
Red Hat AMQ 7.2

Managing AMQ Broker

For Use with AMQ Broker 7.2

Last Updated: 2018-11-27

Red Hat AMQ 7.2 Managing AMQ Broker

For Use with AMQ Broker 7.2

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to monitor, manage, and upgrade AMQ Broker.

. .

. .

. .

Table of Contents

CHAPTER 1. UPGRADING YOUR BROKER
1.1. ABOUT UPGRADES
1.2. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.0.Y

1.2.1. Upgrading from 7.0.x to 7.0.y on Linux
1.2.2. Upgrading from 7.0.x to 7.0.y on Windows

1.3. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.1.0
1.3.1. Upgrading from 7.0.x to 7.1.0 on Linux

Prerequisites
Procedure
Additional Resources

1.3.2. Upgrading from 7.0.x to 7.1.0 on Windows
Prerequisites
Procedure
Additional Resources

1.4. UPGRADING A BROKER INSTANCE FROM 7.1.X TO 7.2.0
1.4.1. Upgrading from 7.1.x to 7.2.0 on Linux

Procedure
Additional Resources

1.4.2. Upgrading from 7.1.x to 7.2.0 on Windows
Additional Resources

CHAPTER 2. MANAGEMENT
2.1. USING AMQ CONSOLE
2.2. USING THE MANAGEMENT API

2.2.1. Managing the Broker
2.2.2. Managing Addresses
2.2.3. Managing Queues

2.2.3.1. Managing Other Resources
2.2.4. Managing the Broker Using JMX

2.2.4.1. Configuring JMX Management
2.2.4.2. MBeanServer Configuration
2.2.4.3. Exposing JMX Using Jolokia

2.2.5. Managing the Broker Using JMS Messages and the AMQ JMS Client
2.2.5.1. Configuring Broker Management Using JMS Messages and the AMQ JMS Client

2.2.6. Management Notifications
2.2.6.1. JMX Notifications
2.2.6.2. Notification Types and Headers

2.2.7. Message Counters
2.2.7.1. Configuring Message Counters

APPENDIX A. COMMAND-LINE TOOLS

3
3
3
3
5
6
6
6
6
8
8
8
8
9
9

10
10
11
11
12

13
13
13
13
15
15
16
17
18
18
18
19
19
19
20
20
22
22

24

Table of Contents

1

Red Hat AMQ 7.2 Managing AMQ Broker

2

CHAPTER 1. UPGRADING YOUR BROKER

1.1. ABOUT UPGRADES

Red Hat releases new versions of AMQ Broker to the Customer Portal. Update your brokers to the
newest version to ensure that you have the latest enhancements and fixes. In general, Red Hat releases
a new version of AMQ Broker in one of three ways:

Major Release

A major upgrade or migration is required when an application is transitioned from one major release
to the next, for example, from AMQ Broker 6 to AMQ Broker 7. This type of upgrade is not addressed
in this guide. For instructions on how to upgrade from previous releases of AMQ Broker, see
Migrating to Red Hat AMQ 7.

Minor Release

AMQ Broker periodically provides minor releases, which are updates that include new features, as
well as bug and security fixes. If you plan to upgrade from one AMQ Broker minor release to another,
for example, from AMQ Broker 7.0 to AMQ Broker 7.1, code changes should not be required for
applications that do not use private, unsupported, or tech preview components.

Micro Release

AMQ Broker also periodically provides micro releases that contain minor enhancements and fixes.
Micro releases increment the minor release version by the last digit, for example from 7.0.1 to 7.0.2.
A micro release should not require code changes, however, some releases may require configuration
changes.

1.2. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.0.Y

The procedure for upgrading AMQ Broker from one version of 7.0 to another is similar to the one for
installation: you download an archive from the Customer Portal and then extract it. The following
subsections describe how to upgrade a 7.0.x broker for different operating systems.

Upgrading from 7.0.x to 7.0.y on Linux

Upgrading from 7.0.x to 7.0.y on Windows

1.2.1. Upgrading from 7.0.x to 7.0.y on Linux

The name of the archive that you download could differ from what is used in the following examples.

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.0 Release Notes.

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading an AMQ Broker Archive.

CHAPTER 1. UPGRADING YOUR BROKER

3

http://access.redhat.com
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/migrating_to_red_hat_amq_7/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.0/html-single/amq_broker_7.0_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#download_archive

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded.

sudo chown amq-broker:amq-broker jboss-amq-7.x.x.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. In the
following example, the directory /opt/redhat is used.

sudo mv jboss-amq-7.x.x.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. The archive is kept in a
compressed format. In the following example, the user amq-broker extracts the archive by
using the unzip command.

su - amq-broker
cd /opt/redhat
unzip jboss-amq-7.x.x.redhat-1.zip

5. Stop the broker if it is running.

BROKER_INSTANCE_DIR/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r BROKER_INSTANCE_DIR ~/

7. (Optional) Note the current version of the broker. After the broker stops, a line similar to the one
below is displayed at the end of its log file, which can be found at
BROKER_INSTANCE_DIR/log/artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache
ActiveMQ Artemis Message Broker version 2.0.0.amq-700005-redhat-1
[4782d50d-47a2-11e7-a160-9801a793ea45] stopped, uptime 28 minutes

8. Edit the BROKER_INSTANCE_DIR/etc/artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME='/opt/redhat/jboss-amq-7.x.x-redhat-1'

9. Restart the broker by entering the following command:

BROKER_INSTANCE_DIR/bin/artemis run

10. (Optional) Confirm that the broker is running and that the version has changed. After starting the
broker, open the log file BROKER_INSTANCE_DIR/log/artemis.log and find two lines
similar to the ones below. Note the new version number that appears in the log after the broker is
live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is
now live
...

