
OpenShift Container Platform 4.6

OpenShift Virtualization

OpenShift Virtualization installation, usage, and release notes

Last Updated: 2022-10-20

OpenShift Container Platform 4.6 OpenShift Virtualization

OpenShift Virtualization installation, usage, and release notes

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about how to use OpenShift Virtualization in OpenShift
Container Platform.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT OPENSHIFT VIRTUALIZATION
1.1. WHAT YOU CAN DO WITH OPENSHIFT VIRTUALIZATION

1.1.1. OpenShift Virtualization supported cluster version

CHAPTER 2. OPENSHIFT VIRTUALIZATION RELEASE NOTES
2.1. ABOUT RED HAT OPENSHIFT VIRTUALIZATION

2.1.1. OpenShift Virtualization supported cluster version
2.1.2. Supported guest operating systems

2.2. NEW AND CHANGED FEATURES
2.2.1. Networking
2.2.2. Storage
2.2.3. Web console

2.3. NOTABLE TECHNICAL CHANGES
2.4. KNOWN ISSUES

CHAPTER 3. OPENSHIFT VIRTUALIZATION INSTALLATION
3.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION

3.1.1. Hardware and operating system requirements
3.1.2. Physical resource overhead requirements

3.1.2.1. Memory overhead
3.1.2.2. CPU overhead
3.1.2.3. Storage overhead
3.1.2.4. Example

3.1.3. Object maximums
3.1.4. Restricted network environments
3.1.5. Live migration
3.1.6. Snapshots and cloning
3.1.7. Cluster high-availability options

3.2. INSTALLING OPENSHIFT VIRTUALIZATION USING THE WEB CONSOLE
3.2.1. Prerequisites
3.2.2. Subscribing to the OpenShift Virtualization catalog
3.2.3. Deploying OpenShift Virtualization
3.2.4. Next steps
3.2.5. Prerequisites
3.2.6. Subscribing to the OpenShift Virtualization catalog by using the CLI
3.2.7. Deploying the OpenShift Virtualization Operator by using the CLI
3.2.8. Next steps

3.3. INSTALLING THE VIRTCTL CLIENT
3.3.1. Installing the virtctl client from the web console
3.3.2. Enabling OpenShift Virtualization repositories
3.3.3. Installing the virtctl client
3.3.4. Additional resources

3.4. UNINSTALLING OPENSHIFT VIRTUALIZATION USING THE WEB CONSOLE
3.4.1. Prerequisites
3.4.2. Deleting the OpenShift Virtualization Operator Deployment custom resource
3.4.3. Deleting the OpenShift Virtualization catalog subscription
3.4.4. Deleting a namespace using the web console

3.5. UNINSTALLING OPENSHIFT VIRTUALIZATION USING THE CLI
3.5.1. Prerequisites
3.5.2. Deleting OpenShift Virtualization

CHAPTER 4. UPGRADING OPENSHIFT VIRTUALIZATION

12
12
12

13
13
13
13
13
14
14
14
15
15

18
18
18
19
19

20
20
20
20
21
21
21
21
22
22
22
23
23
23
24
24
25
25
26
26
27
27
27
27
27
28
28
29
29
29

31

Table of Contents

1

. .

. .

. .

4.1. ABOUT UPGRADING OPENSHIFT VIRTUALIZATION
4.1.1. How OpenShift Virtualization upgrades work
4.1.2. How OpenShift Virtualization upgrades affect your cluster

4.2. UPGRADE PATHWAYS FOR MINOR RELEASES
4.2.1. Upgrading from 2.4.3 to 2.5.8
4.2.2. Upgrading from 2.4.4 or 2.4.5 to 2.5.8

4.3. UPGRADING OPENSHIFT VIRTUALIZATION TO THE NEXT MINOR VERSION
4.4. MONITORING UPGRADE STATUS
4.5. ADDITIONAL RESOURCES

CHAPTER 5. ADDITIONAL SECURITY PRIVILEGES GRANTED FOR KUBEVIRT-CONTROLLER AND VIRT-
LAUNCHER

5.1. EXTENDED SELINUX POLICIES FOR VIRT-LAUNCHER PODS
5.2. ADDITIONAL OPENSHIFT CONTAINER PLATFORM SECURITY CONTEXT CONSTRAINTS AND LINUX
CAPABILITIES FOR THE KUBEVIRT-CONTROLLER SERVICE ACCOUNT

5.2.1. Additional SCCs granted to the kubevirt-controller service account
5.2.2. Viewing the SCC and RBAC definitions for the kubevirt-controller

5.3. ADDITIONAL RESOURCES

CHAPTER 6. USING THE CLI TOOLS
6.1. PREREQUISITES
6.2. VIRTCTL CLIENT COMMANDS
6.3. OPENSHIFT CONTAINER PLATFORM CLIENT COMMANDS

CHAPTER 7. VIRTUAL MACHINES
7.1. CREATING VIRTUAL MACHINES

7.1.1. Running the virtual machine wizard to create a virtual machine
7.1.1.1. Virtual machine wizard fields
7.1.1.2. Cloud-init fields
7.1.1.3. CD-ROM fields
7.1.1.4. Networking fields
7.1.1.5. Storage fields

Advanced storage settings
7.1.1.6. Pasting in a pre-configured YAML file to create a virtual machine

7.1.2. Using the CLI to create a virtual machine
7.1.3. Virtual machine storage volume types
7.1.4. About RunStrategies for virtual machines
7.1.5. Additional resources

7.2. EDITING VIRTUAL MACHINES
7.2.1. Editing a virtual machine in the web console
7.2.2. Editing a virtual machine YAML configuration using the web console
7.2.3. Editing a virtual machine YAML configuration using the CLI
7.2.4. Adding a virtual disk to a virtual machine

7.2.4.1. Storage fields
Advanced storage settings

7.2.5. Adding a network interface to a virtual machine
7.2.5.1. Networking fields

7.2.6. Editing CD-ROMs for Virtual Machines
7.3. EDITING BOOT ORDER

7.3.1. Adding items to a boot order list in the web console
7.3.2. Editing a boot order list in the web console
7.3.3. Editing a boot order list in the YAML configuration file
7.3.4. Removing items from a boot order list in the web console

7.4. DELETING VIRTUAL MACHINES

31
31
31
31
32
32
32
33
33

34
34

34
34
35
35

36
36
36
37

39
39
39
40
41

42
42
42
43
44
44
46
48
49
50
50
50
51
51
52
53
53
54
54
55
55
56
56
57
58

OpenShift Container Platform 4.6 OpenShift Virtualization

2

7.4.1. Deleting a virtual machine using the web console
7.4.2. Deleting a virtual machine by using the CLI

7.5. MANAGING VIRTUAL MACHINE INSTANCES
7.5.1. About virtual machine instances
7.5.2. Listing all virtual machine instances using the CLI
7.5.3. Listing standalone virtual machine instances using the web console
7.5.4. Editing a standalone virtual machine instance using the web console
7.5.5. Deleting a standalone virtual machine instance using the CLI
7.5.6. Deleting a standalone virtual machine instance using the web console

7.6. CONTROLLING VIRTUAL MACHINE STATES
7.6.1. Starting a virtual machine
7.6.2. Restarting a virtual machine
7.6.3. Stopping a virtual machine
7.6.4. Unpausing a virtual machine

7.7. ACCESSING VIRTUAL MACHINE CONSOLES
7.7.1. Accessing virtual machine consoles in the OpenShift Container Platform web console

7.7.1.1. Connecting to the serial console
7.7.1.2. Connecting to the VNC console
7.7.1.3. Connecting to a Windows virtual machine with RDP
7.7.1.4. Copying the SSH command from the web console

7.7.2. Accessing virtual machine consoles by using CLI commands
7.7.2.1. Accessing a virtual machine instance via SSH
7.7.2.2. Accessing the serial console of a virtual machine instance
7.7.2.3. Accessing the graphical console of a virtual machine instances with VNC
7.7.2.4. Connecting to a Windows virtual machine with an RDP console

7.8. TRIGGERING VIRTUAL MACHINE FAILOVER BY RESOLVING A FAILED NODE
7.8.1. Prerequisites
7.8.2. Deleting nodes from a bare metal cluster
7.8.3. Verifying virtual machine failover

7.8.3.1. Listing all virtual machine instances using the CLI
7.9. INSTALLING THE QEMU GUEST AGENT ON VIRTUAL MACHINES

7.9.1. Installing QEMU guest agent on a Linux virtual machine
7.9.2. Installing QEMU guest agent on a Windows virtual machine

7.9.2.1. Installing VirtIO drivers on an existing Windows virtual machine
7.9.2.2. Installing VirtIO drivers during Windows installation

7.10. VIEWING THE QEMU GUEST AGENT INFORMATION FOR VIRTUAL MACHINES
7.10.1. Prerequisites
7.10.2. About the QEMU guest agent information in the web console
7.10.3. Viewing the QEMU guest agent information in the web console

7.11. MANAGING CONFIG MAPS, SECRETS, AND SERVICE ACCOUNTS IN VIRTUAL MACHINES
7.11.1. Adding a secret, config map, or service account to a virtual machine
7.11.2. Removing a secret, config map, or service account from a virtual machine
7.11.3. Additional resources

7.12. INSTALLING VIRTIO DRIVER ON AN EXISTING WINDOWS VIRTUAL MACHINE
7.12.1. Understanding VirtIO drivers
7.12.2. Supported VirtIO drivers for Microsoft Windows virtual machines
7.12.3. Adding VirtIO drivers container disk to a virtual machine
7.12.4. Installing VirtIO drivers on an existing Windows virtual machine
7.12.5. Removing the VirtIO container disk from a virtual machine

7.13. INSTALLING VIRTIO DRIVER ON A NEW WINDOWS VIRTUAL MACHINE
7.13.1. Prerequisites
7.13.2. Understanding VirtIO drivers
7.13.3. Supported VirtIO drivers for Microsoft Windows virtual machines

58
58
59
59
59
59
60
60
60
61
61

62
62
63
63
64
64
64
64
65
66
66
66
67
67
68
69
69
69
70
70
70
70
70
71
72
72
72
72
73
73
74
75
75
75
75
76
77
77
78
78
78
78

Table of Contents

3

7.13.4. Adding VirtIO drivers container disk to a virtual machine
7.13.5. Installing VirtIO drivers during Windows installation
7.13.6. Removing the VirtIO container disk from a virtual machine

7.14. ADVANCED VIRTUAL MACHINE MANAGEMENT
7.14.1. Automating management tasks

7.14.1.1. About Red Hat Ansible Automation
7.14.1.2. Automating virtual machine creation
7.14.1.3. Example: Ansible Playbook for creating virtual machines

7.14.2. Configuring PXE booting for virtual machines
7.14.2.1. Prerequisites
7.14.2.2. PXE booting with a specified MAC address
7.14.2.3. Template: Virtual machine instance configuration file for PXE booting
7.14.2.4. OpenShift Virtualization networking glossary

7.14.3. Managing guest memory
7.14.3.1. Configuring guest memory overcommitment
7.14.3.2. Disabling guest memory overhead accounting

7.14.4. Using huge pages with virtual machines
7.14.4.1. Prerequisites
7.14.4.2. What huge pages do
7.14.4.3. Configuring huge pages for virtual machines

7.14.5. Enabling dedicated resources for virtual machines
7.14.5.1. About dedicated resources
7.14.5.2. Prerequisites
7.14.5.3. Enabling dedicated resources for a virtual machine

7.14.6. Scheduling virtual machines
7.14.6.1. Understanding policy attributes
7.14.6.2. Setting a policy attribute and CPU feature
7.14.6.3. Scheduling virtual machines with the supported CPU model
7.14.6.4. Scheduling virtual machines with the host model

7.15. IMPORTING VIRTUAL MACHINES
7.15.1. TLS certificates for data volume imports

7.15.1.1. Adding TLS certificates for authenticating data volume imports
7.15.1.2. Example: Config map created from a TLS certificate

7.15.2. Importing virtual machine images with data volumes
7.15.2.1. Prerequisites
7.15.2.2. CDI supported operations matrix
7.15.2.3. About data volumes
7.15.2.4. Importing a virtual machine image into storage by using a data volume

7.15.3. Importing virtual machine images into block storage with data volumes
7.15.3.1. Prerequisites
7.15.3.2. About data volumes
7.15.3.3. About block persistent volumes
7.15.3.4. Creating a local block persistent volume
7.15.3.5. Importing a virtual machine image into block storage by using a data volume
7.15.3.6. CDI supported operations matrix

7.15.4. Importing a single Red Hat Virtualization virtual machine
7.15.4.1. OpenShift Virtualization storage feature matrix
7.15.4.2. Prerequisites for importing a virtual machine
7.15.4.3. Importing a virtual machine with the VM Import wizard

Virtual machine wizard fields
Networking fields
Storage fields
Advanced storage settings

79
80
80
81
81
81
81

82
83
83
83
86
87
87
87
88
89
89
89
90
91
91
91
91
91
91

92
92
93
93
93
93
94
94
94
95
95
95
98
98
98
99
99

100
101
102
102
102
103
105
106
106
107

OpenShift Container Platform 4.6 OpenShift Virtualization

4

7.15.4.4. Importing a virtual machine with the CLI
7.15.4.4.1. Creating a config map for importing a VM

7.15.4.5. Troubleshooting a virtual machine import
7.15.4.5.1. Logs
7.15.4.5.2. Error messages
7.15.4.5.3. Known issues

7.15.5. Importing a single VMware virtual machine or template
7.15.5.1. OpenShift Virtualization storage feature matrix
7.15.5.2. Preparing a VDDK image

7.15.5.2.1. Configuring an internal image registry
Changing the image registry’s management state
Configuring registry storage for bare metal and other manual installations
Accessing registry directly from the cluster
Exposing a secure registry manually

7.15.5.2.2. Configuring an external image registry
Adding certificate authorities to the cluster
Allowing pods to reference images from other secured registries

7.15.5.2.3. Creating and using a VDDK image
7.15.5.3. Importing a virtual machine with the VM Import wizard

Virtual machine wizard fields
Cloud-init fields
Networking fields
Storage fields
Advanced storage settings
7.15.5.3.1. Updating the NIC name of an imported virtual machine

7.15.5.4. Troubleshooting a virtual machine import
7.15.5.4.1. Logs
7.15.5.4.2. Error messages

7.16. CLONING VIRTUAL MACHINES
7.16.1. Enabling user permissions to clone data volumes across namespaces

7.16.1.1. Prerequisites
7.16.1.2. About data volumes
7.16.1.3. Creating RBAC resources for cloning data volumes

7.16.2. Cloning a virtual machine disk into a new data volume
7.16.2.1. Prerequisites
7.16.2.2. About data volumes
7.16.2.3. Cloning the persistent volume claim of a virtual machine disk into a new data volume
7.16.2.4. Template: Data volume clone configuration file
7.16.2.5. CDI supported operations matrix

7.16.3. Cloning a virtual machine by using a data volume template
7.16.3.1. Prerequisites
7.16.3.2. About data volumes
7.16.3.3. Creating a new virtual machine from a cloned persistent volume claim by using a data volume
template
7.16.3.4. Template: Data volume virtual machine configuration file
7.16.3.5. CDI supported operations matrix

7.16.4. Cloning a virtual machine disk into a new block storage data volume
7.16.4.1. Prerequisites
7.16.4.2. About data volumes
7.16.4.3. About block persistent volumes
7.16.4.4. Creating a local block persistent volume
7.16.4.5. Cloning the persistent volume claim of a virtual machine disk into a new data volume
7.16.4.6. CDI supported operations matrix

107
111

115
115
115
115
116
116
116
116
117
117
118

120
121
121
121
122
123
126
127
128
128
129
129
130
130
130
131
131
131
131
131
132
133
133
133
134
135
135
135
135

136
137
138
138
139
139
139
139
140
142

Table of Contents

5

7.17. VIRTUAL MACHINE NETWORKING
7.17.1. Configuring the virtual machine for the default pod network

7.17.1.1. Configuring masquerade mode from the command line
7.17.1.2. Creating a service from a virtual machine

7.17.2. Attaching a virtual machine to a Linux bridge network
7.17.2.1. Connecting to the network through the network attachment definition

7.17.2.1.1. Creating a Linux bridge node network configuration policy
7.17.2.2. Creating a Linux bridge network attachment definition

7.17.2.2.1. Prerequisites
7.17.2.2.2. Creating a Linux bridge network attachment definition in the web console
7.17.2.2.3. Creating a Linux bridge network attachment definition in the CLI

7.17.2.3. Configuring the virtual machine for a Linux bridge network
7.17.2.3.1. Creating a NIC for a virtual machine in the web console
7.17.2.3.2. Networking fields
7.17.2.3.3. Attaching a virtual machine to an additional network in the CLI

7.17.3. Configuring IP addresses for virtual machines
7.17.3.1. Configuring an IP address for a new virtual machine using cloud-init

7.17.4. Configuring an SR-IOV network device for virtual machines
7.17.4.1. Prerequisites
7.17.4.2. Automated discovery of SR-IOV network devices

7.17.4.2.1. Example SriovNetworkNodeState object
7.17.4.3. Configuring SR-IOV network devices
7.17.4.4. Next steps

7.17.5. Defining an SR-IOV network
7.17.5.1. Prerequisites
7.17.5.2. Configuring SR-IOV additional network
7.17.5.3. Next steps

7.17.6. Attaching a virtual machine to an SR-IOV network
7.17.6.1. Prerequisites
7.17.6.2. Attaching a virtual machine to an SR-IOV network

7.17.7. Viewing the IP address of NICs on a virtual machine
7.17.7.1. Viewing the IP address of a virtual machine interface in the CLI
7.17.7.2. Viewing the IP address of a virtual machine interface in the web console

7.17.8. Using a MAC address pool for virtual machines
7.17.8.1. About KubeMacPool
7.17.8.2. Enabling a MAC address pool for a namespace in the CLI
7.17.8.3. Disabling a MAC address pool for a namespace in the CLI

7.18. VIRTUAL MACHINE DISKS
7.18.1. Storage features

7.18.1.1. OpenShift Virtualization storage feature matrix
7.18.2. Configuring local storage for virtual machines

7.18.2.1. About the hostpath provisioner
7.18.2.2. Configuring SELinux for the hostpath provisioner on Red Hat Enterprise Linux CoreOS (RHCOS) 8

7.18.2.3. Using the hostpath provisioner to enable local storage
7.18.2.4. Creating a storage class

7.18.3. Configuring CDI to work with namespaces that have a compute resource quota
7.18.3.1. About CPU and memory quotas in a namespace
7.18.3.2. Editing the CDIConfig object to override CPU and memory defaults
7.18.3.3. Additional resources

7.18.4. Uploading local disk images by using the web console
7.18.4.1. Prerequisites
7.18.4.2. CDI supported operations matrix

142
142
142
143
147
147
147
148
148
149
149
151
151
151
152
153
153
154
154
154
154
156
158
158
158
158
160
160
160
160
161
161

162
162
162
163
163
163
163
163
164
164

165
166
167
168
168
168
169
169
169
169

OpenShift Container Platform 4.6 OpenShift Virtualization

6

7.18.4.3. Uploading an image file using the web console
7.18.5. Uploading local disk images by using the virtctl tool

7.18.5.1. Prerequisites
7.18.5.2. About data volumes
7.18.5.3. Creating an upload data volume
7.18.5.4. Uploading a local disk image to a data volume
7.18.5.5. CDI supported operations matrix

7.18.6. Uploading a local disk image to a block storage data volume
7.18.6.1. Prerequisites
7.18.6.2. About data volumes
7.18.6.3. About block persistent volumes
7.18.6.4. Creating a local block persistent volume
7.18.6.5. Creating an upload data volume
7.18.6.6. Uploading a local disk image to a data volume
7.18.6.7. CDI supported operations matrix

7.18.7. Managing offline virtual machine snapshots
7.18.7.1. About virtual machine snapshots

7.18.7.1.1. Virtual machine snapshot controller and custom resource definitions (CRDs)
7.18.7.2. Creating an offline virtual machine snapshot in the CLI
7.18.7.3. Restoring a virtual machine from a snapshot in the CLI
7.18.7.4. Deleting a virtual machine snapshot in the CLI
7.18.7.5. Additional resources

7.18.8. Moving a local virtual machine disk to a different node
7.18.8.1. Cloning a local volume to another node

7.18.9. Expanding virtual storage by adding blank disk images
7.18.9.1. About data volumes
7.18.9.2. Creating a blank disk image with data volumes
7.18.9.3. Template: Data volume configuration file for blank disk images

7.18.10. Cloning a data volume using smart-cloning
7.18.10.1. Understanding smart-cloning
7.18.10.2. Cloning a data volume
7.18.10.3. Additional resources

7.18.11. Storage defaults for data volumes
7.18.11.1. About storage settings for data volumes

7.18.11.1.1. Access modes
7.18.11.1.2. Volume modes

7.18.11.2. Editing the kubevirt-storage-class-defaults config map in the web console
7.18.11.3. Editing the kubevirt-storage-class-defaults config map in the CLI
7.18.11.4. Example of multiple storage class defaults

7.18.12. Creating and using default OS images
7.18.12.1. Creating persistent volume claims to store default OS images
7.18.12.2. Creating a virtual machine from a default OS image
7.18.12.3. Additional resources

7.18.13. Using container disks with virtual machines
7.18.13.1. About container disks

7.18.13.1.1. Importing a container disk into a PVC by using a data volume
7.18.13.1.2. Attaching a container disk to a virtual machine as a containerDisk volume

7.18.13.2. Preparing a container disk for virtual machines
7.18.13.3. Disabling TLS for a container registry to use as insecure registry
7.18.13.4. Next steps

7.18.14. Preparing CDI scratch space
7.18.14.1. About data volumes
7.18.14.2. Understanding scratch space

170
171
171
171
171
172
174
174
174
174
174
175
176
176
178
178
178
179
179
181

183
183
183
184
186
186
186
187
187
188
188
189
189
189
190
190
190
191
191

192
192
193
194
194
194
194
194
195
196
196
196
196
196

Table of Contents

7

. .

. .

. .

Manual provisioning
7.18.14.3. CDI operations that require scratch space
7.18.14.4. Defining a storage class in the CDI configuration
7.18.14.5. CDI supported operations matrix

7.18.15. Re-using persistent volumes
7.18.15.1. About reclaiming statically provisioned persistent volumes
7.18.15.2. Reclaiming statically provisioned persistent volumes

7.18.16. Deleting data volumes
7.18.16.1. About data volumes
7.18.16.2. Listing all data volumes
7.18.16.3. Deleting a data volume

CHAPTER 8. VIRTUAL MACHINE TEMPLATES
8.1. CREATING VIRTUAL MACHINE TEMPLATES

8.1.1. Creating a virtual machine template with the interactive wizard in the web console
8.1.2. Virtual machine template interactive wizard fields

8.1.2.1. Virtual machine template wizard fields
8.1.2.2. Cloud-init fields
8.1.2.3. Networking fields
8.1.2.4. Storage fields

Advanced storage settings
8.2. EDITING VIRTUAL MACHINE TEMPLATES

8.2.1. Editing a virtual machine template in the web console
8.2.2. Editing virtual machine template YAML configuration in the web console
8.2.3. Adding a virtual disk to a virtual machine template
8.2.4. Adding a network interface to a virtual machine template
8.2.5. Editing CD-ROMs for Virtual Machine Templates

8.3. ENABLING DEDICATED RESOURCES FOR VIRTUAL MACHINE TEMPLATES
8.3.1. About dedicated resources
8.3.2. Prerequisites
8.3.3. Enabling dedicated resources for a virtual machine template

8.4. DELETING A VIRTUAL MACHINE TEMPLATE
8.4.1. Deleting a virtual machine template in the web console

CHAPTER 9. LIVE MIGRATION
9.1. VIRTUAL MACHINE LIVE MIGRATION

9.1.1. Understanding live migration
9.1.2. Updating access mode for live migration

9.2. LIVE MIGRATION LIMITS AND TIMEOUTS
9.2.1. Configuring live migration limits and timeouts
9.2.2. Cluster-wide live migration limits and timeouts

9.3. MIGRATING A VIRTUAL MACHINE INSTANCE TO ANOTHER NODE
9.3.1. Initiating live migration of a virtual machine instance in the web console
9.3.2. Initiating live migration of a virtual machine instance in the CLI

9.4. MONITORING LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
9.4.1. Monitoring live migration of a virtual machine instance in the web console
9.4.2. Monitoring live migration of a virtual machine instance in the CLI

9.5. CANCELLING THE LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
9.5.1. Cancelling live migration of a virtual machine instance in the web console
9.5.2. Cancelling live migration of a virtual machine instance in the CLI

9.6. CONFIGURING VIRTUAL MACHINE EVICTION STRATEGY
9.6.1. Configuring custom virtual machines with the LiveMigration eviction strategy

CHAPTER 10. NODE MAINTENANCE

197
197
197
198
198
198
199

200
200
200
200

202
202
202
203
203
204
204
205
205
206
206
206
207
207
208
208
208
208
209
209
209

210
210
210
210
210
210
211
212
212
212
213
213
213
214
214
215
215
215

216

OpenShift Container Platform 4.6 OpenShift Virtualization

8

. .

. .

10.1. AUTOMATIC RENEWAL OF TLS CERTIFICATES
10.1.1. Automatic renewal of TLS certificates

10.2. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS
10.2.1. Understanding node labeling for obsolete CPU models
10.2.2. Configuring a config map for obsolete CPU models

10.3. NODE MAINTENANCE MODE
10.3.1. Understanding node maintenance mode

10.4. SETTING A NODE TO MAINTENANCE MODE
10.4.1. Understanding node maintenance mode
10.4.2. Setting a node to maintenance mode in the web console
10.4.3. Setting a node to maintenance mode in the CLI

10.5. RESUMING A NODE FROM MAINTENANCE MODE
10.5.1. Resuming a node from maintenance mode in the web console
10.5.2. Resuming a node from maintenance mode in the CLI

CHAPTER 11. NODE NETWORKING
11.1. OBSERVING NODE NETWORK STATE

11.1.1. About nmstate
11.1.2. Viewing the network state of a node

11.2. UPDATING NODE NETWORK CONFIGURATION
11.2.1. About nmstate
11.2.2. Creating an interface on nodes

Additional resources
11.2.3. Confirming node network policy updates on nodes
11.2.4. Removing an interface from nodes
11.2.5. Example policy configurations for different interfaces

11.2.5.1. Example: Linux bridge interface node network configuration policy
11.2.5.2. Example: VLAN interface node network configuration policy
11.2.5.3. Example: Bond interface node network configuration policy
11.2.5.4. Example: Ethernet interface node network configuration policy
11.2.5.5. Example: Multiple interfaces in the same node network configuration policy

11.2.6. Examples: IP management
11.2.6.1. Static
11.2.6.2. No IP address
11.2.6.3. Dynamic host configuration
11.2.6.4. DNS
11.2.6.5. Static routing

11.3. TROUBLESHOOTING NODE NETWORK CONFIGURATION
11.3.1. Troubleshooting an incorrect node network configuration policy configuration

CHAPTER 12. LOGGING, EVENTS, AND MONITORING
12.1. VIEWING VIRTUAL MACHINE LOGS

12.1.1. Understanding virtual machine logs
12.1.2. Viewing virtual machine logs in the CLI
12.1.3. Viewing virtual machine logs in the web console

12.2. VIEWING EVENTS
12.2.1. Understanding virtual machine events
12.2.2. Viewing the events for a virtual machine in the web console
12.2.3. Viewing namespace events in the CLI
12.2.4. Viewing resource events in the CLI

12.3. DIAGNOSING DATA VOLUMES USING EVENTS AND CONDITIONS
12.3.1. About conditions and events
12.3.2. Analyzing data volumes using conditions and events

216
216
216
216
219
219
219

220
220
220
221
221
221
222

223
223
223
223
224
224
225
226
226
227
228
228
229
230
231

232
233
233
233
233
234
234
235
235

240
240
240
240
240
240
241
241
241
241
242
242
242

Table of Contents

9

12.4. VIEWING INFORMATION ABOUT VIRTUAL MACHINE WORKLOADS
12.4.1. About the Virtual Machines dashboard

12.5. MONITORING VIRTUAL MACHINE HEALTH
12.5.1. About readiness and liveness probes
12.5.2. Defining an HTTP readiness probe
12.5.3. Defining a TCP readiness probe
12.5.4. Defining an HTTP liveness probe
12.5.5. Template: Virtual machine instance configuration file for defining health checks
12.5.6. Additional resources

12.6. USING THE OPENSHIFT CONTAINER PLATFORM DASHBOARD TO GET CLUSTER INFORMATION
12.6.1. About the OpenShift Container Platform dashboards page

12.7. OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING, LOGGING, AND TELEMETRY
12.7.1. About OpenShift Container Platform monitoring
12.7.2. About cluster logging components
12.7.3. About Telemetry

12.7.3.1. Information collected by Telemetry
12.7.4. CLI troubleshooting and debugging commands

12.8. COLLECTING DATA FOR RED HAT SUPPORT
12.8.1. Collecting data about your environment

12.8.1.1. Additional resources
12.8.2. Collecting data about virtual machines

12.8.2.1. Additional resources
12.8.3. Using the must-gather tool for OpenShift Virtualization

12.8.3.1. must-gather tool options
12.8.3.1.1. Parameters
12.8.3.1.2. Usage and examples

12.8.3.2. Additional resources

244
244
245
245
245
246
247
248
249
249
249
250
250
251
251
251

252
252
252
253
253
253
254
254
254
255
256

OpenShift Container Platform 4.6 OpenShift Virtualization

10

Table of Contents

11

CHAPTER 1. ABOUT OPENSHIFT VIRTUALIZATION
Learn about OpenShift Virtualization’s capabilities and support scope.

1.1. WHAT YOU CAN DO WITH OPENSHIFT VIRTUALIZATION

OpenShift Virtualization is an add-on to OpenShift Container Platform that allows you to run and
manage virtual machine workloads alongside container workloads.

OpenShift Virtualization adds new objects into your OpenShift Container Platform cluster via
Kubernetes custom resources to enable virtualization tasks. These tasks include:

Creating and managing Linux and Windows virtual machines

Connecting to virtual machines through a variety of consoles and CLI tools

Importing and cloning existing virtual machines

Managing network interface controllers and storage disks attached to virtual machines

Live migrating virtual machines between nodes

An enhanced web console provides a graphical portal to manage these virtualized resources alongside
the OpenShift Container Platform cluster containers and infrastructure.

OpenShift Virtualization is tested with OpenShift Container Storage (OCS) and designed to use with
OCS features for the best experience.

You can use OpenShift Virtualization with either the OVN-Kubernetes or the OpenShiftSDN default
Container Network Interface (CNI) network provider.

1.1.1. OpenShift Virtualization supported cluster version

OpenShift Virtualization 2.5 is supported for use on OpenShift Container Platform 4.6 clusters.

OpenShift Container Platform 4.6 OpenShift Virtualization

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#about-ovn-kubernetes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#about-openshift-sdn

CHAPTER 2. OPENSHIFT VIRTUALIZATION RELEASE NOTES

2.1. ABOUT RED HAT OPENSHIFT VIRTUALIZATION

Red Hat OpenShift Virtualization enables you to bring traditional virtual machines (VMs) into OpenShift
Container Platform where they run alongside containers, and are managed as native Kubernetes objects.

OpenShift Virtualization is represented by the logo.

You can use OpenShift Virtualization with either the OVN-Kubernetes or the OpenShiftSDN default
Container Network Interface (CNI) network provider.

Learn more about what you can do with OpenShift Virtualization .

2.1.1. OpenShift Virtualization supported cluster version

OpenShift Virtualization 2.5 is supported for use on OpenShift Container Platform 4.6 clusters.

2.1.2. Supported guest operating systems

OpenShift Virtualization guests can use the following operating systems:

Red Hat Enterprise Linux 6, 7, and 8.

Microsoft Windows Server 2012 R2, 2016, and 2019.

Microsoft Windows 10.

Other operating system templates shipped with OpenShift Virtualization are not supported.

2.2. NEW AND CHANGED FEATURES

OpenShift Virtualization is certified in Microsoft’s Windows Server Virtualization Validation
Program (SVVP) to run Windows Server workloads.
The SVVP Certification applies to:

Red Hat Enterprise Linux CoreOS 8 workers. In the Microsoft SVVP Catalog, they are
named Red Hat OpenShift Container Platform 4 on RHEL CoreOS 8 .

Intel and AMD CPUs.

OpenShift Virtualization 2.5 adds three new virtctl commands to manage QEMU guest agent
data:

virtctl fslist <vmi_name> returns a full list of file systems available on the guest machine.

virtctl guestosinfo <vmi_name> returns guest agent information about the operating
system.

virtctl userlist <vmi_name> returns a full list of logged-in users on the guest machine.

You can now download the virtctl client from the Command Line Tools page in the web
console.

CHAPTER 2. OPENSHIFT VIRTUALIZATION RELEASE NOTES

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#about-ovn-kubernetes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#about-openshift-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#about-virt
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-virtctl-commands_virt-using-the-cli-tools
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-installing-virtctl-client-web_virt-installing-virtctl

You can now import a virtual machine with a Single Root I/O Virtualization (SR-IOV) network
interface from Red Hat Virtualization.

2.2.1. Networking

The supported bond modes with nmstate now includes mode=2 balance-xor and mode=4
802.3ad.

2.2.2. Storage

The Containerized Data Importer (CDI) can now import container disk storage volumes from the
container image registry at a faster speed and allocate storage capacity more efficiently. CDI
can pull a container disk image from the registry in about the same amount of time as it would
take to import from an HTTP endpoint. You can import the disk into a persistent volume claim
(PVC) equal in size to the disk image to use the underlying storage more efficiently.

It is now easier to diagnose and troubleshoot issues when preparing virtual machine (VM) disks
that are managed by DataVolumes:

For asynchronous image upload, if the virtual size of the disk image is larger than the size of
the target DataVolume, an error message is returned before the connection is closed.

You can use the oc describe dv command to monitor changes in the
PersistentVolumeClaim (PVC) Bound conditions or transfer failures. If the value of the
Status:Phase field is Succeeded, then the DataVolume is ready to be used.

You can create, restore, and delete virtual machine (VM) snapshots in the CLI for VMs that are
powered off (offline). OpenShift Virtualization supports offline VM snapshots on:

Red Hat OpenShift Container Storage

Any other storage provider with the Container Storage Interface (CSI) driver that supports
the Kubernetes Volume Snapshot API

You can now clone virtual disks efficiently and quickly using smart-cloning. Smart-cloning occurs
automatically when you create a DataVolume with a PersistentVolumeClaim (PVC) source.
Your storage provider must support the CSI Snapshots API to use smart-cloning.

2.2.3. Web console

If the virtual machine is running, changes made to the following fields and tabs in the web
console will not take effect until you restart the virtual machine:

Boot Order and Flavor in the Details tab

The Network Interfaces tab

The Disks tab

The Environment tab
The Pending Changes banner at the top of the page displays a list of all changes that will
be applied when the virtual machine restarts.

You can now open a virtual machine console in a separate window.

You can now create default OS images and automatically upload them using the OpenShift

OpenShift Container Platform 4.6 OpenShift Virtualization

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-example-bond-nncp_virt-updating-node-network-config
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-using-container-disks-with-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-diagnosing-datavolumes-using-events-and-conditions
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-managing-offline-vm-snapshots
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-vm-serial-console-web_virt-accessing-vm-consoles

Container Platform web console. A default OS image is a bootable disk containing an operating
system and all of the operating system’s configuration settings, such as drivers. You use a
default OS image to create bootable virtual machines with specific configurations.

You can now upload a virtual machine image file to a new persistent volume claim by using the
web console.

When the QEMU guest agent runs on the virtual machine, you can use the web console to view
information about the virtual machine, users, file systems, and secondary networks.

2.3. NOTABLE TECHNICAL CHANGES

When you install or upgrade OpenShift Virtualization, you select an Update Channel. There is a
new Update Channel option that is named stable. Select the stable channel to ensure that you
install or upgrade to the version of OpenShift Virtualization that is compatible with your
OpenShift Container Platform version.

You can now import VMs with block-based storage into OpenShift Virtualization.

The HyperConverged Operator (HCO), Containerized Data Importer (CDI), Hostpath
Provisioner (HPP), and VM import custom resources have moved to API version v1beta1. The
respective API version for these components is now:
hco.kubevirt.io/v1beta1
cdi.kubevirt.io/v1beta1
hostpathprovisioner.kubevirt.io/v1beta1
v2v.kubevirt.io/v1beta1

The default cloud-init user password is now auto-generated for virtual machines that are
created from templates.

When using host-assisted cloning, you can now clone virtual machine disks at a faster speed
because of a more efficient compression algorithm.

When a node fails in user-provisioned installations of OpenShift Container Platform on bare
metal deployments, the virtual machine does not automatically restart on another node.
Automatic restart is supported only for installer-provisioned installations that have machine
health checks enabled. Learn more about configuring your cluster for OpenShift Virtualization .

2.4. KNOWN ISSUES

If your OpenShift Container Platform cluster uses OVN-Kubernetes as the default Container
Network Interface (CNI) provider, you cannot attach a Linux bridge or bonding to the default
interface of a host because of a change in the host network topology of OVN-Kubernetes. As a
workaround, you can use a secondary network interface connected to your host or switch to the
OpenShift SDN default CNI provider. (BZ#1887456)

If you add a VMware Virtual Disk Development Kit (VDDK) image to the openshift-cnv/v2v-
vmware config map by using the web console, a Managed resource error message displays.
You can safely ignore this error. Save the config map by clicking Save. (BZ#1884538)

When nodes are evicted, for example, when they are placed in maintenance mode during an
OpenShift Container Platform cluster upgrade, virtual machines are migrated twice instead of
just once. (BZ#1888790)

Following an upgrade, there might be more than one template per operating system workload.
When creating a Microsoft Windows virtual machine from a cloned PVC using the default

CHAPTER 2. OPENSHIFT VIRTUALIZATION RELEASE NOTES

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-uploading-local-disk-images-web
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#installing-virt-web
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-about-upgrading-virt_upgrading-virt
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#preparing-cluster-for-virt
https://bugzilla.redhat.com/show_bug.cgi?id=1887456
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-creating-vddk-image_virt-importing-vmware-vm
https://bugzilla.redhat.com/show_bug.cgi?id=1884538
https://bugzilla.redhat.com/show_bug.cgi?id=1888790

operating system (OS) images feature, the OS must have the correct workload value defined.
Selecting an incorrect Workload value does not allow you to use a default OS image, even
though the (Source available) label displays in the web console. The default OS image is
attached to the newer template but the wizard might use the old template, which is not
configured to support default OS images. Windows 2010 systems only support a workload value
of Desktop, while Windows 2012, Windows 2016, and Windows 2019 only support a workload
value of Server. (BZ#1907183)

If you enable a MAC address pool for a namespace by applying the KubeMacPool label and
using the io attribute for virtual machines in that namespace, the io attribute configuration is
not retained for the VMs. As a workaround, do not use the io attribute for VMs. Alternatively,
you can disable KubeMacPool for the namespace. (BZ#1869527)

If you upgrade to OpenShift Virtualization 2.5, both older and newer versions of common
templates are available for each combination of operating system, workload, and flavor. When
you create a virtual machine by using a common template, you must use the newer version of
the template. Disregard the older version to avoid issues. (BZ#1859235)

Running virtual machines that cannot be live migrated might block an OpenShift Container
Platform cluster upgrade. This includes virtual machines that use hostpath-provisioner storage
or SR-IOV network interfaces. (BZ#1858777)
As a workaround, you can reconfigure the virtual machines so that they can be powered off
during a cluster upgrade. In the spec section of the virtual machine configuration file:

1. Remove the evictionStrategy: LiveMigrate field. See Configuring virtual machine eviction
strategy for more information on how to configure eviction strategy.

2. Set the runStrategy field to Always.

For unknown reasons, memory consumption for the containerDisk volume type might gradually
increase until it exceeds the memory limit. To resolve this issue, restart the VM. (BZ#1855067)

Sometimes, when attempting to edit the subscription channel of the OpenShift Virtualization
Operator in the web console, clicking the Channel button of the Subscription Overview results
in a JavaScript error. (BZ#1796410)

As a workaround, trigger the upgrade process to OpenShift Virtualization 2.5 from the CLI
by running the following oc patch command:

This command points your subscription to upgrade channel 2.5 and enables automatic
updates.

Live migration fails when nodes have different CPU models. Even in cases where nodes have
the same physical CPU model, differences introduced by microcode updates have the same
effect. This is because the default settings trigger host CPU passthrough behavior, which is
incompatible with live migration. (BZ#1760028)

As a workaround, set the default CPU model in the kubevirt-config ConfigMap, as shown in
the following example:

NOTE

$ export TARGET_NAMESPACE=openshift-cnv CNV_CHANNEL=2.5 && oc patch -n
"${TARGET_NAMESPACE}" $(oc get subscription -n ${TARGET_NAMESPACE} --no-
headers -o name) --type='json' -p='[{"op": "replace", "path": "/spec/channel",
"value":"'${CNV_CHANNEL}'"}, {"op": "replace", "path": "/spec/installPlanApproval",
"value":"Automatic"}]'

OpenShift Container Platform 4.6 OpenShift Virtualization

16

https://bugzilla.redhat.com/show_bug.cgi?id=1907183
https://bugzilla.redhat.com/show_bug.cgi?id=1869527
https://bugzilla.redhat.com/show_bug.cgi?id=1859235
https://bugzilla.redhat.com/show_bug.cgi?id=1858777
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-configuring-vmi-eviction-strategy
https://bugzilla.redhat.com/show_bug.cgi?id=1855067
https://bugzilla.redhat.com/show_bug.cgi?id=1796410
https://bugzilla.redhat.com/show_bug.cgi?id=1760028

1

NOTE

You must make this change before starting the virtual machines that support
live migration.

1. Open the kubevirt-config ConfigMap for editing by running the following command:

2. Edit the ConfigMap:

Replace <cpu-model> with the actual CPU model value. You can determine this
value by running oc describe node <node> for all nodes and looking at the cpu-
model-<name> labels. Select the CPU model that is present on all of your nodes.

OpenShift Virtualization cannot reliably identify node drains that are triggered by running either
oc adm drain or kubectl drain. Do not run these commands on the nodes of any clusters where
OpenShift Virtualization is deployed. The nodes might not drain if there are virtual machines
running on top of them.

The current solution is to put nodes into maintenance .

If the OpenShift Virtualization storage PV is not suitable for importing a RHV VM, the progress
bar remains at 10% and the import does not complete. The VM Import Controller Pod log
displays the following error message: Failed to bind volumes: provisioning failed for PVC.
(BZ#1857784)

If you enter the wrong credentials for the RHV Manager while importing a RHV VM, the Manager
might lock the admin user account because the vm-import-operator tries repeatedly to
connect to the RHV API. (BZ#1887140)
To unlock the account, log in to the Manager and enter the following command:

If you are logged in to the OpenShift Container Platform cluster as a user with basic-user
privileges, retrieving guest agent information by running virtctl guestosinfo <vmi_name> fails.
As a workaround, you can fetch a subset of the guest agent data by running the oc describe
vmi command. (BZ#2000464)

$ oc edit configmap kubevirt-config -n openshift-cnv

kind: ConfigMap
metadata:
 name: kubevirt-config
data:
 default-cpu-model: "<cpu-model>" 1

$ ovirt-aaa-jdbc-tool user unlock admin

CHAPTER 2. OPENSHIFT VIRTUALIZATION RELEASE NOTES

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-setting-node-maintenance
https://bugzilla.redhat.com/show_bug.cgi?id=1857784
https://bugzilla.redhat.com/show_bug.cgi?id=1887140
https://bugzilla.redhat.com/show_bug.cgi?id=2000464

CHAPTER 3. OPENSHIFT VIRTUALIZATION INSTALLATION

3.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION

Review this section before you install OpenShift Virtualization to ensure that your cluster meets the
requirements.

IMPORTANT

You can use any installation method, including user-provisioned, installer-provisioned, or
assisted installer, to deploy OpenShift Container Platform. However, the installation
method and the cluster topology might affect OpenShift Virtualization functionality, such
as snapshots or live migration.

FIPS mode

If you install your cluster in FIPS mode, no additional setup is required for OpenShift Virtualization.

3.1.1. Hardware and operating system requirements

Review the following hardware and operating system requirements for OpenShift Virtualization.

Supported platforms

On-premise bare metal servers

Amazon Web Services bare metal instances

IMPORTANT

Installing OpenShift Virtualization on an AWS bare metal instance is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

Bare metal instances or servers offered by other cloud providers are not supported.

CPU requirements

Supported by Red Hat Enterprise Linux (RHEL) 8

Support for Intel 64 or AMD64 CPU extensions

Intel VT or AMD-V hardware virtualization extensions enabled

NX (no execute) flag enabled

Storage requirements

OpenShift Container Platform 4.6 OpenShift Virtualization

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/installing/#installing-fips-mode_installing-fips
https://access.redhat.com/support/offerings/techpreview/

1

2

Supported by OpenShift Container Platform

Operating system requirements

Red Hat Enterprise Linux CoreOS (RHCOS) installed on worker nodes

NOTE

RHEL worker nodes are not supported.

Additional resources

About RHCOS

Red Hat Ecosystem Catalog for supported CPUs

Supported storage

3.1.2. Physical resource overhead requirements

OpenShift Virtualization is an add-on to OpenShift Container Platform and imposes additional overhead
that you must account for when planning a cluster. Each cluster machine must accommodate the
following overhead requirements in addition to the OpenShift Container Platform requirements.
Oversubscribing the physical resources in a cluster can affect performance.

IMPORTANT

The numbers noted in this documentation are based on Red Hat’s test methodology and
setup. These numbers can vary based on your own individual setup and environments.

3.1.2.1. Memory overhead

Calculate the memory overhead values for OpenShift Virtualization by using the equations below.

Cluster memory overhead

Memory overhead per infrastructure node ≈ 150 MiB

Memory overhead per worker node ≈ 360 MiB

Additionally, OpenShift Virtualization environment resources require a total of 2179 MiB of RAM that is
spread across all infrastructure nodes.

Virtual machine memory overhead

Memory overhead per virtual machine ≈ (1.002 * requested memory) + 146 MiB \
 + 8 MiB * (number of vCPUs) \ 1
 + 16 MiB * (number of graphics devices) 2

Number of virtual CPUs requested by the virtual machine

Number of virtual graphics cards requested by the virtual machine

CHAPTER 3. OPENSHIFT VIRTUALIZATION INSTALLATION

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/architecture/#rhcos-about_architecture-rhcos
https://catalog.redhat.com
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/storage/#storage-overview

If your environment includes a Single Root I/O Virtualization (SR-IOV) network device or a Graphics
Processing Unit (GPU), allocate 1 GiB additional memory overhead for each device.

3.1.2.2. CPU overhead

Calculate the cluster processor overhead requirements for OpenShift Virtualization by using the
equation below. The CPU overhead per virtual machine depends on your individual setup.

Cluster CPU overhead

CPU overhead for infrastructure nodes ≈ 4 cores

OpenShift Virtualization increases the overall utilization of cluster level services such as logging, routing,
and monitoring. To account for this workload, ensure that nodes that host infrastructure components
have capacity allocated for 4 additional cores (4000 millicores) distributed across those nodes.

CPU overhead for worker nodes ≈ 2 cores + CPU overhead per virtual machine

Each worker node that hosts virtual machines must have capacity for 2 additional cores (2000
millicores) for OpenShift Virtualization management workloads in addition to the CPUs required for
virtual machine workloads.

Virtual machine CPU overhead

If dedicated CPUs are requested, there is a 1:1 impact on the cluster CPU overhead requirement.
Otherwise, there are no specific rules about how many CPUs a virtual machine requires.

3.1.2.3. Storage overhead

Use the guidelines below to estimate storage overhead requirements for your OpenShift Virtualization
environment.

Cluster storage overhead

Aggregated storage overhead per node ≈ 10 GiB

10 GiB is the estimated on-disk storage impact for each node in the cluster when you install OpenShift
Virtualization.

Virtual machine storage overhead

Storage overhead per virtual machine depends on specific requests for resource allocation within the
virtual machine. The request could be for ephemeral storage on the node or storage resources hosted
elsewhere in the cluster. OpenShift Virtualization does not currently allocate any additional ephemeral
storage for the running container itself.

3.1.2.4. Example

As a cluster administrator, if you plan to host 10 virtual machines in the cluster, each with 1 GiB of RAM
and 2 vCPUs, the memory impact across the cluster is 11.68 GiB. The estimated on-disk storage impact
for each node in the cluster is 10 GiB and the CPU impact for worker nodes that host virtual machine
workloads is a minimum of 2 cores.

3.1.3. Object maximums

OpenShift Container Platform 4.6 OpenShift Virtualization

20

You must consider the following tested object maximums when planning your cluster:

OpenShift Container Platform object maximums

OpenShift Virtualization object maximums

3.1.4. Restricted network environments

If you install OpenShift Virtualization in a restricted environment with no internet connectivity, you must
configure Operator Lifecycle Manager for restricted networks .

If you have limited internet connectivity, you can configure proxy support in Operator Lifecycle Manager
to access the Red Hat-provided OperatorHub.

3.1.5. Live migration

Live migration has the following requirements:

Shared storage with ReadWriteMany (RWX) access mode

Sufficient RAM and network bandwidth

Appropriate CPUs with sufficient capacity on the worker nodes. If the CPUs have different
capacities, live migration might be very slow or fail.

3.1.6. Snapshots and cloning

See OpenShift Virtualization storage features for snapshot and cloning requirements.

3.1.7. Cluster high-availability options

You can configure one of the following high-availability (HA) options for your cluster:

Automatic high availability for installer-provisioned infrastructure (IPI) is available by deploying
machine health checks .

NOTE

In OpenShift Container Platform clusters installed using installer-provisioned
infrastructure and with MachineHealthCheck properly configured, if a node fails
the MachineHealthCheck and becomes unavailable to the cluster, it is recycled.
What happens next with VMs that ran on the failed node depends on a series of
conditions. See About RunStrategies for virtual machines for more detailed
information about the potential outcomes and how RunStrategies affect those
outcomes.

High availability for any platform is available by using either a monitoring system or a qualified
human to monitor node availability. When a node is lost, shut it down and run oc delete node
<lost_node>.

NOTE

Without an external monitoring system or a qualified human monitoring node
health, virtual machines lose high availability.

CHAPTER 3. OPENSHIFT VIRTUALIZATION INSTALLATION

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/scalability_and_performance/#planning-your-environment-according-to-object-maximums
https://access.redhat.com/articles/6571671
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/operators/#olm-restricted-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/operators/#olm-configuring-proxy-support
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-features-for-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/installing/#ipi-install-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/machine_management/#machine-health-checks-about_deploying-machine-health-checks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-about-runstrategies-vms_virt-create-vms

3.2. INSTALLING OPENSHIFT VIRTUALIZATION USING THE WEB
CONSOLE

Install OpenShift Virtualization to add virtualization functionality to your OpenShift Container Platform
cluster.

You can use the OpenShift Container Platform 4.6 web console to subscribe to and deploy the
OpenShift Virtualization Operators.

3.2.1. Prerequisites

Install OpenShift Container Platform 4.6 on your cluster.

