
Red Hat JBoss AMQ 7.0

Migrating to Red Hat JBoss AMQ 7

For Use with Red Hat JBoss AMQ 7.0

Last Updated: 2017-10-13

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

For Use with Red Hat JBoss AMQ 7.0

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes the important changes that require your attention when transitioning from
AMQ 6 to AMQ 7.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. WHEN TO GET ASSISTANCE BEFORE MIGRATING
1.2. SUPPORTED MIGRATION PATHS
1.3. UNDERSTANDING THE IMPORTANT NEW CONCEPTS IN AMQ 7

1.3.1. Architectural Changes in AMQ 7
Transport Connector Changes for Incoming Connections
Message Store and Paging Changes
Broker Deployment Changes

1.3.2. Message Address Changes in AMQ 7
1.4. REVIEWING NEW FEATURES AND KNOWN ISSUES IN AMQ 7
1.5. DOCUMENT CONVENTIONS

The sudo Command
About the Use of File Paths in this Document

CHAPTER 2. PREPARING FOR THE MIGRATION
2.1. MIGRATION REQUIREMENTS
2.2. CREATING A BROKER INSTANCE
2.3. UNDERSTANDING THE BROKER INSTANCE DIRECTORY STRUCTURE
2.4. HOW BROKERS ARE CONFIGURED IN AMQ 7
2.5. VERIFYING THAT CLIENTS CAN CONNECT TO THE BROKER INSTANCE

CHAPTER 3. ACCEPTING INCOMING CONNECTIONS
3.1. INCOMING NETWORK CONNECTIONS CHANGES
3.2. HOW ACCEPTORS ARE CONFIGURED

CHAPTER 4. USER AUTHENTICATION
4.1. USER AUTHENTICATION CHANGES
4.2. HOW USER AUTHENTICATION IS CONFIGURED

CHAPTER 5. MESSAGE ADDRESSES AND QUEUES
5.1. ADDRESSING CHANGES
5.2. HOW ADDRESSING IS CONFIGURED

CHAPTER 6. SECURITY
6.1. HOW TRANSPORT LAYER SECURITY IS CONFIGURED
6.2. AUTHORIZATION

6.2.1. Authorization Changes
6.2.2. How Authorization is Configured

CHAPTER 7. RESOURCE LIMITS AND POLICIES
7.1. HOW RESOURCE LIMITS AND POLICIES ARE CONFIGURED
7.2. RESOURCE LIMIT AND POLICY CONFIGURATION PROPERTIES

7.2.1. Queue Management Configuration Properties
7.2.2. Producer Policy Configuration Properties
7.2.3. Consumer Policy Configuration Properties
7.2.4. Slow Consumer Handling Configuration Properties
7.2.5. Message Paging Configuration Properties
7.2.6. Dead Letter Policy Configuration Properties

Dead Letter Policies in AMQ 6
Dead Letter Policies in AMQ 7

CHAPTER 8. MESSAGE PERSISTENCE AND PAGING
8.1. MESSAGE PERSISTENCE CHANGES

4
4
4
4
4
4
4
5
5
5
5
6
6

7
7
7
9
9

10

12
12
12

14
14
14

16
16
17

19
19

20
20
21

23
23
24
24
25
26
28
29
30
30
30

32
32

Table of Contents

1

. .

. .

. .

8.2. HOW MESSAGE PERSISTENCE IS CONFIGURED
8.3. MESSAGE PERSISTENCE CONFIGURATION PROPERTY CHANGES

8.3.1. Journal Size and Management
8.3.2. Write Boundaries
8.3.3. Index Configuration
8.3.4. Journal Archival
8.3.5. Journal Recovery

CHAPTER 9. BROKER CLUSTERS
9.1. BROKER CLUSTERING CHANGES
9.2. HOW BROKER CLUSTERS ARE CONFIGURED

9.2.1. Creating a Broker Cluster
9.2.2. Additional Broker Cluster Topologies

9.3. BROKER CLUSTER CONFIGURATION PROPERTIES

CHAPTER 10. HIGH AVAILABILITY AND FAILOVER
10.1. HIGH AVAILABILITY AND FAILOVER CHANGES
10.2. HOW HIGH AVAILABILITY IS CONFIGURED

CHAPTER 11. ADDITIONAL TOPICS

32
33
33
35
37
37
37

38
38
38
38
40
42

45
45
45

47

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

2

Table of Contents

3

CHAPTER 1. INTRODUCTION
This guide describes the new features and changes to behavior in AMQ 7. If you have an existing AMQ
6 environment, this guide will help you to understand the differences in AMQ 7 so that you are
prepared to configure new broker instances in AMQ 7.

1.1. WHEN TO GET ASSISTANCE BEFORE MIGRATING

If you plan to migrate a production environment, you should seek further assistance and guidance from
a Red Hat support representative. You can open a support case at https://access.redhat.com/support/.

1.2. SUPPORTED MIGRATION PATHS

You can use this guide to understand the configuration changes that might be required to create a
AMQ Broker 7 configuration to which existing OpenWire JMS clients can connect.

This guide does not describe how to migrate the following features:

The message store
This guide provides information about configuration changes that will help you to configure a
new AMQ 7 broker instance. Data, such as messages stored on the AMQ 6 broker, will not be
migrated.

Clients (other than OpenWire JMS clients)
This guide helps you to configure a AMQ 7 broker instance to which existing OpenWire JMS
clients can connect. For information about creating new clients that can connect to a AMQ 7
broker, see the client guides at the Red Hat Customer Portal .

1.3. UNDERSTANDING THE IMPORTANT NEW CONCEPTS IN AMQ 7

Before learning about the specific configuration changes in each AMQ feature area, you should first
understand the important conceptual differences between AMQ 6 and AMQ 7.

There are several key architectural differences in AMQ 7. In addition, a new message addressing and
routing model has been implemented in this release.

1.3.1. Architectural Changes in AMQ 7

AMQ 7 offers key architectural changes for how incoming network connections are made to the
broker, the message store, and the way in which brokers are deployed.

Transport Connector Changes for Incoming Connections
AMQ 6 used different types of transport connectors, such as TCP (synchronous) and Java NIO (non-
blocking).

In AMQ 7, you no longer have to choose which transport type to use: all incoming network connections
between entities in different virtual machines use Netty connections. Netty is a high-performance,
low-level network library that allows network connections to be configured to use Java IO, Java NIO,
TCP sockets, SSL/TLS, HTTP, and HTTPS.

Message Store and Paging Changes
The process by which the broker stores messages in memory and pages them to disk is different in
AMQ 7.

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

4

https://access.redhat.com/support/
https://access.redhat.com/products/red-hat-jboss-amq

AMQ 6 used KahaDB for a message store, which consists of both a message journal for fast, sequential
message storing, and an index to retrieve messages when needed.

AMQ 7 contains its own built-in message store, which consists of an append-only message journal. It
does not use an index.

For more information about these changes, see Message Persistence.

Broker Deployment Changes
In AMQ Broker 7, broker deployment differs from AMQ 6 in the following ways:

Deployment mechanism
AMQ 6, by default, was deployed in Apache Karaf containers. AMQ Broker 7 is not.

Deploying multiple brokers
In AMQ 6, to deploy multiple brokers, you either had to deploy a collection of standalone
brokers (which required you to install and configure each broker separately), or deploy a fabric
of AMQ brokers using JBoss Fuse Fabric.

In AMQ Broker 7, deploying multiple brokers involves installing AMQ Broker 7 once, and then
on the same machine, creating as many broker instances as you require. AMQ Broker 7 is not
intended to be deployed using fabrics.

1.3.2. Message Address Changes in AMQ 7

AMQ 7 introduces a new addressing and routing model to configure message routing semantics for any
messaging protocol (or API in the case of JMS). However, this model does require you to configure
address, queue, topic, and routing functionality differently than in AMQ 6. As part of your migration
planning, you should be prepared to carefully review the new addressing model and its configuration
elements.

AMQ Broker 7 does not distinguish between JMS and non-JMS configuration. AMQ Broker 7
implements addresses, routing mechanisms, and queues. Messages are delivered by routing messages
to queues based on addresses and routing mechanisms.

Two new routing mechanisms— multicast and anycast— enable AMQ Broker 7 to route messages in
standard messaging patterns. Multicast routing implements a publish-subscribe pattern in which all
subscribers to an address receive messages sent to the address. Alternatively, anycast routing
implements a point-to-point pattern in which only a single queue is attached to an address, and
consumers subscribe to that queue to receive messages in round-robin order.

Related Information

For more information about the new addressing model in AMQ Broker 7, see Addresses,
Queues, and Topics in Using AMQ Broker.

For more information about how message addressing is configured in AMQ Broker 7, see
Message Addresses and Queues.

1.4. REVIEWING NEW FEATURES AND KNOWN ISSUES IN AMQ 7

Before migrating to AMQ 7, you should understand the key new features, enhancements, and known
issues. For a list, see the AMQ Broker 7.0 Release Notes .

1.5. DOCUMENT CONVENTIONS

CHAPTER 1. INTRODUCTION

5

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configure_destinations_artemis
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/amq_broker_7.0_release_notes/

This document uses the following conventions for the sudo command and file paths.