Red Hat AMQ 7.2 Managing AMQ Broker

4

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache
ActiveMQ Artemis Message Broker version 2.1.0.amq-700005-redhat-1
[0.0.0.0, nodeID=4782d50d-47a2-11e7-a160-9801a793ea45]

1.2.2. Upgrading from 7.0.x to 7.0.y on Windows

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.0 Release Notes.

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading an AMQ Broker Archive.

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the file contents into the directory by right-clicking on the zip file and choosing Extract
All.

4. Stop the broker if it is running by entering the following command.

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

5. Back up the broker by using a file manager.

a. Right click on the BROKER_INSTANCE_DIR folder and select Copy.

b. Right click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, a line similar to the one
below is displayed at the end of its log file, which can be found at
BROKER_INSTANCE_DIR\log\artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache
ActiveMQ Artemis Message Broker version 2.0.0.amq-700005-redhat-1
[4782d50d-47a2-11e7-a160-9801a793ea45] stopped, uptime 28 minutes

7. Edit the BROKER_INSTANCE_DIR\etc\artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME=NEW_INSTALL_DIR

8. Restart the broker entering the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

9. (Optional) Confirm that the broker is running and that the version has changed. After starting the
broker, open the log file BROKER_INSTANCE_DIR\log\artemis.log and find two lines

CHAPTER 1. UPGRADING YOUR BROKER

5

https://access.redhat.com/documentation/en-us/red_hat_amq/7.0/html-single/amq_broker_7.0_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#download_archive

similar to the ones below. Note the new version number that appears in the log after the broker is
live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is
now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache
ActiveMQ Artemis Message Broker version 2.1.0.amq-700005-redhat-1
[0.0.0.0, nodeID=4782d50d-47a2-11e7-a160-9801a793ea45]

1.3. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.1.0

AMQ Broker 7.1.0 includes configuration files and settings that were not included with previous versions.
Upgrading a broker instance from 7.0.x to 7.1.0 requires adding these new files and settings to your
existing 7.0.x broker instances. The following subsections describe how to upgrade a 7.0.x broker
instance to 7.1.0 for different operating systems.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access the AMQ Console only from the local
host by default. You must modify the configuration in
BROKER_INSTANCE_DIR/etc/jolokia-access.xml to enable remote access. For
more information, see Securing AMQ Console and AMQ Broker Connections.

Upgrading from 7.0.x to 7.1.0 on Linux

Upgrading from 7.0.x to 7.1.0 on Windows

1.3.1. Upgrading from 7.0.x to 7.1.0 on Linux

Before you can upgrade a 7.0.x broker, you need to install Red Hat AMQ Broker 7.1.0 and create a
temporary broker instance. This will generate the 7.1.0 configuration files required to upgrade a 7.0.x
broker.

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.1 Release Notes.

Before upgrading your 7.0.x brokers, you must first install version 7.1.
For steps on installing 7.1 on Linux, see Installing on Linux.

Procedure

1. If it is running, stop the 7.0.x broker you want to upgrade:

$ BROKER_INSTANCE_DIR/bin/artemis stop

2. Back up the instance directory of the broker by copying it to the home directory of the current
user.

Red Hat AMQ 7.2 Managing AMQ Broker

6

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_amq_console#securing_amq_console_and_amq_broker_connections
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/amq_broker_7.1_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#installing_on_linux

cp -r BROKER_INSTANCE_DIR ~/

3. Open the file artemis.profile in the BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x
broker.

a. Update the ARTEMIS_HOME property so that its value refers to the installation directory for
AMQ Broker 7.1.0:

ARTEMIS_HOME="7.1.0_INSTALL_DIR"

b. On the line below the one you updated, add the property ARTEMIS_INSTANCE_URI and
assign it a value that refers to the 7.0.x broker instance directory:

ARTEMIS_INSTANCE_URI="file://7.0.x_BROKER_INSTANCE_DIR"

c. Update the JAVA_ARGS property by adding the jolokia.policyLocation parameter and
assigning it the following value:

-Djolokia.policyLocation=${ARTEMIS_INSTANCE_URI}/etc/jolokia-
access.xml

4. Create a 7.1.0 broker instance. The creation procedure generates the configuration files required
to upgrade from 7.0.x to 7.1.0. In the following example, note that the instance is created in the
directory upgrade_tmp:

$ 7.1.0_INSTALL_DIR/bin/artemis create --allow-anonymous --user
admin --password admin upgrade_tmp

5. Copy configuration files from the etc directory of the temporary 7.1.0 instance into the
BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x broker.

a. Copy the management.xml file:

$ cp TEMPORARY_7.1.0_BROKER_INSTANCE_DIR/etc/management.xml
7.0_BROKER_INSTANCE_DIR/etc/

b. Copy the jolokia-access.xml file:

$ cp TEMPORARY_7.1.0_BROKER_INSTANCE_DIR/etc/jolokia-access.xml
7.0_BROKER_INSTANCE_DIR/etc/

6. Open up the bootstrap.xml file in the BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x
broker.

a. Comment out or delete the following two lines:

<app url="jolokia" war="jolokia.war"/>
<app url="hawtio" war="hawtio-no-slf4j.war"/>

b. Add the following to replace the two lines removed in the previous step:

<app url="console" war="console.war"/>

CHAPTER 1. UPGRADING YOUR BROKER

7

7. Start the broker that you upgraded:

$ BROKER_INSTANCE_DIR/bin/artemis run

Additional Resources
For more information about creating an instance of the broker, see Creating a Broker Instance.

