‘® redhat.

Red Hat JBoss AMQ 7.0

Using the AMQ JMS Client

For Use with AMQ Clients 1.2

Last Updated: 2017-12-15

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

For Use with AMQ Clients 1.2

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

.In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This quide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.

Table of Contents

CHAPTERT.OVERVIEW .. ittt it ittt ieiieenae

1.1. KEY FEATURES
1.2. SUPPORTED STANDARDS AND PROTOCOLS
1.3. SUPPORTED CONFIGURATIONS
1.4. TERMS AND CONCEPTS
1.5. DOCUMENT CONVENTIONS
The sudo Command
About the Use of File Paths in this Document

CHAPTER 2. INSTALLATION ..ttt ittt i ieiieeane

2.1. PREREQUISITES

2.2.INSTALLING ON RED HAT ENTERPRISE LINUX
2.3.INSTALLING ON MICROSOFT WINDOWS

2.4. CONFIGURING MAVEN

CHAPTER 3. GETTING STARTED ...ciiiiiiiiiii ittt

3.1. PREPARING THE BROKER
3.2. RUNNING HELLO WORLD

CHAPTER 4. CONFIGURATION ...ttt ittt iiiienne

4.1. CONFIGURING A JNDI INITIALCONTEXT

Configuring an InitialContext Using a jndi.properties File
Configuring an InitialContext Using System Properties

Configuring an InitialContext Programmatically
JNDI Property Syntax
4.2. CONNECTION URIS
4.3. CONNECTION URI OPTIONS
4.3.1. JMS Options
Prefetch Policy Options
Redelivery Policy Options
Message ID Policy Options
Presettle Policy Options
Deserialization Policy Options
4.3.2. TCP Transport Options
4.3.3. SSL/TLS Transport Options
4.3.4. AMQP Options
4.3.5. Failover Options
4.3.6. Discovery Options
4.4 SECURITY
4.4.1. Authenticating Using Kerberos
4.5. LOGGING

CHAPTER 5. EXAMPLES ...ttt iiiiiiiiteineennnns

5.1. CONFIGURING THE JNDI CONTEXT
5.2. SENDING MESSAGES
5.3. RECEIVING MESSAGES

CHAPTER 6. INTEROPERABILITY ..ottt iiiiiiiiiinne

6.1. INTEROPERATING WITH OTHER AMQP CLIENTS
6.1.1. Sending Messages
6.1.1.1. Message Type
6.1.1.2. Message Properties
6.1.2. Receiving Messages

Table of Contents

(o)W« W o \ RN ©) IR NSNS 1N

~

NN NN

............................... 24

24
24
26

............................... 29

29
29
29
30
30

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

6.1.2.1. Message Type
6.1.2.2. Message Properties
6.2. CONNECTING TO AMQ BROKER
6.3. CONNECTING TO AMQ INTERCONNECT

APPENDIX A.USING YOUR SUBSCRIPTION .. .iiiiiiiiiittttiiiinnnncersosssnnsssssosssnnsssssossnnns
Accessing Your Account
Activating a Subscription
Downloading Zip and Tar Files
Registering Your System for Packages

30

31
32
32

33
33
33
33
33

Table of Contents

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

CHAPTER 1. OVERVIEW

AMQ JMS is a Java Message Service (JMS) 2.0 client for use in messaging applications that send and
receive AMQP messages.

AMQ JMS is part of AMQ Clients, a suite of messaging libraries supporting multiple languages and
platforms. See Introducing Red Hat JBoss AMQ 7 for an overview of the clients and other AMQ
components. See AMQ Clients 1.2 Release Notes for information about this release.

AMQ JMS is based on the JMS client from Apache Qpid.

1.1. KEY FEATURES
AMQ JMS gives you all of the features of JMS with the power of AMQP.
e JMS 2.0 compatible
e SSL/TLS and SASL for secure communication
e Heartbeating and automatic reconnect for reliable network connections
o Ready for use with OSGi containers

e Pure-Javaimplementation

1.2. SUPPORTED STANDARDS AND PROTOCOLS
AMQ JMS supports the following industry-recognized standards and network protocols.
e Version 2.0 of the Java Message Service API

e Version 1.0 of the Advanced Message Queueing Protocol (AMQP)

Version 1.0 of the AMQP JMS Mapping

Modern TCP with IPv6

-

NOTE
The details of distributed transactions (XA) within AMQP are not provided in the 1.0

version of the specification. If your environment requires support for distributed
transactions, it is recommended that you use the AMQ Core Protocol JMS.

1.3. SUPPORTED CONFIGURATIONS

AMQ JMS supports the following OS and language versions. See Red Hat JBoss AMQ 7 Supported
Configurations for more information.

o Red Hat Enterprise Linux 6 and 7 with the following JDKs.

o OpenJDK 8
o Oracle JDK 8

o IBMJDK 8

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/introducing_red_hat_jboss_amq_7/
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/amq_clients_1.2_release_notes/
http://qpid.apache.org/
https://jcp.org/en/jsr/detail?id=343
http://www.amqp.org/
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460
https://access.redhat.com/articles/2791941

CHAPTER 1. OVERVIEW

e HP-UX11i with HP-UX JVM 8
e IBM AIX 7.1 with IBM JDK 8
e Oracle Solaris 10 and 11 with Oracle JDK 8

e Microsoft Windows Server 2012 R2 with Oracle JDK 8

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. APl Terms

Entity Description

ConnectionFactor An entry point for creating connections

y

Connection A channel for communication between two peers on a network
Session A serialized context for producing and consuming messages
MessageProducer A channel for sending messages to a destination
MessageConsumer A channel for receiving messages from a destination
Destination A named location for messages, either a queue or a topic
Queue A stored sequence of messages

Topic A stored sequence of messages for multicast distribution
Message A mutable holder of application content

AMQ JMS sends and receives messages. Messages are transferred between connected peers using
message producersand consumers. Producers and consumers are established over sessions. Sessions
are established over connections. Connections are created by connection factories.

A sending peer creates a producer to send messages. The producer has a destination that identifies a
target queue or topic at the remote peer. A receiving peer creates a consumer to receive messages.
Like the producer, the consumer has a destination that identifies a source queue or topic at the remote
peer.

A destination is either a queue or a topic. In JMS, queues and topics are client-side representations of
named broker entities that hold messages.

A queue implements point-to-point semantics. Each message is seen by only one consumer, and the
message is removed from the queue after it is read. A topic implements publish-subscribe semantics.
Each message is seen by multiple consumers, and the message remains available to other consumers
after it is read.

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

See the JMS tutorial for more information.

1.5. DOCUMENT CONVENTIONS

This document uses the following conventions for the sudo command and file paths.

The sudo Command

In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

For more information about using sudo, see The sudo Command.

