‘® redhat.

Red Hat JBoss AMQ 7.0

Using AMQ Interconnect

For Use with AMQ Interconnect 1.0

Last Updated: 2017-09-01

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

For Use with AMQ Interconnect 1.0

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

.In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This quide describes how to install, configure, and manage AMQ Interconnect to build a large-
scale messaging network.

Table of Contents

CHAPTER1.OVERVIEW .. ittt ittt ittt iiiietineeennaes

1.1. KEY FEATURES
1.2. SUPPORTED CONFIGURATIONS
1.3. THEORY OF OPERATION
1.3.1. Overview
1.3.2. Connections
1.3.2.1. Listener
1.3.2.2. Connector
1.3.3. Addresses
1.3.3.1. Mobile Addresses
1.3.3.1.1. Discovered Mobile Addresses
1.3.3.1.2. Configured Mobile Addresses
1.3.3.2. Link Route Addresses
1.3.4. Message Routing
1.3.4.1. Routing Patterns
1.3.4.2. Routing Mechanisms
1.3.4.2.1. Message Routed
1.3.4.2.2. Link Routed
1.3.4.3. Message Settlement
1.3.5. Security
1.4. DOCUMENT CONVENTIONS

CHAPTER 2. INSTALLATION ..ottt ittt ittt eieeanees

CHAPTER 3. GETTING STARTED ... iitiiiiiiiii ittt ittt e,

3.1. STARTING THE ROUTER

3.2. ROUTING MESSAGES IN A PEER-TO-PEER CONFIGURATION
3.2.1. Starting the Receiver Client
3.2.2. Sending Messages

CHAPTER 4. CONFIGURATION ...ttt iiiiiiiiieenineeannnes

4.1. ACCESSING THE ROUTER CONFIGURATION FILE
4.2. HOW THE ROUTER CONFIGURATION FILE IS STRUCTURED
4.3. CHANGING A ROUTER’S CONFIGURATION
4.3.1. Making a Permanent Change to the Router’s Configuration
4.3.2. Changing the Configuration for a Running Router
4.4, DEFAULT CONFIGURATION SETTINGS
4.5.SETTING ESSENTIAL CONFIGURATION PROPERTIES

CHAPTER 5. NETWORK CONNECTIONSottt iiiiiiaes

5.1. LISTENING FOR INCOMING CONNECTIONS
5.2. ADDING OUTGOING CONNECTIONS

CHAPTER 6. SECURITY .ttt ittt iiietiitetiineeannecennnns
6.1. SETTING UP SSL/TLS FOR ENCRYPTION AND AUTHENTICATION
6.2. SETTING UP SASL FOR AUTHENTICATION AND PAYLOAD ENCRYPTION

6.3. SECURING INCOMING CONNECTIONS
6.3.1. Adding SSL/TLS Encryption to an Incoming Connection
6.3.2. Adding SASL Authentication to an Incoming Connection

6.3.3. Adding SSL/TLS Client Authentication to an Incoming Connection
6.3.4. Adding SASL Payload Encryption to an Incoming Connection

6.4. SECURING OUTGOING CONNECTIONS

6.4.1. Adding SSL/TLS Client Authentication to an Outgoing Connection

Table of Contents

O O 0 0 4 O O U1 UT LT UT UT T U

- 2 OO0 o0 v

......................... 12

......................... 13

13
14
15
15

......................... 21

21
21

........................ 23

23
24
25
25
26
26
27
27
27

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

6.4.2. Adding SASL Authentication to an Outgoing Connection

CHAPTERT7.ROUTING ...ttt ittt itiiieeiieeennaennnns
7.1. COMPARISON OF MESSAGE ROUTING AND LINK ROUTING

7.1.1. When to Use Message Routing
7.1.2. When to Use Link Routing
7.2. CONFIGURING MESSAGE ROUTING
7.2.1. Addresses
7.2.2. Routing Patterns
7.2.3. Message Settlement
7.2.4. Routing Messages Between Clients
7.2.5. Routing Messages Through a Broker Queue
7.2.5.1. Configuring Waypoint Addresses
7.2.5.2. Connecting a Router to the Broker
7.3. CONFIGURING LINK ROUTING
7.3.1. Link Route Addresses
7.3.2. Link Route Routing Patterns
7.3.3. Link Route Flow Control
7.3.4. Creating a Link Route

CHAPTER 8.LOGGING ...ttt ittt ittt iiiieeeineennnnennnns

8.1.LOGGING MODULES
8.1.1. The DEFAULT Logging Module
8.1.2. The ROUTER Logging Module
8.1.3. The ROUTER_CORE Logging Module
8.1.4. The ROUTER_HELLO Logging Module
8.1.5. The ROUTER_LS Logging Module
8.1.6. The ROUTER_MA Logging Module
8.1.7. The MESSAGE Logging Module
8.1.8. The SERVER Logging Module
8.1.9. The AGENT Logging Module
8.1.10. The CONTAINER Logging Module
8.1.11. The ERROR Logging Module
8.1.12. The POLICY Logging Module

8.2. CONFIGURING LOGGING

8.3. VIEWING LOG ENTRIES
8.3.1. Viewing Log Entries on the Console
8.3.2. Viewing Log Entries on the CLI

CHAPTER 9. MANAGEMENT ..ttt ittt ittt ieiieeanans

9.1. USING AMQ CONSOLE

9.2. MONITORING AMQ INTERCONNECT USING QDSTAT

9.2.1. Syntax for Using qdstat

9.2.2. Viewing General Statistics for a Router
9.2.3. Viewing a List of Connections to a Router
9.2.4. Viewing AMQP Links Attached to a Router
9.2.5. Viewing Known Routers on a Network
9.2.6. Viewing Addresses Known to a Router
9.2.7. Viewing a Router’s Autolinks

9.2.8. Viewing the Status of a Router’s Link Routes

9.2.9. Viewing Memory Consumption Information

9.3. MANAGING AMQ INTERCONNECT USING QDMANAGE

9.3.1. Syntax for Using gdmanage
9.3.2. Managing Network Connections

28

29
30
30
30
31
31
32
33
34
35
36
37
38
39
39
39
39

42
42
42
42
42
43
43
44
45
46
46
47
47
48
48
50
50
50

51
51
51
51
51
52
53
55
56
58
59
59
60
60
61

9.3.2.1. Managing Listeners
9.3.2.2. Managing Connectors
9.3.3. Managing Security
9.3.3.1. Managing SSL/TLS Encryption and Authentication
9.3.3.2. Managing SASL Encryption and Authentication
9.3.4. Managing Routing
9.3.4.1. Managing Message Routing
9.3.4.2. Managing Link Routing
9.3.5. Managing Logging

CHAPTER10. RELIABILITY ettt ittt ittt iiiiitnineennneenns

10.1. PATH REDUNDANCY
10.2. PATH REDUNDANCY AND TEMPORAL DECOUPLING
10.3. SHARDED QUEUE

APPENDIX A. USING CYRUS SASL TO PROVIDE AUTHENTICATION

A.1. GENERATING A SASL DATABASE
A.2. VIEWING USERS IN A SASL DATABASE
A.3. CONFIGURING A SASL DATABASE

APPENDIX B. CONFIGURATION REFERENCEcoiiiiiiiiiiiiiinnn.,

B.1. CONFIGURATION FILE
B.1.1. Configuration Sections

B.1.1.1. ssIProfile
B.1.1.2. router
B.1.1.3. listener
B.1.1.4. connector
B.1.1.5. log
B.1.1.6. address
B.1.1.7. linkRoute
B.1.1.8. autoLink
B.1.1.9. console
B.1.1.10. policy
B.1.1.11. policyRuleset

APPENDIX C.USING YOUR SUBSCRIPTIONciiiiiiiiiiiiiiiiiieennnnn.

Accessing Your Account

Activating a Subscription

Downloading Zip and Tar Files
Registering Your System for Packages

Table of Contents

61
62
64
64
65
67
67
69
70

............................ n

71
75
83

................................... 87

87
87
87

89
89
89
90
91
92
93
93
94
94
94
95
95

........................... 97

97
97
97
97

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

CHAPTER 1. OVERVIEW

CHAPTER 1. OVERVIEW

AMQ Interconnect is a lightweight AMQP message router for building scalable, available, and
performant messaging networks.

AMQ Interconnect is based on Dispatch Router from the Apache Qpid™ project.

1.1. KEY FEATURES

e Connects clients and brokers into an internet-scale messaging network with uniform
addressing

e Supports high-performance direct messaging
e Uses redundant network paths to route around failures

e Streamlines the management of large deployments

1.2. SUPPORTED CONFIGURATIONS

AMQ Interconnect is supported on Red Hat Enterprise Linux 6 and 7. See Red Hat JBoss AMQ 7
Supported Configurations for more information.

1.3. THEORY OF OPERATION

This section introduces some key concepts about AMQ Interconnect

1.3.1. Overview

AMQ Interconnect is an application layer program running as a normal user program or as a daemon.

The router accepts AMQP connections from clients and creates AMQP connections to brokers or
AMQP-based services. The router classifies incoming AMQP messages and routes the messages
between message producers and message consumers.

The router is meant to be deployed in topologies of multiple routers, preferably with redundant paths.
It uses link-state routing protocols and algorithms similar to OSPF or IS-IS from the networking world
to calculate the best path from every message source to every message destination and to recover
quickly from failures. The router relies on redundant network paths to provide continued connectivity
in the face of system or network failure.

A messaging client can make a single AMQP connection into a messaging bus built with routers and,
over that connection, exchange messages with one or more message brokers connected to any router
in the network. At the same time the client can exchange messages directly with other endpoints
without involving a broker at all.

1.3.2. Connections

AMQ Interconnect connects clients, servers, AMQP services, and other routers through network
connections.

1.3.2.1. Listener

http://qpid.apache.org/index.html
https://access.redhat.com/articles/2791941

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

The router provides listeners that accept client connections. A client connecting to a router listener
uses the same methods that it would use to connect to a broker. From the client’s perspective the
router connection and link establishment are identical to broker connection and link establishment.

Several types of listeners are defined by their role.

Role Description

normal The connection is used for AMQP clients using normal message delivery.

inter-router The connection is assumed to be to another router in the network. Inter-router
discovery and routing protocols can only be used over inter-router connections.

route- The connection is a broker or other resource that holds known addresses. The router
container will use this connection to create links as necessary. The addresses are available for
routing only after the remote resource has created a connection.

1.3.2.2. Connector

The router can also be configured to create outbound connections to messaging brokers or other
AMQP entities using connectors. A connector is defined with the network address of the broker and the
name or names of the resources that are available in that broker. When a router connects to a broker
through a connector it uses the same methods a normal messaging client would use when connecting
to the broker.

Several types of connectors are defined by their role.

Role Description

normal The connection is used for AMQP clients using normal message delivery. On this
connector the router will initiate the connection but it will never create any links.
Links are to be created by the peer that accepts the connection.

inter-router The connection is assumed to be to another router in the network. Inter-router
discovery and routing protocols can only be used over inter-router connections.

route- The connection is to a broker or other resource that holds known addresses. The
container router will use this connection to create links as necessary. The addresses are
available for routing only after the router has created a connection to the remote
resource.
1.3.3. Addresses

AMQP addresses are used to control the flow of messages across a network of routers. Addresses are
used in a number of different places in the AMQP 1.0 protocol. They can be used in a specific message

in the to and reply-to fields of a message’s properties. They are also used during the creation of links in
the address field of a source or a target.

CHAPTER 1. OVERVIEW

NOTE
Addresses in this discussion refer to AMQP protocol addresses and not to TCP/IP
network addresses. TCP/IP network addresses are used by messaging clients, brokers,

and routers to create AMQP connections. AMQP protocol addresses are the names of
source and destination endpoints for messages within the messaging network.

Addresses designate various kinds of entities in a messaging network:
e Endpoint processes that consume data or offer a service
e Topics that match multiple consumers to multiple producers

e Entities within a messaging broker:
o Queues
o Durable Topics
o Exchanges
The syntax of an AMQP address is opaque as far as the router network is concerned. A syntactical
structure may be used by the administrator who creates addresses but the router treats them as

opaque strings.

The router maintains several classes of address based on how the address is configured or discovered.

Address Type Description

Mobile The address is a rendezvous point between senders and receivers. The router
aggregates and serializes messages from senders and distributes messages to
receivers.

Link route The address defines a private messaging path between a sender and a receiver.

The router simply passes messages between the end points.

1.3.3.1. Mobile Addresses

Routers consider addresses to be mobile such that any users of an address may be directly connected
to any router in a network and may move around the topology. In cases where messages are broadcast
to or balanced across multiple consumers, the address users may be connected to multiple routers in
the network.

Mobile addresses are rendezvous points for senders and receivers. Messages arrive at the mobile
address and are dispatched to their destinations according to the routing defined for the mobile
address. The details of these routing patterns are discussed later.

Mobile addresses may be discovered during normal router operation or configured through
management settings.

1.3.3.1.1. Discovered Mobile Addresses

Mobile addresses are created when a client creates a link to a source or destination address that is
unknown to the router network.

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

Suppose a service provider wants to offer my-service that clients may use. The service provider must
open areceiver link with source address my-service. The router creates a mobile address my-service
and propagates the address so that it is known to every router in the network.

Later a client wants to use the service and creates a sending link with target address my-service. The
router matches the service provider’s receiver having source address my-service to the client’s sender
having target address my-service and routes messages between the two.

Any number of other clients can create links to the service as well. The clients do not have to know
where in the router network the service provider is physically located nor are the clients required to
connect to a specific router to use the service. Regardless of how many clients are using the service
the service provider needs only a single connection and link into the router network.

Another view of this same scenario is when a client tries to use the service before service provider has
connected to the network. In this case the router network creates the mobile address my-service as
before. However, since the mobile address has only client sender links and no receiver links the router
stalls the clients and prevents them from sending any messages. Later, after the service provider
connects and creates the receiver link, the router will issue credits to the clients and the messages will
begin to flow between the clients and the service.

The service provider can connect, disconnect, and reconnect from a different location without having
to change any of the clients or their connections. Imagine having the service running on a laptop. One
day the connection is from corporate headquarters and the next day the connection is from some
remote location. In this case the service provider’s computer will typically have different host IP
addresses for each connection. Using the router network the service provider connects to the router
network and offers the named service and the clients connect to the router network and consume
from the named service. The router network routes messages between the mobile addresses
effectively masking host IP addresses of the service provider and the client systems.

1.3.3.1.2. Configured Mobile Addresses

Mobile addresses may be configured using the router autoLink object. An address created via an
autoLink represents a queue, topic, or other service in an external broker. Logically the autoLink
addresses are treated by the router network as if the broker had connected to the router and offered
the services itself.

For each configured mobile address the router will create a single link to the external resource.
Messages flow between sender links and receiver links the same regardless if the mobile address was
discovered or configured.

Multiple autoLink objects may define the same address on multiple brokers. In this case the router
network creates a sharded resource split between the brokers. Any client can seamlessly send and
receive messages from either broker.

Note that the brokers do not need to be clustered or federated to receive this treatment. The brokers
may even be from different vendors or be different versions of the same broker yet still work together
to provide a larger service platform.

1.3.3.2. Link Route Addresses

Link route addresses may be configured using the router linkRoute object. An link route address
represents a queue, topic, or other service in an external broker similar to addresses configured by
autolLink objects. For link route addresses the router propagates a separate link attachment to the
broker resource for each incoming client link. The router does not automatically create any links to the
broker resource.

CHAPTER 1. OVERVIEW

Using link route addresses the router network does not participate in aggregated message
distribution. The router simply passes message delivery and settlement between the two end points.

1.3.4. Message Routing

Addresses have semantics associated with them that are assigned when the address is provisioned or
discovered. The semantics of an address control how routers behave when they see the address being
used. Address semantics include the following considerations:

e Routing pattern - balanced, closest, multicast

e Routing mechanism - message routed, link routed

1.3.4.1. Routing Patterns

Routing patterns define the paths that a message with a mobile address can take across a network.
These routing patterns can be used for both direct routing, in which the router distributes messages
between clients without a broker, and indirect routing, in which the router enables clients to exchange
messages through a broker.

Pattern Description

Balanced An anycast method which allows multiple receivers to use the same address. In this
case, messages (or links) are routed to exactly one of the receivers and the network
attempts to balance the traffic load across the set of receivers using the same address.
This routing delivers messages to receivers based on how quickly they settle the
deliveries. Faster receivers get more messages.

Closest An anycast method in which even if there are more receivers for the same address,
every message is sent along the shortest path to reach the destination. This means
that only one receiver will get the message. Each message is delivered to the closest
receivers in terms of topology cost. If there are multiple receivers with the same
lowest cost, deliveries will be spread evenly among those receivers.

Multicast Having multiple consumers on the same address at the same time, messages are
routed such that each consumer receives one copy of the message.

1.3.4.2. Routing Mechanisms

The fact that addresses can be used in different ways suggests that message routing can be
accomplished in different ways. Before going into the specifics of the different routing mechanisms, it
would be good to first define what is meant by the term routing:

In a network built of multiple, interconnected routers 'routing'
determines which connection to use to send a message directly
to its destination or one step closer to its destination.

Each router serves as the terminus of a collection of incoming and outgoing links. Some of the links are
designated for message routing, and others are designated for link routing. In both cases, the links
either connect directly to endpoints that produce and consume messages, or they connect to other
routers in the network along previously established connections.

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

1.3.4.2.1. Message Routed

Message routing occurs upon delivery of a message and is done based on the address in the message’s
to field.

When a delivery arrives on an incoming message-routing link, the router extracts the address from the
delivered message’s to field and looks the address up in its routing table. The lookup results in zero or
more outgoing links onto which the message shall be resent.

Message routing can also occur without an address in the message’s to field if the incoming link has a
target address. In fact, if the sender uses a link with a target address, the to field shall be ignored even
if used.

1.3.4.2.2. Link Routed

Link routing occurs when a new link is attached to the router across one of its AMQP connections. It is
done based on the target.address field of an inbound link and the source.address field of an outbound
link.

Link routing uses the same routing table that message routing uses. The difference is that the routing
occurs during the link-attach operation, and link attaches are propagated along the appropriate path
to the destination. What results is a chain of links, connected end-to-end, from source to destination. It
is similar to a virtual circuit in a telecom system.

Each router in the chain holds pairs of link termini that are tied together. The router then simply
exchanges all deliveries, delivery state changes, and link state changes between the two termini.

The endpoints that use the link chain do not see any difference in behavior between a link chain and a

single point-to-point link. All of the features available in the link protocol (flow control, transactional
delivery, and so on) are available over a routed link-chain.

1.3.4.3. Message Settlement

Messages may be delivered with varying degrees of reliability.
e At mostonce
e Atleastonce
e Exactly once

The reliability is negotiated between the client and server during link establishment. The router
handles all levels of reliability by treating messages as either pre-settled or unsettled.

Delivery Handling

Pre-settled If the arriving delivery is pre-settled (that is, fire and forget), the incoming delivery
shall be settled by the router, and the outgoing deliveries shall also be pre-settled. In
other words, the pre-settled nature of the message delivery is propagated across the
network to the message’s destination.

10

CHAPTER 1. OVERVIEW

Delivery Handling

Unsettled Unsettled delivery is also propagated across the network. Because unsettled delivery
records cannot be discarded, the router tracks the incoming deliveries and keeps the
association of the incoming deliveries to the resulting outgoing deliveries. This kept
association allows the router to continue to propagate changes in delivery state
(settlement and disposition) back and forth along the path which the message
traveled.

1.3.5. Security

AMQ Interconnect uses the SSL/TLS protocol and related certificates and SASL protocol mechanisms
to encrypt and authenticate remote peers. Router listeners act as network servers and router
connectors act as network clients. Both connection types may be configured securely with SSL/TLS
and SASL.

The router Policy module is an optional authorization mechanism enforcing user connection
restrictions and AMQP resource access control.

