
Red Hat 3scale API Management 2.3

Infrastructure

Learn more about deploying Red Hat 3scale API Management on different platforms.

Last Updated: 2019-10-22

Red Hat 3scale API Management 2.3 Infrastructure

Learn more about deploying Red Hat 3scale API Management on different platforms.

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide documents deployment and infrastructure management with Red Hat 3scale API
Management 2.3.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UPGRADE 3SCALE API MANAGEMENT 2.2 TO 2.3
1.1. PREREQUISITES
1.2. SELECT THE PROJECT
1.3. GATHER THE NEEDED VALUES
1.4. PATCH APICAST
1.5. VERIFY UPGRADE
1.6. UPGRADE APICAST IN OPENSHIFT

CHAPTER 2. BUILDING A 3SCALE API MANAGEMENT SYSTEM IMAGE WITH THE ORACLE DATABASE
RELATIONAL DATABASE MANAGEMENT SYSTEM

2.1. BEFORE YOU BEGIN
2.1.1. Obtain Oracle software components
2.1.2. Meet prerequisites

2.2. PREPARING ORACLE DATABASE
2.3. BUILDING THE SYSTEM IMAGE

CHAPTER 3. 3SCALE API MANAGEMENT ON-PREMISES INSTALLATION GUIDE
3.1. PREREQUISITES
3.2. 3SCALE AMP OPENSHIFT TEMPLATES
3.3. SYSTEM REQUIREMENTS

3.3.1. Environment Requirements
3.3.2. Hardware Requirements

3.4. CONFIGURE NODES AND ENTITLEMENTS
3.5. DEPLOY THE 3SCALE AMP ON OPENSHIFT USING A TEMPLATE

3.5.1. Prerequisites
3.5.2. Import the AMP Template
3.5.3. Configure SMTP Variables (Optional)

3.6. 3SCALE AMP TEMPLATE PARAMETERS
3.7. USE APICAST WITH AMP ON OPENSHIFT

3.7.1. Deploy APIcast Templates on an Existing OpenShift Cluster Containing your AMP
3.7.2. Connect APIcast from an OpenShift Cluster Outside an OpenShift Cluster Containing your AMP
3.7.3. Connect APIcast from Other Deployments
3.7.4. Change Built-In APIcast Default Behavior
3.7.5. Connect Multiple APIcast Deployments on a Single OpenShift Cluster over Internal Service Routes

3.8. 7. TROUBLESHOOTING
3.8.1. Previous Deployment Leaves Dirty Persistent Volume Claims
3.8.2. Incorrectly Pulling from the Docker Registry
3.8.3. Permissions Issues for MySQL when Persistent Volumes are Mounted Locally
3.8.4. Unable to Upload Logo or Images because Persistent Volumes are not Writable by OpenShift
3.8.5. Create Secure Routes on OpenShift
3.8.6. APIcast on a Different Project from AMP Fails to Deploy due to Problem with Secrets

CHAPTER 4. 3SCALE API MANAGEMENT ON-PREMISES OPERATIONS AND SCALING GUIDE
4.1. INTRODUCTION

4.1.1. Prerequisites
4.1.2. Further Reading

4.2. RE-DEPLOYING APICAST
4.3. APICAST BUILT-IN WILDCARD ROUTING

4.3.1. Modify Wildcards
4.4. SCALING UP AMP ON PREMISES

4.4.1. Scaling up Storage
4.4.1.1. Method 1: Backup and Swap Persistent Volumes

4
4
4
4
5
9

10

11
11
11
11
11

12

14
14
14
14
14
14
15
15
15
16
17
18
21
22
22
23
23
24
25
25
25
26
26
27
27

28
28
28
28
28
29
29
29
29
30

Table of Contents

1

. .

4.4.1.2. Method 2: Back up and Redeploy AMP
4.4.2. Scaling up Performance

4.4.2.1. Configuring 3scale On-Premises Deployments
4.4.2.2. Vertical and Horizontal Hardware Scaling
4.4.2.3. Scaling Up Routers
4.4.2.4. Further Reading

4.5. OPERATIONS TROUBLESHOOTING
4.5.1. Access Your Logs
4.5.2. Job Queues

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT
5.1. PART 1: FUSE ON OPENSHIFT SETUP

5.1.1. Step 1
5.1.2. Step 2
5.1.3. Step 3
5.1.4. Step 4
5.1.5. Step 5
5.1.6. Step 6
5.1.7. Step 7
5.1.8. Step 8
5.1.9. Step 9
5.1.10. Step 10
5.1.11. Step 11

5.2. PART 2: CONFIGURE 3SCALE API MANAGEMENT
5.2.1. Step 1
5.2.2. Step 2
5.2.3. Step 3
5.2.4. Step 4
5.2.5. Step 5

5.3. PART 3: INTEGRATION OF YOUR API SERVICES
5.4. PART 4: TESTING THE API AND API MANAGEMENT

5.4.1. Step 1
5.4.2. Step 2
5.4.3. Step 3
5.4.4. Step 4
5.4.5. Step 5

30
30
30
31
31
31
31
32
32

33
34
34
35
35
36
37
38
38
39
39
40
41
41
41
41

42
43
43
44
44
44
45
45
46
46

Red Hat 3scale API Management 2.3 Infrastructure

2

Table of Contents

3

CHAPTER 1. UPGRADE 3SCALE API MANAGEMENT 2.2 TO 2.3
The 2.3 version of 3scale API Management only updates the APIcast component of the product.

Perform the steps in this document to upgrade the APIcast to version 2.3.

1.1. PREREQUISITES

You must be running 3scale On-Premises 2.2

OpenShift CLI

WARNING

Red Hat recommends that you establish a maintenance window when performing
the upgrade because this process may cause a disruption in service.

1.2. SELECT THE PROJECT

1. From a terminal session, log in to your OpenShift cluster using the following command. Here,
<YOUR_OPENSHIFT_CLUSTER> is the URL of your OpenShift cluster.

oc login https://<YOUR_OPENSHIFT_CLUSTER>:8443

2. Select the project you want to upgrade using the following command. Here, <3scale-22-project>
is the name of your project.

oc project <3scale-22-project>

1.3. GATHER THE NEEDED VALUES

1. Gather the following values from the APIcast component of your current 2.2 deployment:

APICAST_MANAGEMENT_API

OPENSSL_VERIFY

APICAST_RESPONSE_CODES

2. Export these values from the current deployment into the active shell.

export `oc env dc/apicast-production --list | grep -E
'^(APICAST_MANAGEMENT_API|OPENSSL_VERIFY|APICAST_RESPONSE_CODES)=' |
tr "\n" ' ' `

3. Optionally, to query individual values from the OpenShift CLI, run the following oc get
command, where <variable_name> is the name of the variable you want to query.

Red Hat 3scale API Management 2.3 Infrastructure

4

oc get "-o=custom-columns=NAMES:.spec.template.spec.containers[0].env[?(.name==\"
<variable_name>\")].value" dc/apicast-production

4. Set the value for the new version of the 3scale API Management release.

export AMP_RELEASE=2.3.0

5. Set the values for the new environment variables.

export AMP_APICAST_IMAGE=registry.access.redhat.com/3scale-amp23/apicast-gateway

6. Set the APICAST_ACCESS_TOKEN environment variable with the valid Access Token for
Account Management API. You can extract it from the THREESCALE_PORTAL_ENDPOINT
environment variable.

oc env dc/apicast-production --list | grep THREESCALE_PORTAL_ENDPOINT

This will return the following output:

THREESCALE_PORTAL_ENDPOINT=http://<ACCESS_TOKEN>@system-
master:3000/master/api/proxy/configs

7. Export the <ACCESS_TOKEN> value to the environment variable
APICAST_ACCESS_TOKEN.

export APICAST_ACCESS_TOKEN=<ACCESS_TOKEN>

8. Confirm that the necessary values are exported to the active shell.

echo AMP_RELEASE=$AMP_RELEASE
echo AMP_APICAST_IMAGE=$AMP_APICAST_IMAGE
echo APICAST_ACCESS_TOKEN=$APICAST_ACCESS_TOKEN
echo APICAST_MANAGEMENT_API=$APICAST_MANAGEMENT_API
echo OPENSSL_VERIFY=$OPENSSL_VERIFY
echo APICAST_RESPONSE_CODES=$APICAST_RESPONSE_CODES