About the Use of File Paths in this Document

In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/ . . .).If you are using Microsoft Windows, you should use the equivalent Microsoft Windows
paths (for example, C:\Users\...).

https://docs.oracle.com/javaee/7/tutorial/jms-concepts001.htm
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

CHAPTER 2. INSTALLATION

CHAPTER 2. INSTALLATION

This chapter guides you through the steps required to install AMQ JMS in your environment.

2.1. PREREQUISITES

To begin installation, use your subscription to access AMQ distribution archives and package
repositories.

To compile the examples or your own application, make sure you have Apache Maven installed.

2.2. INSTALLING ON RED HAT ENTERPRISE LINUX

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat JBoss AMQ Clients entry in the JBOSS INTEGRATION AND
AUTOMATION category.

3. Click Red Hat JBoss AMQ Clients. The Software Downloads page opens.
4. Download the AMQ JMS Client zip file.

5. Use theunzip command to extract the file contents into a directory of your choosing.
I $ unzip apache-qpid-jms-VERSION.zip

6. Configure Maven to discover the client.

2.3.INSTALLING ON MICROSOFT WINDOWS

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat JBoss AMQ Clients entry in the JBOSS INTEGRATION AND
AUTOMATION category.

3. Click Red Hat JBoss AMQ Clients. The Software Downloads page opens.
4. Download the AMQ JMS Client zip file.

5. Extract the file contents into a directory of your choosing by right-clicking on the zip file and
selecting Extract All.

6. Configure Maven to discover the client.

2.4. CONFIGURING MAVEN
The client uses Apache Maven as its build tool.
To build and run the client examples, or to use the client in dependent Maven application builds, you

must first configure Maven to discover a repository for the client. To do so, you must update or create
the Maven settings.xml file. It is typically located at one of the following locations.

http://maven.apache.org/
https://access.redhat.com/downloads
https://access.redhat.com/downloads
http://maven.apache.org/

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

Table 2.1. File Location

Operating System Location of File

Linux /home/USERNAME/ .m2/settings.xml

Windows C:\Users\USERNAME\ .m2\settings.xml

The client can be accessed by configuring Maven in one of two ways depending on your needs:

1. Using the JBoss Enterprise Maven Repository
The AMQ JMS Client 1.2can be used from the JBoss Enterprise Maven Repository.

The contents of a settings.xml configured to use the repository would resemble the
following example.

<settings>
<profiles>
<!-- Configure the JBoss GA Maven repository -->
<profile>
<id>jboss-ga-repository</id>
<repositories>
<repository>
<id>jboss-ga-repository</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-ga-repository</id>
<url>http://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
<!-- Configure the JBoss Early Access Maven repository -->
<profile>
<id>jboss-earlyaccess-repository</id>
<repositories>
<repository>
<id>jboss-earlyaccess-repository</id>

<url>https://maven.repository.redhat.com/earlyaccess/all/</url>

https://maven.repository.redhat.com/

CHAPTER 2. INSTALLATION

<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
<pluginRepositories>
<pluginRepository>
<id>jboss-earlyaccess-repository</id>

<url>http://maven.repository.redhat.com/earlyaccess/all/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</repositories>
</profile>
</profiles>
<activeProfiles>
<!-- Optionally, make the repository active by default -->
<activeProfile>jboss-ga-repository</activeProfile>
<activeProfile>jboss-earlyaccess-repository</activeProfile>
</activeProfiles>
</settings>

. Using a File-based Maven Repository
Alternatively, you can download the AMQ JMS Client 1.2Maven Repository zip file from the Red
Hat Customer Portal, extract it, and configure Maven to utilize this locally instead.

The contents of a settings.xml configured to use the file-based repository should resemble
the following example. Remember to update the URL to the actual path of the extracted
repository.

<settings>
<profiles>
<!-- Configure the File Based Maven repository -->
<profile>
<id>amqg-jms-client</id>
<repositories>
<repository>

<id>amqg-qpid-jms</id>
<url>file:///path/to/extracted/maven-repository</url>
<!-- If using Windows, an example URL might be:
file://C:\path\to\installation\maven-repository -->
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>

https://access.redhat.com/products/red-hat-jboss-amq

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-amqg-repository</id>
<url>file:///path/to/extracted/maven-repository</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>
<activeProfiles>
<!-- Optionally, make the repository active by default -->
<activeProfile>amg-jms-client</activeProfile>
</activeProfiles>
</settings>

10

CHAPTER 3. GETTING STARTED

CHAPTER 3. GETTING STARTED

This chapter guides you through a simple exercise to help you get started using AMQ JMS. Before
starting, make sure you have completed the steps in the Chapter 2, Installation chapter for your
environment.

To build the examples, you must first configure Maven to discover the client repository .

3.1. PREPARING THE BROKER

The example programs require a running broker with a queue named queue. Follow these steps to
define the queue and start the broker.

1. Install the broker.
2. Create a broker instance. Enable anonymous access.

3. Start the broker instance and check the console for any critical errors logged during startup.

$ BROKER_INSTANCE_DIR/bin/artemis run

[...]

14:43:20,158 INFO
[org.apache.activemqg.artemis.integration.bootstrap] AMQ101000:
Starting ActiveMQ Artemis Server

[...]
15:01:39,686 INFO [org.apache.activemq.artemis.core.server]
AMQ221020: Started Acceptor at 0.0.0.0:5672 for protocols [AMQP]

[...]
15:01:39,691 INFO [org.apache.activemq.artemis.core.server]
AMQ221007: Server is now live

4. Use the artemis queue command to create a queue called queue.

$ BROKER_INSTANCE_DIR/bin/artemis queue create --name queue --auto-
create-address --anycast

You are prompted to answer a series of questions. For yes|no questions, type N; otherwise,
press Enter to accept the default value.

3.2. RUNNING HELLO WORLD

Use Maven to build the examples by running the following command in the INSTALL_DIR/examples
directory.

NOTE

In this example, the addition of dependency : copy-dependencies results in the
dependencies being copied into the target/dependency directory.

mvn clean package dependency:copy-dependencies -DincludeScope=runtime -
DskipTests

Run the HelloWorld example by using one of the following commands.

1

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#installation
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#creating_a_broker_instance

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

Linux: java -cp "target/classes/:target/dependency/*"
org.apache.qgpid.jms.example.Helloworld
Windows: java -cp "target\classes\;target\dependency*"
org.apache.qgpid.jms.example.Helloworld

The HelloWorld example creates a connection to the broker, creates a MessageConsumer and
MessageProducer for the queue called queue, sends a Hello world! TextMessage, receives it, and
prints its contents to the terminal.

For example, running it on Linux results in the following output.

$ java -cp "target/classes/:target/dependency/*"
org.apache.qgpid.jms.example.Helloworld
Hello world!

The source code for the example can be found in the INSTALL_DIR/src/main/java directory, with
the JNDI and logging configuration found in the INSTALL_DIR/src/main/resources directory.

