& RedHat

Red Hat build of Quarkus 1.7

Compiling your Quarkus applications to native
executables

Last Updated: 2021-04-19

Red Hat build of Quarkus 1.7 Compiling your Quarkus applications to native
executables

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide shows you how to compile the Quarkus Getting Started project into a native executable
and how to configure and test the native executable.

Table of Contents

o 3 o

MAKING OPEN SOURCEMORE INCLUSIVE i

CHAPTER 1. PRODUCING ANATIVE EXECUTABLEo

CHAPTER 2. CREATING A CUSTOM CONTAINERIMAGE ...t

2.1. CREATING A CONTAINER MANUALLY
2.2. CREATING A CONTAINER USING THE OPENSHIFT DOCKER BUILD

CHAPTER 3. NATIVE EXECUTABLE CONFIGURATION PROPERTIESt

3.1. CONFIGURING MEMORY CONSUMPTION FOR QUARKUS NATIVE COMPILATION

CHAPTER 4. TESTING THE NATIVE EXECUTABLE

4.1. EXCLUDING TESTS WHEN RUNNING AS A NATIVE EXECUTABLE
4.2. TESTING AN EXISTING NATIVE EXECUTABLE

CHAPTERS. ADDITIONAL RESOURCES i

Table of Contents

Red Hat build of Quarkus 1.7 Compiling your Quarkus applications to native executables

PREFACE

PREFACE

As an application developer, you can use Red Hat build of Quarkus to create microservices written in
Java that run on OpenShift and serverless environments. Applications compiled to native executables
have small memory footprints and fast startup times.

This guide shows you how to compile the Quarkus Getting Started project into a native executable and
how to configure and test the native executable. You will need the application created in Getting started
with Quarkus.

Building a native executable with Red Hat build of Quarkus covers:

Building a native executable with a single command using a container runtime such as Podman
or Docker

Creating a custom container image using the produced native executable
Creating a container image using the OpenShift Docker build strategy
Deploying the Quarkus native application to OpenShift

Configuring the native executable

Testing the native executable

Prerequisites

OpenJDK (JDK) 11 is installed and the JAVA_HOME environment variable specifies the location
of the Java SDK.

© Login to the Red Hat Customer Portal to download Red Hat build of Open JDK from the
Software Downloads page.

An OCI (Open Container Initiative) compatible container runtime, such as Podman or Docker.

A completed Quarkus Getting Started project.

o Tolearn how to build the Quarkus Getting Started project, see Getting started with
Quarkus.

o Alternatively, you can download the Quarkus quickstart archive or clone the Quarkus
Quickstarts Git repository. The sample projectisin the getting-started directory.

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.7/html-single/getting_started_with_quarkus
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.7/html-single/getting_started_with_quarkus
https://github.com/quarkusio/quarkus-quickstarts/archive/1.7.5.Final.zip

Red Hat build of Quarkus 1.7 Compiling your Quarkus applications to native executables

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. PRODUCING A NATIVE EXECUTABLE

CHAPTER 1. PRODUCING A NATIVE EXECUTABLE

You can produce a native executable from your Quarkus application using a container runtime such as
Podman or Docker. Quarkus produces a binary executable using a builder image, which you can use
together with the Red Hat Universal Base Images RHEL8-UBI and RHEL8-UBI minimal. Red Hat build of
Quarkus 1.7 uses registry.access.redhat.com/quarkus/mandrel-20-rhel8:20.3 as a default for the
quarkus.native.builder-image property.

The native executable for your application contains the application code, required libraries, Java APls,
and a reduced version of a virtual machine (VM). The smaller VM base improves the startup time of the
application and produces a minimal disk footprint.

Procedure

1. Open the Getting Started project pom.xml file and verify that it includes the native profile:

<profiles>
<profile>
<id>native</id>
<properties>
<quarkus.package.type>native</quarkus.package.type>
</properties>
</profile>
</profiles>

NOTE

Using Quarkus native profile allows you to run both the native executable and
the native image tests.

2. Build a native executable using one of the following methods:

a. Build a native executable with Docker:
I ./mvnw package -Pnative -Dquarkus.native.container-build=true
b. Build a native executable with Podman:

./mvnw package -Pnative -Dquarkus.native.container-build=true -
Dquarkus.native.container-runtime=podman

These commands create the getting-started-*-runner binary in the target directory.