1.4. PATCH APICAST

1. To patch the apicast-staging deployment configuration, run the following oc patch command.

oc patch dc/apicast-staging -p "
metadata:
 name: apicast-staging
 labels:
 app: APIcast
 3scale.component: apicast
 3scale.component-element: staging
spec:
 replicas: 1
 selector:
 deploymentConfig: apicast-staging
 strategy:

CHAPTER 1. UPGRADE 3SCALE API MANAGEMENT 2.2 TO 2.3

5

 rollingParams:
 intervalSeconds: 1
 maxSurge: 25%
 maxUnavailable: 25%
 timeoutSeconds: 1800
 updatePeriodSeconds: 1
 type: Rolling
 template:
 metadata:
 labels:
 deploymentConfig: apicast-staging
 app: APIcast
 3scale.component: apicast
 3scale.component-element: staging
 annotations:
 prometheus.io/scrape: 'true'
 prometheus.io/port: '9421'
 spec:
 containers:
 - env:
 - name: THREESCALE_PORTAL_ENDPOINT
 value: \"http://${APICAST_ACCESS_TOKEN}@system-
master:3000/master/api/proxy/configs\"
 - name: APICAST_CONFIGURATION_LOADER
 value: \"lazy\"
 - name: APICAST_CONFIGURATION_CACHE
 value: \"0\"
 - name: THREESCALE_DEPLOYMENT_ENV
 value: \"sandbox\"
 - name: APICAST_MANAGEMENT_API
 value: \"${APICAST_MANAGEMENT_API}\"
 - name: BACKEND_ENDPOINT_OVERRIDE
 value: http://backend-listener:3000
 - name: OPENSSL_VERIFY
 value: '${APICAST_OPENSSL_VERIFY}'
 - name: APICAST_RESPONSE_CODES
 value: '${APICAST_RESPONSE_CODES}'
 - name: REDIS_URL
 value: \"redis://system-redis:6379/2\"
 image: amp-apicast:latest
 imagePullPolicy: IfNotPresent
 name: apicast-staging
 resources:
 limits:
 cpu: 100m
 memory: 128Mi
 requests:
 cpu: 50m
 memory: 64Mi
 livenessProbe:
 httpGet:
 path: /status/live
 port: 8090
 initialDelaySeconds: 10
 timeoutSeconds: 5
 periodSeconds: 10

Red Hat 3scale API Management 2.3 Infrastructure

6

 readinessProbe:
 httpGet:
 path: /status/ready
 port: 8090
 initialDelaySeconds: 15
 timeoutSeconds: 5
 periodSeconds: 30
 ports:
 - containerPort: 8080
 protocol: TCP
 - containerPort: 8090
 protocol: TCP
 - name: metrics
 containerPort: 9421
 protocol: TCP
 triggers:
 - type: ConfigChange
 - type: ImageChange
 imageChangeParams:
 automatic: true
 containerNames:
 - apicast-staging
 from:
 kind: ImageStreamTag
 name: amp-apicast:latest
"

2. To patch the apicast-production deployment configuration, run the following oc patch
command.

oc patch dc/apicast-production -p "
metadata:
 name: apicast-production
 labels:
 app: APIcast
 3scale.component: apicast
 3scale.component-element: production
spec:
 replicas: 1
 selector:
 deploymentConfig: apicast-production
 strategy:
 rollingParams:
 intervalSeconds: 1
 maxSurge: 25%
 maxUnavailable: 25%
 timeoutSeconds: 1800
 updatePeriodSeconds: 1
 type: Rolling
 template:
 metadata:
 labels:
 deploymentConfig: apicast-production
 app: APIcast
 3scale.component: apicast
 3scale.component-element: production

CHAPTER 1. UPGRADE 3SCALE API MANAGEMENT 2.2 TO 2.3

7

 annotations:
 prometheus.io/scrape: 'true'
 prometheus.io/port: '9421'
 spec:
 initContainers:
 - name: system-master-svc
 image: amp-apicast:latest
 command: ['sh', '-c', 'until \$(curl --output /dev/null --silent --fail --head http://system-
master:3000/status); do sleep $SLEEP_SECONDS; done']
 activeDeadlineSeconds: 1200
 env:
 - name: SLEEP_SECONDS
 value: \"1\"
 containers:
 - env:
 - name: THREESCALE_PORTAL_ENDPOINT
 value: \"http://${APICAST_ACCESS_TOKEN}@system-
master:3000/master/api/proxy/configs\"
 - name: APICAST_CONFIGURATION_LOADER
 value: \"boot\"
 - name: APICAST_CONFIGURATION_CACHE
 value: \"300\"
 - name: THREESCALE_DEPLOYMENT_ENV
 value: \"production\"
 - name: APICAST_MANAGEMENT_API
 value: \"${APICAST_MANAGEMENT_API}\"
 - name: BACKEND_ENDPOINT_OVERRIDE
 value: http://backend-listener:3000
 - name: OPENSSL_VERIFY
 value: '${APICAST_OPENSSL_VERIFY}'
 - name: APICAST_RESPONSE_CODES
 value: '${APICAST_RESPONSE_CODES}'
 - name: REDIS_URL
 value: \"redis://system-redis:6379/1\"
 image: amp-apicast:latest
 imagePullPolicy: IfNotPresent
 name: apicast-production
 resources:
 limits:
 cpu: 1000m
 memory: 128Mi
 requests:
 cpu: 500m
 memory: 64Mi
 livenessProbe:
 httpGet:
 path: /status/live
 port: 8090
 initialDelaySeconds: 10
 timeoutSeconds: 5
 periodSeconds: 10
 readinessProbe:
 httpGet:
 path: /status/ready
 port: 8090
 initialDelaySeconds: 15

Red Hat 3scale API Management 2.3 Infrastructure

8

 timeoutSeconds: 5
 periodSeconds: 30
 ports:
 - containerPort: 8080
 protocol: TCP
 - containerPort: 8090
 protocol: TCP
 - name: metrics
 containerPort: 9421
 protocol: TCP
 triggers:
 - type: ConfigChange
 - type: ImageChange
 imageChangeParams:
 automatic: true
 containerNames:
 - system-master-svc
 - apicast-production
 from:
 kind: ImageStreamTag
 name: amp-apicast:latest
"

3. To patch the amp-apicast image stream, run the following oc patch command.

oc patch is/amp-apicast -p "
metadata:
 name: amp-apicast
 labels:
 app: APIcast
 3scale.component: apicast
 annotations:
 openshift.io/display-name: AMP APIcast
spec:
 tags:
 - name: latest
 annotations:
 openshift.io/display-name: AMP APIcast (latest)
 from:
 kind: ImageStreamTag
 name: "${AMP_RELEASE}"
 - name: "${AMP_RELEASE}"
 annotations:
 openshift.io/display-name: AMP APIcast ${AMP_RELEASE}
 from:
 kind: DockerImage
 name: ${AMP_APICAST_IMAGE}
 importPolicy:
 insecure: false
"

4. Set importPolicy.insecure to true if the server is allowed to bypass certificate verification or
connect directly over HTTP during image import.

1.5. VERIFY UPGRADE

CHAPTER 1. UPGRADE 3SCALE API MANAGEMENT 2.2 TO 2.3

9

After you have performed the upgrade procedure, verify the success of the upgrade by making test API
calls to the updated APIcast.

NOTE

It may take some time for the redeployment operations to complete in OpenShift.

1.6. UPGRADE APICAST IN OPENSHIFT

If you deployed APIcast outside of the complete 3scale API Management on-premises installation using
the apicast.yml OpenShift template, take the following steps to upgrade your deployment. The steps
assume that the name of the deployment configuration is apicast, which is the default value in the
apicast.yml template of the 3scale version 2.2. If you used a different name, you must adjust the
commands accordingly.

1. Update the container image

oc patch dc/apicast --patch='{"spec":{"template":{"spec":{"containers":[{"name": "apicast",
"image":"registry.access.redhat.com/3scale-amp23/apicast-gateway"}]}}}}'

2. Add the port definition for port 9421 used for Prometheus metrics

oc patch dc/apicast --patch='{"spec": {"template": {"spec": {"containers": [{"name":
"apicast","ports": [{"name": "metrics", "containerPort": 9421, "protocol": "TCP"}]}]}}}}'

3. Add Prometheus annotations

oc patch dc/apicast --patch='{"spec": {"template": {"metadata": {"annotations":
{"prometheus.io/scrape": "true", "prometheus.io/port": "9421"}}}}}'

4. Remove the APICAST_WORKERS environment variable

oc env dc/apicast APICAST_WORKERS-

APICAST_WORKERS allows specifying the value for the directive worker_processes. By default,
APIcast uses the value auto, which triggers auto-detection of the best number of workers, when running
in OpenShift or Kubernetes environments. Thus, it is recommended not set the APICAST_WORKERS
value explicitly and let APIcast perform auto-detection.

