
Red Hat JBoss Fuse 6.0

Using Java Business Integration

Using an alternative packaging standard

Last Updated: 2017-10-13

Red Hat JBoss Fuse 6.0 Using Java Business Integration

Using an alternative packaging standard

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2013 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Provides an overview of JBI, introducing the JBI framework and management structure; describes
how to deploy JBI artifacts into the Red Hat JBoss Fuse runtime; and how to use the JBI console
commands.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. OVERVIEW OF JAVA BUSINESS INTEGRATION

CHAPTER 1. INTRODUCTION TO JBI

CHAPTER 2. THE COMPONENT FRAMEWORK
OVERVIEW
COMPONENT TYPES
PACKAGING
COMPONENT ROLES

CHAPTER 3. THE NORMALIZED MESSAGE ROUTER
OVERVIEW
MESSAGE EXCHANGE PATTERNS
NORMALIZED MESSAGES

CHAPTER 4. MANAGEMENT STRUCTURE
OVERVIEW
JMX
INSTALLING AND UNINSTALLING ARTIFACTS INTO THE JBI ENVIRONMENT
MANAGING JBI COMPONENTS
MANAGING SERVICE UNITS

PART II. DEPLOYING JBI ARTIFACTS INTO THE RED HAT JBOSS FUSE RUNTIME

CHAPTER 5. CLUSTERING JBI ENDPOINTS
OVERVIEW
FEATURES
STEPS TO SET UP CLUSTERING
INSTALLING THE CLUSTERING FEATURE
DEFAULT CLUSTERING ENGINE CONFIGURATION
CHANGING THE DEFAULT CONFIGURATION
CHANGING THE JMS BROKER
USING CLUSTERING IN AN APPLICATION
ESTABLISHING NETWORK CONNECTIONS BETWEEN CONTAINERS
HIGH AVAILABILITY
CLUSTER CONFIGURATION CONVENTIONS

CHAPTER 6. USING THE JBI ANT TASKS
6.1. USING THE TASKS AS COMMANDS
6.2. USING THE TASKS IN BUILD FILES

CHAPTER 7. BUILDING JBI COMPONENTS USING MAVEN
OVERVIEW
SETTING UP THE MAVEN TOOLS
CREATING A JBI MAVEN PROJECT
JBI COMPONENTS
SHARED LIBRARIES

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN
8.1. SETTING UP A RED HAT JBOSS FUSE JBI PROJECT
8.2. A SERVICE UNIT PROJECT
8.3. A SERVICE ASSEMBLY PROJECT

APPENDIX A. USING THE JBI CONSOLE COMMANDS

4

5

6
6
6
6
7

8
8
8
8

10
10
10
10
11
12

13

14
14
14
14
15
15
16
16
16
17
18
18

20
20
25

33
33
33
34
34
36

37
37
41
46

50

Table of Contents

1

. .

ACCESSING THE JBI COMMANDS
COMMANDS

INDEX

50
50

50

Red Hat JBoss Fuse 6.0 Using Java Business Integration

2

Table of Contents

3

PART I. OVERVIEW OF JAVA BUSINESS INTEGRATION

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

Red Hat JBoss Fuse 6.0 Using Java Business Integration

4

CHAPTER 1. INTRODUCTION TO JBI

Abstract

Java Business Integration (JBI) defines an architecture for integrating systems through components
that interoperate by exchanging normalized messages through a router.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

The Java Business Integration (JBI) specification defines an integration architecture based on service-
oriented concepts. Applications are divided into decoupled functional units. The functional units are
deployed into JBI components that are hosted within the JBI environment. The JBI environment
provides message normalization and message mediation among the JBI components.

The JBI environment is made up of the following parts, as shown in Figure 1.1, “The JBI architecture” .

Figure 1.1. The JBI architecture

The JBI component framework hosts and manages the JBI components. For more information
see Chapter 2, The Component Framework.

The normalized message router provides message mediation among the JBI components. For
more information see Chapter 3, The Normalized Message Router.

The management structure controls the life-cycle of the JBI components and the functional
units deployed into the JBI components. It also provides mechanisms for monitoring the
artifacts that are deployed into the JBI environment. For more information see Chapter 4,
Management Structure.

CHAPTER 1. INTRODUCTION TO JBI

5

CHAPTER 2. THE COMPONENT FRAMEWORK

Abstract

The JBI component framework is the structure into which JBI components plug into the ESB.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

The JBI component framework provides a pluggable interface between the functional units installed
into the JBI environment and the infrastructure services offered by the JBI environment. The
framework divides JBI components into two types based on their functionality. The framework also
defines a packaging mechanism for deploying functional units into JBI components.

COMPONENT TYPES

JBI defines two types of components:

Service Engine — Component that provides some of the logic required to provide services
inside of the JBI environment. For example:

message transformation

orchestration

advanced message routing

A service engine can communicate only with other components inside of the JBI environment.
Service engines act as containers for the functional units deployed into the Red Hat JBoss
Fuse.

Binding Component — Provides access to services outside the JBI environment using a
particular protocol. Binding components implement the logic required to connect to a
transport, and consume the messages received over that transport. Binding components are
also responsible for the normalization of messages as they enter the JBI environment.

The distinction between the two types of components is a matter of convention, and this distinction
makes the decoupling of business logic and integration logic more explicit.

PACKAGING

JBI defines a common packaging model for all of the artifacts that can be deployed into the JBI
environment. Each type of package is a ZIP archive that includes a JBI descriptor in the file META-
INF/jbi.xml. The packages differ based on the root element of the JBI descriptor and the contents
of the package. The JBI environment uses four types of packaging to install and deploy functionality.
The two most common types used by an application developer are:

Service Assembly — A collection of service units. The root element of the JBI descriptor is a
service-assembly element. The contents of the package is a collection of ZIP archives

Red Hat JBoss Fuse 6.0 Using Java Business Integration

6

containing service units. The JBI descriptor specifies the target JBI component for each of the
bundled service units.

Service Unit — A package that contains functionality to be deployed into a JBI component. For
example, a service unit intended for a routing service engine contains the definition for one or
more routes. Note that service units are packaged as a ZIP file. The root element of the JBI
descriptor is a service-unit element. The contents of the package are specific to the
service engine for which the service unit is intended.

IMPORTANT

Service units cannot be installed without being bundled into a service assembly.

COMPONENT ROLES

Once configured by one or more service units, a JBI component implements the functionality
described in the service unit. The JBI component then takes on one of the following roles:

Service Provider — Receives request messages and returns response messages, when
required.

Service Consumer — Initiates message exchanges by sending requests to a service provider.

Depending on both the number and the type of service units deployed into a JBI component, a single
component can play one or both roles. For example, the HTTP binding component could host a service
unit that acts as a proxy to consumers running outside of the Red Hat JBoss Fuse. In this instance, the
HTTP component is playing the role of a service provider because it is receiving requests from the
external consumer, and passing the responses back to the external consumer. If the service unit also
configures the HTTP component to forward the requests to another process running inside of the JBI
environment, then the HTTP component also plays the role of a service consumer because it is making
requests on another service unit.

CHAPTER 2. THE COMPONENT FRAMEWORK

7

CHAPTER 3. THE NORMALIZED MESSAGE ROUTER

Abstract

The normalized message router is a bus that shuttles messages between the endpoints deployed on
the ESB.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

The normalized message router(NMR) is the part of the JBI environment that is responsible for
mediating messages between JBI components. The JBI components never send messages directly to
each other; instead, they pass messages to the NMR, which is responsible for delivering the messages
to the correct JBI endpoints. This allows the JBI components, and the functionality they expose, to be
location independent. It also frees the application developer from concerns about the connection
details between the different parts of an application.

MESSAGE EXCHANGE PATTERNS

The NMR uses a WSDL-based messaging model to mediate the message exchanges between JBI
components. Using a WSDL-based model provides the necessary level of abstraction to ensure that the
JBI components are fully decoupled. The WSDL-based model defines operations as a message
exchange between a service provider and a service consumer. The message exchanges are defined
from the point of view of the service provider and fit into one of four message exchange patterns:

in-out

A consumer sends a request message to a provider, which then responds to the request with a
response message. The provider might also respond with a fault message if an error occured during
processing.

in-optional-out

A consumer sends a request message to a provider. The provider might send a response message
back to the consumer, but the consumer does not require a response. The provider might also
respond with a fault message if an error occurred during processing. The consumer can also send a
fault message to the provider.

in-only

A consumer sends a message to a provider, but the provider does not send a response, and, if an
error occurs, the provider does not send fault messages back to the consumer.

robust-in-only

A consumer sends a message to a provider. The provider does not respond to the consumer except
to send a fault message back to the consumer to signal an error condition.