The sudo Command
In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

For more information about using sudo, see The sudo Command.

About the Use of File Paths in this Document
In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/...). If you are using Microsoft Windows, you should use the equivalent Microsoft Windows
paths (for example, C:\Users\...).

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

6

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

CHAPTER 2. PREPARING FOR THE MIGRATION
Before learning about the configuration changes in each feature area, you should ensure that your
environment meets the migration requirements and understand how broker instances are configured
in AMQ Broker 7.

2.1. MIGRATION REQUIREMENTS

Before migrating to AMQ 7, your environment should meet the following requirements:

AMQ 6 requirements

You should be running AMQ 6.2.x or later.

OpenWire clients should use OpenWire version 10 or later.

AMQ 7 requirements

You should have a supported operating system and JVM.
You can view supported configurations for AMQ 7 at:
https://access.redhat.com/articles/2791941

AMQ Broker 7 should be installed.
For more information, see Installation in Using AMQ Broker.

2.2. CREATING A BROKER INSTANCE

Before migrating to AMQ 7, you should create a AMQ broker instance. You can configure this broker
instance as you learn about the configuration differences in AMQ 7 that are described in this guide.

When you installed AMQ Broker, the binaries, libraries, and other important files needed to run AMQ
Broker were installed. However, in AMQ 7, you must explicitly create a broker instance whenever a new
broker is needed. Each broker instance is a separate directory containing its own configuration and
runtime data.

NOTE

Keeping broker installation and configuration separate means that you can install AMQ
Broker just once in a central location and then create as many broker instances as you
require. Additionally, keeping installation and configuration separate makes it easier to
manage and upgrade your brokers as needed.

Prerequisites

AMQ Broker 7 must be installed.

Procedure

1. Navigate to the location where you want to create the broker instance.

$ sudo mkdir /var/lib/amq7
$ cd /var/lib/amq7

CHAPTER 2. PREPARING FOR THE MIGRATION

7

https://access.redhat.com/articles/2791941
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#installation

2. Do one of the following to create the broker instance:

If… Then…

AMQ Broker 7 is installed
on the same machine as
AMQ 6

Use the artemis create command with the --port-offset
parameter to create the new broker instance that will not conflict
with your existing AMQ 6 broker.

NOTE

AMQ Broker 7 and AMQ 6 both listen for client
traffic on the same set of default ports. Therefore,
you must offset the default ports on the AMQ Broker
broker instance to avoid potential conflicts.

This example creates a new broker instance that listens for client
traffic on different ports than the AMQ 6 broker:

$ sudo INSTALL_DIR/bin/artemis create
mybroker --port-offset 100 --user admin --
password pass --role amq --allow-anonymous
true

AMQ Broker 7 and AMQ 6
are installed on separate
machines

Use the artemis create command to create the new broker
instance.

This example creates a new broker instance and prompts you for
any required values:

$ sudo INSTALL_DIR/bin/artemis create
mybroker

Creating ActiveMQ Artemis instance at:
/var/lib/amq7/mybroker

--user: is mandatory with this
configuration:
Please provide the default username:
user

--password: is mandatory with this
configuration:
Please provide the default password:
password

--role: is mandatory with this
configuration:
Please provide the default role:
amq

--allow-anonymous

Related Information

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

8

For full details on creating broker instances, see Create a Broker Instance in Using AMQ Broker.

2.3. UNDERSTANDING THE BROKER INSTANCE DIRECTORY
STRUCTURE

Each AMQ 7 broker instance contains its own directory. You should understand the directory content
and where to find the configuration files for the broker instance you created.

When you create a broker instance, the following directory structure is created:

$ ls /var/lib/amq7/mybroker
bin data etc lock log tmp

BROKER_INSTANCE_DIR

The location where the broker instance was created. This is a different location than the AMQ
Broker installation.

/bin

Shell scripts for starting and stopping the broker instance.

/data

Contains broker state data, such as the message store.

/etc

The broker instance’s configuration files. These are the files you need to access to configure the
broker instance.

/lock

Contains the cli.lock file.

/log

Log files for the broker instance.

/tmp

A utility directory for temporary files.

2.4. HOW BROKERS ARE CONFIGURED IN AMQ 7

You should understand how the broker instance you created should be configured and which
configuration files you will need to edit.

Like AMQ 6, you configure AMQ 7 broker instances by editing plain text and XML files. Changing a
broker’s configuration involves opening the appropriate configuration file in the broker instance’s
directory, locating the proper element in the XML hierarchy, and then making the actual change— which
typically involves adding or removing XML elements and attributes.

Within BROKER_INSTANCE_DIR/etc, there are several configuration files that you can edit:

Configuration File Description

broker.xml The main configuration file. Similar to activemq.xml in AMQ 6, you use
this file to configure most aspects of the broker, such as acceptors for
incoming network connections, security settings, message addresses, and
so on.

CHAPTER 2. PREPARING FOR THE MIGRATION

9

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#creating_a_broker_instance

bootstrap.xml The file that AMQ Broker uses to start the broker instance. You use it to
change the location of the main broker configuration file, configure the
web server, and set some security settings.

logging.properties You use this file to set logging properties for the broker instance. This file
is similar to the org.ops4j.pax.logging.cfg file in AMQ 6.

JAAS configuration files
(login.config,
users.properties,
roles.properties)

You use these files to set up authentication for user access to the broker
instance.

Configuration File Description

Migrating to AMQ 7 primarily involves editing the broker.xml file. For more information about the
broker.xml structure and default configuration settings, see Configuration in Using AMQ Broker.

2.5. VERIFYING THAT CLIENTS CAN CONNECT TO THE BROKER
INSTANCE

To verify that your existing clients can connect to the broker instance you created, you should start
the broker instance and send some test messages.

Procedure

1. Start the broker instance by using one of the following commands:

To… Use this command…

Start the broker in the
foreground $ sudo BROKER_INSTANCE_DIR/bin/artemis run

Start the broker as a
service $ sudo BROKER_INSTANCE_DIR/bin/artemis-

service start

The broker instance starts. By default, an OpenWire connector is started on the broker
instance on the same port as your AMQ 6 broker. This should enable your existing clients to
connect to the broker instance.

2. If you want to check the status of the broker instance, open the
BROKER_INSTANCE_DIR/logs/artemis.log file.

3. In your AMQ 6 broker, use the producer command to send some test messages to the AMQ 7
broker instance.
This command sends five test messages to a AMQ 7 broker instance hosted on localhost and
listening on the default acceptor:

JBossA-MQ:karaf@root> producer --brokerUrl tcp://0.0.0.0:61616 --
message "Test message" --messageCount 5

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

10

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#basic_configuration

If you offset the port numbers when you created the broker instance (using --port-offset),
make sure that you use the correct port number for the broker URL. For example, if you set the
port offset to 100, then you would need to set --brokerUrl to tcp://0.0.0.0:61716.

4. In your AMQ 6 broker, use the consumer command to verify that you can consume the test
messages that you sent to the AMQ 7 broker instance.
This command receives the five test messages sent to the AMQ 7 broker instance:

You can also verify that the messages were sent and received by checking the
INSTALL_DIR/data/log/amq.log file on the AMQ 6 broker.

5. Stop the broker instance:

$ BROKER_INSTANCE_DIR/bin/artemis stop

JBossA-MQ:karaf@root> consumer --brokerUrl tcp://0.0.0.0:61616

CHAPTER 2. PREPARING FOR THE MIGRATION

11

CHAPTER 3. ACCEPTING INCOMING CONNECTIONS
Network connections define how clients connect to your broker instance. In AMQ 7, these connections
function differently and are configured differently than in AMQ 6.

3.1. INCOMING NETWORK CONNECTIONS CHANGES

AMQ 6 and AMQ Broker 7 both enable you to define the way that clients connect to the broker. These
connection points were called transport connectors in AMQ 6, but now are called acceptors in AMQ
Broker 7.

AMQ 6 provided multiple implementations of the transport layer (such as TCP and NIO), which meant
that you had to use different transport connectors depending on whether you wanted a client
connection point to use a blocking or non-blocking transport. In AMQ Broker 7, the transport layer
uses Netty only, which is non-blocking by default. There are two types of acceptors in AMQ Broker 7:

TCP

Netty TCP connections are used when the client and broker are located in different virtual
machines, whether on the same server or physically remote.
Netty uses non-blocking (Java NIO) by default, which means that all client connections to the
broker instance are non-blocking. It also has built-in support for WebSockets.

In-VM

An In-VM connection is used when the client, whether an application or a server, resides within the
same virtual machine as the broker.

AMQ 6 also required you to use separate transport connectors for each messaging protocol. In AMQ
Broker 7, the low-level transport (either TCP or In-VM) is distinct from the messaging protocol used by
the client (such as AMQP, MQTT, and so on). This means that a single acceptor can use multiple
protocols on the same port. In fact, an acceptor will accept all supported message protocols unless you
explicitly restrict the protocols that it can use.

For example, the default acceptor in AMQ Broker 7 automatically accepts all message protocols:

3.2. HOW ACCEPTORS ARE CONFIGURED

You use the BROKER_INSTANCE_DIR/etc/broker.xml configuration file to configure acceptors to
accept incoming client connections for your broker instance.

