
Migration Toolkit for Applications 5.2

CLI Guide

Learn how to use the Migration Toolkit for Applications to migrate your applications.

Last Updated: 2022-02-22

Migration Toolkit for Applications 5.2 CLI Guide

Learn how to use the Migration Toolkit for Applications to migrate your applications.

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to use the Migration Toolkit for Applications CLI to simplify migration of
Java applications.

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION
1.1. ABOUT THE CLI GUIDE
1.2. ABOUT THE MIGRATION TOOLKIT FOR APPLICATIONS

What is the Migration Toolkit for Applications?
How does the Migration Toolkit for Applications simplify migration?
How do I learn more?

1.3. ABOUT THE CLI

CHAPTER 2. INSTALLING AND RUNNING THE CLI
2.1. INSTALLING THE CLI
2.2. RUNNING THE CLI

2.2.1. MTA command examples
Running MTA on an application archive
Running MTA on source code
Running cloud-readiness rules
Overriding MTA properties

2.2.2. MTA CLI Bash completion
Enabling Bash completion
Enabling persistent Bash completion

2.2.3. Accessing MTA help
2.2.4. Using OpenRewrite recipes

2.3. ACCESSING REPORTS

CHAPTER 3. REVIEWING THE REPORTS
3.1. APPLICATION REPORT

3.1.1. Dashboard
3.1.2. Issues report
3.1.3. Application details report
3.1.4. Technologies report
3.1.5. Application dependencies graph report
3.1.6. Source report

3.2. TECHNOLOGIES REPORT
3.3. DEPENDENCIES GRAPH REPORT
3.4. ARCHIVES SHARED BY MULTIPLE APPLICATIONS
3.5. RULE PROVIDERS EXECUTION OVERVIEW
3.6. USED FREEMARKER FUNCTIONS AND DIRECTIVES
3.7. SEND FEEDBACK FORM

CHAPTER 4. EXPORTING THE REPORT IN CSV FORMAT
4.1. EXPORTING THE REPORT

Accessing the report from the application report
4.2. IMPORTING THE CSV FILE INTO A SPREADSHEET PROGRAM
4.3. ABOUT THE CSV DATA STRUCTURE

CHAPTER 5. MAVENIZING YOUR APPLICATION
5.1. GENERATING THE MAVEN PROJECT STRUCTURE
5.2. REVIEWING THE MAVEN PROJECT STRUCTURE

Root POM file
BOM file
Application POM files

4

5
5
5
5
5
5
5

6
6
6
7
7
7
7
7
7
8
8
8
8
9

10
11
11

13
14
16
16
18
18
19

20
21
21
22

24
24
24
24
24

26
26
26
27
27
27

Table of Contents

1

. .

. .

CHAPTER 6. OPTIMIZING MTA PERFORMANCE
6.1. DEPLOYING AND RUNNING THE APPLICATION
6.2. UPGRADING HARDWARE
6.3. CONFIGURING MTA TO EXCLUDE PACKAGES AND FILES

6.3.1. Excluding packages
6.3.2. Excluding files
6.3.3. Searching locations for exclusion

APPENDIX A. REFERENCE MATERIAL
A.1. ABOUT MTA COMMAND-LINE ARGUMENTS

A.1.1. Specifying the input
A.1.2. Specifying the output directory
A.1.3. Setting the source technology
A.1.4. Setting the target technology
A.1.5. Selecting packages

A.2. SUPPORTED TECHNOLOGY TAGS
A.3. ABOUT RULE STORY POINTS

A.3.1. What are story points?
A.3.2. How story points are estimated in rules
A.3.3. Task category

A.4. ADDITIONAL RESOURCES
A.4.1. Getting involved
A.4.2. Resources
A.4.3. Reporting issues

29
29
29
29
29
30
30

31
31

34
35
35
36
36
37
49
49
49
50
50
51
51
51

Migration Toolkit for Applications 5.2 CLI Guide

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Migration Toolkit for Applications 5.2 CLI Guide

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION

1.1. ABOUT THE CLI GUIDE

This guide is for engineers, consultants, and others who want to use the Migration Toolkit for
Applications (MTA) to migrate Java applications or other components. It describes how to install and run
the CLI, review the generated reports, and take advantage of additional features.

1.2. ABOUT THE MIGRATION TOOLKIT FOR APPLICATIONS

What is the Migration Toolkit for Applications?
The Migration Toolkit for Applications (MTA) is an extensible and customizable rule-based tool that
simplifies the migration and modernization of Java applications.

MTA examines application artifacts, including project source directories and application archives, and
then produces an HTML report highlighting areas needing changes. MTA supports many migration paths
including the following examples:

Upgrading to the latest release of Red Hat JBoss Enterprise Application Platform

Migrating from Oracle WebLogic or IBM WebSphere Application Server to Red Hat JBoss
Enterprise Application Platform

Containerizing applications and making them cloud-ready

Migrating from Java Spring Boot to Quarkus

Updating from Oracle JDK to OpenJDK

For more information about use cases and migration paths, see the MTA for developers web page.

How does the Migration Toolkit for Applications simplify migration?
The Migration Toolkit for Applications looks for common resources and known trouble spots when
migrating applications. It provides a high-level view of the technologies used by the application.

MTA generates a detailed report evaluating a migration or modernization path. This report can help you
to estimate the effort required for large-scale projects and to reduce the work involved.

How do I learn more?
See the Introduction to the Migration Toolkit for Applications to learn more about the features,
supported configurations, system requirements, and available tools in the Migration Toolkit for
Applications.

1.3. ABOUT THE CLI

The CLI is a command-line tool in the Migration Toolkit for Applications that allows users to assess and
prioritize migration and modernization efforts for applications. It provides numerous reports that
highlight the analysis without the overhead of the other tools. The CLI includes a wide array of
customization options, and allows you to finely tune MTA analysis options or integrate with external
automation tools.

CHAPTER 1. INTRODUCTION

5

https://developers.redhat.com/products/mta/use-cases
https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.2/html-single/introduction_to_the_migration_toolkit_for_applications

CHAPTER 2. INSTALLING AND RUNNING THE CLI

2.1. INSTALLING THE CLI

You can install the CLI on Linux, Windows, or macOS operating systems.

Prerequisites

Java Development Kit (JDK) installed. MTA supports the following JDKs:

OpenJDK 1.8

OpenJDK 11

Oracle JDK 1.8

Oracle JDK 11

8 GB RAM

macOS installation: the value of maxproc must be 2048 or greater.

Procedure

1. Navigate to the MTA Download page and download the Migration Toolkit CLI file.

2. Extract the .zip file to a directory of your choice.

NOTE

If you are installing on a Windows operating system:

1. Extract the .zip file to a folder named mta to avoid a Path too long error.

2. If a Confirm file replace window is displayed during extraction, click Yes to
all.

The installation directory is referred to as <MTA_HOME> in this guide.

2.2. RUNNING THE CLI

You can run MTA against your application.

Procedure

1. Open a terminal and navigate to the <MTA_HOME>/bin/ directory.

2. Execute the mta-cli script, or mta-cli.bat for Windows, and specify the appropriate arguments:

--input: The application to be evaluated.

$./mta-cli --input /path/to/jee-example-app-1.0.0.ear \
 --output /path/to/output --source weblogic --target eap:6 \
 --packages com.acme org.apache

Migration Toolkit for Applications 5.2 CLI Guide

6

https://developers.redhat.com/products/mta/download

--output: The output directory for the generated reports.

--source: The source technology for the application migration.

--target: The target technology for the application migration.

--packages: The packages to be evaluated. This argument is highly recommended to
improve performance.

3. Access the report.

2.2.1. MTA command examples

Running MTA on an application archive
The following command analyzes the com.acme and org.apache packages of the jee-example-app-
1.0.0.ear example EAR archive for migrating from JBoss EAP 5 to JBoss EAP 7:

Running MTA on source code
The following command analyzes the org.jboss.seam packages of the seam-booking-5.2 example
source code for migrating to JBoss EAP 6.

