‘® redhat.

Red Hat AMQ 7.2

AMQ Clients Overview

For Use with AMQ Clients 2.3

Last Updated: 2019-03-18






Red Hat AMQ 7.2 AMQ Clients Overview

For Use with AMQ Clients 2.3



Legal Notice
Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document highlights features and components of AMQ Clients 2.3. It also demonstrates
common use cases and design patterns supported in this release.



Table of Contents

Table of Contents

1 3
CHAPTER 1. KEY FEATURES .. ... ittt ittt e i et saaa e e e sansasaaraasansanannsns 4
CHAPTER 2. COMPONENT S ... .. ittt tte e te e e sasaasaasanasansansasaasansnnennnnnsns 5
2.1. AMQP CLIENTS 5
2.2. JMS CLIENTS AND LIBRARIES 5
CHAPTER 3. EVENT-DRIVEN APIS ... i ittt et e et e et et e sasaanaasaneanannnn, 6
L0 N o I = R 0 7
4.1. AMQP DELIVERY GUARANTEES 7
At-most-once delivery 7
At-least-once delivery 7
CHAPTER 5. IMPORTANT NOTES ... .ottt ittt et et a s aa e e ta e sansasaasansaneanannns 9
5.1. PREFERRED CLIENTS 9
5.2. LEGACY CLIENTS 9
CHAPTER 6. IMPORTANT LINKS ... it i it et e tsaaasaasansansasnasaanansnnns 10



Red Hat AMQ 7.2 AMQ Clients Overview




PREFACE

PREFACE

AMQ Clients is a collection of AMQP 1.0 messaging APlIs for multiple languages and platforms. It
includes JMS 2.0 support and new, event-driven APIs to enable integration into existing applications.

AMQ Clients is part of Red Hat AMQ. For more information, see Introducing Red Hat AMQ 7.


https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/introducing_red_hat_amq_7/

Red Hat AMQ 7.2 AMQ Clients Overview

CHAPTER 1. KEY FEATURES
e An open standard protocol - AMQP 1.0
e Industry-standard APIs - JMS 1.1 and 2.0
e New event-driven APIs - Fast, efficient messaging that integrates everywhere
e Broad language support - C++, Java, JavaScript, Python, Ruby, and .NET

e Wide availability - Linux, Windows, and JVM-based environments



CHAPTER 2. COMPONENTS

CHAPTER 2. COMPONENTS

2.1. AMQP CLIENTS
AMQ Clients includes a suite of AMQP 1.0 messaging APIls. AMQP is an ISO-standard, general-purpose
messaging protocol with rich messaging capabilities. Both AMQ Broker and AMQ Interconnect offer
AMQP 1.0 support and therefore interoperate with any AMQP 1.0 client.

e Using the AMQ JMS Client

e Using the AMQ C++ Client

e Using the AMQ JavaScript Client

e Using the AMQ .NET Client

e Using the AMQ Python Client

e Using the AMQ Ruby Client

2.2. JMS CLIENTS AND LIBRARIES
AMQ Clients offers multiple implementations of the widely used Java Message Service (JMS) API.

AMQ JMS provides full AMQP 1.0 support and works with any AMQ server. For more information, see
Using the AMQ JMS Client.

To support existing applications based on A-MQ 6, AMQ 7 includes the AMQ OpenWire JMS client. For
more information, see Using the AMQ OpenWire JMS Client.

To support existing applications based on the ActiveMQ Artemis Core protocol, AMQ includes the AMQ
Core Protocol JMS client. For more information, see Using the AMQ Core Protocol JMS Client.

To support efficient use of JMS resources, AMQ includes the AMQ JMS Pool library. It enables reuse of
connection resources beyond the standard lifecycle defined by the JMS API. For more information, see
Using the AMQ JMS Pool Library.


https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_jms_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_cpp_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_javascript_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_.net_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_python_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_ruby_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_jms_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_openwire_jms_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_amq_core_protocol_jms_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html-single/using_the_jms_pool_library/

Red Hat AMQ 7.2 AMQ Clients Overview

CHAPTER 3. EVENT-DRIVEN APIS

Many of the APIs provided with AMQ Clients are asynchronous, event-driven APIs. These include the
C++, JavaScript, Python, and Ruby APls.

These APIs work by executing application event-handling functions in response to network activity. The
library monitors network I/O and fires events. The event handlers run sequentially on the main library
thread.

Because the event handlers run on the main library thread, the handler code must not contain any long-
running blocking operations. Blocking in an event handler blocks all library execution. If you need to

execute a long blocking operation, you must call it on a separate thread. The event-driven APls include
cross-thread communication facilities to support coordination between the library thread and application

threads.