Log in as a user with cluster-admin permissions.

3.2.2. Subscribing to the OpenShift Virtualization catalog

Before you install OpenShift Virtualization, subscribe to the OpenShift Virtualization catalog from the
OpenShift Container Platform web console. Subscribing gives the openshift-cnv namespace access to
the OpenShift Virtualization Operators.

Procedure

1. Open a browser window and log in to the OpenShift Container Platform web console.

2. Navigate to the Operators → OperatorHub page.

3. Search for OpenShift Virtualization and then select it.

4. Read the information about the Operator and click Install.

5. On the Install Operator page:

a. For Installed Namespace, ensure that the Operator recommended namespace option is
selected. This installs the Operator in the mandatory openshift-cnv namespace, which is
automatically created if it does not exist.

WARNING

Attempting to install the OpenShift Virtualization Operator in a
namespace other than openshift-cnv causes the installation to fail.

b. Select stable from the list of available Update Channel options. This ensures that you
install the version of OpenShift Virtualization that is compatible with your OpenShift
Container Platform version.

c. For Approval Strategy, ensure that Automatic, which is the default value, is selected.
OpenShift Virtualization automatically updates when a new z-stream release is available.

6. Click Install to make the Operator available to the openshift-cnv namespace.

On the Installed Operators screen, the Status displays Succeeded when OpenShift

OpenShift Container Platform 4.6 OpenShift Virtualization

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/web_console/#web-console-overview_web-console

On the Installed Operators screen, the Status displays Succeeded when OpenShift
Virtualization finishes installation.

3.2.3. Deploying OpenShift Virtualization

After subscribing to the OpenShift Virtualization catalog, create the OpenShift Virtualization
Operator Deployment custom resource to deploy OpenShift Virtualization.

Prerequisites

Subscribe to the OpenShift Virtualization catalog in the openshift-cnv namespace.

Procedure

1. Navigate to the Operators → Installed Operators page.

2. Click OpenShift Virtualization.

3. Click the OpenShift Virtualization Operator Deployment tab and click Create
HyperConverged Cluster.

WARNING

To avoid deployment errors, do not rename the custom resource. Before
you proceed to the next step, ensure that the custom resource is named
the default kubevirt-hyperconverged.

4. Click Create to launch OpenShift Virtualization.

5. Navigate to the Workloads → Pods page and monitor the OpenShift Virtualization pods until
they are all Running. After all the pods display the Running state, you can access OpenShift
Virtualization.

3.2.4. Next steps

You might want to additionally configure the following components:

The KubeMacPool component provides a MAC address pool service for virtual machine NICs in
designated namespaces. Enable a MAC address pool in a namespace by applying the
KubeMacPool label to that namespace.

The hostpath provisioner is a local storage provisioner designed for OpenShift Virtualization. If
you want to configure local storage for virtual machines, you must enable the hostpath
provisioner first.

Install OpenShift Virtualization to add virtualization functionality to your OpenShift Container Platform
cluster. You can subscribe to and deploy the OpenShift Virtualization Operators by using the command
line to apply manifests to your cluster.

3.2.5. Prerequisites

CHAPTER 3. OPENSHIFT VIRTUALIZATION INSTALLATION

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-about-kubemacpool_virt-using-mac-address-pool-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-about-hostpath-provisioner_virt-configuring-local-storage-for-vms

1

Install OpenShift Container Platform 4.6 on your cluster.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

3.2.6. Subscribing to the OpenShift Virtualization catalog by using the CLI

Before you install OpenShift Virtualization, you must subscribe to the OpenShift Virtualization catalog.
Subscribing gives the openshift-cnv namespace access to the OpenShift Virtualization Operators.

To subscribe, configure Namespace, OperatorGroup, and Subscription objects by applying a single
manifest to your cluster.

Procedure

1. Create a YAML file that contains the following manifest:

Using the stable channel ensures that you install the version of OpenShift Virtualization
that is compatible with your OpenShift Container Platform version.

2. Create the required Namespace, OperatorGroup, and Subscription objects for OpenShift
Virtualization by running the following command:

3.2.7. Deploying the OpenShift Virtualization Operator by using the CLI

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-cnv

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: kubevirt-hyperconverged-group
 namespace: openshift-cnv
spec:
 targetNamespaces:
 - openshift-cnv

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: hco-operatorhub
 namespace: openshift-cnv
spec:
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 name: kubevirt-hyperconverged
 startingCSV: kubevirt-hyperconverged-operator.v2.5.8
 channel: "stable" 1

$ oc apply -f <file name>.yaml

OpenShift Container Platform 4.6 OpenShift Virtualization

24

You can deploy the OpenShift Virtualization Operator by using the oc CLI.

Prerequisites

An active subscription to the OpenShift Virtualization catalog in the openshift-cnv namespace.

Procedure

1. Create a YAML file that contains the following manifest:

2. Deploy the OpenShift Virtualization Operator by running the following command:

Verification

Ensure that OpenShift Virtualization deployed successfully by watching the PHASE of the
cluster service version (CSV) in the openshift-cnv namespace. Run the following command:

The following output displays if deployment was successful:

Example output

3.2.8. Next steps

You might want to additionally configure the following components:

The KubeMacPool component provides a MAC address pool service for virtual machine NICs in
designated namespaces. Enable a MAC address pool in a namespace by applying the
KubeMacPool label to that namespace.

The hostpath provisioner is a local storage provisioner designed for OpenShift Virtualization. If
you want to configure local storage for virtual machines, you must enable the hostpath
provisioner first.

3.3. INSTALLING THE VIRTCTL CLIENT

The virtctl client is a command-line utility for managing OpenShift Virtualization resources. It is available
for Linux, macOS, and Windows distributions.

apiVersion: hco.kubevirt.io/v1beta1
kind: HyperConverged
metadata:
 name: kubevirt-hyperconverged
 namespace: openshift-cnv
spec:
 BareMetalPlatform: true

$ oc apply -f <file name>.yaml

$ watch oc get csv -n openshift-cnv

NAME DISPLAY VERSION REPLACES PHASE
kubevirt-hyperconverged-operator.v2.5.8 OpenShift Virtualization 2.5.8
Succeeded

CHAPTER 3. OPENSHIFT VIRTUALIZATION INSTALLATION

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-about-kubemacpool_virt-using-mac-address-pool-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-about-hostpath-provisioner_virt-configuring-local-storage-for-vms

You can install the virtctl client from the OpenShift Virtualization web console or by enabling the
OpenShift Virtualization repository and installing the kubevirt-virtctl package.

3.3.1. Installing the virtctl client from the web console

You can download the virtctl client from the Red Hat Customer Portal, which is linked to in your
OpenShift Virtualization web console in the Command Line Tools page.

Prerequisites

You must have an activated OpenShift Container Platform subscription to access the download
page on the Customer Portal.

Procedure

1. Access the Customer Portal by clicking the icon, which is in the upper-right corner of the
web console, and selecting Command Line Tools.

2. Ensure you have the appropriate version for your cluster selected from the Version: list.

3. Download the virtctl client for your distribution. All downloads are in tar.gz format.

4. Extract the tarball. The following CLI command extracts it into the same directory as the tarball
and is applicable for all distributions:

5. For Linux and macOS:

a. Navigate the extracted folder hierachy and make the virtctl binary executable:

b. Move the virtctl binary to a directory on your PATH.

i. To check your path, run:

6. For Windows users:

a. Navigate the extracted folder hierarchy and double-click the virtctl executable file to install
the client.

3.3.2. Enabling OpenShift Virtualization repositories

Red Hat offers OpenShift Virtualization repositories for both Red Hat Enterprise Linux 8 and Red Hat
Enterprise Linux 7:

Red Hat Enterprise Linux 8 repository: cnv-2.5-for-rhel-8-x86_64-rpms

Red Hat Enterprise Linux 7 repository: rhel-7-server-cnv-2.5-rpms

The process for enabling the repository in subscription-manager is the same in both platforms.

$ tar -xvf <virtctl-version-distribution.arch>.tar.gz

$ chmod +x <virtctl-file-name>

$ echo $PATH

OpenShift Container Platform 4.6 OpenShift Virtualization

26

Procedure

Enable the appropriate OpenShift Virtualization repository for your system by running the
following command:

3.3.3. Installing the virtctl client

Install the virtctl client from the kubevirt-virtctl package.

Procedure

Install the kubevirt-virtctl package:

3.3.4. Additional resources

Using the CLI tools for OpenShift Virtualization.

3.4. UNINSTALLING OPENSHIFT VIRTUALIZATION USING THE WEB
CONSOLE

You can uninstall OpenShift Virtualization by using the OpenShift Container Platform web console.

3.4.1. Prerequisites

You must have OpenShift Virtualization 2.5 installed.

You must delete all virtual machines, virtual machine instances, and data volumes.

IMPORTANT

Attempting to uninstall OpenShift Virtualization without deleting these objects
results in failure.

3.4.2. Deleting the OpenShift Virtualization Operator Deployment custom resource

To uninstall OpenShift Virtualization, you must first delete the OpenShift Virtualization Operator
Deployment custom resource.

Prerequisites

Create the OpenShift Virtualization Operator Deployment custom resource.

Procedure

1. From the OpenShift Container Platform web console, select openshift-cnv from the Projects
list.

2. Navigate to the Operators → Installed Operators page.

subscription-manager repos --enable <repository>

yum install kubevirt-virtctl

CHAPTER 3. OPENSHIFT VIRTUALIZATION INSTALLATION

27

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-using-the-cli-tools
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/web_console/#web-console-overview_web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-delete-vm-web_virt-delete-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-deleting-vmis-cli_virt-manage-vmis
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-deleting-dvs_virt-deleting-datavolumes

3. Click OpenShift Virtualization.

4. Click the OpenShift Virtualization Operator Deployment tab.

5. Click the Options menu in the row containing the kubevirt-hyperconverged custom
resource. In the expanded menu, click Delete HyperConverged Cluster.

6. Click Delete in the confirmation window.

7. Navigate to the Workloads → Pods page to verify that only the Operator pods are running.

8. Open a terminal window and clean up the remaining resources by running the following
command:

3.4.3. Deleting the OpenShift Virtualization catalog subscription

To finish uninstalling OpenShift Virtualization, delete the OpenShift Virtualization catalog subscription.

Prerequisites

An active subscription to the OpenShift Virtualization catalog

Procedure

1. Navigate to the Operators → OperatorHub page.

2. Search for OpenShift Virtualization and then select it.

3. Click Uninstall.

NOTE

You can now delete the openshift-cnv namespace.

3.4.4. Deleting a namespace using the web console

You can delete a namespace by using the OpenShift Container Platform web console.

NOTE

If you do not have permissions to delete the namespace, the Delete Namespace option is
not available.

Procedure

1. Navigate to Administration → Namespaces.

2. Locate the namespace that you want to delete in the list of namespaces.

3. On the far right side of the namespace listing, select Delete Namespace from the Options

$ oc delete apiservices v1alpha3.subresources.kubevirt.io -n openshift-cnv

OpenShift Container Platform 4.6 OpenShift Virtualization

28

3. On the far right side of the namespace listing, select Delete Namespace from the Options

menu .

4. When the Delete Namespace pane opens, enter the name of the namespace that you want to
delete in the field.

5. Click Delete.

3.5. UNINSTALLING OPENSHIFT VIRTUALIZATION USING THE CLI

You can uninstall OpenShift Virtualization by using the OpenShift Container Platform CLI.

3.5.1. Prerequisites

You must have OpenShift Virtualization 2.5 installed.

You must delete all virtual machines, virtual machine instances, and data volumes.

IMPORTANT

Attempting to uninstall OpenShift Virtualization without deleting these objects
results in failure.

3.5.2. Deleting OpenShift Virtualization

You can delete OpenShift Virtualization by using the CLI.

Prerequisites

Install the OpenShift CLI (oc).

Access to a OpenShift Virtualization cluster using an account with cluster-admin permissions.

NOTE

When you delete the subscription of the OpenShift Virtualization operator in the OLM by
using the CLI, the ClusterServiceVersion (CSV) object is not deleted from the cluster.
To completely uninstall OpenShift Virtualization, you must explicitly delete the CSV.

Procedure

1. Delete the HyperConverged custom resource:

2. Delete the subscription of the OpenShift Virtualization operator in the Operator Lifecycle
Manager (OLM):

3. Set the cluster service version (CSV) name for OpenShift Virtualization as an environment
variable:

$ oc delete HyperConverged kubevirt-hyperconverged -n openshift-cnv

$ oc delete subscription kubevirt-hyperconverged -n openshift-cnv

CHAPTER 3. OPENSHIFT VIRTUALIZATION INSTALLATION

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/cli_tools/#cli-getting-started
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-delete-vm-web_virt-delete-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-deleting-vmis-cli_virt-manage-vmis
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-deleting-dvs_virt-deleting-datavolumes

4. Delete the CSV from the OpenShift Virtualization cluster by specifying the CSV name from the
previous step:

OpenShift Virtualization is uninstalled when a confirmation message indicates that the CSV was
deleted successfully:

Example output

$ CSV_NAME=$(oc get csv -n openshift-cnv -o=custom-columns=:metadata.name)

$ oc delete csv ${CSV_NAME} -n openshift-cnv

clusterserviceversion.operators.coreos.com "kubevirt-hyperconverged-operator.v2.5.8"
deleted

OpenShift Container Platform 4.6 OpenShift Virtualization

30

CHAPTER 4. UPGRADING OPENSHIFT VIRTUALIZATION
You can manually upgrade to the next minor version of OpenShift Virtualization and monitor the status
of an update by using the web console.

4.1. ABOUT UPGRADING OPENSHIFT VIRTUALIZATION

4.1.1. How OpenShift Virtualization upgrades work

You can upgrade to the next minor version of OpenShift Virtualization by using the OpenShift
Container Platform web console to change the channel of your Operator subscription.

You can enable automatic z-stream updates during OpenShift Virtualization installation.

Updates are delivered via the Marketplace Operator , which is deployed during OpenShift
Container Platform installation. The Marketplace Operator makes external Operators available
to your cluster.

The amount of time an update takes to complete depends on your network connection. Most
automatic updates complete within fifteen minutes.

4.1.2. How OpenShift Virtualization upgrades affect your cluster

Upgrading does not interrupt virtual machine workloads.

Virtual machine pods are not restarted or migrated during an upgrade. If you need to update
the virt-launcher pod, you must restart or live migrate the virtual machine.

NOTE

Each virtual machine has a virt-launcher pod that runs the virtual machine
instance. The virt-launcher pod runs an instance of libvirt, which is used to
manage the virtual machine process.

Upgrading does not interrupt network connections.

Data volumes and their associated persistent volume claims are preserved during upgrade.

IMPORTANT

If you have virtual machines running that cannot be live migrated, they might
block an OpenShift Container Platform cluster upgrade. This includes virtual
machines that use hostpath provisioner storage or SR-IOV network interfaces.

As a workaround, you can reconfigure the virtual machines so that they can be
powered off automatically during a cluster upgrade. Remove the
evictionStrategy: LiveMigrate field and set the runStrategy field to Always.

4.2. UPGRADE PATHWAYS FOR MINOR RELEASES

The upgrade pathway is different depending on the 2.4.z version of OpenShift Virtualization that you
have installed.

IMPORTANT

CHAPTER 4. UPGRADING OPENSHIFT VIRTUALIZATION

31

IMPORTANT

You must upgrade your OpenShift Container Platform to 4.6 before upgrading the minor
release of OpenShift Virtualization.

4.2.1. Upgrading from 2.4.3 to 2.5.8

You must first upgrade to 2.5.0 before you can upgrade the z-stream. You can then upgrade from 2.5.0
to 2.5.1 and then to 2.5.2 and so on.

If your Approval Strategy is Automatic, which is the default, OpenShift Virtualization upgrades the z-
stream automatically after you have upgraded to 2.5.0.

4.2.2. Upgrading from 2.4.4 or 2.4.5 to 2.5.8

You can upgrade from 2.4.4 or 2.4.5 directly to 2.5.2. You can then upgrade from 2.5.2 to 2.5.3 and so
on.

If your Approval Strategy is Automatic, which is the default, OpenShift Virtualization upgrades the z-
stream automatically after you have upgraded to 2.5.2.

4.3. UPGRADING OPENSHIFT VIRTUALIZATION TO THE NEXT MINOR
VERSION

You can manually upgrade OpenShift Virtualization to the next minor version by using the OpenShift
Container Platform web console to change the channel of your Operator subscription.

Prerequisites

Log in to the cluster as a user with the cluster-admin role.

Procedure

1. Access the OpenShift Container Platform web console and navigate to Operators → Installed
Operators.

2. Click OpenShift Virtualization to open the Operator Details page.

3. Click the Subscription tab to open the Subscription Overview page.

4. In the Channel pane, click the pencil icon on the right side of the version number to open the
Change Subscription Update Channel window.

5. Select stable. This ensures that you install the version of OpenShift Virtualization that is
compatible with your OpenShift Container Platform version.

6. Click Save.

7. Check the status of the upgrade by navigating to Operators → Installed Operators. You can
also check the status by running the following oc command:

$ oc get csv -n openshift-cnv

OpenShift Container Platform 4.6 OpenShift Virtualization

32

4.4. MONITORING UPGRADE STATUS

The best way to monitor OpenShift Virtualization upgrade status is to watch the cluster service version
(CSV) PHASE. You can also monitor the CSV conditions in the web console or by running the command
provided here.

NOTE

The PHASE and conditions values are approximations that are based on available
information.

Prerequisites

Log in to the cluster as a user with the cluster-admin role.

Install the OpenShift CLI (oc).

Procedure

1. Run the following command:

2. Review the output, checking the PHASE field. For example:

Example output

3. Optional: Monitor the aggregated status of all OpenShift Virtualization component conditions
by running the following command:

A successful upgrade results in the following output:

Example output

4.5. ADDITIONAL RESOURCES

Cluster service versions (CSVs)

Configuring virtual machine eviction strategy

$ oc get csv

VERSION REPLACES PHASE
2.5.0 kubevirt-hyperconverged-operator.v2.4.3 Installing
2.4.3 Replacing

$ oc get hco -n openshift-cnv kubevirt-hyperconverged \
-o=jsonpath='{range .status.conditions[*]}{.type}{"\t"}{.status}{"\t"}{.message}{"\n"}{end}'

ReconcileComplete True Reconcile completed successfully
Available True Reconcile completed successfully
Progressing False Reconcile completed successfully
Degraded False Reconcile completed successfully
Upgradeable True Reconcile completed successfully

CHAPTER 4. UPGRADING OPENSHIFT VIRTUALIZATION

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/operators/#olm-csv_olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-configuring-vmi-eviction-strategy

CHAPTER 5. ADDITIONAL SECURITY PRIVILEGES GRANTED
FOR KUBEVIRT-CONTROLLER AND VIRT-LAUNCHER

The kubevirt-controller and virt-launcher pods are granted some SELinux policies and Security
Context Constraints privileges that are in addition to typical pod owners. These privileges enable virtual
machines to use OpenShift Virtualization features.

5.1. EXTENDED SELINUX POLICIES FOR VIRT-LAUNCHER PODS

The container_t SELinux policy for virt-launcher pods is extended with the following rules:

allow process self (tun_socket (relabelfrom relabelto attach_queue))

allow process sysfs_t (file (write))

allow process hugetlbfs_t (dir (add_name create write remove_name rmdir setattr))

allow process hugetlbfs_t (file (create unlink))

These rules enable the following virtualization features:

Relabel and attach queues to its own TUN sockets, which is required to support network multi-
queue. Multi-queue enables network performance to scale as the number of available vCPUs
increases.

Allows virt-launcher pods to write information to sysfs (/sys) files, which is required to enable
Single Root I/O Virtualization (SR-IOV).

Read/write hugetlbfs entries, which is required to support huge pages. Huge pages are a
method of managing large amounts of memory by increasing the memory page size.

5.2. ADDITIONAL OPENSHIFT CONTAINER PLATFORM SECURITY
CONTEXT CONSTRAINTS AND LINUX CAPABILITIES FOR THE
KUBEVIRT-CONTROLLER SERVICE ACCOUNT

Security context constraints (SCCs) control permissions for pods. These permissions include actions
that a pod, a collection of containers, can perform and what resources it can access. You can use SCCs
to define a set of conditions that a pod must run with in order to be accepted into the system.

The kubevirt-controller is a cluster controller that creates the virt-launcher pods for virtual machines in
the cluster. These virt-launcher pods are granted permissions by the kubevirt-controller service
account.

5.2.1. Additional SCCs granted to the kubevirt-controller service account

The kubevirt-controller service account is granted additional SCCs and Linux capabilities so that it can
create virt-launcher pods with the appropriate permissions. These extended permissions allow virtual
machines to take advantage of OpenShift Virtualization features that are beyond the scope of typical
pods.

The kubevirt-controller service account is granted the following SCCs:

scc.AllowHostDirVolumePlugin = true
This allows virtual machines to use the hostpath volume plug-in.

OpenShift Container Platform 4.6 OpenShift Virtualization

34

scc.AllowPrivilegedContainer = false
This ensures the virt-launcher pod is not run as a privileged container.

scc.AllowedCapabilities = []corev1.Capability{"NET_ADMIN", "NET_RAW", "SYS_NICE"}
This provides the following additional Linux capabilities NET_ADMIN, NET_RAW, and
SYS_NICE.

5.2.2. Viewing the SCC and RBAC definitions for the kubevirt-controller

You can view the SecurityContextConstraints definition for the kubevirt-controller by using the oc
tool:

You can view the RBAC definition for the kubevirt-controller clusterrole by using the oc tool:

5.3. ADDITIONAL RESOURCES

The Red Hat Enterprise Linux Virtualization Tuning and Optimization Guide has more
information on network multi-queue and huge pages.

The capabilities man page has more information on the Linux capabilities.

The sysfs(5) man page has more information on sysfs.

The OpenShift Container Platform Authentication guide has more information on Security
Context Constraints.

$ oc get scc kubevirt-controller -o yaml

$ oc get clusterrole kubevirt-controller -o yaml

CHAPTER 5. ADDITIONAL SECURITY PRIVILEGES GRANTED FOR KUBEVIRT-CONTROLLER AND VIRT-LAUNCHER

35

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-networking-techniques#mult
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/virtualization_tuning_and_optimization_guide/sect-virtualization_tuning_optimization_guide-memory-tuning#sect-Virtualization_Tuning_Optimization_Guide-Memory-Huge_Pages
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/authentication_and_authorization/#security-context-constraints-about_configuring-internal-oauth

CHAPTER 6. USING THE CLI TOOLS
The two primary CLI tools used for managing resources in the cluster are:

The OpenShift Virtualization virtctl client

The OpenShift Container Platform oc client

6.1. PREREQUISITES

You must install the virtctl client.

6.2. VIRTCTL CLIENT COMMANDS

The virtctl client is a command-line utility for managing OpenShift Virtualization resources. The
following table contains the virtctl commands used throughout the OpenShift Virtualization
documentation.

To view a list of options that you can use with a command, run it with the -h or --help flag. For example:

Table 6.1. virtctl client commands

Command Description

virtctl start <vm_name> Start a virtual machine.

virtctl stop <vm_name> Stop a virtual machine.

virtctl pause vm|vmi <object_name> Pause a virtual machine or virtual machine instance. The
machine state is kept in memory.

virtctl unpause vm|vmi
<object_name>

Unpause a virtual machine or virtual machine instance.

virtctl migrate <vm_name> Migrate a virtual machine.

virtctl restart <vm_name> Restart a virtual machine.

virtctl expose <vm_name> Create a service that forwards a designated port of a virtual
machine or virtual machine instance and expose the service
on the specified port of the node.

virtctl console <vmi_name> Connect to a serial console of a virtual machine instance.

virtctl vnc <vmi_name> Open a VNC connection to a virtual machine instance.

$ virtctl image-upload -h

OpenShift Container Platform 4.6 OpenShift Virtualization

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-installing-virtctl

virtctl image-upload dv
<datavolume_name> --image-path=
</path/to/image> --no-create

Upload a virtual machine image to a data volume that already
exists.

virtctl image-upload dv
<datavolume_name> --size=
<datavolume_size> --image-path=
</path/to/image>

Upload a virtual machine image to a new data volume.

virtctl version Display the client and server version information.

virtctl help Display a descriptive list of virtctl commands.

virtctl fslist <vmi_name> Return a full list of file systems available on the guest
machine.

virtctl guestosinfo <vmi_name> Return guest agent information about the operating system.

virtctl userlist <vmi_name> Return a full list of logged-in users on the guest machine.

Command Description

6.3. OPENSHIFT CONTAINER PLATFORM CLIENT COMMANDS

The OpenShift Container Platform oc client is a command-line utility for managing OpenShift Container
Platform resources, including the VirtualMachine (vm) and VirtualMachineInstance (vmi) object
types.

NOTE

You can use the -n <namespace> flag to specify a different project.

Table 6.2. oc commands

Command Description

oc login -u <user_name> Log in to the OpenShift Container Platform cluster as
<user_name>.

oc get <object_type> Display a list of objects for the specified object type in the
current project.

oc describe <object_type>
<resource_name>

Display details of the specific resource in the current project.

oc create -f <object_config> Create a resource in the current project from a file name or
from stdin.

CHAPTER 6. USING THE CLI TOOLS

37

oc edit <object_type>
<resource_name>

Edit a resource in the current project.

oc delete <object_type>
<resource_name>

Delete a resource in the current project.

Command Description

For more comprehensive information on oc client commands, see the OpenShift Container Platform
CLI tools documentation.

OpenShift Container Platform 4.6 OpenShift Virtualization

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/cli_tools/#cli_reference

CHAPTER 7. VIRTUAL MACHINES

7.1. CREATING VIRTUAL MACHINES

Use one of these procedures to create a virtual machine:

Running the virtual machine wizard

Pasting a pre-configured YAML file with the virtual machine wizard

Using the CLI

Importing a VMware virtual machine or template with the virtual machine wizard

WARNING

Do not create virtual machines in openshift-* namespaces. Instead, create a new
namespace or use an existing namespace without the openshift prefix.

7.1.1. Running the virtual machine wizard to create a virtual machine

The web console features an interactive wizard that guides you through General, Networking, Storage,
Advanced, and Review steps to simplify the process of creating virtual machines. All required fields are
marked by a *. When the required fields are completed, you can review and create your virtual machine.

Network interface controllers (NICs) and storage disks can be created and attached to virtual machines
after they have been created.

Bootable Disk

If either URL or Container are selected as the Source in the General step, a rootdisk disk is created
and attached to the virtual machine as the Bootable Disk. You can modify the rootdisk but you cannot
remove it.

A Bootable Disk is not required for virtual machines provisioned from a PXE source if there are no disks
attached to the virtual machine. If one or more disks are attached to the virtual machine, you must select
one as the Bootable Disk.

Prerequisites

When you create your virtual machine using the wizard, your virtual machine’s storage medium
must support Read-Write-Many (RWX) PVCs.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Click Create Virtual Machine and select New with Wizard.

4. Fill in all required fields in the General step. Selecting a Template automatically fills in these

CHAPTER 7. VIRTUAL MACHINES

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-importing-vmware-vm

4. Fill in all required fields in the General step. Selecting a Template automatically fills in these
fields.

5. Click Next to progress to the Networking step. A nic0 NIC is attached by default.

a. Optional: Click Add Network Interface to create additional NICs.

b. Optional: You can remove any or all NICs by clicking the Options menu and selecting
Delete. A virtual machine does not need a NIC attached to be created. NICs can be created
after the virtual machine has been created.

6. Click Next to progress to the Storage screen.

a. Optional: Click Add Disk to create additional disks. These disks can be removed by clicking

the Options menu and selecting Delete.

b. Optional: Click the Options menu to edit the disk and save your changes.

7. Click Review and Create. The Results screen displays the JSON configuration file for the
virtual machine.

The virtual machine is listed in the Virtual Machines tab.

Refer to the virtual machine wizard fields section when running the web console wizard.

7.1.1.1. Virtual machine wizard fields

Name Parameter Description

Template Template from which to create
the virtual machine. Selecting a
template will automatically
complete other fields.

Source PXE Provision virtual machine from
PXE menu. Requires a PXE-
capable NIC in the cluster.

URL Provision virtual machine from an
image available from an HTTP or
S3 endpoint.

Container Provision virtual machine from a
bootable operating system
container located in a registry
accessible from the cluster.
Example: kubevirt/cirros-
registry-disk-demo.

OpenShift Container Platform 4.6 OpenShift Virtualization

40

Disk Provision virtual machine from a
disk.

Operating System The primary operating system
that is selected for the virtual
machine.

Flavor small, medium, large, tiny, Custom Presets that determine the
amount of CPU and memory
allocated to the virtual machine.
The presets displayed for Flavor
are determined by the operating
system.

Memory Size in GiB of the memory
allocated to the virtual machine.

CPUs The amount of CPU allocated to
the virtual machine.

Workload Profile High Performance A virtual machine configuration
that is optimized for high-
performance workloads.

Server A profile optimized to run server
workloads.

Desktop A virtual machine configuration
for use on a desktop.

Name The name can contain lowercase
letters (a-z), numbers (0-9), and
hyphens (-), up to a maximum of
253 characters. The first and last
characters must be alphanumeric.
The name must not contain
uppercase letters, spaces, periods
(.), or special characters.

Description Optional description field.

Start virtual machine on creation Select to automatically start the
virtual machine upon creation.

Name Parameter Description

7.1.1.2. Cloud-init fields

CHAPTER 7. VIRTUAL MACHINES

41

Name Description

Hostname Sets a specific hostname for the virtual machine.

Authenticated SSH Keys The user’s public key that is copied to
~/.ssh/authorized_keys on the virtual machine.

Custom script Replaces other options with a field in which you paste
a custom cloud-init script.

7.1.1.3. CD-ROM fields

Source Description

Container Specify the container path. For example:
kubevirt/fedora-registry-disk: latest.

URL Specify the URL path and size in GiB. Then, select
the storage class for this URL from the drop-down
list.

Attach Disk Select the virtual machine disk that you want to
attach.

7.1.1.4. Networking fields

Name Description

Name Name for the network interface controller.

Model Indicates the model of the network interface
controller. Supported values are e1000e and virtio.

Network List of available network attachment definitions.

Type List of available binding methods. For the default
pod network, masquerade is the only
recommended binding method. For secondary
networks, use the bridge binding method. The
masquerade method is not supported for non-
default networks.

MAC Address MAC address for the network interface controller. If a
MAC address is not specified, one is assigned
automatically.

7.1.1.5. Storage fields

OpenShift Container Platform 4.6 OpenShift Virtualization

42

Name Description

Source Select a blank disk for the virtual machine or choose
from the options available: URL, Container, Attach
Cloned Disk, or Attach Disk. To select an existing
disk and attach it to the virtual machine, choose
Attach Cloned Disk or Attach Disk from a list of
available persistent volume claims (PVCs).

Name Name of the disk. The name can contain lowercase
letters (a-z), numbers (0-9), hyphens (-), and periods
(.), up to a maximum of 253 characters. The first and
last characters must be alphanumeric. The name
must not contain uppercase letters, spaces, or special
characters.

Size (GiB) Size, in GiB, of the disk.

Interface Type of disk device. Supported interfaces are virtIO,
SATA, and SCSI.

Storage Class The storage class that is used to create the disk.

Advanced → Volume Mode Defines whether the persistent volume uses a
formatted file system or raw block state. Default is
Filesystem.

Advanced → Access Mode Access mode of the persistent volume. Supported
access modes are ReadWriteOnce, ReadOnlyMany,
and ReadWriteMany.

Advanced storage settings
The following advanced storage settings are available for Blank, Import via URL, and Clone existing
PVC disks. These parameters are optional. If you do not specify these parameters, the system uses the
default values from the kubevirt-storage-class-defaults config map.

Name Parameter Description

Volume Mode Filesystem Stores the virtual disk on a file system-based volume.

Block Stores the virtual disk directly on the block volume.
Only use Block if the underlying storage supports it.

Access Mode Single User (RWO) The disk can be mounted as read/write by a single
node.

CHAPTER 7. VIRTUAL MACHINES

43

Shared Access (RWX) The disk can be mounted as read/write by many
nodes.

NOTE

This is required for some features,
such as live migration of virtual
machines between nodes.

Read Only (ROX) The disk can be mounted as read-only by many
nodes.

Name Parameter Description

For more information on the kubevirt-storage-class-defaults config map, see Storage defaults for
data volumes.

7.1.1.6. Pasting in a pre-configured YAML file to create a virtual machine

Create a virtual machine by writing or pasting a YAML configuration file. A valid example virtual machine
configuration is provided by default whenever you open the YAML edit screen.

If your YAML configuration is invalid when you click Create, an error message indicates the parameter in
which the error occurs. Only one error is shown at a time.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the
configuration you have made.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Click Create Virtual Machine and select New from YAML.

4. Write or paste your virtual machine configuration in the editable window.

a. Alternatively, use the example virtual machine provided by default in the YAML screen.

5. Optional: Click Download to download the YAML configuration file in its present state.

6. Click Create to create the virtual machine.

The virtual machine is listed in the Virtual Machines tab.

7.1.2. Using the CLI to create a virtual machine

You can create a virtual machine from a virtualMachine manifest.

OpenShift Container Platform 4.6 OpenShift Virtualization

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-storage-defaults-for-datavolumes

Procedure

1. Edit the VirtualMachine manifest for your VM. For example, the following manifest configures a
Red Hat Enterprise Linux (RHEL) VM:

Example 7.1. Example manifest for a RHEL VM

apiVersion: kubevirt.io/v1
kind: VirtualMachine
metadata:
 labels:
 app: <vm_name> 1
 name: <vm_name>
spec:
 dataVolumeTemplates:
 - apiVersion: cdi.kubevirt.io/v1beta1
 kind: DataVolume
 metadata:
 name: <vm_name>
 spec:
 sourceRef:
 kind: DataSource
 name: rhel9
 namespace: openshift-virtualization-os-images
 storage:
 resources:
 requests:
 storage: 30Gi
 running: false
 template:
 metadata:
 labels:
 kubevirt.io/domain: <vm_name>
 spec:
 domain:
 cpu:
 cores: 1
 sockets: 2
 threads: 1
 devices:
 disks:
 - disk:
 bus: virtio
 name: rootdisk
 - disk:
 bus: virtio
 name: cloudinitdisk
 interfaces:
 - masquerade: {}
 name: default
 rng: {}
 features:
 smm:
 enabled: true
 firmware:
 bootloader:
 efi: {}

CHAPTER 7. VIRTUAL MACHINES

45

1

2

 resources:
 requests:
 memory: 8Gi
 evictionStrategy: LiveMigrate
 networks:
 - name: default
 pod: {}
 volumes:
 - dataVolume:
 name: <vm_name>
 name: rootdisk
 - cloudInitNoCloud:
 userData: |-
 #cloud-config
 user: cloud-user
 password: '<password>' 2
 chpasswd: { expire: False }
 name: cloudinitdisk

Specify the name of the virtual machine.

Specify the password for cloud-user.

2. Create a virtual machine by using the manifest file:

3. Optional: Start the virtual machine:

7.1.3. Virtual machine storage volume types

Storage volume type Description

ephemeral A local copy-on-write (COW) image that uses a
network volume as a read-only backing store. The
backing volume must be a PersistentVolumeClaim.
The ephemeral image is created when the virtual
machine starts and stores all writes locally. The
ephemeral image is discarded when the virtual
machine is stopped, restarted, or deleted. The
backing volume (PVC) is not mutated in any way.

$ oc create -f <vm_manifest_file>.yaml

$ virtctl start <vm_name>

OpenShift Container Platform 4.6 OpenShift Virtualization

46

persistentVolumeClaim Attaches an available PV to a virtual machine.
Attaching a PV allows for the virtual machine data to
persist between sessions.

Importing an existing virtual machine disk into a PVC
by using CDI and attaching the PVC to a virtual
machine instance is the recommended method for
importing existing virtual machines into OpenShift
Container Platform. There are some requirements
for the disk to be used within a PVC.

dataVolume Data volumes build on the
persistentVolumeClaim disk type by managing
the process of preparing the virtual machine disk via
an import, clone, or upload operation. VMs that use
this volume type are guaranteed not to start until the
volume is ready.

Specify type: dataVolume or type: "". If you
specify any other value for type, such as
persistentVolumeClaim, a warning is displayed,
and the virtual machine does not start.

cloudInitNoCloud Attaches a disk that contains the referenced cloud-
init NoCloud data source, providing user data and
metadata to the virtual machine. A cloud-init
installation is required inside the virtual machine disk.

Storage volume type Description

CHAPTER 7. VIRTUAL MACHINES

47

containerDisk References an image, such as a virtual machine disk,
that is stored in the container image registry. The
image is pulled from the registry and attached to the
virtual machine as a disk when the virtual machine is
launched.

A containerDisk volume is not limited to a single
virtual machine and is useful for creating large
numbers of virtual machine clones that do not
require persistent storage.

Only RAW and QCOW2 formats are supported disk
types for the container image registry. QCOW2 is
recommended for reduced image size.

NOTE

A containerDisk volume is
ephemeral. It is discarded when the
virtual machine is stopped, restarted,
or deleted. A containerDisk
volume is useful for read-only file
systems such as CD-ROMs or for
disposable virtual machines.

emptyDisk Creates an additional sparse QCOW2 disk that is tied
to the life-cycle of the virtual machine interface. The
data survives guest-initiated reboots in the virtual
machine but is discarded when the virtual machine
stops or is restarted from the web console. The
empty disk is used to store application dependencies
and data that otherwise exceeds the limited
temporary file system of an ephemeral disk.

The disk capacity size must also be provided.

Storage volume type Description

7.1.4. About RunStrategies for virtual machines

A RunStrategy for virtual machines determines a virtual machine instance’s (VMI) behavior, depending
on a series of conditions. The spec.runStrategy setting exists in the virtual machine configuration
process as an alternative to the spec.running setting. The spec.runStrategy setting allows greater
flexibility for how VMIs are created and managed, in contrast to the spec.running setting with only true
or false responses. However, the two settings are mutually exclusive. Only either spec.running or
spec.runStrategy can be used. An error occurs if both are used.

There are four defined RunStrategies.

Always

A VMI is always present when a virtual machine is created. A new VMI is created if the original stops
for any reason, which is the same behavior as spec.running: true.

RerunOnFailure

OpenShift Container Platform 4.6 OpenShift Virtualization

48

1

A VMI is re-created if the previous instance fails due to an error. The instance is not re-created if the
virtual machine stops successfully, such as when it shuts down.

Manual

The start, stop, and restart virtctl client commands can be used to control the VMI’s state and
existence.

Halted

No VMI is present when a virtual machine is created, which is the same behavior as spec.running:
false.

Different combinations of the start, stop and restart virtctl commands affect which RunStrategy is
used.

The following table follows a VM’s transition from different states. The first column shows the VM’s
initial RunStrategy. Each additional column shows a virtctl command and the new RunStrategy after
that command is run.

Initial RunStrategy start stop restart

Always - Halted Always

RerunOnFailure - Halted RerunOnFailure

Manual Manual Manual Manual

Halted Always - -

NOTE

In OpenShift Virtualization clusters installed using installer-provisioned infrastructure,
when a node fails the MachineHealthCheck and becomes unavailable to the cluster, VMs
with a RunStrategy of Always or RerunOnFailure are rescheduled on a new node.

The VMI’s current RunStrategy setting.

7.1.5. Additional resources

The VirtualMachineSpec definition in the KubeVirt v0.34.1 API Reference provides broader
context for the parameters and hierarchy of the virtual machine specification.

NOTE

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
spec:
 RunStrategy: Always 1
 template:
...

CHAPTER 7. VIRTUAL MACHINES

49

https://kubevirt.io/api-reference/v0.34.1/definitions.html#_v1_virtualmachinespec

NOTE

The KubeVirt API Reference is the upstream project reference and might contain
parameters that are not supported in OpenShift Virtualization.

Prepare a container disk before adding it to a virtual machine as a containerDisk volume.

See Deploying machine health checks for further details on deploying and enabling machine
health checks.

See Installer-provisioned infrastructure overview for further details on installer-provisioned
infrastructure.

7.2. EDITING VIRTUAL MACHINES

You can update a virtual machine configuration using either the YAML editor in the web console or the
OpenShift client on the command line. You can also update a subset of the parameters in the Virtual
Machine Overview of the web console.

7.2.1. Editing a virtual machine in the web console

Edit select values of a virtual machine in the Virtual Machine Overview screen of the web console by
clicking on the pencil icon next to the relevant field. Other values can be edited using the CLI.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. Click the Details tab.

5. Click the pencil icon to make a field editable.

6. Make the relevant changes and click Save.

NOTE

If the virtual machine is running, changes to Boot Order or Flavor will not take effect
until you restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
relevant field. The Pending Changes banner at the top of the page displays a list of all
changes that will be applied when the virtual machine restarts.

7.2.2. Editing a virtual machine YAML configuration using the web console

Using the web console, edit the YAML configuration of a virtual machine.

Not all parameters can be updated. If you edit values that cannot be changed and click Save, an error
message indicates the parameter that was not able to be updated.

The YAML configuration can be edited while the virtual machine is Running, however the changes will

OpenShift Container Platform 4.6 OpenShift Virtualization

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-using-container-disks-with-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/machine_management/#machine-health-checks-about_deploying-machine-health-checks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/installing/#ipi-install-overview

The YAML configuration can be edited while the virtual machine is Running, however the changes will
only take effect after the virtual machine has been stopped and started again.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the
configuration you have made.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. Click the YAML tab to display the editable configuration.

5. Optional: You can click Download to download the YAML file locally in its current state.

6. Edit the file and click Save.

A confirmation message shows that the modification has been successful and includes the updated
version number for the object.

7.2.3. Editing a virtual machine YAML configuration using the CLI

Use this procedure to edit a virtual machine YAML configuration using the CLI.

Prerequisites

You configured a virtual machine with a YAML object configuration file.

You installed the oc CLI.

Procedure

1. Run the following command to update the virtual machine configuration:

2. Open the object configuration.

3. Edit the YAML.

4. If you edit a running virtual machine, you need to do one of the following:

Restart the virtual machine.

Run the following command for the new configuration to take effect:

7.2.4. Adding a virtual disk to a virtual machine

$ oc edit <object_type> <object_ID>

$ oc apply <object_type> <object_ID>

CHAPTER 7. VIRTUAL MACHINES

51

Use this procedure to add a virtual disk to a virtual machine.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. Click the Disks tab.

5. Click Add Disk to open the Add Disk window.

6. In the Add Disk window, specify the Source, Name, Size, Interface, Type, and Storage Class.

a. Optional: In the Advanced list, specify the Volume Mode and Access Mode for the virtual
disk. If you do not specify these parameters, the system uses the default values from the
kubevirt-storage-class-defaults config map.

7. Click Add.

NOTE

If the virtual machine is running, the new disk is in the pending restart state and will not
be attached until you restart the virtual machine.

The Pending Changes banner at the top of the page displays a list of all changes that will
be applied when the virtual machine restarts.

For more information on the kubevirt-storage-class-defaults config map, see Storage defaults for
data volumes.

7.2.4.1. Storage fields

Name Description

Source Select a blank disk for the virtual machine or choose
from the options available: URL, Container, Attach
Cloned Disk, or Attach Disk. To select an existing
disk and attach it to the virtual machine, choose
Attach Cloned Disk or Attach Disk from a list of
available persistent volume claims (PVCs).

Name Name of the disk. The name can contain lowercase
letters (a-z), numbers (0-9), hyphens (-), and periods
(.), up to a maximum of 253 characters. The first and
last characters must be alphanumeric. The name
must not contain uppercase letters, spaces, or special
characters.

Size (GiB) Size, in GiB, of the disk.

OpenShift Container Platform 4.6 OpenShift Virtualization

52

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-storage-defaults-for-datavolumes

Interface Type of disk device. Supported interfaces are virtIO,
SATA, and SCSI.

Storage Class The storage class that is used to create the disk.

Advanced → Volume Mode Defines whether the persistent volume uses a
formatted file system or raw block state. Default is
Filesystem.

Advanced → Access Mode Access mode of the persistent volume. Supported
access modes are ReadWriteOnce, ReadOnlyMany,
and ReadWriteMany.

Name Description

Advanced storage settings
The following advanced storage settings are available for Blank, Import via URL, and Clone existing
PVC disks. These parameters are optional. If you do not specify these parameters, the system uses the
default values from the kubevirt-storage-class-defaults config map.

Name Parameter Description

Volume Mode Filesystem Stores the virtual disk on a file system-based volume.

Block Stores the virtual disk directly on the block volume.
Only use Block if the underlying storage supports it.

Access Mode Single User (RWO) The disk can be mounted as read/write by a single
node.

Shared Access (RWX) The disk can be mounted as read/write by many
nodes.

NOTE

This is required for some features,
such as live migration of virtual
machines between nodes.

Read Only (ROX) The disk can be mounted as read-only by many
nodes.

7.2.5. Adding a network interface to a virtual machine

Use this procedure to add a network interface to a virtual machine.

Procedure

CHAPTER 7. VIRTUAL MACHINES

53

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. Click the Network Interfaces tab.

5. Click Add Network Interface.

6. In the Add Network Interface window, specify the Name, Model, Network, Type, and MAC
Address of the network interface.

7. Click Add.

NOTE

If the virtual machine is running, the new network interface is in the pending restart state
and changes will not take effect until you restart the virtual machine.

The Pending Changes banner at the top of the page displays a list of all changes that will
be applied when the virtual machine restarts.

7.2.5.1. Networking fields

Name Description

Name Name for the network interface controller.

Model Indicates the model of the network interface
controller. Supported values are e1000e and virtio.

Network List of available network attachment definitions.

Type List of available binding methods. For the default
pod network, masquerade is the only
recommended binding method. For secondary
networks, use the bridge binding method. The
masquerade method is not supported for non-
default networks.

MAC Address MAC address for the network interface controller. If a
MAC address is not specified, one is assigned
automatically.

7.2.6. Editing CD-ROMs for Virtual Machines

Use the following procedure to configure CD-ROMs for virtual machines.

Procedure

1. From the Virtual Machines tab, select your virtual machine.

OpenShift Container Platform 4.6 OpenShift Virtualization

54

2. Select the Overview tab.

3. To add or edit a CD-ROM configuration, click the pencil icon to the right of the CD-ROMs label.
The Edit CD-ROM window opens.

If CD-ROMs are unavailable for editing, the following message displays: The virtual
machine doesn’t have any CD-ROMs attached.

If there are CD-ROMs available, you can remove a CD-ROM by clicking -.

4. In the Edit CD-ROM window, do the following:

a. Select the type of CD-ROM configuration from the drop-down list for Media Type. CD-
ROM configuration types are Container, URL, and Persistent Volume Claim.

b. Complete the required information for each Type.

c. When all CD-ROMs are added, click Save.

7.3. EDITING BOOT ORDER

You can update the values for a boot order list by using the web console or the CLI.

With Boot Order in the Virtual Machine Overview page, you can:

Select a disk or network interface controller (NIC) and add it to the boot order list.

Edit the order of the disks or NICs in the boot order list.

Remove a disk or NIC from the boot order list, and return it back to the inventory of bootable
sources.

7.3.1. Adding items to a boot order list in the web console

Add items to a boot order list by using the web console.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. Click the Details tab.

5. Click the pencil icon that is located on the right side of Boot Order. If a YAML configuration
does not exist, or if this is the first time that you are creating a boot order list, the following
message displays: No resource selected. VM will attempt to boot from disks by order of
appearance in YAML file.

6. Click Add Source and select a bootable disk or network interface controller (NIC) for the virtual
machine.

7. Add any additional disks or NICs to the boot order list.

8. Click Save.

CHAPTER 7. VIRTUAL MACHINES

55

NOTE

If the virtual machine is running, changes to Boot Order will not take effect until you
restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

7.3.2. Editing a boot order list in the web console

Edit the boot order list in the web console.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. Click the Details tab.

5. Click the pencil icon that is located on the right side of Boot Order.

6. Choose the appropriate method to move the item in the boot order list:

If you do not use a screen reader, hover over the arrow icon next to the item that you want
to move, drag the item up or down, and drop it in a location of your choice.

If you use a screen reader, press the Up Arrow key or Down Arrow key to move the item in
the boot order list. Then, press the Tab key to drop the item in a location of your choice.

7. Click Save.

NOTE

If the virtual machine is running, changes to the boot order list will not take effect until
you restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

7.3.3. Editing a boot order list in the YAML configuration file

Edit the boot order list in a YAML configuration file by using the CLI.

Procedure

1. Open the YAML configuration file for the virtual machine by running the following command:

2. Edit the YAML file and modify the values for the boot order associated with a disk or network

$ oc edit vm example

OpenShift Container Platform 4.6 OpenShift Virtualization

56

1

2

2. Edit the YAML file and modify the values for the boot order associated with a disk or network
interface controller (NIC). For example:

The boot order value specified for the disk.

The boot order value specified for the network interface controller.

3. Save the YAML file.

4. Click reload the content to apply the updated boot order values from the YAML file to the
boot order list in the web console.

7.3.4. Removing items from a boot order list in the web console

Remove items from a boot order list by using the web console.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. Click the Details tab.

5. Click the pencil icon that is located on the right side of Boot Order.

6. Click the Remove icon next to the item. The item is removed from the boot order list and
saved in the list of available boot sources. If you remove all items from the boot order list, the
following message displays: No resource selected. VM will attempt to boot from disks by
order of appearance in YAML file.

NOTE

disks:
 - bootOrder: 1 1
 disk:
 bus: virtio
 name: containerdisk
 - disk:
 bus: virtio
 name: cloudinitdisk
 - cdrom:
 bus: virtio
 name: cd-drive-1
interfaces:
 - boot Order: 2 2
 macAddress: '02:96:c4:00:00'
 masquerade: {}
 name: default

CHAPTER 7. VIRTUAL MACHINES

57

NOTE

If the virtual machine is running, changes to Boot Order will not take effect until you
restart the virtual machine.

You can view pending changes by clicking View Pending Changes on the right side of the
Boot Order field. The Pending Changes banner at the top of the page displays a list of
all changes that will be applied when the virtual machine restarts.

7.4. DELETING VIRTUAL MACHINES

You can delete a virtual machine from the web console or by using the oc command-line interface.

7.4.1. Deleting a virtual machine using the web console

Deleting a virtual machine permanently removes it from the cluster.

NOTE

When you delete a virtual machine, the data volume it uses is automatically deleted.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Click the ⋮ button of the virtual machine that you want to delete and select Delete Virtual
Machine.

Alternatively, click the virtual machine name to open the Virtual Machine Overview screen
and click Actions → Delete Virtual Machine.

4. In the confirmation pop-up window, click Delete to permanently delete the virtual machine.

7.4.2. Deleting a virtual machine by using the CLI

You can delete a virtual machine by using the oc command-line interface (CLI). The oc client enables
you to perform actions on multiple virtual machines.

NOTE

When you delete a virtual machine, the data volume it uses is automatically deleted.

Prerequisites

Identify the name of the virtual machine that you want to delete.

Procedure

Delete the virtual machine by running the following command:

NOTE

$ oc delete vm <vm_name>

OpenShift Container Platform 4.6 OpenShift Virtualization

58

NOTE

This command only deletes objects that exist in the current project. Specify the -
n <project_name> option if the object you want to delete is in a different project
or namespace.

