& RedHat

Red Hat build of Quarkus 1.11

Release Notes for Red Hat build of Quarkus 1.11

Last Updated: 2021-08-20






Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus
1.11




Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document contains release notes for Red Hat build of Quarkus 1.11.



Table of Contents

Table of Contents

1 o P 4
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION .. ..tutuinitetatatttneieiataeeeenenenenans 5
MAKING OPEN SOURCE MORE INCLUSIVE ...\ ttnttttetet ettt et et e et e et et eeienes 6
CHAPTER 1. RED HAT BUILD OF QUARKUS ... 0.0\ttt et et et et et ettt 7
CHAPTER 2. QUARKUS METERING LABELS FOR RED HAT OPENSHIFT  ......uiuieiiiiieaeananannnnn. 8
CHAPTER 3. NEW AND CHANGED FEATURES ... .. tutttttttnttetet ettt et et et e 9
3.1. THE CODE.QUARKUS REDHAT.COM PROJECT GENERATOR 9
3.2. USE OF OPENJDK 11 UNIVERSAL BASE IMAGE AS THE NEW DEFAULT BASE IMAGE FOR SOURCE-TO-
IMAGE BUILDS 9
3.3. NEW MICROMETER METRICS EXTENSION FOR MONITORING YOUR QUARKUS APPLICATIONS WITH
PROMETHEUS 9
3.4. SUPPORT FOR MULTIPLE HIBERNATE ORM PERSISTENCE UNITS 9
3.5. SUPPORT FOR SAVING GENERATED OPENAPI SCHEMAS 9
3.6. ARC CONTEXT AND DEPENDENCY INJECTION SUPPORT IN THE QUARKUS QUARTZ EXTENSION 10
3.7. SMALLRYE REACTIVE MESSAGING UPGRADE TO VERSION 2.7.1 10
3.8. MUTINY REACTIVE API UPGRADE TO VERSION 0.12.5 10
3.9. SUPPORT FOR BEAN VALIDATION IN REACTIVE ROUTES 10
3.10. CHANGE TO JACKSON AS THE DEFAULT JSON SERIALIZATION AND DESERIALIZATION TOOL FOR
QUARKUS REST APPLICATIONS 10

3.11. NEW OPTION FOR ENABLING NON-APPLICATION USER INTERFACES WHEN STARTING YOUR
APPLICATION IN PRODUCTION MODE il

3.12. QUARKUS REST CLIENT SECURITY UPDATE TO RESOLVE CVE-2020-25633 il
3.13. UPGRADE OF THE DEFAULT MANDREL BASE IMAGE FOR COMPILING NATIVE EXECUTABLES TO

VERSION 20.3 12
3.14. QUARKUS KUBERNETES CLIENT UPGRADED TO VERSION 5.X 12
3.15. QUARKUS DEV UI 12

CHAPTER 4. UPGRADING YOUR APPLICATIONS FROM RED HAT BUILD OF QUARKUS 1.7 TO RED HAT

BUILD OF QUARKUS 11T Lottt ittt et ettt e ea et e e aneeeeeenneeeeseannnaeeeeennnneenss 13
4.1. CHANGE OF CONFIGURATION PROPERTIES FOR THE QUARKUS QUARTZ EXTENSION 13
4.2. CHANGE OF NAMING STRATEGY FOR SPRING BOOT CONFIGURATION PROPERTIES 13
4.3. REMOVAL OF SUPPORT FOR THE QUARKUS.DATASOURCE.URL AND QUARKUS.DATASOURCE.DRIVER
DATA SOURCE CONFIGURATION PROPERTIES 14
4.4. CHANGE OF DEFAULT MEDIA TYPE TO JSON FOR QUARKUS APPLICATIONS 14
4.5. THE FAIL_ON_UNKNOWN_PROPERTIES FEATURE IS DISABLED IN JACKSON BY DEFAULT 15
4.6. CHANGE OF DEFAULT VALUE FOR THE QUARKUS.LOG.MIN-LEVEL PROPERTY TO DEBUG LEVEL 15
4.7. CHANGES TO THE INTERNAL STRUCTURE OF THE RED HAT BUILD OF QUARKUS BOM 16
4.8. CHANGE IN REST ENDPOINT PATH RESOLUTION 16

Example of configuring non-application endpoints under a separate namespace 17
4.9. ADDITIONAL CONFIGURATION PROPERTIES ARE REQUIRED WHEN PROCESSING CONFIGMAP
OBJECTS FOR DEPLOYING REST APPLICATION TO RED HAT OPENSHIFT CONTAINER PLATFORM 18

CHAPTER 5. RED HAT BUILD OF QUARKUS SUPPORTED PLATFORMS, CONFIGURATIONS, EXTENSIONS,

AND DEPENDENCIES ... i i et e i e e i it 20
5.1. SUPPORTED EXTENSIONS, DEPENDENCIES AND PLUGINS 20
5.2. DEVELOPMENT SUPPORT 20

CHAPTER 6. DEPRECATED COMPONENTS AND FEATURES ... .. i 21

CHAPTER 7. TECHNOLOGY PREVIEW ... i e ittt 22



Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

7.1. TECHNOLOGY PREVIEW FEATURES
7.1.1. Packaging Quarkus application as a fast-jar
7.2. TECHNOLOGY PREVIEW EXTENSIONS AND DEPENDENCIES

CHAPTER 8. KNOWN ISSUES ... i i i e it ettt

CHAPTER O. FIXED ISSUES .. i i i e it i ittt cae e,
9.1. KNOWN ISSUES FROM RED HAT BUILD OF QUARKUS 1.11.6 FIXED IN THE 1.11.7 RELEASE

22
22
22

23

24
24



Table of Contents




Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

PREFACE

These release notes list new features, features in technology preview, known issues, and issues fixed in
Red Hat build of Quarkus 1.11.



PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our technical content and encourage you to tell us what you think. If
you'd like to add comments, provide insights, correct a typo, or even ask a question, you can do so
directly in the documentation.

NOTE

You must have a Red Hat account and be logged in to the customer portal.

To submit documentation feedback from the customer portal, do the following:
1. Select the Multi-page HTML format.
2. Click the Feedback button at the top-right of the document.
3. Highlight the section of text where you want to provide feedback.
4. Click the Add Feedback dialog next to your highlighted text.
5. Enter your feedback in the text box on the right of the page and then click Submit.

We automatically create a tracking issue each time you submit feedback. Open the link that is displayed
after you click Submit and start watching the issue or add more comments.

Thank you for the valuable feedback.



Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.


https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. RED HAT BUILD OF QUARKUS

CHAPTER 1. RED HAT BUILD OF QUARKUS

Red Hat build of Quarkus is a Kubernetes-native Java stack that is optimized for use with containers and
Red Hat OpenShift Container Platform. Quarkus is designed to work with popular Java standards,
frameworks, and libraries such as Eclipse MicroProfile, Apache Kafka, RESTEasy (JAX-RS), Hibernate
ORM (JPA), Spring, Infinispan, and Apache Camel.

The Quarkus dependency injection solution is based on CDI (contexts and dependency injection) and
includes an extension framework to expand functionality and to configure, boot, and integrate a
framework into your application.

Quarkus provides a container-first approach to building Java applications. This approach makes it much
easier to build microservices-based applications written in Java as well as enabling those applications to
invoke functions running on serverless computing frameworks. For this reason, Quarkus applications
have small memory footprints and fast startup times.



Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

CHAPTER 2. QUARKUS METERING LABELS FOR RED HAT
OPENSHIFT

You can add metering labels to your Quarkus pods and check Red Hat subscription details with the
OpenShift Metering Operator.

NOTE

Do not add metering labels to any pods that an operator or a template deploys and
manages.

Quarkus can use the following metering labels:
e com.redhat.component-name: "Quarkus"
e com.redhat.component-type: application
e com.redhat.component-version: 1.11.7
e com.redhat.product-name: "Red_Hat_Runtimes"

e com.redhat.product-version: 2021-Q1

Additional resources

® Configuring and using Metering in OpenShift Container Platform


https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html/metering/index

CHAPTER 3. NEW AND CHANGED FEATURES

CHAPTER 3. NEW AND CHANGED FEATURES

This section provides an overview of new features and changes introduced in Red Hat build of Quarkus
1.7

3.1. THE CODE.QUARKUS.REDHAT.COM PROJECT GENERATOR

Red Hat introduces a new web-based project generator that you can use to create projects for
applications based on the latest release of Red Hat build of Quarkus. The project generator provides
several features that make developing new applications with Quarkus easier, such as:

® a3 web-browser-based interface for selecting extension that you want to add to your project.
® automatic generation of the project directory structure based on the build tool that you choose.

® automatic importing and configuration of the extensions that you select to use with your
applications.

® automatic generation of starter code for your application.

You can access the project generator at code.quarkus.redhat.com. Note that Red Hat only provides
support for creating Maven-based application projects with code.quarkus.redhat.com.

For more information on how to use code.quarkus.redhat.com, see Creating a Quarkus Maven project
using code.quarkus.redhat.com.

3.2. USE OF OPENJDK 1M UNIVERSAL BASE IMAGE AS THE NEW
DEFAULT BASE IMAGE FOR SOURCE-TO-IMAGE BUILDS

Red Hat build of Quarkus 1.11 supports the use of the OpenJDK 11 Universal Base Image for building and
deploying applications to Red Hat OpenShift Container Platform using the Source-to-image (S2I) tool.
You can download the latest version of the image from the Red Hat Ecosystem Catalog.

3.3. NEW MICROMETER METRICS EXTENSION FOR MONITORING
YOUR QUARKUS APPLICATIONS WITH PROMETHEUS

Red Hat build of Quarkus 11T introduces a new extension for collecting runtime application metrics using
the Micrometer library and Monitoring your application with Prometheus. The extension allows you to
collect runtime application metrics from your applications and also from extensions that your application
uses, that integrate with Micrometer (such as the Quarkus extensions for Apache Kafka, HTTP,
Resteasy, and others). The Quarkus Micrometer Metrics is supported by Red Hat for use in production
environments. See Collecting metrics in your Quarkus applications for more details.

