
Red Hat AMQ 7.2

Deploying AMQ Broker on OpenShift
Container Platform

For Use with AMQ Broker 7.2

Last Updated: 2019-02-25

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

For Use with AMQ Broker 7.2

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to install and deploy AMQ Broker on OpenShift Container Platform.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. VERSION COMPATIBILITY AND SUPPORT
1.2. UNSUPPORTED FEATURES

CHAPTER 2. INSTALLING AND DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
2.1. INSTALLING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM IMAGE STREAMS AND
APPLICATION TEMPLATES
2.2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM IMAGE

CHAPTER 3. CONFIGURING SSL FOR AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
3.1. CONFIGURING SSL
3.2. GENERATING THE AMQ BROKER SECRET
3.3. CREATING AN SSL ROUTE

CHAPTER 4. CUSTOMIZING AMQ BROKER CONFIGURATION FILES FOR DEPLOYMENT

CHAPTER 5. CONFIGURING CLIENT CONNECTIONS

CHAPTER 6. HIGH AVAILABILITY
6.1. HIGH AVAILABILITY OVERVIEW
6.2. MESSAGE MIGRATION
6.3. HOW DOES POD DRAINING AND MESSAGE MIGRATION WORK?

CHAPTER 7. MESSAGE MIGRATION WHEN SCALING DOWN PODS
7.1. INSTALLING THE SCALEDOWN CONTROLLER
7.2. USING THE SCALEDOWN CONTROLLER

CHAPTER 8. TUTORIALS
8.1. PREPARING AN AMQ BROKER DEPLOYMENT
8.2. CONNECTING TO THE AMQ CONSOLE
8.3. DEPLOYING A BASIC BROKER

8.3.1. Deploy the image and template
8.3.2. Deploy the application

8.4. DEPLOYING A BASIC BROKER WITH SSL
8.4.1. Deploying the image and template
8.4.2. Deploying the application
8.4.3. Creating a route

8.5. DEPLOYING A BASIC BROKER WITH PERSISTENCE AND SSL
8.5.1. Deploy the image and template
8.5.2. Deploy the application
8.5.3. Creating a route

8.6. DEPLOYING A SET OF CLUSTERED BROKERS
8.6.1. Distributing messages
8.6.2. Deploy the image and template
8.6.3. Deploying the application
8.6.4. Creating a route for the management console

8.7. DEPLOYING A SET OF CLUSTERED SSL BROKERS
8.7.1. Distributing messages
8.7.2. Deploying the image and template
8.7.3. Deploying the application
8.7.4. Creating a route for the management console

8.8. DEPLOYING A BROKER WITH CUSTOM CONFIGURATION
8.8.1. Deploy the image and template

4
4
4

5

5
6

7
7
7
8

9

10

11
11
11
12

14
14
14

16
16
17
17
17
18
19
19
20
20
21
21
22
23
24
24
24
25
27
28
28
28
29
31
32
32

Table of Contents

1

. .

8.8.2. Deploy the application
8.9. BASIC SSL CLIENT EXAMPLE

8.9.1. Configuring the client
8.10. EXTERNAL CLIENTS USING SUB-DOMAINS EXAMPLE

8.10.1. Exposing the brokers
8.10.2. Connecting the clients

8.11. EXTERNAL CLIENTS USING PORT BINDING EXAMPLE
8.11.1. Exposing the brokers
8.11.2. Connecting the clients

8.12. MONITORING AMQ BROKER

CHAPTER 9. REFERENCE
9.1. APPLICATION TEMPLATE PARAMETERS
9.2. SECURITY
9.3. LOGGING

33
33
33
34
34
35
35
36
37
37

39
39
41
41

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

2

Table of Contents

3

CHAPTER 1. INTRODUCTION
Red Hat AMQ Broker 7.2 is available as a containerized image that is provided for use with OpenShift
Container Platform 3.11 (AMQ Broker on OCP).

AMQ Broker is based on Apache ActiveMQ Artemis. It provides a message broker that is JMS-compliant.
After you have set up the initial broker pod, you can quickly deploy duplicates by using OpenShift
Container Platform features.

AMQ Broker on OCP provides similar functionality to Red Hat AMQ Broker, but some aspects of the
functionality need to be configured specifically for use with OpenShift Container Platform.

1.1. VERSION COMPATIBILITY AND SUPPORT

For details about OpenShift Container Platform 3.11 image version compatibility, see the OpenShift and
Atomic Platform Tested Integrations page.

1.2. UNSUPPORTED FEATURES

High availability
High availability (HA) achieved by configuring master and slave pairs is not supported. Instead,
when pods are scaled down, HA is provided in OpenShift by using the scaledown controller,
which enables message migration.

External Clients that connect to a cluster of brokers, either through the OpenShift proxy or by
using bind ports, may need to be configured for HA accordingly. In a clustered scenario, a broker
will inform certain clients of the addresses of all the broker’s host and port information. Since
these are only accessible internally, certain client features either will not work or will need to be
disabled.

Client Configuration

Core JMS Client Because external Core Protocol JMS clients do
not support HA or any type of failover, the
connection factories must be configured with
useTopologyForLoadBalancing=fals
e.

AMQP Clients AMQP clients do not support failover lists

Durable subscriptions in a cluster
When a durable subscription is created, this is represented as a durable queue on the broker to
which a client has connected. When a cluster is running within OpenShift the client does not
know on which broker the durable subscription queue has been created. If the subscription is
durable and the client reconnects there is currently no method for the load balancer to reconnect
it to the same node. When this happens, it is possible that the client will connect to a different
broker and create a duplicate subscription queue. For this reason, using durable subscriptions
with a cluster of brokers is not recommended.

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

4

https://access.redhat.com/articles/2176281

CHAPTER 2. INSTALLING AND DEPLOYING AMQ BROKER ON
OPENSHIFT CONTAINER PLATFORM

2.1. INSTALLING AMQ BROKER ON OPENSHIFT CONTAINER
PLATFORM IMAGE STREAMS AND APPLICATION TEMPLATES

The AMQ Broker on OpenShift Container Platform images are not available in the service catalog. You
must manually install them by using the procedures in this section.

Procedure

1. Log in to OpenShift as a cluster administrator (or as a user that has project administrator access
to the global openshift project), for example:

$ oc login -u system:admin

2. At the command line, run the following commands to update the AMQ Broker on OpenShift
Container Platform image stream in the openshift project:

$ oc replace --force -f \
https://raw.githubusercontent.com/jboss-container-images/jboss-amq-
7-broker-openshift-image/72-1.2.GA/amq-broker-7-image-streams.yaml

$ oc replace --force -f \
https://raw.githubusercontent.com/jboss-container-images/jboss-amq-
7-broker-openshift-image/72-1.2.GA/amq-broker-7-scaledown-
controller-image-streams.yaml

$ oc import-image amq-broker-72-openshift:1.2

$ oc import-image amq-broker-72-scaledown-controller-openshift:1.0

NOTE

AMQ Broker on OpenShift Container Platform leverages StatefulSets and
Deployments resources for use with the *-persistence templates. These are
Kubernetes-native resources that can consume image streams only from a local
namespace, not the shared openshift namespace. This is because the image
streams must be created in the same namespace where the template will be
instantiated. Also, -n openshift is an optional parameter to use if you need to
create a template in the shared namespace.

3. Run the following command to update the AMQ Broker templates. Using the --force option
with the oc replace command creates or updates the resources

$ for template in amq-broker-72-basic.yaml \
amq-broker-72-ssl.yaml \
amq-broker-72-custom.yaml \
amq-broker-72-persistence.yaml \
amq-broker-72-persistence-ssl.yaml \
amq-broker-72-persistence-clustered.yaml \
amq-broker-72-persistence-clustered-ssl.yaml;

CHAPTER 2. INSTALLING AND DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

5

 do
 oc replace --force -f \
https://raw.githubusercontent.com/jboss-container-images/jboss-amq-
7-broker-openshift-image/72-1.2.GA/templates/${template}
 done

2.2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER
PLATFORM IMAGE

The AMQ Broker on OpenShift Container Platform image requires a service account for deployments.
Service accounts are API objects that exist within each project. Three service accounts are created
automatically in every project:

builder: This service account is used by build pods. It contains the system:image-builder
role from which you can push images to any image stream in the project using the internal
Docker registry.

deployer: This service account is used by deployment pods. It contains the
system:deployer role from which you can view and modify replication controllers and pods in
the project.

default: This service account is used to run all other pods unless you specify a different
service account.

