& RedHat

.NET 5.0

Getting started with .NET on RHEL 7

Installing and running .NET 5.0 on RHEL 7

Last Updated: 2022-02-25

NET 5.0 Getting started with NET on RHEL 7

Installing and running .NET 5.0 on RHEL 7

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and run .NET 5.0 on RHEL 7.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... ittt et ie e e eniieeenannnneennns 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ...ttt eeiiieeeeaennnneenn, 4
CHAPTER LLINTRODUCING NET 5.0 ...ttt et eiaeteeeenneeeesannnneeseaennnneesennnns 5
CHAPTER 2. INSTALLING INET 5.0 ..ttt ittt et ittt e enee e eeaneeeesannnneessaennnneesennnns 6
CHAPTER 3. CREATING AN APPLICATIONUSING .NET 5.0 ...ttt eeeiieieenennnns 8
CHAPTER 4. PUBLISHING APPLICATIONS WITH .NET 5.0 ..ottt eiiiie e eeenneenannnns 9
4.1. PUBLISHING .NET APPLICATIONS 9
CHAPTER 5. RUNNING .NET 5.0 APPLICATIONS IN CONTAINERS ... ittt enn, n
CHAPTER 6. USING .NET 5.0 ON OPENSHIFT CONTAINER PLATFORM ...ttt 12
6.1. OVERVIEW 12
6.2. INSTALLING .NET IMAGE STREAMS 12
6.2.1. Installing image streams using OpenShift Client 12
6.2.2. Installing image streams on Linux and macOS 13
6.2.3. Installing image streams on Windows 14

6.3. DEPLOYING APPLICATIONS FROM SOURCE USING OC 14
6.4. DEPLOYING APPLICATIONS FROM BINARY ARTIFACTS USING OC 15
6.5. ENVIRONMENT VARIABLES FOR .NET 5.0 16
6.6. CREATING THE MVC SAMPLE APPLICATION 18
6.7. CREATING THE CRUD SAMPLE APPLICATION 18
CHAPTER 7. MIGRATION FROM PREVIOUS VERSIONS OF .NET ciiiiiiiiiiiiiii i iiiiiiieenannn, 20
7.1. MIGRATION FROM PREVIOUS VERSIONS OF .NET 20
7.2. PORTING FROM .NET FRAMEWORK 20

.NET 5.0 Getting started with .NET on RHEL 7

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

.NET 5.0 Getting started with .NET on RHEL 7

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

® Forsimple comments on specific passages:

1. Make sure you are viewing the documentation in the Multi-page HTML format. In addition,
ensure you see the Feedback button in the upper right corner of the document.

2. Use your mouse cursor to highlight the part of text that you want to comment on.
3. Click the Add Feedback pop-up that appears below the highlighted text.
4. Follow the displayed instructions.

® For submitting more complex feedback, create a Bugzilla ticket:

1. Go to the Bugzilla website.
2. As the Component, use Documentation.

3. Fillin the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Enterprise Linux 8

CHAPTER 1. INTRODUCING .NET 5.0

CHAPTER 1. INTRODUCING .NET 5.0

.NET is a general-purpose development platform featuring automatic memory management and
modern programming languages. Using .NET, you can build high-quality applications efficiently. .NET is
available on Red Hat Enterprise Linux (RHEL) and OpenShift Container Platform through certified
containers.

NET offers the following features:
® The ability to follow a microservices-based approach, where some components are built with
.NET and others with Java, but all can run on a common, supported platform on RHEL and

OpenShift Container Platform.

® The capacity to more easily develop new .NET workloads on Microsoft Windows. You can deploy
and run your applications on either RHEL or Windows Server.

® A heterogeneous data center, where the underlying infrastructure is capable of running .NET
applications without having to rely solely on Windows Server.

NET 5.0 is supported on RHEL 7, RHEL 8, and OpenShift Container Platform versions 3.11 and later.

.NET 5.0 Getting started with .NET on RHEL 7

CHAPTER 2. INSTALLING .NET 5.0

Toinstall NET on RHEL 7 you need to first enable the .NET software repositories and install the scl
tool.