7.5. MANAGING VIRTUAL MACHINE INSTANCES

If you have standalone virtual machine instances (VMIs) that were created independently outside of the
OpenShift Virtualization environment, you can manage them by using the web console or the command-
line interface (CLI).

7.5.1. About virtual machine instances

A virtual machine instance (VMI) is a representation of a running virtual machine (VM). When a VMI is
owned by a VM or by another object, you manage it through its owner in the web console or by using the
oc command-line interface (CLI).

A standalone VMI is created and started independently with a script, through automation, or by using
other methods in the CLI. In your environment, you might have standalone VMIs that were developed
and started outside of the OpenShift Virtualization environment. You can continue to manage those
standalone VMIs by using the CLI. You can also use the web console for specific tasks associated with
standalone VMIs:

List standalone VMIs and their details.

Edit labels and annotations for a standalone VMI.

Delete a standalone VMI.

When you delete a VM, the associated VMI is automatically deleted. You delete a standalone VMI
directly because it is not owned by VMs or other objects.

NOTE

Before you uninstall OpenShift Virtualization, list and view the standalone VMIs by using
the CLI or the web console. Then, delete any outstanding VMIs.

7.5.2. Listing all virtual machine instances using the CLI

You can list all virtual machine instances (VMIs) in your cluster, including standalone VMIs and those
owned by virtual machines, by using the oc command-line interface (CLI).

Procedure

List all VMIs by running the following command:

7.5.3. Listing standalone virtual machine instances using the web console

Using the web console, you can list and view standalone virtual machine instances (VMIs) in your cluster
that are not owned by virtual machines (VMs).

NOTE

$ oc get vmis

CHAPTER 7. VIRTUAL MACHINES

59

NOTE

VMIs that are owned by VMs or other objects are not displayed in the web console. The
web console displays only standalone VMIs. If you want to list all VMIs in your cluster, you
must use the CLI.

Procedure

Click Workloads → Virtualization from the side menu. A list of VMs and standalone VMIs
displays. You can identify standalone VMIs by the dark colored badges that display next to the
virtual machine instance names.

7.5.4. Editing a standalone virtual machine instance using the web console

You can edit annotations and labels for a standalone virtual machine instance (VMI) using the web
console. Other items displayed in the Details page for a standalone VMI are not editable.

Procedure

1. Click Workloads → Virtualization from the side menu. A list of virtual machines (VMs) and
standalone VMIs displays.

2. Click the name of a standalone VMI to open the Virtual Machine Instance Overview screen.

3. Click the Details tab.

4. Click the pencil icon that is located on the right side of Annotations.

5. Make the relevant changes and click Save.

NOTE

To edit labels for a standalone VMI, click Actions and select Edit Labels. Make the
relevant changes and click Save.

7.5.5. Deleting a standalone virtual machine instance using the CLI

You can delete a standalone virtual machine instance (VMI) by using the oc command-line interface
(CLI).

Prerequisites

Identify the name of the VMI that you want to delete.

Procedure

Delete the VMI by running the following command:

7.5.6. Deleting a standalone virtual machine instance using the web console

Delete a standalone virtual machine instance (VMI) from the web console.

$ oc delete vmi <vmi_name>

OpenShift Container Platform 4.6 OpenShift Virtualization

60

Procedure

1. In the OpenShift Container Platform web console, click Workloads → Virtualization from the
side menu.

2. Click the ⋮ button of the standalone virtual machine instance (VMI) that you want to delete
and select Delete Virtual Machine Instance.

Alternatively, click the name of the standalone VMI. The Virtual Machine Instance
Overview page displays.

3. Select Actions → Delete Virtual Machine Instance.

4. In the confirmation pop-up window, click Delete to permanently delete the standalone VMI.

7.6. CONTROLLING VIRTUAL MACHINE STATES

You can stop, start, restart, and unpause virtual machines from the web console.

NOTE

To control virtual machines from the command-line interface (CLI), use the virtctl client.

7.6.1. Starting a virtual machine

You can start a virtual machine from the web console.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Find the row that contains the virtual machine that you want to start.

4. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. Click the Options menu located at the far right end of the row.

To view comprehensive information about the selected virtual machine before you start it:

a. Access the Virtual Machine Overview screen by clicking the name of the virtual
machine.

b. Click Actions.

5. Select Start Virtual Machine.

6. In the confirmation window, click Start to start the virtual machine.

NOTE

CHAPTER 7. VIRTUAL MACHINES

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-using-the-cli-tools

NOTE

When you start virtual machine that is provisioned from a URL source for the first time,
the virtual machine has a status of Importing while OpenShift Virtualization imports the
container from the URL endpoint. Depending on the size of the image, this process might
take several minutes.

7.6.2. Restarting a virtual machine

You can restart a running virtual machine from the web console.

IMPORTANT

To avoid errors, do not restart a virtual machine while it has a status of Importing.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Find the row that contains the virtual machine that you want to restart.

4. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. Click the Options menu located at the far right end of the row.

To view comprehensive information about the selected virtual machine before you restart it:

a. Access the Virtual Machine Overview screen by clicking the name of the virtual
machine.

b. Click Actions.

5. Select Restart Virtual Machine.

6. In the confirmation window, click Restart to restart the virtual machine.

7.6.3. Stopping a virtual machine

You can stop a virtual machine from the web console.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Find the row that contains the virtual machine that you want to stop.

4. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

OpenShift Container Platform 4.6 OpenShift Virtualization

62

a. Click the Options menu located at the far right end of the row.

To view comprehensive information about the selected virtual machine before you stop it:

a. Access the Virtual Machine Overview screen by clicking the name of the virtual
machine.

b. Click Actions.

5. Select Stop Virtual Machine.

6. In the confirmation window, click Stop to stop the virtual machine.

7.6.4. Unpausing a virtual machine

You can unpause a paused virtual machine from the web console.

Prerequisites

At least one of your virtual machines must have a status of Paused.

NOTE

You can pause virtual machines by using the virtctl client.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Find the row that contains the virtual machine that you want to unpause.

4. Navigate to the appropriate menu for your use case:

To stay on this page, where you can perform actions on multiple virtual machines:

a. In the Status column, click Paused.

To view comprehensive information about the selected virtual machine before you unpause
it:

a. Access the Virtual Machine Overview screen by clicking the name of the virtual
machine.

b. Click the pencil icon that is located on the right side of Status.

5. In the confirmation window, click Unpause to unpause the virtual machine.

7.7. ACCESSING VIRTUAL MACHINE CONSOLES

OpenShift Virtualization provides different virtual machine consoles that you can use to accomplish
different product tasks. You can access these consoles through the OpenShift Container Platform web
console and by using CLI commands.

CHAPTER 7. VIRTUAL MACHINES

63

7.7.1. Accessing virtual machine consoles in the OpenShift Container Platform web
console

You can connect to virtual machines by using the serial console or the VNC console in the OpenShift
Container Platform web console.

You can connect to Windows virtual machines by using the desktop viewer console, which uses RDP
(remote desktop protocol), in the OpenShift Container Platform web console.

7.7.1.1. Connecting to the serial console

Connect to the serial console of a running virtual machine from the Console tab in the Virtual Machine
Overview screen of the web console.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview page.

4. Click Console. The VNC console opens by default.

5. Select Disconnect before switching to ensure that only one console session is open at a time.
Otherwise, the VNC console session remains active in the background.

6. Click the VNC Console drop-down list and select Serial Console.

7. Click Disconnect to end the console session.

8. Optional: Open the serial console in a separate window by clicking Open Console in New
Window.

7.7.1.2. Connecting to the VNC console

Connect to the VNC console of a running virtual machine from the Console tab in the Virtual Machine
Overview screen of the web console.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview page.

4. Click the Console tab. The VNC console opens by default.

5. Optional: Open the VNC console in a separate window by clicking Open Console in New
Window.

6. Optional: Send key combinations to the virtual machine by clicking Send Key.

7.7.1.3. Connecting to a Windows virtual machine with RDP

OpenShift Container Platform 4.6 OpenShift Virtualization

64

The desktop viewer console, which utilizes the Remote Desktop Protocol (RDP), provides a better
console experience for connecting to Windows virtual machines.

To connect to a Windows virtual machine with RDP, download the console.rdp file for the virtual
machine from the Consoles tab in the Virtual Machine Details screen of the web console and supply it
to your preferred RDP client.

Prerequisites

A running Windows virtual machine with the QEMU guest agent installed. The qemu-guest-
agent is included in the VirtIO drivers.

A layer-2 NIC attached to the virtual machine.

An RDP client installed on a machine on the same network as the Windows virtual machine.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a Windows virtual machine to open the Virtual Machine Overview screen.

4. Click the Console tab.

5. In the Console list, select Desktop Viewer.

6. In the Network Interface list, select the layer-2 NIC.

7. Click Launch Remote Desktop to download the console.rdp file.

8. Open an RDP client and reference the console.rdp file. For example, using remmina:

9. Enter the Administrator user name and password to connect to the Windows virtual machine.

7.7.1.4. Copying the SSH command from the web console

Copy the command to access a running virtual machine (VM) via SSH from the Actions list in the web
console.

Procedure

1. In the OpenShift Container Platform console, click Workloads → Virtualization from the side
menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview page.

4. From the Actions list, select Copy SSH Command. You can now paste this command onto the
OpenShift CLI (oc).

$ remmina --connect /path/to/console.rdp

CHAPTER 7. VIRTUAL MACHINES

65

1

7.7.2. Accessing virtual machine consoles by using CLI commands

7.7.2.1. Accessing a virtual machine instance via SSH

You can use SSH to access a virtual machine (VM) after you expose port 22 on it.

The virtctl expose command forwards a virtual machine instance (VMI) port to a node port and creates
a service for enabled access. The following example creates the fedora-vm-ssh service that forwards
traffic from a specific port of cluster nodes to port 22 of the <fedora-vm> virtual machine.

Prerequisites

You must be in the same project as the VMI.

The VMI you want to access must be connected to the default pod network by using the
masquerade binding method.

The VMI you want to access must be running.

Install the OpenShift CLI (oc).

Procedure

1. Run the following command to create the fedora-vm-ssh service:

$ virtctl expose vm <fedora-vm> --port=22 --name=fedora-vm-ssh --type=NodePort 1

<fedora-vm> is the name of the VM that you run the fedora-vm-ssh service on.

2. Check the service to find out which port the service acquired:

Example output

+ In this example, the service acquired the 32551 port.

1. Log in to the VMI via SSH. Use the ipAddress of any of the cluster nodes and the port that you
found in the previous step:

7.7.2.2. Accessing the serial console of a virtual machine instance

The virtctl console command opens a serial console to the specified virtual machine instance.

Prerequisites

The virt-viewer package must be installed.

$ oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
fedora-vm-ssh NodePort 127.0.0.1 <none> 22:32551/TCP 6s

$ ssh username@<node_IP_address> -p 32551

OpenShift Container Platform 4.6 OpenShift Virtualization

66

The virtual machine instance you want to access must be running.

Procedure

Connect to the serial console with virtctl:

7.7.2.3. Accessing the graphical console of a virtual machine instances with VNC

The virtctl client utility can use the remote-viewer function to open a graphical console to a running
virtual machine instance. This capability is included in the virt-viewer package.

Prerequisites

The virt-viewer package must be installed.

The virtual machine instance you want to access must be running.

NOTE

If you use virtctl via SSH on a remote machine, you must forward the X session to your
machine.

Procedure

1. Connect to the graphical interface with the virtctl utility:

2. If the command failed, try using the -v flag to collect troubleshooting information:

7.7.2.4. Connecting to a Windows virtual machine with an RDP console

The Remote Desktop Protocol (RDP) provides a better console experience for connecting to Windows
virtual machines.

To connect to a Windows virtual machine with RDP, specify the IP address of the attached L2 NIC to
your RDP client.

Prerequisites

A running Windows virtual machine with the QEMU guest agent installed. The qemu-guest-
agent is included in the VirtIO drivers.

A layer 2 NIC attached to the virtual machine.

An RDP client installed on a machine on the same network as the Windows virtual machine.

Procedure

$ virtctl console <VMI>

$ virtctl vnc <VMI>

$ virtctl vnc <VMI> -v 4

CHAPTER 7. VIRTUAL MACHINES

67

1. Log in to the OpenShift Virtualization cluster through the oc CLI tool as a user with an access
token.

2. Use oc describe vmi to display the configuration of the running Windows virtual machine.

Example output

3. Identify and copy the IP address of the layer 2 network interface. This is 192.0.2.0 in the above
example, or 2001:db8:: if you prefer IPv6.

4. Open an RDP client and use the IP address copied in the previous step for the connection.

5. Enter the Administrator user name and password to connect to the Windows virtual machine.

7.8. TRIGGERING VIRTUAL MACHINE FAILOVER BY RESOLVING A
FAILED NODE

If a node fails and machine health checks are not deployed on your cluster, virtual machines (VMs) with
RunStrategy: Always configured are not automatically relocated to healthy nodes. To trigger VM
failover, you must manually delete the Node object.

NOTE

$ oc login -u <user> https://<cluster.example.com>:8443

$ oc describe vmi <windows-vmi-name>

...
spec:
 networks:
 - name: default
 pod: {}
 - multus:
 networkName: cnv-bridge
 name: bridge-net
...
status:
 interfaces:
 - interfaceName: eth0
 ipAddress: 198.51.100.0/24
 ipAddresses:
 198.51.100.0/24
 mac: a0:36:9f:0f:b1:70
 name: default
 - interfaceName: eth1
 ipAddress: 192.0.2.0/24
 ipAddresses:
 192.0.2.0/24
 2001:db8::/32
 mac: 00:17:a4:77:77:25
 name: bridge-net
...

OpenShift Container Platform 4.6 OpenShift Virtualization

68

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/machine_management/#machine-health-checks-about_deploying-machine-health-checks

NOTE

If you installed your cluster by using installer-provisioned infrastructure and you properly
configured machine health checks:

Failed nodes are automatically recycled.

Virtual machines with RunStrategy set to Always or RerunOnFailure are
automatically scheduled on healthy nodes.

7.8.1. Prerequisites

A node where a virtual machine was running has the NotReady condition.

The virtual machine that was running on the failed node has RunStrategy set to Always.

You have installed the OpenShift CLI (oc).

7.8.2. Deleting nodes from a bare metal cluster

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist
on the node are not deleted. Any bare pods not backed by a replication controller become inaccessible
to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other
available nodes. You must delete local manifest pods.

Procedure

Delete a node from an OpenShift Container Platform cluster running on bare metal by completing the
following steps:

1. Mark the node as unschedulable:

2. Drain all pods on the node:

This step might fail if the node is offline or unresponsive. Even if the node does not respond, it
might still be running a workload that writes to shared storage. To avoid data corruption, power
down the physical hardware before you proceed.

3. Delete the node from the cluster:

Although the node object is now deleted from the cluster, it can still rejoin the cluster after
reboot or if the kubelet service is restarted. To permanently delete the node and all its data, you
must decommission the node.

4. If you powered down the physical hardware, turn it back on so that the node can rejoin the
cluster.

7.8.3. Verifying virtual machine failover

After all resources are terminated on the unhealthy node, a new virtual machine instance (VMI) is

$ oc adm cordon <node_name>

$ oc adm drain <node_name> --force=true

$ oc delete node <node_name>

CHAPTER 7. VIRTUAL MACHINES

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/installing/#ipi-install-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-about-runstrategies-vms_virt-create-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/nodes/#nodes-nodes-viewing-listing_nodes-nodes-viewing
https://access.redhat.com/solutions/84663

After all resources are terminated on the unhealthy node, a new virtual machine instance (VMI) is
automatically created on a healthy node for each relocated VM. To confirm that the VMI was created,
view all VMIs by using the oc CLI.

7.8.3.1. Listing all virtual machine instances using the CLI

You can list all virtual machine instances (VMIs) in your cluster, including standalone VMIs and those
owned by virtual machines, by using the oc command-line interface (CLI).

Procedure

List all VMIs by running the following command:

7.9. INSTALLING THE QEMU GUEST AGENT ON VIRTUAL MACHINES

The QEMU guest agent is a daemon that runs on the virtual machine and passes information to the host
about the virtual machine, users, file systems, and secondary networks.

7.9.1. Installing QEMU guest agent on a Linux virtual machine

The qemu-guest-agent is widely available and available by default in Red Hat virtual machines. Install
the agent and start the service

Procedure

1. Access the virtual machine command line through one of the consoles or by SSH.

2. Install the QEMU guest agent on the virtual machine:

3. Ensure the service is persistent and start it:

You can also install and start the QEMU guest agent by using the custom script field in the cloud-init
section of the wizard when creating either virtual machines or virtual machines templates in the web
console.

7.9.2. Installing QEMU guest agent on a Windows virtual machine

For Windows virtual machines, the QEMU guest agent is included in the VirtIO drivers, which can be
installed using one of the following procedures:

7.9.2.1. Installing VirtIO drivers on an existing Windows virtual machine

Install the VirtIO drivers from the attached SATA CD drive to an existing Windows virtual machine.

NOTE

$ oc get vmis

$ yum install -y qemu-guest-agent

$ systemctl enable --now qemu-guest-agent

OpenShift Container Platform 4.6 OpenShift Virtualization

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-viewing-qemu-guest-agent-web

NOTE

This procedure uses a generic approach to adding drivers to Windows. The process might
differ slightly between versions of Windows. Refer to the installation documentation for
your version of Windows for specific installation steps.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Log in to a Windows user session.

3. Open Device Manager and expand Other devices to list any Unknown device.

a. Open the Device Properties to identify the unknown device. Right-click the device and
select Properties.

b. Click the Details tab and select Hardware Ids in the Property list.

c. Compare the Value for the Hardware Ids with the supported VirtIO drivers.

4. Right-click the device and select Update Driver Software.

5. Click Browse my computer for driver software and browse to the attached SATA CD drive,
where the VirtIO drivers are located. The drivers are arranged hierarchically according to their
driver type, operating system, and CPU architecture.

6. Click Next to install the driver.

7. Repeat this process for all the necessary VirtIO drivers.

8. After the driver installs, click Close to close the window.

9. Reboot the virtual machine to complete the driver installation.

7.9.2.2. Installing VirtIO drivers during Windows installation

Install the VirtIO drivers from the attached SATA CD driver during Windows installation.

NOTE

This procedure uses a generic approach to the Windows installation and the installation
method might differ between versions of Windows. Refer to the documentation for the
version of Windows that you are installing.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Begin the Windows installation process.

3. Select the Advanced installation.

4. The storage destination will not be recognized until the driver is loaded. Click Load driver.

5. The drivers are attached as a SATA CD drive. Click OK and browse the CD drive for the storage

CHAPTER 7. VIRTUAL MACHINES

71

5. The drivers are attached as a SATA CD drive. Click OK and browse the CD drive for the storage
driver to load. The drivers are arranged hierarchically according to their driver type, operating
system, and CPU architecture.

6. Repeat the previous two steps for all required drivers.

7. Complete the Windows installation.

7.10. VIEWING THE QEMU GUEST AGENT INFORMATION FOR
VIRTUAL MACHINES

When the QEMU guest agent runs on the virtual machine, you can use the web console to view
information about the virtual machine, users, file systems, and secondary networks.

7.10.1. Prerequisites

Install the QEMU guest agent on the virtual machine.

7.10.2. About the QEMU guest agent information in the web console

When the QEMU guest agent is installed, the Details pane within the Virtual Machine Overview tab and
the Details tab display information about the hostname, operating system, time zone, and logged in
users.

The Virtual Machine Overview shows information about the guest operating system installed on the
virtual machine. The Details tab displays a table with information for logged in users. The Disks tab
displays a table with information for file systems.

NOTE

If the QEMU guest agent is not installed, the Virtual Machine Overview tab and the
Details tab display information about the operating system that was specified when the
virtual machine was created.

7.10.3. Viewing the QEMU guest agent information in the web console

You can use the web console to view information for virtual machines that is passed by the QEMU guest
agent to the host.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine name to open the Virtual Machine Overview screen and view the
Details pane.

4. Click Logged in users to view the Details tab that shows information for users.

5. Click the Disks tab to view information about the file systems.

7.11. MANAGING CONFIG MAPS, SECRETS, AND SERVICE ACCOUNTS

OpenShift Container Platform 4.6 OpenShift Virtualization

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-installing-qemu-guest-agent

7.11. MANAGING CONFIG MAPS, SECRETS, AND SERVICE ACCOUNTS
IN VIRTUAL MACHINES

You can use secrets, config maps, and service accounts to pass configuration data to virtual machines.
For example, you can:

Give a virtual machine access to a service that requires credentials by adding a secret to the
virtual machine.

Store non-confidential configuration data in a config map so that a pod or another object can
consume the data.

Allow a component to access the API server by associating a service account with that
component.

NOTE

OpenShift Virtualization exposes secrets, config maps, and service accounts as virtual
machine disks so that you can use them across platforms without additional overhead.

7.11.1. Adding a secret, config map, or service account to a virtual machine

Add a secret, config map, or service account to a virtual machine by using the OpenShift Container
Platform web console.

Prerequisites

The secret, config map, or service account that you want to add must exist in the same
namespace as the target virtual machine.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. Click the Environment tab.

5. Click Select a resource and select a secret, config map, or service account from the list. A six
character serial number is automatically generated for the selected resource.

6. Click Save.

7. Optional. Add another object by clicking Add Config Map, Secret or Service Account.

NOTE

CHAPTER 7. VIRTUAL MACHINES

73

NOTE

a. You can reset the form to the last saved state by clicking Reload.

b. The Environment resources are added to the virtual machine as disks. You can
mount the secret, config map, or service account as you would mount any other
disk.

c. If the virtual machine is running, changes will not take effect until you restart the
virtual machine. The newly added resources are marked as pending changes for
both the Environment and Disks tab in the Pending Changes banner at the top
of the page.

Verification

1. From the Virtual Machine Overview page, click the Disks tab.

2. Check to ensure that the secret, config map, or service account is included in the list of disks.

3. Optional. Choose the appropriate method to apply your changes:

a. If the virtual machine is running, restart the virtual machine by clicking Actions → Restart
Virtual Machine.

b. If the virtual machine is stopped, start the virtual machine by clicking Actions → Start
Virtual Machine.

You can now mount the secret, config map, or service account as you would mount any other disk.

7.11.2. Removing a secret, config map, or service account from a virtual machine

Remove a secret, config map, or service account from a virtual machine by using the OpenShift
Container Platform web console.

Prerequisites

You must have at least one secret, config map, or service account that is attached to a virtual
machine.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. Click the Environment tab.

5. Find the item that you want to delete in the list, and click Remove on the right side of the
item.

6. Click Save.

NOTE

OpenShift Container Platform 4.6 OpenShift Virtualization

74

NOTE

You can reset the form to the last saved state by clicking Reload.

Verification

1. From the Virtual Machine Overview page, click the Disks tab.

2. Check to ensure that the secret, config map, or service account that you removed is no longer
included in the list of disks.

7.11.3. Additional resources

Providing sensitive data to pods

Understanding and creating service accounts

Understanding config maps

7.12. INSTALLING VIRTIO DRIVER ON AN EXISTING WINDOWS
VIRTUAL MACHINE

7.12.1. Understanding VirtIO drivers

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines to run
in OpenShift Virtualization. The supported drivers are available in the container-native-
virtualization/virtio-win container disk of the Red Hat Ecosystem Catalog .

The container-native-virtualization/virtio-win container disk must be attached to the virtual machine
as a SATA CD drive to enable driver installation. You can install VirtIO drivers during Windows
installation on the virtual machine or added to an existing Windows installation.

After the drivers are installed, the container-native-virtualization/virtio-win container disk can be
removed from the virtual machine.

See also: Installing Virtio drivers on a new Windows virtual machine .

7.12.2. Supported VirtIO drivers for Microsoft Windows virtual machines

Table 7.1. Supported drivers

Driver name Hardware ID Description

viostor VEN_1AF4&DEV_1001
VEN_1AF4&DEV_1042

The block driver. Sometimes
displays as an SCSI Controller in
the Other devices group.

viorng VEN_1AF4&DEV_1005
VEN_1AF4&DEV_1044

The entropy source driver.
Sometimes displays as a PCI
Device in the Other devices
group.

CHAPTER 7. VIRTUAL MACHINES

75

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/nodes/#nodes-pods-secrets-about
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/authentication_and_authorization/#service-accounts-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/nodes/#nodes-pods-configmap-overview_builds-configmaps
https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-installing-virtio-drivers-on-new-windows-vm

1

NetKVM VEN_1AF4&DEV_1000
VEN_1AF4&DEV_1041

The network driver. Sometimes
displays as an Ethernet
Controller in the Other devices
group. Available only if a VirtIO
NIC is configured.

Driver name Hardware ID Description

7.12.3. Adding VirtIO drivers container disk to a virtual machine

OpenShift Virtualization distributes VirtIO drivers for Microsoft Windows as a container disk, which is
available from the Red Hat Ecosystem Catalog . To install these drivers to a Windows virtual machine,
attach the container-native-virtualization/virtio-win container disk to the virtual machine as a SATA
CD drive in the virtual machine configuration file.

Prerequisites

Download the container-native-virtualization/virtio-win container disk from the Red Hat
Ecosystem Catalog. This is not mandatory, because the container disk will be downloaded from
the Red Hat registry if it not already present in the cluster, but it can reduce installation time.

Procedure

1. Add the container-native-virtualization/virtio-win container disk as a cdrom disk in the
Windows virtual machine configuration file. The container disk will be downloaded from the
registry if it is not already present in the cluster.

OpenShift Virtualization boots virtual machine disks in the order defined in the
VirtualMachine configuration file. You can either define other disks for the virtual machine
before the container-native-virtualization/virtio-win container disk or use the optional
bootOrder parameter to ensure the virtual machine boots from the correct disk. If you
specify the bootOrder for a disk, it must be specified for all disks in the configuration.

2. The disk is available once the virtual machine has started:

If you add the container disk to a running virtual machine, use oc apply -f <vm.yaml> in the
CLI or reboot the virtual machine for the changes to take effect.

spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2 1
 cdrom:
 bus: sata
volumes:
 - containerDisk:
 image: container-native-virtualization/virtio-win
 name: virtiocontainerdisk

OpenShift Container Platform 4.6 OpenShift Virtualization

76

https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win
https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win

If the virtual machine is not running, use virtctl start <vm>.

After the virtual machine has started, the VirtIO drivers can be installed from the attached SATA CD
drive.

7.12.4. Installing VirtIO drivers on an existing Windows virtual machine

Install the VirtIO drivers from the attached SATA CD drive to an existing Windows virtual machine.

NOTE

This procedure uses a generic approach to adding drivers to Windows. The process might
differ slightly between versions of Windows. Refer to the installation documentation for
your version of Windows for specific installation steps.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Log in to a Windows user session.

3. Open Device Manager and expand Other devices to list any Unknown device.

a. Open the Device Properties to identify the unknown device. Right-click the device and
select Properties.

b. Click the Details tab and select Hardware Ids in the Property list.

c. Compare the Value for the Hardware Ids with the supported VirtIO drivers.

4. Right-click the device and select Update Driver Software.

5. Click Browse my computer for driver software and browse to the attached SATA CD drive,
where the VirtIO drivers are located. The drivers are arranged hierarchically according to their
driver type, operating system, and CPU architecture.

6. Click Next to install the driver.

7. Repeat this process for all the necessary VirtIO drivers.

8. After the driver installs, click Close to close the window.

9. Reboot the virtual machine to complete the driver installation.

7.12.5. Removing the VirtIO container disk from a virtual machine

After installing all required VirtIO drivers to the virtual machine, the container-native-
virtualization/virtio-win container disk no longer needs to be attached to the virtual machine. Remove
the container-native-virtualization/virtio-win container disk from the virtual machine configuration file.

Procedure

1. Edit the configuration file and remove the disk and the volume.

$ oc edit vm <vm-name>

CHAPTER 7. VIRTUAL MACHINES

77

2. Reboot the virtual machine for the changes to take effect.

7.13. INSTALLING VIRTIO DRIVER ON A NEW WINDOWS VIRTUAL
MACHINE

7.13.1. Prerequisites

Windows installation media accessible by the virtual machine, such as importing an ISO into a
data volume and attaching it to the virtual machine.

7.13.2. Understanding VirtIO drivers

VirtIO drivers are paravirtualized device drivers required for Microsoft Windows virtual machines to run
in OpenShift Virtualization. The supported drivers are available in the container-native-
virtualization/virtio-win container disk of the Red Hat Ecosystem Catalog .

The container-native-virtualization/virtio-win container disk must be attached to the virtual machine
as a SATA CD drive to enable driver installation. You can install VirtIO drivers during Windows
installation on the virtual machine or added to an existing Windows installation.

After the drivers are installed, the container-native-virtualization/virtio-win container disk can be
removed from the virtual machine.

See also: Installing VirtIO driver on an existing Windows virtual machine .

7.13.3. Supported VirtIO drivers for Microsoft Windows virtual machines

Table 7.2. Supported drivers

Driver name Hardware ID Description

viostor VEN_1AF4&DEV_1001
VEN_1AF4&DEV_1042

The block driver. Sometimes
displays as an SCSI Controller in
the Other devices group.

viorng VEN_1AF4&DEV_1005
VEN_1AF4&DEV_1044

The entropy source driver.
Sometimes displays as a PCI
Device in the Other devices
group.

spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2
 cdrom:
 bus: sata
volumes:
 - containerDisk:
 image: container-native-virtualization/virtio-win
 name: virtiocontainerdisk

OpenShift Container Platform 4.6 OpenShift Virtualization

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-importing-vm-datavolume_virt-importing-virtual-machine-images-datavolumes
https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-installing-virtio-drivers-on-existing-windows-vm

1

NetKVM VEN_1AF4&DEV_1000
VEN_1AF4&DEV_1041

The network driver. Sometimes
displays as an Ethernet
Controller in the Other devices
group. Available only if a VirtIO
NIC is configured.

Driver name Hardware ID Description

7.13.4. Adding VirtIO drivers container disk to a virtual machine

OpenShift Virtualization distributes VirtIO drivers for Microsoft Windows as a container disk, which is
available from the Red Hat Ecosystem Catalog . To install these drivers to a Windows virtual machine,
attach the container-native-virtualization/virtio-win container disk to the virtual machine as a SATA
CD drive in the virtual machine configuration file.

Prerequisites

Download the container-native-virtualization/virtio-win container disk from the Red Hat
Ecosystem Catalog. This is not mandatory, because the container disk will be downloaded from
the Red Hat registry if it not already present in the cluster, but it can reduce installation time.

Procedure

1. Add the container-native-virtualization/virtio-win container disk as a cdrom disk in the
Windows virtual machine configuration file. The container disk will be downloaded from the
registry if it is not already present in the cluster.

OpenShift Virtualization boots virtual machine disks in the order defined in the
VirtualMachine configuration file. You can either define other disks for the virtual machine
before the container-native-virtualization/virtio-win container disk or use the optional
bootOrder parameter to ensure the virtual machine boots from the correct disk. If you
specify the bootOrder for a disk, it must be specified for all disks in the configuration.

2. The disk is available once the virtual machine has started:

If you add the container disk to a running virtual machine, use oc apply -f <vm.yaml> in the
CLI or reboot the virtual machine for the changes to take effect.

If the virtual machine is not running, use virtctl start <vm>.

spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2 1
 cdrom:
 bus: sata
volumes:
 - containerDisk:
 image: container-native-virtualization/virtio-win
 name: virtiocontainerdisk

CHAPTER 7. VIRTUAL MACHINES

79

https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win
https://access.redhat.com/containers/#/registry.access.redhat.com/container-native-virtualization/virtio-win

After the virtual machine has started, the VirtIO drivers can be installed from the attached SATA CD
drive.

7.13.5. Installing VirtIO drivers during Windows installation

Install the VirtIO drivers from the attached SATA CD driver during Windows installation.

NOTE

This procedure uses a generic approach to the Windows installation and the installation
method might differ between versions of Windows. Refer to the documentation for the
version of Windows that you are installing.

Procedure

1. Start the virtual machine and connect to a graphical console.

2. Begin the Windows installation process.

3. Select the Advanced installation.

4. The storage destination will not be recognized until the driver is loaded. Click Load driver.

5. The drivers are attached as a SATA CD drive. Click OK and browse the CD drive for the storage
driver to load. The drivers are arranged hierarchically according to their driver type, operating
system, and CPU architecture.

6. Repeat the previous two steps for all required drivers.

7. Complete the Windows installation.

7.13.6. Removing the VirtIO container disk from a virtual machine

After installing all required VirtIO drivers to the virtual machine, the container-native-
virtualization/virtio-win container disk no longer needs to be attached to the virtual machine. Remove
the container-native-virtualization/virtio-win container disk from the virtual machine configuration file.

Procedure

1. Edit the configuration file and remove the disk and the volume.

$ oc edit vm <vm-name>

spec:
 domain:
 devices:
 disks:
 - name: virtiocontainerdisk
 bootOrder: 2
 cdrom:
 bus: sata
volumes:

OpenShift Container Platform 4.6 OpenShift Virtualization

80

2. Reboot the virtual machine for the changes to take effect.

7.14. ADVANCED VIRTUAL MACHINE MANAGEMENT

7.14.1. Automating management tasks

You can automate OpenShift Virtualization management tasks by using Red Hat Ansible Automation
Platform. Learn the basics by using an Ansible Playbook to create a new virtual machine.

7.14.1.1. About Red Hat Ansible Automation

Ansible is an automation tool used to configure systems, deploy software, and perform rolling updates.
Ansible includes support for OpenShift Virtualization, and Ansible modules enable you to automate
cluster management tasks such as template, persistent volume claim, and virtual machine operations.

Ansible provides a way to automate OpenShift Virtualization management, which you can also
accomplish by using the oc CLI tool or APIs. Ansible is unique because it allows you to integrate
KubeVirt modules with other Ansible modules.

7.14.1.2. Automating virtual machine creation

You can use the kubevirt_vm Ansible Playbook to create virtual machines in your OpenShift Container
Platform cluster using Red Hat Ansible Automation Platform.

Prerequisites

Red Hat Ansible Engine version 2.8 or newer

Procedure

1. Edit an Ansible Playbook YAML file so that it includes the kubevirt_vm task:

NOTE

This snippet only includes the kubevirt_vm portion of the playbook.

2. Edit the values to reflect the virtual machine you want to create, including the namespace, the

 - containerDisk:
 image: container-native-virtualization/virtio-win
 name: virtiocontainerdisk

 kubevirt_vm:
 namespace:
 name:
 cpu_cores:
 memory:
 disks:
 - name:
 volume:
 containerDisk:
 image:
 disk:
 bus:

CHAPTER 7. VIRTUAL MACHINES

81

https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/2.9/modules/list_of_cloud_modules.html#ovirt
https://access.redhat.com/products/red-hat-ansible-engine

1

2. Edit the values to reflect the virtual machine you want to create, including the namespace, the
number of cpu_cores, the memory, and the disks. For example:

3. If you want the virtual machine to boot immediately after creation, add state: running to the
YAML file. For example:

Changing this value to state: absent deletes the virtual machine, if it already exists.

4. Run the ansible-playbook command, using your playbook’s file name as the only argument:

5. Review the output to determine if the play was successful:

Example output

6. If you did not include state: running in your playbook file and you want to boot the VM now, edit
the file so that it includes state: running and run the playbook again:

To verify that the virtual machine was created, try to access the VM console .

7.14.1.3. Example: Ansible Playbook for creating virtual machines

 kubevirt_vm:
 namespace: default
 name: vm1
 cpu_cores: 1
 memory: 64Mi
 disks:
 - name: containerdisk
 volume:
 containerDisk:
 image: kubevirt/cirros-container-disk-demo:latest
 disk:
 bus: virtio

 kubevirt_vm:
 namespace: default
 name: vm1
 state: running 1
 cpu_cores: 1

$ ansible-playbook create-vm.yaml

(...)
TASK [Create my first VM] **
changed: [localhost]

PLAY RECAP
**
localhost : ok=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

$ ansible-playbook create-vm.yaml

OpenShift Container Platform 4.6 OpenShift Virtualization

82

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-accessing-vm-consoles

You can use the kubevirt_vm Ansible Playbook to automate virtual machine creation.

The following YAML file is an example of the kubevirt_vm playbook. It includes sample values that you
must replace with your own information if you run the playbook.

Additional information

Intro to Playbooks

Tools for Validating Playbooks

7.14.2. Configuring PXE booting for virtual machines

PXE booting, or network booting, is available in OpenShift Virtualization. Network booting allows a
computer to boot and load an operating system or other program without requiring a locally attached
storage device. For example, you can use it to choose your desired OS image from a PXE server when
deploying a new host.

7.14.2.1. Prerequisites

A Linux bridge must be connected.

The PXE server must be connected to the same VLAN as the bridge.

7.14.2.2. PXE booting with a specified MAC address

As an administrator, you can boot a client over the network by first creating a
NetworkAttachmentDefinition object for your PXE network. Then, reference the network attachment
definition in your virtual machine instance configuration file before you start the virtual machine
instance. You can also specify a MAC address in the virtual machine instance configuration file, if
required by the PXE server.

Prerequisites

A Linux bridge must be connected.

- name: Ansible Playbook 1
 hosts: localhost
 connection: local
 tasks:
 - name: Create my first VM
 kubevirt_vm:
 namespace: default
 name: vm1
 cpu_cores: 1
 memory: 64Mi
 disks:
 - name: containerdisk
 volume:
 containerDisk:
 image: kubevirt/cirros-container-disk-demo:latest
 disk:
 bus: virtio

CHAPTER 7. VIRTUAL MACHINES

83

https://docs.ansible.com/ansible/latest/user_guide/playbooks.html
https://docs.ansible.com/ansible/latest/community/other_tools_and_programs.html#validate-playbook-tools
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-attaching-vm-multiple-networks

1

2

The PXE server must be connected to the same VLAN as the bridge.

Procedure

1. Configure a PXE network on the cluster:

a. Create the network attachment definition file for PXE network pxe-net-conf:

Optional: The VLAN tag.

The cnv-tuning plug-in provides support for custom MAC addresses.

NOTE

The virtual machine instance will be attached to the bridge br1 through an
access port with the requested VLAN.

2. Create the network attachment definition by using the file you created in the previous step:

3. Edit the virtual machine instance configuration file to include the details of the interface and
network.

a. Specify the network and MAC address, if required by the PXE server. If the MAC address is
not specified, a value is assigned automatically. However, note that at this time, MAC
addresses assigned automatically are not persistent.
Ensure that bootOrder is set to 1 so that the interface boots first. In this example, the
interface is connected to a network called <pxe-net>:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: pxe-net-conf
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "pxe-net-conf",
 "plugins": [
 {
 "type": "cnv-bridge",
 "bridge": "br1",
 "vlan": 1 1
 },
 {
 "type": "cnv-tuning" 2
 }
]
 }'

$ oc create -f pxe-net-conf.yaml

interfaces:
- masquerade: {}
 name: default

OpenShift Container Platform 4.6 OpenShift Virtualization

84

NOTE

Boot order is global for interfaces and disks.

b. Assign a boot device number to the disk to ensure proper booting after operating system
provisioning.
Set the disk bootOrder value to 2:

c. Specify that the network is connected to the previously created network attachment
definition. In this scenario, <pxe-net> is connected to the network attachment definition
called <pxe-net-conf>:

4. Create the virtual machine instance:

Example output

1. Wait for the virtual machine instance to run:

2. View the virtual machine instance using VNC:

3. Watch the boot screen to verify that the PXE boot is successful.

4. Log in to the virtual machine instance:

- bridge: {}
 name: pxe-net
 macAddress: de:00:00:00:00:de
 bootOrder: 1

devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 bootOrder: 2

networks:
- name: default
 pod: {}
- name: pxe-net
 multus:
 networkName: pxe-net-conf

$ oc create -f vmi-pxe-boot.yaml

 virtualmachineinstance.kubevirt.io "vmi-pxe-boot" created

$ oc get vmi vmi-pxe-boot -o yaml | grep -i phase
 phase: Running

$ virtctl vnc vmi-pxe-boot

CHAPTER 7. VIRTUAL MACHINES

85

5. Verify the interfaces and MAC address on the virtual machine and that the interface connected
to the bridge has the specified MAC address. In this case, we used eth1 for the PXE boot,
without an IP address. The other interface, eth0, got an IP address from OpenShift Container
Platform.

Example output

7.14.2.3. Template: Virtual machine instance configuration file for PXE booting

$ virtctl console vmi-pxe-boot

$ ip addr

...
3. eth1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
 link/ether de:00:00:00:00:de brd ff:ff:ff:ff:ff:ff

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
 creationTimestamp: null
 labels:
 special: vmi-pxe-boot
 name: vmi-pxe-boot
spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 bootOrder: 2
 - disk:
 bus: virtio
 name: cloudinitdisk
 interfaces:
 - masquerade: {}
 name: default
 - bridge: {}
 name: pxe-net
 macAddress: de:00:00:00:00:de
 bootOrder: 1
 machine:
 type: ""
 resources:
 requests:
 memory: 1024M
 networks:
 - name: default
 pod: {}
 - multus:
 networkName: pxe-net-conf
 name: pxe-net
 terminationGracePeriodSeconds: 0

OpenShift Container Platform 4.6 OpenShift Virtualization

86

7.14.2.4. OpenShift Virtualization networking glossary

OpenShift Virtualization provides advanced networking functionality by using custom resources and
plug-ins.

The following terms are used throughout OpenShift Virtualization documentation:

Container Network Interface (CNI)

a Cloud Native Computing Foundation project, focused on container network connectivity.
OpenShift Virtualization uses CNI plug-ins to build upon the basic Kubernetes networking
functionality.

Multus

a "meta" CNI plug-in that allows multiple CNIs to exist so that a pod or virtual machine can use the
interfaces it needs.

Custom resource definition (CRD)

a Kubernetes API resource that allows you to define custom resources, or an object defined by using
the CRD API resource.

Network attachment definition

a CRD introduced by the Multus project that allows you to attach pods, virtual machines, and virtual
machine instances to one or more networks.

Preboot eXecution Environment (PXE)

an interface that enables an administrator to boot a client machine from a server over the network.
Network booting allows you to remotely load operating systems and other software onto the client.

7.14.3. Managing guest memory

If you want to adjust guest memory settings to suit a specific use case, you can do so by editing the
guest’s YAML configuration file. OpenShift Virtualization allows you to configure guest memory
overcommitment and disable guest memory overhead accounting.

WARNING

The following procedures increase the chance that virtual machine processes will be
killed due to memory pressure. Proceed only if you understand the risks.

7.14.3.1. Configuring guest memory overcommitment

 volumes:
 - name: containerdisk
 containerDisk:
 image: kubevirt/fedora-cloud-container-disk-demo
 - cloudInitNoCloud:
 userData: |
 #!/bin/bash
 echo "fedora" | passwd fedora --stdin
 name: cloudinitdisk
status: {}

CHAPTER 7. VIRTUAL MACHINES

87

https://www.cncf.io/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

If your virtual workload requires more memory than available, you can use memory overcommitment to
allocate all or most of the host’s memory to your virtual machine instances (VMIs). Enabling memory
overcommitment means that you can maximize resources that are normally reserved for the host.

For example, if the host has 32 GB RAM, you can use memory overcommitment to fit 8 virtual machines
(VMs) with 4 GB RAM each. This allocation works under the assumption that the virtual machines will
not use all of their memory at the same time.

IMPORTANT

Memory overcommitment increases the potential for virtual machine processes to be
killed due to memory pressure (OOM killed).

The potential for a VM to be OOM killed varies based on your specific configuration, node
memory, available swap space, virtual machine memory consumption, the use of kernel
same-page merging (KSM), and other factors.

Procedure

1. To explicitly tell the virtual machine instance that it has more memory available than was
requested from the cluster, edit the virtual machine configuration file and set
spec.domain.memory.guest to a higher value than
spec.domain.resources.requests.memory. This process is called memory overcommitment.
In this example, 1024M is requested from the cluster, but the virtual machine instance is told
that it has 2048M available. As long as there is enough free memory available on the node, the
virtual machine instance will consume up to 2048M.

NOTE

The same eviction rules as those for pods apply to the virtual machine instance if
the node is under memory pressure.

2. Create the virtual machine:

7.14.3.2. Disabling guest memory overhead accounting

A small amount of memory is requested by each virtual machine instance in addition to the amount that
you request. This additional memory is used for the infrastructure that wraps each
VirtualMachineInstance process.

Though it is not usually advisable, it is possible to increase the virtual machine instance density on the

kind: VirtualMachine
spec:
 template:
 domain:
 resources:
 requests:
 memory: 1024M
 memory:
 guest: 2048M

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.6 OpenShift Virtualization

88

Though it is not usually advisable, it is possible to increase the virtual machine instance density on the
node by disabling guest memory overhead accounting.

IMPORTANT

Disabling guest memory overhead accounting increases the potential for virtual machine
processes to be killed due to memory pressure (OOM killed).

The potential for a VM to be OOM killed varies based on your specific configuration, node
memory, available swap space, virtual machine memory consumption, the use of kernel
same-page merging (KSM), and other factors.

Procedure

1. To disable guest memory overhead accounting, edit the YAML configuration file and set the
overcommitGuestOverhead value to true. This parameter is disabled by default.

NOTE

If overcommitGuestOverhead is enabled, it adds the guest overhead to memory
limits, if present.

2. Create the virtual machine:

7.14.4. Using huge pages with virtual machines

You can use huge pages as backing memory for virtual machines in your cluster.

7.14.4.1. Prerequisites

Nodes must have pre-allocated huge pages configured.

7.14.4.2. What huge pages do

Memory is managed in blocks known as pages. On most systems, a page is 4Ki. 1Mi of memory is equal to
256 pages; 1Gi of memory is 256,000 pages, and so on. CPUs have a built-in memory management unit
that manages a list of these pages in hardware. The Translation Lookaside Buffer (TLB) is a small
hardware cache of virtual-to-physical page mappings. If the virtual address passed in a hardware
instruction can be found in the TLB, the mapping can be determined quickly. If not, a TLB miss occurs,
and the system falls back to slower, software-based address translation, resulting in performance issues.
Since the size of the TLB is fixed, the only way to reduce the chance of a TLB miss is to increase the
page size.

kind: VirtualMachine
spec:
 template:
 domain:
 resources:
 overcommitGuestOverhead: true
 requests:
 memory: 1024M

$ oc create -f <file_name>.yaml

CHAPTER 7. VIRTUAL MACHINES

89

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/scalability_and_performance/#configuring-huge-pages_huge-pages

1

A huge page is a memory page that is larger than 4Ki. On x86_64 architectures, there are two common
huge page sizes: 2Mi and 1Gi. Sizes vary on other architectures. In order to use huge pages, code must
be written so that applications are aware of them. Transparent Huge Pages (THP) attempt to automate
the management of huge pages without application knowledge, but they have limitations. In particular,
they are limited to 2Mi page sizes. THP can lead to performance degradation on nodes with high
memory utilization or fragmentation due to defragmenting efforts of THP, which can lock memory
pages. For this reason, some applications may be designed to (or recommend) usage of pre-allocated
huge pages instead of THP.

In OpenShift Virtualization, virtual machines can be configured to consume pre-allocated huge pages.

7.14.4.3. Configuring huge pages for virtual machines

You can configure virtual machines to use pre-allocated huge pages by including the
memory.hugepages.pageSize and resources.requests.memory parameters in your virtual machine
configuration.

The memory request must be divisible by the page size. For example, you cannot request 500Mi
memory with a page size of 1Gi.

NOTE

The memory layouts of the host and the guest OS are unrelated. Huge pages requested
in the virtual machine manifest apply to QEMU. Huge pages inside the guest can only be
configured based on the amount of available memory of the virtual machine instance.

If you edit a running virtual machine, the virtual machine must be rebooted for the changes to take
effect.

Prerequisites

Nodes must have pre-allocated huge pages configured.

Procedure

1. In your virtual machine configuration, add the resources.requests.memory and
memory.hugepages.pageSize parameters to the spec.domain. The following configuration
snippet is for a virtual machine that requests a total of 4Gi memory with a page size of 1Gi:

The total amount of memory requested for the virtual machine. This value must be divisible
by the page size.

The size of each huge page. Valid values for x86_64 architecture are 1Gi and 2Mi. The

kind: VirtualMachine
...
spec:
 domain:
 resources:
 requests:
 memory: "4Gi" 1
 memory:
 hugepages:
 pageSize: "1Gi" 2
...

OpenShift Container Platform 4.6 OpenShift Virtualization

90

2 The size of each huge page. Valid values for x86_64 architecture are 1Gi and 2Mi. The
page size must be smaller than the requested memory.

2. Apply the virtual machine configuration:

7.14.5. Enabling dedicated resources for virtual machines

To improve performance, you can dedicate node resources, such as CPU, to a virtual machine.

7.14.5.1. About dedicated resources

When you enable dedicated resources for your virtual machine, your virtual machine’s workload is
scheduled on CPUs that will not be used by other processes. By using dedicated resources, you can
improve the performance of the virtual machine and the accuracy of latency predictions.

7.14.5.2. Prerequisites

The CPU Manager must be configured on the node. Verify that the node has the cpumanager
= true label before scheduling virtual machine workloads.

The virtual machine must be powered off.

7.14.5.3. Enabling dedicated resources for a virtual machine

You can enable dedicated resources for a virtual machine in the Virtual Machine Overview page of the
web console.

Procedure

1. Click Workloads → Virtual Machines from the side menu.

2. Select a virtual machine to open the Virtual Machine Overview page.

3. Click the Details tab.

4. Click the pencil icon to the right of the Dedicated Resources field to open the Dedicated
Resources window.

5. Select Schedule this workload with dedicated resources (guaranteed policy).

6. Click Save.

7.14.6. Scheduling virtual machines

You can schedule a virtual machine (VM) on a node by ensuring that the VM’s CPU model and policy
attribute are matched for compatibility with the CPU models and policy attributes supported by the
node.

7.14.6.1. Understanding policy attributes

You can schedule a virtual machine (VM) by specifying a policy attribute and a CPU feature that is

$ oc apply -f <virtual_machine>.yaml

CHAPTER 7. VIRTUAL MACHINES

91

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/scalability_and_performance/#using-cpu-manager-1

1

2

You can schedule a virtual machine (VM) by specifying a policy attribute and a CPU feature that is
matched for compatibility when the VM is scheduled on a node. A policy attribute specified for a VM
determines how that VM is scheduled on a node.

Policy attribute Description

force The VM is forced to be scheduled on a node. This is true even if the host
CPU does not support the VM’s CPU.

require Default policy that applies to a VM if the VM is not configured with a
specific CPU model and feature specification. If a node is not configured to
support CPU node discovery with this default policy attribute or any one of
the other policy attributes, VMs are not scheduled on that node. Either the
host CPU must support the VM’s CPU or the hypervisor must be able to
emulate the supported CPU model.

optional The VM is added to a node if that VM is supported by the host’s physical
machine CPU.

disable The VM cannot be scheduled with CPU node discovery.

forbid The VM is not scheduled even if the feature is supported by the host CPU
and CPU node discovery is enabled.