Service accounts can be created or deleted like any other API object. For multiple-node deployments,
the service account must have the view role enabled so the various pods in the cluster can be
discovered and managed.

In addition, you must configure SSL to enable connections to AMQ Broker from outside of the OpenShift
Container Platform instance. The type of discovery protocol that is used for discovering AMQ Broker
mesh endpoints is JGroups with OpenShift.dns ping protocol.

Procedure

Add the view role to the service account:

$ oc policy add-role-to-user view -z default

Additional resources

For more information on how to configure SSL, see Configuring SSL.

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

6

CHAPTER 3. CONFIGURING SSL FOR AMQ BROKER ON
OPENSHIFT CONTAINER PLATFORM

3.1. CONFIGURING SSL

For a minimal SSL configuration to allow connections outside of OpenShift Container Platform, AMQ
Broker requires a broker keystore, a client keystore, and a client truststore that includes the broker
keystore. The broker keystore is also used to create a secret for the AMQ Broker on OpenShift
Container Platform image, which is added to the service account.

The following example commands use Java KeyTool, a package included with the Java Development
Kit, to generate the necessary certificates and stores.

Procedure

1. Generate a self-signed certificate for the broker keystore:

$ keytool -genkey -alias broker -keyalg RSA -keystore broker.ks

2. Export the certificate so that it can be shared with clients:

$ keytool -export -alias broker -keystore broker.ks -file
broker_cert

3. Generate a self-signed certificate for the client keystore:

$ keytool -genkey -alias client -keyalg RSA -keystore client.ks

4. Create a client truststore that imports the broker certificate:

$ keytool -import -alias broker -keystore client.ts -file
broker_cert

5. Export the client’s certificate from the keystore:

$ keytool -export -alias client -keystore client.ks -file
client_cert

6. Import the client’s exported certificate into a broker SERVER truststore:

$ keytool -import -alias client -keystore broker.ts -file
client_cert

3.2. GENERATING THE AMQ BROKER SECRET

The broker keystore can be used to generate a secret for the namespace, which is also added to the
service account so that the applications can be authorized.

Procedure

At the command line, run the following commands:

CHAPTER 3. CONFIGURING SSL FOR AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

7

$ oc create secret generic <secret-name> --from-file=<broker-
keystore> --from-file=<broker-truststore>
$ oc secrets add sa/<service-account-name> secret/<secret-name>

3.3. CREATING AN SSL ROUTE

After the AMQ Broker on OpenShift Container Platform image has been deployed, an SSL route needs
to be created for the AMQ Broker transport protocol port to allow connections to AMQ Broker outside of
OpenShift.

In addition, selecting Passthrough for TLS Termination relays all communication to AMQ Broker
without the OpenShift router decrypting and resending it. Only SSL routes can be exposed because the
OpenShift router requires SNI to send traffic to the correct service.

The default ports for the various AMQ Broker transport protocols are:

Table 3.1. Default ports for AMQ Broker transport protocols

AMQ Broker transport protocol Default port

All protocols 61616

All protocols (SSL) 61617

AMQP 5672

AMQP (SSL) 5671

MQTT 1883

MQTT (SSL) 8883

STOMP 61613

STOMP (SSL) 61612

Additional resources

For more information on cluster networking, see Secured Routes.

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/architecture/networking#secured-routes

CHAPTER 4. CUSTOMIZING AMQ BROKER CONFIGURATION
FILES FOR DEPLOYMENT

If you are using a template from an alternative repository, AMQ Broker configuration files such as
artemis-users.properties can be included. When the image is downloaded for deployment, these
files are copied from <amq-home>/conf/ to the <broker-instance-dir>/etc/ directory on AMQ
Broker, which is committed to the container and pushed to the OpenShift registry.

NOTE

If using this method, ensure that the placeholders in the configuration files (such as
AUTHENTICATION) are not removed. The placeholders are necessary for building the
AMQ Broker on OpenShift Container Platform image.

CHAPTER 4. CUSTOMIZING AMQ BROKER CONFIGURATION FILES FOR DEPLOYMENT

9

CHAPTER 5. CONFIGURING CLIENT CONNECTIONS
Clients for the AMQ Broker on OpenShift Container Platform image must specify the OpenShift router
port (443) when setting the broker URL for SSL connections. Otherwise, AMQ Broker attempts to use the
default SSL port (61617). Including the failover protocol in the URL preserves the client connection in
case the pod is restarted or upgraded, or a disruption occurs on the router.

...
factory.setBrokerURL("failover://ssl://<route-to-broker-pod>:443");
...

NOTE

External clients do not support HA.

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

10

CHAPTER 6. HIGH AVAILABILITY

6.1. HIGH AVAILABILITY OVERVIEW

The term high availability refers to a system that is capable of remaining operational, even when part of
that system fails or is taken offline. With Broker on OCP, specifically, HA refers to both maintaining the
availability of brokers and the integrity of the messaging data if a broker fails.

In an HA configuration on AMQ Broker on OpenShift Container Platform, you run multiple instances of a
broker pod simultaneously. Each individual broker pod writes its message data to a persistent volume
(PVs), which logically define the storage volumes in the system. If a broker pod fails or is taken offline,
the message data stored in that PV is redistributed to an alternative available broker, which then stores it
in its own PV.

Figure 6.1. StatefulSet working normally

When you take a broker pod offline, the StatefulSet is scaled down and you must manage what happens
to the message data in the unattached PV. To migrate the messages held in the PV associated with the
now-offline pod, you use the scaledown controller. The process of migrating message data in this fashion
is sometimes referred to as pod draining.

Additional resources

To enable High Availability on AMQ Broker on OpenShift Container Platform, use the
StatefulSets tutorial.

6.2. MESSAGE MIGRATION

Pod draining is the method used to manage the integrity of messaging data in a Kubernetes StatefulSet.
Pod draining is used for message migration, which refers to the removal and redistribution of "orphaned"
messages from a persistent volume, due to broker pod failure or intentional scale down.

CHAPTER 6. HIGH AVAILABILITY

11

https://kubernetes.io/docs/tutorials/stateful-application/basic-stateful-set/

Figure 6.2. One of the brokers has gone down

6.3. HOW DOES POD DRAINING AND MESSAGE MIGRATION WORK?

A Kubernetes StatefulSet scaledown controller image exists for AMQ Broker on OpenShift Container
Platform. It runs within the same project namespace as the broker pods.

The scaledown controller registers itself and listens for Kubernetes events that are related to persistent
volume claims (PVCs) in the project (openshift) namespace.

The scaledown controller checks for PVCs that have been orphaned by looking at the ordinal on the
volume claim. The ordinal on the volume claim is compared to the ordinal on the existing broker pods,
which are part of the StatefulSet in the project namespace.

If the ordinal on the volume claim is greater than the ordinal on the existing broker pods, then the pod at
that ordinal has been terminated and the data must be migrated to another broker.

When these conditions are met, a drainer pod is started. The drainer pod runs the broker and executes
the message migration. Then the drainer pod identifies an alternative broker pod to which the orphaned
PVC messages can be migrated.

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

12

Figure 6.3. The scaledown controller registers itself, deletes the PVC, and redistributes
messages on the PersistentVolume.

After the messages are successfully migrated to an operational broker pod, the drainer pod shuts down
and the scaledown controller removes the orphaned PVC.

CHAPTER 6. HIGH AVAILABILITY

13

CHAPTER 7. MESSAGE MIGRATION WHEN SCALING DOWN
PODS

IMPORTANT

Message migration, which is enabled by the use of the scaledown controller, is currently a
Technology Preview feature. Technology Preview features are not supported with Red
Hat production service-level agreements (SLAs) and might not be functionally complete.
Red Hat does not recommend using them for production. For more information about
technology preview at Red Hat, see Technology Preview Support Scope.

When a persistent template is used to deploy a broker pod that uses a StatefulSet, that broker pod has
its own external file system, which remains intact, even if the pod stops or restarts. However, if pods are
scaled down and not restarted, data and information such as messages, destinations, or transactions are
no longer available to clients.