Prerequisites

® |nstalled and registered RHEL 7 with attached subscriptions.
For more information, see Registering the System and Attaching Subscriptions.

Procedure

1. Enable the .NET software repositories:
I $ sudo subscription-manager repos --enable=rhel-7-variant-dotnet-rpms

Replace variant with server, workstation or hpc-node depending on what RHEL system you
are running (RHEL 7 Server, RHEL 7 Workstation, or HPC Compute Node, respectively).

2. Verify the list of subscriptions attached to your system:
I $ sudo subscription-manager list --consumed
3. Install the scl tool:
I $ sudo yum install scl-utils -y
4. Install NET 5.0 and all of its dependencies:
I $ sudo yum install rh-dotnet50 -y
5. Enable the rh-dotnet50 Software Collection environment:
I $ scl enable rh-dotnet50 bash

You can now run dotnet commands in this bash shell session.

If you log out, use another shell, or open up a new terminal, the dotnet command is no longer
enabled.

' WARNING
A Red Hat does not recommend permanently enabling rh-dotnet50 because

it may affect other programs. If you want to enable rh-dotnet permanently,
add source scl_source enable rh-dotnet50 to your ~/.bashrc file.

Verification steps

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-subscription_and_support-registering_a_system_and_managing_subscriptions#sect-Subscription_and_Support-Registering_a_System_and_Managing_Subscriptions-Registering_the_System_and_Attaching_Subscriptions

CHAPTER 2. INSTALLING .NET 5.0

e Verify the installation:
I $ dotnet --info

The output returns the relevant information about the .NET installation and the environment.

.NET 5.0 Getting started with .NET on RHEL 7

CHAPTER 3. CREATING AN APPLICATION USING .NET 5.0

Learn how to create a C# hello-world application.
Procedure
1. Create a new Console application in a directory called my-app:
I $ dotnet new console --output my-app
The output returns:

The template "Console Application” was created successfully.

Processing post-creation actions...
Running 'dotnet restore' on my-app/my-app.csproj...
Determining projects to restore...
Restored /home/usernamel/ my-app/my-app.csproj (in 67 ms).
Restore succeeded.

A simple Hello World console application is created from a template. The application is stored in
the specified my-app directory.

Verification steps
® Run the project:
I $ dotnet run --project my-app

The output returns:

I Hello World!

CHAPTER 4. PUBLISHING APPLICATIONS WITH .NET 5.0

CHAPTER 4. PUBLISHING APPLICATIONS WITH .NET 5.0

NET 5.0 applications can be published to use a shared system-wide version of .NET or to include .NET.
The following methods exist for publishing .NET 5.0 applications:

® Single-file application - The application is self-contained and can be deployed as a single
executable with all dependent files contained in a single binary.

® Framework-dependent deployment (FDD) - The application uses a shared system-wide version
of .NET.

NOTE

When publishing an application for RHEL, Red Hat recommends using FDD, because it
ensures that the application is using an up-to-date version of .NET, built by Red Hat, that
uses a set of native dependencies. These native libraries are part of the rh-dotnet50
Software Collection.

® Self-contained deployment (SCD) - The application includes .NET. This method uses a runtime
built by Microsoft. Running applications outside the rh-dotnet50 Software Collection may cause
issues due to the unavailability of native libraries.

Prerequisites

® FExisting .NET application.
For more information on how to create a .NET application, see Creating an application using
NET.

4.1. PUBLISHING .NET APPLICATIONS

The following procedure outlines how to publish a framework-dependent application.
Procedure
1. Publish the framework-dependent application:
I $ dotnet publish my-app -f net5.0 -c Release

Replace my-app with the name of the application you want to publish.