1.3.2. Upgrading from 7.0.x to 7.1.0 on Windows

Before you can upgrade a 7.0.x broker, you need to install Red Hat AMQ Broker 7.1.0 and create a
temporary broker instance. This will generate the 7.1.0 configuration files required to upgrade a 7.0.x
broker.

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.1 Release Notes.

Before upgrading your 7.0.x brokers, you must first install version 7.1.
For steps on installing 7.1 on Windows, see Installing on Windows.

Procedure

1. If it is running, stop the 7.0.x broker you want to upgrade:

> BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

2. Back up the instance directory of the broker by using a file manager.

a. Right click on the BROKER_INSTANCE_DIR folder and select Copy.

b. Right click in the same window and select Paste.

3. Open the file artemis.profile in the BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x
broker.

a. Update the ARTEMIS_HOME property so that its value refers to the installation directory for
AMQ Broker 7.1.0:

ARTEMIS_HOME="7.1.0_INSTALL_DIR"

b. On the line below the one you updated, add the property ARTEMIS_INSTANCE_URI and
assign it a value that refers to the 7.0.x broker instance directory:

ARTEMIS_INSTANCE_URI="file://7.0.x_BROKER_INSTANCE_DIR"

c. Update the JAVA_ARGS property by adding the jolokia.policyLocation parameter and
assigning it the following value:

-Djolokia.policyLocation=${ARTEMIS_INSTANCE_URI}/etc/jolokia-
access.xml

Red Hat AMQ 7.2 Managing AMQ Broker

8

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#creating_a_broker_instance
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/amq_broker_7.1_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#installing_on_windows

4. Create a 7.1.0 broker instance. The creation procedure generates the configuration files required
to upgrade from 7.0.x to 7.1.0. In the following example, note that the instance is created in the
directory upgrade_tmp:

> 7.1.0_INSTALL_DIR/bin/artemis create --allow-anonymous --user
admin --password admin upgrade_tmp

5. Copy configuration files from the etc directory of the temporary 7.1.0 instance into the
BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x broker.

a. Copy the management.xml file:

> cp TEMPORARY_7.1.0_BROKER_INSTANCE_DIR/etc/management.xml
7.0_BROKER_INSTANCE_DIR/etc/

b. Copy the jolokia-access.xml file:

> cp TEMPORARY_7.1.0_BROKER_INSTANCE_DIR/etc/jolokia-access.xml
7.0_BROKER_INSTANCE_DIR/etc/

6. Open up the bootstrap.xml file in the BROKER_INSTANCE_DIR/etc/ directory of the 7.0.x
broker.

a. Comment out or delete the following two lines:

<app url="jolokia" war="jolokia.war"/>
<app url="hawtio" war="hawtio-no-slf4j.war"/>

b. Add the following to replace the two lines removed in the previous step:

<app url="console" war="console.war"/>

7. Start the broker that you upgraded:

> BROKER_INSTANCE_DIR\bin\artemis-service.exe start

Additional Resources
For more information about creating an instance of the broker, see Creating a Broker Instance.

1.4. UPGRADING A BROKER INSTANCE FROM 7.1.X TO 7.2.0

AMQ Broker 7.2.0 includes configuration files and settings that were not included with 7.0.x versions. If
you are running 7.0.x instances, you must first upgrade those broker instances from 7.0.x to 7.1.0 before
upgrading to 7.2.0. The following subsections describe how to upgrade a 7.1.x broker instance to 7.2.0
for different operating systems.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access the AMQ Console only from the local
host by default. You must modify the configuration in
BROKER_INSTANCE_DIR/etc/jolokia-access.xml to enable remote access. For
more information, see Securing AMQ Console and AMQ Broker Connections.

CHAPTER 1. UPGRADING YOUR BROKER

9

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#creating_a_broker_instance
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_amq_console#securing_amq_console_and_amq_broker_connections

Upgrading from 7.1.x to 7.2.0 on Linux

Upgrading from 7.1.x to 7.2.0 on Windows

1.4.1. Upgrading from 7.1.x to 7.2.0 on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading an AMQ Broker Archive.

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded.

sudo chown amq-broker:amq-broker amq-7.x.x.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. In the
following example, the directory /opt/redhat is used.

sudo mv amq-7.x.x.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following example,
the user amq-broker extracts the archive by using the unzip command.

su - amq-broker
cd /opt/redhat
unzip jboss-amq-7.x.x.redhat-1.zip

5. Stop the broker if it is running.

BROKER_INSTANCE_DIR/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r BROKER_INSTANCE_DIR ~/

7. (Optional) Note the current version of the broker. After the broker stops, a line similar to the one
below is displayed at the end of its log file, which can be found at
BROKER_INSTANCE_DIR/log/artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache
ActiveMQ Artemis Message Broker version 2.5.0.amq-720001-redhat-1
[0.0.0.0, nodeID=554cce00-63d9-11e8-9808-54ee759954c4]

8. Edit the BROKER_INSTANCE_DIR/etc/artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

Red Hat AMQ 7.2 Managing AMQ Broker

10

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#download_archive

ARTEMIS_HOME='/opt/redhat/amq-7.x.x-redhat-1'

9. Restart the broker by entering the following command:

BROKER_INSTANCE_DIR/bin/artemis run

10. (Optional) Confirm that the broker is running and that the version has changed. After starting the
broker, open the log file BROKER_INSTANCE_DIR/log/artemis.log and find two lines
similar to the ones below. Note the new version number that appears in the log after the broker is
live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is
now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache
ActiveMQ Artemis Message Broker version 2.5.0.amq-720001-redhat-1
[0.0.0.0, nodeID=554cce00-63d9-11e8-9808-54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a Broker Instance.