7.14.6.2. Setting a policy attribute and CPU feature

You can set a policy attribute and CPU feature for each virtual machine (VM) to ensure that it is
scheduled on a node according to policy and feature. The CPU feature that you set is verified to ensure
that it is supported by the host CPU or emulated by the hypervisor.

Procedure

Edit the domain spec of your VM configuration file. The following example sets the CPU
feature and the require policy for a virtual machine instance (VMI):

Name of the CPU feature for the VM or VMI.

Policy attribute for the VM or VMI.

7.14.6.3. Scheduling virtual machines with the supported CPU model

apiVersion: v1
kind: VirtualMachine
metadata:
 name: myvmi
spec:
 domain:
 cpu:
 features:
 - name: apic 1
 policy: require 2

OpenShift Container Platform 4.6 OpenShift Virtualization

92

1

1

You can configure a CPU model for a virtual machine (VM) or a virtual machine instance (VMI) to
schedule it on a node where its CPU model is supported.

Procedure

Edit the domain spec of your virtual machine configuration file. The following example shows a
specific CPU model defined for a VMI:

CPU model for the VMI.

7.14.6.4. Scheduling virtual machines with the host model

When the CPU model for a virtual machine (VM) is set to host-model, the VM inherits the CPU model of
the node where it is scheduled.

Procedure

Edit the domain spec of your VM configuration file. The following example shows host-model
being specified for the virtual machine instance (VMI):

The VM or VMI that inherits the CPU model of the node where it is scheduled.

7.15. IMPORTING VIRTUAL MACHINES

7.15.1. TLS certificates for data volume imports

7.15.1.1. Adding TLS certificates for authenticating data volume imports

TLS certificates for registry or HTTPS endpoints must be added to a config map in order to import data
from these sources. This config map must be present in the namespace of the destination data volume.

Create the config map by referencing the relative file path for the TLS certificate.

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
 name: myvmi
spec:
 domain:
 cpu:
 model: Conroe 1

apiVersion: kubevirt/v1alpha3
kind: VirtualMachineInstance
metadata:
 name: myvmi
spec:
 domain:
 cpu:
 model: host-model 1

CHAPTER 7. VIRTUAL MACHINES

93

Procedure

1. Ensure you are in the correct namespace. The config map can only be referenced by data
volumes if it is in the same namespace.

2. Create the config map:

7.15.1.2. Example: Config map created from a TLS certificate

The following example is of a config map created from ca.pem TLS certificate.

7.15.2. Importing virtual machine images with data volumes

Use the Containerized Data Importer (CDI) to import a virtual machine image into a persistent volume
claim (PVC) by using a data volume. You can attach a data volume to a virtual machine for persistent
storage.

The virtual machine image can be hosted at an HTTP or HTTPS endpoint, or built into a container disk
and stored in a container registry.

IMPORTANT

When you import a disk image into a PVC, the disk image is expanded to use the full
storage capacity that is requested in the PVC. To use this space, the disk partitions and
file system(s) in the virtual machine might need to be expanded.

The resizing procedure varies based on the operating system installed on the virtual
machine. Refer to the operating system documentation for details.

7.15.2.1. Prerequisites

If the endpoint requires a TLS certificate, the certificate must be included in a config map in the
same namespace as the data volume and referenced in the data volume configuration.

To import a container disk:

You might need to prepare a container disk from a virtual machine image and store it in your
container registry before importing it.

If the container registry does not have TLS, you must add the registry to the cdi-insecure-

$ oc get ns

$ oc create configmap <configmap-name> --from-file=</path/to/file/ca.pem>

apiVersion: v1
kind: ConfigMap
metadata:
 name: tls-certs
data:
 ca.pem: |
 -----BEGIN CERTIFICATE-----
 ... <base64 encoded cert> ...
 -----END CERTIFICATE-----

OpenShift Container Platform 4.6 OpenShift Virtualization

94

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-adding-tls-certificates-for-authenticating-dv-imports_virt-tls-certificates-for-dv-imports
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-preparing-container-disk-for-vms_virt-using-container-disks-with-vms

If the container registry does not have TLS, you must add the registry to the cdi-insecure-
registries config map before you can import a container disk from it.

You might need to define a storage class or prepare CDI scratch space for this operation to
complete successfully.

7.15.2.2. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt(QCO
W2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

7.15.2.3. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

7.15.2.4. Importing a virtual machine image into storage by using a data volume

You can import a virtual machine image into storage by using a data volume.

The virtual machine image can be hosted at an HTTP or HTTPS endpoint or the image can be built into
a container disk and stored in a container registry.

You specify the data source for the image in a VirtualMachine configuration file. When the virtual
machine is created, the data volume with the virtual machine image is imported into storage.

Prerequisites

To import a virtual machine image you must have the following:

A virtual machine disk image in RAW, ISO, or QCOW2 format, optionally compressed by
using xz or gz.

CHAPTER 7. VIRTUAL MACHINES

95

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-disabling-tls-for-registry_virt-using-container-disks-with-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-defining-storageclass-in-cdi-configuration_virt-preparing-cdi-scratch-space

1

2

3

An HTTP or HTTPS endpoint where the image is hosted, along with any authentication
credentials needed to access the data source.

To import a container disk, you must have a virtual machine image built into a container disk and
stored in a container registry, along with any authentication credentials needed to access the
data source.

If the virtual machine must communicate with servers that use self-signed certificates or
certificates not signed by the system CA bundle, you must create a config map in the same
namespace as the data volume.

Procedure

1. If your data source requires authentication, create a Secret manifest, specifying the data
source credentials, and save it as endpoint-secret.yaml:

Specify the name of the Secret.

Specify the Base64-encoded key ID or user name.

Specify the Base64-encoded secret key or password.

2. Apply the Secret manifest:

3. Edit the VirtualMachine manifest, specifying the data source for the virtual machine image you
want to import, and save it as vm-fedora-datavolume.yaml:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 creationTimestamp: null
 labels:
 kubevirt.io/vm: vm-fedora-datavolume
 name: vm-fedora-datavolume 1
spec:
 dataVolumeTemplates:
 - metadata:
 creationTimestamp: null
 name: fedora-dv 2
 spec:
 storage:

apiVersion: v1
kind: Secret
metadata:
 name: endpoint-secret 1
 labels:
 app: containerized-data-importer
type: Opaque
data:
 accessKeyId: "" 2
 secretKey: "" 3

$ oc apply -f endpoint-secret.yaml

OpenShift Container Platform 4.6 OpenShift Virtualization

96

1

2

3

4

5

6

 resources:
 requests:
 storage: 10Gi
 storageClassName: local
 source:
 http: 3
 url: "https://mirror.arizona.edu/fedora/linux/releases/35/Cloud/x86_64/images/Fedora-
Cloud-Base-35-1.2.x86_64.qcow2" 4
 secretRef: endpoint-secret 5
 certConfigMap: "" 6
 status: {}
 running: true
 template:
 metadata:
 creationTimestamp: null
 labels:
 kubevirt.io/vm: vm-fedora-datavolume
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: datavolumedisk1
 machine:
 type: ""
 resources:
 requests:
 memory: 1.5Gi
 terminationGracePeriodSeconds: 60
 volumes:
 - dataVolume:
 name: fedora-dv
 name: datavolumedisk1
status: {}

Specify the name of the virtual machine.

Specify the name of the data volume.

Specify http for an HTTP or HTTPS endpoint. Specify registry for a container disk image
imported from a registry.

The source of the virtual machine image you want to import. This example references a
virtual machine image at an HTTPS endpoint. An example of a container registry endpoint
is url: "docker://kubevirt/fedora-cloud-container-disk-demo:latest".

Required if you created a Secret for the data source.

Optional: Specify a CA certificate config map.

4. Create the virtual machine:

NOTE

$ oc create -f vm-fedora-datavolume.yaml

CHAPTER 7. VIRTUAL MACHINES

97

1

NOTE

The oc create command creates the data volume and the virtual machine. The
CDI controller creates an underlying PVC with the correct annotation and the
import process begins. When the import is complete, the data volume status
changes to Succeeded. You can start the virtual machine.

Data volume provisioning happens in the background, so there is no need to
monitor the process.

Verification

1. The importer pod downloads the virtual machine image or container disk from the specified
URL and stores it on the provisioned PV. View the status of the importer pod by running the
following command:

2. Monitor the data volume until its status is Succeeded by running the following command:

Specify the data volume name that you defined in the VirtualMachine manifest.

3. Verify that provisioning is complete and that the virtual machine has started by accessing its
serial console:

7.15.3. Importing virtual machine images into block storage with data volumes

You can import an existing virtual machine image into your OpenShift Container Platform cluster.
OpenShift Virtualization uses data volumes to automate the import of data and the creation of an
underlying persistent volume claim (PVC).

IMPORTANT

When you import a disk image into a PVC, the disk image is expanded to use the full
storage capacity that is requested in the PVC. To use this space, the disk partitions and
file system(s) in the virtual machine might need to be expanded.

The resizing procedure varies based on the operating system that is installed on the
virtual machine. Refer to the operating system documentation for details.

7.15.3.1. Prerequisites

If you require scratch space according to the CDI supported operations matrix , you must first
define a storage class or prepare CDI scratch space for this operation to complete successfully.

7.15.3.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an

$ oc get pods

$ oc describe dv fedora-dv 1

$ virtctl console vm-fedora-datavolume

OpenShift Container Platform 4.6 OpenShift Virtualization

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-defining-storageclass-in-cdi-configuration_virt-preparing-cdi-scratch-space

1

2

underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

7.15.3.3. About block persistent volumes

A block persistent volume (PV) is a PV that is backed by a raw block device. These volumes do not have
a file system and can provide performance benefits for virtual machines by reducing overhead.

Raw block volumes are provisioned by specifying volumeMode: Block in the PV and persistent volume
claim (PVC) specification.

7.15.3.4. Creating a local block persistent volume

Create a local block persistent volume (PV) on a node by populating a file and mounting it as a loop
device. You can then reference this loop device in a PV manifest as a Block volume and use it as a block
device for a virtual machine image.

Procedure

1. Log in as root to the node on which to create the local PV. This procedure uses node01 for its
examples.

2. Create a file and populate it with null characters so that it can be used as a block device. The
following example creates a file loop10 with a size of 2Gb (20 100Mb blocks):

3. Mount the loop10 file as a loop device.

File path where the loop device is mounted.

The file created in the previous step to be mounted as the loop device.

4. Create a PersistentVolume manifest that references the mounted loop device.

$ dd if=/dev/zero of=<loop10> bs=100M count=20

$ losetup </dev/loop10>d3 <loop10> 1 2

kind: PersistentVolume
apiVersion: v1
metadata:
 name: <local-block-pv10>
 annotations:
spec:
 local:
 path: </dev/loop10> 1
 capacity:
 storage: <2Gi>
 volumeMode: Block 2
 storageClassName: local 3
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 nodeAffinity:

CHAPTER 7. VIRTUAL MACHINES

99

1

2

3

4

1

1

The path of the loop device on the node.

Specifies it is a block PV.

Optional: Set a storage class for the PV. If you omit it, the cluster default is used.

The node on which the block device was mounted.

5. Create the block PV.

The file name of the persistent volume created in the previous step.

7.15.3.5. Importing a virtual machine image into block storage by using a data volume

You can import a virtual machine image into block storage by using a data volume. You reference the
data volume in a VirtualMachine manifest before you create a virtual machine.

Prerequisites

A virtual machine disk image in RAW, ISO, or QCOW2 format, optionally compressed by using xz
or gz.

An HTTP or HTTPS endpoint where the image is hosted, along with any authentication
credentials needed to access the data source.

Procedure

1. If your data source requires authentication, create a Secret manifest, specifying the data
source credentials, and save it as endpoint-secret.yaml:

Specify the name of the Secret.

 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - <node01> 4

oc create -f <local-block-pv10.yaml> 1

apiVersion: v1
kind: Secret
metadata:
 name: endpoint-secret 1
 labels:
 app: containerized-data-importer
type: Opaque
data:
 accessKeyId: "" 2
 secretKey: "" 3

OpenShift Container Platform 4.6 OpenShift Virtualization

100

2

3

1

2

3

4

5

Specify the Base64-encoded key ID or user name.

Specify the Base64-encoded secret key or password.

2. Apply the Secret manifest:

3. Create a DataVolume manifest, specifying the data source for the virtual machine image and
Block for storage.volumeMode.

Specify the name of the data volume.

Optional: Set the storage class or omit it to accept the cluster default.

Specify the HTTP or HTTPS URL of the image to import.

Required if you created a Secret for the data source.

The volume mode and access mode are detected automatically for known storage
provisioners. Otherwise, specify Block.

4. Create the data volume to import the virtual machine image:

You can reference this data volume in a VirtualMachine manifest before you create a virtual machine.

7.15.3.6. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

$ oc apply -f endpoint-secret.yaml

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: import-pv-datavolume 1
spec:
 storageClassName: local 2
 source:
 http:
 url: "https://mirror.arizona.edu/fedora/linux/releases/35/Cloud/x86_64/images/Fedora-
Cloud-Base-35-1.2.x86_64.qcow2" 3
 secretRef: endpoint-secret 4
 storage:
 volumeMode: Block 5
 resources:
 requests:
 storage: 10Gi

$ oc create -f import-pv-datavolume.yaml

CHAPTER 7. VIRTUAL MACHINES

101

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt(QCO
W2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

7.15.4. Importing a single Red Hat Virtualization virtual machine

You can import a single Red Hat Virtualization (RHV) virtual machine into OpenShift Virtualization by
using the VM Import wizard or the CLI.

7.15.4.1. OpenShift Virtualization storage feature matrix

The following table describes the OpenShift Virtualization storage types that support VM import.

Table 7.3. OpenShift Virtualization storage feature matrix

 RHV VM import

OpenShift Container Storage: RBD block-mode
volumes

Yes

OpenShift Virtualization hostpath provisioner No

Other multi-node writable storage Yes [1]

Other single-node writable storage Yes [2]

1. PVCs must request a ReadWriteMany access mode.

2. PVCs must request a ReadWriteOnce access mode.

7.15.4.2. Prerequisites for importing a virtual machine

Importing a virtual machine from Red Hat Virtualization (RHV) into OpenShift Virtualization has the
following prerequisites:

OpenShift Container Platform 4.6 OpenShift Virtualization

102

You must have admin user privileges.

Storage:

The OpenShift Virtualization local and shared persistent storage classes must support VM
import.

If you are using Ceph RBD block-mode volumes, the storage must be large enough to
accommodate the virtual disk. If the disk is too large for the available storage, the import
process fails and the PV that is used to copy the virtual disk is not released.

Networks:

The RHV and OpenShift Virtualization networks must either have the same name or be
mapped to each other.

The RHV VM network interface must be e1000, rtl8139, or virtio.

VM disks:

The disk interface must be sata, virtio_scsi, or virtio.

The disk must not be configured as a direct LUN.

The disk status must not be illegal or locked.

The storage type must be image.

SCSI reservation must be disabled.

ScsiGenericIO must be disabled.

VM configuration:

If the VM uses GPU resources, the nodes providing the GPUs must be configured.

The VM must not be configured for vGPU resources.

The VM must not have snapshots with disks in an illegal state.

The VM must not have been created with OpenShift Container Platform and subsequently
added to RHV.

The VM must not be configured for USB devices.

The watchdog model must not be diag288.

7.15.4.3. Importing a virtual machine with the VM Import wizard

You can import a single virtual machine with the VM Import wizard.

Procedure

1. In the web console, click Workloads → Virtual Machines.

2. Click Create Virtual Machine and select Import with Wizard.

3. Select Red Hat Virtualization (RHV) from the Provider list.

CHAPTER 7. VIRTUAL MACHINES

103

4. Select Connect to New Instance or a saved RHV instance.

If you select Connect to New Instance, fill in the following fields:

API URL: For example, https://<RHV_Manager_FQDN>/ovirt-engine/api

CA certificate: Click Browse to upload the RHV Manager CA certificate or paste the
CA certificate into the field.
View the CA certificate by running the following command:

The CA certificate is the second certificate in the output.

Username: RHV Manager user name, for example, ocpadmin@internal

Password: RHV Manager password

If you select a saved RHV instance, the wizard connects to the RHV instance using the saved
credentials.

5. Click Check and Save and wait for the connection to complete.

NOTE

The connection details are stored in a secret. If you add a provider with an
incorrect URL, user name, or password, click Workloads → Secrets and delete
the provider secret.

6. Select a cluster and a virtual machine.

7. Click Next.

8. In the Review screen, review your settings.

9. Optional: You can select Start virtual machine on creation.

10. Click Edit to update the following settings:

General → Name: The VM name is limited to 63 characters.

General → Description: Optional description of the VM.

Storage Class: Select NFS or ocs-storagecluster-ceph-rbd.
If you select ocs-storagecluster-ceph-rbd, you must set the Volume Mode of the disk
to Block.

Advanced → Volume Mode: Select Block.

Advanced → Volume Mode: Select Block.

Networking → Network: You can select a network from a list of available network
attachment definition objects.

11. Click Import or Review and Import, if you have edited the import settings.
A Successfully created virtual machine message and a list of resources created for the virtual
machine are displayed. The virtual machine appears in Workloads → Virtual Machines.

$ openssl s_client -connect <RHV_Manager_FQDN>:443 -showcerts < /dev/null

OpenShift Container Platform 4.6 OpenShift Virtualization

104

Virtual machine wizard fields

Name Parameter Description

Template Template from which to create
the virtual machine. Selecting a
template will automatically
complete other fields.

Source PXE Provision virtual machine from
PXE menu. Requires a PXE-
capable NIC in the cluster.

URL Provision virtual machine from an
image available from an HTTP or
S3 endpoint.

Container Provision virtual machine from a
bootable operating system
container located in a registry
accessible from the cluster.
Example: kubevirt/cirros-
registry-disk-demo.

Disk Provision virtual machine from a
disk.

Operating System The primary operating system
that is selected for the virtual
machine.

Flavor small, medium, large, tiny, Custom Presets that determine the
amount of CPU and memory
allocated to the virtual machine.
The presets displayed for Flavor
are determined by the operating
system.

Memory Size in GiB of the memory
allocated to the virtual machine.

CPUs The amount of CPU allocated to
the virtual machine.

Workload Profile High Performance A virtual machine configuration
that is optimized for high-
performance workloads.

Server A profile optimized to run server
workloads.

CHAPTER 7. VIRTUAL MACHINES

105

Desktop A virtual machine configuration
for use on a desktop.

Name The name can contain lowercase
letters (a-z), numbers (0-9), and
hyphens (-), up to a maximum of
253 characters. The first and last
characters must be alphanumeric.
The name must not contain
uppercase letters, spaces, periods
(.), or special characters.

Description Optional description field.

Start virtual machine on creation Select to automatically start the
virtual machine upon creation.

Name Parameter Description

Networking fields

Name Description

Name Name for the network interface controller.

Model Indicates the model of the network interface
controller. Supported values are e1000e and virtio.

Network List of available network attachment definitions.

Type List of available binding methods. For the default
pod network, masquerade is the only
recommended binding method. For secondary
networks, use the bridge binding method. The
masquerade method is not supported for non-
default networks.

MAC Address MAC address for the network interface controller. If a
MAC address is not specified, one is assigned
automatically.

Storage fields

Name Description

OpenShift Container Platform 4.6 OpenShift Virtualization

106

Source Select a blank disk for the virtual machine or choose
from the options available: URL, Container, Attach
Cloned Disk, or Attach Disk. To select an existing
disk and attach it to the virtual machine, choose
Attach Cloned Disk or Attach Disk from a list of
available persistent volume claims (PVCs).

Name Name of the disk. The name can contain lowercase
letters (a-z), numbers (0-9), hyphens (-), and periods
(.), up to a maximum of 253 characters. The first and
last characters must be alphanumeric. The name
must not contain uppercase letters, spaces, or special
characters.

Size (GiB) Size, in GiB, of the disk.

Interface Type of disk device. Supported interfaces are virtIO,
SATA, and SCSI.

Storage Class The storage class that is used to create the disk.

Advanced → Volume Mode Defines whether the persistent volume uses a
formatted file system or raw block state. Default is
Filesystem.

Name Description

Advanced storage settings

Name Parameter Description

Volume Mode Filesystem Stores the virtual disk on a file system-based volume.

Block Stores the virtual disk directly on the block volume.
Only use Block if the underlying storage supports it.

Access Mode [1] Single User (RWO) The disk can be mounted as read/write by a single
node.

Shared Access (RWX) The disk can be mounted as read/write by many
nodes.

Read Only (ROX) The disk can be mounted as read-only by many
nodes.

1. You can change the access mode by using the command line interface.

7.15.4.4. Importing a virtual machine with the CLI

CHAPTER 7. VIRTUAL MACHINES

107

1

2

3

4

You can import a virtual machine with the CLI by creating the Secret and VirtualMachineImport
custom resources (CRs). The Secret CR stores the RHV Manager credentials and CA certificate. The
VirtualMachineImport CR defines the parameters of the VM import process.

Optional: You can create a ResourceMapping CR that is separate from the VirtualMachineImport CR.
A ResourceMapping CR provides greater flexibility, for example, if you import additional RHV VMs.

IMPORTANT

The default target storage class must be NFS. Cinder does not support RHV VM import.

Procedure

1. Create the Secret CR by running the following command:

Optional. You can specify a different namespace in all the CRs.

Specify the API endpoint of the RHV Manager, for example,
\"https://www.example.com:8443/ovirt-engine/api"

Specify the password for ocpadmin@internal.

Specify the RHV Manager CA certificate. You can obtain the CA certificate by running the
following command:

2. Optional: Create a ResourceMapping CR if you want to separate the resource mapping from
the VirtualMachineImport CR by running the following command:

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: Secret
metadata:
 name: rhv-credentials
 namespace: default 1
type: Opaque
stringData:
 ovirt: |
 apiUrl: <api_endpoint> 2
 username: ocpadmin@internal
 password: 3
 caCert: |
 -----BEGIN CERTIFICATE-----
 4
 -----END CERTIFICATE-----
EOF

$ openssl s_client -connect :443 -showcerts < /dev/null

$ cat <<EOF | kubectl create -f -
apiVersion: v2v.kubevirt.io/v1alpha1
kind: ResourceMapping
metadata:
 name: resourcemapping_example

OpenShift Container Platform 4.6 OpenShift Virtualization

108

1

2

3

4

5

6

Specify the RHV logical network and vNIC profile.

Specify the OpenShift Virtualization network.

If storage mappings are specified in both the ResourceMapping and the
VirtualMachineImport CRs, the VirtualMachineImport CR takes precedence.

Specify the RHV storage domain.

Specify nfs or ocs-storagecluster-ceph-rbd.

If you specified the ocs-storagecluster-ceph-rbd storage class, you must specify Block
as the volume mode.

3. Create the VirtualMachineImport CR by running the following command:

 namespace: default
spec:
 ovirt:
 networkMappings:
 - source:
 name: <rhv_logical_network>/<vnic_profile> 1
 target:
 name: <target_network> 2
 type: pod
 storageMappings: 3
 - source:
 name: <rhv_storage_domain> 4
 target:
 name: <target_storage_class> 5
 volumeMode: <volume_mode> 6
EOF

$ cat <<EOF | oc create -f -
apiVersion: v2v.kubevirt.io/v1beta1
kind: VirtualMachineImport
metadata:
 name: vm-import
 namespace: default
spec:
 providerCredentialsSecret:
 name: rhv-credentials
 namespace: default
resourceMapping: 1
name: resourcemapping-example
namespace: default
 targetVmName: vm_example 2
 startVm: true
 source:
 ovirt:
 vm:
 id: <source_vm_id> 3
 name: <source_vm_name> 4
 cluster:

CHAPTER 7. VIRTUAL MACHINES

109

1

2

3

4

5

6

7

8

9

10

11

12

If you create a ResourceMapping CR, uncomment the resourceMapping section.

Specify the target VM name.

Specify the source VM ID, for example, 80554327-0569-496b-bdeb-fcbbf52b827b. You
can obtain the VM ID by entering https://www.example.com/ovirt-engine/api/vms/ in a
web browser on the Manager machine to list all VMs. Locate the VM you want to import
and its corresponding VM ID. You do not need to specify a VM name or cluster name.

If you specify the source VM name, you must also specify the source cluster. Do not
specify the source VM ID.

If you specify the source cluster, you must also specify the source VM name. Do not
specify the source VM ID.

If you create a ResourceMapping CR, comment out the mappings section.

Specify the logical network and vNIC profile of the source VM.

Specify the OpenShift Virtualization network.

If storage mappings are specified in both the ResourceMapping and the
VirtualMachineImport CRs, the VirtualMachineImport CR takes precedence.

Specify the source storage domain.

Specify the target storage class.

Specify ReadWriteOnce, ReadWriteMany, or ReadOnlyMany. If no access mode is
specified, {virt} determines the correct volume access mode based on the Host →
Migration mode setting of the RHV VM or on the virtual disk access mode:

If the RHV VM migration mode is Allow manual and automatic migration, the default
access mode is ReadWriteMany.

 name: <source_cluster_name> 5
 mappings: 6
 networkMappings:
 - source:
 name: <source_logical_network>/<vnic_profile> 7
 target:
 name: <target_network> 8
 type: pod
 storageMappings: 9
 - source:
 name: <source_storage_domain> 10
 target:
 name: <target_storage_class> 11
 accessMode: <volume_access_mode> 12
 diskMappings:
 - source:
 id: <source_vm_disk_id> 13
 target:
 name: <target_storage_class> 14
EOF

OpenShift Container Platform 4.6 OpenShift Virtualization

110

13

14

If the RHV virtual disk access mode is ReadOnly, the default access mode is
ReadOnlyMany.

For all other settings, the default access mode is ReadWriteOnce.

Specify the source VM disk ID, for example, 8181ecc1-5db8-4193-9c92-3ddab3be7b05.
You can obtain the disk ID by entering https://www.example.com/ovirt-
engine/api/vms/vm23 in a web browser on the Manager machine and reviewing the VM
details.

Specify the target storage class.

4. Follow the progress of the virtual machine import to verify that the import was successful:

The output indicating a successful import resembles the following example:

Example output

7.15.4.4.1. Creating a config map for importing a VM

You can create a config map to map the Red Hat Virtualization (RHV) virtual machine operating system
to an OpenShift Virtualization template if you want to override the default vm-import-controller
mapping or to add additional mappings.

The default vm-import-controller config map contains the following RHV operating systems and their
corresponding common OpenShift Virtualization templates.

$ oc get vmimports vm-import -n default

...
status:
 conditions:
 - lastHeartbeatTime: "2020-07-22T08:58:52Z"
 lastTransitionTime: "2020-07-22T08:58:52Z"
 message: Validation completed successfully
 reason: ValidationCompleted
 status: "True"
 type: Valid
 - lastHeartbeatTime: "2020-07-22T08:58:52Z"
 lastTransitionTime: "2020-07-22T08:58:52Z"
 message: 'VM specifies IO Threads: 1, VM has NUMA tune mode specified: interleave'
 reason: MappingRulesVerificationReportedWarnings
 status: "True"
 type: MappingRulesVerified
 - lastHeartbeatTime: "2020-07-22T08:58:56Z"
 lastTransitionTime: "2020-07-22T08:58:52Z"
 message: Copying virtual machine disks
 reason: CopyingDisks
 status: "True"
 type: Processing
 dataVolumes:
 - name: fedora32-b870c429-11e0-4630-b3df-21da551a48c0
 targetVmName: fedora32

CHAPTER 7. VIRTUAL MACHINES

111

Table 7.4. Operating system and template mapping

RHV VM operating system OpenShift Virtualization template

rhel_6_9_plus_ppc64 rhel6.9

rhel_6_ppc64 rhel6.9

rhel_6 rhel6.9

rhel_6x64 rhel6.9

rhel_7_ppc64 rhel7.7

rhel_7_s390x rhel7.7

rhel_7x64 rhel7.7

rhel_8x64 rhel8.1

sles_11_ppc64 opensuse15.0

sles_11 opensuse15.0

sles_12_s390x opensuse15.0

ubuntu_12_04 ubuntu18.04

ubuntu_12_10 ubuntu18.04

ubuntu_13_04 ubuntu18.04

ubuntu_13_10 ubuntu18.04

ubuntu_14_04_ppc64 ubuntu18.04

ubuntu_14_04 ubuntu18.04

ubuntu_16_04_s390x ubuntu18.04

windows_10 win10

windows_10x64 win10

windows_2003 win10

windows_2003x64 win10

OpenShift Container Platform 4.6 OpenShift Virtualization

112

windows_2008R2x64 win2k8

windows_2008 win2k8

windows_2008x64 win2k8

windows_2012R2x64 win2k12r2

windows_2012x64 win2k12r2

windows_2016x64 win2k16

windows_2019x64 win2k19

windows_7 win10

windows_7x64 win10

windows_8 win10

windows_8x64 win10

windows_xp win10

RHV VM operating system OpenShift Virtualization template

Procedure

1. In a web browser, identify the REST API name of the RHV VM operating system by navigating to
http://<RHV_Manager_FQDN>/ovirt-engine/api/vms/<VM_ID>. The operating system name
appears in the <os> section of the XML output, as shown in the following example:

2. View a list of the available OpenShift Virtualization templates:

Example output

...
<os>
...
<type>rhel_8x64</type>
</os>

$ oc get templates -n openshift --show-labels | tr ',' '\n' | grep os.template.kubevirt.io | sed -r
's#os.template.kubevirt.io/(.*)=.*#\1#g' | sort -u

fedora31
fedora32
...

CHAPTER 7. VIRTUAL MACHINES

113

1

2

3. If an OpenShift Virtualization template that matches the RHV VM operating system does not
appear in the list of available templates, create a template with the OpenShift Virtualization web
console.

4. Create a config map to map the RHV VM operating system to the OpenShift Virtualization
template:

Optional: You can change the value of the namespace parameter.

Specify the REST API name of the RHV operating system and its corresponding VM
template as shown in the following example.

Config map example

5. Verify that the custom config map was created:

6. Patch the vm-import-controller-config config map to apply the new config map:

rhel8.1
rhel8.2
...

$ cat <<EOF | oc create -f -
apiVersion: v1
kind: ConfigMap
metadata:
 name: os-configmap
 namespace: default 1
data:
 guestos2common: |
 "Red Hat Enterprise Linux Server": "rhel"
 "CentOS Linux": "centos"
 "Fedora": "fedora"
 "Ubuntu": "ubuntu"
 "openSUSE": "opensuse"
 osinfo2common: |
 "<rhv-operating-system>": "<vm-template>" 2
EOF

$ cat <<EOF | oc apply -f -
apiVersion: v1
kind: ConfigMap
metadata:
 name: os-configmap
 namespace: default
data:
 osinfo2common: |
 "other_linux": "fedora31"
EOF

$ oc get cm -n default os-configmap -o yaml

$ oc patch configmap vm-import-controller-config -n openshift-cnv --patch '{

OpenShift Container Platform 4.6 OpenShift Virtualization

114

1

1

1

Update the namespace if you changed it in the config map.

7. Verify that the template appears in the OpenShift Virtualization web console:

a. Click Workloads → Virtualization from the side menu.

b. Click the Virtual Machine Templates tab and find the template in the list.

7.15.4.5. Troubleshooting a virtual machine import

7.15.4.5.1. Logs

You can check the VM Import Controller pod log for errors.

Procedure

1. View the VM Import Controller pod name by running the following command:

Specify the namespace of your imported virtual machine.

Example output

2. View the VM Import Controller pod log by running the following command:

Specify the VM Import Controller pod name and the namespace.

7.15.4.5.2. Error messages

The following error message might appear:

The following error message is displayed in the VM Import Controller pod log and the progress
bar stops at 10% if the OpenShift Virtualization storage PV is not suitable:

You must use a compatible storage class. The Cinder storage class is not supported.

7.15.4.5.3. Known issues

If you are using Ceph RBD block-mode volumes and the available storage space is too small for

 "data": {
 "osConfigMap.name": "os-configmap",
 "osConfigMap.namespace": "default" 1
 }
}'

$ oc get pods -n <namespace> | grep import 1

vm-import-controller-f66f7d-zqkz7 1/1 Running 0 4h49m

$ oc logs <vm-import-controller-f66f7d-zqkz7> -f -n <namespace> 1

Failed to bind volumes: provisioning failed for PVC

CHAPTER 7. VIRTUAL MACHINES

115

If you are using Ceph RBD block-mode volumes and the available storage space is too small for
the virtual disk, the import process bar stops at 75% for more than 20 minutes and the migration
does not succeed. No error message is displayed in the web console. BZ#1910019

7.15.5. Importing a single VMware virtual machine or template

You can import a VMware vSphere 6.5, 6.7, or 7.0 VM or VM template into OpenShift Virtualization by
using the VM Import wizard.

If you import a VM template, OpenShift Virtualization creates a virtual machine based on the template.

7.15.5.1. OpenShift Virtualization storage feature matrix

The following table describes the OpenShift Virtualization storage types that support VM import.

Table 7.5. OpenShift Virtualization storage feature matrix

 VMware VM import

OpenShift Container Storage: RBD block-mode
volumes

Yes

OpenShift Virtualization hostpath provisioner Yes

Other multi-node writable storage Yes [1]

Other single-node writable storage Yes [2]

1. PVCs must request a ReadWriteMany access mode.

2. PVCs must request a ReadWriteOnce access mode.

7.15.5.2. Preparing a VDDK image

The import process uses the VMware Virtual Disk Development Kit (VDDK) to copy the VMware virtual
disk.

You can download the VDDK SDK, create a VDDK image, upload the image to an image registry, and
add it to the v2v-vmware config map.

You can configure either an internal OpenShift Container Platform image registry or a secure external
image registry for the VDDK image. The registry must be accessible to your OpenShift Virtualization
environment.

NOTE

Storing the VDDK image in a public registry might violate the terms of the VMware
license.

7.15.5.2.1. Configuring an internal image registry

You can configure the internal OpenShift Container Platform image registry on bare metal by updating

OpenShift Container Platform 4.6 OpenShift Virtualization

116

https://bugzilla.redhat.com/show_bug.cgi?id=1910019

You can configure the internal OpenShift Container Platform image registry on bare metal by updating
the Image Registry Operator configuration.

You can access the registry directly, from within the OpenShift Container Platform cluster, or externally,
by exposing the registry with a route.

Changing the image registry’s management state
To start the image registry, you must change the Image Registry Operator configuration’s
managementState from Removed to Managed.

Procedure

Change managementState Image Registry Operator configuration from Removed to
Managed. For example:

Configuring registry storage for bare metal and other manual installations
As a cluster administrator, following installation you must configure your registry to use storage.

Prerequisites

Cluster administrator permissions.

A cluster that uses manually-provisioned Red Hat Enterprise Linux CoreOS (RHCOS) nodes,
such as bare metal.

Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.

IMPORTANT

OpenShift Container Platform supports ReadWriteOnce access for image
registry storage when you have only one replica. To deploy an image registry that
supports high availability with two or more replicas, ReadWriteMany access is
required.

Must have 100Gi capacity.

Procedure

1. To configure your registry to use storage, change the spec.storage.pvc in the
configs.imageregistry/cluster resource.

NOTE

When using shared storage, review your security settings to prevent outside
access.

2. Verify that you do not have a registry pod:

NOTE

$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":
{"managementState":"Managed"}}'

$ oc get pod -n openshift-image-registry

CHAPTER 7. VIRTUAL MACHINES

117

NOTE

If the storage type is emptyDIR, the replica number cannot be greater than 1.

3. Check the registry configuration:

Example output

Leave the claim field blank to allow the automatic creation of an image-registry-storage PVC.

4. Check the clusteroperator status:

5. Ensure that your registry is set to managed to enable building and pushing of images.

Run:

$ oc edit configs.imageregistry/cluster

Then, change the line

managementState: Removed

to

managementState: Managed

Accessing registry directly from the cluster
You can access the registry from inside the cluster.

Procedure

Access the registry from the cluster by using internal routes:

1. Access the node by getting the node’s name:

2. To enable access to tools such as oc and podman on the node, run the following command:

3. Log in to the container image registry by using your access token:

$ oc edit configs.imageregistry.operator.openshift.io

storage:
 pvc:
 claim:

$ oc get clusteroperator image-registry

$ oc get nodes

$ oc debug nodes/<node_name>

sh-4.2# chroot /host

OpenShift Container Platform 4.6 OpenShift Virtualization

118

You should see a message confirming login, such as:

NOTE

You can pass any value for the user name; the token contains all necessary
information. Passing a user name that contains colons will result in a login failure.

Since the Image Registry Operator creates the route, it will likely be similar to
default-route-openshift-image-registry.<cluster_name>.

4. Perform podman pull and podman push operations against your registry:

IMPORTANT

You can pull arbitrary images, but if you have the system:registry role added, you
can only push images to the registry in your project.

In the following examples, use:

Component Value

<registry_ip> 172.30.124.220

<port> 5000

<project> openshift

<image> image

<tag> omitted (defaults to latest)

a. Pull an arbitrary image:

b. Tag the new image with the form <registry_ip>:<port>/<project>/<image>. The project
name must appear in this pull specification for OpenShift Container Platform to correctly
place and later access the image in the registry:

NOTE

sh-4.2# oc login -u kubeadmin -p <password_from_install_log> https://api-int.
<cluster_name>.<base_domain>:6443

sh-4.2# podman login -u kubeadmin -p $(oc whoami -t) image-registry.openshift-image-
registry.svc:5000

Login Succeeded!

sh-4.2# podman pull name.io/image

sh-4.2# podman tag name.io/image image-registry.openshift-image-
registry.svc:5000/openshift/image

CHAPTER 7. VIRTUAL MACHINES

119

1

NOTE

You must have the system:image-builder role for the specified project,
which allows the user to write or push an image. Otherwise, the podman
push in the next step will fail. To test, you can create a new project to push
the image.

c. Push the newly tagged image to your registry:

Exposing a secure registry manually
Instead of logging in to the OpenShift Container Platform registry from within the cluster, you can gain
external access to it by exposing it with a route. This allows you to log in to the registry from outside the
cluster using the route address, and to tag and push images to an existing project by using the route
host.

Prerequisites:

The following prerequisites are automatically performed:

Deploy the Registry Operator.

Deploy the Ingress Operator.

Procedure

You can expose the route by using DefaultRoute parameter in the
configs.imageregistry.operator.openshift.io resource or by using custom routes.

To expose the registry using DefaultRoute:

1. Set DefaultRoute to True:

2. Log in with podman:

--tls-verify=false is needed if the cluster’s default certificate for routes is untrusted. You
can set a custom, trusted certificate as the default certificate with the Ingress Operator.

To expose the registry using custom routes:

1. Create a secret with your route’s TLS keys:

sh-4.2# podman push image-registry.openshift-image-registry.svc:5000/openshift/image

$ oc patch configs.imageregistry.operator.openshift.io/cluster --patch '{"spec":
{"defaultRoute":true}}' --type=merge

$ HOST=$(oc get route default-route -n openshift-image-registry --template='{{ .spec.host }}')

$ podman login -u kubeadmin -p $(oc whoami -t) --tls-verify=false $HOST 1

$ oc create secret tls public-route-tls \
 -n openshift-image-registry \
 --cert=</path/to/tls.crt> \
 --key=</path/to/tls.key>

OpenShift Container Platform 4.6 OpenShift Virtualization

120

This step is optional. If you do not create a secret, the route uses the default TLS configuration
from the Ingress Operator.

2. On the Registry Operator:

NOTE

Only set secretName if you are providing a custom TLS configuration for the
registry’s route.

7.15.5.2.2. Configuring an external image registry

If you use an external image registry for the VDDK image, you can add the external image registry’s
certificate authorities to the OpenShift Container Platform cluster.

Optionally, you can create a pull secret from your Docker credentials and add it to your service account.

Adding certificate authorities to the cluster
You can add certificate authorities (CA) to the cluster for use when pushing and pulling images with the
following procedure.

Prerequisites

You must have cluster administrator privileges.

You must have access to the public certificates of the registry, usually a hostname/ca.crt file
located in the /etc/docker/certs.d/ directory.

Procedure

1. Create a ConfigMap in the openshift-config namespace containing the trusted certificates for
the registries that use self-signed certificates. For each CA file, ensure the key in the
ConfigMap is the hostname of the registry in the hostname[..port] format:

2. Update the cluster image configuration:

Allowing pods to reference images from other secured registries
The .dockercfg $HOME/.docker/config.json file for Docker clients is a Docker credentials file that
stores your authentication information if you have previously logged into a secured or insecure registry.

spec:
 routes:
 - name: public-routes
 hostname: myregistry.mycorp.organization
 secretName: public-route-tls
...

$ oc create configmap registry-cas -n openshift-config \
--from-file=myregistry.corp.com..5000=/etc/docker/certs.d/myregistry.corp.com:5000/ca.crt \
--from-file=otherregistry.com=/etc/docker/certs.d/otherregistry.com/ca.crt

$ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":
{"name":"registry-cas"}}}' --type=merge

CHAPTER 7. VIRTUAL MACHINES

121

To pull a secured container image that is not from OpenShift Container Platform’s internal registry, you
must create a pull secret from your Docker credentials and add it to your service account.

Procedure

If you already have a .dockercfg file for the secured registry, you can create a secret from that
file by running:

Or if you have a $HOME/.docker/config.json file:

If you do not already have a Docker credentials file for the secured registry, you can create a
secret by running:

To use a secret for pulling images for pods, you must add the secret to your service account.
The name of the service account in this example should match the name of the service account
the pod uses. The default service account is default:

7.15.5.2.3. Creating and using a VDDK image

You can download the VMware Virtual Disk Development Kit (VDDK), build a VDDK image, and push the
VDDK image to your image registry. You then add the VDDK image to the v2v-vmware config map.

Prerequisites

You must have access to an OpenShift Container Platform internal image registry or a secure
external registry.

Procedure

1. Create and navigate to a temporary directory:

2. In a browser, navigate to VMware code and click SDKs.

3. Under Compute Virtualization, click Virtual Disk Development Kit (VDDK).

4. Select the VDDK version that corresponds to your VMware vSphere version, for example, VDDK

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockercfg=<path/to/.dockercfg> \
 --type=kubernetes.io/dockercfg

$ oc create secret generic <pull_secret_name> \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

$ oc create secret docker-registry <pull_secret_name> \
 --docker-server=<registry_server> \
 --docker-username=<user_name> \
 --docker-password=<password> \
 --docker-email=<email>

$ oc secrets link default <pull_secret_name> --for=pull

$ mkdir /tmp/<dir_name> && cd /tmp/<dir_name>

OpenShift Container Platform 4.6 OpenShift Virtualization

122

https://code.vmware.com/home

1

4. Select the VDDK version that corresponds to your VMware vSphere version, for example, VDDK
7.0 for vSphere 7.0, click Download, and then save the VDDK archive in the temporary
directory.

5. Extract the VDDK archive:

6. Create a Dockerfile:

7. Build the image:

Specify your image registry:

For an internal OpenShift Container Platform registry, use the internal registry route,
for example, image-registry.openshift-image-registry.svc:5000/openshift/vddk:
<tag>.

For an external registry, specify the server name, path, and tag, for example,
server.example.com:5000/vddk:<tag>.

8. Push the image to the registry:

9. Ensure that the image is accessible to your OpenShift Virtualization environment.

10. Edit the v2v-vmware config map in the openshift-cnv project:

11. Add the vddk-init-image parameter to the data stanza:

7.15.5.3. Importing a virtual machine with the VM Import wizard

You can import a single virtual machine with the VM Import wizard.

You can also import a VM template. If you import a VM template, OpenShift Virtualization creates a
virtual machine based on the template.

$ tar -xzf VMware-vix-disklib-<version>.x86_64.tar.gz

$ cat > Dockerfile <<EOF
FROM busybox:latest
COPY vmware-vix-disklib-distrib /vmware-vix-disklib-distrib
RUN mkdir -p /opt
ENTRYPOINT ["cp", "-r", "/vmware-vix-disklib-distrib", "/opt"]
EOF

$ podman build . -t <registry_route_or_server_path>/vddk:<tag> 1

$ podman push <registry_route_or_server_path>/vddk:<tag>

$ oc edit configmap v2v-vmware -n openshift-cnv

...
data:
 vddk-init-image: <registry_route_or_server_path>/vddk:<tag>

CHAPTER 7. VIRTUAL MACHINES

123

Prerequisites

You must have admin user privileges.

The VMware Virtual Disk Development Kit (VDDK) image must be in an image registry that is
accessible to your OpenShift Virtualization environment.

The VDDK image must be added to the v2v-vmware config map.

The VM must be powered off.

Virtual disks must be connected to IDE or SCSI controllers. If virtual disks are connected to a
SATA controller, you can change them to IDE controllers and then migrate the VM.

The OpenShift Virtualization local and shared persistent storage classes must support VM
import.

The OpenShift Virtualization storage must be large enough to accommodate the virtual disk.

WARNING

If you are using Ceph RBD block-mode volumes, the storage must be large
enough to accommodate the virtual disk. If the disk is too large for the
available storage, the import process fails and the PV that is used to copy
the virtual disk is not released. You will not be able to import another virtual
machine or to clean up the storage because there are insufficient resources
to support object deletion. To resolve this situation, you must add more
object storage devices to the storage back end.

The OpenShift Virtualization egress network policy must allow the following traffic:

Destination Protocol Port

VMware ESXi hosts TCP 443

VMware ESXi hosts TCP 902

VMware vCenter TCP 5840

Procedure

1. In the web console, click Workloads → Virtual Machines.

2. Click Create Virtual Machine and select Import with Wizard.

3. Select VMware from the Provider list.

4. Select Connect to New Instance or a saved vCenter instance.

If you select Connect to New Instance, enter the vCenter hostname, Username, and

OpenShift Container Platform 4.6 OpenShift Virtualization

124

If you select Connect to New Instance, enter the vCenter hostname, Username, and
Password.

If you select a saved vCenter instance, the wizard connects to the vCenter instance using
the saved credentials.

5. Click Check and Save and wait for the connection to complete.

NOTE

The connection details are stored in a secret. If you add a provider with an
incorrect hostname, user name, or password, click Workloads → Secrets and
delete the provider secret.

6. Select a virtual machine or a template.

7. Click Next.

8. In the Review screen, review your settings.

9. Click Edit to update the following settings:

General:

Description

Operating System

Flavor

Memory

CPUs

Workload Profile

Networking:

Name

Model

Network

Type

MAC Address

Storage: Click the Options menu of the VM disk and select Edit to update the
following fields:

Name

Source: For example, Import Disk.

Size

CHAPTER 7. VIRTUAL MACHINES

125

Interface

Storage Class: Select NFS or ocs-storagecluster-ceph-rbd (ceph-rbd).
If you select ocs-storagecluster-ceph-rbd, you must set the Volume Mode of the disk
to Block.

Other storage classes might work, but they are not officially supported.

Advanced → Volume Mode: Select Block.

Advanced → Access Mode

Advanced → Cloud-init:

Form: Enter the Hostname and Authenticated SSH Keys.

Custom script: Enter the cloud-init script in the text field.

Advanced → Virtual Hardware: You can attach a virtual CD-ROM to the imported virtual
machine.

10. Click Import or Review and Import, if you have edited the import settings.
A Successfully created virtual machine message and a list of resources created for the virtual
machine are displayed. The virtual machine appears in Workloads → Virtual Machines.

Virtual machine wizard fields

Name Parameter Description

Template Template from which to create
the virtual machine. Selecting a
template will automatically
complete other fields.

Source PXE Provision virtual machine from
PXE menu. Requires a PXE-
capable NIC in the cluster.

URL Provision virtual machine from an
image available from an HTTP or
S3 endpoint.

Container Provision virtual machine from a
bootable operating system
container located in a registry
accessible from the cluster.
Example: kubevirt/cirros-
registry-disk-demo.

Disk Provision virtual machine from a
disk.

OpenShift Container Platform 4.6 OpenShift Virtualization

126

Operating System The primary operating system
that is selected for the virtual
machine.

Flavor small, medium, large, tiny, Custom Presets that determine the
amount of CPU and memory
allocated to the virtual machine.
The presets displayed for Flavor
are determined by the operating
system.

Memory Size in GiB of the memory
allocated to the virtual machine.

CPUs The amount of CPU allocated to
the virtual machine.

Workload Profile High Performance A virtual machine configuration
that is optimized for high-
performance workloads.

Server A profile optimized to run server
workloads.

Desktop A virtual machine configuration
for use on a desktop.

Name The name can contain lowercase
letters (a-z), numbers (0-9), and
hyphens (-), up to a maximum of
253 characters. The first and last
characters must be alphanumeric.
The name must not contain
uppercase letters, spaces, periods
(.), or special characters.

Description Optional description field.

Start virtual machine on creation Select to automatically start the
virtual machine upon creation.

Name Parameter Description

Cloud-init fields

Name Description

Hostname Sets a specific hostname for the virtual machine.

CHAPTER 7. VIRTUAL MACHINES

127

Authenticated SSH Keys The user’s public key that is copied to
~/.ssh/authorized_keys on the virtual machine.

Custom script Replaces other options with a field in which you paste
a custom cloud-init script.

Name Description

Networking fields

Name Description

Name Name for the network interface controller.

Model Indicates the model of the network interface
controller. Supported values are e1000e and virtio.

Network List of available network attachment definitions.

Type List of available binding methods. For the default
pod network, masquerade is the only
recommended binding method. For secondary
networks, use the bridge binding method. The
masquerade method is not supported for non-
default networks.

MAC Address MAC address for the network interface controller. If a
MAC address is not specified, one is assigned
automatically.

Storage fields

Name Description

Source Select a blank disk for the virtual machine or choose
from the options available: URL, Container, Attach
Cloned Disk, or Attach Disk. To select an existing
disk and attach it to the virtual machine, choose
Attach Cloned Disk or Attach Disk from a list of
available persistent volume claims (PVCs).

Name Name of the disk. The name can contain lowercase
letters (a-z), numbers (0-9), hyphens (-), and periods
(.), up to a maximum of 253 characters. The first and
last characters must be alphanumeric. The name
must not contain uppercase letters, spaces, or special
characters.

Size (GiB) Size, in GiB, of the disk.

OpenShift Container Platform 4.6 OpenShift Virtualization

128

Interface Type of disk device. Supported interfaces are virtIO,
SATA, and SCSI.

Storage Class The storage class that is used to create the disk.

Advanced → Volume Mode Defines whether the persistent volume uses a
formatted file system or raw block state. Default is
Filesystem.

Advanced → Access Mode Access mode of the persistent volume. Supported
access modes are ReadWriteOnce, ReadOnlyMany,
and ReadWriteMany.

Name Description

Advanced storage settings
The following advanced storage settings are available for Blank, Import via URL, and Clone existing
PVC disks. These parameters are optional. If you do not specify these parameters, the system uses the
default values from the kubevirt-storage-class-defaults config map.

Name Parameter Description

Volume Mode Filesystem Stores the virtual disk on a file system-based volume.

Block Stores the virtual disk directly on the block volume.
Only use Block if the underlying storage supports it.

Access Mode Single User (RWO) The disk can be mounted as read/write by a single
node.

Shared Access (RWX) The disk can be mounted as read/write by many
nodes.

