
Red Hat 3scale API Management 2.10

Operating 3scale

How to automate deployment, scale your environment, and troubleshoot issues

Last Updated: 2023-06-29

Red Hat 3scale API Management 2.10 Operating 3scale

How to automate deployment, scale your environment, and troubleshoot issues

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide documents development operations with Red Hat 3scale API Management 2.10.

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. 3SCALE OPERATIONS AND SCALING
1.1. REDEPLOYING APICAST
1.2. SCALING UP 3SCALE ON-PREMISE

1.2.1. Method 1: Backing up and swapping persistent volumes
1.2.2. Method 2: Backing up and redeploying 3scale
1.2.3. Scaling up performance
1.2.4. Configuring 3scale on-premise deployments

1.2.4.1. Scaling via the OCP command line interface
1.2.4.2. Vertical and horizontal hardware scaling
1.2.4.3. Scaling up routers

1.3. OPERATIONS TROUBLESHOOTING
1.3.1. Configuring 3scale audit logging on OpenShift
1.3.2. Enabling audit logging
1.3.3. Configuring EFK logging
1.3.4. Accessing your logs
1.3.5. Checking job queues
1.3.6. Preventing monotonic growth

CHAPTER 2. MONITORING 3SCALE
2.1. ENABLING MONITORING FOR 3SCALE
2.2. CONFIGURING PROMETHEUS TO MONITOR 3SCALE
2.3. CONFIGURING GRAFANA TO MONITOR 3SCALE
2.4. VIEWING METRICS FOR 3SCALE
2.5. 3SCALE SYSTEM METRICS EXPOSED TO PROMETHEUS

CHAPTER 3. 3SCALE AUTOMATION USING WEBHOOKS
3.1. OVERVIEW OF WEBHOOKS
3.2. CONFIGURING WEBHOOKS
3.3. TROUBLESHOOTING WEBHOOKS

CHAPTER 4. THE 3SCALE TOOLBOX
4.1. INSTALLING THE TOOLBOX

4.1.1. Installing the toolbox container image
4.1.2. Installing unsupported toolbox versions

4.2. SUPPORTED TOOLBOX COMMANDS
4.3. IMPORTING SERVICES
4.4. COPYING SERVICES
4.5. COPYING SERVICE SETTINGS ONLY
4.6. IMPORTING OPENAPI DEFINITIONS
4.7. MANAGING REMOTE ACCESS CREDENTIALS

4.7.1. Adding remote access credentials
4.7.2. Listing remote access credentials
4.7.3. Removing remote access credentials
4.7.4. Renaming remote access credentials

4.8. CREATING APPLICATION PLANS
4.8.1. Creating a new application plan
4.8.2. Creating or updating application plans
4.8.3. Listing application plans
4.8.4. Showing application plans
4.8.5. Deleting application plans

7

8
8
9
9
9

10
10
10
11
11
11
11

12
12
12
13
13

15
16
16
18
19

20

21
21
21
22

23
23
23
24
24
25
25
26
27
28
29
29
30
30
30
30
31
32
33
33

Table of Contents

1

. .

. .

4.8.6. Exporting/importing application plans
4.8.6.1. Exporting an application plan to a file
4.8.6.2. Importing an application plan from a file
4.8.6.3. Importing an application plan from a URL

4.9. CREATING METRICS
4.9.1. Creating or updating metrics
4.9.2. Listing metrics
4.9.3. Deleting metrics

4.10. CREATING METHODS
4.10.1. Creating methods
4.10.2. Creating or updating methods
4.10.3. Listing methods
4.10.4. Deleting methods

4.11. CREATING SERVICES
4.11.1. Creating a new service
4.11.2. Creating or updating services
4.11.3. Listing services
4.11.4. Showing services
4.11.5. Deleting services

4.12. CREATING ACTIVEDOCS
4.12.1. Creating new ActiveDocs
4.12.2. Creating or updating ActiveDocs
4.12.3. Listing ActiveDocs
4.12.4. Deleting ActiveDocs

4.13. LISTING PROXY CONFIGURATIONS
4.13.1. Showing proxy configurations
4.13.2. Promoting proxy configurations

4.14. COPYING A POLICY REGISTRY
4.15. LISTING APPLICATIONS

4.15.1. Creating applications
4.15.2. Showing applications
4.15.3. Creating or updating applications
4.15.4. Deleting applications

4.16. COPYING API BACKENDS
4.16.1. Copying API products

4.17. TROUBLESHOOTING ISSUES WITH SSL AND TLS

CHAPTER 5. MAPPING API ENVIRONMENTS IN 3SCALE
5.1. PRODUCT PER ENVIRONMENT
5.2. 3SCALE ON-PREMISES INSTANCES

5.2.1. Separating 3scale instances per environment
5.2.2. Separating 3scale tenants per environment

5.3. 3SCALE MIXED APPROACH
5.4. 3SCALE WITH APICAST GATEWAYS

5.4.1. APIcast built-in default gateways
5.4.2. Additional APIcast gateways

CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE TOOLBOX
6.1. OVERVIEW OF THE API LIFECYCLE STAGES

6.1.1. API provider cycle
6.1.2. API consumer cycle

6.2. DEPLOYING THE SAMPLE JENKINS CI/CD PIPELINES
6.2.1. Sample Jenkins CI/CD pipelines

34
34
35
35
36
36
37
38
38
38
39
40
40
41
41
41

42
43
43
43
44
44
45
46
46
47
47
48
48
49
50
50
51
51
52
54

55
55
56
56
57
57
57
57
58

59
59
59
61
61

62

Red Hat 3scale API Management 2.10 Operating 3scale

2

. .

. .

6.2.2. Setting up your 3scale Hosted environment
6.2.3. Setting up your 3scale On-premises environment
6.2.4. Deploying Red Hat Single Sign-On for OpenID Connect
6.2.5. Installing the 3scale toolbox and enabling access
6.2.6. Deploying the API backends
6.2.7. Deploying self-managed APIcast instances
6.2.8. Installing and deploying the sample pipelines
6.2.9. Limitations of API lifecycle automation with 3scale toolbox

6.3. CREATING PIPELINES USING THE 3SCALE JENKINS SHARED LIBRARY
6.4. CREATING PIPELINES USING A JENKINSFILE

CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE VIA THE OPERATOR
7.1. GENERAL PREREQUISITES
7.2. APPLICATION CAPABILITIES VIA THE 3SCALE OPERATOR
7.3. DEPLOYING YOUR FIRST 3SCALE PRODUCT AND BACKEND
7.4. BACKEND CUSTOM RESOURCES RELATED TO CAPABILITIES

7.4.1. Deploying backend custom resources related to capabilities
7.4.2. Defining backend metrics
7.4.3. Defining backend methods
7.4.4. Defining backend mapping rules
7.4.5. Status of the backend custom resource
7.4.6. The backend custom resource linked to a tenant account

7.5. PRODUCT CUSTOM RESOURCES RELATED TO CAPABILITIES
7.5.1. Deploying product custom resources related to capabilities

7.5.1.1. Deploying a basic product custom resource
7.5.1.2. Deploying a product with APIcast hosted
7.5.1.3. Deploying a product with APIcast self-managed

7.5.2. Defining product application plans
7.5.3. Defining limits for product application plans
7.5.4. Defining pricing rules for product application plans
7.5.5. Defining product metrics
7.5.6. Defining product methods
7.5.7. Defining product mapping rules
7.5.8. Defining product backend usage
7.5.9. Status of the product custom resource
7.5.10. The product custom resource linked to a tenant account

7.6. DEPLOYING A TENANT CUSTOM RESOURCE
7.7. LIMITATIONS OF CAPABILITIES VIA THE 3SCALE OPERATOR
7.8. ADDITIONAL RESOURCES

CHAPTER 8. 3SCALE BACKUP AND RESTORE
8.1. PREREQUISITES
8.2. PERSISTENT VOLUMES AND CONSIDERATIONS
8.3. USING DATA SETS

8.3.1. Defining system-mysql
8.3.2. Defining system-storage
8.3.3. Defining backend-redis
8.3.4. Defining system-redis

8.4. BACKING UP SYSTEM DATABASES
8.4.1. Backing up system-mysql
8.4.2. Backing up system-storage
8.4.3. Backing up backend-redis
8.4.4. Backing up system-redis

63
63
65
66
66
67
68
68
69
71

76
76
76
77
79
79
80
81
81

82
83
83
84
84
84
85
85
86
86
87
88
88
89
90
90
91

93
93

94
94
94
95
95
95
96
96
96
96
96
96
97

Table of Contents

3

. .

. .

. .

8.4.5. Backing up zync-database
8.4.6. Backing up OpenShift secrets and ConfigMaps

8.4.6.1. OpenShift secrets
8.4.6.2. ConfigMaps

8.5. RESTORING SYSTEM DATABASES
8.5.1. Restoring a template-based deployment
8.5.2. Restoring an operator-based deployment
8.5.3. Restoring system-mysql
8.5.4. Restoring system-storage
8.5.5. Restoring zync-database

8.5.5.1. Template-based deployments
8.5.5.2. Operator-based deployments
8.5.5.3. Restoring 3scale options with backend-redis and system-redis

8.5.6. Ensuring information consistency between Backend and System
8.5.6.1. Managing the deployment configuration for backend-redis
8.5.6.2. Managing the deployment configuration for system-redis

8.5.7. Restoring backend-worker
8.5.8. Restoring system-app
8.5.9. Restoring system-sidekiq

8.5.9.1. Restoring system-sphinx
8.5.9.2. Restoring OpenShift routes managed by Zync

CHAPTER 9. 3SCALE BACKUP AND RESTORE USING CUSTOM RESOURCES
9.1. BACKING UP 3SCALE USING THE OPERATOR

9.1.1. Backup compatible scenarios
9.1.2. Backup scenarios scope
9.1.3. Backed up data
9.1.4. Backing up 3scale

9.2. RESTORING 3SCALE USING THE OPERATOR
9.2.1. Restore compatible scenarios
9.2.2. Restore scenarios scope
9.2.3. Restored data
9.2.4. Restoring 3scale

CHAPTER 10. CONFIGURING RECAPTCHA FOR 3SCALE
10.1. CONFIGURING RECAPTCHA FOR SPAM PROTECTION IN 3SCALE

CHAPTER 11. TROUBLESHOOTING THE API INFRASTRUCTURE
11.1. COMMON INTEGRATION ISSUES

11.1.1. Integration issues
11.1.1.1. APIcast Hosted
11.1.1.2. APIcast self-managed

11.1.2. Production issues
11.1.2.1. Availability issues

11.1.3. Post-deploy issues
11.2. HANDLING API INFRASTRUCTURE ISSUES

11.2.1. Can we connect?
11.2.2. Server connection issues
11.2.3. Is it a DNS issue?
11.2.4. Is it an SSL issue?

11.3. IDENTIFYING API REQUEST ISSUES
11.3.1. API
11.3.2. API Gateway > API
11.3.3. API gateway

97
97
97
97
97
98
99

100
100
100
100
101
101

103
103
104
106
106
107
107
107

108
108
108
109
109
110
111
111
111
111

112

114
114

116
116
116
117
117
118
118

120
121
121
121
121
121

124
124
124
124

Red Hat 3scale API Management 2.10 Operating 3scale

4

11.3.3.1. Is the API gateway up and running?
11.3.3.2. Are there any errors in the gateway logs?

11.3.4. API gateway > 3scale
11.3.4.1. Can the API gateway reach 3scale?
11.3.4.2. Is the API gateway resolving 3scale addresses correctly?
11.3.4.3. Is the API gateway calling 3scale correctly?

11.3.5. 3scale
11.3.5.1. Is 3scale returning an error?
11.3.5.2. Use the 3scale debug headers
11.3.5.3. Check the integration errors

11.3.6. Client API gateway
11.3.6.1. Is the API gateway reachable from the public internet?
11.3.6.2. Is the API gateway reachable by the client?

11.3.7. Client
11.3.7.1. Test the same call using a different client
11.3.7.2. Inspect the traffic sent by client

11.4. ACTIVEDOCS ISSUES
11.4.1. Use petstore.swagger.io
11.4.2. Check that firewall allows connections from ActiveDocs proxy
11.4.3. Call the API with incorrect credentials
11.4.4. Compare calls

11.5. LOGGING IN NGINX
11.5.1. Enabling debugging log

11.6. 3SCALE ERROR CODES

124
124
125
125
125
126
127
127
127
128
128
128
128
128
128
128
128
128
129
129
129
129
129
129

Table of Contents

5

Red Hat 3scale API Management 2.10 Operating 3scale

6

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

7

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. 3SCALE OPERATIONS AND SCALING

NOTE

This document is not intended for local installations on laptops or similar end user
equipment.

This section describes operations and scaling tasks of a Red Hat 3scale API Management 2.10
installation.

Prerequisites

An installed and initially configured 3scale On-Premises instance on a supported OpenShift
version.

To carry out 3scale operations and scaling tasks, perform the steps outlined in the following sections:

Redeploying APIcast

Scaling up 3scale on-premise

Operations troubleshooting

1.1. REDEPLOYING APICAST

You can test and promote system changes through the 3scale Admin Portal.

Prerequisites

A deployed instance of 3scale On-premises.

You have chosen your APIcast deployment method.

By default, APIcast deployments on OpenShift, both embedded and on other OpenShift clusters, are
configured to allow you to publish changes to your staging and production gateways through the 3scale
Admin Portal.

To redeploy APIcast on OpenShift:

Procedure

1. Make system changes.

2. In the Admin Portal, deploy to staging and test.

3. In the Admin Portal, promote to production.

By default, APIcast retrieves and publishes the promoted update once every 5 minutes.

If you are using APIcast on the Docker containerized environment or a native installation, configure your
staging and production gateways, and indicate how often the gateway retrieves published changes.
After you have configured your APIcast gateways, you can redeploy APIcast through the 3scale Admin
Portal.

Red Hat 3scale API Management 2.10 Operating 3scale

8

https://access.redhat.com/articles/2798521

To redeploy APIcast on the Docker containerized environment or a native installations:

Procedure

1. Configure your APIcast gateway and connect it to 3scale On-premises.

2. Make system changes.

3. In the Admin Portal, deploy to staging and test.

4. In the Admin Portal, promote to production.

APIcast retrieves and publishes the promoted update at the configured frequency.

1.2. SCALING UP 3SCALE ON-PREMISE

As your APIcast deployment grows, you may need to increase the amount of storage available. How you
scale up storage depends on which type of file system you are using for your persistent storage.

If you are using a network file system (NFS), you can scale up your persistent volume (PV) using this
command:

oc edit pv <pv_name>

If you are using any other storage method, you must scale up your persistent volume manually using one
of the methods listed in the following sections.

1.2.1. Method 1: Backing up and swapping persistent volumes

Procedure

1. Back up the data on your existing persistent volume.

2. Create and attach a target persistent volume, scaled for your new size requirements.

3. Create a pre-bound persistent volume claim, specify: The size of your new PVC
(PersistentVolumeClaim) and the persistent volume name using the volumeName field.

4. Restore data from your backup onto your newly created PV.

5. Modify your deployment configuration with the name of your new PV:

oc edit dc/system-app

6. Verify your new PV is configured and working correctly.

7. Delete your previous PVC to release its claimed resources.

1.2.2. Method 2: Backing up and redeploying 3scale

Procedure

1. Back up the data on your existing persistent volume.

CHAPTER 1. 3SCALE OPERATIONS AND SCALING

9

2. Shut down your 3scale pods.

3. Create and attach a target persistent volume, scaled for your new size requirements.

4. Restore data from your backup onto your newly created PV.

5. Create a pre-bound persistent volume claim. Specify:

a. The size of your new PVC

b. The persistent volume name using the volumeName field.

6. Deploy your amp.yml.

7. Verify your new PV is configured and working correctly.

8. Delete your previous PVC to release its claimed resources.

1.2.3. Scaling up performance

Scaling up performance is done via the total number of pods. The more hardware resources you have,
the more pods you deploy.

Use the following command to scale up performance via the number of pods:

oc scale dc dc-name --replicas=X

1.2.4. Configuring 3scale on-premise deployments

The key deployment configurations to be scaled for 3scale are:

APIcast production

Backend listener

Backend worker

1.2.4.1. Scaling via the OCP command line interface

Via the OpenShift Container Platform (OCP) command line interface (CLI), you can scale the
deployment configuration either up or down.

To scale a particular deployment configuration, use the following:

Scale up an APIcast production deployment configuration with the following command:

oc scale dc apicast-production --replicas=X

Scale up the Backend listener deployment configuration with the following command:

oc scale dc backend-listener --replicas=Y

Scale up the Backend worker deployment configuration with the following command:

oc scale dc backend-worker --replicas=Z

Red Hat 3scale API Management 2.10 Operating 3scale

10

1.2.4.2. Vertical and horizontal hardware scaling

You can increase the performance of your 3scale deployment on OpenShift by adding resources. You
can add more compute nodes as pods to your OpenShift cluster, as horizontal scaling or you can allocate
more resources to existing compute nodes as vertical scaling.

Horizontal scaling

You can add more compute nodes as pods to your OpenShift. If the additional compute nodes match
the existing nodes in your cluster, you do not have to reconfigure any environment variables.

Vertical scaling

You can allocate more resources to existing compute nodes. If you allocate more resources, you must
add additional processes to your pods to increase performance.

NOTE

Avoid the use of computing nodes with different specifications and configurations in your
3scale deployment.

1.2.4.3. Scaling up routers

As traffic increases, ensure your Red Hat OCP routers can adequately handle requests. If your routers
are limiting the throughput of your requests, you must scale up your router nodes.

1.3. OPERATIONS TROUBLESHOOTING

This section explains how to configure 3scale audit logging to display on OpenShift, and how to access
3scale logs and job queues on OpenShift.

1.3.1. Configuring 3scale audit logging on OpenShift

This enables all logs to be in one place for querying by Elasticsearch, Fluentd, and Kibana (EFK) logging
tools. These tools provide increased visibility on changes made to your 3scale configuration, who made
these changes, and when. For example, this includes changes to billing, application plans, API
configuration, and more.

Prerequisites

A 3scale 2.10 deployment.

Procedure

Configure audit logging to stdout to forward all application logs to standard OpenShift pod logs.

Some considerations:

By default, audit logging to stdout is disabled when 3scale is deployed on-premises; you need
to configure this feature to have it fully functional.

Audit logging to stdout is not available for 3scale hosted.

CHAPTER 1. 3SCALE OPERATIONS AND SCALING

11

1.3.2. Enabling audit logging

3scale uses a features.yml configuration file to enable some global features. To enable audit logging to
stdout, you must mount this file from a ConfigMap to replace the default file. The OpenShift pods that
depend on features.yml are system-app and system-sidekiq.

Prerequisites

You must have cluster administrator access on OpenShift.

Procedure

1. Enter the following command to enable audit logging to stdout:

oc patch configmap system -p '{"data": {"features.yml": "features: &default\n logging:\n
audits_to_stdout: true\n\nproduction:\n <<: *default\n"}}'

2. Export the following environment variable:

export PATCH_SYSTEM_VOLUMES='{"spec":{"template":{"spec":{"volumes":[{"emptyDir":
{"medium":"Memory"},"name":"system-tmp"},{"configMap":{"items":
[{"key":"zync.yml","path":"zync.yml"},
{"key":"rolling_updates.yml","path":"rolling_updates.yml"},
{"key":"service_discovery.yml","path":"service_discovery.yml"},
{"key":"features.yml","path":"features.yml"}],"name":"system"},"name":"system-config"}]}}}}'

3. Enter the following command to apply the updated deployment configuration to the relevant
OpenShift pods:

oc patch dc system-app -p $PATCH_SYSTEM_VOLUMES
oc patch dc system-sidekiq -p $PATCH_SYSTEM_VOLUMES

1.3.3. Configuring EFK logging

When you have enabled audit logging to stdout to forward 3scale application logs to OpenShift, you can
use EFK logging tools to monitor your 3scale applications.

For details on how to configure EFK logging on OpenShift, see the following:

Deploying EFK on OCP 3.11

Deploying EFK on OCP 4.1

1.3.4. Accessing your logs

Each component’s deployment configuration contains logs for access and exceptions. If you encounter
issues with your deployment, check these logs for details.

Follow these steps to access logs in 3scale:

Procedure

1. Find the ID of the pod you want logs for:

Red Hat 3scale API Management 2.10 Operating 3scale

12

https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html
https://docs.openshift.com/container-platform/4.1/logging/efk-logging.html

oc get pods

2. Enter oc logs and the ID of your chosen pod:

oc logs <pod>

The system pod has two containers, each with a separate log. To access a container’s log,
specify the --container parameter with the system-provider and system-developer pods:

oc logs <pod> --container=system-provider
oc logs <pod> --container=system-developer

1.3.5. Checking job queues

Job queues contain logs of information sent from the system-sidekiq pods. Use these logs to check if
your cluster is processing data. You can query the logs using the OpenShift CLI:

oc get jobs

oc logs <job>

1.3.6. Preventing monotonic growth

To prevent monotonic growth, 3scale schedules by default, automatic purging of the following tables:

user_sessions - clean up is triggered once a week, deletes records older than two weeks.

audits - clean up is triggered once a day, deletes records older than three months.

log_entries - clean up triggered once a day, deletes records older than six months.

event_store_events - clean up is triggered once a week, deletes records older than a week.

With the exception of the above listed table, the following table requires manual purging by the
database administrator:

alerts

Table 1.1. SQL purging commands

Database type SQL command

MySQL

PostgreSQL

Oracle

For other tables not specified in this section, the database administrator must manually clean the tables

DELETE FROM alerts WHERE timestamp < NOW() - INTERVAL 14 DAY;

DELETE FROM alerts WHERE timestamp < NOW() - INTERVAL '14 day';

DELETE FROM alerts WHERE timestamp <= TRUNC(SYSDATE) - 14;

CHAPTER 1. 3SCALE OPERATIONS AND SCALING

13

For other tables not specified in this section, the database administrator must manually clean the tables
that the system does not automatically purge.

Additional resources

For more information about the Openshift Container Platform (OCP), see the OCP
documentation.

Automatically scaling pods.

Adding Compute Nodes.

Optimizing Routing .

Red Hat 3scale API Management 2.10 Operating 3scale

14

https://access.redhat.com/documentation/en-us/openshift_container_platform
https://docs.openshift.com/container-platform/4.1/nodes/pods/nodes-pods-autoscaling.html
https://docs.openshift.com/container-platform/4.1/machine_management/adding-rhel-compute.html
https://docs.openshift.com/container-platform/4.1/scalability_and_performance/routing-optimization.html

CHAPTER 2. MONITORING 3SCALE
Prometheus is container-native software built for storing historical data and for monitoring large,
scalable systems. It gathers data over an extended time, rather than just for the currently running
session. Alerting rules in Prometheus are managed by Alertmanager.

You use Prometheus and Alertmanager to monitor and store 3scale data so that you can use a graphical
tool, such as Grafana, to visualize and run queries on the data.

IMPORTANT

Prometheus is an open-source system monitoring toolkit and Grafana is an open-source
dashboard toolkit. Red Hat support for Prometheus and Grafana is limited to the
configuration recommendations provided in Red Hat product documentation.

The 3scale operator allows you to use an existing Prometheus and Grafana operator installation to
monitor 3scale usage and resources.

NOTE

The 3scale operator creates monitoring resources, but does not prevent modification of
those resources.

Prerequisites

The 3scale operator is installed.

The Prometheus operator is installed in the cluster. The Prometheus operator is an operator for
creating and managing Prometheus instances. It provides the Prometheus custom resource
definition required by 3scale monitoring.
The following Prometheus operator and image versions are tested with 3scale:

Prometheus operator v0.37.0

Prometheus image: quay.io/prometheus/prometheus:v2.16.0

The Grafana operator is installed in the cluster. The Grafana operator is an operator for
creating and managing Grafana instances. It provides the GrafanaDashboard custom resource
definition required by 3scale monitoring.
The following Grafana operator and image versions are tested with 3scale:

Grafana operator v3.6.0

Grafana image: registry.hub.docker.com/grafana/grafana:7.1.1

IMPORTANT

If your cluster is exposed on the Internet, make sure to protect the Prometheus and
Grafana services.

This section describes how to enable monitoring of a 3scale instance, so that you can view the Grafana
dashboards.

Section 2.1, “Enabling monitoring for 3scale”

CHAPTER 2. MONITORING 3SCALE

15

https://prometheus.io/
https://grafana.com/
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#installing-threescale-operator-on-openshift
https://operatorhub.io/operator/prometheus
https://operatorhub.io/operator/grafana-operator

Section 2.2, “Configuring Prometheus to monitor 3scale”

Section 2.3, “Configuring Grafana to monitor 3scale”

Section 2.4, “Viewing metrics for 3scale”

2.1. ENABLING MONITORING FOR 3SCALE

To monitor 3scale, you must enable monitoring by setting an APIManager custom resource.

Procedure

1. Configure 3scale to enable monitoring by setting the spec.monitoring.enabled parameter of
the 3scale deployment YAML to true. For example:

a. . Create an APIManager custom resource named 3scale-monitoring.yml to enable
monitoring:

apiVersion: apps.3scale.net/v1alpha1
kind: APIManager
metadata:
 name: apimanager1
spec:
 wildcardDomain: example.com
 monitoring:
 enabled: true

b. Log in to your OpenShift cluster. You must log in as a user with an edit cluster role in the
OpenShift project of the 3scale, for example, cluster-admin.

oc login

c. Switch to your 3scale project.

oc project <project_name>

d. Deploy the custom resource:

$ oc apply -f 3scale-monitoring.yml

Additional resources

For more information about configuring 3scale using the operator, see the guide of deployment
configuration options for 3scale on OpenShift using the operator.

2.2. CONFIGURING PROMETHEUS TO MONITOR 3SCALE

You must deploy and configure Prometheus using the Prometheus custom resource to enable
monitoring of 3scale.

NOTE

Make sure permissions are set correctly as described in Prometheus documentation.

Red Hat 3scale API Management 2.10 Operating 3scale

16

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#threescale-deployment-configuration-options-via-the-operator
https://github.com/prometheus-operator/prometheus-operator/blob/v0.37.0/Documentation/api.md#prometheusspec

Procedure

1. Deploy the Prometheus custom resource as follows depending on whether you want to monitor
all resources in the cluster or only 3scale resources:

To monitor all resources in the cluster, set the spec.podMonitorSelector attribute to {}
and set the spec.ruleSelector attribute to {}. For example, apply the following custom
resource:

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
 name: example
spec:
 podMonitorSelector: {}
 ruleSelector: {}

If you deployed 3scale and the Prometheus operator in the same OpenShift project, and
assuming the value of APP_LABEL is set to the default 3scale-api-management, monitor
3scale resources using the following steps:

a. Set the spec.podMonitorSelector attribute to:

 podMonitorSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - 3scale-api-management

b. Set the spec.ruleSelector attribute to:

 matchExpressions:
 - key: app
 operator: In
 values:
 - 3scale-api-management

For example, apply the following custom resource:

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
 name: example
spec:
 podMonitorSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - 3scale-api-management
 ruleSelector:
 matchExpressions:
 - key: app

CHAPTER 2. MONITORING 3SCALE

17

 operator: In
 values:
 - 3scale-api-management

If you deployed 3scale and the Prometheus operator in different OpenShift projects,
monitor 3scale resources using the following steps:

a. Label the OpenShift project where 3scale is deployed with
MYLABELKEY=MYLABELVALUE

b. Use a podMonitorNamespaceSelector filter to select the 3scale pods. For example,
apply the following custom resource:

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
 name: example
spec:
 podMonitorSelector: {}
 ruleSelector: {}
 podMonitorNamespaceSelector:
 matchExpressions:
 - key: MYLABELKEY
 operator: In
 values:
 - MYLABELVALUE

2. To ensure that dashboards and alerts work as expected, you must incorporate Kubernetes
metrics, that is, kube-state-metrics, by performing one of the following:

Federate the Prometheus instance with the cluster default Prometheus instance.