12

CHAPTER 4. CONFIGURATION

CHAPTER 4. CONFIGURATION

This section details various configuration options for the client, such as how to configure and create a
JNDI InitialContext, the syntax for its related configuration, and various URI options that can be
set when defining a ConnectionFactory.

4.1. CONFIGURING A JNDI INITIALCONTEXT

JMS applications use a JNDI InitialContext obtained from an InitialContextFactory to look
up JMS objects such as ConnectionFactory. The client provides an implementation of the
InitialContextFactoryinthe org.apache.qpid.jms.jndi.JmsInitialContextFactory
class. You can configure it three different ways.

Configuring an InitialContext Using a jndi.properties File

If you include a file named jndi.properties on the classpath and set the
java.naming.factory.initial property value to
org.apache.qpid.jms.jndi.JmsInitialContextFactory,the client
InitialContextFactoryimplementation is discovered when the InitialContext objectis
instantiated.

I javax.naming.Context ctx = new javax.naming.InitialContext();

The particular ConnectionFactory, Queue, and Topic objects that you want the Context to
contain are configured as properties either directly within the jndi.properties file or in a separate
file whose path is referenced in jndi.properties using the java.naming.provider.url
property. The syntax for these properties is detailed below.

Configuring an InitialContext Using System Properties

If you set the java.naming. factory.initial system property to the value
org.apache.qpid.jms.jndi.JmsInitialContextFactory,the client
InitialContextFactoryimplementation is discovered when the InitialContext object is
instantiated.

I javax.naming.Context ctx = new javax.naming.InitialContext();

The particular ConnectionFactory, Queue, and Topic objects that you want the context to contain
are configured as properties in a file, the path to which is passed using the
java.naming.provider .url system property. The syntax for these properties is detailed below.

Configuring an InitialContext Programmatically
You can configure the InitialContext directly by setting an environment variable on a Hashtable
environment object.

Hashtable<Object, Object> env = new Hashtable<Object, Object>();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"org.apache.qgpid.jms.jndi.JmsInitialContextFactory");
javax.naming.Context context = new javax.naming.InitialContext(env);

The particular ConnectionFactory, Queue, and Topic objects that you want the context to contain
are configured as properties (the syntax for which is detailed below) either directly within the
environment Hashtable or in a separate file whose path is referenced using the
java.naming.provider .url property within the environment Hashtable.

13

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

JNDI Property Syntax
The property syntax used in the properties file or environment Hashtable is as follows:

e To define aConnectionFactory, use format connectionfactory. LOOKUP_NAME =
CONNECTION_URI.

e To define aQueue, use format queue. LOOKUP_NAME = QUEUE_NAME.
o To define a Topic use format topic.LOOKUP_NAME = TOPIC_NAME.
For more details about the connection URI, see the next section.

As an example, consider the following properties that define a ConnectionFactory, Queue, and
Topic.

connectionfactory.myFactoryLookup = amqp://localhost:5672
gueue.myQueueLookup = queueA
topic.myTopicLookup = topicA

These objects could then be looked up from a Context as follows.

ConnectionFactory factory = (ConnectionFactory)
context.lookup("myFactoryLookup");

Queue queue = (Queue) context.lookup("myQueueLookup");
Topic topic = (Topic) context.lookup("myTopicLookup");

4.2. CONNECTION URIS

A ConnectionFactory is configured using a connection URI.

Connection URI Format

I amgp[s]://hostname:port[?option=value[&option2=value...]]

The available connection settings are detailed in the Section 4.3, “Connection URI Options” section.

When failover is configured, the client can reconnect to another server automatically if the connection
to the current server is lost. Failover URIs start with the prefix failover: and contain a comma-
separated list of server URIs inside parentheses. Additional options are specified at the end.

Failover URI Format

failover: (amqp://hostl:port[,amqp://host2:port...])[?
option=value[&option2=value...]]

As with the connection URI example, the client can be configured with a number of different settings
using the URI in a failover configuration. These settings are detailed below, with the failover options
section being of particular interest.

When the amqps scheme is used to specify an SSL/TLS connection, the hostname segment from the
URI can be used by the JVM’s TLS SNI (Server Name Indication) extension to communicate the desired
server hostname during a TLS handshake. The SNI extension is automatically included if a Fully

14

CHAPTER 4. CONFIGURATION

Qualified Domain Name (for example, "myhost.mydomain") is specified, but not when an unqualified
name (for example, "myhost") or a bare IP address is used.

4.3. CONNECTION URI OPTIONS

4.3.1. JMS Options

These options control the behaviour of JMS objects such as Connection, Session,
MessageConsumer, and MessageProducer.

jms.username - The username used to authenticate the connection.
jms.password - The password used to authenticate the connection.
jms.clientID - The client ID that is applied to the connection.

jms.forceAsyncSend - If enabled, all messages from a MessageProducer are sent
asynchronously. Otherwise, only certain kinds, such as non-persistent messages or those
inside a transaction, are sent asynchronously. Default is false.

jms.forceSyncSend - If enabled, all messages from a MessageProducer are sent
synchronously. Default is false.

jms.forceAsyncAcks - If enabled, all message acknowledgments are sent asynchronously.
Default is false.

jms.localMessageExpiry - If enabled, any expired messages received by a MessageConsumer
are filtered out and not delivered. Default is true.

jms.localMessagePriority - If enabled, prefetched messages are reordered locally based on
their message priority value. Default is false.

jms.validatePropertyNames - If enabled, message property names are required to be valid
Java identifiers. Default is true.

jms.receivelLocalOnly - If enabled, calls to receive with a timeout argument will check a
consumer’s local message buffer only. Otherwise, if the timeout expires, the remote peer is
checked to ensure there are really no messages. Default is false.

jms.receiveNoWaitLocalOnly - If enabled, calls to receiveNoWait will check a consumer’s
local message buffer only. Otherwise, the remote peer is checked to ensure there are really no
messages available. Default is false.

jms.queuePrefix - An optional prefix value added to the name of any Queue created from a
Session.

jms.topicPrefix - An optional prefix value added to the name of any Topic created from a
Session.

jms.closeTimeout - The time in milliseconds for which the client will wait for normal resource
closure before returning. Default is 60000 (60 seconds).

jms.connectTimeout - The time in milliseconds for which the client will wait for connection
establishment before returning with an error. Default is 15000 (15 seconds).

