‘® redhat.

Red Hat Enterprise Virtualization 3.6

Python SDK Guide

Using the Red Hat Enterprise Virtualization Python SDK

Last Updated: 2017-09-27

Red Hat Enterprise Virtualization 3.6 Python SDK Guide

Using the Red Hat Enterprise Virtualization Python SDK

Red Hat Enterprise Virtualization Documentation Team
Red Hat Customer Content Services
rhev-docs@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0

Unported License. If you distribute this document, or a modified version of it, you must provide

attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is aregistered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This quide describes Red Hat Enterprise Virtualization's Python Software Development Kit.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

PART I. THE PYTHON SOFWARE DEVELOPMENT KIT .ottt iiiiiiiiiieeiineennnees 3
CHAPTER 1. OVERVIEW i ittt ittt ittt teiaeeeianeesaseesnsccsascesnnccnnnees 4
1.1. PREREQUISITES 4
1.2. INSTALLING THE PYTHON SOFTWARE DEVELOPMENT KIT 4
CHAPTER 2. PYTHON QUICK START EXAMPLE ..ottt iiiiiieiiieeineeianecnnnees 6

2.1.PYTHON QUICK START INTRODUCTION 6
2.2. EXAMPLE: ACCESSING THE API ENTRY POINT USING PYTHON 6
2.3. EXAMPLE: LISTING THE DATA CENTER COLLECTION USING PYTHON 7
2.4. EXAMPLE: LISTING THE CLUSTER COLLECTION USING PYTHON 8
2.5. EXAMPLE: LISTING THE LOGICAL NETWORKS COLLECTION USING PYTHON 9
2.6. EXAMPLE: LISTING THE HOST COLLECTION USING PYTHON 9
2.7. EXAMPLE: LISTING THE ISO FILES IN AN ISO STORAGE DOMAIN 10

2.8. EXAMPLE: LISTING THE SIZE OF A VIRTUAL MACHINE "
2.9. EXAMPLE: APPROVING A HOST USING PYTHON "
2.10. EXAMPLE: CREATING NFS DATA STORAGE USING PYTHON 12
2.11. EXAMPLE: CREATING NFS ISO STORAGE USING PYTHON 14
2.12. EXAMPLE: ATTACHING STORAGE DOMAINS TO A DATA CENTER USING PYTHON 15
2.13. EXAMPLE: ACTIVATING STORAGE DOMAINS USING PYTHON 16
2.14. EXAMPLE: CREATING A VIRTUAL MACHINE USING PYTHON 18
2.15. EXAMPLE: CREATING A VIRTUAL MACHINE NIC USING PYTHON 19
2.16. EXAMPLE: CREATING A VIRTUAL MACHINE STORAGE DISK USING PYTHON 20
2.17. EXAMPLE: ATTACHING AN ISO IMAGE TO A VIRTUAL MACHINE USING PYTHON 21
2.18. EXAMPLE: DETACHING A DISK USING PYTHON 24
2.19. EXAMPLE: STARTING A VIRTUAL MACHINE USING PYTHON 24
2.20. EXAMPLE: STARTING A VIRTUAL MACHINE WITH OVERRIDDEN PARAMETERS USING PYTHON 25
2.21. EXAMPLE: STARTING A VIRTUAL MACHINE WITH CLOUD-INIT USING PYTHON 26
2.22. EXAMPLE: CHECKING SYSTEM EVENTS USING PYTHON 27
CHAPTER 3. USING THE SOFTWARE DEVELOPMENT KIT ..ottt ittt ieiieenann 29
3.1. CONNECTING TO THE API USING PYTHON 29
3.2. RESOURCES AND COLLECTIONS 30
3.3. RETRIEVING RESOURCES FROM A COLLECTION 31
3.4. RETRIEVING A SPECIFIC RESOURCE FROM A COLLECTION 31
3.5.RETRIEVING A LIST OF RESOURCES FROM A COLLECTION 32
3.6. ADDING A RESOURCE TO A COLLECTION 33
3.7.UPDATING A RESOURCE IN A COLLECTION 34
3.8. REMOVING A RESOURCE FROM A COLLECTION 34
3.9. HANDLING ERRORS 35
CHAPTER 4.PYTHON REFERENCE DOCUMENTATION ... ittt iiiiieieeenaneannns 36
4.1.PYTHON REFERENCE DOCUMENTATION 36
APPENDIX A. REVISION HISTORY ottt iiiietiiteeinsetensecensacannacans 37

Python SDK Guide

PARTI. THE PYTHON SOFWARE DEVELOPMENT KIT

PART I. THE PYTHON SOFWARE DEVELOPMENT KIT

Python SDK Guide

CHAPTER 1. OVERVIEW

The Python software development kit is a collection of classes and functions that allows you to
interact with the Red Hat Enterprise Virtualization Manager in Python-based projects. By downloading
these classes and functions and adding them to your project, you can access a range of functionality
for high-level automation of administrative tasks.

The Python software development kit uses the rhevm-sdk-python package, which is available to
systems subscribed to aRed Hat Enterprise Virtualization entitlement poolin Red Hat
Subscription Manager.

1.1. PREREQUISITES
To install the Python software development kit, you must have:

e A system where Red Hat Enterprise Linux 6.6 or 7 is installed. Both the Server and Workstation
variants are supported.

e A subscription to Red Hat Enterprise Virtualization entitlements.

IMPORTANT

The rhevm-sdk-python package must be installed on each system where scripts that use
the software development kit will be run.

IMPORTANT

The software development kit is an interface for the Red Hat Enterprise Virtualization
REST API. As such, you must use the version of the software development kit that
corresponds to the version of your Red Hat Enterprise Virtualization environment. For
example, if you are using Red Hat Enterprise Virtualization 3.5, you must use the version
of the software development kit designed for 3.5.

1.2. INSTALLING THE PYTHON SOFTWARE DEVELOPMENT KIT

Install the Python software development kit.

Procedure 1.1. Installing the Python Software Development Kit

1. Ensure your system is subscribed to the Red Hat Enterprise Virtualization
entitlement in Red Hat Subscription Manager:

subscription-manager list --available | grep -A8 "Red Hat
Enterprise Virtualization"

subscription-manager attach --pool=pool_id

subscription-manager repos --enable=rhel-6-server-rhevm-3.6-rpms

2. Install the required packages:

I # yum install rhevm-sdk-python

CHAPTER 1. OVERVIEW

The Python software development kit and accompanying documentation are downloaded to the
/usr/1lib/python2.7/site-packages/ovirtsdk/ directory, and can now be added to Python
projects.