The broker.xml configuration file contains the following default acceptors in the <acceptors>
section:

<acceptor name="artemis">tcp://0.0.0.0:61616?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=CORE,AMQP
,STOMP,HORNETQ,MQTT,OPENWIRE;useEpoll=true;amqpCredits=1000;amqpLowCredits
=300</acceptor>

<configuration>
...
 <core>
 ...
 <acceptors>
 <!-- Acceptor for every supported protocol -->

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

12

1 The default acceptor, which accepts incoming client connections for any of the supported
messaging protocols.

To configure the incoming client connections for your broker instance, you can modify the
configuration properties for any of the default acceptors, or you can add new acceptors. This example
shows a new acceptor configured to accept TCP connections using the OpenWire protocol:

Related Information

For more information about the default acceptor configuration, see About Default Network
Connections in Using AMQ Broker.

For step-by-step details about configuring acceptors, see Network Connections: Acceptors
and Connectors in Using AMQ Broker.

For a description of every property you can use to configure an acceptor, see Acceptor and
Connector Configuration Parameters in Using AMQ Broker.

 <acceptor name="artemis">tcp://0.0.0.0:61616?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=CORE,AMQP
,STOMP,HORNETQ,MQTT,OPENWIRE;useEpoll=true;amqpCredits=1000;amqpLowCredits

=300</acceptor> 1

 <!-- AMQP Acceptor. Listens on default AMQP port for AMQP
traffic.-->
 <acceptor name="amqp">tcp://0.0.0.0:5672?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=AMQP;useE
poll=true;amqpCredits=1000;amqpMinCredits=300</acceptor>

 <!-- STOMP Acceptor. -->
 <acceptor name="stomp">tcp://0.0.0.0:61613?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=STOMP;use
Epoll=true</acceptor>

 <!-- HornetQ Compatibility Acceptor. Enables HornetQ Core and
STOMP for legacy HornetQ clients. -->
 <acceptor name="hornetq">tcp://0.0.0.0:5445?
protocols=HORNETQ,STOMP;useEpoll=true</acceptor>

 <!-- MQTT Acceptor -->
 <acceptor name="mqtt">tcp://0.0.0.0:1883?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=MQTT;useE
poll=true</acceptor>
 ...
 </core>
</configuration>

<acceptor name="my_acceptor">tcp://0.0.0.0:61613?
tcpSendBufferSize=1048576;tcpReceiveBufferSize=1048576;protocols=OPENWIRE;
useEpoll=true</acceptor>

CHAPTER 3. ACCEPTING INCOMING CONNECTIONS

13

{book_link}#configuring_network_access
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#transports
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#acceptor_connector_params]

CHAPTER 4. USER AUTHENTICATION
User authentication enables you to verify the identity of users by adding usernames and assigning
them to security roles. In AMQ Broker 7, this process is similar to AMQ 6. However, there are some
differences in terminology, configuration file locations, and configuration syntax. Once you understand
the differences, there are several methods you can use to configure user access to your broker
instance.

4.1. USER AUTHENTICATION CHANGES

In both AMQ Broker 7 and AMQ 6, authentication is provided by pluggable login modules based on the
Java Authentication and Authorization Service (JAAS). However, groups in AMQ 6 are now called roles
in AMQ Broker 7.

In addition, the names and locations of the login modules have changed in AMQ Broker 7.

Login Module Location in AMQ 6 Location in AMQ Broker 7

Users etc/users.proper
ties

BROKER_INSTANCE_DIR/etc/artemis-
users.properties

Roles (groups) etc/groups.prope
rties

BROKER_INSTANCE_DIR/etc/artemis-
roles.properties

The syntax for adding users and roles is also different.

In AMQ 6

Non-privileged users could be added and assigned a password and security role in the
users.properties file:

USER=PASSWORD,ROLE

In AMQ Broker 7

Users and roles are assigned in separate login modules. You add users in the artemis-
users.properties file:

USER=PASSWORD

You assign users to a security role in the artemis-roles.properties file:

ROLE=USER

4.2. HOW USER AUTHENTICATION IS CONFIGURED

You can access the AMQ 7 broker instance using the default username and password that you created
when you created the broker instance. To enable additional users to access the broker instance, you
can configure user authentication for the broker using any of the following methods:

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

14

Authentication Method Description

Guest Authentication Enables anonymous access. In this configuration, any user who connects
without credentials or with the wrong credentials will be authenticated
automatically and assigned a specific user and role.

For more information, see Setting Up Guest Authentication in Using AMQ
Broker.

Basic User and Password
Authentication

For each user, you must define a username and password and assign a
security role. Users can only access the broker instance using these
credentials.

For more information, see Enabling Password Authentication in Using AMQ
Broker.

Certificate-Based
Authentication

Users are authenticated using SSL certificates.

For more information, see Adding Certificate-based Authentication in Using
AMQ Broker.

LDAP Authentication Users are authenticated and authorized by checking the credentials
against user data stored in a central X.500 directory server.

For more information, see Deploying LDAP Authentication in Using AMQ
Broker.

CHAPTER 4. USER AUTHENTICATION

15

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#guest_auth
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#pass_auth
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#cert_authn
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#ldap_authn

CHAPTER 5. MESSAGE ADDRESSES AND QUEUES
AMQ 7 introduces a new, flexible addressing model that enables you to define standard messaging
patterns that work for any messaging protocol. Therefore, the process for configuring queues and
topic-like behavior has changed significantly.

5.1. ADDRESSING CHANGES

AMQ 6 implemented JMS concepts such as queues, topics, and durable subscriptions as directly-
configurable destinations.

Example: Default Queue and Topic Configuration in AMQ 6

AMQ Broker 7 uses addresses, routing types, and queues to achieve queue and topic-like behavior. An
address represents a messaging endpoint. Queues are associated with addresses. A routing type defines
how messages are distributed to the queues associated with an address. There are two routing types:
Anycast distributes messages to a single queue within the matching address, and Multicast distributes
messages to every queue associated with the address.

By associating queues with addresses and routing types, you can implement a variety of messaging
patterns, such as point-to-point (queues) and publish-subscribe (topic-like).

Example: Point-to-Point Address Configuration in AMQ Broker 7

In this example, when the broker receives a message on address.foo, the message will be routed to
my-queue. If multiple anycast queues are associated with the address, the messages are distributed
evenly across the queues.

Example: Publish-Subscribe Address Configuration in AMQ Broker 7

In this example, when the broker receives a message on topic.foo, a copy of the message will be
routed to both my-topic-1 and my-topic-2.

Related Information

<destinations>
 <queue physicalName="my-queue" />
 <topic physicalName="my-topic" />
</destinations>

<address name="address.foo">
 <anycast>
 <queue name="my-queue"/>
 </anycast>
</address>

<address name="topic.foo">
 <multicast>
 <queue name="my-topic-1"/>
 <queue name="my-topic-2"/>
 </multicast>
</address>

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

16

For full details about the addressing model in AMQ Broker 7, see Addresses, Queues, and
Topics in Using AMQ Broker.

5.2. HOW ADDRESSING IS CONFIGURED

You use the BROKER_INSTANCE_DIR/etc/broker.xml configuration file to configure addresses
and queues for your broker instance.

The broker.xml configuration file contains the following default addressing configuration in the
<addresses> section. There are default entries for the Dead Letter Queue (DLQ) and Expiry Queue
(ExpiryQueue):

You can configure addressing for your broker instance by using any of the following methods:

Method Description

Manually configure an
address

You define the routing types and queues that the broker should use when
receiving a message on the address. You can configure an address in the
following ways:

Configuring an Address for Point-to-Point Messaging in Using AMQ
Broker

Configuring a Point-to-Point Address with Two Queues in Using
AMQ Broker

Configuring an Address for Publish-Subscribe Messaging in Using
AMQ Broker

Configuring an Address to Use Point-to-Point and Publish-
Subscribe in Using AMQ Broker

Configuring Subscription Queues in Using AMQ Broker

<addresses>
 <address name="DLQ">
 <anycast>
 <queue name="DLQ" />
 </anycast>
 </address>
 <address name="ExpiryQueue">
 <anycast>
 <queue name="ExpiryQueue" />
 </anycast>
 </address>
</addresses>

CHAPTER 5. MESSAGE ADDRESSES AND QUEUES

17

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_an_address_for_point_to_point_messaging
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_a_point_to_point_address_with_two_queues
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_an_address_for_publish_subscribe_messaging
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_an_address_to_use_point_to_point_and_publish_subscribe
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_subscription_queues

Configure the broker to
create addresses
automatically

You specify an address prefix and routing type for which addresses you
want to be created automatically. When the broker receives a message on
an address that matches the prefix, the address and routing type will be
created automatically. You can also specify that the address be deleted
automatically when all of its queues have been deleted, and that its queues
be deleted automatically when they have no consumers or messages.

For more information, see Creating and Deleting Queues and Addresses
Automatically in Using AMQ Broker.

Method Description

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

18

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#auto_create_queues_addresses

CHAPTER 6. SECURITY
AMQ Broker 7 provides transport layer security to secure incoming network connections, and
authorization to secure access to queues based on their respective addresses. In both of these areas,
the security model is very similar to AMQ 6. However, the configuration processes are different.

