
Red Hat JBoss Enterprise Application
Platform 6.4

Security Guide

DEPRECATED. This book covers security concepts and procedures to harden the
EAP server instance and to secure web applications.

Last Updated: 2022-05-02

Red Hat JBoss Enterprise Application Platform 6.4 Security Guide

DEPRECATED. This book covers security concepts and procedures to harden the EAP server
instance and to secure web applications.

Legal Notice

Copyright © 2015 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

DEPRECATED. This book covers security concepts and procedures to harden the EAP server
instance and to secure web applications.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. SECURITY FOR RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6

CHAPTER 1. INTRODUCTION
1.1. ABOUT RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6
1.2. ABOUT SECURING JBOSS EAP 6

PART II. SECURING THE PLATFORM

CHAPTER 2. JAVA SECURITY MANAGER
2.1. ABOUT THE JAVA SECURITY MANAGER
2.2. ABOUT JAVA SECURITY POLICIES
2.3. WRITE A JAVA SECURITY POLICY
2.4. RUN JBOSS EAP 6 WITHIN THE JAVA SECURITY MANAGER
2.5. IBM JDK AND THE JAVA SECURITY MANAGER
2.6. DEBUG SECURITY MANAGER POLICIES

CHAPTER 3. SECURITY REALMS
3.1. ABOUT SECURITY REALMS
3.2. ADD A NEW SECURITY REALM
3.3. ADD A USER TO A SECURITY REALM

CHAPTER 4. ENCRYPT NETWORK TRAFFIC
4.1. SPECIFY WHICH NETWORK INTERFACE JBOSS EAP 6 USES
4.2. CONFIGURE NETWORK FIREWALLS TO WORK WITH JBOSS EAP 6
4.3. NETWORK PORTS USED BY JBOSS EAP 6
4.4. ABOUT ENCRYPTION
4.5. ABOUT SSL ENCRYPTION
4.6. IMPLEMENT SSL ENCRYPTION FOR THE JBOSS EAP 6 WEB SERVER
4.7. GENERATE A SSL ENCRYPTION KEY AND CERTIFICATE
4.8. SSL CONNECTOR REFERENCE
4.9. FIPS 140-2 COMPLIANT ENCRYPTION

4.9.1. About FIPS 140-2 Compliance
4.9.2. FIPS 140-2 Compliant Cryptography on IBM JDK

Key storage
Examine FIPS provider information

4.9.3. FIPS 140-2 Compliant Passwords
4.9.4. Enable FIPS 140-2 Cryptography for SSL on Red Hat Enterprise Linux 6

CHAPTER 5. SECURE THE MANAGEMENT INTERFACES
5.1. DEFAULT USER SECURITY CONFIGURATION
5.2. OVERVIEW OF ADVANCED MANAGEMENT INTERFACE CONFIGURATION
5.3. DISABLE THE HTTP MANAGEMENT INTERFACE
5.4. REMOVE SILENT AUTHENTICATION FROM THE DEFAULT SECURITY REALM
5.5. DISABLE REMOTE ACCESS TO THE JMX SUBSYSTEM
5.6. CONFIGURE SECURITY REALMS FOR THE MANAGEMENT INTERFACES
5.7. CONFIGURE THE MANAGEMENT CONSOLE FOR HTTPS
5.8. USE DISTINCT INTERFACES FOR HTTP AND HTTPS CONNECTIONS TO THE MANAGEMENT INTERFACE

5.9. USING 2-WAY SSL FOR THE MANAGEMENT INTERFACE AND THE CLI
5.10. SECURE THE MANAGEMENT INTERFACES VIA JAAS
5.11. LDAP

5.11.1. About LDAP
5.11.2. Use LDAP to Authenticate to the Management Interfaces

7

8
8
8

9

10
10
10
10
11

13
13

15
15
15
16

17
17
18
21
23
24
24
27
30
36
36
36
36
36
37
37

41
41

42
43
44
46
46
47

50
51

54
54
54
55

Table of Contents

1

. .

. .

. .

. .

5.11.3. Using Outbound LDAP with 2-way SSL in the Management Interface and CLI

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL
6.1. ABOUT ROLE-BASED ACCESS CONTROL (RBAC)
6.2. ROLE-BASED ACCESS CONTROL IN THE MANAGEMENT CONSOLE AND CLI
6.3. SUPPORTED AUTHENTICATION SCHEMES
6.4. THE STANDARD ROLES
6.5. ABOUT ROLE PERMISSIONS
6.6. ABOUT CONSTRAINTS
6.7. ABOUT JMX AND ROLE-BASED ACCESS CONTROL
6.8. CONFIGURING ROLE-BASED ACCESS CONTROL

6.8.1. Overview of RBAC Configuration Tasks
6.8.2. Enabling Role-Based Access Control
6.8.3. Changing the Permission Combination Policy

6.9. MANAGING ROLES
6.9.1. About Role Membership
6.9.2. Configure User Role Assignment
6.9.3. Configure User Role Assignment using the Management CLI
6.9.4. About Roles and User Groups
6.9.5. Configure Group Role Assignment
6.9.6. Configure Group Role Assignment using the Management CLI
6.9.7. About Authorization and Group Loading with LDAP

username-to-dn
The Group Search
General Group Searching

6.9.8. About Scoped Roles
6.9.9. Creating Scoped Roles

6.10. CONFIGURING CONSTRAINTS
6.10.1. Configure Sensitivity Constraints
6.10.2. Configure Application Resource Constraints
6.10.3. Configure the Vault Expression Constraint

6.11. CONSTRAINTS REFERENCE
6.11.1. Application Resource Constraints Reference
6.11.2. Sensitivity Constraints Reference

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT
7.1. PASSWORD VAULT SYSTEM
7.2. CONFIGURE AND USE PASSWORD VAULT
7.3. CREATE A JAVA KEYSTORE TO STORE SENSITIVE STRINGS
7.4. INITIALIZE THE PASSWORD VAULT
7.5. OBTAIN KEYSTORE PASSWORD FROM EXTERNAL SOURCE
7.6. CONFIGURE JBOSS EAP 6 TO USE THE PASSWORD VAULT
7.7. CONFIGURE JBOSS EAP 6 TO USE A CUSTOM IMPLEMENTATION OF THE PASSWORD VAULT
7.8. STORE A SENSITIVE STRING IN THE PASSWORD VAULT
7.9. USE AN ENCRYPTED SENSITIVE STRING IN CONFIGURATION
7.10. USE AN ENCRYPTED SENSITIVE STRING IN AN APPLICATION
7.11. CHECK IF A SENSITIVE STRING IS IN THE PASSWORD VAULT
7.12. REMOVE A SENSITIVE STRING FROM THE PASSWORD VAULT

PART III. DEVELOPING SECURE APPLICATIONS

CHAPTER 8. SECURITY OVERVIEW
8.1. ABOUT APPLICATION SECURITY
8.2. DECLARATIVE SECURITY

58

59
59
59
60
60
62
63
64
64
64
65
66
67
67
68
71
75
75
78
81

82
83
85
87
88
90
90
91

92
94
94
95

105
105
105
106
108

111
112
112
113
117
118
119
121

125

126
126
126

Security Guide

2

. .

. .

. .

8.2.1. Java EE Declarative Security Overview
8.2.2. Security References
8.2.3. Security Identity
8.2.4. Security Roles
8.2.5. EJB Method Permissions
8.2.6. Enterprise Beans Security Annotations
8.2.7. Web Content Security Constraints
8.2.8. Enable Form-based Authentication

CHAPTER 9. APPLICATION SECURITY
9.1. DATASOURCE SECURITY

9.1.1. About Datasource Security
9.2. EJB APPLICATION SECURITY

9.2.1. Security Identity
9.2.1.1. About EJB Security Identity
9.2.1.2. Set the Security Identity of an EJB

9.2.2. EJB Method Permissions
9.2.2.1. About EJB Method Permissions
9.2.2.2. Use EJB Method Permissions

9.2.3. EJB Security Annotations
9.2.3.1. About EJB Security Annotations
9.2.3.2. Use EJB Security Annotations

9.2.4. Remote Access to EJBs
9.2.4.1. About Remote Method Access
9.2.4.2. About Remoting Callbacks
9.2.4.3. About Remoting Server Detection
9.2.4.4. Configure the Remoting Subsystem
9.2.4.5. Use Security Realms with Remote EJB Clients
9.2.4.6. Add a New Security Realm
9.2.4.7. Add a User to a Security Realm
9.2.4.8. About Remote EJB Access Using SSL Encryption

9.3. JAX-RS APPLICATION SECURITY
9.3.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
9.3.2. Secure a JAX-RS Web Service using Annotations

CHAPTER 10. THE SECURITY SUBSYSTEM
10.1. ABOUT THE SECURITY SUBSYSTEM
10.2. ABOUT THE STRUCTURE OF THE SECURITY SUBSYSTEM
10.3. CONFIGURING THE SECURITY SUBSYSTEM

10.3.1. Configure the Security Subsystem
10.3.2. Security Management

10.3.2.1. About Deep Copy Subject Mode
10.3.2.2. Enable Deep Copy Subject Mode

10.3.3. Security Domains
10.3.3.1. About Security Domains
10.3.3.2. CLI Operations Related to Security Domains

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION
11.1. KERBEROS AND SPNEGO INTEGRATION

11.1.1. About Kerberos and SPNEGO Integration
11.1.2. Desktop SSO using SPNEGO
11.1.3. Configure JBoss Negotiation for Microsoft Windows Domain
11.1.4. Kerberos Authentication for PicketLink IDP
11.1.5. Login with Certificate with PicketLink IDP

126
126
128
130
131

134
135
137

139
139
139
140
140
140
140
141
141

142
144
144
145
146
146
147
148
148
156
156
157
158
158
158
160

161
161
161

162
162
162
163
163
164
164
164

166
166
166
166
168
170
173

Table of Contents

3

. .

. .

11.1.5.1. JBoss EAP 6 SSL Configuration
11.2. AUTHENTICATION

11.2.1. About Authentication
11.2.2. Configure Authentication in a Security Domain

11.3. JAAS - JAVA AUTHENTICATION AND AUTHORIZATION SERVICE
11.3.1. About JAAS
11.3.2. JAAS Core Classes
11.3.3. Subject and Principal classes
11.3.4. Subject Authentication

11.4. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
11.4.1. About Java Authentication SPI for Containers (JASPI) Security
11.4.2. Configure Java Authentication SPI for Containers (JASPI) Security

11.5. AUTHORIZATION
11.5.1. About Authorization
11.5.2. Configure Authorization in a Security Domain

11.6. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
11.6.1. About Java Authorization Contract for Containers (JACC)
11.6.2. Configure Java Authorization Contract for Containers (JACC) Security
11.6.3. Fine Grained Authorization Using XACML

11.6.3.1. About Fine Grained Authorization and XACML
11.6.3.2. Configure XACML for Fine Grained Authorization

11.7. SECURITY AUDITING
11.7.1. About Security Auditing
11.7.2. Configure Security Auditing
11.7.3. New Security Properties

11.8. SECURITY MAPPING
11.8.1. About Security Mapping
11.8.2. Configure Security Mapping in a Security Domain

11.9. USE A SECURITY DOMAIN IN YOUR APPLICATION

CHAPTER 12. SINGLE SIGN ON (SSO)
12.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
12.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
12.3. CHOOSE THE RIGHT SSO IMPLEMENTATION
12.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION
12.5. ABOUT KERBEROS
12.6. ABOUT SPNEGO
12.7. ABOUT MICROSOFT ACTIVE DIRECTORY
12.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB APPLICATIONS

12.9. CONFIGURE SPNEGO FALL BACK TO FORM AUTHENTICATION

CHAPTER 13. SINGLE SIGN-ON WITH SAML
13.1. ABOUT SECURITY TOKEN SERVICE (STS)
13.2. CONFIGURE SECURITY TOKEN SERVICE (STS)
13.3. ABOUT PICKETLINK STS LOGIN MODULES
13.4. CONFIGURE STSISSUINGLOGINMODULE
13.5. CONFIGURE STSVALIDATINGLOGINMODULE
13.6. STS CLIENT POOLING

Using STSClientPoolFactory
13.7. SAML WEB BROWSER BASED SSO

13.7.1. About SAML Web Browser Based SSO
13.7.2. Setup SAML v2 based Web SSO

173
176
176
176
178
178
178
179
179
182
182
182
183
183
183
184
184
185
186
186
187
193
193
194
195
195
195
196
197

200
200
200
200
201

203
203
203

204
207

209
209

211
212
214
214
215
216
216
216
217

Security Guide

4

. .

. .

. .

. .

. .

13.7.3. Configure Identity Provider
13.7.4. Configure Service Provider using HTTP/REDIRECT Binding
13.7.5. Setup SAML v2 based Web SSO using HTTP/POST Binding
13.7.6. Configure Dynamic Account Chooser at a Service Provider
13.7.7. Configuration of IDP-initiated SSO

13.8. CONFIGURE SAML GLOBAL LOGOUT PROFILE

CHAPTER 14. LOGIN MODULES
14.1. USING MODULES

14.1.1. Password Stacking
14.1.2. Password Hashing
14.1.3. Unauthenticated Identity
14.1.4. Ldap Login Module
14.1.5. LdapExtended Login Module
14.1.6. UsersRoles Login Module
14.1.7. Database Login Module
14.1.8. Certificate Login Module
14.1.9. Identity Login Module
14.1.10. RunAs Login Module

14.1.10.1. RunAsIdentity Creation
14.1.11. Client Login Module
14.1.12. SPNEGO Login Module
14.1.13. RoleMapping Login Module
14.1.14. bindCredential Module Option

14.2. CUSTOM MODULES
14.2.1. Subject Usage Pattern Support
14.2.2. Custom LoginModule Example

CHAPTER 15. ROLE-BASED SECURITY IN APPLICATIONS
15.1. JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)
15.2. ABOUT JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)
15.3. USE ROLE-BASED SECURITY IN SERVLETS
15.4. USE A THIRD-PARTY AUTHENTICATION SYSTEM IN YOUR APPLICATION

CHAPTER 16. MIGRATION
16.1. CONFIGURE APPLICATION SECURITY CHANGES

APPENDIX A. REFERENCE
A.1. INCLUDED AUTHENTICATION MODULES
A.2. INCLUDED AUTHORIZATION MODULES
A.3. INCLUDED SECURITY MAPPING MODULES
A.4. INCLUDED SECURITY AUDITING PROVIDER MODULES
A.5. JBOSS-WEB.XML CONFIGURATION REFERENCE
A.6. EJB SECURITY PARAMETER REFERENCE

APPENDIX B. REVISION HISTORY

217
220
222
223
224
225

227
227
227
228
229
230
233
241
242
243
245
246
246
248
248
249
250
251

252
256

260
260
260
261

263

271
271

272
272
300
301

304
305
308

310

Table of Contents

5

Security Guide

6

PART I. SECURITY FOR RED HAT JBOSS ENTERPRISE
APPLICATION PLATFORM 6

PART I. SECURITY FOR RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6

7

CHAPTER 1. INTRODUCTION

1.1. ABOUT RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6

Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a middleware platform built on open
standards and compliant with the Java Enterprise Edition 6 specification. It integrates JBoss Application
Server 7 with high-availability clustering, messaging, distributed caching, and other technologies.

JBoss EAP 6 includes a new, modular structure that allows service enabling only when required,
improving start-up speed.

The Management Console and Management Command Line Interface make editing XML configuration
files unnecessary and add the ability to script and automate tasks.

In addition, JBoss EAP 6 includes APIs and development frameworks for quickly developing secure and
scalable Java EE applications.

Report a bug

1.2. ABOUT SECURING JBOSS EAP 6

Computer security is the all encompassing term given to the field of information technology that deals
with securing the virtual environments that power the digital age. This can include data protection and
integrity, application security, risk and vulnerability assessment and authentication and authorization
protocols.

Computer data is an all important asset for most organizations. Data protection is vital and forms the
core of most businesses. JBoss EAP 6 provides a multi-layered approach to security to take care of data
at all stages.

Truly secure systems are the ones that are designed from the ground up with security as the main
feature. Such systems use the principle of Security by Design. In such systems, malicious attacks and
infiltration's are accepted as part and parcel of normal security apparatus and systems are designed to
work around them.

Security can be applied at the operating system, middleware and application level. For more information
about security at the operating system level as it applies to RHEL, refer to the Red Hat Enterprise Linux
Security Guide.

In the coming chapters, you will read about the different levels and layers of security within JBoss EAP
6. These layers provides the infrastructure for all security functionality within the platform.

Report a bug

Security Guide

8

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+228-681277+%5BLatest%5D&comment=Title%3A+About+Red+Hat+JBoss+Enterprise+Application+Platform+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=228-681277+03+Jul+2014+14%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+13955-715686+%5BLatest%5D&comment=Title%3A+About+Securing+JBoss+EAP+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13955-715686+09+Oct+2014+02%3A34+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

PART II. SECURING THE PLATFORM

PART II. SECURING THE PLATFORM

9

CHAPTER 2. JAVA SECURITY MANAGER

2.1. ABOUT THE JAVA SECURITY MANAGER

The Java Security Manager is a class that manages the external boundary of the Java Virtual Machine
(JVM) sandbox, controlling how code executing within the JVM can interact with resources outside the
JVM. When the Java Security Manager is activated, the Java API checks with the security manager for
approval before executing a wide range of potentially unsafe operations. The Java Security Manager
uses a security policy to determine whether a given action will be allowed or denied.

Report a bug

2.2. ABOUT JAVA SECURITY POLICIES

A Java Security policy is a set of defined permissions for different classes of code. The Java Security
Manager compares actions requested by applications against the security policy. If an action is allowed
by the policy, the Security Manager will permit that action to take place. If the action is not allowed by
the policy, the Security Manager will deny that action. The security policy can define permissions based
on the location of code, on the code's signature, or based on the subject's principals.

You can create a security policy using the policytool application, which is included with the Java
Development Kit (JDK). A security policy entry consists of the following configuration elements, which
are configurable using policytool:

CodeBase

The URL location (excluding the host and domain information) where the code originates from. This
parameter is optional.

SignedBy

The alias used in the keystore to reference the signer whose private key was used to sign the code.
This can be a single value or a comma-separated list of values. This parameter is optional. If omitted,
presence or lack of a signature has no impact on the Java Security Manager.

Principals

A list of principal_type/principal_name pairs, which must be present within the executing thread's
principal set. The Principals entry is optional. If it is omitted, it signifies that the principals of the
executing thread will have no impact on the Java Security Manager.

Permissions

A permission is the access which is granted to the code. Many permissions are provided as part of the
Java Enterprise Edition 6 (Java EE 6) specification.

Report a bug

2.3. WRITE A JAVA SECURITY POLICY

An application called policytool is included with most JDK and JRE distributions, for the purpose of
creating and editing Java security policies. Detailed information about policytool is linked from
http://docs.oracle.com/javase/6/docs/technotes/tools/. Alternatively, you can also write a security
policy using a text editor.

Security Guide

10

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4778-714990+%5BLatest%5D&comment=Title%3A+About+the+Java+Security+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4778-714990+03+Oct+2014+00%3A32+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4781-748001+%5BLatest%5D&comment=Title%3A+About+Java+Security+Policies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4781-748001+20+Mar+2015+00%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javase/6/docs/technotes/tools/

Procedure 2.1. Setup a new Java Security Manager Policy

1. Start policytool.
Start the policytool tool in one of the following ways.

Red Hat Enterprise Linux
From your GUI or a command prompt, run /usr/bin/policytool.

Microsoft Windows Server
Run policytool.exe from your Start menu or from the bin\ of your Java installation. The
location can vary.

2. Create a policy.
To create a policy, select Add Policy Entry. Add the parameters you need, then click Done.

NOTE

Use VFS to specify paths for applications deployed on JBoss EAP. On Linux the
path is: vfs:/content/application.war. On Microsoft Windows it is:
vfs:/${user.dir}/content/application.war .

For example:

grant codeBase "vfs:/content/application.war/-" {
permission java.util.PropertyPermission "*", "read";
};

3. Edit an existing policy
Select the policy from the list of existing policies, and select the Edit Policy Entry button. Edit
the parameters as needed.

4. Delete an existing policy.
Select the policy from the list of existing policies, and select the Remove Policy Entry button.

Report a bug

2.4. RUN JBOSS EAP 6 WITHIN THE JAVA SECURITY MANAGER

From JBoss EAP 6.4 and onwards, running JBoss EAP 6 within the Java Security Manager (JSM) is
done using the secmgr option.

IMPORTANT

Direct usage of the -Djava.security.manager Java system property is no longer possible.
This previous method used in older versions of JBoss EAP 6 to enable the Java Security
Manager is now only supported as a fallback mechanism in the JBoss EAP startup scripts.

NOTE

From JBoss EAP 6.4 and onwards, custom security managers cannot be used.

The following procedure guides you through the steps of configuring your JBoss EAP 6 instance to run
within the Java Security Manager using a specified security policy.

CHAPTER 2. JAVA SECURITY MANAGER

11

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4782-748002+%5BLatest%5D&comment=Title%3A+Write+a+Java+Security+Policy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4782-748002+20+Mar+2015+00%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Prerequisites

Before you follow this procedure, you need to write a security policy using the policytool
application which is included in the Java Development Kit (JDK). Alternatively, you can write a
security policy using a text editor.

Security policies will be needed for any user deployments that require permissions. This
procedure assumes that your policy is located at EAP_HOME/bin/server.policy.

The domain or standalone server must be completely stopped before you edit any configuration
files.

If you are using JBoss EAP 6 in a Managed Domain, you must perform the following procedure on each
physical host or instance in your domain.

Procedure 2.2. Configure the Java Security Manager for JBoss EAP 6

1. Open the Configuration File
Open the configuration file for editing. The configuration file you need to edit depends on
whether you use a Managed Domain or standalone server, as well as your operating system.

Managed Domain

For Linux: EAP_HOME/bin/domain.conf

For Windows: EAP_HOME\bin\domain.conf.bat

Standalone Server

For Linux: EAP_HOME/bin/standalone.conf

For Windows: EAP_HOME\bin\standalone.conf.bat

2. Enable the Java Security Manager
Use one of the methods below to enable the Java Security Manager:

Use the -secmgr option with your JBoss EAP 6 server startup script.

Uncomment the SECMGR="true" line in the configuration file:

On Linux:

On Windows:

3. Specify the Java Security Policy
You can use -Djava.security.policy to specify the exact location of your security policy. It
should go onto one line only, with no line break. Using == when setting -Djava.security.policy
specifies that the security manager will use only the specified policy file. Using = specifies that
the security manager will use the specified policy combined with the policy set in the policy.url
section of JAVA_HOME/lib/security/java.security.

Uncomment this to run with a security manager enabled
SECMGR="true"

rem # Uncomment this to run with a security manager enabled
set "SECMGR=true"

Security Guide

12

In your relevant JBoss EAP 6 configuration file, add your security policy Java options. If you are
using a Managed Domain, ensure that this is inserted before where
PROCESS_CONTROLLER_JAVA_OPTS and HOST_CONTROLLER_JAVA_OPTS are set.

On Linux:

On Windows:

4. Start the Domain or Server
Start the domain or server as normal.

Report a bug

2.5. IBM JDK AND THE JAVA SECURITY MANAGER

Some versions of the IBM JDK use a default policy provider which does not work correctly with a JBoss
EAP security policy. If you are having problems using an IBM JDK to host JBoss EAP with the Java
Security Manager enabled, you must change the JRE configuration to use the standard policy provider.

To modify the JRE configuration for the IBM JDK, edit the JAVA_HOME/jre/lib/security/java.security
file, and set the policy.provider value to sun.security.provider.PolicyFile.

policy.provider=sun.security.provider.PolicyFile

Report a bug

2.6. DEBUG SECURITY MANAGER POLICIES

You can enable debugging information to help you troubleshoot security policy-related issues. The
java.security.debug option configures the level of security-related information reported. The
command java -Djava.security.debug=help will produce help output with the full range of debugging
options. Setting the debug level to all is useful when troubleshooting a security-related failure whose
cause is completely unknown, but for general use it will produce too much information. A sensible
general default is access:failure.

Procedure 2.3. Enable general debugging

This procedure will enable a sensible general level of security-related debug information.
Add the following line to the server configuration file.

If the JBoss EAP 6 instance is running in a managed domain, the line is added to the
bin/domain.conf file for Linux or the bin\domain.conf.bat file for Windows.

If the JBoss EAP 6 instance is running as a standalone server, the line is added to the
bin/standalone.conf file for Linux, or the bin\standalone.conf.bat file for Windows.

Linux

JAVA_OPTS="$JAVA_OPTS -Djava.security.policy==$JBOSS_HOME/bin/server.policy -
Djboss.home.dir=$JBOSS_HOME"

set "JAVA_OPTS=%JAVA_OPTS% -
Djava.security.policy==%JBOSS_HOME%\bin\server.policy -
Djboss.home.dir=%JBOSS_HOME%"

CHAPTER 2. JAVA SECURITY MANAGER

13

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4779-741909+%5BLatest%5D&comment=Title%3A+Run+JBoss+EAP+6+Within+the+Java+Security+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4779-741909+07+Feb+2015+13%3A07+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+30502-732585+%5BLatest%5D&comment=Title%3A+IBM+JDK+and+the+Java+Security+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30502-732585+14+Dec+2014+20%3A37+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Windows

Result

A general level of security-related debug information has been enabled.

Report a bug

JAVA_OPTS="$JAVA_OPTS -Djava.security.debug=access:failure"

set "JAVA_OPTS=%JAVA_OPTS% -Djava.security.debug=access:failure"

Security Guide

14

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4780-591672+%5BLatest%5D&comment=Title%3A+Debug+Security+Manager+Policies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4780-591672+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 3. SECURITY REALMS

3.1. ABOUT SECURITY REALMS

A security realm is a series of mappings between users and passwords, and users and roles. Security
realms are a mechanism for adding authentication and authorization to your EJB and Web applications.
JBoss EAP 6 provides two security realms by default:

ManagementRealm stores authentication information for the Management API, which provides
the functionality for the Management CLI and web-based Management Console. It provides an
authentication system for managing JBoss EAP 6 itself. You could also use the
ManagementRealm if your application needed to authenticate with the same business rules you
use for the Management API.

ApplicationRealm stores user, password, and role information for Web Applications and EJBs.

Each realm is stored in a number of files on the filesystem:

REALM-users.properties stores usernames and hashed passwords.

REALM-roles.properties stores user-to-role mappings.

mgmt-groups.properties stores user-to-group mapping file for ManagementRealm. Only
used when Role-based Access Control (RBAC) is enabled.

The properties files are stored in the domain/configuration/ and standalone/configuration/
directories. The files are written simultaneously by the add-user.sh or add-user.bat command. When
you run the command, the first decision you make is which realm to add your new user to.

Report a bug

3.2. ADD A NEW SECURITY REALM

1. Run the Management CLI.
Start the jboss-cli.sh or jboss-cli.bat command and connect to the server.

2. Create the new security realm itself.
Run the following command to create a new security realm named MyDomainRealm on a
domain controller or a standalone server.

For a domain instance, use this command:

/host=master/core-service=management/security-realm=MyDomainRealm:add()

For a standalone instance, use this command:

/core-service=management/security-realm=MyDomainRealm:add()

3. Create the references to the properties file which will store information about the new role.
Run the following command to create a pointer a file named myfile.properties, which will
contain the properties pertaining to the new role.

NOTE

CHAPTER 3. SECURITY REALMS

15

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8269-685992+%5BLatest%5D&comment=Title%3A+About+Security+Realms%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8269-685992+18+Jul+2014+06%3A48+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

The newly created properties file is not managed by the included add-user.sh
and add-user.bat scripts. It must be managed externally.

For a domain instance, use this command:

/host=master/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path=myfile.properties)

For a standalone instance, use this command:

/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path=myfile.properties)

Result

Your new security realm is created. When you add users and roles to this new realm, the information will
be stored in a separate file from the default security realms. You can manage this new file using your
own applications or procedures.

Report a bug

3.3. ADD A USER TO A SECURITY REALM

1. Run the add-user.sh or add-user.bat command.
Open a terminal and change directories to the EAP_HOME/bin/ directory. If you run Red Hat
Enterprise Linux or another UNIX-like operating system, run add-user.sh. If you run Microsoft
Windows Server, run add-user.bat.

2. Choose whether to add a Management User or Application User.
For this procedure, type b to add an Application User.

3. Choose the realm the user will be added to.
By default, the only available realm is ApplicationRealm. If you have added a custom realm, you
can type its name instead.

4. Type the username, password, and roles, when prompted.
Type the desired username, password, and optional roles when prompted. Verify your choice by
typing yes, or type no to cancel the changes. The changes are written to each of the properties
files for the security realm.

Report a bug

Security Guide

16

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8272-719583+%5BLatest%5D&comment=Title%3A+Add+a+New+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8272-719583+27+Oct+2014+21%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8271-591829+%5BLatest%5D&comment=Title%3A+Add+a+User+to+a+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8271-591829+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 4. ENCRYPT NETWORK TRAFFIC

4.1. SPECIFY WHICH NETWORK INTERFACE JBOSS EAP 6 USES

Overview

Isolating services so that they are accessible only to the clients who need them increases the security of
your network. JBoss EAP 6 includes two interfaces in its default configuration, both of which bind to the
IP address 127.0.0.1, or localhost, by default. One of the interfaces is called management, and is used
by the Management Console, CLI, and API. The other is called public, and is used to deploy applications.
These interfaces are not special or significant, but are provided as a starting point.

The management interface uses ports 9990 and 9999 by default, and the public interface uses port
8080, or port 8443 if you use HTTPS.

You can change the IP address of the management interface, public interface, or both.

WARNING

If you expose the management interfaces to other network interfaces which are
accessible from remote hosts, be aware of the security implications. Most of the
time, it is not advisable to provide remote access to the management interfaces.

1. Stop JBoss EAP 6.
Stop JBoss EAP 6 by sending an interrupt in the appropriate way for your operating system. If
you are running JBoss EAP 6 as a foreground application, the typical way to do this is to press
Ctrl+C.

2. Restart JBoss EAP 6, specifying the bind address.
Use the -b command-line switch to start JBoss EAP 6 on a specific interface.

NOTE

In the following examples, the IP address used 10.1.1.1 must be available to you. To
know the IP address, use the ifconfig command.

Example 4.1. Specify the public interface.

EAP_HOME/bin/domain.sh -b 10.1.1.1

Example 4.2. Specify the management interface.

EAP_HOME/bin/domain.sh -bmanagement=10.1.1.1



CHAPTER 4. ENCRYPT NETWORK TRAFFIC

17

Example 4.3. Specify different addresses for each interface.

EAP_HOME/bin/domain.sh -bmanagement=127.0.0.1 -b 10.1.1.1

Example 4.4. Bind the public interface to all network interfaces.

EAP_HOME/bin/domain.sh -b 0.0.0.0

It is possible to edit your XML configuration file directly, to change the default bind addresses. However,
if you do this, you will no longer be able to use the -b command-line switch to specify an IP address at
runtime, so this is not recommended. If you do decide to do this, be sure to stop JBoss EAP 6
completely before editing the XML file.

Report a bug

4.2. CONFIGURE NETWORK FIREWALLS TO WORK WITH JBOSS EAP 6

Summary

Most production environments use firewalls as part of an overall network security strategy. If you need
multiple server instances to communicate with each other or with external services such as web servers
or databases, your firewall must take this into account. A well-managed firewall only opens the ports
which are necessary for operation, and limits access to the ports to specific IP addresses, subnets, and
network protocols.

A full discussion of firewalls is out of the scope of this documentation.

Prerequisites

Determine the ports you need to open.

An understanding of your firewall software is required. This procedure uses the system-config-
firewall command in Red Hat Enterprise Linux 6. Microsoft Windows Server includes a built-in
firewall, and several third-party firewall solutions are available for each platform. On Microsoft
Windows Server, you can use PowerShell to configure the firewall.

Assumptions

This procedure configures a firewall in an environment with the following assumptions:

The operating system is Red Hat Enterprise Linux 6.

JBoss EAP 6 runs on host 10.1.1.2. Optionally, the server has its own firewall.

The network firewall server runs on host 10.1.1.1 on interface eth0, and has an external
interface eth1.

You want traffic on port 5445 (a port used by JMS) forwarded to JBoss EAP 6. No other traffic
should be allowed through the network firewall.

Procedure 4.1. Manage Network Firewalls and JBoss EAP 6 to work together

Security Guide

18

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4704-741438+%5BLatest%5D&comment=Title%3A+Specify+Which+Network+Interface+JBoss+EAP+6+Uses%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4704-741438+05+Feb+2015+03%3A25+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

1. Log into the Management Console.
Log into the Management Console. By default, it runs on http://localhost:9990/console/.

2. Determine the socket bindings used by the socket binding group.

a. Click the Configuration label at the top of the Management Console.

b. Expand the General Configuration menu. Select the Socket Binding.

c. The Socket Binding Declarations screen appears. Initially, the standard-sockets group is
shown. Choose a different group by selecting it from the combo box on the right-hand side.

NOTE

If you use a standalone server, it has only one socket binding group.

The list of socket names and ports is shown, eight values per page. You can go through the
pages by using the arrow navigation below the table.

3. Determine the ports you need to open.
Depending on the function of the particular port and the requirements of your environment,
some ports may need to be opened on your firewall.

4. Configure your firewall to forward traffic to JBoss EAP 6.
Perform these steps to configure your network firewall to allow traffic on the desired port.

a. Log into your firewall machine and access a command prompt, as the root user.

b. Issue the command system-config-firewall to launch the firewall configuration utility. A
GUI or command-line utility launches, depending on the way you are logged into the firewall
system. This task makes the assumption that you are logged in via SSH and using the
command-line interface.

c. Use the TAB key on your keyboard to navigate to the Customize button, and press the
ENTER key. The Trusted Services screen appears.

d. Do not change any values, but use the TAB key to navigate to the Forward button, and
press ENTER to advanced to the next screen. The Other Ports screen appears.

e. Use the TAB key to navigate to the <Add> button, and press ENTER. The Port and
Protocol screen appears.

f. Enter 5445 in the Port / Port Range field, then use the TAB key to move to the Protocol
field, and enter tcp. Use the TAB key to navigate to the OK button, and press ENTER.

g. Use the TAB key to navigate to the Forward button until you reach the Port Forwarding
screen.

h. Use the TAB key to navigate to the <Add> button, and press the ENTER key.

i. Fill in the following values to set up port forwarding for port 5445.

Source interface: eth1

Protocol: tcp

CHAPTER 4. ENCRYPT NETWORK TRAFFIC

19

http://localhost:9990/console/

Port / Port Range: 5445

Destination IP address: 10.1.1.2

Port / Port Range: 5445

Use the TAB key to navigate to the OK button, and press ENTER.

j. Use the TAB key to navigate to the Close button, and press ENTER.

k. Use the TAB key to navigate to the OK button, and press ENTER. To apply the changes,
read the warning and click Yes.

5. Configure a firewall on your JBoss EAP 6 host.
Some organizations choose to configure a firewall on the JBoss EAP 6 server itself, and close all
ports that are not necessary for its operation. See Section 4.3, “Network Ports Used By JBoss
EAP 6” and determine which ports to open, then close the rest. The default configuration of Red
Hat Enterprise Linux 6 closes all ports except 22 (used for Secure Shell (SSH) and 5353 (used
for multicast DNS). While you are configuring ports, ensure you have physical access to your
server so that you do not inadvertently lock yourself out.

Result

Your firewall is configured to forward traffic to your internal JBoss EAP 6 server in the way you specified
in your firewall configuration. If you chose to enable a firewall on your server, all ports are closed except
the ones needed to run your applications.

Procedure 4.2. Configuring Firewall on Microsoft Windows using PowerShell

1. Switch off firewall for debug purpose to determine whether the current network behavior is
related to the firewall configuration.

Start-Process "$psHome\powershell.exe" -Verb Runas -ArgumentList '-command "NetSh
Advfirewall set allprofiles state off"'

2. Allow UDP connections on port 23364. For example:

Start-Process "$psHome\powershell.exe" -Verb Runas -ArgumentList '-command "NetSh
Advfirewall firewall add rule name="UDP Port 23364" dir=in action=allow protocol=UDP
localport=23364"'
Start-Process "$psHome\powershell.exe" -Verb Runas -ArgumentList '-command "NetSh
Advfirewall firewall add rule name="UDP Port 23364" dir=out action=allow protocol=UDP
localport=23364"'

Procedure 4.3. Configure the Firewall on Red Hat Enterprise Linux 7 to Allow mod_cluster
Advertising

To allow mod_cluster advertising on Red Hat Enterprise Linux 7, you must enable the UDP port
in the firewall as follows:

firewall-cmd --permanent --zone=public --add-port=23364/udp

NOTE

Security Guide

20

NOTE

224.0.1.105:23364 is the default address and port for mod_cluster balancer
advertising UDP multicast.

Report a bug

4.3. NETWORK PORTS USED BY JBOSS EAP 6

The ports used by the JBoss EAP 6 default configuration depend on several factors:

Whether your server groups use one of the default socket binding groups, or a custom group.

The requirements of your individual deployments.

NOTE

A numerical port offset can be configured, to alleviate port conflicts when you run multiple
servers on the same physical server. If your server uses a numerical port offset, add the
offset to the default port number for its server group's socket binding group. For
instance, if the HTTP port of the socket binding group is 8080, and your server uses a port
offset of 100, its HTTP port is 8180.

Unless otherwise stated, the ports use the TCP protocol.

The default socket binding groups

full-ha-sockets

full-sockets

ha-sockets

standard-sockets

These socket binding groups are available only in domain.xml. The standalone server profiles contain
only standard socket binding group. This group corresponds to standard-sockets in standalone.xml,
ha-sockets for standalone-ha.xml, full-sockets for standalone-full.xml, and full-ha-sockets for
standalone-full-ha.xml. Standalone profiles contain some more socket bindings, for example,
management-{native,http,https}.

Table 4.1. Reference of the default socket bindings

Name Port Multicas
t Port

Description full-ha-
sockets

full-
sockets

ha-
socket

standar
d-
socket

ajp 8009 Apache JServ
Protocol. Used for
HTTP clustering and
load balancing.

Yes Yes Yes Yes

CHAPTER 4. ENCRYPT NETWORK TRAFFIC

21

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4705-707573+%5BLatest%5D&comment=Title%3A+Configure+Network+Firewalls+to+Work+with+JBoss+EAP+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4705-707573+09+Sep+2014+02%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

http 8080 The default port for
deployed web
applications.

Yes Yes Yes Yes

https 8443 SSL-encrypted
connection between
deployed web
applications and
clients.

Yes Yes Yes Yes

jacorb 3528 CORBA services for
JTS transactions and
other ORB-
dependent services.

Yes Yes No No

jacorb-
ssl

3529 SSL-encrypted
CORBA services.

Yes Yes No No

jgroups
-
diagno
stics

7500 Multicast. Used for
peer discovery in HA
clusters. Not
configurable using
the Management
Interfaces.

Yes No Yes No

jgroups
-mping

45700 Multicast. Used to
discover initial
membership in a HA
cluster.

Yes No Yes No

jgroups
-tcp

7600 Unicast peer
discovery in HA
clusters using TCP.

Yes No Yes No

jgroups
-tcp-fd

57600 Used for HA failure
detection over TCP.

Yes No Yes No

jgroups
-udp

55200 45688 Multicast peer
discovery in HA
clusters using UDP.

Yes No Yes No

jgroups
-udp-fd

54200 Used for HA failure
detection over UDP.

Yes No Yes No

messa
ging

5445 JMS service. Yes Yes No No

Name Port Multicas
t Port

Description full-ha-
sockets

full-
sockets

ha-
socket

standar
d-
socket

Security Guide

22

messa
ging-
group

Referenced by
HornetQ JMS
broadcast and
discovery groups.

Yes Yes No No

messa
ging-
throug
hput

5455 Used by JMS
Remoting.

Yes Yes No No

mod_cl
uster

23364 Multicast port for
communication
between JBoss EAP
6 and the HTTP load
balancer.

Yes No Yes No

remotin
g

4447 Used for remote EJB
invocation.

Yes Yes Yes Yes

txn-
recover
y-
environ
ment

4712 The JTA transaction
recovery manager.

Yes Yes Yes Yes

txn-
status-
manag
er

4713 The JTA / JTS
transaction manager.

Yes Yes Yes Yes

Name Port Multicas
t Port

Description full-ha-
sockets

full-
sockets

ha-
socket

standar
d-
socket

Management Ports

In addition to the socket binding groups, each host controller opens two more ports for management
purposes:

9990 - The Web Management Console port

9999 - The port used by the Management Console and Management API

Additionally, if HTTPS is enabled for the Management Console, 9443 is also opened as the default port.

Report a bug

4.4. ABOUT ENCRYPTION

Encryption refers to obfuscating sensitive information by applying mathematical algorithms to it.
Encryption is one of the foundations of securing your infrastructure from data breaches, system
outages, and other risks.

CHAPTER 4. ENCRYPT NETWORK TRAFFIC

23

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+5377-741835+%5BLatest%5D&comment=Title%3A+Network+Ports+Used+By+JBoss+EAP+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5377-741835+06+Feb+2015+02%3A50+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Encryption can be applied to simple string data, such as passwords. It can also be applied to data
communication streams. The HTTPS protocol, for instance, encrypts all data before transferring it from
one party to another. If you connect from one server to another using the Secure Shell (SSH) protocol,
all of your communication is sent in an encrypted tunnel .

Report a bug

4.5. ABOUT SSL ENCRYPTION

Secure Sockets Layer (SSL) encrypts network traffic between two systems. Traffic between the two
systems is encrypted using a two-way key, generated during the handshake phase of the connection
and known only by those two systems.

For secure exchange of the two-way encryption key, SSL makes use of Public Key Infrastructure (PKI), a
method of encryption that utilizes a key pair . A key pair consists of two separate but matching
cryptographic keys - a public key and a private key. The public key is shared with others and is used to
encrypt data, and the private key is kept secret and is used to decrypt data that has been encrypted
using the public key.

When a client requests a secure connection, a handshake phase takes place before secure
communication can begin. During the SSL handshake the server passes its public key to the client in the
form of a certificate. The certificate contains the identity of the server (its URL), the public key of the
server, and a digital signature that validates the certificate. The client then validates the certificate and
makes a decision about whether the certificate is trusted or not. If the certificate is trusted, the client
generates the two-way encryption key for the SSL connection, encrypts it using the public key of the
server, and sends it back to the server. The server decrypts the two-way encryption key, using its private
key, and further communication between the two machines over this connection is encrypted using the
two-way encryption key.

WARNING

Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in
all affected packages.

Report a bug

4.6. IMPLEMENT SSL ENCRYPTION FOR THE JBOSS EAP 6 WEB
SERVER

Introduction

Many web applications require an SSL-encrypted connection between clients and server, also known as a
HTTPS connection. You can use this procedure to enable HTTPS on your server or server group.



Security Guide

24

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4774-591672+%5BLatest%5D&comment=Title%3A+About+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4774-591672+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4775-724692+%5BLatest%5D&comment=Title%3A+About+SSL+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4775-724692+09+Nov+2014+23%3A42+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

WARNING

Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in
all affected packages.

Prerequisites

A set of SSL encryption keys and an SSL encryption certificate. You may purchase these from a
certificate-signing authority, or you can generate them yourself using command-line utilities. To
generate encryption keys using utilities available on Red Hat Enterprise Linux, see Section 4.7,
“Generate a SSL Encryption Key and Certificate”.

The following details about your specific environment and setup:

The full directory name where the certificate files are stored.

The encryption password for your encryption keys.

Management CLI running and connected to your domain controller or standalone server.

Select appropriate cipher suites.

Cipher Suites

There are a number of available cryptographic primitives used as building blocks to form cipher suites.
The first table lists recommended cryptographic primitives. The second lists cryptographic primitives
which, while they may be used for compatibility with existing software, are not considered as secure as
those recommended.

WARNING

Red Hat recommends selectively whitelisting a set of strong ciphers to use for
cipher-suite. Enabling weak ciphers is a significant security risk. Consult your JDK
vendor's documentation before deciding on particular cipher suites as there may be
compatibility issues.

Table 4.2. Recommended Cryptographic Primitives

RSA with 2048 bit keys and OAEP

AES-128 in CBC mode

SHA-256

HMAC-SHA-256





CHAPTER 4. ENCRYPT NETWORK TRAFFIC

25

HMAC-SHA-1

Table 4.3. Other Cryptographic Primitives

RSA with key sizes larger than 1024 and legacy padding

AES-192

AES-256

3DES (triple DES, with two or three 56 bit keys)

RC4 (strongly discouraged)

SHA-1

HMAC-MD5

For a full listing of parameters you can set for the SSL properties of the connector, see Section 4.8,
“SSL Connector Reference”.

NOTE

This procedure uses commands appropriate for a JBoss EAP 6 configuration that uses a
managed domain. If you use a standalone server, modify Management CLI commands by
removing the /profile=default from the beginning of any management CLI commands
and replace instances of the jboss.domain.config.dir property with
jboss.server.config.dir (as jboss.domain.config.dir is not available in standalone
mode).

WARNING

Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in
all affected packages.

Procedure 4.4. Configure the JBoss Web Server to use HTTPS

1. Add a new HTTPS connector.
Create a secure connector, named HTTPS, which uses the https scheme, the https socket
binding (which defaults to 8443), and is set to be secure.

/profile=default/subsystem=web/connector=HTTPS/:add(socket-
binding=https,scheme=https,protocol=HTTP/1.1,secure=true)

2. Configure the SSL encryption certificate and keys.



Security Guide

26

Configure your SSL certificate, substituting your own values for the example ones. This example
assumes that the keystore is copied to the server configuration directory, which is
EAP_HOME/domain/configuration/ for a managed domain.

/profile=default/subsystem=web/connector=HTTPS/ssl=configuration:add(name=https,certificate
-key-file="${jboss.domain.config.dir}/keystore.jks",password=SECRET, key-
alias=KEY_ALIAS, cipher-suite=CIPHERS)

3. Set the protocol to TLSv1.

/profile=default/subsystem=web/connector=HTTPS/ssl=configuration/:write-
attribute(name=protocol,value=TLSv1)

4. Deploy an application.
Deploy an application to a server group which uses the profile you have configured. If you use a
standalone server, deploy an application to your server. HTTPS requests to it use the new SSL-
encrypted connection.

Report a bug

4.7. GENERATE A SSL ENCRYPTION KEY AND CERTIFICATE

To use a SSL-encrypted HTTP connection (HTTPS), as well as other types of SSL-encrypted
communication, you need a signed encryption certificate. You can purchase a certificate from a
Certificate Authority (CA), or you can use a self-signed certificate. Self-signed certificates are not
considered trustworthy by many third parties, but are appropriate for internal testing purposes.

This procedure enables you to create a self-signed certificate using utilities which are available on Red
Hat Enterprise Linux.

Prerequisites

You need the keytool utility, which is provided by any Java Development Kit implementation.
OpenJDK on Red Hat Enterprise Linux installs this command to /usr/bin/keytool.

Understand the syntax and parameters of the keytool command. This procedure uses
extremely generic instructions, because further discussion of the specifics of SSL certificates or
the keytool command are out of scope for this documentation.

Procedure 4.5. Generate a SSL Encryption Key and Certificate

1. Generate a keystore with public and private keys.
Run the following command to generate a keystore named server.keystore with the alias jboss
in your current directory.

keytool -genkeypair -alias jboss -keyalg RSA -keystore server.keystore -storepass
mykeystorepass --dname
"CN=jsmith,OU=Engineering,O=mycompany.com,L=Raleigh,S=NC,C=US"

The following table describes the parameters used in the keytool command:

CHAPTER 4. ENCRYPT NETWORK TRAFFIC

27

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+9036-747580+%5BLatest%5D&comment=Title%3A+Implement+SSL+Encryption+for+the+JBoss+EAP+6+Web+Server%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9036-747580+17+Mar+2015+16%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Parameter Description

-genkeypair The keytool command to generate a key pair
containing a public and private key.

-alias The alias for the keystore. This value is arbitrary,
but the alias jboss is the default used by the
JBoss Web server.

-keyalg The key pair generation algorithm. In this case it
is RSA.

-keystore The name and location of the keystore file. The
default location is the current directory. The
name you choose is arbitrary. In this case, the file
will be named server.keystore.

-storepass This password is used to authenticate to the
keystore so that the key can be read. The
password must be at least 6 characters long and
must be provided when the keystore is accessed.
In this case, we used mykeystorepass. If you
omit this parameter, you will be prompted to
enter it when you execute the command.

-keypass This is the password for the actual key.

NOTE

Due to an implementation
limitation this must be the same
as the store password.

Security Guide

28

--dname A quoted string describing the distinguished
name for the key, for example:
"CN=jsmith,OU=Engineering,O=mycompany.co
m,L=Raleigh,C=US". This string is a
concatenation of the following components:

CN - The common name or host name. If
the hostname is "jsmith.mycompany.com",
the CN is "jsmith".

OU - The organizational unit, for example
"Engineering"

O - The organization name, for example
"mycompany.com".

L - The locality, for example "Raleigh" or
"London"

S - The state or province, for example "NC".
This parameter is optional.

C - The 2 letter country code, for example
"US" or "UK",

Parameter Description

When you execute the above command, you are prompted for the following information:

If you did not use the -storepass parameter on the command line, you are asked to enter
the keystore password. Re-enter the new password at the next prompt.

If you did not use the -keypass parameter on the command line, you are asked to enter the
key password. Press Enter to set this to the same value as the keystore password.

When the command completes, the file server.keystore now contains the single key with the
alias jboss.

2. Verify the key.
Verify that the key works properly by using the following command.

keytool -list -keystore server.keystore

You are prompted for the keystore password. The contents of the keystore are displayed (in this
case, a single key called jboss). Notice the type of the jboss key, which is PrivateKeyEntry.
This indicates that the keystore contains both a public and private entry for this key.

3. Generate a certificate signing request.
Run the following command to generate a certificate signing request using the public key from
the keystore you created in step 1.

keytool -certreq -keyalg RSA -alias jboss -keystore server.keystore -file certreq.csr

You are prompted for the password in order to authenticate to the keystore. The keytool
command then creates a new certificate signing request called certreq.csr in the current
working directory.

CHAPTER 4. ENCRYPT NETWORK TRAFFIC

29

4. Test the newly generated certificate signing request.
Test the contents of the certificate by using the following command.

openssl req -in certreq.csr -noout -text

The certificate details are shown.

5. Optional: Submit your certificate signing request to a Certificate Authority (CA).
A Certificate Authority (CA) can authenticate your certificate so that it is considered
trustworthy by third-party clients. The CA supplies you with a signed certificate, and optionally
with one or more intermediate certificates.

6. Optional: Export a self-signed certificate from the keystore.
If you only need it for testing or internal purposes, you can use a self-signed certificate. You can
export one from the keystore you created in step 1 as follows:

keytool -export -alias jboss -keystore server.keystore -file server.crt

You are prompted for the password in order to authenticate to the keystore. A self-signed
certificate, named server.crt, is created in the current working directory.

7. Import the signed certificate, along with any intermediate certificates.
Import each certificate, in the order that you are instructed by the CA. For each certificate to
import, replace intermediate.ca or server.crt with the actual file name. If your certificates are
not provided as separate files, create a separate file for each certificate, and paste its contents
into the file.

NOTE

Your signed certificate and certificate keys are valuable assets. Be cautious with
how you transport them between servers.

keytool -import -keystore server.keystore -alias intermediateCA -file intermediate.ca

keytool -importcert -alias jboss -keystore server.keystore -file server.crt

8. Test that your certificates imported successfully.
Run the following command, and enter the keystore password when prompted. The contents of
your keystore are displayed, and the certificates are part of the list.

keytool -list -keystore server.keystore

Result

Your signed certificate is now included in your keystore and is ready to be used to encrypt SSL
connections, including HTTPS web server communications.

Report a bug

4.8. SSL CONNECTOR REFERENCE

JBoss Web connectors may include the following SSL configuration attributes. The CLI commands

Security Guide

30

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+9037-687728+%5BLatest%5D&comment=Title%3A+Generate+a+SSL+Encryption+Key+and+Certificate%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9037-687728+24+Jul+2014+00%3A10+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

provided are designed for a managed domain using profile default. Change the profile name to the one
you wish to configure, for a managed domain, or omit the /profile=default portion of the command, for a
standalone server.

NOTE

Before using the write-attribute CLI command listed in the table, you need to add
ssl=configuration.

Table 4.4. SSL Connector Attributes

Attribute Description CLI Command

name The display name of the SSL
connector.

Attribute name is read-only.

verify-client The possible values of verify-
client differ, based upon whether
the HTTP/HTTPS connector is
used, or the native APR
connector is used.

HTTP/HTTPS Connector

Possible values are true, false, or
want. Set to true to require a
valid certificate chain from the
client before accepting a
connection. Set to want if you
want the SSL stack to request a
client Certificate, but not fail if
one is not presented. Set to false
(the default) to not require a
certificate chain unless the client
requests a resource protected by
a security constraint that uses
CLIENT-CERT authentication.

Before using the write-attribute
CLI command, you need to add
the APR connector.

Native APR Connector

Possible values are optional,
require, optionalNoCA, and
none (or any other string, which
will have the same effect as
none). These values determine
whether a certification is optional,
required, optional without a
Certificate Authority, or not
required at all. The default is
none, meaning the client will not
have the opportunity to submit a
certificate.

The first example command uses
the HTTPS connector.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=verify-
client,value=want)

The second example command
uses the APR connector.

/profile=default/subsystem=w
eb/connector=APR/ssl=confi
guration/:write-
attribute(name=verify-
client,value=require)

CHAPTER 4. ENCRYPT NETWORK TRAFFIC

31

verify-depth The maximum number of
intermediate certificate issuers
checked before deciding that the
clients do not have a valid
certificate. The default value is
10.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=verify-
depth,value=10)

certificate-key-file The full file path and file name of
the keystore file where the signed
server certificate is stored. With
JSSE encryption, this certificate
file will be the only one, while
OpenSSL uses several files. The
default value is the .keystore file
in the home directory of the user
running JBoss EAP 6. If your
keystoreType does not use a
file, set the parameter to an
empty string.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=certificate-
key-
file,value=../domain/configur
ation/server.keystore)

certificate-file If you use OpenSSL encryption,
set the value of this parameter to
the path to the file containing the
server certificate.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=certificate-
file,value=server.crt)

password The password for both the
truststore and keystore. In the
following example, replace
PASSWORD with your own
password.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=password,va
lue=PASSWORD)

Attribute Description CLI Command

Security Guide

32

protocol The version of the SSL protocol
to use. Supported values depend
on the underlying SSL
implementation (whether JSSE or
OpenSSL). Refer to the Java SSE
Documentation.

You can also specify a
combination of protocols, which is
comma separated. For example,
TLSv1, TLSv1.1,TLSv1.2.

WARNIN
G

Red Hat
recommen
ds that you
explicitly
disable SSL
in favor of
TLSv1.1 or
TLSv1.2 in
all affected
packages.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=protocol,valu
e=ALL)

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=protocol,valu
e="TLSv1,
TLSv1.1,TLSv1.2")

Attribute Description CLI Command



CHAPTER 4. ENCRYPT NETWORK TRAFFIC

33

http://docs.oracle.com/javase/7/docs/technotes/guides/security/SunProviders.html#SunJSSEProvider

cipher-suite A list of the encryption ciphers
which are allowed. For JSSE
syntax, it must be a comma-
separated list. For OpenSSL
syntax, it must be a colon-
separated list. Ensure that you
only use one syntax.

The default is
HIGH:!aNULL:!eNULL:!EXPO
RT:!DES:!RC4:!MD5.

The example only lists two
possible ciphers, but real-world
examples will likely use more.

IMPORTANT

Using weak
ciphers is a
significant
security risk. See
http://www.nist.g
ov/manuscript-
publication-
search.cfm?
pub_id=915295
for NIST
recommendation
s on cipher suites.

For a list of available OpenSSL
ciphers, see
https://www.openssl.org/docs/ap
ps/ciphers.html#CIPHER_STRIN
GS. Note that the following are
not supported: @SECLEVEL,
SUITEB128,
SUITEB128ONLY,
SUITEB192.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=cipher-suite,
value="TLS_RSA_WITH_AE
S_128_CBC_SHA,TLS_RS
A_WITH_AES_256_CBC_S
HA")

key-alias The alias used to for the server
certificate in the keystore. In the
following example, replace
KEY_ALIAS with your certificate's
alias.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=key-
alias,value=KEY_ALIAS)

truststore-type The type of the truststore.
Various types of truststores are
available, including PKCS12 and
Java's standard JKS.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=truststore-
type,value=jks)

Attribute Description CLI Command

Security Guide

34

http://www.nist.gov/manuscript-publication-search.cfm?pub_id=915295
https://www.openssl.org/docs/apps/ciphers.html#CIPHER_STRINGS

keystore-type The type of the keystore, Various
types of keystores are available,
including PKCS12 and Java's
standard JKS.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=keystore-
type,value=jks)

ca-certificate-file The file containing the CA
certificates. This is the
truststoreFile, in the case of
JSSE, and uses the same
password as the keystore. The ca-
certificate-file file is used to
validate client certificates.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=certificate-
file,value=ca.crt)

ca-certificate-password The Certificate password for the
ca-certificate-file. In the
following example, replace the
MASKED_PASSWORD with your
own masked password.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=ca-
certificate-
password,value=MASKED_
PASSWORD)

ca-revocation-url A file or URL which contains the
revocation list. It refers to the
crlFile for JSSE or the
SSLCARevocationFile for
SSL.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=ca-
revocation-url,value=ca.crl)

session-cache-size The size of the SSLSession cache.
This attribute applies only to
JSSE connectors. The default is
0, which specifies an unlimited
cache size.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=session-
cache-size,value=100)

session-timeout The number of seconds before a
cached SSLSession expires. This
attribute applies only to JSSE
connectors. The default is 86400
seconds, which is 24 hours.

/profile=default/subsystem=w
eb/connector=HTTPS/ssl=co
nfiguration/:write-
attribute(name=session-
timeout,value=43200)

Attribute Description CLI Command

NOTE

For performance testing, you must set one explicit cipher and protocol.

CHAPTER 4. ENCRYPT NETWORK TRAFFIC

35

Report a bug

4.9. FIPS 140-2 COMPLIANT ENCRYPTION

4.9.1. About FIPS 140-2 Compliance

The Federal Information Processing Standard 140-2 (FIPS 140-2) is a US government computer security
standard for the accreditation of cryptographic software modules. FIPS 140-2 compliance is often a
requirement of software systems used by government agencies and private sector business.

JBoss EAP 6 uses external modules encryption and can be configured to use a FIPS 140-2 compliant
cryptography module.

Report a bug

4.9.2. FIPS 140-2 Compliant Cryptography on IBM JDK

On the IBM JDK, the IBM® JCE (Java™ Cryptographic Extension) IBMJCEFIPS provider and the IBM
JSSE (Java Secure Sockets Extension) FIPS 140-2 Cryptographic Module (IBMJSSEFIPS) for Multi-
platforms provide FIPS 140-2 compliant cryptography.

For more information on the IBMJCEFIPS provider, refer to the IBM Documentation for IBM JCEFIPS ,
and the NIST IBMJCEFIPS – Security Policy .

Key storage
Note that the IBM JCE does not provide a keystore. The keys are stored on the computer and do not
leave its physical boundary. If the keys are moved between computers they must be encrypted.

To run keytool in FIPS-compliant mode use the -providerClass option on each command like this:

keytool -list -storetype JCEKS -keystore mystore.jck -storepass mystorepass -providerClass
com.ibm.crypto.fips.provider.IBMJCEFIPS

Examine FIPS provider information
To examine information about the IBMJCEFIPS used by the server, enable debug-level logging by
adding -Djavax.net.debug=true to standalone.conf or domain.conf. Information about the FIPS
provider is logged to server.log, for example:

04:22:45,685 INFO [stdout] (http-/127.0.0.1:8443-1) JsseJCE: Using MessageDigest SHA from
provider IBMJCEFIPS version 1.7
04:22:45,689 INFO [stdout] (http-/127.0.0.1:8443-1) DHCrypt: DH KeyPairGenerator from provider
from init IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) JsseJCE: Using KeyFactory DiffieHellman from
provider IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) JsseJCE: Using KeyAgreement DiffieHellman
from provider IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) DHCrypt: DH KeyAgreement from provider
IBMJCEFIPS version 1.7
04:22:45,754 INFO [stdout] (http-/127.0.0.1:8443-1) DHCrypt: DH KeyAgreement from provider
from initIBMJCEFIPS version 1.7

Report a bug

Security Guide

36

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+9038-742565+%5BLatest%5D&comment=Title%3A+SSL+Connector+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9038-742565+11+Feb+2015+04%3A15+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+13767-592086+%5BLatest%5D&comment=Title%3A+About+FIPS+140-2+Compliance%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13767-592086+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://publib.boulder.ibm.com/infocenter/realtime/v1r0/index.jsp?topic=%2Fcom.ibm.rt.doc.10%2Fsecurity%2Fjcefips%2Fibmjcefips.html
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp497.pdf
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+41098-686150+%5BLatest%5D&comment=Title%3A+FIPS+140-2+Compliant+Cryptography+on+IBM+JDK%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41098-686150+20+Jul+2014+19%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

4.9.3. FIPS 140-2 Compliant Passwords

A FIPS compliant password must have the following characteristics:

1. Must be at least seven (7) characters in length.

2. Must include characters from at least three (3) of the following character classes:

ASCII digits,

lowercase ASCII,

uppercase ASCII,

non-alphanumeric ASCII, and

non-ASCII.

If the first character of the password is an uppercase ASCII letter, then it is not counted as an uppercase
ASCII letter for restriction 2.

If the last character of the password is an ASCII digit, then it does not count as an ASCII digit for
restriction 2.

Report a bug

4.9.4. Enable FIPS 140-2 Cryptography for SSL on Red Hat Enterprise Linux 6

This task describes how to configure the web container (JBoss Web) of JBoss EAP 6 to FIPS 140-2
compliant cryptography for SSL. This task only covers the steps to do this on Red Hat Enterprise Linux
6.

This task uses the Mozilla NSS library in FIPS mode for this feature.

Prerequisites

Red Hat Enterprise Linux 6 must already be configured to be FIPS 140-2 compliant. Refer to
https://access.redhat.com/knowledge/solutions/137833.

Procedure 4.6. Enable FIPS 140-2 Compliant Cryptography for SSL

1. Create the database
Create the NSS database in a directory own by the jboss user.

NOTE

The jboss user is only an example. You need to replace it with a user on your
operating system.