Python SDK Guide

CHAPTER 2. PYTHON QUICK START EXAMPLE

2.1.PYTHON QUICK START INTRODUCTION

This chapter provides a series of examples demonstrating the steps to create a virtual machine within a
basic Red Hat Enterprise Virtualization environment, using the Python SDK.

These examples use the ovirtsdk Python library provided by the rhevm-sdk-python package. This
package is available to systems subscribed to a Red Hat Enterprise Virtualization
entitlement pool in Red Hat Subscription Manager. See Section 1.2, “Installing the Python Software
Development Kit” for more information on subscribing your system(s) to download the software.

You will also need:
e A networked installation of Red Hat Enterprise Virtualization Manager.
e A networked and configured Red Hat Enterprise Virtualization Hypervisor.
e AnISO image file containing an operating system for installation on a virtual machine.

e A working understanding of both the logical and physical objects that make up a Red Hat
Enterprise Virtualization environment.

e A working understanding of the Python programming language.

IMPORTANT

All Python examples include placeholders for authentication details (USER for user
name, and PASS for password). Ensure all requests performed with Python fulfill the
authentication requirements of your environment.

NOTE

Red Hat Enterprise Virtualization Manager generates a globally unique identifier (GUID)
for the id attribute for each resource. Identifier codes in these examples might appear
different to the identifier codes in your Red Hat Enterprise Virtualization environment.

NOTE

These Python examples contain only basic exception and error handling logic. For more
information on the exception handling specific to the SDK, refer to the pydoc for the
ovirtsdk.infrastructure.errors module.

I $ pydoc ovirtsdk.infrastructure.errors

2.2. EXAMPLE: ACCESSING THE API ENTRY POINT USING PYTHON

The ovirtsdk Python library provides the API class, which acts as the entry point for the API.

Example 2.1. Accessing the API entry point using Python

This python example connects to an instance of the REST API provided by the Red Hat Enterprise

CHAPTER 2. PYTHON QUICK START EXAMPLE

Virtualization Manager at rhevm.demo. redhat.com. To connect the example creates an instance
of the API class If connection was successful a message is printed. Finally the disconnect ()
method of the API class is called to close the connection.

The parameters provided to the constructor for the API class in this example are:
e Theurl of the Manager to which to connect.
e The username of the user by which to authenticate.
e The password of the user by which to authenticate.

e Theca_file, whichis the path to a certificate. The certificate is expected to be a copy of
the one for the Manager's Certificate Authority. It can be obtained from
https://HOST/ca.crt.

The constructor for the API class supports other parameters. Only mandatory parameters are
specified in this example.

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:
api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")
print "Connected to %s successfully!" % api.get_product_info().name

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

If the connection attempt was successful, the example outputs the text:

I Connected to Red Hat Enterprise Virtualization Manager successfully!

2.3. EXAMPLE: LISTING THE DATA CENTER COLLECTION USING
PYTHON

The API class provides access to a data centers collection,named datacenters. This collection
contains all data centers in the environment.

Example 2.2. Listing the Data Center Collection using Python

This Python example lists the data centers in the datacenters collection. It also outputs some
basic information about each data center in the collection.

from ovirtsdk.api import API
from ovirtsdk.xml import params

Python SDK Guide

password="PASS",
ca_file="ca.crt")

dc_list = api.datacenters.list()

for dc in dc_list:
print "%s (%s)" % (dc.get_name(), dc.get_id())

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

In an environment where only the Default data center exists, and it is not activated, the example
outputs:

api = API (url="https://HOST",
username="USER@DOMAIN",
Default (d8b74b20-c6el-11e1-87a3-00163e77e2ed)

2.4. EXAMPLE: LISTING THE CLUSTER COLLECTION USING PYTHON

The API class provides a clusters collection,named clusters. This collection contains all clusters in
the environment.

This Python example lists the clusters in the clusters collection. It also outputs some basic
information about each cluster in the collection.

from ovirtsdk.api import API
from ovirtsdk.xml import params

api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

c_list = api.clusters.list()

for ¢ in c_list:
print "%s (%s)" % (c.get_name(), c.get_id())

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

Example 2.3. Listing the clusters collection using Python
In an environment where only the Default cluster exists, the example outputs:

8

CHAPTER 2. PYTHON QUICK START EXAMPLE

I I Default (99408929-82cf-4dc7-a532-9d998063fa95)

2.5. EXAMPLE: LISTING THE LOGICAL NETWORKS COLLECTION USING
PYTHON

The API class provides access to a logical networks collection, named networks. This collection
contains all logical networks in the environment.

Example 2.4. Listing the logical networks collection using Python
This Python example lists the logical networks in the networks collection. It also outputs some
basic information about each network in the collection.

from ovirtsdk.api import API
from ovirtsdk.xml import params

api = API(url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

n_list = api.networks.list()

for n in n_list:
print "%s (%s)" % (n.get_name(), n.get_id())

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

In an environment where only the default management network exists, the example outputs:

ovirtmgmt (00000000-0000-0000-0000-000000000009)

2.6. EXAMPLE: LISTING THE HOST COLLECTION USING PYTHON

The API class provides access to a hosts collection, named hosts. This collection contains all hosts in
the environment.

This Python example lists the hosts in the hosts collection.

from ovirtsdk.api import API
from ovirtsdk.xml import params

Example 2.5. Listing the host collection using Python
api = API(url="https://HOST",

Python SDK Guide

username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

for h in h_list:

h_list = api.hosts.list()

print "%s (%s)" % (h.get_name(), h.get_id())
api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

In an environment where only one host, named Atlantic, has been attached the example outputs:

I Atlantic (5b333c18-f224-11e1-9bdd-00163e77e2ed)

2.7. EXAMPLE: LISTING THE ISO FILES IN AN ISO STORAGE DOMAIN

The API class provides access to a storage domain collection, named storagedomains. This
collection in turn contains a files collection that describes the files in a storage domain.

This Python example prints a list of the ISO files in each ISO storage domain in the Red Hat
Enterprise Virtualization environment:

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:
api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

storage_domains = api.storagedomains.list()

for storage_domain in storage_domains:
if(storage_domain.get_type() == "iso"):

print(storage_domain.get_name() + ":\n")
files = storage_domain.files.list()

for file in files:
print(" %s" % file.get_name())

print()

Example 2.6. Listing the ISO Files in an ISO Storage Domain
api.disconnect()

10

CHAPTER 2. PYTHON QUICK START EXAMPLE

except Exception as ex:
print "Unexpected error: %s" % ex

2.8. EXAMPLE: LISTING THE SIZE OF A VIRTUAL MACHINE

The API class provides access to a virtual machine collection, named vms. This collection in turn
contains a disks collection that describes the details of each disk attached to a virtual machine.