NOTE

The APICAST_WORKERS parameter is no longer present in the apicast.yml OpenShift
template. In case you are using scripts that deploy the template with
APICAST_WORKERS parameter, make sure you remove this parameter from the scripts,
otherwise the deployment will fail with the following error: error: unexpected parameter
name "APICAST_WORKERS"

Red Hat 3scale API Management 2.3 Infrastructure

10

http://nginx.org/en/docs/ngx_core_module.html#worker_processes

CHAPTER 2. BUILDING A 3SCALE API MANAGEMENT SYSTEM
IMAGE WITH THE ORACLE DATABASE RELATIONAL

DATABASE MANAGEMENT SYSTEM
By default, 3scale has a component called system which stores configuration data in a MySQL
database. You have the option to override the default database and store your information in an external
Oracle Database. Follow the steps in this document to build a custom system container image with your
own Oracle Database client binaries and deploy 3scale to OpenShift.

2.1. BEFORE YOU BEGIN

2.1.1. Obtain Oracle software components

Before you can build the custom 3scale system container image, you must acquire a supported version
of the following Oracle software components:

Oracle Instant Client Package Basic or Basic Light

Oracle Instant Client Package SDK

Oracle Instant Client Package ODBC

2.1.2. Meet prerequisites

You must also meet the following prerequisites:

A supported version of Oracle Database accessible from your OpenShift cluster

Access to the Oracle Database system user for installation procedures

Possess the Red Hat 3scale 2.3 amp.yml template

2.2. PREPARING ORACLE DATABASE

1. Create a new database
The following settings are required for the Oracle Database to work with 3scale:

ALTER SYSTEM SET max_string_size=extended SCOPE=SPFILE;

ALTER SYSTEM SET compatible='12.2.0.1' SCOPE=SPFILE;

2. Collect the database details.
Get the following information that will be needed for 3scale configuration:

Oracle Database URL

Oracle Database service name

Oracle Database system user name and password

Oracle Database service name

CHAPTER 2. BUILDING A 3SCALE API MANAGEMENT SYSTEM IMAGE WITH THE ORACLE DATABASE RELATIONAL DATABASE MANAGEMENT SYSTEM

11

https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/2798521
https://docs.oracle.com/cd/E11882_01/network.112/e41945/glossary.htm#BGBGIHFG

For information on creating a new database in Oracle Database, refer to the Oracle documentation.

2.3. BUILDING THE SYSTEM IMAGE

1. clone the 3scale-amp-openshift-templates github repository

2. place your Oracle Database Instant Client Package files into the 3scale-amp-openshift-
templates/amp/system-oracle/oracle-client-files directory

3. run the oc new-app command with the -f option and specify the build.yml OpenShift template

$ oc new-app -f build.yml

4. run the oc new-app command with the -f option, specifying the amp.yml OpenShift template,
and the -p option, specifying the WILDCARD_DOMAIN parameter with the domain of your
OpenShift cluster

$ oc new-app -f amp.yml -p WILDCARD_DOMAIN=example.com

5. enter the following shell for loop command, specifying the following information you collected
in the Preparing Oracle Database section previously:

{USER}: the username that will represent 3scale in your Oracle Database

{PASSWORD}: the password for USER

{ORACLE_DB_URL}: the URL of your Oracle Database

{DATABASE}: the service name of the database you created in Oracle Database

{PORT}: the port number of your Oracle Database

for dc in system-app system-resque system-sidekiq system-sphinx; do oc env dc/$dc --
overwrite DATABASE_URL="oracle-enhanced://{USER}:
{PASSWORD}@{ORACLE_DB_URL}:{PORT}/{DATABASE}"; done

6. enter the following oc patch command, specifying the same USER, PASSWORD,
ORACLE_DB_URL, PORT, and DATABASE values that you provided in the previous step
above:

$ oc patch dc/system-app -p '[{"op": "replace", "path":
"/spec/strategy/rollingParams/pre/execNewPod/env/1/value", "value": "oracle-
enhanced://{USER}:{PASSWORD}@{ORACLE_DB_URL}:{PORT}/{DATABASE}"}]' --
type=json

7. enter the following oc patch command, specifying your own Oracle Database system user
password in the SYSTEM_PASSWORD field:

$ oc patch dc/system-app -p '[{"op": "add", "path":
"/spec/strategy/rollingParams/pre/execNewPod/env/-", "value": {"name":
"ORACLE_SYSTEM_PASSWORD", "value": "SYSTEM_PASSWORD"}}]' --type=json

8. enter the oc start-build command to build the new system image:

Red Hat 3scale API Management 2.3 Infrastructure

12

https://docs.oracle.com/en/database/
https://github.com/3scale/3scale-amp-openshift-templates

oc start-build 3scale-amp-system-oracle --from-dir=.

CHAPTER 2. BUILDING A 3SCALE API MANAGEMENT SYSTEM IMAGE WITH THE ORACLE DATABASE RELATIONAL DATABASE MANAGEMENT SYSTEM

13

CHAPTER 3. 3SCALE API MANAGEMENT ON-PREMISES
INSTALLATION GUIDE

This guide walks you through steps to install 3scale 2.3 (on-premises) on OpenShift using OpenShift
templates.

3.1. PREREQUISITES

You must configure 3scale servers for UTC (Coordinated Universal Time).

3.2. 3SCALE AMP OPENSHIFT TEMPLATES

Red Hat 3scale API Management Platform (AMP) 2.3 provides an OpenShift template. You can use this
template to deploy AMP onto OpenShift Container Platform.

The 3scale AMP template is composed of the following:

Two built-in APIcast API gateways

One AMP admin portal and developer portal with persistent storage

3.3. SYSTEM REQUIREMENTS

This section lists the requirements for the 3scale API Management OpenShift template.

3.3.1. Environment Requirements

3scale API Management requires an environment specified in supported configurations.

Persistent Volumes:

3 RWO (ReadWriteOnce) persistent volumes for Redis and MySQL persistence

1 RWX (ReadWriteMany) persistent volume for CMS and System-app Assets

The RWX persistent volume must be configured to be group writable. For a list of persistent volume
types that support the required access modes, see the OpenShift documentation .

3.3.2. Hardware Requirements

Hardware requirements depend on your usage needs. Red Hat recommends that you test and configure
your environment to meet your specific requirements. Following are the recommendations when
configuring your environment for 3scale on OpenShift:

Compute optimized nodes for deployments on cloud environments (AWS c4.2xlarge or Azure
Standard_F8).

Very large installations may require a separate node (AWS M4 series or Azure Av2 series) for
Redis if memory requirements exceed your current node’s available RAM.

Separate nodes between routing and compute tasks.

Dedicated compute nodes to 3scale specific tasks.

Set the PUMA_WORKERS variable of the backend listener to the number of cores in your

Red Hat 3scale API Management 2.3 Infrastructure

14

https://access.redhat.com/articles/2798521
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#persistent-volumes

Set the PUMA_WORKERS variable of the backend listener to the number of cores in your
compute node.

3.4. CONFIGURE NODES AND ENTITLEMENTS

Before you can deploy 3scale on OpenShift, you must configure your nodes and the entitlements
required for your environment to fetch images from Red Hat.

Perform the following steps to configure the entitlements:

1. Install Red Hat Enterprise Linux (RHEL) on each of your nodes.

2. Register your nodes with Red Hat using the Red Hat Subscription Manager (RHSM), via the
interface or the command line.

3. Attach your nodes to your 3scale subscription using RHSM.

4. Install OpenShift on your nodes, complying with the following requirements:

Use a supported OpenShift version.

Configure persistent storage on a file system that supports multiple writes.

5. Install the OpenShift command line interface .

6. Enable access to the rhel-7-server-3scale-amp-2.3-rpms repository using the subscription
manager:

sudo subscription-manager repos --enable=rhel-7-server-3scale-amp-2.3-rpms

7. Install the 3scale-amp-template AMP template. The template will be saved at
/opt/amp/templates.

sudo yum install 3scale-amp-template

3.5. DEPLOY THE 3SCALE AMP ON OPENSHIFT USING A TEMPLATE

3.5.1. Prerequisites

An OpenShift cluster configured as specified in the Chapter 3, Configure Nodes and
Entitlements section.