15

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

jms.sendTimeout - The time in milliseconds for which the client will wait for completion of a
synchronous message sendbefore returning an error. By default the client will wait indefinitely
for a send to complete.

jms.requestTimeout - The time in milliseconds for which the client will wait for completion of
various synchronous interactionslike opening a producer or consumer (excluding send) with the
remote peer before returning an error. By default the client will wait indefinitely for a request
to complete.

jms.clientIDPrefix - An optional prefix value used to generate client ID values when a new
Connection is created by the ConnectionFactory. Defaultis ID:.

jms.connectionIDPrefix - An optional prefix value used to generate connection ID values when
anew Connectionis created by the ConnectionFactory. This connection ID is used when
logging some information from the Connection object, so a configurable prefix can make
breadcrumbing the logs easier. Default is ID:.

jms.populateJMSXUserID - If enabled, populate the JMSXUserID property for each sent
message using the authenticated username from the connection. Default is false.

jms.awaitClientID - If enabled, a connection with no ClientID configured in the URI will wait for
a ClientID to be set programmatically, or the connection being used otherwise to signal none
can be set, before sending the AMQP connection Open. Default is true.

jms.useDaemonThread - If enabled, a connection will use a daemon thread for its executor,
rather than a non-daemon thread. Default is false.

Prefetch Policy Options
Prefetch policy determines how many messages each MessageConsumer will fetch from the remote
peer and hold in a local "prefetch" buffer.

jms.prefetchPolicy.queuePrefetch - Default is 1000.
jms.prefetchPolicy.topicPrefetch - Default is 1000.
jms.prefetchPolicy.queueBrowserPrefetch - Default is 1000.
jms.prefetchPolicy.durableTopicPrefetch - Default is 1000.

jms.prefetchPolicy.all - Used to set all prefetch values at once.

Redelivery Policy Options
Redelivery policy controls how redelivered messages are handled on the client.

jms.redeliveryPolicy.maxRedeliveries - Controls when an incoming message is rejected
based on the number of times it has been redelivered. A value of O indicates that no message
redeliveries are accepted. A value of 5 allows a message to be redelivered five times, and so
on. Default is -1, meaning no limit.

Message ID Policy Options
Message ID policy controls the data type of the message ID assigned to messages sent from the client.

jms.messagelDPolicy.messagelDType - By default, a generated String value is used for the
message ID on outgoing messages. Other available types are UUID, UUID_STRING, and
PREFIXED_UUID_STRING.

Presettle Policy Options

16

CHAPTER 4. CONFIGURATION

Presettle policy controls when a producer or consumer instance will be configured to use AMQP
presettled messaging semantics.

o jms.presettiePolicy.presettleAll - If enabled, all producers and non-transacted consumers
created operate in presettled mode. Default is false.

e jms.presettlePolicy.presettleProducers - If enabled, all producers operate in presettled
mode. Default is false.

o jms.presettiePolicy.presettleTopicProducers - If enabled, any producer that is sending to a
Topic or TemporaryTopic destination will operate in presettled mode. Default is false.

o jms.presettlePolicy.presettieQueueProducers - If enabled, any producer that is sending to a
Queue or TemporaryQueue destination will operate in presettled mode. Default is false.

o jms.presettlePolicy.presettleTransactedProducers - If enabled, any producer that is created
in a transacted Session will operate in presettled mode. Default is false.

e jms.presettlePolicy.presettieConsumers - If enabled, all consumers operate in presettled
mode. Default is false.

o jms.presettiePolicy.presettleTopicConsumers - If enabled, any consumer that is receiving
from a Topic or TemporaryTopic destination will operate in presettled mode. Default is
false.

e jms.presettlePolicy.presettieQueueConsumers - If enabled, any consumer that is receiving
from a Queue or TemporaryQueue destination will operate in presettled mode. Default is
false.

Deserialization Policy Options

Deserialization policy provides a means of controlling which Java types are trusted to be deserialized
from the object stream while retrieving the body from an incoming ObjectMessage composed of
serialized JavaObject content. By default all types are trusted during an attempt to deserialize the

body. The default deserialization policy provides URI options that allow specifying a whitelist and a
blacklist of Java class or package names.

e jms.deserializationPolicy.whiteList - A comma-separated list of class and package names
that should be allowed when deserializing the contents of an ObjectMessage, unless
overridden by blackList. The names in this list are not pattern values. The exact class or
package name must be configured, asin java.util.Map or java.util. Package matches
include sub-packages. Default is to allow all.

e jms.deserializationPolicy.blackList - A comma-separated list of class and package names that
should be rejected when deserializing the contents of a ObjectMessage. The names in this
list are not pattern values. The exact class or package name must be configured, as in
java.util.Map or java.util. Package matches include sub-packages. Default is to prevent
none.

4.3.2. TCP Transport Options

When connected to a remote server using plain TCP, the following options specify the behavior of the
underlying socket. These options are appended to the connection URI along with any other
configuration options.

Example: A Connection URI with Transport Options

17

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

I amqgp://localhost:5672?jms.clientID=foo&transport.connectTimeout=30000

The complete set of TCP transport options is listed below.

transport.sendBufferSize - Default is 64k.
transport.receiveBufferSize - Default is 64k.
transport.trafficClass - Default is O.
transport.connectTimeout - Default is 60 seconds.
transport.soTimeout - Default is -1.
transport.soLinger - Default is -1.
transport.tcpKeepAlive - Default is false.
transport.tcpNoDelay - Default is true.

transport.useEpoll - When available, use the native epoll 10 layer instead of the NIO layer. This
can improve performance. Default is true.

4.3.3. SSL/TLS Transport Options

The SSL/TLS transport is enabled by using the amqps URI scheme. Because the SSL/TLS transport
extends the functionality of the TCP-based transport, all of the TCP transport options are valid on an
SSL/TLS transport URI.

Example: A Simple SSL/TLS Connection URI

I amgps://myhost.mydomain:5671

The complete set of SSL/TLS transport options is listed below.

18

transport.keyStoreLocation - Default is to read from the system property
javax.net.ssl.keyStore.

transport.keyStorePassword - Default is to read from the system property
javax.net.ssl.keyStorePassword.

transport.trustStoreLocation - Default is to read from the system property
javax.net.ssl.trustStore.

transport.trustStorePassword - Default is to read from the system property
javax.net.ssl.trustStorePassword.

transport.keyStoreType - The type of key store being used. Default is to read from the system
property javax.net.ssl.keyStoreType. If the property is not set, the defaultis JKS.

transport.trustStoreType - The type of trust store being used. Default is to read from the
system property javax.net.ssl.trustStoreType. If the property is not set, the default is
JKS.

transport.storeType - Sets both keyStoreType and trustStoreType to the same value. If
not set, keyStoreType and trustStoreType will default to the values specified above.