3.4. SUPPORT FOR MULTIPLE HIBERNATE ORM PERSISTENCE UNITS

In Red Hat build of Quarkus 1.11 you can define multiple data sources as persistence units when you use
Hibernate ORM to manage data sources in your application. See the section about Configuring multiple
JDBC data sources in Configuring data sources in your Quarkus applications for more details.

3.5.SUPPORT FOR SAVING GENERATED OPENAPI SCHEMAS

Red Hat build of Quarkus 1.11introduces support for saving OpenAPI| schemas generated for your
applications with the Quarkus Smallrye OpenAPI extension. You can set the value of the quarkus-


https://code.quarkus.redhat.com
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/getting_started_with_quarkus/index#proc-creating-quarkus-project-using-code-quarkus-redhat-com_quarkus-getting-started
https://catalog.redhat.com/software/containers/ubi8/openjdk-11/5dd6a4b45a13461646f677f4?gti-tabs=unauthenticated&push_date=1615322849000&architecture=amd64
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/collecting_metrics_in_your_quarkus_applications
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/configuring_data_sources_in_your_quarkus_applications/index#proc-configuring-jdbc-multiple-datasources_quarkus-configuring-datasources

Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

smallrye-openapi_quarkus.smallrye-openapi.store-schema-directory to the path of the directory in
which the YAML and JSON files that contain the OpenAPI schemas are saved when you compile your
application. For example:

application.properties

quarkus-smallrye-openapi_quarkus.smallrye-openapi.store-schema-
directory=/path/to/schema/directory

3.6. ARC CONTEXT AND DEPENDENCY INJECTION SUPPORT IN THE
QUARKUS QUARTZ EXTENSION

You can now use the Quarkus Quartz extension to schedule periodic tasks that rely on Context and
Dependency Injection. See the community documentation for the Quarkus Quartz extension for details.

3.7.SMALLRYE REACTIVE MESSAGING UPGRADE TO VERSION 2.7.1

In Red Hat build of Quarkus 1.11, the SmallRye Reactive Messaging APl used in the Quarkus Reactive
Messaging Extensions for AMQP and Apache Kafka has been upgraded to version 2.7.1. See SmallRye
Reactive Messaging APl documentation for more details.

3.8. MUTINY REACTIVE API UPGRADE TO VERSION 0.12.5

In Red Hat build of Quarkus 1.11, the Mutiny event-driven library used in reactive extensions for Quarkus
has been upgraded to version 0.12.5.

3.9. SUPPORT FOR BEAN VALIDATION IN REACTIVE ROUTES

The Reactive Routes Extensions in Red Hat build of Quarkus 1.11 supports constraint validation for Java
beans.

3.10. CHANGE TO JACKSON AS THE DEFAULT JSON SERIALIZATION
AND DESERIALIZATION TOOL FOR QUARKUS REST APPLICATIONS

' WARNING
A This change might break the REST endpoints in your application when you upgrade

your application from Red Hat build of Quarkus 1.7 to Red Hat build of Quarkus 1.11.
Update your application code to ensure that object mapping works correctly after
you upgrade your applications.

In the Red Hat build of Quarkus 1.11 release, Jackson is set as the default ObjectMapper tool used by the
Quarkus REST JSON extension. You can inject Jackson in your the REST Controller class of your
application using Context and Dependency Injection to provide support for converting your REST
application data to and from the JSON format. For more details about breaking changes caused by

10


https://quarkus.io/guides/quartz#scheduling-jobs-programmatically
https://smallrye.io/smallrye-reactive-messaging/2.7.1/apidocs/index.html

CHAPTER 3. NEW AND CHANGED FEATURES

disabling the DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES feature in Jackson in Red
Hat build of Quarkus 1.11, see Upgrading your applications from Red Hat build of Quarkus 1.7 to Red Hat
build of Quarkus 1.11

3.11. NEW OPTION FOR ENABLING NON-APPLICATION USER
INTERFACES WHEN STARTING YOUR APPLICATION IN PRODUCTION
MODE

In Red Hat build of Quarkus 1.11, you can specify the -Dquarkus.<ui-name>.always-include=true to
enable user interfaces that are part of the JAR when you start the application in Production mode. The
option is available for the following interfaces:

® Swagger Ul

® OpenAPI

® SmallRye Health Ul
® GraphQL Ul

For example, when you create a JAR for a REST application that contains a SwaggerUl interface, this
interface is disabled by default when you start the application. You can append the -
Dquarkus.swagger-ui.always-include=true option to the start command to enable the interface when
you start the application:

I java -jar -Dquarkus.swagger-ui.enable=true target/<application-name>-1.0.0-SNAPSHOT-runner.jar

Note, that you must replace <application-name> with the name of your JAR.

3.12. QUARKUS REST CLIENT SECURITY UPDATE TO RESOLVE CVE-
2020-25633

The quarkus-rest-client extension available in Red Hat build of Quarkus 1.11is affected by a change in
the handling of WebApplicationException by MicroProfile REST Client and JAX-RS client that is
introduced as part of an update that resolves the CVE-2020-25633 security issue.

As a result of the security update, RESTEasy version 4.5.9. changes the way Response is handled when
a Client application returns a WebApplicationException. Before the 4.5.9 update, the Response that
was sent from the remote server form the local domain contained sensitive information about the
remote server (for example, cookies) that an unauthorized party could potentially gain access to.