1.4. DOCUMENT CONVENTIONS

In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

For more information about using sudo, see The sudo Command.

1

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

CHAPTER 2. INSTALLATION

AMQ Interconnect 1.0 is distributed as a set of RPM packages, which are available through your Red
Hat subscription.

Procedure

1. Ensure your subscription has been activated and your system is registered.
For more information about using the customer portal to activate your Red Hat subscription
and register your system for packages, see Using Your Subscription.

2. Subscribe to the required repositories:

Red Hat Enterprise Linux 6

$ sudo subscription-manager repos --enable=amg-interconnect-1-for-
rhel-6-server-rpms --enable=a-mg-clients-1-for-rhel-6-server-rpms

Red Hat Enterprise Linux 7

$ sudo subscription-manager repos --enable=amg-interconnect-1-for-
rhel-7-server-rpms --enable=a-mg-clients-1-for-rhel-7-server-rpms

3. Use the yum command to install the gpid-dispatch-router and gpid-dispatch-tools
packages and their dependencies:

I $ sudo yum install gpid-dispatch-router gpid-dispatch-tools

4. Use the which command to verify that the gdrouterd executable is present.

$ which gdrouterd
/usr/sbin/qdrouterd

The gdrouterd executable should be located at /usr/sbin/qdrouterd.

12

CHAPTER 3. GETTING STARTED

CHAPTER 3. GETTING STARTED

Before configuring AMQ Interconnect, you should understand how to start the router, how it is
configured by default, and how to use it in a simple peer-to-peer configuration.

3.1. STARTING THE ROUTER

Procedure

1. To start the router with the default configuration, do one of the following:

To... Enter this command...

Run the router as a service

in Red Hat Enterprise Linux I $ sudo service qdrouterd start
6

Run the router as a service

in Red Hat Enterprise Linux I $ systemctl start qdrouterd.service
7

Run the router as a daemon
I $ qdrouterd -d

To start the router in the foreground, do not use the -d parameter.

NOTE

You can specify a different configuration file with which to start the router. For
more information, see Changing a Router’s Configuration

The router starts, using the default configuration file stored at /etc/qpid-
dispatch/qdrouterd. conf.

2. View the log to verify the router status:
I $ gdstat --log

This example shows that the router was correctly installed, is running, and is ready to route
traffic between clients:

$ gdstat --log

Fri May 20 09:38:03 2017 SERVER (info) Container Name: Router.A 'ﬂ’
Fri May 20 09:38:03 2017 ROUTER (info) Router started in Standalone
mode

Fri May 20 09:38:03 2017 ROUTER_CORE (info) Router Core thread
running. O/Router.A

Fri May 20 09:38:03 2017 ROUTER_CORE (info) In-process subscription
M/$management

Fri May 20 09:38:03 2017 AGENT (info) Activating management agent on

$_management_internal g

13

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

Fri May 20 09:38:03 2017 ROUTER_CORE (info) In-process subscription
L/$management

Fri May 20 09:38:03 2017 ROUTER_CORE (info) In-process subscription
L/$_management_internal

Fri May 20 09:38:03 2017 DISPLAYNAME (info) Activating
DisplayNameService on $displayname

Fri May 20 09:38:03 2017 ROUTER_CORE (info) In-process subscription
L/$displayname

Fri May 20 09:38:03 2017 CONN_MGR (info) Configured Listener:
0.0.0.0:amgp proto=any role=normal

Fri May 20 09:38:03 2017 POLICY (info) Policy configured
maximumConnections: 0, policyFolder: '', access rules enabled:
'false'

Fri May 20 09:38:03 2017 POLICY (info) Policy fallback
defaultApplication is disabled

Fri May 20 09:38:03 2017 SERVER (info) Operational, 4 Threads

Running e

The name of this router instance.

By default, the router starts in standalone mode, which means that it cannot connect to
other routers or be used in a router network.

o9

The management agent. It provides the $management address, through which
management tools such as qdmanage and qdstat can perform create, read, update, and
delete (CRUD) operations on the router. As an AMQP endpoint, the management agent
supports all operations defined by the AMQP management specification (Draft 9).

o

Q A listener is started on all available network interfaces and listens for connections on the
standard AMQP port (5672, which is not encrypted).

G Threads for handling message traffic and all other internal operations.

3.2. ROUTING MESSAGES IN A PEER-TO-PEER CONFIGURATION

This example demonstrates how the router can connect clients by receiving and sending messages
between them. It uses the router’s default configuration file and does not require a broker.

Figure 3.1. Peer-to-peer Communication

- X - X
D ——
7|« > « d
— Router —
Sender Receiver

As the diagram indicates, the configuration consists of an AMQ Interconnect component with two
clients connected to it: a sender and a receiver. The receiver wants to receive messages on a specific
address, and the sender sends messages to that address.

A broker is not used in this example, so there is no "store and forward"mechanism in the middle.

Instead, the messages flow from sender to receiver only if the receiver is online, and the sender can
confirm that the messages have arrived at their destination.

14

https://www.oasis-open.org/committees/download.php/54441/AMQP Management v1.0 WD09

CHAPTER 3. GETTING STARTED

This example uses the AMQ Python client to start a receiver client, and then send five messages from
the sender client.

Prerequisites

The AMQ Python client must be installed before you can complete the peer-to-peer routing example.
For more information, see Installation in Using the AMQ Python Client

Procedure

1. Start the receiver client.

2. Send messages.

3.2.1. Starting the Receiver Client

In this example, the receiver client is started first. This means that the messages will be sent as soon as
the sender client is started.

NOTE

In practice, the order in which you start senders and receivers does not matter. In both
cases, messages will be sent as soon as the receiver comes online.

Procedure

e To start the receiver by using the Python receiver client, navigate to the Python examples
directory and run the simple_recv.py example:

$ cd INSTALL_DIR/examples/python/
$ python simple_recv.py -a 127.0.0.1:5672/examples -m 5

This command starts the receiver and listens on the default address
(127.0.0.1:5672/examples). The receiver is also set to receive a maximum of five
messages.

3.2.2. Sending Messages

After starting the receiver client, you can send messages from the sender. These messages will travel
through the router to the receiver.

Procedure

e Inanew terminal window, navigate to the Python examples directory and run the
simple_send.py example:

$ cd INSTALL_DIR/examples/python/
$ python simple_send.py -a 127.0.0.1:5672/examples -m 5

This command sends five auto-generated messages to the default address
(127.0.0.1:5672/examples) and then confirms that they were delivered and
acknowledged by the receiver:

I all messages confirmed

15

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_the_amq_python_client/#installation

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

The receiver client receives the messages and displays their content:

{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}

16

CHAPTER 4. CONFIGURATION

CHAPTER 4. CONFIGURATION

Before starting AMQ Interconnect, you should understand where the router’s configuration file is
stored, how the file is structured, and the methods you can use to modify it.

4.1. ACCESSING THE ROUTER CONFIGURATION FILE

The router’s configuration is defined in the router configuration file. You can access this file to view
and modify that configuration.

Procedure

e Open the following file: /etc/qgpid-dispatch/qdrouterd. conf.
When AMQ Interconnect is installed, qdrouterd. conf is installed in this directory by default.
When the router is started, it runs with the settings defined in this file.

For more information about the router configuration file (including available entities and
attributes), see the gdrouterd man page.

4.2. HOW THE ROUTER CONFIGURATION FILE IS STRUCTURED

Before you can make changes to a router configuration file, you should understand how the file is
structured.

The configuration file contains sections. A section is a configurable entity, and it contains a set of
attribute name-value pairs that define the settings for that entity. The syntax is as follows:

sectionName {
attributeName: attributeVvalue
attributeName: attributeVvalue

4.3. CHANGING A ROUTER’S CONFIGURATION

You can use different methods for changing a router’s configuration based on whether the router is
currently running, and whether you want the change to take effect immediately.

Choices

e Make a permanent change to the router’s configuration.

e Change the configuration for a running router.

4.3.1. Making a Permanent Change to the Router’s Configuration

You can make a permanent change to the router’s configuration by editing the router’s configuration
file directly. You must restart the router for the changes to take effect, but the changes will be saved
even if the router is stopped.

Procedure

1. Do one of the following:

17

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdrouterd.html

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

o Edit the default configuration file (/etc/qpid-dispatch/qdrouterd.conf).
e Create a new configuration file.

2. Start (or restart) the router.
If you created a new configuration file, you must specify the path using the - -conf parameter.
For example, the following command starts the router with a non-default configuration file:

I # qdrouterd -d --conf /etc/gpid-dispatch/new-configuration-file.conf

4.3.2. Changing the Configuration for a Running Router

If the router is running, you can change its configuration on the fly. The changes you make take effect
immediately, but are lost if the router is stopped.

Procedure

e Use qdmanage to change the configuration.

For more information about using gdmanage, see Managing AMQ Interconnect Using
gdmanage.

4.4. DEFAULT CONFIGURATION SETTINGS

The router’s configuration file controls the way in which the router functions. The default configuration
file contains the minimum number of settings required for the router to run. As you become more
familiar with the router, you can add to or change these settings, or create your own configuration
files.

When you installed AMQ Interconnect, the default configuration file was added at the following path:
/etc/qpid-dispatch/qdrouterd.conf. It includes some basic configuration settings that define
the router’s operating mode, how it listens for incoming connections, and routing patterns for the
message routing mechanism.

Default Configuration File

router {
mode: standalone g
id: Router.A 9

}

listener { e
host: 0.0.0.0 @

port: amgp e
authenticatePeer: no G

3
address { a
prefix: closest
distribution: closest
3
address {

prefix: multicast

18

distribution: multicast

3
address {
prefix: unicast
distribution: closest
3
address {
prefix: exclusive
distribution: closest
3
address {

CHAPTER 4. CONFIGURATION

prefix: broadcast
distribution: multicast

By default, the router operates in standalone mode. This means that it can only communicate with
endpoints that are directly connected to it. It cannot connect to other routers, or participate in a
router network.

The unique identifier of the router. This ID is used as the container -id (container name) at the
AMQP protocol level. It is required, and the router will not start if this attribute is not defined.

The 1listener entity handles incoming connections from client endpoints.

The IP address on which the router will listen for incoming connections. By default, the router is
configured to listen on all network interfaces.

The port on which the router will listen for incoming connections. By default, the default AMQP
port (5672) is specified with a symbolic service name.

Specifies whether the router should authenticate peers before they can connect to the router. By
default, peer authentication is not required.

By default, the router is configured to use the message routing mechanism. Each address entity
defines how messages that are received with a particular address prefix should be distributed.
For example, all messages with addresses that start with closest will be distributed using the
closest distribution pattern.

NOTE

If a client requests a message with an address that is not defined in the router’s
configuration file, the balanced distribution pattern will be used automatically.

4.5. SETTING ESSENTIAL CONFIGURATION PROPERTIES

The router’s default configuration settings enable the router to run with minimal configuration.
However, you may need to change some of these settings for the router to run properly in your
environment.

Procedure

19

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

20

1. Open the router’s configuration file.

If you are changing the router’s default configuration file, the file is located at /etc/qpid-
dispatch/qdrouterd. conf.

. To define essential router information, change the following attributes as needed in the

router section:

router {
mode: STANDALONE/INTERIOR
id: ROUTER_ID

mode

Specify one of the following modes:

e standalone - Use this mode if the router does not communicate with other routers
and is not part of a router network. When operating in this mode, the router only routes
messages between directly connected endpoints.

e interior - Use this mode if the router is part of a router network and needs to
collaborate with other routers.

id
The unique identifier for the router. This ID will also be the container name at the AMQP
protocol level.

For information about additional attributes, see Router in the Configuration Reference.

. If necessary for your environment, secure the router.

e Setup SSL/TLS for encryption, authentication, or both

e Set up SASL for authentication and payload encryption

. Connect the router to other routers, clients, and brokers.

e Addincoming connections

e Add outgoing connections

. Set up routing for your environment:

e Configure the router to route messages between clients directly
o Configure the router to route messages through a broker queue

o Create alink route to define a private messaging path between endpoints

. Set up logging.

CHAPTER 5. NETWORK CONNECTIONS

CHAPTER 5. NETWORK CONNECTIONS

Connections define how the router communicates with clients, other routers, and brokers. You can
configure incoming connections to define how the router listens for data from clients and other routers,
and you can configure outgoing connections to define how the router sends data to other routers and
brokers.

5.1.LISTENING FOR INCOMING CONNECTIONS

Listening for incoming connections involves setting the host and port on which the router should listen
for traffic.

Procedure

1. In the router’s configuration file, add a 1istener:

listener {
host: HOST_NAME/ADDRESS
port: PORT_NUMBER/NAME

host

Either an IP address (IPv4 or IPv6) or hostname on which the router should listen for
incoming connections.

port

The port number or symbolic service name on which the router should listen for incoming
connections.

For information about additional attributes, see Listener in the Configuration Reference.

2. If necessary, secure the connection.
If you have set up SSL/TLS or SASL in your environment, you can configure the router to only
accept encrypted or authenticated communication on this connection.

3. If you want the router to listen for incoming connections on additional hosts or ports,
configure an additional 1istener entity for each host and port.

5.2. ADDING OUTGOING CONNECTIONS

Configuring outgoing connections involves setting the host and port on which the router should
connect to other routers and brokers.

Procedure

1. In the router’s configuration file, add a connector:

connector {
name: NAME
host: HOST_NAME/ADDRESS
port: PORT_NUMBER/NAME

21

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

22

]
name

The name of the connector. You should specify a name that describes the entity to which
the connector connects. This name is used by configured addresses (for example, a
linkRoute entity) in order to specify which connection should be used for them.

host

Either an IP address (IPv4 or IPv6) or hostname on which the router should connect.
port

The port number or symbolic service name on which the router should connect.

For information about additional attributes, see Connector in the Configuration Reference.

. If necessary, secure the connection.

If you have set up SSL/TLS or SASL in your environment, you can configure the router to only
send encrypted or authenticated communication on this connection.

. For each remaining router or broker to which this router should connect, configure an

additional connector entity.

CHAPTER 6. SECURITY

CHAPTER 6. SECURITY

You can configure AMQ Interconnect to communicate with clients, routers, and brokers in a secure
way by authenticating and encrypting the router’s connections. AMQ Interconnect supports the
following security protocols:

e SSL/TLS for certificate-based encryption and mutual authentication

e SASL for authentication and payload encryption

6.1. SETTING UP SSL/TLS FOR ENCRYPTION AND AUTHENTICATION

Before you can secure incoming and outgoing connections using SSL/TLS encryption and
authentication, you must first set up the SSL/TLS profile in the router’s configuration file.

Prerequisites

You must have the following files in PEM format:

e An X.509 CA certificate (used for signing the router certificate for the SSL/TLS server
authentication feature).

e A private key (with or without password protection) for the router.

e An X.509 router certificate signed by the X.509 CA certificate.

Procedure

e Inthe router’s configuration file, add an ss1Profile section:

sslProfile {
name: NAME
certDb: PATH.pem
certFile: PATH.pem
keyFile: PATH.pem
password: PASSWORD/PATH_TO_PASSWORD_FILE

name

A name for the SSL/TLS profile. You can use this name to refer to the profile from the
incoming and outgoing connections.
For example:

I name: router-ssl-profile

certDb

The absolute path to the database that contains the public certificates of trusted certificate
authorities (CA).

For example:

I certDb: /qdrouterd/ssl_certs/ca-cert.pem

23

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

certFile

The absolute path to the file containing the PEM-formatted public certificate to be used on
the local end of any connections using this profile.
For example:

I certFile: /qdrouterd/ssl_certs/router-cert-pwd.pem

keyFile

The absolute path to the file containing the PEM-formatted private key for the above
certificate.
For example:

I keyFile: /qdrouterd/ssl_certs/router-key-pwd.pem

passwordFile or password

If the private key is password-protected, you must provide the password by either
specifying the absolute path to a file containing the password that unlocks the certificate
key, or entering the password directly in the configuration file.

For example:

I password: routerKeyPassword

For information about additional ss1Profile attributes, see ss/Profilein the Configuration
Reference.

6.2. SETTING UP SASL FOR AUTHENTICATION AND PAYLOAD
ENCRYPTION

If you plan to use SASL to authenticate connections, you must first add the SASL attributes to the
router entity in the router’s configuration file. These attributes define a set of SASL parameters that
can be used by the router’s incoming and outgoing connections.

Prerequisites

Before you can set up SASL, you must have the following:
e The SASL database is generated.

e The SASL configuration file is configured.

Procedure

e Inthe router’s configuration file, add the following attributes to the router section:

router {

saslConfigPath: PATH
saslConfigName: FILE_NAME

saslConfigPath

24

CHAPTER 6. SECURITY

The absolute path to the SASL configuration file.
For example:

I saslConfigPath: /qdrouterd/security

saslConfigName

The name of the SASL configuration file. This name should not include the . conf file
extension.
For example:

I saslConfigName: qdrouterd_sasl

6.3. SECURING INCOMING CONNECTIONS

You can secure incoming connections by configuring each connection’s 1istener entity for
encryption, authentication, or both.

Prerequisites

Before securing incoming connections, the security protocols you plan to use should be set up.

Choices
e Add SSL/TLS encryption
e Add SASL authentication
e Add SSL/TLS client authentication

e Add SASL payload encryption

6.3.1. Adding SSL/TLS Encryption to an Incoming Connection

You can configure an incoming connection to accept encrypted connections only. By adding SSL/TLS
encryption, to connect to this router, a remote peer must first start an SSL/TLS handshake with the
router and be able to validate the server certificate received by the router during the handshake.

Procedure

e Inthe router’s configuration file, add the following attributes to the connection’s 1istener
entity:

listener {

sslProfile: SSL_PROFILE_NAME
requireSsl: yes

sslProfile
The name of the SSL/TLS profile you set up.

requireSsl

25

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

Enter yes to require all clients connecting to the router on this connection to use
encryption.

6.3.2. Adding SASL Authentication to an Incoming Connection

You can configure an incoming connection to authenticate the client using SASL. You can use SASL
authentication with or without SSL/TLS encryption.

Procedure

e Inthe router’s configuration file, add the following attributes to the connection’s 1istener
section:

listener {

authenticatePeer: yes
saslMechanisms: MECHANISMS

authenticatePeer

Set this attribute to yes to require the router to authenticate the identity of a remote peer
before it can use this incoming connection.

saslMechanisms

The SASL authentication mechanism (or mechanisms) to use for peer authentication. You
can choose any of the Cyrus SASL authentication mechanisms except for ANONYMOUS. To
specify multiple authentication mechanisms, separate each mechanism with a space.

For a full list of supported Cyrus SASL authentication mechanisms, see Authentication
Mechanisms.

6.3.3. Adding SSL/TLS Client Authentication to an Incoming Connection

You can configure an incoming connection to authenticate the client using SSL/TLS.

The base SSL/TLS configuration provides content encryption and server authentication, which means
that remote peers can verify the router’s identity, but the router cannot verify a peer’s identity.

However, you can require an incoming connection to use SSL/TLS client authentication, which means
that remote peers must provide an additional certificate to the router during the SSL/TLS handshake.
By using this certificate, the router can verify the client’s identity without using a username and
password.

You can use SSL/TLS client authentication with or without SASL authentication.

Procedure

e Inthe router’s configuration, file, add the following attribute to the connection’s 1istener
entity:

listener {

authenticatePeer: yes

26

https://www.cyrusimap.org/sasl/sasl/authentication_mechanisms.html

CHAPTER 6. SECURITY

authenticatePeer

Set this attribute to yes to require the router to authenticate the identity of a remote peer

before it can use this incoming connection.

6.3.4. Adding SASL Payload Encryption to an Incoming Connection

If you do not use SSL/TLS, you can still encrypt the incoming connection by using SASL payload
encryption.