6.1. HOW TRANSPORT LAYER SECURITY IS CONFIGURED

Like AMQ 6, AMQ Broker 7 enables you to secure incoming network connections using SSL/TLS.
However, there are some differences in configuration syntax and configuration properties.

In AMQ 6, transport layer security was configured by creating an SSL context to define the keystores
and truststores, and then adding SSL attributes to each transport connector that you wanted to
secure.

In AMQ Broker 7, the transport layer is based on Netty, which uses SSL natively. This means that to
configure transport layer security, you just add the necessary SSL attributes to each acceptor that you
want to secure. You do not need to add a separate SSL context.

For example, the following configuration accepts secure connections from an OpenWire client:

In AMQ 6

1. Define the SSL context in the INSTALL_DIR/etc/activemq.xml file:

2. In the broker configuration file, create a transport connector to accept secure connections
from the OpenWire client:

In AMQ Broker 7

In the BROKER_INSTANCE_DIR/etc/broker.xml configuration file, create or update an
acceptor to accept secure connections from the OpenWire client:

You can configure either one-way or two-way TLS. The following table describes these methods:

Method Description

<sslContext>
 <sslContext keyStore="file:${activemq.conf}/broker.ks"
keyStorePassword="password"/>
</sslContext>

<transportConnector name="ssl" uri="ssl://localhost:61617?
transport.needClientAuth=true"/>

<acceptor name="netty-ssl-acceptor">tcp://localhost:61617?
sslEnabled=true;keyStorePath=${data.dir}/../etc/broker.ks;keyStorePa
ssword=password;needClientAuth=true</acceptor>

CHAPTER 6. SECURITY

19

One-way TLS Only the broker presents a certificate. This method requires you to have a
Java KeyStore for the server-side certificates.

For more information, see Configuring One-way TLS in Using AMQ Broker.

Two-way TLS (mutual
authentication)

Both the broker and the client present certificates. This method requires
you to have a Java KeyStore for the server-side certificates, and a
TrustStore that holds the keys of the clients that the broker trusts.

For more information, see Configuring Two-way TLS in Using AMQ Broker.

Method Description

NOTE

To reuse your existing keystores and truststores for AMQ Broker 7, copy them to your
AMQ Broker 7 broker instance.

Related Information

For a full list of all transport layer security configuration properties, see Netty TLS/SSL
Parameters in Using AMQ Broker.

6.2. AUTHORIZATION

AMQ Broker 7 provides a role-based security model in which you apply security settings to queues
based on their addresses. This security model is similar to AMQ 6; however, the permissions and
wildcard syntax are different, and authorization is configured differently.

6.2.1. Authorization Changes

AMQ Broker 7 uses a different set of permissions and a slightly different wildcard syntax than AMQ 6.

The following table describes the different types of permissions that you can apply in AMQ 6 and AMQ
Broker 7:

Permission in AMQ 6 Corresponding Permissions in AMQ Broker 7

write send

read consume

browse

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

20

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_one_way_tls
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_two_way_tls
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#netty_tls_parameters

admin createAddress

deleteAddress

createNonDurableQueue

deleteNonDurableQueue

createDurableQueue

deleteDurableQueue

manage

Permission in AMQ 6 Corresponding Permissions in AMQ Broker 7

For more information about permissions in AMQ Broker 7, see Configuring Authorization in Using AMQ
Broker.

The wildcard syntax for matching addresses is also different in AMQ Broker 7.

To… In AMQ 6 In AMQ Broker 7

Separate words in the path . .

Match a single word * *

Match any word recursively > #

6.2.2. How Authorization is Configured

You use the BROKER_INSTANCE_DIR/etc/broker.xml configuration file to assign security settings
to queues.

The broker.xml configuration file contains the following default security settings, which provide
complete access to all addresses and queues for the default role that you created when you created
the broker instance:

<configuration ...>
 <core ...>
 ...
 <security-settings>

 <security-setting match="#"> 1

 <permission type="createNonDurableQueue" roles="admin"/> 2
 <permission type="deleteNonDurableQueue" roles="admin"/>
 <permission type="createDurableQueue" roles="admin"/>
 <permission type="deleteDurableQueue" roles="admin"/>
 <permission type="createAddress" roles="admin"/>
 <permission type="deleteAddress" roles="admin"/>
 <permission type="consume" roles="admin"/>
 <permission type="browse" roles="admin"/>
 <permission type="send" roles="admin"/>

CHAPTER 6. SECURITY

21

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_authorization

1

2

The address or address prefix to which a set of security permissions are applied. The permissions
are applied to the set of queues that match the address. In this example, the # wildcard matches
all addresses.

A permission granted to a role. In this example, all users belonging to the admin role are granted
permission to create non-durable queues.

You can configure authorization for a queue or set of queues by specifying an address that matches
the queues, and then specifying the roles that should be granted each permission type.

Related Information

Configuring Authorization in Using AMQ Broker

 <permission type="manage" roles="admin"/>
 </security-setting>
 </security-settings>
 ...
 </core>
</configuration>

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

22

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_authorization

CHAPTER 7. RESOURCE LIMITS AND POLICIES
You can define resource limits and policies to control important aspects of how the broker instance
should handle messages. The process for configuring these resource limits and policies is different in
AMQ Broker 7 than in AMQ 6, and many of the configuration properties have changed.

7.1. HOW RESOURCE LIMITS AND POLICIES ARE CONFIGURED

In AMQ 6, resource limits and policies were configured as destination policies in the broker’s
configuration file.

In AMQ Broker 7, you define resource limits and policies for an address or set of addresses. When the
broker instance receives a message, the resource limits and policies defined for the message’s address
are applied to the message.

To configure resource limits and policies in AMQ Broker 7, you use the
BROKER_INSTANCE_DIR/etc/broker.xml configuration file to define <address-setting>
elements with the appropriate configuration properties.

The broker.xml configuration file contains the following default address settings configuration:

<address-settings>
 <!-- if you define auto-create on certain queues, management has to be
auto-create -->

 <address-setting match="activemq.management#"> 1
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <!-- with -1 only the global-max-size is in use for limiting -->
 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-
day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>
 <!--default for catch all-->

 <address-setting match="#"> 2
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <!-- with -1 only the global-max-size is in use for limiting -->
 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-
day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>
</address-settings>

CHAPTER 7. RESOURCE LIMITS AND POLICIES

23

1

2

The default management address setting. The nested resource limits and policies are applied to
all messages with an address that matches activemq.management#.

The default address setting. The # wildcard matches all addresses, so the defined resource limits
and policies are applied to all messages.

To configure resource limits and policies, you specify an address or set of addresses (using
<address-setting>), and then add resource limit and policy properties to it. These properties are
applied to each message sent to the address (or addresses) that you specified.

Related Information

For more information on using wildcards to match sets of addresses, see The AMQ Broker
Wildcard Syntax in Using AMQ Broker.

7.2. RESOURCE LIMIT AND POLICY CONFIGURATION PROPERTIES

Like AMQ 6, in AMQ Broker 7, you can add resource limits and policies to control how the broker
handles certain aspects of how and when messages are delivered, the number of delivery attempts
that should be made, and when messages should expire. However, the configuration properties you use
to define these resource limits and policies are different in AMQ Broker 7.

This section compares the <policyEntry> configuration properties in AMQ 6 to the equivalent
<address-setting> properties in AMQ Broker 7. For complete details on each configuration
property in AMQ Broker 7, see Address Setting Attributes in Using AMQ Broker.

7.2.1. Queue Management Configuration Properties

The following table compares the queue management configuration properties in AMQ 6 to the
equivalent properties in AMQ Broker 7:

To set… In AMQ 6 In AMQ Broker 7

The memory limit memoryLimit

Sets a memory limit for the
destination. The default is none.

<max-size-bytes>

Sets the memory limit for the
address. The default is -1 (no
limit).

The order of the messages by
priority within the queue

prioritizedMessages

This is off by default, which
means that messages are
prioritized on the consumer (not
the broker), and therefore are
ordered based on the priorities of
the messages on the consumer.

Messages are automatically
ordered by priority within the
queue.

How often the broker should scan
for expired messages

expiredMessagesPeriod <message-expiry-scan-
period>

The default is 30000 ms.

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

24

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#wildcard_syntax
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#address_setting_attributes

Whether the broker should delete
destinations that are inactive for
a period of time

gcInactiveDestinations

The default is false.

No equivalent. However, for
automatically-created queues,
you can set the queue to be
automatically deleted when the
last consumer is detached. For
more information, see Creating
and Deleting Queues and
Addresses Automatically in Using
AMQ Broker.

The inactive timeout inactiveTimeoutBeforeGC

The default is 60 seconds.

No equivalent. However, for
automatically-created queues,
you can set the queue to be
automatically deleted when the
last consumer is detached. For
more information, see Creating
and Deleting Queues and
Addresses Automatically in Using
AMQ Broker.

Whether the broker should use a
separate thread when dispatching
from a queue

optimizedDispatch

The default is false.