A domain, preferably wildcard, that resolves to your OpenShift cluster.

Access to the Red Hat container catalog.

(Optional) A working SMTP server for email functionality.

Follow these procedures to install AMP on OpenShift using a .yml template:

Import the AMP Template

Configure SMTP Variables (Optional)

CHAPTER 3. 3SCALE API MANAGEMENT ON-PREMISES INSTALLATION GUIDE

15

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/index.html
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/rhsm/index#reg-gui
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/using_red_hat_subscription_management/registration_con#register_cli
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/using_red_hat_subscription_management/manage_systems_con#attach_sub_system_proc
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/installation_and_configuration/installing-a-cluster
https://access.redhat.com/articles/2798521
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/installation_and_configuration/configuring-persistent-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/cli_reference/cli-reference-get-started-cli#installing-the-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/index#envirornment-requirements
https://access.redhat.com/containers/#/faq

3.5.2. Import the AMP Template

Perfrom the following steps to import the AMP template into your OpenShift cluster:

1. From a terminal session log in to OpenShift:

oc login

2. Select your project, or create a new project:

oc project <project_name>

oc new-project <project_name>

3. Enter the oc new-app command:

a. Specify the --file option with the path to the amp.yml file you downloaded as part of the
configure nodes and entitlements section .

b. Specify the --param option with the WILDCARD_DOMAIN parameter set to the domain of
your OpenShift cluster.

c. Optionally, specify the --param option with the WILDCARD_POLICY parameter set to
subdomain to enable wildcard domain routing:
Without Wildcard Routing:

oc new-app --file /opt/amp/templates/amp.yml --param WILDCARD_DOMAIN=
<WILDCARD_DOMAIN>

With Wildcard Routing:

oc new-app --file /opt/amp/templates/amp.yml --param WILDCARD_DOMAIN=
<WILDCARD_DOMAIN> --param WILDCARD_POLICY=Subdomain

The terminal shows the master and tenant URLs and credentials for your newly created
AMP admin portal. This output should include the following information:

master admin username

master password

master token information

tenant username

tenant password

tenant token information

4. Log in to https://user-admin.3scale-project.example.com as admin/xXxXyz123.

* With parameters:

 * ADMIN_PASSWORD=xXxXyz123 # generated
 * ADMIN_USERNAME=admin

Red Hat 3scale API Management 2.3 Infrastructure

16

https://user-admin.3scale-project.example.com

 * TENANT_NAME=user

 * MASTER_NAME=master
 * MASTER_USER=master
 * MASTER_PASSWORD=xXxXyz123 # generated

--> Success
Access your application via route 'user-admin.3scale-project.example.com'
Access your application via route 'master-admin.3scale-project.example.com'
Access your application via route 'backend-user.3scale-project.example.com'
Access your application via route 'user.3scale-project.example.com'
Access your application via route 'api-user-apicast-staging.3scale-project.example.com'
Access your application via route 'api-user-apicast-production.3scale-project.example.com'
Access your application via route 'apicast-wildcard.3scale-project.example.com'

5. Make a note of these details for future reference.

NOTE

You may need to wait a few minutes for AMP to fully deploy on OpenShift for
your login and credentials to work.

More Information

For information about wildcard domains on OpenShift, visit Using Wildcard Routes (for a Subdomain) .

3.5.3. Configure SMTP Variables (Optional)

OpenShift uses email to send notifications and invite new users . If you intend to use these features, you
must provide your own SMTP server and configure SMTP variables in the SMTP config map.

Perform the following steps to configure the SMTP variables in the SMTP config map:

1. If you are not already logged in, log in to OpenShift:

oc login

1. Configure variables for the SMTP config map. Use the oc patch command, specify the
configmap and smtp objects, followed by the -p option and write the following new values
in JSON for the following variables:

Variable Description

address Allows you to specify a remote mail server as a
relay

username Specify your mail server username

password Specify your mail server password

domain Specify a HELO domain

CHAPTER 3. 3SCALE API MANAGEMENT ON-PREMISES INSTALLATION GUIDE

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/installation_and_configuration/setting-up-a-router#using-wildcard-routes
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.3/html-single/accounts#notifications
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.3/html-single/accounts#inviting-users-managing-rights

port Specify the port on which the mail server is
listening for new connections

authentication Specify the authentication type of your mail
server. Allowed values: plain (sends the
password in the clear), login (send password
Base64 encoded), or cram_md5 (exchange
information and a cryptographic Message
Digest 5 algorithm to hash important
information)

openssl.verify.mode Specify how OpenSSL checks certificates
when using TLS. Allowed values: none, peer,
client_once, or fail_if_no_peer_cert.

Example

2. After you have set the configmap variables, redeploy the system-app, system-resque, and
system-sidekiq pods:

3.6. 3SCALE AMP TEMPLATE PARAMETERS

Template parameters configure environment variables of the AMP yml template during and after
deployment.

Name Description Default Value Required?

APP_LABEL Used for object app
labels

"3scale-api-
management"

yes

ZYNC_DATABASE_PAS
SWORD

Password for the
PostgreSQL connection
user. Generated
randomly if not
provided.

N/A yes

ZYNC_SECRET_KEY_BA
SE

Secret key base for
Zync. Generated
randomly if not
provided.

N/A yes

oc patch configmap smtp -p '{"data":{"address":"<your_address>"}}'
oc patch configmap smtp -p '{"data":{"username":"<your_username>"}}'
oc patch configmap smtp -p '{"data":{"password":"<your_password>"}}'

oc rollout latest dc/system-app
oc rollout latest dc/system-resque
oc rollout latest dc/system-sidekiq

Red Hat 3scale API Management 2.3 Infrastructure

18

ZYNC_AUTHENTICATI
ON_TOKEN

Authentication token for
Zync. Generated
randomly if not
provided.

N/A yes

AMP_RELEASE AMP release tag. 2.3.0 yes

ADMIN_PASSWORD A randomly generated
AMP administrator
account password.

N/A yes

ADMIN_USERNAME AMP administrator
account username.

admin yes

APICAST_ACCESS_TO
KEN

Read Only Access Token
that APIcast will use to
download its
configuration.

N/A yes

ADMIN_ACCESS_TOKE
N

Admin Access Token
with all scopes and write
permissions for API
access.

N/A no

WILDCARD_DOMAIN Root domain for the
wildcard routes. For
example, a root domain
example.com will
generate 3scale-
admin.example.com.

N/A yes

WILDCARD_POLICY Enable wildcard routes
to built-in APIcast
gateways by setting the
value as "Subdomain"

None yes

TENANT_NAME Tenant name under the
root that Admin UI will
be available with -admin
suffix.

3scale yes

MYSQL_USER Username for MySQL
user that will be used for
accessing the database.

mysql yes

MYSQL_PASSWORD Password for the
MySQL user.

N/A yes

MYSQL_DATABASE Name of the MySQL
database accessed.

system yes

CHAPTER 3. 3SCALE API MANAGEMENT ON-PREMISES INSTALLATION GUIDE

19

MYSQL_ROOT_PASSW
ORD

Password for Root user. N/A yes

SYSTEM_BACKEND_US
ERNAME

Internal 3scale API
username for internal
3scale api auth.

3scale_api_user yes

SYSTEM_BACKEND_PA
SSWORD

Internal 3scale API
password for internal
3scale api auth.

N/A yes

REDIS_IMAGE Redis image to use registry.access.redhat.c
om/rhscl/redis-32-
rhel7:3.2

yes

MYSQL_IMAGE Mysql image to use registry.access.redhat.c
om/rhscl/mysql-57-
rhel7:5.7

yes

MEMCACHED_IMAGE Memcached image to
use

registry.access.redhat.c
om/3scale-
amp20/memcached:1.4.1
5

yes

POSTGRESQL_IMAGE Postgresql image to use registry.access.redhat.c
om/rhscl/postgresql-
95-rhel7:9.5

yes

AMP_SYSTEM_IMAGE 3scale System image to
use

registry.access.redhat.c
om/3scale-
amp22/system

yes

AMP_BACKEND_IMAGE 3scale Backend image
to use

registry.access.redhat.c
om/3scale-
amp22/backend

yes

AMP_APICAST_IMAGE 3scale APIcast image to
use

registry.access.redhat.c
om/3scale-
amp23/apicast-gateway

yes

AMP_ROUTER_IMAGE 3scale Wildcard Router
image to use

registry.access.redhat.c
om/3scale-
amp22/wildcard-router

yes

AMP_ZYNC_IMAGE 3scale Zync image to
use

registry.access.redhat.c
om/3scale-amp22/zync

yes

SYSTEM_BACKEND_SH
ARED_SECRET

Shared secret to import
events from backend to
system.