Procedure

e Inthe router’s configuration file, add the following attributes to the connection’s 1istener
section:

listener {

requireEncryption: yes
saslMechanisms: MECHANISMS

requireEncryption

Set this attribute to yes to require the router to use SASL payload encryption for the
connection.

saslMechanisms

The SASL mechanism to use. You can choose any of the Cyrus SASL authentication
mechanisms. To specify multiple authentication mechanisms, separate each mechanism
with a space.

For a full list of supported Cyrus SASL authentication mechanisms, see Authentication
Mechanisms.

6.4. SECURING OUTGOING CONNECTIONS

You can secure outgoing connections by configuring each connection’s connector entity for
encryption, authentication, or both.

Prerequisites

Before securing outgoing connections, the security protocols you plan to use should be set up.

Choices

e Add SSL/TLS authentication

o Add SASL authentication

6.4.1. Adding SSL/TLS Client Authentication to an Outgoing Connection

If an outgoing connection connects to an external client configured with mutual authentication, you
should ensure that the outgoing connection is configured to provide the external client with a valid
security certificate during the SSL/TLS handshake.

You can use SSL/TLS client authentication with or without SASL authentication.

27

https://www.cyrusimap.org/sasl/sasl/authentication_mechanisms.html

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

Procedure

e Inthe router’s configuration file, add the ss1Profile attribute to the connection’s
connector entity:

connector {

sslProfile: SSL_PROFILE NAME

sslProfile

The name of the SSL/TLS profile you set up.

6.4.2. Adding SASL Authentication to an Outgoing Connection

You can configure an outgoing connection to provide authentication credentials to the external
container. You can use SASL authentication with or without SSL/TLS encryption.

Procedure

e Inthe router’s configuration file, add the saslMechanisms attribute to the connection’s
connector entity:

connector {

saslMechanisms: MECHANISMS
saslUsername: USERNAME
saslPassword: PASSWORD

saslMechanisms

One or more SASL mechanisms to use to authenticate the router to the external container.
You can choose any of the Cyrus SASL authentication mechanisms. To specify multiple
authentication mechanisms, separate each mechanism with a space.

For a full list of supported Cyrus SASL authentication mechanisms, see Authentication
Mechanisms.

saslUsername

If any of the SASL mechanisms uses username/password authentication, then provide the
username to connect to the external container.

saslPassword

If any of the SASL mechanisms uses username/password authentication, then provide the
password to connect to the external container.

28

https://www.cyrusimap.org/sasl/sasl/authentication_mechanisms.html

CHAPTER 7. ROUTING

CHAPTER 7. ROUTING

Routing is the process by which messages are delivered to their destinations. To accomplish this, AMQ
Interconnect provides two routing mechanisms: message routingand link routing.

Message routing

Routing is performed on messages as producers send them to a router. When a message arrives on
arouter, the router routes the message and its settlement based on the message’s address and

routing pattern.

Figure 7.1. Message Routing

— X

7

I
X

N\

Sender Receiver

In this diagram, the message producer attaches a link to the router, and then sends a message over
the link. When the router receives the message, it identifies the message’s destination based on the
message’s address, and then uses its routing table to determine the best route to deliver the
message either to its destination or to the next hop in the route. All dispositions (including
settlement) are propagated along the same path that the original message transfer took. Flow
control is handled between the sender and the router, and then between the router and the

receiver.

Link routing

Routing is performed on link-attach frames, which are chained together to form a virtual messaging
path that directly connects a sender and receiver. Once a link route is established, the transfer of
message deliveries, flow frames, and dispositions is performed across the link route.

Figure 7.2. Link Routing

— X

— X
link routing b link routing ot
7z = EEn = 7

v

- Messages Router Messages —
Sender Receiver
k
s s
Messages Messages

!

Broker

my_queue

In this diagram, a router is connected to clients and to a broker, and it provides a link route to a
gueue on the broker (my_queue). The sender connects to the router, and the router propagates the
link-attaches to the broker to form a direct link between the sender and the broker. The sender can

29

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

begin sending messages to the queue, and the router passes the deliveries along the link route
directly to the broker queue.

7.1. COMPARISON OF MESSAGE ROUTING AND LINK ROUTING

While you can use either message routing or link routing to deliver messages to a destination, they
differ in several important ways. Understanding these differences will enable you to choose the proper
routing approach for any particular use case.

7.1.1. When to Use Message Routing

Message routing is the default routing mechanism. You can use it to route messages on a per-message
basis between clients directly (direct-routed messaging), or to and from broker queues (brokered
messaging).

Message routing is best suited to the following requirements:

e Default, basic message routing.
AMQ Interconnect automatically routes messages by default, so manual configuration is only
required if you want routing behavior that is different than the default.

e Message-based routing patterns.
Message routing supports both anycast and multicast routing patterns. You can load-balance
individual messages across multiple consumers, and multicast (or fan-out) messages to
multiple subscribers.

e Sharding messages across multiple broker instances when message delivery order is not
important.
Sharding messages from one producer might cause that producer’s messages to be received in
a different order than the order in which they were sent.

Message routing is not suitable for any of the following requirements:

e Dedicated path through the router network.
For inter-router transfers, all message deliveries are placed on the same inter-router link. This
means that the traffic for one address might affect the delivery of the traffic for another
address.

e Granular, end-to-end flow control.
With message routing, end-to-end flow control is based on the settlement of deliveries and
therefore might not be optimal in every case.

e Transaction support.

e Server-side selectors.

7.1.2. When to Use Link Routing

Link routing requires more detailed configuration than message routing as well as an AMQP container
that can accept incoming link-attaches (typically a broker). However, link routing enables you to satisfy
more advanced use cases than message routing.

You can use link routing if you need to meet any of the following requirements:

30

CHAPTER 7. ROUTING

e Dedicated path through the router network.
With link routing, each link route has dedicated inter-router links through the network. Each
link has its own dedicated message buffers, which means that the address will not have "head-
of-line" blocking issues with other addresses.

e Sharding messages across multiple broker instances with guaranteed delivery order.
Link routing to a sharded queue preserves the delivery order of the producer’s messages by
causing all messages on that link to go to the same broker instance.

e End-to-end flow control.
Flow control is "real" in that credits flow across the link route from the receiver to the sender.

e Transaction support.
Link routing supports local transactions to a broker.

e Server-side selectors.
With a link route, consumers can provide server-side selectors for broker subscriptions.

7.2. CONFIGURING MESSAGE ROUTING

With message routing, routing is performed on messages as producers send them to a router. When a
message arrives on a router, the router routes the message and its settlement based on the message’s
address and routing pattern.

With message routing, you can do the following:

o Route messages between clients (direct-routed, or brokerless messaging)
This involves configuring an address with a routing pattern. All messages sent to the address
will be routed based on the routing pattern.

e Route messages through a broker queue (brokered messaging)
This involves configuring a waypoint address to identify the broker queue and then connecting
the router to the broker. All messages sent to the waypoint address will be routed to the
broker queue.

7.2.1. Addresses

Addresses determine how messages flow through your router network. An address designates an
endpoint in your messaging network, such as:

e Endpoint processes that consume data or offer a service
e Topics that match multiple consumers to multiple producers
e Entities within a messaging broker:

o Queues

o Durable Topics

o Exchanges

When a router receives a message, it uses the message’s address to determine where to send the
message (either its destination or one step closer to its destination).

31

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

7.2.2. Routing Patterns

Each address has one of the following routing patterns, which define the path that a message with the
address can take across the messaging network:

Balanced

An anycast method that allows multiple consumers to use the same address. Each message is
delivered to a single consumer only, and AMQ Interconnect attempts to balance the traffic load
across the router network.

If multiple consumers are attached to the same address, each router determines which outbound
path should receive a message by considering each path’s current number of unsettled deliveries.
This means that more messages will be delivered along paths where deliveries are settled at higher
rates.

NOTE

L

AMQ Interconnect neither measures nor uses message settlement time to determine
which outbound path to use.

~

In this scenario, the messages are spread across both receivers regardless of path length:

Figure 7.3. Balanced Message Routing

— X — X
7z = EE=En = I
p— p—
= Messages Router A Message 1 — X
Sender 182 Receiver 1
_ X
p— /
88558 - = |~
Router B Message 2 —
Receiver 2

Closest

32

An anycast method in which every message is sent along the shortest path to reach the destination,
even if there are other consumers for the same address.

AMQ Interconnect determines the shortest path based on the topology cost to reach each of the
consumers. If there are multiple consumers with the same lowest cost, messages will be spread
evenly among those consumers.

In this scenario, all messages sent by Sender will be delivered to Receiver 1:

CHAPTER 7. ROUTING

Figure 7.4. Closest Message Routing

- X — X
Z = EE=En = I
= Messages Router A Messages —)
Sender 182 1&2 Receiver 1
_ X
vl
EEEEE > z
Router B - .
Receiver 2

Multicast
Messages are sent to all consumers attached to the address. Each consumer will receive one copy

of the message.
In this scenario, all messages are sent to all receivers:

Figure 7.5. Multicast Message Routing

- X — X
7 = { 58888 o} = | A
= Messages Router A Messages =)
Sender 1&2 1&2 Receiver 1
_ X
— s
85858 o = > Z
Router B Messages - .
Receiver 2

1&2

7.2.3. Message Settlement

Message settlement is negotiated between the producer and the router when the producer establishes
alink to the router. Depending on the settlement pattern, messages might be delivered with any of the

following degrees of reliability:
e At mostonce
e Atleastonce

e Exactly once

AMQ Interconnect treats all messages as either pre-settled or unsettled, and it is responsible for
propagating the settlement of each message it routes.

Pre-settled
Sometimes called fire and forget, the router settles the incoming and outgoing deliveries and
propagates the settlement to the message’s destination. However, it does not quarantee delivery.

Unsettled
The router propagates the settlement between the sender and receiver, and guarantees one of the

following outcomes:

33

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

e The message is delivered and settled, with the consumer’s disposition indicated.

o The delivery is settled with a disposition of RELEASED.
This means that the message did not reach its destination.

e The delivery is settled with a disposition of MODIFIED.

This means that the message might or might not have reached its destination. The delivery
is considered to be "in-doubt" and should be re-sent if "at least once" delivery is required.

e The link, session, or connection to AMQ Interconnect was dropped, and all deliveries are
"in-doubt".

7.2.4. Routing Messages Between Clients

You can route messages between clients without using a broker. In a brokerless scenario (sometimes
called direct-routed messaging), AMQ Interconnect routes messages between clients directly.

To route messages between clients, you configure an address with a routing distribution pattern. When
arouter receives a message with this address, the message is routed to its destination or destinations
based on the address’s routing distribution pattern.

Procedure

1. In the router’s configuration file, add an address section:

address {
prefix: ADDRESS_PREFIX
distribution: balanced|closest|multicast

prefix

The address prefix. All messages that match this prefix will be distributed according to the
distribution pattern you specify.

The prefix can match either an exact address or a segment within an address that is
delimited by either a . or / character. For example, the prefix my_address would match
the address my_address as well as my_address.1and my_address/1. However, it
would not match my_addressi.

distribution

The message distribution pattern. The default is balanced, but you can specify any of the
following options:

e balanced - Messages sent to the address will be routed to one of the receivers, and
the routing network will attempt to balance the traffic load based on the rate of
settlement.

e closest - Messages sent to the address are sent on the shortest path to reach the
destination. It means that if there are multiple receivers for the same address, only the
closest one will receive the message.

e multicast - Messages are sent to all receivers that are attached to the addressin a
publish/subscribe model.

34

CHAPTER 7. ROUTING

For more information about message distribution patterns, see Routing Patterns.

For information about additional attributes, see Address in the Configuration Reference.

2. Add the same address section to any other routers that need to use the address.
The address that you added to this router configuration file only controls how this router

distributes messages sent to the address. If you have additional routers in your router network
that should distribute messages for this address, then you must add the same address

section to each of their configuration files.

7.2.5. Routing Messages Through a Broker Queue

You can route messages to and from a broker queue to provide clients with access to the queue
through a router. In this scenario, clients connect to a router to send and receive messages, and the

router routes the messages to or from the broker queue.

You can route messages to a queue hosted on a single broker, or route messages to a sharded queue
distributed across multiple brokers.

Figure 7.6. Brokered Messaging

X — X

~ ducing consuming
e [— f— ~
~ = »| 58888 o = ~

v

— Messages Router Messages ;
Sender T Receiver
I I
Messages Messages
Broker
my_queue

In this diagram, the sender connects to the router and sends messages to my_queue. The router
attaches an outgoing link to the broker, and then sends the messages to my_queue. Later, the receiver
connects to the router and requests messages from my_queue. The router attaches an incoming link to
the broker to receive the messages from my_queue, and then delivers them to the receiver.

You can also route messages to a sharded queue, which is a single, logical queue comprised of multiple,
underlying physical queues. Using queue sharding, it is possible to distribute a single queue over
multiple brokers. Clients can connect to any of the brokers that hold a shard to send and receive

messages.

35

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

Figure 7.7. Brokered Messaging with Sharded Queue

— X — X
producing ot consuming v
7z = =| 25288 nl = > z
- Messages Router Messages — -
Sender |TT| Receiver

Messages Messages Messages Messages

s !

sharded
Broker / queue Broker

my_queue my_queue

In this diagram, a sharded queue (my_queue) is distributed across two brokers. The router is
connected to the clients and to both brokers. The sender connects to the router and sends messages
to my_queue. The router attaches an outgoing link to each broker, and then sends messages to each
shard (by default, the routing distribution is balanced). Later, the receiver connects to the router and
requests all of the messages from my_queue. The router attaches an incoming link to one of the
brokers to receive the messages from my_queue, and then delivers them to the receiver.

Procedure

1. Add a waypoint address.
This address identifies the queue to which you want to route messages.

2. Add autolinks to connect the router to the broker.
Autolinks connect the router to the broker queue identified by the waypoint address.

3. Ifthe queue is sharded, add autolinks for each additional broker that hosts a shard .

7.2.5.1. Configuring Waypoint Addresses

A waypoint address identifies a queue on a broker to which you want to route messages. You need to
configure the waypoint address on each router that needs to use the address. For example, if a client is
connected to Router Ato send messages to the broker queue, and another client is connected to
Router Bto receive those messages, then you would need to configure the waypoint address on both
Router Aand Router B.

Prerequisites

An incoming connection (1istener) to which the clients can connect should be configured. This
connection defines how the producers and consumers connect to the router to send and receive
messages. For more information, see Adding Incoming Connections.

Procedure

e Create waypoint addresses on each router that needs to use the address:

I address {

36

CHAPTER 7. ROUTING

prefix: ADDRESS_PREFIX
waypoint: yes

prefix

The address prefix that matches the broker queue to which you want to route messages.
The prefix can match either an exact address or a segment within an address that is
delimited by either a . or / character. For example, the prefix my_address would match
the address my_address as well as my_address.1and my_address/1. However, it
would not match my_addressi.

waypoint

Set this attribute to yes so that the router handles messages sent to this address as a
waypoint.

7.2.5.2. Connecting a Router to the Broker

After you add waypoint addresses to identify the broker queue, you must connect a router to the
broker using autolinks.

With autolinks, client traffic is handled on the router, not the broker. Clients attach their links to the
router, and then the router uses internal autolinks to connect to the queue on the broker. Therefore,
the queue will always have a single producer and a single consumer regardless of how many clients are
attached to the router.

1. If this router is different than the router that is connected to the clients, then add the waypoint
address.

2. Add an outgoing connection to the broker:

connector {
name: NAME
host: HOST_NAME/ADDRESS
port: PORT_NUMBER/NAME
role: route-container

name
The name of the connector. Specify a name that describes the broker.
host

Either an IP address (IPv4 or IPv6) or hostname on which the router should connect to the
broker.

port

The port number or symbolic service name on which the router should connect to the
broker.

role

Specify route-container to indicate that this connection is for an external container
(broker).

For information about additional attributes, see Connector in the Configuration Reference.

37

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

3. If you want to send messages to the broker queue, create an outgoing autolink to the broker

queue:
autoLink {
addr: ADDRESS
connection: CONNECTOR_NAME
dir: out
}
addr
The address of the broker queue. When the autolink is created, it will be attached to this
address.

connection| containerID

How the router should connect to the broker. You can specify either an outgoing
connection (connection) or the container ID of the broker (containerID).

dir
Set this attribute to out to specify that this autolink can send messages from the router to
the broker.

For information about additional attributes, see autoLink in the Configuration Reference.

4. If you want to receive messages from the broker queue, create an incoming autolink from the
broker queue:

autoLink {
addr: ADDRESS
connection: CONNECTOR_NAME

dir: in
}
addr
The address of the broker queue. When the autolink is created, it will be attached to this
address.

connection| containerID

How the router should connect to the broker. You can specify either an outgoing
connection (connection) or the container ID of the broker (containerID).

dir
Set this attribute to in to specify that this autolink can receive messages from the broker
to the router.

For information about additional attributes, see autoLink in the Configuration Reference.

7.3. CONFIGURING LINK ROUTING

Link routing provides an alternative strategy for brokered messaging. A link route represents a private
messaging path between a sender and a receiver in which the router passes the messages between
end points. You can think of a link route as a "virtual connection" or "tunnel" that travels from a sender,
through the router network, to a receiver.

38

CHAPTER 7. ROUTING

With link routing, routing is performed on link-attach frames, which are chained together to form a
virtual messaging path that directly connects a sender and receiver. Once a link route is established,
the transfer of message deliveries, flow frames, and dispositions is performed across the link route.

7.3.1. Link Route Addresses

A link route address represents a broker queue, topic, or other service. When a client attaches a link
route address to a router, the router propagates a link attachment to the broker resource identified by
the address.

7.3.2. Link Route Routing Patterns

Routing patterns are not used with link routing, because there is a direct link between the sender and
receiver. The router only makes a routing decision when it receives the initial link-attach request
frame. Once the link is established, the router passes the messages along the link in a balanced
distribution.

7.3.3. Link Route Flow Control

Unlike message routing, with link routing, the sender and receiver handle flow control directly: the
receiver grants link credits, which is the number of messages it is able to receive. The router sends
them directly to the sender, and then the sender sends the messages based on the credits that the
receiver granted.

7.3.4. Creating a Link Route

Link routes establish a link between a sender and a receiver that travels through a router. You can
configure inward and outward link routes to enable the router to receive link-attaches from clients and
to send them to a particular destination.

With link routing, client traffic is handled on the broker, not the router. Clients have a direct link
through the router to a broker’s queue. Therefore, each client is a separate producer or consumer.

Procedure

1. In the router configuration file, add an outgoing connection to the broker:

connector {
name: NAME
host: HOST_NAME/ADDRESS
port: PORT_NUMBER/NAME
role: route-container

name
The name of the connector. You should specify a name that describes the broker.
host

Either an IP address (IPv4 or IPv6) or hostname on which the router should connect to the
broker.

port

39

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

40

The port number or symbolic service name on which the router should connect to the
broker.

role

Specify route-container to indicate that this connection is for an external container
(broker).

For information about additional attributes, see Connector in the Configuration Reference.

2. If you want clients to send messages on this link route, create an incoming link route:

linkRoute {
prefix: ADDRESS_PREFIX
connection: CONNECTOR_NAME
dir: in

prefix

The address prefix that matches the broker queue to which you want to send messages. All
messages that match this prefix will be distributed along the link route.

The prefix can match either an exact address or a segment within an address that is
delimited by either a . or / character. For example, the prefix my_address would match
the address my_address as well as my_address.1and my_address/1. However, it
would not match my_address1. The prefix can match either an exact address or a segment
within an address that is delimited by either a . or / character. For example, the prefix
my_address would match the address my_address as well as my_address.1 and
my_address/1. However, it would not match my_address1.

connection| containerID

How the router should connect to the broker. You can specify either an outgoing
connection (connection) or the container ID of the broker (containerID).

If multiple brokers are connected to the router through this connection, requests for
addresses matching the link route’s prefix are balanced across the brokers. Alternatively, if
you want to specify a particular broker, use containerID and add the broker’s container
ID.

dir

Set this attribute to in to specify that clients can send messages into the router network
on this link route.