NORMALIZED MESSAGES

Red Hat JBoss Fuse 6.0 Using Java Business Integration

8

To completely decouple the entities involved in message exchanges, JBI uses normalized messages. A
normalized message is a genericized format used to represent all of the message data passed through
the NMR and consists of the following three parts:

meta-data, properties

Holds information about the message. This information can include transaction contexts, security
information, or other QoS information. The meta-data can also hold transport headers.

payload

An XML document that conforms to the XML Schema definition in the WSDL document that defines
the message exchange. The XML document holds the substance of the message.

attachments

Hold any binary data associated with the message. For example, an attachment can be an image file
sent as an attachment to a SOAP message.

security Subject

Holds security information associated with the message, such as authentication credentials. For
more information about the security Sublect, see Sun's API documentation.

JBI binding components are responsible for normalizing all of the messages placed into the NMR.
Binding components normalize messages received from external sources before passing them to the
NMR. The binding component also denormalizes the message so that it is in the appropriate format for
the external source.

CHAPTER 3. THE NORMALIZED MESSAGE ROUTER

9

http://java.sun.com/j2se/1.5.0/docs/api/javax/security/auth/Subject.html

CHAPTER 4. MANAGEMENT STRUCTURE

Abstract

The JBI specification mandates that most parts of the environment are managed through JMX.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

The JBI environment is managed using JMX (Java Management Extensions). The internal components
of the JBI environment provide a set of MBeans that facilitate the management of the JBI environment
and the deployed components. The JBI environment also supplies a number of Apache Ant tasks to
manage the JBI environment.

The management of the JBI environment largely consists of:

Installing and uninstalling artifacts into the JBI container

Managing the life-cycle of JBI components

Managing the life-cycle of service units

In addition to the JMX interface, all JBI environments provide a number of Ant tasks, which make it
possible to automate many of the common management tasks.

JMX

Java Management Extensions (JMX) is a standard technology for monitoring and managing Java
applications. The foundations for using JMX are provided as part of the standard Java 5 JVM, and can
be used by any Java application. JMX provides a lightweight way of providing monitoring and
management capabilities to any Java application that implements the MBean interface.

JBI implementations provide MBeans that can be used to manage the components installed into the
container and the service units deployed into the components. In addition, application developers can
add MBeans to their service units to add additional management touch points.

The MBeans can be accessed using any management console that uses JMX. JConsole, the JMX
console provided with the Java 5 JRE, is an easy to use, free tool for managing a JBI environment.
JBoss ON (JON), available through the Red Hat Customer Portal at access.redhat.com, provides a
more robust management console.

INSTALLING AND UNINSTALLING ARTIFACTS INTO THE JBI
ENVIRONMENT

There are four basic types of artifacts that can be installed into a JBI environment:

JBI components

Shared libraries

Red Hat JBoss Fuse 6.0 Using Java Business Integration

10

https://access.redhat.com/

Service assemblies

Service units

JBI components and shared libraries are installed using the InstallationService MBean that is
exposed through the JMX console. In addition, the following Ant tasks are provided for installing and
uninstalling JBI components and shared libraries:

InstallComponentTask

UninstallComponentTask

InstallSharedLibraryTask

UninstallSharedLibraryTask

When a service assembly is installed into a JBI environment, all service units contained within the
assembly are deployed to their respective JBI components. Service assemblies and service units are
installed using the DeploymentService MBean that is exposed through the JMX console. In addition
to the MBean, the following Ant tasks are provided for installing service assemblies and service units:

DeployServiceAssemblyTask

UndeployServiceAssemblyTask

MANAGING JBI COMPONENTS

Figure 4.1 shows the life-cycle of a JBI component.

Figure 4.1. JBI component life-cycle

Components begin life in an empty state. The component and the JBI environment have no knowledge
of each other. Once the component is installed into the JBI environment, the component enters the
shutdown state. In this state, the JBI environment initializes any resources required by the component.
From the shutdown state a component can be initialized and moved into the stopped state. In the
stopped state, a component is fully initialized and all of its resources are loaded into the JBI
environment. When a component is ready to process messages, it is moved into the started state. In
this state the component, and any service units deployed into the component, can participate in
message exchanges.

Components can be moved back and forth through the shutdown, stopped, and started states without
being uninstalled. You can manage the lifecycle of an installed JBI component using the
InstallationService MBean and the component's ComponentLifeCycle MBean. In addition, you
can manage a component's lifecycle using the following Ant tasks:

CHAPTER 4. MANAGEMENT STRUCTURE

11

StartComponentTask

StopComponentTask

ShutDownComponentTask

MANAGING SERVICE UNITS

Figure 4.2 shows the life-cycle of a service unit.

Figure 4.2. Service unit life-cycle

Service units must first be deployed into the appropriate JBI component. The JBI component is the
container that will provide the runtime resources necessary to implement the functionality defined by
the service unit. When a service unit is in the shutdown state, the JBI component has not provisioned
any resources for the service unit. When a service unit is moved into the stopped state, the JBI
component has provisioned the resources for the service unit but the service unit cannot use any of
the provisioned resources. When a service unit is in the started state, it is using the resources
provisioned for it by the JBI container. In the started state, the functionality defined by the service unit
is accessible.

A service can be moved through the different states while deployed. You manage the lifecycle of a
service unit using the JBI environment's DeploymentService MBean. In addition, you can manage
service units using the following Ant tasks:

DeployServiceAssemblyTask

 UndeployServiceAssemblyTask

StartServiceAssemblyTask

StopServiceAssemblyTask

ShutDownServiceAssemblyTask

ListServiceAssembliesTask

Red Hat JBoss Fuse 6.0 Using Java Business Integration

12

PART II. DEPLOYING JBI ARTIFACTS INTO THE RED HAT
JBOSS FUSE RUNTIME

Abstract

The Red Hat JBoss Fuse runtime is a container into which you deploy services. You must also deploy
components to the container to support those services. Red Hat JBoss Fuse supports the JBI
packaging and deployment model for deploying functionality into the runtime.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

PART II. DEPLOYING JBI ARTIFACTS INTO THE RED HAT JBOSS FUSE RUNTIME

13

CHAPTER 5. CLUSTERING JBI ENDPOINTS

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

Red Hat JBoss Fuse provides a clustering engine that enables you to use Apache ActiveMQ, or any
other JMS broker, to specify the endpoints to cluster in a JBI application. The Red Hat JBoss Fuse
clustering engine works in conjunction with the normalized message router (NMR), and uses Apache
ActiveMQ and specifically configured JBI endpoints to build clusters.

A cluster is defined as two or more JBI containers networked together. Implementing clustering
between JBI containers gives you access to features including load balancing and high availability,
rollback and redelivery, and remote container awareness.

FEATURES

Clustering provides the following features that can be implemented in your applications:

Connect JBI containers to form a network, and dynamically add and remove the containers
from the network.

Enable rollback and redelivery when a JBI exchange fails.

Implement load balancing among JBI containers capable of handling a given exchange. For
example:

Install the same component in multiple JBI containers to provide increased capacity and
high availability (if one container fails, the same component in another container can
service the request).

Partition the workload among multiple JBI container instances to enable different
containers to handle different tasks, spreading the workload across multiple containers.

Remote component awareness means each clustered JBI container is aware of the
components in its peer containers. Networked containers listen for remote component
registration/deregistration events and can route requests to those components.

STEPS TO SET UP CLUSTERING

Complete the following steps to set up JBI endpoint clustering:

1. Install the jbi-cluster feature included in Red Hat JBoss Fuse. See the section called “Installing
the clustering feature”.

2. Optionally, configure the clustering engine with a JMS broker other than the Red Hat JBoss A-
MQ. See the section called “Changing the JMS broker” .

3. Optionally, change the default clustering engine configuration to specify different cluster and
destination names. See the section called “Changing the default configuration” .

Red Hat JBoss Fuse 6.0 Using Java Business Integration

14

4. Add endpoints and register the endpoint definition in the Spring configuration. See the section
called “Using clustering in an application”.