N/A yes

Red Hat 3scale API Management 2.3 Infrastructure

20

SYSTEM_APP_SECRET
_KEY_BASE

System application
secret key base

N/A yes

APICAST_MANAGEME
NT_API

Scope of the APIcast
Management API. Can
be disabled, status or
debug. At least status
required for health
checks.

status no

APICAST_OPENSSL_VE
RIFY

Turn on/off the
OpenSSL peer
verification when
downloading the
configuration. Can be
set to true/false.

false no

APICAST_RESPONSE_
CODES

Enable logging response
codes in APIcast.

true no

APICAST_REGISTRY_U
RL

A URL which resolves to
the location of APIcast
policies

http://apicast-
staging:8090/policies

yes

MASTER_USER Master administrator
account username

master yes

MASTER_NAME The subdomain value for
the master admin portal,
will be appended with
the -master suffix

master yes

MASTER_PASSWORD A randomly generated
master administrator
password

N/A yes

MASTER_ACCESS_TOK
EN

A token with master
level permissions for API
calls

N/A yes

IMAGESTREAM_TAG_I
MPORT_INSECURE

Set to true if the server
may bypass certificate
verification or connect
directly over HTTP
during image import.

false yes

3.7. USE APICAST WITH AMP ON OPENSHIFT

APIcast with AMP on OpenShift differs from APIcast with AMP hosted and requires unique configuration
procedures.

CHAPTER 3. 3SCALE API MANAGEMENT ON-PREMISES INSTALLATION GUIDE

21

http://apicast-staging:8090/policies

This section explains how to deploy APIcast with AMP on OpenShift.

3.7.1. Deploy APIcast Templates on an Existing OpenShift Cluster Containing your
AMP

AMP OpenShift templates contain two built-in APIcast API gateways by default. If you require more API
gateways, or require separate APIcast deployments, you can deploy additional APIcast templates on
your OpenShift cluster.

Perform the following steps to deploy additional API gateways on your OpenShift cluster:

1. Create an access token with the following configurations:

Scoped to Account Management API

Having read-only access

2. Log in to your APIcast Cluster:

oc login

3. Create a secret that allows APIcast to communicate with AMP. Specify new-basicauth,
apicast-configuration-url-secret, and the --password parameter with the access token,
tenant name, and wildcard domain of your AMP deployment:

oc secret new-basicauth apicast-configuration-url-secret --
password=https://<APICAST_ACCESS_TOKEN>@<TENANT_NAME>-admin.
<WILDCARD_DOMAIN>

NOTE

TENANT_NAME is the name under the root that the Admin UI will be available
with. The default value for TENANT_NAME 3scale. If you used a custom value in
your AMP deployment then you must use that value here.

4. Import the APIcast template by downloading the apicast.yml, located on the 3scale GitHub, and
running the oc new-app command, specifying the --file option with the apicast.yml file:

oc new-app --file /path/to/file/apicast.yml

3.7.2. Connect APIcast from an OpenShift Cluster Outside an OpenShift Cluster
Containing your AMP

If you deploy APIcast on a different OpenShift cluster, outside your AMP cluster, you must connect over
the public route.

1. Create an access token with the following configurations:

Coped to Account Management API

Having read-only access

2. Log in to your APIcast Cluster:

Red Hat 3scale API Management 2.3 Infrastructure

22

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.3/html-single/accounts/#tokens
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.3/html-single/accounts/#tokens

oc login

3. Create a secret that allows APIcast to communicate with AMP. Specify new-basicauth,
apicast-configuration-url-secret, and the --password parameter with the access token,
tenant name, and wildcard domain of your AMP deployment:

oc secret new-basicauth apicast-configuration-url-secret --
password=https://<APICAST_ACCESS_TOKEN>@<TENANT_NAME>-admin.
<WILDCARD_DOMAIN>

NOTE

TENANT_NAME is the name under the root that the Admin UI will be available
with. The default value for`TENANT_NAME` is 3scale. If you used a custom
value in your AMP deployment then you must use that value here.

4. Deploy APIcast on an OpenShift cluster outside of the OpenShift Cluster with the oc new-app
command. Specify the --file option and the file path of your apicast.yml file:

oc new-app --file /path/to/file/apicast.yml

5. Update the apicast BACKEND_ENDPOINT_OVERRIDE environment variable set to the URL
backend. followed by the wildcard domain of the OpenShift Cluster containing your AMP
deployment:

oc env dc/apicast --overwrite BACKEND_ENDPOINT_OVERRIDE=https://backend-
<TENANT_NAME>.<WILDCARD_DOMAIN>

3.7.3. Connect APIcast from Other Deployments

After you have deployed APIcast on other platforms, you can connect them to AMP on OpenShift by
configuring the BACKEND_ENDPOINT_OVERRIDE environment variable in your AMP OpenShift
Cluster:

1. Log in to your AMP OpenShift Cluster:

oc login

2. Configure the system-app object BACKEND_ENDPOINT_OVERRIDE environment variable:

If you are using a native installation: BACKEND_ENDPOINT_OVERRIDE=https://backend.
<your_openshift_subdomain> bin/apicast

If are using the Docker containerized environment: docker run -e
BACKEND_ENDPOINT_OVERRIDE=https://backend.<your_openshift_subdomain>

3.7.4. Change Built-In APIcast Default Behavior

In external APIcast deployments, you can modify default behavior by changing the template parameters
in the APIcast OpenShift template.

In built-in APIcast deployments, AMP and APIcast are deployed from a single template. You must modify

CHAPTER 3. 3SCALE API MANAGEMENT ON-PREMISES INSTALLATION GUIDE

23

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.3/html-single/deployment_options#apicast-openshift

In built-in APIcast deployments, AMP and APIcast are deployed from a single template. You must modify
environment variables after deployment if you wish to change the default behavior for the built-in
APIcast deployments.

3.7.5. Connect Multiple APIcast Deployments on a Single OpenShift Cluster over
Internal Service Routes

If you deploy multiple APIcast gateways into the same OpenShift cluster, you can configure them to
connect using internal routes through the backend listener service instead of the default external route
configuration.

You must have an OpenShift SDN plugin installed to connect over internal service routes. How you
connect depends on which SDN you have installed.

ovs-subnet

If you are using the ovs-subnet OpenShift SDN plugin, take the following steps to connect over the
internal routes:

1. If not already logged in, log in to your OpenShift Cluster:

oc login

2. Enter the oc new-app command with the path to the apicast.yml file:

a. Specify the --param option with the BACKEND_ENDPOINT_OVERRIDE parameter set to
the domain of your OpenShift cluster’s AMP project:

oc new-app -f apicast.yml --param BACKEND_ENDPOINT_OVERRIDE=http://backend-
listener.<AMP_PROJECT>.svc.cluster.local:3000

ovs-multitenant

If you are using the 'ovs-multitenant' Openshift SDN plugin, take the following steps to connect over the
internal routes:

1. If not already logged in, log in to your OpenShift Cluster:

oc login

2. As admin, specify the oadm command with the pod-network and join-projects options to set
up communication between both projects:

oadm pod-network join-projects --to=<AMP_PROJECT> <APICAST_PROJECT>

3. Enter the oc new-app option with the path to the apicast.yml file:

a. Specify the --param option with the BACKEND_ENDPOINT_OVERRIDE parameter set to
the domain of your OpenShift cluster’s AMP project:

oc new-app -f apicast.yml --param BACKEND_ENDPOINT_OVERRIDE=http://backend-listener.
<AMP_PROJECT>.svc.cluster.local:3000

More information

Red Hat 3scale API Management 2.3 Infrastructure

24

For information on Openshift SDN and project network isolation, see: Openshift SDN.

3.8. 7. TROUBLESHOOTING

This section contains a list of common installation issues and provides guidance for their resolution.

Previous Deployment Leaves Dirty Persistent Volume Claims

Incorrectly Pulling from the Docker Registry

Permissions Issues for MySQL when Persistent Volumes are Mounted Locally

Unable to Upload Logo or Images Because Persistent Volumes are not Writable by OpenShift

Create Secure Routes on OpenShift

APIcast on a Different Project from AMP Fails to Deploy Due to Problem with Secrets

3.8.1. Previous Deployment Leaves Dirty Persistent Volume Claims

Problem

A previous deployment attempt leaves a dirty Persistent Volume Claim (PVC) causing the MySQL
container to fail to start.