AVOID BLOCKING IN EVENT HANDLERS

Long-running blocking calls in event handlers stop all library execution, preventing the
library from handling other events and performing periodic tasks. Always start long-
running blocking procedures in a separate application thread.




CHAPTER 4. AMQP

CHAPTER 4. AMQP

AMQP is an open internet protocol for reliably sending and receiving messages. It is supported by
multiple software vendors and major institutions. AMQP 1.0 became an OASIS standard in 2012 and an
ISO standard in 2014.

e A framed protocol with session multiplexing

e Supports peer-to-peer and client-server connections

e Provides a standard type system for lossless data exchange

e Offers flow control, heartbeating, and resource limits for increased reliability in distributed
systems

e Uses a space-efficient binary encoding and pipelining to reduce latency

4.1. AMQP DELIVERY GUARANTEES
The AMQP model for settlement is based on the lifecycle of a message delivery. At each end of a link, an
entity representing a message transfer is created, it exists for some period of time, and finally it is
"settled", meaning it can be forgotten. There are four events of interest in the combined lifecycle of a
delivery.

e The delivery is created at the sender.

e The delivery is created at the receiver.

e The delivery is settled at the sender.

e The delivery is settled at the receiver.

Because the sender and receiver are operating concurrently, these events can occur in various orders,
and the order of these events results in differing message delivery guarantees.

At-most-once delivery
At-most-once delivery is also known as "presettled" or "fire and forget" delivery.

1. The delivery is created at the sender.
2. The delivery is settled at the sender.
3. The delivery is created at the receiver.
4. The delivery is settled at the receiver.

In this configuration the sender settles (that is, forgets) the delivery before it reaches the receiver, and if
anything happens to the delivery in flight, the sender has no basis for resending.

This mode is suited to applications where temporary message loss is acceptable, such as for periodic
sensor data, or when the application itself can detect the failure and resend.

At-least-once delivery
1. The delivery is created at the sender.

2. The delivery is created at the receiver.



Red Hat AMQ 7.2 AMQ Clients Overview

3. The delivery is settled at the receiver.
4. The delivery is settled at the sender.

In this configuration, the receiver settles the delivery when it has received it, and the sender settles once
it sees the receiver has settled. If anything happens to the delivery in flight, the sender can resend. The
receiver, however, has already forgotten the delivery, so a resend will result in a duplicate message
delivery. Applications can use unique message IDs to filter out duplicates.



CHAPTER 5. IMPORTANT NOTES

CHAPTER 5. IMPORTANT NOTES

5.1. PREFERRED CLIENTS

In general, AMQ clients that support the AMQP 1.0 standard are preferred for new application
development. However, the following exceptions apply:

e |f your implementation requires distributed transactions, use the AMQ Core Protocol JMS client.

e If you require MQTT or STOMP in your domain (for loT applications, for instance), use
community-supported MQTT or STOMP clients.

The considerations above do not necessarily apply if you are already using:
e The AMQ OpenWire JMS client (the JMS implementation previously provided in A-MQ 6)

e The AMQ Core Protocol JMS client (the JMS implementation previously provided with HornetQ)

5.2. LEGACY CLIENTS

o Deprecation of the CMS and NMS APIs
The ActiveMQ CMS and NMS messaging APls are deprecated in AMQ 7. It is recommended
that users of the CMS API migrate to AMQ C++, and users of the NMS API migrate to AMQ
.NET. The CMS and NMS APIs might have reduced functionality in AMQ 7.

o Deprecation of the legacy AMQ C++ client
The legacy AMQ CJ[]+ client (the C+ client previously provided in MRG Messaging) is
deprecated in AMQ 7. It is recommended that users of this APl migrate to AMQ C++.

e The Core APl is unsupported
The Artemis Core API client is not supported. This client is distinct from the AMQ Core Protocol
JMS client, which is supported.



Red Hat AMQ 7.2 AMQ Clients Overview

CHAPTER 6. IMPORTANT LINKS

e Red Hat AMQ 7 Supported Configurations
e Red Hat AMQ 7 Component Details

Revised on 2019-03-18 15:33:23 UTC

10


https://access.redhat.com/articles/2791941
https://access.redhat.com/articles/3188232

	Table of Contents
	PREFACE
	CHAPTER 1. KEY FEATURES
	CHAPTER 2. COMPONENTS
	2.1. AMQP CLIENTS
	2.2. JMS CLIENTS AND LIBRARIES

	CHAPTER 3. EVENT-DRIVEN APIS
	CHAPTER 4. AMQP
	4.1. AMQP DELIVERY GUARANTEES
	At-most-once delivery
	At-least-once delivery


	CHAPTER 5. IMPORTANT NOTES
	5.1. PREFERRED CLIENTS
	5.2. LEGACY CLIENTS

	CHAPTER 6. IMPORTANT LINKS