NOTE

This is required for some features,
such as live migration of virtual
machines between nodes.

Read Only (ROX) The disk can be mounted as read-only by many
nodes.

7.15.5.3.1. Updating the NIC name of an imported virtual machine

You must update the NIC name of a virtual machine that you imported from VMware to conform to
OpenShift Virtualization naming conventions.

Procedure

CHAPTER 7. VIRTUAL MACHINES

129

1

1

1

1. Log in to the virtual machine.

2. Navigate to the /etc/sysconfig/network-scripts directory.

3. Rename the network configuration file:

The first network configuration file is named ifcfg-eth0. Additional network configuration
files are numbered sequentially, for example, ifcfg-eth1, ifcfg-eth2.

4. Update the NAME and DEVICE parameters in the network configuration file:

5. Restart the network:

7.15.5.4. Troubleshooting a virtual machine import

7.15.5.4.1. Logs

You can check the V2V Conversion pod log for errors.

Procedure

1. View the V2V Conversion pod name by running the following command:

Specify the namespace of your imported virtual machine.

Example output

2. View the V2V Conversion pod log by running the following command:

Specify the VM Conversion pod name and the namespace.

7.15.5.4.2. Error messages

The following error messages might appear:

If the VMware VM is not shut down before import, the imported virtual machine displays the

$ mv vmnic0 ifcfg-eth0 1

NAME=eth0
DEVICE=eth0

$ systemctl restart network

$ oc get pods -n <namespace> | grep v2v 1

kubevirt-v2v-conversion-f66f7d-zqkz7 1/1 Running 0 4h49m

$ oc logs <kubevirt-v2v-conversion-f66f7d-zqkz7> -f -n <namespace> 1

OpenShift Container Platform 4.6 OpenShift Virtualization

130

If the VMware VM is not shut down before import, the imported virtual machine displays the
error message, Readiness probe failed in the OpenShift Container Platform console and the
V2V Conversion pod log displays the following error message:

The following error message is displayed in the OpenShift Container Platform console if a non-
admin user tries to import a VM:

Only an admin user can import a VM.

7.16. CLONING VIRTUAL MACHINES

7.16.1. Enabling user permissions to clone data volumes across namespaces

The isolating nature of namespaces means that users cannot by default clone resources between
namespaces.

To enable a user to clone a virtual machine to another namespace, a user with the cluster-admin role
must create a new cluster role. Bind this cluster role to a user to enable them to clone virtual machines to
the destination namespace.

7.16.1.1. Prerequisites

Only a user with the cluster-admin role can create cluster roles.

7.16.1.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

7.16.1.3. Creating RBAC resources for cloning data volumes

Create a new cluster role that enables permissions for all actions for the datavolumes resource.

Procedure

1. Create a ClusterRole manifest:

INFO - have error: ('virt-v2v error: internal error: invalid argument: libvirt domain
‘v2v_migration_vm_1’ is running or paused. It must be shut down in order to perform virt-v2v
conversion',)"

Could not load config map vmware-to-kubevirt-os in kube-public namespace
Restricted Access: configmaps "vmware-to-kubevirt-os" is forbidden: User cannot get
resource "configmaps" in API group "" in the namespace "kube-public"

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: <datavolume-cloner> 1
rules:

CHAPTER 7. VIRTUAL MACHINES

131

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/authentication_and_authorization/#default-roles_using-rbac

1

1

1

2

3

4

1

Unique name for the cluster role.

2. Create the cluster role in the cluster:

The file name of the ClusterRole manifest created in the previous step.

3. Create a RoleBinding manifest that applies to both the source and destination namespaces
and references the cluster role created in the previous step.

Unique name for the role binding.

The namespace for the source data volume.

The namespace to which the data volume is cloned.

The name of the cluster role created in the previous step.

4. Create the role binding in the cluster:

The file name of the RoleBinding manifest created in the previous step.

7.16.2. Cloning a virtual machine disk into a new data volume

You can clone the persistent volume claim (PVC) of a virtual machine disk into a new data volume by
referencing the source PVC in your data volume configuration file.

- apiGroups: ["cdi.kubevirt.io"]
 resources: ["datavolumes/source"]
 verbs: ["*"]

$ oc create -f <datavolume-cloner.yaml> 1

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: <allow-clone-to-user> 1
 namespace: <Source namespace> 2
subjects:
- kind: ServiceAccount
 name: default
 namespace: <Destination namespace> 3
roleRef:
 kind: ClusterRole
 name: datavolume-cloner 4
 apiGroup: rbac.authorization.k8s.io

$ oc create -f <datavolume-cloner.yaml> 1

OpenShift Container Platform 4.6 OpenShift Virtualization

132

WARNING

Cloning operations between different volume modes are not supported. The
volumeMode values must match in both the source and target specifications.

For example, if you attempt to clone from a persistent volume (PV) with
volumeMode: Block to a PV with volumeMode: Filesystem, the operation fails
with an error message.

7.16.2.1. Prerequisites

Users need additional permissions to clone the PVC of a virtual machine disk into another
namespace.

7.16.2.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

7.16.2.3. Cloning the persistent volume claim of a virtual machine disk into a new data
volume

You can clone a persistent volume claim (PVC) of an existing virtual machine disk into a new data
volume. The new data volume can then be used for a new virtual machine.

NOTE

When a data volume is created independently of a virtual machine, the lifecycle of the
data volume is independent of the virtual machine. If the virtual machine is deleted,
neither the data volume nor its associated PVC is deleted.

Prerequisites

Determine the PVC of an existing virtual machine disk to use. You must power down the virtual
machine that is associated with the PVC before you can clone it.

Install the OpenShift CLI (oc).

Procedure

1. Examine the virtual machine disk you want to clone to identify the name and namespace of the
associated PVC.

2. Create a YAML file for a data volume that specifies the name of the new data volume, the name
and namespace of the source PVC, and the size of the new data volume.
For example:

apiVersion: cdi.kubevirt.io/v1beta1

CHAPTER 7. VIRTUAL MACHINES

133

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-enabling-user-permissions-to-clone-datavolumes

1

2

3

4

The name of the new data volume.

The namespace where the source PVC exists.

The name of the source PVC.

The size of the new data volume. You must allocate enough space, or the cloning operation
fails. The size must be the same as or larger than the source PVC.

3. Start cloning the PVC by creating the data volume:

NOTE

Data volumes prevent a virtual machine from starting before the PVC is
prepared, so you can create a virtual machine that references the new data
volume while the PVC clones.

7.16.2.4. Template: Data volume clone configuration file

example-clone-dv.yaml

kind: DataVolume
metadata:
 name: <cloner-datavolume> 1
spec:
 source:
 pvc:
 namespace: "<source-namespace>" 2
 name: "<my-favorite-vm-disk>" 3
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <2Gi> 4

$ oc create -f <cloner-datavolume>.yaml

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: "example-clone-dv"
spec:
 source:
 pvc:
 name: source-pvc
 namespace: example-ns
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: "1G"

OpenShift Container Platform 4.6 OpenShift Virtualization

134

7.16.2.5. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt(QCO
W2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

7.16.3. Cloning a virtual machine by using a data volume template

You can create a new virtual machine by cloning the persistent volume claim (PVC) of an existing VM. By
including a dataVolumeTemplate in your virtual machine configuration file, you create a new data
volume from the original PVC.

WARNING

Cloning operations between different volume modes are not supported. The
volumeMode values must match in both the source and target specifications.

For example, if you attempt to clone from a persistent volume (PV) with
volumeMode: Block to a PV with volumeMode: Filesystem, the operation fails
with an error message.

7.16.3.1. Prerequisites

Users need additional permissions to clone the PVC of a virtual machine disk into another
namespace.

7.16.3.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an

CHAPTER 7. VIRTUAL MACHINES

135

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-enabling-user-permissions-to-clone-datavolumes

underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

7.16.3.3. Creating a new virtual machine from a cloned persistent volume claim by using a
data volume template

You can create a virtual machine that clones the persistent volume claim (PVC) of an existing virtual
machine into a data volume. Reference a dataVolumeTemplate in the virtual machine manifest and the
source PVC is cloned to a data volume, which is then automatically used for the creation of the virtual
machine.

NOTE

When a data volume is created as part of the data volume template of a virtual machine,
the lifecycle of the data volume is then dependent on the virtual machine. If the virtual
machine is deleted, the data volume and associated PVC are also deleted.

Prerequisites

Determine the PVC of an existing virtual machine disk to use. You must power down the virtual
machine that is associated with the PVC before you can clone it.

Install the OpenShift CLI (oc).

Procedure

1. Examine the virtual machine you want to clone to identify the name and namespace of the
associated PVC.

2. Create a YAML file for a VirtualMachine object. The following virtual machine example clones
my-favorite-vm-disk, which is located in the source-namespace namespace. The 2Gi data
volume called favorite-clone is created from my-favorite-vm-disk.
For example:

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: vm-dv-clone
 name: vm-dv-clone 1
spec:
 running: false
 template:
 metadata:
 labels:
 kubevirt.io/vm: vm-dv-clone
 spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: root-disk
 resources:
 requests:

OpenShift Container Platform 4.6 OpenShift Virtualization

136

1 The virtual machine to create.

3. Create the virtual machine with the PVC-cloned data volume:

7.16.3.4. Template: Data volume virtual machine configuration file

example-dv-vm.yaml

 memory: 64M
 volumes:
 - dataVolume:
 name: favorite-clone
 name: root-disk
 dataVolumeTemplates:
 - metadata:
 name: favorite-clone
 spec:
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi
 source:
 pvc:
 namespace: "source-namespace"
 name: "my-favorite-vm-disk"

$ oc create -f <vm-clone-datavolumetemplate>.yaml

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 labels:
 kubevirt.io/vm: example-vm
 name: example-vm
spec:
 dataVolumeTemplates:
 - metadata:
 name: example-dv
 spec:
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1G
 source:
 http:
 url: "" 1
 running: false
 template:
 metadata:
 labels:

CHAPTER 7. VIRTUAL MACHINES

137

1 The HTTP source of the image you want to import, if applicable.

7.16.3.5. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt(QCO
W2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

7.16.4. Cloning a virtual machine disk into a new block storage data volume

You can clone the persistent volume claim (PVC) of a virtual machine disk into a new block data volume
by referencing the source PVC in your data volume configuration file.

 kubevirt.io/vm: example-vm
 spec:
 domain:
 cpu:
 cores: 1
 devices:
 disks:
 - disk:
 bus: virtio
 name: example-dv-disk
 machine:
 type: q35
 resources:
 requests:
 memory: 1G
 terminationGracePeriodSeconds: 0
 volumes:
 - dataVolume:
 name: example-dv
 name: example-dv-disk

OpenShift Container Platform 4.6 OpenShift Virtualization

138

1

WARNING

Cloning operations between different volume modes are not supported. The
volumeMode values must match in both the source and target specifications.

For example, if you attempt to clone from a persistent volume (PV) with
volumeMode: Block to a PV with volumeMode: Filesystem, the operation fails
with an error message.

7.16.4.1. Prerequisites

Users need additional permissions to clone the PVC of a virtual machine disk into another
namespace.

7.16.4.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

7.16.4.3. About block persistent volumes

A block persistent volume (PV) is a PV that is backed by a raw block device. These volumes do not have
a file system and can provide performance benefits for virtual machines by reducing overhead.

Raw block volumes are provisioned by specifying volumeMode: Block in the PV and persistent volume
claim (PVC) specification.

7.16.4.4. Creating a local block persistent volume

Create a local block persistent volume (PV) on a node by populating a file and mounting it as a loop
device. You can then reference this loop device in a PV manifest as a Block volume and use it as a block
device for a virtual machine image.

Procedure

1. Log in as root to the node on which to create the local PV. This procedure uses node01 for its
examples.

2. Create a file and populate it with null characters so that it can be used as a block device. The
following example creates a file loop10 with a size of 2Gb (20 100Mb blocks):

3. Mount the loop10 file as a loop device.

File path where the loop device is mounted.

$ dd if=/dev/zero of=<loop10> bs=100M count=20

$ losetup </dev/loop10>d3 <loop10> 1 2

CHAPTER 7. VIRTUAL MACHINES

139

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-enabling-user-permissions-to-clone-datavolumes

2

1

2

3

4

1

The file created in the previous step to be mounted as the loop device.

4. Create a PersistentVolume manifest that references the mounted loop device.

The path of the loop device on the node.

Specifies it is a block PV.

Optional: Set a storage class for the PV. If you omit it, the cluster default is used.

The node on which the block device was mounted.

5. Create the block PV.

The file name of the persistent volume created in the previous step.

7.16.4.5. Cloning the persistent volume claim of a virtual machine disk into a new data
volume

You can clone a persistent volume claim (PVC) of an existing virtual machine disk into a new data
volume. The new data volume can then be used for a new virtual machine.

NOTE

kind: PersistentVolume
apiVersion: v1
metadata:
 name: <local-block-pv10>
 annotations:
spec:
 local:
 path: </dev/loop10> 1
 capacity:
 storage: <2Gi>
 volumeMode: Block 2
 storageClassName: local 3
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - <node01> 4

oc create -f <local-block-pv10.yaml> 1

OpenShift Container Platform 4.6 OpenShift Virtualization

140

1

2

3

4

5

NOTE

When a data volume is created independently of a virtual machine, the lifecycle of the
data volume is independent of the virtual machine. If the virtual machine is deleted,
neither the data volume nor its associated PVC is deleted.

Prerequisites

Determine the PVC of an existing virtual machine disk to use. You must power down the virtual
machine that is associated with the PVC before you can clone it.

Install the OpenShift CLI (oc).

At least one available block persistent volume (PV) that is the same size as or larger than the
source PVC.

Procedure

1. Examine the virtual machine disk you want to clone to identify the name and namespace of the
associated PVC.

2. Create a YAML file for a data volume that specifies the name of the new data volume, the name
and namespace of the source PVC, volumeMode: Block so that an available block PV is used,
and the size of the new data volume.
For example:

The name of the new data volume.

The namespace where the source PVC exists.

The name of the source PVC.

The size of the new data volume. You must allocate enough space, or the cloning operation
fails. The size must be the same as or larger than the source PVC.

Specifies that the destination is a block PV

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: <cloner-datavolume> 1
spec:
 source:
 pvc:
 namespace: "<source-namespace>" 2
 name: "<my-favorite-vm-disk>" 3
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <2Gi> 4
 volumeMode: Block 5

CHAPTER 7. VIRTUAL MACHINES

141

3. Start cloning the PVC by creating the data volume:

NOTE

Data volumes prevent a virtual machine from starting before the PVC is
prepared, so you can create a virtual machine that references the new data
volume while the PVC clones.

7.16.4.6. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt(QCO
W2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

7.17. VIRTUAL MACHINE NETWORKING

7.17.1. Configuring the virtual machine for the default pod network

You can connect a virtual machine to the default internal pod network by configuring its network
interface to use the masquerade binding mode.

NOTE

The KubeMacPool component provides a MAC address pool service for virtual machine
NICs in designated namespaces. It is not enabled by default. Enable a MAC address pool
in a namespace by applying the KubeMacPool label to that namespace.

7.17.1.1. Configuring masquerade mode from the command line

You can use masquerade mode to hide a virtual machine’s outgoing traffic behind the pod IP address.

$ oc create -f <cloner-datavolume>.yaml

OpenShift Container Platform 4.6 OpenShift Virtualization

142

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-about-kubemacpool_virt-using-mac-address-pool-for-vms

1

2

You can use masquerade mode to hide a virtual machine’s outgoing traffic behind the pod IP address.
Masquerade mode uses Network Address Translation (NAT) to connect virtual machines to the pod
network backend through a Linux bridge.

Enable masquerade mode and allow traffic to enter the virtual machine by editing your virtual machine
configuration file.

Prerequisites

The virtual machine must be configured to use DHCP to acquire IPv4 addresses. The examples
below are configured to use DHCP.

Procedure

1. Edit the interfaces spec of your virtual machine configuration file:

Connect using masquerade mode.

Optional: List the ports that you want to expose from the virtual machine, each specified by
the port field. The port value must be a number between 0 and 65536. When the ports
array is not used, all ports in the valid range are open to incoming traffic. In this example,
incoming traffic is allowed on port 80.

NOTE

Ports 49152 and 49153 are reserved for use by the libvirt platform and all other
incoming traffic to these ports is dropped.

2. Create the virtual machine:

7.17.1.2. Creating a service from a virtual machine

Create a service from a running virtual machine by first creating a Service object to expose the virtual
machine.

The ClusterIP service type exposes the virtual machine internally, within the cluster. The NodePort or
LoadBalancer service types expose the virtual machine externally, outside of the cluster.

kind: VirtualMachine
spec:
 domain:
 devices:
 interfaces:
 - name: default
 masquerade: {} 1
 ports:
 - port: 80 2
 networks:
 - name: default
 pod: {}

$ oc create -f <vm-name>.yaml

CHAPTER 7. VIRTUAL MACHINES

143

1

This procedure presents an example of how to create, connect to, and expose a Service object of type:
ClusterIP as a virtual machine-backed service.

NOTE

ClusterIP is the default service type, if the service type is not specified.

Procedure

1. Edit the virtual machine YAML as follows:

Add the label special: key in the spec.template.metadata.labels section.

NOTE

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 name: vm-ephemeral
 namespace: example-namespace
spec:
 running: false
 template:
 metadata:
 labels:
 special: key 1
 spec:
 domain:
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - masquerade: {}
 name: default
 resources:
 requests:
 memory: 1024M
 networks:
 - name: default
 pod: {}
 volumes:
 - name: containerdisk
 containerDisk:
 image: kubevirt/fedora-cloud-container-disk-demo
 - name: cloudinitdisk
 cloudInitNoCloud:
 userData: |
 #!/bin/bash
 echo "fedora" | passwd fedora --stdin

OpenShift Container Platform 4.6 OpenShift Virtualization

144

1

2

3

4

5

NOTE

Labels on a virtual machine are passed through to the pod. The labels on the
VirtualMachine configuration, for example special: key, must match the labels
in the Service YAML selector attribute, which you create later in this procedure.

2. Save the virtual machine YAML to apply your changes.

3. Edit the Service YAML to configure the settings necessary to create and expose the Service
object:

Specify the name of the service you are creating and exposing.

Specify namespace in the metadata section of the Service YAML that corresponds to
the namespace you specify in the virtual machine YAML.

Add targetPort: 22, exposing the service on SSH port 22.

In the spec section of the Service YAML, add special: key to the selector attribute, which
corresponds to the labels you added in the virtual machine YAML configuration file.

In the spec section of the Service YAML, add type: ClusterIP for a ClusterIP service. To
create and expose other types of services externally, outside of the cluster, such as
NodePort and LoadBalancer, replace type: ClusterIP with type: NodePort or type:
LoadBalancer, as appropriate.

4. Save the Service YAML to store the service configuration.

5. Create the ClusterIP service:

6. Start the virtual machine. If the virtual machine is already running, restart it.

7. Query the Service object to verify it is available and is configured with type ClusterIP.

Verification

Run the oc get service command, specifying the namespace that you reference in the
virtual machine and Service YAML files.

apiVersion: v1
kind: Service
metadata:
 name: vmservice 1
 namespace: example-namespace 2
spec:
 ports:
 - port: 27017
 protocol: TCP
 targetPort: 22 3
 selector:
 special: key 4
 type: ClusterIP 5

$ oc create -f <service_name>.yaml

CHAPTER 7. VIRTUAL MACHINES

145

Example output

As shown from the output, vmservice is running.

The TYPE displays as ClusterIP, as you specified in the Service YAML.

8. Establish a connection to the virtual machine that you want to use to back your service. Connect
from an object inside the cluster, such as another virtual machine.

a. Edit the virtual machine YAML as follows:

b. Run the oc create command to create a second virtual machine, where file.yaml is the
name of the virtual machine YAML:

$ oc get service -n example-namespace

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
vmservice ClusterIP 172.30.3.149 <none> 27017/TCP 2m

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 name: vm-connect
 namespace: example-namespace
spec:
 running: false
 template:
 spec:
 domain:
 devices:
 disks:
 - name: containerdisk
 disk:
 bus: virtio
 - name: cloudinitdisk
 disk:
 bus: virtio
 interfaces:
 - masquerade: {}
 name: default
 resources:
 requests:
 memory: 1024M
 networks:
 - name: default
 pod: {}
 volumes:
 - name: containerdisk
 containerDisk:
 image: kubevirt/fedora-cloud-container-disk-demo
 - name: cloudinitdisk
 cloudInitNoCloud:
 userData: |
 #!/bin/bash
 echo "fedora" | passwd fedora --stdin

OpenShift Container Platform 4.6 OpenShift Virtualization

146

c. Start the virtual machine.

d. Connect to the virtual machine by running the following virtctl command:

NOTE

For service type LoadBalancer, use the vinagre client to connect your
virtual machine by using the public IP and port. External ports are dynamically
allocated when using service type LoadBalancer.

e. Run the ssh command to authenticate the connection, where 172.30.3.149 is the ClusterIP
of the service and fedora is the user name of the virtual machine:

Verification

You receive the command prompt of the virtual machine backing the service you want
to expose. You now have a service backed by a running virtual machine.

7.17.2. Attaching a virtual machine to a Linux bridge network

By default, OpenShift Virtualization is installed with a single, internal pod network.

You must create a Linux bridge network attachment definition (NAD) in order to connect to additional
networks.

To attach a virtual machine to an additional network:

1. Create a Linux bridge node network configuration policy.

2. Create a Linux bridge network attachment definition.

3. Configure the virtual machine, enabling the virtual machine to recognize the network
attachment definition.

For more information about scheduling, interface types, and other node networking activities, see the
node networking section.

7.17.2.1. Connecting to the network through the network attachment definition

7.17.2.1.1. Creating a Linux bridge node network configuration policy

Use a NodeNetworkConfigurationPolicy manifest YAML file to create the Linux bridge.

Procedure

Create the NodeNetworkConfigurationPolicy manifest. This example includes sample values
that you must replace with your own information.

$ oc create -f <file.yaml>

$ virtctl -n example-namespace console <new-vm-name>

$ ssh fedora@172.30.3.149 -p 27017

CHAPTER 7. VIRTUAL MACHINES

147

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-about-nmstate_virt-updating-node-network-config

1

2

3

4

5

6

7

8

Name of the policy.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bridge.

The requested state for the interface after creation.

Disables IPv4 in this example.

Disables STP in this example.

The node NIC to which the bridge is attached.

7.17.2.2. Creating a Linux bridge network attachment definition

7.17.2.2.1. Prerequisites

A Linux bridge must be configured and attached on every node. See the node networking
section for more information.

WARNING

Configuring IP address management (IPAM) in a network attachment definition for
virtual machines is not supported.

apiVersion: nmstate.io/v1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: br1-eth1-policy 1
spec:
 desiredState:
 interfaces:
 - name: br1 2
 description: Linux bridge with eth1 as a port 3
 type: linux-bridge 4
 state: up 5
 ipv4:
 enabled: false 6
 bridge:
 options:
 stp:
 enabled: false 7
 port:
 - name: eth1 8

OpenShift Container Platform 4.6 OpenShift Virtualization

148

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-about-nmstate_virt-updating-node-network-config

7.17.2.2.2. Creating a Linux bridge network attachment definition in the web console

The network attachment definition is a custom resource that exposes layer-2 devices to a specific
namespace in your OpenShift Virtualization cluster.

Network administrators can create network attachment definitions to provide existing layer-2
networking to pods and virtual machines.

Procedure

1. In the web console, click Networking → Network Attachment Definitions.

2. Click Create Network Attachment Definition.

NOTE

The network attachment definition must be in the same namespace as the pod or
virtual machine.

3. Enter a unique Name and optional Description.

4. Click the Network Type list and select CNV Linux bridge.

5. Enter the name of the bridge in the Bridge Name field.

6. Optional: If the resource has VLAN IDs configured, enter the ID numbers in the VLAN Tag
Number field.

7. Optional: Select MAC Spoof Check to enable MAC spoof filtering. This feature provides
security against a MAC spoofing attack by allowing only a single MAC address to exit the pod.

8. Click Create.

NOTE

A Linux bridge network attachment definition is the most efficient method for
connecting a virtual machine to a VLAN.

7.17.2.2.3. Creating a Linux bridge network attachment definition in the CLI

As a network administrator, you can configure a network attachment definition of type cnv-bridge to
provide layer-2 networking to pods and virtual machines.

NOTE

The network attachment definition must be in the same namespace as the pod or virtual
machine.

Procedure

1. Create a network attachment definition in the same namespace as the virtual machine.

2. Add the virtual machine to the network attachment definition, as in the following example:

apiVersion: "k8s.cni.cncf.io/v1"

CHAPTER 7. VIRTUAL MACHINES

149

1

2

3

4

5

6

7

1

The name for the NetworkAttachmentDefinition object.

Optional: Annotation key-value pair for node selection, where bridge-interface is the
name of a bridge configured on some nodes. If you add this annotation to your network
attachment definition, your virtual machine instances will only run on the nodes that have
the bridge-interface bridge connected.

The name for the configuration. It is recommended to match the configuration name to the
name value of the network attachment definition.

The actual name of the Container Network Interface (CNI) plug-in that provides the
network for this network attachment definition. Do not change this field unless you want to
use a different CNI.

The name of the Linux bridge configured on the node.

Optional: Flag to enable MAC spoof check. When set to true, you cannot change the MAC
address of the pod or guest interface. This attribute provides security against a MAC
spoofing attack by allowing only a single MAC address to exit the pod.

Optional: The VLAN tag. No additional VLAN configuration is required on the node
network configuration policy.

NOTE

A Linux bridge network attachment definition is the most efficient method for
connecting a virtual machine to a VLAN.

3. Create the network attachment definition:

Where <network-attachment-definition.yaml> is the file name of the network attachment
definition manifest.

Verification

kind: NetworkAttachmentDefinition
metadata:
 name: <bridge-network> 1
 annotations:
 k8s.v1.cni.cncf.io/resourceName: bridge.network.kubevirt.io/<bridge-interface> 2
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "<bridge-network>", 3
 "type": "cnv-bridge", 4
 "bridge": "<bridge-interface>", 5
 "macspoofchk": true, 6
 "vlan": 1 7
 }'

$ oc create -f <network-attachment-definition.yaml> 1

OpenShift Container Platform 4.6 OpenShift Virtualization

150

Verify that the network attachment definition was created by running the following command:

7.17.2.3. Configuring the virtual machine for a Linux bridge network

7.17.2.3.1. Creating a NIC for a virtual machine in the web console

Create and attach additional NICs to a virtual machine from the web console.

Procedure

1. In the correct project in the OpenShift Virtualization console, click Workloads → Virtualization
from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. Click Network Interfaces to display the NICs already attached to the virtual machine.

5. Click Add Network Interface to create a new slot in the list.

6. Use the Network drop-down list to select the network attachment definition for the additional
network.

7. Fill in the Name, Model, Type, and MAC Address for the new NIC.

8. Click Add to save and attach the NIC to the virtual machine.

7.17.2.3.2. Networking fields

Name Description

Name Name for the network interface controller.

Model Indicates the model of the network interface
controller. Supported values are e1000e and virtio.

Network List of available network attachment definitions.

Type List of available binding methods. For the default
pod network, masquerade is the only
recommended binding method. For secondary
networks, use the bridge binding method. The
masquerade method is not supported for non-
default networks.

MAC Address MAC address for the network interface controller. If a
MAC address is not specified, one is assigned
automatically.

$ oc get network-attachment-definition <bridge-network>

CHAPTER 7. VIRTUAL MACHINES

151

1

2

3

7.17.2.3.3. Attaching a virtual machine to an additional network in the CLI

Attach a virtual machine to an additional network by adding a bridge interface and specifying a network
attachment definition in the virtual machine configuration.

This procedure uses a YAML file to demonstrate editing the configuration and applying the updated file
to the cluster. You can alternatively use the oc edit <object> <name> command to edit an existing
virtual machine.

Prerequisites

Shut down the virtual machine before editing the configuration. If you edit a running virtual
machine, you must restart the virtual machine for the changes to take effect.

Procedure

1. Create or edit a configuration of a virtual machine that you want to connect to the bridge
network.

2. Add the bridge interface to the spec.template.spec.domain.devices.interfaces list and the
network attachment definition to the spec.template.spec.networks list. This example adds a
bridge interface called bridge-net that connects to the a-bridge-network network attachment
definition:

The name of the bridge interface.

The name of the network. This value must match the name value of the corresponding
spec.template.spec.domain.devices.interfaces entry.

The name of the network attachment definition, prefixed by the namespace where it exists.
The namespace must be either the default namespace or the same namespace where the
VM is to be created. In this case, multus is used. Multus is a cloud network interface (CNI)

apiVersion: v1
kind: VirtualMachine
metadata:
 name: <example-vm>
spec:
 template:
 spec:
 domain:
 devices:
 interfaces:
 - masquerade: {}
 name: <default>
 - bridge: {}
 name: <bridge-net> 1
...
 networks:
 - name: <default>
 pod: {}
 - name: <bridge-net> 2
 multus:
 networkName: <a-bridge-network> 3
...

OpenShift Container Platform 4.6 OpenShift Virtualization

152

1

2

plug-in that allows multiple CNIs to exist so that a pod or virtual machine can use the
interfaces it needs.

3. Apply the configuration:

4. Optional: If you edited a running virtual machine, you must restart it for the changes to take
effect.

7.17.3. Configuring IP addresses for virtual machines

You can configure either dynamically or statically provisioned IP addresses for virtual machines.

Prerequisites

The virtual machine must connect to an external network.

You must have a DHCP server available on the additional network to configure a dynamic IP for
the virtual machine.

7.17.3.1. Configuring an IP address for a new virtual machine using cloud-init

You can use cloud-init to configure an IP address when you create a virtual machine. The IP address can
be dynamically or statically provisioned.

Procedure

Create a virtual machine configuration and include the cloud-init network details in the
spec.volumes.cloudInitNoCloud.networkData field of the virtual machine configuration:

a. To configure a dynamic IP, specify the interface name and the dhcp4 boolean:

The interface name.

Uses DHCP to provision an IPv4 address.

b. To configure a static IP, specify the interface name and the IP address:

$ oc apply -f <example-vm.yaml>

kind: VirtualMachine
spec:
...
 volumes:
 - cloudInitNoCloud:
 networkData: |
 version: 2
 ethernets:
 eth1: 1
 dhcp4: true 2

kind: VirtualMachine
spec:
...

CHAPTER 7. VIRTUAL MACHINES

153

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-attaching-vm-multiple-networks

1

2

The interface name.

The static IP address for the virtual machine.

7.17.4. Configuring an SR-IOV network device for virtual machines

You can configure a Single Root I/O Virtualization (SR-IOV) device for virtual machines in your cluster.
This process is similar but not identical to configuring an SR-IOV device for OpenShift Container
Platform.

NOTE

Live migration is not supported for virtual machines that are attached to an SR-IOV
network interface.

7.17.4.1. Prerequisites

You must have installed the SR-IOV Operator.

You must have configured the SR-IOV Operator.

7.17.4.2. Automated discovery of SR-IOV network devices

The SR-IOV Network Operator searches your cluster for SR-IOV capable network devices on worker
nodes. The Operator creates and updates a SriovNetworkNodeState custom resource (CR) for each
worker node that provides a compatible SR-IOV network device.

The CR is assigned the same name as the worker node. The status.interfaces list provides information
about the network devices on a node.

IMPORTANT

Do not modify a SriovNetworkNodeState object. The Operator creates and manages
these resources automatically.

7.17.4.2.1. Example SriovNetworkNodeState object

The following YAML is an example of a SriovNetworkNodeState object created by the SR-IOV Network
Operator:

An SriovNetworkNodeState object

 volumes:
 - cloudInitNoCloud:
 networkData: |
 version: 2
 ethernets:
 eth1: 1
 addresses:
 - 10.10.10.14/24 2

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState

OpenShift Container Platform 4.6 OpenShift Virtualization

154

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#installing-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/networking/#configuring-sriov-operator

1

2

The value of the name field is the same as the name of the worker node.

The interfaces stanza includes a list of all of the SR-IOV devices discovered by the Operator on
the worker node.

metadata:
 name: node-25 1
 namespace: openshift-sriov-network-operator
 ownerReferences:
 - apiVersion: sriovnetwork.openshift.io/v1
 blockOwnerDeletion: true
 controller: true
 kind: SriovNetworkNodePolicy
 name: default
spec:
 dpConfigVersion: "39824"
status:
 interfaces: 2
 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f0
 pciAddress: "0000:18:00.0"
 totalvfs: 8
 vendor: 15b3
 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f1
 pciAddress: "0000:18:00.1"
 totalvfs: 8
 vendor: 15b3
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f0
 pciAddress: 0000:81:00.0
 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f1
 pciAddress: 0000:81:00.1
 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens803f0
 pciAddress: 0000:86:00.0
 totalvfs: 64
 vendor: "8086"
 syncStatus: Succeeded

CHAPTER 7. VIRTUAL MACHINES

155

1

7.17.4.3. Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-
IOV Operator might drain the nodes, and in some cases, reboot nodes.

It might take several minutes for a configuration change to apply.

Prerequisites

You installed the OpenShift CLI (oc).

You have access to the cluster as a user with the cluster-admin role.

You have installed the SR-IOV Network Operator.

You have enough available nodes in your cluster to handle the evicted workload from drained
nodes.

You have not selected any control plane nodes for SR-IOV network device configuration.

Procedure

1. Create an SriovNetworkNodePolicy object, and then save the YAML in the <name>-sriov-
node-network.yaml file. Replace <name> with the name for this configuration.

Specify a name for the CR object.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true" 4
 priority: <priority> 5
 mtu: <mtu> 6
 numVfs: <num> 7
 nicSelector: 8
 vendor: "<vendor_code>" 9
 deviceID: "<device_id>" 10
 pfNames: ["<pf_name>", ...] 11
 rootDevices: ["<pci_bus_id>", "..."] 12
 deviceType: vfio-pci 13
 isRdma: false 14

OpenShift Container Platform 4.6 OpenShift Virtualization

156

2

3

4

5

6

7

8

9

10

11

12

13

14

Specify the namespace where the SR-IOV Operator is installed.

Specify the resource name of the SR-IOV device plug-in. You can create multiple
SriovNetworkNodePolicy objects for a resource name.

Specify the node selector to select which nodes are configured. Only SR-IOV network devices on
selected nodes are configured. The SR-IOV Container Network Interface (CNI) plug-in and device
plug-in are deployed only on selected nodes.

Optional: Specify an integer value between 0 and 99. A smaller number gets higher priority, so a
priority of 10 is higher than a priority of 99. The default value is 99.

Optional: Specify a value for the maximum transmission unit (MTU) of the virtual function. The
maximum MTU value can vary for different NIC models.

Specify the number of the virtual functions (VF) to create for the SR-IOV physical network device.
For an Intel network interface controller (NIC), the number of VFs cannot be larger than the total
VFs supported by the device. For a Mellanox NIC, the number of VFs cannot be larger than 128.

The nicSelector mapping selects the Ethernet device for the Operator to configure. You do not
need to specify values for all the parameters. It is recommended to identify the Ethernet adapter
with enough precision to minimize the possibility of selecting an Ethernet device unintentionally. If
you specify rootDevices, you must also specify a value for vendor, deviceID, or pfNames. If you
specify both pfNames and rootDevices at the same time, ensure that they point to an identical
device.

Optional: Specify the vendor hex code of the SR-IOV network device. The only allowed values are
either 8086 or 15b3.

Optional: Specify the device hex code of SR-IOV network device. The only allowed values are
158b, 1015, 1017.

Optional: The parameter accepts an array of one or more physical function (PF) names for the
Ethernet device.

The parameter accepts an array of one or more PCI bus addresses for the physical function of the
Ethernet device. Provide the address in the following format: 0000:02:00.1.

The vfio-pci driver type is required for virtual functions in OpenShift Virtualization.

Optional: Specify whether to enable remote direct memory access (RDMA) mode. For a Mellanox
card, set isRdma to false. The default value is false.

NOTE

If isRDMA flag is set to true, you can continue to use the RDMA enabled VF as a
normal network device. A device can be used in either mode.

1. Optional: Label the SR-IOV capable cluster nodes with
SriovNetworkNodePolicy.Spec.NodeSelector if they are not already labeled. For more
information about labeling nodes, see "Understanding how to update labels on nodes".

2. Create the SriovNetworkNodePolicy object:

$ oc create -f <name>-sriov-node-network.yaml

CHAPTER 7. VIRTUAL MACHINES

157

where <name> specifies the name for this configuration.

After applying the configuration update, all the pods in sriov-network-operator namespace
transition to the Running status.

3. To verify that the SR-IOV network device is configured, enter the following command. Replace
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

7.17.4.4. Next steps

Configuring an SR-IOV network attachment for virtual machines

7.17.5. Defining an SR-IOV network

You can create a network attachment for a Single Root I/O Virtualization (SR-IOV) device for virtual
machines.

After the network is defined, you can attach virtual machines to the SR-IOV network.

7.17.5.1. Prerequisites

You must have configured an SR-IOV device for virtual machines .

7.17.5.2. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating a SriovNetwork object.
When you create a SriovNetwork object, the SR-IOV Operator automatically creates a
NetworkAttachmentDefinition object.

Users can then attach virtual machines to the SR-IOV network by specifying the network in the virtual
machine configurations.

NOTE

Do not modify or delete a SriovNetwork object if it is attached to any pods or virtual
machines in the running state.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetwork object, and then save the YAML in the <name>-sriov-
network.yaml file. Replace <name> with a name for this additional network.

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork

OpenShift Container Platform 4.6 OpenShift Virtualization

158

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-defining-an-sriov-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-configuring-sriov-device-for-vms

1

2

3

4

5

6

7

8

9

10

11

Replace <name> with a name for the object. The SR-IOV Network Operator creates a
NetworkAttachmentDefinition object with same name.

Specify the namespace where the SR-IOV Network Operator is installed.

Replace <sriov_resource_name> with the value for the .spec.resourceName parameter from the
SriovNetworkNodePolicy object that defines the SR-IOV hardware for this additional network.

Replace <target_namespace> with the target namespace for the SriovNetwork. Only pods or
virtual machines in the target namespace can attach to the SriovNetwork.

Optional: Replace <vlan> with a Virtual LAN (VLAN) ID for the additional network. The integer
value must be from 0 to 4095. The default value is 0.

Optional: Replace <spoof_check> with the spoof check mode of the VF. The allowed values are
the strings "on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the CR is rejected by the SR-
IOV Network Operator.

Optional: Replace <link_state> with the link state of virtual function (VF). Allowed value are
enable, disable and auto.

Optional: Replace <max_tx_rate> with a maximum transmission rate, in Mbps, for the VF.

Optional: Replace <min_tx_rate> with a minimum transmission rate, in Mbps, for the VF. This value
should always be less than or equal to Maximum transmission rate.

NOTE

Intel NICs do not support the minTxRate parameter. For more information, see
BZ#1772847.

Optional: Replace <vlan_qos> with an IEEE 802.1p priority level for the VF. The default value is 0.

Optional: Replace <trust_vf> with the trust mode of the VF. The allowed values are the strings
"on" and "off".

metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 resourceName: <sriov_resource_name> 3
 networkNamespace: <target_namespace> 4
 vlan: <vlan> 5
 spoofChk: "<spoof_check>" 6
 linkState: <link_state> 7
 maxTxRate: <max_tx_rate> 8
 minTxRate: <min_rx_rate> 9
 vlanQoS: <vlan_qos> 10
 trust: "<trust_vf>" 11
 capabilities: <capabilities> 12

CHAPTER 7. VIRTUAL MACHINES

159

https://bugzilla.redhat.com/show_bug.cgi?id=1772847

12

"on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the CR is rejected by the SR-
IOV Network Operator.

Optional: Replace <capabilities> with the capabilities to configure for this network.

2. To create the object, enter the following command. Replace <name> with a name for this
additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition object associated with the
SriovNetwork object that you created in the previous step exists, enter the following command.
Replace <namespace> with the namespace you specified in the SriovNetwork object.

7.17.5.3. Next steps

Attaching a virtual machine to an SR-IOV network.

7.17.6. Attaching a virtual machine to an SR-IOV network

You can attach a virtual machine to use a Single Root I/O Virtualization (SR-IOV) network as a
secondary network.

7.17.6.1. Prerequisites

You must have configured an SR-IOV device for virtual machines .

You must have defined an SR-IOV network .

7.17.6.2. Attaching a virtual machine to an SR-IOV network

You can attach the virtual machine to the SR-IOV network by including the network details in the virtual
machine configuration.

Procedure

1. Include the SR-IOV network details in the spec.domain.devices.interfaces and
spec.networks of the virtual machine configuration:

$ oc create -f <name>-sriov-network.yaml

$ oc get net-attach-def -n <namespace>

kind: VirtualMachine
...
spec:
 domain:
 devices:
 interfaces:
 - name: <default> 1
 masquerade: {} 2

OpenShift Container Platform 4.6 OpenShift Virtualization

160

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-attaching-vm-to-sriov-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-configuring-sriov-device-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-defining-an-sriov-network

1

2

3

4

5

6

1

A unique name for the interface that is connected to the pod network.

The masquerade binding to the default pod network.

A unique name for the SR-IOV interface.

The name of the pod network interface. This must be the same as the interfaces.name
that you defined earlier.

The name of the SR-IOV interface. This must be the same as the interfaces.name that
you defined earlier.

The name of the SR-IOV network attachment definition.

2. Apply the virtual machine configuration:

The name of the virtual machine YAML file.

7.17.7. Viewing the IP address of NICs on a virtual machine

You can view the IP address for a network interface controller (NIC) by using the web console or the oc
client. The QEMU guest agent displays additional information about the virtual machine’s secondary
networks.

7.17.7.1. Viewing the IP address of a virtual machine interface in the CLI

The network interface configuration is included in the oc describe vmi <vmi_name> command.

You can also view the IP address information by running ip addr on the virtual machine, or by running oc
get vmi <vmi_name> -o yaml.

Procedure

Use the oc describe command to display the virtual machine interface configuration:

Example output

 - name: <nic1> 3
 sriov: {}
 networks:
 - name: <default> 4
 pod: {}
 - name: <nic1> 5
 multus:
 networkName: <sriov-network> 6
...

$ oc apply -f <vm-sriov.yaml> 1

$ oc describe vmi <vmi_name>

...

CHAPTER 7. VIRTUAL MACHINES

161

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-installing-qemu-guest-agent

7.17.7.2. Viewing the IP address of a virtual machine interface in the web console

The IP information displays in the Virtual Machine Overview screen for the virtual machine.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine name to open the Virtual Machine Overview screen.

The information for each attached NIC is displayed under IP Address.

7.17.8. Using a MAC address pool for virtual machines

The KubeMacPool component provides a MAC address pool service for virtual machine NICs in
designated namespaces. Enable a MAC address pool in a namespace by applying the KubeMacPool label
to that namespace.

7.17.8.1. About KubeMacPool

If you enable the KubeMacPool component for a namespace, virtual machine NICs in that namespace
are allocated MAC addresses from a MAC address pool. This ensures that the NIC is assigned a unique
MAC address that does not conflict with the MAC address of another virtual machine.

Virtual machine instances created from that virtual machine retain the assigned MAC address across
reboots.

NOTE

Interfaces:
 Interface Name: eth0
 Ip Address: 10.244.0.37/24
 Ip Addresses:
 10.244.0.37/24
 fe80::858:aff:fef4:25/64
 Mac: 0a:58:0a:f4:00:25
 Name: default
 Interface Name: v2
 Ip Address: 1.1.1.7/24
 Ip Addresses:
 1.1.1.7/24
 fe80::f4d9:70ff:fe13:9089/64
 Mac: f6:d9:70:13:90:89
 Interface Name: v1
 Ip Address: 1.1.1.1/24
 Ip Addresses:
 1.1.1.1/24
 1.1.1.2/24
 1.1.1.4/24
 2001:de7:0:f101::1/64
 2001:db8:0:f101::1/64
 fe80::1420:84ff:fe10:17aa/64
 Mac: 16:20:84:10:17:aa

OpenShift Container Platform 4.6 OpenShift Virtualization

162

NOTE

KubeMacPool does not handle virtual machine instances created independently from a
virtual machine.

KubeMacPool is disabled by default. Enable a MAC address pool for a namespace by applying the
KubeMacPool label to the namespace.

7.17.8.2. Enabling a MAC address pool for a namespace in the CLI

Enable a MAC address pool for virtual machines in a namespace by applying the
mutatevirtualmachines.kubemacpool.io=allocate label to the namespace.

Procedure

Add the KubeMacPool label to the namespace. The following example adds the KubeMacPool
label to two namespaces, <namespace1> and <namespace2>:

7.17.8.3. Disabling a MAC address pool for a namespace in the CLI

Disable a MAC address pool for virtual machines in a namespace by removing the
mutatevirtualmachines.kubemacpool.io label.

Procedure

Remove the KubeMacPool label from the namespace. The following example removes the
KubeMacPool label from two namespaces, <namespace1> and <namespace2>:

7.18. VIRTUAL MACHINE DISKS

7.18.1. Storage features

Use the following table to determine feature availability for local and shared persistent storage in
OpenShift Virtualization.

7.18.1.1. OpenShift Virtualization storage feature matrix

Table 7.6. OpenShift Virtualization storage feature matrix

$ oc label namespace <namespace1> <namespace2>
mutatevirtualmachines.kubemacpool.io=allocate

$ oc label namespace <namespace1> <namespace2>
mutatevirtualmachines.kubemacpool.io-

CHAPTER 7. VIRTUAL MACHINES

163

 Virtual
machine live
migration

Host-
assisted
virtual
machine disk
cloning

Storage-
assisted
virtual
machine disk
cloning

Virtual
machine
snapshots

OpenShift Container Storage: RBD block-
mode volumes

Yes Yes Yes Yes

OpenShift Virtualization hostpath
provisioner

No Yes No No

Other multi-node writable storage Yes [1] Yes Yes [2] Yes [2]

Other single-node writable storage No Yes Yes [2] Yes [2]

1. PVCs must request a ReadWriteMany access mode.

2. Storage provider must support both Kubernetes and CSI snapshot APIs

NOTE

You cannot live migrate virtual machines that use:

A storage class with ReadWriteOnce (RWO) access mode

Passthrough features such as SR-IOV and GPU

Do not set the evictionStrategy field to LiveMigrate for these virtual machines.

7.18.2. Configuring local storage for virtual machines

You can configure local storage for your virtual machines by using the hostpath provisioner feature.

7.18.2.1. About the hostpath provisioner

The hostpath provisioner is a local storage provisioner designed for OpenShift Virtualization. If you want
to configure local storage for virtual machines, you must enable the hostpath provisioner first.

When you install the OpenShift Virtualization Operator, the hostpath provisioner Operator is
automatically installed. To use it, you must:

Configure SELinux:

If you use Red Hat Enterprise Linux CoreOS (RHCOS) 8 workers, you must create a
MachineConfig object on each node.

Otherwise, apply the SELinux label container_file_t to the persistent volume (PV) backing
directory on each node.

Create a HostPathProvisioner custom resource.

Create a StorageClass object for the hostpath provisioner.

OpenShift Container Platform 4.6 OpenShift Virtualization

164

The hostpath provisioner Operator deploys the provisioner as a DaemonSet on each node when you
create its custom resource. In the custom resource file, you specify the backing directory for the
persistent volumes that the hostpath provisioner creates.

7.18.2.2. Configuring SELinux for the hostpath provisioner on Red Hat Enterprise Linux
CoreOS (RHCOS) 8

You must configure SELinux before you create the HostPathProvisioner custom resource. To
configure SELinux on Red Hat Enterprise Linux CoreOS (RHCOS) 8 workers, you must create a
MachineConfig object on each node.

Prerequisites

Create a backing directory on each node for the persistent volumes (PVs) that the hostpath
provisioner creates.

IMPORTANT

The backing directory must not be located in the filesystem’s root directory
because the / partition is read-only on RHCOS. For example, you can use
/var/<directory_name> but not /<directory_name>.

Procedure

1. Create the MachineConfig file. For example:

2. Edit the file, ensuring that you include the directory where you want the hostpath provisioner to
create PVs. For example:

$ touch machineconfig.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 name: 50-set-selinux-for-hostpath-provisioner
 labels:
 machineconfiguration.openshift.io/role: worker
spec:
 config:
 ignition:
 version: 3.1.0
 systemd:
 units:
 - contents: |
 [Unit]
 Description=Set SELinux chcon for hostpath provisioner
 Before=kubelet.service

 [Service]
 ExecStart=/usr/bin/chcon -Rt container_file_t <backing_directory_path> 1

 [Install]

CHAPTER 7. VIRTUAL MACHINES

165

1 Specify the backing directory where you want the provisioner to create PVs. This directory
must not be located in the filesystem’s root directory (/).

3. Create the MachineConfig object:

7.18.2.3. Using the hostpath provisioner to enable local storage

To deploy the hostpath provisioner and enable your virtual machines to use local storage, first create a
HostPathProvisioner custom resource.

Prerequisites

Create a backing directory on each node for the persistent volumes (PVs) that the hostpath
provisioner creates.

IMPORTANT

The backing directory must not be located in the filesystem’s root directory
because the / partition is read-only on Red Hat Enterprise Linux CoreOS
(RHCOS). For example, you can use /var/<directory_name> but not
/<directory_name>.

Apply the SELinux context container_file_t to the PV backing directory on each node. For
example:

NOTE

If you use Red Hat Enterprise Linux CoreOS (RHCOS) 8 workers, you must
configure SELinux by using a MachineConfig manifest instead.

Procedure

1. Create the HostPathProvisioner custom resource file. For example:

2. Edit the file, ensuring that the spec.pathConfig.path value is the directory where you want the
hostpath provisioner to create PVs. For example:

 WantedBy=multi-user.target
 enabled: true
 name: hostpath-provisioner.service

$ oc create -f machineconfig.yaml -n <namespace>

$ sudo chcon -t container_file_t -R <backing_directory_path>

$ touch hostpathprovisioner_cr.yaml

apiVersion: hostpathprovisioner.kubevirt.io/v1beta1
kind: HostPathProvisioner
metadata:
 name: hostpath-provisioner
spec:

OpenShift Container Platform 4.6 OpenShift Virtualization

166

1

2

Specify the backing directory where you want the provisioner to create PVs. This directory
must not be located in the filesystem’s root directory (/).

Change this value to true if you want to use the name of the persistent volume claim (PVC)
that is bound to the created PV as the prefix of the directory name.

NOTE

If you did not create the backing directory, the provisioner attempts to create it
for you. If you did not apply the container_file_t SELinux context, this can cause
Permission denied errors.

3. Create the custom resource in the openshift-cnv namespace:

7.18.2.4. Creating a storage class

When you create a storage class, you set parameters that affect the dynamic provisioning of persistent
volumes (PVs) that belong to that storage class. You cannot update a StorageClass object’s
parameters after you create it.

IMPORTANT

When using OpenShift Virtualization with OpenShift Container Platform Container
Storage, specify RBD block mode persistent volume claims (PVCs) when creating virtual
machine disks. With virtual machine disks, RBD block mode volumes are more efficient
and provide better performance than Ceph FS or RBD filesystem-mode PVCs.