Cause

Deleting a project in OpenShift does not clean the PVCs associated with it.

Solution

1. Find the PVC containing the erroneous MySQL data with the oc get pvc command:

2. Stop the deployment of the system-mysql pod by clicking cancel deployment in the OpenShift
UI.

3. Delete everything under the MySQL path to clean the volume.

4. Start a new system-mysql deployment.

3.8.2. Incorrectly Pulling from the Docker Registry

Problem

The following error occurs during installation:

oc get pvc
NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
backend-redis-storage Bound vol003 100Gi RWO,RWX 4d
mysql-storage Bound vol006 100Gi RWO,RWX 4d
system-redis-storage Bound vol008 100Gi RWO,RWX 4d
system-storage Bound vol004 100Gi RWO,RWX 4d

CHAPTER 3. 3SCALE API MANAGEMENT ON-PREMISES INSTALLATION GUIDE

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/architecture/networking#architecture-additional-concepts-sdn

Cause

OpenShift searches for and pulls container images by issuing the docker command. This command
refers to the docker.io Docker registry instead of the registry.access.redhat.com Red Hat container
registry.

This occurs when the system contains an unexpected version of the Docker containerized environment.

Solution

Use the appropriate version of the Docker containerized environment.

3.8.3. Permissions Issues for MySQL when Persistent Volumes are Mounted Locally

Problem

The system-msql pod crashes and does not deploy causing other systems dependant on it to fail
deployment. The pod log displays the following error:

Cause

The MySQL process is started with inappropriate user permissions.

Solution

1. The directories used for the persistent volumes MUST have the write permissions for the root
group. Having rw permissions for the root user is not enough as the MySQL service runs as a
different user in the root group. Execute the following command as the root user:

chmod -R g+w /path/for/pvs

2. Execute the following command to prevent SElinux from blocking access:

chcon -Rt svirt_sandbox_file_t /path/for/pvs

3.8.4. Unable to Upload Logo or Images because Persistent Volumes are not
Writable by OpenShift

Problem

Unable to upload a logo - system-app logs display the following error:

Errno::EACCES (Permission denied @ dir_s_mkdir - /opt/system/public//system/provider-name/2

Cause

svc/system-redis - 1EX.AMP.LE.IP:6379
 dc/system-redis deploys docker.io/rhscl/redis-32-rhel7:3.2-5.3
 deployment #1 failed 13 minutes ago: config change

[ERROR] Can't start server : on unix socket: Permission denied
[ERROR] Do you already have another mysqld server running on socket: /var/lib/mysql/mysql.sock ?
[ERROR] Aborting

Red Hat 3scale API Management 2.3 Infrastructure

26

http://rhelblog.redhat.com/2015/04/15/understanding-the-changes-to-docker-search-and-docker-pull-in-red-hat-enterprise-linux-7-1/

Persistent volumes are not writable by OpenShift.

Solution

Ensure your persistent volume is writable by OpenShift. It should be owned by root group and be group
writable.

3.8.5. Create Secure Routes on OpenShift

Problem

Test calls do not work after creation of a new service and routes on OpenShift. Direct calls via curl also
fail, stating: service not available.

Cause

3scale requires HTTPS routes by default, and OpenShift routes are not secured.

Solution

Ensure the secure route checkbox is clicked in your OpenShift router settings.

3.8.6. APIcast on a Different Project from AMP Fails to Deploy due to Problem with
Secrets

Problem

APIcast deploy fails (pod doesn’t turn blue). The following error appears in the logs:

update acceptor rejected apicast-3: pods for deployment "apicast-3" took longer than 600 seconds to
become ready

The following error appears in the pod:

Error synching pod, skipping: failed to "StartContainer" for "apicast" with RunContainerError:
"GenerateRunContainerOptions: secrets \"apicast-configuration-url-secret\" not found"

Cause

The secret was not properly set up.

Solution

When creating a secret with APIcast v3, specify apicast-configuration-url-secret:

oc secret new-basicauth apicast-configuration-url-secret --
password=https://<ACCESS_TOKEN>@<TENANT_NAME>-admin.<WILDCARD_DOMAIN>

CHAPTER 3. 3SCALE API MANAGEMENT ON-PREMISES INSTALLATION GUIDE

27

CHAPTER 4. 3SCALE API MANAGEMENT ON-PREMISES
OPERATIONS AND SCALING GUIDE

4.1. INTRODUCTION

This document describes operations and scaling tasks of a Red Hat 3scale AMP 2.3 On-Premises
installation.

4.1.1. Prerequisites

An installed and initially configured AMP On-Premises instance on a supported OpenShift version.

This document is not intended for local installations on laptops or similar end user equipment.

4.1.2. Further Reading

Health and Liveness Monitoring

OpenShift Documentation

4.2. RE-DEPLOYING APICAST

After you have deployed AMP On-Premises and your chosen APIcast deployment method, you can test
and promote system changes through your AMP dashboard. By default, APIcast deployments on
OpenShift, both built-in and on other OpenShift clusters, are configured to allow you to publish changes
to your staging and production gateways through the AMP UI.

Redeploy APIcast on OpenShift:

1. Make system changes.

2. In the UI, deploy to staging and test.

3. In the UI, promote to production.

By default, APIcast retrieves and publishes the promoted update once every 5 minutes.

If you are using APIcast on the Docker containerized environment or a native installation, you must
configure your staging and production gateways, and configure how often your gateway retrieves
published changes. After you have configured your APIcast gateways, you can redeploy APIcast through
the AMP UI.

To redeploy APIcast on the Docker containerized environment or a native installations:

1. Configure your APIcast gateway and connect it to AMP On-Premises.

2. Make system changes.

3. In the UI, deploy to staging and test.

4. In the UI, promote to production.

APIcast retrieves and publishes the promoted update at the configured frequency.

Red Hat 3scale API Management 2.3 Infrastructure

28

https://access.redhat.com/articles/2798521
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/developer_guide/dev-guide-application-health
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/

4.3. APICAST BUILT-IN WILDCARD ROUTING

The built-in APIcast gateways that accompany your on-preimses AMP deployment support wildcard
domain routing at the subdomain level. This feature allows you to name a portion of your subdomain for
your production and staging gateway public base URLs. To use this feature, you must have enabled it
during the on-premises installation.

NOTE

Ensure that you are using the OpenShift Container Platform version that supports
Wildcard Routing. For information on the supported versions, see Supported
Configurations.

The AMP does not provide DNS capabilities, so your specified public base URL must match the DNS
configuration specified in the WILDCARD_DOMAIN parameter of the OpenShift cluster on which it was
deployed.

4.3.1. Modify Wildcards

Perform the following steps to modify your wildcards:

1. Log in to your AMP.

2. Navigate to your API gateway settings page: APIs → your API → Integration → edit APIcast
configuration

3. Modify the staging and production public base URLs with a string prefix of your choice, adhere
to these requirements:

API endpoints must not begin with a numeric character

The following is an example of a valid wildcard for a staging gateway on the domain example.com:

apiname-staging.example.com

More Information

For information on routing, see the OpenShift documentation.

4.4. SCALING UP AMP ON PREMISES

4.4.1. Scaling up Storage

As your APIcast deployment grows, you may need to increase the amount of storage available. How you
scale up storage depends on which type of file system you are using for your persistent storage.

If you are using a network file system (NFS), you can scale up your persistent volume using the oc edit
pv command:

oc edit pv <pv_name>

If you are using any other storage method, you must scale up your persistent volume manually using one
of the methods listes in the following sections.

CHAPTER 4. 3SCALE API MANAGEMENT ON-PREMISES OPERATIONS AND SCALING GUIDE

29

https://access.redhat.com/articles/2798521
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html/installation_and_configuration/setting-up-a-router#using-wildcard-routes

4.4.1.1. Method 1: Backup and Swap Persistent Volumes

1. Back up the data on your existing persistent volume.

2. Create and attach a target persistent volume, scaled for your new size requirements.

3. Create a pre-bound persistent volume claim, specify: The size of your new PVC The persistent
volume name using the volumeName field.