For information about additional attributes, see linkRoute in the Configuration Reference.

3. If you want clients to receive messages on this link route, create an outgoing link route:

linkRoute {
prefix: ADDRESS_PREFIX
connection: CONNECTOR_NAME
dir: out

prefix

CHAPTER 7. ROUTING

The address prefix that matches the broker queue to which you want to receive messages.
All messages that match this prefix will be distributed along the link route.

The prefix can match either an exact address or a segment within an address that is
delimited by either a . or / character. For example, the prefix my_address would match
the address my_address as well as my_address.1and my_address/1. However, it
would not match my_address1. The prefix can match either an exact address or a segment
within an address that is delimited by either a . or / character. For example, the prefix
my_address would match the address my_address as well as my_address.1 and
my_address/1. However, it would not match my_address1.

connection| containerID

How the router should connect to the broker. You can specify either an outgoing
connection (connection) or the container ID of the broker (containerID).

If multiple brokers are connected to the router through this connection, requests for
addresses matching the link route’s prefix are balanced across the brokers. Alternatively, if
you want to specify a particular broker, use containerID and add the broker’s container
ID.

dir

Set this attribute to out to specify that this link route is for receivers.

For information about additional attributes, see linkRoute in the Configuration Reference.

41

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

CHAPTER 8. LOGGING

Logging enables you to diagnose error and performance issues with AMQ Interconnect.
AMQ Interconnect consists of internal modules that provide important information about the router.

For each module, you can specify logging levels, the format of the log file, and the location to which the
logs should be written.

8.1. LOGGING MODULES

AMQ Interconnect logs are broken into different categories called logging modules. Each module
provides important information about a particular aspect of AMQ Interconnect.

8.1.1. The DEFAULT Logging Module

The default module. This module applies defaults to all of the other logging modules.

8.1.2. The ROUTER Logging Module

This module provides information and statistics about the local router. This includes how the router
connects to other routers in the network, and information about the remote destinations that are
directly reachable from the router (link routes, waypoints, autolinks, and so on).

In this example, on Router . A, the ROUTER log shows that Router .B is the next hop. It also shows the
cost for Router .A toreach the other routers on the network:

Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.C next hop set:
Router.B

Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.C valid origins: []
Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.C cost: 2

Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.B valid origins: []
Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.B cost: 1

On Router .B, the ROUTER log provides more information about valid origins:

Tue Jun 7 13:28:25 2016 ROUTER (trace) Node Router.C cost: 1

Tue Jun 7 13:28:26 2016 ROUTER (trace) Node Router.A created: maskbit=2
Tue Jun 7 13:28:26 2016 ROUTER (trace) Node Router.A link set: link_id=1
Tue Jun 7 13:28:26 2016 ROUTER (trace) Node Router.A valid origins:
['Router.C']

Tue Jun 7 13:28:26 2016 ROUTER (trace) Node Router.A cost: 1

Tue Jun 7 13:28:27 2016 ROUTER (trace) Node Router.C valid origins:

['Router.A']

8.1.3. The ROUTER_CORE Logging Module

This module provides information about the local router’s operations on active connections and links.
This includes operations related to opened and closed connections, messages sent, deliveries, and flow
control.

Tue Jun 7 13:42:07 2016 ROUTER_CORE (trace) Core action 'link_flow'
Tue Jun 7 13:42:08 2016 ROUTER_CORE (trace) Core action 'link_deliver'

42

Tue Jun
Tue Jun

CHAPTER 8.LOGGING

7 13:42:08 2016 ROUTER_CORE (trace) Core action 'send_to'
7 13:42:08 2016 ROUTER_CORE (trace) Core action 'link_flow'

8.1.4. The ROUTER_HELLO Logging Module

This module provides information about the Hello protocol used by interior routers to exchange Hello

messages, which include information about the router’s ID and a list of its reachable neighbors (the
other routers with which this router has bidirectional connectivity).

The logs for this module are helpful for monitoring or resolving issues in the network topology, and for
determining to which other routers a router is connected, and the hop-cost for each of those

connections.

In this example, on Router . A, the ROUTER_HELLO log shows that it is connected to Router.B, and
that Router .B is connected to Router.A and Router.C:

Tue Jun

7 13:50:21 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.B

area=0 inst=1465307413 seen=['Router.A', 'Router.C']) g

Tue Jun

7 13:50:21 2016 ROUTER_HELLO (trace) SENT: HELLO(id=Router.A

area=0 inst=1465307416 seen=['Router.B']) @

Tue Jun

7 13:50:22 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.B

area=0 inst=1465307413 seen=['Router.A', 'Router.C'])

Tue Jun

7 13:50:22 2016 ROUTER_HELLO (trace) SENT: HELLO(id=Router.A

area=0 inst=1465307416 seen=['Router.B'])

ﬂ Router.Areceived a Hello message from Router.B, which can see Router.A and Router.C.

g Router.A sent a Hello message to Router.B, which is the only router it can see.

On Router.B,the ROUTER_HELLO log shows the same router topology from a different perspective:

Tue Jun

7 13:50:18 2016 ROUTER_HELLO (trace) SENT: HELLO(id=Router.B

area=0 inst=1465307413 seen=['Router.A', 'Router.C']) g

Tue Jun

7 13:50:18 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.A

area=0 inst=1465307416 seen=['Router.B']) @

Tue Jun

7 13:50:19 2016 ROUTER_HELLO (trace) RCVD: HELLO(id=Router.C

area=0 inst=1465307411 seen=['Router.B']) €

ﬂ Router.B sent a Hello message to Router.A and Router.C.

9 Router.B received a Hello message from Router.A, which can only see Router.B.

9 Router.B received a Hello message from Router.C, which can only see Router.B.

8.1.5. The ROUTER_LS Logging Module

This module provides information about link-state data between routers, including Router
Advertisement (RA), Link State Request (LSR), and Link State Update (LSU) messages.

Periodically, each router sends an LSR to the other routers and receives an LSU with the requested
information. Exchanging the above information, each router can compute the next hops in the
topology, and the related costs.

43

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

This example shows the RA, LSR, and LSU messages sent between three routers:

® 090 00

Jun 7
Router.
Jun 7
to: Router.B //

Tue Jun 7 14:10:02 2016
inst=1465308600 ls_seq=1
Tue Jun 7 14:10:02 2016
inst=1465308595 ls_seq=2
{'Router.A': 1L, 'Router
Tue Jun 7 14:10:02 2016
Tue Jun 7 14:10:02 2016
inst=1465308600 ls_seq=1
{'Router.B': 1}))

Tue Jun 7 14:10:02 2016
inst=1465308592 1ls_seq=1

14:10:02 2016
c//
14:10:02 2016

Tue
to:
Tue

Tue Jun 7 14:10:02 2016
to: Router.C

Tue Jun 7 14:10:02 2016
Tue Jun 7 14:10:02 2016

inst=1465308600 ls_seq=1
{'Router.B': 1}))

Tue Jun 7 14:10:02 2016
inst=1465308592 1ls_seq=1
{'Router.B': 1L})) Q
Tue Jun 7 14:10:03 2016
{'Router.C': 'Router.B',
Tue Jun 7 14:10:03 2016
2L, 'Router.B': 1}

Tue Jun 7 14:10:03 2016
{'Router.C': [], 'Router

ROUTER_LS (trace)
ROUTER_LS (trace)

ROUTER_LS (trace)
mobile_seq=1) g
ROUTER_LS (trace)
1s=LS(id=Router.B
c': 1)) @

ROUTER_LS (trace)
ROUTER_LS (trace)
1s=LS(id=Router.A

ROUTER_LS (trace)
mobile_seq=0)
ROUTER_LS (trace)

ROUTER_LS (trace)

ROUTER_LS (trace)
1s=LS(id=Router.A

ROUTER_LS (trace)
1s=LS(id=Router.C

ROUTER_LS (trace)

'Router.B':
ROUTER_LS (trace)

ROUTER_LS (trace)
.B': [1}

SENT: LSR(id=Router.A area=0)
SENT: LSR(id=Router.A area=0)
SENT: RA(id=Router.A area=0

RCVD: LSU(id=Router.B area=0

area=0 ls_seq=2 peers=

RCVD: LSR(id=Router.B area=0)
SENT: LSU(id=Router.A area=0
area=0 ls_seq=1 peers=

RCVD: RA(id=Router.C area=0
SENT: LSR(id=Router.A area=0)
RCVD: LSR(id=Router.C area=0)
SENT: LSU(id=Router.A area=0 //

area=0 ls_seq=1 peers=

RCVD: LSU(id=Router.C area=0
area=0 ls_seq=1 peers=

Computed next hops:

'Router.B'} 9

Computed costs: {'Router.C':

Computed valid origins:

Router.A sent LSR requests and an RA advertisement to the other routers on the network.

Router.Areceived an LSU from Router.B, which has two peers: Router .A, and Router.C

(with acost of 1).

Router.Areceived an LSR from both Router.B and Router.C, and replied with an LSU.

Router.Areceived an LSU from Router.C, which only has one peer: Router.B (with a cost of

1).

After the LSR and LSU messages are exchanged, Router . A computed the router topology with

the related costs.

8.1.6. The ROUTER_MA Logging Module

This module provides information about the exchange of mobile address information between routers,
including Mobile Address Request (MAR) and Mobile Address Update (MAU) messages exchanged
between routers. You can use this log to monitor the state of mobile addresses attached to each
router.

44

This example shows the MAR and MAU messages sent between three routers:

® 0900 o

CHAPTER 8.LOGGING

Tue Jun 7 14:27:20 2016 ROUTER_MA (trace) SENT: MAU(id=Router.A area=0

mobile_seq=1 add=['Cmy_queue', 'Dmy_queue', 'MOmy_queue_wp'] del=[]) g
Tue Jun 7 14:27:21 2016 ROUTER_MA (trace) RCVD: MAR(id=Router.C area=0

have_seq=0) g

Tue Jun 7 14:27:21 2016 ROUTER_MA (trace) SENT: MAU(id=Router.A area=0
mobile_seq=1 add=['Cmy_queue', 'Dmy_queue', 'MOmy_queue_wp'] del=[])
Tue Jun 7 14:27:22 2016 ROUTER_MA (trace) RCVD: MAR(id=Router.B area=0

have_seq=0) Q

Tue Jun 7 14:27:22 2016 ROUTER_MA (trace) SENT: MAU(id=Router.A area=0
mobile_seq=1 add=['Cmy_queue', 'Dmy_queue', 'MOmy_queue_wp'] del=[])
Tue Jun 7 14:27:39 2016 ROUTER_MA (trace) RCVD: MAU(id=Router.C area=0

mobile_seq=1 add=['MOmy_test'] del=[]) G

Tue Jun 7 14:27:51 2016 ROUTER_MA (trace) RCVD: MAU(id=Router.C area=0

mobile_seq=2 add=[] del=['MOmy_test']) e

Router.A sent MAU messages to the other routers in the network to notify them about the

addresses added for my_queue and my_queue_wp.
Router.Areceived a MAR message in response from Router.C.

Router.A received another MAR message in response from Router.B.

Router.C sent a MAU message to notify the other routers that it added and address for

my_test.

Router.C sent another MAU message to notify the other routers that it deleted the address for

my_test (because the receiver is detached).

8.1.7. The MESSAGE Logging Module

This module provides information about AMQP messages sent and received by the router, including
information about the address, body, and link. You can use this log to find high-level information about
messages on a particular router.

In this example, Router .A has sent and received some messages related to the Hello protocol, and
sent and received some other messages on a link for a mobile address:

Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending
Message{to="'amqp:/_topo/@/Router.B/qdrouter’
body="\d1\00\0O\0O\1b\0O\00\0O\04\a1\02id\a1\e8R"'} on link
gdlink.p9XmBm19uDgx50R

Tue Jun 7 14:36:54 2016 MESSAGE (trace) Received
Message{to="'amqp:/_topo/@/Router.A/qdrouter’
body="'\d1\00\00\00\8e\00\00\00

\a1\0e61ls_se'} on link gqdlink.phMsJOq7YaFsGAG

Tue Jun 7 14:36:54 2016 MESSAGE (trace) Received Message{
body="\d1\00\00\00\10\00\00\00\02\a1\08seque'} on link
gdlink.FYHgBX+TtwXZHfV

Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending Message{
body="\d1\00\00\00\10\00\00\00\02\a1\08seque'} on link
gdlink.yUltnPs5KbMlieM

45

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending
Message{to="'amqp:/_local/qdhello’
body="\d1\00\0O\OOG\00\00\00\08\al\04seen\dO'} on link
gdlink.p9XmBm19uDgx50R

Tue Jun 7 14:36:54 2016 MESSAGE (trace) Sending
Message{to="'amqp:/_topo/@/Router.C/qdrouter’
body="\d1\00\0O\0O\1b\0O\00\0O\04\a1\02id\al1\e8R"'} on link
gdlink.p9XmBm19uDgx50R

8.1.8. The SERVER Logging Module

This module provides information about how the router is listening for and connecting to other
containers in the network (such as clients, routers, and brokers). This includes the state of AMQP
messages sent and received by the broker (open, begin, attach, transfer, flow, and so on), and the
related content of those messages.

For example, this log shows details about how the router handled a link attachment:

Tue Jun 7 14:39:52 2016 SERVER (trace) [2]: <- AMQP

Tue Jun 7 14:39:52 2016 SERVER (trace) [1]: <- AMQP

Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:0 <- @open(16) [container-
id="Router.B", max-frame-size=16384, channel-max=32767, idle-time-
out=8000, offered-capabilities=:"ANONYMOUS-RELAY", properties=
{:product="qgpid-dispatch-router", :version="0.6.0"}]

Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:0 -> @begin(17) [next-
outgoing-id=0, incoming-window=15, outgoing-window=2147483647]

Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:RAW:
"\X00\X00\Xx00\x1e\Xx02\Xx00\Xx00\Xx00\X00S\Xx11\XxdO\X00\X00\X00\x0e\x00\Xx00\x00
\XO4@R\XOOR\XOFp\X7F\XFF\XFF\XFf"

Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:1 -> @begin(17) [next-
outgoing-id=0, incoming-window=15, outgoing-window=2147483647]

Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:RAW:
"\X00\X00\Xx00\x1e\Xx02\Xx00\Xx00\X01\Xx00S\Xx11\XxdO\X00\X00\X00\x0e\Xx00\Xx00\x00
\XO4@R\XOOR\XOFp\X7F\XFF\XF\XFf"

Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:0 -> @attach(18)
[name="gdlink.uSSeXPSfTHhxo8d", handle=0, role=true, snd-settle-mode=2,
rcv-settle-mode=0, source=@source(40) [durable=0, expiry-policy=:"1link-
detach", timeout=0, dynamic=false, capabilities=:"qd.router"],
target=@target(41) [durable=0, expiry-policy=:"link-detach", timeout=0,
dynamic=false, capabilities=:"qd.router"], initial-delivery-count=0]

Tue Jun 7 14:39:52 2016 SERVER (trace) [1]:RAW:
"\X00\X00\X00\X91\X02\X00\X00\X00\X00S\Xx12\XxdO\XO0\X00\X00\Xx81\X00\X00\Xx00
\x0a\xal\x16qdlink.uSSeXPSTfTHhx08dR\XOOAP\X02P\Xx00\x00S (\xdO\x00\Xx00\x00 "\
X00\X00\X00\XOb@R\Xx00\xa3\x0blink-
detachR\x00BA@@@A@@\xa3\x09qd.router\x00S)\xdo\x00\x00\Xx00#\x00\x00\Xx00\x07@
R\x00\xa3\x0blink-detachR\x00B@\xa3\x09qd.router@@R\x00"

8.1.9. The AGENT Logging Module

This module provides information about configuration changes made to the router from either editing
the router’s configuration file or using qdmanage.

46

CHAPTER 8.LOGGING

In this example, on Router . A, address, 1inkRoute, and autoLink entities were added to the
router’s configuration file. When the router was started, the AGENT module applied these changes, and
they are now viewable in the log:

Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
ConnectorEntity(addr=127.0.0.1, allowRedirect=True, cost=1,
host=127.0.0.1, identity=connector/127.0.0.1:5672:BROKER,
idleTimeoutSeconds=16, maxFrameSize=65536, name=BROKER, port=5672,
role=route-container, stripAnnotations=both,
type=org.apache.qgpid.dispatch.connector, verifyHostName=True)

Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAddressEntity(distribution=closest,
identity=router.config.address/0, name=router.config.address/0,
prefix=my_address, type=org.apache.gpid.dispatch.router.config.address,
waypoint=False)

Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAddressEntity(distribution=balanced,
identity=router.config.address/1, name=router.config.address/1,
prefix=my_queue_wp, type=org.apache.qpid.dispatch.router.config.address,
waypoint=True)

Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigLinkrouteEntity(connection=BROKER, dir=in,
distribution=1linkBalanced, identity=router.config.linkRoute/0,
name=router.config.linkRoute/0, prefix=my_queue,
type=org.apache.qgpid.dispatch.router.config.linkRoute)

Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfiglLinkrouteEntity(connection=BROKER, dir=out,
distribution=1linkBalanced, identity=router.config.linkRoute/1,
name=router.config.linkRoute/1, prefix=my_queue,
type=org.apache.qgpid.dispatch.router.config.linkRoute)

Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAutolinkEntity(addr=my_queue_wp, connection=BROKER, dir=in,
identity=router.config.autoLink/®, name=router.config.autoLink/0,
type=org.apache.qgpid.dispatch.router.config.autoLink)

Tue Jun 7 15:07:32 2016 AGENT (debug) Add entity:
RouterConfigAutolinkEntity(addr=my_queue_wp, connection=BROKER, dir=out,
identity=router.config.autoLink/1, name=router.config.autolLink/1,
type=org.apache.qgpid.dispatch.router.config.autoLink)

8.1.10. The CONTAINER Logging Module

This module provides information about the nodes related to the router. This includes only the AMQP
relay node.

Tue Jun 7 14:46:18 2016 CONTAINER (trace) Container Initialized

Tue Jun 7 14:46:18 2016 CONTAINER (trace) Node Type Registered - router
Tue Jun 7 14:46:18 2016 CONTAINER (trace) Node of type 'router' installed
as default node

8.1.11. The ERROR Logging Module

This module provides detailed information about error conditions encountered during execution.

47

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

In this example, Router . A failed to start when an incorrect path was specified for the router’s
configuration file:

$ sudo qdrouterd --conf xxx

Wed Jun 15 09:53:28 2016 ERROR (error) Python: Exception: Cannot load
configuration file xxx: [Errno 2] No such file or directory: 'xxx'

Wed Jun 15 09:53:28 2016 ERROR (error) Traceback (most recent call last):

File "/usr/lib/qpid-
dispatch/python/qpid_dispatch_internal/management/config.py", line 155, in
configure_dispatch

config = Config(filename)

File "/usr/lib/qpid-
dispatch/python/qpid_dispatch_internal/management/config.py", line 41, in
__init__

self.load(filename, raw_json)

File "/usr/lib/qpid-
dispatch/python/qpid_dispatch_internal/management/config.py", line 123, in
load

with open(source) as f:
Exception: Cannot load configuration file xxx: [Errno 2] No such file or
directory: 'xxx'

Wed Jun 15 09:53:28 2016 MAIN (critical) Router start-up failed: Python:
Exception: Cannot load configuration file xxx: [Errno 2] No such file or
directory: 'xxx'

gdrouterd: Python: Exception: Cannot load configuration file xxx: [Errno
2] No such file or directory: 'xxx'

8.1.12. The poLICY Logging Module
This module provides information about policies that have been configured for the router.

In this example, Router . A has no limits on maximum connections, and the default application policy is
disabled:

Tue Jun 7 15:07:32 2016 POLICY (info) Policy configured
maximumConnections: 0, policyFolder: '', access rules enabled: 'false'
Tue Jun 7 15:07:32 2016 POLICY (info) Policy fallback defaultApplication
is disabled

8.2. CONFIGURING LOGGING

You can specify the types of events that should be logged, the format of the log entries, and where
those entries should be sent.