2. Optional: If the application is for RHEL only, trim out the dependencies needed for other
platforms:

$ dotnet restore my-app -r rhel.7-x64
$ dotnet publish my-app -f net5.0 -c Release -r rhel.7-x64 --self-contained false

3. Enable the Software Collection and pass the application to run the application on a RHEL
system:

I $ scl enable rh-dotnet50 -- dotnet <app>.dll

https://access.redhat.com/documentation/en-us/net/5.0/html/getting_started_with_.net_on_rhel_7/creating-an-application-using-dotnet_getting-started-with-dotnet-on-rhel-7

.NET 5.0 Getting started with .NET on RHEL 7

10

4. You can add the scl enable rh-dotnet50 — dotnet <app>.dll command to a script that is
published with the application.
Add the following script to your project and update the variable:

#!/bin/bash

APP=<app>
SCL=rh-dotnet50
DIR="$(dirname "$(readlink -f "$0")")"

scl enable $SCL -- "$DIR/$APP" "$@"

5. Toinclude the script when publishing, add this ItemGroup to the csproj file:

<ltemGroup>

<None Update="<scriptname>" Condition=""$(Runtimeldentifier)' == 'rhel.7-x64" and
'$(SelfContained)' == 'false™ CopyToPublishDirectory="PreserveNewest" />
</ltemGroup>

CHAPTER 5. RUNNING .NET 5.0 APPLICATIONS IN CONTAINERS

CHAPTER 5. RUNNING .NET 5.0 APPLICATIONS IN
CONTAINERS

Use the ubi8/dotnet-50-runtime image to run a precompiled application inside a Linux container.

Prerequisites

® Preconfigured containers.
The following example uses podman.

Procedure

1. Optional: If you are in another project’s directory and do not wish to create a nested project,
return to the parent directory of the project:

I #cd ..

2. Create anew MVC project in a directory called mvc_runtime_example:
I $ dotnet new mvc --output mve_runtime_example

3. Publish the project:
I $ dotnet publish mve_runtime_example -f net5.0 -c Release

4. Create the Dockerfile:

$ cat > Dockerfile <<EOF
FROM registry.redhat.io/ubi8/dotnet-50-runtime

ADD bin/Release/net5.0/publish/ .

CMD ["dotnet", "mvc_runtime_example.dll"]
EOF

5. Build your image:
I $ podman build -t dotnet-50-runtime-example .
6. Runyourimage:
I $ podman run -d -p8080:8080 dotnet-50-runtime-example

Verification steps

® View the application running in the container:

I $ xdg-open http://127.0.0.1:8080

1

.NET 5.0 Getting started with .NET on RHEL 7

CHAPTER 6. USING .NET 5.0 ON
OPENSHIFT CONTAINER PLATFORM

6.1. OVERVIEW

NET images are added to OpenShift by importing imagestream definitions froms2i-dotnetcore.

The imagestream definitions includes the dotnet imagestream which contains sdk images for different
supported versions of .NET. .NET Life Cycle provides an up-to-date overview of supported versions.

Version Tag Alias

.NET Core 3.1 dotnet:3.1-el7 dotnet:3.1
dotnet:3.1-ubi8

NET5 dotnet:5.0-ubi8 dotnet:5.0

NET 6 dotnet:6.0-ubi8 dotnet:6.0

The sdk images have corresponding runtime images which are defined under the dotnet-runtime
imagestream.

The container images work across different versions of Red Hat Enterprise Linux and OpenShift.

The RHEL7-based (suffix -el7) are hosted on the registry.redhat.io image repository. Authentication is
required to pull these images. These credentials are configured by adding a pull secret to the OpenShift
namespace.

The UBI-8 based images (suffix -ubi8) are hosted on the registry.access.redhat.com and do not
require authentication.

6.2. INSTALLING .NET IMAGE STREAMS

To install .NET image streams, use image stream definitions from s2i-dotnetcore with the OpenShift
Client (oc) binary. Image streams can be installed from Linux, Mac, and Windows. A script enables you to
install, update or remove the image streams.

You can define .NET image streams in the global openshift namespace or locally in a project
namespace. Sufficient permissions are required to update the openshift namespace definitions.
6.2.1. Installing image streams using OpenShift Client

You can use OpenShift Client (oc¢) to install NET image streams.

Prerequisites

® An existing pull secret must be present in the namespace. If no pull secret is present in the
namespace. Add one by following the instructions in the Red Hat Container Registry
Authentication guide.