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
BROKER_INSTANCE_DIR/etc/artemis.profile file, update the
ARTEMIS_INSTANCE_ETC_URI property by specifying the location of the custom directory after
creating the broker instance. Previously, these configuration files and data could only be stored
in the etc/ and data/ directories within the broker instance’s directory.

1.4.2. Upgrading from 7.1.x to 7.2.0 on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading an AMQ Broker Archive.

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the file contents into the directory by right-clicking on the zip file and choosing Extract
All.

4. Stop the broker if it is running by entering the following command.

BROKER_INSTANCE_DIR\bin\artemis-service.exe stop

5. Back up the broker by using a file manager.

a. Right click on the BROKER_INSTANCE_DIR folder and select Copy.

b. Right click in the same window and select Paste.

CHAPTER 1. UPGRADING YOUR BROKER

11

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#creating_a_broker_instance
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#download_archive

6. (Optional) Note the current version of the broker. After the broker stops, a line similar to the one
below is displayed at the end of its log file, which can be found at
BROKER_INSTANCE_DIR\log\artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache
ActiveMQ Artemis Message Broker version 2.0.0.amq-700005-redhat-1
[4782d50d-47a2-11e7-a160-9801a793ea45] stopped, uptime 28 minutes

7. Edit the BROKER_INSTANCE_DIR\etc\artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME=NEW_INSTALL_DIR

8. Restart the broker entering the following command:

BROKER_INSTANCE_DIR\bin\artemis-service.exe start

9. (Optional) Confirm that the broker is running and that the version has changed. After starting the
broker, open the log file BROKER_INSTANCE_DIR\log\artemis.log and find two lines
similar to the ones below. Note the new version number that appears in the log after the broker is
live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is
now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache
ActiveMQ Artemis Message Broker version 2.5.0.amq-720001-redhat-1
[0.0.0.0, nodeID=554cce00-63d9-11e8-9808-54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a Broker Instance.

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
BROKER_INSTANCE_DIR\etc\artemis.profile file, update the
ARTEMIS_INSTANCE_ETC_URI property by specifying the location of the custom directory after
creating the broker instance. Previously, these configuration files and data could only be stored
in the \etc and \data directories within the broker instance’s directory.

Red Hat AMQ 7.2 Managing AMQ Broker

12

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/getting_started_with_amq_broker/#creating_a_broker_instance

CHAPTER 2. MANAGEMENT
AMQ Broker provides both a graphical as well as a programming interface to help you manage your
brokers.

2.1. USING AMQ CONSOLE

If you prefer to use a graphic interface to manage AMQ, you can use AMQ Console. AMQ Console is a
web console included in the AMQ Broker installation, and it enables you to use a web browser to
manage AMQ Broker and AMQ Interconnect.

For more information, see Using AMQ Console.

2.2. USING THE MANAGEMENT API

AMQ Broker 7.2 has an extensive management API that allows a user to modify a broker’s configuration,
create new resources (for example, addresses and queues), inspect these resources (for example, how
many messages are currently held in a queue), and interact with them (for example, to remove
messages from a queue). Using the management API, clients can also manage the broker and subscribe
to management notifications.

There are two ways to manage the broker:

1. Using JMX — JMX is the standard way to manage Java applications

2. Using the JMS API — management operations are sent to the broker using JMS messages and
the AMQ JMS client

Although there are two different ways to manage the broker, each API supports the same functionality. If
it is possible to manage a resource using JMX it is also possible to achieve the same result by using JMS
messages and the AMQ JMS client.

This choice depends on your particular requirements, application settings, and environment.

Regardless of the way you invoke management operations, the management API is the same.

For each managed resource, there exists a Java interface describing what can be invoked for this type of
resource.

The broker exposes its managed resources in the
org.apache.activemq.artemis.api.core.management package.

The way to invoke management operations depends on whether JMX messages or JMS messages and
the AMQ JMS client is used.

NOTE

A few management operations require a filter parameter to choose which messages
are affected by the operation. Passing null or an empty string means that the
management operation will be performed on all messages.

2.2.1. Managing the Broker

Listing, creating, deploying, and destroying queues

CHAPTER 2. MANAGEMENT

13

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_amq_console/

A list of deployed queues can be retrieved using the getQueueNames() method.
Queues can be created or destroyed using the management operations createQueue(),
deployQueue(), or destroyQueue() on the ActiveMQServerControl (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME" or the resource name server).

createQueue will fail if the queue already exists while deployQueue will do nothing.

Pausing and resuming queues

The QueueControl can pause and resume the underlying queue. When a queue is paused, it will
receive messages but will not deliver them. When it is resumed, it will begin delivering the queued
messages, if any.

Listing and closing remote connections

Retrieve a client’s remote addresses by using listRemoteAddresses(). It is also possible
to close the connections associated with a remote address using the
closeConnectionsForAddress() method.

Alternatively, list connection IDs using listConnectionIDs() and list all the sessions for a
given connection ID using listSessions().

Managing transactions

In case of a broker crash, when the broker restarts, some transactions might require manual
intervention. Use the the following methods to help resolve issues you encounter.

