
JBoss Enterprise Application Platform
Continuous Delivery 14

Migration Guide

For Use with JBoss Enterprise Application Platform Continuous Delivery 14

Last Updated: 2018-10-30

JBoss Enterprise Application Platform Continuous Delivery 14 Migration
Guide

For Use with JBoss Enterprise Application Platform Continuous Delivery 14

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information about how to migrate your application from previous versions of
Red Hat JBoss Enterprise Application Platform.

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INTRODUCTION
1.1. ABOUT MIGRATIONS AND UPGRADES
1.2. ABOUT THE USE OF EAP_HOME IN THIS DOCUMENT

CHAPTER 2. PREPARE FOR MIGRATION
2.1. PREPARATION OVERVIEW
2.2. REVIEW THE JAVA EE 8 FEATURES
2.3. REVIEW THE JAVA EE 7 FEATURES
2.4. REVIEW WHAT’S NEW IN JBOSS EAP 7

New Features and Enhancements Introduced JBoss EAP 7.0
New Features and Enhancements Introduced in JBoss EAP 7.1
New Features and Enhancements Introduced in JBoss EAP 7.2

2.5. REVIEW THE LIST OF DEPRECATED AND UNSUPPORTED FEATURES
2.6. REVIEW THE JBOSS EAP GETTING STARTED MATERIAL
2.7. MIGRATION ANALYSIS AND PLANNING
2.8. BACK UP IMPORTANT DATA AND REVIEW SERVER STATE
2.9. MIGRATING AN RPM INSTALLATION
2.10. MIGRATE JBOSS EAP RUNNING AS A SERVICE

CHAPTER 3. TOOLS TO ASSIST IN MIGRATION
3.1. USE RED HAT APPLICATION MIGRATION TOOLKIT TO ANALYZE APPLICATIONS FOR MIGRATION
3.2. USE THE JBOSS SERVER MIGRATION TOOL TO MIGRATE SERVER CONFIGURATIONS

CHAPTER 4. SERVER CONFIGURATION CHANGES
4.1. RPM INSTALLATION CHANGES
4.2. SERVER CONFIGURATION MIGRATION OPTIONS

JBoss Server Migration Tool
Management CLI Migrate Operation

4.3. MANAGEMENT CLI MIGRATION OPERATION
Start the Server and the Management CLI
Migrate the JacORB, Messaging, and Web Subsystems

4.4. LOGGING CHANGES
4.4.1. Logging Message Prefix Changes
4.4.2. Root Logger Console Handler Changes

4.5. WEB SERVER CONFIGURATION CHANGES
4.5.1. Replace the Web Subsystem with Undertow
4.5.2. Migrate JBoss Web Rewrite Conditions
4.5.3. Migrate JBoss Web System Properties
4.5.4. Update the Access Log Header Pattern
4.5.5. Migrate Global Valves

Migrate JBoss Web Valves
JDBCAccessLogValve Manual Migration Procedure

4.5.6. Changes to Set-Cookie Behavior
4.5.7. Changes to HTTP Method Call Behavior
4.5.8. Changes in the Default Web Module Behavior
4.5.9. Changes in the Undertow Subsystem Default Configuration

4.6. JGROUPS SERVER CONFIGURATION CHANGES
4.6.1. JGroups Defaults to a Private Network Interface
4.6.2. JGroups Channels Changes

4.7. INFINISPAN SERVER CONFIGURATION CHANGES

8

9
9
9

11
11
11
11
12
12
12
13
13
14
14
16
16
16

17
17
17

19
19
19
19
19
19
20
21
24
24
25
25
25
26
29
29
29
30
30
31
32
33
34
35
35
35
35

Table of Contents

1

4.7.1. Infinispan Default Cache Configuration Changes
4.7.2. Infinispan Cache Strategy Changes
4.7.3. Configuring Custom Stateful Session Bean Cache for Passivation
4.7.4. Infinispan Cache Container Transport Changes

4.8. EJB SERVER CONFIGURATION CHANGES
DuplicateServiceException

4.9. MESSAGING SERVER CONFIGURATION CHANGES
4.9.1. Messaging Subsystem Server Configuration Changes

Management Model
Messaging Subsystem Migration and Forward Compatibility
Change in Behavior of forward-when-no-consumers Attribute
Change in Default Cluster Load Balancing Policy
Messaging Subsystem XML Configuration

4.9.2. Migrate Messaging Data
4.9.2.1. Migrate Messaging Data Using Export and Import

Export Messaging Data from JBoss EAP 6.4
Export Messaging Data from JBoss EAP 7.x
Import the XML Formatted Messaging Data
Recovering from an Import Messaging Data Failure

4.9.2.2. Migrate Messaging Data Using a JMS Bridge
Configure the Source JBoss EAP 6.4 Server
Configure the Target JBoss EAP 7.x Server
Migrate the Messaging Data

4.9.2.3. Mapping Messaging Folder Names
4.9.2.4. Backing Up Messaging Folder Data

4.9.3. Migrate JMS Destinations
4.9.4. Migrate Messaging Interceptors
4.9.5. Replace Netty Servlet Configuration
4.9.6. Configuring a Generic JMS Resource Adapter
4.9.7. Messaging Configuration Changes
4.9.8. Changes in JMS Serialization Behavior Between Releases

4.10. JMX MANAGEMENT CHANGES
4.11. ORB SERVER CONFIGURATION CHANGES
4.12. MIGRATE THE THREADS SUBSYSTEM CONFIGURATION
4.13. MIGRATE THE REMOTING SUBSYSTEM CONFIGURATION
4.14. WEBSOCKET SERVER CONFIGURATION CHANGES
4.15. SINGLE SIGN-ON SERVER CHANGES
4.16. DATASOURCE CONFIGURATION CHANGES

4.16.1. JDBC Datasource Driver Name
Driver Containing a Single Class
Driver Containing Multiple Classes

4.17. SECURITY SERVER CONFIGURATION CHANGES
4.17.1. Changes in Legacy Security Behavior between JBoss EAP 7.0 and JBoss EAP 7.1

4.17.1.1. HTTP Status Change for Unreachable LDAP Realms
4.17.1.2. Enabling the LDAP Security Realm to Parse Roles from a DN
4.17.1.3. Changes in Sending the JBoss EAP SSL Certificate to an LDAP Server

4.17.2. FIPS Mode Changes
4.18. TRANSACTIONS SUBSYSTEM CHANGES

Removed Transactions Subsystem Attributes
Deprecated Transactions Subsystem Attributes

4.19. CHANGES TO MOD_CLUSTER CONFIGURATION
4.20. VIEWING CONFIGURATION CHANGES

35
35
36
36
37
37
38
38
38
38
39
39
39
39
40
40
41
42
43
43
43
44
46
47
47
47
48
48
49
49
49
50
52
54
55
55
56
56
56
56
56
57
57
57
57
58
58
59
59
59
59
60

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

2

. .CHAPTER 5. APPLICATION MIGRATION CHANGES
5.1. WEB SERVICES APPLICATION CHANGES

5.1.1. JAX-RPC Support Changes
5.1.2. Apache CXF Spring Web Services Changes

Apache CXF Interceptors
Apache CXF Features
Apache CXF HTTP Transport

5.1.3. WS-Security Changes
5.1.4. JBoss Modules Structure Change
5.1.5. Bouncy Castle Requirements and Changes
5.1.6. Apache CXF Bus Selection Strategy
5.1.7. JAX-WS 2.2 Requirements for WebServiceRef
5.1.8. IgnoreHttpsHost CN Check Change
5.1.9. Server Side Configuration and Class Loading
5.1.10. Deprecation of Java Endorsed Standards Override Mechanism
5.1.11. Specification of Descriptor in EAR Archive

5.2. UPDATE THE REMOTE URL CONNECTOR AND PORT
5.3. MESSAGING APPLICATION CHANGES

5.3.1. Replace or Update JMS Deployment Descriptors
5.3.2. Update External JMS Clients
5.3.3. Replace the HornetQ API

5.4. JAX-RS AND RESTEASY APPLICATION CHANGES
5.4.1. RESTEasy Deprecated Classes

Interceptor and MessageBody Classes
Client API
StringConverter

5.4.2. Removed or Protected RESTEasy Classes
ResteasyProviderFactory Add methods
Additional Classes Removed From RESTEasy 3

5.4.3. Additional RESTEasy Changes
SignedInput and SignedOuput
Security Filters
Client-side Filters
Asynchronous HTTP Support
Server-side Cache
YAML Provider Setting Changes
Default Charset UTF-8 in Content-Type Header
SerializableProvider
Matching Requests to Resource Methods
Resource Method Algorithm Switch

5.4.4. RESTEasy SPI Changes
SPI Exceptions
InjectorFactory and Registry

5.4.5. Jackson Provider Changes
5.4.6. Spring RESTEasy Integration Changes
5.4.7. RESTEasy Jettison JSON Provider Changes

5.5. CDI APPLICATION CHANGES
Bean Archives
Clarification of Conversation Resolution
Observer Resolution

5.6. MIGRATE EXPLICIT MODULE DEPENDENCIES
Review Dependencies for Availability
Dependencies That Require Annotation Scanning

61
61
61
61
62
62
63
63
64
64
64
64
65
65
65
65
65
66
66
67
67
67
68
68
70
71
71
71
71
71
71
72
72
72
72
72
72
72
72
73
74
74
74
74
74
75
75
75
76
76
77
77
77

Table of Contents

3

5.7. HIBERNATE AND JPA MIGRATION CHANGES
5.7.1. Hibernate ORM 3.0
5.7.2. Hibernate ORM 4.0 - 4.3
5.7.3. Migrating to Hibernate ORM 5

Removed and Deprecated Classes
Other Changes to Classes and Packages
Type Handling
Transaction Management
Other Hibernate ORM 5 Changes

5.7.4. Migrating from Hibernate ORM 5.0 to Hibernate ORM 5.1
Hibernate ORM 5.1 Features
Schema Management Tooling Changes

Schema Management Tooling Changes in JBoss EAP 7
Schema Management Tooling Changes in JBoss EAP 7.1

5.7.5. Migrating from Hibernate ORM 5.1 to Hibernate ORM 5.3
Hibernate ORM 5.2 Features
Hibernate ORM 5.3 Features
5.7.5.1. Exception Handling Changes Between Hibernate 5.1 and Hibernate 5.3
5.7.5.2. Compatibility Transformer

5.8. HIBERNATE SEARCH CHANGES
Hibernate Search Mapping Changes

Indexing of id Fields of Embedded Relations
Number and Date Index Formatting Changes

Miscellaneous Hibernate Search Changes
Hibernate Search Renamed and Repackaged Classes
Lucene - Renamed and Repackaged Classes
Hibernate Search Deprecated APIs

Hibernate Search Deprecated Interfaces
Hibernate Search Deprecated Classes
Hibernate Search Deprecated Enums
Hibernate Search Deprecated Annotations
Hibernate Search Deprecated Methods
Hibernate Search Deprecated Constructors

Changes Impacting Advanced Integrators
5.9. MIGRATE ENTITY BEANS TO JPA
5.10. JPA PERSISTENCE PROPERTY CHANGES

JPA Persistence Property Changes Introduced in JBoss EAP 7.0
JPA Persistence Property Changes Introduced in JBoss EAP 7.1

5.11. MIGRATE EJB CLIENT CODE
5.11.1. EJB Client Changes in JBoss EAP 7

5.11.1.1. Update the Default Remote Connection Port
5.11.1.2. Update the Default Connector

5.11.2. Migrate Remote Naming Client Code
5.11.3. Additional EJB Client Changes Introduced in JBoss EAP 7.1
5.11.4. EJB Client Changes Needed for JBoss EAP 7.2

5.12. MIGRATE CLIENTS TO USE THE WILDFLY CONFIGURATION FILE
5.13. MIGRATE DEPLOYMENT PLAN CONFIGURATIONS
5.14. MIGRATE CUSTOM APPLICATION VALVES

Migrate Valves Configured in Deployments
Migrate Custom Authenticator Valves

5.15. SECURITY APPLICATION CHANGES
5.15.1. Migrate Authenticator Valves
5.15.2. PicketLink Changes

77
77
78
78
78
78
78
79
80
80
81
81
81
81
81
81
82
83
83
84
84
85
85
85
86
87
87
87
87
88
88
88
89
89
90
91
91
92
93
93
93
93
94
94
98
99

100
101
101
101
101
101
102

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

4

. .

. .

5.15.3. Other Security Application Changes
5.16. JBOSS LOGGING CHANGES
5.17. JAVASERVER FACES (JSF) CODE CHANGES

Dropped Support for JSF 1.2
Compatibility Issue Between JSF 2.1 and JSF 2.3

5.18. MODULE CLASS LOADING CHANGES
5.19. APPLICATION CLUSTERING CHANGES

5.19.1. Overview of New Clustering Features
5.19.2. Web Session Clustering Changes
5.19.3. Stateful Session EJB Clustering Changes
5.19.4. Clustering Services Changes
5.19.5. Migrate Clustering HA Singleton

CHAPTER 6. MISCELLANEOUS CHANGES
6.1. CHANGES TO DELIVERY OF JBOSS EAP NATIVES AND APACHE HTTP SERVER
6.2. CHANGES TO DEPLOYMENTS ON AMAZON EC2
6.3. UNDEPLOYING APPLICATIONS THAT INCLUDE SHARED MODULES
6.4. CHANGES TO JBOSS EAP SCRIPTS
6.5. REMOVAL OF OSGI SUPPORT

CHAPTER 7. MIGRATING TO ELYTRON
7.1. OVERVIEW OF ELYTRON
7.2. MIGRATE SECURE VAULTS AND PROPERTIES

7.2.1. Migrate Vaults to Secure Credential Storage
Migrating Vault Data Using the WildFly Elytron Tool

Migrate a Single Security Vault to a Credential Store
Migrate Multiple Security Vaults to a Credential Store in Bulk

7.2.2. Migrate Security Properties to Elytron
7.3. MIGRATE AUTHENTICATION CONFIGURATION

7.3.1. Migrate Properties-based Authentication and Authorization to Elytron
7.3.1.1. Migrate PicketBox Properties-based Configuration to Elytron

Partially Migrate by Exposing the PicketBox Security Domain to Elytron
Fully Migrate Properties-based Authentication to Elytron

7.3.1.2. Migrate Legacy Properties-based Configuration to Elytron
7.3.2. Migrate LDAP Authentication Configuration to Elytron

7.3.2.1. Migrate the Legacy LDAP Authentication to Elytron
7.3.3. Migrate Database Authentication Configuration to Elytron

7.3.3.1. Migrate the Legacy Database Authentication to Elytron
7.3.4. Migrate Kerberos Authentication to Elytron

Migrate Kerberos HTTP Authentication
Migrate the Kerberos HTTP Authentication to Elytron

Migrate Kerberos Remoting SASL Authentication
Migrate the Kerberos Remoting SASL Authentication to Elytron

7.3.5. Migrate Composite Stores to Elytron
PicketBox Composite Store Configuration
Legacy Security Realm Composite Store Configuration
Elytron Aggregate Security Realm Configuration

7.3.6. Migrate Security Domains That Use Caching to Elytron
PicketBox Cached Security Domain Configuration
Elytron Cached Security Domain Configuration

7.3.7. Migrate JACC Security to Elytron
7.4. MIGRATE APPLICATION CLIENTS

7.4.1. Migrate a Naming Client Configuration to Elytron

102
102
103
103
103
103
104
104
105
107
107
108

109
109
110
110
111
111

112
112
113
113
113
114
114
116
117
117
117
118
119
121
124
127
128
129
130
130
132
134
134
136
136
137
138
140
140
141
143
143
143

Table of Contents

5

. .

. .

7.4.1.1. Migrate the Naming Client Using the Configuration File Approach
7.4.1.2. Migrate the Naming Client Using the Programmatic Approach

7.4.2. Migrate an EJB Client to Elytron
7.4.2.1. Migrate the EJB Client Using the Configuration File Approach
7.4.2.2. Migrate the EJB Client Using the Programmatic Approach

7.5. MIGRATE SSL CONFIGURATIONS
7.5.1. Migrate a Simple SSL Configuration to Elytron
7.5.2. Migrate CLIENT-CERT SSL Authentication to Elytron

Legacy truststore Containing Only CA
Realms and Domains
Principal Decoder
HTTP Authentication Factory

CHAPTER 8. MIGRATING FROM OLDER RELEASES OF JBOSS EAP
8.1. MIGRATING FROM JBOSS EAP 5 TO JBOSS EAP 7
8.2. SUMMARY OF CHANGES MADE TO EACH RELEASE
8.3. REVIEW THE CONTENT IN THE MIGRATION GUIDES
8.4. JBOSS EAP 5 COMPONENT UPGRADE REFERENCE

APPENDIX A. REFERENCE MATERIAL
A.1. JACORB SUBSYSTEM MIGRATION OPERATION WARNINGS
A.2. MESSAGING SUBSYSTEM MIGRATION OPERATION WARNINGS

Replace the Deprecated broadcast-group or discovery-group Attributes
A.3. WEB SUBSYSTEM MIGRATION OPERATION WARNINGS

Web Subsystem Migration Operation Attribute Warnings
Web SSL Connector Attributes
Web Static Resource Attributes
Web SSO Resource Attributes
Web Access Log Attributes
Web Connector Attributes

A.4. MIGRATE JBOSS WEB SYSTEM PROPERTIES REFERENCE
A.5. COMPATIBILITY AND INTEROPERABILITY BETWEEN RELEASES

EJB remoting over IIOP
EJB remoting Using JNDI
EJB remoting Using @WebService
Messaging Standalone Client
Messaging MDBs
JMS bridges

144
144
145
146
147
147
148
149
150
152
152
152

154
154
154
155
155

162
162
163
166
167
171
171
171
172
172
172
173
181
182
182
182
182
183
183

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

6

Table of Contents

7

PREFACE
This document is not intended for use with the JBoss Enterprise Application Platform continuous delivery
release 14. Content from this guide is referenced from other documents in the JBoss Enterprise
Application Platform continuous delivery release 14. This guide is published as reference material only. It
is not intended for direct access or reading.

Some features described in this document might not work or might not be available on Red Hat
OpenShift Online and Red Hat OpenShift Container Platform. For specific details about the feature
differences in the JBoss EAP CD release, see the Release Limitations section in the JBoss EAP
Continuous Delivery 14 Release Notes.

IMPORTANT

This continuous delivery release for JBoss EAP is provided as Technology Preview only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat does not
recommend to use them for production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during the
development process.

See Technology Preview Features Support Scope on the Red Hat Customer Portal for
information about the support scope for Technology Preview features.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

8

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/jboss_eap_continuous_delivery_14_release_notes/#cd_release_limitations
https://access.redhat.com/support/offerings/techpreview

CHAPTER 1. INTRODUCTION
This guide documents the changes required to successfully run and deploy Red Hat JBoss Enterprise
Application Platform 6 applications on Red Hat JBoss Enterprise Application Platform 7. It provides
information about the new features available in this release, the deprecated and unsupported features,
and any application and server configuration updates that might be required to prevent changes in
application behavior.

It also provides information about tools that can help with the migration, such as Red Hat Application
Migration Toolkit, which simplifies migration of Java applications, and the JBoss Server Migration Tool,
which updates the server configuration.

Once the application is successfully deployed and running, plans can be made to upgrade individual
components to use the new functions and features of JBoss EAP 7.

If you plan to migrate your JBoss EAP 5 applications directly to JBoss EAP 7, see Migrating from Older
Releases of JBoss EAP.

1.1. ABOUT MIGRATIONS AND UPGRADES

Major Upgrades

A major upgrade or migration is required when an application is moved from one major release to
another, for example, from JBoss EAP 6.4 to JBoss EAP 7.0. If an application follows the Java EE
specifications, does not access deprecated APIs, and does not contain proprietary code, it might be
possible to run the application in JBoss EAP 7 without any application code changes. However, the
server configuration has changed in JBoss EAP 7 and requires migration. This type of migration is
addressed in this guide.

Minor Updates

JBoss EAP periodically provides point releases, which are minor updates that include bug fixes, security
fixes, and new features. Information about the changes made in a point release are documented in this
guide and in the 7.1.0 Release Notes.

You can use the JBoss Server Migration Tool to automatically upgrade from one point release to another,
for example from JBoss EAP 7.0 to JBoss EAP 7.1. For information about how to configure and run the
tool, see Using the JBoss Server Migration Tool.

If you prefer, you can perform a manual upgrade of the server configuration. Instructions on how to
perform a manual upgrade are documented in Upgrading JBoss EAP in the JBoss EAP Patching and
Upgrading Guide.

Cumulative Patches

JBoss EAP also periodically provides cumulative patches that contain bug and security fixes. Cumulative
patches increment the release by the last digit, for example from 7.1.0 to 7.1.1. Patch installation is
addressed in the JBoss EAP Patching and Upgrading Guide.