Message migration addresses the issue of unavailable data and can be obtained by applying the
scaledown controller image, which monitors each broker pod. If a broker pod is scaled down or stopped,
the scaledown controller recovers the messages by transferring its contents to another broker running in
the cluster.

If broker pods are scaled down to 0 (zero), message migration does not occur, since there is no running
broker pod to which the message data can be migrated.

7.1. INSTALLING THE SCALEDOWN CONTROLLER

AMQ Broker on OCP message migration capabilites are packaged in the scaledown controller container
image. This section describes how to enable the broker message migration capabilities on OpenShift
Container Platform image streams and application templates.

Procedure

1. Log in to OpenShift as a cluster administrator (or as a user that has project administrator access
to the global OpenShift project), for example:

$ oc login -u system:admin

2. Run the following command to update the AMQ Broker templates:

$ oc create -n amq-demo -f https://raw.githubusercontent.com/jboss-
container-images/jboss-amq-7-broker-openshift-image/72-
1.2.GA/templates/amq-broker-72-persistence-clustered-controller.yaml

NOTE

You could receive an "already exists" error messages after invoking the create
command.

7.2. USING THE SCALEDOWN CONTROLLER

To deploy the scaledown controller to migrate messages and drain pods, run the the StatefulSet
scaledown controller at the broker pod namespace level. The StatefulSet scaledown controller must be

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

14

https://access.redhat.com/support/offerings/techpreview

deployed in the same namespace as the stateful applications (in this case, broker pods). It operates only
on StatefulSets in that namespace.

NOTE

You do not need cluster-level privileges to complete this procedure. You must run the
StatefulSet scaledown controller at the namespace level.

Prerequisites

An understanding of Kubernetes StatefulSets definition and processing.

Procedure

1. Configure the Broker on OCP StatefulSet controller template in your namespace.

2. Configure the scaledown controller template in your StatefulSet definition. The following code
example represents the drainer pod definition:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: my-statefulset
 annotations:
 statefulsets.kubernetes.io/drainer-pod-template: |
 {
 "metadata": {
 "labels": {
 "app": "datastore-drainer"
 }
 },
 "spec": {
 "containers": [
 {
 "name": "drainer",
 "image": "my-drain-container",
 "volumeMounts": [
 {
 "name": "data",
 "mountPath": "/var/data"
 }
]
 }
]
 }
 }
spec:

CHAPTER 7. MESSAGE MIGRATION WHEN SCALING DOWN PODS

15

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://github.com/jboss-container-images/jboss-amq-7-broker-openshift-image/blob/amq-broker-72-dev/templates/amq-broker-72-persistence-clustered.yaml

CHAPTER 8. TUTORIALS
These procedures assume an OpenShift Container Platform 3.11 instance similar to that created in
OpenShift Container Platform 3.11 Getting Started.

The following procedures example how to create various deployments of brokers.

8.1. PREPARING AN AMQ BROKER DEPLOYMENT

Procedure

1. Use the command prompt to create a new project:

$ oc new-project amq-demo

2. Create a service account to be used for the AMQ Broker deployment:

$ echo '{"kind": "ServiceAccount", "apiVersion": "v1", "metadata":
{"name": "amq-service-account"}}' | oc create -f -

3. Add the view role to the service account. The view role enables the service account to view all
the resources in the amq-demo namespace, which is necessary for managing the cluster when
using the OpenShift dns-ping protocol for discovering the mesh endpoints.

$ oc policy add-role-to-user view system:serviceaccount:amq-
demo:amq-service-account

4. AMQ Broker requires a broker keystore, a client keystore, and a client truststore that includes
the broker keystore. This example uses Java Keytool, a package included with the Java
Development Kit, to generate dummy credentials for use with the AMQ Broker installation.

a. Generate a self-signed certificate for the broker keystore:

$ keytool -genkey -alias broker -keyalg RSA -keystore broker.ks

b. Export the certificate so that it can be shared with clients:

$ keytool -export -alias broker -keystore broker.ks -file
broker_cert

c. Generate a self-signed certificate for the client keystore:

$ keytool -genkey -alias client -keyalg RSA -keystore client.ks

d. Create a client truststore that imports the broker certificate:

$ keytool -import -alias broker -keystore client.ts -file
broker_cert

e. Use the broker keystore file to create the AMQ Broker secret:

$ oc secrets new amq-app-secret broker.ks

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/getting_started/

f. Add the secret to the service account created earlier:

$ oc secrets add sa/amq-service-account secret/amq-app-secret

8.2. CONNECTING TO THE AMQ CONSOLE

Connect to the AMQ Console from the OpenShift web console.

Procedure

1. In a web browser, navigate to the OpenShift web console and log in.

2. Navigate to the broker pod and click Connect, located in the template information.

3. Click Open Java Console for OpenShift Container Platform 3.11.

8.3. DEPLOYING A BASIC BROKER

Deploy a basic broker that is ephemeral and does not support SSL. This tutorial covers how to create
transports, addresses, and queues.

NOTE

This broker does not support SSL and is not accessible to external clients. Only clients
running internally on the OpenShift cluster are able to connect.

Prequisites

Preparing a Broker

8.3.1. Deploy the image and template

Procedure

1. Navigate to the OpenShift web console and log in.

2. Select the amq-demo project space.

3. Click Add to Project > Browse catalog to list all of the default image streams and templates.

4. Use the Filter search bar to find results that match amq. You might need to click See all to show
the desired application template.

5. Select the amq-broker-72-basic template which is labeled Red Hat AMQ Broker
7.2(Ephemeral, no SSL).

6. Set the following environment variables in the configuration and click create.

Table 8.1. Example template

CHAPTER 8. TUTORIALS

17

Environment
variable

Display Name Value Description

AMQ_PROTOC
OL

AMQ Protocols openwire,amqp,s
tomp,mqtt,hornet
q

The protocols to be accepted by the
broker

AMQ_QUEUES Queues demoQueue Creates an anycast queue called
demoQueue

AMQ_ADDRESS
ES

Addresses demoTopic Creates a multicast address (or topic)
called demoTopic

AMQ_USER AMQ Username amq-demo-user The username the client uses

AMQ_PASSWO
RD

AMQ Password password The password the client uses with the
username

You can also deploy the image from the command line:

$ oc new-app --template=amq-broker-72-basic \
 -e AMQ_PROTOCOL=openwire,amqp,stomp,mqtt,hornetq \
 -e AMQ_QUEUES=demoQueue \
 -e AMQ_ADDRESSES=demoTopic \
 -e AMQ_USER=amq-demo-user \
 -e ADMIN_PASSWORD=password \

8.3.2. Deploy the application

After the application is created, you need to deploy it. Deploying the application creates a pod and starts
the broker.

Procedure

1. After the deployment has been created, choose Deployments from the Applications menu.

2. Click on the broker-amq deployment.

3. Click the deploy button to deploy the application.

NOTE

If the application does not deploy, you can check the configuration by clicking on
the Events tab. If something is incorrect, edit the configuration by using the
Action button.

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

18

4. After the deployment has appeared on the list, click on it to view the state of the pods. Click on
the pod and then click the log tab to view the broker logs and verify its state. You should see the
queue previously created.

5. Click on the Terminal tab to access a shell where you can use the CLI to test sending and
consuming messages.

sh-4.2$./broker/bin/artemis producer
Producer ActiveMQQueue[TEST], thread=0 Started to calculate elapsed
time ...

Producer ActiveMQQueue[TEST], thread=0 Produced: 1000 messages
Producer ActiveMQQueue[TEST], thread=0 Elapsed time in second : 4 s
Producer ActiveMQQueue[TEST], thread=0 Elapsed time in milli second
: 4584 milli seconds
sh-4.2$./broker/bin/artemis consumer
Consumer:: filter = null
Consumer ActiveMQQueue[TEST], thread=0 wait until 1000 messages are
consumed
Received 1000
Consumer ActiveMQQueue[TEST], thread=0 Consumed: 1000 messages
Consumer ActiveMQQueue[TEST], thread=0 Consumer thread finished

You can also use the OpenShift client to access the shell by using the pod name.

oc rsh broker-amq-1-9x89r

8.4. DEPLOYING A BASIC BROKER WITH SSL

Deploy a basic broker that is ephemeral and supports SSL. This tutorial covers how to create transports,
addresses, and queues.