12

https://github.com/redhat-developer/s2i-dotnetcore
https://access.redhat.com/support/policy/updates/net-core
https://github.com/redhat-developer/s2i-dotnetcore/
https://access.redhat.com/RegistryAuthentication

CHAPTER 6. USING .NET 5.0 ON OPENSHIFT CONTAINER PLATFORM

Procedure

1. List the available .NET image streams:
I $ oc describe is dotnet

The output shows installed images. If no images are installed, the Error from server
(NotFound) message is displayed.

e |f the Error from server (NotFound) message is displayed:

o |Install the NET image streams:

$ oc create -f https://raw.githubusercontent.com/redhat-developer/s2i-
dotnetcore/master/dotnet_imagestreams.json

e |f the Error from server (NotFound) message is not displayed:

© You can include newer versions of existing .NET image streams:

$ oc replace -f https://raw.githubusercontent.com/redhat-developer/s2i-
dotnetcore/master/dotnet_imagestreams.json

6.2.2. Installing image streams on Linux and macOS

You can use this script to install, upgrade, or remove the image streams on Linux and macOS.

Procedure
1. Download the script.

a. On Linux use:

$ wget https://raw.githubusercontent.com/redhat-developer/s2i-dotnetcore/master/install-
imagestreams.sh

b. On Mac use:

$ curl https://raw.githubusercontent.com/redhat-developer/s2i-dotnetcore/master/install-
imagestreams.sh -o install-imagestreams.sh

2. Make the script executable:
I $ chmod +x install-imagestreams.sh
3. Login to the OpenShift cluster:
I $ oc login
4. Installimage streams and add a pull secret for authentication against the registry.redhat.io:

Jinstall-imagestreams.sh --os rhel [--user subscription_username --password
subscription_password]

13

https://raw.githubusercontent.com/redhat-developer/s2i-dotnetcore/master/install-imagestreams.sh

.NET 5.0 Getting started with .NET on RHEL 7

Replace subscription_username with the name of the user, and replace subscription_password
with the user’s password. The credentials may be omitted if you do not plan to use the RHEL7-
based images.

If the pull secret is already present, the --user and --password arguments are ignored.

Additional information

e /install-imagestreams.sh --help

6.2.3. Installing image streams on Windows

You can use this script to install, upgrade, or remove the image streams on Windows.

Procedure

1. Download the script.

Invoke-WebRequest https://raw.githubusercontent.com/redhat-developer/s2i-
dotnetcore/master/install-imagestreams.ps1 -UseBasicParsing -OutFile install-
imagestreams.ps1

2. Login to the OpenShift cluster:
I $ oc login
3. Installimage streams and add a pull secret for authentication against the registry.redhat.io:

Ainstall-imagestreams.ps1 --OS rhel [-User subscription_username -Password
subscription_password]

Replace subscription_username with the name of the user, and replace subscription_password
with the user’s password. The credentials may be omitted if you do not plan to use the RHEL7-
based images.

If the pull secret is already present, the -User and -Password arguments are ignored.

NOTE

The PowerShell ExecutionPolicy may prohibit executing this script. To relax the policy,
run Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass -Force.

Additional information

o Get-Help .\install-imagestreams.ps1

6.3. DEPLOYING APPLICATIONS FROM SOURCE USINGoc

The following example demonstrates how to deploy the example-app application using oc¢, which is in
the app folder on the dotnet-5.0 branch of the redhat-developer/s2i-dotnetcore-ex GitHub repository:

Procedure

14

https://raw.githubusercontent.com/redhat-developer/s2i-dotnetcore/master/install-imagestreams.ps1

CHAPTER 6. USING .NET 5.0 ON OPENSHIFT CONTAINER PLATFORM

1. Create a new OpenShift project:
I $ oc new-project sample-project
2. Add the ASP.NET Core application:

$ oc new-app --name=example-app 'dotnet:5.0-ubi8~https://github.com/redhat-developer/s2i-
dotnetcore-ex#dotnet-5.0" --build-env DOTNET_STARTUP_PROJECT=app

3. Track the progress of the build:
I $ oc logs -f bc/example-app

4. View the deployed application once the build is finished:
I $ oc logs -f dc/example-app

The application is now accessible within the project.