Running cloud-readiness rules
The following command analyzes the com.acme and org.apache packages of the jee-example-app-
1.0.0.ear example EAR archive for migrating to JBoss EAP 7. It also evaluates for cloud readiness:

Overriding MTA properties
To override the default Fernflower decompiler, pass the -Dwindup.decompiler argument on the
command line. For example, to use the Procyon decompiler, use the following syntax:

2.2.2. MTA CLI Bash completion

The MTA CLI provides an option to enable Bash completion for Linux systems, allowing the MTA
command-line arguments to be auto completed by pressing the Tab key when entering the commands.
For instance, when Bash completion is enabled, entering the following displays a list of available
arguments.

$ <MTA_HOME>/bin/mta-cli \
 --input /path/to/jee-example-app-1.0.0.ear \
 --output /path/to/report-output/ --source eap:5 --target eap:7 \
 --packages com.acme org.apache

$ <MTA_HOME>/bin/mta-cli --sourceMode --input /path/to/seam-booking-5.2/ \
 --output /path/to/report-output/ --target eap:6 --packages org.jboss.seam

$ <MTA_HOME>/bin/mta-cli --input /path/to/jee-example-app-1.0.0.ear \
 --output /path/to/report-output/ \
 --target eap:7 --target cloud-readiness --packages com.acme org.apache

$ <MTA_HOME>/bin/mta-cli -Dwindup.decompiler=procyon \
 --input <INPUT_ARCHIVE_OR_DIRECTORY> --output <OUTPUT_REPORT_DIRECTORY> \
 --target <TARGET_TECHNOLOGY> --packages <PACKAGE_1> <PACKAGE_2>

$ <MTA_HOME>/bin/mta-cli [TAB]

CHAPTER 2. INSTALLING AND RUNNING THE CLI

7

https://github.com/windup/windup/blob/master/test-files/jee-example-app-1.0.0.ear
https://github.com/windup/windup/tree/master/test-files/seam-booking-5.2
https://github.com/windup/windup/blob/master/test-files/jee-example-app-1.0.0.ear

Enabling Bash completion
To enable Bash completion for the current shell, execute the following command:

Enabling persistent Bash completion
The following commands allow Bash completion to persist across restarts:

To enable Bash completion for a specific user across system restarts, include the following line
in that user’s ~/.bashrc file.

To enable Bash completion for all users across system restarts, copy the Migration Toolkit for
Applications CLI Bash completion file to the /etc/bash_completion.d/ directory as the root
user.

2.2.3. Accessing MTA help

To see the complete list of available arguments for the mta-cli command, open a terminal, navigate to
the <MTA_HOME> directory, and execute the following command:

2.2.4. Using OpenRewrite recipes

IMPORTANT

OpenRewrite recipe support is provided as Technology Preview only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs),
might not be functionally complete, and Red Hat does not recommend to use them for
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

See Technology Preview features support scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

You can refactor the source code of Java applications by using OpenRewrite recipes with the MTA CLI.

The OpenRewrite recipe org.jboss.windup.JavaxToJakarta renames imported javax packages to their
jakarta equivalents.

Procedure

1. Run`mta-cli`, specifying the recipe name and the application:

"-DactiveRecipes=<recipe name>": Specify the OpenRewrite recipe, for example,

$ source <MTA_HOME>/bash-completion/mta-cli

source <MTA_HOME>/bash-completion/mta-cli

cp <MTA_HOME>/bash-completion/mta-cli /etc/bash_completion.d/

$ <MTA_HOME>/bin/mta-cli --help

$./mta-cli --openrewrite "-DactiveRecipes=<recipe_name>" \
 --input </path/to/source/project> --goal dryRun

Migration Toolkit for Applications 5.2 CLI Guide

8

https://access.redhat.com/support/offerings/techpreview
https://docs.openrewrite.org/

"-DactiveRecipes=<recipe name>": Specify the OpenRewrite recipe, for example,
org.jboss.windup.JavaxToJakarta.

--input: Specify the application to be refactored.

--goal: Optional: The OpenRewrite Maven goal to run.

dryRun : The script returns a list of proposed changes. Ignore the "Run 'mvn
rewrite:run' to apply the recipes" message.

run: The script applies the changes.

2. Run mta-cli with --goal run to apply the recipe:

2.3. ACCESSING REPORTS

When you run the Migration Toolkit for Applications, a report is generated in the
<OUTPUT_REPORT_DIRECTORY> that you specify using the --output argument in the command line.

The output directory contains the following files and subdirectories:

<OUTPUT_REPORT_DIRECTORY>/
├── index.html // Landing page for the report
├── <EXPORT_FILE>.csv // Optional export of data in CSV format
├── archives/ // Archives extracted from the application
├── mavenized/ // Optional Maven project structure
├── reports/ // Generated HTML reports
├── stats/ // Performance statistics

Procedure

1. Obtain the path of the index.html file of your report from the output that appears after you run
MTA:

Report created: <OUTPUT_REPORT_DIRECTORY>/index.html
 Access it at this URL: file:///<OUTPUT_REPORT_DIRECTORY>/index.html

2. Open the index.html file by using a browser.
The generated report is displayed.

$./mta-cli --openrewrite "-DactiveRecipes=<recipe name>" \
 --input </path/to/source/project> --goal run

CHAPTER 2. INSTALLING AND RUNNING THE CLI

9

CHAPTER 3. REVIEWING THE REPORTS
The report examples shown in the following sections are a result of analyzing the com.acme and
org.apache packages in the jee-example-app-1.0.0.ear example application, which is located in the
MTA GitHub source repository.

The report was generated using the following command.

$ <MTA_HOME>/bin/mta-cli --input /home/username/mta-cli-source/test-files/jee-example-app-
1.0.0.ear/ --output /home/username/mta-cli-reports/jee-example-app-1.0.0.ear-report --target eap:6 --
packages com.acme org.apache

Use a browser to open the index.html file located in the report output directory. This opens a landing
page that lists the applications that were processed. Each row contains a high-level overview of the
story points, number of incidents, and technologies encountered in that application.

Figure 3.1. Application list

NOTE

The incidents and estimated story points change as new rules are added to MTA. The
values here may not match what you see when you test this application.

The following table lists all of the reports and pages that can be accessed from this main MTA landing
page. Click the name of the application, jee-example-app-1.0.0.ear, to view the application report.

Page How to Access

Application Click the name of the application.

Technologies report Click the Technologies link at the top of the page.

Dependencies graph report Click the Dependencies Graph link at the top of the page.

Migration Toolkit for Applications 5.2 CLI Guide

10

https://github.com/windup/windup/blob/master/test-files/jee-example-app-1.0.0.ear

Archives shared by multiple
applications

Click the Archives shared by multiple applications link. Note that this link is
only available when there are shared archives across multiple applications.

Rule providers execution
overview

Click the Rule providers execution overview link at the bottom of the page.

Used FreeMarker functions
and directives

Click the FreeMarker methods link at the bottom of the page.

Send feedback form Click the Send Feedback link in the top navigation bar to open a form that
allows you to submit feedback to the MTA team.

Page How to Access

Note that if an application shares archives with other analyzed applications, you will see a breakdown of
how many story points are from shared archives and how many are unique to this application.

Figure 3.2. Shared archives

Information about the archives that are shared among applications can be found in the Archives Shared
by Multiple Applications reports.

3.1. APPLICATION REPORT

3.1.1. Dashboard

Access this report from the report landing page by clicking on the application name in the Application

CHAPTER 3. REVIEWING THE REPORTS

11

Access this report from the report landing page by clicking on the application name in the Application
List.

The dashboard gives an overview of the entire application migration effort. It summarizes:

The incidents and story points by category

The incidents and story points by level of effort of the suggested changes

The incidents by package

Figure 3.3. Dashboard

The top navigation bar lists the various reports that contain additional details about the migration of this
application. Note that only those reports that are applicable to the current application will be available.

Report Description

Issues Provides a concise summary of all issues that require attention.

Application details Provides a detailed overview of all resources found within the application
that may need attention during the migration.