1.2. ABOUT THE USE OF EAP_HOME IN THIS DOCUMENT

In this document, the variable EAP_HOME is used to denote the path to the JBoss EAP installation.
Replace this variable with the actual path to your JBoss EAP installation.

If you installed JBoss EAP using the ZIP install method, the install directory is the jboss-eap-
7.2 directory where you extracted the ZIP archive.

CHAPTER 1. INTRODUCTION

9

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/7.1.0_release_notes/
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/using_the_jboss_server_migration_tool
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/patching_and_upgrading_guide/#upgrading-jboss-eap
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/patching_and_upgrading_guide/

If you installed JBoss EAP using the RPM install method, the install directory is
/opt/rh/eap7/root/usr/share/wildfly/.

If you used the installer to install JBoss EAP, the default path for EAP_HOME is
${user.home}/EAP-7.2.0:

For Red Hat Enterprise Linux and Solaris: /home/USER_NAME/EAP-7.2.0/

For Microsoft Windows: C:\Users\USER_NAME\EAP-7.2.0\

If you used the JBoss Developer Studio installer to install and configure the JBoss EAP server,
the default path for EAP_HOME is ${user.home}/jbdevstudio/runtimes/jboss-eap:

For Red Hat Enterprise Linux: /home/USER_NAME/jbdevstudio/runtimes/jboss-
eap/

For Microsoft Windows: C:\Users\USER_NAME\jbdevstudio\runtimes\jboss-eap
or C:\Documents and Settings\USER_NAME\jbdevstudio\runtimes\jboss-
eap\

NOTE

EAP_HOME is not an environment variable. JBOSS_HOME is the environment variable used
in scripts.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

10

CHAPTER 2. PREPARE FOR MIGRATION

2.1. PREPARATION OVERVIEW

In JBoss EAP 7, an effort was made to provide backward compatibility for JBoss EAP 6 applications.
However, if your application uses features that were deprecated or functionality that was removed from
JBoss EAP 7, you might need to make changes to your application code.

In addition, a number of things have changed in this release that might impact deployment of JBoss EAP
7 applications. It is recommended that you do some research and planning before you attempt to migrate
your application.

Become familiar with the features of Java EE 8.

If you are migrating from JBoss EAP 6.4, also become familiar the features of Java EE 7.

Review what’s new in JBoss EAP 7.

Review the list of deprecated and unsupported features.

Review the material in the JBoss EAP 7 Getting Started Guide.

Take a look at the tools that can help with migration tasks.

Once you are comfortable with the feature changes, the development materials, and the tools that can
assist your migration efforts, you can begin to evaluate your applications and your server configuration to
determine the changes that are needed to run in JBoss EAP 7.

2.2. REVIEW THE JAVA EE 8 FEATURES

Java EE 8 builds on Java EE 7, which included many improvements to make it easier to develop and run
feature rich applications on private and public clouds. It incorporated new features and the latest
standards such as HTML5, WebSocket, JSON, Batch, and Concurrency Utilities. Updates included JPA
2.1, JAX-RS 2.0, Servlet 3.1, Expression Language 3.0, JMS 2.0. JSF 2.2, EJB 3.2, CDI 1.2, and Bean
Validation 1.1.

Java EE 8 enhancements include a new portable security API, support for Java Servlet 4.0 with HTTP/2
support, JPA 2.2, JAX-RS 2.1, JSF 2.3, CDI 2.0, enhanced JSON support and a new JSON binding API,
support for asynchronous CDI events, and much more.

You can find more information about Java EE 8, including tutorials, on Oracle’s website: Java EE at a
Glance.

2.3. REVIEW THE JAVA EE 7 FEATURES

If you are migrating from JBoss EAP 6.4, Java EE 7 includes many improvements to make it easier to
develop and run feature rich applications on private and public clouds. It incorporates new features and
the latest standards such as HTML5, WebSocket, JSON, Batch, and Concurrency Utilities. Updates
include JPA 2.1, JAX-RS 2.0, Servlet 3.1, Expression Language 3.0, JMS 2.0. JSF 2.2, EJB 3.2, CDI 1.2,
and Bean Validation 1.1.

You can find more information about Java EE 7, including tutorials, on Oracle’s web site: Java™ EE
Documentation.

CHAPTER 2. PREPARE FOR MIGRATION

11

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/getting_started_guide/
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/documentation/index.html

2.4. REVIEW WHAT’S NEW IN JBOSS EAP 7

JBoss EAP 7 includes some notable upgrades and improvements over previous releases. This section
highlights some of the new features and enhancements that have been introduced in the JBoss EAP 7
point releases.

New Features and Enhancements Introduced JBoss EAP 7.0

Java EE 7

JBoss EAP 7 is a certified implementation of Java EE 7, meeting both the Web Profile and the full
platform specifications. It also includes support for the latest iterations of CDI 1.2 and Web Sockets
1.1.

Undertow

Undertow is the new lightweight, flexible, and performant web server included in JBoss EAP 7,
replacing JBoss Web. Written in Java, it is designed for maximum throughput and scalability. It
supports the latest web technologies, such as the new HTTP/2 standard.

Apache ActiveMQ Artemis

Apache ActiveMQ Artemis is the new JBoss EAP 7 built-in messaging provider. Based on a code
donation from HornetQ, this Apache subproject provides outstanding performance based on a proven
non-blocking architecture.

IronJacamar 1.2

The latest IronJacamar provides a stable and feature rich support for JCA and DataSources.

JBossWS 5

The fifth generation of JBossWS is a major leap forward, bringing new features and performance
improvements to JBoss EAP 7 web services.

RESTEasy 3

JBoss EAP 7 includes the latest generation of RESTEasy. It goes beyond the standard Java EE
REST APIs (JAX-RS 2.0) by providing a number of useful extensions such as JSON Web Encryption,
Jackson, JSON-P, and Jettison.

OpenJDK ORB

JBoss EAP 7 replaced the JacORB IIOP implementation with a downstream branch of the OpenJDK
ORB, leading to better interoperability with the JVM ORB and the Java EE RI.

Feature Rich Clustering

Clustering support was heavily refactored in JBoss EAP 7 and includes several public APIs for access
by applications.

Port Reduction

By utilizing HTTP upgrade, JBoss EAP 7 has moved nearly all of its protocols to be multiplexed over
just two HTTP ports: a management port (9990), and an application port (8080).

Enhanced Logging

The management API now supports the ability to list and view the available log files on a server, or
even define custom formatters other than the default pattern formatter. Deployment’s logging setup is
also greatly enhanced.

For a complete list of new features introduced in JBoss EAP 7.0, see New Features and Enhancements
in the JBoss EAP 7.0.0 Release Notes.

New Features and Enhancements Introduced in JBoss EAP 7.1

Elytron

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

12

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/7.0.0_release_notes/#release_notes_new_features

Elytron, based on the WildFly Elytron project, is the new security framework in JBoss EAP 7.1. It is
designed to unify security across the entire application server.

Management Console

The management console has been improved to provide the ability to configure more subsystems,
provide enhanced transaction subsystem and transaction resource metrics, and manage many
additional configurations.

Management CLI

The management CLI provides enhanced support for response and file attachments, module
configuration, and debugging support through the echo-command argument.

For the complete list of new features introduced in JBoss EAP 7.1, see New Features and
Enhancements in the 7.1.0 Release Notes on the Red Hat Customer Portal.

New Features and Enhancements Introduced in JBoss EAP 7.2

Java EE 8

JBoss EAP 7.2 is a certified implementation of Java EE 8. It includes support for Java Servlet 4.0,
Java Persistence 2.2, CDI 2.0, JSF 2.3, JSON-B 1.0, JSON-P 1.1, and JAX-RS 2.1, and more. See
Java™ EE 8 Technologies for more information about the technologies supported in the Java
Enterprise Edition (Java EE) 8 platform.

BOMs Available for Application Development

A new set of BOMs are available that provide the JBoss EAP runtime dependencies for Java EE 8.
Where the Java EE 7 BOM names contained javaee7, the BOMs in this release now contain
javaee8 in their names. For more information about the new BOMs, see Manage Project
Dependencies in the Development Guide for JBoss EAP.

For the complete list of new features introduced in JBoss EAP 7.2, see New Features and
Enhancements in the 7.2.0 Release Notes on the Red Hat Customer Portal.

2.5. REVIEW THE LIST OF DEPRECATED AND UNSUPPORTED
FEATURES

Before you migrate your application to JBoss EAP 7.2, be aware that some features that were available
in previous releases of JBoss EAP might be deprecated or no longer supported. Support for some
technologies was removed due to the high maintenance cost, low community interest, and much better
alternative solutions.

The following is a short summary of some of the deprecated and unsupported features.

EJB Entity Beans

EJB entity beans are no longer supported. If your application uses EJB entity beans, you should
migrate the code to use JPA, which offers a much more performant and flexible API.

JAX-RPC

Because JAX-WS offers a much more accurate and complete solution, code written for JAX-RPC
should be migrated to use JAX-WS.

JSR-88

Java EE Application Deployment API specification (JSR-88), which defined a contract to enable tools
from multiple providers to configure and deploy applications on any Java EE platform product, was
not widely adopted. You must use another JBoss EAP supported option for application deployment,
such as the management console, the management CLI, deployment scanner, or Maven.

Generic JMS Resource Adapter

CHAPTER 2. PREPARE FOR MIGRATION

13

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/7.1.0_release_notes/#new_features_and_enhancements
https://www.oracle.com/technetwork/java/javaee/tech/index.html
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#manage_project_dependencies
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/7.2.0_release_notes/#new_features_and_enhancements

The ability to configure a generic JMS resource adapter to connect to a JMS provider is no longer
supported.

IO Subsystem

IO buffer pools are deprecated. They are replaced by Undertow byte buffer pools.

Cache Stores

The remote cache store has been deprecated in favor of using the hotrod cache store.

Platforms and Features

A number of platforms and databases that were available in previous releases are deprecated in
JBoss EAP 7.2.

For a complete list of deprecated and unsupported features in JBoss EAP 7.0, see Unsupported and
Deprecated Functionality in the JBoss EAP 7.0.0 Release Notes on the Red Hat Customer Portal.

For the complete list of deprecated and unsupported features in JBoss EAP 7.1, see Unsupported and
Deprecated Functionality in the JBoss EAP 7.1.0 Release Notes on the Red Hat Customer Portal.

For the complete list of deprecated and unsupported features in JBoss EAP 7.2, see Unsupported and
Deprecated Functionality in the JBoss EAP 7.2.0 Release Notes on the Red Hat Customer Portal.

2.6. REVIEW THE JBOSS EAP GETTING STARTED MATERIAL

Be sure to review the JBoss EAP Getting Started Guide. It contains the following important information:

How to download and install JBoss EAP 7

How to download and install Red Hat JBoss Developer Studio

How to configure Maven for your development environment, manage project dependencies, and
configure your projects to use the JBoss EAP Bill of Material (BOM) artifacts

How to download and run the quickstart example applications that ship with the product

2.7. MIGRATION ANALYSIS AND PLANNING

Each application and server configuration is unique, and you must thoroughly understand the
components and architecture of the existing application and server platform before you attempt the
migration. Your migration plan should include a detailed road map for testing and rollout to production
that takes into account the following information.

Identify the People Responsible for the Migration

Identify the stakeholders, project managers, developers, administrators, and others who are
responsible for the migration.

Review the Application Server Platform Configuration and Hardware

Examine the existing application server and platform configuration to determine how they are
impacted by feature changes in JBoss EAP 7. The review should include the following items.

Operating systems and versions

Database used by the applications

Web servers

Security architecture

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

14

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/7.0.0_release_notes/#release_notes_unsupported_and_deprecated_functionality
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/7.1.0_release_notes/#unsupported_and_deprecated_functionality
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/7.2.0_release_notes/#unsupported_and_deprecated_functionality
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/getting_started_guide/

Number and type of processors

Amount of memory

Amount of physical disk storage

Migration of database or messaging data

Other components that might be impacted by the migration

Review the Current Production Environment

You should plan to recreate the production environment as closely as possible for testing and staging
the migration process.

Take into account any clustering configurations. See Upgrading a Cluster in the JBoss EAP
Patching and Upgrading Guide for more information about how to migrate clusters.

If you are currently running a large managed domain, consider a gradual migration approach.

Determine whether you need to migrate any database or messaging data.

Examine and Understand the Existing Application

Thoroughly examine the existing JBoss EAP 6 application. Be totally familiar with its architecture,
functions, features and components, including:

The JVM version

Integration with other Red Hat application server middleware components

Integration with proprietary third-party software

Use of deprecated features that will require replacement

Application configuration including deployment descriptors, JNDI, persistence, JDBC
configuration and pooling, JMS topics and queues, and logging

Identify any code or configuration incompatibilities that will require modification during the migration to
JBoss EAP 7.

Create a Detailed Test Plan

The plan should include regression testing and acceptance criteria requirements.

It should also include performance testing.

Set up a staging environment as close to the production environment as possible to test the
migration before the rollout to production.

Be sure to create a backup and backout plan!

Review the Resources Available for the Migration Process

Assess the skills of the development team and plan for training or additional consulting help.

Be aware that additional hardware and other resources will be required for staging and testing
during the migration process until the effort is completed.

CHAPTER 2. PREPARE FOR MIGRATION

15

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/patching_and_upgrading_guide/#patching_and_upgrading_a_cluster

Determine whether any formal training is needed. If so, add it to the schedule.

Execute the Plan

Gather the necessary resources and implement the migration plan.

IMPORTANT

Before making any modifications to your application, be sure to create a backup copy.

2.8. BACK UP IMPORTANT DATA AND REVIEW SERVER STATE

Before you migrate your application, you need to be aware of the following potential issues.

The migration might remove temporary folders. Any deployments stored in the data/content/
directory must be backed up prior to the migration and restored after it completes. Otherwise, the
server will fail to start due to the missing content.

Prior to the migration, handle any open transactions and delete the data/tx-object-store/
transaction directory.

The persistent timer data in data/timer-service-data must be checked to determine
whether it will still be applicable after the upgrade. Before the upgrade, review the
deployment-* files in that directory to determine which timers are still in use.

Be sure to also back up the current server configuration and applications before you begin.

2.9. MIGRATING AN RPM INSTALLATION

IMPORTANT

It is not supported to have more than one RPM-installed instance of JBoss EAP on a
single Red Hat Enterprise Linux Server. As a result, we recommend that you migrate your
JBoss EAP installation to a new machine when migrating to JBoss EAP 7.

When migrating a JBoss EAP RPM installation from JBoss EAP 6 to JBoss EAP 7, ensure
that JBoss EAP 7 is installed on a machine that does not have an existing JBoss EAP
RPM installation.

To install JBoss EAP 7 using RPMs, see the JBoss EAP Installation Guide.

The migration advice in this guide also applies to migrating RPM installations of JBoss EAP, but you
might need to alter some steps (such as how to start JBoss EAP) to suit an RPM installation compared to
a ZIP or installer installation.

2.10. MIGRATE JBOSS EAP RUNNING AS A SERVICE

If you run JBoss EAP 6 as a service, be sure to review Configuring JBoss EAP to Run as a Service in
the JBoss EAP Installation Guide for updated configuration instructions for JBoss EAP 7.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

16

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/installation_guide/#rpm_installation
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/installation_guide/#configuring_jboss_eap_to_run_as_a_service

CHAPTER 3. TOOLS TO ASSIST IN MIGRATION

3.1. USE RED HAT APPLICATION MIGRATION TOOLKIT TO ANALYZE
APPLICATIONS FOR MIGRATION

Red Hat Application Migration Toolkit (RHAMT) is an extensible and customizable rule-based set of tools
that helps simplify migration of Java applications. It analyzes the APIs, technologies, and architectures
used by the applications you plan to migrate and provides detailed migration reports for each
application. These reports provide the following information.

Detailed explanations of the migration changes needed

Whether the reported change is mandatory or optional

Whether the reported change is complex or trivial

Links to the code requiring the migration change

Hints and links to information about how to make the required changes

An estimate of the level of effort for each migration issue found and the total estimated effort to
migrate the application

You can use RHAMT to analyze the code and architecture of your JBoss EAP 6 applications before you
migrate them to JBoss EAP 7. The RHAMT rule set for migration from JBoss EAP 6 to JBoss EAP 7
reports on XML descriptors and specific application code and parameters that need to be replaced by an
alternative configuration when migrating to JBoss EAP 7.

For more information about how to use Red Hat Application Migration Toolkit to analyze your JBoss EAP
6 applications, see the Red Hat Application Migration Toolkit Getting Started Guide.

3.2. USE THE JBOSS SERVER MIGRATION TOOL TO MIGRATE
SERVER CONFIGURATIONS

The JBoss Server Migration Tool is the preferred method to update your server configuration to include
the new features and settings in JBoss EAP 7 while keeping your existing configuration. The JBoss
Server Migration Tool reads your existing JBoss EAP server configuration files and adds configurations
for any new subsystems, updates the existing subsystem configurations with new features, and removes
any obsolete subsystem configurations.

You can use the JBoss Server Migration Tool to migrate standalone servers and managed domains for
the following configurations.

Migrating to JBoss EAP 7.2

The JBoss Server Migration Tool ships with JBoss EAP 7.2, so there is no separate download or
installation required. This tool supports migration from JBoss EAP 6.4 and later to JBoss EAP 7.2.
You run the tool by executing the jboss-server-migration script located in the EAP_HOME/bin
directory. For more information about how to configure and run the tool, see Using the JBoss Server
Migration Tool.
It is recommended that you use this version of the JBoss Server Migration Tool to migrate your server
configuration to JBoss EAP 7.2 as this version of the tool is supported.

Migrating from WildFly to JBoss EAP

CHAPTER 3. TOOLS TO ASSIST IN MIGRATION

17

https://access.redhat.com/documentation/en/red-hat-application-migration-toolkit/
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/using_the_jboss_server_migration_tool
https://access.redhat.com/support/

If you want to migrate from the WildFly server to JBoss EAP, you must download the latest binary
distribution of the JBoss Server Migration Tool from the JBoss Server Migration Tool GitHub
repository. This open source, standalone version of the tool supports migration from several versions
of the WildFly server to JBoss EAP. For information about how to install and run this version of the
tool, see the JBoss Server Migration Tool User Guide.

IMPORTANT

The binary distribution of the JBoss Server Migration Tool is not supported. If you are
migrating from a previous release of JBoss EAP, it is recommended that you use this
supported version of the tool to migrate your server configuration to JBoss EAP 7.2
instead.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

18

https://github.com/wildfly/wildfly-server-migration/releases
https://docs.jboss.org/author/display/CMTOOL/JBoss+Server+Migration+Tool+User+Guide

CHAPTER 4. SERVER CONFIGURATION CHANGES

4.1. RPM INSTALLATION CHANGES

In JBoss EAP 6, the default path for the RPM installation was the /usr/share/jbossas/ directory.

JBoss EAP 7 was built to Software Collections Library conventions. The root directory of Software
Collections is normally located in the /opt/ directory to avoid possible conflicts between Software
Collections and the base system installation. The use of the /opt/ directory is recommended by the
Filesystem Hierarchy Standard (FHS). As a result, the default path for the RPM installation has changed
to /opt/rh/eap7/root/usr/share/wildfly/ in JBoss EAP 7.

4.2. SERVER CONFIGURATION MIGRATION OPTIONS

To migrate your server configuration from JBoss EAP 6 to JBoss EAP 7, you can either use the JBoss
Server Migration Tool or you can perform a manual migration with the help of the management CLI
migrate operation.

JBoss Server Migration Tool
The JBoss Server Migration Tool is the preferred method to update your configuration to include the new
features and settings in JBoss EAP 7 while keeping your existing configuration. For information about
how to configure and run the tool, see Using the JBoss Server Migration Tool.

Management CLI Migrate Operation
You can use the management CLI migrate operation to update the jacorb, messaging, and web
subsystems in the JBoss EAP 6 server configuration file to allow them run on the new release, but be
aware that the result is not a complete JBoss EAP 7 configuration. For example:

The operation does not update the original remote protocol and port settings to the new http-
remoting and new port settings now used in JBoss EAP 7.

The configuration does not include the new JBoss EAP subsystems or features such as
clustered singleton deployments, or graceful shutdown.

The configuration does not include the new Java EE 7 features such as batch processing.

The migrate operation does not migrate the ejb3 subsystem configuration. For information
about possible EJB migration issues, see EJB Server Configuration Changes.

For more information about using the migrate operation to migration the server configuration, see
Management CLI Migration Operation.

4.3. MANAGEMENT CLI MIGRATION OPERATION

You can use the management CLI to update your JBoss EAP 6 server configuration files to run on JBoss
EAP 7. The management CLI provides a migrate operation to automatically update the jacorb,
messaging, and web subsystems from the previous release to the new configuration. You can also
execute the describe-migration operation for the jacorb, messaging, and web subsystems to
review the proposed migration configuration changes before you perform the migration. There are no
replacements for the cmp, jaxr, or threads subsystems and they must be removed from the server
configuration.