See the following sections for additional information:

the section called “Establishing network connections between containers”

the section called “High availability”

the section called “Cluster configuration conventions”

INSTALLING THE CLUSTERING FEATURE

To install the jbi-cluster feature, use the install command from the command console:

1. Start Red Hat JBoss Fuse.

2. At the JBossFuse:karaf@root> prompt, type:

features:install jbi-cluster

3. Type featuresL:list to list the existing features and their installation state. Verify that the
jbi-cluster feature is installed.

The cluster configuration bundle is automatically installed when you install the jbi-cluster feature.

DEFAULT CLUSTERING ENGINE CONFIGURATION

Red Hat JBoss Fuse has a pre-installed clustering engine that is configured to use the included Red Hat
JBoss A-MQ. The default configuration for the Red Hat JBoss Fuse cluster engine is defined in the
jbi-cluster.xml file in the org.apache.servicemix.jbi.cluster.config bundle. This
bundle is located in the installation directory in \system\org\apache\servicemix\jbi\cluster.

The default cluster engine configuration, shown in Example 5.1, is designed to meet most basic
requirements.

Example 5.1. Default cluster engine configuration

<bean id="clusterEngine"
class="org.apache.servicemix.jbi.cluster.engine.ClusterEngine">
 <property name="pool">
 <bean
class="org.apache.servicemix.jbi.cluster.requestor.ActiveMQJmsRequestorP
ool">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="destinationName" value="${destinationName}" />
 </bean>
 </property>
 <property name="name" value="${clusterName}" />
</bean>
<osgi:list id="clusterRegistrations"

interface="org.apache.servicemix.jbi.cluster.engine.ClusterRegistration"

 cardinality="0..N">

CHAPTER 5. CLUSTERING JBI ENDPOINTS

15

Red Hat JBoss Fuse has a preconfigured Red Hat JBoss A-MQ instance that automatically starts when
the container is started. This means you do not have to start a broker instance for the clustering engine
to work.

CHANGING THE DEFAULT CONFIGURATION

You can alter the default configuration by adding a configuration file to the bundle
org.apache.servicemix.jbi.cluster.config. This added configuration file enables you to
change both the clusterName and the destinationName.

CHANGING THE JMS BROKER

You can configure the cluster engine with another JMS broker by adding a Spring XML file containing
the full configuration to the InstallDir\deploy directory.

USING CLUSTERING IN AN APPLICATION

When using an OSGi packaged JBI service assembly, you can include the clustered endpoints
definitions directly in the Spring configuration. In addition to the endpoint definition, you must add a
bean that registers the endpoint with the clustering engine.

Example 5.2 shows an OSGi packaged HTTP consumer endpoint that is part of a cluster.

Example 5.2. OSGi packaged JBI endpoint

 <osgi:listener ref="clusterEngine" bind-method="register" unbind-
method="unregister" />
</osgi:list>
<osgi:reference id="connectionFactory"
interface="javax.jms.ConnectionFactory" />
<osgi:service ref="clusterEngine">
 <osgi:interfaces>
 <value>org.apache.servicemix.nmr.api.Endpoint</value>
 <value>org.apache.servicemix.nmr.api.event.Listener</value>
 <value>org.apache.servicemix.nmr.api.event.EndpointListener</value>
 <value>org.apache.servicemix.nmr.api.event.ExchangeListener</value>
 </osgi:interfaces>
 <osgi:service-properties>
 <entry key="NAME" value="${clusterName}" />
 </osgi:service-properties>
</osgi:service>
<osgix:cm-properties id="clusterProps"
 persistent-id="org.apache.servicemix.jbi.cluster.config">
 <prop key="clusterName">${servicemix.name}</prop>
 <prop key="destinationName">org.apache.servicemix.jbi.cluster</prop>
</osgix:cm-properties>
<ctx:property-placeholder properties-ref="clusterProps" />
</beans>

<http:consumer id="myHttpConsumer" service="test:myService"
endpoint="myEndpoint" />
<bean
class="org.apache.servicemix.jbi.cluster.engine.OsgiSimpleClusterRegistr

Red Hat JBoss Fuse 6.0 Using Java Business Integration

16

When using a JBI packaged service assembly, you must create a Spring application to register the
endpoint as a clustered endpoint. This configuration requires that you provide additional information
about the endpoint.

Example 5.3 shows a JBI packaged HTTP consumer endpoint that is part of a cluster.

Example 5.3. JBI packaged endpoint

ESTABLISHING NETWORK CONNECTIONS BETWEEN CONTAINERS

To create a network of JBI containers, you must establish network connections between each of the
containers in the network, and then establish a network connection between the active containers.
You can configure these network connections as either static or multicast connections.

Static network connections — Configure each networkConnector in the cluster in the
broker configuration file install_dir/conf/activemq.xml.

Example 5.4 shows an example of a static networkConnector discovery configuration.

Example 5.4. Static configuration

ation">
 <property name="endpoint" ref="myHttpConsumer" />
</bean>

<http:consumer id="myHttpConsumer" service="test:myService"
endpoint="myEndpoint" />
<bean
class="org.apache.servicemix.jbi.cluster.engine.OsgiSimpleClusterRegistr
ation">
 <property name="serviceName" value="test:myService" />
 <property name="endpointName" value="myEndpoint" />
</bean>

<!-- Set the brokerName to be unique for this container -->
<amq:broker id="broker" brokerName="host1_broker1" depends-
on="jmxServer">

 <networkConnectors>
 <networkConnector name="host1_to_host2"
uri="static://(tcp://host2:61616)"/>

 <!-- A three container network would look like this -->
 <!-- (Note it is not necessary to list the hostname in the uri
list) -->
 <!-- networkConnector name="host1_to_host2_host3"
 uri="static://(tcp://host2:61616,tcp://host3:61616)"/ -
->

 </networkConnectors>

CHAPTER 5. CLUSTERING JBI ENDPOINTS

17

Multicast network connections — Enable multicast on your network and configure multicast in
the broker configuration file installation_directory/conf/activemq.xml for each
container in the network. When the containers start they detect each other and transparently
connect to one another.

Example 5.5 shows an example of a multicast networkConnector discovery configuration.

Example 5.5. Multicast configuration

When a network connection is established, each container discovers the other containers' remote
components and can route to them.

HIGH AVAILABILITY

You can cluster JBI containers to implement high availability by configuring two distinct Red Hat JBoss
Fuse container instances in a master-slave configuration. In all cases, the master is in ACTIVE mode
and the slave is in STANDBY mode waiting for a failover event to trigger the slave to take over.

You can configure the master and the slave one of the following ways:

Shared file system master-slave — In a shared database master-slave configuration, two
containers use the same physical data store for the container state. You should ensure that
the file system supports file level locking, as this is the mechanism used to elect the master. If
the master process exits, the database lock is released and the slave acquires it. The slave
then becomes the master.

JDBC master-slave — In a JDBC master-slave configuration, the master locks a table in the
backend database. The failover event in this case is that the lock is released from the database.

Pure master-slave — A pure master-slave configuration can use either a shared database or a
shared file system. The master replicates all state changes to the slave so additional overhead
is incurred. The failover trigger in a pure master-slave configuration is that the slave loses its
network connection to its master. Because of the additional overhead and maintenance
involved, this option is less desirable than the other two options.

CLUSTER CONFIGURATION CONVENTIONS

The following conventions apply to configuring clustering:

Don't use static and multicast networkConnectors at the same time. If you enable static
networkConnectors, then you should disable any multicast networkConnectors, and vice
versa.

</amq:broker>

<networkConnectors>
 <!-- by default just auto discover the other brokers -->
 <networkConnector name="default-nc"
uri="multicast://default"/>
 </networkConnectors>

Red Hat JBoss Fuse 6.0 Using Java Business Integration

18

When configuring a network of containers in
installation_directory/conf/activemq.xml, ensure that the brokerName attribute
is unique for each node in the cluster. This will enable the instances in the network to uniquely
identify each other.