Configure your own scraping jobs to get metrics from kubelet, etcd and others.

Additional resources

For more information about Prometheus, see the Prometheus documentation.

2.3. CONFIGURING GRAFANA TO MONITOR 3SCALE

You must configure Grafana in order to enable monitoring of 3scale.

Procedure

1. Make sure Grafana services are configured to monitor the GrafanaDashboards resources by
overwriting the app=3scale-api-management label. For example, apply the following custom
resource:

apiVersion: integreatly.org/v1alpha1
kind: Grafana
metadata:
 name: grafana
spec:
 dashboardLabelSelector:
 - matchExpressions:

Red Hat 3scale API Management 2.10 Operating 3scale

18

https://github.com/kubernetes/kube-state-metrics
https://prometheus.io/docs/introduction/overview/

 - key: app
 operator: In
 values:
 - 3scale-api-management

Grafana Dashboards created by the 3scale operator are labeled as follows:

app: 3scale-api-management
monitoring-key: middleware

2. If the Grafana operator is installed in a different namespace than 3scale, configure it to monitor
resources outside the namespace using the --namespaces or --scan-all operator flags. See
the Grafana documentation for more information about the operator flags.

3. Create a GrafanaDataSource custom resource of type prometheus to make the Prometheus
data available in Grafana. For example:

apiVersion: integreatly.org/v1alpha1
kind: GrafanaDataSource
metadata:
 name: prometheus
spec:
 name: middleware
 datasources:
 - name: Prometheus
 type: prometheus
 access: proxy
 url: http://prometheus-operated:9090
 isDefault: true
 version: 1
 editable: true
 jsonData:
 timeInterval: "5s"

where http://prometheus-operated:9090 is the Prometheus route.

4. Make sure permissions are set correctly as described in the Grafana documentation.

Additional resources

For more information about Grafana, see the Grafana documentation.

2.4. VIEWING METRICS FOR 3SCALE

After configuring 3scale, Prometheus, and Grafana you can view the metrics described in this section.

Procedure

1. Log into the Grafana console.

2. Check that you can view metrics for the following:

Kubernetes resources at pod and namespace level where 3scale is installed

APIcast Staging

CHAPTER 2. MONITORING 3SCALE

19

https://github.com/integr8ly/grafana-operator/blob/v3.6.0/documentation/deploy_grafana.md
http://prometheus-operated:9090
https://github.com/integr8ly/grafana-operator/blob/v3.6.0/documentation/deploy_grafana.md#operator-flags
https://grafana.com/docs/guides/getting_started/

APIcast Production

Backend worker

Backend listener

System

Zync

2.5. 3SCALE SYSTEM METRICS EXPOSED TO PROMETHEUS

You can configure the following ports to use 3scale system pods with Prometheus endpoints to expose
metrics.

Table 2.1. 3scale system ports

system-app Port

system-developer 9394

system-master 9395

system-provider 9396

system-sidekiq Port

system-sidekiq 9394

The endpoints are only accessible internally using:

http://${service}:${port}/metrics

For example:

http://system-developer:9394/metrics

Additional resources

For information about monitoring APIcast, see the Exposing 3scale APIcast Metrics to
Prometheus guide.

For information about securing Prometheus, see the Prometheus security documentation.

For information about securing Grafana, see the permissions and security Grafana
documentation.

Red Hat 3scale API Management 2.10 Operating 3scale

20

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/administering_the_api_gateway/index#prometheus-3scale-apicast
https://prometheus.io/docs/operating/security/
https://grafana.com/docs/grafana/v7.1/permissions/
https://grafana.com/docs/grafana/v7.1/installation/security/

CHAPTER 3. 3SCALE AUTOMATION USING WEBHOOKS
Webhooks is a feature that facilitates automation, and is also used to integrate other systems based on
events that occur in 3scale. When specified events happen within the 3scale system, your applications
will be notified with a webhook message. As an example, by configuring webhooks, you can use the data
from a new account signup to populate your Developer Portal.

3.1. OVERVIEW OF WEBHOOKS

A webhook is a custom HTTP callback triggered by an event selected from the available ones in the
Webhooks configuration window. When one of these events occurs, the 3scale system makes an HTTP
or HTTPS request to the URL address specified in the webhooks section. With webhooks, you can
configure the listener to invoke some desired behavior such as event tracking.

The format of the webhook is always the same. It makes a post to the endpoint with an XML document
of the following structure:

Each element provides information:

<type>: Gives you the subject of the event such as application, account, and so on.

<action>: Specifies what has been done, by using values such as updated, created, deleted.

<object>: Constitutes the XML object itself in the same format that is returned by the Account
Management API. To check this, you can use our interactive ActiveDocs.

If you need to provide assurance that the webhook was issued by 3scale, expose an HTTPS webhook
URL and add a custom parameter to your webhook declaration in 3scale. For example: https://your-
webhook-endpoint?someSecretParameterName=someSecretParameterValue. Decide on the
parameter name and value. Then, inside your webhook endpoint, check for the presence of this
parameter value.

3.2. CONFIGURING WEBHOOKS

Procedure

1. Navigate to Account Settings > Integrate > Webhooks. Account Settings is the gear icon
located in the upper right of the window.

2. Indicate the behavior for webhooks. There are two options:

Webhooks enabled: Select this checkbox to enable or disable webhooks.

Actions in the admin portal also trigger webhooks: Select this checkbox to trigger a

<?xml version="1.0" encoding="UTF-8"?>
<event>
 <type>application</type>
 <action>updated</action>
 <object>
 THE APPLICATION OBJECT AS WOULD BE RETURNED BY A GET ON THE ACCOUNT
MANAGEMENT
 API
 </object>
</event>

CHAPTER 3. 3SCALE AUTOMATION USING WEBHOOKS

21

https://your-webhook-endpoint?someSecretParameterName=someSecretParameterValue

Actions in the admin portal also trigger webhooks: Select this checkbox to trigger a
webhook when an event happens. Consider the following:

When making calls to the internal 3scale APIs configured with the triggering events, use
an access token; not a provider key.

If you leave this checkbox cleared, only actions in the Developer Portal trigger
webhooks.

3. Specify the URL address for notification of the selected events when they trigger.

4. Select the events that will trigger the callback to the indicated URL address.

Once you have configured the settings, click Update webhooks settings to save your changes.

3.3. TROUBLESHOOTING WEBHOOKS

If you experience an outage for your listening endpoint, you can recover failed deliveries. 3scale will
consider a webhook delivered if your endpoint responds with a 200 code. Otherwise, it will retry 5 times
with a 60 seconds gap. After any recovery from an outage, or periodically, you should run a check and if
applicable clean up the queue. You can find more information about the following methods in
ActiveDocs:

Webhooks list failed deliveries

Webhooks delete failed deliveries

Red Hat 3scale API Management 2.10 Operating 3scale

22

CHAPTER 4. THE 3SCALE TOOLBOX
The 3scale toolbox is a Ruby client that enables you to manage 3scale products from the command line.

Within 3scale documentation, there is information about the installation of the 3scale toolbox,
supported toolbox commands, services, plans, troubleshooting issues with SSL and TLS, etc. Refer to
one of the sections below for more details:

Section 4.1, “Installing the toolbox”

Section 4.2, “Supported toolbox commands”

Section 4.3, “Importing services”

Section 4.4, “Copying services”

Section 4.5, “Copying service settings only”

Section 4.6, “Importing OpenAPI definitions”

Section 4.7, “Managing remote access credentials”

Section 4.8, “Creating application plans”

Section 4.9, “Creating metrics”

Section 4.10, “Creating methods”

Section 4.11, “Creating services”

Section 4.12, “Creating ActiveDocs”

Section 4.13, “Listing proxy configurations”

Section 4.14, “Copying a policy registry”

Section 4.15, “Listing applications”

Section 4.16, “Copying API backends”

Section 4.17, “Troubleshooting issues with SSL and TLS”

4.1. INSTALLING THE TOOLBOX

The officially supported method of installing the 3scale toolbox is using the 3scale toolbox container
image.

4.1.1. Installing the toolbox container image

This section explains how to install the toolbox container image.

Prerequisites

See the 3scale toolbox image in the Red Hat Ecosystem Catalog .

You must have a Red Hat registry service account.

CHAPTER 4. THE 3SCALE TOOLBOX

23

https://github.com/3scale/3scale_toolbox
https://access.redhat.com/containers/#/registry.access.redhat.com/3scale-amp2/toolbox-rhel7

The examples in this topic assume that you have Podman installed.

Procedure

1. Log in to the Red Hat Ecosystem Catalog:

2. Pull the toolbox container image:

3. Verify the installation:

4.1.2. Installing unsupported toolbox versions

Procedure

You can install unsupported toolbox versions on Fedora Linux, Ubuntu Linux, Windows, or
macOS by downloading and installing the latest .rpm, .deb, .msi or .pkg file from GitHub .

Additional resources

For details on installing the toolbox image with OpenShift, Podman, or Docker, see the
instructions on getting the image in the Red Hat Ecosystem Catalog .

See also the instructions for installing the 3scale toolbox on Kubernetes . You must use the
correct image name and the oc command instead of kubectl on OpenShift.

4.2. SUPPORTED TOOLBOX COMMANDS

Use the 3scale toolbox to manage your API from the command line tool (CLI).

NOTE

The update command has been deprecated and replaced by the copy command. The use
of deprecated commands is not supported.

The following commands are supported:

COMMANDS
 account account super command
 activedocs activedocs super command
 application application super command
 application-plan application-plan super command
 backend backend super command
 copy copy super command

$ podman login registry.redhat.io
Username: ${REGISTRY-SERVICE-ACCOUNT-USERNAME}
Password: ${REGISTRY-SERVICE-ACCOUNT-PASSWORD}
Login Succeeded!

$ podman pull registry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10

$ podman run registry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10 3scale help

Red Hat 3scale API Management 2.10 Operating 3scale

24

https://github.com/3scale/3scale_toolbox_packaging/releases/latest
https://catalog.redhat.com/software/containers/3scale-amp2/toolbox-rhel7/5d80bbe95a13461f5f050cf7
https://github.com/3scale/3scale_toolbox_packaging#kubernetes

 help print help
 import import super command
 method method super command
 metric metric super command
 policy-registry policy-registry super command
 product product super command
 proxy-config proxy-config super command
 remote remotes super command
 service services super command
 update [DEPRECATED] update super command

OPTIONS
 -c --config-file=<value> 3scale toolbox configuration file
 (default: $HOME/.3scalerc.yaml)
 -h --help show help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Prints the version of this command
 --verbose Verbose mode

4.3. IMPORTING SERVICES

Import services from a CSV file by specifying the following fields in the order specified below. Include
these headers in your CSV file:

You need the following information:

A 3scale admin account: {3SCALE_ADMIN}

The domain your 3scale instance is running on: {DOMAIN_NAME}

If you are using hosted APICast this is 3scale.net

The access key of your account: {ACCESS_KEY}

The CSV file of services, for example: examples/import_example.csv

Import the services by running:

Example

This example uses a Podman volume to mount the resource file in the container. It assumes that the file
is available in the current $PWD folder.

4.4. COPYING SERVICES

Create a new service based on an existing one from the same account or from another account. When

service_name,endpoint_name,endpoint_http_method,endpoint_path,auth_mode,endpoint_system_nam
e,type

$ podman run -v $PWD/examples/import_example.csv:/tmp/import_example.csv
registry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10 3scale import csv --
destination=https://{ACCESS_KEY}@{3SCALE_ADMIN}-admin.{DOMAIN_NAME} --
file=/tmp/import_example.csv

CHAPTER 4. THE 3SCALE TOOLBOX

25

Create a new service based on an existing one from the same account or from another account. When
you copy a service, the relevant ActiveDocs are also copied.

You need the following information:

The service id you want to copy: {SERVICE_ID}

A 3scale admin account: {3SCALE_ADMIN}

The domain your 3scale instance is running on: {DOMAIN_NAME}

If you are using hosted APICast this is 3scale.net

The access key of your account: {ACCESS_KEY}

The access key of the destination account if you are copying to a different account:
{DEST_KEY}

The name for the new service: {NEW_NAME}

Example

NOTE

If the service to be copied has custom policies, make sure that their respective custom
policy definitions already exist in the destination where the service is to be copied. To
learn more about copying custom policy definitions check out the Copying a policy
registry

4.5. COPYING SERVICE SETTINGS ONLY

You can bulk copy and update the service and proxy settings, metrics, methods, application plans,
application plan limits, as well as mapping rules from a service to another existing service.

You need the following information:

The service id you want to copy: {SERVICE_ID}

The service id of the destination: {DEST_ID}

A 3scale admin account: {3SCALE_ADMIN}

The domain your 3scale instance is running on: {DOMAIN_NAME}

If you are using hosted APICast this is 3scale.net

The access key of your account: {ACCESS_KEY}

The access key of the destination account: {DEST_KEY}

Additionally, you can use the optional flags:

$ podman run registry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10 3scale copy service
{SERVICE_ID} --source=https://{ACCESS_KEY}@{3SCALE_ADMIN}-admin.{DOMAIN_NAME} --
destination=https://{DEST_KEY}@{3SCALE_ADMIN}-admin.{DOMAIN_NAME} --
target_system_name={NEW_NAME}

Red Hat 3scale API Management 2.10 Operating 3scale

26

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#copying-policy-registry

The -f flag to remove existing target service mapping rules before copying.

The -r flag to copy only mapping rules to target service.

NOTE

The update command has been deprecated and replaced by the copy command. The
use of deprecated commands is not supported.

The following example command does a bulk update from one service to another existing service:

4.6. IMPORTING OPENAPI DEFINITIONS

To create a new service or to update an existing service, you can import the OpenAPI definition from a
local file or a URL. The default service name for the import is specified by the info.title in the OpenAPI
definition. However, you can override this service name using --target_system_name=<NEW NAME>.
This will update the service name if it already exists, or create a new service name if it does not.

The import openapi command has the following format:

The OpenAPI <specification> can be one of the following:

/path/to/your/definition/file.[json|yaml|yml]

http[s]://domain/resource/path.[json|yaml|yml]

Example

Command options

The import openapi command options include:

-d --destination=<value>

3scale target instance in format: http[s]://<authentication>@3scale_domain.

-t --target_system_name=<value>

3scale target system name.

--backend-api-secret-token=<value>

Custom secret token sent by the API gateway to the backend API.

--backend-api-host-header=<value>

Custom host header sent by the API gateway to the backend API.

$ podman run registry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10 3scale update [opts] service --
source=https://{ACCESS_KEY}@{3SCALE_ADMIN}-admin.{DOMAIN_NAME} --
destination=https://{DEST_KEY}@{3SCALE_ADMIN}-admin.{DOMAIN_NAME} {SERVICE_ID}
{DEST_ID}

3scale import openapi [opts] -d=<destination> <specification>

$ podman run registry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10 3scale import openapi [opts] -
d=https://{DEST_KEY}@{3SCALE_ADMIN}-admin.{DOMAIN_NAME} my-test-api.json

CHAPTER 4. THE 3SCALE TOOLBOX

27

For more options, see the 3scale import openapi --help command.

OpenAPI import rules

The following rules apply when importing OpenAPI definitions:

Definitions are validated as OpenAPI 2.0 or OpenAPI 3.0.

All mapping rules in the 3scale product are deleted.

To be replaced, all method names must be identical to methods defined in the OpenAPI
definition operation.operationId by using exact pattern matching.

Only methods included in the OpenAPI definition are modified.

All methods that were present only in the OpenAPI definition are attached to the Hits metric.

All mapping rules from the OpenAPI definition are imported. You can view these in API >
Integration.

The supported security schemes are apiKey and oauth2 with any OAuth flow type.

The OpenAPI specification must be one of the following:

Filename in the available path.

URL from where toolbox can download the content. The supported schemes are http and
https.

Read from stdin standard input stream. This is controlled by setting the - value.

NOTE

While there is no security requirement in the specification, the service is considered as an
OpenAPI. The toolbox will add a default_credentials policy, which is also known as an
anonymous_policy, if it is not already in the policy chain. The default_credentials policy
will be configured with the userkey provided in an optional parameter --default-
credentials-userkey.

OpenAPI 3.0 limitations

The following limitations apply when importing OpenAPI 3.0 definitions:

Only the first server.url element in the servers list is parsed as a private URL. The server.url
element’s path component will be used as the OpenAPI’s basePath property.

The toolbox will not parse servers in the path item and servers in the operation objects.

Multiple flows in the security scheme object not supported.

4.7. MANAGING REMOTE ACCESS CREDENTIALS

To facilitate working with remote 3scale instances, you can use the 3scale toolbox to define the remote
URL addresses and authentication details to access those remote instances in a configuration file. You
can then refer to these remotes using a short name in any toolbox command.

The default location for the configuration file is $HOME/.3scalerc.yaml. However, you can specify

Red Hat 3scale API Management 2.10 Operating 3scale

28

The default location for the configuration file is $HOME/.3scalerc.yaml. However, you can specify
another location using the THREESCALE_CLI_CONFIG environment variable or the --config-file
<config_file> toolbox option.

When adding remote access credentials, you can specify an access_token or a provider_key:

http[s]://<access_token>@<3scale-instance-domain>

http[s]://<provider_key>@<3scale-instance-domain>

4.7.1. Adding remote access credentials

The following example command adds a remote 3scale instance with the short <name> at <url>:

Example

This example creates the remote instance and commits the container to create a new image. You can
then run the new image with the remote information included. For example, the following command uses
the new image to show the newly added remote:

Other toolbox commands can then use the newly created image to access the added remotes. This
example uses an image named toolbox instead of registry.redhat.io/3scale-amp2/toolbox-
rhel7:3scale2.10.

WARNING

Storing secrets for toolbox in a container is a potential security risk, for example
when distributing the container with secrets to other users or using the container for
automation. Use secured volumes in Podman or secrets in OpenShift.

Additional resources

For more details on using Podman, see:

Building, running, and managing Linux containers on Red Hat Enterprise Linux 8

4.7.2. Listing remote access credentials

The following example command shows how to list remote access credentials:

3scale remote add [--config-file <config_file>] <name> <url>

$ podman run --name toolbox-container registry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10
3scale remote add instance_a https://123456789@example_a.net

$ podman commit toolbox-container toolbox

$ podman run toolbox 3scale remote list
instance_a https://example_a.net 123456789



CHAPTER 4. THE 3SCALE TOOLBOX

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/index

This command shows the list of added remote 3scale instances in the following format: <name> <URL>
<authentication-key>:

Example

4.7.3. Removing remote access credentials

The following example command shows how to remove remote access credentials:

This command removes the remote 3scale instance with the short <name>:

Example

4.7.4. Renaming remote access credentials

The following example command shows how to rename remote access credentials:

This command renames the remote 3scale instance with the short <old_name> to <new_name>:

Example

4.8. CREATING APPLICATION PLANS

Use the 3scale toolbox to create, update, list, delete, show, or export/import application plans in your
Developer Portal.

4.8.1. Creating a new application plan

Use the following steps to create a new application plan:

You have to provide the application plan name.

To override the system-name, use the optional parameter.

If an application plan with the same name already exists, you will see an error message.

Set as default the application plan by using the --default flag.

3scale remote list [--config-file <config_file>]

$ podman run <toolbox_image_with_remotes_added> 3scale remote list
instance_a https://example_a.net 123456789
instance_b https://example_b.net 987654321

3scale remote remove [--config-file <config_file>] <name>

$ podman run <toolbox_image_with_remote_added> 3scale remote remove instance_a

3scale remote rename [--config-file <config_file>] <old_name> <new_name>

$ podman run <toolbox_image_with_remote_added> 3scale remote rename instance_a instance_b

Red Hat 3scale API Management 2.10 Operating 3scale

30

Create a published application plan by using the --publish flag.

By default, it will be hidden.

Create a disabled application plan by using the --disabled flag.

By default, it will be enabled.

NOTE

The service positional argument is a service reference and can be either service
id or service system_name.

The toolbox uses either one.

The following command creates a new application plan:

Use the following options while creating application plans:

Options
 --approval-required=<value> The application requires approval:
 true or false
 --cost-per-month=<value> Cost per month
 --default Make the default application plan
 --disabled Disable all methods and metrics in
 the application plan
 -o --output=<value> Output format on stdout:
 one of json|yaml
 -p --published Publish the application plan
 --setup-fee=<value> Set-up fee
 -t --system-name=<value> Set application plan system name
 --trial-period-days=<value> The trial period in days

Options for application-plan
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered
 insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.8.2. Creating or updating application plans

Use the following steps to create a new application plan if it does not exist, or to update an existing one:

Update the default application plan by using the --default flag.

Update the published application plan by using the --publish flag.

Update the hidden application plan by using the --hide flag.

3scale application-plan create [opts] <remote> <service> <plan-name>

CHAPTER 4. THE 3SCALE TOOLBOX

31

Update the disabled application plan by using the --disabled flag.

Update the enabled application plan by using the --enabled flag.

NOTE

The service positional argument is a service reference and can be either service
id or service system_name.

The toolbox uses either one.

The plan positional argument is a plan reference and can be either plan id or plan
system_name.

The toolbox uses either one.

The following command updates the application plan:

Use the following options while updating application plans:

Options
 --approval-required=<value> The application requires approval:
 true or false
 --cost-per-month=<value> Cost per month
 --default Make the default application plan
 --disabled Disable all methods and metrics in
 the application plan
 --enabled Enable the application plan
 --hide Hide the application plan
 -n --name=<value> Set the plan name
 -o --output=<value> Output format on stdout:
 one of json|yaml
 -p --publish Publish the application plan
 --setup-fee=<value> Set-up fee
 --trial-period-days=<value> The trial period in days

Options for application-plan
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered
 insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.8.3. Listing application plans

The following command lists the application plan:

3scale application-plan create [opts] <remote> <service> <plan>

3scale application-plan list [opts] <remote> <service>

Red Hat 3scale API Management 2.10 Operating 3scale

32

Use the following options while listing application plans:

Options
 -o --output=<value> Output format on stdout:
 one of json|yaml

Options for application-plan
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.8.4. Showing application plans

The following command shows the application plan:

Use the following options while showing application plans:

Options
 -o --output=<value> Output format on stdout:
 one of json|yaml

Options for application-plan
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.8.5. Deleting application plans

The following command deletes the application plan:

Use the following options while deleting application plans:

Options for application-plan
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

3scale application-plan show [opts] <remote> <service> <plan>

3scale application-plan delete [opts] <remote> <service> <plan>

CHAPTER 4. THE 3SCALE TOOLBOX

33

4.8.6. Exporting/importing application plans

You can export or import a single application plan to or from yaml content.

Note the following:

Limits defined in the application plan are included.

Pricing rules defined in the application plan are included.

Metrics/methods referenced by limits and pricing rules are included.

Features defined in the application plan are included.

Service can be referenced by id or system_name.

Application Plan can be referenced by id or system_name.

4.8.6.1. Exporting an application plan to a file

The following command exports the application plan:

Example

This example uses a Podman volume to mount the exported file in the container for output to the
current $PWD folder.

NOTE

Specific to the export command:

Read only operation on remote service and application plan.

Command output can be stdout or file.

If not specified by -f option, by default, yaml content will be written on
stdout.

Use the following options while exporting application plans:

Options
 -f --file=<value> Write to file instead of stdout

Options for application-plan
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server

3scale application-plan export [opts] <remote> <service_system_name> <plan_system_name>

$ podman run -u root -v $PWD:/tmp registry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10 3scale
application-plan export --file=/tmp/plan.yaml remote_name service_name plan_name

Red Hat 3scale API Management 2.10 Operating 3scale

34

 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.8.6.2. Importing an application plan from a file

The following command imports the application plan:

Example

This example uses a Podman volume to mount the imported file in the container from the current $PWD
folder.

4.8.6.3. Importing an application plan from a URL

NOTE

Specific to import command:

Command input content can be stdin, file or URL format.

If not specified by -f option, by default, yaml content will be read from stdin.

If application plan cannot be found in remote service, it will be created.

Optional param -p, --plan to override remote target application plan id or
system_name.

If not specified by -p option, by default, application plan will be referenced by
plan attribute system_name from yaml content.

Any metric or method from yaml content that cannot be found in remote service,
will be created.

Use the following options while importing application plans:

Options
 -f --file=<value> Read from file or URL instead of
 stdin
 -p --plan=<value> Override application plan reference

Options for application-plan
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server

3scale application-plan import [opts] <remote> <service_system_name>

$ podman run -v $PWD/plan.yaml:/tmp/plan.yaml registry.redhat.io/3scale-amp2/toolbox-
rhel7:3scale2.10 3scale application-plan import --file=/tmp/plan.yaml remote_name service_name

3scale application-plan import -f http[s]://domain/resource/path.yaml remote_name service_name

CHAPTER 4. THE 3SCALE TOOLBOX

35

 connections otherwise considered
 insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.9. CREATING METRICS

Use the 3scale toolbox to create, update, list, and delete metrics in your Developer Portal.

Use the following steps for creating metrics:

You have to provide the metric name.

To override the system-name, use the optional parameter.

If metrics with the same name already exist, you will see an error message.

Create a disabled metric by using the --disabled flag.

By default, it will be enabled.

NOTE

The service positional argument is a service reference and can be either service
id or service system_name.

The toolbox uses either one.

The following command creates metrics:

Use the following options while creating metrics:

Options
 --description=<value> Set a metric description
 --disabled Disable this metric in all application
 plans
 -o --output=<value> Output format on stdout:
 one of json|yaml
 -t --system-name=<value> Set the application plan system name
 --unit=<value> Metric unit: default hit

Options for metric
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.9.1. Creating or updating metrics

3scale metric create [opts] <remote> <service> <metric-name>

Red Hat 3scale API Management 2.10 Operating 3scale

36

Use the following steps to create new metrics if they do not exist, or to update an existing one:

If metrics with the same name already exist, you will see an error message.

Update a disabled metric by using the --disabled flag.

Update to enabled metric by using the --enabled flag.

NOTE

The service positional argument is a service reference and can be either service
id or service system_name.

The toolbox uses either one.

The metric positional argument is a metric reference and can be either metric id
or metric system_name.

The toolbox uses either one.