CHAPTER 4. SERVER CONFIGURATION CHANGES

19

https://access.redhat.com/documentation/en-US/Red_Hat_Developer_Toolset/1/html-single/Software_Collections_Guide/index.html#sect-The_File_System_Hierarchy
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/using_the_jboss_server_migration_tool

IMPORTANT

See Server Configuration Migration Options for limitations of the migrate operation. The
JBoss Server Migration Tool is the preferred method to update your configuration to
include the new features and settings in JBoss EAP 7 while keeping your existing
configuration. For information about how to configure and run the tool, see Using the
JBoss Server Migration Tool.

Table 4.1. Subsystem Migration and Management CLI Operation

JBoss EAP 6 Subsystem JBoss EAP 7 Subsystem Management CLI Operation

cmp no replacement remove

jacorb iiop-openjdk migrate

jaxr no replacement remove

messaging messaging-activemq migrate

threads no replacement remove

web undertow migrate

Start the Server and the Management CLI
Follow the steps below to update your JBoss EAP 6 server configuration to run on JBoss EAP 7.

1. Before you begin, review Back Up Important Data and Review Server State. It contains important
information about making sure the server is in a good state and the appropriate files are backed
up.

2. Start the JBoss EAP 7 server with the JBoss EAP 6 configuration.

a. Back up the JBoss EAP 7 server configuration files.

b. Copy the configuration file from the previous release into the JBoss EAP 7 directory.

$ cp EAP6_HOME/standalone/configuration/standalone-full.xml
EAP7_HOME/standalone/configuration

c. Navigate to the JBoss EAP 7 install directory and start the server with the --start-
mode=admin-only argument.

$ bin/standalone.sh -c standalone-full.xml --start-mode=admin-
only

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

20

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/using_the_jboss_server_migration_tool

NOTE

You will see the following org.jboss.as.controller.management-
operation ERRORS in the server log when you start the server. These
errors are expected and indicate that the legacy subsystem configurations
must be removed or migrated to JBoss EAP 7.

WFLYCTL0402: Subsystems [cmp] provided by legacy extension
'org.jboss.as.cmp' are not supported on servers running this version. Both
the subsystem and the extension must be removed or migrated before
the server will function.

WFLYCTL0402: Subsystems [jacorb] provided by legacy extension
'org.jboss.as.jacorb' are not supported on servers running this version.
Both the subsystem and the extension must be removed or migrated
before the server will function.

WFLYCTL0402: Subsystems [jaxr] provided by legacy extension
'org.jboss.as.jaxr' are not supported on servers running this version. Both
the subsystem and the extension must be removed or migrated before
the server will function.

WFLYCTL0402: Subsystems [messaging] provided by legacy extension
'org.jboss.as.messaging' are not supported on servers running this
version. Both the subsystem and the extension must be removed or
migrated before the server will function.

WFLYCTL0402: Subsystems [threads] provided by legacy extension
'org.jboss.as.threads' are not supported on servers running this version.
Both the subsystem and the extension must be removed or migrated
before the server will function.

WFLYCTL0402: Subsystems [web] provided by legacy extension
'org.jboss.as.web' are not supported on servers running this version. Both
the subsystem and the extension must be removed or migrated before
the server will function.

3. Open a new terminal, navigate to the JBoss EAP 7 install directory, and start the management
CLI using the --controller=remote://localhost:9999 arguments.

$ bin/jboss-cli.sh --connect --controller=remote://localhost:9999

Migrate the JacORB, Messaging, and Web Subsystems

1. To review the configuration changes that will be made to the subsystem before you perform the
migration, execute the describe-migration operation.
The describe-migration operation uses the following syntax.

/subsystem=SUBSYSTEM_NAME:describe-migration

The following example describes the configuration changes that are made to the JBoss EAP 6.4
standalone-full.xml configuration file when it is migrated to JBoss EAP 7. Entries were
removed from the output to improve readability and to save space.

Example: describe-migration Operation

CHAPTER 4. SERVER CONFIGURATION CHANGES

21

/subsystem=messaging:describe-migration
{
 "outcome" => "success",
 "result" => {
 "migration-warnings" => [],
 "migration-operations" => [
 {
 "operation" => "add",
 "address" => [("extension" =>
"org.wildfly.extension.messaging-activemq")],
 "module" => "org.wildfly.extension.messaging-
activemq"
 },
 {
 "operation" => "add",
 "address" => [("subsystem" => "messaging-
activemq")]
 },
 <!-- *** Entries removed for readability *** -->
 {
 "operation" => "remove",
 "address" => [("subsystem" => "messaging")]
 },
 {
 "operation" => "remove",
 "address" => [("extension" =>
"org.jboss.as.messaging")]
 }
]
 }
}

2. Execute the migrate operation to migrate the subsystem configuration to the subsystem that
replaces it in JBoss EAP 7. The operation uses the following syntax.

/subsystem=SUBSYSTEM_NAME:migrate

NOTE

The messaging subsystem describe-migration and migrate operations
allow you to pass an argument to configure access by legacy clients. For more
information about the command syntax, see Messaging Subsystem Migration and
Forward Compatibility.

3. Review the outcome and result of the command. Be sure the operation completed successfully
and there are no "migration-warning" entries. This means the migration configuration for the
subsystem is complete.

Example: Successful migrate Operation with No Warnings

/subsystem=messaging:migrate
{
 "outcome" => "success",

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

22

 "result" => {"migration-warnings" => []}
}

If you see "migration-warnings" entries in the log, this indicates the migration of the server
configuration completed successfully but it was not able to migrate all of elements and attributes.
You must follow the suggestions provided by the "migration-warnings" and run additional
management CLI commands to modify those configurations. The following is an example of a
migrate operation that returns "migration-warnings".

Example: migrate Operation with Warnings

/subsystem=messaging:migrate
{
 "outcome" => "success",
 "result" => {"migration-warnings" => [
 "WFLYMSG0080: Could not migrate attribute group-address from
resource [
 (\"subsystem\" => \"messaging-activemq\"),
 (\"server\" => \"default\"),
 (\"broadcast-group\" => \"groupB\")
]. Use instead the socket-binding attribute to configure this
broadcast-group.",
 "WFLYMSG0080: Could not migrate attribute group-port from
resource [
 (\"subsystem\" => \"messaging-activemq\"),
 (\"server\" => \"default\"),
 (\"broadcast-group\" => \"groupB\")
]. Use instead the socket-binding attribute to configure this
broadcast-group.",
 "WFLYMSG0080: Could not migrate attribute local-bind-address
from resource [
 (\"subsystem\" => \"messaging-activemq\"),
 (\"server\" => \"default\"),
 (\"broadcast-group\" => \"groupA\")
]. Use instead the socket-binding attribute to configure this
broadcast-group.",
 "WFLYMSG0080: Could not migrate attribute local-bind-port
from resource [
 (\"subsystem\" => \"messaging-activemq\"),
 (\"server\" => \"default\"),
 (\"broadcast-group\" => \"groupA\")
]. Use instead the socket-binding attribute to configure this
broadcast-group.",
 "WFLYMSG0080: Could not migrate attribute group-address from
resource [
 (\"subsystem\" => \"messaging-activemq\"),
 (\"server\" => \"default\"),
 (\"broadcast-group\" => \"groupA\")
]. Use instead the socket-binding attribute to configure this
broadcast-group.",
 "WFLYMSG0080: Could not migrate attribute group-port from
resource [
 (\"subsystem\" => \"messaging-activemq\"),
 (\"server\" => \"default\"),
 (\"broadcast-group\" => \"groupA\")
]. Use instead the socket-binding attribute to configure this

CHAPTER 4. SERVER CONFIGURATION CHANGES

23

broadcast-group."
]}
}

NOTE

The list of migrate and describe-migration warnings for each subsystem is
located in the Reference Material at the end of this guide.

Jacorb Subsystem Migration Operation Warnings

Messaging Subsystem Migration Operation Warnings

Web Subsystem Migration Operation Warnings

4. Review the server configuration file to verify the extension, subsystem, and namespace were
updated and the existing subsystem configuration was migrated to JBoss EAP 7.

NOTE

You must repeat this process for each of the jacorb, messaging, and web
subsystems using the following commands.

/subsystem=jacorb:migrate
/subsystem=messaging:migrate
/subsystem=web:migrate

5. Remove the cmp, jaxr, and threads subsystems and extensions from the server
configuration.
While still in the management CLI prompt, remove the obsolete cmp, jaxr, and threads
subsystems by executing the following commands.

/subsystem=cmp:remove
/extension=org.jboss.as.cmp:remove
/subsystem=jaxr:remove
/extension=org.jboss.as.jaxr:remove
/subsystem=threads:remove
/extension=org.jboss.as.threads:remove

IMPORTANT

You must migrate the messaging, jacorb, and web subsystems and remove the cmp,
jaxr, and threads extensions and subsystems before you can restart the server for
normal operation. If you need to restart the server before you complete this process, be
sure to include the --start-mode=admin-only argument on the server start command
line. This allows you to continue with the configuration changes.

4.4. LOGGING CHANGES

4.4.1. Logging Message Prefix Changes

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

24

Log messages are prefixed with the project code for the subsystem that reports the message. The
prefixes for all log messages have changed in JBoss EAP 7.

For a complete list of the new log message project code prefixes used in JBoss EAP 7, see Project
Codes Used in JBoss EAP in the JBoss EAP Development Guide.

4.4.2. Root Logger Console Handler Changes

The JBoss EAP 7.0 root logger included a console log handler for all domain server profiles and for all
default standalone profiles except the standalone-full-ha profile. As of JBoss EAP 7.1, the root
logger no longer includes a console log handler for the managed domain profiles. The host controller and
process controller log to the console by default. To achieve the same functionality that was provided in
JBoss EAP 7.0, see Configure a Console Log Handler in the Configuration Guide for JBoss EAP.

4.5. WEB SERVER CONFIGURATION CHANGES

4.5.1. Replace the Web Subsystem with Undertow

Undertow replaces JBoss Web as the web server in JBoss EAP 7. This means the legacy web
subsystem configuration must be migrated to the new JBoss EAP 7 undertow subsystem configuration.

The urn:jboss:domain:web:2.2 subsystem configuration namespace in the server
configuration file has been replaced by the urn:jboss:domain:undertow:7.0 namespace.

The org.jboss.as.web extension module, located in
EAP_HOME/modules/system/layers/base/, has been replaced with the
org.wildfly.extension.undertow extension module.

You can use the management CLI migrate operation to migrate the web subsystem to undertow in
the server configuration file. However, be aware that this operation is not able to migrate all JBoss Web
subsystem configurations. If you see "migration-warning" entries, you must run additional management
CLI commands to migrate those configurations to Undertow. For more information about the
management CLI migrate operation, see Management CLI Migration Operation.

The following is an example of the default web subsystem configuration in JBoss EAP 6.4.

The following is an example of the default undertow subsystem configuration in JBoss EAP 7.2.

<subsystem xmlns="urn:jboss:domain:web:2.2" default-virtual-
server="default-host" native="false">
 <connector name="http" protocol="HTTP/1.1" scheme="http" socket-
binding="http"/>
 <virtual-server name="default-host" enable-welcome-root="true">
 <alias name="localhost"/>
 <alias name="example.com"/>
 </virtual-server>
</subsystem>

<subsystem xmlns="urn:jboss:domain:undertow:7.0" default-server="default-
server" default-virtual-host="default-host" default-servlet-
container="default" default-security-domain="other">
 <buffer-cache name="default"/>
 <server name="default-server">
 <http-listener name="default" socket-binding="http" redirect-

CHAPTER 4. SERVER CONFIGURATION CHANGES

25

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#project_codes_used_in_eap
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#configure_console_log_handler

4.5.2. Migrate JBoss Web Rewrite Conditions

The management CLI migrate operation is not able to automatically migrate rewrite conditions. They
are reported as "migration-warnings", and you must migrate them manually. You can create the
equivalent configuration in JBoss EAP 7 by using Undertow Predicates Attributes and Handlers.

The following is an example of a web subsystem configuration in JBoss EAP 6 that includes rewrite
configuration.

Follow the Management CLI Migration Operation instructions to start your server and the management
CLI, then migrate the web subsystem configuration file using the following command.

/subsystem=web:migrate

The following "migration-warnings" are reported when you run the migrate operation on the above
configuration.

/subsystem=web:migrate
{
 "outcome" => "success",
 "result" => {"migration-warnings" => [
 "WFLYWEB0002: Could not migrate resource {
 \"pattern\" => \"(.*)\",
 \"substitution\" => \"-\",
 \"flags\" => \"F\",
 \"operation\" => \"add\",
 \"address\" => [
 (\"subsystem\" => \"web\"),

socket="https" enable-http2="true"/>
 <https-listener name="https" socket-binding="https" security-
realm="ApplicationRealm" enable-http2="true"/>
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <http-invoker security-realm="ApplicationRealm"/>
 </host>
 </server>
 ...
</subsystem>

<subsystem xmlns="urn:jboss:domain:web:2.2" default-virtual-
server="default" native="false">
 <virtual-server name="default" enable-welcome-root="true">
 <alias name="localhost"/>
 <rewrite name="test" pattern="(.*)/toberewritten/(.*)"
substitution="$1/rewritten/$2" flags="NC"/>
 <rewrite name="test2" pattern="(.*)" substitution="-" flags="F">
 <condition name="get" test="%{REQUEST_METHOD}"
pattern="GET"/>
 <condition name="andCond" test="%{REQUEST_URI}"
pattern=".*index.html" flags="NC"/>
 </rewrite>
 </virtual-server>
</subsystem>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

26

http://undertow.io/undertow-docs/undertow-docs-1.2.0/index.html#predicates-attributes-and-handlers

 (\"virtual-server\" => \"default-host\"),
 (\"rewrite\" => \"test2\")
]
}",
 "WFLYWEB0002: Could not migrate resource {
 \"test\" => \"%{REQUEST_METHOD}\",
 \"pattern\" => \"GET\",
 \"flags\" => undefined,
 \"operation\" => \"add\",
 \"address\" => [
 (\"subsystem\" => \"web\"),
 (\"virtual-server\" => \"default-host\"),
 (\"rewrite\" => \"test2\"),
 (\"condition\" => \"get\")
]
}",
 "WFLYWEB0002: Could not migrate resource {
 \"test\" => \"%{REQUEST_URI}\",
 \"pattern\" => \".*index.html\",
 \"flags\" => \"NC\",
 \"operation\" => \"add\",
 \"address\" => [
 (\"subsystem\" => \"web\"),
 (\"virtual-server\" => \"default-host\"),
 (\"rewrite\" => \"test2\"),
 (\"condition\" => \"andCond\")
]
}"
]}
}

Review the server configuration file and you see the following configuration for the undertow
subsystem.

NOTE

The rewrite configuration is dropped.

<subsystem xmlns="urn:jboss:domain:undertow:7.0" default-server="default-
server" default-virtual-host="default-host" default-servlet-
container="default" default-security-domain="other">
 <buffer-cache name="default"/>
 <server name="default-server">
 <http-listener name="http" socket-binding="http"/>
 <https-listener name="https" socket-binding="https" security-
realm="ApplicationRealm" enable-http2="true"/>
 <host name="default-host" alias="localhost, example.com">
 <location name="/" handler="welcome-content"/>
 </host>
 </server>
 <servlet-container name="default">
 <jsp-config/>
 </servlet-container>
 <handlers>
 <file name="welcome-content" path="${jboss.home.dir}/welcome-

CHAPTER 4. SERVER CONFIGURATION CHANGES

27

Use the management CLI to create the filter to replace the rewrite configuration in the undertow
subsystem. You should see "{"outcome" ⇒ "success"}" for each command.

Create the filters
/subsystem=undertow/configuration=filter/expression-
filter="test1":add(expression="path('(.*)/toberewritten/(.*)') ->
rewrite('$1/rewritten/$2')")
/subsystem=undertow/configuration=filter/expression-
filter="test2":add(expression="method('GET') and path('.*index.html') ->
response-code(403)")

Add the filters to the default server
/subsystem=undertow/server=default-server/host=default-host/filter-
ref="test1":add
/subsystem=undertow/server=default-server/host=default-host/filter-
ref="test2":add

Review the updated server configuration file. The JBoss Web subsystem is now completely migrated
and configured in the undertow subsystem.

content"/>
 </handlers>
 </subsystem>

<subsystem xmlns="urn:jboss:domain:undertow:7.0" default-server="default-
server" default-virtual-host="default-host" default-servlet-
container="default" default-security-domain="other">
 <buffer-cache name="default"/>
 <server name="default-server">
 <http-listener name="http" socket-binding="http"/>
 <https-listener name="https" socket-binding="https" security-
realm="ApplicationRealm" enable-http2="true"/>
 <host name="default-host" alias="localhost, example.com">
 <location name="/" handler="welcome-content"/>
 <filter-ref name="test1"/>
 <filter-ref name="test2"/>
 </host>
 </server>
 <servlet-container name="default">
 <jsp-config/>
 </servlet-container>
 <handlers>
 <file name="welcome-content" path="${jboss.home.dir}/welcome-
content"/>
 </handlers>
 <filters>
 <expression-filter name="test1"
expression="path('(.*)/toberewritten/(.*)') ->
rewrite('$1/rewritten/$2')"/>
 <expression-filter name="test2" expression="method('GET') and
path('.*index.html') -> response-code(403)"/>
 </filters>
</subsystem>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

28

For more information about how to configure filters and handlers using the management CLI, see
Configuring the Web Server in the JBoss EAP 7 Configuration Guide.

4.5.3. Migrate JBoss Web System Properties

In the previous release of JBoss EAP, system properties could be used to modify the default JBoss Web
behavior. For information about how to configure the same behavior in Undertow, see JBoss Web
System Properties Migration Reference

4.5.4. Update the Access Log Header Pattern

When you migrate from JBoss EAP 6.4 to JBoss EAP 7, you might find that the access logs no longer
write the expected "Referer" and "User-agent" values. This is because JBoss Web, which was included
in JBoss EAP 6.4, used a pattern of %{headername}i in the access-log to log an incoming header.

Example: Access Log Format in JBoss EAP 6.4

With the change to use Undertow in JBoss EAP 7, the pattern for an incoming header has changed to %
{i,headername}.

Example: Access Format Header in JBoss EAP 7

4.5.5. Migrate Global Valves

Previous releases of JBoss EAP supported valves. Valves are custom classes inserted into the request
processing pipeline for an application before servlet filters to make changes to the request or perform
additional processing.

Global valves are inserted into the request processing pipeline of all deployed applications and
are configured in the server configuration file.

Authenticator valves authenticate the credentials of the request.

Custom application valves were created by extending the
org.apache.catalina.valves.ValveBase class and configured in the <valve> element
of the jboss-web.xml descriptor file. These valves must be migrated manually.

This section describes how to migrate global valves. Migration of custom and authenticator valves are
covered in the Migrate Custom Application Valves section of this guide.

Undertow, which replaces JBoss Web in JBoss EAP 7, does not support global valves; however, you
should be able to achieve similar functionality by using Undertow handlers. Undertow includes a number
of built-in handlers that provide common functionality. It also provides the ability to create custom
handlers, which can be used to replace custom valve functionality.

If your application uses valves, you must replace them with the appropriate Undertow handler code to
achieve the same functionality when you migrate to JBoss EAP 7.

<access-log pattern="%h %l %u %t "%T sec" "%r" %s %b
"%{Referer}i" "%{User-agent}i""/>

<access-log pattern="%h %l %u %t "%T sec" "%r" %s %b
"%{i,Referer}" "%{i,User-Agent}""/>

CHAPTER 4. SERVER CONFIGURATION CHANGES

29

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#configuring_the_web_server_undertow

For more information about how to configure handlers, see Configuring Handlers in the JBoss EAP 7
Configuration Guide.

For more information about how to configure filters, see Configuring Filters in the JBoss EAP 7
Configuration Guide.

Migrate JBoss Web Valves
The following table lists the valves that were provided by JBoss Web in the previous release of JBoss
EAP and the corresponding Undertow built-in handler. The JBoss Web valves are located in the
org.apache.catalina.valves package.

Table 4.2. Mapping Valves to Handlers

Valve Handler

AccessLogValve io.undertow.server.handlers.accesslog.AccessLogHandler

CrawlerSessionManagerValve io.undertow.servlet.handlers.CrawlerSessionManagerHandler

ExtendedAccessLogValve io.undertow.server.handlers.accesslog.AccessLogHandler

JDBCAccessLogValve See the JDBCAccessLogValve Manual Migration Procedure below
for instructions.

RemoteAddrValve io.undertow.server.handlers.IPAddressAccessControlHandler

RemoteHostValve io.undertow.server.handlers.AccessControlListHandler

RemoteIpValve io.undertow.server.handlers.ProxyPeerAddressHandler

RequestDumperValve io.undertow.server.handlers.RequestDumpingHandler

RewriteValve See Migrate JBoss Web Rewrite Conditions for instructions to migrate
these valves manually.