Technologies Displays all embedded libraries grouped by functionality, allowing you to
quickly view the technologies used in each application.

Dependencies graph Displays a graph of all Java-packaged dependencies found within the
analyzed applications. This graph also demonstrates the relations of each
dependency, allowing you to view nested and multiple dependencies.

Dependencies Displays all Java-packaged dependencies found within the application.

Migration Toolkit for Applications 5.2 CLI Guide

12

Unparsable Shows all files that MTA could not parse in the expected format. For
instance, a file with a .xml or .wsdl suffix is assumed to be an XML file. If
the XML parser fails, the issue is reported here and also where the individual
file is listed.

Remote services Displays all remote services references that were found within the
application.

EJBs Contains a list of EJBs found within the application.

JBPM Contains all of the JBPM-related resources that were discovered during
analysis.

JPA Contains details on all JPA-related resources that were found in the
application.

Hibernate Contains details on all Hibernate-related resources that were found in the
application.

Server resources Displays all server resources (for example, JNDI resources) in the input
application.

Spring Beans Contains a list of Spring Beans found during the analysis.

Hard-coded IP addresses Provides a list of all hard-coded IP addresses that were found in the
application.

Ignored files Lists the files found in the application that, based on certain rules and MTA
configuration, were not processed. See the --userIgnorePath option for
more information.

About Describes the current version of MTA and provides helpful links for further
assistance.

Report Description

3.1.2. Issues report

Access this report from the dashboard by clicking the Issues link.

This report includes details about every issue that was raised by the selected migration paths. The
following information is provided for each issue encountered:

A title to summarize the issue.

The total number of incidents, or times the issue was encountered.

The rule story points to resolve a single instance of the issue.

The estimated level of effort to resolve the issue.

CHAPTER 3. REVIEWING THE REPORTS

13

The total story points to resolve every instance encountered. This is calculated by multiplying
the number of incidents found by the story points per incident.

Figure 3.4. Issues report

Each reported issue may be expanded, by clicking on the title, to obtain additional details. The following
information is provided.

A list of files where the incidents occurred, along with the number of incidents within each file. If
the file is a Java source file, then clicking the filename will direct you to the corresponding
Source report.

A detailed description of the issue. This description outlines the problem, provides any known
solutions, and references supporting documentation regarding either the issue or resolution.

A direct link, entitled Show Rule, to the rule that generated the issue.

Figure 3.5. Expanded issue

Issues are sorted into four categories by default. Information on these categories is available at ask
Category.

3.1.3. Application details report

Access this report from the dashboard by clicking the Application Details link.

Migration Toolkit for Applications 5.2 CLI Guide

14

The report lists the story points, the Java incidents by package, and a count of the occurrences of the
technologies found in the application. Next is a display of application messages generated during the
migration process. Finally, there is a breakdown of this information for each archive analyzed during the
process.

Figure 3.6. Application Details report

Expand the jee-example-app-1.0.0.ear/jee-example-services.jar to review the story points, Java
incidents by package, and a count of the occurrences of the technologies found in this archive. This
summary begins with a total of the story points assigned to its migration, followed by a table detailing
the changes required for each file in the archive. The report contains the following columns.

Column Name Description

Name The name of the file being analyzed.

Technology The type of file being analyzed, for example, Decompiled Java File or Properties.

Issues Warnings about areas of code that need review or changes.

Story Points Level of effort required to migrate the file.

Note that if an archive is duplicated several times in an application, it will be listed just once in the report
and will be tagged with [Included multiple times].

Figure 3.7. Duplicate archive in an application

CHAPTER 3. REVIEWING THE REPORTS

15

Figure 3.7. Duplicate archive in an application

The story points for archives that are duplicated within an application will be counted only once in the
total story point count for that application.

3.1.4. Technologies report

Access this report from the dashboard by clicking the Technologies link.

The report lists the occurrences of technologies, grouped by function, in the analyzed application. It is an
overview of the technologies found in the application, and is designed to assist users in quickly
understanding each application’s purpose.

The image below shows the technologies used in the jee-example-app.

Figure 3.8. Technologies in an application

3.1.5. Application dependencies graph report

The analyzed applications' dependencies are shown in this report, accessible from the Dependencies
Graph link from the dashboard.

It includes a list of all WARs and JARs, including third-party JARs, and graphs the relations between
each of the included files. Each circle in the graph represents a unique dependency defined in the
application.

The below image shows the dependencies used in the jee-example-app, with the selected application in
the center of the graph.

Migration Toolkit for Applications 5.2 CLI Guide

16

Figure 3.9. Graph of dependencies in an application

Interacting with the Dependencies graph

The dependencies graph may be adjusted by using any of the following.

Clicking a dependency will display the name of the application in the upper-left corner. While
selected the dependency will have a shaded circle identifying it, as seen on the center in the
above image.

Clicking and dragging a circle will reposition it. Releasing the mouse will fix the dependency to
the cursor’s location.

Clicking on a fixed dependency will release it, returning the dependency to its default distance
from the application.

Double clicking anywhere will return the entire graph to the default state.

CHAPTER 3. REVIEWING THE REPORTS

17

Clicking on any item in the legend will enable or disable all items of the selected type. For
instance, selecting the embedded WARs icon will disable all embedded WARs if these are
enabled, and will enable these dependencies if they are disabled.

3.1.6. Source report

The analysis of the jee-example-services.jar lists the files in the JAR and the warnings and story points
assigned to each one. Notice the com.acme.anvil.listener.AnvilWebLifecycleListener file, at the time
of this test, has 22 warnings and is assigned 16 story points. Click the file link to see the detail.

The Information section provides a summary of the story points.

This is followed by the file source code. Warnings appear in the file at the point where migration
is required.

In this example, warnings appear at various import statements, declarations, and method calls. Each
warning describes the issue and the action that should be taken.

Figure 3.10. Source report

3.2. TECHNOLOGIES REPORT

Access this report from the report landing page by clicking the Technologies link.

This report provides an aggregate listing of the technologies used, grouped by function, for the
analyzed applications. It shows how the technologies are distributed, and is typically reviewed after
analyzing a large number of applications to group the applications and identify patterns. It also shows the
size, number of libraries, and story point totals of each application.

Clicking any of the headers, such as Markup, sorts the results in descending order. Selecting the same
header again will resort the results in ascending order. The currently selected header is identified in bold,
next to a directional arrow, indicating the direction of the sort.

Figure 3.11. Technologies used across multiple applications

Migration Toolkit for Applications 5.2 CLI Guide

18

Figure 3.11. Technologies used across multiple applications

3.3. DEPENDENCIES GRAPH REPORT

Access this report from the report landing page by clicking the Dependencies Graph link.

It includes a list of all WARs and JARs, and graphs the relations between each of the included files. Each
circle in the graph represents a unique dependency defined in the application. If a file is included as a
dependency in multiple applications, these are linked in the graph.

In the below image we can see two distinct groups. On the left half we see a single WAR that defines
several JARs as dependencies. On the right half we see the same dependencies used by multiple WARs,
one of which is the selected overlord-commons-auth-2.0.11.Final.jar.

Figure 3.12. Dependencies graph across multiple applications

CHAPTER 3. REVIEWING THE REPORTS

19

Figure 3.12. Dependencies graph across multiple applications

The dependencies graph may be adjusted by using any of the following.

Clicking a dependency will display the name of the application in the upper-left corner. While
selected the dependency will have a shaded circle identifying it, as seen on the center in the
above image.

Clicking and dragging a circle will reposition it. Releasing the mouse will fix the dependency to
the cursor’s location.

Clicking on a fixed dependency will release it, returning the dependency to its default distance
from the application.

Double clicking anywhere will return the entire graph to the default state.

Clicking on any item in the legend will enable or disable all items of the selected type. For
instance, selecting the embedded WARs icon will disable all embedded WARs if these are
enabled, and will enable these dependencies if they are disabled.

3.4. ARCHIVES SHARED BY MULTIPLE APPLICATIONS

Migration Toolkit for Applications 5.2 CLI Guide

20

Access these reports from the report landing page by clicking the Archives shared by multiple
applications link. Note that this link is only available if there are applicable shared archives.