Procedure

1. In the router’s configuration file, add a 1og section to set the default logging properties:

log {
module: DEFAULT

enable: LOGGING_LEVEL

48

CHAPTER 8.LOGGING

timestamp: yes

module
Specify DEFAULT.
enable

The logging level. You can specify any of the following levels (from lowest to highest):

e trace - provides the most information, but significantly affects system performance
e debug - useful for debugging, but affects system performance

e info - provides general information without affecting system performance

e notice - provides general information, but is less verbose than info

e warning - provides information about issues you should be aware of, but which are not
errors

e error - error conditions that you should address
e critical - critical system issues that you must address immediately

To specify multiple levels, use a comma-separated list. You can also use + to specify a level
and all levels above it. For example, trace, debug, warning+ enables trace, debug,
warning, error, and critical levels. For default logging, you should typically use the info+ or
notice+ level. These levels will provide general information, warnings, and errors for all
modules without affecting the performance of AMQ Interconnect.

timestamp

Set this to yes to include the timestamp in all logs.
For information about additional log attributes, see Log in the Configuration Reference.

. Add an additional log section for each logging module that should not follow the default
logging configuration:

log {
module: MODULE_NAME

enable: LOGGING_LEVEL

module

The name of the module for which you are configuring logging. For a list of valid modules,
see Logging Modules You Can Configure.

enable

The logging level. You can specify any of the following levels (from lowest to highest):

e trace - provides the most information, but significantly affects system performance

e debug - useful for debugging, but affects system performance

49

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

e info - provides general information without affecting system performance
e notice - provides general information, but is less verbose than info

e warning - provides information about issues you should be aware of, but which are not
errors

e error - error conditions that you should address
e critical - critical system issues that you must address immediately

To specify multiple levels, use a comma-separated list. You can also use + to specify a level
and all levels above it. For example, trace, debug, warning+ enables trace, debug,
warning, error, and critical levels. For default logging, you should typically use the info+ or
notice+ level. These levels will provide general information, warnings, and errors for all
modules without affecting the performance of AMQ Interconnect.

For information about additional log attributes, see Log in the Configuration Reference.

8.3. VIEWING LOG ENTRIES

You may need to view log entries to diagnose errors, performance problems, and other important
issues. A log entry consists of an optional timestamp, the logging module, the logging level, and the log
message.

8.3.1. Viewing Log Entries on the Console

By default, log entries are logged to the console, and you can view them there. However, if the output
attribute is set for a particular logging module, then you can find those log entries in the specified
location (stderr, syslog, or afile).

8.3.2. Viewing Log Entries on the CLI

You can use the qdstat tool to view a list of recent log entries.

Procedure

e Usetheqdstat --logcommand to view recent log entries.
You can use the - -1imit parameter to limit the number of log entries that are displayed. For
more information about qdstat, see qdstat man page.

This example displays the last three log entries for Router . A:

$ gdstat --log --1imit=3 -r ROUTER.A

Wed Jun 7 17:49:32 2017 ROUTER_CORE (none) Core action
'"link_deliver'

Wed Jun 7 17:49:32 2017 ROUTER_CORE (none) Core action 'send_to'
Wed Jun 7 17:49:32 2017 SERVER (none) [2]:0 -> @flow(19) [next-
incoming-id=1, incoming-window=61, next-outgoing-id=0, outgoing-
window=2147483647, handle=0, delivery-count=1, link-credit=250,
drain=false]

50

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdstat.html

CHAPTER 9. MANAGEMENT

CHAPTER 9. MANAGEMENT

You can manage AMQ Interconnect using both graphical and command-line tools.

AMQ Console

A graphical tool for monitoring and managing AMQ brokers and routers.
gdstat

A command-line tool for monitoring the status of AMQ Interconnect routers.
gdmanage

A command-line tool for viewing and updating the configuration of AMQ Interconnect routers.

9.1. USING AMQ CONSOLE

If you prefer to use a graphic interface to manage AMQ, you can use AMQ Console. AMQ Console is a
web console included in the AMQ Broker installation, and it enables you to use a web browser to
manage AMQ Broker and AMQ Interconnect.

For more information, see Using AMQ Console.

9.2. MONITORING AMQ INTERCONNECT USING qosTAT

You can use qdstat to view the status of routers on your router network. For example, you can view
information about the attached links and configured addresses, available connections, and nodes in
the router network.

9.2.1. Syntax for Using qdstat

You can use qdstat with the following syntax:
I $ gqdstat OPTION [CONNECTION_OPTIONS] [SECURE_CONNECTION_OPTIONS]
This specifies:

e Anoption for the type of information to view.

e One or more optional connection_options to specify a router for which to view the
information.
If you do not specify a connection option, qdstat connects to the router listening on localhost
and the default AMQP port (5672).

e The secure_connection_options if the router for which you want to view information only
accepts secure connections.

For more information about qdstat, see the gdstat man page.

9.2.2. Viewing General Statistics for a Router

You can view information about a router in the router network, such as its working mode and ID.

Procedure

51

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_console/
https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdstat.html

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

e Use the following command:
I $ gqdstat -g [CONNECTION_OPTIONS]

This example shows general statistics for the local router:

$ qgdstat -g

Router Statistics
attr value
Version 0.8.0
Mode standalone
Area (¢}
Router 1Id Router.A
Link Routes 0
Auto Links 0
Links 2
Nodes 0
Addresses 4
Connections 1

9.2.3. Viewing a List of Connections to a Router

You can view:

e Connections from clients (sender/receiver)
e Connections from and to other routers in the network
e Connections to other containers (such as brokers)

e Connections from the tool itself

Procedure

52

e Use this command:

I $ qdstat -c [CONNECTION_OPTIONS]

For more information about the fields displayed by this command, see the qdstat -c output
columns.

In this example, two clients are connected to Router .A. Router.A is connected to
Router.B and a broker.

Viewing the connections on Router.A displays the following:

$ gdstat -c -r Router.A

Connections
id host container
role dir security authentication tenant

2 127.0.0.1:5672

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdstat.html#_qdstat_c

CHAPTER 9. MANAGEMENT

route-container out no-security anonymous-user g

10 127.0.0.1:5001 Router.B

inter-router out no-security anonymous-user 9

12 localhost.localdomain:42972 161211fe-ba9e-4726-9996-
52d6962d1276 normal in no-security anonymous-user

14 localhost.localdomain:42980 a35fcc78-63d9-4bed-b57c-
053969c38fda normal in no-security anonymous-user

15 1localhost.localdomain:42982 @a®3aa5b-7c45-4500-8b38-
db81d01ce651 normal in no-security anonymous-user

(5]

ﬂ This connection shows that Router.A is connected to a broker, because the roleis
route-container, and the dir is out.

Router.Ais also connected to another router on the network (the roleis inter-
router), establishing an output connection (the dir is out).

These connections show that two clients are connected to Router . A, because the role
is normal, and the dir is in.

G The connection from qdstat to Router.A. This is the connection that qdstat uses to
qguery Router . A and display the command output.

Router.Ais connected to Router.B. Viewing the connections on Router .B displays the
following:

$ gdstat -c -r Router.B

Connections

id host container role dir
security authentication tenant

1 localhost.localdomain:51848 Router.A inter-router in no-
security anonymous-user g

ﬂ This connection shows that Router .B is connected to Router .A through an incoming
connection (the roleis inter-router and the dir is in). There is not a connection
from qdstat to Router.B, because the command was run from Router.A and
forwarded to Router.B.

9.2.4.Viewing AMQP Links Attached to a Router

You can view a list of AMQP links attached to the router from clients (sender/receiver), from or to
other routers into the network, to other containers (for example, brokers), and from the tool itself.

Procedure

e Use this command:

I $ qdstat -1 [CONNECTION_OPTIONS]

53

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

For more information about the fields displayed by this command, see the qdstat -l output
columns.

In this example, Router . A is connected to both Router.B and a broker. A link route is
configured for the my_queue queue and waypoint (with autolinks), and for the my_queue_wp
gueue on the broker. In addition, there is a receiver connected tomy_address (message
routing based), another to my_queue, and the a third one to my_queue_wp.

In this configuration, the router uses only one connection to the broker for both the waypoints
(related to my_queue_wp) and the link route (related to my_queue).

Viewing the links displays the following:

$ gdstat -1
Router Links
type dir conn id id peer class addr
phs cap undel unsett del presett acc rej rel mod admin
oper
router-control in 2 7
250 0 0 2876 0 (0] 0 0 0 enabled up
€!Louter—control out 2 8 local qdhello
250 0 0 2716 0 (0] 0 0 0 enabled up
inter-router in 2 9
250 0 0 1 0 0 0 0 0 enabled up
inter-router out 2 10
250 0 0 1 0 0 0 0 0 enabled up
endpoint in 1 11 mobile my_queue_wp
1 250 0 0 3 (C] 0 0 0 0 enabled
w O
endpoint out 1 12 mobile my_queue_wp
(C] 250 0 0 3 0 0 0 (C] 0 enabled
up
endpoint out 4 15 mobile my_address
(C] 250 0 0 0 0 (C] 0 0 0 enabled
up €
endpoint out 6 18 19
250 0 0 1 0 0 0 0 0 enabled up
aendpoint in 1 19 18
0 0 0 1 0 0 0 0 0 enabled up
‘aLndpoint out 19 40 mobile my_queue_wp
1 250 0 0 1 0 (C] 0 0 0 enabled
up @
endpoint in 24 48 mobile $management
(C] 250 0 0 1 0 0 0 0 0 enabled
up

54

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdstat.html#_qdstat_l

1]
2]
3]
o
o
6]

CHAPTER 9. MANAGEMENT

endpoint out 24 49 local
temp mx5szUeZEddw s 250 0 0 0 0 0 0
enabled up

The conn id 2 connection has four links (in both directions) for inter-router
communications with Router .B, such as control messages and normal message-routed
deliveries.

There are two autolinks (conn id 1) for the waypoint for my_queue_wp. There is an
incoming (id 11) and outgoing (id 12) link to the broker, and another out link (id 40)
to the receiver.

A mobile link for my_address. The dir is out related to the receiver attached to it.

The out link from the router to the receiver for my_queue. This enables the router to
deliver messages to the receiver.

The in link to the router for my_queue. This enables the router to get messages from
my_queue so that they can be sent to the receiver on the out link.

The remaining links are related to the $management address and are used by qdstat to
receive the information that is displayed by this command.

9.2.5. Viewing Known Routers on a Network

To see the topology of the router network, you can view known routers on the network.

Procedure

e Use this command:

I $ qdstat -n [CONNECTION_OPTIONS]

For more information about the fields displayed by this command, see the qdstat -n output
columns.

In this example, Router . A is connected to Router.B, which is connected to Router.C.
Viewing the router topology on Router.A shows the following:

o
2]

$ gdstat -n -r Router.A
Routers in the Network

router-id next-hop 1link cost neighbors valid-

origins

Router.A (self) - ['Router.B'] [1]
Router.B - 0 1 ['Router.A', 'Router.C'] []
Router.C Router.B - 2 ['Router.B'] [1]

Router.A has one neighbor: Router.B.

55

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdstat.html#_qdstat_n

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

Router.Bis connected to Router.A and Router.C over 1ink 0. The cost for
Router.A toreach Router.Bis 1, because the two routers are connected directly.

g Router.Cis connected to Router.B, but notto Router.A. The cost for Router.A to
reach Router.C is 2, because messages would have to pass through Router.B as the
next -hop.

Router.B shows a different view of the router topology:

$ qgdstat -n -v -r Router.B
Routers in the Network

router-id next-hop 1link cost neighbors valid-
origins
Router.A - 0] 1 ['"Router.B']
['Router.C']
Router.B (self) - ['Router.A', 'Router.C'] []
Router.C - 1 1 ['"Router.B']
['Router.A']

The neighbors list is the same when viewed on Router .B. However, from the perspective of
Router.B, the destinations on Router.A and Router.C both have a cost of 1. This is
because Router.B is connected to Router.A and Router.C through links.

The valid-origins column shows that starting from Router.C,Router.B has the best
path to reach Router.A. Likewise, starting from Router.A, Router.B has the best path to
reach Router.C.

Finally, Router.C shows the following details about the router topology:

$ gdstat -n -v -r Router.C
Routers in the Network

router-id next-hop link cost neighbors valid-
origins

Router.A Router.B - 2 ['Router.B'] [1]

Router.B - 0 1 ['Router.A', 'Router.C'] []

Router.C (self) - ['Router.B'] [1]

Due to a symmetric topology, Router.C’s perspective of the topology is very
similar to "Router.A’s. The primary difference is the “cost:the costto
reach Router.Bis 1, because the two routers are connected. However, the cost to reach
Router.Ais 2, because the messages would have to pass through Router.B as the next -
hop.

9.2.6. Viewing Addresses Known to a Router

You can view message-routed and link-routed addresses known to a router.

56

Procedure

e Use the following command:

I $ qdstat -a [CONNECTION_OPTIONS]

CHAPTER 9. MANAGEMENT

For more information about the fields displayed by this command, see the qdstat -a output
columns.

In this example, Router . A is connected to both Router.B and a broker. The broker has two
gueues: * my_queue (with a link route on Router.A)* my_queue_wp (with a waypoint and
autolinks configured on Router.A)

In addition, there are three receivers: one connected to my_address for message routing,
another connected tomy_queue, and the last one connected to my_queue_wp.

Viewing the addresses displays the following information:

local

thru

$_management_internal

$ qdstat -a
Router Addresses

class addr

remote cntnr
local

(C] (C] (C]
local $displayname

(C] (C] (C]
mobile $management

(C] 8 (C]
local $management

(C] 0 (C]
router Router.B

(C] 0 (C]
mobile my_address

(C] 1 1
link-in my_queue

1 0 (C]
link-out my_gqueue

1 0 (C]
mobile my_queue_wp

(C] 1 1
mobile my_queue_wp

(C] 1 1
local gdhello

(C] 0 (C]
local gdrouter

(C] 0 (C]
topo gdrouter

(C] (C] (C]
local gdrouter.ma

(C] 0 (C]
topo gdrouter.ma

0

0

0

0

741

28

distrib in-proc
to-proc from-proc

closest 1 0
(¢}

closest 1 0
(¢}

closest 1 0
(¢}

closest 1 0
(¢}

closest 0 0
5 €@

closest 0 1
° @

linkBalanced 0 0
° @

linkBalanced 0 0
(¢}

balanced 0] 1
o @

balanced 0 1
(¢}

flood 1 1
706 @

flood 1 0
(¢}

flood 1 0
28

multicast 1 0
(¢}

multicast 1 0

57

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdstat.html#_qdstat_a

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

1 (C] (0] (C] 2 0 3
local temp.IJSoXoY_1XOTiDE closest 0 1
(C] (C] (0] (C] (C] 0 (0]

An address related to Router .B with a remote at 1. This is the consumer from
Router.B.

Themy_address address has one local consumer, which is related to the single receiver
attached on that address. The in and out fields are both 1, which means that one
message has traveled through this address using the closest distribution method.

The incoming link route for the my_queue address. This address has one locally-attached
container (cntnr) as a destination (in this case, the broker). The following entry is the
outgoing link for the same address.

The incoming autolink for the my_queue_wp address and configured waypoint. There is
one local consumer (local) for the attached receiver. The following entry is the outgoing
autolink for the same address. A single message has traveled through the autolinks.

® o o o 9o

The qdhello, gdrouter, and gdrouter .ma addresses are used to periodically update
the network topology and deliver router control messages. These updates are made
automatically through the inter-router protocol, and are based on all of the messages the
routers have exchanged. In this case, the distribution method (distrib) for each address
is either flood or multicast to ensure the control messages reach all of the routers in the
network.

9.2.7. Viewing a Router’s Autolinks

You can view a list of the autolinks that are associated with waypoint addresses for a node on another
container (such as a broker).

Procedure

e Use the following command:

I $ gdstat --autolinks [CONNECTION_OPTIONS]

For more information about the fields displayed by this command, see the qdstat --autolinks
output columns.

In this example, a router is connected to a broker. The broker has a queue called
my_queue_wp, to which the router is configured with a waypoint and autolinks. Viewing the
autolinks displays the following:

$ gdstat --autolinks

AutolLinks
addr dir phs 1link status lastErr
my_queue_wp in 1 4 active
my_queue_wp out 0 5 active

58

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdstat.html#_qdstat_autolinks

CHAPTER 9. MANAGEMENT

ﬂ The incoming autolink from my_queue_wp. As indicated by the status field, the link is
active, because the broker is running and the connection for the link is already
established (as indicated by the 1ink field).

9 The outgoing autlink to my_queue_wp. Like the incoming link, it is active and has an
established connection.

9.2.8. Viewing the Status of a Router’s Link Routes

You can view the status of each incoming and outgoing link route.

Procedure

e Use the following command:

I $ gdstat --linkroutes [CONNECTION_OPTIONS]

For more information about the fields displayed by this command, see the qdstat --linkroutes
output columns.

In this example, a router is connected to a broker. The router is configured with a link route to
the my_queue queue on the broker. Viewing the link routes displays the following:

$ gdstat --linkroutes
Link Routes
prefix dir distrib status

my_queue in linkBalanced active
my_queue out linkBalanced active

The incoming link route from my_queue to the router. This route is currently active,
because the broker is running.

9 The outgoing link from the router tomy_queue. This route is also currently active.

9.2.9. Viewing Memory Consumption Information

If you need to perform debugging or tracing for a router, you can view information about its memory
consumption.

Procedure
e Use the following command:

I $ qdstat -m [CONNECTION_OPTIONS]

This command displays information about allocated objects, their size, and their usage by
application threads:

$ gdstat -m
Types
type size batch thread-max total in-

59

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdstat.html#_qdstat_linkroutes

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

threads rebal-in rebal-out

gd_bitmask_t 24 64 128 64 64
(C] (0]

gd_buffer_t 536 16 32 80 80
(C] (0]

gd_composed_field_t 64 64 128 256 256
(C] (0]

gd_composite_t 112 64 128 320 320
(C] (0]

9.3. MANAGING AMQ INTERCONNECT USING opMANAGE

You can use qdmanage to view and modify the configuration of a running router at runtime.
Specifically, qdmanage enables you to create, read, update, and delete the sections and attributes in
the router’s configuration file without having to restart the router.

NOTE

The gqdmanage tool implements the AMQP management specification, which means that
you can use it with any standard AMQP-managed endpoint, not just with AMQ
Interconnect.

9.3.1. Syntax for Using qdmanage

You can use qdmanage with the following syntax:
I $ gqdmanage [CONNECTION_OPTIONS] OPERATION [OPTIONS]

This specifies:

e One or more optional connection_options to specify the router on which to perform the
operation, or to supply security credentials if the router only accepts secure connections.
If you do not specify any connection options, qdmanage connects to the router listening on
localhost and the default AMQP port (5672).

e Theoperationto perform on the router.

e One or more optional options to specify a configuration entity on which to perform the
operation or how to format the command output.

When you enter a qdmanage command, it is executed as an AMQP management operation request,
and then the response is returned as command output in JSON format.

For example, the following command executes a query operation on a router, and then returns the
response in JSON format:

$ gdmanage query --type listener

[
{

60

CHAPTER 9. MANAGEMENT

"stripAnnotations": "both",

"addr": "127.0.0.1",

"multiTenant": false,

"requireSsl": false,
"idleTimeoutSeconds": 16,
"saslMechanisms": "ANONYMOUS",
"maxFrameSize": 16384,
"requireEncryption": false,

"host": "0.0.0.0",

"cost": 1,

"role": "normal",

"http": false,

"maxSessions": 32768,
"authenticatePeer": false,

"type": "org.apache.qpid.dispatch.listener",
llportll : llamqu,

"identity": "listener/0.0.0.0:amgp",
"name": "listener/0.0.0.0:amqgp"

For more information about gdmanage, see the gdmanage man page.