To specify RBD block mode PVCs, use the 'ocs-storagecluster-ceph-rbd' storage class
and VolumeMode: Block.

Procedure

1. Create a YAML file for defining the storage class. For example:

2. Edit the file. For example:

 imagePullPolicy: IfNotPresent
 pathConfig:
 path: "<backing_directory_path>" 1
 useNamingPrefix: false 2

$ oc create -f hostpathprovisioner_cr.yaml -n openshift-cnv

$ touch storageclass.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: hostpath-provisioner 1
provisioner: kubevirt.io/hostpath-provisioner
reclaimPolicy: Delete 2
volumeBindingMode: WaitForFirstConsumer 3

CHAPTER 7. VIRTUAL MACHINES

167

1

2

3

You can optionally rename the storage class by changing this value.

The two possible reclaimPolicy values are Delete and Retain. If you do not specify a value,
the storage class defaults to Delete.

The volumeBindingMode value determines when dynamic provisioning and volume
binding occur. Specify WaitForFirstConsumer to delay the binding and provisioning of a
PV until after a pod that uses the persistent volume claim (PVC) is created. This ensures
that the PV meets the pod’s scheduling requirements.

NOTE

Virtual machines use data volumes that are based on local PVs. Local PVs are
bound to specific nodes. While the disk image is prepared for consumption by the
virtual machine, it is possible that the virtual machine cannot be scheduled to the
node where the local storage PV was previously pinned.

To solve this problem, use the Kubernetes pod scheduler to bind the PVC to a PV
on the correct node. By using StorageClass with volumeBindingMode set to
WaitForFirstConsumer, the binding and provisioning of the PV is delayed until a
Pod is created using the PVC.

3. Create the StorageClass object:

Additional resources

Storage classes

7.18.3. Configuring CDI to work with namespaces that have a compute resource
quota

You can use the Containerized Data Importer (CDI) to import, upload, and clone virtual machine disks
into namespaces that are subject to CPU and memory resource restrictions.

7.18.3.1. About CPU and memory quotas in a namespace

A resource quota, defined by the ResourceQuota object, imposes restrictions on a namespace that limit
the total amount of compute resources that can be consumed by resources within that namespace.

The CDIConfig object defines the user configuration for the Containerized Data Importer (CDI). The
CPU and memory request and limit values for the CDIConfig object are set to a default value of 0. This
ensures that pods created by CDI that make no compute resource requirements are given the default
values and are allowed to run in a namespace that is restricted with a quota.

7.18.3.2. Editing the CDIConfig object to override CPU and memory defaults

Modify the default settings for CPU and memory requests and limits for your use case by editing the
spec attribute of the CDIConfig object.

Prerequisites

$ oc create -f storageclass.yaml

OpenShift Container Platform 4.6 OpenShift Virtualization

168

https://kubernetes.io/docs/concepts/storage/storage-classes/

Install the OpenShift CLI (oc).

Procedure

1. Edit the cdiconfig/config by running the following command:

2. Change the default CPU and memory requests and limits by editing the spec:
podResourceRequirements property of the CDIConfig object:

3. Save and exit the editor to update the CDIConfig object.

Verification

View the CDIConfig status and verify your changes by running the following command:

7.18.3.3. Additional resources

Resource quotas per project

7.18.4. Uploading local disk images by using the web console

You can upload a locally stored disk image file by using the web console.

7.18.4.1. Prerequisites

You must have a virtual machine image file in IMG, ISO, or QCOW2 format.

If you require scratch space according to the CDI supported operations matrix , you must first
define a storage class or prepare CDI scratch space for this operation to complete successfully.

7.18.4.2. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these

$ oc edit cdiconfig/config

apiVersion: cdi.kubevirt.io/v1beta1
kind: CDIConfig
metadata:
 labels:
 app: containerized-data-importer
 cdi.kubevirt.io: ""
 name: config
spec:
 podResourceRequirements:
 limits:
 cpu: "4"
 memory: "1Gi"
 requests:
 cpu: "1"
 memory: "250Mi"
...

$ oc get cdiconfig config -o yaml

CHAPTER 7. VIRTUAL MACHINES

169

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/applications/#quotas-setting-per-project
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-cdi-supported-operations-matrix_virt-uploading-local-disk-images-web
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-defining-storageclass-in-cdi-configuration_virt-preparing-cdi-scratch-space

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt(QCO
W2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

7.18.4.3. Uploading an image file using the web console

Use the web console to upload an image file to a new persistent volume claim (PVC). You can later use
this PVC to attach the image to new virtual machines.

Prerequisites

You must have one of the following:

A raw virtual machine image file in either ISO or IMG format.

A virtual machine image file in QCOW2 format.

For best results, compress your image file according to the following guidelines before you
upload it:

Compress a raw image file by using xz or gzip.

NOTE

Using a compressed raw image file results in the most efficient upload.

Compress a QCOW2 image file by using the method that is recommended for your client:

If you use a Linux client, sparsify the QCOW2 file by using the virt-sparsify tool.

If you use a Windows client, compress the QCOW2 file by using xz or gzip.

Procedure

1. From the side menu of the web console, click Storage → Persistent Volume Claims.

OpenShift Container Platform 4.6 OpenShift Virtualization

170

https://libguestfs.org/virt-sparsify.1.html

2. Click the Create Persistent Volume Claim drop-down list to expand it.

3. Click With Data Upload Form to open the Upload Data to Persistent Volume Claim page.

4. Click Browse to open the file manager and select the image that you want to upload, or drag
the file into the Drag a file here or browse to upload field.

5. Optional: Set this image as the default image for a specific operating system.

a. Select the Attach this data to a virtual machine operating system check box.

b. Select an operating system from the list.

6. The Persistent Volume Claim Name field is automatically filled with a unique name and cannot
be edited. Take note of the name assigned to the PVC so that you can identify it later, if
necessary.

7. Select a storage class from the Storage Class list.

8. In the Size field, enter the size value for the PVC. Select the corresponding unit of measurement
from the drop-down list.

WARNING

The PVC size must be larger than the size of the uncompressed virtual disk.

9. Select an Access Mode that matches the storage class that you selected.

10. Click Upload.

7.18.5. Uploading local disk images by using the virtctl tool

You can upload a locally stored disk image to a new or existing data volume by using the virtctl
command-line utility.

7.18.5.1. Prerequisites

Install the kubevirt-virtctl package.

If you require scratch space according to the CDI supported operations matrix , you must first
define a storage class or prepare CDI scratch space for this operation to complete successfully.

7.18.5.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

7.18.5.3. Creating an upload data volume

You can manually create a data volume with an upload data source to use for uploading local disk

CHAPTER 7. VIRTUAL MACHINES

171

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-installing-virtctl
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-defining-storageclass-in-cdi-configuration_virt-preparing-cdi-scratch-space

1

2

You can manually create a data volume with an upload data source to use for uploading local disk
images.

Procedure

1. Create a data volume configuration that specifies spec: source: upload{}:

The name of the data volume.

The size of the data volume. Ensure that this value is greater than or equal to the size of
the disk that you upload.

2. Create the data volume by running the following command:

7.18.5.4. Uploading a local disk image to a data volume

You can use the virtctl CLI utility to upload a local disk image from a client machine to a data volume
(DV) in your cluster. You can use a DV that already exists in your cluster or create a new DV during this
procedure.

NOTE

After you upload a local disk image, you can add it to a virtual machine.

Prerequisites

You must have one of the following:

A raw virtual machine image file in either ISO or IMG format.

A virtual machine image file in QCOW2 format.

For best results, compress your image file according to the following guidelines before you
upload it:

Compress a raw image file by using xz or gzip.

NOTE

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: <upload-datavolume> 1
spec:
 source:
 upload: {}
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <2Gi> 2

$ oc create -f <upload-datavolume>.yaml

OpenShift Container Platform 4.6 OpenShift Virtualization

172

1

2

3

NOTE

Using a compressed raw image file results in the most efficient upload.

Compress a QCOW2 image file by using the method that is recommended for your client:

If you use a Linux client, sparsify the QCOW2 file by using the virt-sparsify tool.

If you use a Windows client, compress the QCOW2 file by using xz or gzip.

The kubevirt-virtctl package must be installed on the client machine.

The client machine must be configured to trust the OpenShift Container Platform router’s
certificate.

Procedure

1. Identify the following items:

The name of the upload data volume that you want to use. If this data volume does not exist,
it is created automatically.

The size of the data volume, if you want it to be created during the upload procedure. The
size must be greater than or equal to the size of the disk image.

The file location of the virtual machine disk image that you want to upload.

2. Upload the disk image by running the virtctl image-upload command. Specify the parameters
that you identified in the previous step. For example:

The name of the data volume.

The size of the data volume. For example: --size=500Mi, --size=1G

The file path of the virtual machine disk image.

NOTE

If you do not want to create a new data volume, omit the --size parameter
and include the --no-create flag.

When uploading a disk image to a PVC, the PVC size must be larger than the
size of the uncompressed virtual disk.

To allow insecure server connections when using HTTPS, use the --insecure
parameter. Be aware that when you use the --insecure flag, the authenticity
of the upload endpoint is not verified.

3. Optional. To verify that a data volume was created, view all data volumes by running the
following command:

$ virtctl image-upload dv <datavolume_name> \ 1
--size=<datavolume_size> \ 2
--image-path=</path/to/image> \ 3

CHAPTER 7. VIRTUAL MACHINES

173

https://libguestfs.org/virt-sparsify.1.html

7.18.5.5. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt(QCO
W2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

7.18.6. Uploading a local disk image to a block storage data volume

You can upload a local disk image into a block data volume by using the virtctl command-line utility.

In this workflow, you create a local block device to use as a persistent volume, associate this block
volume with an upload data volume, and use virtctl to upload the local disk image into the data volume.

7.18.6.1. Prerequisites

Install the kubevirt-virtctl package.

If you require scratch space according to the CDI supported operations matrix , you must first
define a storage class or prepare CDI scratch space for this operation to complete successfully.

7.18.6.2. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

7.18.6.3. About block persistent volumes

A block persistent volume (PV) is a PV that is backed by a raw block device. These volumes do not have
a file system and can provide performance benefits for virtual machines by reducing overhead.

Raw block volumes are provisioned by specifying volumeMode: Block in the PV and persistent volume

$ oc get dvs

OpenShift Container Platform 4.6 OpenShift Virtualization

174

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-installing-virtctl
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-defining-storageclass-in-cdi-configuration_virt-preparing-cdi-scratch-space

1

2

Raw block volumes are provisioned by specifying volumeMode: Block in the PV and persistent volume
claim (PVC) specification.

7.18.6.4. Creating a local block persistent volume

Create a local block persistent volume (PV) on a node by populating a file and mounting it as a loop
device. You can then reference this loop device in a PV manifest as a Block volume and use it as a block
device for a virtual machine image.

Procedure

1. Log in as root to the node on which to create the local PV. This procedure uses node01 for its
examples.

2. Create a file and populate it with null characters so that it can be used as a block device. The
following example creates a file loop10 with a size of 2Gb (20 100Mb blocks):

3. Mount the loop10 file as a loop device.

File path where the loop device is mounted.

The file created in the previous step to be mounted as the loop device.

4. Create a PersistentVolume manifest that references the mounted loop device.

$ dd if=/dev/zero of=<loop10> bs=100M count=20

$ losetup </dev/loop10>d3 <loop10> 1 2

kind: PersistentVolume
apiVersion: v1
metadata:
 name: <local-block-pv10>
 annotations:
spec:
 local:
 path: </dev/loop10> 1
 capacity:
 storage: <2Gi>
 volumeMode: Block 2
 storageClassName: local 3
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Delete
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - <node01> 4

CHAPTER 7. VIRTUAL MACHINES

175

1

2

3

4

1

1

2

The path of the loop device on the node.

Specifies it is a block PV.

Optional: Set a storage class for the PV. If you omit it, the cluster default is used.

The node on which the block device was mounted.

5. Create the block PV.

The file name of the persistent volume created in the previous step.

7.18.6.5. Creating an upload data volume

You can manually create a data volume with an upload data source to use for uploading local disk
images.

Procedure

1. Create a data volume configuration that specifies spec: source: upload{}:

The name of the data volume.

The size of the data volume. Ensure that this value is greater than or equal to the size of
the disk that you upload.

2. Create the data volume by running the following command:

7.18.6.6. Uploading a local disk image to a data volume

You can use the virtctl CLI utility to upload a local disk image from a client machine to a data volume
(DV) in your cluster. You can use a DV that already exists in your cluster or create a new DV during this
procedure.

NOTE

oc create -f <local-block-pv10.yaml> 1

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: <upload-datavolume> 1
spec:
 source:
 upload: {}
 pvc:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: <2Gi> 2

$ oc create -f <upload-datavolume>.yaml

OpenShift Container Platform 4.6 OpenShift Virtualization

176

1

2

3

NOTE

After you upload a local disk image, you can add it to a virtual machine.

Prerequisites

You must have one of the following:

A raw virtual machine image file in either ISO or IMG format.

A virtual machine image file in QCOW2 format.

For best results, compress your image file according to the following guidelines before you
upload it:

Compress a raw image file by using xz or gzip.

NOTE

Using a compressed raw image file results in the most efficient upload.

Compress a QCOW2 image file by using the method that is recommended for your client:

If you use a Linux client, sparsify the QCOW2 file by using the virt-sparsify tool.

If you use a Windows client, compress the QCOW2 file by using xz or gzip.

The kubevirt-virtctl package must be installed on the client machine.

The client machine must be configured to trust the OpenShift Container Platform router’s
certificate.

Procedure

1. Identify the following items:

The name of the upload data volume that you want to use. If this data volume does not exist,
it is created automatically.

The size of the data volume, if you want it to be created during the upload procedure. The
size must be greater than or equal to the size of the disk image.

The file location of the virtual machine disk image that you want to upload.

2. Upload the disk image by running the virtctl image-upload command. Specify the parameters
that you identified in the previous step. For example:

The name of the data volume.

The size of the data volume. For example: --size=500Mi, --size=1G

The file path of the virtual machine disk image.

$ virtctl image-upload dv <datavolume_name> \ 1
--size=<datavolume_size> \ 2
--image-path=</path/to/image> \ 3

CHAPTER 7. VIRTUAL MACHINES

177

https://libguestfs.org/virt-sparsify.1.html

NOTE

If you do not want to create a new data volume, omit the --size parameter
and include the --no-create flag.

When uploading a disk image to a PVC, the PVC size must be larger than the
size of the uncompressed virtual disk.

To allow insecure server connections when using HTTPS, use the --insecure
parameter. Be aware that when you use the --insecure flag, the authenticity
of the upload endpoint is not verified.

3. Optional. To verify that a data volume was created, view all data volumes by running the
following command:

7.18.6.7. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt(QCO
W2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

7.18.7. Managing offline virtual machine snapshots

You can create, restore, and delete virtual machine (VM) snapshots for VMs that are powered off
(offline). OpenShift Virtualization supports offline VM snapshots on:

Red Hat OpenShift Container Storage

Any other storage provider with the Container Storage Interface (CSI) driver that supports the
Kubernetes Volume Snapshot API

7.18.7.1. About virtual machine snapshots

A snapshot represents the state and data of a virtual machine (VM) at a specific point in time. You can

$ oc get dvs

OpenShift Container Platform 4.6 OpenShift Virtualization

178

A snapshot represents the state and data of a virtual machine (VM) at a specific point in time. You can
use a snapshot to restore an existing VM to a previous state (represented by the snapshot) for backup
and disaster recovery or to rapidly roll back to a previous development version.

An offline VM snapshot is created from a VM that is powered off (Stopped state). The snapshot stores a
copy of each Container Storage Interface (CSI) volume attached to the VM and a copy of the VM
specification and metadata. Snapshots cannot be changed after creation.

With the offline VM snapshots feature, cluster administrators and application developers can:

Create a new snapshot

List all snapshots attached to a specific VM

Restore a VM from a snapshot

Delete an existing VM snapshot

7.18.7.1.1. Virtual machine snapshot controller and custom resource definitions (CRDs)

The VM snapshot feature introduces three new API objects defined as CRDs for managing snapshots:

VirtualMachineSnapshot: Represents a user request to create a snapshot. It contains
information about the current state of the VM.

VirtualMachineSnapshotContent: Represents a provisioned resource on the cluster (a
snapshot). It is created by the VM snapshot controller and contains references to all resources
required to restore the VM.

VirtualMachineRestore: Represents a user request to restore a VM from a snapshot.

The VM snapshot controller binds a VirtualMachineSnapshotContent object with the
VirtualMachineSnapshot object for which it was created, with a one-to-one mapping.

7.18.7.2. Creating an offline virtual machine snapshot in the CLI

You can create a virtual machine (VM) snapshot for an offline VM by creating a
VirtualMachineSnapshot object.

Prerequisites

Ensure that the persistent volume claims (PVCs) are in a storage class that supports Container
Storage Interface (CSI) volume snapshots.

Install the OpenShift CLI (oc).

Power down the VM for which you want to create a snapshot.

Procedure

1. Create a YAML file to define a VirtualMachineSnapshot object that specifies the name of the
new VirtualMachineSnapshot and the name of the source VM.
For example:

apiVersion: snapshot.kubevirt.io/v1alpha1
kind: VirtualMachineSnapshot

CHAPTER 7. VIRTUAL MACHINES

179

1

2

The name of the new VirtualMachineSnapshot object.

The name of the source VM.

2. Create the VirtualMachineSnapshot resource. The snapshot controller creates a
VirtualMachineSnapshotContent object, binds it to the VirtualMachineSnapshot and
updates the status and readyToUse fields of the VirtualMachineSnapshot object.

Verification

1. Verify that the VirtualMachineSnapshot object is created and bound with
VirtualMachineSnapshotContent. The readyToUse flag must be set to true.

Example output

metadata:
 name: my-vmsnapshot 1
spec:
 source:
 apiGroup: kubevirt.io
 kind: VirtualMachine
 name: my-vm 2

$ oc create -f <my-vmsnapshot>.yaml

$ oc describe vmsnapshot <my-vmsnapshot>

apiVersion: snapshot.kubevirt.io/v1alpha1
kind: VirtualMachineSnapshot
metadata:
creationTimestamp: "2020-09-30T14:41:51Z"
finalizers:
- snapshot.kubevirt.io/vmsnapshot-protection
generation: 5
name: mysnap
namespace: default
resourceVersion: "3897"
selfLink:
/apis/snapshot.kubevirt.io/v1alpha1/namespaces/default/virtualmachinesnapshots/my-
vmsnapshot
uid: 28eedf08-5d6a-42c1-969c-2eda58e2a78d
spec:
source:
apiGroup: kubevirt.io
kind: VirtualMachine
name: my-vm
status:
conditions:
 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:42:03Z"
 reason: Operation complete
 status: "False" 1
 type: Progressing

OpenShift Container Platform 4.6 OpenShift Virtualization

180

1

2

3

4

1

The status field of the Progressing condition specifies if the snapshot is still being
created.

The status field of the Ready condition specifies if the snapshot creation process is
complete.

Specifies if the snapshot is ready to be used.

Specifies that the snapshot is bound to a VirtualMachineSnapshotContent object
created by the snapshot controller.

2. Check the spec:volumeBackups property of the VirtualMachineSnapshotContent resource
to verify that the expected PVCs are included in the snapshot.

7.18.7.3. Restoring a virtual machine from a snapshot in the CLI

You can restore an existing virtual machine (VM) to a previous configuration by using a VM snapshot .

Prerequisites

Install the OpenShift CLI (oc).

Power down the VM you want to restore to a previous state.

Procedure

1. Create a YAML file to define a VirtualMachineRestore object that specifies the name of the
VM you want to restore and the name of the snapshot to be used as the source.
For example:

The name of the new VirtualMachineRestore object.

 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:42:03Z"
 reason: Operation complete
 status: "True" 2
 type: Ready
creationTime: "2020-09-30T14:42:03Z"
readyToUse: true 3
sourceUID: 355897f3-73a0-4ec4-83d3-3c2df9486f4f
virtualMachineSnapshotContentName: vmsnapshot-content-28eedf08-5d6a-42c1-969c-
2eda58e2a78d 4

apiVersion: snapshot.kubevirt.io/v1alpha1
kind: VirtualMachineRestore
metadata:
 name: my-vmrestore 1
spec:
 target:
 apiGroup: kubevirt.io
 kind: VirtualMachine
 name: my-vm 2
 virtualMachineSnapshotName: my-vmsnapshot 3

CHAPTER 7. VIRTUAL MACHINES

181

2

3

The name of the target VM you want to restore.

The name of the VirtualMachineSnapshot object to be used as the source.

2. Create the VirtualMachineRestore resource. The snapshot controller updates the status fields
of the VirtualMachineRestore object and replaces the existing VM configuration with the
snapshot content.

Verification

Verify that the VM is restored to the previous state represented by the snapshot. The complete
flag must be set to true.

Example output

$ oc create -f <my-vmrestore>.yaml

$ oc get vmrestore <my-vmrestore>

apiVersion: snapshot.kubevirt.io/v1alpha1
kind: VirtualMachineRestore
metadata:
creationTimestamp: "2020-09-30T14:46:27Z"
generation: 5
name: my-vmrestore
namespace: default
ownerReferences:
- apiVersion: kubevirt.io/v1alpha3
 blockOwnerDeletion: true
 controller: true
 kind: VirtualMachine
 name: my-vm
 uid: 355897f3-73a0-4ec4-83d3-3c2df9486f4f
 resourceVersion: "5512"
 selfLink:
/apis/snapshot.kubevirt.io/v1alpha1/namespaces/default/virtualmachinerestores/my-
vmrestore
 uid: 71c679a8-136e-46b0-b9b5-f57175a6a041
 spec:
 target:
 apiGroup: kubevirt.io
 kind: VirtualMachine
 name: my-vm
 virtualMachineSnapshotName: my-vmsnapshot
 status:
 complete: true 1
 conditions:
 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:46:28Z"
 reason: Operation complete
 status: "False" 2
 type: Progressing
 - lastProbeTime: null
 lastTransitionTime: "2020-09-30T14:46:28Z"

OpenShift Container Platform 4.6 OpenShift Virtualization

182

1

2

3

Specifies if the process of restoring the VM to the state represented by the snapshot is
complete.

The status field of the Progressing condition specifies if the VM is still being restored.

The status field of the Ready condition specifies if the VM restoration process is
complete.

7.18.7.4. Deleting a virtual machine snapshot in the CLI

You can delete an existing virtual machine (VM) snapshot by deleting the appropriate
VirtualMachineSnapshot object.

Prerequisites

Install the OpenShift CLI (oc).

Procedure

Delete the VirtualMachineSnapshot object. The snapshot controller deletes the
VirtualMachineSnapshot along with the associated VirtualMachineSnapshotContent object.

Verification

Verify that the snapshot is deleted and no longer attached to this VM:

7.18.7.5. Additional resources

CSI Volume Snapshots

7.18.8. Moving a local virtual machine disk to a different node

Virtual machines that use local volume storage can be moved so that they run on a specific node.

 reason: Operation complete
 status: "True" 3
 type: Ready
 deletedDataVolumes:
 - test-dv1
 restoreTime: "2020-09-30T14:46:28Z"
 restores:
 - dataVolumeName: restore-71c679a8-136e-46b0-b9b5-f57175a6a041-datavolumedisk1
 persistentVolumeClaim: restore-71c679a8-136e-46b0-b9b5-f57175a6a041-
datavolumedisk1
 volumeName: datavolumedisk1
 volumeSnapshotName: vmsnapshot-28eedf08-5d6a-42c1-969c-2eda58e2a78d-volume-
datavolumedisk1

$ oc delete vmsnapshot <my-vmsnapshot>

$ oc get vmsnapshot

CHAPTER 7. VIRTUAL MACHINES

183

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/storage/#persistent-storage-csi-snapshots

You might want to move the virtual machine to a specific node for the following reasons:

The current node has limitations to the local storage configuration.

The new node is better optimized for the workload of that virtual machine.

To move a virtual machine that uses local storage, you must clone the underlying volume by using a data
volume. After the cloning operation is complete, you can edit the virtual machine configuration so that it
uses the new data volume, or add the new data volume to another virtual machine .

NOTE

Users without the cluster-admin role require additional user permissions in order to clone
volumes across namespaces.

7.18.8.1. Cloning a local volume to another node

You can move a virtual machine disk so that it runs on a specific node by cloning the underlying
persistent volume claim (PVC).

To ensure the virtual machine disk is cloned to the correct node, you must either create a new persistent
volume (PV) or identify one on the correct node. Apply a unique label to the PV so that it can be
referenced by the data volume.

NOTE

The destination PV must be the same size or larger than the source PVC. If the
destination PV is smaller than the source PVC, the cloning operation fails.

Prerequisites

The virtual machine must not be running. Power down the virtual machine before cloning the
virtual machine disk.

Procedure

1. Either create a new local PV on the node, or identify a local PV already on the node:

Create a local PV that includes the nodeAffinity.nodeSelectorTerms parameters. The
following manifest creates a 10Gi local PV on node01.

kind: PersistentVolume
apiVersion: v1
metadata:
 name: <destination-pv> 1
 annotations:
spec:
 accessModes:
 - ReadWriteOnce
 capacity:
 storage: 10Gi 2
 local:
 path: /mnt/local-storage/local/disk1 3
 nodeAffinity:
 required:

OpenShift Container Platform 4.6 OpenShift Virtualization

184

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-edit-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-vm-add-disk_virt-edit-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-enabling-user-permissions-to-clone-datavolumes

1

2

3

4

1

2

The name of the PV.

The size of the PV. You must allocate enough space, or the cloning operation fails. The
size must be the same as or larger than the source PVC.

The mount path on the node.

The name of the node where you want to create the PV.

Identify a PV that already exists on the target node. You can identify the node where a PV is
provisioned by viewing the nodeAffinity field in its configuration:

The following snippet shows that the PV is on node01:

Example output

The kubernetes.io/hostname key uses the node hostname to select a node.

The hostname of the node.

2. Add a unique label to the PV:

3. Create a data volume manifest that references the following:

The PVC name and namespace of the virtual machine.

The label you applied to the PV in the previous step.

 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - node01 4
 persistentVolumeReclaimPolicy: Delete
 storageClassName: local
 volumeMode: Filesystem

$ oc get pv <destination-pv> -o yaml

...
spec:
 nodeAffinity:
 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname 1
 operator: In
 values:
 - node01 2
...

$ oc label pv <destination-pv> node=node01

CHAPTER 7. VIRTUAL MACHINES

185

1

2

3

4

5

The size of the destination PV.

The name of the new data volume.

The name of the source PVC. If you do not know the PVC name, you can find it in the
virtual machine configuration: spec.volumes.persistentVolumeClaim.claimName.

The namespace where the source PVC exists.

The label that you applied to the PV in the previous step.

The size of the destination PV.

4. Start the cloning operation by applying the data volume manifest to your cluster:

The data volume clones the PVC of the virtual machine into the PV on the specific node.

7.18.9. Expanding virtual storage by adding blank disk images

You can increase your storage capacity or create new data partitions by adding blank disk images to
OpenShift Virtualization.

7.18.9.1. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

7.18.9.2. Creating a blank disk image with data volumes

You can create a new blank disk image in a persistent volume claim by customizing and deploying a data

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: <clone-datavolume> 1
spec:
 source:
 pvc:
 name: "<source-vm-disk>" 2
 namespace: "<source-namespace>" 3
 pvc:
 accessModes:
 - ReadWriteOnce
 selector:
 matchLabels:
 node: node01 4
 resources:
 requests:
 storage: <10Gi> 5

$ oc apply -f <clone-datavolume.yaml>

OpenShift Container Platform 4.6 OpenShift Virtualization

186

You can create a new blank disk image in a persistent volume claim by customizing and deploying a data
volume configuration file.

Prerequisites

At least one available persistent volume.

Install the OpenShift CLI (oc).

Procedure

1. Edit the data volume configuration file:

2. Create the blank disk image by running the following command:

7.18.9.3. Template: Data volume configuration file for blank disk images

blank-image-datavolume.yaml

7.18.10. Cloning a data volume using smart-cloning

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: blank-image-datavolume
spec:
 source:
 blank: {}
 pvc:
 # Optional: Set the storage class or omit to accept the default
 # storageClassName: "hostpath"
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

$ oc create -f <blank-image-datavolume>.yaml

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: blank-image-datavolume
spec:
 source:
 blank: {}
 pvc:
 # Optional: Set the storage class or omit to accept the default
 # storageClassName: "hostpath"
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

CHAPTER 7. VIRTUAL MACHINES

187

Smart-cloning is a built-in feature of OpenShift Container Platform Storage (OCS), designed to
enhance performance of the cloning process. Clones created with smart-cloning are faster and more
efficient than host-assisted cloning.

You do not need to perform any action to enable smart-cloning, but you need to ensure your storage
environment is compatible with smart-cloning to use this feature.

When you create a data volume with a persistent volume claim (PVC) source, you automatically initiate
the cloning process. You always receive a clone of the data volume, if your environment supports smart-
cloning or not. However, you will only receive the performance benefits of smart cloning if you storage
provider supports smart-cloning.

7.18.10.1. Understanding smart-cloning

When a data volume is smart-cloned, the following occurs:

1. A snapshot of the source persistent volume claim (PVC) is created.

2. A PVC is created from the snapshot.

3. The snapshot is deleted.

7.18.10.2. Cloning a data volume

Prerequisites

For smart-cloning to occur, the following conditions are required.

Your storage provider must support snapshots.

The source and target PVCs must be defined to the same namespace.

The source and target PVCs must be defined to the same storage class.

The VolumeSnapshotClass object must reference the storage class defined to both the
source and target PVCs.

If any of these prerequisites are not met, host-assisted cloning automatically occurs when you create a
data volume with a PVC source.

Procedure

To initiate cloning of a data volume:

1. Create a YAML file for a DataVolume object that specifies the name of the new data volume,
the name and namespace of the source PVC, and the size of the new data volume. This example
clones a source PVC in block mode, so volumeMode: Block is used:

apiVersion: cdi.kubevirt.io/v1beta1
kind: DataVolume
metadata:
 name: <cloner-datavolume> 1
spec:
 source:
 pvc:
 namespace: "<source-namespace>" 2

OpenShift Container Platform 4.6 OpenShift Virtualization

188

1

2

3

4

5

The name of the new data volume.

The namespace where the source PVC exists.

The name of the source PVC.

The size of the new data volume. You must allocate enough space, or the cloning operation
fails. The size must be the same as or larger than the source PVC.

Specifies that the destination is a block PV.

2. Start cloning the PVC by creating the data volume:

NOTE

Data volumes prevent a virtual machine from starting before the PVC is
prepared, so you can create a virtual machine that references the new data
volume while the PVC clones.

7.18.10.3. Additional resources

Cloning the persistent volume claim of a virtual machine disk into a new data volume

7.18.11. Storage defaults for data volumes

The kubevirt-storage-class-defaults config map provides access mode and volume mode defaults for
data volumes. You can edit or add storage class defaults to the config map in order to create data
volumes in the web console that better match the underlying storage.

7.18.11.1. About storage settings for data volumes

Data volumes require a defined access mode and volume mode to be created in the web console. These
storage settings are configured by default with a ReadWriteOnce access mode and Filesystem volume
mode.

You can modify these settings by editing the kubevirt-storage-class-defaults config map in the
openshift-cnv namespace. You can also add settings for other storage classes in order to create data
volumes in the web console for different storage types.

NOTE

You must configure storage settings that are supported by the underlying storage.

 name: "<my-favorite-vm-disk>" 3
 pvc:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: <2Gi> 4
 volumeMode: Block 5

$ oc create -f <cloner-datavolume>.yaml

CHAPTER 7. VIRTUAL MACHINES

189

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-cloning-pvc-of-vm-disk-into-new-datavolume_virt-cloning-vm-disk-into-new-datavolume

All data volumes that you create in the web console use the default storage settings unless you specify a
storage class that is also defined in the config map.

7.18.11.1.1. Access modes

Data volumes support the following access modes:

ReadWriteOnce: The volume can be mounted as read-write by a single node. ReadWriteOnce
has greater versatility and is the default setting.

ReadWriteMany: The volume can be mounted as read-write by many nodes. ReadWriteMany is
required for some features, such as live migration of virtual machines between nodes.

ReadWriteMany is recommended if the underlying storage supports it.

7.18.11.1.2. Volume modes

The volume mode defines if a volume is intended to be used with a formatted file system or to remain in
raw block state. Data volumes support the following volume modes:

Filesystem: Creates a file system on the data volume. This is the default setting.

Block: Creates a block data volume. Only use Block if the underlying storage supports it.

7.18.11.2. Editing the kubevirt-storage-class-defaults config map in the web console

Modify the storage settings for data volumes by editing the kubevirt-storage-class-defaults config
map in the openshift-cnv namespace. You can also add settings for other storage classes in order to
create data volumes in the web console for different storage types.

NOTE

You must configure storage settings that are supported by the underlying storage.

Procedure

1. Click Workloads → Config Maps from the side menu.

2. In the Project list, select openshift-cnv.

3. Click kubevirt-storage-class-defaults to open the Config Map Overview.

4. Click the YAML tab to display the editable configuration.

5. Update the data values with the storage configuration that is appropriate for your underlying
storage:

...
data:
 accessMode: ReadWriteOnce 1
 volumeMode: Filesystem 2
 <new>.accessMode: ReadWriteMany 3
 <new>.volumeMode: Block 4

OpenShift Container Platform 4.6 OpenShift Virtualization

190

1

2

3

4

1

2

3

4

The default accessMode is ReadWriteOnce.

The default volumeMode is Filesystem.

If you add an access mode for a storage class, replace the <new> part of the parameter
with the storage class name.

If you add a volume mode for a storage class, replace the <new> part of the parameter
with the storage class name.

6. Click Save to update the config map.

7.18.11.3. Editing the kubevirt-storage-class-defaults config map in the CLI

Modify the storage settings for data volumes by editing the kubevirt-storage-class-defaults config
map in the openshift-cnv namespace. You can also add settings for other storage classes in order to
create data volumes in the web console for different storage types.

NOTE

You must configure storage settings that are supported by the underlying storage.

Procedure

1. Edit the config map by running the following command:

2. Update the data values of the config map:

The default accessMode is ReadWriteOnce.

The default volumeMode is Filesystem.

If you add an access mode for a storage class, replace the <new> part of the parameter
with the storage class name.

If you add a volume mode for a storage class, replace the <new> part of the parameter
with the storage class name.

3. Save and exit the editor to update the config map.

7.18.11.4. Example of multiple storage class defaults

The following YAML file is an example of a kubevirt-storage-class-defaults config map that has

$ oc edit configmap kubevirt-storage-class-defaults -n openshift-cnv

...
data:
 accessMode: ReadWriteOnce 1
 volumeMode: Filesystem 2
 <new>.accessMode: ReadWriteMany 3
 <new>.volumeMode: Block 4

CHAPTER 7. VIRTUAL MACHINES

191

The following YAML file is an example of a kubevirt-storage-class-defaults config map that has
storage settings configured for two storage classes, migration and block.

Ensure that all settings are supported by your underlying storage before you update the config map.

7.18.12. Creating and using default OS images

A default operating system (OS) image is a bootable disk containing an OS and all of the configuration
settings for the OS, such as drivers. You use a default OS image to create bootable virtual machines
with specific configurations.

To use default OS images, you must install the latest version of OpenShift Virtualization. You then
create a persistent volume claim (PVC) by using the OpenShift Container Platform web console to
upload a default OS image to the PVC. After uploading, you create virtual machines or virtual machine
templates from the uploaded images by using the wizard in the web console.

7.18.12.1. Creating persistent volume claims to store default OS images

Follow these steps to create a persistent volume claim (PVC), which you use to upload and save default
operating system (OS) images.

Prerequisites

You must be logged in as a user with the os-images.kubevirt.io:edit RBAC role or as an
administrator.

Procedure

1. Select a local image of a bootable disk that you want to upload and save as a default OS image.

2. In the OpenShift Container Platform web console, click Storage > Persistent Volume Claims in
the sidebar menu. The Persistent Volume Claim page displays.

3. Click the Create Persistent Volume Claim button and select the With Data upload form
option.

4. Complete the Upload Data to Persistent Volume Claim form to create a PVC that is used to
upload and save default OS images.

a. Click Browse and locate a bootable image to upload and save as a default OS image.

kind: ConfigMap
apiVersion: v1
metadata:
 name: kubevirt-storage-class-defaults
 namespace: openshift-cnv
...
data:
 accessMode: ReadWriteOnce
 volumeMode: Filesystem
 nfs-sc.accessMode: ReadWriteMany
 nfs-sc.volumeMode: Filesystem
 block-sc.accessMode: ReadWriteMany
 block-sc.volumeMode: Block

OpenShift Container Platform 4.6 OpenShift Virtualization

192

b. Select the Attach this data to a Virtual Machine operating system check box.

c. Select the OS of the bootable disk that you want to upload from the Operating System list.

d. Select the storage class you want to use in the Storage Class list.

e. Enter the size of the PVC you are creating in the Size fields.

f. Select the Access Mode.

g. Click Create to create the PVC.

The Persistent Volume Claim Details screen displays information about the PVC that you
created.

7.18.12.2. Creating a virtual machine from a default OS image

After you have created a persistent volume claim (PVC) for default operating system (OS) images, you
create a new virtual machine or virtual machine template from a default OS image that you uploaded to
the PVC.

NOTE

You can create virtual machines and virtual machine templates from default OS images
with non-administrator user privileges. You need administrator privileges to upload and
save default OS images to PVCs.

Prerequisites

When you created the PVC, you selected the Attach this data to a Virtual Machine operating
system check box.

Procedure

1. In the OpenShift Container Platform web console, click Workloads > Virtualization in the
sidebar menu. The Virtualization page displays. Use web console Help or existing
documentation to create virtual machine templates.

2. Create a virtual machine or virtual machine template from an uploaded default OS image.

a. Select Create Virtual Machine > New with Wizard. The Create Virtual Machine wizard
displays.

b. On the General wizard page, select an OS from the Operating System list that displays the
(Source available) label next to the OS and version name. The (Source available) label
indicates default OS images are available for this OS.

c. Ensure that the Clone available operating system source check box is selected.

d. Click the Review and Confirm button.

e. On the Review and confirm your settings wizard page, review information about your
virtual machine and change them, if required.

f. Click Create Virtual Machine to create your virtual machine. The Successfully created

CHAPTER 7. VIRTUAL MACHINES

193

f. Click Create Virtual Machine to create your virtual machine. The Successfully created
virtual machine page displays with links to See virtual machine details or Go to list, to
display the list of virtual machines and virtual machine templates.

7.18.12.3. Additional resources

Uploading local disk images

7.18.13. Using container disks with virtual machines

You can build a virtual machine image into a container disk and store it in your container registry. You
can then import the container disk into persistent storage for a virtual machine or attach it directly to
the virtual machine for ephemeral storage.

IMPORTANT

If you use large container disks, I/O traffic might increase, impacting worker nodes. This
can lead to unavailable nodes. You can resolve this by:

Pruning DeploymentConfig objects

Configuring garbage collection

7.18.13.1. About container disks

A container disk is a virtual machine image that is stored as a container image in a container image
registry. You can use container disks to deliver the same disk images to multiple virtual machines and to
create large numbers of virtual machine clones.

A container disk can either be imported into a persistent volume claim (PVC) by using a data volume
that is attached to a virtual machine, or attached directly to a virtual machine as an ephemeral
containerDisk volume.

7.18.13.1.1. Importing a container disk into a PVC by using a data volume

Use the Containerized Data Importer (CDI) to import the container disk into a PVC by using a data
volume. You can then attach the data volume to a virtual machine for persistent storage.

7.18.13.1.2. Attaching a container disk to a virtual machine as a containerDisk volume

A containerDisk volume is ephemeral. It is discarded when the virtual machine is stopped, restarted, or
deleted. When a virtual machine with a containerDisk volume starts, the container image is pulled from
the registry and hosted on the node that is hosting the virtual machine.

Use containerDisk volumes for read-only file systems such as CD-ROMs or for disposable virtual
machines.

IMPORTANT

Using containerDisk volumes for read-write file systems is not recommended because
the data is temporarily written to local storage on the hosting node. This slows live
migration of the virtual machine, such as in the case of node maintenance, because the
data must be migrated to the destination node. Additionally, all data is lost if the node
loses power or otherwise shuts down unexpectedly.

OpenShift Container Platform 4.6 OpenShift Virtualization

194

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-uploading-local-disk-images-web
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/applications/#pruning-deployments_pruning-objects
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/nodes/#nodes-nodes-garbage-collection-configuring_nodes-nodes-configuring

1

7.18.13.2. Preparing a container disk for virtual machines

You must build a container disk with a virtual machine image and push it to a container registry before it
can used with a virtual machine. You can then either import the container disk into a PVC using a data
volume and attach it to a virtual machine, or you can attach the container disk directly to a virtual
machine as an ephemeral containerDisk volume.

The size of a disk image inside a container disk is limited by the maximum layer size of the registry where
the container disk is hosted.

NOTE

For Red Hat Quay, you can change the maximum layer size by editing the YAML
configuration file that is created when Red Hat Quay is first deployed.

Prerequisites

Install podman if it is not already installed.

The virtual machine image must be either QCOW2 or RAW format.

Procedure

1. Create a Dockerfile to build the virtual machine image into a container image. The virtual
machine image must be owned by QEMU, which has a UID of 107, and placed in the /disk/
directory inside the container. Permissions for the /disk/ directory must then be set to 0440.
The following example uses the Red Hat Universal Base Image (UBI) to handle these
configuration changes in the first stage, and uses the minimal scratch image in the second
stage to store the result:

Where <vm_image> is the virtual machine image in either QCOW2 or RAW format.
To use a remote virtual machine image, replace <vm_image>.qcow2 with the complete url
for the remote image.

2. Build and tag the container:

3. Push the container image to the registry:

If your container registry does not have TLS you must add it as an insecure registry before you can
import container disks into persistent storage.

$ cat > Dockerfile << EOF
FROM registry.access.redhat.com/ubi8/ubi:latest AS builder
ADD --chown=107:107 <vm_image>.qcow2 /disk/ 1
RUN chmod 0440 /disk/*

FROM scratch
COPY --from=builder /disk/* /disk/
EOF

$ podman build -t <registry>/<container_disk_name>:latest .

$ podman push <registry>/<container_disk_name>:latest

CHAPTER 7. VIRTUAL MACHINES

195

https://access.redhat.com/documentation/en-us/red_hat_quay/

1

7.18.13.3. Disabling TLS for a container registry to use as insecure registry

You can disable TLS (transport layer security) for a container registry by adding the registry to the cdi-
insecure-registries config map.

Prerequisites

Log in to the cluster as a user with the cluster-admin role.

Procedure

Add the registry to the cdi-insecure-registries config map in the openshift-cnv namespace.

Replace <insecure-registry-host> with the registry hostname.

7.18.13.4. Next steps

Import the container disk into persistent storage for a virtual machine .

Create a virtual machine that uses a containerDisk volume for ephemeral storage.

7.18.14. Preparing CDI scratch space

7.18.14.1. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

7.18.14.2. Understanding scratch space

The Containerized Data Importer (CDI) requires scratch space (temporary storage) to complete some
operations, such as importing and uploading virtual machine images. During this process, CDI provisions
a scratch space PVC equal to the size of the PVC backing the destination data volume (DV). The
scratch space PVC is deleted after the operation completes or aborts.

The CDIConfig object allows you to define which storage class to use to bind the scratch space PVC by
setting the scratchSpaceStorageClass in the spec: section of the CDIConfig object.

If the defined storage class does not match a storage class in the cluster, then the default storage class
defined for the cluster is used. If there is no default storage class defined in the cluster, the storage class
used to provision the original DV or PVC is used.

NOTE

CDI requires requesting scratch space with a file volume mode, regardless of the PVC
backing the origin data volume. If the origin PVC is backed by block volume mode, you
must define a storage class capable of provisioning file volume mode PVCs.

$ oc patch configmap cdi-insecure-registries -n openshift-cnv \
 --type merge -p '{"data":{"mykey": "<insecure-registry-host>:5000"}}' 1

OpenShift Container Platform 4.6 OpenShift Virtualization

196

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-importing-virtual-machine-images-datavolumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-create-vms

Manual provisioning
If there are no storage classes, CDI uses any PVCs in the project that match the size requirements for
the image. If there are no PVCs that match these requirements, the CDI import pod remains in a
Pending state until an appropriate PVC is made available or until a timeout function kills the pod.

7.18.14.3. CDI operations that require scratch space

Type Reason

Registry imports CDI must download the image to a scratch space
and extract the layers to find the image file. The
image file is then passed to QEMU-IMG for
conversion to a raw disk.

Upload image QEMU-IMG does not accept input from STDIN.
Instead, the image to upload is saved in scratch
space before it can be passed to QEMU-IMG for
conversion.

HTTP imports of archived images QEMU-IMG does not know how to handle the archive
formats CDI supports. Instead, the image is
unarchived and saved into scratch space before it is
passed to QEMU-IMG.

HTTP imports of authenticated images QEMU-IMG inadequately handles authentication.
Instead, the image is saved to scratch space and
authenticated before it is passed to QEMU-IMG.

HTTP imports of custom certificates QEMU-IMG inadequately handles custom
certificates of HTTPS endpoints. Instead, CDI
downloads the image to scratch space before
passing the file to QEMU-IMG.

7.18.14.4. Defining a storage class in the CDI configuration

Define a storage class in the CDI configuration to dynamically provision scratch space for CDI
operations.

Procedure

Use the oc client to edit the cdiconfig/config and add or edit the spec:
scratchSpaceStorageClass to match a storage class in the cluster.

$ oc edit cdiconfig/config

API Version: cdi.kubevirt.io/v1beta1
kind: CDIConfig
metadata:
 name: config
...

CHAPTER 7. VIRTUAL MACHINES

197

7.18.14.5. CDI supported operations matrix

This matrix shows the supported CDI operations for content types against endpoints, and which of these
operations requires scratch space.

Content types HTTP HTTPS HTTP basic
auth

Registry Upload

KubeVirt(QCO
W2)

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2**
✓ GZ*
✓ XZ*

✓ QCOW2
✓ GZ*
✓ XZ*

✓ QCOW2*
□ GZ
□ XZ

✓ QCOW2*
✓ GZ*
✓ XZ*

KubeVirt
(RAW)

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW
✓ GZ
✓ XZ

✓ RAW*
□ GZ
□ XZ

✓ RAW*
✓ GZ*
✓ XZ*

✓ Supported operation

□ Unsupported operation

* Requires scratch space

** Requires scratch space if a custom certificate authority is required

Additional resources

See the Dynamic provisioning section for more information on storage classes and how these
are defined in the cluster.

7.18.15. Re-using persistent volumes

In order to re-use a statically provisioned persistent volume (PV), you must first reclaim the volume. This
involves deleting the PV so that the storage configuration can be re-used.

7.18.15.1. About reclaiming statically provisioned persistent volumes

When you reclaim a persistent volume (PV), you unbind the PV from a persistent volume claim (PVC)
and delete the PV. Depending on the underlying storage, you might need to manually delete the shared
storage.

You can then re-use the PV configuration to create a PV with a different name.

Statically provisioned PVs must have a reclaim policy of Retain to be reclaimed. If they do not, the PV
enters a failed state when the PVC is unbound from the PV.

IMPORTANT

The Recycle reclaim policy is deprecated in OpenShift Container Platform 4.

spec:
 scratchSpaceStorageClass: "<storage_class>"
...

OpenShift Container Platform 4.6 OpenShift Virtualization

198

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/storage/#about_dynamic-provisioning

7.18.15.2. Reclaiming statically provisioned persistent volumes

Reclaim a statically provisioned persistent volume (PV) by unbinding the persistent volume claim (PVC)
and deleting the PV. You might also need to manually delete the shared storage.

Reclaiming a statically provisioned PV is dependent on the underlying storage. This procedure provides
a general approach that might need to be customized depending on your storage.

Procedure

1. Ensure that the reclaim policy of the PV is set to Retain:

a. Check the reclaim policy of the PV:

b. If the persistentVolumeReclaimPolicy is not set to Retain, edit the reclaim policy with the
following command:

2. Ensure that no resources are using the PV:

Remove any resources that use the PVC before continuing.

3. Delete the PVC to release the PV:

4. Optional: Export the PV configuration to a YAML file. If you manually remove the shared storage
later in this procedure, you can refer to this configuration. You can also use spec parameters in
this file as the basis to create a new PV with the same storage configuration after you reclaim
the PV:

5. Delete the PV:

6. Optional: Depending on the storage type, you might need to remove the contents of the shared
storage folder:

7. Optional: Create a PV that uses the same storage configuration as the deleted PV. If you
exported the reclaimed PV configuration earlier, you can use the spec parameters of that file as
the basis for a new PV manifest:

NOTE

$ oc get pv <pv_name> -o yaml | grep 'persistentVolumeReclaimPolicy'

$ oc patch pv <pv_name> -p '{"spec":{"persistentVolumeReclaimPolicy":"Retain"}}'

$ oc describe pvc <pvc_name> | grep 'Mounted By:'

$ oc delete pvc <pvc_name>

$ oc get pv <pv_name> -o yaml > <file_name>.yaml

$ oc delete pv <pv_name>

$ rm -rf <path_to_share_storage>

CHAPTER 7. VIRTUAL MACHINES

199

NOTE

To avoid possible conflict, it is good practice to give the new PV object a
different name than the one that you deleted.

Additional resources

Configuring local storage for virtual machines

The OpenShift Container Platform Storage documentation has more information on Persistent
Storage.

7.18.16. Deleting data volumes

You can manually delete a data volume by using the oc command-line interface.

NOTE

When you delete a virtual machine, the data volume it uses is automatically deleted.

7.18.16.1. About data volumes

DataVolume objects are custom resources that are provided by the Containerized Data Importer (CDI)
project. Data volumes orchestrate import, clone, and upload operations that are associated with an
underlying persistent volume claim (PVC). Data volumes are integrated with OpenShift Virtualization,
and they prevent a virtual machine from being started before the PVC has been prepared.

7.18.16.2. Listing all data volumes

You can list the data volumes in your cluster by using the oc command-line interface.

Procedure

List all data volumes by running the following command:

7.18.16.3. Deleting a data volume

You can delete a data volume by using the oc command-line interface (CLI).

Prerequisites

Identify the name of the data volume that you want to delete.

Procedure

Delete the data volume by running the following command:

NOTE

$ oc create -f <new_pv_name>.yaml

$ oc get dvs

$ oc delete dv <datavolume_name>

OpenShift Container Platform 4.6 OpenShift Virtualization

200

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-configuring-local-storage-for-vms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/storage/#understanding-persistent-storage

NOTE

This command only deletes objects that exist in the current project. Specify the -
n <project_name> option if the object you want to delete is in a different project
or namespace.

CHAPTER 7. VIRTUAL MACHINES

201

CHAPTER 8. VIRTUAL MACHINE TEMPLATES

8.1. CREATING VIRTUAL MACHINE TEMPLATES

You can use virtual machine templates to create multiple virtual machines that have similar
configurations. After a template is created, reference the template when creating virtual machines.