IMPORTANT

Compiling a Quarkus application to a native executable consumes a lot of
memory during analysis and optimization. You can limit the amount of
memory used during native compilation by setting the
quarkus.native.native-image-xmx configuration property. Setting low
memory limits might increase the build time.

3. Run the native executable:

Red Hat build of Quarkus 1.7 Compiling your Quarkus applications to native executables

I Jtarget/getting-started-*-runner

When you build the native executable the prod profile is enabled and the Quarkus native tests
run using the prod profile. You can change this using the quarkus.test.native-image-profile
property.

CHAPTER 2. CREATING A CUSTOM CONTAINER IMAGE

CHAPTER 2. CREATING A CUSTOM CONTAINER IMAGE

You can create a container image from your Quarkus application using one of the following methods:
® Creating a container manually

e Creating a container using the OpenShift Docker build

IMPORTANT

Compiling a Quarkus application to a native executable consumes a lot of memory during
analysis and optimization. You can limit the amount of memory used during native
compilation by setting the quarkus.native.native-image-xmx configuration property.
Setting low memory limits might increase the build time.

2.1. CREATING A CONTAINER MANUALLY

This section shows you how to manually create a container image with your application for Linux
X86_64. When you produce a native image using the Quarkus Native container it creates an executable
that targets the Linux X86_64 operating system. If your host operating system is different from this, you
will not be able to run the binary directly and you will need to create a container manually.

Your Quarkus Getting Started project includes a Dockerfile.native in the src/main/docker directory
with the following content:

FROM registry.access.redhat.com/ubi8/ubi-minimal
WORKDIR /work/

COPY target/*-runner /work/application

RUN chmod 775 /work

EXPOSE 8080

CMD ["./application”, "-Dquarkus.http.host=0.0.0.0"]

UNIVERSAL BASE IMAGE (UBI)
The Dockerfiles use UBI as a base image. This base image was designed to work in

containers. The Dockerfiles use the minimal version of the base image to reduce the size
of the produced image.

Procedure
1. Build a native Linux executable using one of the following methods:

a. Build a native executable with Docker:
I ./mvnw package -Pnative -Dquarkus.native.container-build=true
b. Build a native executable with Podman:

./mvnw package -Pnative -Dquarkus.native.container-build=true -
Dquarkus.native.container-runtime=podman

2. Build the container image using one of the following methods:

a. Build the container image with Docker:

https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/ubi8/ubi
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal

Red Hat build of Quarkus 1.7 Compiling your Quarkus applications to native executables

I docker build -f src/main/docker/Dockerfile.native -t quarkus-quickstart/getting-started .
b. Build the container image with Podman
I podman build -f src/main/docker/Dockerfile.native -t quarkus-quickstart/getting-started .

3. Run the container:

a. Run the container with Docker:

I docker run -i --rm -p 8080:8080 quarkus-quickstart/getting-started
b. Run the container with Podman:

I podman run -i --rm -p 8080:8080 quarkus-quickstart/getting-started

For information about deploying Quarkus Maven applications on Red Hat OpenShift Container
Platform, see Deploying your Quarkus applications on Red Hat OpenShift Container Platform .

2.2. CREATING A CONTAINER USING THE OPENSHIFT DOCKER BUILD

You can create a container image for your Quarkus application using the OpenShift Docker build
strategy. This strategy creates a container using a build configuration in the cluster.

Prerequisites

® You have access to a Red Hat OpenShift Container Platform cluster and the latest version of
the OpenShift CLI (oc) is installed. For information about installing oc, see the "Installing the
CLI" section of the Installing and configuring OpenShift Container Platform clusters guide.

® A URL for the OpenShift APl endpoint.

Procedure

1. Login to the OpenShift CLI:

I oc login -u <username_url>

2. Create a new project in OpenShift:

I oc new-project <project_name>

3. Create a build config based on the src/main/docker/Dockerfile.native file:

cat src/main/docker/Dockerfile.native | oc new-build --name <build_name> --strategy=docker
--dockerfile -

4. Build the project:

I oc start-build <build_name> --from-dir .