$ mkdir -p /usr/share/jboss-as/nssdb
$ chown jboss /usr/share/jboss-as/nssdb
$ modutil -create -dbdir /usr/share/jboss-as/nssdb

2. Create NSS configuration file

CHAPTER 4. ENCRYPT NETWORK TRAFFIC

37

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+13893-592092+%5BLatest%5D&comment=Title%3A+FIPS+140-2+Compliant+Passwords%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13893-592092+23+Feb+2014+16%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/knowledge/solutions/137833

Create a new text file with the name nss_pkcsll_fips.cfg in the /usr/share/jboss-as directory
with the following contents:

The NSS configuration file must specify:

a name,

the directory where the NSS library is located, and

the directory where the NSS database was created as per step 1.

If you are not running a 64bit version of Red Hat Enterprise Linux 6 then set
nssLibraryDirectory to /usr/lib instead of /usr/lib64.

3. Enable SunPKCS11 provider
Edit the java.security configuration file for your JRE
($JAVA_HOME/jre/lib/security/java.security) and add the following line:

Note that the configuration file specified in this line is the file created in step 2.

Any other security.provider.X lines in this file must have the value of their X increased by one
to ensure that this provider is given priority.

4. Enable FIPS mode for the NSS library
Run the modutil command as shown to enable FIPS mode:

modutil -fips true -dbdir /usr/share/jboss-as/nssdb

Note that the directory specified here is the one created in step 1.

You may get a security library error at this point requiring you to regenerate the library
signatures for some of the NSS shared objects.

5. Change the password on the FIPS token
Set the password on the FIPS token using the following command. Note that the name of the
token must be NSS FIPS 140-2 Certificate DB.

modutil -changepw "NSS FIPS 140-2 Certificate DB" -dbdir /usr/share/jboss-as/nssdb

The password used for the FIPS token must be a FIPS compliant password.

6. Create certificate using NSS tools
Enter the following command to create a certificate using the NSS tools.

certutil -S -k rsa -n jbossweb -t "u,u,u" -x -s "CN=localhost, OU=MYOU, O=MYORG,
L=MYCITY, ST=MYSTATE, C=MY" -d /usr/share/jboss-as/nssdb

name = nss-fips
nssLibraryDirectory=/usr/lib64
nssSecmodDirectory=/usr/share/jboss-as/nssdb
nssModule = fips

security.provider.1=sun.security.pkcs11.SunPKCS11 /usr/share/jboss-as/nss_pkcsll_fips.cfg

Security Guide

38

7. Configure the HTTPS connector to use the PKCS11 keystore
Add a HTTPS connector using the following command in the JBoss CLI Tool:

/subsystem=web/connector=https/:add(socket-
binding=https,scheme=https,protocol=HTTP/1.1,secure=true)

Then add the SSL configuration with the following command, replacing PASSWORD with the
FIPS compliant password from step 5.

/subsystem=web/connector=https/ssl=configuration:add(name=https,password=PASSWORD,ke
ystore-type=PKCS11,
cipher-
suite="SSL_RSA_WITH_3DES_EDE_CBC_SHA,SSL_DHE_RSA_WITH_3DES_EDE_CBC_S
HA,
TLS_RSA_WITH_AES_128_CBC_SHA,TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_DHE_DSS_WITH_AES_256_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,TLS_ECDH_ECDSA_WITH_AES_128_
CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_ECDSA_WITH_3DES_EDE
_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_ECDSA_WITH_AES_256_
CBC_SHA,
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,TLS_ECDH_RSA_WITH_AES_128_CBC_S
HA,
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_
SHA,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_
SHA,
TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA,TLS_ECDH_anon_WITH_AES_128_CBC_
SHA,
TLS_ECDH_anon_WITH_AES_256_CBC_SHA")

8. Verify
Verify that the JVM can read the private key from the PKCS11 keystore by running the following
command:

keytool -list -storetype pkcs11

Example 4.5. XML configuration for HTTPS connector using FIPS 140-2 compliance

<connector name="https" protocol="HTTP/1.1" scheme="https" socket-binding="https"
secure="true">
 <ssl name="https" password="****"
 cipher-
suite="SSL_RSA_WITH_3DES_EDE_CBC_SHA,SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA,

 TLS_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA,
 TLS_DHE_RSA_WITH_AES_128_CBC_SHA,TLS_RSA_WITH_AES_256_CBC_SHA,

TLS_DHE_DSS_WITH_AES_256_CBC_SHA,TLS_DHE_RSA_WITH_AES_256_CBC_SHA,

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,TLS_ECDH_ECDSA_WITH_AES_128_CBC_
SHA,

CHAPTER 4. ENCRYPT NETWORK TRAFFIC

39

Note that the cipher-suite attribute has linebreaks inserted to make it easier to read.

Report a bug

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC
_SHA,

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_ECDSA_WITH_AES_256_CBC
_SHA,

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
,

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA,TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA,

TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA,TLS_ECDH_anon_WITH_AES_128_CBC_SHA,

 TLS_ECDH_anon_WITH_AES_256_CBC_SHA"
 keystore-type="PKCS11"/>
</connector>

Security Guide

40

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+13768-741444+%5BLatest%5D&comment=Title%3A+Enable+FIPS+140-2+Cryptography+for+SSL+on+Red+Hat+Enterprise+Linux+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13768-741444+05+Feb+2015+04%3A50+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 5. SECURE THE MANAGEMENT INTERFACES
A common development scenario is to run JBoss EAP 6 with no security on the management interfaces
to allow rapid configuration changes.

In production deployment, secure the management interfaces by at least the following methods:

Section 4.1, “Specify Which Network Interface JBoss EAP 6 Uses”

Section 4.2, “Configure Network Firewalls to Work with JBoss EAP 6”

Additionally, the default silent local authentication mode allows local clients (on the server machine) to
connect to the Management CLI without requiring a username or password. This is a convenience for
local users and Management CLI scripts. To disable this, refer to Section 5.4, “Remove Silent
Authentication from the Default Security Realm”.

Report a bug

5.1. DEFAULT USER SECURITY CONFIGURATION

Introduction

All management interfaces in JBoss EAP 6 are secured by default. This security takes two different
forms:

Local interfaces are secured by a SASL contract between local clients and the server they
connect to. This security mechanism is based on the client's ability to access the local
filesystem. This is because access to the local filesystem would allow the client to add a user or
otherwise change the configuration to thwart other security mechanisms. This adheres to the
principle that if physical access to the filesystem is achieved, other security mechanisms are
superfluous. The mechanism happens in four steps:

NOTE

HTTP access is considered to be remote, even if you connect to the localhost
using HTTP.

1. The client sends a message to the server which includes a request to authenticate with the
local SASL mechanism.

2. The server generates a one-time token, writes it to a unique file, and sends a message to the
client with the full path of the file.

3. The client reads the token from the file and sends it to the server, verifying that it has local
access to the filesystem.

4. The server verifies the token and then deletes the file.

Remote clients, including local HTTP clients, use realm-based security. The default realm with
the permissions to configure the JBoss EAP 6 instance remotely using the management
interfaces is ManagementRealm. A script is provided which allows you to add users to this realm
(or realms you create). For more information on adding users, see the User Management
chapter of the JBoss EAP 6 Administration and Configuration Guide . For each user, the
username and a hashed password are stored in a file.

CHAPTER 5. SECURE THE MANAGEMENT INTERFACES

41

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+IDs%3A%0A4703-686257+%5BLatest%5D&comment=Title%3A+Secure+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Managed domain

EAP_HOME/domain/configuration/mgmt-users.properties

Standalone server

EAP_HOME/standalone/configuration/mgmt-users.properties

Even though the contents of the mgmt-users.properties are masked, the file must still be
treated as a sensitive file. It is recommended that it be set to the file mode of 600, which gives
no access other than read and write access by the file owner.

Report a bug

5.2. OVERVIEW OF ADVANCED MANAGEMENT INTERFACE
CONFIGURATION

The Management interface configuration in the EAP_HOME/domain/configuration/host.xml or
EAP_HOME/standalone/configuration/standalone.xml controls which network interfaces the host
controller process binds to, which types of management interfaces are available at all, and which type of
authentication system is used to authenticate users on each interface. This topic discusses how to
configure the Management Interfaces to suit your environment.

The Management subsystem consists of a <management> element that includes the following four
configurable child elements. The security realms and outbound connections are each first defined, and
then applied to the management interfaces as attributes.

<security-realms>

<outbound-connections>

<management-interfaces>

<audit-log>

NOTE

Refer to the Management Interface Audit Logging section of the Administration and
Configuration Guide for more information on audit logging.

Security Realms

The security realm is responsible for the authentication and authorization of users allowed to administer
JBoss EAP 6 via the Management API, Management CLI, or web-based Management Console.

Two different file-based security realms are included in a default installation: ManagementRealm and
ApplicationRealm. Each of these security realms uses a -users.properties file to store users and
hashed passwords, and a -roles.properties to store mappings between users and roles. Support is also
included for an LDAP-enabled security realm.

NOTE

Security realms can also be used for your own applications. The security realms discussed
here are specific to the management interfaces.

Security Guide

42

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+5751-729848+%5BLatest%5D&comment=Title%3A+Default+User+Security+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5751-729848+30+Nov+2014+18%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Outbound Connections

Some security realms connect to external interfaces, such as an LDAP server. An outbound connection
defines how to make this connection. A pre-defined connection type, ldap-connection, sets all of the
required and optional attributes to connect to the LDAP server and verify the credential.

For more information on how to configure LDAP authentication see Section 5.11.2, “Use LDAP to
Authenticate to the Management Interfaces”.

Management Interfaces

A management interface includes properties about how connect to and configure JBoss EAP. Such
information includes the named network interface, port, security realm, and other configurable
information about the interface. Two interfaces are included in a default installation:

http-interface is the configuration for the web-based Management Console.

native-interface is the configuration for the command-line Management CLI and the REST-like
Management API.

Each of the main configurable elements of the host management subsystem are interrelated. A security
realm refers to an outbound connection, and a management interface refers to a security realm.

Associated information can be found in Chapter 5, Secure the Management Interfaces .

Report a bug

5.3. DISABLE THE HTTP MANAGEMENT INTERFACE

In a managed domain, you only need access to the HTTP interface on the domain controller, rather than
on domain member servers. In addition, on a production server, you may decide to disable the web-
based Management Console altogether.

NOTE

Other clients, such as JBoss Operations Network, also operate using the HTTP interface.
If you want to use these services, and simply disable the Management Console itself, you
can set the console-enabled attribute of the HTTP interface to false, instead of
disabling the interface completely.

/host=master/core-service=management/management-interface=http-interface/:write-
attribute(name=console-enabled,value=false)

To disable access to the HTTP interface, which also disables access to the web-based Management
Console, you can delete the HTTP interface altogether.

The following JBoss CLI command allows you to read the current contents of your HTTP interface, in
case you decide to add it again.

Example 5.1. Read the Configuration of the HTTP Interface

/host=master/core-service=management/management-interface=http-interface/:read-
resource(recursive=true,proxies=false,include-runtime=false,include-defaults=true)
{
 "outcome" => "success",

CHAPTER 5. SECURE THE MANAGEMENT INTERFACES

43

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8428-685975+%5BLatest%5D&comment=Title%3A+Overview+of+Advanced+Management+Interface+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8428-685975+18+Jul+2014+05%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

 "result" => {
 "console-enabled" => true,
 "interface" => "management",
 "port" => expression "${jboss.management.http.port:9990}",
 "secure-port" => undefined,
 "security-realm" => "ManagementRealm"
 }
}

To remove the HTTP interface, issue the following command:

Example 5.2. Remove the HTTP Interface

/host=master/core-service=management/management-interface=http-interface/:remove

To re-enable access, issue the following commands to re-create the HTTP Interface with the default
values.

Example 5.3. Re-Create the HTTP Interface

/host=master/core-service=management/management-interface=http-interface:add(console-
enabled=true,interface=management,port="${jboss.management.http.port:9990}",security-
realm=ManagementRealm)

Report a bug

5.4. REMOVE SILENT AUTHENTICATION FROM THE DEFAULT
SECURITY REALM

Summary

The default installation of JBoss EAP 6 contains a method of silent authentication for a local
Management CLI user. This allows the local user the ability to access the Management CLI without
username or password authentication. This functionality is enabled as a convenience, and to assist local
users running Management CLI scripts without requiring authentication. It is considered a useful feature
given that access to the local configuration typically also gives the user the ability to add their own user
details or otherwise disable security checks.

The convenience of silent authentication for local users can be disabled where greater security control is
required. This can be achieved by removing the local element within the security-realm section of the
configuration file. This applies to both the standalone.xml for a Standalone Server instance, or
host.xml for a Managed Domain. You should only consider the removal of the local element if you
understand the impact that it might have on your particular server configuration.

The preferred method of removing silent authentication is by use of the Management CLI, which directly
removes the local element visible in the following example.

Example 5.4. Example of the local element in the security-realm

<security-realms>

Security Guide

44

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8430-591838+%5BLatest%5D&comment=Title%3A+Disable+the+HTTP+Management+Interface%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8430-591838+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Prerequisites

Start the JBoss EAP 6 instance.

Launch the Management CLI.

Procedure 5.1. Remove Silent Authentication from the Default Security Realm

Remove silent authentication with the Management CLI
Remove the local element from the Management Realm and Application Realm as required.

a. Remove the local element from the Management Realm.

For Standalone Servers

/core-service=management/security-
realm=ManagementRealm/authentication=local:remove

For Managed Domains

/host=HOST_NAME/core-service=management/security-
realm=ManagementRealm/authentication=local:remove

b. Remove the local element from the Application Realm.

For Standalone Servers

/core-service=management/security-
realm=ApplicationRealm/authentication=local:remove

For Managed Domains

/host=HOST_NAME/core-service=management/security-
realm=ApplicationRealm/authentication=local:remove

 <security-realm name="ManagementRealm">
 <authentication>
 <local default-user="$local"/>
 <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>
 </authentication>
 </security-realm>
 <security-realm name="ApplicationRealm">
 <authentication>
 <local default-user="$local" allowed-users="*"/>
 <properties path="application-users.properties" relative-to="jboss.server.config.dir"/>
 </authentication>
 <authorization>
 <properties path="application-roles.properties" relative-to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
</security-realms>

CHAPTER 5. SECURE THE MANAGEMENT INTERFACES

45

Result

The silent authentication mode is removed from the ManagementRealm and the ApplicationRealm.

Report a bug

5.5. DISABLE REMOTE ACCESS TO THE JMX SUBSYSTEM

Remote access to the JMX subsystem allows you to trigger JDK and application management
operations remotely. In order to secure an installation, disable this function either by removing the
remoting connector or removing the JMX subsystem. The example Management CLI commands are
suitable for a managed domain. For a standalone server, remove the /profile=default prefix from the
commands.

NOTE

In a managed domain the remoting connector is removed from the JMX subsystem by
default. This command is provided for your information, in case you add it during
development.

Example 5.5. Remove the Remoting Connector from the JMX Subsystem

/profile=default/subsystem=jmx/remoting-connector=jmx/:remove

Example 5.6. Remove the JMX Subsystem

For a managed domain, run this command for each profile.

/profile=default/subsystem=jmx/:remove

Report a bug

5.6. CONFIGURE SECURITY REALMS FOR THE MANAGEMENT
INTERFACES

The management interfaces use security realms to control authentication and access to the
configuration mechanisms of JBoss EAP 6. A Security Realm is similar to a Unix group. It is effectively a
database of usernames and passwords that can be use to authenticate users.

Default Management Realm

The management interfaces are configured to use the ManagementRealm security realm by default.
The ManagementRealm stores its user password combinations in the file mgmt-users.properties.

Example 5.7. Default ManagementRealm

/host=master/core-service=management/security-realm=ManagementRealm/:read-
resource(recursive=true,proxies=false,include-runtime=false,include-defaults=true)
{
 "outcome" => "success",

Security Guide

46

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+9053-591862+%5BLatest%5D&comment=Title%3A+Remove+Silent+Authentication+from+the+Default+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9053-591862+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8432-714908+%5BLatest%5D&comment=Title%3A+Disable+Remote+Access+to+the+JMX+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8432-714908+02+Oct+2014+19%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

 "result" => {
 "map-groups-to-roles" => false,
 "authentication" => {
 "local" => {
 "allowed-users" => undefined,
 "default-user" => "$local"
 },
 "properties" => {
 "path" => "mgmt-users.properties",
 "plain-text" => false,
 "relative-to" => "jboss.domain.config.dir"
 }
 },
 "authorization" => {"properties" => {
 "path" => "mgmt-groups.properties",
 "relative-to" => "jboss.domain.config.dir"
 }},
 "plug-in" => undefined,
 "server-identity" => undefined
 }
}

Create a new Security Realm

The following commands create a new security realm called TestRealm and set the directory for the
relevant properties file.

Example 5.8. Create a new Security Realm

/host=master/core-service=management/security-realm=TestRealm/:add
/host=master/core-service=management/security-
realm=TestRealm/authentication=properties/:add(path=TestUsers.properties, relative-
to=jboss.domain.config.dir)

Configure Security Realm authentication through an existing Security Domain

To use Security Domain to authenticate to the Management interfaces:

First, create a Security Realm. Then, set specify it as the value for the security-realm attribute of the
management interface:

Example 5.9. Specify a Security Realm to use for the HTTP Management Interface

/host=master/core-service=management/management-interface=http-interface/:write-
attribute(name=security-realm,value=TestRealm)

Report a bug

5.7. CONFIGURE THE MANAGEMENT CONSOLE FOR HTTPS

Configuring the JBoss EAP management console for communication only via HTTPS provides

CHAPTER 5. SECURE THE MANAGEMENT INTERFACES

47

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8433-741741+%5BLatest%5D&comment=Title%3A+Configure+Security+Realms+for+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8433-741741+05+Feb+2015+23%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

increased security. All network traffic between the client (web browser) and management console is
encrypted, which reduces the risk of security attacks such as a man-in-the-middle attack. Anyone
administering a JBoss EAP instance has greater permissions on that instance than non-privileged users,
and using HTTPS helps protect the integrity and availability of that instance.

In this procedure unencrypted communications with the JBoss EAP standalone instance or domain is
disabled. Passwords used in these communications are stored encrypted using the JBoss EAP vault
feature, and passwords used in configuration files are masked.

This procedure applies to both standalone and domain mode configurations. For domain mode, prefix
the management CLI commands with the name of the host, for example: /host=master.

Procedure 5.2.

1. Create a keystore to secure the management console.

NOTE

This keystore must be in JKS format as the management console is not
compatible with keystores in JCEKS format.

In a terminal emulator, enter the following command. For the parameters alias, keypass,
keystore, storepass and dname, replace the example values with values of your choice.

The parameter validity specifies for how many days the key is valid. A value of 730 equals two
years.

2. Ensure the Management Console Binds to HTTPS

Standalone Mode
Ensure the management console binds to HTTPS for its interface by adding the
management-https configuration and removing the management-http configuration.

Ensure the JBoss EAP instance is running, then enter the following management CLI
commands:

The expected output from these commands is:

{"outcome" => "success"}

NOTE

keytool -genkeypair -alias appserver -storetype jks -keyalg RSA -keysize 2048 -keypass
password1 -keystore EAP_HOME/standalone/configuration/identity.jks -storepass
password1 -dname "CN=appserver,OU=Sales,O=Systems Inc,L=Raleigh,ST=NC,C=US" -
validity 730 -v

/core-service=management/management-interface=http-interface:write-
attribute(name=secure-socket-binding, value=management-https)

/core-service=management/management-interface=http-interface:undefine-
attribute(name=socket-binding)

Security Guide

48

NOTE

At this point the JBoss EAP log may display the following error message. This
is to be expected because the SSL configuration is not yet completed.

JBAS015103: A secure port has been specified for the HTTP interface but
no SSL configuration in the realm.

Domain Mode
Change the socket element within the management-interface section by adding secure-
port and removing port configuration.

Ensure the JBoss EAP instance is running, then enter the following management CLI
commands:

NOTE

At this point the JBoss EAP log may display the following error message. This
is to be expected because the SSL configuration is not yet completed.

JBAS015103: A secure port has been specified for the HTTP interface but
no SSL configuration in the realm.

3. Optional: Custom socket-binding group
If you are using a custom socket-binding group, ensure the management-https binding is
defined (it is present by default, bound to port 9443). Edit the master configuration file - for
example standalone.xml - to match the following.

4. Create a new Security Realm
Enter the following commands to create a new security realm named
ManagementRealmHTTPS:

/host=master/core-service=management/security-realm=ManagementRealmHTTPS/:add
/host=master/core-service=management/security-
realm=ManagementRealmHTTPS/authentication=properties/:add(path=ManagementUsers.pro
perties, relative-to=jboss.domain.config.dir)

/host=master/core-service=management/management-interface=http-
interface:write-attribute(name=secure-port,value=9443)
/host=master/core-service=management/management-interface=http-
interface:undefine-attribute(name=port)

 <socket-binding-group name="standard-sockets" default-interface="public" port-
offset="${jboss.socket.binding.port-offset:0}">
 <socket-binding name="management-native" interface="management"
port="${jboss.management.native.port:9999}"/>
 <socket-binding name="management-http" interface="management"
port="${jboss.management.http.port:9990}"/>
 <socket-binding name="management-https" interface="management"
port="${jboss.management.https.port:9443}"/>

CHAPTER 5. SECURE THE MANAGEMENT INTERFACES

49

5. Configure Management Interface to use the new security realm
Enter the following commands:

/host=master/core-service=management/management-interface=http-interface/:write-
attribute(name=security-realm,value=ManagementRealmHTTPS)

6. Configure the management console to use the keystore.
Enter the following management CLI command. For the parameters file, password and alias
their values must be copied from the step Create a keystore to secure the management console .

The expected output from this command is:

{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}

7. Restart the JBoss EAP server.
On restarting the server the log should contain the following, just before the text which states
the number of services that are started. The management console is now listening on port
9443, which confirms that the procedure was successful.

14:53:14,720 INFO [org.jboss.as] (Controller Boot Thread) JBAS015962: Http management
interface listening on https://127.0.0.1:9443/management
14:53:14,721 INFO [org.jboss.as] (Controller Boot Thread) JBAS015952: Admin console
listening on https://127.0.0.1:9443

NOTE

For security reasons it is recommended that you mask the keystore password. For details
on how to do this see Section 7.1, “Password Vault System”.

Report a bug

5.8. USE DISTINCT INTERFACES FOR HTTP AND HTTPS
CONNECTIONS TO THE MANAGEMENT INTERFACE

The Management Interface can listen on distinct interfaces for HTTP and HTTPS connections. One
scenario for this is to listen for encrypted traffic on an external network, and use unencrypted traffic on
an internal network.

The secure-interface attribute specifies the network interface on which the host's socket for HTTPS
management communication should be opened, if a different interface should be used from that
specified by the interface attribute. If it is not specified then the interface specified by the interface
attribute is used.

/core-service=management/security-realm=ManagementRealmHTTPS/server-
identity=ssl:add(keystore-path=identity.jks,keystore-relative-to=jboss.server.config.dir,
keystore-password=password1, alias=appserver)

Security Guide

50

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+22638-686024+%5BLatest%5D&comment=Title%3A+Configure+the+Management+Console+for+HTTPS%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22638-686024+18+Jul+2014+10%3A39+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The secure-interface attribute has no effect if the secure-port attribute is not set.

Note that when the server listens for HTTP and HTTPS traffic on the same interface, HTTPS requests
received by the HTTP listener are automatically redirected to the HTTPS port. When distinct interfaces
are used for HTTP and HTTPS traffic, no redirection is performed when an HTTPS request is received by
the HTTP listener.

Here is an example EAP_HOME/domain/configuration/host.xml configuration that sets the secure-
interface attribute to listen for HTTPS traffic on a distinct interface from HTTP traffic:

<?xml version='1.0' encoding='UTF-8'?>

<host name="master" xmlns="urn:jboss:domain:3.0">

 <management>
 <security-realms>
 <security-realm name="ManagementRealm">
 <authentication>
 <local default-user="$local" />
 <properties path="mgmt-users.properties" relative-to="jboss.domain.config.dir"/>
 </authentication>
 </security-realm>
 </security-realms>
 <management-interfaces>
 <native-interface security-realm="ManagementRealm">
 <socket interface="management" port="${jboss.management.native.port:9999}"/>
 </native-interface>
 <http-interface security-realm="ManagementRealm">
 <socket interface="management" port="${jboss.management.http.port:9990}" secure-
port="${jboss.management.https.port:9943}" secure-interface="secure-management"/>
 </http-interface>
 </management-interfaces>
 </management>

 <domain-controller>
 <local/>
 <!-- Alternative remote domain controller configuration with a host and port -->
 <!-- <remote host="${jboss.domain.master.address}" port="${jboss.domain.master.port:9999}"
security-realm="ManagementRealm"/> -->
 </domain-controller>

 <interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="secure-management">
 <inet-address value="${jboss.bind.address:10.10.64.1}"/>
 </interface>
 </interfaces>
</host>

Report a bug

5.9. USING 2-WAY SSL FOR THE MANAGEMENT INTERFACE AND THE
CLI

CHAPTER 5. SECURE THE MANAGEMENT INTERFACES

51

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+30877-686462+%5BLatest%5D&comment=Title%3A+Use+Distinct+Interfaces+for+HTTP+and+HTTPS+connections+to+the+Management+Interface%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30877-686462+21+Jul+2014+21%3A22+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2-way SSL authentication, also known as client authentication, authenticates both the client and the
server using SSL certificates. This provides assurance that not only is the server who it says it is, but the
client is also who it says it is.

In this topic the following conventions are used:

HOST1

The JBoss server hostname. For example; jboss.redhat.com

HOST2

A suitable name for the client. For example: myclient. Note this is not necessarily an actual
hostname.

CA_HOST1

The DN (distinguished name) to use for the HOST1 certificate. For example
cn=jboss,dc=redhat,dc=com.

CA_HOST2

The DN (distinguished name) to use for the HOST2 certificate. For example
cn=myclient,dc=redhat,dc=com.

Prerequisites

If you are going to use a password vault to store the keystore and truststore passwords
(recommended), the password vault should already be created. Refer to Section 7.1, “Password
Vault System”.

Procedure 5.3.

1. Generate the stores:

2. Export the certificates:

3. Import the certificates into the opposing trust stores:

keytool -genkeypair -alias HOST1_alias -keyalg RSA -keysize 1024 -validity 365 -keystore
host1.keystore.jks -dname "CA_HOST1" -keypass secret -storepass secret

keytool -genkeypair -alias HOST2_alias -keyalg RSA -keysize 1024 -validity 365 -keystore
host2.keystore.jks -dname "CA_HOST2" -keypass secret -storepass secret

keytool -exportcert -keystore HOST1.keystore.jks -alias HOST1_alias -keypass secret -
storepass secret -file HOST1.cer

keytool -exportcert -keystore HOST2.keystore.jks -alias HOST2_alias -keypass secret -
storepass secret -file HOST2.cer

keytool -importcert -keystore HOST1.truststore.jks -storepass secret -alias HOST2_alias -
trustcacerts -file HOST2.cer

Security Guide

52

4. Define a CertificateRealm in the configuration for your installation (host.xml or
standalone.xml) and point the interface to it:

This can be done by manually editing the configuration file (not recommended) or by using the
following commands:

IMPORTANT

The provided commands apply to standalone mode only. For domain mode, add
/host=master before each command.

5. Change the security-realm of the native-interface to the new Certificate Realm.

6. Add the SSL configuration for the CLI, which uses EAP_HOME/bin/jboss-cli.xml as a settings
file. Either use a password vault to store the keystore and truststore passwords (recommended),
or store them in plain text:

To store the keystore and truststore passwords in a password vault:

Edit EAP_HOME/bin/jboss-cli.xml and add the SSL configuration (using the appropriate
values for the variables). Also add the vault configuration, replacing each value with those
of your vault.

keytool -importcert -keystore HOST2.truststore.jks -storepass secret -alias HOST1_alias -
trustcacerts -file HOST1.cer

/core-service=management/security-realm=CertificateRealm:add()

/core-service=management/security-realm=CertificateRealm/server-
identity=ssl:add(keystore-path=/path/to/HOST1.keystore.jks,keystore-
password=secret, alias=HOST1_alias)

/core-service=management/security-
realm=CertificateRealm/authentication=truststore:add(keystore-
path=/path/to/HOST1.truststore.jks,keystore-password=secret)

/host=master/core-service=management/management-interface=native-interface:write-
attribute(name=security-realm,value=CertificateRealm)

<ssl>
 <vault>
 <vault-option name="KEYSTORE_URL" value="path-to/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5WNXs8oEbrs"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="12345678"/>
 <vault-option name="ITERATION_COUNT" value="50"/>
 <vault-option name="ENC_FILE_DIR" value="path-to/jboss-eap/vault/"/>
 </vault>
 <alias>$HOST2alias</alias>
 <key-store>/path/to/HOST2.keystore.jks</key-store>
 <key-store-password>VAULT::VB::cli_pass::1</key-store-password>
 <key-password>VAULT::VB::cli_pass::1</key-password>

CHAPTER 5. SECURE THE MANAGEMENT INTERFACES

53

To store the keystore and truststore passwords in plain text:

Edit EAP_HOME/bin/jboss-cli.xml and add the SSL configuration (using the appropriate
values for the variables):

Report a bug

5.10. SECURE THE MANAGEMENT INTERFACES VIA JAAS

To use JAAS to authenticate to the Management interfaces:

First, create a security domain with the UsersRoles login module:

/subsystem=security/security-domain=UsersLMDomain:add(cache-type=default)
/subsystem=security/security-domain=UsersLMDomain/authentication=classic:add
/subsystem=security/security-domain=UsersLMDomain/authentication=classic/login-
module=UsersRoles:add()

Then, create a security realm with JAAS Authentication:

/core-service=management/security-realm=SecurityDomainAuthnRealm:add
/core-service=management/security-
realm=SecurityDomainAuthnRealm/authentication=jaas:add(name=UsersLMDomain)

The attribute assign-groups determines whether loaded user membership information from the
Security Domain is used for group assignment in the Security Realm. When set to true this group
assignment is used for Role-Based Access Control (RBAC).

The assign-groups attribute can be set to true by this CLI command:

/core-service=management/security-realm=ManagementRealm/authentication=jaas:write-
attribute(name=assign-groups,value=true)

Report a bug

5.11. LDAP

5.11.1. About LDAP

Lightweight Directory Access Protocol (LDAP) is a protocol for storing and distributing directory

 <trust-store>/path/to/HOST2.truststore.jks</trust-store>
 <trust-store-password>VAULT::VB::cli_pass::1</trust-store-password>
 <modify-trust-store>true</modify-trust-store>
</ssl>

<ssl>
 <alias>$HOST2alias</alias>
 <key-store>/path/to/HOST2.keystore.jks</key-store>
 <key-store-password>secret</key-store-password>
 <trust-store>/path/to/HOST2.truststore.jks</trust-store>
 <trust-store-password>secret</trust-store-password>
 <modify-trust-store>true</modify-trust-store>
</ssl>

Security Guide

54

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+22641-686543+%5BLatest%5D&comment=Title%3A+Using+2-way+SSL+for+the+Management+interface+and+the+CLI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22641-686543+21+Jul+2014+22%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+41107-742327+%5BLatest%5D&comment=Title%3A+Secure+the+Management+Interfaces+via+JAAS%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41107-742327+09+Feb+2015+22%3A50+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Lightweight Directory Access Protocol (LDAP) is a protocol for storing and distributing directory
information across a network. This directory information includes information about users, hardware
devices, access roles and restrictions, and other information.

Some common implementations of LDAP include OpenLDAP, Microsoft Active Directory, IBM Tivoli
Directory Server, Oracle Internet Directory, and others.

JBoss EAP 6 includes several authentication and authorization modules which allow you to use a LDAP
server as the authentication and authorization authority for your Web and EJB applications.

Report a bug

5.11.2. Use LDAP to Authenticate to the Management Interfaces

To use an LDAP directory server as the authentication source for the Management Console,
Management CLI, or Management API, you need to perform the following procedures:

1. Create an outbound connection to the LDAP server.

2. Create an LDAP-enabled security realm.

3. Reference the new security domain in the Management Interface.

Create an Outbound Connection to an LDAP Server

The LDAP outbound connection allows the following attributes:

Table 5.1. Attributes of an LDAP Outbound Connection

Attribute Required Description

url yes The URL address of the directory
server.

search-dn no The fully distinguished name (DN)
of the user authorized to perform
searches.

search-credentials no The password of the user
authorized to perform searches.

initial-context-factory no The initial context factory to use
when establishing the connection.
Defaults to
com.sun.jndi.ldap.LdapCtxFa
ctory.

security-realm no The security realm to reference to
obtain a configured SSLContext
to use when establishing the
connection.

Example 5.10. Add an LDAP Outbound Connection

This example adds an outbound connection with the following properties set:

CHAPTER 5. SECURE THE MANAGEMENT INTERFACES

55

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7819-591808+%5BLatest%5D&comment=Title%3A+About+LDAP%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7819-591808+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Search DN: cn=search,dc=acme,dc=com

Search Credential: myPass

URL: ldap://127.0.0.1:389

The first command adds the security realm.

/host=master/core-service=management/security-realm=ldap_security_realm:add

The second command adds the LDAP connection.

/host=master/core-service=management/ldap-connection=ldap_connection/:add(search-
credential=myPass,url=ldap://127.0.0.1:389,search-dn="cn=search,dc=acme,dc=com")

Create an LDAP-Enabled Security Realm

The Management Interfaces can authenticate against LDAP server instead of the property-file based
security realms configured by default. The LDAP authenticator operates by first establishing a
connection to the remote directory server. It then performs a search using the username which the user
passed to the authentication system, to find the fully-qualified distinguished name (DN) of the LDAP
record. A new connection is established, using the DN of the user as the credential, and password
supplied by the user. If this authentication to the LDAP server is successful, the DN is verified to be
valid.

The LDAP security realm uses the following configuration attributes:

connection

The name of the connection defined in outbound-connections to use to connect to the LDAP
directory.

advanced-filter

The fully defined filter used to search for a user based on the supplied user ID. The filter must
contain a variable in the following format: {0}. This is later replaced with the user name supplied by
the user.

base-dn

The distinguished name of the context to begin searching for the user.

recursive

Whether the search should be recursive throughout the LDAP directory tree, or only search the
specified context. Defaults to false.

user-dn

The attribute of the user that holds the distinguished name. This is subsequently used to test
authentication as the user can complete. Defaults to dn.

username-attribute

The name of the attribute to search for the user. This filter performs a simple search where the user
name entered by the user matches the specified attribute.

Security Guide

56

allow-empty-passwords

This attribute determines whether an empty password is accepted. The default value for this
attribute is false.

Either username-filter or advanced-filter must be specified

The advanced-filter attribute contains a filter query in the standard LDAP syntax, for example:

Example 5.11. XML Representing an LDAP-enabled Security Realm

This example uses the following parameters:

connection - ldap_connection

base-dn - cn=users,dc=acme,dc=com.

username-filter - attribute="sambaAccountName"

WARNING

It is important to ensure that you do not allow empty LDAP passwords; unless you
specifically desire this in your environment, it is a serious security concern.

EAP 6.1 includes a patch for CVE-2012-5629, which sets the allowEmptyPasswords
option for the LDAP login modules to false if the option is not already configured.
For older versions, this option should be configured manually

Example 5.12. Add an LDAP Security Realm

The command below adds an LDAP authentication to a security realm and sets its attributes for a
host named master in the domain.

/host=master/core-service=management/security-
realm=ldap_security_realm/authentication=ldap:add(base-dn="DC=mycompany,DC=org",
recursive=true, username-attribute="MyAccountName", connection="ldap_connection")

(&(sAMAccountName={0})(memberOf=cn=admin,cn=users,dc=acme,dc=com))

<security-realm name="ldap_security_realm">
 <authentication>
 <ldap connection="ldap_connection" base-dn="cn=users,dc=acme,dc=com">
 <username-filter attribute="sambaAccountName" />
 </ldap>
 </authentication>
</security-realm>



CHAPTER 5. SECURE THE MANAGEMENT INTERFACES

57

Apply the New Security Realm to the Management Interface

After you create a security realm, you need to reference it in the configuration of your management
interface. The management interface will use the security realm for HTTP digest authentication.

Example 5.13. Apply the Security Realm to the HTTP Interface

After this configuration is in place, and you restart the host controller, the web-based Management
Console will use LDAP to authenticate its users.

/host=master/core-service=management/management-interface=http-interface/:write-
attribute(name=security-realm,value=ldap_security_realm)

Example 5.14. Apply the Security Realm to the Native Interface

Use the following command to apply the same settings to the native interface:

/host=master/core-service=management/management-interface=native-interface/:write-
attribute(name=security-realm,value=ldap_security_realm)

Report a bug

5.11.3. Using Outbound LDAP with 2-way SSL in the Management Interface and CLI

JBoss EAP 6 can be configured to use an outbound connection to a LDAP server using 2-way SSL for
authentication in the Management Interface and CLI.

Prerequisites

An LDAP-enabled security realm must be created. See Section 5.11.2, “Use LDAP to
Authenticate to the Management Interfaces” for details on creating the security realm.

Procedure 5.4. Configure Outbound LDAP with 2-way SSL

1. Configure the security realm keystore and truststore. The security realm must contain a
keystore configured with the key that the JBoss EAP 6 server will use to authenticate against
the LDAP server. The security realm must also contain a truststore configured with the LDAP
server's certificates. See Section 5.9, “Using 2-way SSL for the Management interface and the
CLI” for instructions on configuring keystores and truststores.

2. Add the outbound connection to the LDAP server, specifying the configured security realm:

/core-service=management/ldap-
connection=LocalLdap:add(url="ldaps://LDAP_HOST:LDAP_PORT")

/core-service=management/ldap-connection=LocalLdap:write-attribute(name=security-
realm,value="LdapSSLRealm")

3. Configure LDAP authentication within the security realm and the management interfaces as
shown in Section 5.11.2, “Use LDAP to Authenticate to the Management Interfaces” .

Report a bug

Security Guide

58

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8429-623240+%5BLatest%5D&comment=Title%3A+Use+LDAP+to+Authenticate+to+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8429-623240+21+Mar+2014+06%3A48+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+34221-686364+%5BLatest%5D&comment=Title%3A+Using+Outbound+LDAP+with+2-way+SSL+in+the+Management+Interface+and+CLI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=34221-686364+21+Jul+2014+02%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH
ROLE-BASED ACCESS CONTROL

6.1. ABOUT ROLE-BASED ACCESS CONTROL (RBAC)

Role-Based Access Control (RBAC) is a mechanism for specifying a set of permissions for management
users. It allows multiple users to share responsibility for managing JBoss EAP 6 servers without each of
them requiring unrestricted access. By providing "separation of duties" for management users, JBoss
EAP 6 makes it easy for an organization to spread responsibility between individuals or groups without
granting unnecessary privileges. This ensures the maximum possible security of your servers and data
while still providing flexibility for configuration, deployment, and management.

Role-Based Access Control in JBoss EAP 6 works through a combination of role permissions and
constraints.

Seven predefined roles are provided that each have different fixed permissions. The predefined roles
are: Monitor, Operator, Maintainer, Deployer, Auditor, Administrator, and SuperUser. Each management
user is assigned one or more roles, which specify what the user is permitted to do when managing the
server.

IMPORTANT

Before changing the provider to rbac, be sure your configuration has a user who will be
mapped to one of the RBAC roles, preferably with at least one in the Administrator or
SuperUser role. Otherwise your installation will not be manageable unless it is shut down
and the XML configuration is edited.

If you have started with one of the standard XML configurations shipped with JBoss EAP
6, the $local user will be mapped to the SuperUser role and the local authentication
scheme will be enabled. This will allow a user running the CLI on the same system as the
JBoss EAP 6 process to have full administrative permissions. Remote CLI users and web-
based admin console users will have no permissions.

Map at least one user other than $local before switching the provider to rbac.

Report a bug

6.2. ROLE-BASED ACCESS CONTROL IN THE MANAGEMENT
CONSOLE AND CLI

When Role-Based Access Control (RBAC) is enabled, the role assigned to a user determines the
resources to which they have access and what operations they can conduct with a resource's attributes.

The Management Console

In the management console some controls and views are disabled (greyed out) or not visible at all
depending on the permissions of the role to which the user has been assigned.

If you do not have read permissions to a resource attribute, that attribute will appear blank in the
console. For example, most roles cannot read the username and password fields for datasources.

If you do not have write permissions to a resource attribute, that attribute will be disabled (greyed-

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

59

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23145-748291+%5BLatest%5D&comment=Title%3A+About+Role-Based+Access+Control+%28RBAC%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23145-748291+23+Mar+2015+18%3A35+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

If you do not have write permissions to a resource attribute, that attribute will be disabled (greyed-
out) in the edit form for the resource. If you do not have write permissions to the resource, then the
edit button for the resource will not appear.

If a user does not have permissions to access a resource or attribute (it is "unaddressable" for that
role), it will not appear in the console for that user. An example of that is the access control system
itself which is only visible to a few roles by default.

The Management CLI or API

Users of the Management CLI or management API will encounter slightly different behavior in the
API when RBAC is enabled.

Resources and attributes that cannot be read are filtered from results. If the filtered items are
addressable by the role, their names are listed as filtered-attributes in the response-headers
section of the result. If a resource or attribute is not addressable by the role, it is not listed.

Attempting to access a resource that is not addressable will result in a resource not found error.

If a user attempts to write or read a resource that they can address but lack the appropriate write or
read permissions, a Permission Denied error is returned.

Report a bug

6.3. SUPPORTED AUTHENTICATION SCHEMES

Role-Based Access Control works with the standard authentication providers that are included with
JBoss EAP 6. The standard authentication providers are: username/password, client certificate, and
local user.

Username/Password

Users are authenticated using a username and password combination which is verified against either
the mgmt-users.properties file, or an LDAP server.

Client Certificate

Using the Trust Store.

Local User

jboss-cli.sh authenticates automatically as Local User if the server that is running on the same
machine. By default Local User is a member of the SuperUser group.

Regardless of which provider is used, JBoss EAP is responsible for the assignment of roles to users.
However when authenticating with the mgmt-users.properties file or an LDAP server, those systems
can supply user group information. This information can also be used by JBoss EAP to assign roles to
users.

Report a bug

6.4. THE STANDARD ROLES

Security Guide

60

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23148-712538+%5BLatest%5D&comment=Title%3A+Role-Based+Access+Control+in+the+Management+Console+and+CLI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23148-712538+24+Sep+2014+01%3A13+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23150-737045+%5BLatest%5D&comment=Title%3A+Supported+Authentication+Schemes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23150-737045+19+Jan+2015+10%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

JBoss EAP 6 provides seven predefined user roles: Monitor, Operator, Maintainer, Deployer, Auditor,
Administrator, and SuperUser. Each of these roles has a different set of permissions and is designed for
specific use cases. The Monitor, Operator, Maintainer, Administrator, and SuperUser role each build
upon each other, with each having more permissions than the previous. The Auditor and Deployer roles
are similar to the Monitor and Maintainer roles respectively but have some additional special permissions
and restrictions.

Monitor

Users of the Monitor role have the fewest permissions and can only read the current configuration
and state of the server. This role is intended for users who need to track and report on the
performance of the server.

Monitors cannot modify server configuration nor can they access sensitive data or operations.

Operator

The Operator role extends the Monitor role by adding the ability to modify the runtime state of the
server. This means that Operators can reload and shutdown the server as well as pause and resume
JMS destinations. The Operator role is ideal for users who are responsible for the physical or virtual
hosts of the application server so they can ensure that servers can be shutdown and restarted
corrected when needed.

Operators cannot modify server configuration or access sensitive data or operations.

Maintainer

The Maintainer role has access to view and modify runtime state and all configuration except
sensitive data and operations. The Maintainer role is the general purpose role that doesn't have
access to sensitive data and operation. The Maintainer role allows users to be granted almost
complete access to administer the server without giving those users access to passwords and other
sensitive information.

Maintainers cannot access sensitive data or operations.

Administrator

The Administrator role has unrestricted access to all resources and operations on the server except
the audit logging system. The Administrator role has access to sensitive data and operations. This
role can also configure the access control system. The Administrator role is only required when
handling sensitive data or configuring users and roles.

Administrators cannot access the audit logging system and cannot change themselves to the
Auditor or SuperUser role.

SuperUser

The SuperUser role has no restrictions and has complete access to all resources and operations of
the server including the audit logging system. This role is equivalent to the administrator users of
earlier versions of JBoss EAP 6 (6.0 and 6.1). If RBAC is disabled, all management users have
permissions equivalent to the SuperUser role.

Deployer

The Deployer role has the same permissions as the Monitor, but can modify configuration and state

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

61

The Deployer role has the same permissions as the Monitor, but can modify configuration and state
for deployments and any other resource type enabled as an application resource.

Auditor

The Auditor role has all the permissions of the Monitor role and can also view (but not modify)
sensitive data, and has full access to the audit logging system. The Auditor role is the only role other
than SuperUser that can access the audit logging system.

Auditors cannot modify sensitive data or resources. Only read access is permitted.

Report a bug

6.5. ABOUT ROLE PERMISSIONS

What each role is allowed to do is defined by what permissions it has. Not every role has every
permission. Notably SuperUser has every permission and Monitor has the least.

Each permission can grant read and/or write access for a single category of resources.

The categories are: runtime state, server configuration, sensitive data, the audit log, and the access
control system.

Table 6.1, “Role Permissions Matrix” summarizes the permissions of each role.

Table 6.1. Role Permissions Matrix

Monitor Operato
r

Maintain
er

Deploye
r

Auditor Administ
rator

SuperUs
er

Read Config and
State

X X X X X X X

Read Sensitive Data
[2]

X X X

Modify Sensitive
Data [2]

X X

Read/Modify Audit
Log

X X

Modify Runtime
State

X X X[1] X X

Modify Persistent
Config

X X[1] X X

Security Guide

62

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23151-675491+%5BLatest%5D&comment=Title%3A+The+Standard+Roles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23151-675491+23+Jun+2014+14%3A22+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Read/Modify Access
Control

X X

[1] permissions are restricted to application resources.

[2] What resources are considered to be "sensitive data" are configured using Sensitivity Constraints.

Report a bug

6.6. ABOUT CONSTRAINTS

Constraints are named sets of access-control configuration for a specified list of resources. The RBAC
system uses the combination of constraints and role permissions to determine if any specific user can
perform a management action.

Constraints are divided into three classifications: application, sensitivity and vault expression.

Application Constraints

Application Constraints define sets of resources and attributes that can be accessed by users of the
Deployer role. By default the only enabled Application Constraint is core which includes
deployments, deployment overlays. Application Constraints are also included (but not enabled by
default) for datasources, logging, mail, messaging, naming, resource-adapters and security. These
constraints allow Deployer users to not only deploy applications but also configure and maintain the
resources that are required by those applications.

Application constraint configuration is in the Management API at /core-
service=management/access=authorization/constraint=application-classification.

Sensitivity Constraints

Sensitivity Constraints define sets of resources that are considered "sensitive". A sensitive resource
is generally one that is either secret, like a password, or one that will have serious impact on the
operation of the server, like networking, JVM configuration, or system properties. The access control
system itself is also considered sensitive.

The only roles permitted to write to sensitive resources are Administrator and SuperUser. The
Auditor role is only able to read sensitive resources. No other roles have access.

Sensitivity constraint configuration is in the Management API at /core-
service=management/access=authorization/constraint=sensitivity-classification.

Vault Expression Constraint

The Vault Expression constraint defines if reading or writing vault expressions is consider a sensitive
operation. By default both reading and writing vault expressions is a sensitive operation.

Vault Expression constraint configuration is in the Management API at /core-
service=management/access=authorization/constraint=vault-expression.

Constraints can not be configured in the Management Console at this time.

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

63

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23154-592499+%5BLatest%5D&comment=Title%3A+About+Role+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23154-592499+23+Feb+2014+16%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

6.7. ABOUT JMX AND ROLE-BASED ACCESS CONTROL

Role-Based Access Control applies to JMX in three ways:

1. The Management API of JBoss EAP 6 is exposed as JMX Management Beans. These
Management Beans are referred to as "core mbeans" and access to them is controlled and
filtered exactly the same as the underlying Management API itself.

2. The JMX subsystem is configured with write permissions being "sensitive". This means only
users of the Administrator and SuperUser roles can make changes to that subsystem. Users of
the Auditor role can also read this subsystem configuration.

3. By default Management Beans registered by deployed applications and services (non-core
mbeans) can be accessed by all management users, but only users of the Maintainer, Operator,
Administrator, SuperUser roles can write to them.

NOTE

Users can receive JMX notifications from a JMX client, such as jconsole. This feature is
limited to local JMX connections. The JMX client must be connected either inside the
same JVM as the application server, or on the same machine and use the Attach agent to
connect to the application server (as jconsole does). JMX notifications for MBean
registration/unregistration and attribute value changes are now also generated for
MBeans in jboss.as and jboss.as.expr domains.

Report a bug

6.8. CONFIGURING ROLE-BASED ACCESS CONTROL

6.8.1. Overview of RBAC Configuration Tasks

When RBAC is enabled only users of the Administration or SuperUser role can view and make changes
to the Access Control system.

The management console provides an interface for the following common RBAC tasks:

View and configure what roles are assigned to (or excluded from) each user

View and configure what roles are assigned to (or excluded from) each group

View group and user membership per role.

Configure default membership per role.

Create a scoped role

NOTE

The Management Console cannot be used to enable or disable RBAC. Those settings are
not exposed in the UI. Use the command line interface to perform these tasks.

The management CLI provides access to the complete access control system. This means that

Security Guide

64

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23146-623213+%5BLatest%5D&comment=Title%3A+About+Constraints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23146-623213+21+Mar+2014+05%3A34+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24168-727511+%5BLatest%5D&comment=Title%3A+About+JMX+and+Role-Based+Access+Control%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24168-727511+25+Nov+2014+03%3A42+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The management CLI provides access to the complete access control system. This means that
everything that can be done in the management console can be done there, but a number of additional
tasks can be performed with the management CLI that cannot be done with the management console.

The following additional tasks can be performed in the CLI:

Enable and disable RBAC

Change permission combination policy

Configuring Application Resource and Resource Sensitivity Constraints

Report a bug

6.8.2. Enabling Role-Based Access Control

By default the Role-Based Access Control (RBAC) system is disabled. It is enabled by changing the
provider attribute from simple to rbac. This can be done using the Management CLI or by editing the
server configuration XML file if the server is offline. When RBAC is disabled or enabled on a running
server, the server configuration must be reloaded before it takes effect.

Once enabled it can only be disabled by a user of the Administrator or SuperUser roles. By default the
Management CLI runs as the SuperUser role if it is run on the same machine as the server.

Procedure 6.1. Enabling RBAC

To enable RBAC with the Management CLI, use the write-attribute operation of the access
authorization resource to set the provider attribute to rbac.

/core-service=management/access=authorization:write-attribute(name=provider, value=rbac)

[standalone@localhost:9999 /] /core-service=management/access=authorization:write-
attribute(name=provider, value=rbac)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}
[standalone@localhost:9999 /] /:reload
{
 "outcome" => "success",
 "result" => undefined
}

Procedure 6.2. Disabling RBAC

To disable RBAC with the Management CLI, use the write-attribute operation of the access
authorization resource to set the provider attribute to simple.

/core-service=management/access=authorization:write-attribute(name=provider,
value=simple)

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

65

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23748-743141+%5BLatest%5D&comment=Title%3A+Overview+of+RBAC+Configuration+Tasks%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23748-743141+15+Feb+2015+19%3A23+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

[standalone@localhost:9999 /] /core-service=management/access=authorization:write-
attribute(name=provider, value=simple)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}
[standalone@localhost:9999 /] /:reload
{
 "outcome" => "success",
 "result" => undefined
}

If the server is offline the XML configuration can be edited to enabled or disable RBAC. To do this, edit
the provider attribute of the access-control element of the management element. Set the value to
rbac to enable, and simple to disable.

Report a bug

6.8.3. Changing the Permission Combination Policy

The Permission Combination Policy determines how permissions are determined if a user is assigned
more than one role. This can be set to permissive or rejecting. The default is permissive.

When set to permissive, if any role is assigned to the user that permits an action, then the action is
allowed.

When set to rejecting, if multiple roles are assigned to a user, then no action is allowed. This means that
when the policy is set to rejecting each user should only be assigned one role. Users with multiple roles
will not be able to use the Management Console or the Management CLI when the policy is set to
rejecting.

The Permission Combination Policy is configured by setting the permission-combination-policy
attribute to either permissive or rejecting. This can be done using the Management CLI or by editing
the server configuration XML file if the server is offline.

Procedure 6.3. Set the Permission Combination Policy

Use the write-attribute operation of the access authorization resource to set the permission-

<management>

 <access-control provider="rbac">
 <role-mapping>
 <role name="SuperUser">
 <include>
 <user name="$local"/>
 </include>
 </role>
 </role-mapping>
 </access-control>

 </management>

Security Guide

66

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23749-712537+%5BLatest%5D&comment=Title%3A+Enabling+Role-Based+Access+Control%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23749-712537+24+Sep+2014+01%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Use the write-attribute operation of the access authorization resource to set the permission-
combination-policy attribute to the required policy name.

/core-service=management/access=authorization:write-attribute(name=permission-
combination-policy, value=POLICYNAME)

The valid policy names are rejecting and permissive.

[standalone@localhost:9999 /] /core-service=management/access=authorization:write-
attribute(name=permission-combination-policy, value=rejecting)
{"outcome" => "success"}
[standalone@localhost:9999 access=authorization]

If the server is offline the XML configuration can be edited to change the permission combination policy
value. To do this, edit the permission-combination-policy attribute of the access-control element.

Report a bug

6.9. MANAGING ROLES

6.9.1. About Role Membership

When Role-Based Access Control (RBAC) is enabled, what a management user is permitted to do is
determined by the roles to which the user is assigned. JBoss EAP 6 uses a system of includes and
excludes based on both the user and group membership to determine to which role a user belongs.

A user is considered to be assigned to a role if:

1. The user is:

listed as a user to be included in the role, or

a member of a group that is listed to be included in the role.

2. The user is not:

listed as a user to exclude from the role, or

a member of a group that is listed to be excluded from the role.

Exclusions take priority over inclusions.

Role include and exclude settings for users and groups can be configured using both the management

<access-control provider="rbac" permission-combination-policy="rejecting">
 <role-mapping>
 <role name="SuperUser">
 <include>
 <user name="$local"/>
 </include>
 </role>
 </role-mapping>
</access-control>

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

67

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23750-712534+%5BLatest%5D&comment=Title%3A+Changing+the+Permission+Combination+Policy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23750-712534+24+Sep+2014+01%3A08+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Role include and exclude settings for users and groups can be configured using both the management
console and the management CLI.

Only users of the SuperUser or Administrator roles can perform this configuration.

Report a bug

6.9.2. Configure User Role Assignment

Roles for a user to be included in and excluded from can be configured in the Management Console and
the Management CLI. This topic only shows using the Management Console.

Only users in the SuperUser or Administrator roles can perform this configuration.

The User roles configuration in the management console can be found by following these steps:

1. Login to the Management Console.

2. Click on the Administration tab.

3. Expand the Access Control menu and select Role Assignment.

4. Select the USERS tab.

Procedure 6.4. Create a new role assignment for a user

1. Login to the Management console.

2. Navigate to the Users tab of the Role Assignment section.

3. Click the Add button at the top right of the user list. Add User dialog appears.

Security Guide

68

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23751-736838+%5BLatest%5D&comment=Title%3A+About+Role+Membership%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23751-736838+19+Jan+2015+03%3A44+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Figure 6.1. Add User Dialog

4. Specify user name, and optionally realm.

5. Set the type menu to include or exclude.

6. Click the checkbox of the roles to include or exclude. To check multiple items, hold down the
Control key (Command key on OSX).

7. Click Save to finish.

When successful, the Add User dialog closes, and the list of users is updated to reflect the
changes made. If unsuccessful a Failed to save role assignment message is displayed.

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

69

Procedure 6.5. Update the role assignment for a user

1. Login to the Management console.

2. Navigate to the Users tab of the Role Assignment section.

3. Select user from the list.

4. Click Edit. The selection panel enters edit mode.

Figure 6.2. Selection Edit View

Here you can add and remove assigned and excluded roles for the user.

1. To add an assigned role, select the required role from the list of available roles on the left
and click button with the right-facing arrow next to the assigned roles list. The role moves
from the available list to the assigned list.

2. To remove an assigned role, selected the required role from the assigned roles list on the
right and click the button with the left-facing arrow next to the assigned roles list. The role
moves from the assigned list to the available list.

3. To add an excluded role, select the required role from the list of available roles on the left

Security Guide

70

3. To add an excluded role, select the required role from the list of available roles on the left
and click button with the right-facing arrow next to the excluded roles list. The role moves
from the available list to the excluded list.

4. To remove an excluded role, selected the required role from the excluded roles list on the
right and click the button with the left-facing arrow next to the excluded roles list. The role
moves from the excluded list to the available list.

5. Click Save to finish.

When successful, the edit view closes, and the list of users is updated to reflect the changes
made. If unsuccessful a Failed to save role assignment message is displayed.

Procedure 6.6. Remove role assignment for a user

1. Login to the Management console.

2. Navigate to the Users tab of the Role Assignment section.

3. Select the user from the list.

4. Click Remove. The Remove Role Assignment confirmation prompt appears.

5. Click Confirm.

When successful, the user will no longer appear in the list of user role assignments.

IMPORTANT

Removing the user from the list of role assignments does not remove the user from the
system, nor does it guarantee that no roles will be assigned to the user. Roles might still
be assigned from group membership.

Report a bug

6.9.3. Configure User Role Assignment using the Management CLI

Roles for a user to be included in and excluded from can be configured in the Management Console and
the Management CLI. This topic only shows using the Management CLI.

The configuration of mapping users and groups to roles is located in the management API at: /core-
service=management/access=authorization as role-mapping elements.

Only users of the SuperUser or Administrator roles can perform this configuration.

For easier access to the commands, in the Management CLI change to the /core-
service=management/access=authorization location:

[standalone@localhost:9999] cd /core-service=management/access=authorization

Procedure 6.7. Viewing Role Assignment Configuration

1. Use the :read-children-names operation to get a complete list of the configured roles:

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

71

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23745-712530+%5BLatest%5D&comment=Title%3A+Configure+User+Role+Assignment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23745-712530+24+Sep+2014+01%3A03+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

/core-service=management/access=authorization:read-children-names(child-type=role-
mapping)

[standalone@localhost:9999 access=authorization] :read-children-names(child-type=role-
mapping)
{
 "outcome" => "success",
 "result" => [
 "Administrator",
 "Deployer",
 "Maintainer",
 "Monitor",
 "Operator",
 "SuperUser"
]
}

2. Use the read-resource operation of a specified role-mapping to get the full details of a specific
role:

/core-service=management/access=authorization/role-mapping=ROLENAME:read-
resource(recursive=true)

[standalone@localhost:9999 access=authorization] ./role-mapping=Administrator:read-
resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "include-all" => false,
 "exclude" => undefined,
 "include" => {
 "user-theboss" => {
 "name" => "theboss",
 "realm" => undefined,
 "type" => "USER"
 },
 "user-harold" => {
 "name" => "harold",
 "realm" => undefined,
 "type" => "USER"
 },
 "group-SysOps" => {
 "name" => "SysOps",
 "realm" => undefined,
 "type" => "GROUP"
 }
 }
 }
}
[standalone@localhost:9999 access=authorization]

Procedure 6.8. Add a new role

This procedure shows how to add a role-mapping entry for a role. This must be done before the role can

Security Guide

72

This procedure shows how to add a role-mapping entry for a role. This must be done before the role can
be configured.

Use the add operation to add a new role configuration.

/core-service=management/access=authorization/role-mapping=ROLENAME:add

ROLENAME is the name of the role that the new mapping is for.

[standalone@localhost:9999 access=authorization] ./role-mapping=Auditor:add
{"outcome" => "success"}
[standalone@localhost:9999 access=authorization]

Procedure 6.9. Add a user as included in a role

This procedure shows how to add a user to the included list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be done first.

Use the add operation to add a user entry to the includes list of the role.

/core-service=management/access=authorization/role-
mapping=ROLENAME/include=ALIAS:add(name=USERNAME, type=USER)

ROLENAME is the name of the role being configured.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases such as user-USERNAME.

USERNAME is the name of the user being added to the include list.

 [standalone@localhost:9999 access=authorization] ./role-mapping=Auditor/include=user-
max:add(name=max, type=USER)
{"outcome" => "success"}
[standalone@localhost:9999 access=authorization]

Procedure 6.10. Add a user as excluded in a role

This procedure shows how to add a user to the excluded list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be done first.

Use the add operation to add a user entry to the excludes list of the role.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:add(name=USERNAME, type=USER)

ROLENAME is the name of the role being configured.

USERNAME is the name of the user being added to the exclude list.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases such as user-USERNAME.

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

73

[standalone@localhost:9999 access=authorization] ./role-mapping=Auditor/exclude=user-
max:add(name=max, type=USER)
{"outcome" => "success"}
[standalone@localhost:9999 access=authorization]

Procedure 6.11. Remove user role include configuration

This procedure shows how to remove a user include entry from a role mapping.

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-
mapping=ROLENAME/include=ALIAS:remove

ROLENAME is the name of the role being configured

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases such as user-USERNAME.

[standalone@localhost:9999 access=authorization] ./role-mapping=Auditor/include=user-
max:remove
{"outcome" => "success"}
[standalone@localhost:9999 access=authorization]

Removing the user from the list of includes does not remove the user from the system, nor does
it guarantee that the role won't be assigned to the user. The role might still be assigned based
on group membership.

Procedure 6.12. Remove user role exclude configuration

This procedure shows how to remove an user exclude entry from a role mapping.

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:remove

ROLENAME is the name of the role being configured.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases such as user-USERNAME.

[standalone@localhost:9999 access=authorization] ./role-mapping=Auditor/exclude=user-
max:remove
{"outcome" => "success"}
[standalone@localhost:9999 access=authorization]

Removing the user from the list of excludes does not remove the user from the system, nor
does it guarantee the role will be assigned to the user. Roles might still be excluded based on
group membership.

Report a bug

Security Guide

74

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23746-712526+%5BLatest%5D&comment=Title%3A+Configure+User+Role+Assignment+using+the+Management+CLI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23746-712526+24+Sep+2014+00%3A49+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

6.9.4. About Roles and User Groups

Users authenticated using either the mgmt-users.properties file or an LDAP server, can be members of
user groups. A user group is an arbitrary label that can be assigned to one or more users.

The RBAC system can be configured to automatically assign roles to users depending on what user
groups they are members of. It can also exclude users from roles based on group membership.

When using the mgmt-users.properties file, group information is stored in the mgmt-
groups.properties file. When using LDAP the group information is stored in the LDAP sever and
maintained by those responsible for the LDAP server.

Report a bug

6.9.5. Configure Group Role Assignment

Roles can be assigned to a user based on the user's membership of a user group.

Groups to be included or excluded from a role can be configured in the Management Console and the
Management CLI. This topic only shows using the Management Console.

