPLICATIONS

Here, customization is used to switch on the asynchronous invocation feature. Customizations are
specified using a binding declaration, which you define using a jaxws:bindings tag (where the jaxws
prefix is tied to the http://java.sun.com/xml/ns/jaxws namespace). There are two ways of specifying a
binding declaration:

External Binding Declaration

When using an external binding declaration the jaxws:bindings element is defined in a file separate
from the WSDL contract. You specify the location of the binding declaration file to code generator
when you generate the stub code.

Embedded Binding Declaration

When using an embedded binding declaration you embed the jaxws:bindings element directly in a
WSDL contract, treating it as a WSDL extension. In this case, the settings in jaxws:bindings apply
only to the immediate parent element.

Using an external binding declaration

The template for a binding declaration file that switches on asynchronous invocations is shown in
Example 38.2, “Template for an Asynchronous Binding Declaration” .

xmins:wsdl="http://schemas.xmlsoap.org/wsdl/"
wsdlLocation="AffectedWSDL"
xmlns="http://java.sun.com/xml/ns/jaxws">
<bindings node="AffectedNode">
<enableAsyncMapping>true</enableAsyncMapping>
</bindings>

<bindings xmIns:xsd="http://www.w3.0rg/2001/XMLSchema"
</bindings>

‘ Example 38.2. Template for an Asynchronous Binding Declaration

Where AffectedWSDL specifies the URL of the WSDL contract that is affected by this binding
declaration. The AffectedNode is an XPath value that specifies which node (or nodes) from the WSDL
contract are affected by this binding declaration. You can set AffectedNode to wsdl:definitions, if you
want the entire WSDL contract to be affected. The jaxws:enableAsyncMapping element is set to true
to enable the asynchronous invocation feature.

For example, if you want to generate asynchronous methods only for the GreeterAsync interface, you
can specify <bindings node="wsdl:definitions/wsdl:portType[@name='GreeterAsync']"> in the preceding
binding declaration.

Assuming that the binding declaration is stored in a file, async_binding.xml, you would set up your
POM as shown in Example 38.3, “Consumer Code Generation”.

<artifactld>cxf-codegen-plugin</artifactid>
<version>${cxf.version}</version>
<executions>

Example 38.3. Consumer Code Generation
<execution>

<plugin>
<groupld>org.apache.cxf</groupld>

381

<wsdl>hello_world.wsdl</wsdI>
</wsdIOption>

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide
<extraargs>
<extraarg>-client</extraarg>
</wsdlOptions>
</configuration>

<id>generate-sources</id>
<phase>generate-sources</phase>
<configuration>
<sourceRoot>outputDir</sourceRoot>
<wsdlOptions>
<wsdIOption>
<extraarg>-b async_binding.xml</extraarg>
</extraargs>
<goals>
<goal>wsdl2java</goal>
</goals>
</execution>

</executions>
</plugin>

The -b option tells the code generator where to locate the external binding file.

For more information on the code generator see Section E.2, “cxf-codegen-plugin”.

Using an embedded binding declaration

You can also embed the binding customization directly into the WSDL document defining the service by
placing the jaxws:bindings element and its associated jaxws:enableAsynchMapping child directly
into the WSDL. You also must add a namespace declaration for the jaxws prefix.

Example 38.4, “"WSDL with Embedded Binding Declaration for Asynchronous Mapping” shows a WSDL
file with an embedded binding declaration that activates the asynchronous mapping for an operation.

>

<wsdl:portType name="GreeterAsync">
<wsdl:operation name="greetMeSometime">
<jaxws:bindings>
<jaxws:enableAsyncMapping>true</axws:enableAsyncMapping>
</jaxws:bindings>
<wsdl:input name="greetMeSometimeRequest"
message="tns:greetMeSometimeRequest"/>
<wsdl:output name="greetMeSometimeResponse"
message="tns:greetMeSometimeResponse"/>
</wsdl:operation>
</wsdl:portType>

Example 38.4. WSDL with Embedded Binding Declaration for Asynchronous Mapping
</wsdl:definitions>

<wsdl:definitions xmIns="http://schemas.xmlsoap.org/wsdl/"
xmlins:jaxws="http://java.sun.com/xml/ns/jaxws"

382

CHAPTER 38. DEVELOPING ASYNCHRONOUS APPLICATIONS

When embedding the binding declaration into the WSDL document you can control the scope affected
by the declaration by changing where you place the declaration. When the declaration is placed as a child
of the wsdl:definitions element the code generator creates asynchronous methods for all of the
operations defined in the WSDL document. If it is placed as a child of a wsdl:portType element the code
generator creates asynchronous methods for all of the operations defined in the interface. If it is placed
as a child of a wsdl:operation element the code generator creates asynchronous methods for only that
operation.