This cannot be set for an address
or queue. However, you can
control it from the incoming
connection on which the message
arrives. Use the
directDeliver property on
an acceptor or connector to
control whether the message
should be delivered on the same
thread on which it arrived. For
more information, see Acceptor
and Connector Configuration
Parameters in Using AMQ Broker.

To set… In AMQ 6 In AMQ Broker 7

7.2.2. Producer Policy Configuration Properties

The following table compares the producer policy configuration properties in AMQ 6 to the equivalent
properties in AMQ Broker 7:

To set… In AMQ 6 In AMQ Broker 7

CHAPTER 7. RESOURCE LIMITS AND POLICIES

25

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#auto_create_queues_addresses
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#auto_create_queues_addresses
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#acceptor_connector_params

Producer flow control producerFlowControl

Sets the broker to throttle the
producer. The throttling is
achieved by either withholding
the producer’s acknowledgement,
or by raising a
javax.jms.ResourceAlloc
ationException exception
and propagating it back to the
client when local resources have
been exhausted (such as memory
or storage). The default is true.

For the address, set <max-
size-bytes> to the size at
which the producer should be
throttled, and then set
<address-full-policy> to
BLOCK.

Configuring these two properties
will also throttle your existing
AMQ 6 OpenWire producers.

The amount of credits a producer
can request at one time

No equivalent. <producer-window-size>

Limiting the window size sets a
limit on the number of bytes that
the producer can have "in-flight"
at any one time, which can
prevent the remote connection
from becoming overloaded.

To set… In AMQ 6 In AMQ Broker 7

7.2.3. Consumer Policy Configuration Properties

The following table compares the server-side destination policy configuration properties in AMQ 6 to
the equivalent properties in AMQ Broker 7. These properties only apply to OpenWire clients:

To set… In AMQ 6 In AMQ Broker 7

The queue prefetch queuePrefetch No equivalent on the broker.
However, you can set the
maximum size of messages (in
bytes) that will be buffered on a
consumer by setting the
consumerWindowSize on the
connection URL or directly on the
ActiveMQConnectionFacto
ry API.

Whether to use the priority of a
consumer when dispatching
messages from a queue

useConsumerPriority

The default is true.

This functionality does not exist
in AMQ Broker 7.

Whether to use the prefetch
extension to enable the broker to
dispatch "prefetched" messages
when the previous message is
delivered but not acknowledged

usePrefetchExtension

The default is true.

This functionality does not exist
in AMQ Broker 7.

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

26

Initial redelivery delay initialRedeliveryDelay

The default is 1000 ms.

No equivalent. The broker
instance automatically handles
this.

How long to wait before
attempting to redeliver a
canceled message

redeliveryDelay

The delivery delay if
initialRedeliveryDelay
is set to 0. The default is 1000
ms.

<redelivery-delay>

The default is 0 ms.

Exponential back-off useExponentialBackoff

The default is false.

No equivalent. You can use any of
the other consumer policy
configuration properties to
configure redelivery for a
consumer.

Backoff multiplier backOffMultiplier

The default is 5.

<redelivery-multiplier>

The multiplier to apply to the
redelivery delay. The default is
1.0.

The maximum number of times a
cancelled message can be
redelivered before it is returned
to the broker’s Dead Letter
Queue

maximumRedeliveries

The default is 6.

<max-delivery-attempts>

The default is 10.

The maximum value for the
redelivery delay

maximumRedeliveryDelay

This is only applied if the
useExponentialBackoff
property is set. The default is -1
(no maximum redelivery delay).

<max-redelivery-delay>

The default is 0.

To set… In AMQ 6 In AMQ Broker 7

CHAPTER 7. RESOURCE LIMITS AND POLICIES

27

The number of messages that a
client can consume in a second

No equivalent. No equivalent on the broker.
However, you can set this on a
consumer by setting the
consumerMaxRate on the
connection URL or directly on the
ActiveMQConnectionFacto
ry API.

The consumerMaxRate
property does not affect the
number of messages that a client
has in its buffer. Therefore, if the
client has a slow rate limit and a
high window size, the client’s
internal buffer would quickly fill
up with messages.

To set… In AMQ 6 In AMQ Broker 7

7.2.4. Slow Consumer Handling Configuration Properties

Like AMQ 6, AMQ Broker 7 can detect slow consumers and automatically stop the ones that are
consistently slow. This was enabled by default in AMQ 6, but is disabled by default in AMQ Broker 7.

The way in which the broker determines that a consumer is "slow" is also different. In AMQ Broker 7, a
consumer is considered to be slow based on the number of messages the consumer has acknowledged.
In AMQ 6, a consumer was considered to be slow based on the fullness of the prefetch buffer (if the
buffer is consistently full, then the client may be consuming messages too slowly).

The following table compares the slow consumer handling configuration properties in AMQ 6 to the
equivalent properties in AMQ Broker 7:

To set… In AMQ 6 In AMQ Broker 7

The number of times a consumer
can be considered to be slow
before it is aborted

maxSlowCount

The default is -1 (no limit).

No equivalent. You can use the
other slow consumer handling
properties to control slow
consumers.

The amount of time a consumer
can be continuously slow before it
is aborted

maxSlowDuration

The default is 30000 ms.

<slow-consumer-
threshold>

In AMQ Broker 7, this is the
minimum rate of message
consumption before a consumer
is considered to be "slow"
(measured in messages per
second). The default is -1 (no
threshold).

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

28

The amount of time the broker
should wait before performing
another check for slow
consumers

checkPeriod

The default is 30000 ms.

<slow-consumer-check-
period>

In AMQ Broker 7, this is
measured in seconds. The default
is 5.

Whether the broker should close
the connection along with a slow
consumer

abortConnection

The default is false.

No equivalent. In AMQ Broker 7,
when a slow consumer is aborted,
the connection is also closed.

The policy to apply if a slow
consumer is detected.

No equivalent. <slow-consumer-policy>

The default is NOTIFY, which will
send a CONSUMER_SLOW
management notification to the
application.

You can also use the KILL policy
to close the consumer’s
connection. However, this will
impact any other client threads
using that connection.

To set… In AMQ 6 In AMQ Broker 7

Related Information

For more information about how to handle slow consumers, see Handling Slow Consumers in
Using AMQ Broker.

7.2.5. Message Paging Configuration Properties

In AMQ Broker 7, the process by which the broker stores messages in memory and stores them to disk
is significantly different than AMQ 6. Therefore, most of the paging configuration properties in AMQ 6
do not apply to AMQ Broker 7.

In AMQ Broker 7, paging is configured on message addresses. Each address is configured to use a
maximum number of bytes. When this limit is reached, messages sent to that address are paged to an
on-disk buffer before they reach their queues. The queues are de-paged one page at a time when the
address has enough available space.

The following table compares the message paging size limits in AMQ 6 to the equivalent properties in
AMQ Broker 7:

To set… In AMQ 6 In AMQ Broker 7

CHAPTER 7. RESOURCE LIMITS AND POLICIES

29

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#handling_slow_messaging_consumers

The paging size maxPageSize

This is measured in number of
messages, and is variable based
on the number of available
messages.

<page-size-bytes>

This is measured in the physical
page size in bytes (not
messages).

To set… In AMQ 6 In AMQ Broker 7

7.2.6. Dead Letter Policy Configuration Properties

AMQ Broker 7 handles undeliverable and expired messages much differently than AMQ 6. Dead letter
policies are applied to addresses (instead of destinations), there are separate dead letter and expiry
destinations (instead of a single dead letter queue), and the dead letter policy configuration is
significantly different.

Dead Letter Policies in AMQ 6
In AMQ 6, an expired or undeliverable message would be sent to the dead letter queue (DLQ) configured
for each message’s destination. To configure the DLQ for a destination, you could use any of the
following dead letter policies:

sharedDeadLetterStrategy

The destination’s undeliverable messages are sent to the shared, default DLQ called
ActiveMQ.DLQ.

individualDeadLetterStrategy

The destination’s undeliverable messages are sent to a dedicated DLQ for this destination.

discardingDeadLetterStrategy

The destination’s undeliverable messages are discarded.

Within a destination’s dead letter policy, you could add the following configuration properties to
control the types of messages that should be sent to the destination’s DLQ:

AMQ 6 Configuration
Property

Description

processNotPersistent Whether non-persistent messages should be sent to the destination’s DLQ.
The default is false.

processExpired Whether expired messages should be sent to the destination’s DLQ. The
default is true.

expiration Whether an expiry should be applied to the messages sent to the
destination’s DLQ. The default is 0.

Dead Letter Policies in AMQ 7
In AMQ Broker 7, undeliverable messages are sent to the applicable dead letter address, and expired
messages are sent to the applicable expiry address.

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

30

In the broker.xml configuration file, the default address setting specifies a dead letter address and
expiry address. Undeliverable and expired messages will be delivered to the destinations specified by
these settings:

By default, the dead letter and expiry addresses specify the DLQ and ExpiryQueue destinations,
which are defined in the <addresses> section:

To configure a non-default dead letter policy for an address, you can add a <dead-letter-address>
and <expiry-address> to the address’s <address-setting> and specify the DLQ and expiry
queue it should use.

Unlike AMQ 6, in AMQ Broker 7, you cannot set an expiry time on messages sent to the DLQ. In
addition, both persistent and non-persistent messages are sent to the DLQ specified by the address’s
<dead-letter-address>.