8.4.1. Deploying the image and template

Prerequisites

This tutorial builds upon Preparing a Broker.

Completion of the Deploying a Basic Broker tutorial is recommended.

Procedure

1. Navigate to the OpenShift web console and log in.

2. Select the amq-demo project space.

3. Click Add to Project > Browse catalog to list all of the default image streams and templates.

4. Use the Filter search bar to limit the list to those that match amq. You might need to click See all
to show the desired application template.

5. Select the amq-broker-72-ssl template which is labeled Red Hat AMQ Broker 7.2
(Ephemeral, with SSL).

CHAPTER 8. TUTORIALS

19

6. Set the following values in the configuration and click create.

Table 8.2. Example template

Environment
variable

Display Name Value Description

AMQ_PROTOC
OL

AMQ Protocols openwire,amqp,s
tomp,mqtt,hornet
q

The protocols to be accepted by the
broker

AMQ_QUEUES Queues demoQueue Creates an anycast queue called
demoQueue

AMQ_ADDRESS
ES

Addresses demoTopic Creates a multicast address (or topic)
called demoTopic

AMQ_USER AMQ Username amq-demo-user The username the client uses

AMQ_PASSWO
RD

AMQ Password password The password the client uses with the
username

AMQ_KEYSTOR
E_PASSWORD

AMQ Keystore
Password

password The password used when creating the
Truststore

AMQ_TRUSTST
ORE

AMQ Keystore
Password

password The password used when creating the
Keystore

8.4.2. Deploying the application

After creating the application, deploy it to create a pod and start the broker.

Procedure

1. Choose Deployments from the Applications menu.

2. Click on the broker-amq deployment.

3. Click on the deploy button to deploy the application.

8.4.3. Creating a route

Create a route for the broker so that clients outside of OpenShift Container Platform can connect using
SSL. By default, all broker protocols are available through the 61617/TCP port.

NOTE

Only one broker can be scaled up. You cannot scale up multiple brokers.

Procedure

1. From the Services menu choose broker-amq-tcp-ssl

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

20

2. From the Action menu and choose Create a route .

3. Select the Secure route check box to display the TLS parameters.

4. From the TLS Termination drop-down menu, choose Passthrough. This selection relays all
communication to AMQ Broker without the OpenShift router decrypting and resending it.

5. View the route by going to the routes menu. For example:

https://broker-amq-tcp-amq-demo.router.default.svc.cluster.local

This hostname will be used by external clients to connect to the broker using SSL with SNI.

Additional resources

For more information on routes in the OpenShift Container Platform, see Routes.

8.5. DEPLOYING A BASIC BROKER WITH PERSISTENCE AND SSL

Deploy a persistent broker that supports SSL. When a broker needs persistence it is deployed as a
StatefulSet and has an attached storage device that it uses for its journal. When a broker pod is created,
it is allocated storage that remains in the event the pod crashes or restarts. This means messages are
not lost, as they would be with a standard deployment.

Prerequisites

This tutorial builds upon Preparing a broker.

Completion of the Deploying a basic broker tutorial is recommended.

8.5.1. Deploy the image and template

Procedure

1. Navigate to the OpenShift web console and log in.

2. Select the amq-demo project space.

3. Click Add to Project > Browse catalog to list all of the default image streams and templates.

4. Use the Filter search bar to limit the list to those that match amq. You might need to click See all
to show the desired application template.

5. Select the amq-broker-72-persistence-ssl template which is labelled Red Hat AMQ
Broker 7.2(Persistence, with SSL).

6. Set the following values in the configuration and click create.

Table 8.3. Example template

CHAPTER 8. TUTORIALS

21

https://docs.openshift.com/container-platform/3.4/architecture/core_concepts/routes.html

Environment
variable

Display Name Value Description

AMQ_PROTOC
OL

AMQ Protocols openwire,amqp,s
tomp,mqtt,hornet
q

The protocols to be accepted by the
broker

AMQ_QUEUES Queues demoQueue Creates an anycast queue called
demoQueue

AMQ_ADDRESS
ES

Addresses demoTopic Creates a multicast address (or topic)
called demoTopic

AMQ_Volume_Si
ze

AMQ Volume
Size

1Gi The persistent volume size created for
the journal

AMQ_USER AMQ Username amq-demo-user The username the client uses

AMQ_PASSWO
RD

AMQ Password password The password the client uses with the
username

AMQ_KEYSTOR
E_PASSWORD

AMQ Keystore
Password

password The password used when creating the
Truststore

AMQ_TRUSTST
ORE

AMQ Keystore
Password

password The password used when creating the
Keystore

8.5.2. Deploy the application

Once the application has been created it needs to be deployed. Deploying the application creates a pod
and starts the broker.

Procedure

1. Once the deployment has been created, choose StatefulSets from the Applications menu

2. Click broker-amq deployment.

3. Click deploy to deploy the application.

4. Click the deployment to see the state of the pods.

5. Click the pod and then click the log tab to see the brokers logs to verify its state. You should see
the queue we pre created via the template get deployed.

6. Click the Terminal tab to access a shell where you can use the CLI to send some messages.

sh-4.2$./broker/bin/artemis producer --destination
queue://demoQueue
Producer ActiveMQQueue[TEST], thread=0 Started to calculate elapsed
time ...

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

22

Producer ActiveMQQueue[TEST], thread=0 Produced: 1000 messages
Producer ActiveMQQueue[TEST], thread=0 Elapsed time in second : 4 s
Producer ActiveMQQueue[TEST], thread=0 Elapsed time in milli second
: 4584 milli seconds
sh-4.2$./broker/bin/artemis consumer
Consumer:: filter = null
Consumer ActiveMQQueue[TEST], thread=0 wait until 1000 messages are
consumed
Received 1000
Consumer ActiveMQQueue[TEST], thread=0 Consumed: 1000 messages
Consumer ActiveMQQueue[TEST], thread=0 Consumer thread finished

You can also use the OpenShift client to access the shell by using the pod name

oc rsh broker-amq-1-9x89r

7. Now scale down the broker using the oc command.

sh-4.2$ oc scale statefulset broker-amq --replicas=0
statefulset "broker-amq" scaled

You can use the console to check that the pod count is 0

8. Now scale the broker back up to 1.

sh-4.2$ oc scale statefulset broker-amq --replicas=1
statefulset "broker-amq" scaled

9. Consume the messages again by using the terminal, for example:

sh-4.2$ broker/bin/artemis consumer --destination queue://demoQueue
Consumer:: filter = null
Consumer ActiveMQQueue[TEST], thread=0 wait until 1000 messages are
consumed
Received 1000
Consumer ActiveMQQueue[TEST], thread=0 Consumed: 1000 messages
Consumer ActiveMQQueue[TEST], thread=0 Consumer thread finished

Additional resources

For more information on managing stateful applications, see StatefulSets.

8.5.3. Creating a route

Create a route for the broker so that clients outside of OpenShift Container Platform can connect using
SSL. By default, the broker protocols are available through the 61617/TCP port.

NOTE

Only one broker can be scaled up. You cannot scale up multiple brokers.

Procedure

CHAPTER 8. TUTORIALS

23

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

1. From the Services menu choose broker-amq-tcp-ssl

2. From the Action menu and choose Create a route .

3. Select the Secure route check box to display the TLS parameters.

4. From the TLS Termination drop-down menu, choose Passthrough. This selection relays all
communication to AMQ Broker without the OpenShift router decrypting and resending it.

5. View the route by going to the routes menu. For example:

https://broker-amq-tcp-amq-demo.router.default.svc.cluster.local

This hostname will be used by external clients to connect to the broker using SSL with SNI.

Additional resources

For more information on routes in the OpenShift Container Platform, see Routes.

8.6. DEPLOYING A SET OF CLUSTERED BROKERS

Deploy a clustered set of brokers where each broker runs in its own pod.

8.6.1. Distributing messages

Message distribution is configured to use ON_DEMAND. This means that when messages arrive at a
clustered broker it is distributed in a round-robin fashion to any broker that has consumers.

This safeguards against messages getting stuck on a specific broker while a consumer, connected either
directly or through the OpenShift router, is connected to a different broker.

The redistribution delay is non-zero by default. If a message is on a queue that has no consumers, it will
be redistributed to another broker.

NOTE

When redistribution is enabled, messages can be delivered out of order.