Example 2.7. Listing the Size of a Virtual Machine
This Python example prints a list of the virtual machines in the Red Hat Enterprise Virtualization
environment along with their total disk size in bytes:

from ovirtsdk.api import API
from ovirtsdk.xml import params

api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

virtual_machines = api.vms.list()

if len(virtual_machines) > 0:

print("%-30s %s" % ("Name","Disk Size"))
print (e e e e e oot)

for virtual_machine in virtual_machines:
disks = virtual_machine.disks.list()
disk_size = 0

for disk in disks:
disk_size += disk.get_size()

print("%-30s: %d" % (virtual_machine.get_name(),
disk_size))

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

2.9. EXAMPLE: APPROVING A HOST USING PYTHON

1

Python SDK Guide

Red Hat Enterprise Virtualization Hypervisor hosts are added to the Red Hat Enterprise Virtualization
Manager during their configuration. Once you have added a Hypervisor it requires approval in the
Manager before it can actually be used in the environment.

Example 2.8. Approving a host using Python
This Python example calls the approve method for a host named Atlantic.

from ovirtsdk.api import API
from ovirtsdk.xml import params

apl API(url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

= api.hosts.get(name="Atlantic")

if(h.approve()):
print "Host '%s' approved (Status: %s)." % (h.get_name(),
h.get_status().get_state())
else:
print "Approval of '%s' failed." % h.get_name()

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

If the approve request is successful then the script will output:
Host 'Atlantic' approved (Status: Up).

Note that the status reflects that the host has been approved and is now considered to be up.

2.10. EXAMPLE: CREATING NFS DATA STORAGE USING PYTHON

When a Red Hat Enterprise Virtualization environment is first being created it is necessary to define at
least a data storage domain, and an ISO storage domain. The data storage domain will be used to store
virtual machine disk images while the ISO storage domain will be used to store installation media for
guest operating systems.

The API class provides access to a storage domains collection, named storagedomains. This
collection contains all the storage domains in the environment. The storagedomains collection can
also be used to add and remove storage domains.

NOTE

The code provided in this example assumes that the remote NFS share has been pre-
configured for use with Red Hat Enterprise Virtualization. Refer to the Red Hat
Enterprise Virtualization Administration Guide for more information on preparing NFS
shares for use.

12

CHAPTER 2. PYTHON QUICK START EXAMPLE

Example 2.9. Creating NFS data storage using Python

This Python example adds an NFS data domain to the storagedomains collection. Adding an NFS
storage domain in Python can be broken down into several steps:

1. ldentify the data center to which the storage must be attached, using the get method of
the datacenters collection.

I dc = api.datacenters.get(name="Default")

2. Ildentify the host that must be used to attach the storage, using the get method of the
hosts collection.

I h = api.hosts.get(name="Atlantic")

3. Define the Storage parameters for the NFS storage domain. In this example the NFS
location 192.0.43.10/storage/datais being used.

s = params.Storage(address="192.0.43.10", path="/storage/data",
type_="nfs")

4. Request creation of the storage domain, using the add method of the storagedomains
collection. In addition to the Storage parameters it is necessary to pass:

o A name for the storage domain.

o The data center object that was retrieved from the datacenters collection.
o The host object that was retrieved from the hosts collection.

o The type of storage domain being added (data, iso, or export).

o The storage format to use (v1, v2, or v3).

Once these steps are combined, the completed script is:

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:
api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

dc = api.datacenters.get(name="Default")
h = api.hosts.get(name="Atlantic")

s = params.Storage(address="192.0.43.10", path="/storage/data",
type_="nfs")

sd_params = params.StorageDomain(name="datal", data_center=dc,
host=h, type_="data", storage_format="v3", storage=s)

try:

13

Python SDK Guide

print "Storage Domain '%s' added (%s)." % (sd.get_name())
except Exception as ex:
print "Adding storage domain failed: %s" % ex

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

If the add method call is successful then the script will output:

sd = api.storagedomains.add(sd_params)
Storage Domain 'datal' added (bd954c03-d180-4d16-878c-2aedbdede566).

2.11. EXAMPLE: CREATING NFS ISO STORAGE USING PYTHON

To create a virtual machine you must be able to provide installation media for the guest operating
system. In a Red Hat Enterprise Virtualization environment you store the installation media on an ISO
storage domain.

NOTE

The code provided in this example assumes that the remote NFS share has been pre-
configured for use with Red Hat Enterprise Virtualization. Refer to the Red Hat
Enterprise Virtualization Administration Guide for more information on preparing NFS
shares for use.

Example 2.10. Creating NFS ISO storage using Python

This Python example adds an NFS ISO domain to the storagedomains collection. Adding an NFS
storage domain in Python can be broken down into several steps:

1. ldentify the data center to which the storage must be attached, using the get method of
the datacenters collection.

I dc = api.datacenters.get(name="Default")

2. Ildentify the host that must be used to attach the storage, using the get method of the
hosts collection.

I h = api.hosts.get(name="Atlantic")

3. Define the Storage parameters for the NFS storage domain. In this example the NFS
location 192.0.43.10/storage/iso is being used.

s = params.Storage(address="192.0.43.10", path="/storage/iso",
type_="nfs")

4. Request creation of the storage domain, using the add method of the storagedomains
collection. In addition to the Storage parameters it is necessary to pass:

14

CHAPTER 2. PYTHON QUICK START EXAMPLE

o

A name for the storage domain.

o The data center object that was retrieved from the datacenters collection.

o

The host object that was retrieved from the hosts collection.
o The type of storage domain being added (data, iso, or export).
o The storage format to use (v1, v2, or v3).

Once these steps are combined, the completed script is:

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:
api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

dc = api.datacenters.get(name="Default")
h = api.hosts.get(name="Atlantic")

s = params.Storage(address="192.0.43.10", path="/storage/iso",
type_="nfs")
sd_params = params.StorageDomain(name="iso0l", data_center=dc,
host=h, type_="iso", storage_format="v3", storage=s)
try:
sd = api.storagedomains.add(sd_params)
print "Storage Domain '%s' added (%s)." % (sd.get_name())
except Exception as ex:
print "Adding storage domain failed: %s" % ex
api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

If the add method call is successful then the script will output:

I Storage Domain 'isol' added (789814a7-7b90-4a39-alfd-f6a98cc915d8).

2.12. EXAMPLE: ATTACHING STORAGE DOMAINS TO A DATA CENTER
USING PYTHON

Once you have added storage domains to Red Hat Enterprise Virtualization you must attach them to a
data center and activate them before they will be ready for use.