Figure 3.13. Archives shared by multiple applications

This allows you to view the detailed reports for all archives that are shared across multiple applications.

3.5. RULE PROVIDERS EXECUTION OVERVIEW

Access this report from the report landing page by clicking the Rule providers execution overview link.

This report provides the list of rules that ran when running the MTA migration command against the
application.

Figure 3.14. Rule providers execution overview

3.6. USED FREEMARKER FUNCTIONS AND DIRECTIVES

Access this report from the report landing page by clicking the FreeMarker methods link.

This report lists all the registered functions and directives that were used to build the report. It is useful
for debugging purposes or if you plan to build your own custom report.

Figure 3.15. Used FreeMarker functions and directives

CHAPTER 3. REVIEWING THE REPORTS

21

Figure 3.15. Used FreeMarker functions and directives

3.7. SEND FEEDBACK FORM

Access this feedback form from the report landing page by clicking the Send feedback link.

This form allows you to rate the product, talk about what you like, and make suggestions for
improvements.

Figure 3.16. Send feedback form

Migration Toolkit for Applications 5.2 CLI Guide

22

Figure 3.16. Send feedback form

CHAPTER 3. REVIEWING THE REPORTS

23

CHAPTER 4. EXPORTING THE REPORT IN CSV FORMAT
MTA provides the ability to export the report data, including the classifications and hints, to a flat file on
your local file system. The export function currently supports the CSV file format, which presents the
report data as fields separated by commas (,).

The CSV file can be imported and manipulated by spreadsheet software such as Microsoft Excel,
OpenOffice Calc, or LibreOffice Calc. Spreadsheet software provides the ability to sort, analyze,
evaluate, and manage the result data from an MTA report.

4.1. EXPORTING THE REPORT

To export the report as a CSV file, run MTA with the --exportCSV argument. A CSV file is created in the
directory specified by the --output argument for each application analyzed.

All discovered issues, spanning all the analyzed applications, are included in the AllIssues.csv file that is
exported to the root directory of the report.

Accessing the report from the application report
If you have exported the CSV report, you can download all of the CSV issues in the Issues Report. To
download these issues, click Download All Issues CSV in the Issues Report.

Figure 4.1. Issues report with CSV download

4.2. IMPORTING THE CSV FILE INTO A SPREADSHEET PROGRAM

1. Launch the spreadsheet software, for example, Microsoft Excel.

2. Choose File → Open.

3. Browse to the CSV exported file and select it.

4. The data is now ready to analyze in the spreadsheet software.

4.3. ABOUT THE CSV DATA STRUCTURE

The CSV formatted output file contains the following data fields:

Rule Id

The ID of the rule that generated the given item.

Problem type

hint or classification

Migration Toolkit for Applications 5.2 CLI Guide

24

Title

The title of the classification or hint. This field summarizes the issue for the given item.

Description

The detailed description of the issue for the given item.

Links

URLs that provide additional information about the issue. A link consists of two attributes: the link
and a description of the link.

Application

The name of the application for which this item was generated.

File Name

The name of the file for the given item.

File Path

The file path for the given item.

Line

The line number of the file for the given item.

Story points

The number of story points, which represent the level of effort, assigned to the given item.

CHAPTER 4. EXPORTING THE REPORT IN CSV FORMAT

25

CHAPTER 5. MAVENIZING YOUR APPLICATION
MTA provides the ability to generate an Apache Maven project structure based on the application
provided. This will create a directory structure with the necessary Maven Project Object Model (POM)
files that specify the appropriate dependencies.

Note that this feature is not intended to create a final solution for your project. It is meant to give you a
starting point and identify the necessary dependencies and APIs for your application. Your project may
require further customization.

5.1. GENERATING THE MAVEN PROJECT STRUCTURE

You can generate a Maven project structure for the provided application by passing in the --mavenize
flag when executing MTA.

The following example runs MTA using the jee-example-app-1.0.0.ear test application:

$ <MTA_HOME>/bin/mta-cli --input /path/to/jee-example-app-1.0.0.ear --output /path/to/output --
target eap:6 --packages com.acme org.apache --mavenize

This generates the Maven project structure in the /path/to/output/mavenized directory.

NOTE

You can only use the --mavenize option when providing a compiled application for the --
input argument. This feature is not available when running MTA against source code.

You can also use the --mavenizeGroupId option to specify the <groupId> to be used for the POM files.
If unspecified, MTA will attempt to identify an appropriate <groupId> for the application, or will default
to com.mycompany.mavenized.

5.2. REVIEWING THE MAVEN PROJECT STRUCTURE

The /path/to/output/mavenized/<APPLICATION_NAME>/ directory contains the following items:

A root POM file. This is the pom.xml file at the top-level directory.

A BOM file. This is the POM file in the directory ending with -bom.

One or more application POM files. Each module has its POM file in a directory named after the
archive.

The example jee-example-app-1.0.0.ear application is an EAR archive that contains a WAR and several
JARs. There is a separate directory created for each of these artifacts. Below is the Maven project
structure created for this application.

/path/to/output/mavenized/jee-example-app/
 jee-example-app-bom/pom.xml
 jee-example-app-ear/pom.xml
 jee-example-services2-jar/pom.xml
 jee-example-services-jar/pom.xml
 jee-example-web-war/pom.xml
 pom.xml

Migration Toolkit for Applications 5.2 CLI Guide

26

https://github.com/windup/windup/blob/master/test-files/jee-example-app-1.0.0.ear

Review each of the generated files and customize as appropriate for your project. To learn more about
Maven POM files, see the Introduction to the POM section of the Apache Maven documentation.

Root POM file
The root POM file for the jee-example-app-1.0.0.ear application can be found at
/path/to/output/mavenized/jee-example-app/pom.xml. This file identifies the directories for all of the
project modules.

The following modules are listed in the root POM for the example jee-example-app-1.0.0.ear
application.

NOTE

Be sure to reorder the list of modules if necessary so that they are listed in an appropriate
build order for your project.

The root POM is also configured to use the Red Hat JBoss Enterprise Application Platform Maven
repository to download project dependencies.

BOM file
The Bill of Materials (BOM) file is generated in the directory ending in -bom. For the example jee-
example-app-1.0.0.ear application, the BOM file can be found at /path/to/output/mavenized/jee-
example-app/jee-example-app-bom/pom.xml. The purpose of this BOM is to have the versions of
third-party dependencies used by the project defined in one place. For more information on using a
BOM, see the Introduction to the dependency mechanism section of the Apache Maven documentation.

The following dependencies are listed in the BOM for the example jee-example-app-1.0.0.ear
application

Application POM files

Each application module that can be mavenized has a separate directory containing its POM file. The

<modules>
 <module>jee-example-app-bom</module>
 <module>jee-example-services2-jar</module>
 <module>jee-example-services-jar</module>
 <module>jee-example-web-war</module>
 <module>jee-example-app-ear</module>
</modules>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.6</version>
 </dependency>
 <dependency>
 <groupId>commons-lang</groupId>
 <artifactId>commons-lang</artifactId>
 <version>2.5</version>
 </dependency>
 </dependencies>
</dependencyManagement>

CHAPTER 5. MAVENIZING YOUR APPLICATION

27

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://maven.repository.redhat.com/
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Each application module that can be mavenized has a separate directory containing its POM file. The
directory name contains the name of the archive and ends in a -jar, -war, or -ear suffix, depending on
the archive type.

Each application POM file lists that module’s dependencies, including:

Third-party libraries

Java EE APIs

Application submodules

For example, the POM file for the jee-example-app-1.0.0.ear EAR, /path/to/output/mavenized/jee-
example-app/jee-example-app-ear/pom.xml, lists the following dependencies.