8.6.2. Deploy the image and template

Prerequisites

This procedure builds upon Preparing a broker.

Completion of the Deploying a basic broker tutorial is recommended.

Procedure

1. Navigate to the OpenShift web console and log in.

2. Select the amq-demo project space.

3. Click Add to Project > Browse catalog to list all of the default image streams and templates

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

24

https://docs.openshift.com/container-platform/3.4/architecture/core_concepts/routes.html

4. Use the Filter search bar to limit the list to those that match amq. Click See all to show the
desired application template.

5. Select the amq-broker-72-persistence-clustered template which is labeled Red Hat
AMQ Broker 7.2(no SSL, clustered).

6. Set the following values in the configuration and click create.

Table 8.4. Example template

Environment
variable

Display Name Value Description

AMQ_PROTOC
OL

AMQ Protocols openwire,amqp,s
tomp,mqtt,hornet
q

The protocols to be accepted by the
broker

AMQ_QUEUES Queues demoQueue Creates an anycast queue called
demoQueue

AMQ_ADDRESS
ES

Addresses demoTopic Creates a multicast address (or topic)
called demoTopic

AMQ_Volume_Si
ze

AMQ Volume
Size

1Gi The persistent volume size created for
the journal

AMQ_Clustered Clustered true This needs to be true to ensure the
brokers cluster

AMQ_CLUSTER
_USER

cluster user generated The username the brokers use to
connect with each other

AMQ_CLUSTER
_PASSWORD

cluster password generated The password the brokers use to
connect with each other

AMQ_USER AMQ Username amq-demo-user The username the client uses

AMQ_PASSWO
RD

AMQ Password password The password the client uses with the
username

8.6.3. Deploying the application

Once the application has been created it needs to be deployed. Deploying the application creates a pod
and starts the broker.

Procedure

1. Once the deployment has been created choose Stateful Sets from the Applications menu.

2. Click on the broker-amq deployment.

3. Click on the deploy button to deploy the application.

CHAPTER 8. TUTORIALS

25

NOTE

The default number of replicas for a clustered template is 0. You should not see
any pods.

4. Scale up the pods to three to create a cluster of brokers.

sh-4.2$ oc scale statefulset broker-amq --replicas=3
statefulset "broker-amq" scaled

5. Check that there are three pods running.

sh-4.2$ jboss-amq-7-broker-openshift-image]$ oc get pods
NAME READY STATUS RESTARTS AGE
broker-amq-0 1/1 Running 0 33m
broker-amq-1 1/1 Running 0 33m
broker-amq-2 1/1 Running 0 29m

6. Verify that the brokers have clustered with the new pod by checking the logs.

sh-4.2$ jboss-amq-7-broker-openshift-image]$ oc logs broker-amq-2

This shows the logs of the new broker and an entry for a clustered bridge created between the
brokers:

2018-08-29 07:43:55,779 INFO
[org.apache.activemq.artemis.core.server] AMQ221027: Bridge
ClusterConnectionBridge@1b0e9e9d [name=$.artemis.internal.sf.my-
cluster.4333c830-ab5f-11e8-afb8-0a580a82006e,
queue=QueueImpl[name=$.artemis.internal.sf.my-cluster.4333c830-ab5f-
11e8-afb8-0a580a82006e, postOffice=PostOfficeImpl
[server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-
0a580a82006c], temp=false]@5e0c0398
targetConnector=ServerLocatorImpl (identity=(Cluster-connection-
bridge::ClusterConnectionBridge@1b0e9e9d
[name=$.artemis.internal.sf.my-cluster.4333c830-ab5f-11e8-afb8-
0a580a82006e, queue=QueueImpl[name=$.artemis.internal.sf.my-
cluster.4333c830-ab5f-11e8-afb8-0a580a82006e,
postOffice=PostOfficeImpl
[server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-
0a580a82006c], temp=false]@5e0c0398
targetConnector=ServerLocatorImpl [initialConnectors=
[TransportConfiguration(name=artemis, factory=org-apache-activemq-
artemis-core-remoting-impl-netty-NettyConnectorFactory) ?
port=61616&host=10-130-0-110],
discoveryGroupConfiguration=null]]::ClusterConnectionImpl@806813022[
nodeUUID=9cedb69d-ab5e-11e8-87a4-0a580a82006c,
connector=TransportConfiguration(name=artemis, factory=org-apache-
activemq-artemis-core-remoting-impl-netty-NettyConnectorFactory) ?
port=61616&host=10-130-0-108, address=,
server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-
0a580a82006c])) [initialConnectors=
[TransportConfiguration(name=artemis, factory=org-apache-activemq-
artemis-core-remoting-impl-netty-NettyConnectorFactory) ?
port=61616&host=10-130-0-110], discoveryGroupConfiguration=null]] is

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

26

connected

8.6.4. Creating a route for the management console

The clustering templates do not expose the console by default. This is because the the OpenShift proxy
would load balance around each broker in the cluster and it would not be possible to control which broker
console is connected.

NOTE

In future releases each pod will have its own integrated console available through the use
of the pod. It uses wildcard routing to expose each broker on its own hostname.

Procedure

1. Choose import YAML/JSON from Add to Project drop down

2. Enter the following and click create:

apiVersion: v1
kind: Route
metadata:
 labels:
 app: broker-amq
 application: broker-amq
 name: console-jolokia
spec:
 port:
 targetPort: console-jolokia
 to:
 kind: Service
 name: broker-amq-headless
 weight: 100
 wildcardPolicy: Subdomain
 host: star.broker-amq-headless.amq-demo.svc

NOTE

The important configuration here is host: star.broker-amq-headless.amq-
demo.svc. This is the hostname used for each pod in the broker. The star is
replaced by the pod name, so if the pod name is broker-amq-0 , the hostname is
broker-amq-0.broker-amq-headless.amq-demo.svc

3. Add an entry into your /etc/hosts file to map the route name onto the IP address of the OpenShift
cluster:

10.0.0.1 broker-amq-0.broker-amq-headless.amq-demo.svc

4. Navigate to the console using the address http://broker-amq-0.broker-amq-
headless.amq-demo.svc in a browser.

Additional resources

CHAPTER 8. TUTORIALS

27

http://broker-amq-0.broker-amq-headless.amq-demo.svc

For more information on the clustering of brokers see Enabling Message Redistribution.

8.7. DEPLOYING A SET OF CLUSTERED SSL BROKERS

Deploy a clustered set of brokers, where each broker runs in its own pod and the broker is configured to
accept connections using SSL.

8.7.1. Distributing messages

Message distribution is configured to use ON_DEMAND. This means that when a message arrives at a
clustered broker, it is distributed in a round-robin fashion to any broker that has consumers.

This safeguards against messages getting stuck on a specific broker while a consumer, connected either
directly or through the OpenShift router, is connected to a different broker.

The redistribution delay is non-zero by default. If a message is on a queue that has no consumers, it will
be redistributed to another broker.

NOTE

When redistribution is enabled, messages can be delivered out of order.

8.7.2. Deploying the image and template

Prerequisites

This procredure builds upon Preparing a broker.

Completion of the Deploying a basic broker example is recommended.

Procedure

1. Navigate to the OpenShift web console and log in.

2. Select the amq-demo project space.

3. Click Add to Project > Browse catalog to list all of the default image streams and templates.

4. Use the Filter search bar to limit the list to those that match amq. Click See all to show the
desired application template.

5. Select the amq-broker-72-persistence-clustered-ssl template which is labeled Red
Hat AMQ Broker 7.2(no SSL, clustered).

6. Set the following values in the configuration and click create.

Table 8.5. Example template

Environment
variable

Display Name Value Description

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

28

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html/using_amq_broker/clustering#enabling_message_redistribution

AMQ_PROTOC
OL

AMQ Protocols openwire,amqp,s
tomp,mqtt,hornet
q

The protocols to be accepted by the
broker

AMQ_QUEUES Queues demoQueue Creates an anycast queue called
demoQueue

AMQ_ADDRESS
ES

Addresses demoTopic Creates a multicast address (or topic)
called demoTopic

AMQ_Volume_Si
ze

AMQ Volume
Size

1Gi The persistent volume size created for
the journal

AMQ_Clustered Clustered true This needs to be true to ensure the
brokers cluster

AMQ_CLUSTER
_USER

cluster user generated The username the brokers use to
connect with each other

AMQ_CLUSTER
_PASSWORD

cluster password generated The password the brokers use to
connect with each other

AMQ_USER AMQ Username amq-demo-user The username the client uses

AMQ_PASSWO
RD

AMQ Password password The password the client uses with the
username

AMQ_KEYSTOR
E_PASSWORD

AMQ Keystore
Password

password The password used when creating the
Truststore

AMQ_TRUSTST
ORE

AMQ Keystore
Password

password The password used when creating the
Keystore

Environment
variable

Display Name Value Description

8.7.3. Deploying the application

Deploy after creating the application. Deploying the application creates a pod and starts the broker.