5. Optional: Make the project accessible externally:
I $ oc expose svc/example-app
6. Obtain the shareable URL:

I $ oc get routes

6.4. DEPLOYING APPLICATIONS FROM BINARY ARTIFACTS USINGoc

You can use .NET Source-to-Image (S2l) builder image to build applications using binary artifacts that
you provide.

Prerequisites

1. Published application.
For more information, see Publishing applications with .NET 6.0.

Procedure

1. Create a new binary build:
I $ oc new-build --name=my-web-app dotnet:5.0-ubi8 --binary=true

2. Start the build and specify the path to the binary artifacts on your local machine:
I $ oc start-build my-web-app --from-dir=bin/Release/net5.0/publish

3. Create a new application:

I $ oc new-app my-web-app

15

https://access.redhat.com/documentation/en-us/net/6.0/html-single/getting_started_with_.net_on_rhel_7/index.xml#assembly_publishing-apps-using-dotnet_getting-started-with-dotnet-on-rhel-7

.NET 5.0 Getting started with .NET on RHEL 7

6.5. ENVIRONMENT VARIABLES FOR .NET 5.0

The .NET images support several environment variables to control the build behavior of your NET
application. You can set these variables as part of the build configuration, or add them to the
.s2i/environment file in the application source code repository.

Variable Name Description Default

DOTNET_STARTUP_PROJECT Selects the project to run. This must
be a project file (for example,
csproj orfsproj) or a folder
containing a single project file.

DOTNET_ASSEMBLY_NAME Selects the assembly to run. This The name of the csproj file
must not include the .dll extension.
Set this to the output assembly
name specified in CSProj
(PropertyGroup/AssemblyName).

DOTNET_PUBLISH_READYTORUN When set to true, the application false
will be compiled ahead of time. This
reduces startup time by reducing
the amount of work the JIT needs
to perform when the application is
loading.

DOTNET_RESTORE_SOURCES Specifies the space-separated list
of NuGet package sources used
during the restore operation. This
overrides all of the sources
specified in the NuGet.config file.
This variable cannot be combined
with
DOTNET_RESTORE_CONFIGF
ILE.

DOTNET_RESTORE_CONFIGFILE Specifies a NuGet.Config file to
be used for restore operations. This

variable cannot be combined with
DOTNET_RESTORE_SOURCE
S.

DOTNET_TOOLS Specifies a list of .NET tools to
install before building the app. It is
possible to install a specific version
by post pending the package name
with @<versions.

DOTNET_NPM_TOOLS Specifies a list of NPM packages to
install before building the
application.

16

CHAPTER 6. USING .NET 5.0 ON OPENSHIFT CONTAINER PLATFORM

Variable Name Description Default

DOTNET_TEST_PROJECTS Specifies the list of test projects to
test. This must be project files or
folders containing a single project
file. dotnet test is invoked for each
item.

DOTNET_CONFIGURATION Runs the application in Debug or Release
Release mode. This value should be
either Release or Debug.

DOTNET_VERBOSITY Specifies the verbosity of the
dotnet build commands. When
set, the environment variables are
printed at the start of the build. This
variable can be set to one of the
msbuild verbosity values (q[uiet],
m[inimal], n[ormal], d[etailed],
and diag[nostic]).

HTTP_PROXY, HTTPS_PROXY Configures the HTTP or HTTPS
proxy used when building and
running the application,
respectively.

DOTNET_RM_SRC When set to true, the source code
will not be included in the image.

DOTNET_SSL_DIRS Specifies a list of folders or files
with additional SSL certificates to
trust. The certificates are trusted by
each process that runs during the
build and all processes that runin
the image after the build (including
the application that was built). The
items can be absolute paths
(starting with /) or paths in the
source repository (for example,
certificates).

NPM_MIRROR Uses a custom NPM registry mirror
to download packages during the
build process.

ASPNETCORE_URLS This variable is set to hitp://*:8080 http://*:8080
to configure ASP.NET Core to use
the port exposed by the image.
Changing this is not recommended.