8.1.1. Creating a virtual machine template with the interactive wizard in the web
console

The web console features an interactive wizard that guides you through the General, Networking,
Storage, Advanced, and Review steps to simplify the process of creating virtual machine templates. All
required fields are marked with a *. The wizard prevents you from moving to the next step until you
provide values in the required fields.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machine Templates tab.

3. Click Create Template and select New with Wizard.

4. Fill in all required fields in the General step.

5. Click Next to progress to the Networking screen. A NIC that is named nic0 is attached by
default.

a. Optional: Click Add Network Interface to create additional NICs.

b. Optional: You can remove any or all NICs by clicking the Options menu and selecting
Delete. Virtual machines created from a template do not need a NIC attached. NICs can be
created after a virtual machine has been created.

6. Click Next to progress to the Storage screen.

a. Optional: Click Add Disk to create additional disks.

b. Optional: Click a disk to modify available fields. Click the ✓ button to save the changes.

c. Optional: Click Disk to choose an available disk from the Select Storage list.

NOTE

If either URL or Container are selected as the Source in the General step, a
rootdisk disk is created and attached to virtual machines as the Bootable
Disk. You can modify the rootdisk but you cannot remove it.

A Bootable Disk is not required for virtual machines provisioned from a PXE
source if there are no disks attached to the virtual machine. If one or more
disks are attached to the virtual machine, you must select one as the
Bootable Disk.

7. Click Create Virtual Machine Template >. The Results screen displays the JSON configuration

OpenShift Container Platform 4.6 OpenShift Virtualization

202

7. Click Create Virtual Machine Template >. The Results screen displays the JSON configuration
file for the virtual machine template.
The template is listed in the Virtual Machine Templates tab.

8.1.2. Virtual machine template interactive wizard fields

The following tables describe the fields for the Basic Settings, Networking, and Storage panes in the
Create Virtual Machine Template interactive wizard.

8.1.2.1. Virtual machine template wizard fields

Name Parameter Description

Source PXE Provision virtual machine from
PXE menu. Requires a PXE-
capable NIC in the cluster.

URL Provision virtual machine from an
image available from an HTTP or
S3 endpoint.

Container Provision virtual machine from a
bootable operating system
container located in a registry
accessible from the cluster.
Example: kubevirt/cirros-
registry-disk-demo.

Disk Provision virtual machine from a
disk.

Operating System The primary operating system
that is selected for the virtual
machine.

Flavor small, medium, large, tiny, Custom Presets that determine the
amount of CPU and memory
allocated to the virtual machine.
The presets displayed for Flavor
are determined by the operating
system.

Memory Size in GiB of the memory
allocated to the virtual machine.

CPUs The amount of CPU allocated to
the virtual machine.

Workload Profile High Performance A virtual machine configuration
that is optimized for high-
performance workloads.

CHAPTER 8. VIRTUAL MACHINE TEMPLATES

203

Server A profile optimized to run server
workloads.

Desktop A virtual machine configuration
for use on a desktop.

Name The name can contain lowercase
letters (a-z), numbers (0-9), and
hyphens (-), up to a maximum of
253 characters. The first and last
characters must be alphanumeric.
The name must not contain
uppercase letters, spaces, periods
(.), or special characters.

Description Optional description field.

Name Parameter Description

8.1.2.2. Cloud-init fields

Name Description

Hostname Sets a specific hostname for the virtual machine.

Authenticated SSH Keys The user’s public key that is copied to
~/.ssh/authorized_keys on the virtual machine.

Custom script Replaces other options with a field in which you paste
a custom cloud-init script.

8.1.2.3. Networking fields

Name Description

Name Name for the network interface controller.

Model Indicates the model of the network interface
controller. Supported values are e1000e and virtio.

Network List of available network attachment definitions.

OpenShift Container Platform 4.6 OpenShift Virtualization

204

Type List of available binding methods. For the default
pod network, masquerade is the only
recommended binding method. For secondary
networks, use the bridge binding method. The
masquerade method is not supported for non-
default networks.

MAC Address MAC address for the network interface controller. If a
MAC address is not specified, one is assigned
automatically.

Name Description

8.1.2.4. Storage fields

Name Description

Source Select a blank disk for the virtual machine or choose
from the options available: URL, Container, Attach
Cloned Disk, or Attach Disk. To select an existing
disk and attach it to the virtual machine, choose
Attach Cloned Disk or Attach Disk from a list of
available persistent volume claims (PVCs).

Name Name of the disk. The name can contain lowercase
letters (a-z), numbers (0-9), hyphens (-), and periods
(.), up to a maximum of 253 characters. The first and
last characters must be alphanumeric. The name
must not contain uppercase letters, spaces, or special
characters.

Size (GiB) Size, in GiB, of the disk.

Interface Type of disk device. Supported interfaces are virtIO,
SATA, and SCSI.

Storage Class The storage class that is used to create the disk.

Advanced → Volume Mode Defines whether the persistent volume uses a
formatted file system or raw block state. Default is
Filesystem.

Advanced → Access Mode Access mode of the persistent volume. Supported
access modes are ReadWriteOnce, ReadOnlyMany,
and ReadWriteMany.

Advanced storage settings
The following advanced storage settings are available for Blank, Import via URL, and Clone existing
PVC disks. These parameters are optional. If you do not specify these parameters, the system uses the
default values from the kubevirt-storage-class-defaults config map.

CHAPTER 8. VIRTUAL MACHINE TEMPLATES

205

Name Parameter Description

Volume Mode Filesystem Stores the virtual disk on a file system-based volume.

Block Stores the virtual disk directly on the block volume.
Only use Block if the underlying storage supports it.

Access Mode Single User (RWO) The disk can be mounted as read/write by a single
node.

Shared Access (RWX) The disk can be mounted as read/write by many
nodes.

NOTE

This is required for some features,
such as live migration of virtual
machines between nodes.

Read Only (ROX) The disk can be mounted as read-only by many
nodes.

8.2. EDITING VIRTUAL MACHINE TEMPLATES

You can update a virtual machine template in the web console, either by editing the full configuration in
the YAML editor or by editing a subset of the parameters in the Virtual Machine Template Overview
screen.

8.2.1. Editing a virtual machine template in the web console

Edit select values of a virtual machine template in the Virtual Machine Template Overview screen of
the web console by clicking on the pencil icon next to the relevant field. Other values can be edited using
the CLI.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machine Templates tab.

3. Select a virtual machine template to open the Virtual Machine Template Overview screen.

4. Click the Details tab.

5. Click the pencil icon to make a field editable.

6. Make the relevant changes and click Save.

Editing a virtual machine template will not affect virtual machines already created from that template.

8.2.2. Editing virtual machine template YAML configuration in the web console

OpenShift Container Platform 4.6 OpenShift Virtualization

206

You can edit the YAML configuration of a virtual machine template from the web console.

Not all parameters can be modified. If you click Save with an invalid configuration, an error message
indicates the parameter that cannot be modified.

NOTE

Navigating away from the YAML screen while editing cancels any changes to the
configuration that you made.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machine Templates tab.

3. Select a template.

4. Click the YAML tab to display the editable configuration.

5. Edit the file and click Save.

A confirmation message, which includes the updated version number for the object, shows the
modification has been successful.

8.2.3. Adding a virtual disk to a virtual machine template

Use this procedure to add a virtual disk to a virtual machine template.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machine Templates tab.

3. Select a virtual machine template to open the Virtual Machine Template Overview screen.

4. Click the Disks tab.

5. Click Add Disk to open the Add Disk window.

6. In the Add Disk window, specify the Source, Name, Size, Interface, Type, and Storage Class.

a. Optional: In the Advanced list, specify the Volume Mode and Access Mode for the virtual
disk. If you do not specify these parameters, the system uses the default values from the
kubevirt-storage-class-defaults config map.

7. Click Add.

8.2.4. Adding a network interface to a virtual machine template

Use this procedure to add a network interface to a virtual machine template.

Procedure

CHAPTER 8. VIRTUAL MACHINE TEMPLATES

207

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machine Templates tab.

3. Select a virtual machine template to open the Virtual Machine Template Overview screen.

4. Click the Network Interfaces tab.

5. Click Add Network Interface.

6. In the Add Network Interface window, specify the Name, Model, Network, Type, and MAC
Address of the network interface.

7. Click Add.

8.2.5. Editing CD-ROMs for Virtual Machine Templates

Use the following procedure to configure CD-ROMs for virtual machines.

Procedure

1. From the Virtual Machine Templates tab, select your virtual machine template.

2. Select the Overview tab.

3. To add or edit a CD-ROM configuration, click the pencil icon to the right of the CD-ROMs label.
The Edit CD-ROM window opens.

If CD-ROMs are unavailable for editing, the following message displays: The virtual
machine doesn’t have any CD-ROMs attached.

If there are CD-ROMs available, you can remove a CD-ROM by clicking -.

4. In the Edit CD-ROM window, do the following:

a. Select the type of CD-ROM configuration from the drop-down list for Media Type. CD-
ROM configuration types are Container, URL, and Persistent Volume Claim.

b. Complete the required information for each Type.

c. When all CD-ROMs are added, click Save.

8.3. ENABLING DEDICATED RESOURCES FOR VIRTUAL MACHINE
TEMPLATES

Virtual machines can have resources of a node, such as CPU, dedicated to them in order to improve
performance.

8.3.1. About dedicated resources

When you enable dedicated resources for your virtual machine, your virtual machine’s workload is
scheduled on CPUs that will not be used by other processes. By using dedicated resources, you can
improve the performance of the virtual machine and the accuracy of latency predictions.

8.3.2. Prerequisites

OpenShift Container Platform 4.6 OpenShift Virtualization

208

The CPU Manager must be configured on the node. Verify that the node has the cpumanager =
true label before scheduling virtual machine workloads.

8.3.3. Enabling dedicated resources for a virtual machine template

You can enable dedicated resources for a virtual machine template in the Virtual Machine Template
Overview page of the web console.

Procedure

1. Click Workloads → Virtual Machine Templates from the side menu.

2. Select a virtual machine template to open the Virtual Machine Template Overview page.

3. Click the Details tab.

4. Click the pencil icon to the right of the Dedicated Resources field to open the Dedicated
Resources window.

5. Select Schedule this workload with dedicated resources (guaranteed policy).

6. Click Save.

8.4. DELETING A VIRTUAL MACHINE TEMPLATE

You can delete a virtual machine template in the web console.

8.4.1. Deleting a virtual machine template in the web console

Deleting a virtual machine template permanently removes it from the cluster.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machine Templates tab.

3. You can delete the virtual machine template from this pane, which makes it easier to perform
actions on multiple templates in the one pane, or from the Virtual Machine Template Details
pane where you can view comprehensive details of the selected template:

Click the Options menu of the template to delete and select Delete Template.

Click the template name to open the Virtual Machine Template Details pane and click
Actions → Delete Template.

4. In the confirmation pop-up window, click Delete to permanently delete the template.

CHAPTER 8. VIRTUAL MACHINE TEMPLATES

209

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/scalability_and_performance/#using-cpu-manager-1

CHAPTER 9. LIVE MIGRATION

9.1. VIRTUAL MACHINE LIVE MIGRATION

9.1.1. Understanding live migration

Live migration is the process of moving a running virtual machine instance (VMI) to another node in the
cluster without interrupting the virtual workload or access. If a VMI uses the LiveMigrate eviction
strategy, it automatically migrates when the node that the VMI runs on is placed into maintenance
mode. You can also manually start live migration by selecting a VMI to migrate.

Virtual machines must have a persistent volume claim (PVC) with a shared ReadWriteMany (RWX)
access mode to be live migrated.

NOTE

Live migration is not supported for virtual machines that are attached to an SR-IOV
network interface.

9.1.2. Updating access mode for live migration

For live migration to function properly, you must use the ReadWriteMany (RWX) access mode. Use this
procedure to update the access mode, if needed.

Procedure

To set the RWX access mode, run the following oc patch command:

Additional resources:

Migrating a virtual machine instance to another node

Node maintenance mode

Live migration limiting

Storage defaults for data volumes

9.2. LIVE MIGRATION LIMITS AND TIMEOUTS

Live migration limits and timeouts are applied so that migration processes do not overwhelm the cluster.
Configure these settings by editing the kubevirt-config configuration file.

9.2.1. Configuring live migration limits and timeouts

Configure live migration limits and timeouts for the cluster by adding updated key:value fields to the
kubevirt-config configuration file, which is located in the openshift-cnv namespace.

$ oc patch -n openshift-cnv \
 cm kubevirt-storage-class-defaults \
 -p '{"data":{"'$<STORAGE_CLASS>'.accessMode":"ReadWriteMany"}}'

OpenShift Container Platform 4.6 OpenShift Virtualization

210

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-migrate-vmi
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-node-maintenance
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-live-migration-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-storage-defaults-for-datavolumes

Procedure

Edit the kubevirt-config configuration file and add the necessary live migration parameters.
The following example shows the default values:

Example configuration file

9.2.2. Cluster-wide live migration limits and timeouts

Table 9.1. Migration parameters

Parameter Description Default

parallelMigrationsPerCluster Number of migrations running in parallel in the
cluster.

5

parallelOutboundMigrations
PerNode

Maximum number of outbound migrations per node. 2

bandwidthPerMigration Bandwidth limit of each migration, in MiB/s. 64Mi

$ oc edit configmap kubevirt-config -n openshift-cnv

apiVersion: v1
data:
 default-network-interface: masquerade
 feature-gates:
DataVolumes,SRIOV,LiveMigration,CPUManager,CPUNodeDiscovery,Sidecar,Snapshot
 migrations: |-
 parallelMigrationsPerCluster: "5"
 parallelOutboundMigrationsPerNode: "2"
 bandwidthPerMigration: "64Mi"
 completionTimeoutPerGiB: "800"
 progressTimeout: "150"
 machine-type: pc-q35-rhel8.3.0
 selinuxLauncherType: virt_launcher.process
 smbios: |-
 Family: Red Hat
 Product: Container-native virtualization
 Manufacturer: Red Hat
 Sku: 2.6.0
 Version: 2.6.0
kind: ConfigMap
metadata:
 creationTimestamp: "2021-03-26T18:01:04Z"
 labels:
 app: kubevirt-hyperconverged
 name: kubevirt-config
 namespace: openshift-cnv
 resourceVersion: "15371295"
 selfLink: /api/v1/namespaces/openshift-cnv/configmaps/kubevirt-config
 uid: <uuid>

CHAPTER 9. LIVE MIGRATION

211

completionTimeoutPerGiB The migration is canceled if it has not completed in
this time, in seconds per GiB of memory. For
example, a virtual machine instance with 6GiB
memory times out if it has not completed migration in
4800 seconds. If the Migration Method is
BlockMigration, the size of the migrating disks is
included in the calculation.

800

progressTimeout The migration is canceled if memory copy fails to
make progress in this time, in seconds.

150

Parameter Description Default

9.3. MIGRATING A VIRTUAL MACHINE INSTANCE TO ANOTHER NODE

Manually initiate a live migration of a virtual machine instance to another node using either the web
console or the CLI.

9.3.1. Initiating live migration of a virtual machine instance in the web console

Migrate a running virtual machine instance to a different node in the cluster.

NOTE

The Migrate Virtual Machine action is visible to all users but only admin users can initiate
a virtual machine migration.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. You can initiate the migration from this screen, which makes it easier to perform actions on
multiple virtual machines in the one screen, or from the Virtual Machine Overview screen where
you can view comprehensive details of the selected virtual machine:

Click the Options menu at the end of virtual machine and select Migrate Virtual
Machine.

Click the virtual machine name to open the Virtual Machine Overview screen and click
Actions → Migrate Virtual Machine.

4. Click Migrate to migrate the virtual machine to another node.

9.3.2. Initiating live migration of a virtual machine instance in the CLI

Initiate a live migration of a running virtual machine instance by creating a
VirtualMachineInstanceMigration object in the cluster and referencing the name of the virtual
machine instance.

OpenShift Container Platform 4.6 OpenShift Virtualization

212

Procedure

1. Create a VirtualMachineInstanceMigration configuration file for the virtual machine instance
to migrate. For example, vmi-migrate.yaml:

2. Create the object in the cluster by running the following command:

The VirtualMachineInstanceMigration object triggers a live migration of the virtual machine instance.
This object exists in the cluster for as long as the virtual machine instance is running, unless manually
deleted.

Additional resources:

Monitoring live migration of a virtual machine instance

Cancelling the live migration of a virtual machine instance

9.4. MONITORING LIVE MIGRATION OF A VIRTUAL MACHINE
INSTANCE

You can monitor the progress of a live migration of a virtual machine instance from either the web
console or the CLI.

9.4.1. Monitoring live migration of a virtual machine instance in the web console

For the duration of the migration, the virtual machine has a status of Migrating. This status is displayed
in the Virtual Machines tab or in the Virtual Machine Overview screen for the migrating virtual
machine.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

9.4.2. Monitoring live migration of a virtual machine instance in the CLI

The status of the virtual machine migration is stored in the Status component of the
VirtualMachineInstance configuration.

Procedure

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstanceMigration
metadata:
 name: migration-job
spec:
 vmiName: vmi-fedora

$ oc create -f vmi-migrate.yaml

CHAPTER 9. LIVE MIGRATION

213

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-monitor-vmi-migration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-cancel-vmi-migration

Use the oc describe command on the migrating virtual machine instance:

Example output

9.5. CANCELLING THE LIVE MIGRATION OF A VIRTUAL MACHINE
INSTANCE

Cancel the live migration so that the virtual machine instance remains on the original node.

You can cancel a live migration from either the web console or the CLI.

9.5.1. Cancelling live migration of a virtual machine instance in the web console

You can cancel a live migration of the virtual machine instance using the Options menu found on
each virtual machine in the Virtualization → Virtual Machines tab, or from the Actions menu available
on all tabs in the Virtual Machine Overview screen.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. You can cancel the migration from this screen, which makes it easier to perform actions on
multiple virtual machines, or from the Virtual Machine Overview screen where you can view
comprehensive details of the selected virtual machine:

Click the Options menu at the end of virtual machine and select Cancel Virtual
Machine Migration.

Select a virtual machine name to open the Virtual Machine Overview screen and click

$ oc describe vmi vmi-fedora

...
Status:
 Conditions:
 Last Probe Time: <nil>
 Last Transition Time: <nil>
 Status: True
 Type: LiveMigratable
 Migration Method: LiveMigration
 Migration State:
 Completed: true
 End Timestamp: 2018-12-24T06:19:42Z
 Migration UID: d78c8962-0743-11e9-a540-fa163e0c69f1
 Source Node: node2.example.com
 Start Timestamp: 2018-12-24T06:19:35Z
 Target Node: node1.example.com
 Target Node Address: 10.9.0.18:43891
 Target Node Domain Detected: true

OpenShift Container Platform 4.6 OpenShift Virtualization

214

Select a virtual machine name to open the Virtual Machine Overview screen and click
Actions → Cancel Virtual Machine Migration.

4. Click Cancel Migration to cancel the virtual machine live migration.

9.5.2. Cancelling live migration of a virtual machine instance in the CLI

Cancel the live migration of a virtual machine instance by deleting the
VirtualMachineInstanceMigration object associated with the migration.

Procedure

Delete the VirtualMachineInstanceMigration object that triggered the live migration,
migration-job in this example:

9.6. CONFIGURING VIRTUAL MACHINE EVICTION STRATEGY

The LiveMigrate eviction strategy ensures that a virtual machine instance is not interrupted if the node
is placed into maintenance or drained. Virtual machines instances with this eviction strategy will be live
migrated to another node.

9.6.1. Configuring custom virtual machines with the LiveMigration eviction strategy

You only need to configure the LiveMigration eviction strategy on custom virtual machines. Common
templates have this eviction strategy configured by default.

Procedure

1. Add the evictionStrategy: LiveMigrate option to the spec.template.spec section in the virtual
machine configuration file. This example uses oc edit to update the relevant snippet of the
VirtualMachine configuration file:

2. Restart the virtual machine for the update to take effect:

$ oc delete vmim migration-job

$ oc edit vm <custom-vm> -n <my-namespace>

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachine
metadata:
 name: custom-vm
spec:
 template:
 spec:
 evictionStrategy: LiveMigrate
...

$ virtctl restart <custom-vm> -n <my-namespace>

CHAPTER 9. LIVE MIGRATION

215

CHAPTER 10. NODE MAINTENANCE

10.1. AUTOMATIC RENEWAL OF TLS CERTIFICATES

All TLS certificates for OpenShift Virtualization components are renewed and rotated automatically.
You are not required to refresh them manually.

10.1.1. Automatic renewal of TLS certificates

TLS certificates are automatically deleted and replaced according to the following schedule:

KubeVirt certificates are renewed daily.

Containerized Data Importer controller (CDI) certificates are renewed every 15 days.

MAC pool certificates are renewed every year.

Automatic TLS certificate rotation does not disrupt any operations. For example, the following
operations continue to function without any disruption:

Migrations

Image uploads

VNC and console connections

10.2. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS

You can schedule a virtual machine (VM) on a node where the CPU model and policy attribute of the VM
are compatible with the CPU models and policy attributes that the node supports. By specifying a list of
obsolete CPU models in a config map, you can exclude them from the list of labels created for CPU
models.

10.2.1. Understanding node labeling for obsolete CPU models

To ensure that a node supports only valid CPU models for scheduled VMs, create a config map with a
list of obsolete CPU models. When the node-labeller obtains the list of obsolete CPU models, it
eliminates those CPU models and creates labels for valid CPU models.

NOTE

If you do not configure a config map with a list of obsolete CPU models, all CPU models
are evaluated for labels, including obsolete CPU models that are not present in your
environment.

Through the process of iteration, the list of base CPU features in the minimum CPU model are
eliminated from the list of labels generated for the node. For example, an environment might have two
supported CPU models: Penryn and Haswell.

If Penryn is specified as the CPU model for minCPU, the node-labeller evaluates each base CPU
feature for Penryn and compares it with each CPU feature supported by Haswell. If the CPU feature is
supported by both Penryn and Haswell, the node-labeller eliminates that feature from the list of CPU

OpenShift Container Platform 4.6 OpenShift Virtualization

216

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/nodes/#nodes-pods-configmap-overview_builds-configmaps

features for creating labels. If a CPU feature is supported only by Haswell and not by Penryn, that CPU
feature is included in the list of generated labels. The node-labeller follows this iterative process to
eliminate base CPU features that are present in the minimum CPU model and create labels.

The following example shows the complete list of CPU features for Penryn which is specified as the
CPU model for minCPU:

Example of CPU features for Penryn

apic
clflush
cmov
cx16
cx8
de
fpu
fxsr
lahf_lm
lm
mca
mce
mmx
msr
mtrr
nx
pae
pat
pge
pni
pse
pse36
sep
sse
sse2
sse4.1
ssse3
syscall
tsc

The following example shows the complete list of CPU features for Haswell:

Example of CPU features for Haswell

aes
apic
avx
avx2
bmi1
bmi2
clflush
cmov
cx16
cx8
de
erms

CHAPTER 10. NODE MAINTENANCE

217

fma
fpu
fsgsbase
fxsr
hle
invpcid
lahf_lm
lm
mca
mce
mmx
movbe
msr
mtrr
nx
pae
pat
pcid
pclmuldq
pge
pni
popcnt
pse
pse36
rdtscp
rtm
sep
smep
sse
sse2
sse4.1
sse4.2
ssse3
syscall
tsc
tsc-deadline
x2apic
xsave

The following example shows the list of node labels generated by the node-labeller after iterating and
comparing the CPU features for Penryn with the CPU features for Haswell:

Example of node labels after iteration

aes
avx
avx2
bmi1
bmi2
erms
fma
fsgsbase
hle
invpcid
movbe
pcid

OpenShift Container Platform 4.6 OpenShift Virtualization

218

1

2

3

4

pclmuldq
popcnt
rdtscp
rtm
sse4.2
tsc-deadline
x2apic
xsave

10.2.2. Configuring a config map for obsolete CPU models

Use this procedure to configure a config map for obsolete CPU models.

Procedure

Create a ConfigMap object, specifying the obsolete CPU models in the obsoleteCPUs array.
For example:

Name of the config map.

Configuration data.

List of obsolete CPU models.

Minimum CPU model that is used for basic CPU features.

10.3. NODE MAINTENANCE MODE

10.3.1. Understanding node maintenance mode

Placing a node into maintenance marks the node as unschedulable and drains all the virtual machines
and pods from it. Virtual machine instances that have a LiveMigrate eviction strategy are live migrated
to another node without loss of service. This eviction strategy is configured by default in virtual machine
created from common templates but must be configured manually for custom virtual machines.

Virtual machine instances without an eviction strategy will be deleted on the node and recreated on
another node.

IMPORTANT

apiVersion: v1
kind: ConfigMap
metadata:
 name: cpu-plugin-configmap 1
data: 2
 cpu-plugin-configmap:
 obsoleteCPUs: 3
 - "486"
 - "pentium"
 - "pentium2"
 - "pentium3"
 - "pentiumpro"
 minCPU: "Penryn" 4

CHAPTER 10. NODE MAINTENANCE

219

IMPORTANT

Virtual machines must have a persistent volume claim (PVC) with a shared
ReadWriteMany (RWX) access mode to be live migrated.

Additional resources:

Virtual machine live migration

Configuring virtual machine eviction strategy

10.4. SETTING A NODE TO MAINTENANCE MODE

10.4.1. Understanding node maintenance mode

Placing a node into maintenance marks the node as unschedulable and drains all the virtual machines
and pods from it. Virtual machine instances that have a LiveMigrate eviction strategy are live migrated
to another node without loss of service. This eviction strategy is configured by default in virtual machine
created from common templates but must be configured manually for custom virtual machines.

Virtual machine instances without an eviction strategy will be deleted on the node and recreated on
another node.

IMPORTANT

Virtual machines must have a persistent volume claim (PVC) with a shared
ReadWriteMany (RWX) access mode to be live migrated.

Place a node into maintenance from either the web console or the CLI.

10.4.2. Setting a node to maintenance mode in the web console

Set a node to maintenance mode using the Options menu found on each node in the Compute →
Nodes list, or using the Actions control of the Node Details screen.

Procedure

1. In the OpenShift Virtualization console, click Compute → Nodes.

2. You can set the node to maintenance from this screen, which makes it easier to perform actions
on multiple nodes in the one screen or from the Node Details screen where you can view
comprehensive details of the selected node:

Click the Options menu at the end of the node and select Start Maintenance.

Click the node name to open the Node Details screen and click Actions → Start
Maintenance.

3. Click Start Maintenance in the confirmation window.

The node will live migrate virtual machine instances that have the LiveMigration eviction strategy, and

OpenShift Container Platform 4.6 OpenShift Virtualization

220

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-live-migration
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-configuring-vmi-eviction-strategy

The node will live migrate virtual machine instances that have the LiveMigration eviction strategy, and
the node is no longer schedulable. All other pods and virtual machines on the node are deleted and
recreated on another node.

10.4.3. Setting a node to maintenance mode in the CLI

Set a node to maintenance mode by creating a NodeMaintenance custom resource (CR) object that
references the node name and the reason for setting it to maintenance mode.

Procedure

1. Create the node maintenance CR configuration. This example uses a CR that is called node02-
maintenance.yaml:

2. Create the NodeMaintenance object in the cluster:

The node live migrates virtual machine instances that have the LiveMigration eviction strategy, and
taint the node so that it is no longer schedulable. All other pods and virtual machines on the node are
deleted and recreated on another node.

Additional resources:

Resuming a node from maintenance mode

10.5. RESUMING A NODE FROM MAINTENANCE MODE

Resuming a node brings it out of maintenance mode and schedulable again.

Resume a node from maintenance from either the web console or the CLI.

10.5.1. Resuming a node from maintenance mode in the web console

Resume a node from maintenance mode using the Options menu found on each node in the
Compute → Nodes list, or using the Actions control of the Node Details screen.

Procedure

1. In the OpenShift Virtualization console, click Compute → Nodes.

2. You can resume the node from this screen, which makes it easier to perform actions on multiple
nodes in the one screen, or from the Node Details screen where you can view comprehensive
details of the selected node:

apiVersion: nodemaintenance.kubevirt.io/v1beta1
kind: NodeMaintenance
metadata:
 name: node02-maintenance
spec:
 nodeName: node02
 reason: "Replacing node02"

$ oc apply -f <node02-maintenance.yaml>

CHAPTER 10. NODE MAINTENANCE

221

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-resuming-node

Click the Options menu at the end of the node and select Stop Maintenance.

Click the node name to open the Node Details screen and click Actions → Stop
Maintenance.

3. Click Stop Maintenance in the confirmation window.

The node becomes schedulable, but virtual machine instances that were running on the node prior to
maintenance will not automatically migrate back to this node.

10.5.2. Resuming a node from maintenance mode in the CLI

Resume a node from maintenance mode and make it schedulable again by deleting the
NodeMaintenance object for the node.

Procedure

1. Find the NodeMaintenance object:

2. Optional: Insepct the NodeMaintenance object to ensure it is associated with the correct node:

Example output

3. Delete the NodeMaintenance object:

$ oc get nodemaintenance

$ oc describe nodemaintenance <node02-maintenance>

Name: node02-maintenance
Namespace:
Labels:
Annotations:
API Version: nodemaintenance.kubevirt.io/v1beta1
Kind: NodeMaintenance
...
Spec:
 Node Name: node02
 Reason: Replacing node02

$ oc delete nodemaintenance <node02-maintenance>

OpenShift Container Platform 4.6 OpenShift Virtualization

222

CHAPTER 11. NODE NETWORKING

11.1. OBSERVING NODE NETWORK STATE

Node network state is the network configuration for all nodes in the cluster.

11.1.1. About nmstate

OpenShift Virtualization uses nmstate to report on and configure the state of the node network. This
makes it possible to modify network policy configuration, such as by creating a Linux bridge on all nodes,
by applying a single configuration manifest to the cluster.

Node networking is monitored and updated by the following objects:

NodeNetworkState

Reports the state of the network on that node.

NodeNetworkConfigurationPolicy

Describes the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

NodeNetworkConfigurationEnactment

Reports the network policies enacted upon each node.

OpenShift Virtualization supports the use of the following nmstate interface types:

Linux Bridge

VLAN

Bond

Ethernet

NOTE

If your OpenShift Container Platform cluster uses OVN-Kubernetes as the default
Container Network Interface (CNI) provider, you cannot attach a Linux bridge or bonding
to the default interface of a host because of a change in the host network topology of
OVN-Kubernetes. As a workaround, you can use a secondary network interface
connected to your host, or switch to the OpenShift SDN default CNI provider.

11.1.2. Viewing the network state of a node

A NodeNetworkState object exists on every node in the cluster. This object is periodically updated and
captures the state of the network for that node.

Procedure

1. List all the NodeNetworkState objects in the cluster:

2. Inspect a NodeNetworkState object to view the network on that node. The output in this

$ oc get nns

CHAPTER 11. NODE NETWORKING

223

https://nmstate.github.io/

1

2

3

2. Inspect a NodeNetworkState object to view the network on that node. The output in this
example has been redacted for clarity:

Example output

The name of the NodeNetworkState object is taken from the node.

The currentState contains the complete network configuration for the node, including
DNS, interfaces, and routes.

Timestamp of the last successful update. This is updated periodically as long as the node is
reachable and can be used to evalute the freshness of the report.

11.2. UPDATING NODE NETWORK CONFIGURATION

You can update the node network configuration, such as adding or removing interfaces from nodes, by
applying NodeNetworkConfigurationPolicy manifests to the cluster.

11.2.1. About nmstate

OpenShift Virtualization uses nmstate to report on and configure the state of the node network. This
makes it possible to modify network policy configuration, such as by creating a Linux bridge on all nodes,
by applying a single configuration manifest to the cluster.

Node networking is monitored and updated by the following objects:

NodeNetworkState

Reports the state of the network on that node.

NodeNetworkConfigurationPolicy

Describes the requested network configuration on nodes. You update the node network
configuration, including adding and removing interfaces, by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

NodeNetworkConfigurationEnactment

$ oc get nns node01 -o yaml

apiVersion: nmstate.io/v1alpha1
kind: NodeNetworkState
metadata:
 name: node01 1
status:
 currentState: 2
 dns-resolver:
...
 interfaces:
...
 route-rules:
...
 routes:
...
 lastSuccessfulUpdateTime: "2020-01-31T12:14:00Z" 3

OpenShift Container Platform 4.6 OpenShift Virtualization

224

https://nmstate.github.io/

Reports the network policies enacted upon each node.

OpenShift Virtualization supports the use of the following nmstate interface types:

Linux Bridge

VLAN

Bond

Ethernet

NOTE

If your OpenShift Container Platform cluster uses OVN-Kubernetes as the default
Container Network Interface (CNI) provider, you cannot attach a Linux bridge or bonding
to the default interface of a host because of a change in the host network topology of
OVN-Kubernetes. As a workaround, you can use a secondary network interface
connected to your host, or switch to the OpenShift SDN default CNI provider.

11.2.2. Creating an interface on nodes

Create an interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy manifest
to the cluster. The manifest details the requested configuration for the interface.

By default, the manifest applies to all nodes in the cluster. To add the interface to specific nodes, add
the spec: nodeSelector parameter and the appropriate <key>:<value> for your node selector.

Procedure

1. Create the NodeNetworkConfigurationPolicy manifest. The following example configures a
Linux bridge on all worker nodes:

apiVersion: nmstate.io/v1alpha1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: <br1-eth1-policy> 1
spec:
 nodeSelector: 2
 node-role.kubernetes.io/worker: "" 3
 desiredState:
 interfaces:
 - name: br1
 description: Linux bridge with eth1 as a port 4
 type: linux-bridge
 state: up
 ipv4:
 dhcp: true
 enabled: true
 bridge:
 options:
 stp:
 enabled: false
 port:
 - name: eth1

CHAPTER 11. NODE NETWORKING

225

1

2

3

4

1

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes
in the cluster.

This example uses the node-role.kubernetes.io/worker: "" node selector to select all
worker nodes in the cluster.

Optional: Human-readable description for the interface.

2. Create the node network policy:

File name of the node network configuration policy manifest.

Additional resources

Example policy configurations for different interfaces

Example for creating multiple interfaces in the same policy

Examples of different IP management methods in policies

11.2.3. Confirming node network policy updates on nodes

A NodeNetworkConfigurationPolicy manifest describes your requested network configuration for
nodes in the cluster. The node network policy includes your requested network configuration and the
status of execution of the policy on the cluster as a whole.

When you apply a node network policy, a NodeNetworkConfigurationEnactment object is created for
every node in the cluster. The node network configuration enactment is a read-only object that
represents the status of execution of the policy on that node. If the policy fails to be applied on the
node, the enactment for that node includes a traceback for troubleshooting.

Procedure

1. To confirm that a policy has been applied to the cluster, list the policies and their status:

2. Optional: If a policy is taking longer than expected to successfully configure, you can inspect the
requested state and status conditions of a particular policy:

3. Optional: If a policy is taking longer than expected to successfully configure on all nodes, you
can list the status of the enactments on the cluster:

4. Optional: To view the configuration of a particular enactment, including any error reporting for a
failed configuration:

$ oc apply -f <br1-eth1-policy.yaml> 1

$ oc get nncp

$ oc get nncp <policy> -o yaml

$ oc get nnce

OpenShift Container Platform 4.6 OpenShift Virtualization

226

1

2

11.2.4. Removing an interface from nodes

You can remove an interface from one or more nodes in the cluster by editing the
NodeNetworkConfigurationPolicy object and setting the state of the interface to absent.

Removing an interface from a node does not automatically restore the node network configuration to a
previous state. If you want to restore the previous state, you will need to define that node network
configuration in the policy.

If you remove a bridge or bonding interface, any node NICs in the cluster that were previously attached
or subordinate to that bridge or bonding interface are placed in a down state and become unreachable.
To avoid losing connectivity, configure the node NIC in the same policy so that it has a status of up and
either DHCP or a static IP address.

NOTE

Deleting the node network policy that added an interface does not change the
configuration of the policy on the node. Although a NodeNetworkConfigurationPolicy is
an object in the cluster, it only represents the requested configuration.
Similarly, removing an interface does not delete the policy.

Procedure

1. Update the NodeNetworkConfigurationPolicy manifest used to create the interface. The
following example removes a Linux bridge and configures the eth1 NIC with DHCP to avoid
losing connectivity:

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes
in the cluster.

This example uses the node-role.kubernetes.io/worker: "" node selector to select all

$ oc get nnce <node>.<policy> -o yaml

apiVersion: nmstate.io/v1alpha1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: <br1-eth1-policy> 1
spec:
 nodeSelector: 2
 node-role.kubernetes.io/worker: "" 3
 desiredState:
 interfaces:
 - name: br1
 type: linux-bridge
 state: absent 4
 - name: eth1 5
 type: ethernet 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9

CHAPTER 11. NODE NETWORKING

227

3

4

5

6

7

8

9

1

This example uses the node-role.kubernetes.io/worker: "" node selector to select all
worker nodes in the cluster.

Changing the state to absent removes the interface.

The name of the interface that is to be unattached from the bridge interface.

The type of interface. This example creates an Ethernet networking interface.

The requested state for the interface.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface
without an IP address.

Enables ipv4 in this example.

2. Update the policy on the node and remove the interface:

File name of the policy manifest.

11.2.5. Example policy configurations for different interfaces

11.2.5.1. Example: Linux bridge interface node network configuration policy

Create a Linux bridge interface on nodes in the cluster by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

The following YAML file is an example of a manifest for a Linux bridge interface. It includes samples
values that you must replace with your own information.

$ oc apply -f <br1-eth1-policy.yaml> 1

apiVersion: nmstate.io/v1alpha1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: br1-eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: br1 4
 description: Linux bridge with eth1 as a port 5
 type: linux-bridge 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9
 bridge:
 options:
 stp:

OpenShift Container Platform 4.6 OpenShift Virtualization

228

1

2

3

4

5

6

7

8

9

10

11

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bridge.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

Disables stp in this example.

The node NIC to which the bridge attaches.

11.2.5.2. Example: VLAN interface node network configuration policy

Create a VLAN interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy
manifest to the cluster.

The following YAML file is an example of a manifest for a VLAN interface. It includes samples values that
you must replace with your own information.

 enabled: false 10
 port:
 - name: eth1 11

apiVersion: nmstate.io/v1alpha1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: vlan-eth1-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: eth1.102 4
 description: VLAN using eth1 5
 type: vlan 6
 state: up 7
 vlan:
 base-iface: eth1 8
 id: 102 9

CHAPTER 11. NODE NETWORKING

229

1

2

3

4

5

6

7

8

9

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a VLAN.

The requested state for the interface after creation.

The node NIC to which the VLAN is attached.

The VLAN tag.

11.2.5.3. Example: Bond interface node network configuration policy

Create a bond interface on nodes in the cluster by applying a NodeNetworkConfigurationPolicy
manifest to the cluster.

NOTE

OpenShift Virtualization only supports the following bond modes:

mode=1 active-backup

mode=2 balance-xor

mode=4 802.3ad

mode=5 balance-tlb

mode=6 balance-alb

The following YAML file is an example of a manifest for a bond interface. It includes samples values that
you must replace with your own information.

apiVersion: nmstate.io/v1alpha1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: bond0-eth1-eth2-policy 1
spec:
 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: bond0 4
 description: Bond enslaving eth1 and eth2 5
 type: bond 6
 state: up 7

OpenShift Container Platform 4.6 OpenShift Virtualization

230

1

2

3

4

5

6

7

8

9

10

11

12

13

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates a bond.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

The driver mode for the bond. This example uses an active backup mode.

Optional: This example uses miimon to inspect the bond link every 140ms.

The subordinate node NICs in the bond.

Optional: The maximum transmission unit (MTU) for the bond. If not specified, this value is set to
1500 by default.

11.2.5.4. Example: Ethernet interface node network configuration policy

Configure an Ethernet interface on nodes in the cluster by applying a
NodeNetworkConfigurationPolicy manifest to the cluster.

The following YAML file is an example of a manifest for an Ethernet interface. It includes sample values
that you must replace with your own information.

 ipv4:
 dhcp: true 8
 enabled: true 9
 link-aggregation:
 mode: active-backup 10
 options:
 miimon: '140' 11
 slaves: 12
 - eth1
 - eth2
 mtu: 1450 13

apiVersion: nmstate.io/v1alpha1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: eth1-policy 1
spec:

CHAPTER 11. NODE NETWORKING

231

1

2

3

4

5

6

7

8

9

Name of the policy.

Optional: If you do not include the nodeSelector parameter, the policy applies to all nodes in the
cluster.

This example uses a hostname node selector.

Name of the interface.

Optional: Human-readable description of the interface.

The type of interface. This example creates an Ethernet networking interface.

The requested state for the interface after creation.

Optional: If you do not use dhcp, you can either set a static IP or leave the interface without an IP
address.

Enables ipv4 in this example.

11.2.5.5. Example: Multiple interfaces in the same node network configuration policy

You can create multiple interfaces in the same node network configuration policy. These interfaces can
reference each other, allowing you to build and deploy a network configuration by using a single policy
manifest.

The following example snippet creates a bond that is named bond10 across two NICs and a Linux bridge
that is named br1 that connects to the bond.

 nodeSelector: 2
 kubernetes.io/hostname: <node01> 3
 desiredState:
 interfaces:
 - name: eth1 4
 description: Configuring eth1 on node01 5
 type: ethernet 6
 state: up 7
 ipv4:
 dhcp: true 8
 enabled: true 9

...
 interfaces:
 - name: bond10
 description: Bonding eth2 and eth3 for Linux bridge
 type: bond
 state: up
 link-aggregation:
 slaves:
 - eth2
 - eth3
 - name: br1
 description: Linux bridge on bond
 type: linux-bridge

OpenShift Container Platform 4.6 OpenShift Virtualization

232

1

11.2.6. Examples: IP management

The following example configuration snippets demonstrate different methods of IP management.

These examples use the ethernet interface type to simplify the example while showing the related
context in the policy configuration. These IP management examples can be used with the other
interface types.

11.2.6.1. Static

The following snippet statically configures an IP address on the Ethernet interface:

Replace this value with the static IP address for the interface.

11.2.6.2. No IP address

The following snippet ensures that the interface has no IP address:

11.2.6.3. Dynamic host configuration

The following snippet configures an Ethernet interface that uses a dynamic IP address, gateway
address, and DNS:

 state: up
 bridge:
 port:
 - name: bond10
...

...
 interfaces:
 - name: eth1
 description: static IP on eth1
 type: ethernet
 state: up
 ipv4:
 address:
 - ip: 192.168.122.250 1
 prefix-length: 24
 enabled: true
...

...
 interfaces:
 - name: eth1
 description: No IP on eth1
 type: ethernet
 state: up
 ipv4:
 enabled: false
...

CHAPTER 11. NODE NETWORKING

233

The following snippet configures an Ethernet interface that uses a dynamic IP address but does not use
a dynamic gateway address or DNS:

11.2.6.4. DNS

The following snippet sets DNS configuration on the host.

11.2.6.5. Static routing

The following snippet configures a static route and a static IP on interface eth1.

...
 interfaces:
 - name: eth1
 description: DHCP on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: true
 enabled: true
...

...
 interfaces:
 - name: eth1
 description: DHCP without gateway or DNS on eth1
 type: ethernet
 state: up
 ipv4:
 dhcp: true
 auto-gateway: false
 auto-dns: false
 enabled: true
...

...
 interfaces:
 ...
 dns-resolver:
 config:
 search:
 - example.com
 - example.org
 server:
 - 8.8.8.8
...

...
 interfaces:
 - name: eth1
 description: Static routing on eth1
 type: ethernet
 state: up
 ipv4:

OpenShift Container Platform 4.6 OpenShift Virtualization

234

1

2

The static IP address for the Ethernet interface.

Next hop address for the node traffic. This must be in the same subnet as the IP address set for
the Ethernet interface.

11.3. TROUBLESHOOTING NODE NETWORK CONFIGURATION

If the node network configuration encounters an issue, the policy is automatically rolled back and the
enactments report failure. This includes issues such as:

The configuration fails to be applied on the host.

The host loses connection to the default gateway.

The host loses connection to the API server.

11.3.1. Troubleshooting an incorrect node network configuration policy configuration

You can apply changes to the node network configuration across your entire cluster by applying a node
network configuration policy. If you apply an incorrect configuration, you can use the following example
to troubleshoot and correct the failed node network policy.

In this example, a Linux bridge policy is applied to an example cluster that has 3 master nodes and 3
worker nodes. The policy fails to be applied because it references an incorrect interface. To find the
error, investigate the available nmstate resources. You can then update the policy with the correct
configuration.

Procedure

1. Create a policy and apply it to your cluster. The following example creates a simple bridge on the
ens01 interface:

 address:
 - ip: 192.0.2.251 1
 prefix-length: 24
 enabled: true
 routes:
 config:
 - destination: 198.51.100.0/24
 metric: 150
 next-hop-address: 192.0.2.1 2
 next-hop-interface: eth1
 table-id: 254
...

apiVersion: nmstate.io/v1alpha1
kind: NodeNetworkConfigurationPolicy
metadata:
 name: ens01-bridge-testfail
spec:
 desiredState:
 interfaces:
 - name: br1
 description: Linux bridge with the wrong port

CHAPTER 11. NODE NETWORKING

235

Example output

2. Verify the status of the policy by running the following command:

The output shows that the policy failed:

Example output

However, the policy status alone does not indicate if it failed on all nodes or a subset of nodes.

3. List the node network configuration enactments to see if the policy was successful on any of the
nodes. If the policy failed for only a subset of nodes, it suggests that the problem is with a
specific node configuration. If the policy failed on all nodes, it suggests that the problem is with
the policy.

The output shows that the policy failed on all nodes:

Example output

4. View one of the failed enactments and look at the traceback. The following command uses the
output tool jsonpath to filter the output:

 type: linux-bridge
 state: up
 ipv4:
 dhcp: true
 enabled: true
 bridge:
 options:
 stp:
 enabled: false
 port:
 - name: ens01

$ oc apply -f ens01-bridge-testfail.yaml

nodenetworkconfigurationpolicy.nmstate.io/ens01-bridge-testfail created

$ oc get nncp

NAME STATUS
ens01-bridge-testfail FailedToConfigure

$ oc get nnce

NAME STATUS
master-1.ens01-bridge-testfail FailedToConfigure
master-2.ens01-bridge-testfail FailedToConfigure
master-3.ens01-bridge-testfail FailedToConfigure
worker-1.ens01-bridge-testfail FailedToConfigure
worker-2.ens01-bridge-testfail FailedToConfigure
worker-3.ens01-bridge-testfail FailedToConfigure

OpenShift Container Platform 4.6 OpenShift Virtualization

236

This command returns a large traceback that has been edited for brevity:

Example output

$ oc get nnce worker-1.ens01-bridge-testfail -o jsonpath='{.status.conditions[?
(@.type=="Failing")].message}'

error reconciling NodeNetworkConfigurationPolicy at desired state apply: , failed to execute
nmstatectl set --no-commit --timeout 480: 'exit status 1' ''
...
libnmstate.error.NmstateVerificationError:
desired
=======

name: br1
type: linux-bridge
state: up
bridge:
 options:
 group-forward-mask: 0
 mac-ageing-time: 300
 multicast-snooping: true
 stp:
 enabled: false
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port:
 - name: ens01
description: Linux bridge with the wrong port
ipv4:
 address: []
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 dhcp: true
 enabled: true
ipv6:
 enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

current
=======

name: br1
type: linux-bridge
state: up
bridge:
 options:
 group-forward-mask: 0
 mac-ageing-time: 300
 multicast-snooping: true
 stp:

CHAPTER 11. NODE NETWORKING

237

The NmstateVerificationError lists the desired policy configuration, the current configuration
of the policy on the node, and the difference highlighting the parameters that do not match. In
this example, the port is included in the difference, which suggests that the problem is the port
configuration in the policy.

5. To ensure that the policy is configured properly, view the network configuration for one or all of
the nodes by requesting the NodeNetworkState object. The following command returns the
network configuration for the master-1 node:

$ oc get nns master-1 -o yaml

The output shows that the interface name on the nodes is ens1 but the failed policy incorrectly
uses ens01:

Example output

 enabled: false
 forward-delay: 15
 hello-time: 2
 max-age: 20
 priority: 32768
 port: []
description: Linux bridge with the wrong port
ipv4:
 address: []
 auto-dns: true
 auto-gateway: true
 auto-routes: true
 dhcp: true
 enabled: true
ipv6:
 enabled: false
mac-address: 01-23-45-67-89-AB
mtu: 1500

difference
==========
--- desired
+++ current
@@ -13,8 +13,7 @@
 hello-time: 2
 max-age: 20
 priority: 32768
- port:
- - name: ens01
+ port: []
 description: Linux bridge with the wrong port
 ipv4:
 address: []
 line 651, in _assert_interfaces_equal\n
current_state.interfaces[ifname],\nlibnmstate.error.NmstateVerificationError:

 - ipv4:
 ...
 name: ens1

OpenShift Container Platform 4.6 OpenShift Virtualization

238

6. Correct the error by editing the existing policy:

Save the policy to apply the correction.

7. Check the status of the policy to ensure it updated successfully:

Example output

The updated policy is successfully configured on all nodes in the cluster.

 state: up
 type: ethernet

$ oc edit nncp ens01-bridge-testfail

...
 port:
 - name: ens1

$ oc get nncp

NAME STATUS
ens01-bridge-testfail SuccessfullyConfigured

CHAPTER 11. NODE NETWORKING

239

CHAPTER 12. LOGGING, EVENTS, AND MONITORING

12.1. VIEWING VIRTUAL MACHINE LOGS

12.1.1. Understanding virtual machine logs

Logs are collected for OpenShift Container Platform builds, deployments, and pods. In OpenShift
Virtualization, virtual machine logs can be retrieved from the virtual machine launcher pod in either the
web console or the CLI.

The -f option follows the log output in real time, which is useful for monitoring progress and error
checking.

If the launcher pod is failing to start, use the --previous option to see the logs of the last attempt.

WARNING

ErrImagePull and ImagePullBackOff errors can be caused by an incorrect
deployment configuration or problems with the images that are referenced.

12.1.2. Viewing virtual machine logs in the CLI

Get virtual machine logs from the virtual machine launcher pod.

Procedure

Use the following command:

12.1.3. Viewing virtual machine logs in the web console

Get virtual machine logs from the associated virtual machine launcher pod.

Procedure

1. In the OpenShift Virtualization console, click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. In the Details tab, click the virt-launcher-<name> pod in the Pod section.

5. Click Logs.

12.2. VIEWING EVENTS

$ oc logs <virt-launcher-name>

OpenShift Container Platform 4.6 OpenShift Virtualization

240

12.2.1. Understanding virtual machine events

OpenShift Container Platform events are records of important life-cycle information in a namespace
and are useful for monitoring and troubleshooting resource scheduling, creation, and deletion issues.

OpenShift Virtualization adds events for virtual machines and virtual machine instances. These can be
viewed from either the web console or the CLI.

See also: Viewing system event information in an OpenShift Container Platform cluster .

12.2.2. Viewing the events for a virtual machine in the web console

You can view the stream events for a running a virtual machine from the Virtual Machine Overview
panel of the web console.

The ▮▮ button pauses the events stream.
The ▶ button continues a paused events stream.