Only users in the SuperUser or Administrator roles can perform this configuration.

The Group roles configuration in the management console can be found by following these steps:

1. Login to the Management Console.

2. Click on the Administration tab.

3. Expand the Access Control menu and select Role Assignment.

4. Select the GROUPS tab.

Procedure 6.13. Create a new role assignment for a group

1. Login to the Management console

2. Navigate to the GROUPS tab of the Role Assignment section.

3. Click the Add button at the top right of the user list. Add Group dialog appears.

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

75

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24191-592548+%5BLatest%5D&comment=Title%3A+About+Roles+and+User+Groups%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24191-592548+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Figure 6.3. Add Group Dialog

4. Specify the group name, and optionally the realm.

5. Set the type menu to include or exclude.

6. Click the checkbox of the roles to include or exclude. To check multiple items, hold down the
Control key (Command key on OSX).

7. Click Save to finish.

When successful, the Add Group dialog closes, and the list of groups is updated to reflect the

Security Guide

76

When successful, the Add Group dialog closes, and the list of groups is updated to reflect the
changes made. If unsuccessful a Failed to save role assignment message is displayed.

Procedure 6.14. Update a role assignment for a group

1. Login to the Management console.

2. Navigate to the GROUPS tab of the Role Assignment section.

3. Select the group from the list.

4. Click Edit. The Selection view enters Edit mode.

Figure 6.4. Selection View Edit Mode

Here you can add and remove assigned and excluded roles from the group:

To add assigned role, select the required role from the list of available roles on the left and
click button with the right-facing arrow next to the assigned roles list. The role moves from
the available list to the assigned list.

To remove an assigned role, selected the required role from the assigned roles list on the
right and click the button with the left-facing arrow next to the assigned roles list. The role
moves from the assigned list to the available list.

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

77

To add an excluded role, select the required role from the list of available roles on the left
and click button with the right-facing arrow next to the excluded roles list. The role moves
from the available list to the excluded list.

To remove an excluded role, selected the required role from the excluded roles list on the
right and click the button with the left-facing arrow next to the excluded roles list. The role
moves from the excluded list to the available list.

5. Click Save to finish.

When successful, the edit view closes, and the list of groups is updated to reflect the changes
made. If unsuccessful a Failed to save role assignment message is displayed.

Procedure 6.15. Remove role assignment for a group

1. Login to the Management console.

2. Navigate to the GROUPS tab of the Role Assignment section.

3. Select the group from the list.

4. Click Remove. The Remove Role Assignment confirmation prompt appears.

5. Click Confirm.

When successful, the role will no longer appear in the list of group role assignments.

Removing the group from the list of role assignments does not remove the user group from the
system, nor does it guarantee that no roles will be assigned to members of that group. Each
group member might still have a role assigned to them directly.

Report a bug

6.9.6. Configure Group Role Assignment using the Management CLI

Groups to be included or excluded from a role can be configured in the Management Console and the
Management CLI. This topic only shows using the Management CLI.

The configuration of mapping users and groups to roles is located in the management API at: /core-
service=management/access=authorization as role-mapping elements.

Only users in the SuperUser or Administrator roles can perform this configuration.

For easier access to the commands, in the Management CLI change to the /core-
service=management/access=authorization location:

[standalone@localhost:9999] cd /core-service=management/access=authorization

Procedure 6.16. Viewing Group Role Assignment Configuration

1. Use the read-children-names operation to get a complete list of the configured roles:

/core-service=management/access=authorization:read-children-names(child-type=role-
mapping)

Security Guide

78

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23747-712531+%5BLatest%5D&comment=Title%3A+Configure+Group+Role+Assignment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23747-712531+24+Sep+2014+01%3A03+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

[standalone@localhost:9999 access=authorization] :read-children-names(child-type=role-
mapping)
{
 "outcome" => "success",
 "result" => [
 "Administrator",
 "Deployer",
 "Maintainer",
 "Monitor",
 "Operator",
 "SuperUser"
]
}

2. Use the read-resource operation of a specified role-mapping to get the full details of a specific
role:

/core-service=management/access=authorization/role-mapping=ROLENAME:read-
resource(recursive=true)

[standalone@localhost:9999 access=authorization] ./role-mapping=Administrator:read-
resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "include-all" => false,
 "exclude" => undefined,
 "include" => {
 "user-theboss" => {
 "name" => "theboss",
 "realm" => undefined,
 "type" => "USER"
 },
 "user-harold" => {
 "name" => "harold",
 "realm" => undefined,
 "type" => "USER"
 },
 "group-SysOps" => {
 "name" => "SysOps",
 "realm" => undefined,
 "type" => "GROUP"
 }
 }
 }
}
[standalone@localhost:9999 access=authorization]

Procedure 6.17. Add a new role

This procedure shows how to add a role-mapping entry for a role. This must be done before the role can
be configured.

Use the add operation to add a new role configuration.

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

79

/core-service=management/access=authorization/role-mapping=ROLENAME:add

[standalone@localhost:9999 access=authorization] ./role-mapping=Auditor:add
{"outcome" => "success"}
[standalone@localhost:9999 access=authorization]

Procedure 6.18. Add a Group as included in a role

This procedure shows how to add a Group to the included list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be done first.

Use the add operation to add a Group entry to the includes list of the role.

/core-service=management/access=authorization/role-
mapping=ROLENAME/include=ALIAS:add(name=GROUPNAME, type=GROUP)

ROLENAME is the name of the role being configured.

GROUPNAME is the name of the group being added to the include list.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases such as group-GROUPNAME.

[standalone@localhost:9999 access=authorization] ./role-mapping=Auditor/include=group-
investigators:add(name=investigators, type=GROUP)
{"outcome" => "success"}
[standalone@localhost:9999 access=authorization]

Procedure 6.19. Add a group as excluded in a role

This procedure shows how to add a group to the excluded list of a role.

If no configuration for a role has been done, then a role-mapping entry for it must be created first.

Use the add operation to add a group entry to the excludes list of the role.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:add(name=GROUPNAME, type=GROUP)

ROLENAME is the name of the role being configured

GROUPNAME is the name of the group being added to the include list

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases such as group-GROUPNAME.

[standalone@localhost:9999 access=authorization] ./role-mapping=Auditor/exclude=group-
supervisors:add(name=supervisors, type=GROUP)
{"outcome" => "success"}
[standalone@localhost:9999 access=authorization]

Procedure 6.20. Remove group role include configuration

Security Guide

80

This procedure shows how to remove a group include entry from a role mapping.

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-
mapping=ROLENAME/include=ALIAS:remove

ROLENAME is the name of the role being configured

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases such as group-GROUPNAME.

[standalone@localhost:9999 access=authorization] ./role-mapping=Auditor/include=group-
investigators:remove
{"outcome" => "success"}
[standalone@localhost:9999 access=authorization]

Removing the group from the list of includes does not remove the group from the system, nor
does it guarantee that the role won't be assigned to users in this group. The role might still be
assigned to users in the group individually.

Procedure 6.21. Remove a user group exclude entry

This procedure shows how to remove a group exclude entry from a role mapping.

Use the remove operation to remove the entry.

/core-service=management/access=authorization/role-
mapping=ROLENAME/exclude=ALIAS:remove

ROLENAME is the name of the role being configured.

ALIAS is a unique name for this mapping. Red Hat recommends that you use a naming
convention for your aliases such as group-GROUPNAME.

[standalone@localhost:9999 access=authorization] ./role-mapping=Auditor/exclude=group-
supervisors:remove
{"outcome" => "success"}
[standalone@localhost:9999 access=authorization]

Removing the group from the list of excludes does not remove the group from the system. It
also does not guarantee the role will be assigned to members of the group. Roles might still be
excluded based on group membership.

Report a bug

6.9.7. About Authorization and Group Loading with LDAP

An LDAP directory contains entries for user accounts and groups, cross referenced by attributes.
Depending on the LDAP server configuration, a user entity may map the groups the user belongs to
through memberOf attributes; a group entity may map which users belong to it through uniqueMember
attributes; or both mappings may be maintained by the LDAP server.

Users generally authenticate against the server using a simple user name. When searching for group

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

81

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23744-712533+%5BLatest%5D&comment=Title%3A+Configure+Group+Role+Assignment+using+the+Management+CLI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23744-712533+24+Sep+2014+01%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Users generally authenticate against the server using a simple user name. When searching for group
membership information, depending on the directory server in use, searches could be performed using
this simple name or using the distinguished name of the user's entry in the directory.

The authentication step of a user connecting to the server always happens first. Once the user is
successfully authenticated the server loads the user's groups. The authentication step and the
authorization step each require a connection to the LDAP server. The realm optimizes this process by
reusing the authentication connection for the group loading step. As will be shown within the
configuration steps below it is possible to define rules within the authorization section to convert a user's
simple user name to their distinguished name. The result of a "user name to distinguished name
mapping" search during authentication is cached and reused during the authorization query when the
force attribute is set to "false". When force is true, the search is performed again during authorization
(while loading groups). This is typically done when different servers perform authentication and
authorization.

IMPORTANT

These examples specify some attributes with their default values. This is done for
demonstration. Attributes that specify their default values are removed from the
configuration when it is persisted by the server. The exception is the force attribute. It is
required, even when set to the default value of false.

username-to-dn
The username-to-dn element specifies how to map the user name to the distinguished name of their
entry in the LDAP directory. This element is only required when both of the following are true:

The authentication and authorization steps are against different LDAP servers.

The group search uses the distinguished name.

1:1 username-to-dn

This specifies that the user name entered by the remote user is the user's distinguished name.

<authorization>
 <ldap connection="...">
 <!-- OPTIONAL -->
 <username-to-dn force="true">
 <!-- Only one of the following. -->
 <username-is-dn />
 <username-filter base-dn="..." recursive="..." user-dn-attribute="..." attribute="..." />
 <advanced-filter base-dn="..." recursive="..." user-dn-attribute="..." filter="..." />
 </username-to-dn>

 <group-search group-name="..." iterative="..." group-dn-attribute="..." group-name-attribute="..." >
 <!-- One of the following -->
 <group-to-principal base-dn="..." recursive="..." search-by="...">
 <membership-filter principal-attribute="..." />
 </group-to-principal>
 <principal-to-group group-attribute="..." />
 </group-search>
 </ldap>
</authorization>

Security Guide

82

This defines a 1:1 mapping and there is no additional configuration.

username-filter

The next option is very similar to the simple option described above for the authentication step. A
specified attribute is searched for a match against the supplied user name.

The attributes that can be set here are:

base-dn: The distinguished name of the context to begin the search.

recursive: Whether the search will extend to sub contexts. Defaults to false.

attribute: The attribute of the users entry to try and match against the supplied user name.
Defaults to uid.

user-dn-attribute: The attribute to read to obtain the users distinguished name. Defaults to
dn.

advanced-filter

The final option is to specify an advanced filter, as in the authentication section this is an opportunity
to use a custom filter to locate the users distinguished name.

For the attributes that match those in the username-filter example, the meaning and default values
are the same. There is one new attribute:

filter: Custom filter used to search for a user's entry where the user name will be substituted
in the {0} place holder.

IMPORTANT

The XML must remain valid after the filter is defined so if any special characters are
used such as & ensure the proper form is used. For example & for the &
character.

The Group Search

<username-to-dn force="false">
 <username-is-dn />
</username-to-dn>

<username-to-dn force="true">
 <username-filter base-dn="dc=people,dc=harold,dc=example,dc=com" recursive="false"
attribute="sn" user-dn-attribute="dn" />
</username-to-dn>

<username-to-dn force="true">
 <advanced-filter base-dn="dc=people,dc=harold,dc=example,dc=com" recursive="false"
filter="sAMAccountName={0}" user-dn-attribute="dn" />
</username-to-dn>

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

83

There are two different styles that can be used when searching for group membership information. The
first style is where the user's entry contains an attribute that references the groups the user is a member
of. The second style is where the group contains an attribute referencing the users entry.

When there is a choice of which style to use Red Hat recommends that the configuration for a user's
entry referencing the group is used. This is because with this method group information can be loaded
by reading attributes of known distinguished names without having to perform any searches. The other
approach requires extensive searches to identify the groups that reference the user.

Before describing the configuration here are some LDIF examples to illustrate this.

Example 6.1. Principal to Group - LDIF example.

This example illustrates where we have a user TestUserOne who is a member of GroupOne,
GroupOne is in turn a member of GroupFive. The group membership is shown by the use of a
memberOf attribute which is set to the distinguished name of the group of which the user (or group)
is a member.

It is not shown here but a user could potentially have multiple memberOf attributes set, one for each
group of which the user is directly a member.

dn: uid=TestUserOne,ou=users,dc=principal-to-group,dc=example,dc=org
objectClass: extensibleObject
objectClass: top
objectClass: groupMember
objectClass: inetOrgPerson
objectClass: uidObject
objectClass: person
objectClass: organizationalPerson
cn: Test User One
sn: Test User One
uid: TestUserOne
distinguishedName: uid=TestUserOne,ou=users,dc=principal-to-group,dc=example,dc=org
memberOf: uid=GroupOne,ou=groups,dc=principal-to-group,dc=example,dc=org
memberOf: uid=Slashy/Group,ou=groups,dc=principal-to-group,dc=example,dc=org
userPassword::
e1NTSEF9WFpURzhLVjc4WVZBQUJNbEI3Ym96UVAva0RTNlFNWUpLOTdTMUE9PQ==

dn: uid=GroupOne,ou=groups,dc=principal-to-group,dc=example,dc=org
objectClass: extensibleObject
objectClass: top
objectClass: groupMember
objectClass: group
objectClass: uidObject
uid: GroupOne
distinguishedName: uid=GroupOne,ou=groups,dc=principal-to-group,dc=example,dc=org
memberOf: uid=GroupFive,ou=subgroups,ou=groups,dc=principal-to-group,dc=example,dc=org

dn: uid=GroupFive,ou=subgroups,ou=groups,dc=principal-to-group,dc=example,dc=org
objectClass: extensibleObject
objectClass: top
objectClass: groupMember
objectClass: group
objectClass: uidObject

Security Guide

84

Example 6.2. Group to Principal - LDIF Example

This example shows the same user TestUserOne who is a member of GroupOne which is in turn a
member of GroupFive - however in this case it is an attribute uniqueMember from the group to the
user being used for the cross reference.

Again the attribute used for the group membership cross reference can be repeated, if you look at
GroupFive there is also a reference to another user TestUserFive which is not shown here.

General Group Searching

Before looking at the examples for the two approaches shown above we first need to define the
attributes common to both of these.

group-name: This attribute is used to specify the form that should be used for the group name

uid: GroupFive
distinguishedName: uid=GroupFive,ou=subgroups,ou=groups,dc=principal-to-
group,dc=example,dc=org

dn: uid=TestUserOne,ou=users,dc=group-to-principal,dc=example,dc=org
objectClass: top
objectClass: inetOrgPerson
objectClass: uidObject
objectClass: person
objectClass: organizationalPerson
cn: Test User One
sn: Test User One
uid: TestUserOne
userPassword::
e1NTSEF9SjR0OTRDR1ltaHc1VVZQOEJvbXhUYjl1dkFVd1lQTmRLSEdzaWc9PQ==

dn: uid=GroupOne,ou=groups,dc=group-to-principal,dc=example,dc=org
objectClass: top
objectClass: groupOfUniqueNames
objectClass: uidObject
cn: Group One
uid: GroupOne
uniqueMember: uid=TestUserOne,ou=users,dc=group-to-principal,dc=example,dc=org

dn: uid=GroupFive,ou=subgroups,ou=groups,dc=group-to-principal,dc=example,dc=org
objectClass: top
objectClass: groupOfUniqueNames
objectClass: uidObject
cn: Group Five
uid: GroupFive
uniqueMember: uid=TestUserFive,ou=users,dc=group-to-principal,dc=example,dc=org
uniqueMember: uid=GroupOne,ou=groups,dc=group-to-principal,dc=example,dc=org

<group-search group-name="..." iterative="..." group-dn-attribute="..." group-name-attribute="..." >
 ...
</group-search>

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

85

returned as the list of groups of which the user is a member. This can either be the simple form
of the group name or the group's distinguished name. If the distinguished name is required this
attribute can be set to DISTINGUISHED_NAME. Defaults to SIMPLE.

iterative: This attribute is used to indicate if, after identifying the groups a user is a member of,
we should also iteratively search based on the groups to identify which groups the groups are a
member of. If iterative searching is enabled we keep going until either we reach a group that is
not a member if any other groups or a cycle is detected. Defaults to false.

Cyclic group membership is not a problem. A record of each search is kept to prevent groups that have
already been searched from being searched again.

IMPORTANT

For iterative searching to work the group entries need to look the same as user entries.
The same approach used to identify the groups a user is a member of is then used to
identify the groups of which the group is a member. This would not be possible if for
group to group membership the name of the attribute used for the cross reference
changes or if the direction of the reference changes.

group-dn-attribute: On an entry for a group which attribute is its distinguished name. Defaults
to dn.

group-name-attribute: On an entry for a group which attribute is its simple name. Defaults to
uid.

Example 6.3. Principal to Group Example Configuration

Based on the example LDIF from above here is an example configuration iteratively loading a user's
groups where the attribute used to cross reference is the memberOf attribute on the user.

The most important aspect of this configuration is that the principal-to-group element has been added
with a single attribute.

group-attribute: The name of the attribute on the user entry that matches the distinguished
name of the group the user is a member of. Defaults to memberOf.

Example 6.4. Group to Principal Example Configuration

This example shows an iterative search for the group to principal LDIF example shown above.

<authorization>
 <ldap connection="LocalLdap">
 <username-to-dn>
 <username-filter base-dn="ou=users,dc=principal-to-group,dc=example,dc=org"
recursive="false" attribute="uid" user-dn-attribute="dn" />
 </username-to-dn>
 <group-search group-name="SIMPLE" iterative="true" group-dn-attribute="dn" group-name-
attribute="uid">
 <principal-to-group group-attribute="memberOf" />
 </group-search>
 </ldap>
</authorization>

Security Guide

86

Here an element group-to-principal is added. This element is used to define how searches for groups
that reference the user entry will be performed. The following attributes are set:

base-dn: The distinguished name of the context to use to begin the search.

recursive: Whether sub-contexts also be searched. Defaults to false.

search-by: The form of the role name used in searches. Valid values are SIMPLE and
DISTINGUISHED_NAME. Defaults to DISTINGUISHED_NAME.

Within the group-to-principal element there is a membership-filter element to define the cross
reference.

principal-attribute: The name of the attribute on the group entry that references the user
entry. Defaults to member.

Report a bug

6.9.8. About Scoped Roles

Scoped Roles are user-defined roles that grant the permissions of one of the standard roles but only for
one or more specified server groups or hosts. Scoped roles allow for management users to be granted
permissions that are limited to only those server groups or hosts that are required.

Scoped roles can be created by users assigned the Administrator or SuperUser roles.

They are defined by five characteristics:

1. A unique name.

2. Which of the standard roles it is based on.

3. If it applies to Server Groups or Hosts

4. The list of server groups or hosts that it is restricted to.

5. If all users are automatically include. This defaults to false.

Once created a scoped role can be assigned to users and groups the same way that the standard roles

<authorization>
 <ldap connection="LocalLdap">
 <username-to-dn>
 <username-filter base-dn="ou=users,dc=group-to-principal,dc=example,dc=org"
recursive="false" attribute="uid" user-dn-attribute="dn" />
 </username-to-dn>
 <group-search group-name="SIMPLE" iterative="true" group-dn-attribute="dn" group-name-
attribute="uid">
 <group-to-principal base-dn="ou=groups,dc=group-to-principal,dc=example,dc=org"
recursive="true" search-by="DISTINGUISHED_NAME">
 <membership-filter principal-attribute="uniqueMember" />
 </group-to-principal>
 </group-search>
 </ldap>
 </authorization>

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

87

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24484-685962+%5BLatest%5D&comment=Title%3A+About+Authorization+and+Group+Loading+with+LDAP%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24484-685962+18+Jul+2014+03%3A24+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Once created a scoped role can be assigned to users and groups the same way that the standard roles
are.

Creating a scoped role does not let you define new permissions. Scoped roles can only be used to apply
the permissions of an existing role in a limited scope. For example, you could create a scoped role based
on the Deployer role which is restricted to a single server group.

There are only two scopes that roles can be limited to, host and server group.

Host-scoped roles

A role that is host-scoped restricts the permissions of that role to one or more hosts. This means
access is provided to the relevant /host=*/ resource trees but resources that are specific to other
hosts are hidden.

Server-Group-scoped roles

A role that is server-group-scoped restricts the permissions of that role to one or more server
groups. Additionally the role permissions will also apply to the profile, socket binding group, server
config and server resources that are associated with the specified server-groups. Any sub-resources
within any of those that are not logically related to the server-group will not be visible to the user.

Both host and server-group scoped roles have permissions of the Monitor role for the remainder of the
managed domain configuration.

Report a bug

6.9.9. Creating Scoped Roles

Scoped Roles are user-defined roles that grant the permissions of one of the standard roles but only for
one or more specified server groups or hosts. This topic shows how to create scoped roles.

Only users in the SuperUser or Administrator roles can perform this configuration.

Scoped Role configuration in the management console can be found by following these steps:

1. Login to the Management Console

2. Click on the Administration tab

3. Expand the Access Control menu and select Role Assignment.

4. Select ROLES tab, and then the Scoped Roles tab within it.

The Scoped Roles section of the Management Console consists of two main areas, a table containing a
list of the currently configured scoped roles, and the Selection panel which displays the details of the
role currently selected in the table.

The following procedures show how to perform configuration tasks for Scoped Roles.

Procedure 6.22. Add a New Scoped Role

1. Login to the Management Console

2. Navigate to the Scoped Roles area of the Roles tab.

Security Guide

88

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+23149-592499+%5BLatest%5D&comment=Title%3A+About+Scoped+Roles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=23149-592499+23+Feb+2014+16%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

3. Click Add. The Add Scoped Role dialog appears.

4. Specify the following details:

Name, the unique name for the new scoped role.

Base Role, the role which this role will base its permissions on.

Type, whether this role will be restricted to hosts or server groups.

Scope, the list of hosts or server groups that the role is restricted to. Multiple entries can be
selected.

Include All, should this role automatically include all users. Defaults to no.

5. Click Save and the dialog will close and the newly created role will appear in the table.

Procedure 6.23. Edit a Scoped Role

1. Login to the Management Console

2. Navigate to the Scoped Roles area of the Roles tab.

3. Click on the scoped role you want to edit in the table. The details of that role appears in the
Selection panel below the table.

4. Click Edit in the Selection panel. The Selection panel enters edit mode.

5. Update the details you need to change and click the Save button. The Selection panel returns
to its previous state. Both the Selection panel and table show the newly updated details.

Procedure 6.24. View Scoped Role Members

1. Login to the Management Console

2. Navigate to the Scoped Roles area of the Roles tab.

3. Click on the scoped role in the table that you want to view the Members of, then click Members.
The Members of role dialog appears. It shows users and groups that are included or excluded
from the role.

4. Click Done when you have finished reviewing this information.

Procedure 6.25. Delete a Scoped Role

IMPORTANT

A Scoped Role cannot be deleted if users or groups are assigned to it. Remove the role
assignments first, and then delete it.

1. Login to the Management Console

2. Navigate to the Scoped Roles area of the Roles tab.

3. Select the scoped role to be removed in the table.

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

89

4. Click the Remove button. The Remove Scoped Role dialog appears.

5. Click Confirm.The dialog closes and the role is removed.

Report a bug

6.10. CONFIGURING CONSTRAINTS

6.10.1. Configure Sensitivity Constraints

Each Sensitivity Constraint defines a set of resources that are considered "sensitive". A sensitive
resource is generally one that either should be secret, like passwords, or one that will have serious
impact on the server, like networking, JVM configuration, or system properties. The access control
system itself is also considered sensitive. Resource sensitivity limits which roles are able to read, write or
address a specific resource.

Sensitivity constraint configuration is in the Management API at /core-
service=management/access=authorization/constraint=sensitivity-classification.

Within the management model each Sensitivity Constraint is identified as a classification. The
classifications are then grouped into types. There are 39 included classifications that are arranged into
13 types.

To configure a sensitivity constraint, use the write-attribute operation to set the configured-requires-
read, configured-requires-write, or configured-requires-addressable attribute. To make that type of
operation sensitive set the value of the attribute to true, otherwise to make it nonsensitive set it to
false. By default these attributes are not set and the values of default-requires-read, default-requires-
write, and default-requires-addressable are used. Once the configured attribute is set it is that value
that is used instead of the default. The default values cannot be changed.

Example 6.5. Make reading system properties a sensitive operation

[domain@localhost:9999 /] cd /core-
service=management/access=authorization/constraint=sensitivity-
classification/type=core/classification=system-property
[domain@localhost:9999 classification=system-property] :write-attribute(name=configured-
requires-read, value=true)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}
[domain@localhost:9999 classification=system-property] :read-resource
{
 "outcome" => "success",
 "result" => {
 "configured-requires-addressable" => undefined,
 "configured-requires-read" => true,
 "configured-requires-write" => undefined,
 "default-requires-addressable" => false,
 "default-requires-read" => false,
 "default-requires-write" => true,

Security Guide

90

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24152-632248+%5BLatest%5D&comment=Title%3A+Creating+Scoped+Roles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24152-632248+17+Apr+2014+01%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

 "applies-to" => {
 "/host=master/system-property=*" => undefined,
 "/host=master/core-service=platform-mbean/type=runtime" => undefined,
 "/server-group=*/system-property=*" => undefined,
 "/host=master/server-config=*/system-property=*" => undefined,
 "/host=master" => undefined,
 "/system-property=*" => undefined,
 "/" => undefined
 }
 }
}
[domain@localhost:9999 classification=system-property]

What roles will be able to perform what operations depending on the configuration of these attributes is
summarized in Table 6.2, “Sensitivity Constraint Configuration outcomes” .

Table 6.2. Sensitivity Constraint Configuration outcomes

Value requires-read requires-write requires-addressable

true Read is sensitive.

Only Auditor,
Administrator, SuperUser
can read.

Write is sensitive.

Only Administrator and
SuperUser can write

Addressing is sensitive.

Only Auditor,
Administrator, SuperUser
can address.

false Read is not sensitive.

Any management user can
read.

Write is not sensitive.

Only Maintainer,
Administrator and
SuperUser can write.
Deployers can also write the
resource is an application
resource.

Addressing is not sensitive.

Any management user can
address.

Report a bug

6.10.2. Configure Application Resource Constraints

Each Application Resource Constraint defines a set of resources, attributes and operations that are
usually associated with the deployment of applications and services. When an application resource
constraint is enabled management users of the Deployer role are granted access to the resources that it
applies to.

Application constraint configuration is in the Management Model at /core-
service=management/access=authorization/constraint=application-classification/.

Within the management model each Application Resource Constraint is identified as a classification.
The classifications are then grouped into types. There are 14 included classifications that are arranged
into 8 types. Each classification has an applies-to element which is a list of resource path patterns to
which the classifications configuration applies.

By default the only Application Resource classification that is enabled is core. Core includes

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

91

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24436-592560+%5BLatest%5D&comment=Title%3A+Configure+Sensitivity+Constraints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24436-592560+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

By default the only Application Resource classification that is enabled is core. Core includes
deployments, deployment overlays, and the deployment operations.

To enable an Application Resource, use the write-attribute operation to set the configured-application
attribute of the classification to true. To disable an Application Resource, set this attribute to false. By
default these attributes are not set and the value of default-application attribute is used. The default
value cannot be changed.

Example 6.6. Enabling the logger-profile application resource classification

[domain@localhost:9999 /] cd /core-
service=management/access=authorization/constraint=application-
classification/type=logging/classification=logging-profile
[domain@localhost:9999 classification=logging-profile] :write-attribute(name=configured-
application, value=true)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}
[domain@localhost:9999 classification=logging-profile] :read-resource
{
 "outcome" => "success",
 "result" => {
 "configured-application" => true,
 "default-application" => false,
 "applies-to" => {"/profile=*/subsystem=logging/logging-profile=*" => undefined}
 }
}
[domain@localhost:9999 classification=logging-profile]

IMPORTANT

Application Resource Constraints apply to all resources that match its configuration. For
example, It is not possible to grant a Deployer user access to one datasource resource
but not another. If this level of separation is required then it is recommended to configure
the resources in different server groups and create different scoped Deployer roles for
each group.

Report a bug

6.10.3. Configure the Vault Expression Constraint

By default, reading and writing vault expressions are sensitive operations. Configuring the Vault
Expression Constraint allows you to set either or both of those operations to being nonsensitive.
Changing this constraint allows a greater number of roles to read and write vault expressions.

The vault expression constraint is found in the management model at /core-
service=management/access=authorization/constraint=vault-expression.

Security Guide

92

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24420-592560+%5BLatest%5D&comment=Title%3A+Configure+Application+Resource+Constraints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24420-592560+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

To configure the vault expression constraint, use the write-attribute operation to set the attributes of
configured-requires-write and configured-requires-read to true or false. By default these are not set
and the values of default-requires-read and default-requires-write are used. The default values
cannot be changed.

Example 6.7. Making writing to vault expressions a nonsensitive operation

[domain@localhost:9999 /] cd /core-service=management/access=authorization/constraint=vault-
expression
[domain@localhost:9999 constraint=vault-expression] :write-attribute(name=configured-requires-
write, value=false)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => {"main-server-group" => {"host" => {"master" => {
 "server-one" => {"response" => {"outcome" => "success"}},
 "server-two" => {"response" => {"outcome" => "success"}}
 }}}}
}
[domain@localhost:9999 constraint=vault-expression] :read-resource
{
 "outcome" => "success",
 "result" => {
 "configured-requires-read" => undefined,
 "configured-requires-write" => false,
 "default-requires-read" => true,
 "default-requires-write" => true
 }
}
[domain@localhost:9999 constraint=vault-expression]

What roles will be able to read and write to vault expressions depending on this configuration is
summarized in Table 6.3, “Vault Expression Constraint Configuration outcomes” .

Table 6.3. Vault Expression Constraint Configuration outcomes

Value requires-read requires-write

true Read operation is sensitive.

Only Auditor, Administrator, and
SuperUser can read.

Write operation is sensitive.

Only Administrator, and SuperUser can
write.

false Read operation is not sensitive.

All management users can read.

Write operation is not sensitive.

Monitor, Administrator, and SuperUser
can write. Deployers can also write if the
vault expression is in an Application Resource.

Report a bug

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

93

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24406-592562+%5BLatest%5D&comment=Title%3A+Configure+the+Vault+Expression+Constraint%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24406-592562+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

6.11. CONSTRAINTS REFERENCE

6.11.1. Application Resource Constraints Reference

Type: core

Classification: deployment-overlay

default: true

PATH: /deployment-overlay=*

PATH: /deployment=*

PATH: /

Operation:

upload-deployment-stream, full-replace-deployment, upload-deployment-url, upload-
deployment-bytes

Type: datasources

Classification: datasource

default: false

PATH: /deployment=*/subdeployment=*/subsystem=datasources/data-source=*

PATH: /subsystem=datasources/data-source=*

PATH: /subsystem=datasources/data-source=ExampleDS

PATH: /deployment=*/subsystem=datasources/data-source=*

Classification: jdbc-driver

default: false

PATH: /subsystem=datasources/jdbc-driver=*

Classification: xa-data-source

default: false

PATH: /subsystem=datasources/xa-data-source=*

PATH: /deployment=*/subsystem=datasources/xa-data-source=*

PATH: /deployment=*/subdeployment=*/subsystem=datasources/xa-data-source=*

Type: logging

Security Guide

94

Classification: logger

default: false

PATH: /subsystem=logging/logger=*

PATH: /subsystem=logging/logging-profile=*/logger=*

Classification: logging-profile

default: false

PATH: /subsystem=logging/logging-profile=*

Type: mail

Classification: mail-session

default: false

PATH: /subsystem=mail/mail-session=*

Type: naming

Classification: binding

default: false

PATH: /subsystem=naming/binding=*

Type: resource-adapters

Classification: resource-adapters

default: false

PATH: /subsystem=resource-adapters/resource-adapter=*

Type: security

Classification: security-domain

default: false

PATH: /subsystem=security/security-domain=*

Report a bug

6.11.2. Sensitivity Constraints Reference

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

95

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24684-650937+%5BLatest%5D&comment=Title%3A+Application+Resource+Constraints+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24684-650937+04+Jun+2014+01%3A42+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Type: core

Classification: access-control

requires-addressable: true

requires-read: true

requires-write: true

PATH: /core-service=management/access=authorization

PATH: /subsystem=jmx ATTRIBUTE: non-core-mbean-sensitivity

Classification: credential

requires-addressable: false

requires-read: true

requires-write: true

PATH: /subsystem=mail/mail-session=*/server=pop3 ATTRIBUTE: username , password

PATH: /subsystem=mail/mail-session=*/server=imap ATTRIBUTE: username , password

PATH: /subsystem=datasources/xa-data-source=* ATTRIBUTE: user-name, recovery-
username, password, recovery-password

PATH: /subsystem=mail/mail-session=*/custom=* ATTRIBUTE: username, password

PATH: /subsystem=datasources/data-source=*" ATTRIBUTE: user-name, password

PATH: /subsystem=remoting/remote-outbound-connection=*" ATTRIBUTE: username

PATH: /subsystem=mail/mail-session=*/server=smtp ATTRIBUTE: username, password

PATH: /subsystem=web/connector=*/configuration=ssl ATTRIBUTE: key-alias, password

PATH: /subsystem=resource-adapters/resource-adapter=*/connection-definitions=*"
ATTRIBUTE: recovery-username, recovery-password

Classification: domain-controller

requires-addressable: false

requires-read: false

requires-write: true

Classification: domain-names

requires-addressable: false

requires-read: false

requires-write: true

Security Guide

96

Classification: extensions

requires-addressable: false

requires-read: false

requires-write: true

PATH: /extension=*

Classification: jvm

requires-addressable: false

requires-read: false

requires-write: true

PATH: /core-service=platform-mbean/type=runtime ATTRIBUTE: input-arguments, boot-
class-path, class-path, boot-class-path-supported, library-path

Classification: management-interfaces

requires-addressable: false

requires-read: false

requires-write: true

/core-service=management/management-interface=native-interface

/core-service=management/management-interface=http-interface

Classification: module-loading

requires-addressable: false

requires-read: false

requires-write: true

PATH: /core-service=module-loading

Classification: patching

requires-addressable: false

requires-read: false

requires-write: true

PATH: /core-service=patching/addon=*

PATH: /core-service=patching/layer=*"

PATH: /core-service=patching

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

97

Classification: read-whole-config

requires-addressable: false

requires-read: true

requires-write: true

PATH: / OPERATION: read-config-as-xml

Classification: security-domain

requires-addressable: true

requires-read: true

requires-write: true

PATH: /subsystem=security/security-domain=*

Classification: security-domain-ref

requires-addressable: true

requires-read: true

requires-write: true

PATH: /subsystem=datasources/xa-data-source=* ATTRIBUTE: security-domain

PATH: /subsystem=datasources/data-source=* ATTRIBUTE: security-domain

PATH: /subsystem=ejb3 ATTRIBUTE: default-security-domain

PATH: /subsystem=resource-adapters/resource-adapter=*/connection-definitions=*
ATTRIBUTE: security-domain, recovery-security-domain, security-application, security-
domain-and-application

Classification: security-realm

requires-addressable: true

requires-read: true

requires-write: true

PATH: /core-service=management/security-realm=*

Classification: security-realm-ref

requires-addressable: true

requires-read: true

requires-write: true

PATH: /subsystem=remoting/connector=* ATTRIBUTE: security-realm

Security Guide

98

PATH: /core-service=management/management-interface=native-interface ATTRIBUTE:
security-realm

PATH: /core-service=management/management-interface=http-interface ATTRIBUTE:
security-realm

PATH: /subsystem=remoting/remote-outbound-connection=* ATTRIBUTE: security-realm

Classification: security-vault

requires-addressable: false

requires-read: false

requires-write: true

PATH: /core-service=vault

Classification: service-container

requires-addressable: false

requires-read: false

requires-write: true

PATH: /core-service=service-container

Classification: snapshots

requires-addressable: false

requires-read: false

requires-write: false

PATH: / ATTRIBUTE: take-snapshot, list-snapshots, delete-snapshot

Classification: socket-binding-ref

requires-addressable: false

requires-read: false

requires-write: false

PATH: /subsystem=mail/mail-session=*/server=pop3 ATTRIBUTE: outbound-socket-
binding-ref

PATH: /subsystem=mail/mail-session=*/server=imap ATTRIBUTE: outbound-socket-
binding-ref

PATH: /subsystem=remoting/connector=* ATTRIBUTE: socket-binding

PATH: /subsystem=web/connector=* ATTRIBUTE: socket-binding

PATH: /subsystem=remoting/local-outbound-connection=* ATTRIBUTE: outbound-socket-

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

99

PATH: /subsystem=remoting/local-outbound-connection=* ATTRIBUTE: outbound-socket-
binding-ref

PATH: /socket-binding-group=*/local-destination-outbound-socket-binding=* ATTRIBUTE:
socket-binding-ref

PATH: /subsystem=remoting/remote-outbound-connection=* ATTRIBUTE: outbound-
socket-binding-ref

PATH: /subsystem=mail/mail-session=*/server=smtp ATTRIBUTE: outbound-socket-
binding-ref

PATH: /subsystem=transactions ATTRIBUTE: process-id-socket-binding, status-socket-
binding, socket-binding

Classification: socket-config

requires-addressable: false

requires-read: false

requires-write: true

PATH: /interface=* OPERATION: resolve-internet-address

PATH: /core-service=management/management-interface=native-interface ATTRIBUTE:
port, interface, socket-binding

PATH: /socket-binding-group=*

PATH: /core-service=management/management-interface=http-interface ATTRIBUTE:
port, secure-port, interface, secure-socket-binding, socket-binding

PATH: / OPERATION: resolve-internet-address

PATH: /subsystem=transactions ATTRIBUTE: process-id-socket-max-ports

Classification: system-property

requires-addressable: false

requires-read: false

requires-write: true

PATH: /core-service=platform-mbean/type=runtime ATTRIBUTE: system-properties

PATH: /system-property=*

PATH: / OPERATION: resolve-expression

Type: datasources

Classification: data-source-security

requires-addressable: false

Security Guide

100

requires-read: true

requires-write: true

PATH: /subsystem=datasources/xa-data-source=* ATTRIBUTE: user-name, security-
domain, password

PATH: /subsystem=datasources/data-source=* ATTRIBUTE: user-name, security-domain,
password

Type: jdr

Classification: jdr

requires-addressable: false

requires-read: false

requires-write: true

PATH: /subsystem=jdr OPERATION: generate-jdr-report

Type: jmx

Classification: jmx

requires-addressable: false

requires-read: false

requires-write: true

PATH: /subsystem=jmx

Type: mail

Classification: mail-server-security

requires-addressable: false

requires-read: false

requires-write: true

PATH: /subsystem=mail/mail-session=*/server=pop3 ATTRIBUTE: username, tls, ssl,
password

PATH: /subsystem=mail/mail-session=*/server=imap ATTRIBUTE: username, tls, ssl,
password

PATH: /subsystem=mail/mail-session=*/custom=* ATTRIBUTE: username, tls, ssl, password

PATH: /subsystem=mail/mail-session=*/server=smtp ATTRIBUTE: username, tls, ssl,
password

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

101

Type: naming

Classification: jndi-view

requires-addressable: false

requires-read: true

requires-write: true

PATH: /subsystem=naming OPERATION: jndi-view

Classification: naming-binding

requires-addressable: false

requires-read: false

requires-write: false

PATH: /subsystem=naming/binding=*

Type: remoting

Classification: remoting-security

requires-addressable: false

requires-read: true

requires-write: true

PATH: /subsystem=remoting/connector=* ATTRIBUTE: authentication-provider, security-
realm

PATH: /subsystem=remoting/remote-outbound-connection=* ATTRIBUTE: username,
security-realm

PATH: /subsystem=remoting/connector=*/security=sasl

Type: resource-adapters

Classification: resource-adapter-security

requires-addressable: false

requires-read: true

requires-write: true

PATH: /subsystem=resource-adapters/resource-adapter=*/connection-definitions=*
ATTRIBUTE: security-domain, recovery-username, recovery-security-domain, security-
application, security-domain-and-application, recovery-password

Security Guide

102

Type: security

Classification: misc-security

requires-addressable: false

requires-read: true

requires-write: true

PATH: /subsystem=security ATTRIBUTE: deep-copy-subject-mode

Type: web

Classification: web-access-log

requires-addressable: false

requires-read: false

requires-write: false

PATH: /subsystem=web/virtual-server=*/configuration=access-log

Classification: web-connector

requires-addressable: false

requires-read: false

requires-write: false

PATH: /subsystem=web/connector=*

Classification: web-ssl

requires-addressable: false

requires-read: true

requires-write: true

PATH: /subsystem=web/connector=*/configuration=ssl

Classification: web-sso

requires-addressable: false

requires-read: true

requires-write: true

PATH: /subsystem=web/virtual-server=*/configuration=sso

Classification: web-valve

CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL

103

requires-addressable: false

requires-read: false

requires-write: false

PATH: /subsystem=web/valve=*

Report a bug

Security Guide

104

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24685-646748+%5BLatest%5D&comment=Title%3A+Sensitivity+Constraints+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24685-646748+29+May+2014+06%3A17+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE
STRINGS WITH PASSWORD VAULT

7.1. PASSWORD VAULT SYSTEM

Configuration of JBoss EAP and associated applications requires potentially sensitive information, such
as usernames and passwords. Instead of storing this sensitive information as plain text in configuration
files, use the Password Vault feature to mask this information and store it in an encrypted keystore.

Instead of storing the password as plain text in configuration files, you can use the Password Vault
feature to mask the password information and store it in an encrypted keystore. Once the password is
stored, you can include references in Management CLI commands or your own applications. The
Password Vault uses the Java Keystore as its storage mechanism. Password Vault consists of two parts:
storage and key storage. Java Keystore is used to store the key, which is used to encrypt or decrypt
sensitive strings in Vault storage.

Report a bug

7.2. CONFIGURE AND USE PASSWORD VAULT

The masked keystore password feature provided in Password Vault provides the option to obtain the
masked keystore password from Password Vault, which is stored on the JBoss EAP server. The
Password Vault uses the Java Keystore as its storage mechanism.

Procedure 7.1. Basic steps to configure and use Password Vault

1. Setup a Java Keystore to store key for password encryption.

For information on creating a keystore, refer Section 7.3, “Create a Java Keystore to Store
Sensitive Strings”.

2. Initialize the Password Vault.

For information on masking the password and initialize the password value, refer Section 7.4,
“Initialize the Password Vault”.

3. Configure JBoss EAP 6 to use the Password Vault.

For information on configuring EAP 6 to use Password Vault, refer Section 7.6, “Configure
JBoss EAP 6 to Use the Password Vault”.

4. Store a Sensitive String in the Password Vault.

For information on storing sensitive string in Password Vault, refer Section 7.8, “Store a
Sensitive String in the Password Vault”.

5. Configure JBoss EAP 6 to use the Password Vault.

For information on configuring JBoss EAP 6 to use the Password Vault, refer Section 7.6,
“Configure JBoss EAP 6 to Use the Password Vault”. For custom implementation, refer
Section 7.7, “Configure JBoss EAP 6 to Use a Custom Implementation of the Password Vault” .

NOTE

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT

105

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+9001-734540+%5BLatest%5D&comment=Title%3A+Password+Vault+System%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9001-734540+06+Jan+2015+00%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

NOTE

To use an encrypted sensitive string in configuration, refer Section 7.9, “Use an
Encrypted Sensitive String in Configuration”.

To use an encrypted sensitive string in an application, refer Section 7.10, “Use an
Encrypted Sensitive String in an Application”.

To verify a sensitive string in Password Vault, refer Section 7.11, “Check if a
Sensitive String is in the Password Vault”.

To remove a sensitive string from Password Vault, refer Section 7.12, “Remove a
Sensitive String from the Password Vault”.

Report a bug

7.3. CREATE A JAVA KEYSTORE TO STORE SENSITIVE STRINGS

Prerequisites

The keytool utility, provided by the Java Runtime Environment (JRE). Locate the path for the
file, which on Red Hat Enterprise Linux is /usr/bin/keytool.

WARNING

JCEKS keystore implementations differ between Java vendors so you must
generate the keystore using the keytool utility from the same vendor as the JDK
you use.

Using a keystore generated by the keytool from one vendor's JDK in a JBoss EAP
instance running on a JDK from a different vendor results in the following
exception:

java.io.IOException: com.sun.crypto.provider.SealedObjectForKeyProtector

Procedure 7.2. Set up a Java Keystore

1. Create a directory to store your keystore and other encrypted information.
Create a directory to store your keystore and other important information. The rest of this
procedure assumes that the directory is EAP_HOME/vault/. Since this directory will contain
sensitive information it should be accessible to only limited users. At a minimum the user
account under which JBoss EAP is running requires read-write access.

2. Determine the parameters to use with keytool utility.
Decide on values for the following parameters:

alias

The alias is a unique identifier for the vault or other data stored in the keystore. Aliases are
case-insensitive.



Security Guide

106

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+42241-732956+%5BLatest%5D&comment=Title%3A+Configure+and+Use+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42241-732956+16+Dec+2014+03%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

storetype

The storetype specifies the keystore type. The value jceks is recommended.

keyalg

The algorithm to use for encryption. Use the documentation for your JRE and operating
system to see which other choices may be available to you.

keysize

The size of an encryption key impacts how difficult it is to decrypt through brute force. For
information on appropriate values, see the documentation distributed with the keytool
utility.

storepass

The value of storepass is the password is used to authenticate to the keystore so that the
key can be read. The password must be at least 6 characters long and must be provided
when the keystore is accessed. If you omit this parameter, you will be prompted to enter it
when you execute the command.

keypass

The value of keypass is the password used to access the specific key and must match the
value of the storepass parameter.

validity

The value of validity is the period (in days) for which the key will be valid.

keystore

The value of keystore is the filepath and filename in which the keystore's values are to be
stored. The keystore file is created when data is first added to it.

Ensure you use the correct file path separator: / (forward slash) for Red Hat Enterprise Linux
and similar operating systems, \ (backslash) for Microsoft Windows Server.

The keytool utility has many other options. See the documentation for your JRE or your
operating system for more details.

3. Run the keytool command
Launch your operating system's command line interface and run the keytool utility, supplying
the information that you gathered.

Example 7.1. Create a Java Keystore

$ keytool -genseckey -alias vault -storetype jceks -keyalg AES -keysize 128 -storepass vault22 -
keypass vault22 -validity 730 -keystore EAP_HOME/vault/vault.keystore

Result

In this a keystore has been created in the file EAP_HOME/vault/vault.keystore. It stores a single key,
with the alias vault, which will be used to store encrypted strings, such as passwords, for JBoss EAP.

Report a bug

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT

107

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+5353-717117+%5BLatest%5D&comment=Title%3A+Create+a+Java+Keystore+to+Store+Sensitive+Strings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5353-717117+16+Oct+2014+22%3A51+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

7.4. INITIALIZE THE PASSWORD VAULT

Prerequisites

Section 7.3, “Create a Java Keystore to Store Sensitive Strings”

Overview

The Password Vault can be initialized either interactively, where you are prompted for each parameter's
value, or non-interactively, where you provide all parameters' values on the commmand line. Each
method gives the same result, so choose whichever method you prefer.

Refer to the following list when using either method.

Keystore URL (KEYSTORE_URL)

The file system path or URI of the keystore file. The examples use
EAP_HOME/vault/vault.keystore.

Keystore password (KEYSTORE_PASSWORD)

The password used to access the keystore.

Salt (SALT)

The salt value is a random string of eight characters used, together with the iteration count, to
encrypt the content of the keystore.

Keystore Alias (KEYSTORE_ALIAS)

The alias by which the keystore is known.

Iteration Count (ITERATION_COUNT)

The number of times the encryption algorithm is run.

Directory to store encrypted files (ENC_FILE_DIR)

The path in which the encrypted files are to be stored. This is typically the directory containing the
password vault.

It is convenient but not mandatory to store all of your encrypted information in the same place as the
key store. This directory should be only accessible to limited users. At a minimum the user account
under which JBoss EAP is running requires read-write access. If you followed Section 7.3, “Create a
Java Keystore to Store Sensitive Strings”, your keystore is in a directory called EAP_HOME/vault/.

NOTE

The trailing backslash or forward slash on the directory name is required. Ensure you
use the correct file path separator: / (forward slash) for Red Hat Enterprise Linux and
similar operating systems, \ (backslash) for Microsoft Windows Server.

Vault Block (VAULT_BLOCK)

The name to be given to this block in the password vault. Choose a value which is significant to you.

Attribute (ATTRIBUTE)

Security Guide

108

The name to be given to the attribute being stored. Choose a value which is significant to you. For
example, you could choose a name which you associate with a datasource.

Security Attribute (SEC-ATTR)

The password which is being stored in the password vault.

Procedure 7.3. Run the Password Vault Command Interactively

Use this method if you would prefer to be prompted for the value of each parameter.

1. Launch the Password Vault command interactively.
Launch your operating system's command line interface and run EAP_HOME/bin/vault.sh (on
Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on
Microsoft Windows Server). Start a new interactive session by typing 0 (zero).

2. Complete the prompted parameters.
Follow the prompts to input the required parameters.

3. Make a note of the masked password information.
The masked password, salt, and iteration count are printed to standard output. Make a note of
them in a secure location. They are required to add entries to the Password Vault. Access to the
keystore file and these values could allow an attacker access to obtain access to sensitive
information in the Password Vault.

4. Exit the interactive console.
Type 3 (three) to exit the interactive console.

Example 7.2. Run the Password Vault command interactively

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password: vault22
Enter Keystore password again: vault22
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Oct 17, 2014 12:58:11 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT

109

</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete

Procedure 7.4. Run the Password Vault Command Non-interactively

Use this method if you would prefer to provide all parameters' values at once.

Launch your operating system's command line interface and run the Password Vault command.
Refer to the list in the Overview, substituting the placeholder values with your preferred values.

Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server).

vault.sh --keystore KEYSTORE_URL --keystore-password KEYSTORE_PASSWORD --alias
KEYSTORE_ALIAS --vault-block VAULT_BLOCK --attribute ATTRIBUTE --sec-attr SEC-
ATTR --enc-dir ENC_FILE_DIR --iteration ITERATION_COUNT --salt SALT

Example 7.3. Run the Password Vault command non-interactively

vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22 --alias
vault --vault-block vb --attribute password --sec-attr 0penS3sam3 --enc-dir
EAP_HOME/vault/ --iteration 120 --salt 1234abcd

Command output

==
=

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

==
=

Oct 17, 2014 2:23:43 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Secured attribute value has been stored in vault.
Please make note of the following:
**
Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1
**
Vault Configuration in AS7 config file:
**
...
</extensions>

Security Guide

110

<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**

Result

Your keystore password has been masked for use in configuration files and deployments. In addition,
your vault is initialized and ready to use.

Report a bug

7.5. OBTAIN KEYSTORE PASSWORD FROM EXTERNAL SOURCE

You can also the use the EXT, EXTC, CMD, CMDC or CLASS methods in Vault configuration for
obtaining the Java keystore password.

The description for the methods are listed as:

{EXT}...: Refers to the exact command, where ‘…’ is the exact command. For example:
{EXT}/usr/bin/getmypassword --section 1 --query company, run the
/usr/bin/getmypassword command, which displays the password on standard output and use it
as password for Security Vault's keystore. In this example, the command is using two options: --
section 1 and --query company.

{EXTC[:expiration_in_millis]}...: Refers to the exact command, where the '...' is the exact
command line that is passed to the Runtime.exec(String) method to execute a platform
command. The first line of the command output is used as the password. EXTC variant caches
the passwords for expiration_in_millis milliseconds. Default cache expiration is 0 (zero), meaning
items in the cache never expire. For example: {EXTC:120000}/usr/bin/getmypassword --
section 1 --query company Verify if cache contains /usr/bin/getmypassword output, if it
contains the output then use it. If it does not contain the output, run the command to output it
to cache and use it. In this example, the cache expires in 2 minute (120000 milliseconds).

{CMD}... or {CMDC[:expiration_in_millis]}...: The general command is a string delimited by ','
where the first part is the actual command and further parts represents the parameters. The
comma can be backslashed to keep it as a part of the parameter. For example,
{CMD}/usr/bin/getmypassword,--section,1,--query,company

{CLASS[@jboss_module_spec]}classname[:ctorargs]: Where the '[:ctorargs]' is an optional
string delimited by the ':' from the classname is passed to the classname ctor. The ctorargs is a
comma delimited list of strings. For example,
{CLASS@org.test.passwd}org.test.passwd.ExternamPassworProvider. In this example, we
load org.test.passwd.ExternamPassworProvider class from org.test.passwd module and

<vault-option name="KEYSTORE_PASSWORD" value="[here]"

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT

111

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+5357-741819+%5BLatest%5D&comment=Title%3A+Initialize+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5357-741819+06+Feb+2015+01%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

use the toCharArray() method to get the password. If toCharArray() is not available use
toString() method. The org.test.passwd.ExternamPassworProvider class must have the
default constructor.

Report a bug

7.6. CONFIGURE JBOSS EAP 6 TO USE THE PASSWORD VAULT

Overview

Before you can mask passwords and other sensitive attributes in configuration files, you need to make
JBoss EAP 6 aware of the password vault which stores and decrypts them.

Prerequisites

Section 7.4, “Initialize the Password Vault”

Procedure 7.5. Enable the Password Vault

Run the following Management CLI command, substituting the placeholder values with those
from the output of the Password Vault command in Section 7.4, “Initialize the Password Vault” .

NOTE

If you use Microsoft Windows Server, use two backslashes (\\) in the file path
where you would normally use one. For example, C:\\data\\vault\\vault.keystore.
This is because a single backslash character (\) is used for character escaping.

/core-service=vault:add(vault-options=[("KEYSTORE_URL" => "PATH_TO_KEYSTORE"),
("KEYSTORE_PASSWORD" => "MASKED_PASSWORD"), ("KEYSTORE_ALIAS" =>
"ALIAS"), ("SALT" => "SALT"),("ITERATION_COUNT" => "ITERATION_COUNT"),
("ENC_FILE_DIR" => "ENC_FILE_DIR")])

Example 7.4. Enable the Password Vault

/core-service=vault:add(vault-options=[("KEYSTORE_URL" =>
"EAP_HOME/vault/vault.keystore"), ("KEYSTORE_PASSWORD" => "MASK-5dOaAVafCSd"),
("KEYSTORE_ALIAS" => "vault"), ("SALT" => "1234abcd"),("ITERATION_COUNT" => "120"),
("ENC_FILE_DIR" => "EAP_HOME/vault/")])

Result

JBoss EAP 6 is configured to decrypt masked strings stored in the Password Vault. To add strings to the
Password Vault and use them in your configuration, see Section 7.8, “Store a Sensitive String in the
Password Vault”.

Report a bug

7.7. CONFIGURE JBOSS EAP 6 TO USE A CUSTOM IMPLEMENTATION
OF THE PASSWORD VAULT

Security Guide

112

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+42239-738014+%5BLatest%5D&comment=Title%3A+Obtain+Keystore+Password+From+External+Source%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42239-738014+23+Jan+2015+00%3A29+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+5358-717634+%5BLatest%5D&comment=Title%3A+Configure+JBoss+EAP+6+to+Use+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5358-717634+20+Oct+2014+20%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Overview

You can use your own implementation of SecurityVault to mask passwords and other sensitive
attributes in configuration files.

Prerequisites

Section 7.4, “Initialize the Password Vault”

Procedure 7.6. Use a Custom Implementation of the Password Vault

1. Create a class that implements the interface SecurityVault.

2. Create a module containing the class from the previous step, and specify a dependency on
org.picketbox where the interface is SecurityVault.

3. Enable the custom Password Vault in the JBoss EAP server configuration by adding the vault
element with the following attributes:

code

The fully qualified name of class that implements SecurityVault.

module

The name of the module that contains the custom class.

Optionally, you can use vault-options parameters to initialize the custom class for a Password
Vault.

Example 7.5. Use vault-options Parameters to Initialize the Custom Class

/core-service=vault:add(code="custom.vault.implementation.CustomSecurityVault",
module="custom.vault.module", vault-options=[("KEYSTORE_URL" =>
"PATH_TO_KEYSTORE"), ("KEYSTORE_PASSWORD" => "MASKED_PASSWORD"),
("KEYSTORE_ALIAS" => "ALIAS"), ("SALT" => "SALT"),("ITERATION_COUNT" =>
"ITERATION_COUNT"), ("ENC_FILE_DIR" => "ENC_FILE_DIR")])

Result

JBoss EAP 6 is configured to decrypt masked strings using a custom implementation of the password
vault.

Report a bug

7.8. STORE A SENSITIVE STRING IN THE PASSWORD VAULT

Overview

Including passwords and other sensitive strings in plaintext configuration files is a security risk. Store
these strings instead in the Password Vault for improved security, where they can then be referenced in
configuration files, Management CLI commands and applications in their masked form.

Sensitive strings can be store in the Password Vault either interactively, where you are prompted for
each parameter's value, or non-interactively, where you provide all parameters' values on the

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT

113

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+30621-716527+%5BLatest%5D&comment=Title%3A+Configure+JBoss+EAP+6+to+Use+a+Custom+Implementation+of+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30621-716527+14+Oct+2014+23%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

commmand line. Each method gives the same result, so choose whichever method you prefer. For a
description of all parameters, see Section 7.4, “Initialize the Password Vault” .

Prerequisites

Section 7.6, “Configure JBoss EAP 6 to Use the Password Vault”

Procedure 7.7. Store a Sensitive String Interactively

Use this method if you would prefer to be prompted for the value of each parameter.

1. Run the Password Vault command
Launch your operating system's command line interface and run the Password Vault command.
Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server). Start a new interactive session by
typing 0 (zero).

2. Complete the prompted parameters about the Password Vault
Follow the prompts to input the required authentication parameters. These values must match
those provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

3. Complete the prompted parameters about the sensitive string
Enter 0 (zero) to start storing the sensitive string. Follow the prompts to input the required
parameters.

4. Make note of the information about the masked string
A message prints to standard output, showing the vault block, attribute name, masked string,
and advice about using the string in your configuration. Make note of this information in a secure
location. An extract of sample output is as follows:

Vault Block:ds_Example1
Attribute Name:password
Configuration should be done as follows:
VAULT::ds_Example1::password::1

5. Exit the interactive console
Enter 3 (three) to exit the interactive console.

Example 7.6. Store a Sensitive String Interactively

===

 JBoss Vault

 JBOSS_HOME: EAP_HOME/jboss-eap-6.4

 JAVA: java

===

Security Guide

114

**** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:11:18:46,086 INFO [org.jboss.security] (management-
handler-thread - 4) PBOX0
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Oct 21, 2014 11:20:49 AM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit
0
Task: Store a secured attribute
Please enter secured attribute value (such as password):
Please enter secured attribute value (such as password) again:
Values match
Enter Vault Block:ds_Example1
Enter Attribute Name:password
Secured attribute value has been stored in vault.
Please make note of the following:
**
Vault Block:ds_Example1
Attribute Name:password
Configuration should be done as follows:
VAULT::ds_Example1::password::1
**
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit

Procedure 7.8. Store a Sensitive String Non-interactively

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT

115

Procedure 7.8. Store a Sensitive String Non-interactively

Use this method if you would prefer to provide all parameters' values at once.

1. Launch your operating system's command line interface and run the Password Vault command.
Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server).

Substitute the placeholder values with your own values. The values for parameters
KEYSTORE_URL, KEYSTORE_PASSWORD and KEYSTORE_ALIAS must match those
provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

EAP_HOME/bin/vault.sh --keystore KEYSTORE_URL --keystore-password
KEYSTORE_PASSWORD --alias KEYSTORE_ALIAS --vault-block VAULT_BLOCK --
attribute ATTRIBUTE --sec-attr SEC-ATTR --enc-dir ENC_FILE_DIR --iteration
ITERATION_COUNT --salt SALT

2. Make note of the information about the masked string
A message prints to standard output, showing the vault block, attribute name, masked string,
and advice about using the string in your configuration. Make note of this information in a secure
location. An extract of sample output is as follows:

Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1

Example 7.7. Run the Password Vault command non-interactively

EAP_HOME/bin/vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22
--alias vault --vault-block vb --attribute password --sec-attr 0penS3sam3 --enc-dir
EAP_HOME/vault/ --iteration 120 --salt 1234abcd

Command output

===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

Oct 22, 2014 9:24:43 AM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Secured attribute value has been stored in vault.
Please make note of the following:

Security Guide

116

**
Vault Block:vb
Attribute Name:password
Configuration should be done as follows:
VAULT::vb::password::1
**
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="vault22"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/vault/"/>
</vault><management> ...
**

Result

The sensitive string has now been stored in the Password Vault and can be used in configuration files,
Management CLI commands and applications in its masked form.

Report a bug

7.9. USE AN ENCRYPTED SENSITIVE STRING IN CONFIGURATION

Prerequisites

Section 7.8, “Store a Sensitive String in the Password Vault”

Any sensitive string which has been encrypted can be used in a configuration file or Management CLI
command in its masked form, providing expressions are allowed.

To confirm if expressions are allowed within a particular subsystem, run the following Management CLI
command against that subsystem.

NOTE

Add the prefix /host=HOST_NAME to the command for a managed domain.

Example 7.8. List the Description of all Resources in the Management Subsystem

/core-service=management:read-resource-description(recursive=true)

From the output of running this command, look for the value of the expressions-allowed parameter. If
this is true, then you can use expressions within the configuration of this subsystem.

/core-service=SUBSYSTEM:read-resource-description(recursive=true)

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT

117

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+5359-748093+%5BLatest%5D&comment=Title%3A+Store+a+Sensitive+String+in+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5359-748093+20+Mar+2015+12%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Use the following syntax to replace any plaintext string with the masked form.

${VAULT::VAULT_BLOCK::ATTRIBUTE_NAME::MASKED_STRING}

Example 7.9. Datasource Definition Using a Password in Masked Form

In this example the vault block is ds_ExampleDS and the attribute is password.

...
 <subsystem xmlns="urn:jboss:domain:datasources:1.0">
 <datasources>
 <datasource jndi-name="java:jboss/datasources/ExampleDS" enabled="true" use-java-
context="true" pool-name="H2DS">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>
 <driver>h2</driver>
 <pool></pool>
 <security>
 <user-name>sa</user-name>
 <password>${VAULT::ds_ExampleDS::password::1}</password>
 </security>
 </datasource>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>
 </driver>
 </drivers>
 </datasources>
 </subsystem>
...

Report a bug

7.10. USE AN ENCRYPTED SENSITIVE STRING IN AN APPLICATION

Prerequisites

Section 7.8, “Store a Sensitive String in the Password Vault”

Encrypted strings stored in the Password Vault can be used in your application's source code.