When configuring a network of containers you must ensure that you have unique persistent
stores for each ACTIVE instance. If you have a JDBC data source, you must use a separate
database for each ACTIVE instance. For example:

You can setup a network of containers on the same host. To do this, you must change the JMS
ports and transportConnector ports to avoid any port conflicts. Edit the
installation_directory/conf/activemq.xml file, changing the rmi.port and
activemq.port as appropriate. For example:

<property name="url"
 value="jdbc:mysql://localhost/broker_activemq_host1?
relaxAutoCommit=true"/>

rmi.port = 1098
rmi.host = localhost
jmx.url =
service:jmx:rmi:///jndi/rmi://${rmi.host}:${rmi.port}/jmxrmi

activemq.port = 61616
activemq.host = localhost
activemq.url = tcp://${activemq.host}:${activemq.port}

CHAPTER 5. CLUSTERING JBI ENDPOINTS

19

CHAPTER 6. USING THE JBI ANT TASKS

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

The JBI specification defines a number of Ant tasks that can be used to manage JBI components.
These tasks allow you to install, start, stop, and uninstall components in the Red Hat JBoss Fuse
container. You can use the JBI Ant tasks as either command line commands or as part of an Ant build
file.

6.1. USING THE TASKS AS COMMANDS

Usage

This is the basic usage statement for the Red Hat JBoss Fuse Ant tasks when used from the command
line:

ant -f InstallDir/ant/servicemix-ant-tasks.xml [-Doption=value ...] task

The task argument is the name of the Ant task you are calling. Each task supports a number of options
that are specified using the -Doption=value flag.

Installing a component

The Ant task used to install a component to the Red Hat JBoss Fuse container is install-
component. Its options are described in Table 6.1.

Table 6.1. Options for installing a JBI component with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

Red Hat JBoss Fuse 6.0 Using Java Business Integration

20

sm.install.file yes Specifies the name of the installer
file for the component

Option Required Description

Example 6.1 shows an example of using install-component to install the Camel component to a
container listening on port 1000.

Example 6.1. Installing a component using an Ant command

>ant -f ant/servicemix-ant-task.xml -Dsm.port=1000 -
Dsm.install.file=servicemix-camel-3.3.0.6-fuse-installer.zip install-
component
Buildfile: ant\servicemix-ant-task.xml install-component: [echo]
install-component [echo] Installing a service engine or binding
component. [echo] host=localhost [echo] port=1000 [echo]
file=hotdeploy\servicemix-camel-3.3.0.6-fuse-installer.zip BUILD
SUCCESSFUL Total time: 7 seconds

Removing a component

The Ant task used to remove a component from the Red Hat JBoss Fuse container is uninstall-
component. Its options are described in Table 6.2.

Table 6.2. Options for removing a JBI component with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.component.name yes Specifies the name of the JBI
component

CHAPTER 6. USING THE JBI ANT TASKS

21

Example 6.2 shows an example of using uninstall-component to remove the drools component
from a container listening on port 1000.

Example 6.2. Removing a component using an Ant command

>ant -f ant\servicemix-ant-task.xml -Dsm.port=1000 -
Dsm.component.name=servicemix-drools uninstall-component
Buildfile: ant\servicemix-ant-task.xml uninstall-component: [echo]
uninstall-component [echo] Uninstalling a Service Engine or Binding
Component. [echo] host=localhost [echo] port=1000 [echo]
name=servicemix-drools BUILD SUCCESSFUL Total time: 1 second

Starting a component

The Ant task used to start a component is start-component. Its options are described in Table 6.3.

Table 6.3. Options for starting a JBI component with an Ant command

Option Required Description

sm.username Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container.

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.component.name yes Specifies the name of the JBI
component

Example 6.3 shows an example of using start-component to start the cxf-se component in a
container listening on port 1000.

Example 6.3. Starting a component using an Ant command

>ant -f ant\servicemix-ant-task.xml -Dsm.port=1000 -
Dsm.component.name=servicemix-cxf-se start-component
Buildfile: ant\servicemix-ant-task.xml start-component: [echo] start-

Red Hat JBoss Fuse 6.0 Using Java Business Integration

22

component [echo] starts a particular component (service engine or
binding component) in Servicemix [echo] host=localhost [echo] port=1000
[echo] name=servicemix-cxf-se BUILD SUCCESSFUL Total time: 1 second

Stopping a component

The Ant task used to stop a component is stop-component. Its options are described in Table 6.4.

Table 6.4. Options for stopping a JBI component with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.component.name yes Specifies the name of the JBI
component

Example 6.4 shows an example of using stop-component to stop the cxf-se component in a container
listening on port 1000.

Example 6.4. Stopping a component using an Ant command

>ant -f ant\servicemix-ant-task.xml -Dsm.port=1000 -
Dsm.component.name=servicemix-cxf-se stop-component
 Buildfile: ant\servicemix-ant-task.xml stop-component:
[echo] stop-component [echo] stops a particular component (service
engine or binding component) in Servicemix [echo] host=localhost [echo]
port=1000 [echo] name=servicemix-cxf-se BUILD SUCCESSFUL Total time: 1
second

Shutting down a component

CHAPTER 6. USING THE JBI ANT TASKS

23

The Ant task used to shutdown a component is shutdown-component. Its options are described in
Table 6.5.

Table 6.5. Options for shutting down a JBI component with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.component.name yes Specifies the name of the JBI
component

Installing a shared library

The Ant task used to install a shared library to the Red Hat JBoss Fuse container is install-
shared-library. Its options are described in Table 6.6.

Table 6.6. Options for installing a shared library with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

Red Hat JBoss Fuse 6.0 Using Java Business Integration

24

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.install.file yes Specifies the name of the library's
installer file

Option Required Description

Removing a shared library

The Ant task used to remove a shared library from the Red Hat JBoss Fuse container is uninstall-
shared-library. Its options are described in Table 6.7.

Table 6.7. Options for removing a shared library with an Ant command

Option Required Description

sm.username no Specifies the username used to
access the management features
of the Red Hat JBoss Fuse
container

sm.password no Specifies the password used to
access the management features
of the Red Hat JBoss Fuse
container

sm.host no Specifies the host name where
the container is running; the
default value is localhost

sm.port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

sm.shared.library.name yes Specifies the name of the shared
library

6.2. USING THE TASKS IN BUILD FILES

Adding the JBI tasks to build an Ant file

Before you can use the JBI tasks in an Ant build file, you must add the tasks using a taskdef element,
as shown in Example 6.5.

Example 6.5. Adding the JBI tasks to an Ant build file

CHAPTER 6. USING THE JBI ANT TASKS

25

1

2

3

The build file fragment in Example 6.5 does the following:

Sets a property, fuseesb.install_dir, the installation directory for Red Hat JBoss Fuse

Loads the tasks using the ant/servicemix_ant_taskdef.properties

Sets the classpath to make all of the required jars from the Red Hat JBoss Fuse installation
available

Installing a component

The Ant task used to install a JBI component is jbi-install-component. Its attributes are listed in
Table 6.8.

Table 6.8. Attributes for installing a JBI component using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

1

2
3

...
<property name="fuseesb.install_dir" value="/home/fuse_esb"/>

<taskdef
file="${fuseesb.install_dir}/ant/servicemix_ant_taskdef.properties">

 <classpath id="fuseesb.classpath">
 <fileset dir="${fuseesb.install_dir}">

 <include name="*.jar"/>
 </fileset>
 <fileset dir="${fuseesb.install_dir}/lib">
 <include name="*.jar"/>
 </fileset>
 </classpath>
</taskdef>
...

Red Hat JBoss Fuse 6.0 Using Java Business Integration

26

failOnError no Specifies if an error will cause the
entire build to fail

file yes Specifies the name of the installer
file for the component

Attribute Required Description

Example 6.6 shows an Ant target that installs the drools component.

Example 6.6. Ant target that installs a JBI component

Removing a component

The Ant task used to remove a JBI component is jbi-uninstall-component. Its attributes are
listed in Table 6.9.

Table 6.9. Attributes for removing a JBI component using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

failOnError no Specifies if an error will cause the
entire build to fail

...
<target name="installDrools" description="Installs the drools engine.">
 <jbi-install-component port="1099"
 file="servicemix-drools-3.3.0.6-fuse-
installer.zip" />
</target>
...

CHAPTER 6. USING THE JBI ANT TASKS

27

name yes Specifies the component's name

Attribute Required Description

Example 6.7 shows an Ant target that removes the drools component.

Example 6.7. Ant target that removes a JBI component

Starting a component

The Ant task used to start a JBI component is jbi-start-component. Its attributes are listed in
Table 6.10.

Table 6.10. Attributes for starting a JBI component using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099.

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

failOnError no Specifies if an error will cause the
entire build to fail

name yes Specifies the component's name

Example 6.8 shows an Ant target that starts the drools component.