...
<address-settings>
 <address-setting match="#">
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 ...
 </address-setting>
 ...
</address-settings>
...

...
<addresses>
 <address name="DLQ">
 <anycast>
 <queue name="DLQ" />
 </anycast>
 </address>
 <address name="ExpiryQueue">
 <anycast>
 <queue name="ExpiryQueue" />
 </anycast>
 </address>
...
</addresses>
...

CHAPTER 7. RESOURCE LIMITS AND POLICIES

31

CHAPTER 8. MESSAGE PERSISTENCE AND PAGING
AMQ Broker 7 provides persistence through either a message journal or a JDBC store. The method by
which the broker stores messages and pages them to disk is different than AMQ 6, and the
configuration properties you use to configure message persistence are changed.

8.1. MESSAGE PERSISTENCE CHANGES

AMQ Broker 7 uses a different type of message journal than AMQ 6, and it does not use a journal index.

AMQ 6 used KahaDB for a message store, and it maintained a message journal index to track the
position of each message inside the journal. This index enabled the broker to pull paged messages
from its journal in batches and place them in its cache.

By default, AMQ Broker 7 uses an in-memory message journal from which the broker can dispatch
messages. Therefore, AMQ Broker 7 does not use a message journal index. If a broker instance runs out
of memory, messages are paged as they arrive at the broker, but before they are queued. These
message page files are stored on disk sequentially in the same order in which they arrived. Then, when
memory is freed on the broker, the messages are moved from the page file to the journal on the
broker. Because the journal is read sequentially, there is no need to keep an index of messages in the
journal.

In addition, AMQ Broker 7 also offers a different JDBC-based message journal option that was not
available in AMQ 6.

The AMQ Broker 7 message journal supports the following shared file systems:

NFSv4

GFS2

Related Information

For more information about the default in-memory message journal, see About Journal-Based
Persistence in Using AMQ Broker.

For more information about the new JDBC-based persistence option, see About JDBC
Persistence in Using AMQ Broker.

8.2. HOW MESSAGE PERSISTENCE IS CONFIGURED

You use the BROKER_INSTANCE_DIR/etc/broker.xml configuration file to configure the broker
instance’s message journal.

The broker.xml configuration file contains the following default message journal configuration
properties:

<core>

 <name>0.0.0.0</name>

 <persistence-enabled>true</persistence-enabled>

 <journal-type>ASYNCIO</journal-type>

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

32

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#journal_persistence
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#jdbc_persistence

To configure the message journal, you can change the default values for any of the journal
configuration properties. You can also add additional configuration properties.

8.3. MESSAGE PERSISTENCE CONFIGURATION PROPERTY CHANGES

AMQ 6 and AMQ Broker 7 both offer a number of configuration properties to control how the broker
persists messages. This section compares the configuration properties in the AMQ 6 KahaDB journal to
the equivalent properties in the AMQ Broker 7 in-memory message journal.

For complete details on each message persistence configuration property for the in-memory message
journal, see the following:

Configuring the Broker’s Bindings Journal in Using AMQ Broker

Configuring the Broker’s Message Journal in Using AMQ Broker

8.3.1. Journal Size and Management

The following table compares the journal size and management configuration properties in AMQ 6 to
the equivalent properties in AMQ Broker 7:

To set… In AMQ 6 In AMQ Broker 7

The time interval between
cleaning up data logs that are no
longer used

cleanupInterval

The default is 30000 ms.

No equivalent. In AMQ Broker 7,
journal files that exceed the pool
size are no longer used.

 <paging-directory>./data/paging</paging-directory>

 <bindings-directory>./data/bindings</bindings-directory>

 <journal-directory>./data/journal</journal-directory>

 <large-messages-directory>./data/large-messages</large-messages-
directory>

 <journal-datasync>true</journal-datasync>

 <journal-min-files>2</journal-min-files>

 <journal-pool-files>-1</journal-pool-files>

 <journal-buffer-timeout>744000</journal-buffer-timeout>

 <disk-scan-period>5000</disk-scan-period>

 <max-disk-usage>90</max-disk-usage>

 <global-max-size>104857600</global-max-size>

 ...

</core>

CHAPTER 8. MESSAGE PERSISTENCE AND PAGING

33

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_bindings_journal
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#configuring_message_journal

The number of message store GC
cycles that must be completed
without cleaning up other files
before compaction is triggered

compactAcksAfterNoGC No equivalent. In AMQ Broker 7,
compaction is not related to
particular record types.

Whether compaction should be
run when the message store is
still growing, or if it should only
occur when it has stopped
growing

compactAcksIgnoresStore
Growth

The default is false.

No equivalent.

The minimum number of journal
files that can be stored on the
broker before it will compact
them

No equivalent. <journal-compact-min-
files>

The default is 10. If you set this
value to 0, compaction will be
deactivated.

The threshold to reach before
compaction starts

No equivalent. <journal-compact-
percentage>

The default is 30%. When less
than this percentage is
considered to be live data,
compaction will start.

The path to the top-level folder
that holds the message store’s
data files

directory AMQ Broker 7 has a separate
directory for each type of journal:

<journal-
directory> - The
default is
/data/journal.

<bindings-
directory> - The
default is
/data/bindings.

<paging-
directory> - The
default is
/data/paging.

<large-message-
directory> - The
default is
/data/large-
messages.

To set… In AMQ 6 In AMQ Broker 7

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

34

Whether the bindings directory
should be created automatically if
it does not already exist

No equivalent. <create-bindings-dir>

The default is true.

Whether the journal directory
should be created automatically if
it does not already exist

No equivalent. <create-journal-dir>

The default is true.

Whether the message store
should periodically compact older
journal log files that contain only
message acknowledgements

enableAckCompaction No equivalent.

The maximum size of the data log
files

journalMaxFileLength

The default is 32 MB.

<journal-file-size>

The default is 10485760 bytes
(10 MiB).

The policy that the broker should
use to preallocate the journal files
when a new journal file is needed

preallocationStrategy

The default is sparse_file.

No equivalent. By default,
preallocated journal files are
typically filled with zeroes, but it
can vary depending on the file
system.

The policy the broker should use
to preallocate the journal files

preallocationScope

The default is
entire_journal.

AMQ Broker 7 automatically
preallocates the journal files
specified by <journal-min-
files> when the broker
instance is started.

The journal type (either NIO or
AIO)

No equivalent. <journal-type>

You can choose either NIO (Java
NIO journal), or ASYNCIO (Linux
asynchronous I/O journal).

The minimum number of files that
the journal should maintain

No equivalent. <journal-min-files>

The number of journal files the
broker should keep when
reclaiming files

No equivalent. <journal-pool-files>

The default is -1, which means the
broker instance will never delete
files on the journal once created.

To set… In AMQ 6 In AMQ Broker 7

8.3.2. Write Boundaries

The following table compares the write boundary configuration properties in AMQ 6 to the equivalent
properties in AMQ Broker 7:

CHAPTER 8. MESSAGE PERSISTENCE AND PAGING

35

To set… In AMQ 6 In AMQ Broker 7

The time interval between writing
the metadata cache to disk

checkpointInterval

The default is 5000 ms.

No equivalent.

Whether the message store
should dispatch queue messages
to clients concurrently with
message storage

concurrentStoreAndDispa
tchQueues

The default is true.

No equivalent.

Whether the message store
should dispatch topic messages
to interested clients concurrently
with message storage

concurrentStoreAndDispa
tchTopics

The default is false.

No equivalent.

Whether a disk sync should be
performed after each non-
transactional journal write

enableJournalDiskSyncs

The default is true.

<journal-sync-
transactional>

Flushes transaction data to
disk whenever a transaction
boundary is reached (commit,
prepare, and rollback). The
default is true.

<journal-sync-
nontransactional>

Flushes non-transactional
message data to disk (sends
and acknowledgements). The
default is true.

When to flush the entire journal
buffer

No equivalent. <journal-buffer-
timeout>

The default for NIO is 3,333,333
nanoseconds, and the default for
AIO is 500,000 nanoseconds.

The amount of data to buffer
between journal disk writes

journalMaxWriteBatchSiz
e

The default is 4000 bytes.

No equivalent.

The size of the task queue used to
buffer the journal’s write requests

maxAsyncJobs

The default is 10000.

<journal-max-io>

This property controls the
maximum number of write
requests that can be in the I/O
queue at any given point. The
default for NIO is 1, and the
default for AIO is 500.

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

36

Whether to use fdatasync on
journal writes

No equivalent. <journal-datasync>

The default is true.

To set… In AMQ 6 In AMQ Broker 7

8.3.3. Index Configuration

AMQ 6 has a number of configuration properties for configuring the journal index. Because AMQ
Broker 7 does not use journal indexes, you do not need to configure any of these properties for your
broker instance.

8.3.4. Journal Archival

AMQ 6 has several configuration properties for controlling which files are archived and where the
archives are stored. In AMQ Broker 7, however, when old journal files are no longer needed, the broker
reuses them instead of archiving them. Therefore, you do not need to configure any journal archival
properties for your broker instance.

8.3.5. Journal Recovery

AMQ 6 has several configuration properties for controlling how the broker checks for corrupted
journal files and what to do when it encounters a missing journal file.