StuckThreadDetectionValve io.undertow.server.handlers.StuckThreadDetectionHandler

You can use the management CLI migrate operation to automatically migrate global valves that meet
the following criteria:

They are limited to the valves listed in the previous table that do not require manual processing.

They must be defined in the web subsystem of the server configuration file.

For more information about the management CLI migrate operation, see Management CLI Migration
Operation.

JDBCAccessLogValve Manual Migration Procedure
The org.apache.catalina.valves.JDBCAccessLogValve valve is an exception to the rule and
can not be automatically migrated to io.undertow.server.handlers.JDBCLogHandler. Follow
the steps below to migrate the following example valve.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

30

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#undertow-configure-handlers
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#undertow-configure-filters

1. Create a driver module for the database that will store the log entries.

2. Configure the datasource for the database and add the driver to the list of available drivers in the
datasources subsystem.

3. Configure an expression-filter in the undertow subsystem with the following expression:
jdbc-access-log(datasource=DATASOURCE_JNDI_NAME).

4.5.6. Changes to Set-Cookie Behavior

Previous specifications for Set-Cookie HTTP response header syntax, for example RFC2109 and
RFC2965, allowed white space and other separator characters in the cookie value when the cookie value
was quoted. JBoss Web in JBoss EAP 6.4 conformed to the previous specifications and automatically
quoted a cookie value when it contained any separator characters.

The RFC6265 specification for Set-Cookie HTTP response header syntax states that cookie values in
the Set-Cookie response header must conform to specific grammar constraints. For example, they

<valve name="jdbc" module="org.jboss.as.web" class-
name="org.apache.catalina.valves.JDBCAccessLogValve">
 <param param-name="driverName" param-value="com.mysql.jdbc.Driver" />
 <param param-name="connectionName" param-value="root" />
 <param param-name="connectionPassword" param-value="password" />
 <param param-name="connectionURL" param-
value="jdbc:mysql://localhost:3306/wildfly?
zeroDateTimeBehavior=convertToNull" />
 <param param-name="format" param-value="combined" />
</valve>

<datasources>
 <datasource jndi-name="java:jboss/datasources/accessLogDS" pool-
name="accessLogDS" enabled="true" use-java-context="true">
 <connection-url>jdbc:mysql://localhost:3306/wildfly?
zeroDateTimeBehavior=convertToNull</connection-url>
 <driver>mysql</driver>
 <security>
 <user-name>root</user-name>
 <password>Password1!</password>
 </security>
 </datasource>
 ...
 <drivers>
 <driver name="mysql" module="com.mysql">
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 </driver>
 ...
 </drivers>
</datasources>

<filters>
 <expression-filter name="jdbc-access" expression="jdbc-access-
log(datasource='java:jboss/datasources/accessLogDS')" />
 ...
</filters>

CHAPTER 4. SERVER CONFIGURATION CHANGES

31

http://httpwg.org/specs/rfc6265.html#rfc.section.4.1

must be US-ASCII characters, but they cannot include CTRLs (controls), whitespace, double quotes,
commas, semicolons, or backslash characters.

In JBoss EAP 7.0, prior to cumulative patch Red Hat JBoss Enterprise Application Platform 7.0 Update
08, Undertow does not restrict these invalid characters and does not quote cookies that contained the
excluded characters. If you apply this cumulative patch or a newer cumulative patch you can enable
RFC6265 compliant cookie validation by setting the
io.undertow.cookie.DEFAULT_ENABLE_RFC6265_COOKIE_VALIDATION system property to
true.

Starting in JBoss EAP 7.1, by default, Undertow does not enable RFC6265 compliant cookie validation.
It does quote cookies that contain the excluded characters. Starting in JBoss EAP 7.1, you cannot use
the io.undertow.cookie.DEFAULT_ENABLE_RFC6265_COOKIE_VALIDATION system property to
enable RFC6265 compliant cookie validation. Instead, you enable RFC6265 compliant cookie validation
for an HTTP, HTTPS, or AJP listener by setting the rfc6265-cookie-validation listener attribute to
true. The default value for this attribute is false. The following example enables RFC6265 compliant
cookie validation for the HTTP listener.

/subsystem=undertow/server=default-server/http-listener=default:write-
attribute(name=rfc6265-cookie-validation,value=true)

4.5.7. Changes to HTTP Method Call Behavior

JBoss EAP 6.4, which included JBoss Web as the web server, allowed HTTP TRACE method calls by
default.

Undertow, which replaces JBoss Web as the web server in JBoss EAP 7, disallows HTTP TRACE
method calls by default. This setting is configured using the disallowed-methods attribute of the
http-listener element in the undertow subsystem. This can be confirmed by reviewing the output
from the following read-resource command. Note that the value for the disallowed-methods
attribute is ["TRACE"].

/subsystem=undertow/server=default-server/http-listener=default:read-
resource
{
 "outcome" => "success",
 "result" => {
 "allow-encoded-slash" => false,
 "allow-equals-in-cookie-value" => false,
 "allow-unescaped-characters-in-url" => false,
 "always-set-keep-alive" => true,
 "buffer-pipelined-data" => false,
 "buffer-pool" => "default",
 "certificate-forwarding" => false,
 "decode-url" => true,
 "disallowed-methods" => ["TRACE"],
 ...
 }
}

To enable HTTP TRACE method calls in JBoss EAP 7 and later, you must remove the "TRACE" entry
from the disallowed-methods attribute list by running the following command.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

32

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform&downloadType=patches&version=7.0

/subsystem=undertow/server=default-server/http-listener=default:list-
remove(name=disallowed-methods,value="TRACE")

When you run the read-resource command again, you will notice the TRACE method call is no longer
in the list of disallowed methods.

/subsystem=undertow/server=default-server/http-listener=default:read-
resource
{
 "outcome" => "success",
 "result" => {
 "allow-encoded-slash" => false,
 "allow-equals-in-cookie-value" => false,
 "allow-unescaped-characters-in-url" => false,
 "always-set-keep-alive" => true,
 "buffer-pipelined-data" => false,
 "buffer-pool" => "default",
 "certificate-forwarding" => false,
 "decode-url" => true,
 "disallowed-methods" => [],
 ...
 }
}

For more information about the default behavior of HTTP methods, see Default Behavior of HTTP
Methods in the JBoss EAP Configuration Guide.

4.5.8. Changes in the Default Web Module Behavior

In JBoss EAP 7.0, the root context of a web application was disabled by default in mod_cluster.

As of JBoss EAP 7.1, this is no longer the case. This can have unexpected consequences if you are
expecting the root context to be disabled. For example, requests can be misrouted to undesired nodes or
a private application that should not be exposed can be inadvertently accessible through a public proxy.
Undertow locations are also now registered with the mod_cluster load balancer automatically unless they
are explicitly excluded.

Use the following management CLI command to exclude ROOT from the modcluster subsystem
configuration.

/subsystem=modcluster/mod-cluster-config=configuration:write-
attribute(name=excluded-contexts,value=ROOT)

Use the following management CLI command to disable the default welcome web application.

/subsystem=undertow/server=default-server/host=default-
host/location=\/:remove
/subsystem=undertow/configuration=handler/file=welcome-content:remove
reload

For more information about how to configure the default welcome web application, see Configure the
Default Welcome Web Application in the Development Guide for JBoss EAP.

CHAPTER 4. SERVER CONFIGURATION CHANGES

33

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#default_behavior_http_methods
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#configure_the_default_welcome_Web_application

4.5.9. Changes in the Undertow Subsystem Default Configuration

Prior to JBoss EAP 7.2, the default undertow subsystem configuration included two response header
filters that were appended to each HTTP response by the default-host.

Server, which was set to JBoss-EAP/7.

X-Powered-By, which was set to Undertow/1.

These response header filters were removed from the default JBoss EAP 7.2 configuration to prevent
inadvertent disclosure of information about the server in use.

The following is an example of the default undertow subsystem configuration in JBoss EAP 7.1.

The following is an example of the new default undertow subsystem configuration in JBoss EAP 7.2.

<subsystem xmlns="urn:jboss:domain:undertow:4.0">
 <buffer-cache name="default"/>
 <server name="default-server">
 <http-listener name="default" socket-binding="http" redirect-
socket="https"/>
 <https-listener name="https" socket-binding="https" security-
realm="ApplicationRealm" enable-http2="true"/>
 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <filter-ref name="server-header"/>
 <filter-ref name="x-powered-by-header"/>
 <http-invoker security-realm="ApplicationRealm"/>
 </host>
 </server>
 <servlet-container name="default">
 <jsp-config/>
 <websockets/>
 </servlet-container>
 <handlers>
 <file name="welcome-content" path="${jboss.home.dir}/welcome-
content"/>
 </handlers>
 <filters>
 <response-header name="server-header" header-name="Server" header-
value="JBoss-EAP/7"/>
 <response-header name="x-powered-by-header" header-name="X-
Powered-By" header-value="Undertow/1"/>
 </filters>
</subsystem>

<subsystem xmlns="urn:jboss:domain:undertow:7.0" default-server="default-
server" default-virtual-host="default-host" default-servlet-
container="default" default-security-domain="other">
 <buffer-cache name="default"/>
 <server name="default-server">
 <http-listener name="default" socket-binding="http" redirect-
socket="https" enable-http2="true"/>
 <https-listener name="https" socket-binding="https" security-
realm="ApplicationRealm" enable-http2="true"/>
 <host name="default-host" alias="localhost">

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

34

4.6. JGROUPS SERVER CONFIGURATION CHANGES

4.6.1. JGroups Defaults to a Private Network Interface

In the JBoss EAP 6 default configuration, JGroups used the public interface defined in the
<interfaces> section of the server configuration file.

Because it is a recommended practice to use a dedicated network interface, JGroups now defaults to
using the new private interface that is defined in the <interfaces> section of the server
configuration file in JBoss EAP 7.

4.6.2. JGroups Channels Changes

JGroups provides group communication support for HA services in the form of JGroups channels. JBoss
EAP 7 introduces <channel> elements to the jgroups subsystem in the server configuration file. You
can add, remove, or change the configuration of JGroups channels using the management CLI.

For more information about how to configure JGroups, see Cluster Communication with JGroups in the
JBoss EAP Configuration Guide.

4.7. INFINISPAN SERVER CONFIGURATION CHANGES

4.7.1. Infinispan Default Cache Configuration Changes

In JBoss EAP 6, the default clustered caches for web session replication and EJB replication were
replicated ASYNC caches. This has changed in JBoss EAP 7. The default clustered caches are now
distributed ASYNC caches. The replicated caches are no longer even configured by default. See
Configure the Cache Mode in the JBoss EAP Configuration Guide for information about how to add a
replicated cache and make it the default.

This only affects you when you use the new JBoss EAP 7 default configuration. If you migrate the
configuration from JBoss EAP 6, the configuration of the infinispan subsystem will be preserved.

4.7.2. Infinispan Cache Strategy Changes

The behavior of ASYNC cache strategy has changed in JBoss EAP 7.

In JBoss EAP 6, ASYNC cache reads were lock free. Although they would never block, the were prone to

 <location name="/" handler="welcome-content"/>
 <http-invoker security-realm="ApplicationRealm"/>
 </host>
 </server>
 <servlet-container name="default">
 <jsp-config/>
 <websockets/>
 </servlet-container>
 <handlers>
 <file name="welcome-content" path="${jboss.home.dir}/welcome-
content"/>
 </handlers>
</subsystem>

CHAPTER 4. SERVER CONFIGURATION CHANGES

35

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#cluster_communication_jgroups
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#configure_the_cache_mode

dirty reads of stale data, for example on failover. This is because it would allow subsequent requests for
the same user to start before the previous request completed. This permissiveness is not acceptable
when using distributed mode, since cluster topology changes can affect session affinity and easily result
in stale data.

In JBoss EAP 7, ASYNC cache reads require locks. Since they now block new requests from the same
user until the previous replication finishes, dirty reads are prevented.

4.7.3. Configuring Custom Stateful Session Bean Cache for Passivation

Be aware of the following restrictions when configuring a custom stateful session bean (SFSB) cache for
passivation in JBoss EAP 7.1 and later.

The idle-timeout attribute, which is configured in the infinispan passivation-store of
the ejb3 subsystem, is deprecated in JBoss EAP 7.1 and later. JBoss EAP 6.4 supported eager
passivation, passivating according to the idle-timeout value. JBoss EAP 7.1 and later
support lazy passivation, passivating when the max-size threshold is reached.

In JBoss EAP 7.1 and later, the cluster name used by the EJB client is determined by the actual
cluster name of the channel, as configured in the jgroups subsystem.

JBoss EAP 7.1 and later still allow you to set the max-size attribute to control the passivation
threshold.

You should not configure eviction or expiration in your EJB cache configuration.

You should configure eviction by using the max-size attribute of the passivation-store
in the ejb3 subsystem.

You should configure expiration by using the @StatefulTimeout annotation in the SFSB
Java source code or by specifying a stateful-timeout value in the ejb-jar.xml file.

4.7.4. Infinispan Cache Container Transport Changes

A change in behavior between JBoss EAP 7.0 and later versions requires that any updates to the cache
container transport protocol to be done in batch mode or using a special header. This change in behavior
also impacts any tools that are used to manage the JBoss EAP server.

The following is an example of the management CLI commands used to configure the cache container
transport protocol in JBoss EAP 7.0.

/subsystem=infinispan/cache-container=my:add()
/subsystem=infinispan/cache-container=my/transport=jgroups:add()
/subsystem=infinispan/cache-container=my/invalidation-
cache=mycache:add(mode=SYNC)

The following is an example of the management CLI commands needed to perform the same
configuration in JBoss EAP 7.1. Note that the commands are executed in batch mode.

batch
/subsystem=infinispan/cache-container=my:add()
/subsystem=infinispan/cache-container=my/transport=jgroups:add()
/subsystem=infinispan/cache-container=my/invalidation-
cache=mycache:add(mode=SYNC)
run-batch

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

36

If you prefer not to use batch mode, you can instead specify the operation header allow-resource-
service-restart=true when defining the transport. Be aware that this restarts the service so that
the operations can take effect, and some services might stop working until the service is restarted.

If you use scripts to update the cache container transport protocol, be sure to review them and add batch
mode.

4.8. EJB SERVER CONFIGURATION CHANGES

There is no migrate operation for the ejb3 subsystem, so if you use the management CLI migrate
operations to upgrade your other existing JBoss EAP 6.4 configurations, be aware that the ejb3
subsystem configuration is not migrated. Because the configuration of the ejb3 subsystem is slightly
different in JBoss EAP 7 than in JBoss EAP 6.4, you might see exceptions in the server log when you
deploy your EJB applications.

IMPORTANT

If you use the JBoss Server Migration Tool to update your server configuration, the ejb3
subsystem should be configured correctly and you should not see any issues when you
deploy your EJB applications. For information about how to configure and run the tool, see
Using the JBoss Server Migration Tool.

DuplicateServiceException
The following DuplicateServiceException is caused by caching changes in JBoss EAP 7.

DuplicateServiceException in Server Log

ERROR [org.jboss.msc.service.fail] (MSC service thread 1-3) MSC000001:
Failed to start service jboss.deployment.unit."mdb-1.0-
SNAPSHOT.jar".cache-dependencies-installer:
org.jboss.msc.service.StartException in service
jboss.deployment.unit."mdb-1.0-SNAPSHOT.jar".cache-dependencies-installer:
Failed to start service
...
Caused by: org.jboss.msc.service.DuplicateServiceException: Service
jboss.infinispan.ejb."mdb-1.0-SNAPSHOT.jar".config is already registered

You must reconfigure the cache to resolve this error.

1. Follow the instructions to Start the Server and the Management CLI.

2. Issue the following commands to reconfigure caching in the ejb3 subsystem.

/subsystem=ejb3/file-passivation-store=file:remove
/subsystem=ejb3/cluster-passivation-store=infinispan:remove
/subsystem=ejb3/passivation-store=infinispan:add(cache-
container=ejb, max-size=10000)

/subsystem=ejb3/cache=passivating:remove
/subsystem=ejb3/cache=clustered:remove
/subsystem=ejb3/cache=distributable:add(passivation-
store=infinispan, aliases=[passivating, clustered])

CHAPTER 4. SERVER CONFIGURATION CHANGES

37

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/using_the_jboss_server_migration_tool

4.9. MESSAGING SERVER CONFIGURATION CHANGES

In JBoss EAP 7, ActiveMQ Artemis replaces HornetQ as the JMS support provider. This section
describes how to migrate the configuration and related messaging data.

4.9.1. Messaging Subsystem Server Configuration Changes

The org.jboss.as.messaging module extension, located in
EAP_HOME/modules/system/layers/base/, has been replaced by the
org.wildfly.extension.messaging-activemq extension module.

The urn:jboss:domain:messaging:3.0 subsystem configuration namespace has been replaced
by the urn:jboss:domain:messaging-activemq:4.0 namespace.

Management Model
In most cases, an effort was made to keep the element and attribute names as similar as possible to
those used in previous releases. The following table lists some of the changes.

Table 4.3. Mapping Messaging Attributes

HornetQ Name ActiveMQ Name ​

hornetq-server server

hornetq-serverType serverType

connectors connector

discovery-group-name discovery-group

The management operations invoked on the new messaging-activemq subsystem have changed
from /subsystem=messaging/hornetq-server= to /subsystem=messaging-
activemq/server=.

You can migrate an existing JBoss EAP 6 messaging subsystem configuration to the messaging-
activemq subsystem on a JBoss EAP 7 server by invoking its migrate operation.

/subsystem=messaging:migrate

Before you execute the migrate operation, you can invoke the describe-migration operation to
review the list of management operations that will be performed to migrate from the existing JBoss EAP 6
messaging subsystem configuration to the messaging-activemq subsystem on the JBoss EAP 7
server.

/subsystem=messaging:describe-migration

The migrate and describe-migration operations also display a list of migration-warnings for
resources or attributes that can not be migrated automatically.

Messaging Subsystem Migration and Forward Compatibility
The describe-migration and migrate operations for the messaging subsystem provide an
additional configuration argument. If you want to configure messaging to allow legacy JBoss EAP 6

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

38

clients to connect to the JBoss EAP 7 server, you can add the boolean add-legacy-entries
argument to the describe-migration or migrate operation as follows.

/subsystem=messaging:describe-migration(add-legacy-entries=true)
/subsystem=messaging:migrate(add-legacy-entries=true)

If the boolean argument add-legacy-entries is set to true, the messaging-activemq subsystem
creates the legacy-connection-factory resource and adds legacy-entries to the jms-queue
and jms-topic resources.

If the boolean argument add-legacy-entries is set to false, no legacy resources are created in the
messaging-activemq subsystem and legacy JMS clients will not be able to communicate with the
JBoss EAP 7 servers. This is the default value.

For more information about forward and backward compatibility see the Backward and Forward
Compatibility in Configuring Messaging for JBoss EAP.

For more information about the management CLI migrate and describe-migration operations, see
Management CLI Migration Operation.

Change in Behavior of forward-when-no-consumers Attribute
The behavior of the forward-when-no-consumers attribute has changed in JBoss EAP 7.

In JBoss EAP 6, when forward-when-no-consumers was set to false and there were no
consumers in a cluster, messages were redistributed to all nodes in a cluster.

This behavior has changed in JBoss EAP 7. When forward-when-no-consumers is set to false
and there are no consumers in a cluster, messages are not redistributed. Instead, they are kept on the
original node to which they were sent.

Change in Default Cluster Load Balancing Policy
The default cluster load balancing policy has changed in JBoss EAP 7.

In JBoss EAP 6, the default cluster load balancing policy was similar to STRICT, which is like setting the
legacy forward-when-no-consumers parameter to true. In JBoss EAP 7, the default is now
ON_DEMAND, which is like setting the legacy forward-when-no-consumers parameter to false. For
more information about these settings, see Cluster Connection Attributes in Configuring Messaging for
JBoss EAP.

Messaging Subsystem XML Configuration
The XML configuration has changed significantly with the new messaging-activemq subsystem, and
now provides an XML scheme more consistent with other JBoss EAP subsystems.

It is strongly advised that you do not attempt to modify the JBoss EAP messaging subsystem XML
configuration to conform to the new messaging-activemq subsystem. Instead, invoke the legacy
subsystem migrate operation. This operation will write the XML configuration of the new messaging-
activemq subsystem as a part of its execution.

4.9.2. Migrate Messaging Data

You can use one of the following approaches to migrate messaging data from a previous release to the
current release of JBoss EAP.