...
<target name="removeDrools" description="Removes the drools engine.">
 <jbi-uninstall-component port="1099"
 name="servicemix-drools" />
</target>
...

Red Hat JBoss Fuse 6.0 Using Java Business Integration

28

Example 6.8. Ant target that starts a JBI component

Stopping a component

The Ant task used to stop a JBI component is jbi-start-component. Its attributes are listed in
Table 6.11.

Table 6.11. Attributes for stopping a JBI component using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

failOnError no Specifies if an error will cause the
entire build to fail

name yes Specifies the component's name

Example 6.9 shows an Ant target that stops the drools component.

Example 6.9. Ant target that stops a JBI component

...
<target name="startDrools" description="Starts the drools engine.">
 <jbi-start-component port="1099" name="servicemix-drools" />
</target>
...

...
<target name="stopDrools" description="Stops the drools engine.">
 <jbi-stop-component port="1099" name="servicemix-drools" />
</target>
...

CHAPTER 6. USING THE JBI ANT TASKS

29

Shutting down a component

The Ant task used to shut down a JBI component is jbi-shut-down-component. Its attributes are
listed in Table 6.12.

Table 6.12. Attributes for shutting down a JBI component using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

failOnError no Specifies if an error will cause the
entire build to fail

name yes Specifies the component's name

Example 6.10 shows an Ant target that shuts down the drools component.

Example 6.10. Ant target that shuts down a JBI component

Installing a shared library

The Ant task used to install a shared library is jbi-install-shared-library. Its attributes are
listed in Table 6.13.

Table 6.13. Attributes for installing a shared library using an Ant task

...
<target name="shutdownDrools" description="Stops the drools engine.">
 <jbi-shut-down-component port="1099" name="servicemix-drools" />
</target>
...

Red Hat JBoss Fuse 6.0 Using Java Business Integration

30

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

failOnError no Specifies if an error will cause the
entire build to fail

file yes Specifies the name of the installer
file for the library

Removing a shared library

The Ant task used to remove a shared library is jbi-uninstall-shared-library. Its attributes are
listed in Table 6.14.

Table 6.14. Attributes for removing a shared library using an Ant task

Attribute Required Description

host no Specifies the host name where
the container is running; the
default value is localhost

port no Specifies the port where the
container's RMI registry is
listening; the default value is
1099

username no Specifies the username used to
access the management features
of the container

password no Specifies the password used to
access the management features
of the container

CHAPTER 6. USING THE JBI ANT TASKS

31

failOnError no Specifies if an error will cause the
entire build to fail

name yes Specifies the name of the library

Attribute Required Description

Red Hat JBoss Fuse 6.0 Using Java Business Integration

32

CHAPTER 7. BUILDING JBI COMPONENTS USING MAVEN

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

OVERVIEW

Red Hat JBoss Fuse provides Maven tooling that simplifies the creation and deployment of JBI
artifacts. Among the tools provided are:

Plug-ins for packaging JBI components

A plug-in for packaging shared libraries

Archetypes that create starting point projects for JBI artifacts

The Red Hat JBoss Fuse Maven tools also include plug-ins for creating service units and service
assemblies. However, those plug-ins are not described in this book.

SETTING UP THE MAVEN TOOLS

In order to use the Red Hat JBoss Fuse Maven tools, you add the elements shown in Example 7.1 to
your POM file.

Example 7.1. POM elements for using Red Hat JBoss Fuse Maven tools

...
<pluginRepositories>
 <pluginRepository>
 <id>fusesource.m2</id>
 <name>JBoss Fuse Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/maven2</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </pluginRepository>
</pluginRepositories>
<repositories>
 <repository>
 <id>fusesource.m2</id>
 <name>JBoss Fuse Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/maven2</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>

CHAPTER 7. BUILDING JBI COMPONENTS USING MAVEN

33

These elements point Maven to the correct repositories to download the Red Hat JBoss Fuse Maven
tools and to load the plug-in that implements the tools.

CREATING A JBI MAVEN PROJECT

The Red Hat JBoss Fuse Maven tools provide a number of archetypes that can be used to seed a JBI
project. The archetype generates the proper file structure for the project along with a POM file that
contains the metadata required for the specified project type.

Example 7.2 shows the command for using the JBI archetypes.

Example 7.2. Command for JBI maven archetypes

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-archetype-name -DarchetypeVersion=fuse-4.0.0.0 [-
DgroupId=org.apache.servicemix.samples.embedded] [-DartifactId=servicemix-embedded-example]

The value passed to the -DarchetypeArtifactId argument specifies the type of project you are
creating.

JBI COMPONENTS

As shown in Example 7.3, you specify a value of jbi-component for the project's packaging
element, which informs the Red Hat JBoss Fuse Maven tooling that the project is for a JBI component.

Example 7.3. Specifying that a maven project results in a JBI component

 <repository>
 <id>fusesource.m2-snapshot</id>
 <name>JBoss Fuse Open Source Community Snapshot Repository</name>
 <url>http://repo.fusesource.com/maven2-snapshot</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
</repositories>
 ...
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.servicemix.tooling</groupId>
 <artifactId>jbi-maven-plugin</artifactId>
 <version>${servicemix-version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>
 ...

Red Hat JBoss Fuse 6.0 Using Java Business Integration

34

The plugin element responsible for packaging the JBI component is shown in Example 7.4. The
groupId element, the artifactId element, the version element, and the extensions element
are common to all instances of the Red Hat JBoss Fuse Maven plug-in. If you use the Maven archetypes
to generate the project, you should not have to change them.

Example 7.4. Plug-in specification for packaging a JBI component

The configuration element, along with its children, provides the Red Hat JBoss Fuse tooling with
the metadata necessary to construct the jbi.xml file required by the component.

type

Specifies the type of JBI component the project is building. Valid values are:

service-engine for creating a service engine

binding-component for creating a binding component

bootstrap

Specifies the name of the class that implements the JBI Bootstrap interface for the component.

TIP

You can omit this element if you intend to use the default Bootstrap implementation provided
with Red Hat JBoss Fuse.

component

Specifies the name of the class that implements the JBI Component interface for that component.

<project ...>
 ...
 <groupId>org.apache.servicemix</groupId>
 <artifactId>MyBindingComponent</artifactId>
 <packaging>jbi-component</packaging>
 ...
</project>

...
<plugin>
 <groupId>org.apache.servicemix.tooling</groupId>
 <artifactId>jbi-maven-plugin</artifactId>
 <version>${servicemix-version}</version>
 <extensions>true</extensions>
 <configuration>
 <type>service-engine</type>
 <bootstrap>org.apache.servicemix.samples.MyBootstrap</bootstrap>
 <component>org.apache.servicemix.samples.MyComponent</component>
 </configuration>
</plugin>
...

CHAPTER 7. BUILDING JBI COMPONENTS USING MAVEN

35

Once the project is properly configured, you can build the JBI component by using the mvn install
command. The Red Hat JBoss Fuse Maven tooling will generate a standard jar containing both the
component and an installable JBI package for the component.

SHARED LIBRARIES

As shown in Example 7.5, to instruct the Red Hat JBoss Fuse Maven tooling that the project is for a
shared library you specify a value of jbi-shared-library for the project's packaging element.

Example 7.5. Specifying that a maven project results in a JBI shared library

You build the shared library using the mvn install command. The Red Hat JBoss Fuse Maven tooling
generates a standard jar containing the shared library and an installable JBI package for the shared
library.

<project ...>
 ...
 <groupId>org.apache.servicemix</groupId>
 <artifactId>MyBindingComponent</artifactId>
 <packaging>jbi-shared-library</packaging>
 ...
</project>

Red Hat JBoss Fuse 6.0 Using Java Business Integration

36

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

Abstract

Red Hat JBoss Fuse provides a Maven plug-in and a number of Maven archetypes that make
developing, packaging, and deploying applications easier.

IMPORTANT

The Java Business Integration components of Red Hat JBoss Fuse are considered
deprecated. You should consider migrating any JBI applications to OSGi.

The tooling provides you with a number of benefits, including:

Automatic generation of JBI descriptors

Dependency checking

Service assembly deployment

Because Red Hat JBoss Fuse only allows you to deploy service assemblies, you must do the following
when using Maven tooling:

1. Set up a top-level project to build all of the service units and the final service assembly (see
Section 8.1, “Setting up a Red Hat JBoss Fuse JBI project”).