In AMQ Broker 7, however, you do not need to configure any journal recovery properties for your
broker instance. Journal files have a different format in AMQ Broker 7, which should prevent a
corrupted entry in the journal from corrupting the entire journal file. Even if the journal is partially
damaged, the broker should still be able to extract data from the undamaged entries.

CHAPTER 8. MESSAGE PERSISTENCE AND PAGING

37

CHAPTER 9. BROKER CLUSTERS
You can connect brokers together to form a cluster. Broker clusters enable you to distribute message
processing load and balance client connections. They also provide fault tolerance by increasing the
number of brokers to which clients can connect.

9.1. BROKER CLUSTERING CHANGES

In AMQ Broker 7, broker networks are called broker clusters. The brokers in the cluster are connected
by cluster connections (which reference connector elements). Members of a cluster can be
configured to discover each other dynamically (using UDP or JGroups), or statically (by manually
specifying a list of cluster members).

A cluster configuration is a required prerequisite for high-availability (HA). You must configure the
cluster before you can configure HA, even if the cluster consists of only a single live broker.

You can configure broker clusters in many different topologies, though symmetric and chain clusters
are the most common. Regardless of the topology, you can scale clusters up and down without
message loss (as long as you have configured the broker to send its messages to another broker in the
cluster).

Broker clusters distribute (and redistribute) messages differently than broker networks in AMQ 6. In
AMQ 6, messages always arrived on a specific queue and were then pulled from one broker to another
based on consumer interest. In AMQ Broker 7, queue definitions and consumers are shared across the
cluster, and messages are routed across the cluster as they are received at the broker.

IMPORTANT

Do not attempt to combine AMQ 6 brokers and AMQ Broker 7 brokers in the same
cluster.

9.2. HOW BROKER CLUSTERS ARE CONFIGURED

You configure a broker cluster by creating a broker instance for each member of the cluster, and then
adding the cluster settings to each broker instance.

Cluster settings consist of the following:

Discovery groups

For use with dynamic discovery, a discovery group defines how the broker instance discovers other
members in the cluster. Discovery can use either UDP or JGroups.

Broadcast groups

For use with dynamic discovery, a broadcast group defines how the broker instance transmits
cluster-related information to other members in the cluster. Broadcast can use either UDP or
JGroups, but it must match its discovery groups counterpart.

Cluster connections

How the broker instance should connect to other members of the cluster. You can specify a
discovery group or a static list of cluster members. You can also specify message redistribution and
max hop properties.

9.2.1. Creating a Broker Cluster

This procedure demonstrates how to create a basic, two-broker cluster with static discovery.

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

38

Procedure

1. Create the first broker instance by using the artemis create command.
This example creates a new broker instance called broker1.

$ sudo INSTALL_DIR/bin/artemis create broker1 --user user --password
pass --role amq

2. Create a second broker instance for the second member of the cluster.
For each additional broker instance, you should use the --port-offset parameter to avoid
port collisions with the previous broker instances.

This example creates a second broker instance called broker2.

$ sudo INSTALL_DIR/bin/artemis create broker2 --port-offset 100 --
user user --password pass --role amq

3. For the first broker instance, open the BROKER_INSTANCE_DIR/etc/broker.xml
configuration file and add the cluster settings.
For static discovery, you must add a connector and a static cluster connection. This example
configures broker1 to connect to broker2.

4. For the second broker instance, open the BROKER_INSTANCE_DIR/etc/broker.xml
configuration file and add the cluster settings.
This example configures broker2 to connect to broker1.

<!-- Connectors -->
<connectors>
 <connector name="netty-
connector">tcp://localhost:61616</connector>
 <!-- connector to broker2 -->
 <connector name="broker2-
connector">tcp://localhost:61617</connector>
</connectors>

<!-- Clustering configuration -->
<cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>STRICT</message-load-balancing>
 <max-hops>1</max-hops>
 <static-connectors>
 <connector-ref>broker2-connector</connector-ref>
 </static-connectors>
 </cluster-connection>
</cluster-connections>

<!-- Connectors -->
<connectors>
 <connector name="netty-
connector">tcp://localhost:61617</connector>
 <!-- connector to broker1 -->

CHAPTER 9. BROKER CLUSTERS

39

Related Information

For full details about creating broker clusters and configuring message redistribution and
client load balancing, see Clustering in Using AMQ Broker.

9.2.2. Additional Broker Cluster Topologies

Broker clusters can be connected in many different topologies. In AMQ Broker 7, symmetric and chain
clusters are the most common.

Example: Symmetric Cluster

In a full mesh topology, each broker is connected to every other broker in the cluster. This means that
every broker in the cluster is no more than one hop away from every other broker.

This example uses dynamic discovery to enable the brokers in the cluster to discover each other. By
setting max-hops to 1, each broker will connect to every other broker:

 <connector name="broker1-
connector">tcp://localhost:61616</connector>
</connectors>

<!-- Clustering configuration -->
<cluster-connections>
 <cluster-connection name="my-cluster">
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>STRICT</message-load-balancing>
 <max-hops>1</max-hops>
 <static-connectors>
 <connector-ref>broker1-connector</connector-ref>
 </static-connectors>
 </cluster-connection>
</cluster-connections>

<!-- Clustering configuration -->
<broadcast-groups>
 <broadcast-group name="my-broadcast-group">
 <group-address>${udp-address:231.7.7.7}</group-address>
 <group-port>9876</group-port>
 <broadcast-period>100</broadcast-period>
 <connector-ref>netty-connector</connector-ref>
 </broadcast-group>
</broadcast-groups>

<discovery-groups>
 <discovery-group name="my-discovery-group">
 <group-address>${udp-address:231.7.7.7}</group-address>
 <group-port>9876</group-port>
 <refresh-timeout>10000</refresh-timeout>
 </discovery-group>
</discovery-groups>

<cluster-connections>
 <cluster-connection name="my-cluster">

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

40

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#clustering

Example: Chain Cluster

In a chain cluster, the brokers form a linear "chain" with a broker on each end and all other brokers
connecting to the previous and next brokers in the chain (for example, A→B→C).

This example uses static discovery to connect three brokers into a chain cluster. Each broker connects
to the next broker in the chain, and max-hops is set to 2 to enable messages to flow through the full
chain.

The first broker is configured like this:

The second broker is configured like this:

 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>ON_DEMAND</message-load-balancing>
 <max-hops>1</max-hops>
 <discovery-group-ref discovery-group-name="my-discovery-group"/>
 </cluster-connection>
</cluster-connections>

<connectors>
 <connector name="netty-connector">tcp://localhost:61616</connector>
 <!-- connector to broker2 -->
 <connector name="broker2-connector">tcp://localhost:61716</connector>
</connectors>

<cluster-connections>
 <cluster-connection name="my-cluster">
 <address>jms</address>
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>STRICT</message-load-balancing>
 <max-hops>2</max-hops>
 <static-connectors allow-direct-connections-only="true">
 <connector-ref>broker2-connector</connector-ref>
 </static-connectors>
 </cluster-connection>
</cluster-connections>

<connectors>
 <connector name="netty-connector">tcp://localhost:61716</connector>
 <!-- connector to broker3 -->
 <connector name="broker3-connector">tcp://localhost:61816</connector>
</connectors>

<cluster-connections>
 <cluster-connection name="my-cluster">
 <address>jms</address>
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>

CHAPTER 9. BROKER CLUSTERS

41

Finally, the third broker is configured like this:

9.3. BROKER CLUSTER CONFIGURATION PROPERTIES

The following table compares the broker network configuration properties in AMQ 6 to the equivalent
cluster-connection properties in AMQ Broker 7:

To set… In AMQ 6 In AMQ Broker 7

Excluded destinations excludedDestinations No equivalent.

The number of hops that a
message can make through the
cluster

networkTTL

The default is 1, which means
that a message can make just one
hop to a neighboring broker.

<max-hops>

Sets this broker instance to load
balance messages to brokers
which might be connected to it
indirectly with other brokers are
intermediaries in a chain. The
default is 1, which means that
messages are distributed only to
other brokers directly connected
to this broker instance.

 <message-load-balancing>STRICT</message-load-balancing>
 <max-hops>1</max-hops>
 <static-connectors allow-direct-connections-only="true">
 <connector-ref>broker3-connector</connector-ref>
 </static-connectors>
 </cluster-connection>
</cluster-connections>

<connectors>
 <connector name="netty-connector">tcp://localhost:61816</connector>
</connectors>

<cluster-connections>
 <cluster-connection name="my-cluster">
 <address>jms</address>
 <connector-ref>netty-connector</connector-ref>
 <retry-interval>500</retry-interval>
 <use-duplicate-detection>true</use-duplicate-detection>
 <message-load-balancing>STRICT</message-load-balancing>
 <max-hops>0</max-hops>
 </cluster-connection>
</cluster-connections>

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

42

Replay messages when there are
no consumers

replayWhenNoConsumers No equivalent. However, you can
set <redistribution-
delay> to define the amount of
time with no consumers (in
milliseconds) after which
messages should be redelivered
as though arriving for the first
time.