Example 7.10. Servlet Using a Vaulted Password

This example is an extract of a servlet's source code, illustrating the use of a masked password in a
datasource definition, instead of the plaintext password. The plaintext version is commented out so
that you can see the difference.

/*@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password = "sa",
 className = "org.h2.jdbcx.JdbcDataSource",

Security Guide

118

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+41946-718312+%5BLatest%5D&comment=Title%3A+Use+an+Encrypted+Sensitive+String+in+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41946-718312+22+Oct+2014+19%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

7.11. CHECK IF A SENSITIVE STRING IS IN THE PASSWORD VAULT

Overview

Before attempting to store or use a sensitive string in the Password Vault it can be useful to first confirm
if it is already stored.

This check can be done either interactively, where you are prompted for each parameter's value, or non-
interactively, where you provide all parameters' values on the commmand line. Each method gives the
same result, so choose whichever method you prefer.

Procedure 7.9. Check For a Sensitive String Interactively

Use this method if you would prefer to be prompted for the value of each parameter.

1. Run the Password Vault command
Launch your operating system's command line interface and run the Password Vault command.
Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server). Start a new interactive session by
typing 0 (zero).

2. Complete the prompted parameters about the Password Vault
Follow the prompts to input the required authentication parameters. These values must match
those provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

3. Enter 1 (one) to select “Check whether a secured attribute exists”.

4. Enter the name of the vault block in which the sensitive string is stored.

5. Enter the name of the sensitive string to be checked.

Result

If the sensitive string is stored in the vault block specified, a confirmation message like the following will
be output.

A value exists for (VAULT_BLOCK, ATTRIBUTE)

 url = "jdbc:h2:tcp://localhost/mem:test"
)*/
@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password = "VAULT::DS::thePass::1",
 className = "org.h2.jdbcx.JdbcDataSource",
 url = "jdbc:h2:tcp://localhost/mem:test"
)

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT

119

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4930-716839+%5BLatest%5D&comment=Title%3A+Use+an+Encrypted+Sensitive+String+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4930-716839+15+Oct+2014+22%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

If the sensitive string is not stored in the specified block, a message like the following will be output.

No value has been store for (VAULT_BLOCK, ATTRIBUTE)

Example 7.11. Check For a Sensitive String Interactively

===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

**** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault
Oct 22, 2014 12:53:56 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in AS7 config file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit
1
Task: Verify whether a secured attribute exists
Enter Vault Block:vb
Enter Attribute Name:password

Security Guide

120

A value exists for (vb, password)
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit

Procedure 7.10. Check For a Sensitive String Non-Interactively

Use this method if you would prefer to provide all parameters' values at once. For a description of all
parameters, see Section 7.4, “Initialize the Password Vault” .

Launch your operating system's command line interface and run the Password Vault command.
Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server).

Substitute the placeholder values with your own values. The values for parameters
KEYSTORE_URL, KEYSTORE_PASSWORD-password and KEYSTORE_ALIAS must match
those provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

EAP_HOME/bin/vault.sh --keystore KEYSTORE_URL --keystore-password
KEYSTORE_PASSWORD --alias KEYSTORE_ALIAS --check-sec-attr --vault-block
VAULT_BLOCK --attribute ATTRIBUTE --enc-dir ENC_FILE_DIR --iteration
ITERATION_COUNT --salt SALT

Result

If the sensitive string is stored in the vault block specified, the following message will be output.

Password already exists.

If the value is not stored in the specified block, the following message will be output.

Password doesn't exist.

Report a bug

7.12. REMOVE A SENSITIVE STRING FROM THE PASSWORD VAULT

Overview

For security reasons it is best to remove sensitive strings from the Password Vault when they are no
longer required. For example, if you are decommissioning an application, any sensitive strings used in
datasource definitions should be removed at the same time.

Prerequisite

Before removing a sensitive string from the Password Vault, confirm if it is used in the configuration of
JBoss EAP. One method of doing this is to use the ‘grep’ utility to search configuration files for
instances of the masked string. On Red Hat Enterprise Linux (and similar operating systems), grep is
installed by default but for Microsoft Windows Server it must be installed manually.

The Password Vault utility provides two modes: interactive and non-interactive. Interactive mode

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT

121

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+42030-748092+%5BLatest%5D&comment=Title%3A+Check+if+a+Sensitive+String+is+in+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42030-748092+20+Mar+2015+12%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The Password Vault utility provides two modes: interactive and non-interactive. Interactive mode
prompts you for each parameter’s value, where non-interactive mode requires you to provide all
parameters’ values in a single command.

Procedure 7.11. Remove a Sensitive String Interactively

Use this method if you would prefer to be prompted for the value of each parameter.

1. Run the Password Vault command
Launch your operating system's command line interface and run EAP_HOME/bin/vault.sh (on
Red Hat Enterprise Linux and similar operating systems) or EAP_HOME\bin\vault.bat (on
Microsoft Windows Server). Start a new interactive session by typing 0 (zero).

2. Provide Authentication Details
Follow the prompts to input the required authentication parameters. These values must match
those provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

3. Enter 2 (two) to choose option Remove secured attribute.

4. Enter the name of the vault block in which the sensitive string is stored.

5. Enter the name of the sensitive string to be removed.

Result

If the sensitive string is successfully removed, a confirmation message like the following will be output.

Secured attribute [VAULT_BLOCK::ATTRIBUTE] has been successfully removed from vault

If the sensitive string is not removed, a message like the following will be output.

Secured attribute [VAULT_BLOCK::ATTRIBUTE] was not removed from vault, check whether it exist

Example 7.12. Remove a Sensitive String Interactively

**** JBoss Vault ***************

Please enter a Digit:: 0: Start Interactive Session 1: Remove Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:EAP_HOME/vault/
Enter Keystore URL:EAP_HOME/vault/vault.keystore
Enter Keystore password:
Enter Keystore password again:
Values match
Enter 8 character salt:1234abcd
Enter iteration count as a number (Eg: 44):120
Enter Keystore Alias:vault
Initializing Vault

Security Guide

122

Dec 23, 2014 1:40:56 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Vault Configuration in configuration file:
**
...
</extensions>
<vault>
 <vault-option name="KEYSTORE_URL" value="EAP_HOME/vault/vault.keystore"/>
 <vault-option name="KEYSTORE_PASSWORD" value="MASK-5dOaAVafCSd"/>
 <vault-option name="KEYSTORE_ALIAS" value="vault"/>
 <vault-option name="SALT" value="1234abcd"/>
 <vault-option name="ITERATION_COUNT" value="120"/>
 <vault-option name="ENC_FILE_DIR" value="EAP_HOME/vault/"/>
</vault><management> ...
**
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a secured attribute 1: Check whether a secured attribute exists 2:
Remove secured attribute 3: Exit
2
Task: Remove secured attribute
Enter Vault Block:craft
Enter Attribute Name:password
Secured attribute [craft::password] has been successfully removed from vault

Procedure 7.12. Remove a Sensitive String Non-interactively

Use this method if you would prefer to provide all parameters' values at once. For a description of all
parameters, see Section 7.4, “Initialize the Password Vault” .

Launch your operating system's command line interface and run the Password Vault command.
Use EAP_HOME/bin/vault.sh (on Red Hat Enterprise Linux and similar operating systems) or
EAP_HOME\bin\vault.bat (on Microsoft Windows Server).

Substitute the placeholder values with your own values. The values for parameters
KEYSTORE_URL, KEYSTORE_PASSWORD and KEYSTORE_ALIAS must match those
provided when the Password Vault was created.

NOTE

The keystore password must be given in plaintext form, not masked form.

EAP_HOME/bin/vault.sh --keystore KEYSTORE_URL --keystore-password
KEYSTORE_PASSWORD --alias KEYSTORE_ALIAS --remove-sec-attr --vault-block
VAULT_BLOCK --attribute ATTRIBUTE --enc-dir ENC_FILE_DIR --iteration
ITERATION_COUNT --salt SALT

Result

If the sensitive string is successfully removed, a confirmation message like the following will be output.

Secured attribute [VAULT_BLOCK::ATTRIBUTE] has been successfully removed from vault

CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT

123

If the sensitive string is not removed, a message like the following will be output.

Secured attribute [VAULT_BLOCK::ATTRIBUTE] was not removed from vault, check whether it exist

Example 7.13. Remove a Sensitive String Non-interactively

./vault.sh --keystore EAP_HOME/vault/vault.keystore --keystore-password vault22 --alias vault --
remove-sec-attr --vault-block craft --attribute password --enc-dir ../vault/ --iteration 120 --salt
1234abcd
===

 JBoss Vault

 JBOSS_HOME: EAP_HOME

 JAVA: java

===

Dec 23, 2014 1:54:24 PM org.picketbox.plugins.vault.PicketBoxSecurityVault init
INFO: PBOX000361: Default Security Vault Implementation Initialized and Ready
Secured attribute [craft::password] has been successfully removed from vault

Report a bug

Security Guide

124

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+42029-734038+%5BLatest%5D&comment=Title%3A+Remove+a+Sensitive+String+from+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=42029-734038+22+Dec+2014+23%3A37+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

PART III. DEVELOPING SECURE APPLICATIONS

PART III. DEVELOPING SECURE APPLICATIONS

125

CHAPTER 8. SECURITY OVERVIEW

8.1. ABOUT APPLICATION SECURITY

Securing your applications is a multi-faceted and important concern for every application developer.
JBoss EAP 6 provides all the tools you need to write secure applications, including the following abilities:

Section 11.2.1, “About Authentication”

Section 11.5.1, “About Authorization”

Section 11.7.1, “About Security Auditing”

Section 11.8.1, “About Security Mapping”

Section 8.2, “Declarative Security”

Section 9.2.2.1, “About EJB Method Permissions”

Section 9.2.3.1, “About EJB Security Annotations”

See also Section 11.9, “Use a Security Domain in Your Application” .

Report a bug

8.2. DECLARATIVE SECURITY

Declarative security is a method to separate security concerns from your application code by using the
container to manage security. The container provides an authorization system based on either file
permissions or users, groups, and roles. This approach is usually superior to programmatic security,
which gives the application itself all of the responsibility for security.

JBoss EAP 6 provides declarative security via security domains.

Report a bug

8.2.1. Java EE Declarative Security Overview

The Java EE security model is declarative in that you describe the security roles and permissions in a
standard XML descriptor rather than embedding security into your business component. This isolates
security from business-level code because security tends to be more a function of where the
component is deployed than an inherent aspect of the component's business logic. For example,
consider an Automated Teller Machine (ATM) that is to be used to access a bank account. The security
requirements, roles and permissions will vary independent of how you access the bank account, based
on what bank is managing the account, where the ATM is located, and so on.

Securing a Java EE application is based on the specification of the application security requirements via
the standard Java EE deployment descriptors. You secure access to EJBs and web components in an
enterprise application by using the ejb-jar.xml and web.xml deployment descriptors.

Report a bug

8.2.2. Security References

Both Enterprise Java Beans (EJBs) and servlets can declare one or more <security-role-ref> elements.

Security Guide

126

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4771-591672+%5BLatest%5D&comment=Title%3A+About+Application+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4771-591672+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+IDs%3A%0A4766-591673+%5BLatest%5D&comment=Title%3A+Declarative+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24326-592556+%5BLatest%5D&comment=Title%3A+Java+EE+Declarative+Security+Overview%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24326-592556+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Figure 8.1. Security Roles Reference Model

This element declares that a component is using the <role-name> element's role-nameType attribute
value as an argument to the isCallerInRole(String) method. By using the isCallerInRole method, a
component can verify whether the caller is in a role that has been declared with a <security-role-ref> or
<role-name> element. The <role-name> element value must link to a <security-role> element through
the <role-link> element. The typical use of isCallerInRole is to perform a security check that cannot be
defined by using the role-based <method-permissions> elements.

Example 8.1. ejb-jar.xml descriptor fragment

NOTE

This fragment is an example only. In deployments, the elements in this section must
contain role names and links relevant to the EJB deployment.

Example 8.2. web.xml descriptor fragment

 <!-- A sample ejb-jar.xml fragment -->
 <ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 ...
 <security-role-ref>
 <role-name>TheRoleICheck<role-name>
 <role-link>TheApplicationRole</role-link>
 </security-role-ref>
 </session>
 </enterprise-beans>
 ...
 </ejb-jar>

CHAPTER 8. SECURITY OVERVIEW

127

Report a bug

8.2.3. Security Identity

An Enterprise Java Bean (EJB) can specify the identity another EJB must use when it invokes methods
on components using the <security-identity> element.

Figure 8.2. Java EE Security Identity Data Model

The invocation identity can be that of the current caller, or it can be a specific role. The application
assembler uses the <security-identity> element with a <use-caller-identity> child element. This indicate
that the current caller's identity should be propagated as the security identity for method invocations
made by the EJB. Propagation of the caller's identity is the default used in the absence of an explicit
<security-identity> element declaration.

Alternatively, the application assembler can use the <run-as> or <role-name> child element to specify
that a specific security role supplied by the <role-name> element value must be used as the security
identity for method invocations made by the EJB.

Note that this does not change the caller's identity as seen by the EJBContext.getCallerPrincipal()
method. Rather, the caller's security roles are set to the single role specified by the <run-as> or <role-
name> element value.

One use case for the <run-as> element is to prevent external clients from accessing internal EJBs. You
configure this behavior by assigning the internal EJB <method-permission> elements, which restrict
access to a role never assigned to an external client. EJBs that must in turn use internal EJBs are then

<web-app>
 <servlet>
 <servlet-name>AServlet</servlet-name>
 ...
 <security-role-ref>
 <role-name>TheServletRole</role-name>
 <role-link>TheApplicationRole</role-link>
 </security-role-ref>
 </servlet>
 ...
</web-app>

Security Guide

128

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24093-592543+%5BLatest%5D&comment=Title%3A+Security+References%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24093-592543+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

configured with a <run-as> or <role-name> equal to the restricted role. The following descriptor
fragment describes an example<security-identity> element usage.

When you use <run-as> to assign a specific role to outgoing calls, a principal named anonymous is
assigned to all outgoing calls. If you want another principal to be associated with the call, you must
associate a <run-as-principal> with the bean in the jboss-ejb3.xml file. The following fragment
associates a principal named internal with RunAsBean from the prior example.

The <run-as> element is also available in servlet definitions in a web.xml file. The following example
shows how to assign the role InternalRole to a servlet:

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 <!-- ... -->
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <!-- ... -->
 <security-identity>
 <run-as>
 <description>A private internal role</description>
 <role-name>InternalRole</role-name>
 </run-as>
 </security-identity>
 </session>
 </enterprise-beans>
 <!-- ... -->
</ejb-jar>

<session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as-principal>internal</run-as-principal>
 </security-identity>
</session>

 <servlet>
 <servlet-name>AServlet</servlet-name>
 <!-- ... -->
 <run-as>
 <role-name>InternalRole</role-name>
 </run-as>
 </servlet>

CHAPTER 8. SECURITY OVERVIEW

129

Calls from this servlet are associated with the anonymous principal. The <run-as-principal> element is
available in the jboss-web.xml file to assign a specific principal to go along with the run-as role. The
following fragment shows how to associate a principal named internal to the servlet above.

Report a bug

8.2.4. Security Roles

The security role name referenced by either the security-role-ref or security-identity element needs to
map to one of the application's declared roles. An application assembler defines logical security roles by
declaring security-role elements. The role-name value is a logical application role name like
Administrator, Architect, SalesManager, etc.

The Java EE specifications note that it is important to keep in mind that the security roles in the
deployment descriptor are used to define the logical security view of an application. Roles defined in the
Java EE deployment descriptors should not be confused with the user groups, users, principals, and
other concepts that exist in the target enterprise's operational environment. The deployment descriptor
roles are application constructs with application domain-specific names. For example, a banking
application might use role names such as BankManager, Teller, or Customer.

In JBoss EAP, a security-role element is only used to map security-role-ref/role-name values to the
logical role that the component role references. The user's assigned roles are a dynamic function of the
application's security manager. JBoss does not require the definition of security-role elements in order
to declare method permissions. However, the specification of security-role elements is still a
recommended practice to ensure portability across application servers and for deployment descriptor
maintenance.

Example 8.3. An ejb-jar.xml descriptor fragment that illustrates the security-role element usage.

Example 8.4. An example web.xml descriptor fragment that illustrates the security-role element
usage.

 <servlet>
 <servlet-name>AServlet</servlet-name>
 <run-as-principal>internal</run-as-principal>
 </servlet>

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>
 <assembly-descriptor>
 <security-role>
 <description>The single application role</description>
 <role-name>TheApplicationRole</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-jar>

<!-- A sample web.xml fragment -->
<web-app>
 <security-role>
 <description>The single application role</description>

Security Guide

130

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24094-686023+%5BLatest%5D&comment=Title%3A+Security+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24094-686023+18+Jul+2014+10%3A15+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

8.2.5. EJB Method Permissions

An application assembler can set the roles that are allowed to invoke an EJB's home and remote
interface methods through method-permission element declarations.

Figure 8.3. Java EE Method Permissions Element

Each method-permission element contains one or more role-name child elements that define the
logical roles that are allowed to access the EJB methods as identified by method child elements. You can
also specify an unchecked element instead of the role-name element to declare that any
authenticated user can access the methods identified by method child elements. In addition, you can
declare that no one should have access to a method that has the exclude-list element. If an EJB has
methods that have not been declared as accessible by a role using a method-permission element, the
EJB methods default to being excluded from use. This is equivalent to defaulting the methods into the
exclude-list.

 <role-name>TheApplicationRole</role-name>
 </security-role>
</web-app>

CHAPTER 8. SECURITY OVERVIEW

131

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24095-592543+%5BLatest%5D&comment=Title%3A+Security+Roles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24095-592543+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Figure 8.4. Java EE Method Element

There are three supported styles of method element declarations.

The first is used for referring to all the home and component interface methods of the named enterprise
bean:

The second style is used for referring to a specified method of the home or component interface of the
named enterprise bean:

If there are multiple methods with the same overloaded name, this style refers to all of the overloaded
methods.

The third style is used to refer to a specified method within a set of methods with an overloaded name:

<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>*</method-name>
</method>

 <method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 </method>

<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAMETER_1</method-param>

Security Guide

132

The method must be defined in the specified enterprise bean's home or remote interface. The method-
param element values are the fully qualified name of the corresponding method parameter type. If there
are multiple methods with the same overloaded signature, the permission applies to all of the matching
overloaded methods.

The optional method-intf element can be used to differentiate methods with the same name and
signature that are defined in both the home and remote interfaces of an enterprise bean.

Example 8.5, “An ejb-jar.xml descriptor fragment that illustrates the method-permission element
usage.” provides complete examples of the method-permission element usage.

Example 8.5. An ejb-jar.xml descriptor fragment that illustrates the method-permission element
usage.

 <!-- ... -->
 <method-param>PARAMETER_N</method-param>
 </method-params>
</method>

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles may access any
 method of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>The employee role may access the findByPrimaryKey,
 getEmployeeInfo, and the updateEmployeeInfo(String) method of
 the AardvarkPayroll bean </description>
 <role-name>employee</role-name>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <description>The admin role may access any method of the
 EmployeeServiceAdmin bean </description>
 <role-name>admin</role-name>

CHAPTER 8. SECURITY OVERVIEW

133

Report a bug

8.2.6. Enterprise Beans Security Annotations

Enterprise beans use Annotations to pass information to the deployer about security and other aspects
of the application. The deployer can set up the appropriate enterprise bean security policy for the
application if specified in annotations, or the deployment descriptor.

Any method values explicitly specified in the deployment descriptor override annotation values. If a
method value is not specified in the deployment descriptor, those values set using annotations are used.
The overriding granularity is on a per-method basis

Those annotations that address security and can be used in an enterprise beans include the following:

@DeclareRoles

Declares each security role declared in the code. For information about configuring roles, refer to the
Java EE 6 Tutorial Specifying Authorized Users by Declaring Security Roles .

@RolesAllowed, @PermitAll, and @DenyAll

Specifies method permissions for annotations. For information about configuring annotation method
permissions, refer to the Java EE 6 Tutorial Specifying Authorized Users by Declaring Security Roles .

@RunAs

Configures the propagated security identity of a component. For information about configuring
propagated security identities using annotations, refer to the Java EE 6 Tutorial Propagating a
Security Identity (Run-As).

 <method>
 <ejb-name>EmployeeServiceAdmin</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>Any authenticated user may access any method of the
 EmployeeServiceHelp bean</description>
 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring bean may be
 used in this deployment</description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
 </exclude-list>
 </assembly-descriptor>
</ejb-jar>

Security Guide

134

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24096-592543+%5BLatest%5D&comment=Title%3A+EJB+Method+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24096-592543+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javaee/6/tutorial/doc/bnbyl.html#gjgcq
http://docs.oracle.com/javaee/6/tutorial/doc/bnbyl.html#gjgcq
http://docs.oracle.com/javaee/6/tutorial/doc/bnbyl.html#bnbyr

Report a bug

8.2.7. Web Content Security Constraints

In a web application, security is defined by the roles that are allowed access to content by a URL pattern
that identifies the protected content. This set of information is declared by using the web.xml security-
constraint element.

Figure 8.5. Web Content Security Constraints

The content to be secured is declared using one or more <web-resource-collection> elements. Each
<web-resource-collection> element contains an optional series of <url-pattern> elements followed by an
optional series of <http-method> elements. The <url-pattern> element value specifies a URL pattern
against which a request URL must match for the request to correspond to an attempt to access secured
content. The <http-method> element value specifies a type of HTTP request to allow.

The optional <user-data-constraint> element specifies the requirements for the transport layer of the
client to server connection. The requirement may be for content integrity (preventing data tampering in
the communication process) or for confidentiality (preventing reading while in transit). The <transport-
guarantee> element value specifies the degree to which communication between the client and server
should be protected. Its values are NONE, INTEGRAL, and CONFIDENTIAL. A value of NONE means

CHAPTER 8. SECURITY OVERVIEW

135

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24097-686336+%5BLatest%5D&comment=Title%3A+Enterprise+Beans+Security+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24097-686336+21+Jul+2014+01%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

that the application does not require any transport guarantees. A value of INTEGRAL means that the
application requires the data sent between the client and server to be sent in such a way that it can not
be changed in transit. A value of CONFIDENTIAL means that the application requires the data to be
transmitted in a fashion that prevents other entities from observing the contents of the transmission. In
most cases, the presence of the INTEGRAL or CONFIDENTIAL flag indicates that the use of SSL is
required.

The optional <login-config> element is used to configure the authentication method that should be
used, the realm name that should be used for the application, and the attributes that are needed by the
form login mechanism.

Figure 8.6. Web Login Configuration

The <auth-method> child element specifies the authentication mechanism for the web application. As a
prerequisite to gaining access to any web resources that are protected by an authorization constraint, a
user must have authenticated using the configured mechanism. Legal <auth-method> values are BASIC,
DIGEST, FORM, SPNEGO, and CLIENT-CERT. The <realm-name> child element specifies the realm
name to use in HTTP basic and digest authorization. The <form-login-config> child element specifies
the log in as well as error pages that should be used in form-based log in. If the <auth-method> value is
not FORM, then form-login-config and its child elements are ignored.

The following configuration example indicates that any URL lying under the web application's
/restricted path requires an AuthorizedUser role. There is no required transport guarantee and the
authentication method used for obtaining the user identity is BASIC HTTP authentication.

Example 8.6. web.xml Descriptor Fragment

<web-app>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Secure Content</web-resource-name>
 <url-pattern>/restricted/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>AuthorizedUser</role-name>
 </auth-constraint>

Security Guide

136

Report a bug

8.2.8. Enable Form-based Authentication

Form-based authentication provides flexibility in defining a custom JSP/HTML page for log in, and a
separate page to which users are directed if an error occurs during login.

Form-based authentication is defined by including <auth-method>FORM</auth-method> in the
<login-config> element of the deployment descriptor, web.xml. The login and error pages are also
defined in <login-config>, as follows:

When a web application with form-based authentication is deployed, the web container uses
FormAuthenticator to direct users to the appropriate page. JBoss EAP maintains a session pool so that
authentication information does not need to be present for each request. When FormAuthenticator
receives a request, it queries org.apache.catalina.session.Manager for an existing session. If no
session exists, a new session is created. FormAuthenticator then verifies the credentials of the session.

NOTE

Each session is identified by a session ID, a 16 byte string generated from random values.
These values are retrieved from /dev/urandom (Linux) by default, and hashed with MD5.
Checks are performed at session ID creation to ensure that the ID created is unique.

Once verified, the session ID is assigned as part of a cookie, and then returned to the client. This cookie
is expected in subsequent client requests and is used to identify the user session.

The cookie passed to the client is a name value pair with several optional attributes. The identifier
attribute is called JSESSIONID . Its value is a hex-string of the session ID. This cookie is configured to be

 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <!-- ... -->
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>The Restricted Zone</realm-name>
 </login-config>
 <!-- ... -->
 <security-role>
 <description>The role required to access restricted content </description>
 <role-name>AuthorizedUser</role-name>
 </security-role>
</web-app>

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/error.html</form-error-page>
 </form-login-config>
</login-config>

CHAPTER 8. SECURITY OVERVIEW

137

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24098-702235+%5BLatest%5D&comment=Title%3A+Web+Content+Security+Constraints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24098-702235+21+Aug+2014+21%3A34+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

non-persistent. This means that on the client side it will be deleted when the browser exits. On the
server side, sessions expire after 30 minutes of inactivity, at which time session objects and their
credential information are deleted.

Say a user attempts to access a web application that is protected with form-based authentication.
FormAuthenticator caches the request, creates a new session if necessary, and redirects the user to
the login page defined in login-config. (In the previous example code, the login page is login.html.) The
user then enters their user name and password in the HTML form provided. User name and password
are passed to FormAuthenticator via the j_security_check form action.

The FormAuthenticator then authenticates the user name and password against the realm attached to
the web application context. In JBoss Enterprise Application Platform, the realm is JBossWebRealm.
When authentication is successful, FormAuthenticator retrieves the saved request from the cache and
redirects the user to their original request.

NOTE

The server recognizes form authentication requests only when the URI ends with
/j_security_check and at least the j_username and j_password parameters exist.

Report a bug

Security Guide

138

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24099-685999+%5BLatest%5D&comment=Title%3A+Enable+Form-based+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24099-685999+18+Jul+2014+07%3A49+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 9. APPLICATION SECURITY

9.1. DATASOURCE SECURITY

9.1.1. About Datasource Security

Datasource security refers to encrypting or obscuring passwords for datasource connections. These
passwords can be stored in plain text in configuration files, however this represents a security risk.

The preferred solution for datasource security is the use of either security domains or password vaults.
Examples of each are included below. For more information, refer to the Security Architecture and other
JBoss EAP security documentation.

Example 9.1. Security Domain Example

The DsRealm domain is referenced by a datasource like so:

Example 9.2. Password Vault Example

Report a bug

 <security-domain name="DsRealm" cache-type="default">
 <authentication>
 <login-module code="ConfiguredIdentity" flag="required">
 <module-option name="userName" value="sa"/>
 <module-option name="principal" value="sa"/>
 <module-option name="password" value="sa"/>
 </login-module>
 </authentication>
</security-domain>

<datasources>
 <datasource jndi-name="java:jboss/datasources/securityDs"
 pool-name="securityDs">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-1</connection-url>
 <driver>h2</driver>
 <new-connection-sql>select current_user()</new-connection-sql>
 <security>
 <security-domain>DsRealm</security-domain>
 </security>
 </datasource>
</datasources>

<security>
 <user-name>admin</user-name>

<password>${VAULT::ds_ExampleDS::password::N2NhZDYzOTMtNWE0OS00ZGQ0LWE4MmEt
MWNlMDMyNDdmNmI2TElORV9CUkVBS3ZhdWx0}</password>
</security>

CHAPTER 9. APPLICATION SECURITY

139

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+9096-749074+%5BLatest%5D&comment=Title%3A+About+Datasource+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9096-749074+29+Mar+2015+23%3A20+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

9.2. EJB APPLICATION SECURITY

9.2.1. Security Identity

9.2.1.1. About EJB Security Identity

An EJB can specify an identity to use when invoking methods on other components. This is the EJB's
security identity (also known as invocation identity).

By default, the EJB uses its own caller identity. The identity can alternatively be set to a specific security
role. Using specific security roles is useful when you want to construct a segmented security model - for
example, restricting access to a set of components to internal EJBs only.

Report a bug

9.2.1.2. Set the Security Identity of an EJB

The security identity of the EJB is specified through the <security-identity> tag in the security
configuration.

By default - if no <security-identity> tag is present - the EJB's own caller identity is used.

Example 9.3. Set the security identity of an EJB to be the same as its caller

This example sets the security identity for method invocations made by an EJB to be the same as the
current caller's identity. This behavior is the default if you do not specify a <security-identity>
element declaration.

Example 9.4. Set the security identity of an EJB to a specific role

To set the security identity to a specific role, use the <run-as> and <role-name> tags inside the
<security-identity> tag.

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 <!-- ... -->
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 <!-- ... -->
 </enterprise-beans>
</ejb-jar>

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <!-- ... -->

Security Guide

140

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4713-685873+%5BLatest%5D&comment=Title%3A+About+EJB+Security+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4713-685873+17+Jul+2014+20%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

By default, when you use <run-as>, a principal named anonymous is assigned to outgoing calls. To
assign a different principal, uses the <run-as-principal>.

NOTE

You can also use the <run-as> and <run-as-principal> elements inside a servlet
element.

See also:

Section 9.2.1.1, “About EJB Security Identity”

Section A.6, “EJB Security Parameter Reference”

Report a bug

9.2.2. EJB Method Permissions

9.2.2.1. About EJB Method Permissions

EJBs can restrict access to their methods to specific security roles.

The EJB <method-permission> element declaration specifies the roles that can invoke the EJB's
interface methods. You can specify permissions for the following combinations:

All home and component interface methods of the named EJB

A specified method of the home or component interface of the named EJB

A specified method within a set of methods with an overloaded name

Report a bug

 <security-identity>
 <run-as>
 <description>A private internal role</description>
 <role-name>InternalRole</role-name>
 </run-as>
 </security-identity>
 </session>
 </enterprise-beans>
 <!-- ... -->
</ejb-jar>

<session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as-principal>internal</run-as-principal>
 </security-identity>
</session>

CHAPTER 9. APPLICATION SECURITY

141

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+5052-685874+%5BLatest%5D&comment=Title%3A+Set+the+Security+Identity+of+an+EJB%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5052-685874+17+Jul+2014+20%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4767-685876+%5BLatest%5D&comment=Title%3A+About+EJB+Method+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4767-685876+17+Jul+2014+20%3A06+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

9.2.2.2. Use EJB Method Permissions

Overview

The <method-permission> element defines the logical roles that are allowed to access the EJB
methods defined by <method> elements. Several examples demonstrate the syntax of the XML.
Multiple method permission statements may be present, and they have a cumulative effect. The
<method-permission> element is a child of the <assembly-descriptor> element of the <ejb-jar>
descriptor.

The XML syntax is an alternative to using annotations for EJB method permissions.

Example 9.5. Allow roles to access all methods of an EJB

Example 9.6. Allow roles to access only specific methods of an EJB, and limiting which method
parameters can be passed.

<method-permission>
 <description>The employee and temp-employee roles may access any method
 of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

<method-permission>
 <description>The employee role may access the findByPrimaryKey,
 getEmployeeInfo, and the updateEmployeeInfo(String) method of
 the AcmePayroll bean </description>
 <role-name>employee</role-name>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
</method-permission>

Security Guide

142

Example 9.7. Allow any authenticated user to access methods of EJBs

Using the <unchecked/> element allows any authenticated user to use the specified methods.

Example 9.8. Completely exclude specific EJB methods from being used

Example 9.9. A complete <assembly-descriptor> containing several <method-permission>
blocks

<method-permission>
 <description>Any authenticated user may access any method of the
 EmployeeServiceHelp bean</description>
 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

<exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring bean may be
 used in this deployment</description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
</exclude-list>

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles may access any
 method of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>The employee role may access the findByPrimaryKey,
 getEmployeeInfo, and the updateEmployeeInfo(String) method of
 the AcmePayroll bean </description>
 <role-name>employee</role-name>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>

CHAPTER 9. APPLICATION SECURITY

143

Report a bug

9.2.3. EJB Security Annotations

9.2.3.1. About EJB Security Annotations

EJB javax.annotation.security annotations are defined in JSR250.

EJBs use security annotations to pass information about security to the deployer. These include:

@DeclareRoles

Declares which roles are available.

 <ejb-name>AcmePayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <description>The admin role may access any method of the
 EmployeeServiceAdmin bean </description>
 <role-name>admin</role-name>
 <method>
 <ejb-name>EmployeeServiceAdmin</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>Any authenticated user may access any method of the
 EmployeeServiceHelp bean</description>
 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring bean may be
 used in this deployment</description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
 </exclude-list>
 </assembly-descriptor>
</ejb-jar>

Security Guide

144

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4794-591676+%5BLatest%5D&comment=Title%3A+Use+EJB+Method+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4794-591676+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

@RunAs

Configures the propagated security identity of a component.

Report a bug

9.2.3.2. Use EJB Security Annotations

Overview

You can use either XML descriptors or annotations to control which security roles are able to call
methods in your Enterprise JavaBeans (EJBs). For information on using XML descriptors, refer to
Section 9.2.2.2, “Use EJB Method Permissions” .

Any method values explicitly specified in the deployment descriptor override annotation values. If a
method value is not specified in the deployment descriptor, those values set using annotations are used.
The overriding granularity is on a per-method basis.

Annotations for Controlling Security Permissions of EJBs

@DeclareRoles

Use @DeclareRoles to define which security roles to check permissions against. If no @DeclareRoles
is present, the list is built automatically from the @RolesAllowed annotation. For information about
configuring roles, refer to the Java EE 6 Tutorial Specifying Authorized Users by Declaring Security
Roles.

@RolesAllowed, @PermitAll, @DenyAll

Use @RolesAllowed to list which roles are allowed to access a method or methods. Use @PermitAll
or @DenyAll to either permit or deny all roles from using a method or methods. For information
about configuring annotation method permissions, refer to the Java EE 6 Tutorial Specifying
Authorized Users by Declaring Security Roles.

@RunAs

Use @RunAs to specify a role a method uses when making calls from the annotated method. For
information about configuring propagated security identities using annotations, refer to the Java EE
6 Tutorial Propagating a Security Identity (Run-As) .

Example 9.10. Security Annotations Example

@Stateless
@RolesAllowed({"admin"})
@SecurityDomain("other")
public class WelcomeEJB implements Welcome {
 @PermitAll
 public String WelcomeEveryone(String msg) {
 return "Welcome to " + msg;
 }
 @RunAs("tempemployee")
 public String GoodBye(String msg) {
 return "Goodbye, " + msg;
 }
 public String GoodbyeAdmin(String msg) {

CHAPTER 9. APPLICATION SECURITY

145

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4768-685879+%5BLatest%5D&comment=Title%3A+About+EJB+Security+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4768-685879+17+Jul+2014+20%3A19+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javaee/6/tutorial/doc/bnbyl.html#gjgcq
http://docs.oracle.com/javaee/6/tutorial/doc/bnbyl.html#gjgcq
http://docs.oracle.com/javaee/6/tutorial/doc/bnbyl.html#bnbyr

In this code, all roles can access method WelcomeEveryone. The GoodBye method uses the
tempemployee role when making calls. Only the admin role can access method GoodbyeAdmin,
and any other methods with no security annotation.

Report a bug

9.2.4. Remote Access to EJBs

9.2.4.1. About Remote Method Access

JBoss Remoting is the framework which provides remote access to EJBs, JMX MBeans, and other
similar services. It works within the following transport types, with or without SSL:

Supported Transport Types

Socket / Secure Socket

RMI / RMI over SSL

HTTP / HTTPS

Servlet / Secure Servlet

Bisocket / Secure Bisocket

WARNING

Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in
all affected packages.

JBoss Remoting also provides automatic discovery via Multicast or JNDI.

It is used by many of the subsystems within JBoss EAP 6, and also enables you to design, implement, and
deploy services that can be remotely invoked by clients over several different transport mechanisms. It
also allows you to access existing services in JBoss EAP 6.

Data Marshalling

The Remoting system also provides data marshalling and unmarshalling services. Data marshalling
refers to the ability to safely move data across network and platform boundaries, so that a separate
system can perform work on it. The work is then sent back to the original system and behaves as though
it were handled locally.

Architecture Overview

When you design a client application which uses Remoting, you direct your application to communicate

 return "See you later, " + msg;
 }
}



Security Guide

146

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4795-687321+%5BLatest%5D&comment=Title%3A+Use+EJB+Security+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4795-687321+22+Jul+2014+18%3A35+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

with the server by configuring it to use a special type of resource locator called an InvokerLocator,
which is a simple String with a URL-type format. The server listens for requests for remote resources on
a connector, which is configured as part of the remoting subsystem. The connector hands the request
off to a configured ServerInvocationHandler. Each ServerInvocationHandler implements a method
invoke(InvocationRequest), which knows how to handle the request.

The JBoss Remoting framework contains three layers that mirror each other on the client and server
side.

JBoss Remoting Framework Layers

The user interacts with the outer layer. On the client side, the outer layer is the Client class,
which sends invocation requests. On the server side, it is the InvocationHandler, which is
implemented by the user and receives invocation requests.

The transport is controlled by the invoker layer.

The lowest layer contains the marshaller and unmarshaller, which convert data formats to wire
formats.

Report a bug

9.2.4.2. About Remoting Callbacks

When a Remoting client requests information from the server, it can block and wait for the server to
reply, but this is often not the ideal behavior. To allow the client to listen for asynchronous events on the
server, and continue doing other work while waiting for the server to finish the request, your application
can ask the server to send a notification when it has finished. This is referred to as a callback. One client
can add itself as a listener for asynchronous events generated on behalf of another client, as well. There
are two different choices for how to receive callbacks: pull callbacks or push callbacks. Clients check for
pull callbacks synchronously, but passively listen for push callbacks.

In essence, a callback works by the server sending an InvocationRequest to the client. Your server-side
code works the same regardless of whether the callback is synchronous or asynchronous. Only the client
needs to know the difference. The server's InvocationRequest sends a responseObject to the client.
This is the payload that the client has requested. This may be a direct response to a request or an event
notification.

Your server also tracks listeners using an m_listeners object. It contains a list of all listeners that have
been added to your server handler. The ServerInvocationHandler interface includes methods that
allow you to manage this list.

The client handles pull and push callback in different ways. In either case, it must implement a callback
handler. A callback handler is an implementation of interface
org.jboss.remoting.InvokerCallbackHandler, which processes the callback data. After implementing
the callback handler, you either add yourself as a listener for a pull callback, or implement a callback
server for a push callback.

Pull Callbacks

For a pull callback, your client adds itself to the server's list of listeners using the Client.addListener()
method. It then polls the server periodically for synchronous delivery of callback data. This poll is
performed using the Client.getCallbacks().

Push Callback

A push callback requires your client application to run its own InvocationHandler. To do this, you need to

CHAPTER 9. APPLICATION SECURITY

147

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7882-724703+%5BLatest%5D&comment=Title%3A+About+Remote+Method+Access%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7882-724703+09+Nov+2014+23%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

run a Remoting service on the client itself. This is referred to as a callback server . The callback server
accepts incoming requests asynchronously and processes them for the requester (in this case, the
server). To register your client's callback server with the main server, pass the callback server's
InvokerLocator as the second argument to the addListener method.

Report a bug

9.2.4.3. About Remoting Server Detection

Remoting servers and clients can automatically detect each other using JNDI or Multicast. A Remoting
Detector is added to both the client and server, and a NetworkRegistry is added to the client.

The Detector on the server side periodically scans the InvokerRegistry and pulls all server invokers it has
created. It uses this information to publish a detection message which contains the locator and
subsystems supported by each server invoker. It publishes this message via a multicast broadcast or a
binding into a JNDI server.

On the client side, the Detector receives the multicast message or periodically polls the JNDI server to
retrieve detection messages. If the Detector notices that a detection message is for a newly-detected
remoting server, it registers it into the NetworkRegistry. The Detector also updates the NetworkRegistry
if it detects that a server is no longer available.

Report a bug

9.2.4.4. Configure the Remoting Subsystem

Overview

JBoss Remoting has three top-level configurable elements: the worker thread pool, one or more
connectors, and a series of local and remote connection URIs. This topic presents an explanation of
each configurable item, example CLI commands for how to configure each item, and an XML example of
a fully-configured subsystem. This configuration only applies to the server. Most people will not need to
configure the Remoting subsystem at all, unless they use custom connectors for their own applications.
Applications which act as Remoting clients, such as EJBs, need separate configuration to connect to a
specific connector.

NOTE

The Remoting subsystem configuration is not exposed to the web-based Management
Console, but it is fully configurable from the command-line based Management CLI.
Editing the XML by hand is not recommended.

Adapting the CLI Commands

The CLI commands are formulated for a managed domain, when configuring the default profile. To
configure a different profile, substitute its name. For a standalone server, omit the /profile=default part
of the command.

Configuration Outside the Remoting Subsystem

There are a few configuration aspects which are outside of the remoting subsystem:

Network Interface

The network interface used by the remoting subsystem is the public interface defined in the
domain/configuration/domain.xml or standalone/configuration/standalone.xml.

Security Guide

148

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7883-591811+%5BLatest%5D&comment=Title%3A+About+Remoting+Callbacks%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7883-591811+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7890-591811+%5BLatest%5D&comment=Title%3A+About+Remoting+Server+Detection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7890-591811+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The per-host definition of the public interface is defined in the host.xml in the same directory as
the domain.xml or standalone.xml. This interface is also used by several other subsystems. Exercise
caution when modifying it.

socket-binding

The default socket-binding used by the remoting subsystem binds to TCP port 4447. Refer to the
documentation about socket bindings and socket binding groups for more information if you need to
change this.

Remoting Connector Reference for EJB

The EJB subsystem contains a reference to the remoting connector for remote method invocations.
The following is the default configuration:

Secure Transport Configuration

Remoting transports use StartTLS to use a secure (HTTPS, Secure Servlet, etc) connection if the
client requests it. The same socket binding (network port) is used for secured and unsecured
connections, so no additional server-side configuration is necessary. The client requests the secure
or unsecured transport, as its needs dictate. JBoss EAP 6 components which use Remoting, such as
EJBs, the ORB, and the JMS provider, request secured interfaces by default.

<interfaces>
 <interface name="management"/>
 <interface name="public"/>
 <interface name="unsecure"/>
</interfaces>

<interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
 <interface name="unsecure">
 <!-- Used for IIOP sockets in the standard configuration.
 To secure JacORB you need to setup SSL -->
 <inet-address value="${jboss.bind.address.unsecure:127.0.0.1}"/>
 </interface>
</interfaces>

<remote connector-ref="remoting-connector" thread-pool-name="default"/>

CHAPTER 9. APPLICATION SECURITY

149

WARNING

StartTLS works by activating a secure connection if the client requests it, and
otherwise defaulting to an unsecured connection. It is inherently susceptible to a
Man in the Middle style exploit, wherein an attacker intercepts the client's request
and modifies it to request an unsecured connection. Clients must be written to fail
appropriately if they do not receive a secure connection, unless an unsecured
connection actually is an appropriate fall-back.

Worker Thread Pool

The worker thread pool is the group of threads which are available to process work which comes in
through the Remoting connectors. It is a single element <worker-thread-pool>, and takes several
attributes. Tune these attributes if you get network timeouts, run out of threads, or need to limit
memory usage. Specific recommendations depend on your specific situation. Contact Red Hat Global
Support Services for more information.

Table 9.1. Worker Thread Pool Attributes

Attribute Description CLI Command

read-threads The number of read threads to
create for the remoting worker.
Defaults to 1.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-read-
threads,value=1)

write-threads The number of write threads to
create for the remoting worker.
Defaults to 1.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-write-
threads,value=1)

task-keepalive The number of milliseconds to
keep non-core remoting worker
task threads alive. Defaults to 60.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-task-
keepalive,value=60)

task-max-threads The maximum number of threads
for the remoting worker task
thread pool. Defaults to 16.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-task-
max-threads,value=16)

task-core-threads The number of core threads for
the remoting worker task thread
pool. Defaults to 4.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-task-
core-threads,value=4)

task-limit The maximum number of
remoting worker tasks to allow
before rejecting. Defaults to
16384.

/profile=default/subsystem=r
emoting/:write-
attribute(name=worker-task-
limit,value=16384)

Connector



Security Guide

150

The connector is the main Remoting configuration element. Multiple connectors are allowed. Each
consists of a element <connector> element with several sub-elements, as well as a few possible
attributes. The default connector is used by several subsystems of JBoss EAP 6. Specific settings for
the elements and attributes of your custom connectors depend on your applications, so contact Red
Hat Global Support Services for more information.

Table 9.2. Connector Attributes

Attribute Description CLI Command

socket-binding The name of the socket binding to
use for this connector.

/profile=default/subsystem=r
emoting/connector=remoting
-connector/:write-
attribute(name=socket-
binding,value=remoting)

authentication-provider The Java Authentication Service
Provider Interface for Containers
(JASPIC) module to use with this
connector. The module must be
in the classpath.

/profile=default/subsystem=r
emoting/connector=remoting
-connector/:write-
attribute(name=authenticatio
n-
provider,value=myProvider)

security-realm Optional. The security realm
which contains your application's
users, passwords, and roles. An
EJB or Web Application can
authenticate against a security
realm. ApplicationRealm is
available in a default JBoss EAP 6
installation.

/profile=default/subsystem=r
emoting/connector=remoting
-connector/:write-
attribute(name=security-
realm,value=ApplicationReal
m)

Table 9.3. Connector Elements

Attribute Description CLI Command

sasl Enclosing element for Simple
Authentication and Security Layer
(SASL) authentication
mechanisms

N/A

properties Contains one or more
<property> elements, each with
a name attribute and an optional
value attribute.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/property=myProp/
:add(value=myPropValue)

Outbound Connections

You can specify three different types of outbound connection:

Outbound connection to a URI.

Local outbound connection – connects to a local resource such as a socket.

Remote outbound connection – connects to a remote resource and authenticates using a
security realm.

CHAPTER 9. APPLICATION SECURITY

151

All of the outbound connections are enclosed in an <outbound-connections> element. Each of these
connection types takes an outbound-socket-binding-ref attribute. The outbound-connection takes a
uri attribute. The remote outbound connection takes optional username and security-realm attributes
to use for authorization.

Table 9.4. Outbound Connection Elements

Attribute Description CLI Command

outbound-connection Generic outbound connection. /profile=default/subsystem=r
emoting/outbound-
connection=my-
connection/:add(uri=http://m
y-connection)

local-outbound-connection Outbound connection with a
implicit local:// URI scheme.

/profile=default/subsystem=r
emoting/local-outbound-
connection=my-
connection/:add(outbound-
socket-binding-
ref=remoting2)

remote-outbound-connection Outbound connections for
remote:// URI scheme, using
basic/digest authentication with a
security realm.

/profile=default/subsystem=r
emoting/remote-outbound-
connection=my-
connection/:add(outbound-
socket-binding-
ref=remoting,username=myU
ser,security-
realm=ApplicationRealm)

SASL Elements

Before defining the SASL child elements, you need to create the initial SASL element. Use the following
command:

/profile=default/subsystem=remoting/connector=remoting-connector/security=sasl:add

The child elements of the SASL element are described in the table below.

Table 9.5. SASL child elements

Attribute Description CLI Command

include-mechanisms Contains a value attribute, which
is a list of SASL mechanisms. /profile=default/subsystem=r

emoting/connector=remoting
-
connector/security=sasl:write
-attribute(name=include-
mechanisms,value=
["DIGEST","PLAIN","GSSA
PI"])

Security Guide

152

qop Contains a value attribute, which
is a list of SASL Quality of
protection values, in decreasing
order of preference.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl:write
-attribute(name=qop,value=
["auth"])

strength Contains a value attribute, which
is a list of SASL cipher strength
values, in decreasing order of
preference.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl:write
-
attribute(name=strength,valu
e=["medium"])

reuse-session Contains a value attribute which
is a boolean value. If true, attempt
to reuse sessions.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl:write
-attribute(name=reuse-
session,value=false)

server-auth Contains a value attribute which
is a boolean value. If true, the
server authenticates to the client.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl:write
-attribute(name=server-
auth,value=false)

policy An enclosing element which
contains zero or more of the
following elements, which each
take a single value.

forward-secrecy –
whether mechanisms are
required to implement
forward secrecy
(breaking into one
session will not
automatically provide
information for breaking
into future sessions)

no-active – whether
mechanisms susceptible
to non-dictionary

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:add

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=forward-
secrecy,value=true)

Attribute Description CLI Command

CHAPTER 9. APPLICATION SECURITY

153

attacks are permitted. A
value of false permits,
and true denies.

no-anonymous –
whether mechanisms
that accept anonymous
login are permitted. A
value of false permits,
and true denies.

no-dictionary – whether
mechanisms susceptible
to passive dictionary
attacks are allowed. A
value of false permits,
and true denies.

no-plain-text – whether
mechanisms which are
susceptible to simple
plain passive attacks are
allowed. A value of false
permits, and true denies.

pass-credentials –
whether mechanisms
which pass client
credentials are allowed.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=no-
active,value=false)

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=no-
anonymous,value=false)

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=no-
dictionary,value=true)

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=no-plain-
text,value=false)

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/sasl-
policy=policy:write-
attribute(name=pass-
credentials,value=true)

Attribute Description CLI Command

Security Guide

154

properties Contains one or more
<property> elements, each with
a name attribute and an optional
value attribute.

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/prop
erty=myprop:add(value=1)

/profile=default/subsystem=r
emoting/connector=remoting
-
connector/security=sasl/prop
erty=myprop2:add(value=2)

Attribute Description CLI Command

Example 9.11. Example Configurations

This example shows the default remoting subsystem that ships with JBoss EAP 6.

This example contains many hypothetical values, and is presented to put the elements and attributes
discussed previously into context.

<subsystem xmlns="urn:jboss:domain:remoting:1.1">
 <connector name="remoting-connector" socket-binding="remoting" security-
realm="ApplicationRealm"/>
</subsystem>

<subsystem xmlns="urn:jboss:domain:remoting:1.1">
 <worker-thread-pool read-threads="1" task-keepalive="60" task-max-threads="16" task-core-
thread="4" task-limit="16384" write-threads="1" />
 <connector name="remoting-connector" socket-binding="remoting" security-
realm="ApplicationRealm">
 <sasl>
 <include-mechanisms value="GSSAPI PLAIN DIGEST-MD5" />
 <qop value="auth" />
 <strength value="medium" />
 <reuse-session value="false" />
 <server-auth value="false" />
 <policy>
 <forward-secrecy value="true" />
 <no-active value="false" />
 <no-anonymous value="false" />
 <no-dictionary value="true" />
 <no-plain-text value="false" />
 <pass-credentials value="true" />
 </policy>
 <properties>
 <property name="myprop1" value="1" />
 <property name="myprop2" value="2" />
 </properties>

CHAPTER 9. APPLICATION SECURITY

155

Configuration Aspects Not Yet Documented

JNDI and Multicast Automatic Detection

Report a bug

9.2.4.5. Use Security Realms with Remote EJB Clients

One way to add security to clients which invoke EJBs remotely is to use security realms. A security realm
is a simple database of username/password pairs and username/role pairs. The terminology is also used
in the context of web containers, with a slightly different meaning.

To authenticate a specific username/password pair that exists in a security realm against an EJB, follow
these steps:

Add a new security realm to the domain controller or standalone server.

Add the following parameters to the jboss-ejb-client.properties file, which is in the classpath of
the application. This example assumes the connection is referred to as default by the other
parameters in the file.

Create a custom Remoting connector on the domain or standalone server, which uses your new
security realm.

Deploy your EJB to the server group which is configured to use the profile with the custom
Remoting connector, or to your standalone server if you are not using a managed domain.

Report a bug

9.2.4.6. Add a New Security Realm

1. Run the Management CLI.
Start the jboss-cli.sh or jboss-cli.bat command and connect to the server.

 </sasl>
 <authentication-provider name="myprovider" />
 <properties>
 <property name="myprop3" value="propValue" />
 </properties>
 </connector>
 <outbound-connections>
 <outbound-connection name="my-outbound-connection" uri="http://myhost:7777/"/>
 <remote-outbound-connection name="my-remote-connection" outbound-socket-binding-
ref="my-remote-socket" username="myUser" security-realm="ApplicationRealm"/>
 <local-outbound-connection name="myLocalConnection" outbound-socket-binding-ref="my-
outbound-socket"/>
 </outbound-connections>
</subsystem>

remote.connection.default.username=appuser
remote.connection.default.password=apppassword

Security Guide

156

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7884-747460+%5BLatest%5D&comment=Title%3A+Configure+the+Remoting+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7884-747460+16+Mar+2015+22%3A48+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8270-680304+%5BLatest%5D&comment=Title%3A+Use+Security+Realms+with+Remote+EJB+Clients%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8270-680304+30+Jun+2014+08%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Create the new security realm itself.
Run the following command to create a new security realm named MyDomainRealm on a
domain controller or a standalone server.

For a domain instance, use this command:

/host=master/core-service=management/security-realm=MyDomainRealm:add()

For a standalone instance, use this command:

/core-service=management/security-realm=MyDomainRealm:add()

3. Create the references to the properties file which will store information about the new role.
Run the following command to create a pointer a file named myfile.properties, which will
contain the properties pertaining to the new role.

NOTE

The newly created properties file is not managed by the included add-user.sh
and add-user.bat scripts. It must be managed externally.

For a domain instance, use this command:

/host=master/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path=myfile.properties)

For a standalone instance, use this command:

/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path=myfile.properties)

Result

Your new security realm is created. When you add users and roles to this new realm, the information will
be stored in a separate file from the default security realms. You can manage this new file using your
own applications or procedures.

Report a bug

9.2.4.7. Add a User to a Security Realm

1. Run the add-user.sh or add-user.bat command.
Open a terminal and change directories to the EAP_HOME/bin/ directory. If you run Red Hat
Enterprise Linux or another UNIX-like operating system, run add-user.sh. If you run Microsoft
Windows Server, run add-user.bat.

2. Choose whether to add a Management User or Application User.
For this procedure, type b to add an Application User.

3. Choose the realm the user will be added to.
By default, the only available realm is ApplicationRealm. If you have added a custom realm, you
can type its name instead.

CHAPTER 9. APPLICATION SECURITY

157

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8272-719583+%5BLatest%5D&comment=Title%3A+Add+a+New+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8272-719583+27+Oct+2014+21%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

4. Type the username, password, and roles, when prompted.
Type the desired username, password, and optional roles when prompted. Verify your choice by
typing yes, or type no to cancel the changes. The changes are written to each of the properties
files for the security realm.

Report a bug

9.2.4.8. About Remote EJB Access Using SSL Encryption

By default, the network traffic for Remote Method Invocation (RMI) of EJB2 and EJB3 Beans is not
encrypted. In instances where encryption is required, Secure Sockets Layer (SSL) can be utilized so that
the connection between the client and server is encrypted. Using SSL also has the added benefit of
allowing the network traffic to traverse some firewalls, depending on the firewall configuration.

WARNING

Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2 in
all affected packages.

Report a bug

9.3. JAX-RS APPLICATION SECURITY

9.3.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

Summary

RESTEasy supports the @RolesAllowed, @PermitAll, and @DenyAll annotations on JAX-RS methods.
However, it does not recognize these annotations by default. Follow these steps to configure the
web.xml file and enable role-based security.

WARNING

Do not activate role-based security if the application uses EJBs. The EJB container
will provide the functionality, instead of RESTEasy.

Procedure 9.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

1. Open the web.xml file for the application in a text editor.

2. Add the following <context-param> to the file, within the web-app tags:

<context-param>
 <param-name>resteasy.role.based.security</param-name>





Security Guide

158

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8271-591829+%5BLatest%5D&comment=Title%3A+Add+a+User+to+a+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8271-591829+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4786-724704+%5BLatest%5D&comment=Title%3A+About+Remote+EJB+Access+Using+SSL+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4786-724704+09+Nov+2014+23%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

 <param-value>true</param-value>
</context-param>

3. Declare all roles used within the RESTEasy JAX-RS WAR file, using the <security-role> tags:

<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>
<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>

4. Authorize access to all URLs handled by the JAX-RS runtime for all roles:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/PATH</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>ROLE_NAME</role-name>
 <role-name>ROLE_NAME</role-name>
 </auth-constraint>
</security-constraint>

Result

Role-based security has been enabled within the application, with a set of defined roles.

Example 9.12. Example Role-Based Security Configuration

<web-app>

 <context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>
 </context-param>

 <servlet-mapping>
 <servlet-name>Resteasy</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/security</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>

CHAPTER 9. APPLICATION SECURITY

159

Report a bug

9.3.2. Secure a JAX-RS Web Service using Annotations

Summary

This topic covers the steps to secure a JAX-RS web service using the supported security annotations

Procedure 9.2. Secure a JAX-RS Web Service using Supported Security Annotations

1. Enable role-based security. For more information, refer to: Section 9.3.1, “Enable Role-Based
Security for a RESTEasy JAX-RS Web Service”

2. Add security annotations to the JAX-RS web service. RESTEasy supports the following
annotations:

@RolesAllowed

Defines which roles can access the method. All roles should be defined in the web.xml file.

@PermitAll

Allows all roles defined in the web.xml file to access the method.

@DenyAll

Denies all access to the method.

Report a bug

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>

</web-app>

Security Guide

160

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+5945-591719+%5BLatest%5D&comment=Title%3A+Enable+Role-Based+Security+for+a+RESTEasy+JAX-RS+Web+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5945-591719+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+6095-591722+%5BLatest%5D&comment=Title%3A+Secure+a+JAX-RS+Web+Service+using+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6095-591722+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 10. THE SECURITY SUBSYSTEM

10.1. ABOUT THE SECURITY SUBSYSTEM

The security subsystem provides security infrastructure for applications. The subsystem uses a security
context associated with the current request to expose the capabilities of the authentication manager,
authorization manager, audit manager, and mapping manager to the relevant container.

The security subsystem is preconfigured by default, so security elements rarely need to be changed.
The only security element that may need to be changed is whether to use deep-copy-subject-mode. In
most cases, administrators will focus on the configuration of security domains .

Deep Copy Mode

See Section 10.3.2.1, “About Deep Copy Subject Mode” for details about deep copy subject mode.

Security Domain

A security domain is a set of Java Authentication and Authorization Service (JAAS) declarative security
configurations which one or more applications use to control authentication, authorization, auditing, and
mapping. Three security domains are included by default: jboss-ejb-policy, jboss-web-policy, and
other. You can create as many security domains as you need to accommodate your application
requirements.

Report a bug

10.2. ABOUT THE STRUCTURE OF THE SECURITY SUBSYSTEM

The security subsystem is configured in the managed domain or standalone configuration file. Most of
the configuration elements can be configured using the web-based management console or the
console-based management CLI. The following is the XML representing an example security subsystem.

Example 10.1. Example Security Subsystem Configuration

<subsystem xmlns="urn:jboss:domain:security:1.2">
 <security-management>
 ...
 </security-management>
 <security-domains>
 <security-domain name="other" cache-type="default">
 <authentication>
 <login-module code="Remoting" flag="optional">
 <module-option name="password-stacking" value="useFirstPass"/>
 </login-module>
 <login-module code="RealmUsersRoles" flag="required">
 <module-option name="usersProperties"
value="${jboss.domain.config.dir}/application-users.properties"/>
 <module-option name="rolesProperties"
value="${jboss.domain.config.dir}/application-roles.properties"/>
 <module-option name="realm" value="ApplicationRealm"/>
 <module-option name="password-stacking" value="useFirstPass"/>
 </login-module>
 </authentication>
 </security-domain>
 <security-domain name="jboss-web-policy" cache-type="default">

CHAPTER 10. THE SECURITY SUBSYSTEM

161

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4702-749292+%5BLatest%5D&comment=Title%3A+About+the+Security+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4702-749292+30+Mar+2015+21%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The <security-management>, <subject-factory>, <security-properties>, and <vault> elements are
not present in the default configuration. The <subject-factory> and <security-properties>
elements have been deprecated in JBoss EAP 6.1 onwards.

Report a bug

10.3. CONFIGURING THE SECURITY SUBSYSTEM

10.3.1. Configure the Security Subsystem

You can configure the security subsystem using the Management CLI or web-based Management
Console.

Each top-level element within the security subsystem contains information about a different aspect of
the security configuration. Refer to Section 10.2, “About the Structure of the Security Subsystem” for an
example of security subsystem configuration.

<security-management>

This section overrides high-level behaviors of the security subsystem. It contains an optional setting
deep-copy-subject-mode, that specifies whether to copy or link to security tokens, for additional
thread safety.

<security-domains>

A container element which holds multiple security domains. A security domain may contain
information about authentication, authorization, mapping, and auditing modules, as well as JASPI
authentication and JSSE configuration. Your application would specify a security domain to manage
its security information.

<security-properties>

Contains names and values of properties which are set on the java.security.Security class.

Report a bug

10.3.2. Security Management

 <authorization>
 <policy-module code="Delegating" flag="required"/>
 </authorization>
 </security-domain>
 <security-domain name="jboss-ejb-policy" cache-type="default">
 <authorization>
 <policy-module code="Delegating" flag="required"/>
 </authorization>
 </security-domain>
 </security-domains>
 <vault>
 ...
 </vault>
</subsystem>

Security Guide

162

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7200-741465+%5BLatest%5D&comment=Title%3A+About+the+Structure+of+the+Security+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7200-741465+05+Feb+2015+05%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+8424-697741+%5BLatest%5D&comment=Title%3A+Configure+the+Security+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8424-697741+12+Aug+2014+00%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

10.3.2.1. About Deep Copy Subject Mode

If deep copy subject mode is disabled (the default), copying a security data structure makes a reference
to the original, rather than copying the entire data structure. This behavior is more efficient, but is prone
to data corruption if multiple threads with the same identity clear the subject by means of a flush or
logout operation.

Deep copy subject mode causes a complete copy of the data structure and all its associated data to be
made, as long as they are marked cloneable. This is more thread-safe, but less efficient.

Deep copy subject mode is configured as part of the security subsystem.

Report a bug

10.3.2.2. Enable Deep Copy Subject Mode

You can enable deep copy security mode from the web-based management console or the
management CLI.

Procedure 10.1. Enable Deep Copy Security Mode from the Management Console

1. Log into the Management Console.
For detailed instructions, see the section entitled The Management Console in the
Administration and Configuration Guide for JBoss Enterprise Application Platform 6.x located on
the Customer Portal at
https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.

2. Managed Domain: Select the appropriate profile.
In a managed domain, the security subsystem is configured per profile, and you can enable or
disable the deep copy security mode independently in each profile.