Procedure

1. Click Workloads → Virtualization from the side menu.

2. Click the Virtual Machines tab.

3. Select a virtual machine to open the Virtual Machine Overview screen.

4. Click Events to view all events for the virtual machine.

12.2.3. Viewing namespace events in the CLI

Use the OpenShift Container Platform client to get the events for a namespace.

Procedure

In the namespace, use the oc get command:

12.2.4. Viewing resource events in the CLI

Events are included in the resource description, which you can get using the OpenShift Container
Platform client.

Procedure

In the namespace, use the oc describe command. The following example shows how to get the
events for a virtual machine, a virtual machine instance, and the virt-launcher pod for a virtual
machine:

$ oc get events

$ oc describe vm <vm>

$ oc describe vmi <vmi>

CHAPTER 12. LOGGING, EVENTS, AND MONITORING

241

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/nodes/#nodes-containers-events

12.3. DIAGNOSING DATA VOLUMES USING EVENTS AND CONDITIONS

Use the oc describe command to analyze and help resolve issues with data volumes.

12.3.1. About conditions and events

Diagnose data volume issues by examining the output of the Conditions and Events sections
generated by the command:

There are three Types in the Conditions section that display:

Bound

Running

Ready

The Events section provides the following additional information:

Type of event

Reason for logging

Source of the event

Message containing additional diagnostic information.

The output from oc describe does not always contains Events.

An event is generated when either Status, Reason, or Message changes. Both conditions and events
react to changes in the state of the data volume.

For example, if you misspell the URL during an import operation, the import generates a 404 message.
That message change generates an event with a reason. The output in the Conditions section is
updated as well.

12.3.2. Analyzing data volumes using conditions and events

By inspecting the Conditions and Events sections generated by the describe command, you
determine the state of the data volume in relation to persistent volume claims (PVCs), and whether or
not an operation is actively running or completed. You might also receive messages that offer specific
details about the status of the data volume, and how it came to be in its current state.

There are many different combinations of conditions. Each must be evaluated in its unique context.

Examples of various combinations follow.

Bound – A successfully bound PVC displays in this example.
Note that the Type is Bound, so the Status is True. If the PVC is not bound, the Status is
False.

When the PVC is bound, an event is generated stating that the PVC is bound. In this case, the

$ oc describe pod virt-launcher-<name>

$ oc describe dv <DataVolume>

OpenShift Container Platform 4.6 OpenShift Virtualization

242

When the PVC is bound, an event is generated stating that the PVC is bound. In this case, the
Reason is Bound and Status is True. The Message indicates which PVC owns the data
volume.

Message, in the Events section, provides further details including how long the PVC has been
bound (Age) and by what resource (From), in this case datavolume-controller:

Example output

Running – In this case, note that Type is Running and Status is False, indicating that an event
has occurred that caused an attempted operation to fail, changing the Status from True to
False.
However, note that Reason is Completed and the Message field indicates Import Complete.

In the Events section, the Reason and Message contain additional troubleshooting
information about the failed operation. In this example, the Message displays an inability to
connect due to a 404, listed in the Events section’s first Warning.

From this information, you conclude that an import operation was running, creating contention
for other operations that are attempting to access the data volume:

Example output

Ready – If Type is Ready and Status is True, then the data volume is ready to be used, as in
the following example. If the data volume is not ready to be used, the Status is False:

Example output

Status:
 Conditions:
 Last Heart Beat Time: 2020-07-15T03:58:24Z
 Last Transition Time: 2020-07-15T03:58:24Z
 Message: PVC win10-rootdisk Bound
 Reason: Bound
 Status: True
 Type: Bound

 Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Bound 24s datavolume-controller PVC example-dv Bound

Status:
 Conditions:
 Last Heart Beat Time: 2020-07-15T04:31:39Z
 Last Transition Time: 2020-07-15T04:31:39Z
 Message: Import Complete
 Reason: Completed
 Status: False
 Type: Running

 Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning Error 12s (x2 over 14s) datavolume-controller Unable to connect
 to http data source: expected status code 200, got 404. Status: 404 Not Found

CHAPTER 12. LOGGING, EVENTS, AND MONITORING

243

Example output

12.4. VIEWING INFORMATION ABOUT VIRTUAL MACHINE
WORKLOADS

You can view high-level information about your virtual machines by using the Virtual Machines
dashboard in the OpenShift Container Platform web console.

12.4.1. About the Virtual Machines dashboard

Access virtual machines from the OpenShift Container Platform web console by navigating to the
Workloads → Virtualization page. The Workloads → Virtualization page contains two tabs:

Virtual Machines

Virtual Machine Templates

The following cards describe each virtual machine:

Details provides identifying information about the virtual machine, including:

Name

Namespace

Date of creation

Node name

IP address

Inventory lists the virtual machine’s resources, including:

Network interface controllers (NICs)

Disks

Status includes:

The current status of the virtual machine

A note indicating whether or not the QEMU guest agent is installed on the virtual machine

Utilization includes charts that display usage data for:

CPU

Memory

Filesystem

Status:
 Conditions:
 Last Heart Beat Time: 2020-07-15T04:31:39Z
 Last Transition Time: 2020-07-15T04:31:39Z
 Status: True
 Type: Ready

OpenShift Container Platform 4.6 OpenShift Virtualization

244

Network transfer

NOTE

Use the drop-down list to choose a duration for the utilization data. The available options
are 1 Hour, 6 Hours, and 24 Hours.

Events lists messages about virtual machine activity over the past hour. To view additional
events, click View all.

12.5. MONITORING VIRTUAL MACHINE HEALTH

A virtual machine instance (VMI) can become unhealthy due to transient issues such as connectivity loss,
deadlocks, or problems with external dependencies. A health check periodically performs diagnostics on
a VMI by using any combination of the readiness and liveness probes.

12.5.1. About readiness and liveness probes

Use readiness and liveness probes to detect and handle unhealthy virtual machine instances (VMIs). You
can include one or more probes in the specification of the VMI to ensure that traffic does not reach a
VMI that is not ready for it and that a new instance is created when a VMI becomes unresponsive.

A readiness probe determines whether a VMI is ready to accept service requests. If the probe fails, the
VMI is removed from the list of available endpoints until the VMI is ready.

A liveness probe determines whether a VMI is responsive. If the probe fails, the VMI is deleted and a new
instance is created to restore responsiveness.

You can configure readiness and liveness probes by setting the spec.readinessProbe and the
spec.livenessProbe fields of the VirtualMachineInstance object. These fields support the following
tests:

HTTP GET

The probe determines the health of the VMI by using a web hook. The test is successful if the HTTP
response code is between 200 and 399. You can use an HTTP GET test with applications that return
HTTP status codes when they are completely initialized.

TCP socket

The probe attempts to open a socket to the VMI. The VMI is only considered healthy if the probe can
establish a connection. You can use a TCP socket test with applications that do not start listening
until initialization is complete.

12.5.2. Defining an HTTP readiness probe

Define an HTTP readiness probe by setting the spec.readinessProbe.httpGet field of the virtual
machine instance (VMI) configuration.

Procedure

1. Include details of the readiness probe in the VMI configuration file.

Sample readiness probe with an HTTP GET test

...

CHAPTER 12. LOGGING, EVENTS, AND MONITORING

245

1

2

3

4

5

6

7

8

The HTTP GET request to perform to connect to the VMI.

The port of the VMI that the probe queries. In the above example, the probe queries port
1500.

The path to access on the HTTP server. In the above example, if the handler for the
server’s /healthz path returns a success code, the VMI is considered to be healthy. If the
handler returns a failure code, the VMI is removed from the list of available endpoints.

The time, in seconds, after the VMI starts before the readiness probe is initiated.

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The number of seconds of inactivity after which the probe times out and the VMI is
assumed to have failed. The default value is 1. This value must be lower than
periodSeconds.

The number of times that the probe is allowed to fail. The default is 3. After the specified
number of attempts, the pod is marked Unready.

The number of times that the probe must report success, after a failure, to be considered
successful. The default is 1.

2. Create the VMI by running the following command:

12.5.3. Defining a TCP readiness probe

Define a TCP readiness probe by setting the spec.readinessProbe.tcpSocket field of the virtual
machine instance (VMI) configuration.

Procedure

1. Include details of the TCP readiness probe in the VMI configuration file.

Sample readiness probe with a TCP socket test

spec:
 readinessProbe:
 httpGet: 1
 port: 1500 2
 path: /healthz 3
 httpHeaders:
 - name: Custom-Header
 value: Awesome
 initialDelaySeconds: 120 4
 periodSeconds: 20 5
 timeoutSeconds: 10 6
 failureThreshold: 3 7
 successThreshold: 3 8
...

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.6 OpenShift Virtualization

246

1

2

3

4

5

The time, in seconds, after the VMI starts before the readiness probe is initiated.

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The TCP action to perform.

The port of the VMI that the probe queries.

The number of seconds of inactivity after which the probe times out and the VMI is
assumed to have failed. The default value is 1. This value must be lower than
periodSeconds.

2. Create the VMI by running the following command:

12.5.4. Defining an HTTP liveness probe

Define an HTTP liveness probe by setting the spec.livenessProbe.httpGet field of the virtual machine
instance (VMI) configuration. You can define both HTTP and TCP tests for liveness probes in the same
way as readiness probes. This procedure configures a sample liveness probe with an HTTP GET test.

Procedure

1. Include details of the HTTP liveness probe in the VMI configuration file.

Sample liveness probe with an HTTP GET test

...
spec:
 readinessProbe:
 initialDelaySeconds: 120 1
 periodSeconds: 20 2
 tcpSocket: 3
 port: 1500 4
 timeoutSeconds: 10 5
...

$ oc create -f <file_name>.yaml

...
spec:
 livenessProbe:
 initialDelaySeconds: 120 1
 periodSeconds: 20 2
 httpGet: 3
 port: 1500 4
 path: /healthz 5
 httpHeaders:
 - name: Custom-Header
 value: Awesome
 timeoutSeconds: 10 6
...

CHAPTER 12. LOGGING, EVENTS, AND MONITORING

247

1

2

3

4

5

6

The time, in seconds, after the VMI starts before the liveness probe is initiated.

The delay, in seconds, between performing probes. The default delay is 10 seconds. This
value must be greater than timeoutSeconds.

The HTTP GET request to perform to connect to the VMI.

The port of the VMI that the probe queries. In the above example, the probe queries port
1500. The VMI installs and runs a minimal HTTP server on port 1500 via cloud-init.

The path to access on the HTTP server. In the above example, if the handler for the
server’s /healthz path returns a success code, the VMI is considered to be healthy. If the
handler returns a failure code, the VMI is deleted and a new instance is created.

The number of seconds of inactivity after which the probe times out and the VMI is
assumed to have failed. The default value is 1. This value must be lower than
periodSeconds.

2. Create the VMI by running the following command:

12.5.5. Template: Virtual machine instance configuration file for defining health
checks

$ oc create -f <file_name>.yaml

apiVersion: kubevirt.io/v1alpha3
kind: VirtualMachineInstance
metadata:
 labels:
 special: vmi-fedora
 name: vmi-fedora
spec:
 domain:
 devices:
 disks:
 - disk:
 bus: virtio
 name: containerdisk
 - disk:
 bus: virtio
 name: cloudinitdisk
 resources:
 requests:
 memory: 1024M
 readinessProbe:
 httpGet:
 port: 1500
 initialDelaySeconds: 120
 periodSeconds: 20
 timeoutSeconds: 10
 failureThreshold: 3
 successThreshold: 3
 terminationGracePeriodSeconds: 0
 volumes:

OpenShift Container Platform 4.6 OpenShift Virtualization

248

12.5.6. Additional resources

Monitoring application health by using health checks

12.6. USING THE OPENSHIFT CONTAINER PLATFORM DASHBOARD
TO GET CLUSTER INFORMATION

Access the OpenShift Container Platform dashboard, which captures high-level information about the
cluster, by clicking Home > Dashboards > Overview from the OpenShift Container Platform web
console.

The OpenShift Container Platform dashboard provides various cluster information, captured in
individual dashboard cards.

12.6.1. About the OpenShift Container Platform dashboards page

The OpenShift Container Platform dashboard consists of the following cards:

Details provides a brief overview of informational cluster details.
Status include ok, error, warning, in progress, and unknown. Resources can add custom status
names.

Cluster ID

Provider

Version

Cluster Inventory details number of resources and associated statuses. It is helpful when
intervention is required to resolve problems, including information about:

Number of nodes

Number of pods

Persistent storage volume claims

Virtual machines (available if OpenShift Virtualization is installed)

Bare metal hosts in the cluster, listed according to their state (only available in metal3

 - name: containerdisk
 containerDisk:
 image: kubevirt/fedora-cloud-registry-disk-demo
 - cloudInitNoCloud:
 userData: |-
 #cloud-config
 password: fedora
 chpasswd: { expire: False }
 bootcmd:
 - setenforce 0
 - dnf install -y nmap-ncat
 - systemd-run --unit=httpserver nc -klp 1500 -e '/usr/bin/echo -e HTTP/1.1 200 OK\\n\\nHello
World!'
 name: cloudinitdisk

CHAPTER 12. LOGGING, EVENTS, AND MONITORING

249

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/applications/#application-health

Bare metal hosts in the cluster, listed according to their state (only available in metal3
environment).

Cluster Health summarizes the current health of the cluster as a whole, including relevant alerts
and descriptions. If OpenShift Virtualization is installed, the overall health of OpenShift
Virtualization is diagnosed as well. If more than one subsystem is present, click See All to view
the status of each subsystem.

Cluster Capacity charts help administrators understand when additional resources are required
in the cluster. The charts contain an inner ring that displays current consumption, while an outer
ring displays thresholds configured for the resource, including information about:

CPU time

Memory allocation

Storage consumed

Network resources consumed

Cluster Utilization shows the capacity of various resources over a specified period of time, to
help administrators understand the scale and frequency of high resource consumption.

Events lists messages related to recent activity in the cluster, such as pod creation or virtual
machine migration to another host.

Top Consumers helps administrators understand how cluster resources are consumed. Click on
a resource to jump to a detailed page listing pods and nodes that consume the largest amount
of the specified cluster resource (CPU, memory, or storage).

12.7. OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING,
LOGGING, AND TELEMETRY

OpenShift Container Platform provides various resources for monitoring at the cluster level.

12.7.1. About OpenShift Container Platform monitoring

OpenShift Container Platform includes a pre-configured, pre-installed, and self-updating monitoring
stack that provides monitoring for core platform components. OpenShift Container Platform delivers
monitoring best practices out of the box. A set of alerts are included by default that immediately notify
cluster administrators about issues with a cluster. Default dashboards in the OpenShift Container
Platform web console include visual representations of cluster metrics to help you to quickly understand
the state of your cluster.

After installing OpenShift Container Platform 4.6, cluster administrators can optionally enable
monitoring for user-defined projects. By using this feature, cluster administrators, developers, and
other users can specify how services and pods are monitored in their own projects. You can then query
metrics, review dashboards, and manage alerting rules and silences for your own projects in the
OpenShift Container Platform web console.

NOTE

Cluster administrators can grant developers and other users permission to monitor their
own projects. Privileges are granted by assigning one of the predefined monitoring roles.

OpenShift Container Platform 4.6 OpenShift Virtualization

250

12.7.2. About cluster logging components

The cluster logging components include a collector deployed to each node in the OpenShift Container
Platform cluster that collects all node and container logs and writes them to a log store. You can use a
centralized web UI to create rich visualizations and dashboards with the aggregated data.

The major components of cluster logging are:

collection - This is the component that collects logs from the cluster, formats them, and
forwards them to the log store. The current implementation is Fluentd.

log store - This is where the logs are stored. The default implementation is Elasticsearch. You
can use the default Elasticsearch log store or forward logs to external log stores. The default
log store is optimized and tested for short-term storage.

visualization - This is the UI component you can use to view logs, graphs, charts, and so forth.
The current implementation is Kibana.

For more information on cluster logging, see the OpenShift Container Platform cluster logging
documentation.

12.7.3. About Telemetry

Telemetry sends a carefully chosen subset of the cluster monitoring metrics to Red Hat. The Telemeter
Client fetches the metrics values every four minutes and thirty seconds and uploads the data to Red
Hat. These metrics are described in this document.

This stream of data is used by Red Hat to monitor the clusters in real-time and to react as necessary to
problems that impact our customers. It also allows Red Hat to roll out OpenShift Container Platform
upgrades to customers to minimize service impact and continuously improve the upgrade experience.

This debugging information is available to Red Hat Support and Engineering teams with the same
restrictions as accessing data reported through support cases. All connected cluster information is used
by Red Hat to help make OpenShift Container Platform better and more intuitive to use.

12.7.3.1. Information collected by Telemetry

The following information is collected by Telemetry:

The unique random identifier that is generated during an installation

Version information, including the OpenShift Container Platform cluster version and installed
update details that are used to determine update version availability

Update information, including the number of updates available per cluster, the channel and
image repository used for an update, update progress information, and the number of errors
that occur in an update

The name of the provider platform that OpenShift Container Platform is deployed on and the
data center location

Sizing information about clusters, machine types, and machines, including the number of CPU
cores and the amount of RAM used for each

The number of running virtual machine instances in a cluster

The number of etcd members and the number of objects stored in the etcd cluster

CHAPTER 12. LOGGING, EVENTS, AND MONITORING

251

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/logging/#cluster-logging

The OpenShift Container Platform framework components installed in a cluster and their
condition and status

Usage information about components, features, and extensions

Usage details about Technology Previews and unsupported configurations

Information about degraded software

Information about nodes that are marked as NotReady

Events for all namespaces listed as "related objects" for a degraded Operator

Configuration details that help Red Hat Support to provide beneficial support for customers.
This includes node configuration at the cloud infrastructure level, hostnames, IP addresses,
Kubernetes pod names, namespaces, and services.

Information about the validity of certificates

Telemetry does not collect identifying information such as user names, or passwords. Red Hat does not
intend to collect personal information. If Red Hat discovers that personal information has been
inadvertently received, Red Hat will delete such information. To the extent that any telemetry data
constitutes personal data, please refer to the Red Hat Privacy Statement for more information about
Red Hat’s privacy practices.

12.7.4. CLI troubleshooting and debugging commands

For a list of the oc client troubleshooting and debugging commands, see the OpenShift Container
Platform CLI tools documentation.

12.8. COLLECTING DATA FOR RED HAT SUPPORT

When you submit a support case to Red Hat Support, it is helpful to provide debugging information for
OpenShift Container Platform and OpenShift Virtualization by using the following tools:

must-gather tool

The must-gather tool collects diagnostic information, including resource definitions and service logs.

Prometheus

Prometheus is a time-series database and a rule evaluation engine for metrics. Prometheus sends
alerts to Alertmanager for processing.

Alertmanager

The Alertmanager service handles alerts received from Prometheus. The Alertmanager is also
responsible for sending the alerts to external notification systems.

12.8.1. Collecting data about your environment

Collecting data about your environment minimizes the time required to analyze and determine the root
cause.

Prerequisites

Set the retention time for Prometheus metrics data to a minimum of seven days.

Configure the Alertmanager to capture relevant alerts and to send them to a dedicated mailbox

OpenShift Container Platform 4.6 OpenShift Virtualization

252

https://www.redhat.com/en/about/privacy-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/cli_tools/#cli-troubleshooting-commands_cli-developer-commands
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/support/#support-submitting-a-case_getting-support

Configure the Alertmanager to capture relevant alerts and to send them to a dedicated mailbox
so that they can be viewed and persisted outside the cluster.

Record the exact number of affected nodes and virtual machines.

Procedure

1. Collect must-gather data for the cluster by using the default must-gather image.

2. Collect must-gather data for Red Hat OpenShift Container Storage, if necessary.

3. Collect must-gather data for OpenShift Virtualization by using the OpenShift Virtualization
must-gather image.

4. Collect Prometheus metrics for the cluster.

12.8.1.1. Additional resources

Configuring the retention time for Prometheus metrics data

Configuring the Alertmanager to send alert notifications to external systems

Collecting must-gather data for OpenShift Container Platform

Collecting must-gather data for OpenShift Virtualization

Collecting Prometheus metrics for all projects as a cluster administrator

12.8.2. Collecting data about virtual machines

Collecting data about malfunctioning virtual machines (VMs) minimizes the time required to analyze and
determine the root cause.

Prerequisites

Windows VMs:

Record the Windows patch update details for Red Hat Support.

Install the latest version of the VirtIO drivers. The VirtIO drivers include the QEMU guest
agent.

If Remote Desktop Protocol (RDP) is enabled, try to connect to the VMs with RDP to
determine whether there is a problem with the connection software.

Procedure

1. Collect detailed must-gather data about the malfunctioning VMs.

2. Collect screenshots of VMs that have crashed before you restart them.

3. Record factors that the malfunctioning VMs have in common. For example, the VMs have the
same host or network.

12.8.2.1. Additional resources

CHAPTER 12. LOGGING, EVENTS, AND MONITORING

253

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/monitoring/#modifying-retention-time-for-prometheus-metrics-data_configuring-the-monitoring-stack
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/monitoring/#sending-notifications-to-external-systems_managing-alerts
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/support/#support_gathering_data_gathering-cluster-data
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-using-virt-must-gather_virt-collecting-virt-data
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/monitoring/#querying-metrics-for-all-projects-as-an-administrator_managing-metrics

Installing VirtIO drivers on Windows VMs

Downloading and installing VirtIO drivers on Windows VMs without host access

Connecting to Windows VMs with RDP using the web console or the command line

Collecting must-gather data about virtual machines

12.8.3. Using the must-gather tool for OpenShift Virtualization

You can collect data about OpenShift Virtualization resources by running the must-gather command
with the OpenShift Virtualization image.

The default data collection includes information about the following resources:

OpenShift Virtualization Operator namespaces, including child objects

OpenShift Virtualization custom resource definitions

Namespaces that contain virtual machines

Basic virtual machine definitions

Procedure

Run the following command to collect data about OpenShift Virtualization:

12.8.3.1. must-gather tool options

You can specify a combination of scripts and environment variables for the following options:

Collecting detailed virtual machine (VM) information from a namespace

Collecting detailed information about specified VMs

Collecting image and image stream information

Limiting the maximum number of parallel processes used by the must-gather tool

12.8.3.1.1. Parameters

Environment variables

You can specify environment variables for a compatible script.

NS=<namespace_name>

Collect virtual machine information, including virt-launcher pod details, from the namespace that
you specify. The VirtualMachine and VirtualMachineInstance CR data is collected for all
namespaces.

VM=<vm_name>

Collect details about a particular virtual machine. To use this option, you must also specify a

$ oc adm must-gather --image-stream=openshift/must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-
rhel8:v{HCOVersion}

OpenShift Container Platform 4.6 OpenShift Virtualization

254

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-installing-virtio-drivers-existing-windows_virt-installing-qemu-guest-agent
https://access.redhat.com/solutions/6957701
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-vm-rdp-console-web_virt-accessing-vm-consoles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-accessing-rdp-console_virt-accessing-vm-consoles
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/openshift_virtualization/#virt-must-gather-options_virt-collecting-virt-data

Collect details about a particular virtual machine. To use this option, you must also specify a
namespace by using the NS environment variable.

PROS=<number_of_processes>

Modify the maximum number of parallel processes that the must-gather tool uses. The default value
is 5.

IMPORTANT

Using too many parallel processes can cause performance issues. Increasing the
maximum number of parallel processes is not recommended.

Scripts

Each script is only compatible with certain environment variable combinations.

gather_vms_details

Collect VM log files, VM definitions, and namespaces (and their child objects) that belong to
OpenShift Virtualization resources. If you use this parameter without specifying a namespace or VM,
the must-gather tool collects this data for all VMs in the cluster. This script is compatible with all
environment variables, but you must specify a namespace if you use the VM variable.

gather

Use the default must-gather script, which collects cluster data from all namespaces and includes
only basic VM information. This script is only compatible with the PROS variable.

gather_images

Collect image and image stream custom resource information. This script is only compatible with the
PROS variable.

12.8.3.1.2. Usage and examples

Environment variables are optional. You can run a script by itself or with one or more compatible
environment variables.

Table 12.1. Compatible parameters

Script Compatible environment variable

gather_vms_details
For a namespace: NS=
<namespace_name>

For a VM: VM=<vm_name> NS=
<namespace_name>

PROS=<number_of_processes>

gather
PROS=<number_of_processes>

gather_images
PROS=<number_of_processes>

To customize the data that must-gather collects, you append a double dash (--) to the command,

CHAPTER 12. LOGGING, EVENTS, AND MONITORING

255

1

To customize the data that must-gather collects, you append a double dash (--) to the command,
followed by a space and one or more compatible parameters.

Syntax

Detailed VM information

The following command collects detailed VM information for the my-vm VM in the mynamespace
namespace:

The NS environment variable is mandatory if you use the VM environment variable.

Default data collection limited to three parallel processes

The following command collects default must-gather information by using a maximum of three parallel
processes:

Image and image stream information

The following command collects image and image stream information from the cluster:

12.8.3.2. Additional resources

About the must-gather tool

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v2.5.8 \
 -- <environment_variable_1> <environment_variable_2> <script_name>

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v2.5.8 \
 -- NS=mynamespace VM=my-vm gather_vms_details 1

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v2.5.8 \
 -- PROS=3 gather

$ oc adm must-gather \
 --image=registry.redhat.io/container-native-virtualization/cnv-must-gather-rhel8:v2.5.8 \
 -- gather_images

OpenShift Container Platform 4.6 OpenShift Virtualization

256

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/support/#about-must-gather_gathering-cluster-data

	Table of Contents
	CHAPTER 1. ABOUT OPENSHIFT VIRTUALIZATION
	1.1. WHAT YOU CAN DO WITH OPENSHIFT VIRTUALIZATION
	1.1.1. OpenShift Virtualization supported cluster version

	CHAPTER 2. OPENSHIFT VIRTUALIZATION RELEASE NOTES
	2.1. ABOUT RED HAT OPENSHIFT VIRTUALIZATION
	2.1.1. OpenShift Virtualization supported cluster version
	2.1.2. Supported guest operating systems

	2.2. NEW AND CHANGED FEATURES
	2.2.1. Networking
	2.2.2. Storage
	2.2.3. Web console

	2.3. NOTABLE TECHNICAL CHANGES
	2.4. KNOWN ISSUES

	CHAPTER 3. OPENSHIFT VIRTUALIZATION INSTALLATION
	3.1. PREPARING YOUR CLUSTER FOR OPENSHIFT VIRTUALIZATION
	3.1.1. Hardware and operating system requirements
	3.1.2. Physical resource overhead requirements
	3.1.2.1. Memory overhead
	3.1.2.2. CPU overhead
	3.1.2.3. Storage overhead
	3.1.2.4. Example

	3.1.3. Object maximums
	3.1.4. Restricted network environments
	3.1.5. Live migration
	3.1.6. Snapshots and cloning
	3.1.7. Cluster high-availability options

	3.2. INSTALLING OPENSHIFT VIRTUALIZATION USING THE WEB CONSOLE
	3.2.1. Prerequisites
	3.2.2. Subscribing to the OpenShift Virtualization catalog
	3.2.3. Deploying OpenShift Virtualization
	3.2.4. Next steps
	3.2.5. Prerequisites
	3.2.6. Subscribing to the OpenShift Virtualization catalog by using the CLI
	3.2.7. Deploying the OpenShift Virtualization Operator by using the CLI
	3.2.8. Next steps

	3.3. INSTALLING THE VIRTCTL CLIENT
	3.3.1. Installing the virtctl client from the web console
	3.3.2. Enabling OpenShift Virtualization repositories
	3.3.3. Installing the virtctl client
	3.3.4. Additional resources

	3.4. UNINSTALLING OPENSHIFT VIRTUALIZATION USING THE WEB CONSOLE
	3.4.1. Prerequisites
	3.4.2. Deleting the OpenShift Virtualization Operator Deployment custom resource
	3.4.3. Deleting the OpenShift Virtualization catalog subscription
	3.4.4. Deleting a namespace using the web console

	3.5. UNINSTALLING OPENSHIFT VIRTUALIZATION USING THE CLI
	3.5.1. Prerequisites
	3.5.2. Deleting OpenShift Virtualization

	CHAPTER 4. UPGRADING OPENSHIFT VIRTUALIZATION
	4.1. ABOUT UPGRADING OPENSHIFT VIRTUALIZATION
	4.1.1. How OpenShift Virtualization upgrades work
	4.1.2. How OpenShift Virtualization upgrades affect your cluster

	4.2. UPGRADE PATHWAYS FOR MINOR RELEASES
	4.2.1. Upgrading from 2.4.3 to 2.5.8
	4.2.2. Upgrading from 2.4.4 or 2.4.5 to 2.5.8

	4.3. UPGRADING OPENSHIFT VIRTUALIZATION TO THE NEXT MINOR VERSION
	4.4. MONITORING UPGRADE STATUS
	4.5. ADDITIONAL RESOURCES

	CHAPTER 5. ADDITIONAL SECURITY PRIVILEGES GRANTED FOR KUBEVIRT-CONTROLLER AND VIRT-LAUNCHER
	5.1. EXTENDED SELINUX POLICIES FOR VIRT-LAUNCHER PODS
	5.2. ADDITIONAL OPENSHIFT CONTAINER PLATFORM SECURITY CONTEXT CONSTRAINTS AND LINUX CAPABILITIES FOR THE KUBEVIRT-CONTROLLER SERVICE ACCOUNT
	5.2.1. Additional SCCs granted to the kubevirt-controller service account
	5.2.2. Viewing the SCC and RBAC definitions for the kubevirt-controller

	5.3. ADDITIONAL RESOURCES

	CHAPTER 6. USING THE CLI TOOLS
	6.1. PREREQUISITES
	6.2. VIRTCTL CLIENT COMMANDS
	6.3. OPENSHIFT CONTAINER PLATFORM CLIENT COMMANDS

	CHAPTER 7. VIRTUAL MACHINES
	7.1. CREATING VIRTUAL MACHINES
	7.1.1. Running the virtual machine wizard to create a virtual machine
	7.1.1.1. Virtual machine wizard fields
	7.1.1.2. Cloud-init fields
	7.1.1.3. CD-ROM fields
	7.1.1.4. Networking fields
	7.1.1.5. Storage fields
	7.1.1.6. Pasting in a pre-configured YAML file to create a virtual machine

	7.1.2. Using the CLI to create a virtual machine
	7.1.3. Virtual machine storage volume types
	7.1.4. About RunStrategies for virtual machines
	7.1.5. Additional resources

	7.2. EDITING VIRTUAL MACHINES
	7.2.1. Editing a virtual machine in the web console
	7.2.2. Editing a virtual machine YAML configuration using the web console
	7.2.3. Editing a virtual machine YAML configuration using the CLI
	7.2.4. Adding a virtual disk to a virtual machine
	7.2.4.1. Storage fields

	7.2.5. Adding a network interface to a virtual machine
	7.2.5.1. Networking fields

	7.2.6. Editing CD-ROMs for Virtual Machines

	7.3. EDITING BOOT ORDER
	7.3.1. Adding items to a boot order list in the web console
	7.3.2. Editing a boot order list in the web console
	7.3.3. Editing a boot order list in the YAML configuration file
	7.3.4. Removing items from a boot order list in the web console

	7.4. DELETING VIRTUAL MACHINES
	7.4.1. Deleting a virtual machine using the web console
	7.4.2. Deleting a virtual machine by using the CLI

	7.5. MANAGING VIRTUAL MACHINE INSTANCES
	7.5.1. About virtual machine instances
	7.5.2. Listing all virtual machine instances using the CLI
	7.5.3. Listing standalone virtual machine instances using the web console
	7.5.4. Editing a standalone virtual machine instance using the web console
	7.5.5. Deleting a standalone virtual machine instance using the CLI
	7.5.6. Deleting a standalone virtual machine instance using the web console

	7.6. CONTROLLING VIRTUAL MACHINE STATES
	7.6.1. Starting a virtual machine
	7.6.2. Restarting a virtual machine
	7.6.3. Stopping a virtual machine
	7.6.4. Unpausing a virtual machine

	7.7. ACCESSING VIRTUAL MACHINE CONSOLES
	7.7.1. Accessing virtual machine consoles in the OpenShift Container Platform web console
	7.7.1.1. Connecting to the serial console
	7.7.1.2. Connecting to the VNC console
	7.7.1.3. Connecting to a Windows virtual machine with RDP
	7.7.1.4. Copying the SSH command from the web console

	7.7.2. Accessing virtual machine consoles by using CLI commands
	7.7.2.1. Accessing a virtual machine instance via SSH
	7.7.2.2. Accessing the serial console of a virtual machine instance
	7.7.2.3. Accessing the graphical console of a virtual machine instances with VNC
	7.7.2.4. Connecting to a Windows virtual machine with an RDP console

	7.8. TRIGGERING VIRTUAL MACHINE FAILOVER BY RESOLVING A FAILED NODE
	7.8.1. Prerequisites
	7.8.2. Deleting nodes from a bare metal cluster
	7.8.3. Verifying virtual machine failover
	7.8.3.1. Listing all virtual machine instances using the CLI

	7.9. INSTALLING THE QEMU GUEST AGENT ON VIRTUAL MACHINES
	7.9.1. Installing QEMU guest agent on a Linux virtual machine
	7.9.2. Installing QEMU guest agent on a Windows virtual machine
	7.9.2.1. Installing VirtIO drivers on an existing Windows virtual machine
	7.9.2.2. Installing VirtIO drivers during Windows installation

	7.10. VIEWING THE QEMU GUEST AGENT INFORMATION FOR VIRTUAL MACHINES
	7.10.1. Prerequisites
	7.10.2. About the QEMU guest agent information in the web console
	7.10.3. Viewing the QEMU guest agent information in the web console

	7.11. MANAGING CONFIG MAPS, SECRETS, AND SERVICE ACCOUNTS IN VIRTUAL MACHINES
	7.11.1. Adding a secret, config map, or service account to a virtual machine
	7.11.2. Removing a secret, config map, or service account from a virtual machine
	7.11.3. Additional resources

	7.12. INSTALLING VIRTIO DRIVER ON AN EXISTING WINDOWS VIRTUAL MACHINE
	7.12.1. Understanding VirtIO drivers
	7.12.2. Supported VirtIO drivers for Microsoft Windows virtual machines
	7.12.3. Adding VirtIO drivers container disk to a virtual machine
	7.12.4. Installing VirtIO drivers on an existing Windows virtual machine
	7.12.5. Removing the VirtIO container disk from a virtual machine

	7.13. INSTALLING VIRTIO DRIVER ON A NEW WINDOWS VIRTUAL MACHINE
	7.13.1. Prerequisites
	7.13.2. Understanding VirtIO drivers
	7.13.3. Supported VirtIO drivers for Microsoft Windows virtual machines
	7.13.4. Adding VirtIO drivers container disk to a virtual machine
	7.13.5. Installing VirtIO drivers during Windows installation
	7.13.6. Removing the VirtIO container disk from a virtual machine

	7.14. ADVANCED VIRTUAL MACHINE MANAGEMENT
	7.14.1. Automating management tasks
	7.14.1.1. About Red Hat Ansible Automation
	7.14.1.2. Automating virtual machine creation
	7.14.1.3. Example: Ansible Playbook for creating virtual machines

	7.14.2. Configuring PXE booting for virtual machines
	7.14.2.1. Prerequisites
	7.14.2.2. PXE booting with a specified MAC address
	7.14.2.3. Template: Virtual machine instance configuration file for PXE booting
	7.14.2.4. OpenShift Virtualization networking glossary

	7.14.3. Managing guest memory
	7.14.3.1. Configuring guest memory overcommitment
	7.14.3.2. Disabling guest memory overhead accounting

	7.14.4. Using huge pages with virtual machines
	7.14.4.1. Prerequisites
	7.14.4.2. What huge pages do
	7.14.4.3. Configuring huge pages for virtual machines

	7.14.5. Enabling dedicated resources for virtual machines
	7.14.5.1. About dedicated resources
	7.14.5.2. Prerequisites
	7.14.5.3. Enabling dedicated resources for a virtual machine

	7.14.6. Scheduling virtual machines
	7.14.6.1. Understanding policy attributes
	7.14.6.2. Setting a policy attribute and CPU feature
	7.14.6.3. Scheduling virtual machines with the supported CPU model
	7.14.6.4. Scheduling virtual machines with the host model

	7.15. IMPORTING VIRTUAL MACHINES
	7.15.1. TLS certificates for data volume imports
	7.15.1.1. Adding TLS certificates for authenticating data volume imports
	7.15.1.2. Example: Config map created from a TLS certificate

	7.15.2. Importing virtual machine images with data volumes
	7.15.2.1. Prerequisites
	7.15.2.2. CDI supported operations matrix
	7.15.2.3. About data volumes
	7.15.2.4. Importing a virtual machine image into storage by using a data volume

	7.15.3. Importing virtual machine images into block storage with data volumes
	7.15.3.1. Prerequisites
	7.15.3.2. About data volumes
	7.15.3.3. About block persistent volumes
	7.15.3.4. Creating a local block persistent volume
	7.15.3.5. Importing a virtual machine image into block storage by using a data volume
	7.15.3.6. CDI supported operations matrix

	7.15.4. Importing a single Red Hat Virtualization virtual machine
	7.15.4.1. OpenShift Virtualization storage feature matrix
	7.15.4.2. Prerequisites for importing a virtual machine
	7.15.4.3. Importing a virtual machine with the VM Import wizard
	7.15.4.4. Importing a virtual machine with the CLI
	7.15.4.5. Troubleshooting a virtual machine import

	7.15.5. Importing a single VMware virtual machine or template
	7.15.5.1. OpenShift Virtualization storage feature matrix
	7.15.5.2. Preparing a VDDK image
	7.15.5.3. Importing a virtual machine with the VM Import wizard
	7.15.5.4. Troubleshooting a virtual machine import

	7.16. CLONING VIRTUAL MACHINES
	7.16.1. Enabling user permissions to clone data volumes across namespaces
	7.16.1.1. Prerequisites
	7.16.1.2. About data volumes
	7.16.1.3. Creating RBAC resources for cloning data volumes

	7.16.2. Cloning a virtual machine disk into a new data volume
	7.16.2.1. Prerequisites
	7.16.2.2. About data volumes
	7.16.2.3. Cloning the persistent volume claim of a virtual machine disk into a new data volume
	7.16.2.4. Template: Data volume clone configuration file
	7.16.2.5. CDI supported operations matrix

	7.16.3. Cloning a virtual machine by using a data volume template
	7.16.3.1. Prerequisites
	7.16.3.2. About data volumes
	7.16.3.3. Creating a new virtual machine from a cloned persistent volume claim by using a data volume template
	7.16.3.4. Template: Data volume virtual machine configuration file
	7.16.3.5. CDI supported operations matrix

	7.16.4. Cloning a virtual machine disk into a new block storage data volume
	7.16.4.1. Prerequisites
	7.16.4.2. About data volumes
	7.16.4.3. About block persistent volumes
	7.16.4.4. Creating a local block persistent volume
	7.16.4.5. Cloning the persistent volume claim of a virtual machine disk into a new data volume
	7.16.4.6. CDI supported operations matrix

	7.17. VIRTUAL MACHINE NETWORKING
	7.17.1. Configuring the virtual machine for the default pod network
	7.17.1.1. Configuring masquerade mode from the command line
	7.17.1.2. Creating a service from a virtual machine

	7.17.2. Attaching a virtual machine to a Linux bridge network
	7.17.2.1. Connecting to the network through the network attachment definition
	7.17.2.2. Creating a Linux bridge network attachment definition
	7.17.2.3. Configuring the virtual machine for a Linux bridge network

	7.17.3. Configuring IP addresses for virtual machines
	7.17.3.1. Configuring an IP address for a new virtual machine using cloud-init

	7.17.4. Configuring an SR-IOV network device for virtual machines
	7.17.4.1. Prerequisites
	7.17.4.2. Automated discovery of SR-IOV network devices
	7.17.4.3. Configuring SR-IOV network devices
	7.17.4.4. Next steps

	7.17.5. Defining an SR-IOV network
	7.17.5.1. Prerequisites
	7.17.5.2. Configuring SR-IOV additional network
	7.17.5.3. Next steps

	7.17.6. Attaching a virtual machine to an SR-IOV network
	7.17.6.1. Prerequisites
	7.17.6.2. Attaching a virtual machine to an SR-IOV network

	7.17.7. Viewing the IP address of NICs on a virtual machine
	7.17.7.1. Viewing the IP address of a virtual machine interface in the CLI
	7.17.7.2. Viewing the IP address of a virtual machine interface in the web console

	7.17.8. Using a MAC address pool for virtual machines
	7.17.8.1. About KubeMacPool
	7.17.8.2. Enabling a MAC address pool for a namespace in the CLI
	7.17.8.3. Disabling a MAC address pool for a namespace in the CLI

	7.18. VIRTUAL MACHINE DISKS
	7.18.1. Storage features
	7.18.1.1. OpenShift Virtualization storage feature matrix

	7.18.2. Configuring local storage for virtual machines
	7.18.2.1. About the hostpath provisioner
	7.18.2.2. Configuring SELinux for the hostpath provisioner on Red Hat Enterprise Linux CoreOS (RHCOS) 8
	7.18.2.3. Using the hostpath provisioner to enable local storage
	7.18.2.4. Creating a storage class

	7.18.3. Configuring CDI to work with namespaces that have a compute resource quota
	7.18.3.1. About CPU and memory quotas in a namespace
	7.18.3.2. Editing the CDIConfig object to override CPU and memory defaults
	7.18.3.3. Additional resources

	7.18.4. Uploading local disk images by using the web console
	7.18.4.1. Prerequisites
	7.18.4.2. CDI supported operations matrix
	7.18.4.3. Uploading an image file using the web console

	7.18.5. Uploading local disk images by using the virtctl tool
	7.18.5.1. Prerequisites
	7.18.5.2. About data volumes
	7.18.5.3. Creating an upload data volume
	7.18.5.4. Uploading a local disk image to a data volume
	7.18.5.5. CDI supported operations matrix

	7.18.6. Uploading a local disk image to a block storage data volume
	7.18.6.1. Prerequisites
	7.18.6.2. About data volumes
	7.18.6.3. About block persistent volumes
	7.18.6.4. Creating a local block persistent volume
	7.18.6.5. Creating an upload data volume
	7.18.6.6. Uploading a local disk image to a data volume
	7.18.6.7. CDI supported operations matrix

	7.18.7. Managing offline virtual machine snapshots
	7.18.7.1. About virtual machine snapshots
	7.18.7.2. Creating an offline virtual machine snapshot in the CLI
	7.18.7.3. Restoring a virtual machine from a snapshot in the CLI
	7.18.7.4. Deleting a virtual machine snapshot in the CLI
	7.18.7.5. Additional resources

	7.18.8. Moving a local virtual machine disk to a different node
	7.18.8.1. Cloning a local volume to another node

	7.18.9. Expanding virtual storage by adding blank disk images
	7.18.9.1. About data volumes
	7.18.9.2. Creating a blank disk image with data volumes
	7.18.9.3. Template: Data volume configuration file for blank disk images

	7.18.10. Cloning a data volume using smart-cloning
	7.18.10.1. Understanding smart-cloning
	7.18.10.2. Cloning a data volume
	7.18.10.3. Additional resources

	7.18.11. Storage defaults for data volumes
	7.18.11.1. About storage settings for data volumes
	7.18.11.2. Editing the kubevirt-storage-class-defaults config map in the web console
	7.18.11.3. Editing the kubevirt-storage-class-defaults config map in the CLI
	7.18.11.4. Example of multiple storage class defaults

	7.18.12. Creating and using default OS images
	7.18.12.1. Creating persistent volume claims to store default OS images
	7.18.12.2. Creating a virtual machine from a default OS image
	7.18.12.3. Additional resources

	7.18.13. Using container disks with virtual machines
	7.18.13.1. About container disks
	7.18.13.2. Preparing a container disk for virtual machines
	7.18.13.3. Disabling TLS for a container registry to use as insecure registry
	7.18.13.4. Next steps

	7.18.14. Preparing CDI scratch space
	7.18.14.1. About data volumes
	7.18.14.2. Understanding scratch space
	7.18.14.3. CDI operations that require scratch space
	7.18.14.4. Defining a storage class in the CDI configuration
	7.18.14.5. CDI supported operations matrix

	7.18.15. Re-using persistent volumes
	7.18.15.1. About reclaiming statically provisioned persistent volumes
	7.18.15.2. Reclaiming statically provisioned persistent volumes

	7.18.16. Deleting data volumes
	7.18.16.1. About data volumes
	7.18.16.2. Listing all data volumes
	7.18.16.3. Deleting a data volume

	CHAPTER 8. VIRTUAL MACHINE TEMPLATES
	8.1. CREATING VIRTUAL MACHINE TEMPLATES
	8.1.1. Creating a virtual machine template with the interactive wizard in the web console
	8.1.2. Virtual machine template interactive wizard fields
	8.1.2.1. Virtual machine template wizard fields
	8.1.2.2. Cloud-init fields
	8.1.2.3. Networking fields
	8.1.2.4. Storage fields

	8.2. EDITING VIRTUAL MACHINE TEMPLATES
	8.2.1. Editing a virtual machine template in the web console
	8.2.2. Editing virtual machine template YAML configuration in the web console
	8.2.3. Adding a virtual disk to a virtual machine template
	8.2.4. Adding a network interface to a virtual machine template
	8.2.5. Editing CD-ROMs for Virtual Machine Templates

	8.3. ENABLING DEDICATED RESOURCES FOR VIRTUAL MACHINE TEMPLATES
	8.3.1. About dedicated resources
	8.3.2. Prerequisites
	8.3.3. Enabling dedicated resources for a virtual machine template

	8.4. DELETING A VIRTUAL MACHINE TEMPLATE
	8.4.1. Deleting a virtual machine template in the web console

	CHAPTER 9. LIVE MIGRATION
	9.1. VIRTUAL MACHINE LIVE MIGRATION
	9.1.1. Understanding live migration
	9.1.2. Updating access mode for live migration

	9.2. LIVE MIGRATION LIMITS AND TIMEOUTS
	9.2.1. Configuring live migration limits and timeouts
	9.2.2. Cluster-wide live migration limits and timeouts

	9.3. MIGRATING A VIRTUAL MACHINE INSTANCE TO ANOTHER NODE
	9.3.1. Initiating live migration of a virtual machine instance in the web console
	9.3.2. Initiating live migration of a virtual machine instance in the CLI

	9.4. MONITORING LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
	9.4.1. Monitoring live migration of a virtual machine instance in the web console
	9.4.2. Monitoring live migration of a virtual machine instance in the CLI

	9.5. CANCELLING THE LIVE MIGRATION OF A VIRTUAL MACHINE INSTANCE
	9.5.1. Cancelling live migration of a virtual machine instance in the web console
	9.5.2. Cancelling live migration of a virtual machine instance in the CLI

	9.6. CONFIGURING VIRTUAL MACHINE EVICTION STRATEGY
	9.6.1. Configuring custom virtual machines with the LiveMigration eviction strategy

	CHAPTER 10. NODE MAINTENANCE
	10.1. AUTOMATIC RENEWAL OF TLS CERTIFICATES
	10.1.1. Automatic renewal of TLS certificates

	10.2. MANAGING NODE LABELING FOR OBSOLETE CPU MODELS
	10.2.1. Understanding node labeling for obsolete CPU models
	10.2.2. Configuring a config map for obsolete CPU models

	10.3. NODE MAINTENANCE MODE
	10.3.1. Understanding node maintenance mode

	10.4. SETTING A NODE TO MAINTENANCE MODE
	10.4.1. Understanding node maintenance mode
	10.4.2. Setting a node to maintenance mode in the web console
	10.4.3. Setting a node to maintenance mode in the CLI

	10.5. RESUMING A NODE FROM MAINTENANCE MODE
	10.5.1. Resuming a node from maintenance mode in the web console
	10.5.2. Resuming a node from maintenance mode in the CLI

	CHAPTER 11. NODE NETWORKING
	11.1. OBSERVING NODE NETWORK STATE
	11.1.1. About nmstate
	11.1.2. Viewing the network state of a node

	11.2. UPDATING NODE NETWORK CONFIGURATION
	11.2.1. About nmstate
	11.2.2. Creating an interface on nodes
	Additional resources

	11.2.3. Confirming node network policy updates on nodes
	11.2.4. Removing an interface from nodes
	11.2.5. Example policy configurations for different interfaces
	11.2.5.1. Example: Linux bridge interface node network configuration policy
	11.2.5.2. Example: VLAN interface node network configuration policy
	11.2.5.3. Example: Bond interface node network configuration policy
	11.2.5.4. Example: Ethernet interface node network configuration policy
	11.2.5.5. Example: Multiple interfaces in the same node network configuration policy

	11.2.6. Examples: IP management
	11.2.6.1. Static
	11.2.6.2. No IP address
	11.2.6.3. Dynamic host configuration
	11.2.6.4. DNS
	11.2.6.5. Static routing

	11.3. TROUBLESHOOTING NODE NETWORK CONFIGURATION
	11.3.1. Troubleshooting an incorrect node network configuration policy configuration

	CHAPTER 12. LOGGING, EVENTS, AND MONITORING
	12.1. VIEWING VIRTUAL MACHINE LOGS
	12.1.1. Understanding virtual machine logs
	12.1.2. Viewing virtual machine logs in the CLI
	12.1.3. Viewing virtual machine logs in the web console

	12.2. VIEWING EVENTS
	12.2.1. Understanding virtual machine events
	12.2.2. Viewing the events for a virtual machine in the web console
	12.2.3. Viewing namespace events in the CLI
	12.2.4. Viewing resource events in the CLI

	12.3. DIAGNOSING DATA VOLUMES USING EVENTS AND CONDITIONS
	12.3.1. About conditions and events
	12.3.2. Analyzing data volumes using conditions and events

	12.4. VIEWING INFORMATION ABOUT VIRTUAL MACHINE WORKLOADS
	12.4.1. About the Virtual Machines dashboard

	12.5. MONITORING VIRTUAL MACHINE HEALTH
	12.5.1. About readiness and liveness probes
	12.5.2. Defining an HTTP readiness probe
	12.5.3. Defining a TCP readiness probe
	12.5.4. Defining an HTTP liveness probe
	12.5.5. Template: Virtual machine instance configuration file for defining health checks
	12.5.6. Additional resources

	12.6. USING THE OPENSHIFT CONTAINER PLATFORM DASHBOARD TO GET CLUSTER INFORMATION
	12.6.1. About the OpenShift Container Platform dashboards page

	12.7. OPENSHIFT CONTAINER PLATFORM CLUSTER MONITORING, LOGGING, AND TELEMETRY
	12.7.1. About OpenShift Container Platform monitoring
	12.7.2. About cluster logging components
	12.7.3. About Telemetry
	12.7.3.1. Information collected by Telemetry

	12.7.4. CLI troubleshooting and debugging commands

	12.8. COLLECTING DATA FOR RED HAT SUPPORT
	12.8.1. Collecting data about your environment
	12.8.1.1. Additional resources

	12.8.2. Collecting data about virtual machines
	12.8.2.1. Additional resources

	12.8.3. Using the must-gather tool for OpenShift Virtualization
	12.8.3.1. must-gather tool options
	12.8.3.2. Additional resources