Example 2.11. Attaching storage domains to a data center using Python

15

sd_data = api.storagedomains.get(name="datal")
sd_iso = api.storagedomains.get(name="iso1")

Python SDK Guide
This Python example attaches a data storage domain named datal, and an ISO storage domain
named isolto the default data center. The attach action is facilitated by the add method of the
data center's storagedomains collection.
from ovirtsdk.api import API
from ovirtsdk.xml import params
api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")
dc = api.datacenters.get(name="Default")
try:
dc_sd = dc.storagedomains.add(sd_data)
print "Attached data storage domain '%s' to data center '%s'
(Status: %s)." %
(dc_sd.get_name(), dc.get_name, dc_sd.get_status().get_state())
except Exception as ex:

print "Attaching data storage domain to data center failed:
%s." % ex

try:
dc_sd = dc.storagedomains.add(sd_iso)

print "Attached ISO storage domain '%s' to data center '%s'
(Status: %s)." %

(dc_sd.get_name(), dc.get_name, dc_sd.get_status().get_state())
except Exception as ex:

print "Attaching ISO storage domain to data center failed: %s."
% ex

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

If the calls to the add methods are successful then the script will output:

Attached data storage domain 'datal' to data center 'Default' (Status:
maintenance).

Attached ISO storage domain 'isol' to data center 'Default' (Status:
maintenance).

Note that the status reflects that the storage domains still need to be activated.

2.13. EXAMPLE: ACTIVATING STORAGE DOMAINS USING PYTHON

16

CHAPTER 2. PYTHON QUICK START EXAMPLE

Once you have added storage domains to Red Hat Enterprise Virtualization and attached them to a
data center you must activate them before they will be ready for use.

Example 2.12. Activating storage domains using Python

This Python example activates a data storage domain named datal, and an ISO storage domain
named isol. Both storage domains are attached to the Default data center. The activate action is
facilitated by the activate method of the storage domain.

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:
api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

dc = api.datacenters.get(name="Default")

sd_data = dc.storagedomains.get(name="datal")
sd_iso = dc.storagedomains.get(name="iso1l")

try:
sd_data.activate()
print "Activated data storage domain '%s' in data center '%s'
(Status: %s)." %
(sd_data.get_name(), dc.get_name,
sd_data.get_status().get_state())
except Exception as ex:
print "Activating data storage domain in data center failed:
%s." % ex

try:
sd_iso.activate()
print "Activated ISO storage domain '%s' in data center '%s'
(Status: %s)." %
(sd_iso.get_name(), dc.get_name,
sd_iso.get_status().get_state())
except Exception as ex:
print "Activating ISO storage domain in data center failed:
%s." % ex

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

If the activate requests are successful then the script will output:

Activated data storage domain 'datal' in data center 'Default' (Status:
active).

Activated ISO storage domain 'isol' in data center 'Default' (Status:
active).

17

Python SDK Guide

I Note that the status reflects that the storage domains have been activated.

2.14. EXAMPLE: CREATING A VIRTUAL MACHINE USING PYTHON

Virtual machine creation is performed in several steps. The first step, covered here, is to create the
virtual machine object itself.

18

Example 2.13. Creating a virtual machine using Python
This Python example creates a virtual machine named vm1. The virtual machine in this example:

e Must have 512 MB of memory, expressed in bytes.
I vm_memory = 512 * 1024 * 1024

e Must be attached to the Default cluster, and therefore the Default data center.
I vim_cluster = api.clusters.get(name="Default")

e Must be based on the default Blank template.
I vim_template = api.templates.get(name="Blank")

e Must boot from the virtual hard disk drive.
I vim_os = params.OperatingSystem(boot=[params.Boot(dev="hd")])

These options are combined into a virtual machine parameter object, before using the add method
of the vms collection to create the virtual machine itself.

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:
api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

vm_name = "vm1"

vm_memory = 512 * 1024 * 1024

vim_cluster = api.clusters.get(name="Default")

vm_template = api.templates.get(name="Blank")

vim_os = params.OperatingSystem(boot=[params.Boot(dev="hd")])

vm_params = params.VM(name=vm_name,
memory=vm_memory,
cluster=vm_cluster,
template=vm_template,
0S=Vm_0S)

try:

CHAPTER 2. PYTHON QUICK START EXAMPLE

api.vms.add(vm=vm_params)
print "Virtual machine '%s' added." % vm_name
except Exception as ex:
print "Adding virtual machine '%s' failed: %s" % (vm_name, ex)

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

If the add request is successful then the script will output:

Virtual machine 'vml' added.

2.15. EXAMPLE: CREATING A VIRTUAL MACHINE NIC USING PYTHON

To ensure a newly created virtual machine has network access you must create and attach a virtual
NIC.

Example 2.14. Creating a virtual machine NIC using Python

This Python example creates an NIC named nic1 and attaches it to the virtual machine named
vml. The NIC in this example:

e Must beavirtio network device.
I nic_interface = "virtio"
e Must be linked to the ovirtmgmt management network.
I nic_network = api.networks.get(name="ovirtmgmt")

These options are combined into an NIC parameter object, before using the add method of the
virtual machine's nics collection to create the NIC.

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:
api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

vm = api.vms.get(name="vm1i")
nic_name = "nic1"
nic_interface = "virtio"

nic_network = api.networks.get(name="ovirtmgmt")

nic_params = params.NIC(name=nic_name, interface=nic_interface,
network=nic_network)

19

Python SDK Guide

nic = vm.nics.add(nic_params)
print "Network interface '%s' added to '%s'." %
(nic.get_name(), vm.get_name())

print "Adding network interface to '%s' failed: %s" %

except Exception as ex:
(vm.get_name(), ex)
api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

If the add request is successful then the script will output:

Network interface 'nicl' added to 'vmi'.

2.16. EXAMPLE: CREATING A VIRTUAL MACHINE STORAGE DISK
USING PYTHON

To ensure a newly created virtual machine has access to persistent storage you must create and
attach a disk.