List the transactions which are in the prepared states (the transactions are represented as
opaque Base64 Strings) using the listPreparedTransactions() method lists.

Commit or rollback a given prepared transaction using commitPreparedTransaction()
or rollbackPreparedTransaction() to resolve heuristic transactions.

List heuristically completed transactions using the
listHeuristicCommittedTransactions() and
listHeuristicRolledBackTransactions methods.

Enabling and resetting message counters

Enable and disable message counters using the enableMessageCounters() or
disableMessageCounters() method.

Reset message counters by using the resetAllMessageCounters() and
resetAllMessageCounterHistories() methods.

Retrieving broker configuration and attributes

The ActiveMQServerControl exposes the broker’s configuration through all its attributes (for
example, getVersion() method to retrieve the broker’s version, and so on).

Listing, creating, and destroying Core Bridge and diverts

List deployed Core Bridge and diverts using the getBridgeNames() and
getDivertNames() methods respectively.

Create or destroy using bridges and diverts using createBridge() and
destroyBridge() or createDivert() and destroyDivert() on the
ActiveMQServerControl (with the ObjectName

Red Hat AMQ 7.2 Managing AMQ Broker

14

org.apache.activemq.artemis:broker="BROKER_NAME" or the resource name
server).

Stopping the broker and forcing failover to occur with any currently attached clients

Use the forceFailover() on the ActiveMQServerControl (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME" or the resource name server)

NOTE

Since this method actually stops the broker you will probably receive some sort of error
depending on which management service you use to call it.

2.2.2. Managing Addresses

Manage addresses using the AddressControl class (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME",component=addresses,address=
"ADDRESS_NAME" or the resource name address.ADDRESS_NAME).

Modify roles and permissions for an address using the addRole() or removeRole() methods.
You can list all the roles associated with the queue with the getRoles() method.

2.2.3. Managing Queues

The bulk of the core management API deals with queues. The QueueControl class defines the queue
management operations (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME",component=addresses,address=
"BOUND_ADDRESS",subcomponent=queues,routing-
type="ROUTING_TYPE",queue="QUEUE_NAME" or the resource name queue.QUEUE_NAME).

Most of the management operations on queues take either a single message ID (for example, to remove
a single message) or a filter (for example, to expire all messages with a given property.)

Expiring, sending to a dead letter address, and moving messages

Expire messages from a queue using the expireMessages() method. If an expiry address
is defined, messages will be sent to it, otherwise they are discarded. The queue’s expiry
address can be set with the setExpiryAddress() method.

Send messages to a dead letter address with the
sendMessagesToDeadLetterAddress() method. It returns the number of messages
which are sent to the dead letter address. If a dead letter address is not defined, messages
are removed from the queue and discarded. The queue’s dead letter address can be set with
the setDeadLetterAddress() method.

Move messages from one queue to another by using the moveMessages() method.

Listing and removing messages

List messages from a queue using the listMessages() method. It will return an array of
Map, one Map for each message.

Remove messages from a queue using the removeMessages() method, which returns a

CHAPTER 2. MANAGEMENT

15

boolean for the single message ID variant or the number of removed messages for the filter
variant. This method takes a filter argument to remove only filtered messages. Setting the
filter to an empty string will in effect remove all messages.

Counting messages
The number of messages in a queue is returned by the getMessageCount() method.
Alternatively, the countMessages() will return the number of messages in the queue which
match a given filter.

Changing message priority
The message priority can be changed by using the changeMessagesPriority() method
which returns a boolean for the single message ID variant or the number of updated
messages for the filter variant.

Message counters
Message counters can be listed for a queue with the listMessageCounter() and
listMessageCounterHistory() methods (see the Message Counters section). The
message counters can also be reset for a single queue using the
resetMessageCounter() method.

Retrieving the queue attributes
The QueueControl exposes queue settings through its attributes (for example,
getFilter() to retrieve the queue’s filter if it was created with one, isDurable() to
know whether the queue is durable, and so on).

Pausing and resuming queues
The QueueControl can pause and resume the underlying queue. When a queue is paused,
it will receive messages but will not deliver them. When it is resumed, it will begin delivering
the queued messages, if any.

2.2.3.1. Managing Other Resources

You can start and stop the broker’s remote resources (acceptors, diverts, bridges, and so on) so that a
broker can be taken offline for a given period of time without stopping it completely (for example, if other
management operations must be performed, such as resolving heuristic transactions). These resources
are:

Acceptors
Start or stop an acceptor using the start() or. stop() method on the AcceptorControl
class (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME",component=acceptors,na
me="ACCEPTOR_NAME" or the resource name acceptor.ADDRESS_NAME). Acceptor
parameters can be retrieved using the AcceptorControl attributes. See Network
Connections: Acceptors and Connectors for more information about Acceptors.

Diverts
Start or stop a divert using the start() or stop() method on the DivertControl class (with
the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME",component=diverts,name
="DIVERT_NAME" or the resource name divert.DIVERT_NAME). Divert parameters can be
retrieved using the DivertControl attributes.

Bridges

Red Hat AMQ 7.2 Managing AMQ Broker

16

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#transports

Start or stop a bridge using the start() (resp. stop()) method on the BridgeControl class
(with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME",component=bridge,name=
"BRIDGE_NAME" or the resource name bridge.BRIDGE_NAME). Bridge parameters can be
retrieved using the BridgeControl attributes. See Clustering for more information.