It is not necessary to pass any special options to the code generator when using embedded declarations.
The code generator will recognize them and act accordingly.

Generated interface

After generating the stub code in this way, the GreeterAsync SEI (in the file GreeterAsync.java) is
defined as shown in Example 38.5, “Service Endpoint Interface with Methods for Asynchronous
Invocations”.

public interface GreeterAsync
{
public Future<?> greetMeSometimeAsync(
java.lang.String requestType,
AsyncHandler<GreetMeSometimeResponse> asyncHandler

);

public Response<GreetMeSometimeResponse> greetMeSometimeAsync(
java.lang.String requestType

);

public java.lang.String greetMeSometime(
java.lang.String requestType
);

package org.apache.hello_world_async_soap_http;
import org.apache.hello_world_async_soap_http.types.GreetMeSometimeResponse;
}

Example 38.5. Service Endpoint Interface with Methods for Asynchronous Invocations

In addition to the usual synchronous method, greetMeSometime(), two asynchronous methods are also
generated for the greetMeSometime operation:

® Callback approach

public Future<?> greetMeSomtimeAsync(java.lang.String requestType,
AsyncHandler<GreetMeSomtimeResponse> asyncHandler);

® Polling approach

public Response<GreetMeSomeTimeResponse> greetMeSometimeAsync(java.lang.String
requestType);

383

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

38.4. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE
POLLING APPROACH

Overview

The polling approach is the more straightforward of the two approaches to developing an asynchronous
application. The client invokes the asynchronous method called OperationNameAsync() and is returned
a Response<Ts object that it polls for a response. What the client does while it is waiting for a response
is depends on the requirements of the application. There are two basic patterns for handling the polling:

® Non-blocking polling— You periodically check to see if the result is ready by calling the non-
blocking Response<Ts>.isDone() method. If the result is ready, the client processes it. If it not,
the client continues doing other things.

® Blocking polling— You call Response<Ts>.get() right away, and block until the response arrives
(optionally specifying a timeout).
Using the non-blocking pattern

Example 38.6, “Non-Blocking Polling Approach for an Asynchronous Operation Call” illustrates using
non-blocking polling to make an asynchronous invocation on the greetMeSometime operation defined in
Example 38.1, “"WSDL Contract for Asynchronous Example”. The client invokes the asynchronous
operation and periodically checks to see if the result is returned.

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;
public final class Client {
private static final QName SERVICE_NAME
= new QName("http://apache.org/hello_world_async_soap_http",
"SOAPService");
private Client() {}
public static void main(String args[]) throws Exception {

// set up the proxy for the client

ﬂ Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
port.greetMeSometimeAsync(System.getProperty("user.name"));

9 while (IgreetMeSomeTimeResp.isDone()) {
/I client does some work

}

Example 38.6. Non-Blocking Polling Approach for an Asynchronous Operation Call
G GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();

package demo.hw.client;
import java.io.File;
import java.util.concurrent.Future;

384

CHAPTER 38. DEVELOPING ASYNCHRONOUS APPLICATIONS
// process the response
System.exit(0);
}
}

The code in Example 38.6, “Non-Blocking Polling Approach for an Asynchronous Operation Call” does
the following:

Q Invokes the greetMeSometimeAsync() on the proxy.

The method call returns the Response<GreetMeSometimeResponse> object to the client
immediately. The Apache CXF runtime handles the details of receiving the reply from the remote
endpoint and populating the Response<GreetMeSometimeResponses object.

NOTE

The runtime transmits the request to the remote endpoint's greetMeSometime()
method and handles the details of the asynchronous nature of the call transparently.
The endpoint, and therefore the service implementation, never worries about the
details of how the client intends to wait for a response.