The RESTEasy 4.5.9 update changes the way the Response contents are treated. When the local server
receives the Response RESTEasy removes all the sensitive content before storing the response, but
retains a way for the local server to access the original content of the Response if necessary.

This change to exception handling makes it possible to avoid the security risks associated with storing
sensitive content on the local server, but still ensures that Clients using RESTEasy version 4.5.9 remain

compatible with the JAX-RS specification.

For details about the change in storing Response contents in RESTEasy version 4.5.9, see the section
about WebApplicationException handling in the RESTEasy 4.5.9 documentation.

1


https://access.redhat.com/security/cve/cve-2020-25633
https://docs.jboss.org/resteasy/docs/4.5.9.Final/userguide/html/ExceptionHandling.html#ResteasyWebApplicationException

Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

3.13. UPGRADE OF THE DEFAULT MANDREL BASE IMAGE FOR
COMPILING NATIVE EXECUTABLES TO VERSION 20.3

In Red Hat build of Quarkus 1.11, the default base image for compiling native executables is upgraded to
Mandrel 20.3. As a result, the default value of the quarkus.native.builder-image configuration
property for compiling Quarkus applications to native executables changes to quay.io/quarkus/ubi-
quarkus-mandrel:20.3-javaii.

3.14. QUARKUS KUBERNETES CLIENT UPGRADED TO VERSION 5.X

IMPORTANT

Red Hat does not provide support for using the Quarkus Kubernetes Client in production
environments.

Red Hat build of Quarkus 11T includes a new version of Quarkus Kubernetes Client. If you are using the
Quarkus Kubernetes Client version 4.x in a development environment and want to upgrade your existing
applications to version 5., see the Kubernetes Client Migration Guide.

3.15. QUARKUS DEV UI

IMPORTANT

Red Hat does not provide support for using the Quarkus Dev Ul in production
environments.

Red Hat build of Quarkus 1.11 uses includes the first release of Quarkus Dev Ul. Dev Ul is an experimental
interface that you can use to:

® view a list of extension that you are currently using in your application,
® sece the status of the extensions in your application
® access the documentation for the extensions that you are using in your application.

You can access Dev Ul when you start your application in Development mode and navigate to
localhost:8080/q/dev in your web browser.

12


https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/compiling_your_quarkus_applications_to_native_executables/index#ref-native-config-properties_quarkus-building-native-executable
https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/compiling_your_quarkus_applications_to_native_executables/index#proc-producing-native-executable_quarkus-building-native-executable
https://github.com/fabric8io/kubernetes-client/blob/master/doc/MIGRATION-v5.md

PGRADING YOUR APPLICATIONS FROM RED HAT BUILD OF QUARKUS 1.7 TO RED HAT BUILD OF QUARKUS 1.1

CHAPTER 4. UPGRADING YOUR APPLICATIONS FROM RED
HAT BUILD OF QUARKUS 1.7 TO RED HAT BUILD OF QUARKUS
1.1

This section provides an overview of breaking changes that you must address when you upgrade your
applications from Red Hat build of Quarkus 1.7 to Red Hat build of Quarkus 1.11.

4.1. CHANGE OF CONFIGURATION PROPERTIES FOR THE QUARKUS
QUARTZ EXTENSION

The release of Red Hat build of Quarkus 1.11introduces several changes to the configuration properties
available for the Quarkus Quartz extension.

New configuration properties introduced in Red Hat build of Quarkus 1.11

e quarkus.quartz.cluster-checkin-interval
e quarkus.quartz.instance-name

e quarkus.quartz.start-mode

Configuration properties removed in Red Hat build of Quarkus 1.11

e quarkus.quartz.force-start

Table 4.1. Configuration properties renamed in Red Hat build of Quarkus 1.11

Property name in Quarkus 1.7 Property name in Quarkus 1.11

quarkus.quartz.triggerListener."namedTriggerListene  quarkus.quartz.trigger-listeners."listener-name".class
r.class

quarkus.quartz.triggerlListener."namedTriggerListene  quarkus.quartz.trigger-listeners."listener-
r' name".properties

quarkus.quartz.jobListener."namedJobListener”.class  quarkus.quartz.job-listeners."listener-name".class

quarkus.quartz.jobListener."namedJobListener” quarkus.quartz.job-listeners."listener-
name".properties

quarkus.quartz.plugin."namedPlugin”.class quarkus.quartz.plugins.”plugin-name".class

quarkus.quartz.plugin."namedPlugin” quarkus.quartz.plugins.”plugin-name".properties

4.2. CHANGE OF NAMING STRATEGY FOR SPRING BOOT
CONFIGURATION PROPERTIES

13



Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

In Red Hat build of Quarkus 1.11 the naming strategy used for Spring Boot configuration properties that
contain a combination of uppercase and lowercase characters in Quarkus application is no longer set to
verbatim.

Instead you can set the quarkus.arc.config-properties-default-naming-strategy property to one of
the following values in the application.properties file of your project:
from-config
the naming convention is specified in your application configuration
verbatim

the name of the configuration property matches the name of the field or method to which the
property applies

kebab

the name of the configuration property is uses lowercase characters with spaces replaced by
hyphens. For example: application-name

If you do not set the quarkus.arc.config-properties-default-naming-strategy property for your
application, kebab is used as the default value.