2. Create a project for each of your service units (see Section 8.2, “A service unit project”).

3. Create a project for the service assembly (see Section 8.3, “A service assembly project”).

8.1. SETTING UP A RED HAT JBOSS FUSE JBI PROJECT

Overview

When working with the Red Hat JBoss Fuse JBI Maven tooling, you create a top-level project that can
build all of the service units and then package them into a service assembly. Using a top-level project
for this purpose has several advantages:

It allows you to control the dependencies for all of the parts of an application in a central
location.

It limits the number of times you need to specify the proper repositories to load.

It provides you a central location from which to build and deploy the application.

The top-level project is responsible for assembling the application. It uses the Maven assembly plug-in
and lists your service units and the service assembly as modules of the project.

Directory structure

Your top-level project contains the following directories:

A source directory containing the information required for the Maven assembly plug-in

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

37

A directory to store the service assembly project

At least one directory containing a service unit project

TIP

You will need a project folder for each service unit that is to be included in the generated
service assembly.

Setting up the Maven tools

To use the JBoss Fuse JBI Maven tooling, add the elements shown in Example 8.1 to your top-level
POM file.

Example 8.1. POM elements for using Red Hat JBoss Fuse Maven tooling

...
<pluginRepositories>
 <pluginRepository>
 <id>fusesource.m2</id>
 <name>FuseSource Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </pluginRepository>
</pluginRepositories>
<repositories>
 <repository>
 <id>fusesource.m2</id>
 <name>FuseSource Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 <repository>
 <id>fusesource.m2-snapshot</id>
 <name>FuseSource Open Source Community Snapshot Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public-
snapshots/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
</repositories>

Red Hat JBoss Fuse 6.0 Using Java Business Integration

38

These elements point Maven to the correct repositories to download the JBoss Fuse Maven tooling and
to load the plug-in that implements the tooling.

Listing the sub-projects

The top-level POM lists all of the service units and the service assembly that is generated as modules.
The modules are contained in a modules element. The modules element contains one module
element for each service unit in the assembly. You also need a module element for the service
assembly.

The modules are listed in the order in which they are built. This means that the service assembly
module is listed after all of the service unit modules.

Example JBI project pOM

Example 8.2 shows a top-level POM for a project that contains a single service unit.

Example 8.2. Top-level POM for a Red Hat JBoss Fuse JBI project

 ...
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.servicemix.tooling</groupId>
 <artifactId>jbi-maven-plugin</artifactId>
 <version>servicemix-version</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>
 ...

1

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-
v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>com.widgets</groupId>
 <artifactId>demos</artifactId>
 <version>1.0</version>
 </parent>

 <groupId>com.widgets.demo</groupId>
 <artifactId>cxf-wsdl-first</artifactId>
 <name>CXF WSDL Fisrt Demo</name>
 <packaging>pom</packaging>

 <pluginRepositories>
 <pluginRepository>

 <id>fusesource.m2</id>
 <name>FuseSource Open Source Community Release Repository</name>

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

39

2

3

 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </pluginRepository>
 </pluginRepositories>
 <repositories>
 <repository>
 <id>fusesource.m2</id>
 <name>FuseSource Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 <repository>
 <id>fusesource.m2-snapshot</id>
 <name>FuseSource Open Source Community Snapshot Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public-
snapshots/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
 </repositories>

 <modules>
 <module>wsdl-first-cxfse-su</module>

 <module>wsdl-first-cxf-sa</module>
 </modules>

 <build>
 <plugins>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.1</version>
 <inherited>false</inherited>
 <executions>
 <execution>
 <id>src</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <descriptors>

Red Hat JBoss Fuse 6.0 Using Java Business Integration

40

1

2

3

4

The top-level POM shown in Example 8.2, “Top-level POM for a Red Hat JBoss Fuse JBI project” does
the following:

Configures Maven to use the FuseSource repositories for loading the JBoss Fuse plug-ins.

Lists the sub-projects used for this application. The wsdl-first-cxfse-su module is the
module for the service unit. The wsdl-first-cxf-sa module is the module for the service
assembly

Configures the Maven assembly plug-in.

Loads the JBoss Fuse JBI plug-in.

8.2. A SERVICE UNIT PROJECT

Overview

Each service unit in the service assembly must be its own project. These projects are placed at the
same level as the service assembly project. The contents of a service unit's project depends on the
component at which the service unit is targeted. At the minimum, a service unit project contains a POM
and an XML configuration file.

Seeding a project using a Maven artifact

Red Hat JBoss Fuse provides Maven artifacts for a number of service unit types. They can be used to
seed a project with the smx-arch command. As shown in Example 8.3, the smx-arch command takes
three arguments. The groupId value and the artifactId values correspond to the project's group
ID and artifact ID.

Example 8.3. Maven archetype command for service units

smx-arch su suArchetypeName ["-DgroupId=my.group.id"] ["-DartifactId=my.artifact.id"]

4

 <descriptor>src/main/assembly/src.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
 </plugin>

 <plugin>
 <groupId>org.apache.servicemix.tooling</groupId>

 <artifactId>jbi-maven-plugin</artifactId>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

41

IMPORTANT

The double quotes(") are required when using the -DgroupId argument and the -
DartifactId argument.

The suArchetypeName specifies the type of service unit to seed. Table 8.1 lists the possible values and
describes what type of project is seeded.

Table 8.1. Service unit archetypes

Name Description

camel Creates a project for using the Apache Camel
service engine

cxf-se Creates a project for developing a Java-first service
using the Apache CXF service engine

cxf-se-wsdl-first Creates a project for developing a WSDL-first
service using the Apache CXF service engine

cxf-bc Creates an endpoint project targeted at the Apache
CXF binding component

http-consumer Creates a consumer endpoint project targeted at the
HTTP binding component

http-provider Creates a provider endpoint project targeted at the
HTTP binding component

jms-consumer Creates a consumer endpoint project targeted at the
JMS binding component (see "Using the JMS
Binding Component")

jms-provider Creates a provider endpoint project targeted at the
JMS binding component (see "Using the JMS
Binding Component")

file-poller Creates a polling (consumer) endpoint project
targeted at the file binding component (see chapter
"Using Poller Endpoints" in "Using the File Binding
Component")

file-sender Creates a sender (provider) endpoint project
targeted at the file binding component (see chapter
"Using Sender Endpoints" in "Using the File Binding
Component")

ftp-poller Creates a polling (consumer) endpoint project
targeted at the FTP binding component

Red Hat JBoss Fuse 6.0 Using Java Business Integration

42

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Using_the_JMS_Binding_Component/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Using_the_JMS_Binding_Component/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Using_the_File_Binding_Component/ESBFilePoller.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Using_the_File_Binding_Component/ESBFileSender.html

ftp-sender Creates a sender (provider) endpoint project
targeted at the FTP binding component

jsr181-annotated Creates a project for developing an annotated Java
service to be run by the JSR181 service engine [a]

jsr181-wsdl-first Creates a project for developing a WSDL generated
Java service to be run by the JSR181 service engine
[a]

saxon-xquery Creates a project for executing xquery statements
using the Saxon service engine

saxon-xslt Creates a project for executing XSLT scripts using
the Saxon service engine

eip Creates a project for using the EIP service engine.
[b]

lwcontainer Creates a project for deploying functionality into the
lightweight container [c]

bean Creates a project for deploying a POJO to be
executed by the bean service engine

ode Create a project for deploying a BPEL process into
the ODE service engine

[a] The JSR181 has been deprecated. The Apache CXF service engine has superseded it.

[b] The EIP service engine has been deprecated. The Apache Camel service engine has superseded it.

[c] The lightweight container has been deprecated.

Name Description

Contents of a project

The contents of your service unit project change from service unit to service unit. Different
components require different configuration. Some components, such as the Apache CXF service
engine, require that you include Java classes.

At a minimum, a service unit project will contain two things:

a POM file that configures the JBI plug-in to create a service unit

an XML configuration file stored in src/main/resources

For many of the components, the XML configuration file is called xbean.xml. The Apache
Camel component uses a file called camel-context.xml.

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

43

Configuring the Maven plug-in

You configure the Maven plug-in to package the results of the project build as a service unit by
changing the value of the project's packaging element to jbi-service-unit as shown in
Example 8.4.