9 Checks to see if a response has arrived by checking the isDone() of the returned Response object.
If the response has not arrived, the client continues working before checking again.

g When the response arrives, the client retrieves it from the Response object using the get()
method.

Using the blocking pattern

When using the block polling pattern, the Response object's isDone() is never called. Instead, the
Response object's get() method is called immediately after invoking the remote operation. The get()
blocks until the response is available.

TIP

You can also pass a timeout limit to the get() method.

Example 38.7, “Blocking Polling Approach for an Asynchronous Operation Call” shows a client that uses
blocking polling.

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;

Example 38.7. Blocking Polling Approach for an Asynchronous Operation Call
import javax.xml.ws.Response;

‘ package demo.hw.client;

385

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

import org.apache.hello_world_async_soap_http.*;

public final class Client {
private static final QName SERVICE_NAME
= new QName("http://apache.org/hello_world_async_soap_http",
"SOAPService");

private Client() {}
public static void main(String args[]) throws Exception {
// set up the proxy for the client
Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
port.greetMeSometimeAsync(System.getProperty("user.name"));
GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
// process the response
System.exit(0);

}
}

38.5. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE
CALLBACK APPROACH

Overview

An alternative approach to making an asynchronous operation invocation is to implement a callback
class. You then call the asynchronous remote method that takes the callback object as a parameter. The
runtime returns the response to the callback object.

To implement an application that uses callbacks, do the following:

1. Create a callback class that implements the AsyncHandler interface.

NOTE

Your callback object can perform any amount of response processing required by
your application.

2. Make remote invocations using the operationNameAsync() that takes the callback object as a
parameter and returns a Future<?> object.

3. If your client requires access to the response data, you can poll the returned Future<?> object's
isDone() method to see if the remote endpoint has sent the response.

TIP

If the callback object does all of the response processing, it is not necessary to check if the
response has arrived.

Implementing the callback

386

CHAPTER 38. DEVELOPING ASYNCHRONOUS APPLICATIONS

The callback class must implement the javax.xml.ws.AsyncHandler interface. The interface defines a
single method:

void handleResponse(Response<T> res);

The Apache CXF runtime calls the handleResponse() method to notify the client that the response has
arrived. Example 38.8, “The javax.xml.ws.AsyncHandler Interface” shows an outline of the
AsyncHandler interface that you must implement.

void handleResponse(Response<T> res)

Example 38.8. The javax.xml.ws.AsyncHandler Interface
public interface javax.xml.ws.AsyncHandler

{

}

Example 38.9, “Callback Implementation Class” shows a callback class for the greetMeSometime
operation defined in Example 38.1, "WSDL Contract for Asynchronous Example”.

Example 38.9. Callback Implementation Class
package demo.hw.client;
import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;
import org.apache.hello_world_async_soap_http.types.*;

public class GreeterAsyncHandler implements AsyncHandler<GreetMeSometimeResponse>

{
ﬂ private GreetMeSometimeResponse reply;

9 public void handleResponse(Response<GreetMeSometimeResponse>
response)
{
try
{
reply = response.get();
}

catch (Exception ex)

{

ex.printStackTrace();

}
}

Q public String getResponse()

{
return reply.getResponseType();

}

—

The callback implementation shown in Example 38.9, “Callback Implementation Class” does the
following:

387

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

ﬂ Defines a member variable, response, that holds the response returned from the remote endpoint.
Q Implements handleResponse().

This implementation simply extracts the response and assigns it to the member variable reply.
9 Implements an added method called getResponse().

This method is a convenience method that extracts the data from reply and returns it.

Implementing the consumer

Example 38.10, “Callback Approach for an Asynchronous Operation Call” illustrates a client that uses the
callback approach to make an asynchronous call to the GreetMeSometime operation defined in
Example 38.1, “"WSDL Contract for Asynchronous Example”.

Example 38.10. Callback Approach for an Asynchronous Operation Call

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {

public static void main(String args[]) throws Exception

{

// Callback approach
ﬂ GreeterAsyncHandler callback = new GreeterAsyncHandler();

Future<?> response =
port.greetMeSometimeAsync(System.getProperty("user.name"),
callback);
6 while (Iresponse.isDone())

{

// Do some work
}
Q resp = callback.getResponse();
System.exit(0);

}
}

The code in Example 38.10, “Callback Approach for an Asynchronous Operation Call” does the following:

ﬂ Instantiates a callback object.