To select a profile, click Configuration at the top of the screen, and then select a profile from
the Profile drop down box at the top left.

3. Open the Security Subsystem configuration menu.
Expand the Security menu, then select Security Subsystem.

4. Enable Deep Copy Subject mode.
Click Edit. Check the box beside Deep Copy Subjects to enable deep copy subject mode.

Enable Deep Copy Subject Mode Using the Management CLI

If you prefer to use the management CLI to enable this option, use one of the following commands.

Example 10.2. Managed Domain

/profile=full/subsystem=security/:write-attribute(name=deep-copy-subject-mode,value=TRUE)

Example 10.3. Standalone Server

/subsystem=security/:write-attribute(name=deep-copy-subject-mode,value=TRUE)

CHAPTER 10. THE SECURITY SUBSYSTEM

163

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+6851-591759+%5BLatest%5D&comment=Title%3A+About+Deep+Copy+Subject+Mode%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6851-591759+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/

Report a bug

10.3.3. Security Domains

10.3.3.1. About Security Domains

Security domains are part of the JBoss EAP 6 security subsystem. All security configuration is now
managed centrally, by the domain controller of a managed domain, or by the standalone server.

A security domain consists of configurations for authentication, authorization, security mapping, and
auditing. It implements Java Authentication and Authorization Service (JAAS) declarative security.

Authentication refers to verifying the identity of a user. In security terminology, this user is referred to as
a principal. Although authentication and authorization are different, many of the included authentication
modules also handle authorization.

Authorization is a process by which the server determines if an authenticated user has permission or
privileges to access specific resources in the system or operation.

Security mapping refers to the ability to add, modify, or delete information from a principal, role, or
attribute before passing the information to your application.

The auditing manager allows you to configure provider modules to control the way that security events
are reported.

If you use security domains, you can remove all specific security configuration from your application
itself. This allows you to change security parameters centrally. One common scenario that benefits from
this type of configuration structure is the process of moving applications between testing and
production environments.

Report a bug

10.3.3.2. CLI Operations Related to Security Domains

Example 10.4. flush-cache

This CLI command removes entries stored in the authentication cache for a security domain. A single
entry can be flushed by using the principal argument with the username as the value. If no argument
is passed to the operation, all entries are flushed. For more details about this operation, use the CLI
command:

/subsystem=security/security-domain=other:read-operation-description(name=flush-cache)

Example 10.5. list-cached-principals

This CLI command lists the principals stored in the authentication cache for this security domain. For
more details about this operation, use the CLI command:

/subsystem=security/security-domain=other:read-operation-description(name=list-cached-
principals)

Security Guide

164

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+6852-633056+%5BLatest%5D&comment=Title%3A+Enable+Deep+Copy+Subject+Mode%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6852-633056+22+Apr+2014+13%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4721-687641+%5BLatest%5D&comment=Title%3A+About+Security+Domains%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4721-687641+23+Jul+2014+20%3A17+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

CHAPTER 10. THE SECURITY SUBSYSTEM

165

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+34446-665454+%5BLatest%5D&comment=Title%3A+CLI+Operations+Related+to+Security+Domains%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=34446-665454+09+Jun+2014+14%3A51+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

11.1. KERBEROS AND SPNEGO INTEGRATION

11.1.1. About Kerberos and SPNEGO Integration

Kerberos is an authentication method that is designed for open network computing environments. It
works on the basis of a ticket and authenticator to establish the identity of both the user and the server.
It helps the two nodes communicating over a non secure environment to establish their identity to each
other in a secured manner.

SPNEGO is an authentication method used by a client application to authenticate itself to the server.
This technology is used when the client application and the server trying to communicate with each
other are not sure of the authentication protocol the other supports. SPNEGO determines the common
GSSAPI mechanisms between the client application and the server and then dispatches all further
security operations to it.

Kerberos and SPNEGO Integration

In a typical setup, the user logs into a desktop which is governed by the Active Directory domain. The
user then uses the web browser, either Firebox or Internet Explorer, to access a web application that
uses JBoss Negotiation hosted on the JBoss EAP. The web browser transfers the desktop sign on
information to the web application. JBoss EAP uses background GSS messages with the Active
Directory or any Kerberos Server to validate the user. This enables the user to achieve a seamless SSO
into the web application.

Report a bug

11.1.2. Desktop SSO using SPNEGO

To configure the desktop SSO using SPNEGO configure the following:

Security Domain

System Properties

Web Application

Procedure 11.1. Configure Desktop SSO using SPNEGO

1. Configure Security Domain
Configure the security domains to represent the identity of the server and to secure the web
application.

Example 11.1. Security Domain Configuration

<security-domains>

 <security-domain name="host" cache-type="default">

 <authentication>

 <login-module code="Kerberos" flag="required">

Security Guide

166

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24109-592544+%5BLatest%5D&comment=Title%3A+About+Kerberos+and+SPNEGO+Integration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24109-592544+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Setup the System Properties
If required, the system properties can be set in the domain model.

Example 11.2. Configure System Properties

3. Configure Web Application
It is not possible to override the authenticators, but it is possible to add the

 <module-option name="storeKey" value="true"/>

 <module-option name="useKeyTab" value="true"/>

 <module-option name="principal" value="host/testserver@MY_REALM"/>

 <module-option name="keyTab" value="/home/username/service.keytab"/>

 <module-option name="doNotPrompt" value="true"/>

 <module-option name="debug" value="false"/>

 </login-module>

 </authentication>

 </security-domain>

 <security-domain name="SPNEGO" cache-type="default">

 <authentication>

 <login-module code="SPNEGO" flag="requisite">

 <module-option name="password-stacking" value="useFirstPass"/>

 <module-option name="serverSecurityDomain" value="host"/>

 </login-module>

 <!-- Login Module For Roles Search -->

 </security-domain>

<system-properties>

 <property name="java.security.krb5.kdc" value="mykdc.mydomain"/>

 <property name="java.security.krb5.realm" value="MY_REALM"/>

 </system-properties>

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

167

It is not possible to override the authenticators, but it is possible to add the
NegotiationAuthenticator as a valve to your jboss-web.xml descriptor to configure the web
application.

NOTE

The valve requires the security-constraint and login-config to be defined in the
web.xml file as this is used to decide which resources are secured. However, the
chosen auth-method is overridden by this authenticator.

Example 11.3. Configure Web Application

The web application also requires a dependency defining in META-INF/MANIFEST.MF so that
the JBoss Negotiation classes can be located.

Example 11.4. Define Dependency in META-INF/MANIFEST.MF

Report a bug

11.1.3. Configure JBoss Negotiation for Microsoft Windows Domain

This section describes how to configure the accounts required for JBoss Negotiation to be used when
JBoss EAP is running on a Microsoft Windows server, which is a part of the Active Directory domain.

In this section, the hostname that is used to access the server as is referred to as {hostname}, realm is
referred to as {realm}, domain is referred to as {domain}, and the server hosting the JBoss EAP
instance is referred to as {machine_name}.

 <!DOCTYPE jboss-web PUBLIC
 "-//JBoss//DTD Web Application 2.4//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_4_0.dtd">

 <jboss-web>

 <security-domain>SPNEGO</security-domain>

 <valve>

 <class-name>org.jboss.security.negotiation.NegotiationAuthenticator</class-name>

 </valve>

 </jboss-web>

 Manifest-Version: 1.0

 Build-Jdk: 1.6.0_24

 Dependencies: org.jboss.security.negotiation

Security Guide

168

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24110-688467+%5BLatest%5D&comment=Title%3A+Desktop+SSO+using+SPNEGO%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24110-688467+28+Jul+2014+00%3A07+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Procedure 11.2. Configure JBoss Negotiation for Microsoft Windows Domain

1. Clear Existing Service Principal Mappings
On a Microsoft Windows network some mappings are created automatically. Delete the
automatically created mappings to map the identity of the server to the service principal for
negotiation to take place correctly. The mapping enables the web browser on the client
computer to trust the server and attempt SPNEGO. The client computer verifies with the
domain controller for a mapping in the form of HTTP{hostname}.

The following are the steps to delete the existing mappings:

List the mapping registered with the domain for the computer using the command, setspn -
L {machine_name}.

Delete the existing mappings using the commands, setspn -D HTTP/{hostname}
{machine_name} and setspn -D host/{hostname} {machine_name}.

2. Create a host user account.

NOTE

Ensure the host user name is different from the {machine_name}.

In the rest of the section the host user name is referred to as {user_name}.

3. Define the mapping between the {user_name} and {hostname}.

Run the following command to configure the Service Principal Mapping, ktpass -princ
HTTP/{hostname}@{realm} -pass * -mapuser {domain}\{user_name}.

Enter the password for the user name when prompted.

NOTE

Reset the password for the user name as it is a prerequisite for exporting the
keytab.

Verify the mapping by running the following command, setspn -L {user_name}

4. Export the keytab of the user to the server on which EAP JBoss is installed.
Run the following command to export the keytab, ktab -k service.keytab -a
HTTP/{hostname}@{realm}.

NOTE

This command exports the ticket for the HTTP/{hostname} principal to the
keytab service.keytab, which is used to configure the host security domain on
JBoss.

5. Define the principal within the security domain as follows:

<module-option name="principal">HTTP/{hostname}@{realm}</module-option>

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

169

Report a bug

11.1.4. Kerberos Authentication for PicketLink IDP

The following sections explain how to set up Kerberos authentication for PicketLink IDP.

Procedure 11.3. Install JBoss EAP 6 and setup Kerberos

1. Download and install JBoss EAP 6. Refer to installation instructions in the Installation Guide.

2. Whether you are using Oracle Java or IBM Java, you must use unlimited JCE. Without unlimited
JCE, the JBoss server cannot negotiate on the proper SPNEGO mechanism type (using
1.3.6.1.5.2.5, which is GSS_IAKERB_MECHANISM).

3. Use the example below to configure JBoss to use your desired Java version.

Procedure 11.4. Test your Kerberos setup using JBoss Negotiation Toolkit

1. Use the JBoss Negotiation Toolkit available at Github

2. Modify the configuration files and use the mvn clean install command to build the project.

3. Copy the file jboss-negotiation-toolkit/target/jboss-negotiation-toolkit.war to
$JBOSS_HOME/standalone/deployments/.

4. Verify that all the three sections pass through the JBoss Negotiation Toolkit.

Procedure 11.5. Set up PicketLink IDP

Changes to idp.war

The example provided uses the idp.war and employee.war archives, which can be located in the
PicketLink Quickstarts repository. Modify the files in idp.war as described below.

1. Add org.jboss.security.negotiation module to
$JBOSS_HOME/standalone/deployments/idp.war/META-INF/jboss-deployment-
structure.xml because IDP is using the JBoss Negotiation module.

2. Add an additional valve org.jboss.security.negotiation.NegotiationAuthenticator for
SPNEGO to $JBOSS_HOME/standalone/deployments/idp.war/WEB-INF/jboss-web.xml.

3. Change security-domain from idp to SPNEGO in
$JBOSS_HOME/standalone/deployments/idp.war/WEB-INF/jboss-web.xml as follows:

export JAVA_HOME=JDK/JRE_directory

 <jboss-deployment-structure>
 <deployment>
 <!-- Add picketlink module dependency -->
 <dependencies>
 <module name="org.picketlink" />
 <module name="org.jboss.security.negotiation" />
 </dependencies>
 </deployment>
 </jboss-deployment-structure>

Security Guide

170

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24328-592556+%5BLatest%5D&comment=Title%3A+Configure+JBoss+Negotiation+for+Microsoft+Windows+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24328-592556+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://access.redhat.com/site/documentation/en-US/JBoss_Enterprise_Application_Platform/6.2/html-single/Installation_Guide/index.html#proc-Zip_Installation
https://github.com/wildfly-security/jboss-negotiation

4. Add or change the security-role added to your principal by Kerberos server setup to
$JBOSS_HOME/standalone/deployments/idp.war/WEB-INF/web.xml.

5. Modify the file $JBOSS_HOME/standalone/deployments/idp.war/WEB-INF/picketlink.xml as
follows:

<jboss-web>
 <security-domain>SPNEGO</security-domain>
 <context-root>idp</context-root>
 <valve>
 <class-
name>org.picketlink.identity.federation.bindings.tomcat.idp.IDPWebBrowserSSOValve</class
-name>
 <param>
 <param-name>passUserPrincipalToAttributeManager</param-name>
 <param-value>true</param-value>
 </param>
 </valve>
 <valve>
 <class-name>org.jboss.security.negotiation.NegotiationAuthenticator</class-name>
 </valve>
</jboss-web>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 <PicketLinkIDP xmlns="urn:picketlink:identity-federation:config:2.1">
 <IdentityURL>${idp.url::http://localhost:8080/idp/}</IdentityURL>
 <Trust>
 <Domains>redhat.com,localhost,amazonaws.com</Domains>
 </Trust>
 </PicketLinkIDP>
 <Handlers xmlns="urn:picketlink:identity-federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2IssuerTrustHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2LogOutHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2AuthenticationHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGenerationHandler" />
 </Handlers>
 <!-- The configuration bellow defines a token timeout and a clock skew. Both configurations
will be used during the SAML Assertion creation. This configuration is optional. It is defined
only to show you how to set the token timeout and clock skew configuration. -->
 <PicketLinkSTS xmlns="urn:picketlink:identity-federation:config:1.0" TokenTimeout="5000"
ClockSkew="0">
 <TokenProviders>
 <TokenProvider

ProviderClass="org.picketlink.identity.federation.core.saml.v1.providers.SAML11AssertionToke
nProvider"
 TokenType="urn:oasis:names:tc:SAML:1.0:assertion"
 TokenElement="Assertion" TokenElementNS="urn:oasis:names:tc:SAML:1.0:assertion"
/>
 <TokenProvider

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

171

6. Change IdentityURL to match the host name of server you are running IDP on.

7. Change Trust to contain the domain names trusted by the Identity Provider.

8. Modify the employee.war. Add or change security-roles added to your principal by Kerberos
server setup to $JBOSS_HOME/standalone/deployments/employee.war/WEB-INF/web.xml.

9. Modify the security domain configuration in the file
$JBOSS_HOME/standalone/configuration/standalone.xml. Role mapping configuration is the
same as that in normal security domain configurations.

NOTE

ProviderClass="org.picketlink.identity.federation.core.saml.v2.providers.SAML20AssertionToke
nProvider"
 TokenType="urn:oasis:names:tc:SAML:2.0:assertion"
 TokenElement="Assertion" TokenElementNS="urn:oasis:names:tc:SAML:2.0:assertion"
/>
 </TokenProviders>
 </PicketLinkSTS>
</PicketLink>

<security-domain name="host" cache-type="default">
 <authentication>
 <login-module code="Kerberos" flag="required">
 <module-option name="principal" value="HTTP/something.com@yourdomain.COM"/>
<module-option name="storeKey" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="doNotPrompt" value="true"/>
 <module-option name="keyTab" value="/root/keytab"/>
 </login-module>
 </authentication>
</security-domain>
<security-domain name="SPNEGO" cache-type="default">
 <authentication>
 <login-module code="SPNEGO" flag="required">
 <module-option name="serverSecurityDomain" value="host"/>
 </login-module>
 </authentication>
</security-domain>
<security-domain name="sp" cache-type="default">
 <authentication>
 <login-module
 code="org.picketlink.identity.federation.bindings.jboss.auth.SAML2LoginModule"
 flag="required" />
 </authentication>
</security-domain>

Security Guide

172

NOTE

In case of using IBM JDK, options for Kerberos module are different. You must set the
system property jboss.security.disable.secdomain.option to true. Refer to
Section 11.2.2, “Configure Authentication in a Security Domain” for details. Update the
login module to the following:

Procedure 11.6. Verify Kerberos authentication setup for PicketLink IDP

1. Start JBoss EAP server using $JBOSS_HOME/bin/standalone.sh.

2. Setup your Kerberos system. There are a number of ways to do so. For example, using one of the
following options:

FreeIPA: there are multiple configuration options. You must choose the one that is suitable
to your setup.

ApacheDS

3. Setup your browser, for example Firefox, to use Kerberos. Follow the instructions provided here:
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/sso-config-firefox.html

4. Verify that you are able to access the http://YOUR_DOMAIN:8080/employee from Firefox
configured as mentioned above.

Report a bug

11.1.5. Login with Certificate with PicketLink IDP

Configure IDP to Support SSL

You can configure the PicketLink IDP to support SSL. The following procedure is an example
demonstrating how to configure a web application as an IDP supporting SSL client authentication. There
are two ways to configure the IDP to authenticate users:

If SSL is being used, the server will ask the client for a certificate and use this certificate to
authenticate the user.

If no certificate is provided by the client, a form-based authentication is performed.

Report a bug

11.1.5.1. JBoss EAP 6 SSL Configuration

The first thing you must do is create the certificates - the keystore and truststore that will be used
during the entire configuration procedure.

Procedure 11.7. Create the certificate, keystore, and truststore for your server

<login-module code="Kerberos" flag="required">
 <module-option name="principal" value="HTTP/something.com@yourdomain.COM"/>
 <module-option name="credsType" value="acceptor"/>
 <module-option name="useKeytab" value="file:///root/keytab"/>
</login-module>

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

173

http://www.freeipa.org/
http://directory.apache.org/apacheds/kerberos-user-guide.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/5/html/Deployment_Guide/sso-config-firefox.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+30880-687801+%5BLatest%5D&comment=Title%3A+Kerberos+Authentication+for+PicketLink+IDP%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30880-687801+24+Jul+2014+04%3A34+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+IDs%3A%0A30876-639217+%5BLatest%5D&comment=Title%3A+Login+with+Certificate+with+PicketLink+IDP%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Procedure 11.7. Create the certificate, keystore, and truststore for your server

1. Create a Certificate for Your Server
Use the following command to create a certificate for your server:

The system prompts you for additional information. You must provide the values as required.
The CN name of the certificate must be the same as your DNS server name. For example, in
case of localhost you could use the following command:

2. Create the Client Certificate
You will use this client certificate to authenticate against the server when accessing a resource
through SSL.

3. Create the Truststore
Export the client's certificate and create a truststore by importing this certificate:

4. Change the JBoss EAP 6 Server Installation to Enable SSL
Add the following connector to the web subsystem to enable SSL:

5. Restart the Server
Restart the server and verify that it is responding on: https://localhost:8443

6. Trust the Certificate
You will be prompted to trust the server certificate.

Configure the Client Certificate in your Browser

Before accessing the application, you must import the client.keystore to your browser. This file holds
the client certificate. When you access the application, the browser prompts you to select the certificate
you need to use to authenticate with the server. Select the desired certificate.

Security Domain Configuration
Add the following security domain to your server installation. If you're in standalone mode, you must add

keytool -genkey -alias server -keyalg RSA -keystore server.keystore -storepass change_it -
validity 365

keytool -genkey -alias server -keystore server.keystore -storepass change_it -keypass
password -dname
"CN=localhost,OU=QE,O=example.com,L=Brno,C=CZ"

keytool -genkey -alias client -keystore client.keystore -storepass change_it -validity 365 -
keyalg RSA -keysize 2048 -storetype pkcs12

keytool -exportcert -keystore client.keystore -storetype pkcs12 -storepass change_it -alias
client -keypass change_it -file client.keystore
keytool -import -file client.keystore -alias client -keystore client.truststore

<connector name="https" protocol="HTTP/1.1" scheme="https" socket-binding="https"
enable-lookups="false" secure="true">
 <ssl name="localhost-ssl" key-alias="server" password="change_it"
 certificate-key-file="${jboss.server.config.dir}/server.keystore"
 protocol="TLSv1"
 verify-client="want"
 ca-certificate-file="${jboss.server.config.dir}/client.truststore"/>
</connector>

Security Guide

174

https://localhost:8443

Add the following security domain to your server installation. If you're in standalone mode, you must add
it to the JBOSS_HOME/standalone/configuration/standalone.xml:

The configuration example above validates any provided certificate. If no certificate is provided or if the
authentication fails, the procedure falls back to a user/password based authentication.

Regular Expression User Name Login Module

The Regular Expression User Name Login module can be used after Certificate Login Modules to
extract a username, UID or other field from the principal name so that roles can be obtained from LDAP.
The module has an option named regex which specifies the regular expression to be applied to the
principal name, the result of which is passed on to the subsequent login module.

In this example, an input principal name of UID=007, EMAILADDRESS=something@something,
CN=James Bond, O=SpyAgency would result in the output UID=007.

Example 11.5. Example of Regular Expression User Name Login Module

For further details about regular expressions, see java.util.regex.Pattern class documentation at

 <security-domain name="idp" cache-type="default">
 <authentication>
 <login-module code="CertificateRoles" flag="optional">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="securityDomain" value="idp"/>
 <module-option name="verifier" value="org.jboss.security.auth.certs.AnyCertVerifier"/>
 </login-module>

 <login-module
code="org.picketlink.identity.federation.bindings.jboss.auth.RegExUserNameLoginModule"
flag="optional">
 <module-option name="regex" value="CN=(.*?),"/>
 </login-module>

 <login-module code="UsersRoles" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="usersProperties" value="users.properties"/>
 <module-option name="rolesProperties" value="roles.properties"/>
 </login-module>
 </authentication>

 <jsse keystore-password="change_it" keystore-url="${jboss.server.config.dir}" truststore-
password="change_it" truststore-url="${jboss.server.config.dir}" client-auth="true"/>
</security-domain>

<login-module
code="org.picketlink.identity.federation.bindings.jboss.auth.RegExUserNameLoginModule"
flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="regex" value="UID=(.*?),"/>
</login-module>

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

175

For further details about regular expressions, see java.util.regex.Pattern class documentation at
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.

Report a bug

11.2. AUTHENTICATION

11.2.1. About Authentication

Authentication refers to identifying a subject and verifying the authenticity of the identification. The
most common authentication mechanism is a username and password combination. Other common
authentication mechanisms use shared keys, smart cards, or fingerprints. The outcome of a successful
authentication is referred to as a principal, in terms of Java Enterprise Edition declarative security.

JBoss EAP 6 uses a pluggable system of authentication modules to provide flexibility and integration
with the authentication systems you already use in your organization. Each security domain may contain
one or more configured authentication modules. Each module includes additional configuration
parameters to customize its behavior. The easiest way to configure the authentication subsystem is
within the web-based management console.

Authentication is not the same as authorization, although they are often linked. Many of the included
authentication modules can also handle authorization.

Report a bug

11.2.2. Configure Authentication in a Security Domain

To configure authentication settings for a security domain, log into the management console and follow
this procedure.

Procedure 11.8. Setup Authentication Settings for a Security Domain

1. Open the security domain's detailed view.

a. Click the Configuration label at the top of the management console.

b. Select the profile to modify from the Profile selection box at the top left of the Profile view.

c. Expand the Security menu, and select Security Domains.

d. Click the View link for the security domain you want to edit.

2. Navigate to the Authentication subsystem configuration.
Select the Authentication label at the top of the view if it is not already selected.

The configuration area is divided into two areas: Login Modules and Details. The login module
is the basic unit of configuration. A security domain can include several login modules, each of
which can include several attributes and options.

3. Add an authentication module.
Click Add to add a JAAS authentication module. Fill in the details for your module.

The Code is the class name of the module. The Flag setting controls how the module relates to
other authentication modules within the same security domain.

Explanation of the Flags
The Java Enterprise Edition 6 specification provides the following explanation of the flags for

Security Guide

176

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+30878-736848+%5BLatest%5D&comment=Title%3A+JBoss+EAP+6+SSL+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30878-736848+19+Jan+2015+04%3A16+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4723-742133+%5BLatest%5D&comment=Title%3A+About+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4723-742133+09+Feb+2015+02%3A10+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The Java Enterprise Edition 6 specification provides the following explanation of the flags for
security modules. The following list is taken from
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA
Refer to that document for more detailed information.

Flag Details

required The LoginModule is required to succeed. If it
succeeds or fails, authentication still continues
to proceed down the LoginModule list.

requisite LoginModule is required to succeed. If it
succeeds, authentication continues down the
LoginModule list. If it fails, control immediately
returns to the application (authentication does
not proceed down the LoginModule list).

sufficient The LoginModule is not required to succeed. If it
does succeed, control immediately returns to
the application (authentication does not proceed
down the LoginModule list). If it fails,
authentication continues down the LoginModule
list.

optional The LoginModule is not required to succeed. If it
succeeds or fails, authentication still continues
to proceed down the LoginModule list.

4. Edit authentication settings
After you have added your module, you can modify its Code or Flags by clicking Edit in the
Details section of the screen. Be sure the Attributes tab is selected.

5. Optional: Add or remove module options.
If you need to add options to your module, click its entry in the Login Modules list, and select
the Module Options tab in the Details section of the page. Click the Add button, and provide
the key and value for the option. Use the Remove button to remove an option.

Result

Your authentication module is added to the security domain, and is immediately available to applications
which use the security domain.

The jboss.security.security_domain Module Option

By default, each login module defined in a security domain has the jboss.security.security_domain
module option added to it automatically. This option causes problems with login modules which check to
make sure that only known options are defined. The IBM Kerberos login module,
com.ibm.security.auth.module.Krb5LoginModule is one of these.

You can disable the behavior of adding this module option by setting the system property to true when
starting JBoss EAP 6. Add the following to your start-up parameters.

-Djboss.security.disable.secdomain.option=true

You can also set this property using the web-based Management Console. In a standalone server, you

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

177

http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA

You can also set this property using the web-based Management Console. In a standalone server, you
can set system properties in the Profile section of the configuration. In a managed domain, you can set
system properties for each server group.

Report a bug

11.3. JAAS - JAVA AUTHENTICATION AND AUTHORIZATION SERVICE

11.3.1. About JAAS

JAAS is the Java Authentication and Authorization Service. It is part of the Java EE Spec, and allows for
pluggable authentication and authorization to abstract applications from security providers.

The JAAS 1.0 API consists of a set of Java packages designed for user authentication and authorization.
The API implements a Java version of the standard Pluggable Authentication Modules (PAM)
framework and extends the Java 2 Platform access control architecture to support user-based
authorization.

JAAS authentication is performed in a pluggable fashion. This permits Java applications to remain
independent from underlying authentication technologies, and allows the security manager to work in
different security infrastructures. Integration with a security infrastructure is achievable without
changing the security manager implementation. You need only change the configuration of the
authentication stack JAAS uses.

Refer to the Java EE JAAS Documentation for further information on JAAS.

The JBoss Enterprise Application Platform 6 security subsystem is based on the JAAS API.

Report a bug

11.3.2. JAAS Core Classes

The JAAS core classes can be broken down into three categories: common, authentication, and
authorization. The following list presents only the common and authentication classes because these
are the specific classes used to implement the functionality of the EAP security subsystem covered in
this chapter.

These are the common classes:

Subject (javax.security.auth.Subject)

These are the authentication classes:

Configuration (javax.security.auth.login.Configuration)

LoginContext (javax.security.auth.login.LoginContext)

These are the associated interfaces:

Principal (java.security.Principal)

Callback (javax.security.auth.callback.Callback)

CallbackHandler (javax.security.auth.callback.CallbackHandler)

LoginModule (javax.security.auth.spi.LoginModule)

Security Guide

178

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4724-632151+%5BLatest%5D&comment=Title%3A+Configure+Authentication+in+a+Security+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4724-632151+16+Apr+2014+21%3A06+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24380-686357+%5BLatest%5D&comment=Title%3A+About+JAAS%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24380-686357+21+Jul+2014+02%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

11.3.3. Subject and Principal classes

To authorize access to resources, applications must first authenticate the request's source. The JAAS
framework defines the term subject to represent a request's source. The Subject class is the central
class in JAAS. A Subject represents information for a single entity, such as a person or service. It
encompasses the entity's principals, public credentials, and private credentials. The JAAS API uses the
existing Java 2 java.security.Principal interface to represent a principal, which is essentially a typed
name.

During the authentication process, a subject is populated with associated identities, or principals. A
subject may have many principals. For example, a person may have a name principal (John Doe), a social
security number principal (123-45-6789), and a user name principal (johnd), all of which help distinguish
the subject from other subjects. To retrieve the principals associated with a subject, two methods are
available:

getPrincipals() returns all principals contained in the subject. getPrincipals(Class c) returns only those
principals that are instances of class c or one of its subclasses. An empty set is returned if the subject
has no matching principals.

Note that the java.security.acl.Group interface is a sub-interface of java.security.Principal, so an
instance in the principals set may represent a logical grouping of other principals or groups of principals.

Report a bug

11.3.4. Subject Authentication

Subject Authentication requires a JAAS login. For a description of the JAAS Login Configuration file,
refer to JAAS Login Configuration File in the Java documentation.

The login process consists of the following points:

1. An application instantiates a LoginContext and passes in the name of the login configuration
and a CallbackHandler to populate the Callback objects, as required by the configuration
LoginModules.

2. The LoginContext consults a Configuration to load all the LoginModules included in the
named login configuration. If no such named configuration exists the other configuration is used
as a default.

3. The application invokes the LoginContext.login method.

4. The login method invokes each loaded LoginModule. As each LoginModule attempts to
authenticate the subject, it invokes the handle method on the associated CallbackHandler to
obtain the information required for the authentication process. The required information is
passed to the handle method in the form of an array of Callback objects. Upon success, the
LoginModules associate relevant principals and credentials with the subject.

5. The LoginContext returns the authentication status to the application. Success is represented
by a return from the login method. Failure is represented through a LoginException being
thrown by the login method.

public Set getPrincipals() {...}
public Set getPrincipals(Class c) {...}

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

179

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24101-686358+%5BLatest%5D&comment=Title%3A+JAAS+Core+Classes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24101-686358+21+Jul+2014+02%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24102-685967+%5BLatest%5D&comment=Title%3A+Subject+and+Principal+classes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24102-685967+18+Jul+2014+05%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jgss/tutorials/LoginConfigFile.html

6. If authentication succeeds, the application retrieves the authenticated subject using the
LoginContext.getSubject method.

7. After the scope of the subject authentication is complete, all principals and related information
associated with the subject by the login method can be removed by invoking the
LoginContext.logout method.

The LoginContext class provides the basic methods for authenticating subjects and offers a way to
develop an application that is independent of the underlying authentication technology. The
LoginContext consults a Configuration to determine the authentication services configured for a
particular application. LoginModule classes represent the authentication services. Therefore, you can
plug different login modules into an application without changing the application itself. The following
code shows the steps required by an application to authenticate a subject.

CallbackHandler handler = new MyHandler();
LoginContext lc = new LoginContext("some-config", handler);

try {
 lc.login();
 Subject subject = lc.getSubject();
} catch(LoginException e) {
 System.out.println("authentication failed");
 e.printStackTrace();
}

// Perform work as authenticated Subject
// ...

// Scope of work complete, logout to remove authentication info
try {
 lc.logout();
} catch(LoginException e) {
 System.out.println("logout failed");
 e.printStackTrace();
}

// A sample MyHandler class
class MyHandler
 implements CallbackHandler
{
 public void handle(Callback[] callbacks) throws
 IOException, UnsupportedCallbackException
 {
 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof NameCallback) {
 NameCallback nc = (NameCallback)callbacks[i];
 nc.setName(username);
 } else if (callbacks[i] instanceof PasswordCallback) {
 PasswordCallback pc = (PasswordCallback)callbacks[i];
 pc.setPassword(password);
 } else {
 throw new UnsupportedCallbackException(callbacks[i],
 "Unrecognized Callback");
 }

Security Guide

180

Developers integrate with an authentication technology by creating an implementation of the
LoginModule interface. This allows an administrator to plug different authentication technologies into
an application. You can chain together multiple LoginModules to allow for more than one
authentication technology to participate in the authentication process. For example, one LoginModule
may perform user name/password-based authentication, while another may interface to hardware
devices such as smart card readers or biometric authenticators.

The life cycle of a LoginModule is driven by the LoginContext object against which the client creates
and issues the login method. The process consists of two phases. The steps of the process are as
follows:

The LoginContext creates each configured LoginModule using its public no-arg constructor.

Each LoginModule is initialized with a call to its initialize method. The Subject argument is
guaranteed to be non-null. The signature of the initialize method is: public void
initialize(Subject subject, CallbackHandler callbackHandler, Map sharedState, Map
options)

The login method is called to start the authentication process. For example, a method
implementation might prompt the user for a user name and password and then verify the
information against data stored in a naming service such as NIS or LDAP. Alternative
implementations might interface to smart cards and biometric devices, or simply extract user
information from the underlying operating system. The validation of user identity by each
LoginModule is considered phase 1 of JAAS authentication. The signature of the login method
is boolean login() throws LoginException . A LoginException indicates failure. A return value
of true indicates that the method succeeded, whereas a return value of false indicates that the
login module should be ignored.

If the LoginContext's overall authentication succeeds, commit is invoked on each
LoginModule. If phase 1 succeeds for a LoginModule, then the commit method continues with
phase 2 and associates the relevant principals, public credentials, and/or private credentials
with the subject. If phase 1 fails for a LoginModule, then commit removes any previously stored
authentication state, such as user names or passwords. The signature of the commit method is:
boolean commit() throws LoginException . Failure to complete the commit phase is indicated
by throwing a LoginException. A return of true indicates that the method succeeded, whereas
a return of false indicates that the login module should be ignored.

If the LoginContext's overall authentication fails, then the abort method is invoked on each
LoginModule. The abort method removes or destroys any authentication state created by the
login or initialize methods. The signature of the abort method is boolean abort() throws
LoginException . Failure to complete the abort phase is indicated by throwing a
LoginException. A return of true indicates that the method succeeded, whereas a return of
false indicates that the login module should be ignored.

To remove the authentication state after a successful login, the application invokes logout on
the LoginContext. This in turn results in a logout method invocation on each LoginModule.
The logout method removes the principals and credentials originally associated with the subject
during the commit operation. Credentials should be destroyed upon removal. The signature of
the logout method is: boolean logout() throws LoginException . Failure to complete the
logout process is indicated by throwing a LoginException. A return of true indicates that the
method succeeded, whereas a return of false indicates that the login module should be ignored.

When a LoginModule must communicate with the user to obtain authentication information, it uses a

 }
 }
}

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

181

When a LoginModule must communicate with the user to obtain authentication information, it uses a
CallbackHandler object. Applications implement the CallbackHandler interface and pass it to the
LoginContext, which send the authentication information directly to the underlying login modules.

Login modules use the CallbackHandler both to gather input from users, such as a password or smart
card PIN, and to supply information to users, such as status information. By allowing the application to
specify the CallbackHandler, underlying LoginModules remain independent from the different ways
applications interact with users. For example, a CallbackHandler's implementation for a GUI application
might display a window to solicit user input. On the other hand, a CallbackHandler implementation for a
non-GUI environment, such as an application server, might simply obtain credential information by using
an application server API. The CallbackHandler interface has one method to implement:

The Callback interface is the last authentication class we will look at. This is a tagging interface for
which several default implementations are provided, including the NameCallback and
PasswordCallback used in an earlier example. A LoginModule uses a Callback to request information
required by the authentication mechanism. LoginModules pass an array of Callbacks directly to the
CallbackHandler.handle method during the authentication's login phase. If a callbackhandler does not
understand how to use a Callback object passed into the handle method, it throws an
UnsupportedCallbackException to abort the login call.

Report a bug

11.4. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)

11.4.1. About Java Authentication SPI for Containers (JASPI) Security

Java Authentication SPI for Containers (JASPI or JASPIC) is a pluggable interface for Java
applications. It is defined in JSR-196 of the Java Community Process. Refer to
http://www.jcp.org/en/jsr/detail?id=196 for details about the specification.

Report a bug

11.4.2. Configure Java Authentication SPI for Containers (JASPI) Security

To authenticate against a JASPI provider, add a <authentication-jaspi> element to your security
domain. The configuration is similar to a standard authentication module, but login module elements are
enclosed in a <login-module-stack> element. The structure of the configuration is:

Example 11.6. Structure of the authentication-jaspi element

void handle(Callback[] callbacks)
 throws java.io.IOException,
 UnsupportedCallbackException;

<authentication-jaspi>
 <login-module-stack name="...">
 <login-module code="..." flag="...">
 <module-option name="..." value="..."/>
 </login-module>
 </login-module-stack>
 <auth-module code="..." login-module-stack-ref="...">
 <module-option name="..." value="..."/>
 </auth-module>

Security Guide

182

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24103-686005+%5BLatest%5D&comment=Title%3A+Subject+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24103-686005+18+Jul+2014+08%3A08+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://www.jcp.org/en/jsr/detail?id=196
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7199-687581+%5BLatest%5D&comment=Title%3A+About+Java+Authentication+SPI+for+Containers+%28JASPI%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7199-687581+23+Jul+2014+08%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The login module itself is configured in exactly the same way as a standard authentication module.

Because the web-based management console does not expose the configuration of JASPI
authentication modules, you need to stop JBoss EAP 6 completely before adding the configuration
directly to EAP_HOME/domain/configuration/domain.xml or
EAP_HOME/standalone/configuration/standalone.xml.

Report a bug

11.5. AUTHORIZATION

11.5.1. About Authorization

Authorization is a mechanism for granting or denying access to a resource based on identity. It is
implemented as a set of declarative security roles which can be added to principals.

JBoss EAP 6 uses a modular system to configure authorization. Each security domain may contain one
or more authorization policies. Each policy has a basic module which defines its behavior. It is configured
through specific flags and attributes. The easiest way to configure the authorization subsystem is by
using the web-based management console.

Authorization is different from authentication, and usually happens after authentication. Many of the
authentication modules also handle authorization.

Report a bug

11.5.2. Configure Authorization in a Security Domain

To configure authorization settings for a security domain, log into the management console and follow
this procedure.

Procedure 11.9. Setup Authorization in a Security Domain

1. Open the security domain's detailed view.

a. Click the Configuration label at the top of the management console.

b. In a managed domain, select the profile to modify from the Profile drop down box at the
top left.

c. Expand the Security menu item, and select Security Domains.

d. Click the View link for the security domain you want to edit.

2. Navigate to the Authorization subsystem configuration.
Select the Authorization label at the top of the screen.

The configuration area is divided into two areas: Policies and Details. The login module is the
basic unit of configuration. A security domain can include several authorization policies, each of
which can include several attributes and options.

</authentication-jaspi>

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

183

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4934-591678+%5BLatest%5D&comment=Title%3A+Configure+Java+Authentication+SPI+for+Containers+%28JASPI%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4934-591678+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4725-744990+%5BLatest%5D&comment=Title%3A+About+Authorization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4725-744990+26+Feb+2015+05%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

3. Add a policy.
Click Add to add a JAAS authorization policy module. Fill in the details for your module.

The Code is the class name of the module. The Flag controls how the module relates to other
authorization policy modules within the same security domain.

Explanation of the Flags

The Java Enterprise Edition 6 specification provides the following explanation of the flags for
security modules. The following list is taken from
http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA
Refer to that document for more detailed information.

Flag Details

required The LoginModule is required to succeed. If it
succeeds or fails, authorization still continues to
proceed down the LoginModule list.

requisite LoginModule is required to succeed. If it
succeeds, authorization continues down the
LoginModule list. If it fails, control immediately
returns to the application (authorization does
not proceed down the LoginModule list).

sufficient The LoginModule is not required to succeed. If it
does succeed, control immediately returns to
the application (authorization does not proceed
down the LoginModule list). If it fails,
authorization continues down the LoginModule
list.

optional The LoginModule is not required to succeed. If it
succeeds or fails, authorization still continues to
proceed down the LoginModule list.

4. Edit authorization settings
After you have added your module, you can modify its Code or Flags by clicking Edit in the
Details section of the screen. Be sure the Attributes tab is selected.

5. Optional: Add or remove module options.
If you need to add options to your module, click its entry in the Policies list, and select the
Module Options tab in the Details section of the page. Click Add and provide the key and
value for the option. Use the Remove button to remove an option.

Result

Your authorization policy module is added to the security domain, and is immediately available to
applications which use the security domain.

Report a bug

11.6. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)

11.6.1. About Java Authorization Contract for Containers (JACC)

Java Authorization Contract for Containers (JACC) is a standard which defines a contract between

Security Guide

184

http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixA
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4726-675486+%5BLatest%5D&comment=Title%3A+Configure+Authorization+in+a+Security+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4726-675486+23+Jun+2014+13%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Java Authorization Contract for Containers (JACC) is a standard which defines a contract between
containers and authorization service providers, which results in the implementation of providers for use
by containers. It was defined in JSR-115, which can be found on the Java Community Process website at
http://jcp.org/en/jsr/detail?id=115. It has been part of the core Java Enterprise Edition (Java EE)
specification since Java EE version 1.3.

JBoss EAP 6 implements support for JACC within the security functionality of the security subsystem.

Report a bug

11.6.2. Configure Java Authorization Contract for Containers (JACC) Security

To configure Java Authorization Contract for Containers (JACC), you need to configure your security
domain with the correct module, and then modify your jboss-web.xml to include the correct
parameters.

Add JACC Support to the Security Domain

To add JACC support to the security domain, add the JACC authorization policy to the authorization
stack of the security domain, with the required flag set. The following is an example of a security domain
with JACC support. However, the security domain is configured in the Management Console or
Management CLI, rather than directly in the XML.

Configure a Web Application to Use JACC

The jboss-web.xml is located in the WEB-INF/ directory of your deployment, and contains overrides
and additional JBoss-specific configuration for the web container. To use your JACC-enabled security
domain, you need to include the <security-domain> element, and also set the <use-jboss-
authorization> element to true. The following application is properly configured to use the JACC
security domain above.

Configure an EJB Application to Use JACC

Configuring EJBs to use a security domain and to use JACC differs from Web Applications. For an EJB,
you can declare method permissions on a method or group of methods, in the ejb-jar.xml descriptor.
Within the <ejb-jar> element, any child <method-permission> elements contain information about
JACC roles. Refer to the example configuration for more details. The EJBMethodPermission class is
part of the Java Enterprise Edition 6 API, and is documented at
http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html.

<security-domain name="jacc" cache-type="default">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 </login-module>
 </authentication>
 <authorization>
 <policy-module code="JACC" flag="required"/>
 </authorization>
</security-domain>

<jboss-web>
 <security-domain>jacc</security-domain>
 <use-jboss-authorization>true</use-jboss-authorization>
</jboss-web>

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

185

http://jcp.org/en/jsr/detail?id=115
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7687-591801+%5BLatest%5D&comment=Title%3A+About+Java+Authorization+Contract+for+Containers+%28JACC%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7687-591801+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html

Example 11.7. Example JACC Method Permissions in an EJB

You can also constrain the authentication and authorization mechanisms for an EJB by using a security
domain, just as you can do for a web application. Security domains are declared in the jboss-ejb3.xml
descriptor, in the <security> child element. In addition to the security domain, you can also specify the
<run-as-principal>, which changes the principal the EJB runs as.

Example 11.8. Example Security Domain Declaration in an EJB

Report a bug

11.6.3. Fine Grained Authorization Using XACML

11.6.3.1. About Fine Grained Authorization and XACML

Fine Grained Authorization caters to the changing requirements and multiple variables involved in the
decision making process, which becomes the basis of providing authorization for accessing a module.
Hence, the process of Fine Grained Authorization is complex in itself.

JBoss uses XACML as a medium to achieve Fine Grained Authorization. XACML provides standards
based solution to the complex nature of achieving Fine Grained Authorization. XACML defines a policy
language and an architecture for decision making. The XACML architecture includes a Policy
Enforcement Point (PEP), which intercepts any requests in a normal program flow, then asks a Policy

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles may access any method of the
EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 </assembly-descriptor>
</ejb-jar>

<ejb-jar>
 <assembly-descriptor>
 <security>
 <ejb-name>*</ejb-name>
 <security-domain>myDomain</security-domain>
 <run-as-principal>myPrincipal</run-as-principal>
 </security>
 </assembly-descriptor>
</ejb-jar>

Security Guide

186

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4933-744942+%5BLatest%5D&comment=Title%3A+Configure+Java+Authorization+Contract+for+Containers+%28JACC%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4933-744942+25+Feb+2015+14%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Decision Point (PDP) to make an access decision based on the policies associated with the PDP. The
PDP evaluates the XACML request created by the PEP and runs through the policies to make one of
the following access decisions:

PERMIT - The access is approved.

DENY - The access is denied.

INDETERMINATE - There is an error at the PDP.

NOTAPPLICABLE - There is some attribute missing in the request or there is no policy match.

The following are the features of the XACML:

Oasis XACML v2.0 library

JAXB v2.0 based object model

ExistDB Integration for storing/retrieving XACML Policies and Attributes

Report a bug

11.6.3.2. Configure XACML for Fine Grained Authorization

The following is the procedure to configure XACML.

Procedure 11.10. Configure XACML

1. Download the library which is a single jar file.

2. Create one or more policy files for XACML

Under the WEB-INF/classes, create a policies directory to save all your policies.

Create a policyConfig.xml under WEB-INF/classes directory.

The following are the two types of policy sets can be defined:

Role Permission Policy Sets (RPS)

Permission Policy Sets (PPS)

Example 11.9. Role Permission Policy Sets (RPS)

Employee

 <PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 PolicySetId="RPS:employee:role"
 PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-
algorithm:permit-overrides">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
 <AttributeValue
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">employee</AttributeValue>
 <SubjectAttributeDesignator

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

187

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24111-592544+%5BLatest%5D&comment=Title%3A+About+Fine+Grained+Authorization+and+XACML%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24111-592544+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Manager

Example 11.10. Permission Policy Sets (PPS)

Employee

 AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI"/>
 </SubjectMatch>
 </Subject>
 </Subjects>
 </Target>
 <!-- Use permissions associated with the employee role -->
 <PolicySetIdReference>PPS:employee:role</PolicySetIdReference>
 </PolicySet>

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
PolicySetId="RPS:manager:role"
PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit-
overrides">
<Target>
<Subjects>
<Subject>
<SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal">
<AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#anyURI">manager</AttributeValue>
<SubjectAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"
DataType="http://www.w3.org/2001/XMLSchema#anyURI"/>
</SubjectMatch>
</Subject>
</Subjects>
</Target>
<!-- Use permissions associated with the manager role -->
<PolicySetIdReference>PPS:manager:role</PolicySetIdReference>
</PolicySet>

 <PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 PolicySetId="PPS:employee:role"
 PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-
algorithm:permit-overrides">
 <Target />
 <!-- Permissions specifically for the employee role -->
 <Policy PolicyId="Permissions:specifically:for:the:employee:role"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:permit-overrides">
 <Target />
 <!-- Permission to create a purchase order -->
 <Rule RuleId="Permission:to:create:a:purchase:order" Effect="Permit">
 <Target>
 <Resources>
 <Resource>

Security Guide

188

 <ResourceMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">purchase order
 </AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-
equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">create</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string" />
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>
 </Policy>
 <!-- HasPrivilegesOfRole Policy for employee role -->
 <Policy PolicyId="Permission:to:have:employee:role:permissions"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:permit-overrides">
 <Target />
 <!-- Permission to have employee role permissions -->
 <Rule RuleId="Permission:to:have:employee:permissions" Effect="Permit">
 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:anyURI-is-in">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#anyURI">employee</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"
DataType="http://www.w3.org/2001/XMLSchema#anyURI" />
 </Apply>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:anyURI-is-in">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#anyURI">urn:oasis:names:tc:xacml:2.0:a
ctions:hasPrivilegesOfRole
 </AttributeValue>
 <ActionAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI" />
 </Apply>
 </Apply>
 </Condition>
 </Rule>
 </Policy>
 </PolicySet>

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

189

Manager

<PolicySet xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
 PolicySetId="PPS:manager:role"
 PolicyCombiningAlgId="urn:oasis:names:tc:xacml:1.0:policy-combining-
algorithm:permit-overrides">
 <Target />
 <!-- Permissions specifically for the manager role -->
 <Policy PolicyId="Permissions:specifically:for:the:manager:role"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:permit-overrides">
 <Target />
 <!-- Permission to sign a purchase order -->
 <Rule RuleId="Permission:to:sign:a:purchase:order" Effect="Permit">
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch
 MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">purchase order
 </AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />
 </ResourceMatch>
 </Resource>
 </Resources>
 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-
equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">sign</AttributeValue>
 <ActionAttributeDesignator AttributeId="urn:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string" />
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
 </Rule>
 </Policy>
 <!-- HasPrivilegesOfRole Policy for manager role -->
 <Policy PolicyId="Permission:to:have:manager:role:permissions"
 RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:permit-overrides">
 <Target />
 <!-- Permission to have manager role permissions -->
 <Rule RuleId="Permission:to:have:manager:permissions" Effect="Permit">
 <Condition>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:anyURI-is-in">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#anyURI">manager</AttributeValue>
 <ResourceAttributeDesignator
 AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"

Security Guide

190

3. Create a configuration file for the XACML engine.
A configuration file is created to configure the locators and mention the directories where the
policies are saved.

Example 11.11. Configuration File

Configuration File Only Indicating The Directory Of The Policy Files.

Configuration File Defining the Policy Set

DataType="http://www.w3.org/2001/XMLSchema#anyURI" />
 </Apply>
 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:anyURI-is-in">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#anyURI">urn:oasis:names:tc:xacml:2.0:a
ctions:hasPrivilegesOfRole
 </AttributeValue>
 <ActionAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI" />
 </Apply>
 </Apply>
 </Condition>
 </Rule>
 </Policy>
 <!-- Include permissions associated with employee role -->
 <PolicySetIdReference>PPS:employee:role</PolicySetIdReference>
 </PolicySet>

 <ns:jbosspdp xmlns:ns="urn:jboss:xacml:2.0">
 <ns:Policies>
 <ns:PolicySet>
 <ns:Location>test/policies/rbac/</ns:Location>
 </ns:PolicySet>
 </ns:Policies>
 <ns:Locators>
 <ns:Locator
Name="org.jboss.security.xacml.locators.JBossRBACPolicySetLocator"/>
 </ns:Locators>
 </ns:jbosspdp>

<ns:jbosspdp xmlns:ns="urn:jboss:xacml:2.0">
 <ns:Policies>
 <ns:PolicySet>
 <ns:Location>test/policies/rbac/employee-PPS-policyset.xml</ns:Location>
 </ns:PolicySet>
 <ns:PolicySet>
 <ns:Location>test/policies/rbac/manager-PPS-policyset.xml</ns:Location>
 </ns:PolicySet>
 <ns:PolicySet>
 <ns:Location>test/policies/rbac/employee-RPS-policyset.xml</ns:Location>
 </ns:PolicySet>

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

191

4. Create a Policy Decision Point (PDP) and pass it in the Configuration File.

5. In the Policy Enforcement Point (PEP), create an XACML request based on the context. Pass
the XACML request to the PDP to get one of the following access decisions:

Permit

Deny

Indeterminate

Not Applicable

Example 11.12. Access Decisions

Permit condition

 <ns:PolicySet>
 <ns:Location>test/policies/rbac/manager-RPS-policyset.xml</ns:Location>
 </ns:PolicySet>
 </ns:Policies>
 <ns:Locators>
 <ns:Locator Name="org.jboss.security.xacml.locators.JBossRBACPolicySetLocator"/>
 </ns:Locators>
</ns:jbosspdp>

 <Request
 xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:context:schema:os
 access_control-xacml-2.0-context-schema-os.xsd">
 <Subject>
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <AttributeValue>Anne</AttributeValue>
 </Attribute>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <AttributeValue>manager</AttributeValue>
 </Attribute>
 </Subject>

 <Resource>
 <Attribute AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <AttributeValue>manager</AttributeValue>
 </Attribute>
 </Resource>

 <Action>
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">

Security Guide

192

Deny Permission

Report a bug

11.7. SECURITY AUDITING

11.7.1. About Security Auditing

Security auditing refers to triggering events, such as writing to a log, in response to an event that
happens within the security subsystem. Auditing mechanisms are configured as part of a security
domain, along with authentication, authorization, and security mapping details.

Auditing uses provider modules. You can use one of the included ones, or implement your own.

<AttributeValue>urn:oasis:names:tc:xacml:2.0:actions:hasPrivilegesOfRole</AttributeValue>

 </Attribute>
 </Action>
 </Request>

 <Request xmlns="urn:oasis:names:tc:xacml:2.0:context:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:context:schema:os
 access_control-xacml-2.0-context-schema-os.xsd">
 <Subject>
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="http://www.w3.org/2001/XMLSchema#string">
 <AttributeValue>Anne</AttributeValue>
 </Attribute>

 <Attribute AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <AttributeValue>manager</AttributeValue>
 </Attribute>
 </Subject>

 <Resource>
 <Attribute AttributeId="urn:oasis:names:tc:xacml:2.0:subject:role"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <AttributeValue>manager</AttributeValue>
 </Attribute>
 </Resource>

 <Action>
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <AttributeValue>urn:nobody</AttributeValue>
 </Attribute>
 </Action>
 </Request>

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

193

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24310-592556+%5BLatest%5D&comment=Title%3A+Configure+XACML+for+Fine+Grained+Authorization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24310-592556+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

11.7.2. Configure Security Auditing

To configure security auditing settings for a security domain, log into the management console and
follow this procedure.

Procedure 11.11. Setup Security Auditing for a Security Domain

1. Open the security domain's detailed view.

a. Click Configuration at the top of the screen.

b. In a managed domain, select a profile to modify from the Profile selection box at the top
left.

c. Expand the Security menu and select Security Domains.

d. Click View for the security domain you want to edit.

2. Navigate to the Auditing subsystem configuration.
Select the Audit tab at the top of the screen.

The configuration area is divided into two areas: Provider Modules and Details. The provider
module is the basic unit of configuration. A security domain can include several provider
modules each of which can include attributes and options.

3. Add a provider module.
Click Add. Fill in the Code section with the classname of the provider module.

4. Verify if your module is working
The goal of an audit module is to provide a way to monitor the events in the security subsystem.
This monitoring can be done by means of writing to a log file, email notifications or any other
measurable auditing mechanism.

For example, JBoss EAP 6 includes the LogAuditProvider module by default. If enabled
following the steps above, this audit module writes security notifications to a audit.log file in the
log subfolder within the EAP_HOME directory.

To verify if the steps above have worked in the context of the LogAuditProvider, perform an
action that is likely to trigger a notification and then check the audit log file.

For a full list of included security auditing provider modules, see here: Section A.4, “Included
Security Auditing Provider Modules”

5. Optional: Add, edit, or remove module options.
To add options to your module, click its entry in the Modules list, and select the Module
Options tab in the Details section of the page. Click Add, and provide the key and value for the
option.

To edit an option that already exists, click Remove to remove it, and click Add to add it again
with the correct options.

Result

Your security auditing module is added to the security domain, and is immediately available to
applications which use the security domain.

Security Guide

194

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4727-591674+%5BLatest%5D&comment=Title%3A+About+Security+Auditing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4727-591674+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

11.7.3. New Security Properties

New system properties have been added to the security audit functionality for JBoss EAP versions 6.2.2
and later. These new properties mitigate security concerns surrounding plain text logging of web request
components, particularly in scenarios involving BASIC or FORM based authentication.

The new properties allow greater control over which components of a web request are captured in audit
logs (parameters, cookies, headers or attributes). These components can also be masked using the new
properties.

The new properties are:

Table 11.1. New Security Properties

Name Description Possible values Behavior Default

org.jboss.secur
ity.web.audit

This property
controls the
granularity of the
security auditing
of web requests.

off, headers,
cookies,
parameters,
attributes

Any component
(or comma-
separated group
of components)
specified will be
audited out of web
requests.

headers,parame
ters

org.jboss.secur
ity.web.audit.m
ask

This property can
be used to specify
a list of strings to
be matched
against headers,
parameters,
cookies, and
attributes of web
requests. Any
element matching
the specified
masks will be
excluded from
security audit
logging.

Any comma
separated string
indicating keys of
headers,
parameters,
cookies, and
attributes.

Currently, the
matching of the
masks is fuzzy
rather than strict.
For example, a
mask of
authorization will
mask both the
header called
authorization and
the parameter
called
custom_authorizati
on. A future
release may
introduce strict
masks.

j_password,authori
zation

Report a bug

11.8. SECURITY MAPPING

11.8.1. About Security Mapping

Security mapping allows you to combine authentication and authorization information after the
authentication or authorization happens, but before the information is passed to your application.

You can map principals (authentication), roles (authorization), or credentials (attributes which are not

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

195

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4728-632203+%5BLatest%5D&comment=Title%3A+Configure+Security+Auditing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4728-632203+16+Apr+2014+22%3A15+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+29465-608813+%5BLatest%5D&comment=Title%3A+New+Security+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=29465-608813+04+Mar+2014+20%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

You can map principals (authentication), roles (authorization), or credentials (attributes which are not
principals or roles).

Role Mapping is used to add, replace, or remove roles to the subject after authentication.

Principal mapping is used to modify a principal after authentication.

Attribute mapping is used to convert attributes from an external system to be used by your application,
and vice versa.

Report a bug

11.8.2. Configure Security Mapping in a Security Domain

To configure security mapping settings for a security domain, log into the management console and
follow this procedure.

Procedure 11.12. Setup Security Mapping Settings in a Security Domain

1. Open the security domain's detailed view.

a. Click the Configuration label at the top of the management console.

b. In a managed domain, select a profile from the Profile selection box at the top left.

c. Expand the Security menu, and select Security Domains.

d. Click View for the security domain you want to edit.

2. Navigate to the Mapping subsystem configuration.
Select the Mapping label at the top of the screen.

The configuration area is divided into two areas: Modules and Details. The mapping module is
the basic unit of configuration. A security domain can include several mapping modules, each of
which can include several attributes and options.

3. Add a security mapping module.
Click Add.

Fill in the details for your module. The Code is the class name of the module. The Type field
refers to the type of mapping this module performs. Allowed values are principal, role, attribute
or credential.

4. Edit a security mapping module
After you have added your module, you can modify its Code or Type.

a. Select the Attributes tab.

b. Click Edit in the Details section of the screen.

5. Optional: Add, edit, or remove module options.
To add options to your module, click its entry in the Modules list, and select the Module
Options tab in the Details section of the page. Click Add, and provide the key and value for the
option.

To edit an option that already exists, click Remove to remove it, and add it again with the new
value.

Security Guide

196

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4729-686016+%5BLatest%5D&comment=Title%3A+About+Security+Mapping%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4729-686016+18+Jul+2014+08%3A39+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Use the Remove button to remove an option.

Result

Your security mapping module is added to the security domain, and is immediately available to
applications which use the security domain.

Report a bug

11.9. USE A SECURITY DOMAIN IN YOUR APPLICATION

Overview

To use a security domain in your application, first you need to define the security domain in the server's
configuration and then enable it for an application in the application's deployment descriptor. Then you
must add the required annotations to the EJB that uses it. This topic covers the steps required to use a
security domain in your application.

WARNING

If an application is part of a security domain that uses an authentication cache, user
authentications for that application will also be available to other applications in that
security domain.

Procedure 11.13. Configure Your Application to Use a Security Domain

1. Define the Security Domain
You need to define the security domain in the server's configuration file, and then enable it for
an application in the application's descriptor file.

a. Configure the security domain in the server's configuration file
The security domain is configured in the security subsystem of the server's configuration
file. If the JBoss EAP 6 instance is running in a managed domain, this is the
domain/configuration/domain.xml file. If the JBoss EAP 6 instance is running as a
standalone server, this is the standalone/configuration/standalone.xml file.

The other, jboss-web-policy, and jboss-ejb-policy security domains are provided by
default in JBoss EAP 6. The following XML example was copied from the security
subsystem in the server's configuration file.

The cache-type attribute of a security domain specifies a cache for faster authentication
checks. Allowed values are default to use a simple map as the cache, or infinispan to use an
Infinispan cache.



<subsystem xmlns="urn:jboss:domain:security:1.2">
 <security-domains>
 <security-domain name="other" cache-type="default">
 <authentication>
 <login-module code="Remoting" flag="optional">
 <module-option name="password-stacking" value="useFirstPass"/>
 </login-module>

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

197

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4730-632207+%5BLatest%5D&comment=Title%3A+Configure+Security+Mapping+in+a+Security+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4730-632207+16+Apr+2014+22%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

You can configure additional security domains as needed using the Management Console
or CLI.

b. Enable the security domain in the application's descriptor file
The security domain is specified in the <security-domain> child element of the <jboss-
web> element in the application's WEB-INF/jboss-web.xml file. The following example
configures a security domain named my-domain.

This is only one of many settings which you can specify in the WEB-INF/jboss-web.xml
descriptor.

2. Add the Required Annotation to the EJB
You configure security in the EJB using the @SecurityDomain and @RolesAllowed
annotations. The following EJB code example limits access to the other security domain by
users in the guest role.

 <login-module code="RealmDirect" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 </login-module>
 </authentication>
 </security-domain>
 <security-domain name="jboss-web-policy" cache-type="default">
 <authorization>
 <policy-module code="Delegating" flag="required"/>
 </authorization>
 </security-domain>
 <security-domain name="jboss-ejb-policy" cache-type="default">
 <authorization>
 <policy-module code="Delegating" flag="required"/>
 </authorization>
 </security-domain>
 </security-domains>
</subsystem>

<jboss-web>
 <security-domain>my-domain</security-domain>
</jboss-web>

package example.ejb3;

import java.security.Principal;

import javax.annotation.Resource;
import javax.annotation.security.RolesAllowed;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;

import org.jboss.ejb3.annotation.SecurityDomain;

/**
 * Simple secured EJB using EJB security annotations
 * Allow access to "other" security domain by users in a "guest" role.
 */
@Stateless
@RolesAllowed({ "guest" })

Security Guide

198

For more code examples, see the ejb-security quickstart in the JBoss EAP 6 Quickstarts
bundle, which is available from the Red Hat Customer Portal.

Report a bug

@SecurityDomain("other")
public class SecuredEJB {

 // Inject the Session Context
 @Resource
 private SessionContext ctx;

 /**
 * Secured EJB method using security annotations
 */
 public String getSecurityInfo() {
 // Session context injected using the resource annotation
 Principal principal = ctx.getCallerPrincipal();
 return principal.toString();
 }
}

CHAPTER 11. AUTHENTICATION AND AUTHORIZATION

199

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4765-715581+%5BLatest%5D&comment=Title%3A+Use+a+Security+Domain+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4765-715581+08+Oct+2014+13%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 12. SINGLE SIGN ON (SSO)

12.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS

Overview

Single Sign On (SSO) allows authentication to one resource to implicitly allow access to other resources.

Clustered and Non-Clustered SSO

Non-clustered SSO limits the sharing of access information to applications on the same virtual host. In
addition, there is no resiliency in the event of a host failure. Clustered SSO data can be shared between
applications in multiple hosts, and is resilient to failover. In addition, clustered SSO is able to receive
requests from a load balancer.

How SSO Works

If a resource is unprotected, a user is not challenged to authenticate at all. If a user accesses a protected
resource, the user is required to authenticate.

Upon successful authentication, the roles associated with the user are stored and used for
authentication of all other associated resources.

If the user logs out of an application, or an application invalidates the session programmatically, all
persisted authentication data is removed, and the process starts over.