Procedure

1. Choose StatefulSets from the Applications menu, once the deployment has been created.

2. Click on the broker-amq deployment.

3. Click on the deploy button to deploy the application.

CHAPTER 8. TUTORIALS

29

NOTE

The default number of replicas for a clustered template is 0, so you will not see
any pods.

4. Scale up the pods to three to create a cluster of brokers.

sh-4.2$ oc scale statefulset broker-amq --replicas=3
statefulset "broker-amq" scaled

5. Check that there are three pods running.

sh-4.2$ jboss-amq-7-broker-openshift-image]$ oc get pods
NAME READY STATUS RESTARTS AGE
broker-amq-0 1/1 Running 0 33m
broker-amq-1 1/1 Running 0 33m
broker-amq-2 1/1 Running 0 29m

6. Verify the brokers have clustered with the new pod by checking the logs.

sh-4.2$ jboss-amq-7-broker-openshift-image]$ oc logs broker-amq-2

This shows all the logs of the new broker and an entry for a clustered bridge created between
the brokers, for example:

2018-08-29 07:43:55,779 INFO
[org.apache.activemq.artemis.core.server] AMQ221027: Bridge
ClusterConnectionBridge@1b0e9e9d [name=$.artemis.internal.sf.my-
cluster.4333c830-ab5f-11e8-afb8-0a580a82006e,
queue=QueueImpl[name=$.artemis.internal.sf.my-cluster.4333c830-ab5f-
11e8-afb8-0a580a82006e, postOffice=PostOfficeImpl
[server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-
0a580a82006c], temp=false]@5e0c0398
targetConnector=ServerLocatorImpl (identity=(Cluster-connection-
bridge::ClusterConnectionBridge@1b0e9e9d
[name=$.artemis.internal.sf.my-cluster.4333c830-ab5f-11e8-afb8-
0a580a82006e, queue=QueueImpl[name=$.artemis.internal.sf.my-
cluster.4333c830-ab5f-11e8-afb8-0a580a82006e,
postOffice=PostOfficeImpl
[server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-
0a580a82006c], temp=false]@5e0c0398
targetConnector=ServerLocatorImpl [initialConnectors=
[TransportConfiguration(name=artemis, factory=org-apache-activemq-
artemis-core-remoting-impl-netty-NettyConnectorFactory) ?
port=61616&host=10-130-0-110],
discoveryGroupConfiguration=null]]::ClusterConnectionImpl@806813022[
nodeUUID=9cedb69d-ab5e-11e8-87a4-0a580a82006c,
connector=TransportConfiguration(name=artemis, factory=org-apache-
activemq-artemis-core-remoting-impl-netty-NettyConnectorFactory) ?
port=61616&host=10-130-0-108, address=,
server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-
0a580a82006c])) [initialConnectors=
[TransportConfiguration(name=artemis, factory=org-apache-activemq-
artemis-core-remoting-impl-netty-NettyConnectorFactory) ?
port=61616&host=10-130-0-110], discoveryGroupConfiguration=null]] is

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

30

connected

8.7.4. Creating a route for the management console

The clustering templates do not expose the console by default. This is because the OpenShift proxy
would load balance around each broker in the cluster and it would not be possible to control which broker
console is connected.

NOTE

In future releases each pod will have its own integrated console available through the pod
details page. This is resolved by using wildcard routing to expose each broker on its own
hostname.

Procedure

1. Choose Import YAML/JSON from Add to Project drop down.

2. Enter the following and click create.

apiVersion: v1
kind: Route
metadata:
 labels:
 app: broker-amq
 application: broker-amq
 name: console-jolokia
spec:
 port:
 targetPort: console-jolokia
 tls:
 termination: passthrough
 to:
 kind: Service
 name: broker-amq-headless
 weight: 100
 wildcardPolicy: Subdomain
 host: star.broker-amq-headless.amq-demo.svc

NOTE

The important configuration here is host: star.broker-amq-headless.amq-
demo.svc. This is the hostname used for each pod in the broker. The star is
replaced by the pod name. For instance, if the pod name is broker-amq-0, its
hostname is broker-amq-0.broker-amq-headless.amq-demo.svc.

3. Add an entry into the /etc/hosts file to map the route name onto the IP address of the OpenShift
cluster:

10.0.0.1 broker-amq-0.broker-amq-headless.amq-demo.svc

CHAPTER 8. TUTORIALS

31

NOTE

The /etc/hosts entries do not point directly to the brokers, as the brokers running
in the pods have IP addresses in the range of the pod-range for a given node
(e.g. 10.128.x.y or 10.130.u.v). In the case of a nodePort configuration you can
point the hostname to either of the node IP addresses and the name will get
routed appropriately to the correct broker pod. In the case of having a headless
service with a SSL route, point each of the names to the IP address of the node
running the OpenShift router (i.e. haproxy instance).

4. Navigate to the console by using the address https://broker-amq-0.broker-amq-
headless.amq-demo.svc in a browser.

Additional resources

For more information on messaging, see Enabling Message Redistribution.

8.8. DEPLOYING A BROKER WITH CUSTOM CONFIGURATION

Deploy a broker with custom configuration. Although functionality can be obtained by using templates,
broker configuration can be customized if needed.

NOTE

When using this method, ensure that the placeholders in the configuration files (such as
AUTHENTICATION) are not removed. These placeholders are necessary for building the
AMQ Broker on OpenShift Container Platform image.

Prerequisites

This tutorial builds upon Preparing a broker.

Completion of the Deploying a basic broker tutorial is recommended.

8.8.1. Deploy the image and template

Procedure

1. Navigate to the OpenShift web console and log in.

2. Select the amq-demo project space.

3. Click Add to Project > Browse catalog to list all of the default image streams and templates.

4. Use the Filter search bar to limit results to those that match amq. Click See all to show the
desired application template.

5. Select the amq-broker-72-custom template which is labeled Red Hat AMQ Broker
7.2(Ephemeral, no SSL).

6. In the configuration, update the broker.xml with the custom configuration you would like
to use and click create

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

32

https://broker-amq-0.broker-amq-headless.amq-demo.svc
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html/using_amq_broker/clustering#enabling_message_redistribution

NOTE

Use a text editor to create the broker’s xml configuration. Cut and paste
confguration details into the value field.

8.8.2. Deploy the application

Once the application has been created it needs to be deployed. Deploying the application creates a pod
and starts the broker.

Procedure

1. Once the deployment has been created choose Deployments from the Applications menu

2. Click on the broker-amq deployment

3. Click on the deploy button to deploy the application.

8.9. BASIC SSL CLIENT EXAMPLE

Implement a client that sends and receives messages from a broker configured to use SSL, using the
Qpid JMS client.

Prerequisites

This tutorial builds upon Preparing a Broker.

Completion of the Deploying a Basic Broker with SSL tutorial is recommended.

AMQ JMS Examples

8.9.1. Configuring the client

Create a sample client that can be updated to connect to the SSL broker.
The following procedure builds upon
link:https://access.redhat.com/documentation/en-
us/red_hat_amq/7.2/html/using_the_amq_jms_client/examples[AMQ JMS
Examples].

Procedure

1. Add an entry into your /etc/hosts file to map the route name onto the IP address of the OpenShift
cluster:

10.0.0.1 broker-amq-tcp-amq-demo.router.default.svc.cluster.local

2. Update the jndi.properties configuration file to use the route, truststore and keystore created
previously, for example:

connectionfactory.myFactoryLookup = amqps://broker-amq-tcp-amq-
demo.router.default.svc.cluster.local:8443?
transport.keyStoreLocation=<keystore-
path>client.ks&transport.keyStorePassword=password&transport.trustSt

CHAPTER 8. TUTORIALS

33

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html/using_the_amq_jms_client/examples

oreLocation=<truststore-
path>/client.ts&transport.trustStorePassword=password&transport.veri
fyHost=false

3. Update the jndi.properties configuration file to use the queue created earlier.

queue.myDestinationLookup = demoQueue

4. Execute the sender client to send a text message.

5. Execute the receiver client to receive the text message. You should see:

Received message: Message Text!