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.7/html-single/deploying_your_quarkus_applications_on_red_hat_openshift_container_platform
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/index

CHAPTER 2. CREATING A CUSTOM CONTAINER IMAGE

5. Deploy the project to OpenShift:

I oc new-app <build_name>

Red Hat build of Quarkus 1.7 Compiling your Quarkus applications to native executables

CHAPTER 3. NATIVE EXECUTABLE CONFIGURATION

PROPERTIES

Configuration properties define how the native executable is generated. You can configure your
Quarkus application using the application.properties file.

Configuration properties

The following table lists the configuration properties that you can set to define how the native
executable is generated:

10

Property

quarkus.native.additional-
build-args

quarkus.native.enable-http-url-
handler

quarkus.native.enable-https-
url-handler

quarkus.native.enable-all-
security-services

quarkus.native.add-all-
charsets

quarkus.native.graalvm-home

quarkus.native.java-home

quarkus.native.native-image-
Xmx

quarkus.native.debug-build-
process

quarkus.native.publish-debug-
build-process-port

Description

Additional arguments to pass to the
build process.

Enable HTTP URL handler. This
allows you to do
URL.openConnection() for HTTP
URLs.

Enable HTTPS URL handler. This
allows you to do
URL.openConnection() for HTTPS
URLs.

Add all security services to the
native image.

Add all character sets to the native
image. This increases image size.

Contains the path of the Graal
distribution.

Contains the path of the JDK.

The maximum Java heap used to
generate the native image.

Wait for a debugger to attach to the
build process before running the
native image build. This is an
advanced option for those familiar
with GraalVM internals.

Publish the debug port when
building with docker and debug-
build-process is true.

Type

list of
string

boolea
n

boolea
n

boolea
n

boolea
n

string

File

string

boolea
n

boolea

Default

true

false

false

false

${GRAALVM_H

OME:}

${java.home}

false

true

https://docs.oracle.com/javase/8/docs/api/java/io/File.html

Property

quarkus.native.cleanup-server

quarkus.native.enable-isolates

quarkus.native.enable-
fallback-images

quarkus.native.enable-server

quarkus.native.auto-service-
loader-registration

quarkus.native.dump-proxies

quarkus.native.container-build

quarkus.native.builder-image

quarkus.native.container-
runtime

quarkus.native.container-
runtime-options

quarkus.native.enable-vm-
inspection

quarkus.native.full-stack-
traces

quarkus.native.enable-reports

quarkus.native.report-
exception-stack-traces

CHAPTER 3. NATIVE EXECUTABLE CONFIGURATION PROPERTIES

Description

Restart the native image server.

Enable isolates to improve the
memory management.

Create a JVM based fallback image
if native image fails.

Use native image server. This can
speed up compilation but can cause
changes to drop due to cache
invalidation issues.

Automatically register all META-
INF/services entries.

Dump the bytecode of all proxies
for inspection.

Build using a container runtime.
Docker is used by default.

The docker image to build the
image.

The container runtime used build
the image. For example, Docker.

Options to pass to the container
runtime.

Enable VM introspection in the
image.

Enable full stack traces in the
image.

Generate reports on call paths and
included
packages/classes/methods.

Report exceptions with a full stack
trace.

Type

boolea
n

boolea
n

boolea

boolea
n

boolea
n

boolea
n

boolea

string

string

list of
string

boolea
n

boolea
n

boolea
n

boolea
n

Default

false

true

false

false

false

false

false

registry.access.
redhat.com/qua
rkus/mandrel-
20-rhel8:20.3

false

true

false

true

1

Red Hat build of Quarkus 1.7 Compiling your Quarkus applications to native executables

Property Description Type Default
quarkus.native.report-errors- Report errors at runtime. This may boolea false
at-runtime cause your application to fail at n

runtime if you are using

unsupported feature.
quarkus.native.resources.incl A comma separated list of globs to list of
udes match resource paths that should string

be added to the native image. Use
slash (/) as a path separator on all
platforms. Globs must not start with
slash. For example you have
src/main/resources/ignored.pn
g and
src/main/resources/foo/selecte
d.png in your source tree and one
of your dependency JARs contains
bar/some.txt file, with the
following configuration
quarkus.native.resources.includes =
foo/,bar//*.txt the files
src/main/resources/foo/selecte
d.png and bar/some.txt will be
included in the native image, while
src/main/resources/ignored.pn
g will not be included. To find out
more about the glob features see
the Supported glob features and its
description.

quarkus.native.debug.enabled Enable debug and generate debug boolea false

symbols in a separate .debug file. n

Supported glob features and its description

The following table lists the supported glob features and its description:

12

Character Feature description

*%

Matches a possibly empty sequence of characters that does not contain slash (/).