The following commmand updates metrics:

Use the following options while updating metrics:

Options
 --description=<value> Set a metric description
 --disabled Disable this metric in all application
 plans
 --enabled Enable this metric in all application
 plans
 -n --name=<value> This will set the metric name
 --unit=<value> Metric unit: default hit
 -o --output=<value> Output format on stdout:
 one of json|yaml

Options for metric
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.9.2. Listing metrics

The following command lists metrics:

Use the following options while listing metrics:

3scale metric apply [opts] <remote> <service> <metric>

3scale metric list [opts] <remote> <service>

CHAPTER 4. THE 3SCALE TOOLBOX

37

Options
 -o --output=<value> Output format on stdout:
 one of json|yaml

Options for metric
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.9.3. Deleting metrics

The following command deletes metrics:

Use the following options while deleting metrics:

Options for metric
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.10. CREATING METHODS

Use the 3scale toolbox to create, apply, list, and delete methods in your Developer Portal.

4.10.1. Creating methods

Use the following steps for creating methods:

You have to provide the method name.

To override the system-name, use the optional parameter.

If a method with the same name already exists, you will see an error message.

Create a disabled method by --disabled flag.

By default, it will be enabled.

NOTE

3scale metric delete [opts] <remote> <service> <metric>

Red Hat 3scale API Management 2.10 Operating 3scale

38

NOTE

The service positional argument is a service reference and can be either service
id or service system_name.

The toolbox uses either one.

The following command creates a method:

Use the following options while creating methods:

Options
 --description=<value> Set a method description
 --disabled Disable this method in all
 application plans
 -o --output=<value> Output format on stdout:
 one of json|yaml
 -t --system-name=<value> Set the method system name

Options for method
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.10.2. Creating or updating methods

Use the steps below for creating new methods if they do not exist, or to update existing ones:

If a method with the same name already exists, the command will return an error message.

Update to disabled method by using --disabled flag.

Update to enabled method by using --enabled flag.

NOTE

The service positional argument is a service reference and can be either service
id or service system_name.

The toolbox uses either one.

The method positional argument is a method reference and can be either
method id or method system_name.

The toolbox uses either one.

The following command updates a method:

3scale method create [opts] <remote> <service> <method-name>

CHAPTER 4. THE 3SCALE TOOLBOX

39

Use the following options while updating methods:

Options
 --description=<value> Set a method description
 --disabled Disable this method in all
 application plans
 --enabled Enable this method in all
 application plans
 -n --name=<value> Set the method name
 -o --output=<value> Output format on stdout:
 one of json|yaml

Options for method
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.10.3. Listing methods

The following command lists methods:

Use the following options while listing methods:

Options
 -o --output=<value> Output format on stdout:
 one of json|yaml

Options for method
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.10.4. Deleting methods

The following command deletes methods:

Use the following options while deleting methods:

Options for method

3scale method apply [opts] <remote> <service> <method>

3scale method list [opts] <remote> <service>

3scale method delete [opts] <remote> <service> <metric>

Red Hat 3scale API Management 2.10 Operating 3scale

40

 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.11. CREATING SERVICES

Use the 3scale toolbox to create, apply, list, show, or delete services in your Developer Portal.

4.11.1. Creating a new service

The following command creates a new service:

Use the following options while creating services:

Options
 -a --authentication-mode=<value> Specify authentication mode of
 the service:
 - '1' for API key
 - '2' for App Id/App Key
 - 'oauth' for OAuth mode
 - 'oidc' for OpenID Connect
 -d --deployment-mode=<value> Specify the deployment mode of
 the service
 --description=<value> Specify the description of the
 service
 -o --output=<value> Output format on stdout:
 one of json|yaml
 -s --system-name=<value> Specify the system-name of the
 service
 --support-email=<value> Specify the support email of the
 service

Options for service
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for
 server connections otherwise
 considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.11.2. Creating or updating services

Use the following to create new services if they do not exist, or to update an existing one:

NOTE

3scale service create [options] <remote> <service-name>

CHAPTER 4. THE 3SCALE TOOLBOX

41

NOTE

service-id_or_system-name positional argument is a service reference.

It can be either service id, or service system_name.

Toolbox will automatically figure this out.

This command is idempotent.

The following command updates services:

Use the following options while updating services:

Options
 -a --authentication-mode=<value> Specify authentication mode of
 the service:
 - '1' for API key
 - '2' for App Id/App Key
 - 'oauth' for OAuth mode
 - 'oidc' for OpenID Connect
 -d --deployment-mode=<value> Specify the deployment mode of
 the service
 --description=<value> Specify the description of the
 service
 -n --name=<value> Specify the name of the metric
 --support-email=<value> Specify the support email of the
 service
 -o --output=<value> Output format on stdout:
 one of json|yaml

Options for services
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for
 server connections otherwise
 considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.11.3. Listing services

The following command lists services:

Use the following options while listing services:

Options
 -o --output=<value> Output format on stdout:
 one of json|yaml

3scale service apply <remote> <service-id_or_system-name>

3scale service list <remote>

Red Hat 3scale API Management 2.10 Operating 3scale

42

Options for services
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.11.4. Showing services

The following command shows services:

Use the following options while showing services:

Options
 -o --output=<value> Output format on stdout:
 one of json|yaml

Options for services
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.11.5. Deleting services

The following command deletes services:

Use the following options while deleting services:

Options for services
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.12. CREATING ACTIVEDOCS

Use the 3scale toolbox to create, update, list, or delete ActiveDocs in your Developer Portal.

3scale service show <remote> <service-id_or_system-name>

3scale service delete <remote> <service-id_or_system-name>

CHAPTER 4. THE 3SCALE TOOLBOX

43

4.12.1. Creating new ActiveDocs

To create a new ActiveDocs from your API definition compliant with the OpenAPI specification:

1. Add your API definition to 3scale, optionally giving it a name:

The OpenAPI specification for the ActiveDocs is required and must be one of the following
values:

Filename in the available path.

URL from where toolbox can download the content. The supported schemes are http and
https.

Read from stdin standard input stream. This is controlled by setting the - value.
Use the following options while creating ActiveDocs:

Options
 -d --description=<value> Specify the description of
 the ActiveDocs
 -i --service-id=<value> Specify the Service ID
 associated to the ActiveDocs
 -o --output=<value> Output format on stdout: one
 of json|yaml
 -p --published Specify to publish the
 ActiveDocs on the Developer
 Portal. Otherwise it is hidden.
 -s --system-name=<value> Specify the system-name of
 the ActiveDocs
 --skip-swagger-validations Specify to skip validation
 of the Swagger specification
Options for ActiveDocs
 -c --config-file=<value> toolbox configuration file.
 Defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for
 server connections otherwise
 considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

2. Publish the definition in your Developer Portal.

4.12.2. Creating or updating ActiveDocs

Use the following command to create new ActiveDocs if they do not exist, or to update existing
ActiveDocs with a new API definition:

Use the following options while updating ActiveDocs:

3scale activedocs create <remote> <activedocs-name> <specification>

3scale activedocs apply <remote> <activedocs_id_or_system_name>

Red Hat 3scale API Management 2.10 Operating 3scale

44

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/providing_apis_in_the_developer_portal/index#publish-activedocs

Options
 -d --description=<value> Specify the description of the
 ActiveDocs
 --hide Specify to hide the ActiveDocs
 on the Developer Portal
 -i --service-id=<value> Specify the Service ID associated
 to the ActiveDocs
 -o --output=<value> Output format on stdout:
 one of json|yaml
 --openapi-spec=<value> Specify the Swagger specification.
 Can be a file, a URL or '-' to read
 from stdin. This is a mandatory
 option when applying the ActiveDoc
 for the first time.
 -p --publish Specify to publish the ActiveDocs
 on the Developer Portal. Otherwise
 it is hidden
 -s --name=<value> Specify the name of the ActiveDocs
 --skip-swagger-validations=<value> Specify whether to skip validation
 of the Swagger specification: true
 or false. Defaults to true.

Options for ActiveDocs
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered
 insecure
 -v --version Print the version of this command
 --verbose Verbose mode

NOTE

The behavior of activedocs apply --skip-swagger-validations changed in 3scale 2.8.
You may need to update existing scripts using activedocs apply. Previously, if you did
not specify this option in each activedocs apply command, validation was not skipped.
Now, --skip-swagger-validations is true by default.

4.12.3. Listing ActiveDocs

Use the following command to get information about all ActiveDocs in the Developer Portal, including:

id

name

system name

description

published (which means it can be shown in the developer portal)

creation date

CHAPTER 4. THE 3SCALE TOOLBOX

45

latest updated date

The following command lists all defined ActiveDocs:

Use the following options while listing ActiveDocs:

Options
 -o --output=<value> Output format on stdout:
 one of json|yaml
 -s --service-ref=<value> Filter the ActiveDocs by service
 reference
Options for ActiveDocs
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.12.4. Deleting ActiveDocs

The following command removes ActiveDocs:

Use the following options while deleting ActiveDocs:

Options for ActiveDocs
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.13. LISTING PROXY CONFIGURATIONS

Use the 3scale toolbox to list, show, promote all defined proxy configurations in your Developer Portal.

The following command lists proxy configurations:

Use the following options while listing proxy configurations:

Options
 -o --output=<value> Output format on stdout:
 one of json|yaml

3scale activedocs list <remote>

3scale activedocs delete <remote> <activedocs-id_or-system-name>

3scale proxy-config list <remote> <service> <environment>

Red Hat 3scale API Management 2.10 Operating 3scale

46

Options for proxy-config
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.13.1. Showing proxy configurations

The following command shows proxy configurations:

Use the following options while showing proxy configurations:

Options
 --config-version=<value> Specify the proxy configuration version.
 If not specified, defaults to latest
 -o --output=<value> Output format on stdout:
 one of json|yaml

Options for proxy-config
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered
 insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.13.2. Promoting proxy configurations

The following command promotes the latest staging proxy configuration to the production environment:

Use the following options while promoting the latest staging proxy configurations to the production
environment:

Options for proxy-config
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

3scale proxy-config show <remote> <service> <environment>

3scale proxy-config promote <remote> <service>

CHAPTER 4. THE 3SCALE TOOLBOX

47

4.14. COPYING A POLICY REGISTRY

Use the toolbox command to copy a policy registry from a 3scale source account to a target account
when:

Missing custom policies are being created in target account.

Matching custom policies are being updated in target account.

This copy command is idempotent.

NOTE

Missing custom policies are defined as custom policies that exist in source
account and do not exist in an account tenant.

Matching custom policies are defined as custom policies that exists in both
source and target account.

The following command copies a policy registry:

Option for policy-registry
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.15. LISTING APPLICATIONS

Use the 3scale toolbox to list, create, show, apply, or delete applications Developer Portal.

The following command lists applications:

Use the following options while listing applications:

OPTIONS
 --account=<value> Filter by account
 -o --output=<value> Output format on stdout:
 one of json|yaml
 --plan=<value> Filter by application plan. Service
 option required.
 --service=<value> Filter by service

OPTIONS FOR APPLICATION
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml

3scale policy-registry copy [opts] <source_remote> <target_remote>

3scale application list [opts] <remote>

Red Hat 3scale API Management 2.10 Operating 3scale

48

 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.15.1. Creating applications

Use the create command to create one application linked to a given 3scale account and application plan.

The required positional paramaters are as follows:

<service> reference. It can be either service id, or service system_name.

<account> reference. It can be one of the following:

Account id

username, email, or user_id of the admin user of the account

provider_key

<application plan> reference. It can be either plan id, or plan system_name.

<name> application name.

The following command creates applications:

Use the following options while creating applications:

OPTIONS
 --application-id=<value> App ID or Client ID (for OAuth and
 OpenID Connect authentication modes)
 of the application to be created.
 --application-key=<value> App Key(s) or Client Secret (for OAuth
 and OpenID Connect authentication
 modes) of the application created.
 --description=<value> Application description
 -o --output=<value> Output format on stdout:
 one of json|yaml
 --redirect-url=<value> OpenID Connect redirect url
 --user-key=<value> User Key (API Key) of the application
 to be created.

OPTIONS FOR APPLICATION
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

3scale application create [opts] <remote> <account> <service> <application-plan> <name>

CHAPTER 4. THE 3SCALE TOOLBOX

49

4.15.2. Showing applications

The following command shows applications:

Application parameters allow:

User_key - API key

App_id - from app_id/app_key pair or Client ID for OAuth and OpenID Connect (OIDC)
authentication modes

Application internal id

OPTIONS
 -o --output=<value> Output format on stdout:
 one of json|yaml

OPTIONS FOR APPLICATION
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Print help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode

4.15.3. Creating or updating applications

Use the following command to create new applications if they do not exist, or to update existing
applications:

Application parameters allow:

User_key - API key

App_id - from app_id/app_key pair or Client ID for OAuth and OIDC authentication modes

Application internal id

account optional argument is required when application is not found and needs to be created. It
can be one of the following:

Account id

username, email, or user_id of the administrator user of the 3scale account

provider_key

name cannot be used as unique identifier because application name is not unique in 3scale.

3scale application show [opts] <remote> <application>

3scale application apply [opts] <remote> <application>

Red Hat 3scale API Management 2.10 Operating 3scale

50

Resume a suspended application by --resume flag.

Suspends an application - changes the state to suspended by the --suspend flag.

Use the following options while updating applications:

OPTIONS
 --account=<value> Application's account. Required when
 creating
 --application-key=<value> App Key(s) or Client Secret (for OAuth
 and OpenID Connect authentication
 modes) of the application to be
 created. Only used when application
 does not exist.
 --description=<value> Application description
 --name=<value> Application name
 -o --output=<value> Output format on stdout:
 one of json|yaml
 --plan=<value> Application's plan. Required when
 creating.
 --redirect-url=<value> OpenID Connect redirect url
 --resume Resume a suspended application
 --service=<value> Application's service. Required when
 creating.
 --suspend Suspends an application (changes the
 state to suspended)
 --user-key=<value> User Key (API Key) of the application
 to be created.

OPTIONS FOR APPLICATION
 -c --config-file=<value> 3scale toolbox configuration file:
 defaults to $HOME/.3scalerc.yaml
 -h --help Show help for this command
 -k --insecure Proceed and operate even for server
 connections otherwise considered insecure
 -v --version Print the version of this command
 --verbose Verbose mode.

4.15.4. Deleting applications

The following command deletes an application:

Application parameters allow:

User_key - API key

App_id - from app_id/app_key pair or Client ID for OAuth and OIDC authentication modes

Application internal id

4.16. COPYING API BACKENDS

Create a copy of the specified source API backend on the specified 3scale system. The target system is

3scale application delete [opts] <remote> <application>

CHAPTER 4. THE 3SCALE TOOLBOX

51

Create a copy of the specified source API backend on the specified 3scale system. The target system is
first searched by the source backend system name by default:

If a backend with the selected system name is not found, it is created.

If a backend with the selected system name is found, it is updated. Only missing components are
created, for example, metrics, methods, or mapping rules.

You can override the system name using the --target_system_name option.

Copied components

The following API backend components are copied:

Metrics

Methods

Mapping rules

Procedure

Enter the following command to copy an API backend:

3scale backend copy [opts] -s <source_remote> -d <target_remote> <source_backend>

The specified 3scale instance can be a remote name or a URL.

NOTE

You can copy a single API backend only per command. You can copy multiple
backends using multiple commands. You can copy the same backend multiple
times by specifying a different --target_system_name name.

Use following options when copying API backends:

Options
 -d --destination=<value> 3scale target instance: URL or
 remote name (required).
 -s --source=<value> 3scale source instance: URL or
 remote name (required).
 -t --target_system_name=<value> Target system name: defaults to
 source system name.

+ The following example command shows you how to copy an API backend multiple times by specifying
a different --target_system_name name:

+

4.16.1. Copying API products

Create a copy of the specified source API product on the target 3scale system. By default, the source

$ podman run registry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10 3scale backend copy [-t
target_system_name] -s 3scale1 -d 3scale2 api_backend_01

Red Hat 3scale API Management 2.10 Operating 3scale

52

Create a copy of the specified source API product on the target 3scale system. By default, the source
API product system name first searches the target system:

If a product with the selected system-name is not found, it is created.

If a product with the selected system-name is found, it is updated. Only missing components
are created; for example, metrics, methods, mapping rules, and other configurations.

You can override the system name using the --target_system_name option.

Copied components

The following API product components are copied:

Configuration and settings

Metrics and methods

Mapping rules

Application plans, pricing rules, and limits

Application usage rules

Policies

Backends

ActiveDocs

Procedure

Enter the following command to copy an API product:

3scale product copy [opts] -s <source_remote> -d <target_remote> <source_product>

The specified 3scale instance can be a remote name or a URL.

NOTE

You can copy a single API product only per command. You can copy multiple
products using multiple commands. You can copy the same product multiple
times by specifying a different --target_system_name name.

Use following options when copying API products:

Options
 -d --destination=<value> 3scale target instance: URL or
 remote name (required).
 -s --source=<value> 3scale source instance: URL or
 remote name (required).
 -t --target_system_name=<value> Target system name: defaults to
 source system name.

+ The following example command shows you how to copy an API product multiple times by specifying a
different --target_system_name name:

CHAPTER 4. THE 3SCALE TOOLBOX

53

+

4.17. TROUBLESHOOTING ISSUES WITH SSL AND TLS

This section explains how to resolve issues with Secure Sockets Layer/Transport Layer Security
(SSL/TLS).

If you are experiencing issues related to self-signed SSL certificates, you can download and use remote
host certificates as described in this section. For example, typical errors include SSL certificate
problem: self signed certificate or self signed certificate in certificate chain.

Procedure

1. Download the remote host certificate using openssl. For example:

2. Ensure that the certificate is working correctly using curl. For example:

If the certificate is working correctly, you will no longer get the SSL error. If the certificate is not
working correctly, try running the curl command with the -k option (or its long form, --
insecure). This indicates that you want to proceed even for server connections that are
otherwise considered insecure.

3. Add the SSL_CERT_FILE environment variable to your 3scale commands. For example:

This example uses a Podman volume to mount the certificate file in the container. It assumes
that the file is available in the current $PWD folder.

An alternative approach would be to create your own toolbox image using the 3scale toolbox
image as the base image and then install your own trusted certificate store.

Additional resources

For more details on SSL certificates, see the Red Hat Certificate System documentation .

For more details on Podman, see Building, running, and managing Linux containers on Red Hat
Enterprise Linux 8.

$ podman run registry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10 3scale product copy [-t
target_system_name] -s 3scale1 -d 3scale2 my_api_product_01

$ echo | openssl s_client -showcerts -servername self-signed.badssl.com -connect self-
signed.badssl.com:443 2>/dev/null | sed -ne '/-BEGIN CERTIFICATE-/,/-END
CERTIFICATE-/p' > self-signed-cert.pem

$ SSL_CERT_FILE=self-signed-cert.pem curl -v https://self-signed.badssl.com

$ podman run --env "SSL_CERT_FILE=/tmp/self-signed-cert.pem" -v $PWD/self-signed-
cert.pem:/tmp/self-signed-cert.pem egistry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10
3scale service list https://{ACCESS_KEY}@{3SCALE_ADMIN}-admin.{DOMAIN_NAME}

Red Hat 3scale API Management 2.10 Operating 3scale

54

https://access.redhat.com/documentation/en-us/red_hat_certificate_system/9/html/planning_installation_and_deployment_guide/planning_how_to_deploy_rhcs
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/index

CHAPTER 5. MAPPING API ENVIRONMENTS IN 3SCALE
An API provider gives access to the APIs managed through the 3scale Admin Portal. You then deploy
the API backends in many environments. API backend environments include the following:

Different environments used for development, quality assurance (QA), staging, and production.

Different environments used for teams or departments that manage their own set of API
backends.

A Red Hat 3scale API Management product represents a single API or subset of an API, but it is also
used to map and manage different API backend environments.

To find out about mapping API environments for your 3scale product, see the following sections:

Product per environment

3scale On-premises instances

3scale mixed approach

3scale with APIcast gateways

5.1. PRODUCT PER ENVIRONMENT

This method uses a separate 3scale Product for each API backend environment. In each product,
configure a production gateway and a staging gateway, so the changes to the gateway configuration
can be tested safely and promoted to the production configuration as you would with your API
backends.

Production Product => Production Product APIcast gateway => Production Product API upstream
Staging Product => Staging Product APIcast gateway => Staging Product API upstream

Configure the product for the API backend environment as follows:

Create a backend with a base URL for the API backend for the environment.

Add the backend to the product for the environment with a backend path /.

Development environment

Create development backend

Name: Dev

Private Base URL: URL of the API backend

Create Dev product

Production Public Base URL: https://dev-api-backend.yourdomain.com

Staging Public Base URL: https://dev-api-backend.yourdomain.com

Add Dev Backend with a backend path /

QA environment

CHAPTER 5. MAPPING API ENVIRONMENTS IN 3SCALE

55

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/getting_started/index#creating-backends-for-your-products_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/getting_started/index#adding-backends-to-your-products_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/getting_started/index#adding-backends-to-your-products_configuring-your-api

Create QA backend

Name: QA

Private Base URL: URL of the API backend

Create QA product

Production Public Base URL: https://qa-api-backend.yourdomain.com

Staging Public Base URL: https://qa-api-backend.yourdomain.com

Add QA Backend with a backend path /

Production environment

Create production backend

Name: Prod

Private Base URL: URL of the API backend

Create Prod product

Production Public Base URL: https://prod-api-backend.yourdomain.com

Staging Public Base URL: https://prod-api-backend.yourdomain.com

Add production Backend with a backend path /

Additional resources

For more information about the 3scale product, see First steps with 3scale.

5.2. 3SCALE ON-PREMISES INSTANCES

For 3scale On-premises instances, there are multiple ways to set up 3scale to manage API back-end
environments.

A separate 3scale instance for each API back-end environment

A single 3scale instance that uses the multitenancy feature

5.2.1. Separating 3scale instances per environment

In this approach a separate 3scale instance is deployed for each API back-end environment. The benefit
of this architecture is that each environment will be isolated from one another, therefore there are no
shared databases or other resources. For example, any load testing being done in one environment will
not impact the resources in other environments.

NOTE

This separation of installations has benefits as described above, however, it would require
more operational resources and maintenance. These additional resources would be
required on the OpenShift administration layer and not necessarily on the 3scale layer.

Red Hat 3scale API Management 2.10 Operating 3scale

56

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/getting_started/index#adding-backends-to-your-products_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/getting_started/index#adding-backends-to-your-products_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/getting_started/index#first-steps-with-threescale_configuring-your-api
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/admin_portal_guide/index#multitenancy_2

5.2.2. Separating 3scale tenants per environment

In this approach a single 3scale instance is used but the multitenancy feature is used to support multiple
API back ends.

There are two options:

Create a 1-to-1 mapping between environments and 3scale products within a single tenant.

Create a 1-to-1 mapping between environments and tenants with one or more products per
tenant as required.

There would be three tenants corresponding to API back-end environments - dev-tenant,
qa-tenant, prod-tenant. The benefit of this approach is that it allows for a logical separation
of environments but uses shared physical resources.

NOTE

Shared physical resources will ultimately need to be taken into consideration when
analysing the best strategy for mapping API environments to a single installation with
multiple tenants.

5.3. 3SCALE MIXED APPROACH

The approaches described in 3scale On-premises instances can be combined. For example:

A separate 3scale instance for production

A separate 3scale instance with separate tenant for non-production environments in dev and
qa

5.4. 3SCALE WITH APICAST GATEWAYS

For 3scale On-premises instances, there are two alternatives to set up 3scale to manage API backend
environments:

Each 3scale installation comes with two built-in APIcast gateways, for staging and production.

Deploy additional APIcast gateways externally to the OpenShift cluster where 3scale is running.

5.4.1. APIcast built-in default gateways

When APIcast built-in gateways are used, the API back end configured using the above approaches
described in 3scale with APIcast gateways will be handled automatically. When a tenant is added by a
3scale Master Admin, a route is created for the tenant in production and staging built-in APIcast
gateways. See Understanding multitenancy subdomains

<API_NAME>-<TENANT_NAME>-apicast.staging.<WILDCARD_DOMAIN>

<API_NAME>-<TENANT_NAME>-apicast.production.<WIDLCARD_DOMAIN>

Therefore, each API back-end environment mapped to a different tenant would get its own route. For
example:

Dev <API_NAME>-dev-apicast.staging.<WILDCARD_DOMAIN>

CHAPTER 5. MAPPING API ENVIRONMENTS IN 3SCALE

57

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#threescale-onpremises-instances
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#connecting-multiple-apicast-deployments-on-single-cluster
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/admin_portal_guide/index#multiDomain

QA <API_NAME>-qa-apicast.staging.<WILDCARD_DOMAIN>

Prod <API_NAME>-prod-apicast.staging.<WILDCARD_DOMAIN>

5.4.2. Additional APIcast gateways

Additional APIcast gateways are those deployed on a different OpenShift cluster than the one on which
3scale instance is running. There is more than one way to set up and use additional APIcast gateways.
The value of environment variable THREESCALE_PORTAL_ENDPOINT used when starting APIcast
depends how the additional APIcast gateways are set up.

A separate APIcast gateway can be used for each API back-end environment. For example:

DEV_APICAST -> DEV_TENANT ; DEV_APICAST started with
THREESCALE_PORTAL_ENDPOINT = admin portal for DEV_TENANT
QA_APICAST -> QA_TENANT ; QA_APICAST started with THREESCALE_PORTAL_ENDPOINT =
admin portal for QA_APICAST
PROD_APICAST -> PROD_TENANT ; PROD_APICAST started with
THREESCALE_PORTAL_ENDPOINT = admin portal for PROD_APICAST

The THREESCALE_PORTAL_ENDPOINT is used by APIcast to download the configuration. Each
tenant that maps to an API backend environment uses a separate APIcast gateway. The
THREESCALE_PORTAL_ENDPOINT is set to the Admin Portal for the tenant containing all the
product configurations specific to that API backend environment.

A single APIcast gateway can be used with multiple API back-end environments. In this case
THREESCALE_PORTAL_ENDPOINT is set to the Master Admin Portal.

Additional resources

For more information about the API provider, see the glossary.

For more information about the 3scale product, see the glossary.

Red Hat 3scale API Management 2.10 Operating 3scale

58

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#connecting-apicast-from-different-openshift-cluster
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/administering_the_api_gateway/index#threescale-portal-endpoint
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/admin_portal_guide/index#master_admin_portal
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/glossary/index#api-provider
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/glossary/index#product

CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE
TOOLBOX

This topic explains the concepts of the API lifecycle with Red Hat 3scale API Management and shows
how API providers can automate the deployment stage using Jenkins Continuous
Integration/Continuous Deployment (CI/CD) pipelines with 3scale toolbox commands. It describes how
to deploy the sample Jenkins CI/CD pipelines, how to create a custom Jenkins pipeline using the 3scale
shared library, and how create a custom pipeline from scratch:

Section 6.1, “Overview of the API lifecycle stages”

Section 6.2, “Deploying the sample Jenkins CI/CD pipelines”

Section 6.3, “Creating pipelines using the 3scale Jenkins shared library”

Section 6.4, “Creating pipelines using a Jenkinsfile”

6.1. OVERVIEW OF THE API LIFECYCLE STAGES

The API lifecycle describes all the required activities from when an API is created until it is deprecated.
3scale enables API providers to perform full API lifecycle management. This section explains each stage
in the API lifecycle and describes its goal and expected outcome.