CHAPTER 4. CONFIGURATION

transport.contextProtocol - The protocol argument used when getting an SSLContext.
Default is TLS.

transport.enabledCipherSuites - A comma-separated list of cipher suites to enable. No
default, meaning the context default ciphers are used. Any disabled ciphers are removed from
this list.

transport.disabledCipherSuites - A comma-separated list cipher suites to disable. Ciphers
listed here are removed from the enabled ciphers. No default.

transport.enabledProtocols - A comma-separated list of protocols to enable. No default,
meaning the context-default protocols are used. Any disabled protocols are removed from this
list.

transport.disabledProtocols - A comma-separated list of protocols to disable. Protocols listed
here are removed from the enabled protocol list. Default is SSLv2Hello, SSLv3.

transport.trustAll - If enabled, trust the provided server certificate implicitly, regardless of any
configured trust store. Default is false.

transport.verifyHost - If enabled, verify that the connection hostname matches the provided
server certificate. Default is true.

transport.keyAlias - The alias to use when selecting a key pair from the key store if required
to send a client certificate to the server. No default.

4.3.4. AMQP Options

The following options apply to aspects of behavior related to the AMQP wire protocol.

amgp.idleTimeout - The time in milliseconds after which the connection will be failed if the
peer sends no AMQP frames. Default is 60000 (1 minute).

amgp.vhost - The virtual host to connect to. Used to populate the SASL and AMQP hostname
fields. Default is the main hostname from the connection URI.

amgp.saslLayer - If enabled, SASL is used when establishing connections. Default is true.

amgp.sasIMechanisms - A comma-separated list of SASL mechanisms the client should allow
selection of, if offered by the server and usable with the configured credentials. The supported
mechanisms are EXTERNAL, SCRAM-SHA-256, SCRAM-SHA-1, CRAM-MD5, PLAIN,
ANONYMOUS, and GSSAPI for Kerberos. Default is to allow selection from all mechanisms
except GSSAPI, which must be explicitly included here to enable.

amgp.maxFrameSize - The maximum AMQP frame size in bytes allowed by the client. This
value will be advertised to the remote peer. Default is 1048576 (1 MiB).

amgp.drainTimeout - The time in milliseconds that the client will wait for a response from the
remote peer when a consumer drain request is made. If no response is seen in the allotted
timeout period, the link will be considered failed and the associated consumer will be closed.
Default is 60000 (1 minute).

amgp.allowNonSecureRedirects - Controls whether the client allows an AMQP redirect to an

alternative host over a connection that is not secure when the existing connection is secure,
such as redirecting an SSL/TLS connection to a raw TCP connection. Default is false.

19

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

4.3.5. Failover Options

Failover URIs start with the prefix failover: and contain a comma-separated list of server URIs
inside parentheses. Additional options are specified at the end. Options prefixed with jms. are applied
to the overall failover URI, outside of parentheses, and affect the Connection object for its lifetime.

Example: A Failover URI with Failover Options

failover: (amqp://host1:5672,amgp://host2:5672)?
jms.clientID=foo&failover .maxReconnectAttempts=20

The individual broker details within the parentheses can use the transport. or amqp. options
defined earlier. These are applied as each host is connected to.

Example: A Failover URI with Per-connection Transport and AMQP Options

failover: (amqgp://hostl1:5672?amgp.option=value, amqp://host2:5672?
transport.option=value)?jms.clientID=fo00

All of the configuration options for failover are listed below.

e failover.initialReconnectDelay - The time in milliseconds the client will wait before the first
attempt to reconnect to a remote peer. Default is 0, meaning the first attempt happens
immediately.

e failover.reconnectDelay - The time in milliseconds between reconnection attempts. If the
backoff option is not enabled, this value remains constant. Default is 10.

o failover.maxReconnectDelay - The maximum time that the client will wait before attempting
to reconnect. This value is only used when the backoff feature is enabled to ensure that the
delay does not grow too large. Default is 30 seconds.

o failover.useReconnectBackOff - If enabled, the time between reconnection attempts grows
based on a configured multiplier. Default is true.

o failover.reconnectBackOffMultiplier - The multiplier used to grow the reconnection delay
value. Default is 2.0.

o failover.maxReconnectAttempts - The number of reconnection attempts allowed before
reporting the connection as failed to the client. Default is -1, meaning no limit.

o failover.startupMaxReconnectAttempts - For a client that has never connected to a remote
peer before, this option controls how many attempts are made to connect before reporting the
connection as failed. Default is to use the value of maxReconnectAttempts.

o failover.warnAfterReconnectAttempts - Controls how often the client will log a message
indicating that failover reconnection is being attempted. Default is to log every 10 connection
attempts.

e failover.randomize - If enabled, the set of failover URIs is randomly shuffled before attempting
to connect to one of them. This can help to distribute client connections more evenly across
multiple remote peers. Default is false.

o failover.amgpOpenServerListAction - Controls how the failover transport behaves when the

connection "open" frame from the server provides a list of failover hosts to the client. Valid
values are REPLACE, ADD, or IGNORE. If REPLACE is configured, all failover URIs other than the

20

CHAPTER 4. CONFIGURATION

one for the current server are replaced with those provided by the server. If ADD is configured,
the URIs provided by the server are added to the existing set of failover URIs, with
deduplication. If IGNORE is configured, any updates from the server are ignored and no
changes are made to the set of failover URIs in use. Default is REPLACE.

The failover URI also supports defining nested options as a means of specifying AMQP and transport
option values applicable to all the individual nested broker URIs. This is accomplished using the same
transport. and amgp. URI options outlined earlier for a non-failover broker URI but prefixed with
failover.nested.. For example, to apply the same value for the amgp.vhost option to every broker
connected to you might have a URI like the following.

Example: A Failover URI with Shared Transport and AMQP Options

failover: (amqp://host1:5672,amqgp://host2:5672)?
jms.clientID=foo&failover.nested.amqgp.vhost=myhost

4.3.6. Discovery Options

The client has an optional discovery module that provides a customized failover layer where the broker
URIs to connect to are not given in the initial URI but instead are discovered by interacting with a
discovery agent. There are currently two discovery agent implementations: a file watcher that loads
URIs from a file and a multicast listener that works with ActiveMQ 5.x brokers that are configured to
broadcast their broker addresses for listening clients.

The general set of failover-related options when using discovery are the same as those detailed earlier,
with the main prefix changed from failover. to discovery., and with the nested prefix used to
supply URI options common to all the discovered broker URIs. For example, without the agent URI
details, a general discovery URI might look like the following.

Example: A Discovery URI

discovery: (<agent-uri>)?
discovery.maxReconnectAttempts=20&discovery.discovered.jms.clientID=foo0

To use the file watcher discovery agent, create an agent URI like the following.

Example: A Discovery URI Using the File Watcher Agent
I discovery:(file:///path/to/monitored-file?updateInterval=60000)

The URI options for the file watcher discovery agent are listed below.

e updatelnterval - The time in milliseconds between checks for file changes. Default is 30000
(30 seconds).

To use the multicast discovery agent with an ActiveMQ 5.x broker, create an agent URI like the
following:

Example: A Discovery URI Using the Multicast Listener Agent

I discovery:(multicast://default?group=default)

21

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

Note that the use of default as the host in the multicast agent URI above is a special value that is
substituted by the agent with the default 239.255.2.3:6155. You can change this to specify the
actual IP address and port in use with your multicast configuration.