Example 2.15. Creating a virtual machine storage disk using Python

This Python example creates an 8 GB virtio disk drive and attaches it to the virtual machine
named vml. The disk in this example:

e must be stored on the storage domain named datai,

disk_storage_domain = params.StorageDomains(storage_domain=
[api.storagedomains.get(name="datal")])

e must be 8 GB in size,
I disk_size = 8*1024*1024

e must be asystem type disk (as opposed to data),
I disk_type = "system"

e must be virtio storage device,
I disk_interface = "virtio"

e must be stored in cow format, and

I disk_format = "cow"

20

CHAPTER 2. PYTHON QUICK START EXAMPLE

e must be marked as a usable boot device.
I disk_bootable = True
These options are combined into a disk parameter object, before using the add method of the

virtual machine's disks collection to create the disk itself.

from ovirtsdk.api import API
from ovirtsdk.xml import params
try:

api = API (url="https://HOST",

username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

vm api.vms.get(name="vm1i")

sd params.StorageDomains(storage_domain=
[api.storagedomains.get(name="datal")])

disk_size = 8*1024*1024

disk_type = "system"

disk_interface = "virtio"

disk_format = "cow"

disk_bootable = True

disk_params = params.Disk(storage_domains=sd,
size=disk_size,
type_=disk_type,
interface=disk_interface,
format=disk_format,
bootable=disk_bootable)

try:
d = vm.disks.add(disk_params)
print "Disk '%s' added to '%s'." % (d.get_name(),
vm.get_name())
except Exception as ex:
print "Adding disk to '%s' failed: %s" % (vm.get_name(), ex)
api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

If the add request is successful then the script will output:

I Disk 'vmi_Diskl' added to 'vmi'.

2.17. EXAMPLE: ATTACHING AN ISO IMAGE TO A VIRTUAL MACHINE
USING PYTHON

21

Python SDK Guide

To begin installing a guest operating system on a newly created virtual machine you must attach an
ISO file containing the operating system installation media.

Example 2.16. Identifying ISO images

ISO images are found in the files collection attached to the ISO storage domain. This example
lists the contents of the files collection on an ISO storage domain.

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:

api = API(url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

sd = api.storagedomains.get(name="1isol")
iso = sd.files.list()

for 1 in iso:
print "%s" % i.get_name()

except Exception as ex:

print "Unexpected error: %s" % ex

If successful the script will output an entry like this for each file found in the files collection:

I RHEL6.3-Server-x86_64-DVD1.iso

Note that because files on the ISO domain must be uniquely named the id and name attributes of
the file are shared.

Example 2.17. Attaching an ISO image to a virtual machine using Python

This Python example attaches the RHEL6.3-Server-x86_64-DVD1.1iso ISO image file to the
vml virtual machine. Once identified the image file is attached using the add method of the virtual
machine's cdroms collection.

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:

22

api = API(url="https://HOST",
username="USER@DOMAIN",
password="PASS,
ca_file="ca.crt")

sd = api.storagedomains.get(name="iso1l")
cd_iso = sd.files.get(name="RHEL6.3-Server-x86_64-DVD1.iso0")

cd_vm = api.vms.get(name="vm1i")
cd_params = params.CdRom(file=cd_iso)

CHAPTER 2. PYTHON QUICK START EXAMPLE

try:
cd_vm.cdroms.add(cd_params)
print "Attached CD to '%s'." % cd_vm.get_name()
except Exception as ex:
print "Failed to attach CD to '%s': %s" % (cd_vm.get_name(),
ex)

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

If the add request is successful then the script will output:

I Attached CD to 'vmli'.

NOTE

This procedure is for attaching an ISO image to virtual machines with a status of Down.
To attach an ISO to a virtual machine with an Up status, amend the second try
statement to the following:

try:

cdrom=cd_vm.cdroms.get (1id="00000000-0000-0000-0CO0 -
0000OPOEAEEE")

cdrom.set_file(cd _iso)

cdrom.update(current=True)

print "Attached CD to '%s'." % cd_vm.get_name()
except:

print "Failed to attach CD to '%s': %s" % (cd_vm.get_name(),
ex)

Example 2.18. Ejecting a cdrom from a Virtual Machine using Python

Eject an ISO from a virtual machine's cdrom collection.

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:
api = API(url="https://HOST",
username="USER@DOMAIN",
password="PASS,
ca_file="ca.crt")

sd = api.storagedomains.get(name="isol")
vm = api.vms.get(name="vmi")
try:

vm.cdroms.get (1d="00000000-0000-0000-0000 -
000000000000") .delete()

23

Python SDK Guide

print "Removed CD from '%s'." % vm.get_name()
except Exception as ex:

print "Failed to remove CD from '%s': %s" % (vm.get_name(), ex)
api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

2.18. EXAMPLE: DETACHING A DISK USING PYTHON

You can use the Python software development kit to detach a virtual disk from a virtual machine.

Example 2.19. Detaching a disk using Python
from ovirtsdk.api import API
from ovirtsdk.xml import params
api = API(url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")
vm = api.vms.get(name="VM_NAME")
disk = vm.disks.get(name="DISK_NAME")
detach = params.Action(detach=True)
disk.delete(action=detach)
print "Detached disk %s successfully!" % disk

api.disconnect()

except Exception as ex:
print "Unexpected error: %s" % ex

2.19. EXAMPLE: STARTING A VIRTUAL MACHINE USING PYTHON

Starting a virtual machine

This example starts the virtual machine using the start method.

from ovirtsdk.api import API
from ovirtsdk.xml import params

api = API (url="https://HOST",

Example 2.20. Starting a virtual machine using Python
username="USER@DOMAIN",

24

CHAPTER 2. PYTHON QUICK START EXAMPLE

password="PASS",
ca_file="ca.crt")
vm = api.vms.get(name="vm1i")
vm.start()
print "Started '%s'." % vm.get_name()
except Exception as ex:
print "Unable to start '%s': %s" % (vm.get_name(), ex)
api.disconnect()
except Exception as ex:
print "Unexpected error: %s" % ex

If the start request is successful then the script will output:
I Started 'vmi'.

Note that the status reflects that the virtual machine has been started and is now up.

2.20. EXAMPLE: STARTING A VIRTUAL MACHINE WITH OVERRIDDEN
PARAMETERS USING PYTHON

Starting a virtual machine with overridden parameters.

Example 2.21. Starting a virtual machine with overridden parameters using Python

This example boots a virtual machine with a Windows ISO and attaches the virtio-win_x86.vfd
floppy disk which contains Windows drivers. This action is equivalent to using the Run Once window
in the Administration or User Portal to start a virtual machine.

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:
api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")
except Exception as ex:
print "Failed to connect to API: %s" % ex

try:

vm = api.vms.get(name="Win_machine")
except Exception as ex:

print "Failed to retrieve VM: %s" % ex

cdrom = params.CdRom(file=params.File(id="windows_example.iso"))
floppy = params.Floppy(file=params.File(id="virtio-win_x86.vfd"))
try:

25

Python SDK Guide

vim.start(
action=params.Action(
vm=params .VM(
os=params.OperatingSystem(
boot=[params.Boot(dev="cdrom")]
cdroms=params.CdRoms(cdrom=[cdrom]),

)
floppies:params.Floppies(floppy:[floppy])

except Exception as ex:
print "Failed to start VM: %s" % ex

NOTE

The CD image and floppy disk file must be available in the ISO domain already. If not,
use the ISO uploader tool to upload the files. See The ISO Uploader Tool for more
information.