For file-based messaging systems, you can migrate messaging data to JBoss EAP 7.2 from
JBoss EAP 6.4 and previous JBoss EAP 7.x releases using the export and import method. With

CHAPTER 4. SERVER CONFIGURATION CHANGES

39

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuring_messaging/#messaging_forward_and_backward_compatiblity
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuring_messaging/#cluster_connection_attributes

this method you export the messaging data from the previous release and import it using the
management CLI import-journal operation. Be aware that you can use this approach for
file-based messaging systems only.

You can migrate messaging data from JBoss EAP 6.4 to JBoss EAP 7.2 by configuring a JMS
bridge. You can use this approach for both file-based and JDBC messaging systems.

Due to the change from HornetQ to ActiveMQ Artemis as the JMS support provider, both the format and
the location of the messaging data changed in JBoss EAP 7.0 and later. See Mapping Messaging Folder
Names for details of the changes to the messaging data folder names and locations between the 6.4 and
7.x releases.

4.9.2.1. Migrate Messaging Data Using Export and Import

Using this approach, you export the messaging data from a previous release to an XML file, and then
import that file using the import-journal operation.

1. Export the messaging data to an XML file.

Export messaging data from JBoss EAP 6.4.

Export messaging data from JBoss EAP 7.x.

2. Import the XML formatted messaging data.

IMPORTANT

You cannot use the export and import method to move messaging data between systems
that use a JDBC-based journal for storage.

Export Messaging Data from JBoss EAP 6.4
Due to the change from HornetQ to ActiveMQ Artemis as the JMS support provider, both the format and
the location of the messaging data changed in JBoss EAP 7.0 and later.

To export messaging data from JBoss EAP 6.4, you must use the HornetQ exporter utility. The
HornetQ exporter utility generates and exports the messaging data from JBoss EAP 6.4 to an XML
file. This command requires that you specify the paths to the required HornetQ JARs that shipped with
JBoss EAP 6.4, pass the paths to messagingbindings/, messagingjournal/,
messagingpaging/, and messaginglargemessages/ folders from the previous release as
arguments, and specify an output file in which to write the exported XML data.

The following is the syntax required by the HornetQ exporter utility.

Create a custom module to ensure the correct versions of the HornetQ JARs, including any JARs
installed with patches or upgrades, are loaded and made available to the exporter utility. Using your
favorite editor, create a new module.xml file in the
EAP6_HOME/modules/org/hornetq/exporter/main/ directory and copy the following content:

$ java -jar -mp MODULE_PATH org.hornetq.exporter
MESSAGING_BINDINGS_DIRECTORY MESSAGING_JOURNAL_DIRECTORY
MESSAGING_PAGING_DIRECTORY MESSAGING_LARGE_MESSAGES_DIRECTORY >
OUTPUT_DATA.xml

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.1" name="org.hornetq.exporter">

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

40

NOTE

The custom module is created in the modules/ directory, not the
modules/system/layers/base/ directory.

Follow the steps below to export the data.

1. Stop the JBoss EAP 6.4 server.

2. Create the custom module as described above.

3. Run the following command to export the data.

$ java -jar jboss-modules.jar -mp modules/ org.hornetq.exporter
standalone/data/messagingbindings/ standalone/data/messagingjournal/
standalone/data/messagingpaging
standalone/data/messaginglargemessages/ >
OUTPUT_DIRECTORY/OldMessagingData.xml

4. Make sure there are no errors or warning messages in the log at the completion of the
command.

5. Use tooling available for your operating system to validate the XML in the generated output file.

Export Messaging Data from JBoss EAP 7.x
Follow these steps to export messaging data from JBoss EAP 7.x.

1. Open a terminal, navigate to the JBoss EAP 7.x install directory, and start the server in admin-
only mode.

$ EAP_HOME/bin/standalone.sh -c standalone-full.xml --start-
mode=admin-only

2. Open a new terminal, navigate to the JBoss EAP 7.x install directory, and connect to the
management CLI.

$ EAP_HOME/bin/jboss-cli.sh --connect

3. Use the following management CLI command to export the messaging journal data.

/subsystem=messaging-activemq/server=default:export-journal()

 <main-class
name="org.hornetq.jms.persistence.impl.journal.XmlDataExporter"/>
 <properties>
 <property name="jboss.api" value="deprecated"/>
 </properties>
 <dependencies>
 <module name="org.hornetq"/>
 </dependencies>
</module>

CHAPTER 4. SERVER CONFIGURATION CHANGES

41

4. Make sure there are no errors or warning messages in the log at the completion of the
command.

5. Use tooling available for your operating system to validate the XML in the generated output file.

Import the XML Formatted Messaging Data
You then import the XML file into JBoss EAP 7.0 or later by using the import-journal operation as
follows.

IMPORTANT

If your target server has already performed some messaging tasks, be sure to back up
your messaging folders before you begin the import-journal operation to prevent data
loss in the event of an import failure. See Backing Up Messaging Folder Data for more
information.

1. If you are migrating your JBoss EAP 6.4 server to JBoss EAP 7.2, make sure you have
completed the migration of the server configuration before you begin by using the management
CLI migrate operation or by running the JBoss Server Migration Tool. For information about how
to configure and run the tool, see Using the JBoss Server Migration Tool.

2. Start the JBoss EAP 7.x server in normal mode with no JMS clients connected.

IMPORTANT

It is important that you start the server with no JMS clients connected. This is
because the import-journal operation behaves like a JMS producer.
Messages are immediately available when the operation is in progress. If this
operation fails in the middle of the import and JMS clients are connected, there is
no way to recover because JMS clients might have already consumed some of
the messages.

3. Open a new terminal, navigate to the JBoss EAP 7.x install directory, and connect to the
management CLI.

$ EAP_HOME/bin/jboss-cli.sh --connect

4. Use the following management CLI command to import the messaging data.

/subsystem=messaging-activemq/server=default:import-
journal(file=OUTPUT_DIRECTORY/OldMessagingData.xml)

IMPORTANT

Do not run this command more than one time as doing so will result in duplicate
messages!

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

42

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/using_the_jboss_server_migration_tool

WARNING

If you are using JBoss EAP 7.0, you must apply Red Hat JBoss Enterprise
Application Platform 7.0 Update 05 or a newer cumulative patch to your
JBoss EAP installation in order to avoid a known issue when reading large
messages. For more information, see JBEAP-4407 - Consumer crashes
with IndexOutOfBoundsException when reading large messages from
imported journal.

This issue does not affect JBoss EAP 7.1 and later.

Recovering from an Import Messaging Data Failure
If the import-journal operation fails, you can attempt to recover by using the following steps.

1. Shut down the JBoss EAP 7.x server.

2. Delete all of the messaging journal folders. See Backing Up Messaging Folder Data for the
management CLI commands to determine the correct directory location for the messaging
journal folders.

3. If you backed up the target server messaging data prior to the import, copy the messaging
folders from the backup location to the messaging journal directory determined in the prior step.

4. Repeat the steps to import the XML formatted messaging data.

4.9.2.2. Migrate Messaging Data Using a JMS Bridge

Using this approach, you configure and deploy a JMS bridge to the JBoss EAP 7.x server. The JMS
bridge moves messages from the JBoss EAP 6.4 HornetQ queue to the JBoss EAP 7.x ActiveMQ
Artemis queue.

A JMS bridge consumes messages from a source JMS queue or topic and sends them to a target JMS
queue or topic, which is typically on a different server. It can be used to bridge messages between any
JMS servers, as long as they are JMS 1.1 compliant. The source and destination JMS resources are
looked up using JNDI and the client classes for the JNDI lookup must be bundled in a module. The
module name is then declared in the JMS bridge configuration.

This section describes how to configure the servers and deploy a JMS bridge to move the messaging
data from JBoss EAP 6.4 to JBoss EAP 7.x.

1. Configure the source JBoss EAP 6.4 server.

2. Configure the target JBoss EAP 7.x server.

3. Migrate the messaging data.

Configure the Source JBoss EAP 6.4 Server

1. Stop the JBoss EAP 6.4 server.

2. Back up the HornetQ journal and configuration files.

By default, the HornetQ journal is located in the EAP6_HOME/standalone/data/



CHAPTER 4. SERVER CONFIGURATION CHANGES

43

https://access.redhat.com/jbossnetwork/restricted/softwareDetail.html?softwareId=50411&product=appplatform&version=7.0&downloadType=patches
https://issues.jboss.org/browse/JBEAP-4407

By default, the HornetQ journal is located in the EAP6_HOME/standalone/data/
directory.

See Mapping Messaging Folder Names for default messaging folder locations for each
release.

3. Make sure that the InQueue JMS queue containing the JMS messages is defined on the JBoss
EAP 6.4 server.

4. Make sure that messaging subsystem configuration contains an entry for the
RemoteConnectionFactory similar to the following.

If it does not contain the entry, create one using the following management CLI command:

/subsystem=messaging/hornetq-server=default/connection-
factory=RemoteConnectionFactory:add(factory-type=XA_GENERIC,
connector=[netty], entries=
[java:jboss/exported/jms/RemoteConnectionFactory],ha=true,block-on-
acknowledge=true,retry-interval=1000,retry-interval-
multiplier=1.0,reconnect-attempts=-1)

Configure the Target JBoss EAP 7.x Server

1. The JMS bridge configuration needs the org.hornetq module to connect to the HornetQ
server in the previous release. This module and its direct dependencies are not present in JBoss
EAP 7.x, so you must copy the following modules from the previous release.

Copy the org.hornetq module into the JBoss EAP 7.x EAP_HOME/modules/org/
directory.

If you did not apply patches to this module, copy this folder from the JBoss EAP 6.4
server: EAP6_HOME/modules/system/layers/base/org/hornetq/

If you did apply patches to this module, copy this folder from the JBoss EAP 6.4 server:
EAP6_HOME/modules/system/layers/base/.overlays/layer-base-jboss-
eap-6.4.x.CP/org/hornetq/

Remove the <resource-root> for the HornetQ lib path from the JBoss EAP 7.x
EAP_HOME/modules/org/hornetq/main/module.xml file.

If you did not apply patches to the JBoss EAP 6.4 org.hornetq module, remove the
following line from the file:

If you did apply patches to the JBoss EAP 6.4 org.hornetq module, remove the
following lines from the file:

<connection-factory name="RemoteConnectionFactory">
 <entries>
 <entry
name="java:jboss/exported/jms/RemoteConnectionFactory"/>
 </entries>
 ...
</connection-factory>

<resource-root path="lib"/>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

44

WARNING

Failure to remove the HornetQ lib path resource-root will
cause the bridge to fail with the following error in the log file.

2016-07-15 09:32:25,660 ERROR
[org.jboss.as.controller.management-operation]
(management-handler-thread - 2) WFLYCTL0013:
Operation ("add") failed - address: ([
 ("subsystem" => "messaging-activemq"),
 ("jms-bridge" => "myBridge")
]) - failure description: "WFLYMSGAMQ0086:
Unable to load module org.hornetq"

Copy the org.jboss.netty module into the JBoss EAP 7.x
EAP_HOME/modules/org/jboss/ directory.

If you did not apply patches to this module, copy this folder from the JBoss EAP 6.4
server: EAP6_HOME/modules/system/layers/base/org/jboss/netty/

If you did apply patches to this module, copy this folder from the JBoss EAP 6.4 server:
EAP6_HOME/modules/system/layers/base/.overlays/layer-base-jboss-
eap-6.4.x.CP/org/jboss/netty

2. Create the JMS queue to contain the messages received from JBoss EAP 6.4 server. The
following is an example of a management CLI command that creates the
MigratedMessagesQueue JMS queue to receive the message.

jms-queue add --queue-address=MigratedMessagesQueue --entries=
[jms/queue/MigratedMessagesQueue
java:jboss/exported/jms/queue/MigratedMessagesQueue]

This creates the following jms-queue configuration for the default server in the messaging-
activemq subsystem of the JBoss EAP 7.x server.

3. Make sure that messaging-activemq subsystem default server contains a configuration for
the InVmConnectionFactory connection-factory similar to the following:

<resource-root path="lib"/>
<resource-root path="../../../../../org/hornetq/main/lib"/>



<jms-queue name="MigratedMessagesQueue"
entries="jms/queue/MigratedMessagesQueue
java:jboss/exported/jms/queue/MigratedMessagesQueue"/>

<connection-factory name="InVmConnectionFactory" factory-
type="XA_GENERIC" entries="java:/ConnectionFactory" connectors="in-
vm"/>

CHAPTER 4. SERVER CONFIGURATION CHANGES

45

If it does not contain the entry, create one using the following management CLI command:

/subsystem=messaging-activemq/server=default/connection-
factory=InVmConnectionFactory:add(factory-type=XA_GENERIC,
connectors=[in-vm], entries=[java:/ConnectionFactory])

4. Create and deploy a JMS bridge that reads messages from the InQueue JMS queue configured
on the JBoss EAP 6.4 server and transfers them to the MigratedMessagesQueue configured
on the JBoss EAP 7.x server.

/subsystem=messaging-activemq/jms-bridge=myBridge:add(add-messageID-
in-header=true,max-batch-time=100,max-batch-size=10,max-retries=-
1,failure-retry-interval=1000,quality-of-
service=AT_MOST_ONCE,module=org.hornetq,source-
destination=jms/queue/InQueue,source-connection-
factory=jms/RemoteConnectionFactory,source-context=
[("java.naming.factory.initial"=>"org.wildfly.naming.client.WildFlyI
nitialContextFactory"),
("java.naming.provider.url"=>"remote://127.0.0.1:4447")],target-
destination=jms/queue/MigratedMessagesQueue,target-connection-
factory=java:/ConnectionFactory)

This creates the following jms-bridge configuration in the messaging-activemq subsystem
of the JBoss EAP 7.x server.

5. If security is configured for JBoss EAP 6.4, you must also configure the JMS bridge configuration
<source> element to include a source-context that specifies the correct user name and
password to use for the JNDI lookup when creating the connection.

Migrate the Messaging Data

1. Verify that the information you provided for the following configurations is correct.

Any queue and topic names.

The java.naming.provider.url for JNDI lookup.

2. Make sure that you have deployed the target JMS destination to the JBoss EAP 7.x server.

<jms-bridge name="myBridge" add-messageID-in-header="true" max-
batch-time="100" max-batch-size="10" max-retries="-1" failure-retry-
interval="1000" quality-of-service="AT_MOST_ONCE"
module="org.hornetq">
 <source destination="jms/queue/InQueue" connection-
factory="jms/RemoteConnectionFactory">
 <source-context>
 <property name="java.naming.factory.initial"
value="org.wildfly.naming.client.WildFlyInitialContextFactory"/>
 <property name="java.naming.provider.url"
value="remote://127.0.0.1:4447"/>
 </source-context>
 </source>
 <target destination="jms/queue/MigratedMessagesQueue"
connection-factory="java:/ConnectionFactory"/>
</jms-bridge>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

46

3. Start both the JBoss EAP 6.4 and JBoss EAP 7.x servers.

4.9.2.3. Mapping Messaging Folder Names

The following table shows the messaging directory names used in the previous release and the
corresponding names used in the current release of JBoss EAP. The directories are relative to the
jboss.server.data.dir directory, which defaults to EAP_HOME/standalone/data/ if it is not
specified.

JBoss EAP 6.4 Directory Name JBoss EAP 7.x Directory Name

messagingbindings/ activemq/bindings/

messagingjournal/ activemq/journal/

messaginglargemessages/ activemq/largemessages/

messagingpaging/ activemq/paging/

NOTE

The messaginglargemessages/ and messagingpaging/ directories might not be
present if there are no large messages or if paging is disabled.

4.9.2.4. Backing Up Messaging Folder Data

If your target server has already processed messages, it is a good idea to back up the target message
folders to a backup location before you begin. The default location of the messaging folders is
EAP_HOME/standalone/data/activemq/; however it is configurable. If you are not sure of the
location of your messaging data, you can use the following management CLI commands to find the
location of the messaging folders.

/subsystem=messaging-activemq/server=default/path=journal-
directory:resolve-path
/subsystem=messaging-activemq/server=default/path=paging-
directory:resolve-path
/subsystem=messaging-activemq/server=default/path=bindings-
directory:resolve-path
/subsystem=messaging-activemq/server=default/path=large-messages-
directory:resolve-path

Once you know the location of the folders, copy each folder to a safe backup location.

4.9.3. Migrate JMS Destinations

In JBoss EAP 6, JMS destination queues were configured in the <jms-destinations> element under
the <hornetq-server> element in the messaging subsystem.

<hornetq-server>
 ...
 <jms-destinations>

CHAPTER 4. SERVER CONFIGURATION CHANGES

47

In JBoss EAP 7, the JMS destination queue is configured in the default <server> element of the
messaging-activemq subsystem.

4.9.4. Migrate Messaging Interceptors

Messaging interceptors have changed significantly in JBoss EAP 7 with the replacement of HornetQ with
ActiveMQ Artemis as the JMS messaging provider.

The HornetQ messaging subsystem included in the previous release of JBoss EAP required that you
install the HornetQ interceptors by adding them to a JAR and then modifying the HornetQ module.xml
file.

The messaging-activemq subsystem included in JBoss EAP 7 does not require modification of a
module.xml file. User interceptor classes, which now implement the Apache ActiveMQ Artemis
Interceptor interface, can now be loaded from any server module. You specify the module from which the
interceptor should be loaded in the messaging-activemq subsystem of the server configuration file.

Example: Interceptor Configuration

4.9.5. Replace Netty Servlet Configuration

 <jms-queue name="testQueue">
 <entry name="queue/test"/>
 <entry name="java:jboss/exported/jms/queue/test"/>
 </jms-queue>
 </jms-destinations>
 ...
</hornetq-server>

<server name="default">
 ...
 <jms-queue name="testQueue" entries="queue/test
java:jboss/exported/jms/queue/test"/>
 ...
</server>

<subsystem xmlns="urn:jboss:domain:messaging-activemq:4.0">
 <server name="default">
 ...
 <incoming-interceptors>
 <class name="com.mycompany.incoming.myInterceptor"
module="com.mycompany" />
 <class name="com.othercompany.incoming.myOtherInterceptor"
module="com.othercompany" />
 </incoming-interceptors>
 <outgoing-interceptors>
 <class name="com.mycompany.outgoing.myInterceptor"
module="com.mycompany" />
 <class name="com.othercompany.outgoing.myOtherInterceptor"
module="com.othercompany" />
 </outgoing-interceptors>
 </server>
</subsystem>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

48

https://activemq.apache.org/artemis/docs/javadocs/javadoc-1.2.0/org/apache/activemq/artemis/api/core/Interceptor.html

In JBoss EAP 6, you could configure a servlet engine to work with the Netty Servlet transport. Because
ActiveMQ Artemis replaces HornetQ as the built-in messaging provider in JBoss EAP 7, this
configuration is no longer available. You must replace the servlet configuration to use the new built-in
messaging HTTP connectors and HTTP acceptors instead.

4.9.6. Configuring a Generic JMS Resource Adapter

The way you configure a generic JMS resource adapter for use with a third-party JMS provider has
changed in JBoss EAP 7. For more information, see Deploying a Generic JMS Resource Adapter in
Configuring Messaging for JBoss EAP.

4.9.7. Messaging Configuration Changes

In JBoss EAP 7.0, if you configured the replication-master policy without specifying the check-
for-live-server attribute, its default value was false. This has changed in JBoss EAP 7.1 and
later. The default value for the check-for-live-server attribute is now true.

The following is an example of a management CLI command that configures the replication-
master policy without specifying the check-for-live-server attribute.

/subsystem=messaging-activemq/server=default/ha-policy=replication-
master:add(cluster-name=my-cluster,group-name=group1)

When you read the resource using the management CLI, note that the check-for-live-server
attribute value is set to true.

/subsystem=messaging-activemq/server=default/ha-policy=replication-
master:read-resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "check-for-live-server" => true,
 "cluster-name" => "my-cluster",
 "group-name" => "group1",
 "initial-replication-sync-timeout" => 30000L
 },
 "response-headers" => {"process-state" => "reload-required"}
}

4.9.8. Changes in JMS Serialization Behavior Between Releases

The serialVersionUID of javax.jms.JMSException changed between JMS 1.1 and JMS 2.0.0.
This means that if an instance of a JMSException, or any of its subclasses, is serialized using JMS 1.1,
it cannot be deserialized using JMS 2.0.0. The reverse is also true. If an instance of JMSException is
serialized using JMS 2.0.0, it cannot be deserialized using JMS 1.1. In both of these cases, it throws an
exception similar to the following:

javax.jms.JMSException: javax.jms.JMSException; local class incompatible:
stream classdesc serialVersionUID = 8951994251593378324, local class
serialVersionUID = 2368476267211489441

This issue is fixed in the JMS 2.0.1 maintenance release.

CHAPTER 4. SERVER CONFIGURATION CHANGES

49

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuring_messaging/#deploy_configure_generic_jms_resource_adapter
https://docs.oracle.com/javaee/6/api/javax/jms/JMSException.html

The following table details the JMS implementation for each JBoss EAP release.