17

http://:8080
http://:8080

.NET 5.0 Getting started with .NET on RHEL 7

Variable Name Description Default

DOTNET_RESTORE_DISABLE_PAR When set to true, disables restoring ~ false
ALLEL multiple projects in parallel. This

reduces restore timeout errors

when the build container is running

with low CPU limits.

DOTNET_INCREMENTAL When set to true, the NuGet false
packages will be kept so they can be
re-used for an incremental build.

DOTNET_PACK When set to true, creates atar.gz
file at /opt/app-root/app.tar.gz
that contains the published
application.

6.6. CREATING THE MVC SAMPLE APPLICATION
s2i-dotnetcore-ex is the default Model, View, Controller (MVC) template application for NET.

This application is used as the example application by the .NET S2Il image and can be created directly
from the OpenShift Ul using the Try Example link.

The application can also be created with the OpenShift client binary (o¢).

Procedure

To create the sample application using oc:

1. Add the .NET application:

$ oc new-app dotnet:5.0-ubi8~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnet-
5.0 --context-dir=app
2. Make the application accessible externally:
I $ oc expose service s2i-dotnetcore-ex

3. Obtain the sharable URL:

I $ oc get route s2i-dotnetcore-ex

Additional resources

® s2i-dotnetcore-ex application repository on GitHub

6.7. CREATING THE CRUD SAMPLE APPLICATION

s2i-dotnetcore-persistent-ex is a simple Create, Read, Update, Delete (CRUD) .NET web application
that stores data in a PostgreSQL database.

18

https://github.com/redhat-developer/s2i-dotnetcore-ex/tree/dotnet-5.0

CHAPTER 6. USING .NET 5.0 ON OPENSHIFT CONTAINER PLATFORM

Procedure

To create the sample application using oc:

1. Add the database:
I $ oc new-app postgresql-ephemeral
2. Add the .NET application:

$ oc new-app dotnet:5.0-ubi8~https://github.com/redhat-developer/s2i-dotnetcore-persistent-
ex#dotnet-5.0 --context-dir app

3. Add environment variables from the postgresql secret and database service name environment
variable:

$ oc set env dc/s2i-dotnetcore-persistent-ex --from=secret/postgresql -e database-
service=postgresq|

4. Make the application accessible externally:
I $ oc expose service s2i-dotnetcore-persistent-ex

5. Obtain the sharable URL:

I $ oc get route s2i-dotnetcore-persistent-ex

Additional resources

® s2i-dotnetcore-ex application repository on GitHub

19

https://github.com/redhat-developer/s2i-dotnetcore-persistent-ex

.NET 5.0 Getting started with .NET on RHEL 7

CHAPTER 7. MIGRATION FROM PREVIOUS VERSIONS OF
NET

7.1. MIGRATION FROM PREVIOUS VERSIONS OF .NET
Microsoft provides instructions for migrating from most previous versions of .NET Core.

If you are using a version of .NET that is no longer supported or want to migrate to a newer NET version
to expand functionality, see the following articles:

® Migrate from ASP.NET Core 5.0 to 6.0

® Migrate from ASP.NET Core 3.1t0 5.0

® Migrate from ASP.NET Core 3.0 to 3.1

® Migrate from ASP.NET Core 2.2 to 3.0

® Migrate from ASP.NET Core 2.1t0 2.2

® Migrate from .NET Core 2.0 to 2.1

® Migrate from ASP.NET to ASP.NET Core

® Migrating .NET Core projects from project.json

® Migrate from project.json to .csproj format

NOTE
If migrating from .NET Core 1.x to 2.0, see the first few related sections in Migrate from

ASP.NET Core 1.x to 2.0. These sections provide guidance that is appropriate for a .NET
- Core 1.x to 2.0 migration path.