The following diagram shows the API provider-based stages on the left, and the API consumer-based
stages on the right:

NOTE

Red Hat currently supports the design, implement, deploy, secure, and manage phases of
the API provider cycle, and all phases of the API consumer cycle.

6.1.1. API provider cycle

The API provider cycle stages are based on specifying, developing, and deploying your APIs. The

CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE TOOLBOX

59

The API provider cycle stages are based on specifying, developing, and deploying your APIs. The
following describes the goal and outcome of each stage:

Table 6.1. API provider lifecycle stages

Stage Goal Outcome

1. Strategy Determine the corporate strategy
for the APIs, including goals,
resources, target market,
timeframe, and make a plan.

The corporate strategy is defined
with a clear plan to achieve the
goals.

2. Design Create the API contract early to
break dependencies between
projects, gather feedback, and
reduce risks and time to market
(for example, using Apicurio
Studio).

A consumer-focused API contract
defines the messages that can be
exchanged with the API. The API
consumers have provided
feedback.

3. Mock Further specify the API contract
with real-world examples and
payloads that can be used by API
consumers to start their
implementation.

A mock API is live and returns
real-world examples. The API
contract is complete with
examples.

4. Test Further specify the API contract
with business expectations that
can be used to test the developed
API.

A set of acceptance tests is
created. The API documentation
is complete with business
expectations.

5. Implement Implement the API, using an
integration framework such as
Red Hat Fuse or a development
language of your choice. Ensure
that the implementation matches
the API contract.

The API is implemented. If custom
API management features are
required, 3scale APIcast policies
are also developed.

6. Deploy Automate the API integration,
tests, deployment, and
management using a CI/CD
pipeline with 3scale toolbox.

A CI/CD pipeline integrates, tests,
deploys, and manages the API to
the production environment in an
automated way.

7. Secure Ensure that the API is secure (for
example, using secure
development practices and
automated security testing).

Security guidelines, processes,
and gates are in place.

8. Manage Manage API promotion between
environments, versioning,
deprecation, and retirement at
scale.

Processes and tools are in place
to manage APIs at scale (for
example, semantic versioning to
prevent breaking changes to the
API).

Red Hat 3scale API Management 2.10 Operating 3scale

60

6.1.2. API consumer cycle

The API consumer cycle stages are based on promoting, distributing, and refining your APIs for
consumption. The following describes the goal and outcome of each stage:

Table 6.2. API consumer lifecycle stages

Stage Goal Outcome

9. Discover Promote the API to third-party
developers, partners, and internal
users.

A developer portal is live and up-
to-date documentation is
continuously pushed to this
developer portal (for example,
using 3scale ActiveDocs).

10. Develop Guide and enable third-party
developers, partners, and internal
users to develop applications
based on the API.

The developer portal includes
best practices, guides, and
recommendations. API
developers have access to a mock
and test endpoint to develop their
software.

11. Consume Handle the growing API
consumption and manage the API
consumers at scale.

Staged application plans are
available for consumption, and
up-to-date prices and limits are
continuously pushed. API
consumers can integrate API key
or client ID/secret generation
from their CI/CD pipeline.

12. Monitor Gather factual and quantified
feedback about API health,
quality, and developer
engagement (for example, a
metric for Time to first Hello
World!).

A monitoring system is in place.
Dashboards show KPIs for the API
(for example, uptime, requests
per minute, latency, and so on).

13. Monetize Drive new incomes at scale (this
stage is optional).

For example, when targeting a
large number of small API
consumers, monetization is
enabled and consumers are billed
based on usage in an automated
way.

6.2. DEPLOYING THE SAMPLE JENKINS CI/CD PIPELINES

API lifecycle automation with 3scale toolbox focuses on the deployment stage of the API lifecycle and
enables you to use CI/CD pipelines to automate your API management solution. This topic explains how
to deploy the sample Jenkins pipelines that call the 3scale toolbox:

Section 6.2.1, “Sample Jenkins CI/CD pipelines”

Section 6.2.2, “Setting up your 3scale Hosted environment”

CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE TOOLBOX

61

Section 6.2.3, “Setting up your 3scale On-premises environment”

Section 6.2.4, “Deploying Red Hat Single Sign-On for OpenID Connect”

Section 6.2.5, “Installing the 3scale toolbox and enabling access”

Section 6.2.6, “Deploying the API backends”

Section 6.2.7, “Deploying self-managed APIcast instances”

Section 6.2.8, “Installing and deploying the sample pipelines”

Section 6.2.9, “Limitations of API lifecycle automation with 3scale toolbox”

6.2.1. Sample Jenkins CI/CD pipelines

The following samples are provided in the Red Hat Integration repository as examples of how to create
and deploy your Jenkins pipelines for API lifecycle automation:

Table 6.3. Sample Jenkins shared library pipelines

Sample pipeline Target environment Security

SaaS - API key 3scale Hosted API key

Hybrid - open 3scale Hosted and 3scale On-
premises with APIcast self-
managed

None

Hybrid - OpenID Connect 3scale Hosted and 3scale On-
premises with APIcast self-
managed

OpenID Connect (OIDC)

Multi-environment 3scale Hosted on development,
test and production, with APIcast
self-managed

API key

Semantic versioning 3scale Hosted on development,
test and production, with APIcast
self-managed

API key, none, OIDC

These samples use a 3scale Jenkins shared library that calls the 3scale toolbox to demonstrate key API
management capabilities. After you have performed the setup steps in this topic, you can install the
pipelines using the OpenShift templates provided for each of the sample use cases in the Red Hat
Integration repository.

IMPORTANT

The sample pipelines and applications are provided as examples only. The underlying
APIs, CLIs, and other interfaces leveraged by the sample pipelines are fully supported by
Red Hat. Any modifications that you make to the pipelines are not directly supported by
Red Hat.

Red Hat 3scale API Management 2.10 Operating 3scale

62

https://github.com/rh-integration/3scale-toolbox-jenkins-samples/tree/master/saas-usecase-apikey
https://github.com/rh-integration/3scale-toolbox-jenkins-samples/tree/master/hybrid-usecase-open
https://github.com/rh-integration/3scale-toolbox-jenkins-samples/tree/master/hybrid-usecase-oidc
https://github.com/rh-integration/3scale-toolbox-jenkins-samples/tree/master/multi-environment-usecase
https://github.com/rh-integration/3scale-toolbox-jenkins-samples/tree/master/semver-usecase
https://github.com/rh-integration/3scale-toolbox-jenkins-samples

6.2.2. Setting up your 3scale Hosted environment

Setting up a 3scale Hosted environment is required by all of the sample Jenkins CI/CD pipelines.

NOTE

The SaaS - API key, Multi-environment, and Semantic versioning sample pipelines use
3scale Hosted only. The Hybrid - open and Hybrid - OIDC pipelines also use 3scale On-
premises. See also Setting up your 3scale On-premises environment .

Prerequisites

You must have a Linux workstation.

You must have a 3scale Hosted environment.

You must have an OpenShift 3.11 cluster. OpenShift 4 is currently not supported.

For more information about supported configurations, see the Red Hat 3scale API
Management Supported Configurations page.

Ensure that wildcard routes have been enabled on the OpenShift router, as explained in the
OpenShift documentation.

Procedure

1. Log in to your 3scale Hosted Admin Portal console.

2. Generate a new access token with write access to the Account Management API.

3. Save the generated access token for later use. For example:

4. Save the name of your 3scale tenant for later use. This is the string before -admin.3scale.net in
your Admin Portal URL. For example:

5. Navigate to Audience > Accounts > Listing in the Admin Portal.

6. Click Developer.

7. Save the Developer Account ID. This is the last part of the URL after /buyers/accounts/. For
example:

6.2.3. Setting up your 3scale On-premises environment

Setting up a 3scale on-premises environment is required by the Hybrid - open and Hybrid - OIDC
sample Jenkins CI/CD pipelines only.

NOTE

export SAAS_ACCESS_TOKEN=123...456

export SAAS_TENANT=my_username

export SAAS_DEVELOPER_ACCOUNT_ID=123...456

CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE TOOLBOX

63

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#api-lifecycle-setup-3scale-onprem-3scale
https://access.redhat.com/articles/2798521
https://docs.openshift.com/container-platform/3.11/install_config/router/default_haproxy_router.html#using-wildcard-routes

NOTE

If you wish to use these Hybrid sample pipelines, you must set up a 3scale On-premises
environment and a 3scale Hosted environment. See also Setting up your 3scale Hosted
environment.

Prerequisites

You must have a Linux workstation.

You must have a 3scale on-premises environment. For details on installing 3scale on-premises
using a template on OpenShift, see the 3scale installation documentation.

You must have an OpenShift 3.11 cluster. OpenShift 4 is currently not supported.

For more information about supported configurations, see the Red Hat 3scale API
Management Supported Configurations page.

Ensure that wildcard routes have been enabled on the OpenShift router, as explained in the
OpenShift documentation.

Procedure

1. Log in to your 3scale On-premises Admin Portal console.

2. Generate a new access token with write access to the Account Management API.

3. Save the generated access token for later use. For example:

4. Save the name of your 3scale tenant for later use:

5. Define your wildcard routes:

NOTE

You must set the value of OPENSHIFT_ROUTER_SUFFIX to the suffix of your
OpenShift router (for example, app.openshift.test).

6. Add the wildcard routes to your existing 3scale on-premises instance:

export SAAS_ACCESS_TOKEN=123...456

export ONPREM_ADMIN_PORTAL_HOSTNAME="$(oc get route system-provider-admin -o
jsonpath='{.spec.host}')"

export OPENSHIFT_ROUTER_SUFFIX=app.openshift.test # Replace me!

export APICAST_ONPREM_STAGING_WILDCARD_DOMAIN=onprem-
staging.$OPENSHIFT_ROUTER_SUFFIX

export APICAST_ONPREM_PRODUCTION_WILDCARD_DOMAIN=onprem-
production.$OPENSHIFT_ROUTER_SUFFIX

oc create route edge apicast-wildcard-staging --service=apicast-staging --

Red Hat 3scale API Management 2.10 Operating 3scale

64

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#api-lifecycle-setup-3scale-hosted-3scale
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#install-threescale-on-openshift-guide
https://access.redhat.com/articles/2798521#3scale-api-management-27-2
https://docs.openshift.com/container-platform/3.11/install_config/router/default_haproxy_router.html#using-wildcard-routes

7. Navigate to Audience > Accounts > Listing in the Admin Portal.

8. Click Developer.

9. Save the Developer Account ID. This is the last part of the URL after /buyers/accounts/:

6.2.4. Deploying Red Hat Single Sign-On for OpenID Connect

If you are using the Hybrid - OpenID Connect (OIDC) or Semantic versioning sample pipelines,
perform the steps in this section to deploy Red Hat Single Sign-On (RH-SSO) with 3scale. This is
required for OIDC authentication, which is used in both samples.

Procedure

1. Deploy RH-SSO 7.3 as explained in the RH-SSO documentation.
The following example commands provide a short summary:

2. Save the host name of your RH-SSO installation for later use:

3. Configure RH-SSO for 3scale as explained in the 3scale Developer Portal documentation .

4. Save the realm name, client ID, and client secret for later use:

hostname="wildcard.$APICAST_ONPREM_STAGING_WILDCARD_DOMAIN" --insecure-
policy=Allow --wildcard-policy=Subdomain

oc create route edge apicast-wildcard-production --service=apicast-production --
hostname="wildcard.$APICAST_ONPREM_PRODUCTION_WILDCARD_DOMAIN" --
insecure-policy=Allow --wildcard-policy=Subdomain

export ONPREM_DEVELOPER_ACCOUNT_ID=5

oc replace -n openshift --force -f https://raw.githubusercontent.com/jboss-container-
images/redhat-sso-7-openshift-image/sso73-dev/templates/sso73-image-stream.json

oc replace -n openshift --force -f https://raw.githubusercontent.com/jboss-container-
images/redhat-sso-7-openshift-image/sso73-dev/templates/sso73-x509-postgresql-
persistent.json

oc -n openshift import-image redhat-sso73-openshift:1.0

oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default

oc new-app --template=sso73-x509-postgresql-persistent --name=sso -p
DB_USERNAME=sso -p SSO_ADMIN_USERNAME=admin -p DB_DATABASE=sso

export SSO_HOSTNAME="$(oc get route sso -o jsonpath='{.spec.host}')"

export REALM=3scale

export CLIENT_ID=3scale-admin

export CLIENT_SECRET=123...456

CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE TOOLBOX

65

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.3/html/red_hat_single_sign-on_for_openshift/get_started
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/administering_the_api_gateway/index#openid-connect

6.2.5. Installing the 3scale toolbox and enabling access

This section describes how to install the toolbox, create your remote 3scale instance, and provision the
secret used to access the Admin Portal.

Procedure

1. Install the 3scale toolbox locally as explained in The 3scale toolbox.

2. Run the appropriate toolbox command to create your 3scale remote instance:

3scale Hosted

3scale On-premises

3. Run the following OpenShift command to provision the secret containing your 3scale Admin
Portal and access token:

6.2.6. Deploying the API backends

This section shows how to deploy the example API backends provided with the sample pipelines. You
can substitute your own API backends as needed when creating and deploying your own pipelines

Procedure

1. Deploy the example Beer Catalog API backend for use with the following samples:

SaaS - API key

Hybrid - open

Hybrid - OIDC

2. Save the Beer Catalog API host name for later use:

3scale remote add 3scale-saas "https://$SAAS_ACCESS_TOKEN@$SAAS_TENANT-
admin.3scale.net/"

3scale remote add 3scale-onprem
"https://$ONPREM_ACCESS_TOKEN@$ONPREM_ADMIN_PORTAL_HOSTNAME/"

oc create secret generic 3scale-toolbox -n "$TOOLBOX_NAMESPACE" --from-
file="$HOME/.3scalerc.yaml"

oc new-app -n "$TOOLBOX_NAMESPACE" -i openshift/redhat-openjdk18-openshift:1.4
https://github.com/microcks/api-lifecycle.git --context-dir=/beer-catalog-demo/api-
implementation --name=beer-catalog

oc expose -n "$TOOLBOX_NAMESPACE" svc/beer-catalog

export BEER_CATALOG_HOSTNAME="$(oc get route -n "$TOOLBOX_NAMESPACE"
beer-catalog -o jsonpath='{.spec.host}')"

Red Hat 3scale API Management 2.10 Operating 3scale

66

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#the-threescale-toolbox

3. Deploy the example Red Hat Event API backend for use with the following samples:

Multi-environment

Semantic versioning

4. Save the Event API host name for later use:

6.2.7. Deploying self-managed APIcast instances

This section is for use with APIcast self-managed instances in 3scale Hosted environments. It applies to
all of the sample pipelines except SaaS - API key.

Procedure

1. Define your wildcard routes:

2. Deploy the APIcast self-managed instances in your project:

oc new-app -n "$TOOLBOX_NAMESPACE" -i openshift/nodejs:10
'https://github.com/nmasse-itix/rhte-api.git#085b015' --name=event-api

oc expose -n "$TOOLBOX_NAMESPACE" svc/event-api

export EVENT_API_HOSTNAME="$(oc get route -n "$TOOLBOX_NAMESPACE" event-api
-o jsonpath='{.spec.host}')"

export APICAST_SELF_MANAGED_STAGING_WILDCARD_DOMAIN=saas-
staging.$OPENSHIFT_ROUTER_SUFFIX

export APICAST_SELF_MANAGED_PRODUCTION_WILDCARD_DOMAIN=saas-
production.$OPENSHIFT_ROUTER_SUFFIX

oc create secret generic 3scale-tenant --from-
literal=password=https://$SAAS_ACCESS_TOKEN@$SAAS_TENANT-admin.3scale.net

oc create -f https://raw.githubusercontent.com/3scale/apicast/v3.5.0/openshift/apicast-
template.yml

oc new-app --template=3scale-gateway --name=apicast-staging -p
CONFIGURATION_URL_SECRET=3scale-tenant -p CONFIGURATION_CACHE=0 -p
RESPONSE_CODES=true -p LOG_LEVEL=info -p CONFIGURATION_LOADER=lazy -p
APICAST_NAME=apicast-staging -p DEPLOYMENT_ENVIRONMENT=sandbox -p
IMAGE_NAME=registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.10

oc new-app --template=3scale-gateway --name=apicast-production -p
CONFIGURATION_URL_SECRET=3scale-tenant -p CONFIGURATION_CACHE=60 -p
RESPONSE_CODES=true -p LOG_LEVEL=info -p CONFIGURATION_LOADER=boot -p
APICAST_NAME=apicast-production -p DEPLOYMENT_ENVIRONMENT=production -p
IMAGE_NAME=registry.redhat.io/3scale-amp2/apicast-gateway-rhel8:3scale2.10

oc scale dc/apicast-staging --replicas=1

oc scale dc/apicast-production --replicas=1

CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE TOOLBOX

67

6.2.8. Installing and deploying the sample pipelines

After you have set up the required environments, you can install and deploy the sample pipelines using
the OpenShift templates provided for each of the sample use cases in the Red Hat Integration
repository. For example, this section shows the SaaS - API Key sample only.

Procedure

1. Use the provided OpenShift template to install the Jenkins pipeline:

2. Deploy the sample as follows:

Additional resource

Sample use cases in the Red Hat Integration repository

6.2.9. Limitations of API lifecycle automation with 3scale toolbox

The following limitations apply in this release:

OpenShift support

The sample pipelines are supported on OpenShift 3.11 only. OpenShift 4 is currently not supported.
For more information about supported configurations, see the Red Hat 3scale API Management
Supported Configurations page.

Updating applications

You can use the 3scale application apply toolbox command for applications to both create
and update applications. Create commands support account, plan, service, and application
key.

Update commands do not support changes to account, plan, or service. If changes are
passed, the pipelines will be triggered, no errors will be shown, but those fields will not be
updated.

Copying services

When using the 3scale copy service toolbox command to copy a service with custom policies, you
must copy the custom policies first and separately.

oc create route edge apicast-staging --service=apicast-staging --
hostname="wildcard.$APICAST_SELF_MANAGED_STAGING_WILDCARD_DOMAIN" --
insecure-policy=Allow --wildcard-policy=Subdomain

oc create route edge apicast-production --service=apicast-production --
hostname="wildcard.$APICAST_SELF_MANAGED_PRODUCTION_WILDCARD_DOMAIN"
--insecure-policy=Allow --wildcard-policy=Subdomain

oc process -f saas-usecase-apikey/setup.yaml \
 -p DEVELOPER_ACCOUNT_ID="$SAAS_DEVELOPER_ACCOUNT_ID" \
 -p PRIVATE_BASE_URL="http://$BEER_CATALOG_HOSTNAME" \
 -p NAMESPACE="$TOOLBOX_NAMESPACE" |oc create -f -

oc start-build saas-usecase-apikey

Red Hat 3scale API Management 2.10 Operating 3scale

68

https://github.com/rh-integration/3scale-toolbox-jenkins-samples
https://github.com/rh-integration/3scale-toolbox-jenkins-samples
https://access.redhat.com/articles/2798521

6.3. CREATING PIPELINES USING THE 3SCALE JENKINS SHARED
LIBRARY

This section provides best practices for creating a custom Jenkins pipeline that uses the 3scale toolbox.
It explains how to write a Jenkins pipeline in Groovy that uses the 3scale Jenkins shared library to call
the toolbox based on an example application. For more details, see Jenkins shared libraries.

IMPORTANT

Red Hat supports the Jenkins pipeline samples provided in the Red Hat Integration
repository.

Any modifications made to these pipelines are not directly supported by Red Hat. Custom
pipelines that you create for your environment are not supported.

Prerequisites

Deploying the sample Jenkins CI/CD pipelines .

You must have an OpenAPI specification file for your API. For example, you can generate this
using Apicurio Studio.

Procedure

1. Add the following to the beginning of your Jenkins pipeline to reference the 3scale shared
library from your pipeline:

2. Declare a global variable to hold the ThreescaleService object so that you can use it from the
different stages of your pipeline.

3. Create the ThreescaleService with all the relevant information:

#!groovy

library identifier: '3scale-toolbox-jenkins@master',
 retriever: modernSCM([$class: 'GitSCMSource',
 remote: 'https://github.com/rh-integration/3scale-toolbox-jenkins.git'])

def service = null

stage("Prepare") {
 service = toolbox.prepareThreescaleService(
 openapi: [filename: "swagger.json"],
 environment: [baseSystemName: "my_service"],
 toolbox: [openshiftProject: "toolbox",
 destination: "3scale-tenant",
 secretName: "3scale-toolbox"],
 service: [:],
 applications: [
 [name: "my-test-app", description: "This is used for tests", plan: "test", account: "
<CHANGE_ME>"]
],
 applicationPlans: [
 [systemName: "test", name: "Test", defaultPlan: true, published: true],

CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE TOOLBOX

69

https://jenkins.io/doc/book/pipeline/shared-libraries/
https://github.com/rh-integration/3scale-toolbox-jenkins-samples
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#api-lifecycle-deploy-samples-3scale
https://www.apicur.io/

openapi.filename is the path to the file containing the OpenAPI specification.

environment.baseSystemName is used to compute the final system_name, based on
environment.environmentName and the API major version from the OpenAPI
specification info.version.

toolbox.openshiftProject is the OpenShift project in which Kubernetes jobs will be created.

toolbox.secretName is the name of the Kubernetes secret containing the 3scale toolbox
configuration file, as shown in Installing the 3scale toolbox and enabling access .

toolbox.destination is the name of the 3scale toolbox remote instance.

applicationPlans is a list of application plans to create by using a .yaml file or by providing
application plan property details.

4. Add a pipeline stage to provision the service in 3scale:

5. Add a stage to create the application plans:

6. Add a global variable and a stage to create the test application:

7. Add a stage to run your integration tests. When using APIcast Hosted instances, you must fetch
the proxy definition to extract the staging public URL:

 [systemName: "silver", name: "Silver"],
 [artefactFile: "https://raw.githubusercontent.com/my_username/API-Lifecycle-
Mockup/master/testcase-01/plan.yaml"],
]
)

 echo "toolbox version = " + service.toolbox.getToolboxVersion()
 }

stage("Import OpenAPI") {
 service.importOpenAPI()
 echo "Service with system_name ${service.environment.targetSystemName} created !"
}

stage("Create an Application Plan") {
 service.applyApplicationPlans()
}

stage("Create an Application") {
 service.applyApplication()
}

stage("Run integration tests") {
 def proxy = service.readProxy("sandbox")
 sh """set -e +x
 curl -f -w "ListBeers: %{http_code}\n" -o /dev/null -s ${proxy.sandbox_endpoint}/api/beer -H
'api-key: ${service.applications[0].userkey}'
 curl -f -w "GetBeer: %{http_code}\n" -o /dev/null -s
${proxy.sandbox_endpoint}/api/beer/Weissbier -H 'api-key: ${service.applications[0].userkey}'
 curl -f -w "FindBeersByStatus: %{http_code}\n" -o /dev/null -s

Red Hat 3scale API Management 2.10 Operating 3scale

70

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#api-lifecycle-install-toolbox-3scale

8. Add a stage to promote your API to production:

Additional resources

Creating pipelines using a Jenkinsfile

The 3scale toolbox

6.4. CREATING PIPELINES USING A JENKINSFILE

This section provides best practices for writing a custom Jenkinsfile from scratch in Groovy that uses
the 3scale toolbox.

IMPORTANT

Red Hat supports the Jenkins pipeline samples provided in the Red Hat Integration
repository.

Any modifications made to these pipelines are not directly supported by Red Hat. Custom
pipelines that you create for your environment are not supported. This section is provided
for reference only.

Prerequisites

Deploying the sample Jenkins CI/CD pipelines .

You must have an OpenAPI specification file for your API. For example, you can generate this
using Apicurio Studio.

Procedure

1. Write a utility function to call the 3scale toolbox. The following creates a Kubernetes job that
runs the 3scale toolbox:

${proxy.sandbox_endpoint}/api/beer/findByStatus/ available -H 'api-key:
${service.applications[0].userkey}'
 """
}

stage("Promote to production") {
 service.promoteToProduction()
}

#!groovy

def runToolbox(args) {
 def kubernetesJob = [
 "apiVersion": "batch/v1",
 "kind": "Job",
 "metadata": [
 "name": "toolbox"
],
 "spec": [
 "backoffLimit": 0,

CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE TOOLBOX

71

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#api-lifecycle-create-jenkinsfile-3scale
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#the-threescale-toolbox
https://github.com/rh-integration/3scale-toolbox-jenkins-samples
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#api-lifecycle-deploy-samples-3scale
https://www.apicur.io/

Kubernetes object template

This function uses a Kubernetes object template to run the 3scale toolbox, which you can adjust
to your needs. It sets the 3scale toolbox CLI arguments and writes the resulting Kubernetes job
definition to a YAML file, cleans up any previous run of the toolbox, creates the Kubernetes job,
and waits:

You can adjust the wait duration to your server velocity to match the time that a pod needs
to transition between the Created and the Running state. You can refine this step using a
polling loop.

 "activeDeadlineSeconds": 300,
 "template": [
 "spec": [
 "restartPolicy": "Never",
 "containers": [
 [
 "name": "job",
 "image": "registry.redhat.io/3scale-amp2/toolbox-rhel7:3scale2.10",
 "imagePullPolicy": "Always",
 "args": ["3scale", "version"],
 "env": [
 ["name": "HOME", "value": "/config"]
],
 "volumeMounts": [
 ["mountPath": "/config", "name": "toolbox-config"],
 ["mountPath": "/artifacts", "name": "artifacts"]
]
]
],
 "volumes": [
 ["name": "toolbox-config", "secret": ["secretName": "3scale-toolbox"]],
 ["name": "artifacts", "configMap": ["name": "openapi"]]
]
]
]
]
]

 kubernetesJob.spec.template.spec.containers[0].args = args

 sh "rm -f -- job.yaml"
 writeYaml file: "job.yaml", data: kubernetesJob

 sh """set -e
 oc delete job toolbox --ignore-not-found
 sleep 2
 oc create -f job.yaml
 sleep 20 # Adjust the sleep duration to your server velocity
 """

 def logs = sh(script: "set -e; oc logs -f job/toolbox", returnStdout: true)
 echo logs
 return logs
}

Red Hat 3scale API Management 2.10 Operating 3scale

72

The OpenAPI specification file is fetched from a ConfigMap named openapi.

The 3scale Admin Portal hostname and access token are fetched from a secret named
3scale-toolbox, as shown in Installing the 3scale toolbox and enabling access .

The ConfigMap will be created by the pipeline in step 3. However, the secret was already
provisioned outside the pipeline and is subject to Role-Based Access Control (RBAC) for
enhanced security.