Example 8.4. Configuring the maven plug-in to build a service unit

Specifying the target components

To correctly fill in the metadata required for packaging a service unit, the Maven plug-in must be told
what component (or components) the service unit is targeting. If your service unit only has a single
component dependency, you can specify it in one of two ways:

List the targeted component as a dependency

Add a componentName property specifying the targeted component

If your service unit has more than one component dependency, you must configure the project as
follows:

1. Add a componentName property specifying the targeted component.

2. Add the remaining components to the list dependencies.

Example 8.5 shows the configuration for a service unit targeting the Apache CXF binding component.

Example 8.5. Specifying the target components for a service unit

The advantage of using the Maven dependency mechanism is that it allows Maven to verify if the
targeted component is deployed in the container. If one of the components is not deployed, Red Hat

<project ...>
 <modelVersion>4.0.0</modelVersion>

 ...
 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfse-wsdl-first-su</artifactId>
 <name>CXF WSDL Fisrt Demo :: SE Service Unit</name>
 <packaging>jbi-service-unit</packaging>
 ...
</project>

...
<dependencies>
 <dependency>
 <groupId>org.apache.servicemix</groupId>
 <artifactId>servicemix-cxf-bc</artifactId>

 <version>3.3.1.0-fuse</version>[1]

 </dependency>
>/dependencies>
...

Red Hat JBoss Fuse 6.0 Using Java Business Integration

44

JBoss Fuse will not hold off deploying the service unit until all of the required components are
deployed.

TIP

Typically, a message identifying the missing component(s) is written to the log.

If your service unit's targeted component is not available as a Maven artifact, you can specify the
targeted component using the componentName element. This element is added to the standard Maven
properties block and it specifies the name of a targeted component, as specified in Example 8.6.

Example 8.6. Specifying a target component for a service unit

When you use the componentName element, Maven does not check to see if the component is
installed, nor does it download the required component.

Example

Example 8.7 shows the POM file for a project that is building a service unit targeted to the Apache CXF
binding component.

Example 8.7. POM file for a service unit project

...
<properties>
 <componentName>servicemix-bean</componentName>
</properties>
...

1

2

3

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-
v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>com.widgets.demo</groupId>

 <artifactId>cxf-wsdl-first</artifactId>
 <version>1.0</version>
 </parent>

 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfse-wsdl-first-su</artifactId>
 <name>CXF WSDL Fisrt Demo :: SE Service Unit</name>

 <packaging>jbi-service-unit</packaging>

 <dependencies>
 <dependency>

 <groupId>org.apache.servicemix</groupId>
 <artifactId>servicemix-cxf-bc</artifactId>
 <version>3.3.1.0-fuse</version>

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

45

1

2

3

4

The POM file in Example 8.7, “POM file for a service unit project” does the following:

Specifies that it is a part of the top-level project shown in Example 8.2, “Top-level POM for a Red
Hat JBoss Fuse JBI project”

Specifies that this project builds a service unit

Specifies that the service unit targets the Apache CXF binding component

Specifies to use the Red Hat JBoss Fuse Maven plug-in

8.3. A SERVICE ASSEMBLY PROJECT

Overview

Red Hat JBoss Fuse requires that all service units are bundled into a service assembly before they can
be deployed to a container. The JBoss Fuse Maven plug-in collects all of the service units to be bundled
and the metadata necessary for packaging. It will then build a service assembly containing the service
units.

Seeding a project using a Maven artifact

Red Hat JBoss Fuse provides a Maven artifact for seeding a service assembly project. You can seed a
project with the smx-arch command. As shown in Example 8.8, the smx-arch command takes two
arguments: the groupId value and the artifactId values, which correspond to the project's group
ID and artifact ID.

Example 8.8. Maven archetype command for service assemblies

smx-arch sa ["-DgroupId=my.group.id"] ["-DartifactId=my.artifact.id"]

IMPORTANT

The double quotes(") are required when using the -DgroupId argument and the -
DartifactId argument.

4

 </dependency>
 >/dependencies>

 <build>
 <plugins>

 <plugin>
 <groupId>org.apache.servicemix.tooling</groupId>

 <artifactId>jbi-maven-plugin</artifactId>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Red Hat JBoss Fuse 6.0 Using Java Business Integration

46

Contents of a project

A service assembly project typically only contains the POM file used by Maven.

Configuring the Maven plug-in

T configure the Maven plug-in to package the results of the project build as a service assembly, change
the value of the project's packaging element to jbi-service-assembly, as shown in Example 8.9.

Example 8.9. Configuring the Maven plug-in to build a service assembly

Specifying the target components

The Maven plug-in must know what service units are being bundled into the service assembly. This is
done by specifying the service units as dependencies, using the standard Maven dependencies
element. Add a dependency child element for each service unit. Example 8.10 shows the configuration
for a service assembly that bundles two service units.

Example 8.10. Specifying the target components for a service unit

Example

Example 8.11 shows a POM file for a project that is building a service assembly.

Example 8.11. POM for a service assembly project

<project ...>
 <modelVersion>4.0.0</modelVersion>

 ...
 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxf-wsdl-first-sa</artifactId>
 <name>CXF WSDL Fisrt Demo :: Service Assembly</name>
 <packaging>jbi-service-assembly</packaging>
 ...
</project>

...
<dependencies>
 <dependency>
 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfse-wsdl-first-su</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfbc-wsdl-first-su</artifactId>
 <version>1.0</version>
 </dependency>
</dependencies>
...

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

47

1

2

3

4

The POM in Example 8.11, “POM for a service assembly project” does the following:

Specifies that it is a part of the top-level project shown in Example 8.2, “Top-level POM for a Red
Hat JBoss Fuse JBI project”

Specifies that this project builds a service assembly

Specifies the service units being bundled by the service assembly

Specifies to use the JBoss Fuse Maven plug-in

1

2

3

4

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-
v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <parent>
 <groupId>com.widgets.demo</groupId>

 <artifactId>cxf-wsdl-first</artifactId>
 <version>1.0</version>
 </parent>

 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxf-wsdl-first-sa</artifactId>
 <name>CXF WSDL Fisrt Demo :: Service Assemby</name>

 <packaging>jbi-service-assembly</packaging>

 <dependencies>
 <dependency>

 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfse-wsdl-first-su</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>com.widgets.demo.cxf-wsdl-first</groupId>
 <artifactId>cxfbc-wsdl-first-su</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>

 <plugin>
 <groupId>org.apache.servicemix.tooling</groupId>

 <artifactId>jbi-maven-plugin</artifactId>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Red Hat JBoss Fuse 6.0 Using Java Business Integration

48

[1] You replace this with the version of Apache CXF you are using.

CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN

49

APPENDIX A. USING THE JBI CONSOLE COMMANDS

ACCESSING THE JBI COMMANDS

The jbi commands allow you to manage JBI artifacts that are deployed in the Red Hat JBoss Fuse
runtime.

Type jbi: then press Tab at the JBossFuse:karaf@root> prompt to view the available commands.

COMMANDS

Table A.1 describes the jbi commands available . For detailed information about the console
commands in Red Hat JBoss Fuse, see the "Console Reference".

Table A.1. JBI Commands

Command Description

jbi:list Lists all of the JBI artifacts deployed into the Red
Hat JBoss Fuse container. The list is separated into
JBI components and JBI service assemblies. It
displays the name of the artifact and its life-cycle
state.

jbi:shutdown artifact Moves the specified artifact from the stopped state
to the shutdown state.

jbi:stop artifact Moves the specified artifact into the stopped state.

jbi:start artifact Moves the specified artifact into the started state.