-

2.21. EXAMPLE: STARTING A VIRTUAL MACHINE WITH CLOUD-INIT
USING PYTHON

Starting a virtual machine with Cloud-Init using Python.

Example 2.22. Starting a virtual machine with Cloud-Init using Python

This example shows you how to start a virtual machine using the Cloud-Init tool to set a host name
and a static IP for the ethO interface.

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:
api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")
except Exception as ex:
print "Failed to connect to API: %s" % ex

try:
vm = api.vms.get(name="MyVvM")
except Exception as ex:
print "Failed to retrieve VM: %s" % ex

try:
vim.start(
action=params.Action(
vm=params .VM(
initialization=params.Initialization(
cloud_init=params.CloudInit(

26

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Virtualization/3.6/html-single/Administration_Guide/index.html#sect-The_ISO_Uploader_Tool

CHAPTER 2. PYTHON QUICK START EXAMPLE

host=params.Host (address="MyHost.example.com"),
network_configuration=params.NetworkConfiguration(
nics=params.Nics(
nic=[params.NIC(
name="etho",
boot_protocol="static",
on_boot=True,
network=params.Network (
ip=params.IP(
address="10.10.10.1",
netmask="255,255.255.0",
gateway="10.10.10.1"

except Exception as ex:

print "Failed to start VM: %s" % ex

2.22. EXAMPLE: CHECKING SYSTEM EVENTS USING PYTHON

Red Hat Enterprise Virtualization Manager records and logs many system events. These event logs are
accessible through the user interface, the system log files, and using the API. The ovirtsdk library
exposes events using the events collection.

Example 2.23. Checking System Events using Python

In this example the events collection is listed. Note that:

e The query parameter of the 1ist method is used to ensure that all available pages of
results are returned. By default the 1ist method will only return the first page of results
which defaults to a maximum of 100 records in length.

e Theresultant list is reversed to ensure that events are included in the output in the order
that they occurred.

from ovirtsdk.api import API
from ovirtsdk.xml import params

try:
api = API (url="https://HOST",
username="USER@DOMAIN",
password="PASS",
ca_file="ca.crt")

event_list = []
event_page_index = 1

27

Python SDK Guide

event_page_index)

while(len(event_page_current) != 0):
event_list = event_list + event_page_current
event_page_index = event_page_index + 1

event_page_current = api.events.list(query="page %s" %

event_page_index)
except Exception as ex:
print "Error retrieving page %s of list: %s" % (event_page_index,

event_list.reverse()

for event in event_list:
print "%s %s CODE %s - %s" % (event.get_time(),
event.get_severity().upper(),
event.get_code(),
event.get_description())

except Exception as ex:
print "Unexpected error: %s" % ex

Output from this script will look like this - albeit with different events depending on the state of the
environment:

2012-09-25T18:40:10.065-04:00 NORMAL CODE 30 - User admin@internal

logged in.
2012-09-25T18:40:10.368-04:00 NORMAL CODE 153 - VM vml was started by

admin@internal (Host: Atlantic).
2012-09-25T18:40:10.470-04:00 NORMAL CODE 30 - User admin@internal

| event_page_current = api.events.list(query="page %s" %
logged in.

28

CHAPTER 3. USING THE SOFTWARE DEVELOPMENT KIT

CHAPTER 3. USING THE SOFTWARE DEVELOPMENT KIT

3.1. CONNECTING TO THE API USING PYTHON

To connect to the REST API using Python you must create an instance of the API class from the
ovirtsdk.api module. To be able to do this it is necessary to first import the class at the start of the
script:

I from ovirtsdk.api import API

The constructor of the API class takes a number of arguments. Supported arguments are:

url

Specifies the URL of the Manager to connect to, including the /api path. This parameter is
mandatory.

username

Specifies the user name to connect using, in User Principal Name (UPN) format. This parameter is
mandatory.

password

Specifies the password for the user name provided by the username parameter. This parameter is
mandatory.

kerberos

Uses a valid Kerberos ticket to authenticate the connection. Valid values are True and False. This
parameter is optional.

key_file

Specifies a PEM formatted key file containing the private key associated with the certificate
specified by cert_file. This parameter is optional.

cert_file

Specifies a PEM formatted client certificate to be used for establishing the identity of the client on
the server. This parameter is optional.

ca_file

Specifies the certificate file of the certificate authority for the server. This parameter is mandatory
unless the insecure parameteris set to True.

port

Specifies the port to connect using, where it has not been provided as component of the url
parameter. This parameter is optional.

timeout

Specifies the amount of time in seconds that is allowed to pass before a request is to be considered
as having timed out. This parameter is optional.

29

Python SDK Guide

persistent_auth

Specifies whether persistent authentication is enabled for this connection. Valid values are True
and False. This parameter is optional and defaults to False.

insecure

Allows a connection via SSL without certificate authority. Valid values are True and False. If the
insecure parameter is set to False - which is the default - then the ca_file must be supplied to
secure the connection.

This option should be used with caution, as it may allow man-in-the-middle (MITM) attackers to
spoof the identity of the server.

filter

Specifies whether or not user permission based filter is on or off. Valid values are True and False.
If the filter parameter is set to False - which is the default - then the authentication credentials
provided must be those of an administrative user. If the filter parameter is set to True then any
user can be used and the Manager will filter the actions available to the user based on their
permissions.

debug

Specifies whether debug mode is enabled for this connection. Valid values are True and False.
This parameter is optional.

You can communicate with multiple Red Hat Enterprise Virtualization Managers by creating and
manipulating separate instances of the ovirtsdk.API Python class.

This example script creates an instance of the API class, checks that the connection is working using
the test () method, and disconnects using the disconnect () method.

from ovirtsdk.api import API

api_instance = API (url="https://rhevm3li.demo.redhat.com",
username="admin@internal",
password="Password",
ca_file="/etc/pki/ovirt-engine/ca.pem")

print "Connected successfully!"

api_instance.disconnect()

For a full list of methods supported by the API class refer to the pydoc output for the ovirtsdk.api
module.

I $ pydoc ovirtsdk.api

3.2. RESOURCES AND COLLECTIONS

The RESTful nature of the APl is evident throughout the Python bindings for both theoretical and
practical reasons. All RESTful APls have two key concepts that you need to be aware of:

Collections

30

CHAPTER 3. USING THE SOFTWARE DEVELOPMENT KIT

A collection is a set of resources of the same type. The API provides both top-level collections and
sub-collections. An example of a top-level collection is the hosts collection which contains all
virtualization hosts in the environment. An example of a sub-collection is the host .nics collection
which contains resources for all network interface cards attached to a host resource.