2. Define the global environment variables to use with 3scale toolbox in your Jenkins pipeline
stages. For example:

3scale Hosted

3scale On-premises

When using self-managed APIcast or an on-premises installation of 3scale, you must declare
two more variables:

The variables are described as follows:

targetSystemName: The name of the service to be created.

targetInstance: This matches the name of the 3scale remote instance created in Installing
the 3scale toolbox and enabling access.

privateBaseURL: The endpoint host of your API backend.

testUserKey: The user API key used to run the integration tests. It can be hardcoded as
shown or generated from an HMAC function.

developerAccountId: The ID of the target account in which the test application will be
created.

publicStagingBaseURL: The public staging base URL of the service to be created.

publicProductionBaseURL: The public production base URL of the service to be created.

3. Add a pipeline stage to fetch the OpenAPI specification file and provision it as a ConfigMap on
OpenShift as follows:

def targetSystemName = "saas-apikey-usecase"
def targetInstance = "3scale-saas"
def privateBaseURL = "http://echo-api.3scale.net"
def testUserKey = "abcdef1234567890"
def developerAccountId = "john"

def publicStagingBaseURL = "http://my-staging-api.example.test"
def publicProductionBaseURL = "http://my-production-api.example.test"

node() {
 stage("Fetch OpenAPI") {
 sh """set -e
 curl -sfk -o swagger.json https://raw.githubusercontent.com/microcks/api-
lifecycle/master/beer-catalog-demo/api-contracts/beer-catalog-api-swagger.json
 oc delete configmap openapi --ignore-not-found

CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE TOOLBOX

73

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#api-lifecycle-install-toolbox-3scale
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#api-lifecycle-install-toolbox-3scale

4. Add a pipeline stage that uses the 3scale toolbox to import the API into 3scale:

3scale Hosted

3scale On-premises

When using self-managed APIcast or an on-premises installation of 3scale, you must also
specify the options for the public staging and production base URLs:

5. Add pipeline stages that use the toolbox to create a 3scale application plan and an application:

6. Add a stage that uses the toolbox to promote the API to your production environment.

 oc create configmap openapi --from-file="swagger.json"
 """
 }

stage("Import OpenAPI") {
 runToolbox(["3scale", "import", "openapi", "-d", targetInstance, "/artifacts/swagger.json", "--
override-private-base-url=${privateBaseURL}", "-t", targetSystemName])
}

stage("Import OpenAPI") {
 runToolbox(["3scale", "import", "openapi", "-d", targetInstance, "/artifacts/swagger.json", "--
override-private-base-url=${privateBaseURL}", "-t", targetSystemName, "--production-public-
base-url=${publicProductionBaseURL}", "--staging-public-base-
url=${publicStagingBaseURL}"])
}

stage("Create an Application Plan") {
 runToolbox(["3scale", "application-plan", "apply", targetInstance, targetSystemName, "test",
"-n", "Test Plan", "--default"])
}

stage("Create an Application") {
 runToolbox(["3scale", "application", "apply", targetInstance, testUserKey, "--
account=${developerAccountId}", "--name=Test Application", "--description=Created by
Jenkins", "--plan=test", "--service=${targetSystemName}"])
}

stage("Run integration tests") {
 def proxyDefinition = runToolbox(["3scale", "proxy", "show", targetInstance,
targetSystemName, "sandbox"])
 def proxy = readJSON text: proxyDefinition
 proxy = proxy.content.proxy

 sh """set -e
 echo "Public Staging Base URL is ${proxy.sandbox_endpoint}"
 echo "userkey is ${testUserKey}"
 curl -vfk ${proxy.sandbox_endpoint}/beer -H 'api-key: ${testUserKey}'
 curl -vfk ${proxy.sandbox_endpoint}/beer/Weissbier -H 'api-key: ${testUserKey}'
 curl -vfk ${proxy.sandbox_endpoint}/beer/findByStatus/available -H 'api-key: ${testUserKey}'
 """
}

Red Hat 3scale API Management 2.10 Operating 3scale

74

Additional resources

Creating pipelines using a Jenkinsfile

The 3scale toolbox

stage("Promote to production") {
 runToolbox(["3scale", "proxy", "promote", targetInstance, targetSystemName])
}

CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE TOOLBOX

75

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#api-lifecycle-create-jenkinsfile-3scale
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#the-threescale-toolbox

CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE
VIA THE OPERATOR

This document contains information about 3scale operator for capabilities, which involves provisioning
3scale services and configurations via the 3scale operator through the OpenShift Container Platform
(OCP) user interface.

When using the 3scale operator to update API configurations in 3scale, the custom resource
definitions (CRDs) are the source of truth. If changes are made in the Admin user interface, they will
not persist and eventually be overridden by the definition in the CRD.

IMPORTANT

3scale operator for capabilities is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.
For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

This chapter includes details about how operator application capabilities work, and the following
procedures to deploy:

Your first 3scale product and backend.

Backend custom resources related to capabilities .

Product custom resources related to capabilities.

A tenant custom resource.

Additionally, you will find information about the limitations of capabilities via the 3scale operator.

7.1. GENERAL PREREQUISITES

For the configuration and provision of 3scale via the operator, these are the required elements:

A user account with administrator privileges for 3scale 2.10 On-Premises instance.

3scale operator installed.

OpenShift Container Platform 4 with a user account that has administrator privileges in the
OpenShift cluster.

Note: OCP 4 supports deployment of 3scale using the operator only.

For more information about supported configurations, see the Red Hat 3scale API
Management Supported Configurations page.

7.2. APPLICATION CAPABILITIES VIA THE 3SCALE OPERATOR

The 3scale operator contains these featured capabilities:

Red Hat 3scale API Management 2.10 Operating 3scale

76

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#install-threescale-on-openshift-guide
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#installing-threescale-operator-on-openshift
https://access.redhat.com/articles/2798521

Allows interaction with the underlying Red Hat 3scale API Management solution.

Manages the 3scale application declaratively using custom resources from OpenShift.

The diagram below shows 3scale entities and relations that are eligible for management using
OpenShift custom resources in a declarative way. Products contain one or more backends. At the
product level, you can configure applications, application plans, as well as mapping rules. At the backend
level, you can set up metrics, methods and mapping rules for each backend.

The 3scale operator provides custom resource definitions and their relations, which are visible in the
following diagram.

7.3. DEPLOYING YOUR FIRST 3SCALE PRODUCT AND BACKEND

Using Openshift Container Platform in your newly created tenant, you will deploy your first 3scale
product and backend with the minimum required configuration.

CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE VIA THE OPERATOR

77

Prerequisites

The same installation requirements as listed in General prerequisites, with these considerations:

The 3scale account can be local in the working OpenShift namespace or a remote installation.

The required parameters from this account are the 3scale Admin URL address and the access
token.

Procedure

1. Create a secret for the 3scale provider account using the credentials from the 3scale Admin
Portal. For example: adminURL=https://3scale-admin.example.com and token=123456.

oc create secret generic threescale-provider-account --from-literal=adminURL=https://3scale-
admin.example.com --from-literal=token=123456

2. Configure the 3scale backend with the upstream API URL:

a. Create a YAML file with the following content:

apiVersion: capabilities.3scale.net/v1beta1
kind: Backend
metadata:
 name: backend1
spec:
 name: "Operated Backend 1"
 systemName: "backend1"
 privateBaseURL: "https://api.example.com"

Once you create the file, the operator will confirm if the step was successful.

For more details about the fields of Backend custom resource and possible values, see
the Backend CRD Reference.

b. Create a custom resource:

oc create -f backend1.yaml

3. Configure the 3scale product:

a. Create a product with all the default settings applied to the previously created backend:

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"
 systemName: "operatedproduct1"
 backendUsages:
 backend1:
 path: /

Once you create the file, the operator will confirm if the step was successful.

For more details about the fields of the Product custom resource and possible values,

Red Hat 3scale API Management 2.10 Operating 3scale

78

https://github.com/3scale/3scale-operator/blob/3scale-2.10-stable-prod/doc/backend-reference.md

For more details about the fields of the Product custom resource and possible values,
see the Product CRD Reference.

b. Create a custom resource:

oc create -f product1.yaml

4. Created custom resources will take a few seconds to populate your 3scale instance. To confirm
when resources are synchronized, you can choose one of these alternatives:

Verify the status field of the object.

Use the oc wait commands:

oc wait --for=condition=Synced --timeout=-1s backend/backend1
oc wait --for=condition=Synced --timeout=-1s product/product1

7.4. BACKEND CUSTOM RESOURCES RELATED TO CAPABILITIES

Using Openshift Container Platform in your newly created tenant, you will configure backends, their
corresponding metrics, methods, and mapping rules. You will also learn about the status of the backend
custom resource, and how the backend is linked to a tenant account.

Prerequisites

The same installation requirements as listed in General prerequisites, with the following consideration:

The minimum required parameters from the 3scale account are the Admin Portal URL address,
and the access token.

7.4.1. Deploying backend custom resources related to capabilities

Using Openshift Container Platform in your newly created tenant, you will configure a new backend.

Procedure

1. In your OpenShift account, navigate to Installed operators.

2. Click on the 3scale operator.

3. Under 3scale Backend, click Create Instance.

4. Choose the YAML View.

5. Create a 3scale backend pointing to a specific 3scale Admin URL address:

apiVersion: capabilities.3scale.net/v1beta1
kind: Backend
metadata:
 name: <your_backend_OpenShift_name>
spec:
 name: "<your_backend_name>"
 privateBaseURL: "<your_admin_portal_URL>"

For example:

CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE VIA THE OPERATOR

79

https://github.com/3scale/3scale-operator/blob/3scale-2.10-stable-prod/doc/product-reference.md

apiVersion: capabilities.3scale.net/v1beta1
kind: Backend
metadata:
 name: backend-1
spec:
 name: "My Backend Name"
 privateBaseURL: "https://api.example.com"

6. To save your changes, click Create.

7. Wait a few seconds to have the backend created both in OpenShift, as well as in your 3scale
account. Then, you can perform the following verifications:

a. Confirm that the backend has been created in OpenShift, by checking in the 3scale
Backend Overview page that the Synced condition is marked as True.

b. Go to your 3scale account, and you will see that the backend has been created. In the
example above, you will see a new backend called My Backend Name.

7.4.2. Defining backend metrics

Using Openshift Container Platform with your newly created 3scale tenant, define desired backend
metrics in your backend custom resource.

Consider these observations:

metrics map key names will be used as system_name. In the example below: metric01,
metric02 and hits.

metrics map key names must be unique among all metrics and methods.

unit and friendlyName are required fields.

If you do not add a hits metric, this metric will be created by the operator.

Procedure

Add backend metrics to the new 3scale backend, as in this example:

apiVersion: capabilities.3scale.net/v1beta1
kind: Backend
metadata:
 name: backend-1
spec:
 name: "My Backend Name"
 privateBaseURL: "https://api.example.com"
 metrics:
 metric01:
 friendlyName: Metric01
 unit: "1"
 metric02:
 friendlyName: Metric02
 unit: "1"
 hits:

Red Hat 3scale API Management 2.10 Operating 3scale

80

 description: Number of API hits
 friendlyName: Hits
 unit: "hit

7.4.3. Defining backend methods

Using Openshift Container Platform with your newly created 3scale tenant, define desired backend
methods in your backend custom resource.

Consider these observations:

methods map key names will be used as system_name. In the example below: Method01 and
Method02.

methods map key names must be unique among all metrics and methods.

friendlyName is a required field.

Procedure

Add backend methods to the new 3scale backend, as in this example:

apiVersion: capabilities.3scale.net/v1beta1
kind: Backend
metadata:
 name: backend-1
spec:
 name: "My Backend Name"
 privateBaseURL: "https://api.example.com"
 methods:
 method01:
 friendlyName: Method01
 method02:
 friendlyName: Method02

7.4.4. Defining backend mapping rules

Using Openshift Container Platform with your newly created 3scale tenant, define desired backend
mapping rules in your backend custom resource.

Consider these observations:

httpMethod, pattern, increment and metricMethodRef are required fields.

metricMethodRef holds a reference to the existing metric or method map key name
system_name. In the example below, hits.

Procedure

Add backend mapping rules to the new 3scale backend, as in this example:

apiVersion: capabilities.3scale.net/v1beta1
kind: Backend
metadata:
 name: backend-1

CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE VIA THE OPERATOR

81

spec:
 name: "My Backend Name"
 privateBaseURL: "https://api.example.com"
 mappingRules:
 - httpMethod: GET
 pattern: "/pets"
 increment: 1
 metricMethodRef: hits
 - httpMethod: GET
 pattern: "/pets/id"
 increment: 1
 metricMethodRef: hits
 metrics:
 hits:
 description: Number of API hits
 friendlyName: Hits
 unit: "hit"

7.4.5. Status of the backend custom resource

The status field shows resource information useful for the end user. It is not intended to be updated
manually and it is synchronized on every change of the resource.

These are the attributes of the status field:

backendId: The internal identifier of a 3scale backend.

conditions: Represents the status.Conditions Kubernetes common pattern. It has these types,
or states:

Invalid: The combination of configuration in the BackendSpec is not supported. This is not
a transient error, but indicates a state that must be fixed before progress can be made.

Synced: The backend has been successfully synchronized.

Failed: An error occurred during synchronization.

observedGeneration: It is a helper field to confirm that the status information is updated with
the latest resource specification.

Example of a synchronized resource:

status:
 backendId: 59978
 conditions:
 - lastTransitionTime: "2020-06-22T10:50:33Z"
 status: "False"
 type: Failed
 - lastTransitionTime: "2020-06-22T10:50:33Z"
 status: "False"
 type: Invalid
 - lastTransitionTime: "2020-06-22T10:50:33Z"
 status: "True"
 type: Synced
 observedGeneration: 2

Red Hat 3scale API Management 2.10 Operating 3scale

82

7.4.6. The backend custom resource linked to a tenant account

When the 3scale operator finds new 3scale resources, the LookupProviderAccount process starts with
the purpose of identifying the tenant owning the resource.

The process checks tenant credential sources. If none is found, an error is raised.

The following steps describe how the process verifies the tenant credential sources:

1. Checks credentials from the providerAccountRef resource attribute. This is a secret local
reference; for instance mytenant:

apiVersion: capabilities.3scale.net/v1beta1
kind: Backend
metadata:
 name: backend-1
spec:
 name: "My Backend Name"
 privateBaseURL: "https://api.example.com"
 providerAccountRef:
 name: mytenant

The mytenant secret must have adminURL and token fields filled with tenant credentials. For
example:

apiVersion: v1
kind: Secret
metadata:
 name: mytenant
type: Opaque
stringData:
 adminURL: https://my3scale-admin.example.com:443
 token: "XXX"

2. Checks the default threescale-provider-account secret. For example:
adminURL=https://3scale-admin.example.com and token=123456:

oc create secret generic threescale-provider-account --from-literal=adminURL=https://3scale-
admin.example.com --from-literal=token=123456

3. Checks the default provider account in the same namespace of the 3scale deployment: The
operator will gather required credentials automatically for the default 3scale tenant (provider
account), if the 3scale installation is located in the same namespace as the custom resource.

7.5. PRODUCT CUSTOM RESOURCES RELATED TO CAPABILITIES

Using Openshift Container Platform in your newly created tenant, you will configure products, and their
corresponding metrics, methods, application plans, and mapping rules, as well as define product backend
usages and link your product to your tenant account.

Prerequisites

The same installation requirements as listed in General prerequisites, with the following consideration:

The minimum required parameter from the 3scale account is the product name.

CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE VIA THE OPERATOR

83

7.5.1. Deploying product custom resources related to capabilities

Using Openshift Container Platform in your newly created tenant, you will configure a new product.

7.5.1.1. Deploying a basic product custom resource

Procedure

1. In your OpenShift account, navigate to Installed operators.

2. Click on the 3scale operator.

3. Under 3scale Product, click Create Instance.

4. Choose the YAML View.

5. Create a 3scale product:

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: <your_product_OpenShift_name>
spec:
 name: "<your_product_name>"

For example:

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"

6. To save your changes, click Create.

7. Wait a few seconds to have the product created both in OpenShift, as well as in your 3scale
account. Then, you can perform the following verifications:

a. Confirm that the product has been created in OpenShift, by checking in the 3scale Product
Overview page that the Synced condition is marked as True.

b. Go to your 3scale account, and you will see that the product has been created. In the
example above, you will see a new product called OperatedProduct 1.

Additionally, you can specify the APIcast deployment mode for each product that you create. There are
two alternatives:

APIcast hosted

APIcast self-managed

7.5.1.2. Deploying a product with APIcast hosted

Configure your product with APIcast hosted:

Red Hat 3scale API Management 2.10 Operating 3scale

84

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"
 deployment:
 apicastHosted: {}

7.5.1.3. Deploying a product with APIcast self-managed

Configure your product with APIcast self-managed. In this case, specify a stagingPublicBaseURL and a
productionPublicBaseURL:

+

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"
 deployment:
 apicastSelfManaged:
 stagingPublicBaseURL: "https://staging.api.example.com"
 productionPublicBaseURL: "https://production.api.example.com"

+

7.5.2. Defining product application plans

Using Openshift Container Platform with your newly created 3scale tenant, define desired application
plans in your product custom resource, by using the applicationPlans object.

Consider this observation:

applicationPlans map key names will be used as system_name. In the example below: plan01
and plan02.

Procedure

Add application plans to the new 3scale product, as in this example:

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"
 applicationPlans:
 plan01:
 name: "My Plan 01"
 setupFee: "14.56"
 plan02:

CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE VIA THE OPERATOR

85

 name: "My Plan 02"
 trialPeriod: 3
 costMonth: 3

7.5.3. Defining limits for product application plans

Using Openshift Container Platform with your newly created 3scale tenant, define desired limits for your
product application plans, by using the applicationPlans.limits list.

Consider these observations:

period, value and metricMethodRef are required fields.

The metricMethodRef reference can be either a product or a backend reference. Use the
optional backend field to reference the owner of the backend metric.

Procedure

Define limits for the application plans of an 3scale product, as in this example:

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"
 metrics:
 hits:
 description: Number of API hits
 friendlyName: Hits
 unit: "hit"
 applicationPlans:
 plan01:
 name: "My Plan 01"
 limits:
 - period: month
 value: 300
 metricMethodRef:
 systemName: hits
 backend: backendA
 - period: week
 value: 100
 metricMethodRef:
 systemName: hits

7.5.4. Defining pricing rules for product application plans

Using Openshift Container Platform with your newly created 3scale tenant, define desired pricing rules
for your product application plans, by using the applicationPlans.pricingRules list.

Consider these observations:

from, to, pricePerUnit and metricMethodRef are required fields.

from and to will be validated. For any rule, values of from less than to and overlapping ranges

Red Hat 3scale API Management 2.10 Operating 3scale

86

from and to will be validated. For any rule, values of from less than to and overlapping ranges
for the same metric are not allowed.

The metricMethodRef reference can be either a product or a backend reference. Use the
optional backend field to reference the owner of the backend metric.

Procedure

Define pricing rules for the application plans of an 3scale product, as in this example:

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"
 metrics:
 hits:
 description: Number of API hits
 friendlyName: Hits
 unit: "hit"
 applicationPlans:
 plan01:
 name: "My Plan 01"
 pricingRules:
 - from: 1
 to: 100
 pricePerUnit: "15.45"
 metricMethodRef:
 systemName: hits
 - from: 1
 to: 300
 pricePerUnit: "15.45"
 metricMethodRef:
 systemName: hits
 backend: backendA

7.5.5. Defining product metrics

Using Openshift Container Platform with your newly created 3scale tenant, define desired metrics in
your product custom resource, by using the metrics object.

Consider these observations:

metrics map key names will be used as system_name. In the example below: metric01 and
hits.

metrics map key names must be unique among all metrics and methods.

unit and friendlyName are required fields.

If you do not add a hits metric, it will be created by the operator.

Procedure

Add product metrics to the new 3scale backend, as in this example:

CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE VIA THE OPERATOR

87

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"
 metrics:
 metric01:
 friendlyName: Metric01
 unit: "1"
 hits:
 description: Number of API hits
 friendlyName: Hits
 unit: "hit"

7.5.6. Defining product methods

Using Openshift Container Platform with your newly created 3scale tenant, define desired methods in
your product custom resource, by using the methods object.

Consider these observations:

methods map key names will be used as system_name. In the example below: Method01 and
Method02.

methods map key names must be unique among all metrics and methods.

friendlyName is a required field.

Procedure

Add methods to the new 3scale product, as in this example:

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"
 methods:
 method01:
 friendlyName: Method01
 method02:
 friendlyName: Method02

7.5.7. Defining product mapping rules

Using Openshift Container Platform with your newly created 3scale tenant, define desired mapping
rules in your product custom resource, by using the mappingRules object.

Consider these observations:

httpMethod, pattern, increment and metricMethodRef are required fields.

metricMethodRef holds a reference to the existing metric or method map key name

Red Hat 3scale API Management 2.10 Operating 3scale

88

metricMethodRef holds a reference to the existing metric or method map key name
system_name. In the example below, hits.

Procedure

Add product mapping rules to the new 3scale backend, as in this example:

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"
 metrics:
 hits:
 description: Number of API hits
 friendlyName: Hits
 unit: "hit"
 methods:
 method01:
 friendlyName: Method01
 mappingRules:
 - httpMethod: GET
 pattern: "/pets"
 increment: 1
 metricMethodRef: hits
 - httpMethod: GET
 pattern: "/cars"
 increment: 1
 metricMethodRef: method01

7.5.8. Defining product backend usage

Using Openshift Container Platform with your newly created 3scale tenant, define desired backends to
be added to a product declaratively, by applying the backendUsages object.

Consider these observations:

path is a required field.

backendUsages map key names are references to the backend’s system_name. In the
example below: backendA and backendB.

Procedure

Add a backend to a product to define its usage declaratively, as in this example:

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"
 backendUsages:
 backendA:

CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE VIA THE OPERATOR

89

 path: /A
 backendB:
 path: /B

7.5.9. Status of the product custom resource

The status field shows resource information useful for the end user. It is not intended to be updated
manually and it is synchronized on every change of the resource.

These are the attributes of the status field:

productId: The internal identifier of a 3scale product.

conditions: Represents the status.Conditions Kubernetes common pattern. It has these types,
or states:

Failed: An error occurred during synchronization. The operation will retry.

Synced: The product has been successfully synchronized.

Invalid: Invalid object. This is not a transient error, but it reports about an invalid specification
and it should be changed. The operator will not retry.

Orphan: The specification references a resource that does not exist. The operator will retry.

observedGeneration: Confirms that the status information is updated with the latest resource
specification.

state: The 3scale product internal state read from the 3scale API.

providerAccountHost: The 3scale provider account URL to which the backend is synchronized.

Example of a synchronized resource:

status:
 conditions:
 - lastTransitionTime: "2020-10-21T18:07:01Z"
 status: "False"
 type: Failed
 - lastTransitionTime: "2020-10-21T18:06:54Z"
 status: "False"
 type: Invalid
 - lastTransitionTime: "2020-10-21T18:07:01Z"
 status: "False"
 type: Orphan
 - lastTransitionTime: "2020-10-21T18:07:01Z"
 status: "True"
 type: Synced
 observedGeneration: 1
 productId: 2555417872138
 providerAccountHost: https://3scale-admin.example.com
 state: incomplete

7.5.10. The product custom resource linked to a tenant account

When the 3scale operator finds new 3scale resources, the LookupProviderAccount process starts with

Red Hat 3scale API Management 2.10 Operating 3scale

90

When the 3scale operator finds new 3scale resources, the LookupProviderAccount process starts with
the purpose of identifying the tenant owning the resource.

The process checks tenant credential sources. If none is found, an error is raised.

The following steps describe how the process verifies the tenant credential sources:

1. Checks credentials from the providerAccountRef resource attribute. This is a secret local
reference; for instance mytenant:

apiVersion: capabilities.3scale.net/v1beta1
kind: Product
metadata:
 name: product1
spec:
 name: "OperatedProduct 1"
 providerAccountRef:
 name: mytenant

The mytenant secret must have adminURL and token fields filled with tenant credentials. For
example:

apiVersion: v1
kind: Secret
metadata:
 name: mytenant
type: Opaque
stringData:
 adminURL: https://my3scale-admin.example.com:443
 token: "XXX"

2. Checks the default threescale-provider-account secret. For example:
adminURL=https://3scale-admin.example.com and token=123456:

oc create secret generic threescale-provider-account --from-literal=adminURL=https://3scale-
admin.example.com --from-literal=token=123456

3. Checks the default provider account in the same namespace of the 3scale deployment: The
operator will gather required credentials automatically for the default 3scale tenant (provider
account), if the 3scale installation is located in the same namespace as the custom resource.

7.6. DEPLOYING A TENANT CUSTOM RESOURCE

A tenant custom resource is also known as the Provider Account.

Creating the APIManager custom resource indicates the operator to deploy 3scale. A default 3scale
installation includes a default tenant ready to be used. Optionally, you may create other tenants creating
tenant custom resource objects.

Prerequisites

To deploy a new tenant in your 3scale instance, you need some preparation steps:

1. Obtain or create the 3scale master credentials secret: MASTER_SECRET

You can perform tenant management tasks by only using the 3scale master account

CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE VIA THE OPERATOR

91

You can perform tenant management tasks by only using the 3scale master account
credentials, preferably an access token. You have the following options:

If the tenant resource is created in the same namespace as 3scale, the secret with master
account credentials has been created already and it is called system-seed.

If the tenant resource is not created in the same namespace as 3scale, create a secret with
the master account credentials. In this command, the name of the secret is optional. The
secret name will be used in the tenant custom resource:

oc create secret generic system-seed --from-literal=MASTER_ACCESS_TOKEN=
<master access token>

2. Create a new secret to store the password for the admin account of the new tenant:
ADMIN_SECRET. In this command, the name of the secret is optional. The secret name will be
used in the tenant custom resource.

oc create secret generic ecorp-admin-secret --from-literal=admin_password=<admin
password value>

3. Get the 3scale master account hostname: MASTER_HOSTNAME. When you deploy 3scale
using the operator, the master account has a fixed URL with this pattern:
master.${wildcardDomain}

If you have access to the namespace where 3scale is installed, get the master account
hostname:

oc get routes --field-selector=spec.to.name==system-master -o jsonpath="
{.items[].spec.host}"

Procedure

1. Deploy the new tenant custom resource:

apiVersion: capabilities.3scale.net/v1alpha1
kind: Tenant
metadata:
 name: ecorp-tenant
spec:
 username: admin
 systemMasterUrl: https://<MASTER_HOSTNAME>
 email: admin@ecorp.com
 organizationName: ECorp
 masterCredentialsRef:
 name: <MASTER_SECRET>
 passwordCredentialsRef:
 name: <ADMIN_SECRET*>
 tenantSecretRef:
 name: tenant-secret

2. Create the tenant resource:

oc create -f <yaml-name>

Red Hat 3scale API Management 2.10 Operating 3scale

92

This command triggers the creation of a new tenant in your 3scale solution.

The 3scale operator will create a new secret and store the new tenant credentials in the
secret.

The new tenant provider_key and admin domain url will be stored in a secret.