<dependencies>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.6</version>
 </dependency>
 <dependency>
 <groupId>org.jboss.seam</groupId>
 <artifactId>jee-example-web-war</artifactId>
 <version>1.0</version>
 <type>war</type>
 </dependency>
 <dependency>
 <groupId>org.jboss.seam</groupId>
 <artifactId>jee-example-services-jar</artifactId>
 <version>1.0</version>
 </dependency>
 <dependency>
 <groupId>org.jboss.seam</groupId>
 <artifactId>jee-example-services2-jar</artifactId>
 <version>1.0</version>
 </dependency>
</dependencies>

Migration Toolkit for Applications 5.2 CLI Guide

28

CHAPTER 6. OPTIMIZING MTA PERFORMANCE
MTA performance depends on a number of factors, including hardware configuration, the number and
types of files in the application, the size and number of applications to be evaluated, and whether the
application contains source or compiled code. For example, a file that is larger than 10 MB may need a
lot of time to process.

In general, MTA spends about 40% of the time decompiling classes, 40% of the time executing rules,
and the remainder of the time processing other tasks and generating reports. This section describes
what you can do to improve the performance of MTA.

6.1. DEPLOYING AND RUNNING THE APPLICATION

Try these suggestions first before upgrading hardware.

If possible, run MTA against the source code instead of the archives. This eliminates the need to
decompile additional JARs and archives.

Specify a comma-separated list of the packages to be evaluated by MTA using the --packages
argument on the <MTA_HOME>/bin/mta-cli command line. If you omit this argument, MTA will
decompile everything, which has a big impact on performance.

Specify the --excludeTags argument where possible to exclude them from processing.

Avoid decompiling and analyzing any unnecessary packages and files, such as proprietary
packages or included dependencies.

Increase your ulimit when analyzing large applications. See this Red Hat Knowledgebase article
for instructions on how to do this for Red Hat Enterprise Linux.

If you have access to a server that has better resources than your laptop or desktop machine,
you may want to consider running MTA on that server.

6.2. UPGRADING HARDWARE

If the application and command-line suggestions above do not improve performance, you may need to
upgrade your hardware.

If you have access to a server that has better resources than your laptop/desktop, then you may
want to consider running MTA on that server.

Very large applications that require decompilation have large memory requirements. 8 GB RAM
is recommended. This allows 3 - 4 GB RAM for use by the JVM.

An upgrade from a single or dual-core to a quad-core CPU processor provides better
performance.

Disk space and fragmentation can impact performance. A fast disk, especially a solid-state drive
(SSD), with greater than 4 GB of defragmented disk space should improve performance.

6.3. CONFIGURING MTA TO EXCLUDE PACKAGES AND FILES

6.3.1. Excluding packages

You can exclude packages during decompilation and analysis to increase performance. References to

CHAPTER 6. OPTIMIZING MTA PERFORMANCE

29

https://access.redhat.com/solutions/60746

You can exclude packages during decompilation and analysis to increase performance. References to
these packages remain in the application’s source code but excluding them avoids the decompilation
and analysis of proprietary classes.

Any packages that match the defined value are excluded. For example, you can use com.acme to
exclude both com.acme.example and com.acme.roadrunner.

You can exclude packages by either of the following methods:

Using the --excludePackages argument.

Specifying the packages in a file contained within one of the ignored locations. Each package
should be included on a separate line, and the file must end in .package-ignore.txt. For
example, see <MTA_HOME>/ignore/proprietary.package-ignore.txt.

6.3.2. Excluding files

MTA can exclude specific files, such as included libraries or dependencies, during scanning and report
generation. Excluded files are defined in a file with the .mta-ignore.txt or .windup-ignore.txt extension
within one of the ignored locations.

These files contain a regex string detailing the name to exclude, with one file listed per line. For example,
you can exclude the library ant.jar and any Java source files beginning with Example with a file
containing the following:

.*ant.jar

.*Example.*\.java

6.3.3. Searching locations for exclusion

MTA searches the following locations:

~/.mta/ignore/

~/.windup/ignore/

<MTA_HOME>/ignore/

Any files and folders specified by the --userIgnorePath argument

Each of these files must conform to the rules specified for excluding packages or files, depending on the
type of content to be excluded.

Migration Toolkit for Applications 5.2 CLI Guide

30

APPENDIX A. REFERENCE MATERIAL

A.1. ABOUT MTA COMMAND-LINE ARGUMENTS

The following is a detailed description of the available MTA command line arguments.

NOTE

To run the MTA command without prompting, for example when executing from a script,
you must use the following arguments:

--batchMode

--overwrite

--input

--target

Table A.1. MTA CLI arguments

Argument Description

--additionalClassPath A space-delimited list of additional JAR files or directories to
add to the class path so that they are available for
decompilation or other analysis.

--addonDir Add the specified directory as a custom add-on repository.

--batchMode Flag to specify that MTA should be run in a non-interactive
mode without prompting for confirmation. This mode takes the
default values for any parameters not passed in to the command
line.

--debug Flag to run MTA in debug mode.

--disableTattletale Flag to disable generation of the Tattletale report. If both
enableTattletale and disableTattletale are set to true, then
disableTattletale will be ignored and the Tattletale report will
still be generated.

--discoverPackages Flag to list all available packages in the input binary application.

--enableClassNotFoundAnalysis Flag to enable analysis of Java files that are not available on the
class path. This should not be used if some classes will be
unavailable at analysis time.

--enableCompatibleFilesReport Flag to enable generation of the Compatible Files report. Due to
processing all files without found issues, this report may take a
long time for large applications.

APPENDIX A. REFERENCE MATERIAL

31

--enableTattletale Flag to enable generation of a Tattletale report for each
application. This option is enabled by default when eap is in the
included target. If both enableTattletale and
disableTattletale are set to true, then disableTattletale will
be ignored and the Tattletale report will still be generated.

--excludePackages A space-delimited list of packages to exclude from evaluation.
For example, entering com.mycompany.commonutilities
would exclude all classes whose package name begins with
com.mycompany.commonutilities.

--excludeTags A space-delimited list of tags to exclude. When specified, rules
with these tags will not be processed. To see the full list of tags,
use the --listTags argument.

--explodedApp Flag to indicate that the provided input directory contains
source files for a single application.

--exportCSV Flag to export the report data to a CSV file on your local file
system. MTA creates the file in the directory specified by the --
output argument. The CSV file can be imported into a
spreadsheet program for data manipulation and analysis.

--help Display the MTA help message.

--immutableAddonDir Add the specified directory as a custom read-only add-on
repository.

--includeTags A space-delimited list of tags to use. When specified, only rules
with these tags will be processed. To see the full list of tags, use
the --listTags argument.

--input A space-delimited list of the path to the file or directory
containing one or more applications to be analyzed. This
argument is required.

--install Specify add-ons to install. The syntax is <GROUP_ID>:
<ARTIFACT_ID>[:<VERSION>]. For example, --install
core-addon-x or --install
org.example.addon:example:1.0.0.

--keepWorkDirs Flag to instruct MTA to not delete temporary working files, such
as the graph database and extracted archive files. This is useful
for debugging purposes.

--list Flag to list installed add-ons.

Argument Description

Migration Toolkit for Applications 5.2 CLI Guide

32

--listSourceTechnologies Flag to list all available source technologies.

--listTags Flag to list all available tags.

--listTargetTechnologies Flag to list all available target technologies.

--mavenize Flag to create a Maven project directory structure based on the
structure and content of the application. This creates pom.xml
files using the appropriate Java EE API and the correct
dependencies between project modules. See also the --
mavenizeGroupId option.

--mavenizeGroupId When used with the --mavenize option, all generated
pom.xml files will use the provided value for their <groupId>.
If this argument is omitted, MTA will attempt to determine an
appropriate <groupId> based on the application, or will default
to com.mycompany.mavenized.

--online Flag to allow network access for features that require it.
Currently only validating XML schemas against external
resources relies on Internet access. Note that this comes with a
performance penalty.

--output Specify the path to the directory to output the report
information generated by MTA.

--overwrite Flag to force delete the existing output directory specified by --
output. If you do not specify this argument and the --output
directory exists, you are prompted to choose whether to
overwrite the contents.

IMPORTANT

Do not overwrite a report output directory that
contains important information.