9.3.2. Managing Network Connections

You can use qdmanage to view, create, update, and delete listeners and connectors for any router in
your router network.

9.3.2.1. Managing Listeners

Listeners define how clients can connect to a router. The following table lists the qdmanage
commands you can use to perform common operations on listeners.

For more information about the attributes you can use with these commands, see the listener section
in the Configuration Reference.

NOTE
The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a

different router in the router network, you must specify the necessary connection
options. For more information, see Connection Options in the gdmanage man page.

To... Use this command...

View the router’s listeners
I gdmanage query --type=listener

View the roles and ports on
which the router is listening gdmanage query role port --type=listener

61

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdmanage.html
https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdmanage.html#_connection_options

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

To... Use this command...

View the attributes
configured for a listener I gdmanage read --name=LISTENER_NAME

Create alistener

gdmanage create --type=listener -
-ATTRIBUTE=VALUE ...

Create multiple listeners
1. Enter this command:

I gdmanage create --stdin

2. Configure the listeners using a JSON map:
[{"type"="1listener",
"ATTRIBUTE" :"VALUE" ...},

{"type"="1listener",
"ATTRIBUTE" :"VALUE"...}...]

These commands use a JSON map to create two listeners.

Update a listener

gdmanage update --type=listener -
-ATTRIBUTE=VALUE ...

Update multiple listeners
1. Enter this command:

I gdmanage update --stdin
2. Configure the listeners using a JSON map:

[{"type"="1listener",
"ATTRIBUTE" :"VALUE". ..},
{"type"="1listener",
"ATTRIBUTE" :"VALUE"...}...]

These commands use a JSON map to update two listeners.

Delete an attribute from a
listener I gdmanage update --type=listener --ATTRIBUTE

Delete a listener
I gdmanage delete --name=LISTENER_NAME

9.3.2.2. Managing Connectors

62

CHAPTER 9. MANAGEMENT

Connectors define how the router can connect to other endpoints in your messaging network, such as
brokers and other routers. The following table lists the gdmanage commands you can use to perform
common operations on connectors.

For more information about the attributes you can use with these commands, see the connector
section in the Configuration Reference.

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection
options. For more information, see Connection Options in the gdmanage man page.

To... Use this command...

View the router’s connectors
gdmanage query --type=connector

View the roles and ports on

which the router can connect I gdmanage query role port --type=connector
to other endpoints

View the attributes
configured for a connector I gdmanage read --name=CONNECTOR_NAME

Create a connector

gdmanage create --type=connector -
-ATTRIBUTE=VALUE ...

Create multiple connectors
1. Enter this command:

I gdmanage create --stdin

2. Configure the connectors using a JSON map:

[{"type"="connector",
"ATTRIBUTE" :"VALUE". ..},
{"type"="connector",
"ATTRIBUTE" :"VALUE"...}...]

These commands use a JSON map to create two connectors.

Update a connector

gdmanage update --type=connector -
-ATTRIBUTE=VALUE ...

63

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdmanage.html#_connection_options

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

To... Use this command...

Update multiple connectors
1. Enter this command:

I gdmanage update --stdin

2. Configure the connectors using a JSON map:

[{"type"="connector",
"ATTRIBUTE" :"VALUE" ...},
{"type"="connector",
"ATTRIBUTE" :"VALUE"...}...]

These commands use a JSON map to update two connectors.

Delete an attribute from a
connector I gdmanage update --type=connector --ATTRIBUTE

Delete a connector
I gdmanage delete --name=CONNECTOR_NAME

9.3.3. Managing Security

AMQ Interconnect supports both SSL/TLS and SASL security protocols for encrypting and
authenticating incoming and outgoing connections for your routers. You can use gdmanage to view,
create, update, and delete security policies for any router in your router network.

9.3.3.1. Managing SSL/TLS Encryption and Authentication

AMQ Interconnect supports SSL/TLS for certificate-level encryption and mutual authentication. The
following table lists the common qdmanage commands you can use to secure incoming and outgoing
connections for a router in your router network.

For more information about the attributes you can use with these commands, see the ssIProfile and
listener sections in the Configuration Reference.

64

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection
options. For more information, see Connection Options in the gdmanage man page.

To... Use this command...

View the router’s SSL
configuration I gdmanage query --type=sslProfile

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdmanage.html#_connection_options

CHAPTER 9. MANAGEMENT

To... Use this command...

Set up SSL for the router
gdmanage create --type=sslProfile --name=NAME --
certDB=PATH --certFile=PATH --keyFile=PATH -
-ATTRIBUTE=VALUE ...

Add SSL/TLS encryption to

an incoming connection gdmanage update --name=LISTENER_NAME --

sslProfile=NAME --requireSsl=yes

Change SSL/TLS encryption

on an incoming connection gdmanage update --name=LISTENER_NAME -

-ATTRIBUTE=VALUE ...

Add SSL/TLS client
authentication to an incoming
connection

gdmanage update --name=LISTENER_NAME --
authenticatePeer=yes

Remove SSL/TLS client
authentication from an
incoming connection

gdmanage update --name=LISTENER_NAME --
authenticatePeer=no

Add SSL/TLS client
authentication to an outgoing
connection

gdmanage update --name=CONNECTOR_NAME - -
ss1lProfile=NAME

Remove SSL/TLS client
authentication from an
outgoing connection

gdmanage update --name=CONNECTOR_NAME - -
sslProfile

Delete an SSL profile
I gdmanage delete --name=SSL_PROFILE_NAME

9.3.3.2. Managing SASL Encryption and Authentication

AMQ Interconnect supports SASL for authentication and payload encryption. The following table lists
the common gdmanage commands you can use to secure incoming and outgoing connections for a
router in your router network.

For more information about the attributes you can use with these commands, see the router and
listener sections in the Configuration Reference.

65

NOTE

To...

Set up SASL for the router

Add SASL authentication to
an incoming connection

Change SASL mechanisms for
an incoming connection

Add SASL authentication to
an outgoing connection

Change SASL mechanisms for
an outgoing connection

Add SASL payload encryption
to an incoming connection

Change SASL mechanisms for
an incoming connection

Remove SASL payload
encryption from an incoming
connection

Delete a SASL configuration

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection
options. For more information, see Connection Options in the gdmanage man page.

Use this command...

gdmanage update --type=router --
saslConfigPath=PATH --saslConfigName=NAME

gdmanage update --name=LISTENER_NAME --
authenticatePeer=yes --saslMechanisms=MECHANISMS

gdmanage update --name=LISTENER_NAME --
saslMechanisms=MECHANISMS

gdmanage update --name=CONNECTOR_NAME - -
saslMechanisms=MECHANISMS - -
saslUsername=USERNAME --saslPassword=PASSWORD

gdmanage update --name=CONNECTOR_NAME - -
saslMechanisms=MECHANISMS

gdmanage update --name=LISTENER_NAME --
requireEncryption=yes --
saslMechanisms=MECHANISMS

gdmanage update --name=LISTENER_NAME --
saslMechanisms=MECHANISMS

gdmanage update --name=LISTENER_NAME --
requireEncryption=no --saslMechanisms

gdmanage update --type=router --saslConfigPath -
-saslConfigName

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdmanage.html#_connection_options

CHAPTER 9. MANAGEMENT

9.3.4. Managing Routing

AMQ Interconnect supports both message routing and link routing for distributing messages between
senders and receivers. You can use gdmanage to view how addresses and link routes are configured in
your environment, and define how a router should distribute messages.

9.3.4.1. Managing Message Routing

Message routing involves configuring addresses to define how AMQ Interconnect should distribute
messages. The following table lists the common gdmanage commands you can use to configure
addresses for a router in your router network.

For more information about the attributes you can use with these commands, see the address and
autoLink sections in the Configuration Reference.

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection
options. For more information, see Connection Options in the gdmanage man page.

To... Use this command...

View addresses
I gdmanage query --type=address

gdmanage read --name=ADDRESS_NAME

View address distribution
patterns gdmanage query prefix distribution --
type=address

View waypoints to broker
queues gdmanage query prefix --type=address --
waypoint=yes

View autolinks
I gdmanage query --type=autolink

Set a distribution pattern for

an address gdmanage create --type=address --
prefix=ADDRESS_PREFIX --
distribution=DISTRIBUTION_PATTERN ...

67

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdmanage.html#_connection_options

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

To...

Set distribution patterns for
multiple addresses

Connect an address to a
broker queue

Update an address
configuration

Update an autolink

Delete an address
configuration

68

Use this command...

1. Enter this command:

I gdmanage create --stdin

2. Configure the addresses using a JSON map:

[{"type":"address",

"prefix":"ADDRESS_ PREFIX",
"distribution":"DISTRIBUTION_PATTERN",
"ATTRIBUTE" :"VALUE", ...},
{"type":"address",
"prefix":"ADDRESS_PREFIX",
"distribution":"DISTRIBUTION_PATTERN",
"ATTRIBUTE" :"VALUE", ...} ...]

These commands configure two addresses.

1. Enter this command:

I gdmanage create --stdin

2. Create an address waypoint, an incoming autolink, and an
outgoing autolink:

[{"type":"address",

"prefix":"ADDRESS_ PREFIX",
"waypoint":"yes"}, {"type":"autolink",
"addr":"ADDRESS_NAME",
"connection":"CONNECTOR/LISTENER_NAME",
"dir":"in"}, {"type":"autolink",
"addr":"ADDRESS_NAME",
"connection":"CONNECTOR/LISTENER_NAME",
Ildirll : Iloutll}]

gdmanage update --name=ADDRESS_NAME -
-ATTRIBUTE=VALUE ...

gdmanage update --name=AUTOLINK_NAME -
-ATTRIBUTE=VALUE ...

I gdmanage delete --name=ADDRESS_NAME

CHAPTER 9. MANAGEMENT

To... Use this command...

Delete an autolink
I gdmanage delete --name=AUTOLINK_NAME

9.3.4.2. Managing Link Routing

A link route is a chain of links between a sender and receiver that provides a private messaging path.
The following table lists the common gdmanage commands you can use to view, create, update, and
delete link routes.

For more information about the attributes you can use with these commands, see the linkRoute
section in the Configuration Reference.

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection
options. For more information, see Connection Options in the gdmanage man page.

To... Use this command...

View link routes
I gdmanage query --type=linkRoute

I gdmanage read --name=LINK_ROUTE_NAME

Create a link route
1. Enter this command:

I gdmanage create --stdin

2. Create anincoming and outgoing link route:

[{"type":"1linkRoute",
"prefix":"ADDRESS_ PREFIX",
"connection":"CONNECTOR/LISTENER_NAME",
"dir":"in", ...}, {"type":"linkRoute",
"prefix":"ADDRESS_ PREFIX",
"connection":"CONNECTOR/LISTENER_NAME",
"dir":"out", ...}]

Update a link route

gdmanage update --name=LINK_ROUTE_NAME -
-ATTRIBUTE=VALUE ...

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdmanage.html#_connection_options

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

To... Use this command...

Delete a link route

gdmanage delete --name=INCOMING_LINK_ROUTE_NAME
gdmanage delete --name=OUTGOING_LINK_ROUTE_NAME

9.3.5. Managing Logging

AMQ Interconnect logs are broken into different categories called logging modules. Each module
provides important information about a particular aspect of a router. The following table lists the
common gdmanage commands you can use to view and change the configuration of a logging module.

For more information about the attributes you can use with these commands, see the log section in the
Configuration Reference.

NOTE

The commands in this table demonstrate operations on the local router listening on
localhost and the default AMQP port (5672). If you want to perform an operation on a
different router in the router network, you must specify the necessary connection
options. For more information, see Connection Options in the gdmanage man page.

To... Use this command...

View the logging
configuration I gdmanage query --type=log

View the logging

configuration for a logging gdmanage read --type=log --
module module=LOGGING_MODULE NAME

Set the default logging

configuration gdmanage create --type=log --module=DEFAULT --

enable=LOGGING_LEVEL --timestamp=yes -
-ATTRIBUTE=VALUE

Enable logging for a logging

module gdmanage create --type=log --

module=LOGGING_MODULE_NAME - -
enable=LOGGING_LEVEL --ATTRIBUTE=VALUE ...

Change the logging
configuration for a logging
module

gdmanage update --type=log --
module=LOGGING_MODULE_NAME --ATTRIBUTE=VALUE ...

70

https://qpid.apache.org/releases/qpid-dispatch-0.8.0/man/qdmanage.html#_connection_options

CHAPTER 10. RELIABILITY

CHAPTER 10. RELIABILITY

In general, in a broker based architecture, the reliability feature is strictly related to the "store and
forward" mechanism offered by each broker. Thanks to persistent journals, a broker can offer fault
tolerance thus avoiding message loss; of course, it is not so true when messages are stored only in a
volatile memory.

This is completely different using AMQ Interconnect, because each router neither takes ownership of
messages nor stores them in a persistent storage. In this case, the reliability feature is offered by path
redundancy which provides the possibility to reach the destination on different paths through the
router network. In normal conditions, the best path is always chosen in terms of lowest cost but, when
one or more routers go down, the topology is revisited by all remained routers and new paths are
processed in order to reach always each destination. Of course, it means that the reliability is strictly
related to the network topology the user chooses for his solution.

Because a solution based on AMQ Interconnect could be made not only by routers but by brokers too,
the reliability is improved with persistent storage on them which add not only fault tolerance but
temporal decoupling as well; without "store and forward" feature offered by brokers, the temporal

decoupling is not possible only with routers and direct peers, both senders and receivers; the receiver
must be online at same time of the sender in order to receive messages.

10.1. PATH REDUNDANCY
Offering path redundancy means designing the network topology in a way that even when one or more
routers go down or even connections between them, each destination is always reachable following
alternate paths through the routers that are still part of the network.
Consider the following simple scenario :

e anetwork with three routers "Router.A", "Router.B" and "Router.C".

e the "Router.A" is connected to both "Router.B" and "Router.C".

e the "Router.Cis connected to the "Router.B".

e all three routers listen for client connections.

e asender client connects to the "Router.A" in order to send messages to a receiver client.

e areceiver client connects to the "Router.B" initially in order to receive messages from the
sender peer.

I

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

Figure 10.1. Path Redundancy Enabled Topology

— X

7

Sender

The "Router.A" configuration is something like following.

— X

v

7

Receiver 1

.........

Router C

interior

id: Router.A

0.0.0.0
6000

authenticatePeer: no

router {
mode:
}
listener {
host:
port:
}
connector
name:
addr:
port:
role:
}
connector
name:
addr:
port:
role:
}

{
INTER_ROUTER_B

127.0.0.1
5001
inter-router

{
INTER_ROUTER_C

127.0.0.1
5002
inter-router

l

e ——
ooooo
ooooo o

Router B

!

Broker

There is only one listenerin order to accept client connections and two connector entities for
connecting to the other two routers.

The "Router.B" configuration is the following.

router {
mode:

interior

id: Router.B

72

CHAPTER 10. RELIABILITY

listener {
addr: 0.0.0.0
port: 5001
authenticatePeer: no
role: inter-router

}

listener {
host: 0.0.0.0
port: 6001
authenticatePeer: no

It has two listener entities in order to listen for connections from clients and from other routers in the
network (in this case from the "Router.A" and "Router.C").

Finally, quite similar is the "Router.C" configuration.

router {
mode: interior
id: Router.C

}

listener {
addr: 0.0.0.0
port: 5002
authenticatePeer: no
role: inter-router

}

listener {
host: 0.0.0.0
port: 6002
authenticatePeer: no

}

connector {
name: INTER_ROUTER_B
addr: 127.0.0.1
port: 5001
role: inter-router

It has two listener entities in order to listen for connections from clients and from other routers in the
network (in this case from the "Router.A") and finally it has a connector (for connecting to the
"Router.B")

Consider a sender client connected to "Router.A" and attached tomy_address address which start to
send messages (that is, 10 messages) and a receiver client connected to the "Router.B" and attached
to the same address.

Starting the receiver, it waits for messages with no output on the console.

I # python simple_recv.py -a localhost:6001/my_queue -m 10

73

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

Starting the sender, all the messages flow through "Router.A" and "Router.B" reaching the receiver; at
this point the messages are all confirmed at sender side.

python simple_send.py -a localhost:6001/my_queue -m 10
all messages confirmed

At same time, the receivers shows the messages received through the "Router.B".

{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}
{u'sequence': 6L}
{u'sequence': 7L}
{u'sequence': 8L}
{u'sequence': 9L}
{u'sequence': 10L}

The path redundancy is provided by the other available path through the "Router.A", "Router.C" and
then "Router.B". It means that if the connection between "Router.A" and "Router.B" goes down, the
alternative path is used to reach the receiver.

Now, consider a fault on the "Router.B"; the receiver is not reachable anymore on that path but it can
connect to the "Router.C" in order to continue to receive messages from the sender which does not
know what’s happened and it can continue to send messages to the "Router.A" in order to reach the
receiver.

Figure 10.2. Path Redundancy after Router Failure

- X

7

|
X

N\

Sender | Receiver 1

l A

The receiver is still reachable in order to get messages from the sender as displayed in the console
output.

python simple_recv.py -a localhost:6002/my_queue -m 10
{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}
{u'sequence': 6L}
{u'sequence': 7L}

74

CHAPTER 10. RELIABILITY

{u'sequence': 8L}
{u'sequence': 9L}
{u'sequence': 10L}

10.2. PATH REDUNDANCY AND TEMPORAL DECOUPLING

In order to have temporal decoupling in a solution based on AMQ Interconnect, adding one or more

brokers is a must for its "store and forward" feature. Choosing the right topology, it is possible to have

a solution which offers reliability with both path redundancy and permanent storing for messages.

Consider the following simple scenario :

a network with three routers "Router.A", "Router.B" and "Router.C" and finally a broker.
the "Router.A" is connected to both "Router.B" and "Router.C".
initially only the "Router.B" is connected to the broker.

all three routers listen for client connections.

a sender client connects to the "Router.A" in order to send messages to a queue in the broker.

areceiver client connects to the "Router.A" in order to get messages from the queue in the
broker.

Figure 10.3. Path Redundancy and Temporal Decoupling Enabled Topology

— X —
7 > | 88888 .| S
- Router A =
Sender ?T Receiver 1
P ——
== T
e ' ooooo o
Router C Router B
Broker

The receiver client can be offline when the sender starts to send messages because they’ll be stored
into the queue permanently; coming back online, the receiver can get messages from the queue itself
without message loss.

The "Router.A" configuration is something like following.

router {

}

mode: interior
id: Router.A

listener {

75

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

host: 0.0.0.0
port: 6000
authenticatePeer: no

}

connector {
name: INTER_ROUTER_B
addr: 127.0.0.1
port: 5001
role: inter-router

}

connector {
name: INTER_ROUTER_C
addr: 127.0.0.1
port: 5002
role: inter-router

}

address {
prefix: my_queue
waypoint: yes

}

It has a listener for accepting incoming connections from clients and two connector entities in order to
connect to the other routers. The queue named my_queue on the broker is exposed by a waypoint.

The "Router.B" configuration is the following.

router {
mode: interior
id: Router.B

}

listener {
addr: 0.0.0.0
port: 5001
authenticatePeer: no
role: inter-router

}

listener {
host: 0.0.0.0
port: 6001
authenticatePeer: no

}

connector {
name: BROKER
addr: 127.0.0.1
port: 5672
role: route-container

}

address {
prefix: my_queue

76

CHAPTER 10. RELIABILITY

waypoint: yes

}

autoLink {
addr: my_queue
connection: BROKER
dir: in

}

autoLink {
addr: my_queue
connection: BROKER
dir: out

}

It can accept incoming connections from clients and from other routers (in this case the "Router.A")
and connects to the broker. The queue named my_queue on the broker is exposed by a waypoint with
the related auto-links in both directions in order to send and receive messages to/from the queue
itself.