The interface for interacting with collections provides methods for adding resources (add), getting
resources (get), and listing resources (1ist).

Resources

A resource in a RESTful APl is an object with a fixed interface that also contains a set of attributes
that are relevant to the specific type of resource being represented. The interface for interacting
with resources provides methods for updating (update) and deleting (delete) resources.
Additionally some resources support actions specific to the resource type. An example is the
approve method of Host resources.

3.3. RETRIEVING RESOURCES FROM A COLLECTION

Resources are retrieved from a collection using the get and 1ist methods.

get

Retrieves a single resource from the collection. The item to retrieve is determined based on the
name provided as an argument. The get method takes these arguments:

e name - The name of the resource to retrieve from the collection.
e 1id - The globally unique identifier (GUID) of the resource to retrieve from the collection.

list

Retrieves any number of resources from the collection. The items to retrieve are determined based
on the criteria provided. The 1ist method takes these arguments:

e **kwargs - A dictionary of additional arguments allowing keyword based filtering.

e query - A query written in the same format as that used for searches executed using the
Red Hat Enterprise Virtualization user interfaces.

e max - The maximum number of resources to retrieve.

e case_sensitive - Whether or not search terms are to be treated as case sensitive (True
or False, the default is True).

3.4. RETRIEVING A SPECIFIC RESOURCE FROM A COLLECTION

In these examples a specific resource is retrieved from a collection using the get method.

Example 3.1. Retrieving a Specific Resource by Name

Retrieving the Default data center from the datacenters collection using the name parameter
of the get method:

I dc = api.datacenters.get("Default")

31

Python SDK Guide

This syntax is equivalent:

I dc = api.datacenters.get(name="Default")

Additional information can be retrieved for get requests using the all_content header.

Example 3.2. Retrieving Additional Information on a Specific Resource

I vm = api.vms.get(name="VMO1", all content=True)

3.5. RETRIEVING A LIST OF RESOURCES FROM A COLLECTION

In these examples a list of resources is retrieved from a collection using the 1ist method.

Example 3.3. Retrieving a List of all Resources in a Collection

Retrieving a list of all resources in the datacenters collection. The query parameter of the 1ist
method allows the use of engine based queries. In this way the SDK supports the use of queries in
the same format as those executed in the Administration and User Portals. The query parameter is
also the mechanism for providing pagination arguments while iterating through the collection.

dc_list = []
dc_page_index = 1
dc_page_current = api.datacenters.list(query="page %s" % dc_page_index)
while(len(dc_page_current) != 0):

dc_list = dc_list + dc_page_current

dc_page_index = dc_page_index + 1

dc_page_current = api.datacenters.list(query="page %s" %
dc_page_index)

In this example the list of resources contained in the datacenters collection is ultimately stored
in the locally defined dc_1ist list variable.

32

CHAPTER 3. USING THE SOFTWARE DEVELOPMENT KIT

g WARNING
The 1list method of a collection is restricted to returning only as many elements

as allowed by the SearchResultsLimit Red Hat Enterprise Virtualization
Manager configuration key.

To ensure that all records in a the 1ist are returned it is recommended that you
paginate through the results as illustrated in this example.

Alternatively you may choose to set the max parameter of the 1ist method to the
maximum number of records that you wish to retrieve.

Example 3.4. Retrieving a List of Resources in a Collection Matching a Keyword Based Filter

Retrieving a list of all resources in the datacenters collection that have a storage type of nfs.In
this example both the query parameter and **kwargs parameter are supplied. The query is used
for pagination in the same way as illustrated in the previous example. The * *kwargs parameter is
used to filter based on the storage type of the data center.

dc_list = []
dc_page_index = 1
dc_page_current = api.datacenters.list(query="page %s" % dc_page_index,
**{"storage_type": "nfs"})
while(len(dc_page_current) != 0):

dc_list = dc_list + dc_page_current

dc_page_index = dc_page_index + 1

dc_page_current = api.datacenters.list(query="page %s" %
dc_page_index, **{'"storage_type": "nfs"})

In this example the list of resources contained in the datacenters collection with a storage type
of nfs is ultimately stored in the locally defined dc_1list list variable.

3.6. ADDING A RESOURCE TO A COLLECTION

The add method of a collection adds a resource. The resource to be added is created based on the
parameters provided. Parameters are provided to the add method using an instance of an object from
the ovirtsdk.xml.params module. Which specific class from the module needs to be used varies based
on the type of resource being created.

In this example a virtual machine resource is created.

vm_params = params.VM(name="DemoVM",
cluster=api.clusters.get("Default"),
template=api.templates.get("Blank"),
memory=536870912)

Example 3.5. Adding a Resource to a Collection
vm = api.vms.add(vm_params)

33

Python SDK Guide

While the virtual machine created by this example is not yet ready to run it illustrates the process for
creating any Red Hat Enterprise Virtualization resource:

e Create aninstance of the parameter object for the type of resource being created.
e Identify the collection to which the resource will be added.
e Call the add method of the collection passing the parameter object as a parameter.

Some parameter objects also have complex parameters of their own.

Example 3.6. Complex Parameters

In this example an NFS data center running in full version 3.2 compatibility mode is being created.
To do this it is necessary to first construct a ovirtsdk.xml.params.Version object. Then this is
used as a parameter when creating an instance of a ovirtsdk.xml.params.DataCenter object
containing parameters of the data center to be created. The resource is then created using the add
method of the datacenters collection.

v_params = params.Version(major=3, minor=2)

dc_params = params.DataCenter(name="DemoDataCenter", storage_type="NFS",
version=v_params)

dc = api.datacenters.add(dc_params)

3.7.UPDATING A RESOURCE IN A COLLECTION

To update a resource you must retrieve it from the collection it resides in, modify the desired
parameters, and then call the update method for the resource to save the changes. Parameter
modification is performed by using the set_* methods of the retrieved resource.

Example 3.7. Updating a Resource

In this example the data center named DemoDataCenter has its description updated.

dc.set_description("This data center description provided using the
Python SDK")

dc = api.datacenters.get('"DemoDataCenter")
dc.update()

3.8. REMOVING A RESOURCE FROM A COLLECTION

To remove a resource you must retrieve it from the collection that contains it and call the delete
method of the resource.

Example 3.8. Removing a Resource from a Collection

Deleting a virtual machine named DemoVM from the vms collection:

34

CHAPTER 3. USING THE SOFTWARE DEVELOPMENT KIT

vm = api.vms.get('"DemoVM")
vin.delete()

3.9. HANDLING ERRORS

Where errors are encountered the Software Development Kit uses exceptions to highlight them. The
Software Development Kit defines exception types in addition to those defined by the Python
interpreter itself. These exceptions are located in the ovirtsdk.infrastructure.errors module:

ConnectionError

Raised when a transport layer error has occurred.