The secret location can be specified using the tenantSecretRef tenant specification key.

As a reference, this is an example of the created secret content:

apiVersion: v1
kind: Secret
metadata:
 name: tenant-secret
type: Opaque
stringData:
 adminURL: https://my3scale-admin.example.com:443
 token: "XXX"

For more details about the fields of tenant custom resource and possible values, see the Tenant CRD
Reference.

7.7. LIMITATIONS OF CAPABILITIES VIA THE 3SCALE OPERATOR

In Red Hat 3scale API Management 2.10, 3scale operator contains these limitations with capabilities:

Deletion of a backend custom resource definition (CRD) is not reconciled: existing backends in
3scale will not be deleted.

Deletion of a product CRD is not reconciled: existing products in 3scale will not be deleted.

Product CRD does not support Single Sign-On (SSO) authentication for the Admin and
Developer portals.

Product CRD does not support OpenID Connect authentication .

ActiveDocs CRD not currently available.

Gateway Policy CRD not currently available.

Product CRD Gateway does not support response custom code and errors

3scale operator CRD holding OAS3 does not reference as source of truth for 3scale product
configuration.

7.8. ADDITIONAL RESOURCES

For more information, check the following guides:

Backend CRD Reference

Product CRD Reference

Tenant CRD Reference

CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE VIA THE OPERATOR

93

https://github.com/3scale/3scale-operator/blob/3scale-2.10-stable-prod/doc/tenant-reference.md
https://github.com/3scale/3scale-operator/blob/3scale-2.10-stable-prod/doc/backend-reference.md
https://github.com/3scale/3scale-operator/blob/3scale-2.10-stable-prod/doc/product-reference.md
https://github.com/3scale/3scale-operator/blob/3scale-2.9-stable-prod/doc/tenant-reference.md

CHAPTER 8. 3SCALE BACKUP AND RESTORE
This section provides you, as the administrator of a Red Hat 3scale API Management installation, the
information needed to:

Set up the backup procedures for persistent data.

Perform a restore from backup of the persistent data.

In case of issues with one or more of the MySQL databases, you will be able to restore 3scale correctly
to its previous operational state.

8.1. PREREQUISITES

A 3scale 2.10 instance. For more information about how to install 3scale, see Installing 3scale on
OpenShift.

jq: For extraction or transformation of JSON data.

An OpenShift Container Platform 4.x user account with one of the following roles in the
OpenShift cluster:

cluster-admin

admin

edit

NOTE

A user with an edit cluster role locally binded in the namespace of a 3scale installation can
perform backup and restore procedures.

The following sections contain information about persistent volumes, using data sets, setting up the
backup procedures for persistent data, as well as restoring system databases and OpenShift secrets:

Section 8.2, “Persistent volumes and considerations”

Section 8.3, “Using data sets”

Section 8.4, “Backing up system databases”

Section 8.5, “Restoring system databases”

8.2. PERSISTENT VOLUMES AND CONSIDERATIONS

Persistent volumes

In a 3scale deployment on OpenShift:

A persistent volume (PV) provided to the cluster by the underlying infrastructure.

Storage service external to the cluster. This can be in the same data center or elsewhere.

Considerations

Red Hat 3scale API Management 2.10 Operating 3scale

94

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#install-threescale-on-openshift-guide
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#install-threescale-on-openshift-guide

The backup and restore procedures for persistent data vary depending on the storage type in use. To
ensure the backups and restores preserve data consistency, it is not sufficient to backup the underlying
PVs for a database. For example, do not capture only partial writes and partial transactions. Use the
database’s backup mechanisms instead.

Some parts of the data are synchronized between different components. One copy is considered the
source of truth for the data set. The other is a copy that is not modified locally, but synchronized from
the source of truth. In these cases, upon completion, the source of truth should be restored, and copies in
other components synchronized from it.

8.3. USING DATA SETS

This section explains in more detail about different data sets in the different persistent stores, their
purpose, the storage type used, and whether or not it is the source of truth.

The full state of a 3scale deployment is stored across the following DeploymentConfig objects and
their PVs:

Name Description

system-mysql MySQL database (mysql-storage)

system-storage Volume for Files

backend-redis Redis database (backend-redis-storage)

system-redis Redis database (system-redis-storage)

8.3.1. Defining system-mysql

system-mysql is a relational database which stores information about users, accounts, APIs, plans, and
more, in the 3scale Admin Console.

A subset of this information related to services is synchronized to the Backend component and stored in
backend-redis. system-mysql is the source of truth for this information.

8.3.2. Defining system-storage

NOTE

System can be scaled horizontally with multiple pods uploading and reading said static
files, hence the need for a ReadWriteMany (RWX) PersistentVolume

system-storage stores files to be read and written by the System component.

They fall into two categories:

Configuration files read by the System component at run-time

Static files, for example, HTML, CSS, JS , uploaded to system by its CMS feature, for the
purpose of creating a Developer Portal

NOTE

CHAPTER 8. 3SCALE BACKUP AND RESTORE

95

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#defining-system-mysql
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#defining-system-storage
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#defining-backend-redis
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#defining-system-redis

NOTE

System can be scaled horizontally with multiple pods uploading and reading said static
files, hence the need for a ReadWriteMany (RWX) PersistentVolume.

8.3.3. Defining backend-redis

backend-redis contains multiple data sets used by the Backend component:

Usages: This is API usage information aggregated by Backend. It is used by Backend for rate-
limiting decisions and by System to display analytics information in the UI or via API.

Config: This is configuration information about services, rate-limits, and more, that is
synchronized from System via an internal API. This is not the source of truth of this information,
however System and system-mysql is.

Queues: This is queues of background jobs to be executed by worker processes. These are
ephemeral and are deleted once processed.

8.3.4. Defining system-redis

system-redis contains queues for jobs to be processed in background. These are ephemeral and are
deleted once processed.

8.4. BACKING UP SYSTEM DATABASES

The following commands are in no specific order and can be used as you need them to back up and
archive system databases.

8.4.1. Backing up system-mysql

Execute MySQL Backup Command:

oc rsh $(oc get pods -l 'deploymentConfig=system-mysql' -o json | jq -r '.items[0].metadata.name')
bash -c 'export MYSQL_PWD=${MYSQL_ROOT_PASSWORD}; mysqldump --single-transaction -
hsystem-mysql -uroot system' | gzip > system-mysql-backup.gz

8.4.2. Backing up system-storage

Archive the system-storage files to another storage:

oc rsync $(oc get pods -l 'deploymentConfig=system-app' -o json | jq '.items[0].metadata.name' -
r):/opt/system/public/system ./local/dir

8.4.3. Backing up backend-redis

Backup the dump.rdb file from redis:

oc cp $(oc get pods -l 'deploymentConfig=backend-redis' -o json | jq '.items[0].metadata.name' -
r):/var/lib/redis/data/dump.rdb ./backend-redis-dump.rdb

Red Hat 3scale API Management 2.10 Operating 3scale

96

8.4.4. Backing up system-redis

Backup the dump.rdb file from redis:

oc cp $(oc get pods -l 'deploymentConfig=system-redis' -o json | jq '.items[0].metadata.name' -
r):/var/lib/redis/data/dump.rdb ./system-redis-dump.rdb

8.4.5. Backing up zync-database

Backup the zync_production database:

oc rsh $(oc get pods -l 'deploymentConfig=zync-database' -o json | jq -r '.items[0].metadata.name')
bash -c 'pg_dump zync_production' | gzip > zync-database-backup.gz

8.4.6. Backing up OpenShift secrets and ConfigMaps

The following is the list of commands for OpenShift secrets and ConfigMaps:

8.4.6.1. OpenShift secrets

oc get secrets system-smtp -o json > system-smtp.json
oc get secrets system-seed -o json > system-seed.json
oc get secrets system-database -o json > system-database.json
oc get secrets backend-internal-api -o json > backend-internal-api.json
oc get secrets system-events-hook -o json > system-events-hook.json
oc get secrets system-app -o json > system-app.json
oc get secrets system-recaptcha -o json > system-recaptcha.json
oc get secrets system-redis -o json > system-redis.json
oc get secrets zync -o json > zync.json
oc get secrets system-master-apicast -o json > system-master-apicast.json

8.4.6.2. ConfigMaps

oc get configmaps system-environment -o json > system-environment.json
oc get configmaps apicast-environment -o json > apicast-environment.json

8.5. RESTORING SYSTEM DATABASES

IMPORTANT

Prevent record creation by scaling down pods like system-app or disabling routes.

Use the following procedures to restore OpenShift secrets and system databases:

Restoring a template-based deployment .

Restoring an operator-based deployment .

Restoring system-mysql.

Restoring system-storage.

CHAPTER 8. 3SCALE BACKUP AND RESTORE

97

Restoring zync-database.

Ensuring information consistency between Backend and System.

8.5.1. Restoring a template-based deployment

Use the following steps to restore a template-based deployment.

Procedure

1. Restore secrets before creating deploying template.:

oc apply -f system-smtp.json

1. Template parameters will be read from copied secrets and configmaps:

oc new-app --file /opt/amp/templates/amp.yml \
 --param APP_LABEL=$(cat system-environment.json | jq -r '.metadata.labels.app') \
 --param TENANT_NAME=$(cat system-seed.json | jq -r '.data.TENANT_NAME' | base64 -
d) \
 --param SYSTEM_DATABASE_USER=$(cat system-database.json | jq -r
'.data.DB_USER' | base64 -d) \
 --param SYSTEM_DATABASE_PASSWORD=$(cat system-database.json | jq -r
'.data.DB_PASSWORD' | base64 -d) \
 --param SYSTEM_DATABASE=$(cat system-database.json | jq -r '.data.URL' | base64 -d
| cut -d '/' -f4) \
 --param SYSTEM_DATABASE_ROOT_PASSWORD=$(cat system-database.json | jq -r
'.data.URL' | base64 -d | awk -F '[:@]' '{print $3}') \
 --param WILDCARD_DOMAIN=$(cat system-environment.json | jq -r
'.data.THREESCALE_SUPERDOMAIN') \
 --param SYSTEM_BACKEND_USERNAME=$(cat backend-internal-api.json | jq
'.data.username' -r | base64 -d) \
 --param SYSTEM_BACKEND_PASSWORD=$(cat backend-internal-api.json | jq
'.data.password' -r | base64 -d) \
 --param SYSTEM_BACKEND_SHARED_SECRET=$(cat system-events-hook.json | jq -r
'.data.PASSWORD' | base64 -d) \
 --param SYSTEM_APP_SECRET_KEY_BASE=$(cat system-app.json | jq -r
'.data.SECRET_KEY_BASE' | base64 -d) \
 --param ADMIN_PASSWORD=$(cat system-seed.json | jq -r '.data.ADMIN_PASSWORD'
| base64 -d) \
 --param ADMIN_USERNAME=$(cat system-seed.json | jq -r '.data.ADMIN_USER' |
base64 -d) \
 --param ADMIN_EMAIL=$(cat system-seed.json | jq -r '.data.ADMIN_EMAIL' | base64 -d) \
 --param ADMIN_ACCESS_TOKEN=$(cat system-seed.json | jq -r
'.data.ADMIN_ACCESS_TOKEN' | base64 -d) \
 --param MASTER_NAME=$(cat system-seed.json | jq -r '.data.MASTER_DOMAIN' |
base64 -d) \
 --param MASTER_USER=$(cat system-seed.json | jq -r '.data.MASTER_USER' | base64 -
d) \
 --param MASTER_PASSWORD=$(cat system-seed.json | jq -r
'.data.MASTER_PASSWORD' | base64 -d) \
 --param MASTER_ACCESS_TOKEN=$(cat system-seed.json | jq -r
'.data.MASTER_ACCESS_TOKEN' | base64 -d) \
 --param RECAPTCHA_PUBLIC_KEY="$(cat system-recaptcha.json | jq -r
'.data.PUBLIC_KEY' | base64 -d)" \

Red Hat 3scale API Management 2.10 Operating 3scale

98

 --param RECAPTCHA_PRIVATE_KEY="$(cat system-recaptcha.json | jq -r
'.data.PRIVATE_KEY' | base64 -d)" \
 --param SYSTEM_REDIS_URL=$(cat system-redis.json | jq -r '.data.URL' | base64 -d) \
 --param SYSTEM_MESSAGE_BUS_REDIS_URL="$(cat system-redis.json | jq -r
'.data.MESSAGE_BUS_URL' | base64 -d)" \
 --param SYSTEM_REDIS_NAMESPACE="$(cat system-redis.json | jq -r
'.data.NAMESPACE' | base64 -d)" \
 --param SYSTEM_MESSAGE_BUS_REDIS_NAMESPACE="$(cat system-redis.json | jq -
r '.data.MESSAGE_BUS_NAMESPACE' | base64 -d)" \
 --param ZYNC_DATABASE_PASSWORD=$(cat zync.json | jq -r
'.data.ZYNC_DATABASE_PASSWORD' | base64 -d) \
 --param ZYNC_SECRET_KEY_BASE=$(cat zync.json | jq -r '.data.SECRET_KEY_BASE'
| base64 -d) \
 --param ZYNC_AUTHENTICATION_TOKEN=$(cat zync.json | jq -r
'.data.ZYNC_AUTHENTICATION_TOKEN' | base64 -d) \
 --param APICAST_ACCESS_TOKEN=$(cat system-master-apicast.json | jq -r
'.data.ACCESS_TOKEN' | base64 -d) \
 --param APICAST_MANAGEMENT_API=$(cat apicast-environment.json | jq -r
'.data.APICAST_MANAGEMENT_API') \
 --param APICAST_OPENSSL_VERIFY=$(cat apicast-environment.json | jq -r
'.data.OPENSSL_VERIFY') \
 --param APICAST_RESPONSE_CODES=$(cat apicast-environment.json | jq -r
'.data.APICAST_RESPONSE_CODES') \
 --param APICAST_REGISTRY_URL=$(cat system-environment.json | jq -r
'.data.APICAST_REGISTRY_URL')

8.5.2. Restoring an operator-based deployment

Use the following steps to restore operator-based deployments.

Procedure

1. Install the 3scale operator on OpenShift.

2. Restore secrets before creating an APIManager resource:

oc apply -f system-smtp.json
oc apply -f system-seed.json
oc apply -f system-database.json
oc apply -f backend-internal-api.json
oc apply -f system-events-hook.json
oc apply -f system-app.json
oc apply -f system-recaptcha.json
oc apply -f system-redis.json
oc apply -f zync.json
oc apply -f system-master-apicast.json

3. Restore ConfigMaps before creating an APIManager resource:

oc apply -f system-environment.json
oc apply -f apicast-environment.json

4. Deploy 3scale with the operator using the APIManager custom resource.

CHAPTER 8. 3SCALE BACKUP AND RESTORE

99

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#installing-threescale-operator-on-openshift
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#deploying-threescale-using-the-operator

8.5.3. Restoring system-mysql

Procedure

1. Copy the MySQL dump to the system-mysql pod:

oc cp ./system-mysql-backup.gz $(oc get pods -l 'deploymentConfig=system-mysql' -o json |
jq '.items[0].metadata.name' -r):/var/lib/mysql

2. Decompress the backup file:

oc rsh $(oc get pods -l 'deploymentConfig=system-mysql' -o json | jq -r
'.items[0].metadata.name') bash -c 'gzip -d ${HOME}/system-mysql-backup.gz'

3. Restore the MySQL DB Backup file:

oc rsh $(oc get pods -l 'deploymentConfig=system-mysql' -o json | jq -r
'.items[0].metadata.name') bash -c 'export MYSQL_PWD=${MYSQL_ROOT_PASSWORD};
mysql -hsystem-mysql -uroot system < ${HOME}/system-mysql-backup'

8.5.4. Restoring system-storage

Restore the Backup file to system-storage:

oc rsync ./local/dir/system/ $(oc get pods -l 'deploymentConfig=system-app' -o json | jq
'.items[0].metadata.name' -r):/opt/system/public/system

8.5.5. Restoring zync-database

Instructions to restore zync-database depend on the deployment type applied for 3scale.

8.5.5.1. Template-based deployments

Procedure

1. Scale down the zync DeploymentConfig to 0 pods:

oc scale dc zync --replicas=0
oc scale dc zync-que --replicas=0

2. Copy the Zync database dump to the zync-database pod:

oc cp ./zync-database-backup.gz $(oc get pods -l 'deploymentConfig=zync-database' -o json
| jq '.items[0].metadata.name' -r):/var/lib/pgsql/

3. Decompress the backup file:

oc rsh $(oc get pods -l 'deploymentConfig=zync-database' -o json | jq -r
'.items[0].metadata.name') bash -c 'gzip -d ${HOME}/zync-database-backup.gz'

4. Restore the PostgreSQL DB backup file:

Red Hat 3scale API Management 2.10 Operating 3scale

100

oc rsh $(oc get pods -l 'deploymentConfig=zync-database' -o json | jq -r
'.items[0].metadata.name') bash -c 'psql -f ${HOME}/zync-database-backup'

5. Restore to the original count of replicas, by replacing ${ZYNC_REPLICAS} with the number of
replicas, in the commands below:

oc scale dc zync --replicas=${ZYNC_REPLICAS}
oc scale dc zync-que --replicas=${ZYNC_REPLICAS}

8.5.5.2. Operator-based deployments

NOTE

Follow the instructions under Deploying 3scale using the operator , in particular Deploying
the APIManager custom resource to redeploy your 3scale instance.

Procedure

1. Store the number of replicas, by replacing ${DEPLOYMENT_NAME} with the name you defined
when you created your 3scale deployment:

ZYNC_SPEC=`oc get APIManager/${DEPLOYMENT_NAME} -o json | jq -r '.spec.zync'`

2. Scale down the zync DeploymentConfig to 0 pods:

oc patch APIManager/${DEPLOYMENT_NAME} --type merge -p '{"spec": {"zync":
{"appSpec": {"replicas": 0}, "queSpec": {"replicas": 0}}}}'

3. Copy the Zync database dump to the zync-database pod:

oc cp ./zync-database-backup.gz $(oc get pods -l 'deploymentConfig=zync-database' -o json
| jq '.items[0].metadata.name' -r):/var/lib/pgsql/

4. Decompress the backup file:

oc rsh $(oc get pods -l 'deploymentConfig=zync-database' -o json | jq -r
'.items[0].metadata.name') bash -c 'gzip -d ${HOME}/zync-database-backup.gz'

5. Restore the PostgreSQL DB backup file:

oc rsh $(oc get pods -l 'deploymentConfig=zync-database' -o json | jq -r
'.items[0].metadata.name') bash -c 'psql -f ${HOME}/zync-database-backup'

6. Restore to the original count of replicas:

oc patch APIManager ${DEPLOYMENT_NAME} --type merge -p '{"spec":
{"zync":'"${ZYNC_SPEC}"'}}'

8.5.5.3. Restoring 3scale options with backend-redis and system-redis

By restoring 3scale, you will restore backend-redis and system-redis. These components have the

CHAPTER 8. 3SCALE BACKUP AND RESTORE

101

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#deploying-threescale-using-the-operator
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/installing_3scale/index#deploying-apimanager-custom-resource

By restoring 3scale, you will restore backend-redis and system-redis. These components have the
following functions:

*backend-redis: The database that supports application authentication and rate limiting in 3scale. It is
also used for statistics storage and temporary job storage. *system-redis: Provides temporary storage
for background jobs for 3scale and is also used as a message bus for Ruby processes of system-app
pods.

The backend-redis component

The backend-redis component has two databases, data and queues. In default 3scale deployment,
data and queues are deployed in the Redis database, but in different logical database indexes /0 and /1.
Restoring data database runs without any issues, however restoring queues database can lead to
duplicated jobs.

Regarding duplication of jobs, in 3scale the backend workers process background jobs in a matter of
milliseconds. If backend-redis fails 30 seconds after the last database snapshot and you try to restore
it, the background jobs that happened during those 30 seconds are performed twice because backend
does not have a system in place to avoid duplication.

In this scenario, you must restore the backup as the /0 database index contains data that is not saved
anywhere else. Restoring /0 database index means that you must also restore the /1 database index
since one cannot be stored without the other. When you choose to separate databases on different
servers and not one database in different indexes, the size of the queue will be approximately zero, so it
is preferable not to restore backups and lose a few background jobs. This will be the case in a 3scale
Hosted setup you will need to therefore apply different backup and restore strategies for both.

The `system-redis`component

The majority of the 3scale system background jobs are idempotent, that is, identical requests return an
identical result no matter how many times you run them.

The following is a list of examples of events handled by background jobs in system:

Notification jobs such as plan trials about to expire, credit cards about to expire, activation
reminders, plan changes, invoice state changes, PDF reports.

Billing such as invoicing and charging.

Deletion of complex objects.

Backend synchronization jobs.

Indexation jobs, for example with sphinx.

Sanitisation jobs, for example invoice IDs.

Janitorial tasks such as purging audits, user sessions, expired tokens, log entries, suspending
inactive accounts.

Traffic updates.

Proxy configuration change monitoring and proxy deployments.

Background signup jobs,

Zync jobs such as Single sign-on (SSO) synchronization, routes creation.

Red Hat 3scale API Management 2.10 Operating 3scale

102

If you are restoring the above list of background jobs, 3scale’s system maintains the state of each
restored job. It is important to check the integrity of the system after the restoration is complete.

8.5.6. Ensuring information consistency between Backend and System

After restoring backend-redis a sync of the Config information from System should be forced to
ensure the information in Backend is consistent with that in System, which is the source of truth.

8.5.6.1. Managing the deployment configuration for backend-redis

These steps are intended for running instances of backend-redis.

Procedure

1. Edit the redis-config configmap:

oc edit configmap redis-config

2. Comment SAVE commands in the redis-config configmap:

 #save 900 1
 #save 300 10
 #save 60 10000

3. Set appendonly to no in the redis-config configmap:

appendonly no

4. Redeploy backend-redis to load the new configurations:

oc rollout latest dc/backend-redis

5. Check the status of the rollout to ensure it has finished:

oc rollout status dc/backend-redis

6. Rename the dump.rdb file:

oc rsh $(oc get pods -l 'deploymentConfig=backend-redis' -o json | jq
'.items[0].metadata.name' -r) bash -c 'mv ${HOME}/data/dump.rdb ${HOME}/data/dump.rdb-
old'

7. Rename the appendonly.aof file:

oc rsh $(oc get pods -l 'deploymentConfig=backend-redis' -o json | jq
'.items[0].metadata.name' -r) bash -c 'mv ${HOME}/data/appendonly.aof
${HOME}/data/appendonly.aof-old'

8. Move the backup file to the POD:

oc cp ./backend-redis-dump.rdb $(oc get pods -l 'deploymentConfig=backend-redis' -o json |
jq '.items[0].metadata.name' -r):/var/lib/redis/data/dump.rdb

CHAPTER 8. 3SCALE BACKUP AND RESTORE

103

9. Redeploy backend-redis to load the backup:

oc rollout latest dc/backend-redis

10. Check the status of the rollout to ensure it has finished:

oc rollout status dc/backend-redis

11. Create the appendonly file:

oc rsh $(oc get pods -l 'deploymentConfig=backend-redis' -o json | jq
'.items[0].metadata.name' -r) bash -c 'redis-cli BGREWRITEAOF'

12. After a while, ensure that the AOF rewrite is complete:

oc rsh $(oc get pods -l 'deploymentConfig=backend-redis' -o json | jq
'.items[0].metadata.name' -r) bash -c 'redis-cli info' | grep aof_rewrite_in_progress

While aof_rewrite_in_progress = 1, the execution is in progress.

Check periodically until aof_rewrite_in_progress = 0. Zero indicates that the execution is
complete.

13. Edit the redis-config configmap:

oc edit configmap redis-config

14. Uncomment SAVE commands in the redis-config configmap:

 save 900 1
 save 300 10
 save 60 10000

15. Set appendonly to yes in the redis-config configmap:

appendonly yes

16. Redeploy backend-redis to reload the default configurations:

oc rollout latest dc/backend-redis

17. Check the status of the rollout to ensure it has finished:

oc rollout status dc/backend-redis

8.5.6.2. Managing the deployment configuration for system-redis

These steps are intended for running instances of system-redis.

Procedure

1. Edit the redis-config configmap:

Red Hat 3scale API Management 2.10 Operating 3scale

104

oc edit configmap redis-config

2. Comment SAVE commands in the redis-config configmap:

 #save 900 1
 #save 300 10
 #save 60 10000

3. Set appendonly to no in the redis-config configmap:

appendonly no

4. Redeploy system-redis to load the new configurations:

oc rollout latest dc/system-redis

5. Check the status of the rollout to ensure it has finished:

oc rollout status dc/system-redis

6. Rename the dump.rdb file:

oc rsh $(oc get pods -l 'deploymentConfig=system-redis' -o json | jq
'.items[0].metadata.name' -r) bash -c 'mv ${HOME}/data/dump.rdb ${HOME}/data/dump.rdb-
old'

7. Rename the appendonly.aof file:

oc rsh $(oc get pods -l 'deploymentConfig=system-redis' -o json | jq
'.items[0].metadata.name' -r) bash -c 'mv ${HOME}/data/appendonly.aof
${HOME}/data/appendonly.aof-old'

8. Move the Backup file to the POD:

oc cp ./system-redis-dump.rdb $(oc get pods -l 'deploymentConfig=system-redis' -o json | jq
'.items[0].metadata.name' -r):/var/lib/redis/data/dump.rdb

9. Redeploy system-redis to load the backup:

oc rollout latest dc/system-redis

10. Check the status of the rollout to ensure it has finished:

oc rollout status dc/system-redis

11. Create the appendonly file:

oc rsh $(oc get pods -l 'deploymentConfig=system-redis' -o json | jq
'.items[0].metadata.name' -r) bash -c 'redis-cli BGREWRITEAOF'

12. After a while, ensure that the AOF rewrite is complete:

CHAPTER 8. 3SCALE BACKUP AND RESTORE

105

oc rsh $(oc get pods -l 'deploymentConfig=system-redis' -o json | jq
'.items[0].metadata.name' -r) bash -c 'redis-cli info' | grep aof_rewrite_in_progress

While aof_rewrite_in_progress = 1, the execution is in progress.

Check periodically until aof_rewrite_in_progress = 0. Zero indicates that the execution is
complete.