388

CHAPTER 38. DEVELOPING ASYNCHRONOUS APPLICATIONS

9 Invokes the greetMeSometimeAsync() that takes the callback object on the proxy.

The method call returns the Future<?> object to the client immediately. The Apache CXF runtime
handles the details of receiving the reply from the remote endpoint, invoking the callback object's
handleResponse() method, and populating the Response<GreetMeSometimeResponse>
object.

NOTE

The runtime transmits the request to the remote endpoint's greetMeSometime()
method and handles the details of the asynchronous nature of the call without the
remote endpoint's knowledge. The endpoint, and therefore the service
implementation, does not need to worry about the details of how the client intends
to wait for a response.

g Uses the returned Future<?> object's isDone() method to check if the response has arrived from
the remote endpoint.

Q Invokes the callback object's getResponse() method to get the response data.

38.6. CATCHING EXCEPTIONS RETURNED FROM A REMOTE SERVICE

Overview

Consumers making asynchronous requests will not receive the same exceptions returned when they
make synchronous requests. Any exceptions returned to the consumer asynchronously are wrapped in
an ExecutionException exception. The actual exception thrown by the service is stored in the
ExecutionException exception's cause field.

Catching the exception

Exceptions generated by a remote service are thrown locally by the method that passes the response to
the consumer's business logic. When the consumer makes a synchronous request, the method making
the remote invocation throws the exception. When the consumer makes an asynchronous request, the
Response<T> object's get() method throws the exception. The consumer will not discover that an error
was encountered in processing the request until it attempts to retrieve the response message.

Unlike the methods generated by the JAX-WS framework, the Response<T> object's get() method
throws neither user modeled exceptions nor generic JAX-WS exceptions. Instead, it throws a
java.util.concurrent.ExecutionException exception.

Getting the exception details

The framework stores the exception returned from the remote service in the ExecutionException
exception's cause field. The details about the remote exception are extracted by getting the value of
the cause field and examining the stored exception. The stored exception can be any user defined
exception or one of the generic JAX-WS exceptions.

Example

Example 38.11, “Catching an Exception using the Polling Approach” shows an example of catching an
exception using the polling approach.

389

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Example 38.11. Catching an Exception using the Polling Approach

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client

{
private static final QName SERVICE_NAME

= new QName("http://apache.org/hello_world_async_soap_http",
"SOAPService");

private Client() {}

public static void main(String args[]) throws Exception

{

// port is a previously established proxy object.
Response<GreetMeSometimeResponse> resp =
port.greetMeSometimeAsync(System.getProperty("user.name"));

while (Iresp.isDone())

{

// client does some work

}

ﬂ try
{

GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
// process the response

}
9 catch (ExecutionException ee)

{

Throwable cause = ee.getCause();
System.out.printin("Exception "+cause.getClass().getName()+" thrown by the remote
service.");

}
}
}

The code in Example 38.11, “Catching an Exception using the Polling Approach” does the following:
ﬂ Wraps the call to the Response<T> object's get() method in a try/catch block.
Q Catches a ExecutionException exception.

9 Extracts the cause field from the exception.

390

CHAPTER 38. DEVELOPING ASYNCHRONOUS APPLICATIONS

If the consumer was using the callback approach the code used to catch the exception would be placed
in the callback object where the service's response is extracted.

391

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

CHAPTER 39. USING RAW XML MESSAGES

Abstract

The high-level JAX-WS APIs shield the developer from using native XML messages by marshaling the
data into JAXB objects. However, there are cases when it is better to have direct access to the raw XML
message data that is passing on the wire. The JAX-WS APIs provide two interfaces that provide access
to the raw XML: the Dispatch interface is the client-side interface, and the Provider interface is the
server-side interface.

39.1. USING XML IN A CONSUMER

Abstract

The Dispatch interface is a low-level JAX-WS API that allows you work directly with raw messages. It
accepts and returns messages, or payloads, of a number of types including DOM objects, SOAP
messages, and JAXB objects. Because it is a low-level API, the Dispatch interface does not perform any
of the message preparation that the higher-level JAX-WS APIs perform. You must ensure that the
messages, or payloads, that you pass to the Dispatch object are properly constructed, and make sense
for the remote operation being invoked.