A session timeout does not invalidate the SSO session if other sessions are still valid.

Report a bug

12.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB
APPLICATIONS

Single Sign On (SSO) is the ability for users to authenticate to a single web application, and by means of
a successful authentication, will successfully authenticate to multiple other applications without needing
to be prompted at each one. Clustered SSO stores the authentication information in a clustered cache.
This allows for applications on multiple different servers to share the information, and also makes the
information resilient to a failure of one of the hosts.

Some of the supported SSO mechanisms (for example, Kerberos, PicketLink SAML) need valves to work
correctly. Valves have a similar function as the servlet filters, but they are processed before the
container managed authentication. Valves for web applications can be defined in the jboss-web.xml
deployment descriptor.

Report a bug

12.3. CHOOSE THE RIGHT SSO IMPLEMENTATION

JBoss EAP 6 runs Java Enterprise Edition (EE) applications, which may be web applications, EJB
applications, web services, or other types. Single Sign On (SSO) allows you to propagate security
context and identity information between these applications. Several SSO solutions are available but
choosing the right solution depends on your requirements.

Note that there is a distinct difference between a clustered web application and clustered SSO. A
clustered web application is one which is distributed across the nodes of a cluster to spread the load of
hosting that application. If marked as distributable, all new sessions, and changes to existing sessions are

Security Guide

200

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4694-741431+%5BLatest%5D&comment=Title%3A+About+Single+Sign+On+%28SSO%29+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4694-741431+05+Feb+2015+01%3A50+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4696-741834+%5BLatest%5D&comment=Title%3A+About+Clustered+Single+Sign+On+%28SSO%29+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4696-741834+06+Feb+2015+02%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

replicated to other members of the cluster. An application is marked as able to be distributed across
cluster nodes with the <distributable/> tag in the web.xml deployment descriptor. Clustered SSO allows
for replication of security context and identity information, regardless of whether or not the applications
are themselves clustered. Although these technologies may be used together they are separate
concepts.

Kerberos-Based Desktop SSO

If your organization already uses a Kerberos-based authentication and authorization system, such as
Microsoft Active Directory, you can use the same systems to transparently authenticate to your
enterprise applications running on JBoss EAP 6.

Non-Clustered Web Application SSO

If you are running multiple applications on a single instance and need to enable SSO session replication
for those applications, non-clustered SSO will meet your requirements.

Clustered Web Application SSO

If you are running either a single application, or multiple applications, across a cluster and need to enable
SSO session replication for those applications, clustered SSO will meet your requirements.

Report a bug

12.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION

Overview

Single Sign On (SSO) capabilities are provided by the web and Infinispan subsystems. Use this
procedure to configure SSO in web applications.

Prerequisites

A configured security domain which handles authentication and access.

The infinispan subsystem. By default, it is present in all the profiles for managed domain and
standalone server.

The web cache-container and SSO replicated-cache. The initial configuration files already
contain the web cache-container, and some of the configurations already contain the SSO
replicated-cache as well. Use the following commands to check for and enable the SSO
replicated-cache. Note that these commands modify the ha profile of a managed domain. You
can change the commands to use a different profile, or remove the /profile=ha portion of the
command, for a standalone server.

Example 12.1. Check for the web cache-container

The profiles and configurations mentioned above include the web cache-container by
default. Use the following command to verify its presence. If you use a different profile,
substitute its name instead of ha.

/profile=ha/subsystem=infinispan/cache-container=web/:read-
resource(recursive=false,proxies=false,include-runtime=false,include-defaults=true)

If the result is success the subsystem is present. Otherwise, you need to add it.

CHAPTER 12. SINGLE SIGN ON (SSO)

201

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7502-679639+%5BLatest%5D&comment=Title%3A+Choose+the+Right+SSO+Implementation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7502-679639+26+Jun+2014+20%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 12.2. Add the web cache-container

Use the following three commands to enable the web cache-container to your configuration.
Modify the name of the profile as appropriate, as well as the other parameters. The
parameters here are the ones used in a default configuration.

/profile=ha/subsystem=infinispan/cache-container=web:add(aliases=["standard-session-
cache"],default-cache="repl",module="org.jboss.as.clustering.web.infinispan")

/profile=ha/subsystem=infinispan/cache-container=web/transport=TRANSPORT:add(lock-
timeout=60000)

/profile=ha/subsystem=infinispan/cache-container=web/replicated-
cache=repl:add(mode="ASYNC",batching=true)

Example 12.3. Check for the SSO replicated-cache

Run the following Management CLI command:

/profile=ha/subsystem=infinispan/cache-container=web/:read-
resource(recursive=true,proxies=false,include-runtime=false,include-defaults=true)

Look for output like the following: "sso" => {

If you do not find it, the SSO replicated-cache is not present in your configuration.

Example 12.4. Add the SSO replicated-cache

/profile=ha/subsystem=infinispan/cache-container=web/replicated-
cache=sso:add(mode="SYNC", batching=true)

Configure Clustered SSO for a Managed Domain

The web subsystem needs to be configured to use SSO. The following command enables SSO on the
virtual server called default-host, and the cookie domain domain.com. The cache name is sso, and
reauthentication is disabled.

/profile=ha/subsystem=web/virtual-server=default-host/sso=configuration:add(cache-
container="web",cache-name="sso",reauthenticate="false",domain="domain.com")

Each application which will share the SSO information must be configured to use the same <security-
domain> in its jboss-web.xml deployment descriptor and the same Realm in its web.xml configuration
file.

Configure Clustered or Non-Clustered SSO for a Standalone Server

Configure sso under the web subsystem in the server profile. The ClusteredSingleSignOn version is
used when attribute cache-container is present, otherwise standard SingleSignOn class is used.

Security Guide

202

Example 12.5. Example Non-Clustered SSO Configuration

/subsystem=web/virtual-server=default-host/sso=configuration:add(reauthenticate="false")

Invalidate a Session

An application can programmatically invalidate a session by invoking method
javax.servlet.http.HttpSession.invalidate().

Report a bug

12.5. ABOUT KERBEROS

Kerberos is a network authentication protocol for client/server applications. It allows authentication
across a non-secure network in a secure way, using secret-key symmetric cryptography.

Kerberos uses security tokens called tickets. To use a secured service, you need to obtain a ticket from
the Ticket Granting Service (TGS), which is a service running on a server on the network. After obtaining
the ticket, you request a Service Ticket (ST) from an Authentication Service (AS), which is another
service running on the network. You then use the ST to authenticate to the service you want to use. The
TGS and the AS both run inside an enclosing service called the Key Distribution Center (KDC).

Kerberos is designed to be used in a client-server environment, and is rarely used in Web applications or
thin client environments. However, many organizations already use a Kerberos system for desktop
authentication, and prefer to reuse their existing system rather than create a second one for their Web
Applications. Kerberos is an integral part of Microsoft Active Directory, and is also used in many Red Hat
Enterprise Linux environments.

Report a bug

12.6. ABOUT SPNEGO

Simple and Protected GSS_API Negotiation Mechanism (SPNEGO) provides a mechanism for
extending a Kerberos-based Single Sign On (SSO) environment for use in Web applications.

When an application on a client computer, such as a web browser, attempts to access a protect page on
the web server, the server responds that authorization is required. The application then requests a
service ticket from the Kerberos Key Distribution Center (KDC). After the ticket is obtained, the
application wraps it in a request formatted for SPNEGO, and sends it back to the Web application, via
the browser. The web container running the deployed Web application unpacks the request and
authenticates the ticket. Upon successful authentication, access is granted.

SPNEGO works with all types of Kerberos providers, including the Kerberos service included in Red Hat
Enterprise Linux and the Kerberos server which is an integral part of Microsoft Active Directory.

Report a bug

12.7. ABOUT MICROSOFT ACTIVE DIRECTORY

Microsoft Active Directory is a directory service developed by Microsoft to authenticate users and
computers in a Microsoft Windows domain. It is included as part of Microsoft Windows Server. The
computer in the Microsoft Windows Server is referred to as the domain controller. Red Hat Enterprise
Linux servers running the Samba service can also act as the domain controller in this type of network.

CHAPTER 12. SINGLE SIGN ON (SSO)

203

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4695-745001+%5BLatest%5D&comment=Title%3A+Use+Single+Sign+On+%28SSO%29+In+A+Web+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4695-745001+26+Feb+2015+06%3A10+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7816-732409+%5BLatest%5D&comment=Title%3A+About+Kerberos%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7816-732409+11+Dec+2014+23%3A26+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7817-591807+%5BLatest%5D&comment=Title%3A+About+SPNEGO%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7817-591807+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Active Directory relies on three core technologies which work together:

Lightweight Directory Access Protocol (LDAP), for storing information about users, computers,
passwords, and other resources.

Kerberos, for providing secure authentication over the network.

Domain Name Service (DNS) for providing mappings between IP addresses and host names of
computers and other devices on the network.

Report a bug

12.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY
DESKTOP SSO FOR WEB APPLICATIONS

Introduction

To authenticate your web or EJB applications using your organization's existing Kerberos-based
authentication and authorization infrastructure, such as Microsoft Active Directory, you can use the
JBoss Negotiation capabilities built into JBoss EAP 6. If you configure your web application properly, a
successful desktop or network login is sufficient to transparently authenticate against your web
application, so no additional login prompt is required.

Difference from Previous Versions of the Platform

There are a few noticeable differences between JBoss EAP 6 and earlier versions:

Security domains are configured for each profile of a managed domain, or for each standalone
server. They are not part of the deployment itself. The security domain a deployment should use
is named in the deployment's jboss-web.xml or jboss-ejb3.xml file.

Security properties are configured as part of a security domain. They are not part of the
deployment.

You can no longer override the authenticators as part of your deployment. However, you can
add a NegotiationAuthenticator valve to your jboss-web.xml descriptor to achieve the same
effect. The valve still requires the <security-constraint> and <login-config> elements to be
defined in the web.xml. These are used to decide which resources are secured. However, the
chosen auth-method will be overridden by the NegotiationAuthenticator valve in the jboss-
web.xml.

The CODE attributes in security domains now use a simple name instead of a fully-qualified
class name. The following table shows the mappings between the classes used for JBoss
Negotiation, and their classes.

Table 12.1. Login Module Codes and Class Names

Simple Name Class Name Purpose

Kerberos com.sun.security.auth.module.Krb5Login
Module

com.ibm.security.auth.module.Krb5Login
Module

Kerberos login module when using the
Oracle JDK

Kerberos login module when using the
IBM JDK

Security Guide

204

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7818-591807+%5BLatest%5D&comment=Title%3A+About+Microsoft+Active+Directory%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7818-591807+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

SPNEGO org.jboss.security.negotiation.spnego.SP
NEGOLoginModule

The mechanism which enables your Web
applications to authenticate to your
Kerberos authentication server.

AdvancedLdap org.jboss.security.negotiation.AdvancedL
dapLoginModule

Used with LDAP servers other than
Microsoft Active Directory.

AdvancedAdLdap org.jboss.security.negotiation.AdvancedA
DLoginModule

Used with Microsoft Active Directory
LDAP servers.

Simple Name Class Name Purpose

JBoss Negotiation Toolkit

The JBoss Negotiation Toolkit is a debugging tool which is available for download from
https://community.jboss.org/servlet/JiveServlet/download/16876-2-34629/jboss-negotiation-
toolkit.war. It is provided as an extra tool to help you to debug and test the authentication mechanisms
before introducing your application into production. It is an unsupported tool, but is considered to be
very helpful, as SPNEGO can be difficult to configure for web applications.

Procedure 12.1. Setup SSO Authentication for your Web or EJB Applications

1. Configure one security domain to represent the identity of the server. Set system
properties if necessary.
The first security domain authenticates the container itself to the directory service. It needs to
use a login module which accepts some type of static login mechanism, because a real user is
not involved. This example uses a static principal and references a keytab file which contains the
credential.

The XML code is given here for clarity, but you should use the Management Console or
Management CLI to configure your security domains.

2. Configure a second security domain to secure the web application or applications. Set
system properties if necessary.
The second security domain is used to authenticate the individual user to the Kerberos or
SPNEGO authentication server. You need at least one login module to authenticate the user,
and another to search for the roles to apply to the user. The following XML code shows an
example SPNEGO security domain. It includes an authorization module to map roles to
individual users. You can also use a module which searches for the roles on the authentication
server itself.

<security-domain name="host" cache-type="default">
 <authentication>
 <login-module code="Kerberos" flag="required">
 <module-option name="storeKey" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="principal" value="host/testserver@MY_REALM"/>
 <module-option name="keyTab" value="/home/username/service.keytab"/>
 <module-option name="doNotPrompt" value="true"/>
 <module-option name="debug" value="false"/>
 </login-module>
 </authentication>
</security-domain>

CHAPTER 12. SINGLE SIGN ON (SSO)

205

https://community.jboss.org/servlet/JiveServlet/download/16876-2-34629/jboss-negotiation-toolkit.war

3. Specify the security-constraint and login-config in the web.xml
The web.xml descriptor contain information about security constraints and login configuration.
The following are example values for each.

4. Specify the security domain and other settings in the jboss-web.xml descriptor.
Specify the name of the client-side security domain (the second one in this example) in the
jboss-web.xml descriptor of your deployment, to direct your application to use this security
domain.

You can no longer override authenticators directly. Instead, you can add the
NegotiationAuthenticator as a valve to your jboss-web.xml descriptor, if you need to. The
<jacc-star-role-allow> allows you to use the asterisk (*) character to match multiple role names,
and is optional.

<security-domain name="SPNEGO" cache-type="default">
 <authentication>
 <!-- Check the username and password -->
 <login-module code="SPNEGO" flag="requisite">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="serverSecurityDomain" value="host"/>
 </login-module>
 <!-- Search for roles -->
 <login-module code="UsersRoles" flag="required">
 <module-option name="password-stacking" value="useFirstPass" />
 <module-option name="usersProperties" value="spnego-users.properties" />
 <module-option name="rolesProperties" value="spnego-roles.properties" />
 </login-module>
 </authentication>
</security-domain>

<security-constraint>
 <display-name>Security Constraint on Conversation</display-name>
 <web-resource-collection>
 <web-resource-name>examplesWebApp</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>RequiredRole</role-name>
 </auth-constraint>
</security-constraint>

<login-config>
 <auth-method>SPNEGO</auth-method>
 <realm-name>SPNEGO</realm-name>
</login-config>

<security-role>
 <description> role required to log in to the Application</description>
 <role-name>RequiredRole</role-name>
</security-role>

<jboss-web>
 <security-domain>SPNEGO</security-domain>
 <valve>
 <class-name>org.jboss.security.negotiation.NegotiationAuthenticator</class-name>

Security Guide

206

5. Add a dependency to your application's MANIFEST.MF, to locate the Negotiation classes.
The web application needs a dependency on class org.jboss.security.negotiation to be added
to the deployment's META-INF/MANIFEST.MF manifest, in order to locate the JBoss
Negotiation classes. The following shows a properly-formatted entry.

As an alternative, add a dependency to your application by editing the META-INF/jboss-
deployment-structure.xml file:

Result

Your web application accepts and authenticates credentials against your Kerberos, Microsoft Active
Directory, or other SPNEGO-compatible directory service. If the user runs the application from a system
which is already logged into the directory service, and where the required roles are already applied to
the user, the web application does not prompt for authentication, and SSO capabilities are achieved.

Report a bug

12.9. CONFIGURE SPNEGO FALL BACK TO FORM AUTHENTICATION

Follow the procedure below to setup a SPNEGO fall back to form authentication. ⁠

Procedure 12.2. SPNEGO security with fall back to form authentication

1. Set up SPNEGO
Refer the procedure described in Section 12.8, “Configure Kerberos or Microsoft Active
Directory Desktop SSO for Web Applications”

2. Modify web.xml
Add a login-config element to your application and setup the login and error pages in web.xml:

 </valve>
 <jacc-star-role-allow>true</jacc-star-role-allow>
</jboss-web>

Manifest-Version: 1.0
Build-Jdk: 1.6.0_24
Dependencies: org.jboss.security.negotiation

<?xml version="1.0" encoding="UTF-8"?>
<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name='org.jboss.security.negotiation'/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

<login-config>
 <auth-method>SPNEGO</auth-method>
 <realm-name>SPNEGO</realm-name>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/error.jsp</form-error-page>

CHAPTER 12. SINGLE SIGN ON (SSO)

207

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4937-706229+%5BLatest%5D&comment=Title%3A+Configure+Kerberos+or+Microsoft+Active+Directory+Desktop+SSO+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4937-706229+03+Sep+2014+21%3A40+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

3. Add web content
Add references of login.html and error.html to web.xml. These files are added to web
application archive to the place specified in form-login-config configuration. For more
information refer Enable Form-based Authentication section in the Security Guide for JBoss
EAP 6. A typical login.html looks like this:

NOTE

The fallback to FORM logic is only available in the case when no SPNEGO (or NTLM)
tokens are present. As a result, a login form is not presented to the browser if the browser
sends an NTLM token.

Report a bug

 </form-login-config>
 </login-config>

<html>
 <head>
 <title>Vault Form Authentication</title>
 </head>
 <body>
 <h1>Vault Login Page</h1>
 <p>
 <form method="post" action="j_security_check">
 <table>
 <tr>
 <td>Username</td><td>-</td>
 <td><input type="text" name="j_username"></td>
 </tr>
 <tr>
 <td>Password</td><td>-</td>
 <td><input type="password" name="j_password"></td>
 </tr>
 <tr>
 <td colspan="2"><input type="submit"></td>
 </tr>
 </table>
 </form>
 </p>
 <hr>
 </body>
</html>

Security Guide

208

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+35796-681166+%5BLatest%5D&comment=Title%3A+Configure+SPNEGO+Fall+Back+to+Form+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=35796-681166+03+Jul+2014+05%3A39+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 13. SINGLE SIGN-ON WITH SAML

13.1. ABOUT SECURITY TOKEN SERVICE (STS)

The Security Token Service generates and manages the security tokens. It does not issue tokens of a
specific type. Instead, it defines generic interfaces that allows multiple token providers to be plugged in.
As a result, it can be configured to deal with various types of token, as long as a token provider exists for
each token type. It also specifies the format of the security token request and response messages.

A security token request message specifies the following:

Type of the request, such as Issue, Renew, and so on.

Type of the token.

Lifetime of the issued token.

Information about the service provider that requested the token.

Information used to encrypt the generated token.

NOTE

Support for PKCS#11 tokens has been added to JBoss EAP from version 6.3.0.

EAP security realms can accept PKCS#11 keys and trust store definitions by using the
provider attribute. The value specified in this parameter is passed to the relevant
KeyStore.getInstance("PKCS11") calls and the key and trust store are initialized.

Configuration for this new support is beyond the scope of EAP documentation. Users
who wish to utilize this feature should familiarize themselves with the correct installation
of PKCS#11 hardware and software as well as the correct entries required in the
java.security policy file. Oracle's Java PKCs#11 Reference Guide document may be a
useful resource for this information.

The token request message is sent in the body of the SOAP message. All information related to the
token request is enclosed in the RequestSecurityToken element. The sample request contains two
other WS-Trust elements: RequestType, which specifies that this request is an Issue request, and
TokenType, which specifies the type of the token to be issued.

The following is an example of the WS-Trust request message.

Example 13.1. WS-Trust security token request message

<S11:Envelope xmlns:S11=".." xmlns:wsu=".." xmlns:wst="..">
 <S11:Header>
 ...
 </S11:Header>
 <S11:Body wsu:Id="body">
 <wst:RequestSecurityToken Context="context">
 <wst:TokenType>http://www.tokens.org/SpecialToken</wst:TokenType>
 <wst:RequestType>
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
 </wst:RequestType>

CHAPTER 13. SINGLE SIGN-ON WITH SAML

209

The following is an example of a security token response.

Example 13.2. Security token response message

In the example for the security token response, the TokenType element specifies the type of the issued
token, while the RequestedSecurityToken element contains the token itself. The format of the token
depends on the type of the token. The Lifetime element specifies when the token was created and
when it expires.

Security Token Request Processing

The following are the steps in which the security token requests are processed:

A client sends a security token request to PicketLinkSTS.

PicketLinkSTS parses the request message, generating a JAXB object model.

PicketLinkSTS reads the configuration file and creates the STSConfiguration object, if
needed. Then it obtains a reference to the WSTrustRequestHandler from the configuration
and delegates the request processing to the handler instance.

The request handler uses the STSConfiguration to set default values when needed (for
example, when the request doesn't specify a token lifetime value).

The WSTrustRequestHandler creates the WSTrustRequestContext, setting the JAXB
request object and the caller principal it received from PicketLinkSTS.

The WSTrustRequestHandler uses the STSConfiguration to get the SecurityTokenProvider
that must be used to process the request based on the type of the token that is being
requested. Then it invokes the provider, passing the constructed WSTrustRequestContext as a
parameter.

The SecurityTokenProvider instance process the token request and stores the issued token in
the request context.

The WSTrustRequestHandler obtains the token from the context, encrypts it if needed, and

 </wst:RequestSecurityToken>
 </S11:Body>
</S11:Envelope>

 <wst:RequestSecurityTokenResponse Context="context" xmlns:wst=".." xmlns:wsu="..">
 <wst:TokenType>http://www.tokens.org/SpecialToken</wst:TokenType>
 <wst:RequestedSecurityToken>
 <token:SpecialToken xmlns:token="...">
 ARhjefhE2FEjneovi&@FHfeoveq3
 </token:SpecialToken>
 </wst:RequestedSecurityToken>
 <wst:Lifetime>
 <wsu:Created>...</wsu:Created>
 <wsu:Expires>...</wsu:Expires>
 </wst:Lifetime>
 </wst:RequestSecurityTokenResponse>

Security Guide

210

The WSTrustRequestHandler obtains the token from the context, encrypts it if needed, and
constructs the WS-Trust response object containing the security token.

PicketLinkSTS dictates the response generated by the request handler and returns it to the
client.

Report a bug

13.2. CONFIGURE SECURITY TOKEN SERVICE (STS)

The EAP Security Token Service (STS) defines several interfaces that provide extension points.
Implementations can be plugged in via configuration, and the default values can be specified for some
properties via configuration. All STS configurations are specified in the picketlink.xml file, which
belongs in the WEB-INF directory of the deployed application. The following are the elements that can
be configured in the picketlink.xml file.

NOTE

In the following text, a service provider refers to the Web service that requires a security
token to be presented by its clients.

PicketLinkSTS: This is the root element. It defines some properties that allows the STS
administrator to set a the following default values:

STSName: A string representing the name of the security token service. If not specified, the
default PicketLinkSTS value is used.

TokenTimeout: The token lifetime value in seconds. If not specified, the default value of
3600 (one hour) is used.

EncryptToken: A boolean specifying whether issued tokens are to be encrypted or not. The
default value is false.

KeyProvider: This element and all its sub elements are used to configure the keystore that are
used by PicketLink STS to sign and encrypt tokens. Properties like the keystore location, its
password, and the signing (private key) alias and password are all configured in this section.

RequestHandler: This element specifies the fully qualified name of the
WSTrustRequestHandler implementation to be used. If not specified, the default
org.picketlink.identity.federation.core.wstrust.StandardRequestHandler is used.

TokenProvider: This section specifies the TokenProvider implementations that must be used
to handle each type of security token. In the example we have two providers - one that handles
tokens of type SpecialToken and one that handles tokens of type SAMLV2.0. The
WSTrustRequestHandler calls the getProviderForTokenType(String type) method of
STSConfiguration to obtain a reference to the appropriate TokenProvider.

TokenTimeout: This is used by the WSTrustRequestHandler when no Lifetime has been
specified in the WS-Trust request. It creates a Lifetime instance that has the current time as the
creation time and expires after the specified number of seconds.

ServiceProviders: This section specifies the token types that must be used for each service
provider (the Web service that requires a security token). When a WS-Trust request does not
contain the token type, the WSTrustRequestHandler must use the service provider endpoint
to find out the type of the token that must be issued.

CHAPTER 13. SINGLE SIGN-ON WITH SAML

211

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24107-639123+%5BLatest%5D&comment=Title%3A+About+Security+Token+Service+%28STS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24107-639123+08+May+2014+01%3A04+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

EncryptToken: This is used by the WSTrustRequestHandler to decide if the issued token must
be encrypted or not. If true, the public key certificate (PKC) of the service provider is used to
encrypt the token.

The following is an example of STS configuration.

Example 13.3. STS Configuration

Report a bug

13.3. ABOUT PICKETLINK STS LOGIN MODULES

A PicketLink Login Module is typically configured as part of the security setup of a JEE container to use
a Security Token Service for authenticating users. The STS may be collocated on the same container as
the Login Module or be accessed remotely through Web Service calls or another technology. PicketLink
Login Modules support non-PicketLink STS implementations through standard WS-Trust calls.

Types of STS Login Modules

The following are the different types of STS Login Modules.

STSIssuingLoginModule

<PicketLinkSTS xmlns="urn:picketlink:identity-federation:config:1.0"
 STSName="Test STS" TokenTimeout="7200" EncryptToken="true">
 <KeyProvider
ClassName="org.picketlink.identity.federation.bindings.tomcat.KeyStoreKeyManager">
 <Auth Key="KeyStoreURL" Value="keystore/sts_keystore.jks"/>
 <Auth Key="KeyStorePass" Value="testpass"/>
 <Auth Key="SigningKeyAlias" Value="sts"/>
 <Auth Key="SigningKeyPass" Value="keypass"/>
 <ValidatingAlias Key="http://services.testcorp.org/provider1" Value="service1"/>
 <ValidatingAlias Key="http://services.testcorp.org/provider2" Value="service2"/>
 </KeyProvider>

<RequestHandler>org.picketlink.identity.federation.core.wstrust.StandardRequestHandler</Request
Handler>
 <TokenProviders>
 <TokenProvider
ProviderClass="org.picketlink.test.identity.federation.bindings.wstrust.SpecialTokenProvider"
 TokenType="http://www.tokens.org/SpecialToken"/>
 <TokenProvider
ProviderClass="org.picketlink.identity.federation.api.wstrust.plugins.saml.SAML20TokenProvider"
 TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0"/>
 </TokenProviders>
 <ServiceProviders>
 <ServiceProvider Endpoint="http://services.testcorp.org/provider1"
TokenType="http://www.tokens.org/SpecialToken"
 TruststoreAlias="service1"/>
 <ServiceProvider Endpoint="http://services.testcorp.org/provider2"
TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0"
 TruststoreAlias="service2"/>
 </ServiceProviders>
</PicketLinkSTS>

Security Guide

212

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24108-688464+%5BLatest%5D&comment=Title%3A+Configure+Security+Token+Service+%28STS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24108-688464+28+Jul+2014+00%3A07+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

STSIssuingLoginModule

Calls the configured STS and requests for a security token. Upon successfully receiving the
RequestedSecurityToken, it marks the authentication as successful.

A call to STS typically requires authentication. This Login Module uses credentials from one of
the following sources:

Its properties file, if the useOptionsCredentials module option is set to true.

Previous login module credentials if the password-stackingmodule option is set to
useFirstPass.

From the configured CallbackHandler by supplying a Name and Password Callback.

Upon successful authentication, the SamlCredential is inserted in the Subject's public
credentials if one with the same Assertion is not found to be already present there.

STSValidatingLoginModule

Calls the configured STS and validates an available security token.

A call to STS typically requires authentication. This Login Module uses credentials from one of
the following sources:

Its properties file, if the useOptionsCredentials module option is set to true.

Previous login module credentials if the password-stacking module option is set to
useFirstPass.

From the configured CallbackHandler by supplying a Name and Password Callback.

Upon successful authentication, the SamlCredential is inserted in the Subject's public
credentials if one with the same Assertion is not found to be already present there.

SAML2STSLoginModule

This Login Module supplies a ObjectCallback to the configured CallbackHandler and expects a
SamlCredential object back. The Assertion is validated against the configured STS.

If a user ID and SAML token are shared, this Login Module bypasses validation When stacked on
top of another Login Module that is successfully authenticated.

Upon successful authentication, the SamlCredential is inspected for a NameID and a multi-
valued role attribute that is respectively set as the ID and roles of the user.

SAML2LoginModule

This login module is used in conjunction with other components for SAML authentication and
performs no authentication itself.

The SPRedirectFormAuthenticator uses this login module in PicketLink's implementation of
the SAML v2 HTTP Redirect Profile.

The Tomcat authenticator valve performs authentication through redirecting to the identity
provider and getting a SAML assertion.

This login module is used to pass the user ID and roles to the JBoss security framework to be

CHAPTER 13. SINGLE SIGN-ON WITH SAML

213

This login module is used to pass the user ID and roles to the JBoss security framework to be
populated in the JAAS subject.

Report a bug

13.4. CONFIGURE STSISSUINGLOGINMODULE

The STSIssuingLoginModule uses a user name and password to authenticate the user against an STS
by retrieving a token.

Example 13.4. Configure STSIssuingLoginModule

Most configurations can switch to the configuration sited in the above example by:

changing their declared security-domain

specifying a Principal mapping provider

specifying a RoleGroup mapping provider

The specified Principal mapping provider and the RoleGroup mapping provider results in an
authenticated Subject being populated that enables coarse-grained and role-based authorization. After
authentication, the Security Token is available and may be used to invoke other services by Single Sign-
On.

Report a bug

13.5. CONFIGURE STSVALIDATINGLOGINMODULE

The STSValidatingLoginModule uses a TokenCallback to ask the configured CallbackHandler an STS by
retrieving a token.

<security-domain name="saml-issue-token">
 <authentication>
 <login-module
 code="org.picketlink.identity.federation.core.wstrust.auth.STSIssuingLoginModule"
flag="required"> <module-option name="configFile">./picketlink-sts-
client.properties</module-option>
 <module-option name="endpointURI">http://security_saml/endpoint</module-option>
 </login-module>
 </authentication>
 <mapping>
 <mapping-module

code="org.picketlink.identity.federation.bindings.jboss.auth.mapping.STSPrincipalMappingProvider"

 type="principal" />
 <mapping-module

code="org.picketlink.identity.federation.bindings.jboss.auth.mapping.STSGroupMappingProvider"
 type="role" />
 </mapping>
</security-domain>

Security Guide

214

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24255-592552+%5BLatest%5D&comment=Title%3A+About+PicketLink+STS+Login+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24255-592552+23+Feb+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24270-685995+%5BLatest%5D&comment=Title%3A+Configure+STSIssuingLoginModule%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24270-685995+18+Jul+2014+07%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 13.5. Configure STSValidatingLoginModule

The configuration cited in the example enables Single Sign-On for your applications and services. A
token once issued, either by directly contacting the STS or through a token-issuing login module, can be
used to authenticate against multiple applications and services by employing the setup provided in the
example. Providing a Principal mapping provider and a RoleGroup mapping provider result in an
authenticated Subject being populated that enables coarse-grained and role-based authorization. After
authentication, the Security Token is available and can be used to invoke other services by Single Sign-
On.

Report a bug

13.6. STS CLIENT POOLING

The PicketLink provides a pool of STS clients on the server. This removes STS Client creation as a
bottleneck.

Client pooling can be utilized from login modules that need an STS client to obtain SAML tickets.

Login Modules that can utilize STS client pooling:

org.picketlink.identity.federation.core.wstrust.auth.STSIssuingLoginModule

org.picketlink.identity.federation.core.wstrust.auth.STSValidatingLoginModule

org.picketlink.trust.jbossws.jaas.JBWSTokenIssuingLoginModule

The default number of clients in the pool for each login module is configured via the
initialNumberOfClients login module option.

The STSClientPoolFactory class

<security-domain name="saml-validate-token">
 <authentication>
 <login-module
 code="org.picketlink.identity.federation.core.wstrust.auth.STSValidatingLoginModule"
flag="required">
 <module-option name="configFile">./picketlink-sts-client.properties</module-option>
 <module-option name="endpointURI">http://security_saml/endpoint</module-option>
 </login-module>
 </authentication>
 <mapping>
 <mapping-module

code="org.picketlink.identity.federation.bindings.jboss.auth.mapping.STSPrincipalMappingProvider"

 type="principal" />
 <mapping-module

code="org.picketlink.identity.federation.bindings.jboss.auth.mapping.STSGroupMappingProvider"
 type="role" />
 </mapping>
</security-domain>

CHAPTER 13. SINGLE SIGN-ON WITH SAML

215

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24271-685996+%5BLatest%5D&comment=Title%3A+Configure+STSValidatingLoginModule%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24271-685996+18+Jul+2014+07%3A29+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The STSClientPoolFactory class
org.picketlink.identity.federation.bindings.stspool.STSClientPoolFactory provides client pool
functionality to applications.

Using STSClientPoolFactory
STS clients are inserted into sub pools using their configuration as a key. Obtain STSClientPool instance
and then initialize a sub pool based on configuration, optionally with initial number of STS clients or rely
on default number.

When you are done with a client, you can return it to the pool like so:

To check if a subpool already exists for a given configuration:

When the PicketLink Federation subsystem is enabled, all client pools created for a deployment are
destroyed automatically during the undeploy process. To manually destroy a pool:

Report a bug

13.7. SAML WEB BROWSER BASED SSO

13.7.1. About SAML Web Browser Based SSO

PicketLink in JBoss EAP provides a platform to implement federated identity based services. This
includes centralized identity services and Single Sign-On (SSO) for applications.

The SAML profile has support for both the HTTP/POST and the HTTP/Redirect bindings with
centralized identity services to enable web SSO for your applications. The architecture for the SAML v2
based Web SSO follows the hub and spoke architecture of identity management. In this architecture an
identity provider (IDP) acts as the central source (hub) for identity and role information to all the
applications (Service Providers). The spokes are the service providers (SP).

IMPORTANT

If there are two or more SPs both pointing to the same IDP, the IDP does not distinguish
between the different SPs. If you make requests to different SPs that point to the same
IDP, the IDP handles the most recent request from an SP and sends back SAML assertion
about the authenticated user. To get back to the an older SP request, you will need to
reenter the SP URL in the browser.

Report a bug

final STSClientPool pool = STSClientPoolFactory.getPoolInstance();
pool.createPool(20, stsClientConfig);
final STSClient client = pool.getClient(stsClientConfig);

pool.returnClient();

if (! pool.configExists(stsClientConfig) {
 pool.createPool(stsClientConfig);
}

pool.destroyPool(stsClientConfig);

Security Guide

216

http://docs.jboss.org/jbossas/javadoc/7.1.2.Final/org/picketlink/identity/federation/core/wstrust/class-use/STSClientConfig.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+41096-689166+%5BLatest%5D&comment=Title%3A+STS+Client+Pooling%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41096-689166+30+Jul+2014+01%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24105-628427+%5BLatest%5D&comment=Title%3A+About+SAML+Web+Browser+Based+SSO%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24105-628427+09+Apr+2014+01%3A48+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

13.7.2. Setup SAML v2 based Web SSO

To setup SAML v2 based SSO you have to configure the following:

Identity Provider: The Identity Provider is the authoritative entity responsible for authenticating
an end user and asserting the identity for that user in a trusted fashion to trusted partners.

Service Provider: The Service Provider relies on the Identity Provider to assert information
about a user via an electronic user credential, leaving the service provider to manage access
control and dissemination based on a trusted set of user credential assertions.

Report a bug

13.7.3. Configure Identity Provider

The Identity Provider (IDP) is a JBoss EAP server instance.

Procedure 13.1. Configure Identity Provider (IDP)

1. Configure the web application security for the IDP
Configure a web application as the Identity provider.

NOTE

The use of FORM based web application security is recommended as it gives you
the ability to customize the login page.

The following is an example of the web.xml configuration

Example 13.6. web.xml Configuration for IDP

<display-name>IDP</display-name>
<description>IDP</description>
<!-- Define a security constraint that gives unlimited access to images -->
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Images</web-resource-name>
 <url-pattern>/images/*</url-pattern>
</web-resource-collection>
</security-constraint>
<!-- Define a Security Constraint on this Application -->
<security-constraint>
 <web-resource-collection>
 <web-resource-name>IDP</web-resource-name>
 <url-pattern>/*</url-pattern>
</web-resource-collection>
 <auth-constraint>
 <role-name>manager</role-name>
</auth-constraint>
</security-constraint>
<!-- Define the Login Configuration for this Application -->
<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>IDP Application</realm-name>

CHAPTER 13. SINGLE SIGN-ON WITH SAML

217

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24273-685976+%5BLatest%5D&comment=Title%3A+Setup+SAML+v2+based+Web+SSO%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24273-685976+18+Jul+2014+05%3A32+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Create Security Domain for IDP
Create a Security Domain with authentication and authorization mechanisms defined for the
IDP. Refer to Section 11.9, “Use a Security Domain in Your Application” for further details.

3. Configure the IDP Valves
Create a jboss-web.xml file in the WEB-INF directory of your IDP web application to configure
the valves for the IDP. The following is an example of jboss-web.xml file.

Example 13.7. jboss-web.xml File Configuration for IDP Valves

4. Configure the PicketLink Configuration File (picketlink.xml)
The following is an example of picketlink.xml configuration. In this configuration file you
provide the URL that gets added as the issuer in the outgoing SAML2 assertions to the service
providers and the IDP.

Example 13.8. picketlink.xml Configuration

 <form-login-config>
 <form-login-page>/jsp/login.jsp</form-login-page>
 <form-error-page>/jsp/loginerror.jsp</form-error-page>
 </form-login-config>
</login-config>
<!-- Security roles referenced by this web application -->
<security-role>
 <description>
 The role that is required to log in to the IDP Application
 </description>
 <role-name>manager</role-name>
</security-role>
</web-app>

<jboss-web>
 <security-domain>idp</security-domain>
 <context-root>idp</context-root>
 <valve>
 <class-
name>org.picketlink.identity.federation.bindings.tomcat.idp.IDPWebBrowserSSOValve</clas
s-name>
 </valve>
</jboss-web>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 <PicketLinkIDP xmlns="urn:picketlink:identity-federation:config:2.1">
 <IdentityURL>http://localhost:8080/idp/</IdentityURL>
 </PicketLinkIDP>
 <Handlers xmlns="urn:picketlink:identity-federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2IssuerTrustHandler"
/>
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2LogOutHandler" />
 <Handler

Security Guide

218

By default, picketlink.xml is located in the WEB-INF directory of your IDP web application.
However, you can configure a custom path to a picketlink.xml that is external to the
application:

a. Optional: Configuring a custom path to picketlink.xml
Add two paramaters to the valve element in your application's WEB-INF/jboss-web.xml:
configFile specifying for the path to picketlink.xml, and timerInterval which specifies the
interval in milliseconds to reload the configuration. For example:

5. Declare dependencies on PicketLink module (META-INF/MANIFEST.MF, or jboss-
deployment-structure.xml)
The web application also requires a dependency defining in META-INF/MANIFEST.MF or jboss-
deployment-structure.xml, so that the PicketLink classes can be located.

Example 13.9. Define Dependency in META-INF/MANIFEST.MF

Example 13.10. Define Dependency in META-INF/jboss-deployment-structure.xml

Report a bug

class="org.picketlink.identity.federation.web.handlers.saml2.SAML2AuthenticationHandler"
/>
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGenerationHandler" />
 </Handlers>
</PicketLink>

<valve>
 <class-name>...</class-name>
 <param>
 <param-name>timerInterval</param-name>
 <param-value>5000</param-value>
 </param>
 <param>
 <param-name>configFile</param-name>
 <param-value>path-to/picketlink.xml</param-value>
 </param>
</valve>

Manifest-Version: 1.0
 Build-Jdk: 1.6.0_24
 Dependencies: org.picketlink

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.picketlink" />
 </dependencies>
 </deployment>
</jboss-deployment-structure>

CHAPTER 13. SINGLE SIGN-ON WITH SAML

219

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24284-685980+%5BLatest%5D&comment=Title%3A+Configure+Identity+Provider%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24284-685980+18+Jul+2014+05%3A40+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

13.7.4. Configure Service Provider using HTTP/REDIRECT Binding

The Service Provider (SP) can be a JBoss EAP server instance.

Procedure 13.2. Configure Service Provider (SP)

1. Configure the Web Application Security For the SP
The web application to be configured as a SP should have FORM based security enabled in its
web.xml file.

Example 13.11. web.xml Configuration for SP

2. Create Security Domain for SP
Create a Security Domain that uses SAML2LoginModule. Here is an example configuration:

<security-domain name="sp" cache-type="default">
 <authentication>

<display-name>SP</display-name>
<description>SP</description>
<!-- Define a security constraint that gives unlimited access to images -->
<security-constraint>
 <web-resource-collection>
 <web-resource-name>Images</web-resource-name>
 <url-pattern>/images/*</url-pattern>
 </web-resource-collection>
</security-constraint>
<!-- Define a Security Constraint on this Application -->
<security-constraint>
 <web-resource-collection>
 <web-resource-name>SP</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>
</security-constraint>
<!-- Define the Login Configuration for this Application -->
<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>SP Application</realm-name>
 <form-login-config>
 <form-login-page>/jsp/login.jsp</form-login-page>
 <form-error-page>/jsp/loginerror.jsp</form-error-page>
 </form-login-config>
</login-config>
<!-- Security roles referenced by this web application -->
<security-role>
 <description>
 The role that is required to log in to the SP Application
 </description>
 <role-name>manager</role-name>
</security-role>
</web-app>

Security Guide

220

 <login-module
code="org.picketlink.identity.federation.bindings.jboss.auth.SAML2LoginModule"
flag="required"/>
 </authentication>
</security-domain>

3. Configure the SP Valve
To configure the valve for the SP, create a jboss-web.xml in the WEB-INF directory of your SP
web application.

Example 13.12. jboss-web.xml File Configuration for SP Valves

4. Configure the PicketLink Configuration File (picketlink.xml)
The following is an example of picketlink.xml configuration for the SP. In this configuration file
you provide the URL for the SP and for the IDP, with corresponding handlers for the SP.

Example 13.13. picketlink.xml Configuration

By default, picketlink.xml is located in the WEB-INF directory of your application. However,
you can configure a custom path to a picketlink.xml that is external to the application:

a. Optional: Configuring a custom path to picketlink.xml
Add two paramaters to the valve element in your application's WEB-INF/jboss-web.xml:
configFile specifying for the path to picketlink.xml, and timerInterval which specifies the
interval in milliseconds to reload the configuration. For example:

<jboss-web>
 <security-domain>sp</security-domain>
 <context-root>sales-post</context-root>
 <valve>
 <class-
name>org.picketlink.identity.federation.bindings.tomcat.sp.ServiceProviderAuthenticator</cla
ss-name>
 </valve>
</jboss-web>

<PicketLink xmlns="urn:picketlink:identity-federation:config:2.1">
 <PicketLinkSP xmlns="urn:picketlink:identity-federation:config:2.1"
ServerEnvironment="tomcat" BindingType="REDIRECT">
 <IdentityURL>${idp.url::http://localhost:8080/idp/}</IdentityURL>
 <ServiceURL>${sales-post.url::http://localhost:8080/sales-post/}</ServiceURL>
 </PicketLinkSP>
 <Handlers xmlns="urn:picketlink:identity-federation:handler:config:2.1">
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2LogOutHandler" />
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.SAML2AuthenticationHandler"
/>
 <Handler
class="org.picketlink.identity.federation.web.handlers.saml2.RolesGenerationHandler" />
 </Handlers>
</PicketLink>

CHAPTER 13. SINGLE SIGN-ON WITH SAML

221

5. Declare dependencies on PicketLink module (META-INF/MANIFEST.MF, or jboss-
deployment-structure.xml)
The web application also requires a dependency defining in META-INF/MANIFEST.MF or jboss-
deployment-structure.xml, so that the PicketLink classes can be located.

Example 13.14. Define Dependency in META-INF/MANIFEST.MF

Example 13.15. Define Dependency in META-INF/jboss-deployment-structure.xml

Report a bug

13.7.5. Setup SAML v2 based Web SSO using HTTP/POST Binding

HTTP/POST binding is the recommended binding for obtaining the web browser based SSO.

Procedure 13.3. Setup SAML v2 based Web SSO using HTTP/POST Binding

1. Configure the Identity Provider (IDP).
The steps to configure IDP for HTTP/POST Binding are same as that of the HTTP/Redirect
Binding. For more information on configuring the IDP, see Section 13.7.2, “Setup SAML v2 based
Web SSO”

2. Configure the Service Provider (SP)
The steps to configure SP for HTTP/POST Binding are the same as that of the HTTP/Redirect
Binding, except for a single variation in the picketlink.xml file of the SP. Change
BindingType="REDIRECT" to BindingType="POST".

For more information on configuring the SP, see Section 13.7.4, “Configure Service Provider

<valve>
 <class-name>...</class-name>
 <param>
 <param-name>timerInterval</param-name>
 <param-value>5000</param-value>
 </param>
 <param>
 <param-name>configFile</param-name>
 <param-value>path-to/picketlink.xml</param-value>
 </param>
</valve>

Manifest-Version: 1.0
 Build-Jdk: 1.6.0_24
 Dependencies: org.picketlink

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.picketlink" />
 </dependencies>
 </deployment>
</jboss-deployment-structure>

Security Guide

222

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24286-702263+%5BLatest%5D&comment=Title%3A+Configure+Service+Provider+using+HTTP%2FREDIRECT+Binding%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24286-702263+22+Aug+2014+00%3A07+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

For more information on configuring the SP, see Section 13.7.4, “Configure Service Provider
using HTTP/REDIRECT Binding”

Report a bug

13.7.6. Configure Dynamic Account Chooser at a Service Provider

Prerequisites:

Section 13.7.3, “Configure Identity Provider”

Section 13.7.4, “Configure Service Provider using HTTP/REDIRECT Binding”

If a Service Provider (SP) is configured with multiple Identity Providers (IDPs), PicketLink can be
configured to prompt the user to choose which IDP to use to authenticate their credentials.

Procedure 13.4. Configure Dynamic Account Chooser at a Service Provider

1. Configure the account chooser valve in jboss-web.xml in the WEB-INF directory of your SP
web application.

Example 13.16. jboss-web.xml File Configuration for SP Account Chooser

AccountChooserValve has the following configurable options:

DomainName

The domain name to be used for the cookie that is sent to the user's browser.

CookieExpiry

The cookie expiry in seconds. Default is -1, which means the cookie expires when the browser
is closed.

AccountIDPMapProvider

The fully-qualified name of the implementation for IDP Mapping. Default is a properties file
idpmap.properties in the WEB-INF directory of your SP web application. This
implementation must implement

<jboss-web>
 <security-domain>sp</security-domain>
 <context-root>accountchooser</context-root>
 <valve>
 <class-
name>org.picketlink.identity.federation.bindings.tomcat.sp.AccountChooserValve</class-
name>
 </valve>
 <valve>
 <class-
name>org.picketlink.identity.federation.bindings.tomcat.sp.ServiceProviderAuthenticator</cla
ss-name>
 </valve>
</jboss-web>

CHAPTER 13. SINGLE SIGN-ON WITH SAML

223

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24287-685991+%5BLatest%5D&comment=Title%3A+Setup+SAML+v2+based+Web+SSO+using+HTTP%2FPOST+Binding%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24287-685991+18+Jul+2014+06%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

org.picketlink.identity.federation.bindings.tomcat.sp.AbstractAccountChooserValve.A
ccountIDPMapProvider.

AccountChooserPage

The name of the HTML/JSP page for listing the different IDP accounts. Default is
/accountChooser.html.

2. Define the mapping for the IDPs. By default, this is a properties file idpmap.properties in the
WEB-INF directory of your SP web application.

Example 13.17. idpmap.properties Configuration

3. Create a HTML page in your SP web application for the user to choose the IDP. By default, this
file is accountChooser.html. The URL to each of IDP must have the parameter idp that
specifies the name of the IDP listed in idpmap.properties.

Example 13.18. accountChooser.html Configuration

Report a bug

13.7.7. Configuration of IDP-initiated SSO

Prerequisites:

Section 13.7.3, “Configure Identity Provider”

Section 13.7.4, “Configure Service Provider using HTTP/REDIRECT Binding”

Usually in PicketLink, the SP starts the flow by sending an authentication request to the IDP, which in
turns sends an SAML response to SP with a valid assertion. This flow is called SP-initiated SSO. But the
SAML 2.0 specs also defines another flow, called IDP-initiated or Unsolicited Response SSO. In this
scenario, the SP does not initiate the authentication flow and receives an SAML response from the IDP.
The flow starts on the IDP-side and once authenticated, the user can choose a specific SP from a list
and then get redirected to its URL.

Walkthrough

1. User accesses the IDP.

2. The IDP seeing that there is neither SAML request nor response, assumes an IDP first scenario

DomainA=http://localhost:8080/idp1/
DomainB=http://localhost:8080/idp2/

<html>
 ...
 DomainA
 <hr/>
 DomainB
 ...
</html>

Security Guide

224

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+30888-686108+%5BLatest%5D&comment=Title%3A+Configure+Dynamic+Account+Chooser+at+a+Service+Provider%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30888-686108+20+Jul+2014+17%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. The IDP seeing that there is neither SAML request nor response, assumes an IDP first scenario
using SAML.

3. The IDP challenges the user to authenticate.

4. Upon authentication, the IDP shows the hosted section where the user gets a page that links to
all the SP applications.

5. The user chooses an SP application.

6. The IDP redirects the user to the service provider with an SAML assertion in the query
parameter, SAML response.

7. The SP checks the SAML assertion and provides access.

Configuration

No special configuration is necessary to get Unsolicited Responses supported, you can configure your
IDP and SPs as usual. For more information about how to configure IDP and SP, refer to:

Section 13.7.3, “Configure Identity Provider”

Section 13.7.4, “Configure Service Provider using HTTP/REDIRECT Binding”

How to Use

Once the user is authenticated, the IDP shows a page with links to all service provider applications. A link
will usually look like this:

Note that the link above redirects the user to the IDP passing the TARGET query parameter, whose
value is the URL to the target SP application. Once the user clicks the link above, the IDP extracts the
TARGET parameter from the request, builds an SAML v2.0 response, and redirects the user to the
target URL. When the user hits the SP, it is automatically authenticated.

You can use the SAML_VERSION query parameter to specify the SAML version that must be used by
the IDP to create the SAML response. SAML_VERSION parameter can have the possible options as 2.0
and 1.1.

Report a bug

13.8. CONFIGURE SAML GLOBAL LOGOUT PROFILE

A Global Logout initiated at one service provider logs out the user from the Identity Provider (IDP) and
all the service providers.

NOTE

For a Global Logout to function appropriately ensure that you have only up to five
Service Providers per Identity Provider.

Procedure 13.5. Configure Global Logout

1. Configure picketlink-handlers.xml

<a href="http://localhost:8080/idp?SAML_VERSION=2.0&TARGET=http://localhost:8080/sales-
post/">Sales

CHAPTER 13. SINGLE SIGN-ON WITH SAML

225

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+30882-644068+%5BLatest%5D&comment=Title%3A+Configuration+of+IDP-initiated+SSO%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30882-644068+26+May+2014+07%3A35+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Add the SAML2LogOutHandler in the picketlink-handlers.xml.

2. Configure Service Provider web page
Append GLO=true to the link at the end of your web page of the service provider.

Example 13.19. Link to Global Logout

3. Create a logout.jsp page
As part of the logout process, PicketLink will redirect the user to a logout.jsp page located in
the root directory of your Service Provider application. Ensure that this page is created.

Report a bug

Click to Globally LogOut

Security Guide

226

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+24106-665603+%5BLatest%5D&comment=Title%3A+Configure+SAML+Global+Logout+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24106-665603+10+Jun+2014+01%3A26+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 14. LOGIN MODULES

Report a bug

14.1. USING MODULES

JBoss EAP 6 includes several bundled login modules suitable for most user management needs. JBoss
EAP 6 can read user information from a relational database, an LDAP server, or flat files. In addition to
these core login modules, JBoss EAP 6 provides other login modules that provide user information for
very customized needs.

More login modules and their options can be found in Appendix A.1.

Report a bug

14.1.1. Password Stacking

Multiple login modules can be chained together in a stack, with each login module providing both the
credentials verification and role assignment during authentication. This works for many use cases, but
sometimes credentials verification and role assignment are split across multiple user management
stores.

Section 14.1.4, “Ldap Login Module” describes how to combine LDAP and a relational database, allowing
a user to be authenticated by either system. Consider the case where users are managed in a central
LDAP server but application-specific roles are stored in the application's relational database. The
password-stacking module option captures this relationship.

To use password stacking, each login module should set the <module-option> password-stacking
attribute to useFirstPass. If a previous module configured for password stacking has authenticated the
user, all the other stacking modules will consider the user authenticated and only attempt to provide a
set of roles for the authorization step.

When password-stacking option is set to useFirstPass, this module first looks for a shared user name
and password under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively in the login module shared state map.

If found, these properties are used as the principal name and password. If not found, the principal name
and password are set by this login module and stored under the property names
javax.security.auth.login.name and javax.security.auth.login.password respectively.

NOTE

When using password stacking, set all modules to be required. This ensures that all
modules are considered, and have the chance to contribute roles to the authorization
process.

Example 14.1. Password Stacking Sample

This management CLI example shows how password stacking could be used.

/subsystem=security/security-domain=pwdStack/authentication=classic/login-module=Ldap:add(\
 code=Ldap, \
 flag=required, \
 module-options=[\

CHAPTER 14. LOGIN MODULES

227

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+IDs%3A%0A28308-608934+%5BLatest%5D&comment=Title%3A+Login+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+IDs%3A%0A28309-638876+%5BLatest%5D&comment=Title%3A+Using+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

14.1.2. Password Hashing

Most login modules must compare a client-supplied password to a password stored in a user
management system. These modules generally work with plain text passwords, but can be configured to
support hashed passwords to prevent plain text passwords from being stored on the server side.

IMPORTANT

Red Hat JBoss Enterprise Application Platform Common Criteria certified release only
supports SHA-256 for password hashing.

Example 14.2. Password Hashing

The following is a login module configuration that assigns unauthenticated users the principal name
nobody and contains based64-encoded, SHA-256 hashes of the passwords in a
usersb64.properties file. The usersb64.properties file is part of the deployment classpath.

hashAlgorithm

Name of the java.security.MessageDigest algorithm to use to hash the password. There is no
default so this option must be specified to enable hashing. Typical values are SHA-256, SHA-1 and
MD5.

hashEncoding

 ("password-stacking"=>"useFirstPass"), \
 ... Ldap login module configuration
])
/subsystem=security/security-domain=pwdStack/authentication=classic/login-
module=Database:add(\
 code=Database, \
 flag=required, \
 module-options=[\
 ("password-stacking"=>"useFirstPass"), \
 ... Database login module configuration
])

/subsystem=security/security-domain=testUsersRoles:add
/subsystem=security/security-domain=testUsersRoles/authentication=classic:add
/subsystem=security/security-domain=testUsersRoles/authentication=classic/login-
module=UsersRoles:add(\
 code=UsersRoles, \
 flag=required, \
 module-options=[\
 ("usersProperties"=>"usersb64.properties"), \
 ("rolesProperties"=>"test-users-roles.properties"), \
 ("unauthenticatedIdentity"=>"nobody"), \
 ("hashAlgorithm"=>"SHA-256"), \
 ("hashEncoding"=>"base64") \
])

Security Guide

228

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28312-638661+%5BLatest%5D&comment=Title%3A+Password+Stacking%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28312-638661+06+May+2014+20%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

String that specifies one of three encoding types: base64, hex or rfc2617. The default is base64.

hashCharset

Encoding character set used to convert the clear text password to a byte array. The platform default
encoding is the default.

hashUserPassword

Specifies the hashing algorithm must be applied to the password the user submits. The hashed user
password is compared against the value in the login module, which is expected to be a hash of the
password. The default is true.

hashStorePassword

Specifies the hashing algorithm must be applied to the password stored on the server side. This is
used for digest authentication, where the user submits a hash of the user password along with a
request-specific tokens from the server to be compare. The hash algorithm (for digest, this would be
rfc2617) is utilized to compute a server-side hash, which should match the hashed value sent from
the client.

If you must generate passwords in code, the org.jboss.security.auth.spi.Util class provides a static
helper method that will hash a password using the specified encoding. The following example produces a
base64-encoded, MD5 hashed password.

OpenSSL provides an alternative way to quickly generate hashed passwords at the command-line. The
following example also produces a base64-encoded, SHA-256 hashed password. Here the password in
plain text - password - is piped into the OpenSSL digest function then piped into another OpenSSL
function to convert into base64-encoded format.

In both cases, the hashed version of the password is the same:
XohImNooBHFR0OVvjcYpJ3NgPQ1qq73WKhHvch0VQtg=. This value must be stored in the users'
properties file specified in the security domain - usersb64.properties - in the example above.

Report a bug

14.1.3. Unauthenticated Identity

Not all requests are received in an authenticated format. unauthenticatedIdentity is a login module
configuration option that assigns a specific identity (guest, for example) to requests that are made with
no associated authentication information. This can be used to allow unprotected servlets to invoke
methods on EJBs that do not require a specific role. Such a principal has no associated roles and so can
only access either unsecured EJBs or EJB methods that are associated with the unchecked permission
constraint.

unauthenticatedIdentity: This defines the principal name that should be assigned to requests
that contain no authentication information.

Report a bug

String hashedPassword = Util.createPasswordHash("SHA-256",
 Util.BASE64_ENCODING, null, null, "password");

echo -n password | openssl dgst -sha256 -binary | openssl base64

CHAPTER 14. LOGIN MODULES

229

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28313-638664+%5BLatest%5D&comment=Title%3A+Password+Hashing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28313-638664+06+May+2014+20%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28314-592747+%5BLatest%5D&comment=Title%3A+Unauthenticated+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28314-592747+23+Feb+2014+17%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

14.1.4. Ldap Login Module

Ldap login module is a LoginModule implementation that authenticates against a Lightweight Directory
Access Protocol (LDAP) server. Use the Ldap login module if your user name and credentials are stored
in an LDAP server that is accessible using a Java Naming and Directory Interface (JNDI) LDAP provider.

NOTE

If you wish to use LDAP with the SPNEGO authentication or skip some of the
authentication phases while using an LDAP server, consider using the AdvancedLdap
login module chained with the SPNEGO login module or only the AdvancedLdap login
module.

Distinguished Name (DN)

In Lightweight Directory Access Protocol (LDAP), the distinguished name uniquely identifies an
object in a directory. Each distinguished name must have a unique name and location from all other
objects, which is achieved using a number of attribute-value pairs (AVPs). The AVPs define
information such as common names, organization unit, among others. The combination of these
values results in a unique string required by the LDAP.

NOTE

This login module also supports unauthenticated identity and password stacking.

The LDAP connectivity information is provided as configuration options that are passed through to the
environment object used to create JNDI initial context. The standard LDAP JNDI properties used
include the following:

java.naming.factory.initial

InitialContextFactory implementation class name. This defaults to the Sun LDAP provider
implementation com.sun.jndi.ldap.LdapCtxFactory.

java.naming.provider.url

LDAP URL for the LDAP server.

java.naming.security.authentication

Security protocol level to use. The available values include none, simple, and strong. If the property
is undefined, the behavior is determined by the service provider.

java.naming.security.protocol

Transport protocol to use for secure access. Set this configuration option to the type of service
provider (for example, SSL). If the property is undefined, the behavior is determined by the service
provider.

java.naming.security.principal

Specifies the identity of the Principal for authenticating the caller to the service. This is built from
other properties as described below.

java.naming.security.credentials

Security Guide

230

Specifies the credentials of the Principal for authenticating the caller to the service. Credentials can
take the form of a hashed password, a clear-text password, a key, or a certificate. If the property is
undefined, the behavior is determined by the service provider.

For details of Ldap login module configuration options see Section A.1, “Included Authentication
Modules”.

NOTE

In certain directory schemas (e.g., Microsoft Active Directory), role attributes in the user
object are stored as DNs to role objects instead of simple names. For implementations
that use this schema type, roleAttributeIsDN must be set to true.

User authentication is performed by connecting to the LDAP server, based on the login module
configuration options. Connecting to the LDAP server is done by creating an InitialLdapContext with
an environment composed of the LDAP JNDI properties described previously in this section.

The Context.SECURITY_PRINCIPAL is set to the distinguished name of the user obtained by the
callback handler in combination with the principalDNPrefix and principalDNSuffix option values, and the
Context.SECURITY_CREDENTIALS property is set to the respective String password.

Once authentication has succeeded (InitialLdapContext instance is created), the user's roles are
queried by performing a search on the rolesCtxDN location with search attributes set to the
roleAttributeName and uidAttributeName option values. The roles names are obtaining by invoking the
toString method on the role attributes in the search result set.

Example 14.3. LDAP Login Module Security Domain

This management CLI example shows how to use the parameters in a security domain authentication
configuration.

The java.naming.factory.initial, java.naming.factory.url and java.naming.security options in the
testLDAP security domain configuration indicate the following conditions:

The Sun LDAP JNDI provider implementation will be used

/subsystem=security/security-domain=testLDAP:add(cache-type=default)
/subsystem=security/security-domain=testLDAP/authentication=classic:add
/subsystem=security/security-domain=testLDAP/authentication=classic/login-module=Ldap:add(\
 code=Ldap, \
 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org:1389/"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("principalDNPrefix"=>"uid="), \
 ("principalDNSuffix"=>",ou=People,dc=jboss,dc=org"), \
 ("rolesCtxDN"=>"ou=Roles,dc=jboss,dc=org"), \
 ("uidAttributeID"=>"member"), \
 ("matchOnUserDN"=>true), \
 ("roleAttributeID"=>"cn"), \
 ("roleAttributeIsDN"=>false) \
])

CHAPTER 14. LOGIN MODULES

231

The LDAP server is located on host ldaphost.jboss.org on port 1389

The LDAP simple authentication method will be use to connect to the LDAP server.

The login module attempts to connect to the LDAP server using a Distinguished Name (DN)
representing the user it is trying to authenticate. This DN is constructed from the passed
principalDNPrefix, the user name of the user and the principalDNSuffix as described above. In
Example 14.4, “LDIF File Example” , the user name jsmith would map to
uid=jsmith,ou=People,dc=jboss,dc=org.

NOTE

The example assumes the LDAP server authenticates users using the userPassword
attribute of the user's entry (theduke in this example). Most LDAP servers operate in this
manner, however if your LDAP server handles authentication differently you must ensure
LDAP is configured according to your production environment requirements.

Once authentication succeeds, the roles on which authorization will be based are retrieved by
performing a subtree search of the rolesCtxDN for entries whose uidAttributeID match the user. If
matchOnUserDN is true, the search will be based on the full DN of the user. Otherwise the search will be
based on the actual user name entered. In this example, the search is under
ou=Roles,dc=jboss,dc=org for any entries that have a member attribute equal to
uid=jsmith,ou=People,dc=jboss,dc=org. The search would locate cn=JBossAdmin under the roles
entry.

The search returns the attribute specified in the roleAttributeID option. In this example, the attribute is
cn. The value returned would be JBossAdmin, so the jsmith user is assigned to the JBossAdmin role.