Broadcast groups
Start or stop a broadcast group using the start() or stop() method on the
BroadcastGroupControl class (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME",component=broadcast-
group,name="BROADCAST_GROUP_NAME" or the resource name
broadcastgroup.BROADCAST_GROUP_NAME). Broadcast group parameters can be retrieved
using the BroadcastGroupControl attributes. See Clustering for more information.

Discovery groups
Start or stop a discovery group using the start() or stop() method on the
DiscoveryGroupControl class (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME",component=discovery-
group,name="DISCOVERY_GROUP_NAME" or the resource name
discovery.DISCOVERY_GROUP_NAME). Discovery groups parameters can be retrieved using
the DiscoveryGroupControl attributes. See Clustering for more information.

Cluster connections
Start or stop a cluster connection using the start() or stop() method on the
ClusterConnectionControl class (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME",component=cluster-
connection,name="CLUSTER_CONNECTION_NAME" or the resource name
clusterconnection.CLUSTER_CONNECTION_NAME). Cluster connection parameters can be
retrieved using the ClusterConnectionControl attributes. See Clustering for more
information.

2.2.4. Managing the Broker Using JMX

The broker can be managed using JMX. The management API is exposed by the broker using MBeans
interfaces. The broker registers its resources with the domain org.apache.activemq.

For example, the ObjectName to manage a queue named exampleQueue is:

org.apache.activemq.artemis:broker="__BROKER_NAME__",component=addresses,a
ddress="exampleQueue",subcomponent=queues,routingtype="anycast",queue="exa
mpleQueue"

and the MBean is:

org.apache.activemq.artemis.api.management.QueueControl

The MBean’s ObjectName is built using the helper class
org.apache.activemq.artemis.api.core.management.ObjectNameBuilder. You can also
use jconsole to find the ObjectName of the MBeans you want to manage.

Managing the broker using JMX is identical to management of any Java applications using JMX. It can be
done by reflection or by creating proxies of the MBeans.

CHAPTER 2. MANAGEMENT

17

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#clustering
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#clustering
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#clustering
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#clustering
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

2.2.4.1. Configuring JMX Management

By default, JMX is enabled to manage the broker. It can be disabled by setting jmx-management-
enabled to false in broker.xml:

If JMX is enabled, the broker can be managed locally using jconsole.

NOTE

Remote connections to JMX are not enabled by default for security reasons. Refer to
Oracle’s Java Management Guide to configure the broker for remote management.
System properties must be set in the artemis, or artemis.cmd for Windows
installations, shell script located under INSTALL_DIR/bin.

By default, the broker uses the JMX domain "org.apache.activemq.artemis". To manage several brokers
from the same MBeanServer, the JMX domain can be configured for each individual broker by setting
jmx-domain in broker.xml:

2.2.4.2. MBeanServer Configuration

When the broker is run in standalone mode, it uses the Java Virtual Machine’s Platform
MBeanServer to register its MBeans. By default Jolokia is also deployed to allow access to the MBean
server using REST.

2.2.4.3. Exposing JMX Using Jolokia

The default Broker configuration ships with the Jolokia http agent deployed as a web application. Jolokia
is a remote JMX over HTTP bridge that exposes MBeans. For more information see the Jolokia
documentation.

NOTE

To use Jolokia, the user must belong to the role defined by the hawtio.role system
property in the BROKER_INSTANCE_DIR/etc/artemis.profile configuration file. By
default, this role is amq. For more information about assigning a user to a role, see Adding
Users.

Example 2.1. Using Jolokia to Query the Broker’s Version

This example uses a Jolokia REST URL to find the version of a broker.

<jmx-management-enabled>false</jmx-management-enabled>

<jmx-domain>my.org.apache.activemq</jmx-domain>

$ curl
http://admin:admin@localhost:8161/console/jolokia/read/org.apache.active
mq.artemis:broker=\"0.0.0.0\"/Version
{"request":
{"mbean":"org.apache.activemq.artemis:broker=\"0.0.0.0\"","attribute":"V
ersion","type":"read"},"value":"2.4.0.amq-710002-redhat-
1","timestamp":1527105236,"status":200}

Red Hat AMQ 7.2 Managing AMQ Broker

18

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html
http://www.jolokia.org/
http://www.jolokia.org/
http://www.jolokia.org/documentation.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/configuring_amq_broker/#pass_auth

2.2.5. Managing the Broker Using JMS Messages and the AMQ JMS Client

The management queue is a special queue and needs to be instantiated directly by the client:

To invoke management operations using JMS messages and the AMQ JMS client:

1. Create a QueueRequestor to send messages to the management address and receive replies.

2. Create a Message.

3. Use the helper class
org.apache.activemq.artemis.api.jms.management.JMSManagementHelper to fill
the message with the management properties.

4. Send the message using the QueueRequestor.

5. Use the helper class
org.apache.activemq.artemis.api.jms.management.JMSManagementHelper to
retrieve the operation result from the management reply.

For example, to view the number of messages in the JMS queue exampleQueue:

2.2.5.1. Configuring Broker Management Using JMS Messages and the AMQ JMS Client

The management address to send management messages is configured in the broker.xml file:
<management-address>queue.activemq.management</management-address>

By default, the address is queue.activemq.management. The management address requires a
special user permission type, manage, to be able to receive and handle management messages. This
permission type is specified in the broker.xml file:

<security-setting-match="queue.activemq.management"> <permission-type="manage" roles="admin"/>
</security-setting>

2.2.6. Management Notifications

Queue managementQueue =
ActiveMQJMSClient.createQueue("activemq.management");

Queue managementQueue =
ActiveMQJMSClient.createQueue("activemq.management");

QueueSession session = ...
QueueRequestor requestor = new QueueRequestor(session, managementQueue);
connection.start();
Message message = session.createMessage();
JMSManagementHelper.putAttribute(message, "queue.exampleQueue",
"messageCount");
Message reply = requestor.request(message);
int count = (Integer)JMSManagementHelper.getResult(reply);
System.out.println("There are " + count + " messages in exampleQueue");

CHAPTER 2. MANAGEMENT

19

The broker sends notifications to inform listeners of events such as the creation of new resources,
security violations, and other events.