13. Edit the redis-config configmap:

oc edit configmap redis-config

14. Uncomment SAVE commands in the redis-config configmap:

 save 900 1
 save 300 10
 save 60 10000

15. Set appendonly to yes in the redis-config configmap:

appendonly yes

16. Redeploy system-redis to reload the default configurations:

oc rollout latest dc/system-redis

17. Check the status of the rollout to ensure it has finished:

oc rollout status dc/system-redis

8.5.7. Restoring backend-worker

Restore to the latest version of backend-worker:

oc rollout latest dc/backend-worker

1. Check the status of the rollout to ensure it has finished:

oc rollout status dc/backend-worker

8.5.8. Restoring system-app

Restore to the latest version of system-app:

oc rollout latest dc/system-app

1. Check the status of the rollout to ensure it has finished:

oc rollout status dc/system-app

Red Hat 3scale API Management 2.10 Operating 3scale

106

8.5.9. Restoring system-sidekiq

1. Restore to the latest version of system-sidekiq:

oc rollout latest dc/system-sidekiq

2. Check the status of the rollout to ensure it has finished:

oc rollout status dc/system-sidekiq

8.5.9.1. Restoring system-sphinx

1. Restore to the latest version of system-sphinx:

oc rollout latest dc/system-sphinx

2. Check the status of the rollout to ensure it has finished:

oc rollout status dc/system-sphinx

8.5.9.2. Restoring OpenShift routes managed by Zync

1. Force Zync to recreate missing OpenShift routes:

oc rsh $(oc get pods -l 'deploymentConfig=system-sidekiq' -o json | jq
'.items[0].metadata.name' -r) bash -c 'bundle exec rake zync:resync:domains'

CHAPTER 8. 3SCALE BACKUP AND RESTORE

107

CHAPTER 9. 3SCALE BACKUP AND RESTORE USING CUSTOM
RESOURCES

This chapter includes details about the backup and restore functionality for a Red Hat 3scale API
Management installation deployed using the APIManager custom resource (CR). In this context, the
CRD is provided by the 3scale operator.

Custom resources from operator capabilities are not part of the 3scale installation. For this reason,
the custom resources are not included as part of the 3scale installation backup and restore functionality.

IMPORTANT

3scale backup and restore using operators is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process. For more information about the support scope of Red Hat
Technology Preview features, see Technology Preview Features Support Scope .

Prerequisites

A 3scale installation

The following sections contain the procedures to perform 3scale backup and restore using the operator.

Section 9.1, “Backing up 3scale using the operator”

Section 9.2, “Restoring 3scale using the operator”

9.1. BACKING UP 3SCALE USING THE OPERATOR

The following section provides the information and procedure you require to backup a 3scale installation
that was deployed by an APIManager custom resource.

9.1.1. Backup compatible scenarios

To see the 3scale installation configurations that can be backed up, see the following sections:

Backup scenarios scope

Backed up data

Prerequisites

Backup the 3scale external databases:

backend-redis

system-redis

system-database - MySQL or PostgreSQL

Provision enough space for the PVC to contain the data backed up.

NOTE

Red Hat 3scale API Management 2.10 Operating 3scale

108

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#backup-scenarios-scope
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#backed-up-data

NOTE

A 3scale deployment, which is deployed using APIManager cannot be backed up using S3
as System’s FileStorage.

9.1.2. Backup scenarios scope

Backup functionality is available when the following databases are configured externally:

Backend Redis database

System Redis database

System database - MySQL or PostgreSQL

9.1.3. Backed up data

The following table shows a list of the data that is backed up.

Table 9.1. Data that is backed up

Object Object-type data

Secrets
system-smtp

system-seed

backend-internal-api

backend-listener

system-events-hook

system-app

system-recaptcha

zync

system-master-apicast

system-memcache

system-database

backend-redis

system-redis

ConfigMaps
system-environment

apicast-environment

APIManager APIManager custom resource Kubernetes object definition - json schema definition

CHAPTER 9. 3SCALE BACKUP AND RESTORE USING CUSTOM RESOURCES

109

System
FileStorage

When the location of System FileStorage is in a PersistentVolumeClaim (PVC)

Object Object-type data

9.1.4. Backing up 3scale

To backup a 3scale installation deployed with an existing APIManager, use the following steps:

Procedure

1. Backup the following Kubernetes secrets:

backend-redis

system-redis

system-database

2. Create the APIManagerBackup custom resource in the same namespace where the 3scale
installation managed by the APIManager object is deployed, as in example one:

Example 1

 apiVersion: apps.3scale.net/v1alpha1
 kind: APIManagerBackup
 metadata:
 name: example-apimanagerbackup-pvc
 spec:
 backupDestination:
 persistentVolumeClaim:
 resources:
 requests: "10Gi"

Example 2 provides a pre-existing PersistentVolume name:

 apiVersion: apps.3scale.net/v1alpha1
 kind: APIManagerBackup
 metadata:
 name: example-apimanagerbackup-pvc
 spec:
 backupDestination:
 persistentVolumeClaim:
 # resources specification is required but ignored when providing a volumeName as per
K8s PVCs requirements behavior
 resources:
 requests: "10Gi"
 volumeName: "my-preexisting-persistent-volume"

3. Wait until APIManagerBackup finishes. Check this by obtaining the content of
APIManagerBackup and waiting until the .status.completed field is set to true.

Red Hat 3scale API Management 2.10 Operating 3scale

110

The backup contents is detailed in Backed up data.

Other fields in the status section of the APIManagerBackup show details of the backup, such as the
name of the PVC where the data has been backed up when the configured backup destination has been
a PVC.

For future references, take note of the value of status.backupPersistentVolumeClaimName field.
When restoring an APIManager installation with APIManagerRestore, one of the fields it requires is the
PersistentVolumeClaimName backup source.

9.2. RESTORING 3SCALE USING THE OPERATOR

The following section provides the information and procedure you require to restore a 3scale installation
that was previously deployed by an APIManager custom resource and backed up by
APIManagerBackup.

9.2.1. Restore compatible scenarios

To see the 3scale installation configurations that can be restored, see the following sections:

Restore scenarios scope

Restored data

Prerequisites

Restore the 3scale external databases:

backend-redis

system-redis

system-database - MySQL or PostgreSQL

9.2.2. Restore scenarios scope

The restore functionality of the 3scale operator is available using a backup generated from an
APIManagerBackup custom resource.

For a list of the 3scale solution scenarios you can backup, see Backed up data for reference.

The following are not in the scope of the restore functionality of the operator:

Restoring backup data that was not performed using an APIManagerBackup custom resource.

Restoring backup data provided through an APIManagerBackup from different 3scale
versions.

9.2.3. Restored data

The following table shows a list of the data that is restored.

Table 9.2. Data that is restored

CHAPTER 9. 3SCALE BACKUP AND RESTORE USING CUSTOM RESOURCES

111

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#backed-up-data
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#restore-scenarios-scope
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#restored-data
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#backed-up-data

Object Object-type data

Secrets
system-smtp

system-seed

backend-internal-api

system-events-hook

system-app

system-recaptcha

zync

system-master-apicast

ConfigMaps
system-environment

apicast-environment

APIManager APIManager custom resource Kubernetes object definition - json schema definition

System
FileStorage

When the location of System FileStorage is in a PersistentVolumeClaim (PVC)

Routes 3scale-related OpenShift routes, for example master and tenants

9.2.4. Restoring 3scale

To restore a 3scale installation previously deployed with an APIManager that was backed up using an
APIManagerBackup custom resource, follow these steps:

1. Ensure that the project where you are performing the restoration does not contain an
APIManager custom resource and its corresponding 3scale installation.

2. Restore the following Kubernetes secrets:

backend-redis

system-redis

system-database

3. Create the APIManagerRestore custom resource and specify the backup data of the
installation that was previously backed up by an APIManagerBackup custom resource.
For details, see Backup scenarios scope.

The following is an example of an APIManagerRestore custom resource:

 apiVersion: apps.3scale.net/v1alpha1
 kind: APIManagerRestore

Red Hat 3scale API Management 2.10 Operating 3scale

112

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#backup-scenarios-scope

 metadata:
 name: example-apimanagerrestore-pvc
 spec:
 restoreSource:
 persistentVolumeClaim:
 claimSource:
 claimName: example-apimanagerbackup-pvc # Name of the PVC produced as the
backup result of an `APIManagerBackup`
 readOnly: true

4. Wait until APIManagerRestore finishes. Check this by obtaining the content of
APIManagerRestore and waiting until the .status.completed field is set to true.
You should see a new APIManager custom resource has been created and a 3scale installation
deployed.

CHAPTER 9. 3SCALE BACKUP AND RESTORE USING CUSTOM RESOURCES

113

CHAPTER 10. CONFIGURING RECAPTCHA FOR 3SCALE
This document describes how to configure reCAPTCHA for Red Hat 3scale API Management On-
premises to protect against spam.

Prerequisites

An installed and configured 3scale On-Premises instance on a supported OpenShift version.

Get a site key and the secret key for reCAPTCHA v2. See the Register a new site web page.

Add the Developer Portal domain to an allowlist if you want to use domain name validation.

To configure reCAPTCHA for 3scale, perform the steps outlined in the following procedure:

Section 10.1, “Configuring reCAPTCHA for spam protection in 3scale”

10.1. CONFIGURING RECAPTCHA FOR SPAM PROTECTION IN 3SCALE

To configure reCAPTCHA for spam protection, you have two options how to patch the secret file that
contains the reCAPTCHA. These options are in the OpenShift Container Platform (OCP) user interface
or using the command line interface (CLI).

Procedure

1. OCP 4.x: Navigate to Project: [Your_project_name] > Workloads > Secrets.

2. Edit the system-recaptcha secret file.
The PRIVATE_KEY and PUBLIC_KEY from the reCAPTHCA service must be in base64 format
encoding. Transform the keys to base64 encoding manually.

NOTE

The CLI reCAPTCHA option does not require base64 format encoding.

CLI: Type the following command:

oc patch secret/system-recaptcha -p '{"stringData": {"PUBLIC_KEY": "public-key-from-
service", "PRIVATE_KEY": "private-key-from-service"}}'

Post-procedure steps

Redeploy the system pod after you have completed one of the above options.

In the 3scale Admin Portal turn on spam protection against users that are not signed:

1. Navigate to Audience > Developer Portal > Spam Protection.

2. Select one of the following options:

Always - reCAPTCHA will always appear when a form is presented to a user who is not
logged in.

Suspicious only - reCAPTCHA is only shown if the automated checks detect a possible

Red Hat 3scale API Management 2.10 Operating 3scale

114

https://access.redhat.com/articles/2798521
https://www.google.com/recaptcha/admin/create

Suspicious only - reCAPTCHA is only shown if the automated checks detect a possible
spammer.

Never - turns off Spam protection.

After system-app has redeployed, the pages that use spam protection on the Developer Portal will
show the reCAPTCHA I’m not a robot checkbox.

Additional resources

See ReCAPTCHA home page for more information, guides, and support.

CHAPTER 10. CONFIGURING RECAPTCHA FOR 3SCALE

115

https://developers.google.com/recaptcha

CHAPTER 11. TROUBLESHOOTING THE API INFRASTRUCTURE
This guide aims to help you identify and fix the cause of issues with your API infrastructure.

API Infrastructure is a lengthy and complex topic. However, at a minimum, you will have three moving
parts in your Infrastructure:

1. The API gateway

2. 3scale

3. The API

Errors in any of these three elements result in API consumers being unable to access your API. However,
it is difficult to find the component that caused the failure. This guide gives you some tips to
troubleshoot your infrastructure to identify the problem.

Use the following sections to identify and fix common issues that may occur:

Section 11.1, “Common integration issues”

Section 11.2, “Handling API infrastructure issues”

Section 11.3, “Identifying API request issues”

Section 11.4, “ActiveDocs issues”

Section 11.5, “Logging in NGINX”

Section 11.6, “3scale error codes”

11.1. COMMON INTEGRATION ISSUES

There are some evidences that can point to some very common issues with your integration with 3scale.
These will vary depending on whether you are at the beginning of your API project, setting up your
infrastructure, or are already live in production.

11.1.1. Integration issues

The following sections attempt to outline some common issues you may see in the APIcast error log

Red Hat 3scale API Management 2.10 Operating 3scale

116

The following sections attempt to outline some common issues you may see in the APIcast error log
during the initial phases of your integration with 3scale: at the beginning using APIcast Hosted and prior
to go-live, running the self-managed APIcast.

11.1.1.1. APIcast Hosted

When you are first integrating your API with APIcast Hosted on the Service Integration screen, you might
get some of the following errors shown on the page or returned by the test call you make to check for a
successful integration.

Test request failed: execution expired
Check that your API is reachable from the public internet. APIcast Hosted cannot be used with
private APIs. If you do not want to make your API publicly available to integrate with APIcast
Hosted, you can set up a private secret between APIcast Hosted and your API to reject any calls
not coming from the API gateway.

The accepted format is protocol://address(:port)
Remove any paths at the end of your APIs private base URL. You can add these in the "mapping
rules" pattern or at the beginning of the API test GET request .

Test request failed with HTTP code XXX

405: Check that the endpoint accepts GET requests. APIcast only supports GET requests to
test the integration.

403: Authentication parameters missing: If your API already has some authentication in
place, APIcast will be unable to make a test request.

403: Authentication failed: If this is not the first service you have created with 3scale, check
that you have created an application under the service with credentials to make the test
request. If it is the first service you are integrating, ensure that you have not deleted the test
account or application that you created on signup.

11.1.1.2. APIcast self-managed

After you have successfully tested the integration with APIcast self-managed, you might want to host
the API gateway yourself. Following are some errors you may encounter when you first install your self-
managed gateway and call your API through it.

upstream timed out (110: Connection timed out) while connecting to upstream
Check that there are no firewalls or proxies between the API Gateway and the public Internet
that would prevent your self-managed gateway from reaching 3scale.

failed to get list of services: invalid status: 403 (Forbidden)

Check that the Access Token that you used in the THREESCALE_PORTAL_ENDOINT value is
correct and that it has the Account Management API scope. Verify it with a curl command: curl
-v "https://example-admin.3scale.net/admin/api/services.json?access_token=
<YOUR_ACCESS_TOKEN>"

 2018/06/04 08:04:49 [emerg] 14#14: [lua] configuration_loader.lua:134: init(): failed to load
configuration, exiting (code 1)
 2018/06/04 08:04:49 [warn] 22#22: *2 [lua] remote_v2.lua:163: call(): failed to get list of
services: invalid status: 403 (Forbidden) url: https://example-
admin.3scale.net/admin/api/services.json , context: ngx.timer
 ERROR: /opt/app-root/src/src/apicast/configuration_loader.lua:57: missing configuration

CHAPTER 11. TROUBLESHOOTING THE API INFRASTRUCTURE

117

It should return a 200 response with a JSON body. If it returns an error status code, check the
response body for details.

service not found for host apicast.example.com

This error indicates that the Public Base URL has not been configured properly. You should
ensure that the configured Public Base URL is the same that you use for the request to self-
managed APIcast. After configuring the correct Public Base URL:

Ensure that APIcast is configured for "production" (default configuration for standalone
APIcast if not overriden with THREESCALE_DEPLOYMENT_ENV variable). Ensure that
you promote the configuration to production.

Restart APIcast, if you have not configured auto-reloading of configuration using
APICAST_CONFIGURATION_CACHE and APICAST_CONFIGURATION_LOADER
environment variables.

Following are some other symptoms that may point to an incorrect APIcast self-managed integration:

Mapping rules not matched / Double counting of API calls: Depending on the way you have
defined the mapping between methods and actual URL endpoints on your API, you might find
that sometimes methods either don’t get matched or get incremented more than once per
request. To troubleshoot this, make a test call to your API with the 3scale debug header. This
will return a list of all the methods that have been matched by the API call.

Authentication parameters not found: Ensure your are sending the parameters to the correct
location as specified in the Service Integration screen. If you do not send credentials as headers,
the credentials must be sent as query parameters for GET requests and body parameters for all
other HTTP methods. Use the 3scale debug header to double-check the credentials that are
being read from the request by the API gateway.

11.1.2. Production issues

It is rare to run into issues with your API gateway after you have fully tested your setup and have been
live with your API for a while. However, here are some of the issues you might encounter in a live
production environment.

11.1.2.1. Availability issues

Availability issues are normally characterised by upstream timed out errors in your nginx error.log;
example:

If you are experiencing intermittent 3scale availability issues, following may be the reasons for this:

You are resolving to an old 3scale IP that is no longer in use.
The latest version of the API gateway configuration files defines 3scale as a variable to force IP
resolution each time. For a quick fix, reload your NGINX instance. For a long-term fix, ensure

 2018/06/04 11:06:15 [warn] 23#23: *495 [lua] find_service.lua:24: find_service(): service not
found for host apicast.example.com, client: 172.17.0.1, server: _, request: "GET / HTTP/1.1",
host: "apicast.example.com"

upstream timed out (110: Connection timed out) while connecting to upstream, client: X.X.X.X,
server: api.example.com, request: "GET /RESOURCE?CREDENTIALS HTTP/1.1", upstream:
"http://Y.Y.Y.Y:80/RESOURCE?CREDENTIALS", host: "api.example.com"

Red Hat 3scale API Management 2.10 Operating 3scale

118

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/administering_the_api_gateway/index#debugging

that instead of defining the 3scale backend in an upstream block, you define it as a variable
within each server block; example:

When you refer to it:

You are missing some 3scale IPs from your whitelist. Following is the current list of IPs that
3scale resolves to:

75.101.142.93

174.129.235.69

184.73.197.122

50.16.225.117

54.83.62.94

54.83.62.186

54.83.63.187

54.235.143.255
The above issues refer to problems with perceived 3scale availability. However, you might
encounter similar issues with your API availability from the API gateway if your API is behind
an AWS ELB. This is because NGINX, by default, does DNS resolution at start-up time and
then caches the IP addresses. However, ELBs do not ensure static IP addresses and these
might change frequently. Whenever the ELB changes to a different IP, NGINX is unable to
reach it.

The solution for this is similar to the above fix for forcing runtime DNS resolution.

1. Set a specific DNS resolver such as Google DNS, by adding this line at the top of the
http section: resolver 8.8.8.8 8.8.4.4;.

2. Set your API base URL as a variable anywhere near the top of the server section. set
$api_base "http://api.example.com:80";

3. Inside the location / section, find the proxy_pass line and replace it with proxy_pass
$api_base;.

server {
 # Enabling the Lua code cache is strongly encouraged for production use. Here it is enabled
 .
 .
 .
 set $threescale_backend "https://su1.3scale.net:443";

location = /threescale_authrep {
 internal;
 set $provider_key "YOUR_PROVIDER_KEY";

 proxy_pass $threescale_backend/transactions/authrep.xml?
provider_key=$provider_key&service_id=$service_id&$usage&$credentials&log%5Bcode%5
D=$arg_code&log%5Brequest%5D=$arg_req&log%5Bresponse%5D=$arg_resp;
}

CHAPTER 11. TROUBLESHOOTING THE API INFRASTRUCTURE

119

11.1.3. Post-deploy issues

If you make changes to your API such as adding a new endpoint, you must ensure that you add a new
method and URL mapping before downloading a new set of configuration files for your API gateway.

The most common problem when you have modified the configuration downloaded from 3scale will be
code errors in the Lua, which will result in a 500 - Internal server error such as:

You can see the nginx error.log to know the cause, such as:

In the access.log this will look like the following:

The above section gives you a an overview of the most common, well-known issues that you might
encounter at any stage of your 3scale journey.

curl -v -X GET "http://localhost/"
* About to connect() to localhost port 80 (#0)
* Trying 127.0.0.1... connected
> GET / HTTP/1.1
> User-Agent: curl/7.22.0 (x86_64-pc-linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23
librtmp/2.3
> Host: localhost
> Accept: */*
>
< HTTP/1.1 500 Internal Server Error
< Server: openresty/1.5.12.1
< Date: Thu, 04 Feb 2016 10:22:25 GMT
< Content-Type: text/html
< Content-Length: 199
< Connection: close
<

<head><title>500 Internal Server Error</title></head>

<center><h1>500 Internal Server Error</h1></center>
<hr><center>openresty/1.5.12.1</center>

* Closing connection #0

2016/02/04 11:22:25 [error] 8980#0: *1 lua entry thread aborted: runtime error:
/home/pili/NGINX/troubleshooting/nginx.lua:66: bad argument #3 to '_newindex' (number expected,
got nil)
stack traceback:
coroutine 0:
 [C]: in function '_newindex'
 /home/pili/NGINX/troubleshooting/nginx.lua:66: in function 'error_authorization_failed'
 /home/pili/NGINX/troubleshooting/nginx.lua:330: in function 'authrep'
 /home/pili/NGINX/troubleshooting/nginx.lua:283: in function 'authorize'
 /home/pili/NGINX/troubleshooting/nginx.lua:392: in function while sending to client, client:
127.0.0.1, server: api-2445581381726.staging.apicast.io, request: "GET / HTTP/1.1", host: "localhost"

127.0.0.1 - - [04/Feb/2016:11:22:25 +0100] "GET / HTTP/1.1" 500 199 "-" "curl/7.22.0 (x86_64-pc-
linux-gnu) libcurl/7.22.0 OpenSSL/1.0.1 zlib/1.2.3.4 libidn/1.23 librtmp/2.3"

Red Hat 3scale API Management 2.10 Operating 3scale

120

If all of these have been checked and you are still unable to find the cause and solution for your issue,
you should proceed to the more detailed section on Identifying API request issues . Start at your API and
work your way back to the client in order to try to identify the point of failure.

11.2. HANDLING API INFRASTRUCTURE ISSUES

If you are experiencing failures when connecting to a server, whether that is the API gateway, 3scale, or
your API, the following troubleshooting steps should be your first port of call:

11.2.1. Can we connect?

Use telnet to check the basic TCP/IP connectivity telnet api.example.com 443

Success

Failure

11.2.2. Server connection issues

Try to connect to the same server from different network locations, devices, and directions. For
example, if your client is unable to reach your API, try to connect to your API from a machine that should
have access such as the API gateway.

If any of the attempted connections succeed, you can rule out any problems with the actual server and
concentrate your troubleshooting on the network between them, as this is where the problem will most
likely be.

11.2.3. Is it a DNS issue?

Try to connect to the server by using its IP address instead of its hostname e.g. telnet 94.125.104.17 80
instead of telnet apis.io 80

This will rule out any problems with the DNS.

You can get the IP address for a server using dig for example for 3scale dig su1.3scale.net or dig any
su1.3scale.net if you suspect there may be multiple IPs that a host may resolve to.

NB: Some hosts block `dig any`

11.2.4. Is it an SSL issue?

You can use OpenSSL to test:

Secure connections to a host or IP, such as from the shell prompt openssl s_client -connect

telnet echo-api.3scale.net 80
Trying 52.21.167.109...
Connected to tf-lb-i2t5pgt2cfdnbdfh2c6qqoartm-829217110.us-east-1.elb.amazonaws.com.
Escape character is '^]'.
Connection closed by foreign host.

telnet su1.3scale.net 443
Trying 174.129.235.69...
telnet: Unable to connect to remote host: Connection timed out

CHAPTER 11. TROUBLESHOOTING THE API INFRASTRUCTURE

121

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#identifying-api-request-issues

Secure connections to a host or IP, such as from the shell prompt openssl s_client -connect
su1.3scale.net:443
Output:

CONNECTED(00000003)
depth=1 C = US, O = GeoTrust Inc., CN = GeoTrust SSL CA - G3
verify error:num=20:unable to get local issuer certificate

Certificate chain
 0 s:/C=ES/ST=Barcelona/L=Barcelona/O=3scale Networks, S.L./OU=IT/CN=*.3scale.net
 i:/C=US/O=GeoTrust Inc./CN=GeoTrust SSL CA - G3
 1 s:/C=US/O=GeoTrust Inc./CN=GeoTrust SSL CA - G3
 i:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA

Server certificate
-----BEGIN CERTIFICATE-----
MIIE8zCCA9ugAwIBAgIQcz2Y9JNxH7f2zpOT0DajUjANBgkqhkiG9w0BAQsFADBE
...
TRUNCATED
...
3FZigX+OpWLVRjYsr0kZzX+HCerYMwc=
-----END CERTIFICATE-----
subject=/C=ES/ST=Barcelona/L=Barcelona/O=3scale Networks,
S.L./OU=IT/CN=*.3scale.net
issuer=/C=US/O=GeoTrust Inc./CN=GeoTrust SSL CA - G3

Acceptable client certificate CA names
/C=ES/ST=Barcelona/L=Barcelona/O=3scale Networks, S.L./OU=IT/CN=*.3scale.net
/C=US/O=GeoTrust Inc./CN=GeoTrust SSL CA - G3
Client Certificate Types: RSA sign, DSA sign, ECDSA sign
Requested Signature Algorithms:
RSA+SHA512:DSA+SHA512:ECDSA+SHA512:RSA+SHA384:DSA+SHA384:ECDSA+SHA384
:RSA+SHA256:DSA+SHA256:ECDSA+SHA256:RSA+SHA224:DSA+SHA224:ECDSA+SHA22
4:RSA+SHA1:DSA+SHA1:ECDSA+SHA1:RSA+MD5
Shared Requested Signature Algorithms:
RSA+SHA512:DSA+SHA512:ECDSA+SHA512:RSA+SHA384:DSA+SHA384:ECDSA+SHA384
:RSA+SHA256:DSA+SHA256:ECDSA+SHA256:RSA+SHA224:DSA+SHA224:ECDSA+SHA22
4:RSA+SHA1:DSA+SHA1:ECDSA+SHA1
Peer signing digest: SHA512
Server Temp Key: ECDH, P-256, 256 bits

SSL handshake has read 3281 bytes and written 499 bytes

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES256-GCM-SHA384
Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
 Protocol : TLSv1.2
 Cipher : ECDHE-RSA-AES256-GCM-SHA384
 Session-ID:
A85EFD61D3BFD6C27A979E95E66DA3EC8F2E7B3007C0166A9BCBDA5DCA5477B8
 Session-ID-ctx:
 Master-Key:

Red Hat 3scale API Management 2.10 Operating 3scale

122

SSLv3 support (NOT supported by 3scale)
openssl s_client -ssl3 -connect su.3scale.net:443

Output

F7E898F1D996B91D13090AE9D5624FF19DFE645D5DEEE2D595D1B6F79B1875CF935B3
A4F6ECCA7A6D5EF852AE3D4108B
 Key-Arg : None
 PSK identity: None
 PSK identity hint: None
 SRP username: None
 TLS session ticket lifetime hint: 300 (seconds)
 TLS session ticket:
 0000 - a8 8b 6c ac 9c 3c 60 78-2c 5c 8a de 22 88 06 15 ..l..<`x,\.."...
 0010 - eb be 26 6c e6 7b 43 cc-ae 9b c0 27 6c b7 d9 13 ..&l.{C....'l...
 0020 - 84 e4 0d d5 f1 ff 4c 08-7a 09 10 17 f3 00 45 2c L.z.....E,
 0030 - 1b e7 47 0c de dc 32 eb-ca d7 e9 26 33 26 8b 8e ..G...2....&3&..
 0040 - 0a 86 ee f0 a9 f7 ad 8a-f7 b8 7b bc 8c c2 77 7b {...w{
 0050 - ae b7 57 a8 40 1b 75 c8-25 4f eb df b0 2b f6 b7 ..W.@.u.%O...+..
 0060 - 8b 8e fc 93 e4 be d6 60-0f 0f 20 f1 0a f2 cf 46 `..F
 0070 - b0 e6 a1 e5 31 73 c2 f5-d4 2f 57 d1 b0 8e 51 cc 1s.../W...Q.
 0080 - ff dd 6e 4f 35 e4 2c 12-6c a2 34 26 84 b3 0c 19 ..nO5.,.l.4&....
 0090 - 8a eb 80 e0 4d 45 f8 4a-75 8e a2 06 70 84 de 10 ME.Ju...p...