Table 4.4. JMS Implementation for Each JBoss EAP Release

JBoss EAP Version JMS Implementation JMS version

6.4 HornetQ JMS 1.1

7.0 Apache ActiveMQ Artemis JMS 2.0.0

7.1 and later Apache ActiveMQ Artemis JMS 2.0.1 or later

Be aware that the serialVersionUID incompatibility can result in a migration issue in the following
situations:

If you send a message that contains a JMSException using a JBoss EAP 6.4 client, migrate
your messaging data to JBoss EAP 7.0, and then attempt to deserialize that message using a
JBoss EAP 7.0 client, the deserialization will fail and it will throw an exception. This is because
the serialVersionUID in JMS 1.1 is not compatible with the one in JMS 2.0.0.

If you send a message that contains a JMSException using a JBoss EAP 7.0 client, migrate
your messaging data to JBoss EAP 7.1 or later, and then attempt to deserialize that message
using a JBoss EAP 7.1 or later client, the deserialization will fail and it will throw an exception.
This is because the serialVersionUID in JMS 2.0.0 is not compatible with the one in JMS
2.0.1 or later.

Note that if you send a message that contains a JMSException using a JBoss EAP 6.4 client, migrate
your messaging data to JBoss EAP 7.1 or later, and then attempt to deserialize that message using a
JBoss EAP 7.1 or later client, the deserialization will succeed because the serialVersionUID in JMS
1.1 is compatible with the one in JMS 2.0.1 or later.

IMPORTANT

Red Hat recommends that you do the following before you migrate your messaging data:

Be sure to consume all JMS 1.1 messages that contain JMSExceptions before
migrating messaging data from JBoss EAP 6.4 to JBoss EAP 7.0.

Be sure to consume all JMS 2.0.0 messages that contain JMSExceptions before
migrating messaging data from JBoss EAP 7.0 to JBoss EAP 7.1 or later.

4.10. JMX MANAGEMENT CHANGES

The HornetQ component in JBoss EAP 6 provided its own JMX management; however, it was not
recommended and is now deprecated and no longer supported. If you relied on this feature in JBoss
EAP 6, you must migrate your management tooling to use either the JBoss EAP management CLI or the
JMX management provided with JBoss EAP 7.

You must also upgrade your client libraries to use the jboss-client.jar that ships with JBoss EAP
7.

The following is an example of HornetQ JMX management code that was used in JBoss EAP 6.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

50

The following is an example of the equivalent code needed for ActiveMQ Artemis in JBoss EAP 7.

JMXConnector connector = null;
try {
 HashMap environment = new HashMap();
 String[] credentials = new String[]{"admin", "Password123!"};
 environment.put(JMXConnector.CREDENTIALS, credentials);

 // HornetQ used the protocol "remoting-jmx" and port "9999"
 JMXServiceURL beanServerUrl = new JMXServiceURL("service:jmx:remoting-
jmx://127.0.0.1:9999");

 connector = JMXConnectorFactory.connect(beanServerUrl, environment);
 MBeanServerConnection mbeanServer =
connector.getMBeanServerConnection();

 // The JMX object name pointed to the HornetQ JMX management
 ObjectName objectName = new
ObjectName("org.hornetq:type=Server,module=JMS");

 // The invoked method name was "listConnectionIDs"
 String[] connections = (String[]) mbeanServer.invoke(objectName,
"listConnectionIDs", new Object[]{}, new String[]{});
 for (String connection : connections) {
 System.out.println(connection);
 }
} finally {
 if (connector != null) {
 connector.close();
 }
}

JMXConnector connector = null;
try {
 HashMap environment = new HashMap();
 String[] credentials = new String[]{"admin", "Password123!"};
 environment.put(JMXConnector.CREDENTIALS, credentials);

 // ActiveMQ Artemis uses the protocol "remote+http" and port "9990"
 JMXServiceURL beanServerUrl = new
JMXServiceURL("service:jmx:remote+http://127.0.0.1:9990");

 connector = JMXConnectorFactory.connect(beanServerUrl, environment);
 MBeanServerConnection mbeanServer =
connector.getMBeanServerConnection();

 // The JMX object name points to the new JMX management in the
`messaging-activemq` subsystem
 ObjectName objectName = new ObjectName("jboss.as:subsystem=messaging-
activemq,server=default");

 // The invoked method name is now "listConnectionIds"
 String[] connections = (String[]) mbeanServer.invoke(objectName,
"listConnectionIds", new Object[]{}, new String[]{});
 for (String connection : connections) {
 System.out.println(connection);

CHAPTER 4. SERVER CONFIGURATION CHANGES

51

Notice that the method names and parameters have changed in the new implementation. You can find
the new method names in the JConsole by following these steps.

1. Connect to the JConsole using the following command.

$ EAP_HOME/bin/jconsole.sh

2. Connect to JBoss EAP local process. Note that it should start with "jboss-modules.jar".

3. In the MBeans tab, choose jboss.as → messaging-activemq → default → Operations to
display the list of method names and attributes.

4.11. ORB SERVER CONFIGURATION CHANGES

The JacORB implementation has been replaced with a downstream branch of the OpenJDK ORB in
JBoss EAP 7.

The org.jboss.as.jacorb extension module, located in
EAP_HOME/modules/system/layers/base/, has been replaced by the org.wildfly.iiop-
openjdk extension module.

The urn:jboss:domain:jacorb:1.4 subsystem configuration namespace in the server
configuration file has been replaced by the urn:jboss:domain:iiop-openjdk:2.1 namespace.

The following is an example of the default jacorb system configuration in JBoss EAP 6.

The following is an example of the default iiop-openjdk subsystem configuration in JBoss EAP 7.

The new iiop-openjdk subsystem configuration accepts only a subset of the legacy elements and
attributes. The following is an example of a jacorb subsystem configuration in the previous release of
JBoss EAP that contains all valid elements and attributes:

 }
} finally {
 if (connector != null) {
 connector.close();
 }
}

<subsystem xmlns="urn:jboss:domain:jacorb:1.4">
 <orb socket-binding="jacorb" ssl-socket-binding="jacorb-ssl">
 <initializers security="identity" transactions="spec"/>
 </orb>
</subsystem>

<subsystem xmlns="urn:jboss:domain:iiop-openjdk:2.1">
 <orb socket-binding="jacorb" ssl-socket-binding="jacorb-ssl" />
 <initializers security="identity" transactions="spec" />
</subsystem>

<subsystem xmlns="urn:jboss:domain:jacorb:1.4">
 <orb name="JBoss" print-version="off" use-imr="off" use-bom="off"
cache-typecodes="off"
 cache-poa-names="off" giop-minor-version="2" socket-

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

52

The following element attributes are no longer supported and must be removed.

Table 4.5. Attributes to Remove

Element Unsupported Attributes

<orb>
client-timeout

max-managed-buf-size

max-server-connections

outbuf-cache-timeout

outbuf-size

connection retries

retry-interval

name

server-timeout

binding="jacorb" ssl-socket-binding="jacorb-ssl">
 <connection retries="5" retry-interval="500" client-timeout="0"
server-timeout="0"
 max-server-connections="500" max-managed-buf-size="24" outbuf-
size="2048"
 outbuf-cache-timeout="-1"/>
 <initializers security="off" transactions="spec"/>
 </orb>
 <poa monitoring="off" queue-wait="on" queue-min="10" queue-max="100">
 <request-processors pool-size="10" max-threads="32"/>
 </poa>
 <naming root-context="JBoss/Naming/root" export-corbaloc="on"/>
 <interop sun="on" comet="off" iona="off" chunk-custom-rmi-
valuetypes="on"
 lax-boolean-encoding="off" indirection-encoding-disable="off"
strict-check-on-tc-creation="off"/>
 <security support-ssl="off" add-component-via-interceptor="on" client-
supports="MutualAuth"
 client-requires="None" server-supports="MutualAuth" server-
requires="None"/>
 <properties>
 <property name="some_property" value="some_value"/>
 </properties>
</subsystem>

CHAPTER 4. SERVER CONFIGURATION CHANGES

53

<poa>
queue-min

queue-max

pool-size

max-threads

Element Unsupported Attributes

The following on/off attributes are no longer supported and will not be migrated when you run the
management CLI migrate operation. If they are set to on, you will get a migration warning. Other
on/off attributes that are not mentioned in this table, for example <security support-
ssl="on|off">, are still supported and will be migrated successfully. The only difference is that their
values will be changed from on/off to true/false.

Table 4.6. Attributes to Turn Off or Remove

Element Attributes to Set to Off

<orb>
cache-poa-names

cache-typecodes

print-version

use-bom

use-imr

<interop> (all except sun)

comet

iona

chunk-custom-rmi-valuetypes

indirection-encoding-disable

lax-boolean-encoding

strict-check-on-tc-creation

<poa>
monitoring

queue-wait

4.12. MIGRATE THE THREADS SUBSYSTEM CONFIGURATION

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

54

The JBoss EAP 6 server configuration included a threads subsystem that was used to manage thread
pools across the various subsystems in the server.

The threads subsystem is no longer available in JBoss EAP 7. Instead, each subsystem is responsible
for managing its own thread pools.

For information about how to configure thread pools for the infinispan subsystem, see Configure
Infinispan Thread Pools in the JBoss EAP Configuration Guide.

For information about how to configure thread pools for the jgroups subsystem, see Configure JGroups
Thread Pools in the JBoss EAP Configuration Guide.

In JBoss EAP 6, you configured thread pools for connectors and listeners for the web subsystem by
referencing an executor that was defined in the threads subsystem. In JBoss EAP 7, you now
configure thread pools for the undertow subsystem by referencing a worker that is defined in the io
subsystem. For more information, see Configuring the IO Subsystem in the JBoss EAP Configuration
Guide.

For information about about changes to thread pool configuration in the remoting subsystem, see
Migrate the Remoting Subsystem Configuration in this guide, and Configuring the Endpoint in the JBoss
EAP Configuration Guide.

4.13. MIGRATE THE REMOTING SUBSYSTEM CONFIGURATION

In JBoss EAP 6, you configured the thread pool for the remoting subsystem by setting various
worker-* attributes. The worker thread pool is no longer configured in the remoting subsystem in
JBoss EAP 7 and if you attempt to modify the existing configuration, you will see the following message.

WFLYRMT0022: Worker configuration is no longer used, please use endpoint
worker configuration

In JBoss EAP 7, the worker thread pool is replaced by an endpoint configuration that references a
worker defined in the io subsystem.

For information about how to configure the endpoint, see Configuring the Endpoint in the JBoss EAP
Configuration Guide.

4.14. WEBSOCKET SERVER CONFIGURATION CHANGES

To use WebSockets in JBoss EAP 6, you had to enable the non blocking Java NIO2 connector protocol
for the http connector in the web subsystem of the JBoss EAP server configuration file using a
command similar to the following.

/subsystem=web/connector=http/:write-
attribute(name=protocol,value=org.apache.coyote.http11.Http11NioProtocol)

To use WebSockets in an application, you also had to create a <enable-websockets> element in the
application WEB-INF/jboss-web.xml file and set it to true.

In JBoss EAP 7, you no longer need to configure the server for default WebSocket support or configure
the application to use it. WebSockets are a requirement of the Java EE 7 specification and the required
protocols are configured by default. More complex WebSocket configuration is done in the servlet-
container of the undertow subsystem of the JBoss EAP server configuration file. You can view the
available settings using the following command.

CHAPTER 4. SERVER CONFIGURATION CHANGES

55

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#configure_infinispan_thread_pools
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#configure_jgroups_thread_pools
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#configuring_the_io_subsystem
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#remoting_configure_endpoint
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#remoting_configure_endpoint

/subsystem=undertow/servlet-container=default/setting=websockets:read-
resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "buffer-pool" => "default",
 "dispatch-to-worker" => true,
 "worker" => "default"
 }
}

For more information about WebSocket development, see Creating WebSocket Applications in the
JBoss EAP Development Guide.

WebSocket code examples can also be found in the quickstarts that ship with JBoss EAP.

4.15. SINGLE SIGN-ON SERVER CHANGES

The infinispan subsystem still provides distributed caching support for HA services in the form of
Infinispan caches in JBoss EAP 7; however the caching and distribution of authentication information is
handled differently than in previous releases.

In JBoss EAP 6, if single sign-on (SSO) was not provided an Infinispan cache, the cache was not
distributed.

In JBoss EAP 7, SSO is distributed automatically when you select the HA profile. When running the HA
profile, each host has its own Infinispan cache, which is based on the default cache of the web cache
container. This cache stores the relevant session and SSO cookie information for the host. JBoss EAP
handles propagation of individual cache information to all hosts. There is no way to specifically assign an
Infinispan cache to SSO in JBoss EAP 7.

In JBoss EAP 7, SSO is configured in the undertow subsystem of the server configuration file.

There are no application code changes required for SSO when migrating to JBoss EAP 7.

4.16. DATASOURCE CONFIGURATION CHANGES

4.16.1. JDBC Datasource Driver Name

When you configured a datasource in the previous release of JBoss EAP, the value specified for the
driver name depended on the number of classes listed in the META-
INF/services/java.sql.Driver file contained in the JDBC driver JAR.

Driver Containing a Single Class
If the META-INF/services/java.sql.Driver file specified only one class, the driver name value
was simply the name of the JDBC driver JAR. This has not changed in JBoss EAP 7.

Driver Containing Multiple Classes
IIn JBoss EAP 6, if there was more than one class listed in META-INF/services/java.sql.Driver
file, you specified which class was the driver class by appending its name to the JAR name, along with
the major and minor version, in the following format.

JAR_NAME + DRIVER_CLASS_NAME + "_" + MAJOR_VERSION + "_" + MINOR_VERSION

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

56

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#creating_websocket_applications

In JBoss EAP 7, this has changed. You now specify the driver name using the following format.

JAR_NAME + "_" + DRIVER_CLASS_NAME + "_" + MAJOR_VERSION + "_" +
MINOR_VERSION

NOTE

An underscore has been added between the JAR_NAME and the
DRIVER_CLASS_NAME.

The MySQL 5.1.31 JDBC driver is an example of a driver that contains two classes. The driver class
name is com.mysql.jdbc.Driver. The following examples demonstrate the differences between how
you specify the driver name in the previous and current release of JBoss EAP.

Example: JBoss EAP 6 Driver Name

mysql-connector-java-5.1.31-bin.jarcom.mysql.jdbc.Driver_5_1

Example: JBoss EAP 7 Driver Name

mysql-connector-java-5.1.31-bin.jar_com.mysql.jdbc.Driver_5_1

4.17. SECURITY SERVER CONFIGURATION CHANGES

If you migrate to JBoss EAP 7 and plan to run with the Java Security Manager enabled, you should be
aware that changes were made in the way policies are defined and that additional configuration changes
might be needed. Also be aware that custom security managers are not supported in JBoss EAP 7.

For information about Java Security Manager server configuration changes, see Considerations Moving
from Previous Versions in How to Configure Server Security for JBoss EAP.

4.17.1. Changes in Legacy Security Behavior between JBoss EAP 7.0 and JBoss
EAP 7.1

4.17.1.1. HTTP Status Change for Unreachable LDAP Realms

If no LDAP realm was reachable by the server in JBoss EAP 7.0, the security subsystem returned an
HTTP status code of "401 Unauthorized".

The legacy security subsystem in JBoss EAP 7.1 and later instead return an HTTP status code of
"500 Internal Error" to more accurately describe that an unexpected condition occurred that prevented
the server from successfully processing the request.

4.17.1.2. Enabling the LDAP Security Realm to Parse Roles from a DN

In JBoss EAP 7.0, the
org.jboss.as.domain.management.security.parseGroupNameFromLdapDN system property
was used to enable the LDAP security realm to parse for roles from a DN. When this property was set to
true, roles were parsed from a DN. Otherwise, a normal LDAP search was used to search for roles.

CHAPTER 4. SERVER CONFIGURATION CHANGES

57

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/how_to_configure_server_security/#java-security-manager-migration-considerations

In JBoss EAP 7.1 and later, this system property is deprecated. Instead, you configure this option by
setting the newly introduced parse-group-name-from-dn attribute to true in the core service path
using the following management CLI command:

/core-service=management/security-
realm=REALM_NAME/authorization=ldap/group-search=principal-to-
group:add(parse-group-name-from-dn=true)

4.17.1.3. Changes in Sending the JBoss EAP SSL Certificate to an LDAP Server

In JBoss EAP 7.0, when the management interface is configured to use the ldapSSL security realm,
mutual authentication between the server and LDAP can fail, resulting in an authentication failure in the
management interface. This is because two different LDAP connections are made, each by a different
thread, and they do not share the SSL sessions.

JBoss EAP 7.1 introduced a new boolean always-send-client-cert management attribute on the
LDAP outbound-connection. This option allows configuration of outbound LDAP connections to
support LDAP servers that are configured to always require a client certificate.

LDAP authentication happens in two steps:

1. It searches for the account.

2. It verifies the credentials.

By default, the always-send-client-cert attribute is set to false, meaning the client SSL
certificate is sent only with the first search account request. When this attribute is set to true, the JBoss
EAP LDAP client sends the client certificate to the LDAP server with both the search and verification
requests.

You can set this attribute to true using the following management CLI command.

/core-service=management/ldap-connection=my-ldap-connection:write-
attribute(name=always-send-client-cert,value=true)

This results in the following LDAP outbound connection in the server configuration file.

4.17.2. FIPS Mode Changes

If you are running in FIPS mode, be aware that the default behavior has changed between JBoss EAP
7.0 and JBoss EAP 7.1.

When using legacy security realms, JBoss EAP 7.1 and later provide the automatic generation of a self-
signed certificate for development purposes. This feature, which was not available in JBoss EAP 7.0, is

<management>

 <outbound-connections>
 <ldap name="my-ldap-connection" url="ldap://127.0.0.1:389" search-
dn="cn=search,dc=myCompany,dc=com" search-credential="myPass" always-send-
client-cert="true"/>
 </outbound-connections>

</management>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

58

enabled by default. This means that if you are running in FIPS mode, you must configure the server to
disable automatic self-signed certificate creation. Otherwise, you might see the following error when you
start the server.

ERROR [org.xnio.listener] (default I/O-6) XNIO001007: A channel event
listener threw an exception: java.lang.RuntimeException: WFLYDM0114:
Failed to lazily initialize SSL context
...
Caused by: java.lang.RuntimeException: WFLYDM0112: Failed to generate self
signed certificate
...
Caused by: java.security.KeyStoreException: Cannot get key bytes, not
PKCS#8 encoded

For information about automatic self-signed certificate creation, see Automatic Self-signed Certificate
Creation for Applications in How to Configure Server Security for JBoss EAP.

4.18. TRANSACTIONS SUBSYSTEM CHANGES

Some Transaction Manager configuration attributes that were available in the transactions
subsystem in JBoss EAP 6 have changed in JBoss EAP 7.

Removed Transactions Subsystem Attributes
The following table lists the JBoss EAP 6 attributes that were removed from the transactions
subsystem in JBoss EAP 7 and the equivalent replacement attributes.

Attribute in JBoss EAP 6 Replacement in JBoss EAP 7

path object-store-path

relative-to object-store-relative-to

Deprecated Transactions Subsystem Attributes
The following attributes that were available in the transactions subsystem in JBoss EAP 6 are
deprecated in JBoss EAP 7. The deprecated attributes might be removed in a future release of the
product. The following table lists the equivalent replacement attributes.

Attribute in JBoss EAP 6 Replacement in JBoss EAP 7

use-hornetq-store use-journal-store

hornetq-store-enable-async-io journal-store-enable-async-io

enable-statistics statistics-enabled

4.19. CHANGES TO MOD_CLUSTER CONFIGURATION

The configuration for static proxy lists in mod_cluster has changed in JBoss EAP 7.

CHAPTER 4. SERVER CONFIGURATION CHANGES

59

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/how_to_configure_server_security/#automatic_self_signed_cert_creation

In JBoss EAP 6, you configured the proxy-list attribute, which was a comma-separated list of httpd
proxy addresses specified in the format of hostname:port.

The proxy-list attribute is deprecated in JBoss EAP 7. It has been replaced by the proxies
attribute, which is a list of outbound socket binding names.

This change impacts how you define a static proxy list, for example, when disabling advertising for
mod_cluster. For information about how to disable advertising for mod_cluster, see Disable Advertising
for mod_cluster in the JBoss EAP Configuration Guide.

For more information about mod_cluster attributes, see ModCluster Subsystem Attributes in the JBoss
EAP Configuration Guide.

4.20. VIEWING CONFIGURATION CHANGES

JBoss EAP 7 provides the ability to track configuration changes made to the running server. This allows
administrators to view a history of configuration changes made by authorized users.

In JBoss EAP 7.0, you must use the core-service management CLI command to configure options
and to list recent configuration changes.