--packages A space-delimited list of the packages to be evaluated by MTA.
It is highly recommended to use this argument.

--remove Remove the specified add-ons. The syntax is <GROUP_ID>:
<ARTIFACT_ID>[:<VERSION>]. For example, --remove
core-addon-x or --remove
org.example.addon:example:1.0.0.

--skipReports Flag to indicate that HTML reports should not be generated. A
common use of this argument is when exporting report data to a
CSV file using --exportCSV.

Argument Description

APPENDIX A. REFERENCE MATERIAL

33

--source A space-delimited list of one or more source technologies,
servers, platforms, or frameworks to migrate from. This
argument, in conjunction with the --target argument, helps to
determine which rulesets are used. Use the --
listSourceTechnologies argument to list all available
sources.

--sourceMode Flag to indicate that the application to be evaluated contains
source files rather than compiled binaries.

--target A space-delimited list of one or more target technologies,
servers, platforms, or frameworks to migrate to. This argument,
in conjunction with the --source argument, helps to determine
which rulesets are used. Use the --listTargetTechnologies
argument to list all available targets.

--userIgnorePath Specify a location, in addition to ${user.home}/.mta/ignore/,
for MTA to identify files that should be ignored.

--userLabelsDirectory Specify a location for MTA to look for custom Target Runtime
Labels. The value can be a directory containing label files or a
single label file. The Target Runtime Label files must use either
the .windup.label.xml or .mta.label.xml suffix. The shipped
Target Runtime Labels are defined within
$MTA_HOME/rules/migration-
core/core.windup.label.xml.

--userRulesDirectory Specify a location, in addition to <MTA_HOME>/rules/ and
${user.home}/.mta/rules/, for MTA to look for custom MTA
rules. The value can be a directory containing ruleset files or a
single ruleset file. The ruleset files must use the .windup.xml
or .mta.xml suffix.

--version Display the MTA version.

Argument Description

A.1.1. Specifying the input

A space-delimited list of the path to the file or directory containing one or more applications to be
analyzed. This argument is required.

Usage

--input <INPUT_ARCHIVE_OR_DIRECTORY> [...]

Depending on whether the input file type provided to the --input argument is a file or directory, it will be
evaluated as follows depending on the additional arguments provided.

Directory

Migration Toolkit for Applications 5.2 CLI Guide

34

--explodedApp --sourceMode Neither Argument

The directory is evaluated as a
single application.

The directory is evaluated as a
single application.

Each subdirectory is evaluated as
an application.

File

--explodedApp --sourceMode Neither Argument

Argument is ignored; the file is
evaluated as a single application.

The file is evaluated as a
compressed project.

The file is evaluated as a single
application.

A.1.2. Specifying the output directory

Specify the path to the directory to output the report information generated by MTA.

Usage

--output <OUTPUT_REPORT_DIRECTORY>

If omitted, the report will be generated in an <INPUT_ARCHIVE_OR_DIRECTORY>.report
directory.

If the output directory exists, you will be prompted with the following (with a default of N).

Overwrite all contents of "/home/username/<OUTPUT_REPORT_DIRECTORY>" (anything
already in the directory will be deleted)? [y,N]

However, if you specify the --overwrite argument, MTA will proceed to delete and recreate the
directory. See the description of this argument for more information.

A.1.3. Setting the source technology

A space-delimited list of one or more source technologies, servers, platforms, or frameworks to migrate
from. This argument, in conjunction with the --target argument, helps to determine which rulesets are
used. Use the --listSourceTechnologies argument to list all available sources.

Usage

--source <SOURCE_1> <SOURCE_2>

The --source argument now provides version support, which follows the Maven version range syntax.
This instructs MTA to only run the rulesets matching the specified versions. For example, --source
eap:5.

APPENDIX A. REFERENCE MATERIAL

35

http://maven.apache.org/enforcer/enforcer-rules/versionRanges.html

WARNING

When migrating to JBoss EAP, be sure to specify the version, for example, eap:6.
Specifying only eap will run rulesets for all versions of JBoss EAP, including those
not relevant to your migration path.

See Supported migration paths in Introduction to the Migration Toolkit for
Applications for the appropriate JBoss EAP version.

A.1.4. Setting the target technology

A space-delimited list of one or more target technologies, servers, platforms, or frameworks to migrate
to. This argument, in conjunction with the --source argument, helps to determine which rulesets are
used. If you do not specify this option, you are prompted to select a target. Use the --
listTargetTechnologies argument to list all available targets.

Usage

--target <TARGET_1> <TARGET_2>

The --target argument now provides version support, which follows the Maven version range syntax.
This instructs MTA to only run the rulesets matching the specified versions. For example, --target eap:7.

WARNING

When migrating to JBoss EAP, be sure to specify the version in the target, for
example, eap:6. Specifying only eap will run rulesets for all versions of JBoss EAP,
including those not relevant to your migration path.

See Supported migration paths in Introduction to the Migration Toolkit for
Applications for the appropriate JBoss EAP version.

A.1.5. Selecting packages

A space-delimited list of the packages to be evaluated by MTA. It is highly recommended to use this
argument.

Usage

--packages <PACKAGE_1> <PACKAGE_2> <PACKAGE_N>

In most cases, you are interested only in evaluating custom application class packages and not
standard Java EE or third party packages. The <PACKAGE_N> argument is a package prefix; all
subpackages will be scanned. For example, to scan the packages com.mycustomapp and





Migration Toolkit for Applications 5.2 CLI Guide

36

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.2/html-single/introduction_to_the_migration_toolkit_for_applications/index#migration_paths_getting-started-guide
http://maven.apache.org/enforcer/enforcer-rules/versionRanges.html
https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.2/html-single/introduction_to_the_migration_toolkit_for_applications/index#migration_paths_getting-started-guide

com.myotherapp, use --packages com.mycustomapp com.myotherapp argument on the
command line.

While you can provide package names for standard Java EE third party software like
org.apache, it is usually best not to include them as they should not impact the migration effort.

WARNING

If you omit the --packages argument, every package in the application is scanned,
which can impact performance.

A.2. SUPPORTED TECHNOLOGY TAGS

The following technology tags are supported in MTA 5.2.1:

0MQ Client (embedded)

3scale (embedded)

Acegi Security (embedded)

AcrIS Security (embedded)

ActiveMQ (embedded)

Airframe (embedded)

Airlift Log Manager (embedded)

AKKA JTA (embedded)

Akka Testkit (embedded)

Amazon SQS Client (embedded)

AMQP Client (embedded)

Anakia (embedded)

AngularFaces (embedded)

ANTLR StringTemplate (embedded)

AOP Alliance (embedded)

Apache Accumulo Client

Apache Aries (embedded)

Apache Axis (embedded)

Apache Axis2 (embedded)



APPENDIX A. REFERENCE MATERIAL

37

Apache Camel (embedded)

Apache Commons JCS (embedded)

Apache Commons Logging (embedded)

Apache Commons Validator (embedded)

Apache CXF (embedded)

Apache Flume (embedded)

Apache Geronimo (embedded)

Apache Hadoop (embedded)

Apache HBase Client

Apache Ignite (embedded)

Apache Karaf (embedded)

Apache Log4J (embedded)

Apache Mahout (embedded)

Apache Meecrowave JTA (embedded)

Apache Santuario (embedded)

Apache Shiro (embedded)

Apache Sirona JTA (embedded)

Apache Struts (embedded)

Apache Synapse (embedded)

Apache Tapestry (embedded)

Apache Wicket (embedded)

Apiman (embedded)

Arquillian (embedded)

AspectJ (embedded)

Atomikos JTA (embedded)

Avalon Logkit (embedded)

Axion Driver

BabbageFaces (embedded)

Bean Validation

Migration Toolkit for Applications 5.2 CLI Guide

38

BeanInject (embedded)

Blaze (embedded)

Blitz4j (embedded)

BootsFaces (embedded)

Bouncy Castle (embedded)

ButterFaces (embedded)

Cache API (embedded)

Cactus (embedded)

Camel Messaging Client (embedded)