If you are using Spring Boot configuration properties that are formatted according to the verbatim
naming strategy in your application, ensure that you make one of the following changes:

® Set the value of the quarkus.arc.config-properties-default-naming-strategy to verbatim in
the application.properties or application.yml file of your project. For example:

application.properties
I quarkus.arc.config-properties-default-naming-strategy=verbatim

e Convert then names of configuration properties that you use in application to match the kebab
naming strategy.

4.3. REMOVAL OF SUPPORT FOR THE QuARKUS.DATASOURCE.URL AND
QUARKUS.DATASOURCE.DRIVER DATA SOURCE CONFIGURATION
PROPERTIES

Red Hat build of Quarkus 1.11 no longer supports properties for configuring the connection URLs and
drivers of data sources introduced in Red Hat build of Quarkus 1.3.

You must replace the unsupported configuration properties with properties compatible with Quarkus 1.11
to ensure that your data source configuration works properly when you upgrade your application to
Quarkus 1.11.

See Configuring data sources in your Quarkus applications for details on how to configure your data
sources in Quarkus 1.11 applications.

4.4. CHANGE OF DEFAULT MEDIA TYPE TO JSON FOR QUARKUS
APPLICATIONS

14


https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/configuring_data_sources_in_your_quarkus_applications

PGRADING YOUR APPLICATIONS FROM RED HAT BUILD OF QUARKUS 1.7 TO RED HAT BUILD OF QUARKUS 1.1

' WARNING
A This change might break the REST endpoints in your application when you upgrade

your application from Red Hat build of Quarkus 1.7 to Red Hat build of Quarkus 1.11.
Update the format of the return types used by your the REST endpoint in your
application to ensure that your REST endpoints continue to work correctly after
your upgrade your application.

In the Red Hat build of Quarkus 1.11 release, the default format for serializing application data is changed
to JSON.

You can disable the default use of the JSON as content-type format for REST endpoints in your
application, and use annotations to explicitly enable the use of JSON only for interfaces that you want
to use it for:

1. Set the value of the quarkus.resteasy-json.default-json property to false in the
application.properties file of your application:

application.properties
I quarkus.resteasy-json.default-json=false

2. Add the @Produces(MediaType.APPLICATION_JSON) and
@Consumes(MediaType.APPLICATION_JSON) annotations to the REST endpoints of your
applications for which you want to use JSON as the content type format.

4.5. THE FaiL_oN_UNKNOWN_PROPERTIES FEATURE IS DISABLED IN
JACKSON BY DEFAULT

In Red Hat build of Quarkus 1.11, Jackson is configured to ignore unknown properties by having the
DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES disabled by default to avoid failures
while attempting to deserialize JSON data objects containing properties not recognized by your
application.

Set the value of the quarkus.jackson.fail-on-unknown-properties to true in the
application.properties file of your application to enable the FAIL_ON_UNKNOWN_PROPERTIES

feature. You must enable this feature separately for each class of your applications:

application.properties
I <fully-qualified-class-name>.quarkus.jackson.fail-on-unknown-properties=true

See the Quarkus REST JSON extension guide for more details about using and customizing Jackson in
your Quarkus REST application.

4.6. CHANGE OF DEFAULT VALUE FOR THE QUARKUS.LOG.MIN-LEVEL
PROPERTY TO pesuc LEVEL

15


https://quarkus.io/guides/rest-json#jackson

Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

In Quarkus 1.1, the default minimum logging level is DEBUG. This means that only log messages with a
level equal to or higher than DEBUG will be processed. The log messages below the DEBUG level, such
as TRACE and ALL, will not appear in your log output.

When you want to set a log level below DEBUG, you must change the minimum logging level. For
example, if you configure your logger to log at TRACE level, you must set the minimum log level to
TRACE.

You can set the minimum log level for a specific category in the application.properties file of your
application. You must set the minimum log level before you start your application.

For example, to enable logging at the TRACE level for the io.quarkus.smallrye.jwt and
io.undertow.request.security categories in your logger configuration, you can set the following
properties:

application.properties

quarkus.log.file.enable=true

# Send output to a trace.log file under the /tmp directory
quarkus.log.file.path=/tmp/trace.log

quarkus.log.file.level=TRACE

quarkus.log.file.format=%d{HH:mm:ss} %-5p [%C{2.}] (Y%t) Y%S%e%on

# Set 2 categories (io.quarkus.smallrye.jwt, io.undertow.request.security) to TRACE level
quarkus.log.min-level=TRACE
quarkus.log.category."io.quarkus.smallrye.jwt".level=TRACE
quarkus.log.category."io.undertow.request.security”.level=TRACE

See Setting runtime configuration for more details about how you can configure logging in your Quarkus
application.

4.7. CHANGES TO THE INTERNAL STRUCTURE OF THE RED HAT
BUILD OF QUARKUS BOM

In Red Hat build of Quarkus 1.11, the com.redhat.quarkus:quarkus-universe-bom no longer directly
contains the goupld, artifactlD and version of all extensions and dependencies. Instead, the
com.redhat.quarkus:quarkus-universe-bom imports the com.redhat.quarkus:quarkus-product-
bom that contains the dependency declarations for all Red Hat build of Quarkus extensions supported
by Red Hat and the io.quarkus:quarkus-universe-bom that contains all the community Quarkus
extensions.