4. Restore data from your backup onto your newly created PV.

5. Modify your deployment configuration with the name of your new PV:

oc edit dc/system-app

6. Verify your new PV is configured and working correctly.

7. Delete your previous PVC to release its claimed resources.

4.4.1.2. Method 2: Back up and Redeploy AMP

1. Back up the data on your existing persistent volume.

2. Shut down your 3scale pods.

3. Create and attach a target persistent volume, scaled for your new size requirements.

4. Restore data from your backup onto your newly created PV.

5. Create a pre-bound persistent volume claim. Specify:

a. The size of your new PVC

b. The persistent volume name using the volumeName field.

6. Deploy your AMP.yml.

7. Verify your new PV is configured and working correctly.

8. Delete your previous PVC to release its claimed resources.

4.4.2. Scaling up Performance

4.4.2.1. Configuring 3scale On-Premises Deployments

By default, 3scale deployments run one process per pod. You can increase performance by running
more processes per pod. Red Hat recommends running 1-2 processes per core on each node.

Perform the following steps to add more processes to a pod:

1. Log in to your OpenShift cluster.

oc login

2. Switch to your 3scale project.

Red Hat 3scale API Management 2.3 Infrastructure

30

oc project <project_name>

3. Set the appropriate environment variable to the desired number of processes per pod.

a. APICAST_WORKERS for APIcast pods (Red Hat recommends to keep this environment
variable unset to allow APIcast to determine the number of workers by the number of CPUs
available to the APIcast pod)

b. PUMA_WORKERS for backend pods

c. UNICORN_WORKERS for system pods

oc env dc/apicast --overwrite APICAST_WORKERS=<number_of_processes>

oc env dc/backend --overwrite PUMA_WORKERS=<number_of_processes>

oc env dc/system-app --overwrite UNICORN_WORKERS=<number_of_processes>

4.4.2.2. Vertical and Horizontal Hardware Scaling

You can increase the performance of your AMP deployment on OpenShift by adding resources. You can
add more compute nodes as pods to your OpenShift cluster (horizontal scaling) or you can allocate
more resources to existing compute nodes (vertical scaling).

Horizontal Scaling

You can add more compute nodes as pods to your OpenShift. If the additional compute nodes match
the existing nodes in your cluster, you do not have to reconfigure any environment variables.

Vertical Scaling

You can allocate more resources to existing compute nodes. If you allocate more resources, you must
add additional processes to your pods to increase performance.

NOTE

Red Hat does not recommend mixing compute nodes of a different specification or
configuration on your 3scale deployment.

4.4.2.3. Scaling Up Routers

As your traffic increases, you must ensure your OCP routers can adequately handle requests. If your
routers are limiting the throughput of your requests, you must scale up your router nodes.

4.4.2.4. Further Reading

Scaling tasks, adding hardware compute nodes to OpenShift

Adding Compute Nodes

Routers

4.5. OPERATIONS TROUBLESHOOTING

CHAPTER 4. 3SCALE API MANAGEMENT ON-PREMISES OPERATIONS AND SCALING GUIDE

31

4.5.1. Access Your Logs

Each component’s deployment configuration contains logs for access and exceptions. If you encounter
issues with your deployment, check these logs for details.

Follow these steps to access logs in 3scale:

1. Find the ID of the pod you want logs for:

oc get pods

2. Enter oc logs and the ID of your chosen pod:

oc logs <pod>

The system pod has two containers, each with a separate log. To access a container’s log,
specify the --container parameter with the system-provider and system-developer:

4.5.2. Job Queues

Job Queues contain logs of information sent from the system-resque and system-sidekiq pods. Use
these logs to check if your cluster is processing data. You can query the logs using the OpenShift CLI:

oc get jobs

oc logs <job>

oc logs <pod> --container=system-provider
oc logs <pod> --container=system-developer

Red Hat 3scale API Management 2.3 Infrastructure

32

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION
WITH FUSE, 3SCALE, AND OPENSHIFT

This tutorial describes how to get a full-stack API solution (API design, development, hosting, access
control, monetization, etc.) using Red Hat JBoss xPaaS for OpenShift and 3scale API Management
Platform - Cloud.

The tutorial is based on a collaboration between Red Hat and 3scale to provide a full-stack API solution.
This solution includes design, development, and hosting of your API on the Red Hat JBoss xPaaS for
OpenShift, combined with the 3scale API Management Platform for full control, visibility, and
monetization features.

The API itself can be deployed on Red Hat JBoss xPaaS for OpenShift, which can be hosted in the cloud
as well as on premise (that’s the Red Hat part). The API management (the 3scale part) can be hosted
on Amazon Web Services (AWS), using 3scale APIcast or OpenShift. This gives a wide range of different
configuration options for maximum deployment flexibility.

The diagram below summarizes the main elements of this joint solution. It shows the whole integration
chain including enterprise backend systems, middleware, API management, and API customers.

For specific support questions, please contact support.

This tutorial shows three different deployment scenarios step by step:

1. Scenario 1 – A Fuse on OpenShift application containing the API. The API is managed by 3scale
with the API gateway hosted on Amazon Web Services (AWS) using the 3scale AMI.

2. Scenario 2 – A Fuse on OpenShift application containing the API. The API is managed by 3scale
with the API gateway hosted on APIcast (3scale’s cloud hosted API gateway).

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

33

http://pages.3scale.net/rs/3scale/images/3scale-redhat-joint-solution-brief.pdf
https://www.openshift.com/xpaas
http://www.3scale.net/apicast/
https://access.redhat.com/support/
http://www.jboss.org/products/fuse
https://aws.amazon.com/marketplace/pp/B00QHIY9OW
http://www.3scale.net/apicast/

3. Scenario 3 – A Fuse on OpenShift application containing the API. The API is managed by 3scale
with the API gateway hosted on OpenShift

This tutorial is split into four parts:

Part 1: Fuse on OpenShift setup to design and implement the API

Part 2: Configuration of 3scale API Management

Part 3: Integration of your API services

Part 4: Testing the API and API management

The diagram below shows the roles the various parts play in this configuration.

5.1. PART 1: FUSE ON OPENSHIFT SETUP

You will create a Fuse on OpenShift application that contains the API to be managed. You will use the
REST quickstart that is included with Fuse 6.1. This requires a medium or large gear, as using the small
gear will result in memory errors and/or horrible performance.

5.1.1. Step 1

Sign in to your OpenShift online account. Sign up for an OpenShift online account if you don’t already
have one.

Red Hat 3scale API Management 2.3 Infrastructure

34

https://www.openshift.com/
http://www.jboss.org/products/fuse
http://www.jboss.org/products/fuse

5.1.2. Step 2

Click the "add application" button after signing in.

5.1.3. Step 3

Under xPaaS, select the Fuse type for the application.

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

35

5.1.4. Step 4

Now configure the application. Enter the subdomain you’d like your application to show up under, such
as "restapitest". This will give a full URL of the form "appname-domain.rhcloud.com" – in the example
below "restapitest-ossmentor.rhcloud.com". Change the gear size to medium or large, which is required
for the Fuse cartridge. Now click on "create application".

Red Hat 3scale API Management 2.3 Infrastructure

36

5.1.5. Step 5

Click "create application".

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

37

5.1.6. Step 6

Browse the application hawtio console and sign in.

5.1.7. Step 7

After signing in, click on the "runtime" tab and the container, and add the REST API example.

Red Hat 3scale API Management 2.3 Infrastructure

38

5.1.8. Step 8

Click on the "add a profile" button.

5.1.9. Step 9

Scroll down to examples/quickstarts and click the "REST" checkbox, then "add". The REST profile should
show up on the container associated profile page.

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

39

5.1.10. Step 10

Click on the runtime/APIs tab to verify the REST API profile.

Red Hat 3scale API Management 2.3 Infrastructure

40

5.1.11. Step 11

Verify the REST API is working. Browse to customer 123, which will return the ID and name in XML
format.

5.2. PART 2: CONFIGURE 3SCALE API MANAGEMENT

To protect the API that you just created in Part 1 using 3scale API Management, you first must conduct
the according configuration, which is then later deployed according to one of the three scenarios
presented.

Once you have your API set up on OpenShift, you can start setting it up on 3scale to provide the
management layer for access control and usage monitoring.

5.2.1. Step 1

Log in to your 3scale account. You can sign up for a 3scale account at www.3scale.net if you don’t
already have one. When you log in to your account for the first time, follow the wizard to learn the basics
about integrating your API with 3scale.

5.2.2. Step 2

In API > Integration, you can enter the public URL for the Fuse application on OpenShift that you just
created, e.g. "restapitest-ossmentor.rhcloud.com" and click on Test. This will test your setup against the
3scale API Gateway in the staging environment. The staging API gateway allows you to test your 3scale
setup before deploying your proxy configuration to AWS.