A local LDAP server often provides identity and authentication services, but is unable to use
authorization services. This is because application roles do not always map well onto LDAP groups, and
LDAP administrators are often hesitant to allow external application-specific data in central LDAP
servers. The LDAP authentication module is often paired with another login module, such as the
database login module, that can provide roles more suitable to the application being developed.

An LDAP Data Interchange Format (LDIF) file representing the structure of the directory this data
operates against is shown in Example 14.4, “LDIF File Example” .

LDAP Data Interchange Format (LDIF)

Plain text data interchange format used to represent LDAP directory content and update requests.
Directory content is represented as one record for each object or update request. Content consists
of add, modify, delete, and rename requests.

Example 14.4. LDIF File Example

dn: dc=jboss,dc=org
objectclass: top
objectclass: dcObject
objectclass: organization
dc: jboss
o: JBoss

dn: ou=People,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit

Security Guide

232

Report a bug

14.1.5. LdapExtended Login Module

Distinguished Name (DN)

In Lightweight Directory Access Protocol (LDAP), the distinguished name uniquely identifies an
object in a directory. Each distinguished name must have a unique name and location from all other
objects, which is achieved using a number of attribute-value pairs (AVPs). The AVPs define
information such as common names, organization unit, among others. The combination of these
values results in a unique string required by the LDAP.

The LdapExtended (org.jboss.security.auth.spi.LdapExtLoginModule) searches for the user to bind,
as well as the associated roles, for authentication. The roles query recursively follows DNs to navigate a
hierarchical role structure.

The LoginModule options include whatever options are supported by the chosen LDAP JNDI provider
supports. Examples of standard property names are:

Context.INITIAL_CONTEXT_FACTORY = "java.naming.factory.initial"

Context.SECURITY_PROTOCOL = "java.naming.security.protocol"

Context.PROVIDER_URL = "java.naming.provider.url"

Context.SECURITY_AUTHENTICATION = "java.naming.security.authentication"

Context.REFERRAL = "java.naming.referral"

Login module implementation logic follows the order below:

1. The initial LDAP server bind is authenticated using the bindDN and bindCredential properties.

ou: People

dn: uid=jsmith,ou=People,dc=jboss,dc=org
objectclass: top
objectclass: uidObject
objectclass: person
uid: jsmith
cn: John
sn: Smith
userPassword: theduke

dn: ou=Roles,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: Roles

dn: cn=JBossAdmin,ou=Roles,dc=jboss,dc=org
objectclass: top
objectclass: groupOfNames
cn: JBossAdmin
member: uid=jsmith,ou=People,dc=jboss,dc=org
description: the JBossAdmin group

CHAPTER 14. LOGIN MODULES

233

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28310-666517+%5BLatest%5D&comment=Title%3A+Ldap+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28310-666517+10+Jun+2014+20%3A04+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The bindDN is a user with permissions to search both the baseCtxDN and rolesCtxDN trees for
the user and roles. The user DN to authenticate against is queried using the filter specified by
the baseFilter property.

2. The resulting userDN is authenticated by binding to the LDAP server using the userDN as the
InitialLdapContext environment Context.SECURITY_PRINCIPAL. The
Context.SECURITY_CREDENTIALS property is either set to the String password obtained by
the callback handler.

3. If this is successful, the associated user roles are queried using the rolesCtxDN, roleAttributeID,
roleAttributeIsDN, roleNameAttributeID, and roleFilter options.

NOTE

AdvancedLdap Login Module differs from LdapExtended Login Module in the following
ways:

The top level role is queried only for roleAttributeID and not for
roleNameAttributeID.

When the roleAttributeIsDN module property is set to false, the recursive role
search is disabled even if the recurseRoles module option is set to true.

For details of LdapExtended login module options see Section A.1, “Included Authentication Modules” .

Figure 14.1. LDAP Structure Example

Example 14.5. Example 2 LDAP Configuration

version: 1
dn: o=example2,dc=jboss,dc=org
objectClass: top
objectClass: organization
o: example2

Security Guide

234

dn: ou=People,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: People

dn: uid=jduke,ou=People,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: uidObject
objectClass: person
objectClass: inetOrgPerson
cn: Java Duke
employeeNumber: judke-123
sn: Duke
uid: jduke
userPassword:: dGhlZHVrZQ==

dn: uid=jduke2,ou=People,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: uidObject
objectClass: person
objectClass: inetOrgPerson
cn: Java Duke2
employeeNumber: judke2-123
sn: Duke2
uid: jduke2
userPassword:: dGhlZHVrZTI=

dn: ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: Roles

dn: uid=jduke,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupUserEx
memberOf: cn=Echo,ou=Roles,o=example2,dc=jboss,dc=org
memberOf: cn=TheDuke,ou=Roles,o=example2,dc=jboss,dc=org
uid: jduke

dn: uid=jduke2,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupUserEx
memberOf: cn=Echo2,ou=Roles,o=example2,dc=jboss,dc=org
memberOf: cn=TheDuke2,ou=Roles,o=example2,dc=jboss,dc=org
uid: jduke2

dn: cn=Echo,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
cn: Echo
description: the echo role
member: uid=jduke,ou=People,dc=jboss,dc=org

dn: cn=TheDuke,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: groupOfNames

CHAPTER 14. LOGIN MODULES

235

The module configuration for this LDAP structure example is outlined in the following management
CLI command.

Example 14.6. Example 3 LDAP Configuration

objectClass: top
cn: TheDuke
description: the duke role
member: uid=jduke,ou=People,o=example2,dc=jboss,dc=org

dn: cn=Echo2,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
cn: Echo2
description: the Echo2 role
member: uid=jduke2,ou=People,dc=jboss,dc=org

dn: cn=TheDuke2,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: TheDuke2
description: the duke2 role
member: uid=jduke2,ou=People,o=example2,dc=jboss,dc=org

dn: cn=JBossAdmin,ou=Roles,o=example2,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
cn: JBossAdmin
description: the JBossAdmin group
member: uid=jduke,ou=People,dc=jboss,dc=org

/subsystem=security/security-domain=testLdapExample2/authentication=classic/login-
module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("bindDN"=>"cn=Root,dc=jboss,dc=org"), \
 ("bindCredential"=>"secret1"), \
 ("baseCtxDN"=>"ou=People,o=example2,dc=jboss,dc=org"), \
 ("baseFilter"=>"(uid={0})"), \
 ("rolesCtxDN"=>"ou=Roles,o=example2,dc=jboss,dc=org"), \
 ("roleFilter"=>"(uid={0})"), \
 ("roleAttributeIsDN"=>"true"), \
 ("roleAttributeID"=>"memberOf"), \
 ("roleNameAttributeID"=>"cn") \
])

dn: o=example3,dc=jboss,dc=org

Security Guide

236

The module configuration for this LDAP structure example is outlined in the following management CLI
command.

objectclass: top
objectclass: organization
o: example3

dn: ou=People,o=example3,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: People

dn: uid=jduke,ou=People,o=example3,dc=jboss,dc=org
objectclass: top
objectclass: uidObject
objectclass: person
objectClass: inetOrgPerson
uid: jduke
employeeNumber: judke-123
cn: Java Duke
sn: Duke
userPassword: theduke

dn: ou=Roles,o=example3,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: Roles

dn: uid=jduke,ou=Roles,o=example3,dc=jboss,dc=org
objectClass: top
objectClass: groupUserEx
memberOf: cn=Echo,ou=Roles,o=example3,dc=jboss,dc=org
memberOf: cn=TheDuke,ou=Roles,o=example3,dc=jboss,dc=org
uid: jduke

dn: cn=Echo,ou=Roles,o=example3,dc=jboss,dc=org
objectClass: top
objectClass: groupOfNames
cn: Echo
description: the JBossAdmin group
member: uid=jduke,ou=People,o=example3,dc=jboss,dc=org

dn: cn=TheDuke,ou=Roles,o=example3,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: TheDuke
member: uid=jduke,ou=People,o=example3,dc=jboss,dc=org

/subsystem=security/security-domain=testLdapExample3/authentication=classic/login-
module=LdapExtended:add(\
 code=LdapExtended, \

CHAPTER 14. LOGIN MODULES

237

Example 14.7. Example 4 LDAP Configuration

 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("bindDN"=>"cn=Root,dc=jboss,dc=org"), \
 ("bindCredential"=>"secret1"), \
 ("baseCtxDN"=>"ou=People,o=example3,dc=jboss,dc=org"), \
 ("baseFilter"=>"(cn={0})"), \
 ("rolesCtxDN"=>"ou=Roles,o=example3,dc=jboss,dc=org"), \
 ("roleFilter"=>"(member={1})"), \
 ("roleAttributeID"=>"cn") \
])

dn: o=example4,dc=jboss,dc=org
objectclass: top
objectclass: organization
o: example4

dn: ou=People,o=example4,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: People

dn: uid=jduke,ou=People,o=example4,dc=jboss,dc=org
objectClass: top
objectClass: uidObject
objectClass: person
objectClass: inetOrgPerson
cn: Java Duke
employeeNumber: jduke-123
sn: Duke
uid: jduke
userPassword:: dGhlZHVrZQ==

dn: ou=Roles,o=example4,dc=jboss,dc=org
objectClass: top
objectClass: organizationalUnit
ou: Roles

dn: cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: RG1
member: cn=empty

dn: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: RG2
member: cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

Security Guide

238

The module configuration for this LDAP structure example is outlined in the code sample.

member: uid=jduke,ou=People,o=example4,dc=jboss,dc=org

dn: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: RG3
member: cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R1,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R1
member: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R2,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R2
member: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R3,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R3
member: cn=RG2,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
member: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R4,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R4
member: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org

dn: cn=R5,ou=Roles,o=example4,dc=jboss,dc=org
objectClass: groupOfNames
objectClass: top
cn: R5
member: cn=RG3,cn=RG1,ou=Roles,o=example4,dc=jboss,dc=org
member: uid=jduke,ou=People,o=example4,dc=jboss,dc=org

/subsystem=security/security-domain=testLdapExample4/authentication=classic/login-
module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.factory.initial"=>"com.sun.jndi.ldap.LdapCtxFactory"), \
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("java.naming.security.authentication"=>"simple"), \
 ("bindDN"=>"cn=Root,dc=jboss,dc=org"), \
 ("bindCredential"=>"secret1"), \
 ("baseCtxDN"=>"ou=People,o=example4,dc=jboss,dc=org"), \
 ("baseFilter"=>"(cn={0})"), \

CHAPTER 14. LOGIN MODULES

239

Example 14.8. Default Active Directory Configuration

The example below represents the configuration for a default Active Directory configuration.

Some Active Directory configurations may require searching against the Global Catalog on port
3268 instead of the usual port 389. This is most likely when the Active Directory forest includes
multiple domains.

Example 14.9. Recursive Roles Active Directory Configuration

The example below implements a recursive role search within Active Directory. The key difference
between this example and the default Active Directory example is that the role search has been
replaced to search the member attribute using the DN of the user. The login module then uses the
DN of the role to find groups of which the group is a member.

 ("rolesCtxDN"=>"ou=Roles,o=example4,dc=jboss,dc=org"), \
 ("roleFilter"=>"(member={1})"), \
 ("roleRecursion"=>"1"), \
 ("roleAttributeID"=>"memberOf") \
])

/subsystem=security/security-domain=AD_Default/authentication=classic/login-
module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \
 ("bindDN"=>"JBOSS\searchuser"), \
 ("bindCredential"=>"password"), \
 ("baseCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("baseFilter"=>"(sAMAccountName={0})"), \
 ("rolesCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("roleFilter"=>"(sAMAccountName={0})"), \
 ("roleAttributeID"=>"memberOf"), \
 ("roleAttributeIsDN"=>"true"), \
 ("roleNameAttributeID"=>"cn"), \
 ("searchScope"=>"ONELEVEL_SCOPE"), \
 ("allowEmptyPasswords"=>"false") \
])

/subsystem=security/security-domain=AD_Recursive/authentication=classic/login-
module=LdapExtended:add(\
 code=LdapExtended, \
 flag=required, \
 module-options=[\
 ("java.naming.provider.url"=>"ldap://ldaphost.jboss.org"), \

Security Guide

240

Report a bug

14.1.6. UsersRoles Login Module

UsersRoles login module is a simple login module that supports multiple users and user roles loaded
from Java properties files. The default username-to-password mapping filename is users.properties
and the default username-to-roles mapping filename is roles.properties.

For details of UsersRoles login module options see Section A.1, “Included Authentication Modules” .

This login module supports password stacking, password hashing, and unauthenticated identity.

The properties files are loaded during initialization using the initialize method thread context class
loader. This means that these files can be placed on the classpath of the Java EE deployment (for
example, into the WEB-INF/classes folder in the WAR archive), or into any directory on the server
classpath. The primary purpose of this login module is to easily test the security settings of multiple
users and roles using properties files deployed with the application.

Example 14.10. UsersRoles Login Module

In Example 14.10, “UsersRoles Login Module”, the ejb3-sampleapp-users.properties file uses a
username=password format with each user entry on a separate line:

The ejb3-sampleapp-roles.properties file referenced in Example 14.10, “UsersRoles Login Module”

 ("java.naming.referral"=>"follow"), \
 ("bindDN"=>"JBOSS\searchuser"), \
 ("bindCredential"=>"password"), \
 ("baseCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("baseFilter"=>"(sAMAccountName={0})"), \
 ("rolesCtxDN"=>"CN=Users,DC=jboss,DC=org"), \
 ("roleFilter"=>"(member={1})"), \
 ("roleAttributeID"=>"cn"), \
 ("roleAttributeIsDN"=>"false"), \
 ("roleRecursion"=>"2"), \
 ("searchScope"=>"ONELEVEL_SCOPE"), \
 ("allowEmptyPasswords"=>"false") \
])

/subsystem=security/security-domain=ejb3-sampleapp/authentication=classic/login-
module=UsersRoles:add(\
 code=UsersRoles, \
 flag=required, \
 module-options=[\
 ("usersProperties"=>"ejb3-sampleapp-users.properties"), \
 ("rolesProperties"=>"ejb3-sampleapp-roles.properties") \
])

username1=password1
username2=password2
...

CHAPTER 14. LOGIN MODULES

241

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28311-733248+%5BLatest%5D&comment=Title%3A+LdapExtended+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28311-733248+17+Dec+2014+01%3A39+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

The ejb3-sampleapp-roles.properties file referenced in Example 14.10, “UsersRoles Login Module”
uses the pattern username=role1,role2, with an optional group name value. For example:

The user name.XXX property name pattern present in ejb3-sampleapp-roles.properties is used to
assign the user name roles to a particular named group of roles where the XXX portion of the property
name is the group name. The user name=... form is an abbreviation for user name.Roles=..., where the
Roles group name is the standard name the JBossAuthorizationManager expects to contain the roles
which define the permissions of users.

The following would be equivalent definitions for the jduke user name:

Report a bug

14.1.7. Database Login Module

The Database login module is a Java Database Connectivity-based (JDBC) login module that supports
authentication and role mapping. Use this login module if you have your user name, password and role
information stored in a relational database.

NOTE

This module supports password stacking, password hashing and unauthenticated identity.

The Database login module is based on two logical tables:

The Principals table associates the user PrincipalID with the valid password and the Roles table
associates the user PrincipalID with its role sets. The roles used for user permissions must be contained
in rows with a RoleGroup column value of Roles.

The tables are logical in that you can specify the SQL query that the login module uses. The only
requirement is that the java.sql.ResultSet has the same logical structure as the Principals and Roles
tables described previously. The actual names of the tables and columns are not relevant as the results
are accessed based on the column index.

To clarify this notion, consider a database with two tables, Principals and Roles, as already declared.
The following statements populate the tables with the following data:

PrincipalID java with a Password of echoman in the Principals table

PrincipalID java with a role named Echo in the RolesRoleGroup in the Roles table

PrincipalID java with a role named caller_java in the CallerPrincipalRoleGroup in the Roles
table

username1=role1,role2,...
username1.RoleGroup1=role3,role4,...
username2=role1,role3,...

jduke=TheDuke,AnimatedCharacter
jduke.Roles=TheDuke,AnimatedCharacter

Table Principals(PrincipalID text, Password text)
Table Roles(PrincipalID text, Role text, RoleGroup text)

Security Guide

242

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28315-742324+%5BLatest%5D&comment=Title%3A+UsersRoles+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28315-742324+09+Feb+2015+22%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

For details of Database login module options see Section A.1, “Included Authentication Modules” .

An example Database login module configuration could be constructed as follows:

A corresponding login module configuration in a security domain:

Report a bug

14.1.8. Certificate Login Module

Certificate login module authenticates users based on X509 certificates. A typical use case for this login
module is CLIENT-CERT authentication in the web tier.

This login module only performs authentication: you must combine it with another login module capable
of acquiring authorization roles to completely define access to a secured web or EJB component. Two
subclasses of this login module, CertRolesLoginModule and DatabaseCertLoginModule extend the
behavior to obtain the authorization roles from either a properties file or database.

For details of Certificate login module options see Section A.1, “Included Authentication Modules” .

The Certificate login module needs a KeyStore to perform user validation. This is obtained from a JSSE
configuration of linked security domain as shown in the following configuration fragment:

INSERT INTO Principals VALUES('java', 'echoman')
INSERT INTO Roles VALUES('java', 'Echo', 'Roles')
INSERT INTO Roles VALUES('java', 'caller_java', 'CallerPrincipal')

CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE UserRoles(username VARCHAR(64), role VARCHAR(32))

/subsystem=security/security-domain=testDB/authentication=classic/login-module=Database:add(\
 code=Database, \
 flag=required, \
 module-options=[\
 ("dsJndiName"=>"java:/MyDatabaseDS"), \
 ("principalsQuery"=>"select passwd from Users where username=?"), \
 ("rolesQuery"=>"select role, 'Roles' from UserRoles where username=?") \
])

/subsystem=security/security-domain=trust-domain:add
/subsystem=security/security-domain=trust-domain/jsse=classic:add(\
 truststore={ \
 password=>pass1234, \
 url=>/home/jbosseap/trusted-clients.jks \
 })

/subsystem=security/security-domain=testCert:add
/subsystem=security/security-domain=testCert/authentication=classic:add
/subsystem=security/security-domain=testCert/authentication=classic/login-module=Certificate:add(\
 code=Certificate, \
 flag=required, \
 module-options=[\
 ("securityDomain"=>"trust-domain"), \
])

CHAPTER 14. LOGIN MODULES

243

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28316-638932+%5BLatest%5D&comment=Title%3A+Database+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28316-638932+07+May+2014+17%3A21+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Procedure 14.1. Secure Web Applications with Certificates and Role-based Authorization

This procedure describes how to secure a web application, such as the user-app.war, using client
certificates and role-based authorization. In this example the CertificateRoles login module is used for
authentication and authorization. Both the trusted-clients.keystore and the app-roles.properties
require an entry that maps to the principal associated with the client certificate.

By default, the principal is created using the client certificate distinguished name, such as the DN
specified in Example 14.11, “Certificate Example”.

1. Declare Resources and Roles
Modify web.xml to declare the resources to be secured along with the allowed roles and
security domain to be used for authentication and authorization.

2. Specify the Security Domain
In the jboss-web.xml file, specify the required security domain.

3. Configure Login Module

Define the login module configuration for the app-sec-domain domain you just specified using

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Protect App</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Admin</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>Secured area</realm-name>
 </login-config>

 <security-role>
 <role-name>Admin</role-name>
 </security-role>
</web-app>

<jboss-web>
 <security-domain>app-sec-domain</security-domain>
</jboss-web>

Security Guide

244

Define the login module configuration for the app-sec-domain domain you just specified using
the management CLI.

Example 14.11. Certificate Example

[conf]$ keytool -printcert -file valid-client-cert.crt
Owner: CN=valid-client, OU=Security QE, OU=JBoss, O=Red Hat, C=CZ
Issuer: CN=EAP Certification Authority, OU=Security QE, OU=JBoss, O=Red Hat, C=CZ
Serial number: 2
Valid from: Mon Mar 24 18:21:55 CET 2014 until: Tue Mar 24 18:21:55 CET 2015
Certificate fingerprints:
 MD5: 0C:54:AE:6E:29:ED:E4:EF:46:B5:14:30:F2:E0:2A:CB
 SHA1: D6:FB:19:E7:11:28:6C:DE:01:F2:92:2F:22:EF:BB:5D:BF:73:25:3D
 SHA256:
CD:B7:B1:72:A3:02:42:55:A3:1C:30:E1:A6:F0:20:B0:2C:0F:23:4F:7A:8E:2F:2D:FA:AF:55:3E:A7:9B
:2B:F4
 Signature algorithm name: SHA1withRSA
 Version: 3

The trusted-clients.keystore would need the certificate in Example 14.11, “Certificate Example” stored
with an alias of CN=valid-client, OU=Security QE, OU=JBoss, O=Red Hat, C=CZ. The app-
roles.properties must have the same entry. Since the DN contains characters that are normally treated
as delimiters, you must escape the problem characters using a backslash ('\') as illustrated below.

A sample app-roles.properties file
CN\=valid-client,\ OU\=Security\ QE,\ OU\=JBoss,\ O\=Red\ Hat,\ C\=CZ

Report a bug

14.1.9. Identity Login Module

Identity login module is a simple login module that associates a hard-coded user name to any subject

[
/subsystem=security/security-domain=trust-domain:add
/subsystem=security/security-domain=trust-domain/jsse=classic:add(\
 truststore={ \
 password=>pass1234, \
 url=>/home/jbosseap/trusted-clients.jks \
 })

/subsystem=security/security-domain=app-sec-domain:add
/subsystem=security/security-domain=app-sec-domain/authentication=classic:add
/subsystem=security/security-domain=app-sec-domain/authentication=classic/login-
module=CertificateRoles:add(\
 code=CertificateRoles, \
 flag=required, \
 module-options=[\
 ("securityDomain"=>"trust-domain"), \
 ("rolesProperties"=>"app-roles.properties") \
])

CHAPTER 14. LOGIN MODULES

245

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28317-638933+%5BLatest%5D&comment=Title%3A+Certificate+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28317-638933+07+May+2014+17%3A31+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Identity login module is a simple login module that associates a hard-coded user name to any subject
authenticated against the module. It creates a SimplePrincipal instance using the name specified by
the principal option.

NOTE

This module supports password stacking.

This login module is useful when you need to provide a fixed identity to a service, and in development
environments when you want to test the security associated with a given principal and associated roles.

For details of Identity login module options see Section A.1, “Included Authentication Modules” .

A sample security domain configuration is described below. It authenticates all users as the principal
named jduke and assigns role names of TheDuke, and AnimatedCharacter:.

Report a bug

14.1.10. RunAs Login Module

RunAs login module is a helper module that pushes a run as role onto the stack for the duration of the
login phase of authentication, then pops the run as role from the stack in either the commit or abort
phase.

The purpose of this login module is to provide a role for other login modules that must access secured
resources in order to perform their authentication (for example, a login module that accesses a secured
EJB). RunAs login module must be configured ahead of the login modules that require a run as role
established.

For details of RunAs login module options see Section A.1, “Included Authentication Modules” .

Report a bug

14.1.10.1. RunAsIdentity Creation

In order for JBoss EAP 6 to secure access to EJB methods, the identity of the user must be known at
the time the method call is made.

A user's identity in the server is represented either by a javax.security.auth.Subject instance or an
org.jboss.security.RunAsIdentity instance. Both these classes store one or more principals that
represent the identity and a list of roles that the identity possesses. In the case of the
javax.security.auth.Subject a list of credentials is also stored.

In the <assembly-descriptor> section of the ejb-jar.xml deployment descriptor, you specify one or more

/subsystem=security/security-domain=testIdentity:add
/subsystem=security/security-domain=testIdentity/authentication=classic:add
/subsystem=security/security-domain=testIdentity/authentication=classic/login-module=Identity:add(\
 code=Identity, \
 flag=required, \
 module-options=[\
 ("principal"=>"jduke"), \
 ("roles"=>"TheDuke,AnimatedCharacter") \
])

Security Guide

246

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28318-638670+%5BLatest%5D&comment=Title%3A+Identity+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28318-638670+06+May+2014+21%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+IDs%3A%0A28319-638671+%5BLatest%5D&comment=Title%3A+RunAs+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

In the <assembly-descriptor> section of the ejb-jar.xml deployment descriptor, you specify one or more
roles that a user must have to access the various EJB methods. A comparison of these lists reveals
whether the user has one of the roles necessary to access the EJB method.

Example 14.12. org.jboss.security.RunAsIdentity Creation

In the ejb-jar.xml file, you specify a <security-identity> element with a <run-as> role defined as a child
of the <session> element.

This declaration signifies that an Admin RunAsIdentity role must be created.

To name a principal for the Admin role, you define a <run-as-principal> element in the jboss-
ejb3.xml file.

The <security-identity> element in both the ejb-jar.xml and <security> element in the jboss-
ejb3.xml files are parsed at deployment time. The <run-as> role name and the <run-as-principal>
name are then stored in the org.jboss.metadata.ejb.spec.SecurityIdentityMetaData class.

Example 14.13. Assigning multiple roles to a RunAsIdentity

You can assign more roles to RunAsIdentity by mapping roles to principals in the jboss-ejb3.xml
deployment descriptor <assembly-descriptor> element group.

<session>
 ...
 <security-identity>
 <run-as>
 <role-name>Admin</role-name>
 </run-as>
 </security-identity>
 ...
</session>

<jboss:ejb-jar
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:jboss="http://www.jboss.com/xml/ns/javaee"
 xmlns:s="urn:security:1.1"
 version="3.1" impl-version="2.0">
 <assembly-descriptor>
 <s:security>
 <ejb-name>WhoAmIBean</ejb-name>
 <s:run-as-principal>John</s:run-as-principal>
 </s:security>
 </assembly-descriptor>
</jboss:ejb-jar>

<jboss:ejb-jar xmlns:sr="urn:security-role"
 ...>
 <assembly-descriptor>
 ...

CHAPTER 14. LOGIN MODULES

247

In Example 14.12, “org.jboss.security.RunAsIdentity Creation”, the <run-as-principal> of John was
created. The configuration in this example extends the Admin role, by adding the Support role. The
new role contains extra principals, including the originally defined principal John.

The <security-role> element in both the ejb-jar.xml and jboss-ejb3.xml files are parsed at
deployment time. The <role-name> and the <principal-name> data is stored in the
org.jboss.metadata.ejb.spec.SecurityIdentityMetaData class.

Report a bug

14.1.11. Client Login Module

Client login module (org.jboss.security.ClientLoginModule) is an implementation of LoginModule for
use by JBoss clients when establishing caller identity and credentials. This creates a new
SecurityContext assigns it a principal and a credential and sets the SecurityContext to the
ThreadLocal security context.

Client login module is the only supported mechanism for a client to establish the current thread's caller.
Both stand-alone client applications, and server environments (acting as JBoss EJB clients where the
security environment has not been configured to use the EAP security subsystem transparently) must
use Client login module.

Note that this login module does not perform any authentication. It merely copies the login information
provided to it into the server EJB invocation layer for subsequent authentication on the server. If you
need to perform client-side authentication of users you would need to configure another login module
in addition to the Client login module.

For details of Client login module options see Section A.1, “Included Authentication Modules” .

Report a bug

14.1.12. SPNEGO Login Module

SPNEGO login module (org.jboss.security.negotiation.spnego.SPNEGOLoginModule) is an
implementation of LoginModule that establishes caller identity and credentials with a KDC. The module
implements SPNEGO (Simple and Protected GSSAPI Negotiation mechanism) and is a part of the
JBoss Negotiation project. This authentication can be used in the chained configuration with the
AdvancedLdap login module to allow cooperation with an LDAP server.

For details of SPNEGO login module options see Section A.1, “Included Authentication Modules” .

The JBoss Negotiation module is not included as a standard dependency for deployed applications. To
use the SPNEGO or AdvancedLdap login modules in your project, you must add the dependency
manually by editing the META-INF/jboss-deployment-structure.xml deployment descriptor file.

 <sr:security-role>
 <sr:role-name>Support</sr:role-name>
 <sr:principal-name>John</sr:principal-name>
 <sr:principal-name>Jill</sr:principal-name>
 <sr:principal-name>Tony</sr:principal-name>
 </sr:security-role>
 </assembly-descriptor>
</jboss:ejb-jar>

Security Guide

248

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28320-640429+%5BLatest%5D&comment=Title%3A+RunAsIdentity+Creation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28320-640429+12+May+2014+18%3A32+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28321-686354+%5BLatest%5D&comment=Title%3A+Client+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28321-686354+21+Jul+2014+02%3A29+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 14.14. Add JBoss Negotiation Module as a Dependency

Report a bug

14.1.13. RoleMapping Login Module

RoleMapping login module supports mapping roles, that are the end result of the authentication
process, to one or more declarative roles. For example, if the authentication process has determined
that the user "A" has the roles "ldapAdmin" and "testAdmin", and the declarative role defined in the
web.xml or ejb-jar.xml file for access is admin, then this login module maps the admin roles to the user
A.

For details of RoleMapping login module options see Section A.1, “Included Authentication Modules” .

The RoleMapping login module must be defined as an optional module to a login module configuration
as it alters mapping of the previously mapped roles.

Example 14.15. Defining mapped roles

Another example achieving the same result, but using the mapping module. This is the preferred method
of role mapping:

Example 14.16. Preferred method of defining mapped roles

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.jboss.security.negotiation" />
 </dependencies>
 </deployment>
</jboss-deployment-structure>

/subsystem=security/security-domain=test-domain-2/:add
/subsystem=security/security-domain=test-domain-2/authentication=classic:add
/subsystem=security/security-domain=test-domain-2/authentication=classic/login-module=test-2-
lm/:add(\
flag=required,\
code=UsersRoles,\
module-options=[("usersProperties"=>"users.properties"),("rolesProperties"=>"roles.properties")]\
)
/subsystem=security/security-domain=test-domain-2/authentication=classic/login-module=test2-
map/:add(\
flag=optional,\
code=RoleMapping,\
module-options=[("rolesProperties"=>"rolesMapping-roles.properties")]\
)

/subsystem=security/security-domain=test-domain-2/:add

CHAPTER 14. LOGIN MODULES

249

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28322-665420+%5BLatest%5D&comment=Title%3A+SPNEGO+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28322-665420+09+Jun+2014+10%3A06+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 14.17. Properties File used by a RoleMappingLoginModule

If the authenticated subject contains role ldapAdmin, then the roles admin and testAdmin are
added to or substitute the authenticated subject depending on the replaceRole property value.

Report a bug

14.1.14. bindCredential Module Option

The bindCredential module option is used to store the credentials for the DN and can be used by
several login and mapping modules. There are several methods for obtaining the password.

Plaintext in a management CLI command.

The password for the bindCredential module may be provided in plaintext, in a management CLI
command. For example: ("bindCredential"=>"secret1"). For security reasons, the password should
be encrypted using the JBoss EAP vault mechanism.

Use an external command.

To obtain the password from the output of an external command, use the format {EXT}... where the
... is the external command. The first line of the command output is used as the password.

To improve performance, the {EXTC[:expiration_in_millis]} variant caches the password for a
specified number of milliseconds. By default the cached password does not expire. If the value 0
(zero) is specified, the cached credentials do not expire.

The EXTC variant is only supported by the LdapExtended login module.

Example 14.18. Obtain a password from an external command

{EXT}cat /mysecretpasswordfile

Example 14.19. Obtain a password from an external file and cache it for 500 milliseconds

/subsystem=security/security-domain=test-domain-2/authentication=classic:add
/subsystem=security/security-domain=test-domain-2/authentication=classic/login-module=test-2-
lm/:add(\
flag=required,\
code=UsersRoles,\
module-options=[("usersProperties"=>"users.properties"),("rolesProperties"=>"roles.properties")]\
)
/subsystem=security/security-domain=test-domain-2/mapping=classic/mapping-module=test2-
map/:add(\
code=PropertiesRoles,type=role,\
module-options=[("rolesProperties"=>"rolesMapping-roles.properties")]\
)

ldapAdmin=admin, testAdmin

Security Guide

250

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28323-638683+%5BLatest%5D&comment=Title%3A+RoleMapping+Login+Module%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28323-638683+06+May+2014+22%3A40+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

{EXTC:500}cat /mysecretpasswordfile

Report a bug

14.2. CUSTOM MODULES

If the login modules bundled with the EAP security framework do not work with your security
environment, you can write your own custom login module implementation. The
AuthenticationManager requires a particular usage pattern of the Subject principals set. You must
understand the JAAS Subject class's information storage features and the expected usage of these
features to write a login module that works with the AuthenticationManager.

This section examines this requirement and introduces two abstract base LoginModule
implementations that can help you implement custom login modules.

You can obtain security information associated with a Subject by using the following methods:

For Subject identities and roles, EAP has selected the most logical choice: the principals sets obtained
via getPrincipals() and getPrincipals(java.lang.Class). The usage pattern is as follows:

User identities (for example; user name, social security number, employee ID) are stored as
java.security.Principal objects in the SubjectPrincipals set. The Principal implementation
that represents the user identity must base comparisons and equality on the name of the
principal. A suitable implementation is available as the org.jboss.security.SimplePrincipal
class. Other Principal instances may be added to the SubjectPrincipals set as needed.

Assigned user roles are also stored in the Principals set, and are grouped in named role sets
using java.security.acl.Group instances. The Group interface defines a collection of
Principals and/or Groups, and is a subinterface of java.security.Principal.

Any number of role sets can be assigned to a Subject.

The EAP security framework uses two well-known role sets with the names Roles and
CallerPrincipal.

The Roles group is the collection of Principals for the named roles as known in the
application domain under which the Subject has been authenticated. This role set is used by
methods like the EJBContext.isCallerInRole(String), which EJBs can use to see if the
current caller belongs to the named application domain role. The security interceptor logic
that performs method permission checks also uses this role set.

The CallerPrincipal Group consists of the single Principal identity assigned to the user in
the application domain. The EJBContext.getCallerPrincipal() method uses the
CallerPrincipal to allow the application domain to map from the operation environment
identity to a user identity suitable for the application. If a Subject does not have a
CallerPrincipal Group, the application identity is the same as operational environment
identity.

java.util.Set getPrincipals()
java.util.Set getPrincipals(java.lang.Class c)
java.util.Set getPrivateCredentials()
java.util.Set getPrivateCredentials(java.lang.Class c)
java.util.Set getPublicCredentials()
java.util.Set getPublicCredentials(java.lang.Class c)

CHAPTER 14. LOGIN MODULES

251

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+38715-681306+%5BLatest%5D&comment=Title%3A+bindCredential+Module+Option%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=38715-681306+03+Jul+2014+20%3A08+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Report a bug

14.2.1. Subject Usage Pattern Support

To simplify correct implementation of the Subject usage patterns described in Section 14.2, “Custom
Modules”, EAP includes login modules that populate the authenticated Subject with a template pattern
that enforces correct Subject usage.

AbstractServerLoginModule

The most generic of the two is the org.jboss.security.auth.spi.AbstractServerLoginModule class.

It provides an implementation of the javax.security.auth.spi.LoginModule interface and offers
abstract methods for the key tasks specific to an operation environment security infrastructure. The key
details of the class are highlighted in Example 14.20, “AbstractServerLoginModule Class Fragment” . The
JavaDoc comments detail the responsibilities of subclasses.

IMPORTANT

The loginOk instance variable is pivotal. This must be set to true if the log in succeeds, or
false by any subclasses that override the log in method. If this variable is incorrectly set,
the commit method will not correctly update the subject.

Tracking the log in phase outcomes allows login modules to be chained together with control flags.
These control flags do not require the login modules to succeed as part of the authentication process.

Example 14.20. AbstractServerLoginModule Class Fragment

package org.jboss.security.auth.spi;
/**
 * This class implements the common functionality required for a JAAS
 * server-side LoginModule and implements the PicketBox standard
 * Subject usage pattern of storing identities and roles. Subclass
 * this module to create your own custom LoginModule and override the
 * login(), getRoleSets(), and getIdentity() methods.
 */
public abstract class AbstractServerLoginModule
 implements javax.security.auth.spi.LoginModule
{
 protected Subject subject;
 protected CallbackHandler callbackHandler;
 protected Map sharedState;
 protected Map options;
 protected Logger log;

 /** Flag indicating if the shared credential should be used */
 protected boolean useFirstPass;
 /**
 * Flag indicating if the login phase succeeded. Subclasses that
 * override the login method must set this to true on successful
 * completion of login
 */
 protected boolean loginOk;

 // ...

Security Guide

252

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+IDs%3A%0A28324-686361+%5BLatest%5D&comment=Title%3A+Custom+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

 /**
 * Initialize the login module. This stores the subject,
 * callbackHandler and sharedState and options for the login
 * session. Subclasses should override if they need to process
 * their own options. A call to super.initialize(...) must be
 * made in the case of an override.
 *
 * <p>
 * The options are checked for the password-stacking parameter.
 * If this is set to "useFirstPass", the login identity will be taken from the
 * <code>javax.security.auth.login.name</code> value of the sharedState map,
 * and the proof of identity from the
 * <code>javax.security.auth.login.password</code> value of the sharedState map.
 *
 * @param subject the Subject to update after a successful login.
 * @param callbackHandler the CallbackHandler that will be used to obtain the
 * the user identity and credentials.
 * @param sharedState a Map shared between all configured login module instances
 * @param options the parameters passed to the login module.
 */
 public void initialize(Subject subject,
 CallbackHandler callbackHandler,
 Map sharedState,
 Map options)
 {
 // ...
 }

 /**
 * Looks for javax.security.auth.login.name and
 * javax.security.auth.login.password values in the sharedState
 * map if the useFirstPass option was true and returns true if
 * they exist. If they do not or are null this method returns
 * false.
 * Note that subclasses that override the login method
 * must set the loginOk var to true if the login succeeds in
 * order for the commit phase to populate the Subject. This
 * implementation sets loginOk to true if the login() method
 * returns true, otherwise, it sets loginOk to false.
 */
 public boolean login()
 throws LoginException
 {
 // ...
 }

 /**
 * Overridden by subclasses to return the Principal that
 * corresponds to the user primary identity.
 */
 abstract protected Principal getIdentity();

 /**
 * Overridden by subclasses to return the Groups that correspond
 * to the role sets assigned to the user. Subclasses should

CHAPTER 14. LOGIN MODULES

253

UsernamePasswordLoginModule

The second abstract base login module suitable for custom login modules is the
org.jboss.security.auth.spi.UsernamePasswordLoginModule.

This login module further simplifies custom login module implementation by enforcing a string-based
user name as the user identity and a char[] password as the authentication credentials. It also supports
the mapping of anonymous users (indicated by a null user name and password) to a principal with no
roles. The key details of the class are highlighted in the following class fragment. The JavaDoc
comments detail the responsibilities of subclasses.

Example 14.21. UsernamePasswordLoginModule Class Fragment

 * create at least a Group named "Roles" that contains the roles
 * assigned to the user. A second common group is
 * "CallerPrincipal," which provides the application identity of
 * the user rather than the security domain identity.
 *
 * @return Group[] containing the sets of roles
 */
 abstract protected Group[] getRoleSets() throws LoginException;
}

package org.jboss.security.auth.spi;

/**
 * An abstract subclass of AbstractServerLoginModule that imposes a
 * an identity == String username, credentials == String password
 * view on the login process. Subclasses override the
 * getUsersPassword() and getUsersRoles() methods to return the
 * expected password and roles for the user.
 */
public abstract class UsernamePasswordLoginModule
 extends AbstractServerLoginModule
{
 /** The login identity */
 private Principal identity;
 /** The proof of login identity */
 private char[] credential;
 /** The principal to use when a null username and password are seen */
 private Principal unauthenticatedIdentity;

 /**
 * The message digest algorithm used to hash passwords. If null then
 * plain passwords will be used. */
 private String hashAlgorithm = null;

 /**
 * The name of the charset/encoding to use when converting the
 * password String to a byte array. Default is the platform's
 * default encoding.
 */
 private String hashCharset = null;

 /** The string encoding format to use. Defaults to base64. */

Security Guide

254

 private String hashEncoding = null;

 // ...

 /**
 * Override the superclass method to look for an
 * unauthenticatedIdentity property. This method first invokes
 * the super version.
 *
 * @param options,
 * @option unauthenticatedIdentity: the name of the principal to
 * assign and authenticate when a null username and password are
 * seen.
 */
 public void initialize(Subject subject,
 CallbackHandler callbackHandler,
 Map sharedState,
 Map options)
 {
 super.initialize(subject, callbackHandler, sharedState,
 options);
 // Check for unauthenticatedIdentity option.
 Object option = options.get("unauthenticatedIdentity");
 String name = (String) option;
 if (name != null) {
 unauthenticatedIdentity = new SimplePrincipal(name);
 }
 }

 // ...

 /**
 * A hook that allows subclasses to change the validation of the
 * input password against the expected password. This version
 * checks that neither inputPassword or expectedPassword are null
 * and that inputPassword.equals(expectedPassword) is true;
 *
 * @return true if the inputPassword is valid, false otherwise.
 */
 protected boolean validatePassword(String inputPassword,
 String expectedPassword)
 {
 if (inputPassword == null || expectedPassword == null) {
 return false;
 }
 return inputPassword.equals(expectedPassword);
 }

 /**
 * Get the expected password for the current username available
 * via the getUsername() method. This is called from within the
 * login() method after the CallbackHandler has returned the
 * username and candidate password.
 *
 * @return the valid password String
 */

CHAPTER 14. LOGIN MODULES

255

Subclassing Login Modules

The choice of sub-classing the AbstractServerLoginModule versus
UsernamePasswordLoginModule is based on whether a string-based user name and credentials are
usable for the authentication technology you are writing the login module for. If the string-based
semantic is valid, then subclass UsernamePasswordLoginModule, otherwise subclass
AbstractServerLoginModule.

Subclassing Steps

The steps your custom login module must execute depend on which base login module class you choose.
When writing a custom login module that integrates with your security infrastructure, you should start by
sub-classing AbstractServerLoginModule or UsernamePasswordLoginModule to ensure that your
login module provides the authenticated Principal information in the form expected by the EAP security
manager.

When sub-classing the AbstractServerLoginModule, you must override the following:

void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to parse.

boolean login(): to perform the authentication activity. Be sure to set the loginOk instance
variable to true if log in succeeds, false if it fails.

Principal getIdentity(): to return the Principal object for the user authenticated by the log()
step.

Group[] getRoleSets(): to return at least one Group named Roles that contains the roles
assigned to the Principal authenticated during login(). A second common Group is named
CallerPrincipal and provides the user's application identity rather than the security domain
identity.

When sub-classing the UsernamePasswordLoginModule, you must override the following:

void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to parse.

Group[] getRoleSets(): to return at least one Group named Roles that contains the roles
assigned to the Principal authenticated during login(). A second common Group is named
CallerPrincipal and provides the user's application identity rather than the security domain
identity.

String getUsersPassword(): to return the expected password for the current user name
available via the getUsername() method. The getUsersPassword() method is called from
within login() after the callbackhandler returns the user name and candidate password.

Report a bug

14.2.2. Custom LoginModule Example

The following information will help you to create a custom Login Module example that extends the
UsernamePasswordLoginModule and obtains a user's password and role names from a JNDI lookup.

At the end of this section you will have created a custom JNDI context login module that will return a

 abstract protected String getUsersPassword()
 throws LoginException;
}

Security Guide

256

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28325-686362+%5BLatest%5D&comment=Title%3A+Subject+Usage+Pattern+Support%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28325-686362+21+Jul+2014+02%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

user's password if you perform a lookup on the context using a name of the form
password/<username> (where <username> is the current user being authenticated). Similarly, a
lookup of the form roles/<username> returns the requested user's roles. In Example 14.22,
“JndiUserAndPassLoginModule Custom Login Module” is the source code for the
JndiUserAndPassLoginModule custom login module.

Note that because this extends the JBoss UsernamePasswordLoginModule, the
JndiUserAndPassLoginModule obtains the user's password and roles from the JNDI store. The
JndiUserAndPassLoginModule does not interact with the JAAS LoginModule operations.

Example 14.22. JndiUserAndPassLoginModule Custom Login Module

package org.jboss.book.security.ex2;

import java.security.acl.Group;
import java.util.Map;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginException;
import org.jboss.logging.Logger;
import org.jboss.security.SimpleGroup;
import org.jboss.security.SimplePrincipal;
import org.jboss.security.auth.spi.UsernamePasswordLoginModule;
/**
 * An example custom login module that obtains passwords and roles for a user from a JNDI
lookup.
 *
 * @author Scott.Stark@jboss.org
 */
public class JndiUserAndPassLoginModule extends UsernamePasswordLoginModule {
 /** The JNDI name to the context that handles the password/username lookup */
 private String userPathPrefix;
 /** The JNDI name to the context that handles the roles/username lookup */
 private String rolesPathPrefix;
 private static Logger log = Logger.getLogger(JndiUserAndPassLoginModule.class);
 /**
 * Override to obtain the userPathPrefix and rolesPathPrefix options.
 */
 @Override
 public void initialize(Subject subject, CallbackHandler callbackHandler, Map sharedState, Map
options) {
 super.initialize(subject, callbackHandler, sharedState, options);
 userPathPrefix = (String) options.get("userPathPrefix");
 rolesPathPrefix = (String) options.get("rolesPathPrefix");
 }
 /**
 * Get the roles the current user belongs to by querying the rolesPathPrefix + '/' +
super.getUsername() JNDI location.
 */
 @Override
 protected Group[] getRoleSets() throws LoginException {
 try {
 InitialContext ctx = new InitialContext();
 String rolesPath = rolesPathPrefix + '/' + super.getUsername();

CHAPTER 14. LOGIN MODULES

257

Example 14.23. Definition of security-ex2 security domain with the newly-created custom login
module

The choice of using the JndiUserAndPassLoginModule custom login module for the server side
authentication of the user is determined by the login configuration for the example security domain. The
EJB JAR META-INF/jboss-ejb3.xml descriptor sets the security domain. For a web application it is part
of the WEB-INF/jboss-web.xml file.

 String[] roles = (String[]) ctx.lookup(rolesPath);
 Group[] groups = { new SimpleGroup("Roles") };
 log.info("Getting roles for user=" + super.getUsername());
 for (int r = 0; r < roles.length; r++) {
 SimplePrincipal role = new SimplePrincipal(roles[r]);
 log.info("Found role=" + roles[r]);
 groups[0].addMember(role);
 }
 return groups;
 } catch (NamingException e) {
 log.error("Failed to obtain groups for user=" + super.getUsername(), e);
 throw new LoginException(e.toString(true));
 }
 }
 /**
 * Get the password of the current user by querying the userPathPrefix + '/' +
super.getUsername() JNDI location.
 */
 @Override
 protected String getUsersPassword() throws LoginException {
 try {
 InitialContext ctx = new InitialContext();
 String userPath = userPathPrefix + '/' + super.getUsername();
 log.info("Getting password for user=" + super.getUsername());
 String passwd = (String) ctx.lookup(userPath);
 log.info("Found password=" + passwd);
 return passwd;
 } catch (NamingException e) {
 log.error("Failed to obtain password for user=" + super.getUsername(), e);
 throw new LoginException(e.toString(true));
 }
 }
}

/subsystem=security/security-domain=security-ex2/:add
/subsystem=security/security-domain=security-ex2/authentication=classic:add
/subsystem=security/security-domain=security-ex2/authentication=classic/login-module=ex2/:add(\
flag=required,\
code=org.jboss.book.security.ex2.JndiUserAndPassLoginModule,\
module-options=[("userPathPrefix"=>"/security/store/password"),\
("rolesPathPrefix"=>"/security/store/roles")]\
)

Security Guide

258

Example 14.24. jboss-ejb3.xml Example

Example 14.25. jboss-web.xml example

Report a bug

<?xml version="1.0"?>
<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"
xmlns="http://java.sun.com/xml/ns/javaee" xmlns:s="urn:security" version="3.1" impl-
version="2.0">
 <assembly-descriptor>
 <s:security>
 <ejb-name>*</ejb-name>
 <s:security-domain>security-ex2</s:security-domain>
 </s:security>
 </assembly-descriptor>
</jboss:ejb-jar>

<?xml version="1.0"?>
<jboss-web>
 <security-domain>security-ex2</security-domain>
</jboss-web>

CHAPTER 14. LOGIN MODULES

259

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+28326-638684+%5BLatest%5D&comment=Title%3A+Custom+LoginModule+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28326-638684+06+May+2014+22%3A50+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 15. ROLE-BASED SECURITY IN APPLICATIONS

15.1. JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)

Java Authentication and Authorization Service (JAAS) is a security API which consists of a set of Java
packages designed for user authentication and authorization. The API is a Java implementation of the
standard Pluggable Authentication Modules (PAM) framework. It extends the Java Enterprise Edition
access control architecture to support user-based authorization.

In JBoss EAP 6, JAAS only provides declarative role-based security. For more information about
declarative security, refer to Section 8.2, “Declarative Security” .

JAAS is independent of any underlying authentication technologies, such as Kerberos or LDAP. You can
change your underlying security structure without changing your application. You only need to change
the JAAS configuration.

Report a bug

15.2. ABOUT JAVA AUTHENTICATION AND AUTHORIZATION SERVICE
(JAAS)

The security architecture of JBoss EAP 6 is comprised of the security configuration subsystem, and
application-specific security configurations which are included in several configuration files within the
application.

Domain, Server Group, and Server Specific Configuration

Server groups (in a managed domain) and servers (in a standalone server) include the configuration for
security domains. A security domain includes information about a combination of authentication,
authorization, mapping, and auditing modules, with configuration details. An application specifies which
security domain it requires, by name, in its jboss-web.xml.

Application-specific Configuration

Application-specific configuration takes place in one or more of the following four files.

Table 15.1. Application-Specific Configuration Files

File Description

ejb-jar.xml The deployment descriptor for an Enterprise
JavaBean (EJB) application, located in the META-
INF directory of the archive. Use the ejb-jar.xml to
specify roles and map them to principals, at the
application level. You can also limit specific methods
and classes to certain roles. It is also used for other
EJB-specific configuration not related to security.

Security Guide

260

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4769-591672+%5BLatest%5D&comment=Title%3A+Java+Authentication+and+Authorization+Service+%28JAAS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4769-591672+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

web.xml The deployment descriptor for a Java Enterprise
Edition (EE) web application. Use the web.xml to
declare the resource and transport constraints for
the application, such as limiting the type of HTTP
requests that are allowed. You can also configure
simple web-based authentication in this file. It is also
used for other application-specific configuration not
related to security. The security domain the
application uses for authentication and authorization
is defined in jboss-web.xml.

jboss-ejb3.xml Contains JBoss-specific extensions to the ejb-
jar.xml descriptor.

jboss-web.xml Contains JBoss-specific extensions to the web.xml
descriptor.

File Description

NOTE

The ejb-jar.xml and web.xml are defined in the Java Enterprise Edition (Java EE)
specification. The jboss-ejb3.xml provides JBoss-specific extensions for the ejb-
jar.xml, and the jboss-web.xml provides JBoss-specific extensions for the web.xml.

Report a bug

15.3. USE ROLE-BASED SECURITY IN SERVLETS

To add security to a servlet, you map each servlet to a URL pattern, and create security constraints on
the URL patterns which need to be secured. The security constraints limit access to the URLs to roles.
The authentication and authorization are handled by the security domain specified in the WAR's jboss-
web.xml.

Prerequisites

Before you use role-based security in a servlet, the security domain used to authenticate and authorize
access needs to be configured in the JBoss EAP 6 container.

Procedure 15.1. Add Role-Based Security to Servlets

1. Add mappings between servlets and URL patterns.
Use <servlet-mapping> elements in the web.xml to map individual servlets to URL patterns.
The following example maps the servlet called DisplayOpResult to the URL pattern
/DisplayOpResult.

<servlet-mapping>
 <servlet-name>DisplayOpResult</servlet-name>
 <url-pattern>/DisplayOpResult</url-pattern>

CHAPTER 15. ROLE-BASED SECURITY IN APPLICATIONS

261

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4797-685271+%5BLatest%5D&comment=Title%3A+About+Java+Authentication+and+Authorization+Service+%28JAAS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4797-685271+15+Jul+2014+02%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

2. Add security constraints to the URL patterns.
To map the URL pattern to a security constraint, use a <security-constraint>. The following
example constrains access from the URL pattern /DisplayOpResult to be accessed by
principals with the role eap_admin. The role needs to be present in the security domain.

You need to specify the authentication method, which can be any of the following: BASIC,
FORM, DIGEST, CLIENT-CERT, SPNEGO. This example uses BASIC authentication.

3. Specify the security domain in the WAR's jboss-web.xml
Add the security domain to the WAR's jboss-web.xml in order to connect the servlets to the
configured security domain, which knows how to authenticate and authorize principals against
the security constraints. The following example uses the security domain called acme_domain.

Example 15.1. Example web.xml with Role-Based Security Configured

</servlet-mapping>

<security-constraint>
 <display-name>Restrict access to role eap_admin</display-name>
 <web-resource-collection>
 <web-resource-name>Restrict access to role eap_admin</web-resource-name>
 <url-pattern>/DisplayOpResult/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>eap_admin</role-name>
 </auth-constraint>
</security-constraint>

<security-role>
 <role-name>eap_admin</role-name>
</security-role>

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

<jboss-web>
 ...
 <security-domain>acme_domain</security-domain>
 ...
</jboss-web>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

Security Guide

262

Report a bug

15.4. USE A THIRD-PARTY AUTHENTICATION SYSTEM IN YOUR
APPLICATION

You can integrate third-party security systems with JBoss EAP 6. These types of systems are usually
token-based. The external system performs the authentication and passes a token back to the Web
application through the request headers. This is often referred to as perimeter authentication. To
configure perimeter authentication in your application, add a custom authentication valve. If you have a
valve from a third-party provider, be sure it is in your classpath and follow the examples below, along
with the documentation for your third-party authentication module.

NOTE

The location for configuring valves has changed in JBoss EAP 6. There is no longer a
context.xml deployment descriptor. Valves are configured directly in the jboss-web.xml
descriptor instead. The context.xml is now ignored.

<display-name>Use Role-Based Security In Servlets</display-name>

<welcome-file-list>
 <welcome-file>/index.jsp</welcome-file>
</welcome-file-list>

<servlet-mapping>
 <servlet-name>DisplayOpResult</servlet-name>
 <url-pattern>/DisplayOpResult</url-pattern>
</servlet-mapping>

<security-constraint>
 <display-name>Restrict access to role eap_admin</display-name>
 <web-resource-collection>
 <web-resource-name>Restrict access to role eap_admin</web-resource-name>
 <url-pattern>/DisplayOpResult/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>eap_admin</role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>
 <role-name>eap_admin</role-name>
 </security-role>

 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>

</web-app>

CHAPTER 15. ROLE-BASED SECURITY IN APPLICATIONS

263

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4927-591678+%5BLatest%5D&comment=Title%3A+Use+Role-Based+Security+In+Servlets%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4927-591678+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Example 15.2. Basic Authentication Valve

This valve is used for Kerberos-based SSO. It also shows the most simple pattern for specifying a
third-party authenticator for your Web application.

Example 15.3. Custom Valve With Header Attributes Set

This example shows how to set custom attributes on your valve. The authenticator checks for the
presence of the header ID and the session key, and passes them into the JAAS framework which
drives the security layer, as the username and password value. You need a custom JAAS login
module which can process the username and password and populate the subject with the correct
roles. If no header values match the configured values, regular form-based authentication semantics
apply.

Writing a Custom Authenticator

Writing your own authenticator is out of scope of this document. However, the following Java code is
provided as an example.

Example 15.4. GenericHeaderAuthenticator.java

<jboss-web>
 <valve>
 <class-name>org.jboss.security.negotiation.NegotiationAuthenticator</class-name>
 </valve>
</jboss-web>

<jboss-web>
 <valve>
 <class-name>org.jboss.web.tomcat.security.GenericHeaderAuthenticator</class-name>
 <param>
 <param-name>httpHeaderForSSOAuth</param-name>
 <param-value>sm_ssoid,ct-remote-user,HTTP_OBLIX_UID</param-value>
 </param>
 <param>
 <param-name>sessionCookieForSSOAuth</param-name>
 <param-value>SMSESSION,CTSESSION,ObSSOCookie</param-value>
 </param>
 </valve>
</jboss-web>

/*
 * JBoss, Home of Professional Open Source.
 * Copyright 2006, Red Hat Middleware LLC, and individual contributors
 * as indicated by the @author tags. See the copyright.txt file in the
 * distribution for a full listing of individual contributors.
 *
 * This is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of

Security Guide

264

 * the License, or (at your option) any later version.
 *
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this software; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 * 02110-1301 USA, or see the FSF site: http://www.fsf.org.
 */

package org.jboss.web.tomcat.security;

import java.io.IOException;
import java.security.Principal;
import java.util.StringTokenizer;

import javax.management.JMException;
import javax.management.ObjectName;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.catalina.Realm;
import org.apache.catalina.Session;
import org.apache.catalina.authenticator.Constants;
import org.apache.catalina.connector.Request;
import org.apache.catalina.connector.Response;
import org.apache.catalina.deploy.LoginConfig;
import org.jboss.logging.Logger;

import org.jboss.as.web.security.ExtendedFormAuthenticator;

/**
 * JBAS-2283: Provide custom header based authentication support
 *
 * Header Authenticator that deals with userid from the request header Requires
 * two attributes configured on the Tomcat Service - one for the http header
 * denoting the authenticated identity and the other is the SESSION cookie
 *
 * @author Anil Saldhana
 * @author Stefan Guilhen
 * @version $Revision$
 * @since Sep 11, 2006
 */
public class GenericHeaderAuthenticator extends ExtendedFormAuthenticator {
 protected static Logger log = Logger
 .getLogger(GenericHeaderAuthenticator.class);

 protected boolean trace = log.isTraceEnabled();

 // JBAS-4804: GenericHeaderAuthenticator injection of ssoid and
 // sessioncookie name.
 private String httpHeaderForSSOAuth = null;

CHAPTER 15. ROLE-BASED SECURITY IN APPLICATIONS

265

 private String sessionCookieForSSOAuth = null;

 /**
 * <p>
 * Obtain the value of the <code>httpHeaderForSSOAuth</code> attribute. This
 * attribute is used to indicate the request header ids that have to be
 * checked in order to retrieve the SSO identity set by a third party
 * security system.
 * </p>
 *
 * @return a <code>String</code> containing the value of the
 * <code>httpHeaderForSSOAuth</code> attribute.
 */
 public String getHttpHeaderForSSOAuth() {
 return httpHeaderForSSOAuth;
 }

 /**
 * <p>
 * Set the value of the <code>httpHeaderForSSOAuth</code> attribute. This
 * attribute is used to indicate the request header ids that have to be
 * checked in order to retrieve the SSO identity set by a third party
 * security system.
 * </p>
 *
 * @param httpHeaderForSSOAuth
 * a <code>String</code> containing the value of the
 * <code>httpHeaderForSSOAuth</code> attribute.
 */
 public void setHttpHeaderForSSOAuth(String httpHeaderForSSOAuth) {
 this.httpHeaderForSSOAuth = httpHeaderForSSOAuth;
 }

 /**
 * <p>
 * Obtain the value of the <code>sessionCookieForSSOAuth</code> attribute.
 * This attribute is used to indicate the names of the SSO cookies that may
 * be present in the request object.
 * </p>
 *
 * @return a <code>String</code> containing the names (separated by a
 * <code>','</code>) of the SSO cookies that may have been set by a
 * third party security system in the request.
 */
 public String getSessionCookieForSSOAuth() {
 return sessionCookieForSSOAuth;
 }

 /**
 * <p>
 * Set the value of the <code>sessionCookieForSSOAuth</code> attribute. This
 * attribute is used to indicate the names of the SSO cookies that may be
 * present in the request object.
 * </p>
 *

Security Guide

266

 * @param sessionCookieForSSOAuth
 * a <code>String</code> containing the names (separated by a
 * <code>','</code>) of the SSO cookies that may have been set by
 * a third party security system in the request.
 */
 public void setSessionCookieForSSOAuth(String sessionCookieForSSOAuth) {
 this.sessionCookieForSSOAuth = sessionCookieForSSOAuth;
 }

 /**
 * <p>
 * Creates an instance of <code>GenericHeaderAuthenticator</code>.
 * </p>
 */
 public GenericHeaderAuthenticator() {
 super();
 }

 public boolean authenticate(Request request, HttpServletResponse response,
 LoginConfig config) throws IOException {
 log.trace("Authenticating user");

 Principal principal = request.getUserPrincipal();
 if (principal != null) {
 if (trace)
 log.trace("Already authenticated '" + principal.getName() + "'");
 return true;
 }

 Realm realm = context.getRealm();
 Session session = request.getSessionInternal(true);

 String username = getUserId(request);
 String password = getSessionCookie(request);

 // Check if there is sso id as well as sessionkey
 if (username == null || password == null) {
 log.trace("Username is null or password(sessionkey) is null:fallback to form auth");
 return super.authenticate(request, response, config);
 }
 principal = realm.authenticate(username, password);

 if (principal == null) {
 forwardToErrorPage(request, response, config);
 return false;
 }

 session.setNote(Constants.SESS_USERNAME_NOTE, username);
 session.setNote(Constants.SESS_PASSWORD_NOTE, password);
 request.setUserPrincipal(principal);

 register(request, response, principal, HttpServletRequest.FORM_AUTH,
 username, password);
 return true;
 }

CHAPTER 15. ROLE-BASED SECURITY IN APPLICATIONS

267

 /**
 * Get the username from the request header
 *
 * @param request
 * @return
 */
 protected String getUserId(Request request) {
 String ssoid = null;
 // We can have a comma-separated ids
 String ids = "";
 try {
 ids = this.getIdentityHeaderId();
 } catch (JMException e) {
 if (trace)
 log.trace("getUserId exception", e);
 }
 if (ids == null || ids.length() == 0)
 throw new IllegalStateException(
 "Http headers configuration in tomcat service missing");

 StringTokenizer st = new StringTokenizer(ids, ",");
 while (st.hasMoreTokens()) {
 ssoid = request.getHeader(st.nextToken());
 if (ssoid != null)
 break;
 }
 if (trace)
 log.trace("SSOID-" + ssoid);
 return ssoid;
 }

 /**
 * Obtain the session cookie from the request
 *
 * @param request
 * @return
 */
 protected String getSessionCookie(Request request) {
 Cookie[] cookies = request.getCookies();
 log.trace("Cookies:" + cookies);
 int numCookies = cookies != null ? cookies.length : 0;

 // We can have comma-separated ids
 String ids = "";
 try {
 ids = this.getSessionCookieId();
 log.trace("Session Cookie Ids=" + ids);
 } catch (JMException e) {
 if (trace)
 log.trace("checkSessionCookie exception", e);
 }
 if (ids == null || ids.length() == 0)
 throw new IllegalStateException(
 "Session cookies configuration in tomcat service missing");

 StringTokenizer st = new StringTokenizer(ids, ",");

Security Guide

268

 while (st.hasMoreTokens()) {
 String cookieToken = st.nextToken();
 String val = getCookieValue(cookies, numCookies, cookieToken);
 if (val != null)
 return val;
 }
 if (trace)
 log.trace("Session Cookie not found");
 return null;
 }

 /**
 * Get the configured header identity id in the tomcat service
 *
 * @return
 * @throws JMException
 */
 protected String getIdentityHeaderId() throws JMException {
 if (this.httpHeaderForSSOAuth != null)
 return this.httpHeaderForSSOAuth;
 return (String) mserver.getAttribute(new ObjectName(
 "jboss.web:service=WebServer"), "HttpHeaderForSSOAuth");
 }

 /**
 * Get the configured session cookie id in the tomcat service
 *
 * @return
 * @throws JMException
 */
 protected String getSessionCookieId() throws JMException {
 if (this.sessionCookieForSSOAuth != null)
 return this.sessionCookieForSSOAuth;
 return (String) mserver.getAttribute(new ObjectName(
 "jboss.web:service=WebServer"), "SessionCookieForSSOAuth");
 }

 /**
 * Get the value of a cookie if the name matches the token
 *
 * @param cookies
 * array of cookies
 * @param numCookies
 * number of cookies in the array
 * @param token
 * Key
 * @return value of cookie
 */
 protected String getCookieValue(Cookie[] cookies, int numCookies,
 String token) {
 for (int i = 0; i < numCookies; i++) {
 Cookie cookie = cookies[i];
 log.trace("Matching cookieToken:" + token + " with cookie name="
 + cookie.getName());
 if (token.equals(cookie.getName())) {
 if (trace)

CHAPTER 15. ROLE-BASED SECURITY IN APPLICATIONS

269

Report a bug

 log.trace("Cookie-" + token + " value=" + cookie.getValue());
 return cookie.getValue();
 }
 }
 return null;
 }
}

Security Guide

270

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+7825-591808+%5BLatest%5D&comment=Title%3A+Use+A+Third-Party+Authentication+System+In+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7825-591808+23+Feb+2014+16%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

CHAPTER 16. MIGRATION

16.1. CONFIGURE APPLICATION SECURITY CHANGES

Configure security for basic authentication

In previous versions of JBoss EAP, properties files placed in the
EAP_HOME/server/SERVER_NAME/conf/ directory were on classpath and could be easily found by
the UsersRolesLoginModule. In JBoss EAP 6, the directory structure has changed. Properties files
must be packaged within the application to make them available in the classpath.