 Start Time: 1454932598
 Timeout : 300 (sec)
 Verify return code: 20 (unable to get local issuer certificate)

CONNECTED(00000003)
140735196860496:error:14094410:SSL routines:ssl3_read_bytes:sslv3 alert handshake
failure:s3_pkt.c:1456:SSL alert number 40
140735196860496:error:1409E0E5:SSL routines:ssl3_write_bytes:ssl handshake
failure:s3_pkt.c:644:

no peer certificate available

No client certificate CA names sent

SSL handshake has read 7 bytes and written 0 bytes

New, (NONE), Cipher is (NONE)
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
No ALPN negotiated
SSL-Session:
 Protocol : SSLv3
 Cipher : 0000
 Session-ID:
 Session-ID-ctx:
 Master-Key:
 Key-Arg : None
 PSK identity: None
 PSK identity hint: None
 SRP username: None

CHAPTER 11. TROUBLESHOOTING THE API INFRASTRUCTURE

123

For more details, see the OpenSSL man pages .

11.3. IDENTIFYING API REQUEST ISSUES

To identify where an issue with requests to your API might lie, go through the following checks.

11.3.1. API

To confirm that the API is up and responding to requests, make the same request directly to your API
(not going through the API gateway). You should ensure that you are sending the same parameters and
headers as the request that goes through the API gateway. If you are unsure of the exact request that is
failing, capture the traffic between the API gateway and your API.

If the call succeeds, you can rule out any problems with the API, otherwise you should troubleshoot your
API further.

11.3.2. API Gateway > API

To rule out any network issues between the API gateway and the API, make the same call as before — 
directly to your API — from your API gateway server.

If the call succeeds, you can move on to troubleshooting the API gateway itself.

11.3.3. API gateway

There are a number of steps to go through to check that the API gateway is working correctly.

11.3.3.1. Is the API gateway up and running?

Log in to the machine where the gateway is running. If this fails, your gateway server might be down.

After you have logged in, check that the NGINX process is running. For this, run ps ax | grep nginx or
htop.

NGINX is running if you see nginx master process and nginx worker process in the list.

11.3.3.2. Are there any errors in the gateway logs?

Following are some common errors you might see in the gateway logs, for example in error.log:

API gateway can’t connect to API

API gateway cannot connect to 3scale

 Start Time: 1454932872
 Timeout : 7200 (sec)
 Verify return code: 0 (ok)

upstream timed out (110: Connection timed out) while connecting to upstream, client:
X.X.X.X, server: api.example.com, request: "GET /RESOURCE?CREDENTIALS HTTP/1.1",
upstream: "http://Y.Y.Y.Y:80/RESOURCE?CREDENTIALS", host: "api.example.com"

2015/11/20 11:33:51 [error] 3578#0: *1 upstream timed out (110: Connection timed out) while

Red Hat 3scale API Management 2.10 Operating 3scale

124

http://linux.die.net/man/1/openssl

11.3.4. API gateway > 3scale

Once you are sure the API gateway is running correctly, the next step is troubleshooting the connection
between the API gateway and 3scale.

11.3.4.1. Can the API gateway reach 3scale?

If you are using NGINX as your API gateway, the following message displays in the nginx error logs when
the gateway is unable to contact 3scale.

Here, note the upstream value. This IP corresponds to one of the IPs that the 3scale product resolves
to. This implies that there is a problem reaching 3scale. You can do a reverse DNS lookup to check the
domain for an IP by calling nslookup.

For example, because the API gateway is unable to reach 3scale, it does not mean that 3scale is down.
One of the most common reasons for this would be firewall rules preventing the API gateway from
connecting to 3scale.

There may be network issues between the gateway and 3scale that could cause connections to timeout.
In this case, you should go through the steps in troubleshooting generic connectivity issues to identify
where the problem lies.

To rule out networking issues, use traceroute or MTR to check the routing and packet transmission. You
can also run the same command from a machine that is able to connect to 3scale and your API gateway
and compare the output.

Additionally, to see the traffic that is being sent between your API gateway and 3scale, you can use
tcpdump as long as you temporarily switch to using the HTTP endpoint for the 3scale product
(su1.3scale.net).

11.3.4.2. Is the API gateway resolving 3scale addresses correctly?

Ensure you have the resolver directive added to your nginx.conf.

For example, in nginx.conf:

connecting to upstream, client: 127.0.0.1, server: , request: "GET /api/activities.json?
user_key=USER_KEY HTTP/1.1", subrequest: "/threescale_authrep", upstream:
"https://54.83.62.186:443/transactions/authrep.xml?
provider_key=YOUR_PROVIDER_KEY&service_id=SERVICE_ID&usage[hits]=1&user_key=U
SER_KEY&log%5Bcode%5D=", host: "localhost"

2015/11/20 11:33:51 [error] 3578#0: *1 upstream timed out (110: Connection timed out) while
connecting to upstream, client: 127.0.0.1, server: , request: "GET /api/activities.json?
user_key=USER_KEY HTTP/1.1", subrequest: "/threescale_authrep", upstream:
"https://54.83.62.186:443/transactions/authrep.xml?
provider_key=YOUR_PROVIDER_KEY&service_id=SERVICE_ID&usage[hits]=1&user_key=USER_KE
Y&log%5Bcode%5D=", host: "localhost"

http {
 lua_shared_dict api_keys 10m;
 server_names_hash_bucket_size 128;
 lua_package_path ";;$prefix/?.lua;";

CHAPTER 11. TROUBLESHOOTING THE API INFRASTRUCTURE

125

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.10/html-single/operating_3scale/index#can-we-connect

You can substitute the Google DNS (8.8.8.8 and 8.8.4.4) with your preferred DNS.

To check DNS resolution from your API gateway, call nslookup as follows with the specified resolver IP:

The above example shows the response returned if Google DNS cannot be reached. If this is the case,
you must update the resolver IPs. You might also see the following alert in your nginx error.log:

Finally, run dig any su1.3scale.net to see the IP addresses currently in operation for the 3scale Service
Management API. Note that this is not the entire range of IP addresses that might be used by 3scale.
Some may be swapped in and out for capacity reasons. Additionally, you may add more domain names
for the 3scale service in the future. For this you should always test against the specific address that are
supplied to you during integration, if applicable.

11.3.4.3. Is the API gateway calling 3scale correctly?

If you want to check the request your API gateway is making to 3scale for troubleshooting purposes only
you can add the following snippet to the 3scale authrep location in nginx.conf (/threescale_authrep
for API Key and App_id authentication modes):

This snippet will add the following extra logging to the nginx error.log when the X-3scale-debug header
is sent, e.g. curl -v -H 'X-3scale-debug: YOUR_PROVIDER_KEY' -X GET
"https://726e3b99.ngrok.com/api/contacts.json?access_token=7c6f24f5"

This will produce the following log entries:

 init_by_lua 'math.randomseed(ngx.time()) ; cjson = require("cjson")';

 resolver 8.8.8.8 8.8.4.4;

nslookup su1.3scale.net 8.8.8.8
;; connection timed out; no servers could be reached

2016/05/09 14:15:15 [alert] 9391#0: send() failed (1: Operation not permitted) while resolving,
resolver: 8.8.8.8:53

body_filter_by_lua_block{
 if ngx.req.get_headers()["X-3scale-debug"] == ngx.var.provider_key then
 local resp = ""
 ngx.ctx.buffered = (ngx.ctx.buffered or "") .. string.sub(ngx.arg[1], 1, 1000)
 if ngx.arg[2] then
 resp = ngx.ctx.buffered
 end

 ngx.log(0, ngx.req.raw_header())
 ngx.log(0, resp)
 end
}

2016/05/05 14:24:33 [] 7238#0: *57 [lua] body_filter_by_lua:7: GET /api/contacts.json?
access_token=7c6f24f5 HTTP/1.1
Host: 726e3b99.ngrok.io
User-Agent: curl/7.43.0
Accept: */*
X-Forwarded-Proto: https

Red Hat 3scale API Management 2.10 Operating 3scale

126

The first entry (2016/05/05 14:24:33 [] 7238#0: *57 [lua] body_filter_by_lua:7:) prints out the request
headers sent to 3scale, in this case: Host, User-Agent, Accept, X-Forwarded-Proto and X-Forwarded-
For.

The second entry (2016/05/05 14:24:33 [] 7238#0: *57 [lua] body_filter_by_lua:8:) prints out the
response from 3scale, in this case: <error code="access_token_invalid">access_token "7c6f24f5" is
invalid: expired or never defined</error>.

Both will print out the original request (GET /api/contacts.json?access_token=7c6f24f5) and
subrequest location (/threescale_authrep) as well as the upstream request (upstream:
"https://54.83.62.94:443/transactions/threescale_authrep.xml?
provider_key=REDACTED&service_id=REDACTED&usage[hits]=1&access_token=7c6f24f5".)
This last value allows you to see which of the 3scale IPs have been resolved and also the exact request
made to 3scale.

11.3.5. 3scale

11.3.5.1. Is 3scale returning an error?

It is also possible that 3scale is available but is returning an error to your API gateway which would
prevent calls going through to your API. Try to make the authorization call directly in 3scale and check
the response. If you get an error, check the #troubleshooting-api-error-codes[Error Codes] section to
see what the issue is.

11.3.5.2. Use the 3scale debug headers

You can also turn on the 3scale debug headers by making a call to your API with the X-3scale-debug
header, example:

curl -v -X GET "https://api.example.com/endpoint?user_key" X-3scale-debug:
YOUR_SERVICE_TOKEN

This will return the following headers with the API response:

X-Forwarded-For: 2.139.235.79

 while sending to client, client: 127.0.0.1, server: pili-virtualbox, request: "GET /api/contacts.json?
access_token=7c6f24f5 HTTP/1.1", subrequest: "/threescale_authrep", upstream:
"https://54.83.62.94:443/transactions/oauth_authrep.xml?
provider_key=REDACTED&service_id=REDACTED&usage[hits]=1&access_token=7c6f24f5", host:
"726e3b99.ngrok.io"
2016/05/05 14:24:33 [] 7238#0: *57 [lua] body_filter_by_lua:8: <?xml version="1.0" encoding="UTF-
8"?><error code="access_token_invalid">access_token "7c6f24f5" is invalid: expired or never
defined</error> while sending to client, client: 127.0.0.1, server: pili-virtualbox, request: "GET
/api/contacts.json?access_token=7c6f24f5 HTTP/1.1", subrequest: "/threescale_authrep", upstream:
"https://54.83.62.94:443/transactions/oauth_authrep.xml?
provider_key=REDACTED&service_id=REDACTED&usage[hits]=1&access_token=7c6f24f5", host:
"726e3b99.ngrok.io"

X-3scale-matched-rules: /, /api/contacts.json
< X-3scale-credentials: access_token=TOKEN_VALUE
< X-3scale-usage: usage[hits]=2
< X-3scale-hostname: HOSTNAME_VALUE

CHAPTER 11. TROUBLESHOOTING THE API INFRASTRUCTURE

127

11.3.5.3. Check the integration errors

You can also check the integration errors on your Admin Portal to check for any issues reporting traffic
to 3scale. See https://YOUR_DOMAIN-admin.3scale.net/apiconfig/errors.

One of the reasons for integration errors can be sending credentials in the headers with
underscores_in_headers directive not enabled in server block.

11.3.6. Client API gateway

11.3.6.1. Is the API gateway reachable from the public internet?

Try directing a browser to the IP address (or domain name) of your gateway server. If this fails, ensure
that you have opened the firewall on the relevant ports.

11.3.6.2. Is the API gateway reachable by the client?

If possible, try to connect to the API gateway from the client using one of the methods outlined earlier
(telnet, curl, etc.) If the connection fails, the problem lies in the network between the two.

Otherwise, you should move on to troubleshooting the client making the calls to the API.

11.3.7. Client

11.3.7.1. Test the same call using a different client

If a request is not returning the expected result, test with a different HTTP client. For example, if you are
calling an API with a Java HTTP client and you see something wrong, cross-check with cURL.

You can also call the API through a proxy between the client and the gateway to capture the exact
parameters and headers being sent by the client.

11.3.7.2. Inspect the traffic sent by client

Use a tool like Wireshark to see the requests being made by the client. This will allow you to identify if
the client is making calls to the API and the details of the request.

11.4. ACTIVEDOCS ISSUES

Sometimes calls that work when you call the API from the command line fail when going through
ActiveDocs.

To enable ActiveDocs calls to work, we send these out through a proxy on our side. This proxy will add
certain headers that can sometimes cause issues on the API if they are not expected. To identify if this is
the case, try the following steps:

11.4.1. Use petstore.swagger.io

Swagger provides a hosted swagger-ui at petstore.swagger.io which you can use to test your Swagger
spec and API going through the latest version of swagger-ui. If both swagger-ui and ActiveDocs fail in
the same way, you can rule out any issues with ActiveDocs or the ActiveDocs proxy and focus the
troubleshooting on your own spec. Alternatively, you can check the swagger-ui GitHub repo for any
known issues with the current version of swagger-ui.

Red Hat 3scale API Management 2.10 Operating 3scale

128

https://your_domain-admin.3scale.net/apiconfig/errors
http://nginx.org/en/docs/http/ngx_http_core_module.html#underscores_in_headers

11.4.2. Check that firewall allows connections from ActiveDocs proxy

We recommend to not whitelist IP address for clients using your API. The ActiveDocs proxy uses floating
IP addresses for high availability and there is currently no mechanism to notify of any changes to these
IPs.

11.4.3. Call the API with incorrect credentials

One way to identify whether the ActiveDocs proxy is working correctly is to call your API with invalid
credentials. This will help you to confirm or rule out any problems with both the ActiveDocs proxy and
your API gateway.

If you get a 403 code back from the API call (or from the code you have configured on your gateway for
invalid credentials), the problem lies with your API because the calls are reaching your gateway.

11.4.4. Compare calls

To identify any differences in headers and parameters between calls made from ActiveDocs versus
outside of ActiveDocs, run calls through services such as APItools on-premise or Runscope. This will
allow you to inspect and compare your HTTP calls before sending them to your API. You will then be able
to identify potential headers and/or parameters in the request that could cause issues.

11.5. LOGGING IN NGINX

For a comprehensive guide on this, see the NGINX Logging and Monitoring docs.

11.5.1. Enabling debugging log

To find out more about enabling debugging log, see the NGINX debugging log documentation .

11.6. 3SCALE ERROR CODES

To double-check the error codes that are returned by the 3scale Service Management API endpoints,
see the 3scale API Documentation page by following these steps:

1. Click the question mark (?) icon, which is in the upper-right corner of the Admin Portal.

2. Choose 3scale API Docs.

The following is a list HTTP response codes returned by 3scale, and the conditions under which they are
returned:

400: Bad request. This can be because of:

Invalid encoding

Payload too large

Content type is invalid (for POST calls). Valid values for the Content-Type header are:
application/x-www-form-urlencoded, multipart/form-data, or empty header.

403:

Credentials are not valid

CHAPTER 11. TROUBLESHOOTING THE API INFRASTRUCTURE

129

https://www.nginx.com/resources/admin-guide/logging-and-monitoring/
http://nginx.org/en/docs/debugging_log.html

Sending body data to 3scale for a GET request

404: Non-existent entity referenced, such as applications, metrics, etc.

409:

Usage limits exceeded

Application is not active

Application key is invalid or missing (for app_id/app_key authentication method)

Referrer is not allowed or missing (when referrer filters are enabled and required)

422: Missing required parameters

Most of these error responses will also contain an XML body with a machine readable error category and
a human readable explanation.

When using the standard API gateway configuration, any return code different from 200 provided by
3scale can result in a response to the client with one of the following codes:

403

404

Red Hat 3scale API Management 2.10 Operating 3scale

130

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. 3SCALE OPERATIONS AND SCALING
	1.1. REDEPLOYING APICAST
	1.2. SCALING UP 3SCALE ON-PREMISE
	1.2.1. Method 1: Backing up and swapping persistent volumes
	1.2.2. Method 2: Backing up and redeploying 3scale
	1.2.3. Scaling up performance
	1.2.4. Configuring 3scale on-premise deployments
	1.2.4.1. Scaling via the OCP command line interface
	1.2.4.2. Vertical and horizontal hardware scaling
	1.2.4.3. Scaling up routers

	1.3. OPERATIONS TROUBLESHOOTING
	1.3.1. Configuring 3scale audit logging on OpenShift
	1.3.2. Enabling audit logging
	1.3.3. Configuring EFK logging
	1.3.4. Accessing your logs
	1.3.5. Checking job queues
	1.3.6. Preventing monotonic growth

	CHAPTER 2. MONITORING 3SCALE
	2.1. ENABLING MONITORING FOR 3SCALE
	2.2. CONFIGURING PROMETHEUS TO MONITOR 3SCALE
	2.3. CONFIGURING GRAFANA TO MONITOR 3SCALE
	2.4. VIEWING METRICS FOR 3SCALE
	2.5. 3SCALE SYSTEM METRICS EXPOSED TO PROMETHEUS

	CHAPTER 3. 3SCALE AUTOMATION USING WEBHOOKS
	3.1. OVERVIEW OF WEBHOOKS
	3.2. CONFIGURING WEBHOOKS
	3.3. TROUBLESHOOTING WEBHOOKS

	CHAPTER 4. THE 3SCALE TOOLBOX
	4.1. INSTALLING THE TOOLBOX
	4.1.1. Installing the toolbox container image
	4.1.2. Installing unsupported toolbox versions

	4.2. SUPPORTED TOOLBOX COMMANDS
	4.3. IMPORTING SERVICES
	4.4. COPYING SERVICES
	4.5. COPYING SERVICE SETTINGS ONLY
	4.6. IMPORTING OPENAPI DEFINITIONS
	4.7. MANAGING REMOTE ACCESS CREDENTIALS
	4.7.1. Adding remote access credentials
	4.7.2. Listing remote access credentials
	4.7.3. Removing remote access credentials
	4.7.4. Renaming remote access credentials

	4.8. CREATING APPLICATION PLANS
	4.8.1. Creating a new application plan
	4.8.2. Creating or updating application plans
	4.8.3. Listing application plans
	4.8.4. Showing application plans
	4.8.5. Deleting application plans
	4.8.6. Exporting/importing application plans
	4.8.6.1. Exporting an application plan to a file
	4.8.6.2. Importing an application plan from a file
	4.8.6.3. Importing an application plan from a URL

	4.9. CREATING METRICS
	4.9.1. Creating or updating metrics
	4.9.2. Listing metrics
	4.9.3. Deleting metrics

	4.10. CREATING METHODS
	4.10.1. Creating methods
	4.10.2. Creating or updating methods
	4.10.3. Listing methods
	4.10.4. Deleting methods

	4.11. CREATING SERVICES
	4.11.1. Creating a new service
	4.11.2. Creating or updating services
	4.11.3. Listing services
	4.11.4. Showing services
	4.11.5. Deleting services

	4.12. CREATING ACTIVEDOCS
	4.12.1. Creating new ActiveDocs
	4.12.2. Creating or updating ActiveDocs
	4.12.3. Listing ActiveDocs
	4.12.4. Deleting ActiveDocs

	4.13. LISTING PROXY CONFIGURATIONS
	4.13.1. Showing proxy configurations
	4.13.2. Promoting proxy configurations

	4.14. COPYING A POLICY REGISTRY
	4.15. LISTING APPLICATIONS
	4.15.1. Creating applications
	4.15.2. Showing applications
	4.15.3. Creating or updating applications
	4.15.4. Deleting applications

	4.16. COPYING API BACKENDS
	4.16.1. Copying API products

	4.17. TROUBLESHOOTING ISSUES WITH SSL AND TLS

	CHAPTER 5. MAPPING API ENVIRONMENTS IN 3SCALE
	5.1. PRODUCT PER ENVIRONMENT
	5.2. 3SCALE ON-PREMISES INSTANCES
	5.2.1. Separating 3scale instances per environment
	5.2.2. Separating 3scale tenants per environment

	5.3. 3SCALE MIXED APPROACH
	5.4. 3SCALE WITH APICAST GATEWAYS
	5.4.1. APIcast built-in default gateways
	5.4.2. Additional APIcast gateways

	CHAPTER 6. AUTOMATING API LIFECYCLE WITH 3SCALE TOOLBOX
	6.1. OVERVIEW OF THE API LIFECYCLE STAGES
	6.1.1. API provider cycle
	6.1.2. API consumer cycle

	6.2. DEPLOYING THE SAMPLE JENKINS CI/CD PIPELINES
	6.2.1. Sample Jenkins CI/CD pipelines
	6.2.2. Setting up your 3scale Hosted environment
	6.2.3. Setting up your 3scale On-premises environment
	6.2.4. Deploying Red Hat Single Sign-On for OpenID Connect
	6.2.5. Installing the 3scale toolbox and enabling access
	6.2.6. Deploying the API backends
	6.2.7. Deploying self-managed APIcast instances
	6.2.8. Installing and deploying the sample pipelines
	6.2.9. Limitations of API lifecycle automation with 3scale toolbox

	6.3. CREATING PIPELINES USING THE 3SCALE JENKINS SHARED LIBRARY
	6.4. CREATING PIPELINES USING A JENKINSFILE

	CHAPTER 7. CONFIGURATION AND PROVISION OF 3SCALE VIA THE OPERATOR
	7.1. GENERAL PREREQUISITES
	7.2. APPLICATION CAPABILITIES VIA THE 3SCALE OPERATOR
	7.3. DEPLOYING YOUR FIRST 3SCALE PRODUCT AND BACKEND
	7.4. BACKEND CUSTOM RESOURCES RELATED TO CAPABILITIES
	7.4.1. Deploying backend custom resources related to capabilities
	7.4.2. Defining backend metrics
	7.4.3. Defining backend methods
	7.4.4. Defining backend mapping rules
	7.4.5. Status of the backend custom resource
	7.4.6. The backend custom resource linked to a tenant account

	7.5. PRODUCT CUSTOM RESOURCES RELATED TO CAPABILITIES
	7.5.1. Deploying product custom resources related to capabilities
	7.5.1.1. Deploying a basic product custom resource
	7.5.1.2. Deploying a product with APIcast hosted
	7.5.1.3. Deploying a product with APIcast self-managed

	7.5.2. Defining product application plans
	7.5.3. Defining limits for product application plans
	7.5.4. Defining pricing rules for product application plans
	7.5.5. Defining product metrics
	7.5.6. Defining product methods
	7.5.7. Defining product mapping rules
	7.5.8. Defining product backend usage
	7.5.9. Status of the product custom resource
	7.5.10. The product custom resource linked to a tenant account

	7.6. DEPLOYING A TENANT CUSTOM RESOURCE
	7.7. LIMITATIONS OF CAPABILITIES VIA THE 3SCALE OPERATOR
	7.8. ADDITIONAL RESOURCES

	CHAPTER 8. 3SCALE BACKUP AND RESTORE
	8.1. PREREQUISITES
	8.2. PERSISTENT VOLUMES AND CONSIDERATIONS
	8.3. USING DATA SETS
	8.3.1. Defining system-mysql
	8.3.2. Defining system-storage
	8.3.3. Defining backend-redis
	8.3.4. Defining system-redis

	8.4. BACKING UP SYSTEM DATABASES
	8.4.1. Backing up system-mysql
	8.4.2. Backing up system-storage
	8.4.3. Backing up backend-redis
	8.4.4. Backing up system-redis
	8.4.5. Backing up zync-database
	8.4.6. Backing up OpenShift secrets and ConfigMaps
	8.4.6.1. OpenShift secrets
	8.4.6.2. ConfigMaps

	8.5. RESTORING SYSTEM DATABASES
	8.5.1. Restoring a template-based deployment
	8.5.2. Restoring an operator-based deployment
	8.5.3. Restoring system-mysql
	8.5.4. Restoring system-storage
	8.5.5. Restoring zync-database
	8.5.5.1. Template-based deployments
	8.5.5.2. Operator-based deployments
	8.5.5.3. Restoring 3scale options with backend-redis and system-redis

	8.5.6. Ensuring information consistency between Backend and System
	8.5.6.1. Managing the deployment configuration for backend-redis
	8.5.6.2. Managing the deployment configuration for system-redis

	8.5.7. Restoring backend-worker
	8.5.8. Restoring system-app
	8.5.9. Restoring system-sidekiq
	8.5.9.1. Restoring system-sphinx
	8.5.9.2. Restoring OpenShift routes managed by Zync

	CHAPTER 9. 3SCALE BACKUP AND RESTORE USING CUSTOM RESOURCES
	9.1. BACKING UP 3SCALE USING THE OPERATOR
	9.1.1. Backup compatible scenarios
	9.1.2. Backup scenarios scope
	9.1.3. Backed up data
	9.1.4. Backing up 3scale

	9.2. RESTORING 3SCALE USING THE OPERATOR
	9.2.1. Restore compatible scenarios
	9.2.2. Restore scenarios scope
	9.2.3. Restored data
	9.2.4. Restoring 3scale

	CHAPTER 10. CONFIGURING RECAPTCHA FOR 3SCALE
	10.1. CONFIGURING RECAPTCHA FOR SPAM PROTECTION IN 3SCALE

	CHAPTER 11. TROUBLESHOOTING THE API INFRASTRUCTURE
	11.1. COMMON INTEGRATION ISSUES
	11.1.1. Integration issues
	11.1.1.1. APIcast Hosted
	11.1.1.2. APIcast self-managed

	11.1.2. Production issues
	11.1.2.1. Availability issues

	11.1.3. Post-deploy issues

	11.2. HANDLING API INFRASTRUCTURE ISSUES
	11.2.1. Can we connect?
	11.2.2. Server connection issues
	11.2.3. Is it a DNS issue?
	11.2.4. Is it an SSL issue?

	11.3. IDENTIFYING API REQUEST ISSUES
	11.3.1. API
	11.3.2. API Gateway > API
	11.3.3. API gateway
	11.3.3.1. Is the API gateway up and running?
	11.3.3.2. Are there any errors in the gateway logs?

	11.3.4. API gateway > 3scale
	11.3.4.1. Can the API gateway reach 3scale?
	11.3.4.2. Is the API gateway resolving 3scale addresses correctly?
	11.3.4.3. Is the API gateway calling 3scale correctly?

	11.3.5. 3scale
	11.3.5.1. Is 3scale returning an error?
	11.3.5.2. Use the 3scale debug headers
	11.3.5.3. Check the integration errors

	11.3.6. Client API gateway
	11.3.6.1. Is the API gateway reachable from the public internet?
	11.3.6.2. Is the API gateway reachable by the client?

	11.3.7. Client
	11.3.7.1. Test the same call using a different client
	11.3.7.2. Inspect the traffic sent by client

	11.4. ACTIVEDOCS ISSUES
	11.4.1. Use petstore.swagger.io
	11.4.2. Check that firewall allows connections from ActiveDocs proxy
	11.4.3. Call the API with incorrect credentials
	11.4.4. Compare calls

	11.5. LOGGING IN NGINX
	11.5.1. Enabling debugging log

	11.6. 3SCALE ERROR CODES