8.10. EXTERNAL CLIENTS USING SUB-DOMAINS EXAMPLE

Expose a clustered set of brokers through a node port and connect to it using the core JMS client. This
enables clients to connect to a set of brokers which are configured using the amq-broker-72-
persistence-clustered-ssl template.

8.10.1. Exposing the brokers

Configure the brokers so that the cluster of brokers are externally available and can be connected to
directly, bypassing the OpenShift router. This is done by creating a route that exposes each pod using its
own hostname.

Prerequisites

Deploying a set of clustered brokers

Procedure

1. Choose import YAML/JSON from Add to Project drop down

2. Enter the following and click create.

apiVersion: v1
kind: Route
metadata:
 labels:
 app: broker-amq
 application: broker-amq
 name: tcp-ssl
spec:
 port:
 targetPort: ow-multi-ssl
 tls:
 termination: passthrough
 to:
 kind: Service
 name: broker-amq-headless
 weight: 100
 wildcardPolicy: Subdomain
 host: star.broker-ssl-amq-headless.amq-demo.svc

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

34

NOTE

The important configuration here is the wildcard policy of Subdomain. This allows
each broker to be accessible through its own hostname.

8.10.2. Connecting the clients

Create a sample client that can be updated to connect to the SSL broker. The steps in this procedure
build upon the AMQ JMS Examples.

Procedure

1. Add entries into the /etc/hosts file to map the route name onto the actual IP addresses of the
brokers:

10.0.0.1 broker-amq-0.broker-ssl-amq-headless.amq-demo.svc broker-
amq-1.broker-ssl-amq-headless.amq-demo.svc broker-amq-2.broker-ssl-
amq-headless.amq-demo.svc

2. Update the jndi.properties configuration file to use the route, truststore, and keystore created
previously, for example:

connectionfactory.myFactoryLookup = amqps://broker-amq-0.broker-ssl-
amq-headless.amq-demo.svc:443?
transport.keyStoreLocation=/home/ataylor/projects/jboss-amq-7-
broker-openshift-
image/client.ks&transport.keyStorePassword=password&transport.trustS
toreLocation=/home/ataylor/projects/jboss-amq-7-broker-openshift-
image/client.ts&transport.trustStorePassword=password&transport.veri
fyHost=false

3. Update the jndi.properties configuration file to use the queue created earlier.

queue.myDestinationLookup = demoQueue

4. Execute the sender client code to send a text message.

5. Execute the receiver client code to receive the text message. You should see:

Received message: Message Text!

Additional resources

For more information on using the AMQ JMS client, see AMQ JMS Examples.

8.11. EXTERNAL CLIENTS USING PORT BINDING EXAMPLE

Expose a clustered set of brokers through a NodePort and connect to it using the core JMS client. This
enables clients that do not support SNI or SSL. It is used with clusters configured using the amq-
broker-72-persistence-clustered template.

CHAPTER 8. TUTORIALS

35

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html/using_the_amq_jms_client/examples
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html/using_the_amq_jms_client/examples

8.11.1. Exposing the brokers

Configure the brokers so that the cluster of brokers are externally available and can be connected to
directly, bypassing the OpenShift router. This is done by creating a service that uses a NodePort to load
balance around the clusters.

Prerequisites

Deploying a set of clustered brokers

Procedure

1. Choose import YAML/JSON from Add to Project drop down.

2. Enter the following and click create.

apiVersion: v1
kind: Service
metadata:
 annotations:
 description: The broker's OpenWire port.
 service.alpha.openshift.io/dependencies: >-
 [{"name": "broker-amq-amqp", "kind": "Service"},{"name":
 "broker-amq-mqtt", "kind": "Service"},{"name": "broker-amq-
stomp", "kind":
 "Service"}]
 creationTimestamp: '2018-08-29T14:46:33Z'
 labels:
 application: broker
 template: amq-broker-72-statefulset-clustered
 xpaas: 1.4.12
 name: broker-external-tcp
 namespace: amq-demo
 resourceVersion: '2450312'
 selfLink: /api/v1/namespaces/amq-demo/services/broker-amq-tcp
 uid: 52631fa0-ab9a-11e8-9380-c280f77be0d0
spec:
 externalTrafficPolicy: Cluster
 ports:
 - nodePort: 30001
 port: 61616
 protocol: TCP
 targetPort: 61616
 selector:
 deploymentConfig: broker-amq
 sessionAffinity: None
 type: NodePort
status:
 loadBalancer: {}

NOTE

The NodePort configuration is important. The NodePort is the port in which the
client will access the brokers and the type is NodePort.

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

36

8.11.2. Connecting the clients

Create consumers that are round-robinned around the brokers in the cluster using the AMQ broker CLI.

Procedure

1. In a terminal create a consumer and attach it to the IP address where OpenShift is running.

artemis consumer --url tcp://<IP_ADDRESS>:30001 --message-count 100
--destination queue://demoQueue

2. Repeat step 1 twice to start another two consumers.

NOTE

You should now have three consumers load balanced across the three brokers.

3. Create a producer to send messages.

artemis producer --url tcp://<IP_ADDRESS>:30001 --message-count 300
--destination queue://demoQueue

4. Verify each consumer receives messages.

Consumer:: filter = null
Consumer ActiveMQQueue[demoQueue], thread=0 wait until 100 messages
are consumed
Consumer ActiveMQQueue[demoQueue], thread=0 Consumed: 100 messages
Consumer ActiveMQQueue[demoQueue], thread=0 Consumer thread finished

8.12. MONITORING AMQ BROKER

This tutorial demonstrates how to monitor AMQ Broker.

Prerequisites

This tutorial builds upon Preparing a broker.

Completion of the Deploying a basic broker tutorial is recommended.

Procedure

1. Get the list of running pods:

$ oc get pods

NAME READY STATUS RESTARTS AGE
broker-amq-1-ftqmk 1/1 Running 0 14d

2. Run the oc logs command:

oc logs -f broker-amq-1-ftqmk

CHAPTER 8. TUTORIALS

37

Running /amq-broker-71-openshift image, version 1.3-5
INFO: Loading '/opt/amq/bin/env'
INFO: Using java '/usr/lib/jvm/java-1.8.0/bin/java'
INFO: Starting in foreground, this is just for debugging purposes
(stop process by pressing CTRL+C)
...
INFO | Listening for connections at: tcp://broker-amq-1-ftqmk:61616?
maximumConnections=1000&wireFormat.maxFrameSize=104857600
INFO | Connector openwire started
INFO | Starting OpenShift discovery agent for service broker-amq-tcp
transport type tcp
INFO | Network Connector
DiscoveryNetworkConnector:NC:BrokerService[broker-amq-1-ftqmk]
started
INFO | Apache ActiveMQ 5.11.0.redhat-621084 (broker-amq-1-ftqmk,
ID:broker-amq-1-ftqmk-41433-1491445582960-0:1) started
INFO | For help or more information please see:
http://activemq.apache.org
WARN | Store limit is 102400 mb (current store usage is 0 mb). The
data directory: /opt/amq/data/kahadb only has 9684 mb of usable
space - resetting to maximum available disk space: 9684 mb
WARN | Temporary Store limit is 51200 mb, whilst the temporary data
directory: /opt/amq/data/broker-amq-1-ftqmk/tmp_storage only has
9684 mb of usable space - resetting to maximum available 9684 mb.