Matches a possibly empty sequence of characters that might contain slash (/).

? Matches one character, but not slash.
[abc] Matches one character from the range specified in the bracket, but not slash.
[a-z] Matches one character from the range specified in the bracket, but not slash.

CHAPTER 3. NATIVE EXECUTABLE CONFIGURATION PROPERTIES

[labc] Matches one character not specified in the bracket; does not match slash.

[a-z] Matches one character outside the range specified in the bracket; does not match slash.

{one,two,three} Matches any of the alternating tokens separated by comma; the tokens may contain
wildcards, nested alternations and ranges.

\ The escape character. There are three levels of escaping: application.properties
parser, MicroProfile Config list converter, and Glob parser. All three levels use the
backslash as the escaping character.

Additional resources

® Configuring your Quarkus applications

3.1. CONFIGURING MEMORY CONSUMPTION FOR QUARKUS NATIVE
COMPILATION

Compiling a Quarkus application to a native executable consumes a lot of memory during analysis and
optimization. You can limit the amount of memory used during native compilation by setting the
quarkus.native.native-image-xmx configuration property. Setting low memory limits might increase
the build time.

Procedure

® Use one of the following methods to set a value for the quarkus.native.native-image-xmx
property to limit the memory consumption during the native image build time:

o Using the application.properties file:
I quarkus.native.native-image-xmx=<maximum_memory>
o Setting system properties:

mvn -Pnative -Dquarkus.native.container-build=true -Dquarkus.native.native-image-
Xmx=<maximum_memory>

This command builds the native executable with Docker. Add -Dquarkus.native.container-
runtime=podman argument to use Podman.

NOTE
For example, to set the memory limit to 6 GB, enter quarkus.native.native-image-

xmx=6g. The value must be a multiple of 1024 greater than 2MB. Append the letter m or
M to indicate megabytes, or g or G to indicate gigabytes.

13

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.7/html-single/configuring_your_quarkus_applications

Red Hat build of Quarkus 1.7 Compiling your Quarkus applications to native executables

CHAPTER 4. TESTING THE NATIVE EXECUTABLE

Test the application running in the native mode to test the functionality of the native executable. Use
@NativelmageTest annotation to build the native executable and run test against the http endpoints.

Procedure

1. Open the pom.xml file and verify that the native profile contains the following elements:

<plugin>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-failsafe-plugin</artifactld>
<version>${surefire-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
<configuration>
<systemPropertyVariables>
<native.image.path>${project.build.directory}/${project.build.finalName}-
runner</native.image.path>

<java.util.logging.manager>org.jboss.logmanager.LogManager</java.util.logging.manager>
<maven.home>${maven.home}</maven.home>
</systemPropertyVariables>
</configuration>
</execution>
</executions>
</plugin>

The failsafe-maven-plugin runs integration test and indicates the location of the produced
native executable.

2. Open the src/test/java/org/acme/quickstart/NativeGreetingResourcelT.java file and verify
that it includes the following content:

package org.acme.quickstart;

import io.quarkus.test.junit.NativelmageTest;

@NativelmageTest ﬂ
public class NativeGreetingResourcelT extends GreetingResourceTest { 9

// Run the same tests

ﬂ Use another test runner that starts the application from the native file before the tests.
The executable is retrieved using the native.image.path system property configured in
the Failsafe Maven Plugin.

9 This example extends the GreetingResourceTest, but you can also create a new test.

14

CHAPTER 4. TESTING THE NATIVE EXECUTABLE

3. Run the test:
I /mvnw verify -Pnative

The following example shows the output of this command:

/mvnw verify -Pnative

[getting-started-1.0-SNAPSHOT-runner:18820] universe: 587.26 ms
[getting-started-1.0-SNAPSHOT-runner:18820] (parse): 2,247.59 ms
[getting-started-1.0-SNAPSHOT-runner:18820] (inline): 1,985.70 ms
[getting-started-1.0-SNAPSHOT-runner:18820] (compile): 14,922.77 ms
[getting-started-1.0-SNAPSHOT-runner:18820] compile: 20,361.28 ms
[getting-started-1.0-SNAPSHOT-runner:18820] image: 2,228.30 ms
[getting-started-1.0-SNAPSHOT-runner:18820] write: 364.35 ms
[getting-started-1.0-SNAPSHOT-runner:18820] [total]: 52,777.76 ms