This change does not impact the way that you can use the Red Hat build of Quarkus BOM in your Maven
project. However, if you are using custom scripts to parse the BOM, you must update them to ensure

that the parsing continues to work correctly after you upgrade your application to Red Hat build of
Quarkus 1.11.

4.8. CHANGE IN REST ENDPOINT PATH RESOLUTION

16


https://access.redhat.com/documentation/en-us/red_hat_build_of_quarkus/1.11/html-single/configuring_logging_with_quarkus/index#proc-setting-runtime-configuration_quarkus-configuring-logging

PGRADING YOUR APPLICATIONS FROM RED HAT BUILD OF QUARKUS 1.7 TO RED HAT BUILD OF QUARKUS 1.1

' WARNING
A This change might break the REST endpoints in your application when you upgrade

your application from Red Hat build of Quarkus 1.7 to Red Hat build of Quarkus 1.11.
Ensure that you update your endpoint paths after migrating your application.

In Red Hat build of Quarkus 1.11, paths of application and non-application REST endpoints are resolved
relative to the common absolute root path. The default common root path for REST endpoints is set to:

e /for REST endpoints directly exposed by the main REST controller class of your application. You
can change the default path for application endpoints by changing the value of the
quarkus.http.root-path property in the application.properties file of your project.

e ( for REST endpoints for services provided by tools integrated with your application (for
purposes such as application health monitoring or metrics collection). You can change the
default path for application endpoints by changing the value of the quarkus.http.non-
application-root-path property in the application.properties file of your project.

Note, that relative root paths are nested under the root path defined by the quarkus.http.root-path
property. This means that, for example, if the root path defined in the quarkus.http.root-path property
is set to /, and the root path for non-application endpoints defined by the quarkus.http.non-
applicationroot-path property is set to q, the absolute endpoint path for the non-application endpoint
is /q/<non-application-endpoint-name>.

However, you can also configure the paths of individual non-application endpoints explicitly to be
located at /q/<non-application-endpoint-names.

Because endpoint paths are interpreted as relative to the root paths set by quarkus.http.root-path and
quarkus.http.non-application-root-path you must exclude the leading slash (/) character from the
custom paths and sub-paths that you configure for endpoints in your application.

For example, when you expose a metrics endpoint for Prometheus in a REST Controller your application,
you must set the endpoint path in the @Path annotation to metrics to ensure that your endpoint is
exposed at /q/metrics. Setting the same path value to /metrics exposes your metrics endpoint at
/metrics.

Example of configuring non-application endpoints under a separate namespace
For example, you can set the following properties in the application.properties file of your project to

expose a hello endpoint application at the /api root path, and the metrics endpoint at the /api/q path:

application.properties

quarkus.http.root-path=/api
quarkus.http.non-application-root-path=q

In this configuration, both the /api/hello and the /api/q/metrics are public. This means that any user
with the permission to access the /api/hello can also send a request to the /api/q/metrics endpoint and
receive a valid response.

When you want to make the health endpoint non-public, you can set the root path for non-application
endpoints in the application.properties to the /q namespace:

17



Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

application.properties

quarkus.http.root-path=/api
quarkus.http.non-application-root-path=/q

In this configuration, the /api/hello endpoint is public, but the /g/metrics is exposed in a separate
namespace for which you can configure different access permissions.

In Red Hat build of Quarkus 1.11, requests sent to the original non-application endpoint paths are
automatically redirected to the new paths in the /q namespace.

You can set the following attribute in the application.properties file of your project to disable the
automatic redirection of non-application endpoint paths:

I quarkus.http.redirect-to-non-application-root-path=false

You can switch your applications to using the absolute endpoint root path for all endpoints by setting
the value of the quarkus.http.non-application-root-path to a variable that resolves to the value of the
absolute application endpoint root:

I quarkus.http.non-application-root-path=${quarkus.http.root-path}

4.9. ADDITIONAL CONFIGURATION PROPERTIES ARE REQUIRED
WHEN PROCESSING CONFIGMAP OBJECTS FOR DEPLOYING REST
APPLICATION TO RED HAT OPENSHIFT CONTAINER PLATFORM

' WARNING
A This change might break the configuration that you use to deploy your applications

to OpenShift when you upgrade your application from Red Hat build of Quarkus 1.7
to Red Hat build of Quarkus 1.11. You must update the applications.propetrties file
of your application to ensure that configuration parameters provided in your
ConfigMap are recognized by your application.

In Red Hat build of Quarkus 1.11, when you configure a Quarkus application based on Resteasy to Red Hat
OpenShift Container Platform, and provide the configuration parameters for the application in a
ConfigMap that is specified in the quarkus.openshift, you must also specify the
quarkus.openshift.app-secret and quarkus-openshift.app-configmap properties in your
application.properties file to ensure that your application recognizes and processes the ConfigMap.