3. Run your query to monitor your broker for MaxConsumers:

$ curl -k -u admin:admin http://console-broker.amq-
demo.apps.example.com/console/jolokia/read/org.apache.activemq.artem
is:broker=%22broker%22,component=addresses,address=%22TESTQUEUE%22,s
ubcomponent=queues,routing-
type=%22anycast%22,queue=%22TESTQUEUE%22/MaxConsumers

{"request":
{"mbean":"org.apache.activemq.artemis:address=\"TESTQUEUE\",broker=\
"broker\",component=addresses,queue=\"TESTQUEUE\",routing-
type=\"anycast\",subcomponent=queues","attribute":"MaxConsumers","ty
pe":"read"},"value":-1,"timestamp":1528297825,"status":200}

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

38

CHAPTER 9. REFERENCE

9.1. APPLICATION TEMPLATE PARAMETERS

Configuration of the AMQ Broker on OpenShift Container Platform image is performed by specifying
values of application template parameters. The following parameters can be configured:

Table 9.1. Application template parameters

Parameter Description

AMQ_ADDRESSES Specifies the addresses available by default on the
broker on its startup, in a comma-separated list.

AMQ_ADMIN_PASSWORD Specifies the password used for authentication to the
broker. If no value is specified, a random password is
generated.

AMQ_ADMIN_USERNAME Specifies the user name used as an administrator
authentication to the broker. If no value is specified, a
random user name is generated.

AMQ_ANYCAST_PREFIX Specifies the anycast prefix applied to the
multiplexed protocol ports 61616 and 61617.

AMQ_CLUSTERED Enables clustering.

AMQ_CLUSTER_PASSWORD Specifies the password to use for clustering. If no
value is specified, a random password is generated.

AMQ_CLUSTER_USER Specifies the cluster user to use for clustering. If no
value is specified, a random user name is generated.

AMQ_DATA_DIR Specifies the directory for the data. Used in stateful
sets.

AMQ_DATA_DIR_LOGGING Specifies the directory for the data directory logging.

AMQ_EXTRA_ARGS Specifies additional arguments to pass to artemis
create.

AMQ_GLOBAL_MAX_SIZE Specifies the maximum amount of memory that
message data can consume. If no value is specified,
half of the system’s memory is allocated.

AMQ_KEYSTORE Specifies the SSL keystore file name. If no value is
specified, a random password is generated but SSL
will not be configured.

CHAPTER 9. REFERENCE

39

AMQ_KEYSTORE_PASSWORD (Optional) Specifies the password used to decrypt
the SSL keystore.

AMQ_KEYSTORE_TRUSTSTORE_DIR Specifies the directory where the secrets are
mounted. The default value is /etc/amq-
secret-volume.

AMQ_MAX_CONNECTIONS For SSL only, specifies the maximum number of
connections that an acceptor will accept.

AMQ_MULTICAST_PREFIX Specifies the multicast prefix applied to the
multiplexed protocol ports 61616 and 61617.

AMQ_NAME Specifies the name of the broker instance.

AMQ_PASSWORD Specifies the password used for authentication to the
broker. If no value is specified, a random password is
generated.

AMQ_QUEUES Specifies the queues available by default on the
broker on its startup, in a comma-separated list.

AMQ_REQUIRE_LOGIN If set to true, anonymous access is permitted. If set
to false, log in is required. The default value is
false.

AMQ_RESET_CONFIG If set to true, overwrites the configuration at the
destination directory.

AMQ_ROLE Specifies the name for the role created. The default
value is amq.

AMQ_TRANSPORTS Specifies the messaging protocols used by the broker
in a comma-separated list. Available options are
amqp, mqtt, openwire, stomp, and hornetq.
If none are specified, all available protocols are
available. Note that for integration of the image with
Red Hat JBoss Enterprise Application Platform, the
OpenWire protocol must be specified, while other
protocols can be optionally specified as well.

AMQ_TRUSTSTORE Specifies the SSL truststore file name. If no value is
specified, a random password is generated but SSL
will not be configured.

AMQ_TRUSTSTORE_PASSWORD (Optional) Specifies the password used to decrypt
the SSL truststore.

Parameter Description

Red Hat AMQ 7.2 Deploying AMQ Broker on OpenShift Container Platform

40

AMQ_USER Specifies the user name used for authentication to
the broker. If no value is specified, a random user
name is generated.

APPLICATION_NAME Specifies the name of the application used internally
within OpenShift. It is used in names of services,
pods, and other objects within the application.

IMAGE Specifies the image. Used in the persistence,
persistent-ssl, and statefulset-
clustered templates.

IMAGE_STREAM_NAMESPACE Specifies the image stream name space. Used in the
ssl and basic templates.

OPENSHIFT_DNS_PING_SERVICE_PORT Specifies the port number for the OpenShift DNS
ping.

VOLUME_CAPACITY Specifies the size of the persistent storage for
database volumes.

Parameter Description

9.2. SECURITY

Only SSL connections can connect from outside of the OpenShift instance. The non-SSL version of the
protocols can only be used inside the OpenShift instance.

For security reasons, using the default keystore and truststore generated by the system is discouraged.
Generate your own keystore and truststore and supply them to the image by using the OpenShift secrets
mechanism.

9.3. LOGGING

In addition to viewing the OpenShift logs, you can troubleshoot a running AMQ Broker on OpenShift
Container Platform image by viewing the AMQ logs that are output to the container’s console.

Procedure

At the command line, run the following command:

$ oc logs -f <pass:quotes[<pod-name>]> <pass:quotes[<container-name>]>

Revised on 2019-02-25 21:59:39 UTC

CHAPTER 9. REFERENCE

41

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. VERSION COMPATIBILITY AND SUPPORT
	1.2. UNSUPPORTED FEATURES

	CHAPTER 2. INSTALLING AND DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
	2.1. INSTALLING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM IMAGE STREAMS AND APPLICATION TEMPLATES
	2.2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM IMAGE

	CHAPTER 3. CONFIGURING SSL FOR AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
	3.1. CONFIGURING SSL
	3.2. GENERATING THE AMQ BROKER SECRET
	3.3. CREATING AN SSL ROUTE

	CHAPTER 4. CUSTOMIZING AMQ BROKER CONFIGURATION FILES FOR DEPLOYMENT
	CHAPTER 5. CONFIGURING CLIENT CONNECTIONS
	CHAPTER 6. HIGH AVAILABILITY
	6.1. HIGH AVAILABILITY OVERVIEW
	6.2. MESSAGE MIGRATION
	6.3. HOW DOES POD DRAINING AND MESSAGE MIGRATION WORK?

	CHAPTER 7. MESSAGE MIGRATION WHEN SCALING DOWN PODS
	7.1. INSTALLING THE SCALEDOWN CONTROLLER
	7.2. USING THE SCALEDOWN CONTROLLER

	CHAPTER 8. TUTORIALS
	8.1. PREPARING AN AMQ BROKER DEPLOYMENT
	8.2. CONNECTING TO THE AMQ CONSOLE
	8.3. DEPLOYING A BASIC BROKER
	8.3.1. Deploy the image and template
	8.3.2. Deploy the application

	8.4. DEPLOYING A BASIC BROKER WITH SSL
	8.4.1. Deploying the image and template
	8.4.2. Deploying the application
	8.4.3. Creating a route

	8.5. DEPLOYING A BASIC BROKER WITH PERSISTENCE AND SSL
	8.5.1. Deploy the image and template
	8.5.2. Deploy the application
	8.5.3. Creating a route

	8.6. DEPLOYING A SET OF CLUSTERED BROKERS
	8.6.1. Distributing messages
	8.6.2. Deploy the image and template
	8.6.3. Deploying the application
	8.6.4. Creating a route for the management console

	8.7. DEPLOYING A SET OF CLUSTERED SSL BROKERS
	8.7.1. Distributing messages
	8.7.2. Deploying the image and template
	8.7.3. Deploying the application
	8.7.4. Creating a route for the management console

	8.8. DEPLOYING A BROKER WITH CUSTOM CONFIGURATION
	8.8.1. Deploy the image and template
	8.8.2. Deploy the application

	8.9. BASIC SSL CLIENT EXAMPLE
	8.9.1. Configuring the client

	8.10. EXTERNAL CLIENTS USING SUB-DOMAINS EXAMPLE
	8.10.1. Exposing the brokers
	8.10.2. Connecting the clients

	8.11. EXTERNAL CLIENTS USING PORT BINDING EXAMPLE
	8.11.1. Exposing the brokers
	8.11.2. Connecting the clients

	8.12. MONITORING AMQ BROKER

	CHAPTER 9. REFERENCE
	9.1. APPLICATION TEMPLATE PARAMETERS
	9.2. SECURITY
	9.3. LOGGING