[INFO]

[INFQO] --- maven-failsafe-plugin:2.22.1:integration-test (default) @ getting-started ---
[INFO]

[INFO] -

[INFO] TESTS

[INFO] -

[INFO] Running org.acme.quickstart.NativeGreetingResourcel T

Executing [/data’home/gsmet/git/quarkus-quickstarts/getting-started/target/getting-started-
1.0-SNAPSHOT-runner, -Dquarkus.http.port=8081, -Dtest.url=http://localhost:8081, -
Dquarkus.log.file.path=build/quarkus.log]

2019-04-15 11:33:20,348 INFO [io.quarkus] (main) Quarkus 999-SNAPSHOT started in
0.002s. Listening on: http://[::]:8081

2019-04-15 11:33:20,348 INFO [io.quarkus] (main) Installed features: [cdi, resteasy]
[INFQO] Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.387 s - in
org.acme.quickstart.NativeGreetingResourcel T

NOTE

Quarkus waits for 60 seconds for the native image to start before automatically
failing the native tests. You can change this duration using the
quarkus.test.native-image-wait-time system property.

You can extend the wait time using the following command where <duration> is
the wait time in seconds:

I ./mvnw verify -Pnative -Dquarkus.test.native-image-wait-time=<duration>

4.1. EXCLUDING TESTS WHEN RUNNING AS A NATIVE EXECUTABLE

When you run tests against your native application, you can only interact with its HTTP endpoints. Tests
do not run natively, therefore they cannot link against your application’s code like they can when running
on the JVM.

You can share your test class between JVM and native executions and exclude certain tests with the
@DisabledOnNativelmage annotation to run them only on the JVM.

15

Red Hat build of Quarkus 1.7 Compiling your Quarkus applications to native executables

4.2. TESTING AN EXISTING NATIVE EXECUTABLE

You can test against the existing executable build. This allows you to run multiple sets of tests in stages
on the binary after it has been build.

Procedure
® Run a test against an already built native executable:
I ./mvnw test-compile failsafe:integration-test

This command runs the test against the existing native image using Failsafe Maven Plugin.

e Alternatively, you can specify the path to the native executable with the following command
where <paths is the native image path:

I /mvnw test-compile failsafe:integration-test -Dnative.image.path=<path>

16

CHAPTER 5. ADDITIONAL RESOURCES

CHAPTER 5. ADDITIONAL RESOURCES

® Testing your Quarkus applications

® Deploying your Quarkus applications on Red Hat OpenShift Container Platform
® Developing and compiling your Quarkus applications with Apache Maven

® Apache Maven Project

® The UBIImage Page

® The UBI-minimal Image Page

® The List of UBI-minimal Tags

Revised on 2021-04-19 12:03:05 UTC

17

https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.7/html-single/testing_your_quarkus_applications
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.7/html-single/deploying_your_quarkus_applications_on_red_hat_openshift_container_platform
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.7/html-single/developing_and_compiling_your_quarkus_applications_with_apache_maven
https://maven.apache.org/
https://access.redhat.com/containers/?tab=overview#/registry.access.redhat.com/ubi8/ubi
https://access.redhat.com/containers/#/registry.access.redhat.com/ubi8/ubi-minimal
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/ubi8/ubi-minimal

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. PRODUCING A NATIVE EXECUTABLE
	CHAPTER 2. CREATING A CUSTOM CONTAINER IMAGE
	2.1. CREATING A CONTAINER MANUALLY
	2.2. CREATING A CONTAINER USING THE OPENSHIFT DOCKER BUILD

	CHAPTER 3. NATIVE EXECUTABLE CONFIGURATION PROPERTIES
	3.1. CONFIGURING MEMORY CONSUMPTION FOR QUARKUS NATIVE COMPILATION

	CHAPTER 4. TESTING THE NATIVE EXECUTABLE
	4.1. EXCLUDING TESTS WHEN RUNNING AS A NATIVE EXECUTABLE
	4.2. TESTING AN EXISTING NATIVE EXECUTABLE

	CHAPTER 5. ADDITIONAL RESOURCES