Finally, the simple "Router.C" configuration.

router {
mode: interior
id: Router.C

}

listener {
addr: 0.0.0.0
port: 5002
authenticatePeer: no
role: inter-router

}

listener {
host: 0.0.0.0
port: 6002
authenticatePeer: no

It can accept incoming connections from clients and from other routers (in this case the "Router.A").
Initially there is no connection between this router and the broker.

First of all, thanks to the broker and its "store and forward" feature, the sender can connect to the

"Router.A" and start to send messages even if the receiver is not online in that moment. Using the
Python sample from the Qpid Proton library, the console output is like following.

python simple_send.py -a localhost:6000/my_queue -m 10
all messages confirmed

All messages are confirmed because they reached the queue inside the broker through "Router.A" and
"Router.B"; it is confirmed using the qdstat tool.

gdstat -b localhost:6001 -a
Router Addresses

77

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

class addr phs distrib in-proc local remote
cntnr in out thru to-proc from-proc

local $_management_internal closest 1 0 0
(C] (C] (C] (C] 0 (C]

local $displayname closest 1 0 0
(C] 0 (C] (C] 0 0

mobile $management 0 closest 1 0 0
(C] 1 (C] (C] 1 0

local $management closest 1 0 0
(C] (C] (C] (C] 0 (C]

router Router.A closest 0 0 1
(C] (C] (C] 6 0 6

router Router.C closest 0 0 1
(C] 0 (C] 4 0 4

mobile my_queue 1 balanced 0 0 0
(C] (C] (C] (C] 0 (C]

mobile my_queue 0 balanced 0 1 0
(C] (C] 10 (C] 0 (C]

local gdhello flood 1 1 0
(C] 0 (C] (C] 97 117

local gdrouter flood 1 0 0
(C] 0 (C] (C] 7 0

topo gdrouter flood 1 0 2
(C] (C] (C] 8 13 9

local qdrouter.ma multicast 1 0 0
(C] 0 (C] (C] 2 0

topo gdrouter.ma multicast 1 0 2
(C] 0 (C] (C] 0 1

local temp.7f2uBzv9_U6BQC5e closest 0 1 0
(C] (C] (C] (C] 0 (C]

For the "Router.B", there are 10 messages as output (from the router to the broker) on the my_queue
address.

Starting the receiver connected to the "Router.A", it gets all the available messages from the queue.

python simple_recv.py -a localhost:6000/my_queue -m 10
{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}
{u'sequence': 6L}
{u'sequence': 7L}
{u'sequence': 8L}
{u'sequence': 9L}
{u'sequence': 10L}

Using the qdstat tool on the "Router.B" another time, the output is like following.

78

gdstat -b localhost:6001 -a
Router Addresses

mobile
0 2
local
(0] (0]
router
0 (0]
router
0 (0]
mobile
0 10
mobile
0 (0]
local
0 (0]
local
0 (0]
topo
0 (0]
local
0 (0]
topo
0 (0]
local
0 (0]

For the "Router.B", there are 10 messages as input (from the broker to the router) on the my_queue

address.

Now, consider a fault on the "Router.B"; in this case the broker is not reachable but it is possible to set

addr phs distrib
out thru to-proc from-proc

$_management_internal closest
0] 0] 0] 0

$displayname closest
0] 0] (0] 0

$management 0 closest
0] 0] 2 0

$management closest
0] 0] (0] 0

Router.A closest
0] 6 (0] 6

Router.C closest
(C] 4 0 4

my_queue 1 balanced
(C] 10 (0] 0

my_queue 0 balanced
10 (C] 0] 0

gdhello flood
0] 0] 156 182

gdrouter flood
0] 0] 7 0

gdrouter flood
(C] 10 18 11

gdrouter.ma multicast
0] 0] 2 (C]

gdrouter.ma multicast
0] (C] 2 1

temp.Xov_ZUcyti3jjXyY closest
0] 0] (0] 0

up path redundancy through the "Router.C".

in-proc

CHAPTER 10. RELIABILITY

79

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

Figure 10.4. Path Redundancy and Temporal Decoupling after Router Failure

— X — X

7z - EER J
= Router A =
Sender T Receiver 1

..........

-

Using the qdmanage tool, it is possible to configure the waypoint on my_queue address, the related
auto-links in both directions and finally the connectorinstance in order to enable the connection to the
broker.

[root@localhost /]# gdmanage -b localhost:6002 create --stdin

[

{ "type":"connector", '"name":"BROKER", "port":5672, "role":"route-
container" 1},

{ "type":"address", "prefix":"my_queue", "waypoint":"yes" },

{ "type":"autoLink", "addr":"my_queue", "connection":"BROKER", "dir":"in"
}

{ "type":"autoLink", "addr":"my_queue", "connection":"BROKER", "dir":"out"
}

1

[

"verifyHostName": true,

"stripAnnotations": "both",

"name": "BROKER",

"allowRedirect": true,

"idleTimeoutSeconds": 16,

"maxFrameSize": 65536,

"host": "127.0.0.1",

"cost": 1,

"role": "route-container",

"maxSessions": 32768,

"type": "org.apache.qpid.dispatch.connector",
Ilportll: "5672",

"identity": "connector/127.0.0.1:5672:BROKER",
"addr": "127.0.0.1"

"name": null,

"prefix": "my_queue",

"ingressPhase": 0,

"waypoint": false,

"distribution": "balanced",

"type": "org.apache.qpid.dispatch.router.config.address",

80

CHAPTER 10. RELIABILITY

"identity": "7",
"egressPhase": 0

3

{
"addr": "my_queue",
"name": null,
"linkRef": null,
"type": "org.apache.qpid.dispatch.router.config.autoLink",
"operStatus": "inactive",
"connection": "BROKER",
Ildirll: llinH,
"phase": 1,
"lastError": null,
"externalAddr": null,
"identity": "8",
"containerId": null

I

{
"addr": "my_queue",
"name": null,
"linkRef": null,
"type": "org.apache.qpid.dispatch.router.config.autoLink",
"operStatus": "inactive",
"connection": "BROKER",
Ildirll: lloutlI,
"phase": 0,
"lastError": null,
"externalAddr": null,
"identity": "9",
"containerId": null

}

The "Router.C" configuration changes in the same way as "Router.B". It can accept incoming
connections from clients and from other routers (in this case the "Router.A") and connects to the
broker. The queue named my_queue on the broker is exposed by a waypoint with the related auto-
links in both directions in order to send and receive messages to/from the queue itself.

At this point, the sender can connect to the "Router.A" for sending messages to the queue in the
broker thanks to the "Router.C".

python simple_send.py -a localhost:6000/my_queue -m 10
all messages confirmed

All messages are confirmed because they reached the queue inside the broker through "Router.A" and
"Router.C"; it is confirmed using the qdstat tool.

gdstat -b localhost:6002 -a
Router Addresses

class addr phs distrib in-proc local remote
cntnr in out thru to-proc from-proc

local $_management_internal closest 1 0 0

81

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

(C] (C] (C] (C] 1 1

local $displayname closest 1 0 0
(C] (C] (C] (C] 0 (C]

mobile $management 0 closest 1 0 0
(C] 5 (C] (C] 5 (C]

local $management closest 1 0 0
(C] (C] (C] (C] 0 (C]

router Router.A closest 0 0 1
(C] 0 (C] 5 0 5

mobile my_queue 0 balanced 0 1 0
(C] 0 10 (C] 0 0

mobile my_queue 1 balanced 0 0 0
(C] 0 (C] (C] 0 0

local gdhello flood 1 1 0
(C] (C] (C] (C] 665 647

local gdrouter flood 1 0 0
(C] 0 (C] (C] 8 0

topo gdrouter flood 1 0 1
(C] 0 (C] 31 52 32

local gdrouter.ma multicast 1 0 0
(C] (C] (C] (C] 1 (C]

topo gdrouter.ma multicast 1 0 1
(C] 0 (C] 1 2 1

local temp.k6UMaS4POJImtS1L closest 0 1 0
(C] 0 (C] (C] 0 0

For the "Router.C", there are 10 messages as output (from the router to the broker) on the my_queue
address.

Starting the receiver connected to the "Router.A", it gets all the available messages from the queue.

python simple_recv.py -a localhost:6000/my_queue -m 10
{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}
{u'sequence': 6L}
{u'sequence': 7L}
{u'sequence': 8L}
{u'sequence': 9L}
{u'sequence': 10L}

Using the qdstat tool on the "Router.C" another time, the output is like following.

gdstat -b localhost:6002 -a
Router Addresses

class addr phs distrib in-proc local remote
cntnr in out thru to-proc from-proc

local $_management_internal closest 1 0 0
(C] (C] (C] (C] 1 1
local $displayname closest 1 0 0

82

CHAPTER 10. RELIABILITY

(C] (0] (C] (C] 0 (0]

mobile $management 0 closest 0 0
(C] 6 (C] (C] 6 (0]

local $management closest 0 0
(C] (0] (C] (C] 0 (0]

router Router.A closest 0 1
(C] (0] (C] 5 0 5

mobile my_queue 0 balanced 1 0
(C] (0] 10 (C] 0 (0]

mobile my_queue 1 balanced 0 0
(C] 10 0 10 0 (0]

local gdhello flood 1 1 0
(C] (0] (C] (C] 746 726

local gdrouter flood 1 0 0
(C] (0] (C] (C] 8 (0]

topo gdrouter flood 1 0 1
(C] (0] (C] 34 55 35

local gdrouter.ma multicast 1 0 0
(C] (0] (C] (C] 1 (0]

topo gdrouter.ma multicast 1 0 1
(C] (0] (C] 1 4 1

local temp.Hso3moy31+Sn+Fy closest 0 1 0
(C] (0] (C] (C] 0 (0]

For the "Router.C", there are 10 messages as input (from the broker to the router) on the my_queue
address.

10.3. SHARDED QUEUE

Every broker has limits in terms of queue size but in order to overcome this problem, one possible
solution is "sharding" queues : in that way a single queue is divided in more "shards" (chunks) each on a
different broker. It means that such solution needs more than one broker instance in order to host a
shard on each of them. Of course, a sender connected to one of these brokers can send messages to
the shard hosted only on that broker. At same time, a receiver connected to a broker can get messages
from the shard that is hosted on that broker and can not see available messages in the shards hosted
on the other brokers, even if they are all parts of the same queue.

NOTE

Even if speaking about shards it is obvious that they are real queues all with same name
but on different brokers. The "shard" concept is an abstract one because finally a shard
is a real queue stored on a broker.

The big problem in this scenario, designed only with brokers, is that a receiver can be stucked on an
empty shard without reading any messages while the shards on the other brokers have messages to
deliver. it is a real problem because the receiver is interested in receiving messages from the whole
gueue and it does not take care if it is shared or not. Because of this problem, the receiver sees the
gueue as empty even if it is not so true due to the sharding and the messages available on the other
shards.

The above problem can be solved adding a AMQ Interconnect instance in the network in front of the
brokers and leverage on its waypoint feature with related auto-links.

Consider the following simple scenario :

83

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

e anetwork with one router "Router.A" and two brokers.

e the "Router.A" listens for clients connections and it is connected to both brokers.

o the brokers host shards for a queue; each broker has one shard.

e asender client connects to the "Router.A" in order to send messages to the queue.

e areceiver client connects to the "Router.A" in order to get messages from the queue.

Figure 10.5. Sharded Queue Enabled Topology

— X — X
z »[5538 o »|
— Router —
Sender | | Receiver
Broker Broker

With such solution and connecting to the "Router.A", sender and receiver do not know anything about
sharding; they want send and receive messages to/from the whole queue that is the only thing they
are aware of. They are both connected to the router and see only one address (related to the queue).

The "Router.A" configuration is something like following.

router {
mode: standalone
id: Router.A

}

listener {
host: 0.0.0.0
port: 6000
authenticatePeer: no

}

connector {
name: BROKER1
addr: 127.0.0.1
port: 5672
role: route-container

}

connector {
name: BROKER2
addr: 127.0.0.1
port: 5673
role: route-container

}

address {

84

CHAPTER 10. RELIABILITY

prefix: my_queue
waypoint: yes

3

autoLink {
addr: my_queue
connection: BROKER1
dir: in

3

autoLink {
addr: my_queue
connection: BROKER1
dir: out

3

autoLink {
addr: my_queue
connection: BROKER2
dir: in

3

autoLink {
addr: my_queue
connection: BROKER2
dir: out

3

The router has a listener for incoming connection from clients and two connectorinstances in order to
connect to both brokers. The whole queue is named my_queue hosted in terms of shards on both
brokers and the router is configured with a waypoint for that address. Finally, there are two auto-links
in both directions for that queue on both brokers.

Using the Python sample from the Qpid Proton library, the sender can connect to the "Router.A" and
start to send messages to the queue; the console output is like following.

python simple_send.py -a localhost:6000/my_queue -m 10
all messages confirmed

All messages are confirmed because they reached the queue and, thanks to the default balanced
distribution on the address, the messages are delivered to both shards on the brokers (5 messages per
shard). Using the qdstat tool on the router, the distribution is clear.

qdstat -b localhost:6000 -1
Router Links

type dir conn id id peer class addr phs
cap undel unsettled deliveries admin oper

endpoint in 1 6 mobile my_queue 1
250 0 0 0 enabled up

endpoint out 1 7 mobile my_queue 0
250 0 0 5 enabled up

endpoint in 2 8 mobile my_queue 1

85

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

250 0 0 0 enabled up

endpoint out 2 9 mobile my_queue 0
250 0 0 5 enabled up

endpoint in 8 19 mobile $management 0
250 0 0 1 enabled up

endpoint out 8 20 local temp.qCGHruCa4UIvYrS
250 0 0 0 enabled up

There are the out links (from router to brokers) for the my_queue address (idvalues 7 and 9) which
have each 5 deliveries. It shows messages distributed across brokers and related shards for the queue;
it is confirmed by the different connections they are tied (conn idvalues 1 and 2).

Starting the receiver connected to the "Router.A", it gets all the available messages from the queue.

python simple_recv.py -a localhost:6000/my_queue -m 10

{u'sequence': 1L}
{u'sequence': 2L}
{u'sequence': 3L}
{u'sequence': 4L}
{u'sequence': 5L}
{u'sequence': 6L}
{u'sequence': 7L}
{u'sequence': 8L}
{u'sequence': 9L}
{u'sequence': 10L}

As for the sender, they are received through both the brokers and related shards. it is confirmed using
the gdstat tool.

qdstat -b localhost:6000 -1
Router Links

type dir conn id id peer class addr phs
cap undel unsettled deliveries admin oper

endpoint in 1 6 mobile my_queue 1
250 0 0 5 enabled up

endpoint out 1 7 mobile my_queue 0
250 0 0 5 enabled up

endpoint in 2 8 mobile my_queue 1
250 0 0 5 enabled up

endpoint out 2 9 mobile my_queue 0
250 0 0 5 enabled up

endpoint in 10 22 mobile $management 0
250 0 0 1 enabled up

endpoint out 10 23 local temp.HT+f3ZilGP503wo
250 0 0 0 enabled up

There are the in links (from brokers to router) for the my_queue address (idvalues 6 and 8) which
have each 5 deliveries. It shows messages distributed across brokers and related shards for the queue;
it is confirmed by the different connections they are tied (conn idvalues 1 and 2).

One disadvantage of sharded queues is that the receiver might receive messages "out of order" even
with very good performance.

86

APPENDIX A. USING CYRUS SASL TO PROVIDE AUTHENTICATION

APPENDIX A. USING CYRUS SASL TO PROVIDE
AUTHENTICATION

AMQ Interconnect uses the Cyrus SASL library for SASL authentication. Therefore, if you want to use
SASL, you must set up the Cyrus SASL database and configure it.

A.1. GENERATING A SASL DATABASE

To generate a SASL database to store credentials, enter the following command:
I # saslpasswd2 -c -f SASL_DATABASE_NAME .sasldb -u DOMAIN_NAME USER_NAME

This command creates or updates the specified SASL database, and adds the specified user name to it.
The command also prompts you for the user name’s password.

The full user name is the user name you entered plus the domain name (USER_NAME@DOMAIN_NAME).
Providing a domain name is not required when you add a user to the database, but if you do not provide
one, a default domain will be added automatically (the hostname of the machine on which the tool is
running). For example, in the command above, the full user name would be useri@domain.com.

A.2. VIEWING USERS IN A SASL DATABASE

To view the user names stored in the SASL database:

sasldblistusers2 -f gdrouterd.sasldb
user2@domain.com: PASSWORD
userl@domain.com: PASSWORD

A.3. CONFIGURING A SASL DATABASE
To use the SASL database to provide authentication in AMQ Interconnect:
1. Openthe /etc/sasl2/qdrouterd. conf configuration file.

2. Set the following attributes:

pwcheck_method: auxprop
auxprop_plugin: sasldb
sasldb_path: SASL_DATABASE_NAME
mech_list: MECHANISM1 ...

sasldb_path

The name of the SASL database to use.
For example:

I sasldb_path: gdrouterd.sasldb

mech_list

The SASL mechanisms to enable for authentication. To add multiple mechanisms, separate
each entry with a space.

87

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

For example:

I mech_list: ANONYMOUS DIGEST-MD5 EXTERNAL PLAIN

88

APPENDIX B. CONFIGURATION REFERENCE

APPENDIX B. CONFIGURATION REFERENCE

The AMQ Interconnect component behavior is totally configurable using a configuration file which can
be passed as parameter (with the - -conf option) on the command line when running it. After
installation, a default configuration file is placed at the following path:

I [install-prefix]/etc/qpid-dispatch/qdrouterd.conf

This file is used when the router is started without specify configuration file path on the command line
and when it is started as a service. In case of starting router on the command line the configuration file
can be placed anywhere on the file system.

B.1. CONFIGURATION FILE

The configuration file is made up of sections with following syntax:

sectionName {
attributeName: attributeValue
attributeName: attributeVvalue

A section could be referenced by another section using its name attribute. An example is the ss/Profile
section which describes attributes for setting SSL/TLS configuration and can be applied to one or
more listener and connector sections.

sslProfile {
name: ssl-profile-one
certDb: ca-certificate-1.pem
certFile: server-certificate-1.pem
keyFile: server-private-key.pem

}

listener {
sslProfile: ssl-profile-one
host: 0.0.0.0

port: amgp
saslMechanisms: ANONYMOUS

In the above example, the sslIProfile section named ss/-profile-one is used to define the sslProfile
attribute for the listener section.

B.1.1. Configuration Sections

B.1.1.1. sslIProfile

Attributes for setting SSL/TLS configuration for connections.

e certDb (path) : The absolute path to the database that contains the public certificates of
trusted certificate authorities (CA).

89

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

certFile (path) : The absolute path to the file containing the PEM-formatted public certificate to
be used on the local end of any connections using this profile.

keyFile (path) : The absolute path to the file containing the PEM-formatted private key for the
above certificate.

passwordFile (path) : If the above private key is password protected, this is the absolute path
to a file containing the password that unlocks the certificate key.

password (string) : An alternative to storing the password in a file referenced by passwordFile
is to supply the password right here in the configuration file. This option can be used by
supplying the password in the ‘password’ option. Don’t use both password and passwordFile in
the same profile.

uidFormat (string) : A list of x509 client certificate fields that will be used to build a string that
will uniquely identify the client certificate owner. For example, a value of ‘cou’ indicates that
the uid will consist of ¢ - common name concatenated with o - organization-company name
concatenated with u - organization unit; or a value of ‘oF’ indicates that the uid will consist of o
(organization name) concatenated with F (the sha256 fingerprint of the entire certificate).
Allowed values can be any combination of comma separated ‘c’(ISO3166 two character
country code), ‘s’(state or province), ‘I'(Locality; generally - city), ‘o’(Organization - Company
Name), ‘u’(Organization Unit - typically certificate type or brand), ‘n’(CommonName - typically
a username for client certificates) and ‘1’(shal certificate fingerprint, as displayed in the
fingerprints section when looking at a certificate with say a web browser is the hash of the
entire certificate) and 2 (sha256 certificate fingerprint) and 5 (sha512 certificate fingerprint).

displayNamefFile (string) : The absolute path to the file containing the unique id to display
name mapping.

name (string) : The name of the profile used for referencing it from listenerand connector
sections.