39.1.1. Usage Modes

Overview
Dispatch objects have two usage modes:
® Message mode
® Message Payload mode (Payload mode)

The usage mode you specify for a Dispatch object determines the amount of detail that is passed to
the user level code.

Message mode

In message mode, a Dispatch object works with complete messages. A complete message includes any
binding specific headers and wrappers. For example, a consumer interacting with a service that requires
SOAP messages must provide the Dispatch object's invoke() method a fully specified SOAP message.
The invoke() method also returns a fully specified SOAP message. The consumer code is responsible
for completing and reading the SOAP message's headers and the SOAP message's envelope
information.

TIP

Message mode is not ideal when working with JAXB objects.

To specify that a Dispatch object uses message mode provide the value
java.xml.ws.Service.Mode.MESSAGE when creating the Dispatch object. For more information about
creating a Dispatch object see the section called “Creating a Dispatch object”.

392

CHAPTER 39. USING RAW XML MESSAGES

Payload mode

In payload mode, also called message payload mode, a Dispatch object works with only the payload of a
message. For example, a Dispatch object working in payload mode works only with the body of a SOAP
message. The binding layer processes any binding level wrappers and headers. When a result is returned
from the invoke() method the binding level wrappers and headers are already striped away, and only the
body of the message is left.

TIP

When working with a binding that does not use special wrappers, such as the Apache CXF XML binding,
payload mode and message mode provide the same results.

To specify that a Dispatch object uses payload mode provide the value
java.xml.ws.Service.Mode.PAYLOAD when creating the Dispatch object. For more information about
creating a Dispatch object see the section called “Creating a Dispatch object”.

39.1.2. Data Types

Overview

Because Dispatch objects are low-level objects, they are not optimized for using the same JAXB
generated types as the higher level consumer APIs. Dispatch objects work with the following types of
objects:

® javax.xml.transform.Source
® javax.xml.soap.SOAPMessage
® javax.activation.DataSource

e JAXB

Using Source objects

A Dispatch object accepts and returns objects that are derived from the javax.xml.transform.Source
interface. Source objects are supported by any binding, and in either message mode or payload mode.

Source objects are low level objects that hold XML documents. Each Source implementation provides
methods that access the stored XML documents and then manipulate its contents. The following
objects implement the Source interface:

DOMSource

Holds XML messages as a Document Object Model(DOM) tree. The XML message is stored as a set
of Node objects that are accessed using the getNode() method. Nodes can be either updated or
added to the DOM tree using the setNode() method.

SAXSource
Holds XML messages as a Simple API for XML (SAX) object. SAX objects contain an InputSource

object that holds the raw data and an XMLReader object that parses the raw data.

StreamSource

393

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Holds XML messages as a data stream. The data stream can be manipulated the same as any other
data stream.

If you create your Dispatch object so that it uses generic Source objects, Apache CXF returns the
messages as SAXSource objects.

This behavior can be changed using the endpoint's source-preferred-format property. See Part 1V,
“Configuring Web Service Endpoints” for information about configuring the Apache CXF runtime.
Using SOAPMessage objects

Dispatch objects can use javax.xml.soap.SOAPMessage objects when the following conditions are
true:

® The Dispatch object is using the SOAP binding
® The Dispatch object is using message mode

A SOAPMessage object holds a SOAP message. They contain one SOAPPart object and zero or more
AttachmentPart objects. The SOAPPart object contains the SOAP specific portions of the SOAP
message including the SOAP envelope, any SOAP headers, and the SOAP message body. The
AttachmentPart objects contain binary data that is passed as an attachment.

Using DataSource objects

Dispatch objects can use objects that implement the javax.activation.DataSource interface when the
following conditions are true:

® The Dispatch object is using the HTTP binding
® The Dispatch object is using message mode

DataSource objects provide a mechanism for working with MIME typed data from a variety of sources,
including URLs, files, and byte arrays.