IMPORTANT

You must stop the server before editing the server configuration file for your change to
be persisted on server restart.

To configure security for basic authentication, add a new security domain under security-domains to
the standalone/configuration/standalone.xml or the domain/configuration/domain.xml server
configuration file:

If the JBoss EAP 6 instance is running as a standalone server, ${jboss.server.config.dir} refers to the
EAP_HOME/standalone/configuration/ directory. If the instance is running in a managed domain,
${jboss.server.config.dir} refers to the EAP_HOME/domain/configuration/ directory.

Modify security domain names

In JBoss EAP 6, security domains no longer use the prefix java:/jaas/ in their names.

For Web applications, you must remove this prefix from the security domain configurations in
the jboss-web.xml.

For Enterprise applications, you must remove this prefix from the security domain
configurations in the jboss-ejb3.xml file. This file has replaced the jboss.xml in JBoss EAP 6.

Report a bug

<security-domain name="example">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 <module-option name="usersProperties"
 value="${jboss.server.config.dir}/example-users.properties"/>
 <module-option name="rolesProperties"
 value="${jboss.server.config.dir}/example-roles.properties"/>
 </login-module>
 </authentication>
</security-domain>

CHAPTER 16. MIGRATION

271

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4945-591678+%5BLatest%5D&comment=Title%3A+Configure+Application+Security+Changes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4945-591678+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

APPENDIX A. REFERENCE

A.1. INCLUDED AUTHENTICATION MODULES

The following authentication modules are included in JBoss EAP 6. Some of these handle authorization
as well as authentication. These usually include the word Role within the Code name.

When you configure these modules, use the Code value or the full (package qualified) name to refer to
the module.

Authentication Modules

Table A.1, “RealmDirect”

Table A.2, “RealmDirect Module Options”

Table A.3, “Client”

Table A.4, “Client Module Options”

Table A.5, “Remoting”

Table A.6, “Remoting Module Options”

Table A.7, “Certificate”

Table A.8, “Certificate Module Options”

Table A.9, “CertificateRoles”

Table A.10, “CertificateRoles Module Options”

Table A.11, “Database”

Table A.12, “Database Module Options”

Table A.13, “DatabaseCertificate”

Table A.14, “DatabaseCertificate Module Options”

Table A.15, “Identity”

Table A.16, “Identity Module Options”

Table A.17, “Ldap”

Table A.18, “Ldap Module Options”

Table A.19, “LdapExtended”

Table A.20, “LdapExtended Module Options”

Table A.21, “RoleMapping”

Table A.22, “RoleMapping Module Options”

Security Guide

272

Table A.23, “RunAs”

Table A.24, “RunAs Options”

Table A.25, “Simple”

Table A.26, “ConfiguredIdentity”

Table A.27, “ConfiguredIdentity Module Options”

Table A.28, “SecureIdentity”

Table A.29, “SecureIdentity Module Options”

Table A.30, “PropertiesUsers”

Table A.31, “SimpleUsers”

Table A.32, “LdapUsers”

Table A.33, “Kerberos”

Table A.34, “Kerberos Module Options”

Table A.35, “SPNEGO”

Table A.36, “SPNEGO Module Options”

Table A.37, “AdvancedLdap”

Table A.38, “AdvancedLdap Module Options”

Table A.39, “AdvancedADLdap”

Table A.40, “UsersRoles”

Table A.41, “UsersRoles Module Options”

Custom Authentication Modules

Table A.1. RealmDirect

Code RealmDirect

Class org.jboss.as.security.RealmDirectLoginModu
le

Description A login module implementation to interface directly
with the security realm. This login module allows all
interactions with the backing store to be delegated
to the realm removing the need for any duplicate and
synchronized definitions. Used for remoting calls and
management interface.

Table A.2. RealmDirect Module Options

APPENDIX A. REFERENCE

273

Option Type Default Description

realm string ApplicationRealm Name of the desired
realm.

Table A.3. Client

Code Client

Class org.jboss.security.ClientLoginModule

Description This login module is designed to establish caller
identity and credentials when JBoss EAP 6 is acting
as a client. It should never be used as part of a
security domain used for server authentication.

Table A.4. Client Module Options

Option Type Default Description

multi-threaded true or false false Set to true if each
thread has its own
principal and credential
storage. Set to false to
indicate that all threads
in the VM share the
same identity and
credential.

password-stacking useFirstPass or false false Set to useFirstPass to
indicate that this login
module should look for
information stored in the
LoginContext to use
as the identity. This
option can be used
when stacking other
login modules with this
one.

restore-login-identity true or false false Set to true if the identity
and credential seen at
the start of the login()
method should be
restored after the
logout() method is
invoked.

Table A.5. Remoting

Code Remoting

Security Guide

274

Class org.jboss.as.security.remoting.RemotingLogi
nModule

Description This login module is used to check if the request
currently being authenticated is a request received
over a Remoting connection, and if so the identity
that was created during the Remoting authentication
process is used and associated with the current
request. If the request did not arrive over a Remoting
connection this module does nothing and allows the
JAAS based login to continue to the next module.

Table A.6. Remoting Module Options

Option Type Default Description

password-stacking useFirstPass or false false A value of
useFirstPass indicates
that this login module
should first look to the
information stored in the
LoginContext for the
identity. This option can
be used when stacking
other login modules with
this one.

principalClass A fully-qualified
classname.

none A Principal
implementation class
which contains a
constructor that takes
String arguments for the
principal name.

unauthenticatedIden
tity

A principal name. none Defines the principal
name assigned to
requests which contain
no authentication
information. This can
allow unprotected
servlets to invoke
methods on EJBs that
do not require a specific
role. Such a principal has
no associated roles and
can only access
unsecured EJBs or EJB
methods that are
associated with the
unchecked
permission constraint.

Table A.7. Certificate

Code Certificate

APPENDIX A. REFERENCE

275

Class org.jboss.security.auth.spi.BaseCertLoginMo
dule

Description This login module is designed to authenticate users
based on X509 Certificates. A use case for this is
CLIENT-CERT authentication of a web application.

Table A.8. Certificate Module Options

Option Type Default Description

securityDomain string other Name of the security
domain that has the
JSSE configuration for
the truststore holding
the trusted certificates.

verifier class none The class name of the
org.jboss.security.a
uth.certs.X509Certifi
cateVerifier to use for
verification of the login
certificate.

Table A.9. CertificateRoles

Code CertificateRoles

Class org.jboss.security.auth.spi.CertRolesLoginM
odule

Description This login module extends the Certificate login
module to add role mapping capabilities from a
properties file. It takes all of the same options as the
Certificate login module, and adds the following
options.

Table A.10. CertificateRoles Module Options

Option Type Default Description

Security Guide

276

rolesProperties string roles.properties The name of the
resource or file
containing the roles to
assign to each user. The
role properties file must
be in the format
username=role1,role
2 where the username is
the DN of the
certificate, escaping any
= (equals) and space
characters. The
following example is in
the correct format:

CN\=unit-tests-
client,\ OU\=Red\
Hat\ Inc.,\ O\=Red\
Hat\ Inc.,\
ST\=North\
Carolina,\ C\=US

defaultRolesProperti
es

string defaultRoles.properti
es

Name of the resource or
file to fall back to if the
rolesProperties file
cannot be found.

roleGroupSeparator A single character. . (a single period) Which character to use
as the role group
separator in the
rolesProperties file.

Option Type Default Description

Table A.11. Database

Code Database

Class org.jboss.security.auth.spi.DatabaseServerL
oginModule

Description A JDBC-based login module that supports
authentication and role mapping. It is based on two
logical tables, with the following definitions.

Principals: PrincipalID (text),
Password (text)

Roles: PrincipalID (text), Role (text),
RoleGroup (text)

Table A.12. Database Module Options

APPENDIX A. REFERENCE

277

Option Type Default Description

digestCallback A fully-qualified
classname

none The class name of the DigestCallback
implementation that includes pre/post
digest content like salts for hashing the
input password. Only used if
hashAlgorithm has been specified.

dsJndiName A JNDI resource java:/DefaultDS The name of the JNDI resource storing
the authentication information. This
option is required.

hashAlgorithm String Use plain
passwords

The message digest algorithm used to
hash passwords. Supported algorithms
depend on the Java Security Provider,
but the following are supported: MD5,
SHA-1, and SHA-256.

hashCharset String The platform's
default encoding

The name of the charset/encoding to use
when converting the password String to a
byte array. This includes all supported
Java charset names.

hashEncoding String Base64 The string encoding format to use.

ignorePassword
Case

boolean false A flag indicating if the password
comparison should ignore case.

inputValidator A fully-qualified
classname

none The instance of the InputValidator
implementation used to validate the
username and password supplied by the
client.

principalsQuery prepared SQL
statement

select
Password from
Principals
where
PrincipalID=?

The prepared SQL query to obtain the
information about the principal.

rolesQuery prepared SQL
statement

none The prepared SQL query to obtain the
information about the roles. It should be
equivalent to select Role, RoleGroup
from Roles where PrincipalID=?,
where Role is the role name and the
RoleGroup column value should always
be either Roles with a capital R or
CallerPrincipal.

storeDigestCall
back

A fully-qualified
classname

none The class name of the DigestCallback
implementation that includes pre/post
digest content like salts for hashing the
store/expected password. Only used if
hashStorePassword or
hashUserPassword is true and
hashAlgorithm has been specified.

Security Guide

278

suspendResum
e

boolean true Whether any existing JTA transaction
should be suspended during database
operations.

throwValidatorE
rror

boolean false A flag that indicates whether validation
errors should be exposed to clients or not

transactionMan
agerJndiName

JNDI Resource java:/Transaction
Manager

The JNDI name of the transaction
manager used by the login module.

Option Type Default Description

Table A.13. DatabaseCertificate

Code DatabaseCertificate

Class org.jboss.security.auth.spi.DatabaseCertLogi
nModule

Description This login module extends the Certificate login
module to add role mapping capabilities from a
database table. It has the same options plus these
additional options:

Table A.14. DatabaseCertificate Module Options

Option Type Default Description

dsJndiName A JNDI resource java:/DefaultDS The name of the JNDI
resource storing the
authentication
information. This option
is required.

rolesQuery prepared SQL
statement

select
Role,RoleGroup
from Roles where
PrincipalID=?

SQL prepared
statement to be
executed in order to
map roles. It should be
an equivalent to select
Role, RoleGroup
from Roles where
PrincipalID=?, where
Role is the role name
and the RoleGroup
column value should
always be either Roles
with a capital R or
CallerPrincipal.

suspendResume true or false true Whether any existing
JTA transaction should
be suspended during
database operations.

APPENDIX A. REFERENCE

279

Table A.15. Identity

Code Identity

Class org.jboss.security.auth.spi.IdentityLoginMod
ule

Description Associates the principal specified in the module
options with any subject authenticated against the
module. The type of Principal class used is
org.jboss.security.SimplePrincipal. If no
principal option is specified a principal with the name
of guest is used.

Table A.16. Identity Module Options

Option Type Default Description

principal String guest The name to use for the
principal.

roles comma-separated list of
strings

none A comma-delimited list
of roles which will be
assigned to the subject.

Table A.17. Ldap

Code Ldap

Class org.jboss.security.auth.spi.LdapLoginModul
e

Description Authenticates against an LDAP server, when the
username and password are stored in an LDAP
server that is accessible using a JNDI LDAP provider.
Many of the options are not required, because they
are determined by the LDAP provider or the
environment.

Table A.18. Ldap Module Options

Option Type Default Description

java.naming.factory.i
nitial

class name com.sun.jndi.ldap.Ld
apCtxFactory

InitialContextFactory
implementation class
name.

java.naming.provide
r.url

ldap:// URL If the value of
java.naming.security
.protocol is SSL,
ldap://localhost:636,
otherwise
ldap://localhost:389

URL for the LDAP
server.

Security Guide

280

java.naming.security
.authentication

none, simple, or the
name of a SASL
mechanism

simple The security level to use
to bind to the LDAP
server.

java.naming.security
.protocol

transport protocol If unspecified,
determined by the
provider.

The transport protocol
to use for secure access,
such as SSL or TLS.

java.naming.security
.principal

string none The name of the
principal for
authenticating the caller
to the service. This is
built from other
properties described
below.

java.naming.security
.credentials

credential type none The type of credential
used by the
authentication scheme.
Some examples include
hashed password, clear-
text password, key, or
certificate. If this
property is unspecified,
the behavior is
determined by the
service provider.

principalDNPrefix string Prefix added to the
username to form the
user DN. You can
prompt the user for a
username and build the
fully-qualified DN by
using the
principalDNPrefix
and
principalDNSuffix.

principalDNSuffix string Suffix added to the
username to form the
user DN. You can
prompt the user for a
username and build the
fully-qualified DN by
using the
principalDNPrefix
and
principalDNSuffix.

Option Type Default Description

APPENDIX A. REFERENCE

281

useObjectCredential true or false false Whether the credential
should be obtained as an
opaque Object using the
org.jboss.security.a
uth.callback.ObjectC
allback type of
Callback rather than as a
char[] password using a
JAAS PasswordCallback.
This allows for passing
non-char[] credential
information to the LDAP
server.

rolesCtxDN fully-qualified DN none The fully-qualified DN
for the context to
search for user roles.

userRolesCtxDNAttri
buteName

attribute none The attribute in the user
object that contains the
DN for the context to
search for user roles.
This differs from
rolesCtxDN in that the
context to search for a
user's roles may be
unique for each user.

roleAttributeID attribute roles Name of the attribute
containing the user
roles.

roleAttributeIsDN true or false false Whether or not the
roleAttributeID
contains the fully-
qualified DN of a role
object. If false, the role
name is taken from the
value of the
roleNameAttributeId
attribute of the context
name. Certain directory
schemas, such as
Microsoft Active
Directory, require this
attribute to be set to
true.

Option Type Default Description

Security Guide

282

roleNameAttributeID attribute name Name of the attribute
within the roleCtxDN
context which contains
the role name. If the
roleAttributeIsDN
property is set to true,
this property is used to
find the role object's
name attribute.

uidAttributeID attribute uid Name of the attribute in
the
UserRolesAttributeD
N that corresponds to
the user ID. This is used
to locate the user roles.

matchOnUserDN true or false false Whether or not the
search for user roles
should match on the
user's fully-distinguished
DN or the username
only. If true, the full user
DN is used as the match
value. If false, only the
username is used as the
match value against the
uidAttributeName
attribute.

allowEmptyPasswor
ds

true or false false Whether to allow empty
passwords. Most LDAP
servers treat empty
passwords as
anonymous login
attempts. To reject
empty passwords, set
this to false.

Option Type Default Description

Table A.19. LdapExtended

Code LdapExtended

Class org.jboss.security.auth.spi.LdapExtLoginMo
dule

APPENDIX A. REFERENCE

283

Description An alternate LDAP login module implementation that
uses searches to locate the bind user and associated
roles. The roles query recursively follows DNs to
navigate a hierarchical role structure. It uses the same
java.naming options as the Ldap module, and uses
the following options instead of the other options of
the Ldap module.

The authentication happens in 2 steps:

1. An initial bind to the LDAP server is done
using the bindDN and bindCredential
options. The bindDN is a LDAP user with
the ability to search both the baseCtxDN
and rolesCtxDN trees for the user and
roles. The user DN to authenticate against is
queried using the filter specified by the
baseFilter attribute.

2. The resulting user DN is authenticated by
binding to the LDAP server using the user
DN as the InitialLdapContext
environment
Context.SECURITY_PRINCIPAL. The
Context.SECURITY_CREDENTIALS
property is set to the String password
obtained by the callback handler.

Table A.20. LdapExtended Module Options

Option Type Default Description

baseCtxDN fully-qualified DN none The fixed DN of the top-
level context to begin
the user search.

bindCredential string, optionally
encrypted

none See the JBoss EAP
Application Security
Guide for more
information.

bindDN fully-qualified DN none The DN used to bind
against the LDAP server
for the user and roles
queries. This DN needs
read and search
permissions on the
baseCtxDN and
rolesCtxDN values.

Security Guide

284

baseFilter LDAP filter string none A search filter used to
locate the context of
the user to authenticate.
The input username or
userDN obtained from
the login module
callback is substituted
into the filter anywhere a
{0} expression is used. A
common example for
the search filter is (uid=
{0}).

rolesCtxDN fully-qualified DN none The fixed DN of the
context to search for
user roles. This is not the
DN where the actual
roles are, but the DN
where the objects
containing the user roles
are. For example, in a
Microsoft Active
Directory server, this is
the DN where the user
account is.

roleFilter LDAP filter string none A search filter used to
locate the roles
associated with the
authenticated user. The
input username or
userDN obtained from
the login module
callback is substituted
into the filter anywhere a
{0} expression is used.
The authenticated
userDN is substituted
into the filter anywhere a
{1} is used. An example
search filter that
matches on the input
username is (member=
{0}). An alternative that
matches on the
authenticated userDN
is (member={1}).

Option Type Default Description

APPENDIX A. REFERENCE

285

roleAttributeIsDN true or false false Whether or not the
roleAttributeID
contains the fully-
qualified DN of a role
object. If false, the role
name is taken from the
value of the
roleNameAttributeId
attribute of the context
name. Certain directory
schemas, such as
Microsoft Active
Directory, require this
attribute to be set to
true.

defaultRole Role name none A role included for all
authenticated users

parseRoleNameFro
mDN

true or false false A flag indicating if the
DN returned by a query
contains the
roleNameAttributeID. If
set to true, the DN is
checked for the
roleNameATtributeID. If
set to false, the DN is
not checked for the
roleNameAttributeID.
This flag can improve
the performance of
LDAP queries.

parseUsername true or false false A flag indicating if the
DN is to be parsed for
the username. If set to
true, the DN is parsed
for the username. If set
to false the DN is not
parsed for the username.
This option is used
together with
usernameBeginString
and usernameEndString.

usernameBeginStrin
g

string none Defines the string which
is to be removed from
the start of the DN to
reveal the username.
This option is used
together with
usernameEndString.

Option Type Default Description

Security Guide

286

usernameEndString string none Defines the string which
is to be removed from
the end of the DN to
reveal the username.
This option is used
together with
usernameBeginStrin
g.

roleNameAttributeID attribute name Name of the attribute
within the roleCtxDN
context which contains
the role name. If the
roleAttributeIsDN
property is set to true,
this property is used to
find the role object's
name attribute.

distinguishedNameA
ttribute

attribute distinguishedName The name of the
attribute in the user
entry that contains the
DN of the user. This may
be necessary if the DN
of the user itself
contains special
characters (backslash
for example) that
prevent correct user
mapping. If the attribute
does not exist, the
entry's DN is used.

roleRecursion integer 0 The numbers of levels of
recursion the role search
will go below a matching
context. Disable
recursion by setting this
to 0.

searchTimeLimit integer 10000 (10 seconds) The timeout in
milliseconds for user or
role searches.

searchScope One of:
OBJECT_SCOPE,
ONELEVEL_SCOPE,
SUBTREE_SCOPE

SUBTREE_SCOPE The search scope to use.

allowEmptyPasswor
ds

true or false false Whether to allow empty
passwords. Most LDAP
servers treat empty
passwords as
anonymous login
attempts. To reject
empty passwords, set
this to false.

Option Type Default Description

APPENDIX A. REFERENCE

287

referralUserAttribute
IDToCheck

attribute none If you are not using
referrals, this option can
be ignored. When using
referrals, this option
denotes the attribute
name which contains
users defined for a
certain role (for
example, member), if
the role object is inside
the referral. Users are
checked against the
content of this attribute
name. If this option is
not set, the check will
always fail, so role
objects cannot be
stored in a referral tree.

Option Type Default Description

Table A.21. RoleMapping

Code RoleMapping

Class org.jboss.security.auth.spi.RoleMappingLogi
nModule

Description Maps a role which is the end result of the
authentication process to a declarative role. This
module must be flagged as optional when you add it
to the security domain.

Table A.22. RoleMapping Module Options

Option Type Default Description

rolesProperties The fully-qualified file
path and name of a
properties file or
resource

none The fully-qualified file
path and name of a
properties file or
resource which maps
roles to replacement
roles. The format is
original_role=role1,r
ole2,role3

replaceRole true or false false Whether to add to the
current roles, or replace
the current roles with
the mapped ones.
Replaces if set to true.

NOTE

The rolesProperties module option is required for RoleMapping.

Security Guide

288

Table A.23. RunAs

Code RunAs

Class org.jboss.security.auth.spi.RunAsLoginMod
ule

Description A helper module that pushes a run as role onto the
stack for the duration of the login phase of
authentication, and pops the run as role off the
stack in either the commit or abort phase. This login
module provides a role for other login modules that
must access secured resources in order to perform
their authentication, such as a login module which
accesses a secured EJB. RunAsLoginModule
must be configured before the login modules that
require a run as role to be established.

Table A.24. RunAs Options

Option Type Default Description

roleName role name nobody The name of the role to
use as the run as role
during the login phase.

principalName principal name nobody Name of the principal to
use as the run as
principal during login
phase. If not specified a
default of nobody is
used.

principalClass A fully-qualified
classname.

none A Principal
implementation class
which contains a
constructor that takes
String arguments for the
principal name.

Table A.25. Simple

Code Simple

Class org.jboss.security.auth.spi.SimpleServerLogi
nModule

APPENDIX A. REFERENCE

289

Description A module for quick setup of security for testing
purposes. It implements the following simple
algorithm:

If the password is null, authenticate the user
and assign an identity of guest and a role of
guest.

Otherwise, if the password is equal to the
user, assign an identity equal to the
username and both admin and guest roles.

Otherwise, authentication fails.

Simple Module Options

The Simple module has no options.

Table A.26. ConfiguredIdentity

Code ConfiguredIdentity

Class org.picketbox.datasource.security.Configure
dIdentityLoginModule

Description Associates the principal specified in the module
options with any subject authenticated against the
module. The type of Principal class used is
org.jboss.security.SimplePrincipal.

Table A.27. ConfiguredIdentity Module Options

Option Type Default Description

username string none The username for
authentication.

Security Guide

290

password encrypted string "" The password to use for
authentication. To
encrypt the password,
use the module directly
at the command line.

java
org.picketbox.datas
ource.security.Secu
reIdentityLoginMod
ule
password_to_encry
pt

Paste the result of this
command into the
module option's value
field. The default value
is an empty string.

principal Name of a principal none The principal which will
be associated with any
subject authenticated
against the module.

Option Type Default Description

Table A.28. SecureIdentity

Code SecureIdentity

Class org.picketbox.datasource.security.SecureIde
ntityLoginModule

Description This module is provided for legacy purposes. It allows
you to encrypt a password and then use the
encrypted password with a static principal. If your
application uses SecureIdentity, consider using a
password vault mechanism instead.

Table A.29. SecureIdentity Module Options

Option Type Default Description

username string none The username for
authentication.

APPENDIX A. REFERENCE

291

password encrypted string "" The password to use for
authentication. To
encrypt the password,
use the module directly
at the command line.

java
org.picketbox.datas
ource.security.Secu
reIdentityLoginMod
ule
password_to_encry
pt

Paste the result of this
command into the
module option's value
field. The default value
is an empty string.

managedConnection
FactoryName

JCA resource none The name of the JCA
connection factory for
your datasource.

Option Type Default Description

Table A.30. PropertiesUsers

Code PropertiesUsers

Class org.jboss.security.auth.spi.PropertiesUsersL
oginModule

Description Uses a properties file to store usernames and
passwords for authentication. No authorization (role
mapping) is provided. This module is only
appropriate for testing.

Table A.31. SimpleUsers

Code SimpleUsers

Class org.jboss.security.auth.spi.SimpleUsersLogi
nModule

Description This login module stores the username and clear-text
password using module-option. module-option's
name and value attributes specify a username and
password. It is included for testing only, and is not
appropriate for a production environment.

Table A.32. LdapUsers

Security Guide

292

Code LdapUsers

Class org.jboss.security.auth.spi.LdapUsersLogin
Module

Description The LdapUsers module is superseded by the
ExtendedLDAP and AdvancedLdap modules.

Table A.33. Kerberos

Code Kerberos

Class com.sun.security.auth.module.Krb5LoginMo
dule. In the IBM JDK the classname is
com.ibm.security.auth.module.Krb5LoginMo
dule.

Description Performs Kerberos login authentication, using
GSSAPI. This module is part of the security
framework from the API provided by Sun
Microsystems. Details can be found at
http://docs.oracle.com/javase/7/docs/jre/api/securi
ty/jaas/spec/com/sun/security/auth/module/Krb5L
oginModule.html. This module needs to be paired
with another module which handles the
authentication and roles mapping.

Table A.34. Kerberos Module Options

Option Type Default Description

storekey true or false false Whether or not to add
the KerberosKey to
the subject's private
credentials.

doNotPrompt true or false false If set to true, the user is
not prompted for the
password if credentials
cannot be obtained
from the cache, the
keytab, or through
shared state.

useTicketCache Boolean value of true or
false
.

false If true, the TGT is
obtained from the ticket
cache. If false, the
ticket cache is not used.

APPENDIX A. REFERENCE

293

http://docs.oracle.com/javase/7/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html

ticketcache A file or resource
representing a Kerberos
ticket cache. If this is set,
useTicketCache must
also be set to true,
otherwise a
configuration error will
be returned.

The default depends on
which operating system
you use.

Red Hat
Enterprise
Linux / Solaris:
/tmp/krb5cc_
uid, using the
numeric UID
value of the
operating
system.

Microsoft
Windows
Server: uses
the Local
Security
Authority
(LSA) API to
find the
ticketcache.

The location of the
ticket cache.

useKeyTab true or false false Whether to obtain the
principal's key from a
key table file.

keytab A file or resource
representing a Kerberos
keytab.

the location in the
operating system's
Kerberos configuration
file, or
/home/user/krb5.keyt
ab

The location of the key
table file.

principal string none The name of the
principal. This can either
be a simple user name or
a service name such as
host/testserver.acme
.com. Use this instead
of obtaining the principal
from the key table, or
when the key table
contains more than one
principal.

Option Type Default Description

Security Guide

294

useFirstPass true or false false Whether to retrieve the
username and password
from the module's
shared state, using
javax.security.auth.l
ogin.name and
javax.security.auth.l
ogin.password as the
keys. If authentication
fails, no retry attempt is
made.

tryFirstPass true or false false Same as useFirstPass,
but if authentication
fails, the module uses
the CallbackHandler
to retrieve a new
username and password.
If the second
authentication fails, the
failure is reported to the
calling application.

storePass true or false false Whether to store the
username and password
in the module's shared
state. This does not
happen if the keys
already exist in the
shared state, or if
authentication fails.

clearPass true or false false Set this to true to clear
the username and
password from the
shared state after both
phases of authentication
complete.

Option Type Default Description

Table A.35. SPNEGO

Code SPNEGO

Class org.jboss.security.negotiation.spnego.SPNE
GOLoginModule

Description Allows SPNEGO authentication to a Microsoft Active
Directory server or other environment which
supports SPNEGO. SPNEGO can also carry Kerberos
credentials. This module needs to be paired with
another module which handles authentication and
role mapping.

APPENDIX A. REFERENCE

295

Table A.36. SPNEGO Module Options

Option Type Default Description

serverSecurityDomai
n

string null. Defines the domain that
is used to retrieve the
identity of the server
service through the
kerberos login module.
This property must be
set.

removeRealmFromP
rincipal

boolean false Specifies that the
Kerberos realm should
be removed from the
principal before further
processing.

usernamePassword
Domain

string null Specifies another
security domain within
the configuration that
should be used as a
failover login when
Kerberos fails.

Table A.37. AdvancedLdap

Code AdvancedLdap

Class org.jboss.security.negotiation.AdvancedLda
pLoginModule

Description A module which provides additional functionality,
such as SASL and the use of a JAAS security domain.

Table A.38. AdvancedLdap Module Options

Option Type Default Description

bindAuthentication string none The type of SASL
authentication to use for
binding to the directory
server.

java.naming.provide
r.url

string If the value of
java.naming.security
.protocol is SSL,
ldap://localhost:686,
otherwise
ldap://localhost:389

The URI of the directory
server.

baseCtxDN fully-qualified DN none The distinguished name
to use as the base for
searches.

Security Guide

296

baseFilter String representing a
LDAP search filter.

none The filter to use to
narrow down search
results.

roleAttributeID String value
representing an LDAP
attribute.

none The LDAP attribute
which contains the
names of authorization
roles.

roleAttributeIsDN true or false false Whether the role
attribute is a
Distinguished Name
(DN).

roleNameAttributeID String representing an
LDAP attribute.

none The attribute contained
within the
RoleAttributeId which
contains the actual role
attribute.

recurseRoles true or false false Whether to recursively
search the
RoleAttributeId for
roles.

referralUserAttribute
IDToCheck

attribute none If you are not using
referrals, this option can
be ignored. When using
referrals, this option
denotes the attribute
name which contains
users defined for a
certain role (for
example, member), if
the role object is inside
the referral. Users are
checked against the
content of this attribute
name. If this option is
not set, the check will
always fail, so role
objects cannot be
stored in a referral tree.

Option Type Default Description

Table A.39. AdvancedADLdap

Code AdvancedADLdap

Class org.jboss.security.negotiation.AdvancedADL
oginModule

Description This module extends the AdvancedLdap login
module, and adds extra parameters that are relevant
to Microsoft Active Directory.

APPENDIX A. REFERENCE

297

Table A.40. UsersRoles

Code UsersRoles

Class org.jboss.security.auth.spi.UsersRolesLogin
Modul

Description A simple login module that supports multiple users
and user roles stored in two different properties files.

Table A.41. UsersRoles Module Options

Option Type Default Description

usersProperties Path to a file or
resource.

users.properties The file or resource
which contains the user-
to-password mappings.
The format of the file is
username=password

rolesProperties Path to a file or
resource.

roles.properties The file or resource
which contains the user-
to-role mappings. The
format of the file is
username=role1,role
2,role3

password-stacking useFirstPass or false false A value of
useFirstPass indicates
that this login module
should first look to the
information stored in the
LoginContext for the
identity. This option can
be used when stacking
other login modules with
this one.

Security Guide

298

hashAlgorithm String representing a
password hashing
algorithm.

none The name of the
java.security.Messag
eDigest algorithm to
use to hash the
password. There is no
default so this option
must be explicitly set to
enable hashing. When
hashAlgorithm is
specified, the clear text
password obtained from
the CallbackHandler
is hashed before it is
passed to
UsernamePassword
LoginModule.validat
ePassword as the
inputPassword
argument. The
password stored in the
users.properties file
must be comparably
hashed.

hashEncoding base64 or hex base64 The string format for the
hashed password, if
hashAlgorithm is also
set.

hashCharset string The default encoding
set in the container's
runtime environment

The encoding used to
convert the clear-text
password to a byte
array.

unauthenticatedIden
tity

principal name none Defines the principal
name assigned to
requests which contain
no authentication
information. This can
allow unprotected
servlets to invoke
methods on EJBs that
do not require a specific
role. Such a principal has
no associated roles and
can only access
unsecured EJBs or EJB
methods that are
associated with the
unchecked
permission constraint.

Option Type Default Description

Custom Authentication Modules

Authentication modules are implementations of javax.security.auth.spi.LoginModule. Refer to the API
documentation for more information about creating a custom authentication module.

APPENDIX A. REFERENCE

299

Report a bug

A.2. INCLUDED AUTHORIZATION MODULES

The following modules provide authorization services.

Code Class

DenyAll org.jboss.security.authorization.modules.AllDenyAuth
orizationModule

PermitAll org.jboss.security.authorization.modules.AllPermitAu
thorizationModule

Delegating org.jboss.security.authorization.modules.DelegatingA
uthorizationModule

Web org.jboss.security.authorization.modules.web.WebAut
horizationModule

JACC org.jboss.security.authorization.modules.JACCAutho
rizationModule

XACML org.jboss.security.authorization.modules.XACMLAuth
orizationModule

AllDenyAuthorizationModule

This is a simple authorization module that always denies an authorization request. No configuration
options are available.

AllPermitAuthorizationModule

This is a simple authorization module that always permits an authorization request. No configuration
options are available.

DelegatingAuthorizationModule

This is the default authorization module that delegates decision making to the configured delegates.

WebAuthorizationModule

This is the default web authorization module with the default Tomcat authorization logic (permit all).

JACCAuthorizationModule

This module enforces JACC semantics using two delegates (WebJACCPolicyModuleDelegate for web
container authorization requests and EJBJACCPolicyModuleDelegate for EJB container requests). No
configuration options available.

XACMLAuthorizationModule

This module enforces XACML authorization using two delegates for web and EJB containers
(WebXACMLPolicyModuleDelegate and EJBXACMLPolicyModuleDelegate). It creates a PDP object
based on registered policies and evaluates web or EJB requests against it.

Security Guide

300

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4732-741646+%5BLatest%5D&comment=Title%3A+Included+Authentication+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4732-741646+05+Feb+2015+20%3A33+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

AbstractAuthorizationModule

This is the base authorization module which has to be overridden and provides a facility for delegating to
other authorization modules.

Report a bug

A.3. INCLUDED SECURITY MAPPING MODULES

The following security mapping roles are provided in JBoss EAP 6.

Code Class

PropertiesRoles org.jboss.security.mapping.providers.role.Pr
opertiesRolesMappingProvider

SimpleRoles org.jboss.security.mapping.providers.role.Si
mpleRolesMappingProvider

DeploymentRoles org.jboss.security.mapping.providers.Deploy
mentRolesMappingProvider

DatabaseRoles org.jboss.security.mapping.providers.role.Da
tabaseRolesMappingProvider

LdapRoles org.jboss.security.mapping.providers.role.Ld
apRolesMappingProvider

LdapAttributes org.jboss.security.mapping.providers.attribut
e.LdapAttributeMappingProvider

DeploymentRolesMappingProvider

A Role Mapping Module that takes into consideration a principal to roles mapping that can be done in
jboss-web.xml and jboss-app.xml deployment descriptors.

Example A.1. Example

org.jboss.security.mapping.providers.DeploymentRoleToRolesMappingProvider

A Role to Roles Mapping Module that takes into consideration a principal to roles mapping that can be

<jboss-web>
...
 <security-role>
 <role-name>Support</role-name>
 <principal-name>Mark</principal-name>
 <principal-name>Tom</principal-name>
 </security-role>
...
</jboss-web>

APPENDIX A. REFERENCE

301

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+6877-714390+%5BLatest%5D&comment=Title%3A+Included+Authorization+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6877-714390+30+Sep+2014+20%3A25+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

A Role to Roles Mapping Module that takes into consideration a principal to roles mapping that can be
done in the deployment descriptors jboss-web.xml and jboss-app.xml. In this case principal-name
denotes role to map other roles.

Example A.2. Example

Which means that each principal having role Support or Sales will also have role Employee assigned.

org.jboss.security.mapping.providers.OptionsRoleMappingProvider

Role Mapping Provider that picks up the roles from the options and then appends them to the passed
Group. Takes the properties style mapping of role name (key) with a comma separated list of roles
(values).

org.jboss.security.mapping.providers.principal.SimplePrincipalMappingProvider

A principal mapping provider that takes in a SimplePrincipal and converts into SimplePrincipal with a
different principal name.

DatabaseRolesMappingProvider

A MappingProvider that reads roles from a database.

Options:

dsJndiName: JNDI name of data source used to map roles to the user.

rolesQuery: This option should be a prepared statement equivalent to "select RoleName from
Roles where User=?" ? is substituted with current principal name.

suspendResume: Boolean - To suspend and later resume transaction associated with current
thread while performing search for roles.

transactionManagerJndiName: JNDI name of Transaction mamager (default is
java:/TransactionManager)

LdapRolesMappingProvider

A mapping provider that assigns roles to an user using a LDAP server to search for the roles.

Options:

bindDN: The DN used to bind against the LDAP server for the user and roles queries. This DN
needs read and search permissions on the baseCtxDN and rolesCtxDN values.

bindCredential: The password for the bindDN. This can be encrypted if the jaasSecurityDomain

 <jboss-web>
 ...
 <security-role>
 <role-name>Employee</role-name>
 <principal-name>Support</principal-name>
 <principal-name>Sales</principal-name>
 </security-role>
 ...
 </jboss-web>

Security Guide

302

bindCredential: The password for the bindDN. This can be encrypted if the jaasSecurityDomain
is specified.

rolesCtxDN: The fixed DN of the context to search for user roles. This is not the DN where the
actual roles are, but the DN where the objects containing the user roles are. For example, in a
Microsoft Active Directory server, this is the DN where the user account is.

roleAttributeID: The LDAP attribute which contains the names of authorization roles.

roleAttributeIsDN: Whether or not the roleAttributeID contains the fully-qualified DN of a role
object. If false, the role name is taken from the value of the roleNameAttributeId attribute of
the context name. Certain directory schemas, such as Microsoft Active Directory, require this
attribute to be set to true.

roleNameAttributeID: Name of the attribute within the roleCtxDN context which contains the
role name. If the roleAttributeIsDN property is set to true, this property is used to find the role
object's name attribute.

parseRoleNameFromDN: A flag indicating if the DN returned by a query contains the
roleNameAttributeID. If set to true, the DN is checked for the roleNameATtributeID. If set to
false, the DN is not checked for the roleNameAttributeID. This flag can improve the
performance of LDAP queries.

roleFilter: A search filter used to locate the roles associated with the authenticated user. The
input username or userDN obtained from the login module callback is substituted into the filter
anywhere a {0} expression is used. The authenticated userDN is substituted into the filter
anywhere a {1} is used. An example search filter that matches on the input username is
(member={0}). An alternative that matches on the authenticated userDN is (member={1}).

roleRecursion: The numbers of levels of recursion the role search will go below a matching
context. Disable recursion by setting this to 0.

searchTimeLimit: The timeout in milliseconds for the user/role searches. Defaults to 10000 (10
seconds).

searchScope: The search scope to use.

PropertiesRolesMappingProvider

A MappingProvider that reads roles from a properties file in the following format:
username=role1,role2,...

Options:

rolesProperties: Properties formatted file name. Expansion of JBoss variables can be used in
form of ${jboss.variable}.

SimpleRolesMappingProvider

A simple MappingProvider that reads roles from the options map. The option attribute name is the name
of principal to assign roles to and the attribute value is the comma separated role names to assign to the
principal.

Example A.3. Example

<module-option name="JavaDuke" value="JBossAdmin,Admin"/>
<module-option name="joe" value="Users"/>

APPENDIX A. REFERENCE

303

org.jboss.security.mapping.providers.attribute.DefaultAttributeMappingProvider

Checks module and locates principal name from mapping context to create attribute e-mail address
from module option named principalName + ".email" and maps it to the given principal.

LdapAttributeMappingProvider

Maps attributes from LDAP to the subject. The options include whatever options your LDAP JNDI
provider supports.

Example A.4. Examples of standard property names include:

Options:

bindDN: The DN used to bind against the LDAP server for the user and roles queries. This DN
needs read and search permissions on the baseCtxDN and rolesCtxDN values.

bindCredential: The password for the bindDN. This can be encrypted if the jaasSecurityDomain
is specified.

baseCtxDN: The fixed DN of the context to start the user search from.

baseFilter: A search filter used to locate the context of the user to authenticate. The input
username or userDN as obtained from the login module callback is substituted into the filter
anywhere a {0} expression is used. This substituion behavior comes from the standard
__DirContext.search(Name, String, Object[], SearchControls cons)__ method. An common
example search filter is (uid={0}).

searchTimeLimit: The timeout in milliseconds for the user/role searches. Defaults to 10000 (10
seconds).

attributeList: A comma-separated list of attributes for the user. For example,
mail,cn,sn,employeeType,employeeNumber.

jaasSecurityDomain: The JaasSecurityDomain to use to decrypt the
java.naming.security.principal. The encrypted form of the password is that returned by the
JaasSecurityDomain#encrypt64(byte[]) method. The org.jboss.security.plugins.PBEUtils
can also be used to generate the encrypted form.

Report a bug

A.4. INCLUDED SECURITY AUDITING PROVIDER MODULES

JBoss EAP 6 provides one security auditing provider.

Context.INITIAL_CONTEXT_FACTORY = "java.naming.factory.initial"
Context.SECURITY_PROTOCOL = "java.naming.security.protocol"
Context.PROVIDER_URL = "java.naming.provider.url"
Context.SECURITY_AUTHENTICATION = "java.naming.security.authentication"

Security Guide

304

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+6879-681391+%5BLatest%5D&comment=Title%3A+Included+Security+Mapping+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6879-681391+04+Jul+2014+00%3A07+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

Code Class

LogAuditProvider org.jboss.security.audit.providers.LogAuditProvider

Report a bug

A.5. JBOSS-WEB.XML CONFIGURATION REFERENCE

Introduction

The jboss-web.xml and web.xml deployment descriptors are both placed in the deployment's WEB-
INF directory. The jboss-web.xml is a web application deployment descriptor for JBoss EAP which
contains additional configuration options for additional features of JBoss Web. This descriptor can be
used to override the settings from web.xml descriptor and to set JBoss EAP specific settings.

Mapping Global Resources to WAR Requirements

Many of the available settings map requirements set in the application's web.xml to local resources. The
explanations of the web.xml settings can be found at
http://docs.oracle.com/cd/E13222_01/wls/docs81/webapp/web_xml.html.

For instance, if the web.xml requires jdbc/MyDataSource, the jboss-web.xml may map the global
datasource java:/DefaultDS to fulfill this need. The WAR uses the global datasource to fill its need for
jdbc/MyDataSource.

Table A.42. Common Top-Level Attributes of jboss-web.xml

Attribute Description

servlet The servlet element specifies servlet specific
bindings.

max-active-sessions Determines the max number of active sessions
allowed. If the number of sessions managed by the
session manager exceeds this value and
passivation is enabled, the excess will be
passivated based on the configured passivation-
min-idle-time

If set to -1, means no limit.

replication-config The replication-config element is used for
configuring session replication in the jboss-
web.xml file.

passivation-config The passivation-config element is used for
configuring session passivation in the jboss-
web.xml file.

distinct-name The distinct-name element specifies the EJB 3
distinct name for the web application.

data-source A mapping to a data-source required by the
web.xml.

APPENDIX A. REFERENCE

305

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+6881-591760+%5BLatest%5D&comment=Title%3A+Included+Security+Auditing+Provider+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6881-591760+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0
http://docs.oracle.com/cd/E13222_01/wls/docs81/webapp/web_xml.html

context-root The root context of the application. The default value
is the name of the deployment without the .war
suffix.

virtual-host The name of the HTTP virtual-host the application
accepts requests from. It refers to the contents of
the HTTP Host header.

annotation Describes an annotation used by the application.
Refer to <annotation> for more information.

listener Describes a listener used by the application. Refer to
<listener> for more information.

session-config This element fills the same function as the
<session-config> element of the web.xml and is
included for compatibility only.

valve Describes a valve used by the application. Refer to
<valve> for more information.

overlay The name of an overlay to add to the application.

security-domain The name of the security domain used by the
application. The security domain itself is configured in
the web-based management console or the
management CLI.

security-role This element fills the same function as the
<security-role> element of the web.xml and is
included for compatibility only.

jacc-star-role-allow The jacc-star-role-allow element specifies
whether the jacc permission generating agent in the
web layer needs to generate a
WebResourcePermission permission such that
the jacc provider can make a decision as to bypass
authorization or not.

use-jboss-authorization If this element is present and contains the case
insensitive value "true", the JBoss web authorization
stack is used. If it is not present or contains any value
that is not "true", then only the authorization
mechanisms specified in the Java Enterprise Edition
specifications are used. This element is new to JBoss
EAP 6.

Attribute Description

Security Guide

306

disable-audit Set this boolean element to false to enable and true
to disable web auditing. Web security auditing is not
part of the Java EE specification. This element is new
to JBoss EAP 6.

disable-cross-context If false, the application is able to call another
application context. Defaults to true.

enable-websockets Set this element to true in jboss-web.xml to
specify if websockets access should be enabled for
the web application.

Attribute Description

The following elements each have child elements.

<annotation>

Describes an annotation used by the application. The following table lists the child elements of an
<annotation>.

Table A.43. Annotation Configuration Elements

Attribute Description

class-name Name of the class of the annotation

servlet-security The element, such as @ServletSecurity, which
represents servlet security.

run-as The element, such as @RunAs, which represents
the run-as information.

multipart-config The element, such as @MultiPart, which represents
the multipart-config information.

<listener>

Describes a listener. The following table lists the child elements of a <listener>.

Table A.44. Listener Configuration Elements

Attribute Description

class-name Name of the class of the listener

APPENDIX A. REFERENCE

307

listener-type List of condition elements, which indicate what kind
of listener to add to the Context of the application.
Valid choices are:

CONTAINER
Adds a ContainerListener to the Context.

LIFECYCLE
Adds a LifecycleListener to the Context.

SERVLET_INSTANCE
Adds an InstanceListener to the Context.

SERVLET_CONTAINER
Adds a WrapperListener to the Context.

SERVLET_LIFECYCLE
Adds a WrapperLifecycle to the Context.

module The name of the module containing the listener class.

param A parameter. Contains two child elements, <param-
name> and <param-value>.

Attribute Description

<valve>

Describes a valve of the application. Similar to the <listener>, has class-name, module and param
elements.

Report a bug

A.6. EJB SECURITY PARAMETER REFERENCE

Table A.45. EJB security parameter elements

Element Description

<security-identity> Contains child elements pertaining to the security
identity of an EJB.

<use-caller-identity /> Indicates that the EJB uses the same security identity
as the caller.

<run-as> Contains a <role-name> element.

<run-as-principal> If present, indicates the principal assigned to
outgoing calls. If not present, outgoing calls are
assigned to a principal named anonymous.

Security Guide

308

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+4928-747298+%5BLatest%5D&comment=Title%3A+jboss-web.xml+Configuration+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4928-747298+16+Mar+2015+07%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

<role-name> Specifies the role the EJB should run as.

<description> Describes the role named in <role-name>
.

Element Description

Example A.5. Security identity examples

This example shows each tag described in Table A.45, “EJB security parameter elements” . They can
also be used inside a <session>.

Report a bug

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as>
 <description>A private internal role</description>
 <role-name>InternalRole</role-name>
 </run-as>
 </security-identity>
 </session>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as-principal>internal</run-as-principal>
 </security-identity>
 </session>
 </enterprise-beans>
</ejb-jar>

APPENDIX A. REFERENCE

309

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22930%2C+Security+Guide-6.4-1%0ABuild+Date%3A+15-04-2015+13%3A57%3A35%0ATopic+ID%3A+5053-591682+%5BLatest%5D&comment=Title%3A+EJB+Security+Parameter+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5053-591682+23+Feb+2014+16%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.4.0

APPENDIX B. REVISION HISTORY

Revision 6.4.0-11 Tuesday April 14 2015 Lucas Costi
Red Hat JBoss Enterprise Application Platform 6.4.0.GA

Security Guide

310

	Table of Contents
	PART I. SECURITY FOR RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT RED HAT JBOSS ENTERPRISE APPLICATION PLATFORM 6
	1.2. ABOUT SECURING JBOSS EAP 6

	PART II. SECURING THE PLATFORM
	CHAPTER 2. JAVA SECURITY MANAGER
	2.1. ABOUT THE JAVA SECURITY MANAGER
	2.2. ABOUT JAVA SECURITY POLICIES
	2.3. WRITE A JAVA SECURITY POLICY
	2.4. RUN JBOSS EAP 6 WITHIN THE JAVA SECURITY MANAGER
	2.5. IBM JDK AND THE JAVA SECURITY MANAGER
	2.6. DEBUG SECURITY MANAGER POLICIES

	CHAPTER 3. SECURITY REALMS
	3.1. ABOUT SECURITY REALMS
	3.2. ADD A NEW SECURITY REALM
	3.3. ADD A USER TO A SECURITY REALM

	CHAPTER 4. ENCRYPT NETWORK TRAFFIC
	4.1. SPECIFY WHICH NETWORK INTERFACE JBOSS EAP 6 USES
	4.2. CONFIGURE NETWORK FIREWALLS TO WORK WITH JBOSS EAP 6
	4.3. NETWORK PORTS USED BY JBOSS EAP 6
	4.4. ABOUT ENCRYPTION
	4.5. ABOUT SSL ENCRYPTION
	4.6. IMPLEMENT SSL ENCRYPTION FOR THE JBOSS EAP 6 WEB SERVER
	4.7. GENERATE A SSL ENCRYPTION KEY AND CERTIFICATE
	4.8. SSL CONNECTOR REFERENCE
	4.9. FIPS 140-2 COMPLIANT ENCRYPTION
	4.9.1. About FIPS 140-2 Compliance
	4.9.2. FIPS 140-2 Compliant Cryptography on IBM JDK
	Key storage
	Examine FIPS provider information

	4.9.3. FIPS 140-2 Compliant Passwords
	4.9.4. Enable FIPS 140-2 Cryptography for SSL on Red Hat Enterprise Linux 6

	CHAPTER 5. SECURE THE MANAGEMENT INTERFACES
	5.1. DEFAULT USER SECURITY CONFIGURATION
	5.2. OVERVIEW OF ADVANCED MANAGEMENT INTERFACE CONFIGURATION
	5.3. DISABLE THE HTTP MANAGEMENT INTERFACE
	5.4. REMOVE SILENT AUTHENTICATION FROM THE DEFAULT SECURITY REALM
	5.5. DISABLE REMOTE ACCESS TO THE JMX SUBSYSTEM
	5.6. CONFIGURE SECURITY REALMS FOR THE MANAGEMENT INTERFACES
	5.7. CONFIGURE THE MANAGEMENT CONSOLE FOR HTTPS
	5.8. USE DISTINCT INTERFACES FOR HTTP AND HTTPS CONNECTIONS TO THE MANAGEMENT INTERFACE
	5.9. USING 2-WAY SSL FOR THE MANAGEMENT INTERFACE AND THE CLI
	5.10. SECURE THE MANAGEMENT INTERFACES VIA JAAS
	5.11. LDAP
	5.11.1. About LDAP
	5.11.2. Use LDAP to Authenticate to the Management Interfaces
	5.11.3. Using Outbound LDAP with 2-way SSL in the Management Interface and CLI

	CHAPTER 6. SECURE THE MANAGEMENT INTERFACES WITH ROLE-BASED ACCESS CONTROL
	6.1. ABOUT ROLE-BASED ACCESS CONTROL (RBAC)
	6.2. ROLE-BASED ACCESS CONTROL IN THE MANAGEMENT CONSOLE AND CLI
	6.3. SUPPORTED AUTHENTICATION SCHEMES
	6.4. THE STANDARD ROLES
	6.5. ABOUT ROLE PERMISSIONS
	6.6. ABOUT CONSTRAINTS
	6.7. ABOUT JMX AND ROLE-BASED ACCESS CONTROL
	6.8. CONFIGURING ROLE-BASED ACCESS CONTROL
	6.8.1. Overview of RBAC Configuration Tasks
	6.8.2. Enabling Role-Based Access Control
	6.8.3. Changing the Permission Combination Policy

	6.9. MANAGING ROLES
	6.9.1. About Role Membership
	6.9.2. Configure User Role Assignment
	6.9.3. Configure User Role Assignment using the Management CLI
	6.9.4. About Roles and User Groups
	6.9.5. Configure Group Role Assignment
	6.9.6. Configure Group Role Assignment using the Management CLI
	6.9.7. About Authorization and Group Loading with LDAP
	username-to-dn
	The Group Search
	General Group Searching

	6.9.8. About Scoped Roles
	6.9.9. Creating Scoped Roles

	6.10. CONFIGURING CONSTRAINTS
	6.10.1. Configure Sensitivity Constraints
	6.10.2. Configure Application Resource Constraints
	6.10.3. Configure the Vault Expression Constraint

	6.11. CONSTRAINTS REFERENCE
	6.11.1. Application Resource Constraints Reference
	6.11.2. Sensitivity Constraints Reference

	CHAPTER 7. SECURE PASSWORDS AND OTHER SENSITIVE STRINGS WITH PASSWORD VAULT
	7.1. PASSWORD VAULT SYSTEM
	7.2. CONFIGURE AND USE PASSWORD VAULT
	7.3. CREATE A JAVA KEYSTORE TO STORE SENSITIVE STRINGS
	7.4. INITIALIZE THE PASSWORD VAULT
	7.5. OBTAIN KEYSTORE PASSWORD FROM EXTERNAL SOURCE
	7.6. CONFIGURE JBOSS EAP 6 TO USE THE PASSWORD VAULT
	7.7. CONFIGURE JBOSS EAP 6 TO USE A CUSTOM IMPLEMENTATION OF THE PASSWORD VAULT
	7.8. STORE A SENSITIVE STRING IN THE PASSWORD VAULT
	7.9. USE AN ENCRYPTED SENSITIVE STRING IN CONFIGURATION
	7.10. USE AN ENCRYPTED SENSITIVE STRING IN AN APPLICATION
	7.11. CHECK IF A SENSITIVE STRING IS IN THE PASSWORD VAULT
	7.12. REMOVE A SENSITIVE STRING FROM THE PASSWORD VAULT

	PART III. DEVELOPING SECURE APPLICATIONS
	CHAPTER 8. SECURITY OVERVIEW
	8.1. ABOUT APPLICATION SECURITY
	8.2. DECLARATIVE SECURITY
	8.2.1. Java EE Declarative Security Overview
	8.2.2. Security References
	8.2.3. Security Identity
	8.2.4. Security Roles
	8.2.5. EJB Method Permissions
	8.2.6. Enterprise Beans Security Annotations
	8.2.7. Web Content Security Constraints
	8.2.8. Enable Form-based Authentication

	CHAPTER 9. APPLICATION SECURITY
	9.1. DATASOURCE SECURITY
	9.1.1. About Datasource Security

	9.2. EJB APPLICATION SECURITY
	9.2.1. Security Identity
	9.2.1.1. About EJB Security Identity
	9.2.1.2. Set the Security Identity of an EJB

	9.2.2. EJB Method Permissions
	9.2.2.1. About EJB Method Permissions
	9.2.2.2. Use EJB Method Permissions

	9.2.3. EJB Security Annotations
	9.2.3.1. About EJB Security Annotations
	9.2.3.2. Use EJB Security Annotations

	9.2.4. Remote Access to EJBs
	9.2.4.1. About Remote Method Access
	9.2.4.2. About Remoting Callbacks
	9.2.4.3. About Remoting Server Detection
	9.2.4.4. Configure the Remoting Subsystem
	9.2.4.5. Use Security Realms with Remote EJB Clients
	9.2.4.6. Add a New Security Realm
	9.2.4.7. Add a User to a Security Realm
	9.2.4.8. About Remote EJB Access Using SSL Encryption

	9.3. JAX-RS APPLICATION SECURITY
	9.3.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
	9.3.2. Secure a JAX-RS Web Service using Annotations

	CHAPTER 10. THE SECURITY SUBSYSTEM
	10.1. ABOUT THE SECURITY SUBSYSTEM
	10.2. ABOUT THE STRUCTURE OF THE SECURITY SUBSYSTEM
	10.3. CONFIGURING THE SECURITY SUBSYSTEM
	10.3.1. Configure the Security Subsystem
	10.3.2. Security Management
	10.3.2.1. About Deep Copy Subject Mode
	10.3.2.2. Enable Deep Copy Subject Mode

	10.3.3. Security Domains
	10.3.3.1. About Security Domains
	10.3.3.2. CLI Operations Related to Security Domains

	CHAPTER 11. AUTHENTICATION AND AUTHORIZATION
	11.1. KERBEROS AND SPNEGO INTEGRATION
	11.1.1. About Kerberos and SPNEGO Integration
	11.1.2. Desktop SSO using SPNEGO
	11.1.3. Configure JBoss Negotiation for Microsoft Windows Domain
	11.1.4. Kerberos Authentication for PicketLink IDP
	11.1.5. Login with Certificate with PicketLink IDP
	11.1.5.1. JBoss EAP 6 SSL Configuration

	11.2. AUTHENTICATION
	11.2.1. About Authentication
	11.2.2. Configure Authentication in a Security Domain

	11.3. JAAS - JAVA AUTHENTICATION AND AUTHORIZATION SERVICE
	11.3.1. About JAAS
	11.3.2. JAAS Core Classes
	11.3.3. Subject and Principal classes
	11.3.4. Subject Authentication

	11.4. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
	11.4.1. About Java Authentication SPI for Containers (JASPI) Security
	11.4.2. Configure Java Authentication SPI for Containers (JASPI) Security

	11.5. AUTHORIZATION
	11.5.1. About Authorization
	11.5.2. Configure Authorization in a Security Domain

	11.6. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
	11.6.1. About Java Authorization Contract for Containers (JACC)
	11.6.2. Configure Java Authorization Contract for Containers (JACC) Security
	11.6.3. Fine Grained Authorization Using XACML
	11.6.3.1. About Fine Grained Authorization and XACML
	11.6.3.2. Configure XACML for Fine Grained Authorization

	11.7. SECURITY AUDITING
	11.7.1. About Security Auditing
	11.7.2. Configure Security Auditing
	11.7.3. New Security Properties

	11.8. SECURITY MAPPING
	11.8.1. About Security Mapping
	11.8.2. Configure Security Mapping in a Security Domain

	11.9. USE A SECURITY DOMAIN IN YOUR APPLICATION

	CHAPTER 12. SINGLE SIGN ON (SSO)
	12.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
	12.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
	12.3. CHOOSE THE RIGHT SSO IMPLEMENTATION
	12.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION
	12.5. ABOUT KERBEROS
	12.6. ABOUT SPNEGO
	12.7. ABOUT MICROSOFT ACTIVE DIRECTORY
	12.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB APPLICATIONS
	12.9. CONFIGURE SPNEGO FALL BACK TO FORM AUTHENTICATION

	CHAPTER 13. SINGLE SIGN-ON WITH SAML
	13.1. ABOUT SECURITY TOKEN SERVICE (STS)
	13.2. CONFIGURE SECURITY TOKEN SERVICE (STS)
	13.3. ABOUT PICKETLINK STS LOGIN MODULES
	13.4. CONFIGURE STSISSUINGLOGINMODULE
	13.5. CONFIGURE STSVALIDATINGLOGINMODULE
	13.6. STS CLIENT POOLING
	Using STSClientPoolFactory

	13.7. SAML WEB BROWSER BASED SSO
	13.7.1. About SAML Web Browser Based SSO
	13.7.2. Setup SAML v2 based Web SSO
	13.7.3. Configure Identity Provider
	13.7.4. Configure Service Provider using HTTP/REDIRECT Binding
	13.7.5. Setup SAML v2 based Web SSO using HTTP/POST Binding
	13.7.6. Configure Dynamic Account Chooser at a Service Provider
	13.7.7. Configuration of IDP-initiated SSO

	13.8. CONFIGURE SAML GLOBAL LOGOUT PROFILE

	CHAPTER 14. LOGIN MODULES
	14.1. USING MODULES
	14.1.1. Password Stacking
	14.1.2. Password Hashing
	14.1.3. Unauthenticated Identity
	14.1.4. Ldap Login Module
	14.1.5. LdapExtended Login Module
	14.1.6. UsersRoles Login Module
	14.1.7. Database Login Module
	14.1.8. Certificate Login Module
	14.1.9. Identity Login Module
	14.1.10. RunAs Login Module
	14.1.10.1. RunAsIdentity Creation

	14.1.11. Client Login Module
	14.1.12. SPNEGO Login Module
	14.1.13. RoleMapping Login Module
	14.1.14. bindCredential Module Option

	14.2. CUSTOM MODULES
	14.2.1. Subject Usage Pattern Support
	14.2.2. Custom LoginModule Example

	CHAPTER 15. ROLE-BASED SECURITY IN APPLICATIONS
	15.1. JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)
	15.2. ABOUT JAVA AUTHENTICATION AND AUTHORIZATION SERVICE (JAAS)
	15.3. USE ROLE-BASED SECURITY IN SERVLETS
	15.4. USE A THIRD-PARTY AUTHENTICATION SYSTEM IN YOUR APPLICATION

	CHAPTER 16. MIGRATION
	16.1. CONFIGURE APPLICATION SECURITY CHANGES

	APPENDIX A. REFERENCE
	A.1. INCLUDED AUTHENTICATION MODULES
	A.2. INCLUDED AUTHORIZATION MODULES
	A.3. INCLUDED SECURITY MAPPING MODULES
	A.4. INCLUDED SECURITY AUDITING PROVIDER MODULES
	A.5. JBOSS-WEB.XML CONFIGURATION REFERENCE
	A.6. EJB SECURITY PARAMETER REFERENCE

	APPENDIX B. REVISION HISTORY