Example: List Configuration Changes in JBoss EAP 7.0

/core-service=management/service=configuration-changes:add(max-history=10)
/core-service=management/service=configuration-changes:list-changes

JBoss EAP 7.1 introduced a new core-management subsystem that can be configured to track
configuration changes made to the running server. This is the preferred method of configuring and
viewing configuration changes in JBoss EAP 7.1 and later.

Example: List Configuration Changes in JBoss EAP 7.1 and Later

/subsystem=core-management/service=configuration-changes:add(max-
history=20)
/subsystem=core-management/service=configuration-changes:list-changes

For more information about using the new core-management subsystem introduced in JBoss EAP 7.1,
see View Configuration Changes in the JBoss EAP Configuration Guide.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

60

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#disable_advertising_mod_cluster
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#mod_cluster-reference
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#view_config_changes

CHAPTER 5. APPLICATION MIGRATION CHANGES

5.1. WEB SERVICES APPLICATION CHANGES

JBossWS 5 brings new features and performance improvements to JBoss EAP 7 web services, mainly
through upgrades of the Apache CXF, Apache WSS4J, and Apache Santuario components.

5.1.1. JAX-RPC Support Changes

The Java API for XML-based RPC (JAX-RPC) was deprecated in Java EE 6 and was optional in Java
EE 7. It is no longer available or supported in JBoss EAP 7. Applications that use JAX-RPC must be
migrated to use JAX-WS, which is the current Java EE standard web services framework.

Use of JAX-RPC web services can be identified in any of the following ways:

The presence of a JAX-RPC mapping file, which is an XML file with the root element <java-
wsdl-mapping>.

The presence of a webservices.xml XML descriptor file that contains a <webservice-
description> element, which includes a <jaxrpc-mapping-file> child element. The
following is an example of webservices.xml descriptor file that defines a JAX-RPC web
service.

The presence of an ejb-jar.xml file, which contains a <service-ref> that references a
JAX-RPC mapping file.

5.1.2. Apache CXF Spring Web Services Changes

In previous releases of JBoss EAP, you could customize the JBossWS and Apache CXF integration by
including a jbossws-cxf.xml configuration file with the endpoint deployment archive. One use case
for this was to configure interceptor chains for web service client and server endpoints on the Apache
CXF bus. This integration required Spring to be deployed in the JBoss EAP server.

<webservices xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"
version="1.1">
 <webservice-description>
 <webservice-description-name>HelloService</webservice-
description-name>
 <wsdl-file>WEB-INF/wsdl/HelloService.wsdl</wsdl-file>
 <jaxrpc-mapping-file>WEB-INF/mapping.xml</jaxrpc-mapping-file>
 <port-component>
 <port-component-name>Hello</port-component-name>
 <wsdl-port>HelloPort</wsdl-port>
 <service-endpoint-
interface>org.jboss.chap12.hello.Hello</service-endpoint-interface>
 <service-impl-bean>
 <servlet-link>HelloWorldServlet</servlet-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

CHAPTER 5. APPLICATION MIGRATION CHANGES

61

http://cxf.apache.org/docs/30-migration-guide.html
http://ws.apache.org/wss4j/
http://santuario.apache.org/
https://github.com/javaee/metro-jax-ws

Spring integration is no longer supported in JBoss EAP 7. Any application that contains a jbossws-
cxf.xml descriptor configuration file must be modified to replace the custom configuration defined in
that file. While it is still possible to directly access the Apache CXF API, be aware that the application will
not be portable.

The suggested approach is to replace Spring custom configurations with the new JBossWS descriptor
configuration options where possible. The JBossWS descriptor-based approach provides similar
functionality without requiring modification of the client endpoint code. In some cases, you can replace
Spring with Context Dependency Injection (CDI).

Apache CXF Interceptors
The JBossWS descriptor provides new configuration options that allow you to declare the interceptors
without modifying the client endpoint code. Instead you declare interceptors within predefined client and
endpoint configurations by specifying a list of interceptor class names for the cxf.interceptors.in
and cxf.interceptors.out properties.

The following is an example of a jaxws-endpoint-config.xml file that declares interceptors using
these properties.

Apache CXF Features
The JBossWS descriptor allows you to declare features within predefined client and endpoint
configurations by specifying a list of feature class names for the cxf.features property.

The following is an example of a jaxws-endpoint-config.xml file that declares a feature using this
property.

<?xml version="1.0" encoding="UTF-8"?>
<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:javaee="http://java.sun.com/xml/ns/javaee"
 xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-
jaxws-config_4_0.xsd">
 <endpoint-config>
 <config-
name>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointImpl</config-name>
 <property>
 <property-name>cxf.interceptors.in</property-name>
 <property-
value>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointInterceptor,org.jbo
ss.test.ws.jaxws.cxf.interceptors.FooInterceptor</property-value>
 </property>
 <property>
 <property-name>cxf.interceptors.out</property-name>
 <property-
value>org.jboss.test.ws.jaxws.cxf.interceptors.EndpointCounterInterceptor<
/property-value>
 </property>
 </endpoint-config>
</jaxws-config>

<?xml version="1.0" encoding="UTF-8"?>
<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:javaee="http://java.sun.com/xml/ns/javaee"
 xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

62

Apache CXF HTTP Transport
In Apache CXF, HTTP transport configuration is achieved by specifying
org.apache.cxf.transport.http.HTTPConduit options. JBossWS integration allows conduits to
be modified programmatically using the Apache CXF API as follows.

You can also control and override the Apache CXF HTTPConduit default values by setting system
properties.

Property Type Description

cxf.client.allowChunking Boolean Specifies whether to send requests using chunking.

cxf.client.chunkingThreshold Integer Sets the threshold at which switching from non-chunking to
chunking mode.

cxf.client.connectionTimeout Long Sets the number of milliseconds for the connection timeout.

cxf.client.receiveTimeout Long Sets the number of milliseconds for the receive timeout.

cxf.client.connection String Specifies whether to use the Keep-Alive or close
connection type.

cxf.tls-client.disableCNCheck Boolean Specifies whether to disable the CN host name check.

5.1.3. WS-Security Changes

jaxws-config_4_0.xsd">
 <endpoint-config>
 <config-name>Custom FI Config</config-name>
 <property>
 <property-name>cxf.features</property-name>
 <property-value>org.apache.cxf.feature.FastInfosetFeature</property-
value>
 </property>
 </endpoint-config>
</jaxws-config>

import org.apache.cxf.frontend.ClientProxy;
import org.apache.cxf.transport.http.HTTPConduit;
import org.apache.cxf.transports.http.configuration.HTTPClientPolicy;

// Set chunking threshold before using a JAX-WS port client
...
HTTPConduit conduit =
(HTTPConduit)ClientProxy.getClient(port).getConduit();
HTTPClientPolicy client = conduit.getClient();

client.setChunkingThreshold(8192);
...

CHAPTER 5. APPLICATION MIGRATION CHANGES

63

If your application contains a custom callback handler that accesses the
org.apache.ws.security.WSPasswordCallback class, be aware that this class has
moved to package org.apache.wss4j.common.ext.

Most of the SAML bean objects from the org.apache.ws.security.saml.ext package
have been moved to the org.apache.wss4j.common.saml package.

Use the RSA v1.5 key transport and all related algorithms are disallowed by default.

The Security Token Service (STS) previously only validated onBehalfOf tokens. It now also
validates ActAs tokens. As a consequence, a valid username and password must be specified
in the UsernameToken that is provided for the ActAs token.

SAML Bearer tokens are now required to have an internal signature. The
org.apache.wss4j.dom.validate.SamlAssertionValidator class now has a
setRequireBearerSignature() method to enable or disable the signature verification.

5.1.4. JBoss Modules Structure Change

The cxf-api and cxf-rt-core JARs have been merged into one cxf-core JAR. As a consequence,
the org.apache.cxf module in JBoss EAP now contains the cxf-core JAR and exposes more
classes than in the previous release.

5.1.5. Bouncy Castle Requirements and Changes

If you want to use AES encryption with Galois/Counter Mode (GCM) for symmetric encryption in
XML/WS-Security, you need the BouncyCastle Security Provider.

JBoss EAP 7 ships with the org.bouncycastle module and JBossWS is now able to rely on its class
loader to get and use the BouncyCastle Security Provider. Therefore it is no longer necessary to
statically install BouncyCastle in the current JVM. For applications running outside of the container, the
security provider can be made available to JBossWS by adding a BouncyCastle library to the class path.

You can disable this behavior by setting the org.jboss.ws.cxf.noLocalBC property value to true
in the jaxws-endpoint-config.xml deployment descriptor file for the server or the jaxws-
client-config.xml descriptor file for clients.

If you want to use a different version than the one that ships with JBoss EAP, you can still statically
install BouncyCastle to the JVM. In that case, the statically installed BouncyCastle Security Provider is
chosen over the provider present in the class path. To avoid any issues, you must use BouncyCastle
1.49, 1.51, or greater.

5.1.6. Apache CXF Bus Selection Strategy

The default bus selection strategy for clients running in-container has changed from THREAD_BUS to
TCCL_BUS. For clients running out-of container, the default strategy is still THREAD_BUS. You can
restore the behavior to that of the previous release by using either of the following methods.

Boot the JBoss EAP server with the system property org.jboss.ws.cxf.jaxws-
client.bus.strategy value set to THREAD_BUS.

Explicitly set the selection strategy in the client code.

5.1.7. JAX-WS 2.2 Requirements for WebServiceRef

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

64

Containers must use JAX-WS 2.2 style constructors, which include the WebServiceFeature class as an
argument in the constructor, to build clients that are injected into web service references. JBoss EAP 6.4,
which ships with JBossWS 4, hides that requirement. JBoss EAP 7 ships with JBossWS 5, which no
longer hides this requirement. This means that user provided service classes injected by the container
must implement JAX-WS 2.2 or later by updating the existing code to use the javax.xml.ws.Service
constructor that includes one or more WebServiceFeature arguments.

5.1.8. IgnoreHttpsHost CN Check Change

In previous releases, you could disable the HTTPS URL hostname check against a service’s Common
Name (CN) given in its certificate by setting the system property
org.jboss.security.ignoreHttpsHost to true. This system property name has been replaced
with cxf.tls-client.disableCNCheck.

5.1.9. Server Side Configuration and Class Loading

As a consequence of enabling injections into service endpoint and service client handlers, it is no longer
possible to automatically load handler classes from the
org.jboss.as.webservices.server.integration JBoss module. If your application depends on
a given predefined configuration, you might need to explicitly define new module dependencies for your
deployment. For more information, see Migrate Explicit Module Dependencies

5.1.10. Deprecation of Java Endorsed Standards Override Mechanism

The Java Endorsed Standards Override Mechanism was deprecated in JDK 1.8_40 with intent to
remove it in JDK 9. This mechanism allowed developers to make libraries available to all deployed
applications by placing JARs into an endorsed directory within the JRE.

If your application uses the JBossWS implementation of Apache CXF, JBoss EAP 7 ensures the required
dependencies are added in the correct order and you should not be impacted by this change. If your
application accesses Apache CXF directly, you must now provide the Apache CXF dependencies after
the JBossWS dependencies as part of your application deployment.

5.1.11. Specification of Descriptor in EAR Archive

In previous releases of JBoss EAP, you could configure the jboss-webservices.xml deployment
descriptor file for EJB web service deployments in the META-INF/ directory of JAR archives or in the
WEB-INF/ directory for POJO web service deployments and EJB web service endpoints bundled in
WAR archives.

In JBoss EAP 7, you can now configure the jboss-webservices.xml deployment descriptor file in
the META-INF/ directory of an EAR archive. If a jboss-webservices.xml file is found both in the
EAR archive and the JAR or WAR archive, the configuration data in the jboss-webservices.xml file
for the JAR or WAR overrides the corresponding data in the EAR descriptor file.

5.2. UPDATE THE REMOTE URL CONNECTOR AND PORT

In JBoss EAP 7, the default connector has changed from remote to http-remoting and the default
remote connection port has changed from 4447 to 8080. The JNDI provider URL for the default

protected Service(URL wsdlDocumentLocation,
 QName serviceName,
 WebServiceFeature... features)

CHAPTER 5. APPLICATION MIGRATION CHANGES

65

https://docs.oracle.com/javase/8/docs/api/javax/xml/ws/WebServiceFeature.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/ws/Service.html#Service(java.net.URL, javax.xml.namespace.QName, javax.xml.ws.WebServiceFeature%2E%2E%2E)
https://docs.oracle.com/javase/8/docs/technotes/guides/standards/

configuration has changed from remote://localhost:4447 to http-
remoting://localhost:8080.

If you use the JBoss EAP 7 migrate operation to update your configuration, you do not need to modify
the remote connector, remote port, or JNDI provider URLs because the migration operation preserves
the JBoss EAP 6 remoting connector and 4447 port configuration settings in the subsystem
configuration. For more information about the migrate operation, see Management CLI Migration
Operation.

If you do not use the migrate operation and instead run with the new JBoss EAP 7 default
configuration, you must change the remote connector, remote port, and JNDI provider URL to use the
new settings as described above.

5.3. MESSAGING APPLICATION CHANGES

5.3.1. Replace or Update JMS Deployment Descriptors

The proprietary HornetQ JMS resource deployment descriptor files identified by the naming pattern -
jms.xml no longer work in JBoss EAP 7. The following is an example of a JMS resource deployment
descriptor file in JBoss EAP 6.

If you used -jms.xml JMS deployment descriptors in your application in the previous release, you can
either convert your application to use the standard Java EE deployment descriptor as specified in section
EE.5.18 of the Java EE 7 specification or you can update the deployment descriptor to use the
messaging-activemq-deployment schema instead.

If you choose to update the descriptor, you need to make the following modifications.

Change the namespace from "urn:jboss:messaging-deployment:1.0" to "urn:jboss:messaging-
activemq-deployment:1.0".

Change the <hornetq-server> element name to <server>.

The modified file should look like the following example.

<?xml version="1.0" encoding="UTF-8"?>
<messaging-deployment xmlns="urn:jboss:messaging-deployment:1.0">
 <hornetq-server>
 <jms-destinations>
 <jms-queue name="testQueue">
 <entry name="queue/test"/>
 <entry name="java:jboss/exported/jms/queue/test"/>
 </jms-queue>
 <jms-topic name="testTopic">
 <entry name="topic/test"/>
 <entry name="java:jboss/exported/jms/topic/test"/>
 </jms-topic>
 </jms-destinations>
 </hornetq-server>
</messaging-deployment>

<?xml version="1.0" encoding="UTF-8"?>
<messaging-deployment xmlns="urn:jboss:messaging-activemq-deployment:1.0">
 <server>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

66

http://download.oracle.com/otn-pub/jcp/java_ee-7-fr-spec/JavaEE_Platform_Spec.pdf

For information about server configuration changes related to messaging, see Messaging Server
Configuration Changes.

5.3.2. Update External JMS Clients

JBoss EAP 7 still supports the JMS 1.1 API, so you do not need to modify your code.

The default remote connector and port has changed in JBoss EAP 7. For details about this change, see
Update the Remote URL Connector and Port.

If you migrate your server configuration using the migrate operation, the old settings are preserved and
you do not need to update your PROVIDER_URL. However, if you run with the new JBoss EAP 7 default
configuration, you must change the PROVIDER_URL in the client code to use the new http-
remoting://localhost:8080 setting. For more information, see Migrate Remote Naming Client
Code.

If you plan to migrate your code to use the JMS 2.0 API, see the helloworld-jms quickstart for a
working example.

5.3.3. Replace the HornetQ API

JBoss EAP 6 included the org.hornetq module, which allowed you to use the HornetQ API in your
application source code.

Apache ActiveMQ Artemis replaces HornetQ in JBoss EAP 7, so you must migrate any code that used
the HornetQ API to use the Apache ActiveMQ Artemis API. The libraries for this API are included in the
org.apache.activemq.artemis module.

ActiveMQ Artemis is an evolution of HornetQ, so many of the concepts still apply.

5.4. JAX-RS AND RESTEASY APPLICATION CHANGES

JBoss EAP 6 bundled RESTEasy 2, which was an implementation of JAX-RS 1.x.

JBoss EAP 7.0 and JBoss EAP 7.1 included RESTEasy 3.0.x, which is an implementation of JAX-RS 2.0
as defined by the JSR 339: JAX-RS 2.0: The Java API for RESTful Web Services specification. For
more information about the Java API for RESTful Web Services, see the JAX-RS 2.0 API Specification.

JBoss EAP 7.2 includes RESTEasy 3.6.1, which is an implementation of JAX-RS 2.1 as defined by the
JSR 370: Java(TM)API for RESTful Web Services (JAX-RS 2.1) Specification. This release also adds
support for JDK 11. While providing some of the RESTEasy 4 key features, this release is based on

 <jms-destinations>
 <jms-queue name="testQueue">
 <entry name="queue/test"/>
 <entry name="java:jboss/exported/jms/queue/test"/>
 </jms-queue>
 <jms-topic name="testTopic">
 <entry name="topic/test"/>
 <entry name="java:jboss/exported/jms/topic/test"/>
 </jms-topic>
 </jms-destinations>
 </server>
</messaging-deployment>

CHAPTER 5. APPLICATION MIGRATION CHANGES

67

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/API_Documentation/files/javadoc/index.html?org/hornetq/api/core/package-summary.html
https://activemq.apache.org/artemis/docs/javadocs/javadoc-1.2.0/index.html
https://jcp.org/en/jsr/detail?id=339
https://jax-rs.github.io/apidocs/2.0/
https://jcp.org/en/jsr/detail?id=370

RESTEasy 3.0, ensuring full backward compatibility. As a result, you should encounter few issues when
migrating from RESTEasy 3.0.x to 3.6.1. For more information about the Java API for RESTEasy 3.6.1,
see RESTEasy JAX-RS 3.6.1.Final API.

If you are migrating from JBoss EAP 6.4, be aware that the version of Jackson included in JBoss EAP
has changed. JBoss EAP 6.4 included Jackson 1.9.9. JBoss EAP 7 and later now include Jackson 2.6.3
or greater.

This section describes how these changes might impact applications that use RESTEasy or JAX-RS.

5.4.1. RESTEasy Deprecated Classes

Interceptor and MessageBody Classes
JSR 311: JAX-RS: The Java™ API for RESTful Web Services did not include an interceptor framework,
so RESTEasy 2 provided one. JSR 339: JAX-RS 2.0: The Java API for RESTful Web Services
introduced an official interceptor and filter framework, so the interceptor framework included in
RESTEasy 2 is now deprecated, and was replaced by the JAX-RS compliant interceptor facility in
RESTEasy 3.x. The relevant interfaces are defined in the javax.ws.rs.ext package of the jaxrs-
api module.

The following interceptor interfaces are deprecated in RESTEasy 3.x.

org.jboss.resteasy.spi.interception.PreProcessInterceptor

org.jboss.resteasy.spi.interception.PostProcessInterceptor

org.jboss.resteasy.spi.interception.ClientExecutionInterceptor

org.jboss.resteasy.spi.interception.ClientExecutionContext

org.jboss.resteasy.spi.interception.AcceptedByMethod

The org.jboss.resteasy.spi.interception.PreProcessInterceptor interface was
replaced by the javax.ws.rs.container.ContainerRequestFilter interface in
RESTEasy 3.x.

The following interfaces and classes are also deprecated in RESTEasy 3.x.

org.jboss.resteasy.spi.interception.MessageBodyReaderInterceptor

org.jboss.resteasy.spi.interception.MessageBodyWriterInterceptor

org.jboss.resteasy.spi.interception.MessageBodyWriterContext

org.jboss.resteasy.spi.interception.MessageBodyReaderContext

org.jboss.resteasy.core.interception.InterceptorRegistry

org.jboss.resteasy.core.interception.InterceptorRegistryListener

org.jboss.resteasy.core.interception.ClientExecutionContextImpl

The org.jboss.resteasy.spi.interception.MessageBodyWriterInterceptor
interface was replaced by the javax.ws.rs.ext.WriterInterceptor interface.

In addition, some changes to the javax.ws.rs.ext.MessageBodyWriter interface might

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

68

https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/
https://jcp.org/en/jsr/detail?id=311
https://jcp.org/en/jsr/detail?id=339
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/PreProcessInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/PostProcessInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/ClientExecutionInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/ClientExecutionContext.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/AcceptedByMethod.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/PreProcessInterceptor.html
https://jax-rs.github.io/apidocs/2.1/index.html?javax/ws/rs/container/ContainerRequestFilter.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/MessageBodyReaderInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/MessageBodyWriterInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/MessageBodyWriterContext.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/MessageBodyReaderContext.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/core/interception/InterceptorRegistry.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/core/interception/InterceptorRegistryListener.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/core/interception/ClientExecutionContextImpl.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/MessageBodyWriterInterceptor.html
https://jax-rs.github.io/apidocs/2.1/index.html?javax/ws/rs/ext/WriterInterceptor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/interception/MessageBodyWriterInterceptor.html

not be backward compatible with respect to JAX-RS 1.x. If your application used JAX-RS 1.x,
review your application code to make sure you define @Produces or @Consumes for your
endpoints. Failure to do so might result in an error similar to the following.

org.jboss.resteasy.core.NoMessageBodyWriterFoundFailure: Could not
find MessageBodyWriter for response object of type: <OBJECT> of
media type:

The following is an example of a REST endpoint that can cause this error.