There are two ways to receive these notifications:

JMX notifications

JMS messages

2.2.6.1. JMX Notifications

If JMX is enabled (see Configuring JMX Management), JMX notifications can be received by subscribing
to ObjectName org.apache.activemq.artemis:broker="BROKER_NAME".

2.2.6.2. Notification Types and Headers

Below is a list of all the different kinds of notifications as well as which headers are on the messages.
Every notification has a _AMQ_NotifType (value noted in parentheses) and _AMQ_NotifTimestamp
header. The timestamp is the unformatted result of a call to
java.lang.System.currentTimeMillis().

BINDING_ADDED (0)

`_AMQ_Binding_Type`, `_AMQ_Address`, `_AMQ_ClusterName`,
`_AMQ_RoutingName`, `_AMQ_Binding_ID`, `_AMQ_Distance`,
`_AMQ_FilterString`

BINDING_REMOVED (1)

`_AMQ_Address`, `_AMQ_ClusterName`, `_AMQ_RoutingName`,
`_AMQ_Binding_ID`, `_AMQ_Distance`, `_AMQ_FilterString`

CONSUMER_CREATED (2)

`_AMQ_Address`, `_AMQ_ClusterName`, `_AMQ_RoutingName`,
`_AMQ_Distance`, `_AMQ_ConsumerCount`, `_AMQ_User`,
`_AMQ_RemoteAddress`, `_AMQ_SessionName`, `_AMQ_FilterString`

CONSUMER_CLOSED (3)

`_AMQ_Address`, `_AMQ_ClusterName`, `_AMQ_RoutingName`,
`_AMQ_Distance`, `_AMQ_ConsumerCount`, `_AMQ_User`,
`_AMQ_RemoteAddress`, `_AMQ_SessionName`, `_AMQ_FilterString`

SECURITY_AUTHENTICATION_VIOLATION (6)

`_AMQ_User`

SECURITY_PERMISSION_VIOLATION (7)

`_AMQ_Address`, `_AMQ_CheckType`, `_AMQ_User`

DISCOVERY_GROUP_STARTED (8)

Red Hat AMQ 7.2 Managing AMQ Broker

20

`name`

DISCOVERY_GROUP_STOPPED (9)

`name`

BROADCAST_GROUP_STARTED (10)

`name`

BROADCAST_GROUP_STOPPED (11)

`name`

BRIDGE_STARTED (12)

`name`

BRIDGE_STOPPED (13)

`name`

CLUSTER_CONNECTION_STARTED (14)

`name`

CLUSTER_CONNECTION_STOPPED (15)

`name`

ACCEPTOR_STARTED (16)

`factory`, `id`

ACCEPTOR_STOPPED (17)

`factory`, `id`

PROPOSAL (18)

`_JBM_ProposalGroupId`, `_JBM_ProposalValue`, `_AMQ_Binding_Type`,
`_AMQ_Address`, `_AMQ_Distance`

PROPOSAL_RESPONSE (19)

`_JBM_ProposalGroupId`, `_JBM_ProposalValue`,
`_JBM_ProposalAltValue`, `_AMQ_Binding_Type`, `_AMQ_Address`,
`_AMQ_Distance`

CONSUMER_SLOW (21)

CHAPTER 2. MANAGEMENT

21

`_AMQ_Address`, `_AMQ_ConsumerCount`, `_AMQ_RemoteAddress`,
`_AMQ_ConnectionName`, `_AMQ_ConsumerName`, `_AMQ_SessionName`

2.2.7. Message Counters

Message counters can be used to obtain information on queues over time as the broker keeps a history
on queue metrics.

They can be used to show trends on queues. For example, using the management API, it would be
possible to query the number of messages in a queue at regular intervals. However, this would not be
enough to know if the queue is used: the number of messages can remain constant because nobody is
sending or receiving messages from the queue or because there are as many messages sent to the
queue than messages consumed from it. The number of messages in the queue remains the same in
both cases but its use is widely different.

Message counters gives additional information about the queues:

count

The total number of messages added to the queue since the broker was started

countDelta

The number of messages added to the queue since the last message counter update

messageCount

The current number of messages in the queue

messageCountDelta

The overall number of messages added/removed from the queue since the last message
counter update. For example, if messageCountDelta is equal to -10 this means that overall
10 messages have been removed from the queue (for example, 2 messages were added and 12
were removed)

lastAddTimestamp

The timestamp of the last time a message was added to the queue

udpateTimestamp

The timestamp of the last message counter update

These attributes can be used to determine other meaningful data as well. For example, to know
specifically how many messages were consumed from the queue since the last update simply
subtract the messageCountDelta from countDelta.

2.2.7.1. Configuring Message Counters

By default, message counters are disabled as it might have a small negative effect on memory.