® Add the following properties in the application.properties file of your application to ensure
that your application recognizes the ConfigMap:

application.properties

quarkus.openshift.app-secret=<secret-name>
quarkus-openshift.app-configmap=<configmap-name>

18



PGRADING YOUR APPLICATIONS FROM RED HAT BUILD OF QUARKUS 1.7 TO RED HAT BUILD OF QUARKUS 1.1

You must replace the <secret-name> with the name of the secret that you want to use, and you
must replace <configmap-name> with the name of the ConfigMap that you want to use.

19



Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

CHAPTER 5. RED HAT BUILD OF QUARKUS SUPPORTED

PLATFORMS, CONFIGURATIONS, EXTENSIONS, AND

DEPENDENCIES

For a list of supported configurations and tested integrations see the Red Hat build of Quarkus
Supported Configurations page (login required).

For a list of supported Maven artifacts see the Red Hat build of Quarkus Component Details
page (login required).

5.1. SUPPORTED EXTENSIONS, DEPENDENCIES AND PLUGINS

The following supported extensions are added in Red Hat build of Quarkus 1.11:

Quarkus Micrometer
Quarkus OpenlD Connect Client
Quarkus OpenlD Connect Client Filter

Quarkus Resteasy Multipart

For alist of Red Hat build of Quarkus extensions, dependencies, and plugins that Red Hat supports for
use in production environments see the Red Hat build of Quarkus Component Details page (login
required).

5.2. DEVELOPMENT SUPPORT

Red Hat provides development support for the following Red Hat build of Quarkus features, plug-ins,
extensions, and dependencies:

Features

Live development mode
Remote development mode

Dev Ul

Plug-ins

e protobuf-maven-plugin

20


https://access.redhat.com/articles/4966181
https://access.redhat.com/articles/3348731
https://access.redhat.com/articles/3348731
https://access.redhat.com/support/offerings/developer/soc/

CHAPTER 6. DEPRECATED COMPONENTS AND FEATURES

CHAPTER 6. DEPRECATED COMPONENTS AND FEATURES

The components and features listed in this section are deprecated with Red Hat build of Quarkus 1.11.
They are included and supported in this release, however no enhancements will be made to these
components and features and they might be removed in the future.

For alist of components and features deprecated in Red Hat build of Quarkus 1.11 Red Hat build of
Quarkus Component Details page (login required).

21


https://access.redhat.com/articles/3348731

Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

CHAPTER 7. TECHNOLOGY PREVIEW

This section lists features and extensions that are available as Technology Preview in Red Hat build of
Quarkus 1.11.

IMPORTANT

These features are for Technology Preview only. Technology Preview features are not
supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features, see Technology Preview
Features Scope.

7.1. TECHNOLOGY PREVIEW FEATURES

7.1.1. Packaging Quarkus application as a fast-jar

The fast-jar packaging format is an alternative to the default JAR packaging format that provides faster
startup times for your applications. You can enable fast-jar packaging by setting the following property
in the application.properties file of your project:

application.properties
I quarkus.package.type=fast-jar

Alternatively, you can append the -Dquarkus.package.type=fast-jar property to the command that you
use to package your application:

I mvn clean package -Dquarkus.package.type=fast-jar

7.2. TECHNOLOGY PREVIEW EXTENSIONS AND DEPENDENCIES

For a list of extensions and dependencies available as Technology Preview in Red Hat build of Quarkus
1.1, see the Red Hat build of Quarkus Component Details page (login required).

22


https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/articles/3348731

CHAPTER 8. KNOWN ISSUES

CHAPTER 8. KNOWN ISSUES

This section lists known issues with Red Hat build of Quarkus 1.11.

Issue #11633 Missing zero-configuration solution for OpenShift Serverless. This issue affects
only deployment of Quarkus native Serverless applications.

QUARKUS-697 Default method fallback does not work when using MicroProfile HTTP Client in
native mode.

QUARKUS-719 Quarkus Reactive PG Client displays a Fail to read any response from the
server, the underlying connection might get lost unexpectedly error message when trying

to use a database connection connection from pgPool even when the connection is available.

QUARKUS-1062 Release-candidate artifacts of microprofile-openapi are included in the final
release Maven repository.

QUARKUS-1065 The time that Quarkus applications take to stop increased unexpectedly.
QUARKUS-1066 The time that Quarkus applications take to reload increased unexpectedly.
QUARKUS-1140 Source-to-Image (S2I) builds of Quarkus applications on OpenShift Container

Platform on IBM Z fail when using the latest versions of the openj9/openj9-11-rhel8 base
image.

23


https://github.com/quarkusio/quarkus/issues/11633
https://issues.redhat.com/browse/QUARKUS-697
https://issues.redhat.com/browse/QUARKUS-719
https://issues.redhat.com/browse/QUARKUS-1062
https://issues.redhat.com/browse/QUARKUS-1065
https://issues.redhat.com/browse/QUARKUS-1066
https://issues.redhat.com/browse/QUARKUS-1140

Red Hat build of Quarkus 1.11 Release Notes for Red Hat build of Quarkus 1.11

CHAPTER 9. FIXED ISSUES

Quarkus 1.11.7 provides increased stability and fixed issues listed in this section.