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

41

http://www.3scale.net

5.2.3. Step 3

The next step is to set up the API methods that you want to monitor and rate limit. To do that go to API
> Definition and click on 'New method'.

Red Hat 3scale API Management 2.3 Infrastructure

42

For more details on creating methods, visit our API definition tutorial.

5.2.4. Step 4

Once you have all of the methods that you want to monitor and control set up under the application
plan, you’ll need to map these to actual HTTP methods on endpoints of your API. Go back to the
integration page and expand the "mapping rules" section.

Create mapping rules for each of the methods you created under the application plan.

Once you have done that, your mapping rules will look something like this:

For more details on mapping rules, visit our tutorial about mapping rules.

5.2.5. Step 5

Once you’ve clicked "update and test" to save and test your configuration, you are ready to download
the set of configuration files that will allow you to configure your API gateway on AWS. For the API
gateway, you should use a high-performance, open-source proxy called nginx. You will find the
necessary configuration files for nginx on the same integration page by scrolling down to the
"production" section.

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

43

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.3/html-single/access_control#api-definition-methods-metrics
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.3/html-single/access_control#mapping-rules
http://nginx.org/

The next section will now take you through various hosting scenarios.

5.3. PART 3: INTEGRATION OF YOUR API SERVICES

There are different ways in which you can integrate your API services in 3scale. Choose the one that best
fits your needs:

APIcast hosted on AWS

APIcast hosted

APIcast on OpenShift

5.4. PART 4: TESTING THE API AND API MANAGEMENT

Testing the correct functioning of the API and the API Management is independent from the chosen
scenario. You can use your favorite REST client and run the following commands.

5.4.1. Step 1

Retrieve the customer instance with id 123.

http://54.149.46.234/cxf/crm/customerservice/customers/123?
user_key=b9871b41027002e68ca061faeb2f972b

Red Hat 3scale API Management 2.3 Infrastructure

44

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.3/html-single/deployment_options#aws-proxy-ami
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.3/html-single/deployment_options#apicast-hosted
https://access.redhat.com/documentation/en-us/red_hat_3scale/2.3/html-single/deployment_options#apicast-openshift

5.4.2. Step 2

Create a customer.

http://54.149.46.234/cxf/crm/customerservice/customers?
user_key=b9871b41027002e68ca061faeb2f972b

5.4.3. Step 3

Update the customer instance with id 123.

http://54.149.46.234/cxf/crm/customerservice/customers?
user_key=b9871b41027002e68ca061faeb2f972b

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

45

5.4.4. Step 4

Delete the customer instance with id 123.

http://54.149.46.234/cxf/crm/customerservice/customers/123?
user_key=b9871b41027002e68ca061faeb2f972b

5.4.5. Step 5

Check the API Management analytics of your API.

If you now log back in to your 3scale account and go to Monitoring > Usage, you can see the various hits
of the API endpoints represented as graphs.

Red Hat 3scale API Management 2.3 Infrastructure

46

This is just one element of API Management that brings you full visibility and control over your API.
Other features include:

1. Access control

2. Usage policies and rate limits

3. Reporting

4. API documentation and developer portals

5. Monetization and billing

For more details about the specific API Management features and their benefits, please refer to the
3scale API Management Platform product description .

For more details about the specific Red Hat JBoss Fuse product features and their benefits, please refer
to the JBOSS FUSE Overview.

For more details about running Red Hat JBoss Fuse on OpenShift, please refer to the Getting Started
with JBoss Fuse on OpenShift.

CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT

47

http://www.3scale.net/api-management/
http://www.jboss.org/products/fuse/overview/
https://blog.openshift.com/getting-started-with-jboss-fuse-on-openshift/

	Table of Contents
	CHAPTER 1. UPGRADE 3SCALE API MANAGEMENT 2.2 TO 2.3
	1.1. PREREQUISITES
	1.2. SELECT THE PROJECT
	1.3. GATHER THE NEEDED VALUES
	1.4. PATCH APICAST
	1.5. VERIFY UPGRADE
	1.6. UPGRADE APICAST IN OPENSHIFT

	CHAPTER 2. BUILDING A 3SCALE API MANAGEMENT SYSTEM IMAGE WITH THE ORACLE DATABASE RELATIONAL DATABASE MANAGEMENT SYSTEM
	2.1. BEFORE YOU BEGIN
	2.1.1. Obtain Oracle software components
	2.1.2. Meet prerequisites

	2.2. PREPARING ORACLE DATABASE
	2.3. BUILDING THE SYSTEM IMAGE

	CHAPTER 3. 3SCALE API MANAGEMENT ON-PREMISES INSTALLATION GUIDE
	3.1. PREREQUISITES
	3.2. 3SCALE AMP OPENSHIFT TEMPLATES
	3.3. SYSTEM REQUIREMENTS
	3.3.1. Environment Requirements
	3.3.2. Hardware Requirements

	3.4. CONFIGURE NODES AND ENTITLEMENTS
	3.5. DEPLOY THE 3SCALE AMP ON OPENSHIFT USING A TEMPLATE
	3.5.1. Prerequisites
	3.5.2. Import the AMP Template
	3.5.3. Configure SMTP Variables (Optional)

	3.6. 3SCALE AMP TEMPLATE PARAMETERS
	3.7. USE APICAST WITH AMP ON OPENSHIFT
	3.7.1. Deploy APIcast Templates on an Existing OpenShift Cluster Containing your AMP
	3.7.2. Connect APIcast from an OpenShift Cluster Outside an OpenShift Cluster Containing your AMP
	3.7.3. Connect APIcast from Other Deployments
	3.7.4. Change Built-In APIcast Default Behavior
	3.7.5. Connect Multiple APIcast Deployments on a Single OpenShift Cluster over Internal Service Routes

	3.8. 7. TROUBLESHOOTING
	3.8.1. Previous Deployment Leaves Dirty Persistent Volume Claims
	3.8.2. Incorrectly Pulling from the Docker Registry
	3.8.3. Permissions Issues for MySQL when Persistent Volumes are Mounted Locally
	3.8.4. Unable to Upload Logo or Images because Persistent Volumes are not Writable by OpenShift
	3.8.5. Create Secure Routes on OpenShift
	3.8.6. APIcast on a Different Project from AMP Fails to Deploy due to Problem with Secrets

	CHAPTER 4. 3SCALE API MANAGEMENT ON-PREMISES OPERATIONS AND SCALING GUIDE
	4.1. INTRODUCTION
	4.1.1. Prerequisites
	4.1.2. Further Reading

	4.2. RE-DEPLOYING APICAST
	4.3. APICAST BUILT-IN WILDCARD ROUTING
	4.3.1. Modify Wildcards

	4.4. SCALING UP AMP ON PREMISES
	4.4.1. Scaling up Storage
	4.4.1.1. Method 1: Backup and Swap Persistent Volumes
	4.4.1.2. Method 2: Back up and Redeploy AMP

	4.4.2. Scaling up Performance
	4.4.2.1. Configuring 3scale On-Premises Deployments
	4.4.2.2. Vertical and Horizontal Hardware Scaling
	4.4.2.3. Scaling Up Routers
	4.4.2.4. Further Reading

	4.5. OPERATIONS TROUBLESHOOTING
	4.5.1. Access Your Logs
	4.5.2. Job Queues

	CHAPTER 5. HOW TO DEPLOY A FULL-STACK API SOLUTION WITH FUSE, 3SCALE, AND OPENSHIFT
	5.1. PART 1: FUSE ON OPENSHIFT SETUP
	5.1.1. Step 1
	5.1.2. Step 2
	5.1.3. Step 3
	5.1.4. Step 4
	5.1.5. Step 5
	5.1.6. Step 6
	5.1.7. Step 7
	5.1.8. Step 8
	5.1.9. Step 9
	5.1.10. Step 10
	5.1.11. Step 11

	5.2. PART 2: CONFIGURE 3SCALE API MANAGEMENT
	5.2.1. Step 1
	5.2.2. Step 2
	5.2.3. Step 3
	5.2.4. Step 4
	5.2.5. Step 5

	5.3. PART 3: INTEGRATION OF YOUR API SERVICES
	5.4. PART 4: TESTING THE API AND API MANAGEMENT
	5.4.1. Step 1
	5.4.2. Step 2
	5.4.3. Step 3
	5.4.4. Step 4
	5.4.5. Step 5