The URI option for the multicast discovery agent is listed below.

e group - The multicast group used to listen for updates. Default is default.

4.4. SECURITY

AMQ JMS has a range of security-related configuration options that can be leveraged according to
your application’s needs.

Basic user credentials such as username and password should be passed directly to the
ConnectionFactory when creating the Connection within the application. However, if you are
using the no-argument factory method, it is also possible to supply user credentials in the connection
URI. For more information, see the Section 4.3.1, “JMS Options” section.

Another common security consideration is use of SSL/TLS. The client connects to servers over an
SSL/TLS transport when the amgps URI scheme is specified in the connection URI, with various
options available to configure behavior. For more information, see the Section 4.3.3, “SSL/TLS
Transport Options” section.

In concert with the earlier items, it may be desirable to restrict the client to allow use of only particular
SASL mechanisms from those that may be offered by a server, rather than selecting from all it
supports. For more information, see the Section 4.3.4, “AMQP Options” section.

Applications calling getObject () on areceived ObjectMessage may wish to restrict the types
created during deserialization. Note that message bodies composed using the AMQP type system do
not use the ObjectInputStream mechanism and therefore do not require this precaution. For more
information, see the the section called “Deserialization Policy Options” section.

4.4.1. Authenticating Using Kerberos

The client can be configured to authenticate using Kerberos when used with an appropriately
configured server. To enable Kerberos, use the following steps.

1. Configure the client to use the GSSAPI mechanism for SASL authentication using the
amqp . sas1lMechanisms URI option.

amgp://myhost:5672?amgp.saslMechanisms=GSSAPI
failover: (amqgp://myhost:5672?amqp.saslMechanisms=GSSAPI)

2. Setthe java.security.auth.login.configsystem property to the path of a JAAS login
configuration file containing appropriate configuration for a Kerberos LoginModule.

I -Djava.security.auth.login.config=LOGIN_CONFIG_FILE
The login configuration file might look like the following example.
amgp-jms-client {

com.sun.security.auth.module.Krb5LoginModule required
useTicketCache=true;

iy

22

CHAPTER 4. CONFIGURATION

The precise configuration used will depend on how you wish the credentials to be established for the
connection, and the particular LoginModule in use. For details of the Oracle Krb5LoginModule, see
the Oracle Krb5LoginModule class reference. For details of the IBM Java 8 Krb5LoginModule, see
the IBM Krb5LoginModule class reference.

It is possible to configure a LoginModule to establish the credentials to use for the Kerberos process,
such as specifying a principal and whether to use an existing ticket cache or keytab. If, however, the
LoginModule configuration does not provide the means to establish all necessary credentials, it may
then request and be passed the username and password values from the client Connection object if
they were either supplied when creating the Connection using the ConnectionFactory or
previously configured via its URI options.

Note that Kerberos is supported only for authentication purposes. Use SSL/TLS connections for
encryption.

The following connection URI options can be used to influence the Kerberos authentication process.

o sasl.options.configScope - The name of the login configuration entry used to authenticate.
Default is amqp-jms-client.

e sasl.options.protocol - The protocol value used during the GSSAPI SASL process. Default is
amqp.

e sasl.options.serverName - The serverName value used during the GSSAPI SASL process.
Default is the server hostname from the connection URI.

Similar to the amgp. and transport. options detailed previously, these options must be specified on
a per-host basis or as all-host nested options in a failover URI.

4.5. LOGGING

The client uses the SLF4J API, allowing users to select a particular logging implementation based on
their needs by supplying an SLF4J binding, such as sl/f4j-log4j, in order to use Log4J. More details on
SLF4J are available from its website.

The client uses Logger names residing within the org.apache.qpid. jms hierarchy, which you can
use to configure a logging implementation based on your needs.

When debugging some issues, it can sometimes be useful to enable additional protocol trace logging
from the Qpid Proton AMQP 1.0 library. There are two ways to achieve this.

o Set the environment variable (not the Java system property) PN_TRACE_FRM to 1. This will
cause Proton to emit frame logging to the console.

e Add the option amqp. traceFrames=true to your connection URI and configure the
org.apache.qpid. jms.provider .amqp.FRAMES logger to log level TRACE. This will add a
protocol tracer to Proton and include the output in your logs.

23

https://docs.oracle.com/javase/8/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.api.doc/jgss/com/ibm/security/auth/module/Krb5LoginModule.html
http://www.slf4j.org
http://www.slf4j.org/

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

CHAPTER 5. EXAMPLES

This chapter demonstrates the use of AMQ JMS through example programs. To run them, make sure
you have completed the steps in the Chapter 2, Installation chapter for your environment and you have
arunning and configured broker.

See the Qpid JMS examples for more sample programs.

5.1. CONFIGURING THE JNDI CONTEXT

Applications using JMS typically use JNDI to obtain the ConnectionFactory and Destination
objects used by the application. This keeps the configuration separate from the program and insulates
it from the particular client implementation.

For the purpose of using these examples, a file named jndi.properties should be placed on the
classpath to configure the JNDI Context, as detailed previously.

The contents of the jndi.properties file should match what is shown below, which as per the
format described previously establishes that the client’s InititalContextFactory implementation
should be used, configures a ConnectionFactory to connect to a local server, and defines a
destination queue named queue.

Configure the InitialContextFactory class to use
java.naming.factory.initial =
org.apache.qgpid.jms.jndi.JmsInitialContextFactory

Configure the ConnectionFactory
connectionfactory.myFactoryLookup = amqp://localhost:5672

Configure the destination
gueue.myDestinationLookup = queue

5.2. SENDING MESSAGES

This example first creates a JNDI Context, uses it to look up a ConnectionFactory and
Destination, creates and starts a Connection using the factory, and then creates a Session. Then
aMessageProducer is created to the Destination, and a message is sent using it. The
Connectionis then closed, and the program exits.

A runnable variant of this Sender example is in the INSTALL_DIR/examples directory, along with
the Hello World example covered previously in Chapter 3, Getting Started.