Camunda (embedded)

Cassandra Client

CDI

CDI (embedded)

Cfg Engine (embedded)

Chunk Templates (embedded)

Cloudera (embedded)

Clustering EJB

Clustering Web Session

Coherence (embedded)

Common Annotations

Composite Logging JCL (embedded)

Concordion (embedded)

Cucumber (embedded)

Dagger (embedded)

DbUnit (embedded)

Debugging Support for Other Languages

Decompiled Java File

Demoiselle JTA (embedded)

Derby Driver

APPENDIX A. REFERENCE MATERIAL

39

Drools (embedded)

DVSL (embedded)

Dynacache (embedded)

EAR

Easy Rules (embedded)

EasyMock (embedded)

EclipseLink (embedded)

EJB

EJB XML

Ehcache (embedded)

Elasticsearch (embedded)

Enterprise Web Services

Entity Bean

EtlUnit (embedded)

Everit JTA (embedded)

Evo JTA (embedded)

FreeMarker (embedded)

Geronimo JTA (embedded)

GFC Logging (embedded)

GIN (embedded)

GlassFish JTA (embedded)

Google Guice (embedded)

Grails (embedded)

Grapht DI (embedded)

Guava Testing (embedded)

GWT (embedded)

H2 Driver

Hamcrest (embedded)

Handlebars (embedded)

Migration Toolkit for Applications 5.2 CLI Guide

40

HavaRunner (embedded)

Hazelcast (embedded)

Hdiv (embedded)

Hibernate (embedded)

Hibernate Cfg

Hibernate Mapping

Hibernate OGM (embedded)

HighFaces (embedded)

HornetQ Client (embedded)

HSQLDB Driver

HTTP Client (embedded)

HttpUnit (embedded)

ICEfaces (embedded)

Ickenham (embedded)

Ignite JTA (embedded)

Ikasan (embedded)

iLog (embedded)

Infinispan (embedded)

Injekt for Kotlin (embedded)

Iroh (embedded)

Istio (embedded)

JACC

Jamon (embedded)

Jasypt (embedded)

Java EE

Java EE Batch

Java EE Batch API

Java EE JSON-P

Java EE Security

APPENDIX A. REFERENCE MATERIAL

41

Java Source

Java Transaction API (embedded)

JavaMail

Javax Inject (embedded)

JAX-RPC

JAX-RS

JAX-WS

JAXB

JAXR

JayWire (embedded)

JBehave (embedded)

JBoss Cache (embedded)

JBoss EJB XML

JBoss logging (embedded)

JBoss Transactions (embedded)

JBoss Web XML

JBossMQ Client (embedded)

JBPM (embedded)

JCA

Jcabi Log (embedded)

JCache (embedded)

JCunit (embedded)

JDBC (embedded)

JDBC datasources

JDBC XA datasources

Jersey (embedded)

Jetbrick Template (embedded)

Jetty (embedded)

JFreeChart (embedded)

Migration Toolkit for Applications 5.2 CLI Guide

42

JFunk (embedded)

JMock (embedded)

JMockit (embedded)

JMS

JMS Connection Factory

JMS Queue

JMS Topic

JMustache (embedded)

JPA

JPA entities

JPA Matchers (embedded)

JPA named queries

JPA XML

JSecurity (embedded)

JSF (embedded)

JSF Page

JSilver (embedded)

JSON-B

JSP Page

JSTL (embedded)

JTA

Jukito (embedded)

JUnit (embedded)

Ka DI (embedded)

Keyczar (embedded)

Kibana (embedded)

KLogger (embedded)

Kodein (embedded)

Kotlin Logging (embedded)

APPENDIX A. REFERENCE MATERIAL

43

KouInject (embedded)

KumuluzEE JTA (embedded)

LevelDB Client

Liferay (embedded)

LiferayFaces (embedded)

Lift JTA (embedded)

Log.io (embedded)

Log4s (embedded)

Logback (embedded)

Logging to file system

Logging to Socket Handler

Logging Utils (embedded)

Logstash (embedded)

Lumberjack (embedded)

Macros (embedded)

Manifest

MapR (embedded)

Maven XML

MckoiSQLDB Driver

MEJB

Memcached client (embedded)

Message (MDB)

Micro DI (embedded)

Microsoft SQL Driver

MinLog (embedded)

Mixer (embedded)

Mockito (embedded)

MongoDB Client

Monolog (embedded)

Migration Toolkit for Applications 5.2 CLI Guide

44

Morphia

MRules (embedded)

Mule (embedded)

Mule Functional Test Framework (embedded)

MultithreadedTC (embedded)

Mycontainer JTA (embedded)

MyFaces (embedded)

MySQL Driver

Narayana Arjuna (embedded)

Needle (embedded)

Neo4j (embedded)

NLOG4J (embedded)

Nuxeo JTA/JCA (embedded)

OACC (embedded)

OAUTH (embedded)

OCPsoft Logging Utils (embedded)

OmniFaces (embedded)

OpenFaces (embedded)

OpenPojo (embedded)

OpenSAML (embedded)

OpenWS (embedded)

OPS4J Pax Logging Service (embedded)

Oracle ADF (embedded)

Oracle DB Driver

Oracle Forms (embedded)

Orion EJB XML

Orion Web XML

Oscache (embedded)

OTR4J (embedded)

APPENDIX A. REFERENCE MATERIAL

45

OW2 JTA (embedded)

OW2 Log Util (embedded)

OWASP CSRF Guard (embedded)

OWASP ESAPI (embedded)

Peaberry (embedded)

Pega (embedded)

Persistence units

Petals EIP (embedded)

PicketBox (embedded)

PicketLink (embedded)

PicoContainer (embedded)

Play (embedded)

Play Test (embedded)

Plexus Container (embedded)

Polyforms DI (embedded)

Portlet (embedded)

PostgreSQL Driver

PowerMock (embedded)

PrimeFaces (embedded)

Properties

Qpid Client (embedded)

RabbitMQ Client (embedded)

RandomizedTesting Runner (embedded)

Resource Adapter (embedded)

REST Assured (embedded)

Restito (embedded)

RichFaces (embedded)

RMI

RocketMQ Client (embedded)

Migration Toolkit for Applications 5.2 CLI Guide

46

Rythm Template Engine (embedded)

SAML (embedded)

Scalate (embedded)

Scaldi (embedded)

Scribe (embedded)

Seam (embedded)

ServiceMix (embedded)

Servlet

ShiftOne (embedded)

Silk DI (embedded)

SLF4J (embedded)

Snippetory Template Engine (embedded)

SNMP4J (embedded)

SOAP (SAAJ)

Spark (embedded)

Specsy (embedded)

Spock (embedded)

Spring (embedded)

Spring Batch (embedded)

Spring Boot (embedded)

Spring Data (embedded)

Spring Integration (embedded)

Spring Messaging Client (embedded)

Spring MVC (embedded)

Spring Security (embedded)

Spring Test (embedded)

Spring Transactions (embedded)

Spring XML

SQLite Driver

APPENDIX A. REFERENCE MATERIAL

47

SSL (embedded)

Stateful (SFSB)

Stateless (SLSB)

Sticky Configured (embedded)

Stripes (embedded)

SubCut (embedded)

Swagger (embedded)

SwarmCache (embedded)

SwitchYard (embedded)

Syringe (embedded)

Talend ESB (embedded)

Teiid (embedded)

TensorFlow (embedded)

Test Interface (embedded)

TestNG (embedded)

Thymeleaf (embedded)

TieFaces (embedded)

tinylog (embedded)

Tomcat (embedded)

Tornado Inject (embedded)

Trimou (embedded)

Trunk JGuard (embedded)

Twirl (embedded)

Twitter Util Logging (embedded)

UberFire (embedded)

Unirest (embedded)

Unitils (embedded)

Vaadin (embedded)

Velocity (embedded)

Migration Toolkit for Applications 5.2 CLI Guide

48

Vlad (embedded)

Water Template Engine (embedded)

Web XML

WebLogic Web XML

Webmacro (embedded)

WebSphere EJB

WebSphere EJB Ext

WebSphere Web XML

WebSphere WS Binding

WebSphere WS Extension

Weka (embedded)

Weld (embedded)

WF Core JTA (embedded)

Winter (embedded)

WS Metadata

WSDL (embedded)

WSO2 (embedded)

WSS4J (embedded)

XACML (embedded)

XFire (embedded)

XMLUnit (embedded)

Zbus Client (embedded)

A.3. ABOUT RULE STORY POINTS

A.3.1. What are story points?