DisconnectedError

Raised when attempting to use SDK after it was explicitly disconnected.

ImmutableError

Raised when initiating SDK while an SDK instance already exists under the same domain.
Applicable to SDK version 3.2 and higher.

NoCertificatesError

Raised when no CA is provided and --insecure is 'False".

RequestError

Raised at any kind of oVirt server error.

UnsecuredConnectionAttemptError

Raised when HTTP protocol is used while server is running HTTPS.

MissingParametersError

Raised when you are trying to use get() method without providing either id or name.

These exceptions can be caught and handled like any other Python exception:

from ovirtsdk.xml import params

try:
api = API(url="https://HOST",
user="USER,
pass="PASS,
ca_file="/etc/pki/ovirt-engine/ca.pem")
except ConnectionError, err:

from ovirtsdk.api import API
print "Connection failed: %s" % err

| Example 3.9. Catching a ConnectionError Exception

35

Python SDK Guide

CHAPTER 4. PYTHON REFERENCE DOCUMENTATION

4.1.PYTHON REFERENCE DOCUMENTATION

Documentation generated using pydoc is available for the following modules. The documentation is
provided by the rhevm-sdk-python package.

e ovirtsdk.api
e ovirtsdk.infrastructure.brokers
e ovirtsdk.infrastructure.errors

Run the following command on the machine on which the Red Hat Enterprise Virtualization Manager is
installed to view the latest version of these documents:

I $ pydoc [MODULE]

36

http://docs.python.org/library/pydoc.html

APPENDIX A. REVISION HISTORY

APPENDIX A. REVISION HISTORY

Revision 3.6-6 Tue 01 Mar 2016 Red Hat Enterprise Virtualization
Documentation Team
Updated 3.5 documentation links to 3.6.

Revision 3.6-5 Mon 22 Feb 2016 Red Hat Enterprise Virtualization
Documentation Team
Initial revision for Red Hat Enterprise Virtualization 3.6 general availability.

Revision 3.6-4 Fri11 Dec 2015 Red Hat Enterprise Virtualization
Documentation Team
BZ#1284288 - Changed references to the 'rhevm' management network to 'ovirtmgmt'.

Revision 3.6-3 Wed 18 Nov 2015 Red Hat Enterprise Virtualization
Documentation Team
Final revision for Red Hat Enterprise Virtualization 3.6 beta.

Revision 3.6-2 Wed 30 Sep 2015 Red Hat Enterprise Virtualization
Documentation Team
BZ#1252760 - Added kerberos argument for connecting to the API.
BZ#1240212 - Updated the Python SDK package name.

Revision 3.6-1 Mon 10 Aug 2015 Red Hat Enterprise Virtualization

Documentation Team
Initial creation for the Red Hat Enterprise Virtualization 3.6 release.

37

https://bugzilla.redhat.com/show_bug.cgi?id=1284288
https://bugzilla.redhat.com/show_bug.cgi?id=1252760
https://bugzilla.redhat.com/show_bug.cgi?id=1240212

	Table of Contents
	PART I. THE PYTHON SOFWARE DEVELOPMENT KIT
	CHAPTER 1. OVERVIEW
	1.1. PREREQUISITES
	1.2. INSTALLING THE PYTHON SOFTWARE DEVELOPMENT KIT

	CHAPTER 2. PYTHON QUICK START EXAMPLE
	2.1. PYTHON QUICK START INTRODUCTION
	2.2. EXAMPLE: ACCESSING THE API ENTRY POINT USING PYTHON
	2.3. EXAMPLE: LISTING THE DATA CENTER COLLECTION USING PYTHON
	2.4. EXAMPLE: LISTING THE CLUSTER COLLECTION USING PYTHON
	2.5. EXAMPLE: LISTING THE LOGICAL NETWORKS COLLECTION USING PYTHON
	2.6. EXAMPLE: LISTING THE HOST COLLECTION USING PYTHON
	2.7. EXAMPLE: LISTING THE ISO FILES IN AN ISO STORAGE DOMAIN
	2.8. EXAMPLE: LISTING THE SIZE OF A VIRTUAL MACHINE
	2.9. EXAMPLE: APPROVING A HOST USING PYTHON
	2.10. EXAMPLE: CREATING NFS DATA STORAGE USING PYTHON
	2.11. EXAMPLE: CREATING NFS ISO STORAGE USING PYTHON
	2.12. EXAMPLE: ATTACHING STORAGE DOMAINS TO A DATA CENTER USING PYTHON
	2.13. EXAMPLE: ACTIVATING STORAGE DOMAINS USING PYTHON
	2.14. EXAMPLE: CREATING A VIRTUAL MACHINE USING PYTHON
	2.15. EXAMPLE: CREATING A VIRTUAL MACHINE NIC USING PYTHON
	2.16. EXAMPLE: CREATING A VIRTUAL MACHINE STORAGE DISK USING PYTHON
	2.17. EXAMPLE: ATTACHING AN ISO IMAGE TO A VIRTUAL MACHINE USING PYTHON
	2.18. EXAMPLE: DETACHING A DISK USING PYTHON
	2.19. EXAMPLE: STARTING A VIRTUAL MACHINE USING PYTHON
	2.20. EXAMPLE: STARTING A VIRTUAL MACHINE WITH OVERRIDDEN PARAMETERS USING PYTHON
	2.21. EXAMPLE: STARTING A VIRTUAL MACHINE WITH CLOUD-INIT USING PYTHON
	2.22. EXAMPLE: CHECKING SYSTEM EVENTS USING PYTHON

	CHAPTER 3. USING THE SOFTWARE DEVELOPMENT KIT
	3.1. CONNECTING TO THE API USING PYTHON
	3.2. RESOURCES AND COLLECTIONS
	3.3. RETRIEVING RESOURCES FROM A COLLECTION
	3.4. RETRIEVING A SPECIFIC RESOURCE FROM A COLLECTION
	3.5. RETRIEVING A LIST OF RESOURCES FROM A COLLECTION
	3.6. ADDING A RESOURCE TO A COLLECTION
	3.7. UPDATING A RESOURCE IN A COLLECTION
	3.8. REMOVING A RESOURCE FROM A COLLECTION
	3.9. HANDLING ERRORS

	CHAPTER 4. PYTHON REFERENCE DOCUMENTATION
	4.1. PYTHON REFERENCE DOCUMENTATION

	APPENDIX A. REVISION HISTORY