To enable message counters, you can set it to true in broker.xml:

Message counters keeps a history of the queue metrics (10 days by default) and samples all the queues
at regular interval (10 seconds by default). If message counters are enabled, these values should be
configured to suit your messaging use case in broker.xml:

<message-counter-enabled>true</message-counter-enabled>

Red Hat AMQ 7.2 Managing AMQ Broker

22

Message counters can be retrieved using the Management API. For example, to retrieve message
counters on a JMS queue using JMX:

<!-- keep history for a week -->
<message-counter-max-day-history>7</message-counter-max-day-history>
<!-- sample the queues every minute (60000ms) -->
<message-counter-sample-period>60000</message-counter-sample-period>

// retrieve a connection to the brokers MBeanServer
MBeanServerConnection mbsc = ...
JMSQueueControlMBean queueControl =
(JMSQueueControl)MBeanServerInvocationHandler.newProxyInstance(mbsc,
 on,
 JMSQueueControl.class,
 false);
// message counters are retrieved as a JSON String
String counters = queueControl.listMessageCounter();
// use the MessageCounterInfo helper class to manipulate message counters
more easily
MessageCounterInfo messageCounter = MessageCounterInfo.fromJSON(counters);
System.out.format("%s message(s) in the queue (since last sample: %s)\n",
messageCounter.getMessageCount(),
messageCounter.getMessageCountDelta());

CHAPTER 2. MANAGEMENT

23

APPENDIX A. COMMAND-LINE TOOLS
AMQ Broker includes a set of command-line interface (CLI) tools so you can manage your messaging
journal. The table below lists the name for each tool and its description.

Tool Description

exp Exports the message data using a special and independent XML format.

imp Imports the journal to a running broker using the output provided by exp.

data Prints reports about journal records and compacts their data.

encode Shows an internal format of the journal encoded to String.

decode Imports the internal journal format from encode.

For a full list of commands available for each tool, use the help parameter followed by the tool’s name.
In the example below, the CLI output lists all the commands available to the data tool after the user
entered the command ./artemis help data.

$./artemis help data

NAME
 artemis data - data tools group
 (print|imp|exp|encode|decode|compact) (example ./artemis data
print)

SYNOPSIS
 artemis data
 artemis data compact [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data decode [--broker <brokerConfig>] [--suffix <suffix>]
 [--verbose] [--paging <paging>] [--prefix <prefix>] [--
file-size <size>]
 [--directory <directory>] --input <input> [--journal
<journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data encode [--directory <directory>] [--broker
<brokerConfig>]
 [--suffix <suffix>] [--verbose] [--paging <paging>] [--
prefix <prefix>]
 [--file-size <size>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data exp [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data imp [--host <host>] [--verbose] [--port <port>]
 [--password <password>] [--transaction] --input <input>
[--user <user>]
 artemis data print [--broker <brokerConfig>] [--verbose]

Red Hat AMQ 7.2 Managing AMQ Broker

24

 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]

COMMANDS
 With no arguments, Display help information

 print
 Print data records information (WARNING: don't use while a
 production server is running)

 ...

You can use the help at the tool for more information on how to execute each of the tool’s commands.
For example, the CLI lists more information about the data print command after the user enters the
./artemis help data print.

$./artemis help data print

NAME
 artemis data print - Print data records information (WARNING:
don't use
 while a production server is running)

SYNOPSIS
 artemis data print [--bindings <binding>] [--journal <journal>]
 [--paging <paging>]

OPTIONS
 --bindings <binding>
 The folder used for bindings (default ../data/bindings)

 --journal <journal>
 The folder used for messages journal (default ../data/journal)

 --paging <paging>
 The folder used for paging (default ../data/paging)

Revised on 2018-11-27 15:21:21 UTC

APPENDIX A. COMMAND-LINE TOOLS

25

	Table of Contents
	CHAPTER 1. UPGRADING YOUR BROKER
	1.1. ABOUT UPGRADES
	1.2. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.0.Y
	1.2.1. Upgrading from 7.0.x to 7.0.y on Linux
	1.2.2. Upgrading from 7.0.x to 7.0.y on Windows

	1.3. UPGRADING A BROKER INSTANCE FROM 7.0.X TO 7.1.0
	1.3.1. Upgrading from 7.0.x to 7.1.0 on Linux
	Prerequisites
	Procedure
	Additional Resources

	1.3.2. Upgrading from 7.0.x to 7.1.0 on Windows
	Prerequisites
	Procedure
	Additional Resources

	1.4. UPGRADING A BROKER INSTANCE FROM 7.1.X TO 7.2.0
	1.4.1. Upgrading from 7.1.x to 7.2.0 on Linux
	Procedure
	Additional Resources

	1.4.2. Upgrading from 7.1.x to 7.2.0 on Windows
	Additional Resources

	CHAPTER 2. MANAGEMENT
	2.1. USING AMQ CONSOLE
	2.2. USING THE MANAGEMENT API
	2.2.1. Managing the Broker
	2.2.2. Managing Addresses
	2.2.3. Managing Queues
	2.2.3.1. Managing Other Resources

	2.2.4. Managing the Broker Using JMX
	2.2.4.1. Configuring JMX Management
	2.2.4.2. MBeanServer Configuration
	2.2.4.3. Exposing JMX Using Jolokia

	2.2.5. Managing the Broker Using JMS Messages and the AMQ JMS Client
	2.2.5.1. Configuring Broker Management Using JMS Messages and the AMQ JMS Client

	2.2.6. Management Notifications
	2.2.6.1. JMX Notifications
	2.2.6.2. Notification Types and Headers

	2.2.7. Message Counters
	2.2.7.1. Configuring Message Counters

	APPENDIX A. COMMAND-LINE TOOLS