Example: Sending Messages

package org.jboss.amqg.example;

import javax.jms.Connection;

import javax.jms.ConnectionFactory;
import javax.jms.DeliveryMode;
import javax.jms.Destination;
import javax.jms.ExceptionListener;
import javax.jms.JMSException;

import javax.jms.Message;

24

https://github.com/apache/qpid-jms/tree/0.26.0/qpid-jms-examples

CHAPTER 5. EXAMPLES

import javax.jms.MessageProducer;
import javax.jms.Session;

import javax.jms.TextMessage;
import javax.naming.Context;

import javax.naming.InitialContext;

public class Sender {
public static void main(String[] args) throws Exception {
try {
Context context = new InitialContext(); g

ConnectionFactory factory = (ConnectionFactory)
context.lookup("myFactoryLookup");
Destination destination = (Destination)

context.lookup("myQueueLookup");

Connection connection = factory.createConnection("<username>", "
<password>");
connection.setExceptionListener(new MyExceptionListener());

connection.start();

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE); @

MessageProducer messageProducer =
session.createProducer(destination); G’

TextMessage message = session.createTextMessage('"Message Text!"); G
messageProducer.send(message, DeliveryMode.NON_PERSISTENT,
Message.DEFAULT_PRIORITY,

Message.DEFAULT_TIME_TO_LIVE); @

connection.close(); 9
} catch (Exception exp) {
System.out.println("Caught exception, exiting.");
exp.printStackTrace(System.out);
System.exit(1);
}
3

private static class MyExceptionListener implements ExceptionListener {
@Override
public void onException(JMSException exception) {
System.out.println("Connection ExceptionListener fired, exiting.");
exception.printStackTrace(System.out);
System.exit(1);
}
3
}

ﬂ Creates the JNDI Context to look up ConnectionFactory and Destination objects. The
configuration is picked up from the jndi. properties file as detailed earlier.

The ConnectionFactory and Destination objects are retrieved from the JNDI Context using their
lookup names.

25

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

g The factory is used to create the Connection, which then has an ExceptionListener
registered and is then started. The credentials given when creating the connection will typically
be taken from an appropriate external configuration source, ensuring they remain separate from
the application itself and can be updated independently.

A non-transacted, auto-acknowledge Session is created on the Connection.

The MessageProducer is created to send messages to the Destination.

A TextMessage is created with the given content.

The TextMessage is sent. It is sent non-persistent, with default priority and no expiration.

Q0009

The Connectionis closed. The Session and MessageProducer are closed implicitly.

Note that this is only an example. A real-world application would typically use a long-lived
MessageProducer and send many messages using it over time. Opening and then closing a
Connection, Session, and MessageProducer per message is generally not efficient.

5.3. RECEIVING MESSAGES

This example starts by creating a JNDI Context, using it to look up a ConnectionFactory and
Destination, creating and starting a Connection using the factory, and then creates a Session.
Then a MessageConsumer is created for the Destination, a message is received using it, and its
contents are printed to the console. The Connection is then closed and the program exits. The same
JNDI configuration is used as in the sending example.

An executable variant of this Receiver example is contained within the examples directory of the
client distribution, along with the Hello World example covered previously in Chapter 3, Getting
Started.

Example: Receiving Messages

package org.jboss.amg.example;

import javax.jms.Connection;

import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.ExceptionListener;
import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.MessageConsumer;
import javax.jms.Session;

import javax.jms.TextMessage;
import javax.naming.Context;

import javax.naming.InitialContext;

public class Receiver {
public static void main(String[] args) throws Exception {

try {
Context context = new InitialContext(); g
ConnectionFactory factory = (ConnectionFactory)

context.lookup("myFactoryLookup");

26

o

CHAPTER 5. EXAMPLES

Destination destination = (Destination)
context.lookup("myDestinationLookup"); 9

Connection connection = factory.createConnection("<username>",
<password>");
connection.setExceptionListener (new MyExceptionListener());

connection.start(); Q

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE); @

MessageConsumer messageConsumer =
session.createConsumer(destination); 9

Message message = messageConsumer.receive(5000); G

if (message == null) {
System.out.println("A message was not received within given
time.");
} else {
System.out.println("Received message: " + ((TextMessage)
message).getText());
}

connection.close(); 9

} catch (Exception exp) {
System.out.println("Caught exception, exiting.");
exp.printStackTrace(System.out);
System.exit(1);

}

private static class MyExceptionListener implements ExceptionListener {
@Override
public void onException(JMSException exception) {
System.out.println("Connection ExceptionListener fired, exiting.");
exception.printStackTrace(System.out);
System.exit(1);
}
3
}

Creates the JNDI Context to look up ConnectionFactory and Destination objects. The
configuration is picked up from the jndi. properties file as detailed earlier.

The ConnectionFactory and Destination objects are retrieved from the JNDI Context
using their lookup names.

The factory is used to create the Connection, which then has an ExceptionListener
registered and is then started. The credentials given when creating the connection will typically
be taken from an appropriate external configuration source, ensuring they remain separate from
the application itself and can be updated independently.

A non-transacted, auto-acknowledge Session is created on the Connection.

27

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

o
6]
7]

0

The MessageConsumer is created to receive messages from the Destination.
A call to receive a message is made with a five second timeout.

The result is checked, and if a message was received, its contents are printed, or notice that no
message was received. The result is cast explicitly to TextMessage as this is what we know the
Sender sent.

The Connectionis closed. The Session and MessageConsumer are closed implicitly.

Note that this is only an example. A real-world application would typically use a long-lived
MessageConsumer and receive many messages using it over time. Opening and then closing a
Connection, Session, and MessageConsumer for each message is generally not efficient.

28

CHAPTER 6. INTEROPERABILITY

CHAPTER 6. INTEROPERABILITY

This chapter discusses how to use AMQ JMS in combination with other AMQ components. For an
overview of the compatibility of AMQ components, see the product introduction.

6.1.INTEROPERATING WITH OTHER AMQP CLIENTS

AMQP messages are composed using the AMQP type system. Having this common format is one of the
reasons AMQP clients in different languages are able to interoperate with each other. This section
serves to document behaviour around the AMQP payloads sent and received by the client in relation to
the various JMS Message types used, to aid in using the client along with other AMQP clients.

6.1.1. Sending Messages

This section serves to document the different payloads sent by the client when using the various JMS
Message types, so as to aid in using other clients to receive them.

6.1.1.1. Message Type

JMS Message Type Description of Transmitted AMQP Message

TextMessage A TextMessage will be sent using an amgp-value body section containing a utf8
encoded string of the body text, ornull if no body text is set. The message
annotation with symbol key of “x-opt-jms-msg-type” will be set to abyte value
of 5.

BytesMessage A BytesMessage will be sent using a data body section containing the raw bytes
from the BytesMessage body, with the properties section content-type field set
to the symbol value “application/octet-stream”. The message annotation with
symbol key of “x-opt-jms-msg-type” will be set to abyte value of 3.

MapMessage A MapMessage body will be sent using an amgp-value body section containing a
single map value. Any byte[] values in the MapMessage body will be encoded as
binary entries in the map. The message annotation withsymbol key of “x-opt-
jms-msg-type” will be set to a byte value of 2.

StreamMessage A StreamMessage will be sent using an amgp-sequence body section containing
the entries in the StreamMessage body. Any byte[] entries in the StreamMessage
body will be encoded as binary entries in the sequence. The message annotation
with symbol key of “x-opt-jms-msg-type” will be set to abyte value of 4.