INDEX

A

Ant task

install-component, Installing a component

install-shared-library, Installing a shared library

installing components, Installing a component, Installing a component

installing shared libraries, Installing a shared library, Installing a shared library

jbi-install-component, Installing a component

jbi-install-shared-library, Installing a shared library

jbi-shut-down-component, Shutting down a component

jbi-start-component, Starting a component

jbi-stop-component, Stopping a component

Red Hat JBoss Fuse 6.0 Using Java Business Integration

50

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Console_Reference/

jbi-uninstall-component, Removing a component

jbi-uninstall-shared-library, Removing a shared library

removing components, Removing a component, Removing a shared library, Removing a
component

removing shared libraries, Removing a shared library

shutdown-component, Shutting down a component

shutting down components, Shutting down a component, Shutting down a component

start-component, Starting a component

starting components, Starting a component, Starting a component

stop-component, Stopping a component

stopping components, Stopping a component, Stopping a component

uninstall-component, Removing a component

uninstall-shared-library, Removing a shared library

uninstalling components, Removing a component, Removing a shared library, Removing a
component

B

binding component, Component types

C

clustering JBI endpoints, Overview

component life-cycle, Managing JBI components

componentName, Specifying the target components

consumer, Component roles

I

install-component, Installing a component

sm.host, Installing a component

sm.install.file, Installing a component

sm.password, Installing a component

sm.port, Installing a component

sm.username, Installing a component

install-shared-library, Installing a shared library

sm.host, Installing a shared library

sm.install.file, Installing a shared library

APPENDIX A. USING THE JBI CONSOLE COMMANDS

51

sm.password, Installing a shared library

sm.port, Installing a shared library

sm.username, Installing a shared library

installing components, Installing a component, Installing a component

J

Java Management Extenstions, JMX

JBI clustering, Overview

jbi-install-component, Installing a component

failOnError, Installing a component

file, Installing a component

host, Installing a component

password, Installing a component

port, Installing a component

username, Installing a component

jbi-install-shared-library, Installing a shared library

failOnError, Installing a shared library

file, Installing a shared library

host, Installing a shared library

password, Installing a shared library

port, Installing a shared library

username, Installing a shared library

jbi-shut-down-component, Shutting down a component

failOnError, Shutting down a component

host, Shutting down a component

name, Shutting down a component

password, Shutting down a component

port, Shutting down a component

username, Shutting down a component

jbi-start-component, Starting a component

failOnError, Starting a component

host, Starting a component

name, Starting a component

Red Hat JBoss Fuse 6.0 Using Java Business Integration

52

password, Starting a component

port, Starting a component

username, Starting a component

jbi-stop-component, Stopping a component

failOnError, Stopping a component

host, Stopping a component

name, Stopping a component

password, Stopping a component

port, Stopping a component

username, Stopping a component

jbi-uninstall-component, Removing a component

failOnError, Removing a component

host, Removing a component

name, Removing a component

password, Removing a component

port, Removing a component

username, Removing a component

jbi-uninstall-shared-library, Removing a shared library

failOnError, Removing a shared library

host, Removing a shared library

name, Removing a shared library

password, Removing a shared library

port, Removing a shared library

username, Removing a shared library

JMX, JMX

M

Maven tooling

binding component, JBI components

component bootstrap class, JBI components

component implementation class, JBI components

component type, JBI components

JBI component, JBI components

APPENDIX A. USING THE JBI CONSOLE COMMANDS

53

project creation, Creating a JBI Maven project

service engine, JBI components

set up, Setting up the Maven tools , Setting up the Maven tools

shared libraries, Shared libraries

message exchange patterns, Message exchange patterns

in-only, Message exchange patterns

in-optional-out, Message exchange patterns

in-out, Message exchange patterns

robust-in-only, Message exchange patterns

P

provider, Component roles

S

service assembly, Packaging

seeding, Seeding a project using a Maven artifact

specifying the service units, Specifying the target components

service consumer, Component roles

service engine, Component types

service provider, Component roles

service unit, Packaging

seeding, Seeding a project using a Maven artifact

specifying the target component, Specifying the target components

service unit life-cycle, Managing service units

shutdown-component, Shutting down a component

sm.component.name, Shutting down a component

sm.host, Shutting down a component

sm.password, Shutting down a component

sm.port, Shutting down a component

sm.username, Shutting down a component

sm.component.name, Removing a component, Starting a component, Stopping a component,
Shutting down a component

Red Hat JBoss Fuse 6.0 Using Java Business Integration

54

sm.host, Installing a component, Removing a component, Starting a component, Stopping a
component, Shutting down a component, Installing a shared library, Removing a shared library

sm.install.file, Installing a component, Installing a shared library

sm.password, Installing a component, Removing a component, Starting a component, Stopping a
component, Shutting down a component, Installing a shared library, Removing a shared library

sm.port, Installing a component, Removing a component, Starting a component, Stopping a
component, Shutting down a component, Installing a shared library, Removing a shared library

sm.shared.library.name, Removing a shared library

sm.username, Installing a component, Removing a component, Starting a component, Stopping a
component, Shutting down a component, Installing a shared library, Removing a shared library

smx-arch, Seeding a project using a Maven artifact , Seeding a project using a Maven artifact

start-component, Starting a component

sm.component.name, Starting a component

sm.host, Starting a component

sm.password, Starting a component

sm.port, Starting a component

sm.username, Starting a component

stop-component, Stopping a component

sm.component.name, Stopping a component

sm.host, Stopping a component

sm.password, Stopping a component

sm.port, Stopping a component

sm.username, Stopping a component

U

uninstall-component, Removing a component

sm.component.name, Removing a component

sm.host, Removing a component

sm.password, Removing a component

sm.port, Removing a component

sm.username, Removing a component

uninstall-shared-library, Removing a shared library

sm.host, Removing a shared library

sm.password, Removing a shared library

sm.port, Removing a shared library

APPENDIX A. USING THE JBI CONSOLE COMMANDS

55

sm.shared.library.name, Removing a shared library

sm.username, Removing a shared library

Red Hat JBoss Fuse 6.0 Using Java Business Integration

56

	Table of Contents
	PART I. OVERVIEW OF JAVA BUSINESS INTEGRATION
	CHAPTER 1. INTRODUCTION TO JBI
	CHAPTER 2. THE COMPONENT FRAMEWORK
	OVERVIEW
	COMPONENT TYPES
	PACKAGING
	COMPONENT ROLES

	CHAPTER 3. THE NORMALIZED MESSAGE ROUTER
	OVERVIEW
	MESSAGE EXCHANGE PATTERNS
	NORMALIZED MESSAGES

	CHAPTER 4. MANAGEMENT STRUCTURE
	OVERVIEW
	JMX
	INSTALLING AND UNINSTALLING ARTIFACTS INTO THE JBI ENVIRONMENT
	MANAGING JBI COMPONENTS
	MANAGING SERVICE UNITS

	PART II. DEPLOYING JBI ARTIFACTS INTO THE RED HAT JBOSS FUSE RUNTIME
	CHAPTER 5. CLUSTERING JBI ENDPOINTS
	OVERVIEW
	FEATURES
	STEPS TO SET UP CLUSTERING
	INSTALLING THE CLUSTERING FEATURE
	DEFAULT CLUSTERING ENGINE CONFIGURATION
	CHANGING THE DEFAULT CONFIGURATION
	CHANGING THE JMS BROKER
	USING CLUSTERING IN AN APPLICATION
	ESTABLISHING NETWORK CONNECTIONS BETWEEN CONTAINERS
	HIGH AVAILABILITY
	CLUSTER CONFIGURATION CONVENTIONS

	CHAPTER 6. USING THE JBI ANT TASKS
	6.1. USING THE TASKS AS COMMANDS
	Usage
	Installing a component
	Removing a component
	Starting a component
	Stopping a component
	Shutting down a component
	Installing a shared library
	Removing a shared library

	6.2. USING THE TASKS IN BUILD FILES
	Adding the JBI tasks to build an Ant file
	Installing a component
	Removing a component
	Starting a component
	Stopping a component
	Shutting down a component
	Installing a shared library
	Removing a shared library

	CHAPTER 7. BUILDING JBI COMPONENTS USING MAVEN
	OVERVIEW
	SETTING UP THE MAVEN TOOLS
	CREATING A JBI MAVEN PROJECT
	JBI COMPONENTS
	SHARED LIBRARIES

	CHAPTER 8. DEPLOYING JBI ENDPOINTS USING MAVEN
	8.1. SETTING UP A RED HAT JBOSS FUSE JBI PROJECT
	Overview
	Directory structure
	Setting up the Maven tools
	Listing the sub-projects
	Example JBI project pOM

	8.2. A SERVICE UNIT PROJECT
	Overview
	Seeding a project using a Maven artifact
	Contents of a project
	Configuring the Maven plug-in
	Specifying the target components
	Example

	8.3. A SERVICE ASSEMBLY PROJECT
	Overview
	Seeding a project using a Maven artifact
	Contents of a project
	Configuring the Maven plug-in
	Specifying the target components
	Example

	APPENDIX A. USING THE JBI CONSOLE COMMANDS
	ACCESSING THE JBI COMMANDS
	COMMANDS

	INDEX