9.1. KNOWN ISSUES FROM RED HAT BUILD OF QUARKUS 1.11.6 FIXED
IN THE 1.11.7 RELEASE

® QUARKUS-695 The NullPointerException issue in the Quarkus Keycloak Authorization
extension that was caused by refresh tokens not being issued by the Red Hat Single Sign-on
APl is fixed in the 1.11.7 release by upgrading the version of Red Hat Single Sign-On used by
Quarkus to version 7.4.6.GA.

Revised on 2021-08-20 08:37:35 UTC

24


https://issues.redhat.com/browse/QUARKUS-695

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. RED HAT BUILD OF QUARKUS
	CHAPTER 2. QUARKUS METERING LABELS FOR RED HAT OPENSHIFT
	CHAPTER 3. NEW AND CHANGED FEATURES
	3.1. THE CODE.QUARKUS.REDHAT.COM PROJECT GENERATOR
	3.2. USE OF OPENJDK 11 UNIVERSAL BASE IMAGE AS THE NEW DEFAULT BASE IMAGE FOR SOURCE-TO-IMAGE BUILDS
	3.3. NEW MICROMETER METRICS EXTENSION FOR MONITORING YOUR QUARKUS APPLICATIONS WITH PROMETHEUS
	3.4. SUPPORT FOR MULTIPLE HIBERNATE ORM PERSISTENCE UNITS
	3.5. SUPPORT FOR SAVING GENERATED OPENAPI SCHEMAS
	3.6. ARC CONTEXT AND DEPENDENCY INJECTION SUPPORT IN THE QUARKUS QUARTZ EXTENSION
	3.7. SMALLRYE REACTIVE MESSAGING UPGRADE TO VERSION 2.7.1
	3.8. MUTINY REACTIVE API UPGRADE TO VERSION 0.12.5
	3.9. SUPPORT FOR BEAN VALIDATION IN REACTIVE ROUTES
	3.10. CHANGE TO JACKSON AS THE DEFAULT JSON SERIALIZATION AND DESERIALIZATION TOOL FOR QUARKUS REST APPLICATIONS
	3.11. NEW OPTION FOR ENABLING NON-APPLICATION USER INTERFACES WHEN STARTING YOUR APPLICATION IN PRODUCTION MODE
	3.12. QUARKUS REST CLIENT SECURITY UPDATE TO RESOLVE CVE-2020-25633
	3.13. UPGRADE OF THE DEFAULT MANDREL BASE IMAGE FOR COMPILING NATIVE EXECUTABLES TO VERSION 20.3
	3.14. QUARKUS KUBERNETES CLIENT UPGRADED TO VERSION 5.X
	3.15. QUARKUS DEV UI

	CHAPTER 4. UPGRADING YOUR APPLICATIONS FROM RED HAT BUILD OF QUARKUS 1.7 TO RED HAT BUILD OF QUARKUS 1.11
	4.1. CHANGE OF CONFIGURATION PROPERTIES FOR THE QUARKUS QUARTZ EXTENSION
	4.2. CHANGE OF NAMING STRATEGY FOR SPRING BOOT CONFIGURATION PROPERTIES
	4.3. REMOVAL OF SUPPORT FOR THE QUARKUS.DATASOURCE.URL AND QUARKUS.DATASOURCE.DRIVER DATA SOURCE CONFIGURATION PROPERTIES
	4.4. CHANGE OF DEFAULT MEDIA TYPE TO JSON FOR QUARKUS APPLICATIONS
	4.5. THE FAIL_ON_UNKNOWN_PROPERTIES FEATURE IS DISABLED IN JACKSON BY DEFAULT
	4.6. CHANGE OF DEFAULT VALUE FOR THE QUARKUS.LOG.MIN-LEVEL PROPERTY TO DEBUG LEVEL
	4.7. CHANGES TO THE INTERNAL STRUCTURE OF THE RED HAT BUILD OF QUARKUS BOM
	4.8. CHANGE IN REST ENDPOINT PATH RESOLUTION
	Example of configuring non-application endpoints under a separate namespace

	4.9. ADDITIONAL CONFIGURATION PROPERTIES ARE REQUIRED WHEN PROCESSING CONFIGMAP OBJECTS FOR DEPLOYING REST APPLICATION TO RED HAT OPENSHIFT CONTAINER PLATFORM

	CHAPTER 5. RED HAT BUILD OF QUARKUS SUPPORTED PLATFORMS, CONFIGURATIONS, EXTENSIONS, AND DEPENDENCIES
	5.1. SUPPORTED EXTENSIONS, DEPENDENCIES AND PLUGINS
	5.2. DEVELOPMENT SUPPORT

	CHAPTER 6. DEPRECATED COMPONENTS AND FEATURES
	CHAPTER 7. TECHNOLOGY PREVIEW
	7.1. TECHNOLOGY PREVIEW FEATURES
	7.1.1. Packaging Quarkus application as a fast-jar

	7.2. TECHNOLOGY PREVIEW EXTENSIONS AND DEPENDENCIES

	CHAPTER 8. KNOWN ISSUES
	CHAPTER 9. FIXED ISSUES
	9.1. KNOWN ISSUES FROM RED HAT BUILD OF QUARKUS 1.11.6 FIXED IN THE 1.11.7 RELEASE