7.2. PORTING FROM .NET FRAMEWORK
Refer to the following Microsoft articles when migrating from .NET Framework:
® For general guidelines, see Porting to .NET Core from .NET Framework.
® For porting libraries, see Porting to .NET Core - Libraries.
® Formigrating to ASP.NET Core, see Migrating to ASP.NET Core.
Several technologies and APIs present in the .NET Framework are not available in .NET Core and .NET.
If your application or library requires these APIs, consider finding alternatives or continue using the .NET

Framework. .NET Core and .NET do not support the following technologies and APIs:

® Desktop applications, for example, Windows Forms and Windows Presentation Foundation
(WPF)

® Windows Communication Foundation (WCF) servers (WCF clients are supported)

® NET remoting

20

https://docs.microsoft.com/en-us/aspnet/core/migration/50-to-60
https://docs.microsoft.com/en-us/aspnet/core/migration/31-to-50
https://docs.microsoft.com/en-us/aspnet/core/migration/31-to-50
https://docs.microsoft.com/en-us/aspnet/core/migration/22-to-30
https://docs.microsoft.com/en-us/aspnet/core/migration/21-to-22
https://docs.microsoft.com/en-us/dotnet/core/migration/20-21
https://docs.microsoft.com/en-us/aspnet/core/migration/?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/dotnet/core/migration/
https://docs.microsoft.com/en-us/dotnet/core/tools/project-json-to-csproj
https://docs.microsoft.com/en-us/aspnet/core/migration/1x-to-2x/?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/dotnet/core/porting/
https://docs.microsoft.com/en-us/dotnet/core/porting/libraries
https://docs.microsoft.com/en-us/aspnet/core/migration/?view=aspnetcore-2.2

CHAPTER 7. MIGRATION FROM PREVIOUS VERSIONS OF .NET

Additionally, several NET APlIs can only be used in Microsoft Windows environments. The following list
shows examples of these Windows-specific APIs:

® Microsoft.Win32.Registry
e System.AppDomains
e System.Drawing
e System.Security.Principal.Windows
Consider using the .NET Portability Analyzer to identify APl gaps and potential replacements.

For example, enter the following command to find out how much of the APl used by your NET
Framework application is supported by .NET 5.0:

$ dotnet /path/to/ApiPort.dll analyze -f . -r html --target ".NET Framework,Version=<dotnet-
framework-version>' --target "NET Core,Version=<dotnet-version>'

Replace <dotnet-framework-version> with the .NET Framework version you are currently using. For

example, 4.6. Replace <dotnet-version> with the version of .NET Core you plan to migrate to. For

example, 3.1.

IMPORTANT

Several APIs that are not supported in the default version of .NET may be available from
the Microsoft.Windows.Compatibility NuGet package. Be careful when using this NuGet
package. Some of the APIs provided (such as Microsoft.Win32.Registry) only work on
Windows, making your application incompatible with Red Hat Enterprise Linux.

21

https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://blogs.msdn.microsoft.com/dotnet/2017/11/16/announcing-the-windows-compatibility-pack-for-net-core/#using-the-windows-compatibility-pack

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCING .NET 5.0
	CHAPTER 2. INSTALLING .NET 5.0
	CHAPTER 3. CREATING AN APPLICATION USING .NET 5.0
	CHAPTER 4. PUBLISHING APPLICATIONS WITH .NET 5.0
	4.1. PUBLISHING .NET APPLICATIONS

	CHAPTER 5. RUNNING .NET 5.0 APPLICATIONS IN CONTAINERS
	CHAPTER 6. USING .NET 5.0 ON OPENSHIFT CONTAINER PLATFORM
	6.1. OVERVIEW
	6.2. INSTALLING .NET IMAGE STREAMS
	6.2.1. Installing image streams using OpenShift Client
	6.2.2. Installing image streams on Linux and macOS
	6.2.3. Installing image streams on Windows

	6.3. DEPLOYING APPLICATIONS FROM SOURCE USING OC
	6.4. DEPLOYING APPLICATIONS FROM BINARY ARTIFACTS USING OC
	6.5. ENVIRONMENT VARIABLES FOR .NET 5.0
	6.6. CREATING THE MVC SAMPLE APPLICATION
	6.7. CREATING THE CRUD SAMPLE APPLICATION

	CHAPTER 7. MIGRATION FROM PREVIOUS VERSIONS OF .NET
	7.1. MIGRATION FROM PREVIOUS VERSIONS OF .NET
	7.2. PORTING FROM .NET FRAMEWORK