Whether to broadcast advisory
messages for temporary
destinations in the cluster

bridgeTempDestinations

The default is true. This
property was typically used for
temporary destinations created
for request-reply messages. This
would enable consumers of these
messages to be connected to
another broker in the network
and still be able to send the reply
to the temporary destination
specified in the JMSReplyTo
header.

No equivalent. In AMQ Broker 7,
temporary destinations are never
clustered.

The credentials to use to
authenticate this broker with a
remote broker

userNamepassword <cluster-user><cluster-
password>

Set the route priority for a
connector

decreaseNetworkConsumer
Priority

The default is false. If set to
true, local consumers have a
priority of 0, and network
subscriptions have a priority of -
5. In addition, the priority of a
network subscription is reduced
by 1 for every network hop that it
traverses.

No equivalent.

Whether and how messages
should be distributed between
other brokers in the cluster

No equivalent. <message-load-
balancing>

This can be set to OFF (no load
balancing), STRICT (forward
messages to all brokers in the
cluster that have a matching
queue), or ON_DEMAND (forward
messages only to brokers in the
cluster that have active
consumers or a matching
selector). The default is
ON_DEMAND.

To set… In AMQ 6 In AMQ Broker 7

CHAPTER 9. BROKER CLUSTERS

43

Enable a cluster network
connection to both produce and
consume messages

duplex

By default, network connectors
are unidirectional. However, you
could set them to duplex to
enable messages to flow in both
directions. This was typically
used for hub-and-spoke networks
in which the hub was behind a
firewall.

No equivalent. Cluster
connections are unidirectional
only. However, you can configure
a pair of cluster connections
between each broker, one from
each end. For more information,
see About Cluster Connections in
Using AMQ Broker.

To set… In AMQ 6 In AMQ Broker 7

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

44

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#cluster_connections

CHAPTER 10. HIGH AVAILABILITY AND FAILOVER
After creating a cluster configuration, you can link broker instances together to form high availability
(HA) pairs. An HA pair consists of a master broker that serves client requests, and one or more slave
brokers that replace the master if it can no longer communicate with clients.

In AMQ Broker 7, a cluster configuration is required for HA. Broker clusters can consist of either a set
of non-HA brokers or HA pairs.

AMQ Broker 7 provides the following HA policies:

Replication

Replication synchronizes the data between the master and slave brokers over the network. With
replication, you can enable failback to return control to the master broker when it comes back
online after a failure event and allow clients to fail back to it. You can also create HA groups in
which multiple master brokers share one or more slave brokers, and colocate slave brokers in the
same JVM as the master broker.

Shared Store

Shared store provides a location for the master and slave brokers to share messaging data. Using a
shared store is generally preferable, as it offers the following benefits over replication:

Performance (shared stores are faster)

No split-brain issues

Fewer brokers required to maintain quorum (replication requires at least three)
Like with replication, you can enable failback to return control to the master broker after a
failure event and allow clients to fail back to it. You can configure multiple slave brokers for
a master broker, and colocate slave brokers.

For more information about HA and failover, see High Availability and Failover in Using AMQ Broker.

10.1. HIGH AVAILABILITY AND FAILOVER CHANGES

High availability in AMQ Broker 7 differs from AMQ 6 based on how the master is determined and when
the broker connections become active.

In AMQ Broker 7, the master and slave roles are fixed. You specify which broker instance is the master,
and the slave only becomes active in certain conditions. In AMQ 6, the master and slave roles were not
fixed. Instead, the brokers in an HA pair would compete for a lock, and the winner would become the
master.

In AMQ Broker 7, in an HA pair, the slave broker’s acceptors are active even if the broker is inactive. In
AMQ 6, the slave broker’s transport connectors did not become active until the broker became active.

10.2. HOW HIGH AVAILABILITY IS CONFIGURED

You configure HA by adding an HA policy configuration to the
BROKER_INSTANCE_DIR/etc/broker.xml configuration file of each broker.

Example: HA Pair with Shared Store

The master broker is configured like this. By setting failover-on-shutdown to true, the HA pair
will fail over to the slave broker if the master broker is shut down:

CHAPTER 10. HIGH AVAILABILITY AND FAILOVER

45

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#high_availability

The slave broker is configured like this. By setting failover-on-shutdown to true, this slave
broker will become the master if the current master broker is shut down:

Related Information

For full details on configuring HA policies, see the following topics:

Configuring Replication in Using AMQ Broker

Using a Shared Store for High Availability in Using AMQ Broker

Colocating Slave Brokers in Using AMQ Broker

<configuration>
 <core>
 ...
 <ha-policy>
 <shared-store>
 <master/>
 <failover-on-shutdown>true</failover-on-shutdown>
 </shared-store>
 </ha-policy>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <ha-policy>
 <shared-store>
 <slave/>
 <failover-on-shutdown>true</failover-on-shutdown>
 </shared-store>
 </ha-policy>
 ...
 </core>
</configuration>

Red Hat JBoss AMQ 7.0 Migrating to Red Hat JBoss AMQ 7

46

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#using_replication
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#shared_store
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#using_colocation

CHAPTER 11. ADDITIONAL TOPICS
The following table describes the resources you can use to learn about AMQ Broker 7 features that are
not covered in this guide.

For more information about… See…

High availability and failover High Availability and Failover in Using AMQ Broker

Broker administration Management in Using AMQ Broker

Revised on 2017-10-13 14:33:04 EDT

CHAPTER 11. ADDITIONAL TOPICS

47

https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#high_availability
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/html-single/using_amq_broker/#management

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. WHEN TO GET ASSISTANCE BEFORE MIGRATING
	1.2. SUPPORTED MIGRATION PATHS
	1.3. UNDERSTANDING THE IMPORTANT NEW CONCEPTS IN AMQ 7
	1.3.1. Architectural Changes in AMQ 7
	Transport Connector Changes for Incoming Connections
	Message Store and Paging Changes
	Broker Deployment Changes

	1.3.2. Message Address Changes in AMQ 7

	1.4. REVIEWING NEW FEATURES AND KNOWN ISSUES IN AMQ 7
	1.5. DOCUMENT CONVENTIONS
	The sudo Command
	About the Use of File Paths in this Document

	CHAPTER 2. PREPARING FOR THE MIGRATION
	2.1. MIGRATION REQUIREMENTS
	2.2. CREATING A BROKER INSTANCE
	2.3. UNDERSTANDING THE BROKER INSTANCE DIRECTORY STRUCTURE
	2.4. HOW BROKERS ARE CONFIGURED IN AMQ 7
	2.5. VERIFYING THAT CLIENTS CAN CONNECT TO THE BROKER INSTANCE

	CHAPTER 3. ACCEPTING INCOMING CONNECTIONS
	3.1. INCOMING NETWORK CONNECTIONS CHANGES
	3.2. HOW ACCEPTORS ARE CONFIGURED

	CHAPTER 4. USER AUTHENTICATION
	4.1. USER AUTHENTICATION CHANGES
	4.2. HOW USER AUTHENTICATION IS CONFIGURED

	CHAPTER 5. MESSAGE ADDRESSES AND QUEUES
	5.1. ADDRESSING CHANGES
	5.2. HOW ADDRESSING IS CONFIGURED

	CHAPTER 6. SECURITY
	6.1. HOW TRANSPORT LAYER SECURITY IS CONFIGURED
	6.2. AUTHORIZATION
	6.2.1. Authorization Changes
	6.2.2. How Authorization is Configured

	CHAPTER 7. RESOURCE LIMITS AND POLICIES
	7.1. HOW RESOURCE LIMITS AND POLICIES ARE CONFIGURED
	7.2. RESOURCE LIMIT AND POLICY CONFIGURATION PROPERTIES
	7.2.1. Queue Management Configuration Properties
	7.2.2. Producer Policy Configuration Properties
	7.2.3. Consumer Policy Configuration Properties
	7.2.4. Slow Consumer Handling Configuration Properties
	7.2.5. Message Paging Configuration Properties
	7.2.6. Dead Letter Policy Configuration Properties
	Dead Letter Policies in AMQ 6
	Dead Letter Policies in AMQ 7

	CHAPTER 8. MESSAGE PERSISTENCE AND PAGING
	8.1. MESSAGE PERSISTENCE CHANGES
	8.2. HOW MESSAGE PERSISTENCE IS CONFIGURED
	8.3. MESSAGE PERSISTENCE CONFIGURATION PROPERTY CHANGES
	8.3.1. Journal Size and Management
	8.3.2. Write Boundaries
	8.3.3. Index Configuration
	8.3.4. Journal Archival
	8.3.5. Journal Recovery

	CHAPTER 9. BROKER CLUSTERS
	9.1. BROKER CLUSTERING CHANGES
	9.2. HOW BROKER CLUSTERS ARE CONFIGURED
	9.2.1. Creating a Broker Cluster
	9.2.2. Additional Broker Cluster Topologies

	9.3. BROKER CLUSTER CONFIGURATION PROPERTIES

	CHAPTER 10. HIGH AVAILABILITY AND FAILOVER
	10.1. HIGH AVAILABILITY AND FAILOVER CHANGES
	10.2. HOW HIGH AVAILABILITY IS CONFIGURED

	CHAPTER 11. ADDITIONAL TOPICS