Using JAXB objects

While Dispatch objects are intended to be low level APIs that allow you to work with raw messages, they
also allow you to work with JAXB objects. To work with JAXB objects a Dispatch object must be passed
a JAXBContext that can marshal and unmarshal the JAXB objects in use. The JAXBContext is passed
when the Dispatch object is created.

You can pass any JAXB object understood by the JAXBContext object as the parameter to the
invoke() method. You can also cast the returned message into any JAXB object understood by the
JAXBContext object.

For information on creating a JAXBContext object see Chapter 37, Using A JAXBContext Object.
39.1.3. Working with Dispatch Objects

Procedure

To use a Dispatch object to invoke a remote service the following sequence should be followed:

394

CHAPTER 39. USING RAW XML MESSAGES

1. Create a Dispatch object.
2. Construct a request message.
3. Call the proper invoke() method.

4. Parse the response message.

Creating a Dispatch object

To create a Dispatch object do the following:

1. Create a Service object to represent the wsdl:service element that defines the service on
which the Dispatch object will make invocations. See Section 23.2, “Creating a Service Object”.

2. Create the Dispatch object using the Service object's createDispatch() method, shown in
Example 39.1, “The createDispatch() Method".

Example 39.1. The createDispatch() Method

public Dispatch<T> createDispatch(QName portName,
java.lang.Class<T> type,
Service.Mode mode)
throws WebServiceException;

NOTE

If you are using JAXB objects the method signature for createDispatch() is:

public Dispatch<T> createDispatch(QName portName,
javax.xml.bind.JAXBContext context,

Service.Mode mode)
throws WebServiceException;

Table 39.1, “Parameters for createDispatch()” describes the parameters for the
createDispatch() method.

Table 39.1. Parameters for createDispatch()

Parameter Description

portName Specifies the QName of thewsdl:port element
that represents the service provider where the
Dispatch object will make invocations.

type Specifies the data type of the objects used by
the Dispatch object. SeeSection 39.1.2, “Data
Types”.

When working with JAXB objects, this parameter

specifies the JAXBContext object used to
marshal and unmarshal the JAXB objects.

395

Red Hat JBoss Fuse 6.3 Apache CXF Development Guide

Parameter Description

mode Specifies the usage mode for the Dispatch
object. See Section 39.1.1, “"Usage Modes".

Example 39.2, “Creating a Dispatch Object” shows the code for creating a Dispatch object that works
with DOMSource objects in payload mode.
public class Client

Example 39.2. Creating a Dispatch Object
package com.fusesource.demo;
import javax.xml.namespace.QName;
{

import javax.xml.ws.Service;
public static void main(String argsl])
{
QName serviceName = new QName("http://org.apache.cxf", "stockQuoteReporter");
Service s = Service.create(serviceName);

QName portName = new QName("http://org.apache.cxf", "stockQuoteReporterPort");
Dispatch<DOMSource> dispatch = s.createDispatch(portName,

DOMSource.class,

Service.Mode.PAYLOAD);

Constructing request messages

When working with Dispatch objects, requests must be built from scratch. The developer is responsible
for ensuring that the messages passed to a Dispatch object match a request that the targeted service
provider can process. This requires precise knowledge about the messages used by the service provider
and what, if any, header information it requires.

This information can be provided by a WSDL document or an XML Schema document that defines the
messages. While service providers vary greatly there are a few guidelines to be followed:

® The root element of the request is based in the value of the name attribute of the
wsdl:operation element corresponding to the operation being invoked.

' WARNING
A If the service being invoked uses doc/literal bare messages, the root

element of the request is based on the value of the name attribute of the
wsdl:part element referred to by the wsdl:operation element.

396

CHAPTER 39. USING RAW XML MESSAGES

® The root element of the request is namespace qualified.

e |f the service being invoked uses rpc/literal messages, the top-level elements in the request will
not be namespace qualified.

IMPORTANT

The children of top-level elements may be namespace qualified. To be certain
you must check their schema definitions.

e |f the service being invoked uses rpc/literal messages, none of the top-level elements can be
null.

e |f the service being invoked uses doc/literal messages, the schema definition of the message
determines if any of the elements are namespace qualified.

For more information about how services use XML messages see, the WS-| Basic Profile.

Synchronous invocation

For consumers that make synchronous invocations that generate a