Used by : listener, connector.

B.1.1.2. router

Describe main information about the router related to identity, internal processes and inter routers
communication.

90

id (string) : Router’s unique identity. It is required and the router will fail to start without it.

mode (One of [standalone, interior], default=standalone): In standalone mode, the
router operates as a single component. It does not participate in the routing protocol and
therefore will not cooperate with other routers. In interior mode, the router operates in
cooperation with other interior routers in an interconnected network.

hellolnterval (integer, default=1) : Interval in seconds between HELLO messages sent to
neighbor routers in order to announce its presence (as a keep alive).

helloMaxAge (integer, default=3) : Time in seconds after which a neighbor router is declared
lost if no HELLO is received.

ralnterval (integer, default=30) : Interval in seconds between Router-Advertisements sent to
all routers in a stable network.

ralntervalFlux (integer, default=4) : Interval in seconds between Router-Advertisements sent
to all routers during topology fluctuations.

B.1.1.3.

APPENDIX B. CONFIGURATION REFERENCE

remoteLsMaxAge (integer, default=60) : Time in seconds after which link state is declared
stale if no RA is received.

workerThreads (integer, default=4) : The number of threads that will be created to process
message traffic and other application work (timers, non-amqp file descriptors, and so on).

debugDump (path) : The absolute path for a file to dump debugging information that can’t be
logged normally.

saslConfigPath (path) : The absolute path to the SASL configuration file.

sas/ConfigName (string, default=qdrouterd) : Name of the SASL configuration. This string +
‘.conf is the name of the configuration file.

listener

Listens for incoming connections to the router.

host (string, default=127.0.0.1) : IP address: ipv4 or ipvé literal or a hostname.
port (string, default=amqp) : Port number or symbolic service name.

protocolFamily (One of [IPv4, IPv6]): IPv4: Internet Protocol version 4; IPv6: Internet
Protocol version 6. If not specified, the protocol family will be automatically determined from
the address.

role (One of [normal, inter-router, route-container], default=normal): The role of an
established connection. In the normal role, the connection is assumed to be used for AMQP
clients that are doing normal message delivery over the connection. In the inter-router role,
the connection is assumed to be to another router in the network. Inter-router discovery and
routing protocols can only be used over inter-router connections. The route-container role can
be used for router-container connections, for example, a router-broker connection.

cost (integer, default=1) : For the inter-route role only. This value assigns a cost metric to
the inter-router connection. The default (and minimum) value is one. Higher values represent
higher costs. The cost is used to influence the routing algorithm as it attempts to use the path
with the lowest total cost from ingress to egress.

sasIMechanisms (string) : Space separated list of accepted SASL authentication mechanisms.

authenticatePeer (boolean) : yes: Require the peer’s identity to be authenticated; no: Do not
require any authentication.

requireEncryption (boolean) : yes: Require the connection to the peer to be encrypted; no:
Permit non-encrypted communication with the peer. It is related to SASL mechanisms which
support encryption.

requireSsl (boolean) : yes: Require the use of SSL/TLS on the connection; no: Allow clients to
connect without SSL/TLS.

trustedCerts (path) : This optional setting can be used to reduce the set of available CAs for
client authentication. If used, this setting must provide an absolute path to a PEM file that

contains the trusted certificates.

maxFrameSize (integer, default=16384) : Defaults to 16384. If specified, it is the maximum
frame size in octets that will be used in the connection-open negotiation with a connected

91

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

peer. The frame size is the largest contiguous set of uninterrupted data that can be sent for a
message delivery over the connection. Interleaving of messages on different links is done at
frame granularity.

idleTimeoutSeconds : (integer, default=16) : The idle timeout, in seconds, for connections
through this listener. If no frames are received on the connection for this time interval, the
connection shall be closed.

stripAnnotations (One of [in, out, both, no], default=both):in: Strip the dispatch router
specific annotations only on ingress; out: Strip the dispatch router specific annotations only on
egress; both: Strip the dispatch router specific annotations on both ingress and egress; no - do
not strip dispatch router specific annotations.

linkCapacity (integer) : The capacity of links within this connection, in terms of message
deliveries. The capacity is the number of messages that can be in-flight concurrently for each
link.

sslIProfile (string) : The name of the ss/Profile entity to use in order to have SSL/TLS
configuration.

http (boolean): If set to yes, the listener will accept HTTP connections using AMQP over
WebSockets.

B.1.1.4. connector

Establishes an outgoing connection from the router.

92

name (string) : Name using to reference the connector in the configuration file for example for
a link routing to queue on a broker.

host (string, default=127.0.0.1) : IP address: ipv4 or ipvé literal or a hostname.
port (string, default=amqp) : Port number or symbolic service name.

protocolFamily (One of [IPv4, IPv6]): IPv4: Internet Protocol version 4; IPv6: Internet
Protocol version 6. If not specified, the protocol family will be automatically determined from
the address.

role (One of [normal, inter-router, route-container], default=normal): The role of an
established connection. In the normal role, the connection is assumed to be used for AMQP
clients that are doing normal message delivery over the connection. In the inter-router role,
the connection is assumed to be to another router in the network. Inter-router discovery and
routing protocols can only be used over inter-router connections. route-container role can be
used for router-container connections, for example, a router-broker connection.

cost (integer, default=1) : For the ‘inter-router’ role only. This value assigns a cost metric to the
inter-router connection. The default (and minimum) value is one. Higher values represent
higher costs. The cost is used to influence the routing algorithm as it attempts to use the path
with the lowest total cost from ingress to egress.

sasIMechanisms (string) : Space separated list of accepted SASL authentication mechanisms.

allowRedirect (boolean, default=True) : Allow the peer to redirect this connection to another
address.

maxFrameSize (integer, default=65536) : Maximum frame size in octets that will be used in

APPENDIX B. CONFIGURATION REFERENCE

the connection-open negotiation with a connected peer. The frame size is the largest
contiguous set of uninterrupted data that can be sent for a message delivery over the
connection. Interleaving of messages on different links is done at frame granularity.

idleTimeoutSeconds (integer, default=16) : The idle timeout, in seconds, for connections
through this connector. If no frames are received on the connection for this time interval, the
connection shall be closed.

stripAnnotations (One of [in, out, both, no], default=both):in: Strip the dispatch router
specific annotations only on ingress; out: Strip the dispatch router specific annotations only on
egress; both: Strip the dispatch router specific annotations on both ingress and egress; no - do
not strip dispatch router specific annotations.

linkCapacity (integer) : The capacity of links within this connection, in terms of message
deliveries. The capacity is the number of messages that can be in-flight concurrently for each
link.

verifyHostName (boolean, default=True) : yes: Ensures that when initiating a connection (as a
client) the hostname in the URL to which this connector connects to matches the hostname in
the digital certificate that the peer sends back as part of the SSL/TLS connection; no: Does not
perform hostname verification

saslUsername (string) : The username that the connector is using to connect to a peer.

saslPassword (string) : The password that the connector is using to connect to a peer.

sslIProfile (string) : The name of the ss/Profile entity to use in order to have SSL/TLS
configuration.

B.1.1.5. log

Configure logging for a particular module which is part of the router. You can use the UPDATE
operation to change log settings while the router is running.

module (One of [ROUTER, ROUTER_CORE, ROUTER_HELLO, ROUTER_LS, ROUTER_MA, MESSAGE,
SERVER, AGENT, CONTAINER, ERROR, POLICY, DEFAULT], required) : Module to configure. The
special module DEFAULT specifies defaults for all modules.

enable (string, default=default, required) Levels are: trace, debug, info, hotice,
warning, error,critical. The enable string is a comma-separated list of levels. A level may
have a trailing + to enable that level and above. For example trace, debug, warning+ means
enable trace, debug, warning, error and critical. The value ‘none’ means disable logging for the
module. The value default means use the value from the DEFAULT module.

timestamp (boolean) : Include timestamp in log messages.
source (boolean) : Include source file and line number in log messages.

output (string) : Where to send log messages. Can be stderr, syslog or a file name.

B.1.1.6. address

Entity type for address configuration. This is used to configure the treatment of message-routed
deliveries within a particular address-space. The configuration controls distribution and address
phasing.

93

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

e prefix (string, required) : The address prefix for the configured settings.

e distribution (One of [multicast, closest, balanced], default=balanced): Treatment of
traffic associated with the address.

e waypoint (boolean) : Designates this address space as being used for waypoints. This will cause
the proper address-phasing to be used.

e ingressPhase (integer) : Advanced - Override the ingress phase for this address.

o egressPhase (integer) : Advanced - Override the egress phase for this address.

B.1.1.7. linkRoute

Entity type for link-route configuration. This is used to identify remote containers that shall be
destinations for routed link-attaches. The link-routing configuration applies to an addressing space
defined by a prefix.

e prefix (string, required) : The address prefix for the configured settings.

e containerld (string) : it specifies that the link route will be activated if a remote container will
provide a container-id matching with this value.

e connection (string) : The name from a connector or listener.

e distribution (One of [1inkBalanced], default=1inkBalanced): Treatment of traffic
associated with the address.

e dir (One of [in, out], required): The permitted direction of links. It is defined from a router
point of view so ‘in’ means client senders (router ingress) and ‘out’ means client receivers
(router egress).

B.1.1.8. autoLink

Entity type for configuring auto-links. Auto-links are links whose lifecycle is managed by the router.
These are typically used to attach to waypoints on remote containers (brokers, and so on.).

e addr (string, required) : The address of the provisioned object.

e dir (One of [1n, out], required): The direction of the link to be created. In means into the
router, out means out of the router.

o phase (integer) : The address phase for this link. Defaults to 0 for out links and 1 for in links.
e containerld (string) : ContainerID for the target container.

e connection (string) : The name from a connector or listener.

B.1.1.9. console

Start a websocket/tcp proxy and http file server to serve the web console.
e listener (string) : The name of the listener to send the proxied tcp traffic to.

e wsport (integer, default=5673) : The port on which to listen for websocket traffic.

94

APPENDIX B. CONFIGURATION REFERENCE

proxy (string) : The full path to the proxy program to run.
home (string) : The full path to the html/css/js files for the console.

args (string) : Optional args to pass to the proxy program for logging, authentication, and so
on.

B.1.1.10. policy

Defines global connection limit

maximumConnections (integer) : Global maximum number of concurrent client connections
allowed. Zero implies no limit. This limit is always enforced even if no other policy settings have
been defined.

enableAccessRules (boolean) : Enable user rule set processing and connection denial.

policyFolder (path) : The absolute path to a folder that holds policyRuleset definition .json files.
For a small system the rulesets may all be defined in this file. At a larger scale it is better to
have the policy files in their own folder and to have none of the rulesets defined here. All
rulesets in all .json files in this folder are processed.

defaultApplication (string) : Application policyRuleset to use for connections with no
open.hostname or a hostname that does not match any existing policy. For users that don’t
wish to use open.hostname or any multi-tennancy feature, this default policy can be the only
policy in effect for the network.

defaultApplicationEnabled (boolean) : Enable defaultApplication policy fallback logic.

B.1.1.11. policyRuleset

Per application definition of the locations from which users may connect and the groups to which users

belong.

maxConnections (integer) : Maximum number of concurrent client connections allowed. Zero
implies no limit.

maxConnPerUser (integer) : Maximum number of concurrent client connections allowed for
any single user. Zero implies no limit.

maxConnPerHost (integer) : Maximum number of concurrent client connections allowed for
any remote host. Zero implies no limit.

userGroups (map) : A map where each key is a user group name and the corresponding value is
a CSV string naming the users in that group. Users who are assigned to one or more groups
are deemed ‘restricted’. Restricted users are subject to connection ingress policy and are
assigned policy settings based on the assigned user groups. Unrestricted users may be allowed
or denied. If unrestricted users are allowed to connect then they are assigned to user group
default.

ingressHostGroups (map) : A map where each key is an ingress host group name and the
corresponding value is a CSV string naming the IP addresses or address ranges in that group.
IP addresses may be FQDN strings or numeric IPv4 or IPv6 host addresses. A host range is two
host addresses of the same address family separated with a hyphen. The wildcard host address
“*’ represents any host address.

ingressPolicies (map) : A map where each key is a user group name and the corresponding

95

Red Hat JBoss AMQ 7.0 Using AMQ Interconnect

96

value is a CSV string naming the ingress host group names that restrict the ingress host for
the user group. Users who are members of the user group are allowed to connect only from a
host in one of the named ingress host groups.

connectionAllowDefault (boolean) : Unrestricted users, those who are not members of a
defined user group, are allowed to connect to this application. Unrestricted users are assigned
to the ‘default’ user group and receive ‘default’ settings.

settings (map) : A map where each key is a user group name and the value is a map of the
corresponding settings for that group.

APPENDIX C. USING YOUR SUBSCRIPTION

APPENDIX C. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

Accessing Your Account
1. Go to https://access.redhat.com/.
2. If you do not already have an account, create one.
3. Loginto your account.
Activating a Subscription
1. Go to https://access.redhat.com/.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Go to https://access.redhat.com/products/red-hat-jboss-amaq.

2. Navigate to Download Latest.

3. Select the Download link for your component.

Registering Your System for Packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
zip or tar files, this step is not required.

1. Go to https://access.redhat.com/.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

Revised on 2017-09-01 11:02:38 EDT

97

https://access.redhat.com/
https://access.redhat.com/
https://access.redhat.com/products/red-hat-jboss-amq
https://access.redhat.com/
https://access.redhat.com/solutions/253273

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED CONFIGURATIONS
	1.3. THEORY OF OPERATION
	1.3.1. Overview
	1.3.2. Connections
	1.3.2.1. Listener
	1.3.2.2. Connector

	1.3.3. Addresses
	1.3.3.1. Mobile Addresses
	1.3.3.2. Link Route Addresses

	1.3.4. Message Routing
	1.3.4.1. Routing Patterns
	1.3.4.2. Routing Mechanisms
	1.3.4.3. Message Settlement

	1.3.5. Security

	1.4. DOCUMENT CONVENTIONS

	CHAPTER 2. INSTALLATION
	CHAPTER 3. GETTING STARTED
	3.1. STARTING THE ROUTER
	3.2. ROUTING MESSAGES IN A PEER-TO-PEER CONFIGURATION
	3.2.1. Starting the Receiver Client
	3.2.2. Sending Messages

	CHAPTER 4. CONFIGURATION
	4.1. ACCESSING THE ROUTER CONFIGURATION FILE
	4.2. HOW THE ROUTER CONFIGURATION FILE IS STRUCTURED
	4.3. CHANGING A ROUTER’S CONFIGURATION
	4.3.1. Making a Permanent Change to the Router’s Configuration
	4.3.2. Changing the Configuration for a Running Router

	4.4. DEFAULT CONFIGURATION SETTINGS
	4.5. SETTING ESSENTIAL CONFIGURATION PROPERTIES

	CHAPTER 5. NETWORK CONNECTIONS
	5.1. LISTENING FOR INCOMING CONNECTIONS
	5.2. ADDING OUTGOING CONNECTIONS

	CHAPTER 6. SECURITY
	6.1. SETTING UP SSL/TLS FOR ENCRYPTION AND AUTHENTICATION
	6.2. SETTING UP SASL FOR AUTHENTICATION AND PAYLOAD ENCRYPTION
	6.3. SECURING INCOMING CONNECTIONS
	6.3.1. Adding SSL/TLS Encryption to an Incoming Connection
	6.3.2. Adding SASL Authentication to an Incoming Connection
	6.3.3. Adding SSL/TLS Client Authentication to an Incoming Connection
	6.3.4. Adding SASL Payload Encryption to an Incoming Connection

	6.4. SECURING OUTGOING CONNECTIONS
	6.4.1. Adding SSL/TLS Client Authentication to an Outgoing Connection
	6.4.2. Adding SASL Authentication to an Outgoing Connection

	CHAPTER 7. ROUTING
	7.1. COMPARISON OF MESSAGE ROUTING AND LINK ROUTING
	7.1.1. When to Use Message Routing
	7.1.2. When to Use Link Routing

	7.2. CONFIGURING MESSAGE ROUTING
	7.2.1. Addresses
	7.2.2. Routing Patterns
	7.2.3. Message Settlement
	7.2.4. Routing Messages Between Clients
	7.2.5. Routing Messages Through a Broker Queue
	7.2.5.1. Configuring Waypoint Addresses
	7.2.5.2. Connecting a Router to the Broker

	7.3. CONFIGURING LINK ROUTING
	7.3.1. Link Route Addresses
	7.3.2. Link Route Routing Patterns
	7.3.3. Link Route Flow Control
	7.3.4. Creating a Link Route

	CHAPTER 8. LOGGING
	8.1. LOGGING MODULES
	8.1.1. The DEFAULT Logging Module
	8.1.2. The ROUTER Logging Module
	8.1.3. The ROUTER_CORE Logging Module
	8.1.4. The ROUTER_HELLO Logging Module
	8.1.5. The ROUTER_LS Logging Module
	8.1.6. The ROUTER_MA Logging Module
	8.1.7. The MESSAGE Logging Module
	8.1.8. The SERVER Logging Module
	8.1.9. The AGENT Logging Module
	8.1.10. The CONTAINER Logging Module
	8.1.11. The ERROR Logging Module
	8.1.12. The POLICY Logging Module

	8.2. CONFIGURING LOGGING
	8.3. VIEWING LOG ENTRIES
	8.3.1. Viewing Log Entries on the Console
	8.3.2. Viewing Log Entries on the CLI

	CHAPTER 9. MANAGEMENT
	9.1. USING AMQ CONSOLE
	9.2. MONITORING AMQ INTERCONNECT USING QDSTAT
	9.2.1. Syntax for Using qdstat
	9.2.2. Viewing General Statistics for a Router
	9.2.3. Viewing a List of Connections to a Router
	9.2.4. Viewing AMQP Links Attached to a Router
	9.2.5. Viewing Known Routers on a Network
	9.2.6. Viewing Addresses Known to a Router
	9.2.7. Viewing a Router’s Autolinks
	9.2.8. Viewing the Status of a Router’s Link Routes
	9.2.9. Viewing Memory Consumption Information

	9.3. MANAGING AMQ INTERCONNECT USING QDMANAGE
	9.3.1. Syntax for Using qdmanage
	9.3.2. Managing Network Connections
	9.3.2.1. Managing Listeners
	9.3.2.2. Managing Connectors

	9.3.3. Managing Security
	9.3.3.1. Managing SSL/TLS Encryption and Authentication
	9.3.3.2. Managing SASL Encryption and Authentication

	9.3.4. Managing Routing
	9.3.4.1. Managing Message Routing
	9.3.4.2. Managing Link Routing

	9.3.5. Managing Logging

	CHAPTER 10. RELIABILITY
	10.1. PATH REDUNDANCY
	10.2. PATH REDUNDANCY AND TEMPORAL DECOUPLING
	10.3. SHARDED QUEUE

	APPENDIX A. USING CYRUS SASL TO PROVIDE AUTHENTICATION
	A.1. GENERATING A SASL DATABASE
	A.2. VIEWING USERS IN A SASL DATABASE
	A.3. CONFIGURING A SASL DATABASE

	APPENDIX B. CONFIGURATION REFERENCE
	B.1. CONFIGURATION FILE
	B.1.1. Configuration Sections
	B.1.1.1. sslProfile
	B.1.1.2. router
	B.1.1.3. listener
	B.1.1.4. connector
	B.1.1.5. log
	B.1.1.6. address
	B.1.1.7. linkRoute
	B.1.1.8. autoLink
	B.1.1.9. console
	B.1.1.10. policy
	B.1.1.11. policyRuleset

	APPENDIX C. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files
	Registering Your System for Packages