ObjectMessage An ObjectMessage will be sent using an data body section, containing the bytes
from serializing the ObjectMessage body using an ObjectOutputStream, with the
properties section content-type field set to thesymbol value “application/x-java-
serialized-object”. The message annotation withsymbol key of “x-opt-jms-msg-
type” will be set to a byte value of 1.

Message A plain JMS Message has no body, and will be sent as an amgp-value body
section containing a null. The message annotation withsymbol key of “x-opt-
jms-msg-type” will be set to a byte value of 0.

29

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/introducing_red_hat_jboss_amq_7/#component_compatibility
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#section-message-format
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/MapMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-map
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-sequence
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

6.1.1.2. Message Properties

JMS messages support setting application properties of various Java types. This section serves to
show the mapping of these property types to AMQP typed values in the application-properties section
of the sent message. Both JMS and AMQP use string keys for property names.

JMS Property Type AMQP ApplicationProperty Type

boolean boolean
byte byte

short short

int int

long long

float float
double double
String string or null

6.1.2. Receiving Messages

This section serves to document the different payloads received by the client will be mapped to the
various JMS Message types, so as to aid in using other clients to send messages for receipt by the JMS
client.

6.1.2.1. Message Type

If the the “x-opt-jms-msg-type” message-annotation is present on the received AMQP message, its
value is used to determine the JMS message type used to represent it, according to the mapping
detailed in the following table. This reflects the reverse process of the mappings discussed for
messages sent by the JMS client.

AMQP “x-opt-jms-msg-type” message-annotation value (type) JMS Message Type

0 (byte) Message

1 (byte) ObjectMessage
2 (byte) MapMessage

3 (byte) BytesMessage
4 (byte) StreamMessage

30

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-application-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/MapMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html

CHAPTER 6. INTEROPERABILITY

AMQP “x-opt-jms-msg-type” message-annotation value (type) JMS Message Type

5 (byte) TextMessage

If the “x-opt-jms-msg-type” message-annotation is not present, the table below details how the
message will be mapped to a JMS Message type. Note that the StreamMessage and MapMessage types
are only assigned to annotated messages.

Description of Received AMQP Message without “x-opt-jms-msg-type” JMS Message Type

annotation

TextMessage
e Anamgp-value body section containing astring or null.

e A data body section, with theproperties section content-type field set to
a symbol value representing a common textual media type such as
"text/plain", "application/xml", or "application/json”.

BytesMessage
e An amgp-value body section containing abinary.

e A data body section, with theproperties section content-type field either

not set, set to symbol value "application/octet-stream”, or set to any
value not understood to be associated with another message type.

ObjectMessage
e A data body section, with theproperties section content-type field set to

symbol value “application/x-java-serialized-object".
e Anamgp-value body section containing a value not covered above.

e An amgp-sequence body section. This will be represented as a List
inside the ObjectMessage.

6.1.2.2. Message Properties

This section serves to show the mapping of values in the application-properties section of the received
AMQP message to Java types used in the JMS Message.

AMQP ApplicationProperty Type JMS Property Type

boolean boolean
byte byte
short short
int int

31

http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/MapMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-sequence
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-application-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int

Red Hat JBoss AMQ 7.0 Using the AMQ JMS Client

AMQP ApplicationProperty Type JMS Property Type

long long
float float
double double
string String
null String

6.2. CONNECTING TO AMQ BROKER

AMQ Broker is designed to interoperate with AMQP 1.0 clients. Check the following to ensure the
broker is configured for AMQP messaging.

e Port 5672 in the network firewall is open.
e The AMQ Broker AMQP acceptor is enabled. See Configuring Network Access.
e The necessary addresses are configured on the broker. See Addresses, Queues, and Topics.

e The broker is configured to permit access from your client, and the client is configured to send
the required credentials. See Broker Security.

6.3. CONNECTING TO AMQ INTERCONNECT

AMQ Interconnect works with any AMQP 1.0 client. Check the following to ensure the components are
configured correctly.

e Port 5672 in the network firewall is open.

e The router is configured to permit access from your client, and the client is configured to send
the required credentials. See Interconnect Security.

32

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_network_access
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#security
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_interconnect/#security

APPENDIX A. USING YOUR SUBSCRIPTION

APPENDIX A. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

Accessing Your Account
1. Go to access.redhat.com.
2. If you do not already have an account, create one.
3. Loginto your account.
Activating a Subscription
1. Go to access.redhat.com.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Go to access.redhat.com.

2. Navigate to DOWNLOADS.

3. Locate the Red Hat JBoss AMQ entry in the JBOSS INTEGRATION AND AUTOMATION
category.

4. Select the desired component type from the drop-down menu on the right side of the entry.

5. Select the Download link for your component.

Registering Your System for Packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
zip or tar files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

Revised on 2017-12-1513:52:27 EST

33

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS
	1.5. DOCUMENT CONVENTIONS
	The sudo Command
	About the Use of File Paths in this Document

	CHAPTER 2. INSTALLATION
	2.1. PREREQUISITES
	2.2. INSTALLING ON RED HAT ENTERPRISE LINUX
	2.3. INSTALLING ON MICROSOFT WINDOWS
	2.4. CONFIGURING MAVEN

	CHAPTER 3. GETTING STARTED
	3.1. PREPARING THE BROKER
	3.2. RUNNING HELLO WORLD

	CHAPTER 4. CONFIGURATION
	4.1. CONFIGURING A JNDI INITIALCONTEXT
	Configuring an InitialContext Using a jndi.properties File
	Configuring an InitialContext Using System Properties
	Configuring an InitialContext Programmatically
	JNDI Property Syntax

	4.2. CONNECTION URIS
	4.3. CONNECTION URI OPTIONS
	4.3.1. JMS Options
	Prefetch Policy Options
	Redelivery Policy Options
	Message ID Policy Options
	Presettle Policy Options
	Deserialization Policy Options

	4.3.2. TCP Transport Options
	4.3.3. SSL/TLS Transport Options
	4.3.4. AMQP Options
	4.3.5. Failover Options
	4.3.6. Discovery Options

	4.4. SECURITY
	4.4.1. Authenticating Using Kerberos

	4.5. LOGGING

	CHAPTER 5. EXAMPLES
	5.1. CONFIGURING THE JNDI CONTEXT
	5.2. SENDING MESSAGES
	5.3. RECEIVING MESSAGES

	CHAPTER 6. INTEROPERABILITY
	6.1. INTEROPERATING WITH OTHER AMQP CLIENTS
	6.1.1. Sending Messages
	6.1.1.1. Message Type
	6.1.1.2. Message Properties

	6.1.2. Receiving Messages
	6.1.2.1. Message Type
	6.1.2.2. Message Properties

	6.2. CONNECTING TO AMQ BROKER
	6.3. CONNECTING TO AMQ INTERCONNECT

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files
	Registering Your System for Packages