Story points are an abstract metric commonly used in Agile software development to estimate the level
of effort needed to implement a feature or change.

The Migration Toolkit for Applications uses story points to express the level of effort needed to migrate
particular application constructs, and the application as a whole. It does not necessarily translate to man-
hours, but the value should be consistent across tasks.

A.3.2. How story points are estimated in rules

APPENDIX A. REFERENCE MATERIAL

49

Estimating the level of effort for the story points for a rule can be tricky. The following are the general
guidelines MTA uses when estimating the level of effort required for a rule.

Level of Effort Story Points Description

Information 0 An informational warning with very low or no priority for
migration.

Trivial 1 The migration is a trivial change or a simple library swap with no
or minimal API changes.

Complex 3 The changes required for the migration task are complex, but
have a documented solution.

Redesign 5 The migration task requires a redesign or a complete library
change, with significant API changes.

Rearchitecture 7 The migration requires a complete rearchitecture of the
component or subsystem.

Unknown 13 The migration solution is not known and may need a complete
rewrite.

A.3.3. Task category

In addition to the level of effort, you can categorize migration tasks to indicate the severity of the task.
The following categories are used to group issues to help prioritize the migration effort.

Mandatory

The task must be completed for a successful migration. If the changes are not made, the resulting
application will not build or run successfully. Examples include replacement of proprietary APIs that
are not supported in the target platform.

Optional

If the migration task is not completed, the application should work, but the results may not be
optimal. If the change is not made at the time of migration, it is recommended to put it on the
schedule soon after your migration is completed. An example of this would be the upgrade of EJB 2.x
code to EJB 3.

Potential

The task should be examined during the migration process, but there is not enough detailed
information to determine if the task is mandatory for the migration to succeed. An example of this
would be migrating a third-party proprietary type where there is no directly compatible type.

Information

The task is included to inform you of the existence of certain files. These may need to be examined
or modified as part of the modernization effort, but changes are typically not required. An example of
this would be the presence of a logging dependency or a Maven pom.xml.

For more information on categorizing tasks, see Using custom rule categories.

A.4. ADDITIONAL RESOURCES

Migration Toolkit for Applications 5.2 CLI Guide

50

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.2/html-single/rules_development_guide/rule_categories_rules-development-guide#rule_categories_rules-development-guide

A.4.1. Getting involved

To help the Migration Toolkit for Applications cover most application constructs and server
configurations, including yours, you can help with any of the following items.

Send an email to jboss-migration-feedback@redhat.com and let us know what MTA migration
rules should cover.

Provide example applications to test migration rules.

Identify application components and problem areas that may be difficult to migrate.

Write a short description of these problem migration areas.

Write a brief overview describing how to solve the problem migration areas.

Try Migration Toolkit for Applications on your application. Be sure to report any issues you
encounter.

Contribute to the Migration Toolkit for Applications rules repository.

Write a Migration Toolkit for Applications rule to identify or automate a migration process.

Create a test for the new rule.

Details are provided in the Rules Development Guide.

Contribute to the project source code.

Create a core rule.

Improve MTA performance or efficiency.

See the Core Development Guide for information about how to configure your environment
and set up the project.

Any level of involvement is greatly appreciated!

A.4.2. Resources

MTA forums: https://developer.jboss.org/en/windup

MTA Jira issue trackers

Core MTA: https://issues.redhat.com/projects/WINDUP

MTA Rules: https://issues.redhat.com/projects/WINDUPRULE

MTA mailing list: jboss-migration-feedback@redhat.com

MTA IRC channel: Server FreeNode (irc.freenode.net), channel #windup (transcripts).

A.4.3. Reporting issues

MTA uses Jira as its issue tracking system. If you encounter an issue executing MTA, submit a Jira issue .

APPENDIX A. REFERENCE MATERIAL

51

mailto:jboss-migration-feedback@redhat.com
https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.2/html-single/rules_development_guide
https://github.com/windup/windup/wiki/Core-Development-Guide
https://developer.jboss.org/en/windup
https://issues.redhat.com/projects/WINDUP
https://issues.redhat.com/projects/WINDUPRULE
mailto:jboss-migration-feedback@redhat.com
http://transcripts.jboss.org/channel/irc.freenode.org/%23windup/index.html
https://issues.redhat.com/projects/WINDUP

Revised on 2022-02-22 12:44:48 UTC

Migration Toolkit for Applications 5.2 CLI Guide

52

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT THE CLI GUIDE
	1.2. ABOUT THE MIGRATION TOOLKIT FOR APPLICATIONS
	What is the Migration Toolkit for Applications?
	How does the Migration Toolkit for Applications simplify migration?
	How do I learn more?

	1.3. ABOUT THE CLI

	CHAPTER 2. INSTALLING AND RUNNING THE CLI
	2.1. INSTALLING THE CLI
	2.2. RUNNING THE CLI
	2.2.1. MTA command examples
	Running MTA on an application archive
	Running MTA on source code
	Running cloud-readiness rules
	Overriding MTA properties

	2.2.2. MTA CLI Bash completion
	Enabling Bash completion
	Enabling persistent Bash completion

	2.2.3. Accessing MTA help
	2.2.4. Using OpenRewrite recipes

	2.3. ACCESSING REPORTS

	CHAPTER 3. REVIEWING THE REPORTS
	3.1. APPLICATION REPORT
	3.1.1. Dashboard
	3.1.2. Issues report
	3.1.3. Application details report
	3.1.4. Technologies report
	3.1.5. Application dependencies graph report
	3.1.6. Source report

	3.2. TECHNOLOGIES REPORT
	3.3. DEPENDENCIES GRAPH REPORT
	3.4. ARCHIVES SHARED BY MULTIPLE APPLICATIONS
	3.5. RULE PROVIDERS EXECUTION OVERVIEW
	3.6. USED FREEMARKER FUNCTIONS AND DIRECTIVES
	3.7. SEND FEEDBACK FORM

	CHAPTER 4. EXPORTING THE REPORT IN CSV FORMAT
	4.1. EXPORTING THE REPORT
	Accessing the report from the application report

	4.2. IMPORTING THE CSV FILE INTO A SPREADSHEET PROGRAM
	4.3. ABOUT THE CSV DATA STRUCTURE

	CHAPTER 5. MAVENIZING YOUR APPLICATION
	5.1. GENERATING THE MAVEN PROJECT STRUCTURE
	5.2. REVIEWING THE MAVEN PROJECT STRUCTURE
	Root POM file
	BOM file
	Application POM files

	CHAPTER 6. OPTIMIZING MTA PERFORMANCE
	6.1. DEPLOYING AND RUNNING THE APPLICATION
	6.2. UPGRADING HARDWARE
	6.3. CONFIGURING MTA TO EXCLUDE PACKAGES AND FILES
	6.3.1. Excluding packages
	6.3.2. Excluding files
	6.3.3. Searching locations for exclusion

	APPENDIX A. REFERENCE MATERIAL
	A.1. ABOUT MTA COMMAND-LINE ARGUMENTS
	A.1.1. Specifying the input
	A.1.2. Specifying the output directory
	A.1.3. Setting the source technology
	A.1.4. Setting the target technology
	A.1.5. Selecting packages

	A.2. SUPPORTED TECHNOLOGY TAGS
	A.3. ABOUT RULE STORY POINTS
	A.3.1. What are story points?
	A.3.2. How story points are estimated in rules
	A.3.3. Task category

	A.4. ADDITIONAL RESOURCES
	A.4.1. Getting involved
	A.4.2. Resources
	A.4.3. Reporting issues