To fix the issue, add the import for javax.ws.rs.Produces and the @Produces annotation
as follows.

@Path("dates")
public class DateService {

 @GET
 @Path("daysuntil/{targetdate}")
 public long showDaysUntil(@PathParam("targetdate") String
targetDate) {
 DateLogger.LOGGER.logDaysUntilRequest(targetDate);
 final long days;

 try {
 final LocalDate date = LocalDate.parse(targetDate,
DateTimeFormatter.ISO_DATE);
 days = ChronoUnit.DAYS.between(LocalDate.now(), date);
 } catch (DateTimeParseException ex) {
 // ** DISCLAIMER **. This example is contrived.
 throw new
WebApplicationException(Response.status(400).entity(ex.getLocalizedM
essage()).type(MediaType.TEXT_PLAIN)
 .build());
 }
 return days;
 }
}

...
import javax.ws.rs.Produces;
...

@Path("dates")
public class DateService {

 @GET
 @Path("daysuntil/{targetdate}")
 @Produces(MediaType.TEXT_PLAIN)
 public long showDaysUntil(@PathParam("targetdate") String
targetDate) {
 DateLogger.LOGGER.logDaysUntilRequest(targetDate);
 final long days;

 try {
 final LocalDate date = LocalDate.parse(targetDate,

CHAPTER 5. APPLICATION MIGRATION CHANGES

69

NOTE

All interceptors from the previous release of RESTEasy can run in parallel with the new
JAX-RS filter and interceptor interfaces.

For more information about interceptors, see RESTEasy Interceptors in Developing Web Services
Applications for JBoss EAP.

For more information about the new replacement API, see the RESTEasy JAX-RS 3.6.1.Final API.

Client API
The RESTEasy client framework in resteasy-jaxrs was replaced by the JAX-RS 2.0 compliant
resteasy-client module in JBoss EAP 7.0. As a result, some RESTEasy client API classes and
methods are deprecated.

The following classes are deprecated.

org.jboss.resteasy.client.ClientRequest

org.jboss.resteasy.client.ClientRequestFactory

org.jboss.resteasy.client.ClientResponse

org.jboss.resteasy.client.ProxyBuilder

org.jboss.resteasy.client.ProxyConfig

org.jboss.resteasy.client.ProxyFactory

The org.jboss.resteasy.client.ClientResponseFailure exception and the
org.jboss.resteasy.client.ClientExecutor and
org.jboss.resteasy.client.EntityTypeFactory interfaces are also deprecated.

You must replace the org.jboss.resteasy.client.ClientRequest and
org.jboss.resteasy.client.ClientResponse classes with
org.jboss.resteasy.client.jaxrs.ResteasyClient and
javax.ws.rs.core.Response respectively.
The following is an example of how to send a link header with the RESTEasy client in
RESTEasy 2.3.x.

DateTimeFormatter.ISO_DATE);
 days = ChronoUnit.DAYS.between(LocalDate.now(), date);
 } catch (DateTimeParseException ex) {
 // ** DISCLAIMER **. This example is contrived.
 throw new
WebApplicationException(Response.status(400).entity(ex.getLocalizedM
essage()).type(MediaType.TEXT_PLAIN)
 .build());
 }
 return days;
 }
}

ClientRequest request = new
ClientRequest(generateURL("/linkheader/str"));

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

70

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/developing_web_services_applications/#resteasy_interceptors
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/index.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientRequest.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientRequestFactory.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientResponse.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ProxyBuilder.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ProxyConfig.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ProxyFactory.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientResponseFailure.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientExecutor.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/EntityTypeFactory.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientRequest.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/ClientResponse.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/jaxrs/ResteasyClient.html
https://jax-rs.github.io/apidocs/2.1//javax/ws/rs/core/Response.html

The following is an example of how to accomplish the same task with the RESTEasy client in
RESTEasy 3.

See the resteasy-jaxrs-client quickstart for an example of an external JAX-RS
RESTEasy client that interacts with a JAX-RS Web service.

The classes and interfaces in the org.jboss.resteasy.client.cache package are also
deprecated. They are replaced by equivalent classes and interfaces in the
org.jboss.resteasy.client.jaxrs.cache package.

NOTE

For more information about the org.jboss.resteasy.client.jaxrs API classes,
see the RESTEasy JAX-RS JavaDoc.

StringConverter
The org.jboss.resteasy.spi.StringConverter class is deprecated in RESTEasy 3.x. This
functionality can be replaced using the JAX-RS jax.ws.rs.ext.ParamConverterProvider class.

5.4.2. Removed or Protected RESTEasy Classes

ResteasyProviderFactory Add methods
Most of the org.jboss.resteasy.spi.ResteasyProviderFactory add() methods have been
removed or made protected in RESTEasy 3.0. For example, the addBuiltInMessageBodyReader()
and addBuiltInMessageBodyWriter() methods have been removed and the
addMessageBodyReader() and addMessageBodyWriter() methods have been made protected.

You should now use the registerProvider() and registerProviderInstance() methods.

Additional Classes Removed From RESTEasy 3
The @org.jboss.resteasy.annotations.cache.ServerCached annotation, which specified the
response to the JAX-RS method should be cached on the server, was removed from RESTEasy 3 and
must be removed from the application code.

5.4.3. Additional RESTEasy Changes

SignedInput and SignedOuput

SignedInput and SignedOutput for resteasy-crypto must have the Content-Type set
to multipart/signed in either the Request or Response object, or by using the @Consumes
or @Produces annotation.

request.addLink("previous chapter", "previous",
"http://example.com/TheBook/chapter2", null);
ClientResponse response = request.post();
LinkHeader header = response.getLinkHeader();

ResteasyClient client = new ResteasyClientBuilder().build();
Response response =
client.target(generateURL("/linkheader/str")).request()
 .header("Link", "<http://example.com/TheBook/chapter2>;
rel=\"previous\";
title=\"previous chapter\"").post(Entity.text(new String()));
javax.ws.rs.core.Link link = response.getLink("previous");

CHAPTER 5. APPLICATION MIGRATION CHANGES

71

https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/cache/package-frame.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/client/jaxrs/cache/package-frame.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/StringConverter.html
https://jax-rs.github.io/apidocs/2.1/index.html?javax/ws/rs/ext/ParamConverterProvider.html
https://docs.jboss.org/resteasy/docs/3.6.1.Final/javadocs/org/jboss/resteasy/spi/ResteasyProviderFactory.html

SignedOutput and SignedInput can be used to return the application/pkcs7-
signature MIME type format in binary form by setting that type in the @Produces or
@Consumes annotations.

If the @Produces or @Consumes is text/plain MIME type, SignedOutput will be base64
encoded and sent as a String.

Security Filters
The security filters for @RolesAllowed, @PermitAll, and @DenyAll now return "403 Forbidden"
instead of "401 Unauthorized".

Client-side Filters
The client-side filters that were introduced in JAX-RS 2.0 will not be bound and run when you are using
the RESTEasy client API from a release prior to RESTEasy 3.0.

Asynchronous HTTP Support
Because the JAX-RS 2.0 specification added asynchronous HTTP support using the @Suspended
annotation and the AsynResponse interface, the RESTEasy proprietary API for asynchronous HTTP
was deprecated and might be removed in a future RESTEasy release. The asynchronous Tomcat and
asynchronous JBoss Web modules have also been removed from the server installation. If you are not
using the Servlet 3.0 container or higher, asynchronous HTTP server-side processing will be simulated
and run synchronously in same request thread.

Server-side Cache
Server-side cache setup has changed. Please see the RESTEasy Documentation for more information.

YAML Provider Setting Changes
In previous releases of JBoss EAP, the RESTEasy YAML provider setting was enabled by default. This
has changed in JBoss EAP 7. The YAML provider is now disabled by default. Its use is not supported
due to a security issue in the SnakeYAML library used by RESTEasy for unmarshalling and it must be
explicitly enabled in the application. For information about how to enable the YAML provider in your
application and add the Maven dependencies, see YAML Provider in Developing Web Services
Applications for JBoss EAP.

Default Charset UTF-8 in Content-Type Header
As of JBoss EAP 7.1, the resteasy.add.charset parameter is set to true by default. You can set
the resteasy.add.charset parameter to false if you do not want RESTEasy to add
charset=UTF-8 to the returned content-type header when the resource method returns a text/* or
application/xml* media type without an explicit charset.

For more information about text media types and character sets, see Text Media Types and Character
Sets in Developing Web Services Applications for JBoss EAP.

SerializableProvider
Deserializing Java objects from untrusted sources is not safe. For this reason, in JBoss EAP 7, the
org.jboss.resteasy.plugins.providers.SerializableProvider class is disabled by
default, and it is not recommended to use this provider.

Matching Requests to Resource Methods
In RESTEasy 3, improvements and corrections were made to the implementation of matching rules, as
defined in the JAX-RS specification. In particular, a change was made to how an ambiguous URI on a
sub-resource method and a sub-resource locator is handled.

In RESTEasy 2, it was possible for a sub-resource locator to execute successfully even when there was
another sub-resource with the same URI. This behavior was incorrect according to the specification.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

72

https://docs.jboss.org/resteasy/docs/3.6.1.Final/userguide/html_single/
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/developing_web_services_applications/#jaxrs_yaml_provider
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/developing_web_services_applications/#text_media_types_charsets

In RESTEasy 3, when there is an ambiguous URI for a sub-resource and a sub-resource locator, calling
the sub-resource will be successful; however, calling the sub-resource locator will result in an HTTP
status 405 Method Not Allowed error.

The following example contains an ambiguous @Path annotation on a sub-resource method and a sub-
resource locator. Notice that the URI to both endpoints, anotherResource and
anotherResourceLocator, is the same. The difference between the two endpoints is that the
anotherResource method is associated with the REST verb, POST. The anotherResourceLocator
method is not associated with any REST verb. According to the specification, the endpoint with the
REST verb, in this case the anotherResource method, will always be selected.

Resource Method Algorithm Switch
A bug discovered in the resource method matching algorithm used in RESTEasy 3.0.x versions prior to
3.0.25.Final caused RESTEasy to return too many resource methods when responding to requests.

There are three stages in the matching algorithm:

1. Use the request path to choose possible resource classes.

2. Use the request path to choose possible resource methods.

3. Use the HTTP verb and media types, coming and going, to choose a final resource method.

According to the JAX-RS 2.0 specification, after the set of potential resource methods is sorted, only the
maximal elements should be passed on to step 3. However, RESTEasy 3.0.x implementations prior to
RESTEasy 3.0.25 passed all methods to step 3. RESTEasy 3.0.24, which was included in JBoss EAP
7.1.0, exhibits this incorrect behavior.

RESTEasy 3.0.25, which is included in JBoss EAP 7.1.1, provides the fix to limit the methods passed to
step 3 to be compliant with the JAX-RS 2.0 specification. Because the looser behavior might be
preferable, RESTEasy 3.0.25 also introduces a context-param configuration option,
resteasy.loose.step2.request.matching, which defaults to false, that can be configured to
enable the old behavior.

If you update your JBoss EAP server from 7.1.0 to 7.1.1 and you want to keep the old behavior and pass
all potential resource methods to step 3, set the resteasy.loose.step2.request.matching
option to true.

The matching algorithm was changed in the JAX-RS 2.1 specification to pass all matching resource
methods to step 3. RESTEasy 3.6.1, which is included in JBoss EAP 7.2, provides a

@Path("myResource")
public class ExampleSubResources {
 @POST
 @Path("items")
 @Produces("text/plain")
 public Response anotherResource(String text) {
 return Response.ok("ok").build();
 }

 @Path("items")
 @Produces("text/plain")
 public SubResource anotherResourceLocator() {
 return new SubResource();
 }
}

CHAPTER 5. APPLICATION MIGRATION CHANGES

73

jaxrs.2.0.request.matching option to to retain the stricter behavior as defined in the JAX-RS 2.0
specification.

If you migrate your application from JBoss EAP from 7.1.0 to 7.2.x, you should not see a change in the
behavior of the resource method matching algorithm. If you migrate your application from JBoss EAP
from 7.1.1 to 7.2.x and want to retain the stricter behavior as defined in the JAX-RS 2.0 specification, set
the jaxrs.2.0.request.matching option to true.

5.4.4. RESTEasy SPI Changes

SPI Exceptions
All SPI failure exceptions were deprecated and are no longer used internally. They have been replaced
with the corresponding JAX-RS exception.

Deprecated Exception Replacement Exception in jaxrs-api module

org.jboss.resteasy.spi.ForbiddenException javax.ws.rs.ForbiddenException

org.jboss.resteasy.spi.MethodNotAllowedException javax.ws.rs.NotAllowedException

org.jboss.resteasy.spi.NotAcceptableException javax.ws.rs.NotAcceptableException

org.jboss.resteasy.spi.NotFoundException javax.ws.rs.NotFoundException

org.jboss.resteasy.spi.UnauthorizedException javax.ws.rs.NotAuthorizedException

org.jboss.resteasy.spi.UnsupportedMediaTypeExcept
ion

javax.ws.rs.NotSupportedException

InjectorFactory and Registry
The InjectorFactory and Registry SPIs have changed. This should not be an issue if you use
RESTEasy as documented and supported.

5.4.5. Jackson Provider Changes

The version of Jackson included in JBoss EAP has changed. The previous version of JBoss EAP
included Jackson 1.9.9. JBoss EAP 7 now includes Jackson 2.6.3 or greater. As a result, the Jackson
provider has changed from resteasy-jackson-provider to resteasy-jackson2-provider.

The upgrade to the resteasy-jackson2-provider requires some package changes. For example,
the Jackson annotation package has changed from org.codehaus.jackson.annotate to
com.fasterxml.jackson.annotation.

To switch your application to use the default provider that was included in the previous release of JBoss
EAP, see Switching the Default Jackson Provider in Developing Web Services Applications for JBoss
EAP.

5.4.6. Spring RESTEasy Integration Changes

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

74

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/developing_web_services_applications/#switching_the_default_jackson_provider

The Spring 4.0 framework introduced support for Java 8. If you plan to use the RESTEasy 3.x integration
with Spring, be sure to specify 4.2.x as the minimum Spring version in your deployment as this is the
earliest stable version supported by JBoss EAP 7.

5.4.7. RESTEasy Jettison JSON Provider Changes

The RESTEasy Jettison JSON provider is deprecated in JBoss EAP 7 and is no longer added to
deployments by default. You are encouraged to switch to the recommended RESTEasy Jackson
provider. If you prefer to continue to use the Jettison provider, you must define an explicit dependency
for it in the jboss-deployment-descriptor.xml file as demonstrated in the following example.

For more information about how to define explicit dependencies, see Add an Explicit Module
Dependency to a Deployment in the JBoss EAP Development Guide.

5.5. CDI APPLICATION CHANGES

JBoss EAP 7.2 includes support for CDI 2.0. As a result, applications written using CDI 1.0 or CDI 1.2
might see some changes in behavior when migrating to JBoss EAP 7.2. This section summarizes only
few of the changes made in CDI 1.2 and CDI 2.0.

You can find more information about Weld and CDI 2.0 in the following references:

JSR 365: Contexts and Dependency Injection for Java 2.0

CDI 2.0 Javadoc

Weld 3.0.5.Final - CDI Reference Implementation

Bean Archives
Bean classes of enabled beans must be deployed in bean archives to ensure they are scanned by CDI
to find and process the bean classes.

In CDI 1.0, an archive was defined as an explicit bean archive if it contained a beans.xml file in the
META-INF/ directory for an application client, EJB, or library JAR, or if it contained a beans.xml file in
the WEB-INF/ directory for a WAR.

CDI 1.1 introduced implicit bean archives, which are archives that contain one or more bean classes with
a bean defining annotation, or one or more session beans. Implicit bean archives are scanned by CDI
and, during type discovery, only classes with bean defining annotations are discovered. For more
information, see Type and Bean Discovery in JSR 365: Contexts and Dependency Injection for Java 2.0.

<?xml version="1.0" encoding="UTF-8"?>
<jboss-deployment-structure>
 <deployment>
 <exclusions>
 <module name="org.jboss.resteasy.resteasy-jackson2-provider"/>
 <module name="org.jboss.resteasy.resteasy-jackson-provider"/>
 </exclusions>
 <dependencies>
 <module name="org.jboss.resteasy.resteasy-jettison-provider"
services="import"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

CHAPTER 5. APPLICATION MIGRATION CHANGES

75

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#add_an_explicit_module_dependency_to_a_deployment
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html
http://docs.jboss.org/cdi/api/2.0/
http://docs.jboss.org/weld/reference/3.0.5.Final/en-US/html_single/
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#type_bean_discovery

A bean archive has a bean discovery mode of all, annotated or none. A bean archive that contains a
beans.xml file with no version has a default bean discovery mode of all. A bean archive that contains
a beans.xml file with version 1.1 or later must specify the bean-discovery-mode attribute. The
default value for the attribute is annotated.

An archive is not a bean archive in the following cases:

It contains a beans.xml file with a bean-discovery-mode of none.

It contains a CDI extension with no beans.xml file.

An archive is an explicit bean archive in the following cases:

The archive contains a beans.xml file with a version number of 1.1 or later and a bean-
discovery-mode of all.

The archive contains a beans.xml file with no version number.

The archive contains an empty beans.xml file.

An archive is an implicit bean archive in the following cases:

The archive contains one or more bean classes with a bean defining annotation, or one or more
session beans, even if it does not contain a beans.xml file.

The archive contains a beans.xml file with a bean-discovery-mode of annotated.

CDI 1.2 limited bean defining annotations to the following:

@ApplicationScoped, @SessionScoped, @ConversationScoped, and @RequestScoped
annotations

All other normal scope types

@Interceptor and @Decorator annotations

All stereotype annotations, which are annotations annotated with @Stereotype

@Dependent scope annotation

For more information about bean archives, see Bean Archives in JSR 365: Contexts and Dependency
Injection for Java 2.0.

Clarification of Conversation Resolution
The conversation context lifecycle was changed in CDI 1.2 to prevent conflicts with the Servlet
specification as described in CDI Specification Issue CDI-411. The conversation scope is active during
all servlet requests and should not prevent other servlets or servlet filters from setting the request body or
character encoding. For more information, see Conversation context lifecycle in Java EE in JSR 365:
Contexts and Dependency Injection for Java 2.0.

Observer Resolution
Event resolution was partly rewritten in CDI 1.2. In CDI 1.0, an event is delivered to an observer method
if the observer method has all the event qualifiers. In CDI 1.2, an event is delivered to an observer
method if the observer method has no event qualifiers or has a subset of the event qualifiers. For more
information, see Observer resolution in JSR 365: Contexts and Dependency Injection for Java 2.0.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

76

http://docs.jboss.org/cdi/spec/2.0/cdi-spec-with-assertions.html#bean_defining_annotations
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#bean_archive
https://issues.jboss.org/browse/CDI-411
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#conversation_context_ee
http://docs.jboss.org/cdi/spec/2.0/cdi-spec.html#observer_resolution

5.6. MIGRATE EXPLICIT MODULE DEPENDENCIES

The introduction of the modular class loading system and JBoss Modules in the previous release of
JBoss EAP allowed for fine-grained control of the classes available to applications. This feature allowed
you to configure explicit module dependencies using the application’s MANIFEST.MF file or the jboss-
deployment-structure.xml deployment descriptor file.

If you defined explicit module dependencies in your application, you should be aware of the following
changes in JBoss EAP 7.

Review Dependencies for Availability
The modules that are included in JBoss EAP have changed. When you migrate your application to
JBoss EAP 7, review your MANIFEST.MF and jboss-deployment-structure.xml file entries to
make sure they do not refer to any modules that were removed from this release of the product.

Dependencies That Require Annotation Scanning
In the previous release of JBoss EAP, if your dependency contained annotations that needed to be
processed during annotation scanning, such as when declaring EJB Interceptors, you were required to
generate and include a Jandex index in a new JAR file and then set a flag in the MANIFEST.MF or
jboss-deployment-structure.xml deployment descriptor file.

JBoss EAP 7 now provides automatic runtime generation of annotation indexes for static modules, so
you no longer need to generate them manually. However, you still need to add the annotations flag to
the application’s MANIFEST.MF file or the jboss-deployment-structure.xml deployment
descriptor file as demonstrated below.

Example: Annotation Flag in the MANIFEST.MF File

Dependencies: com.company.my-ejb annotations, com.company.other

Example: Annotation Flag in the jboss-deployment-structure.xml File

5.7. HIBERNATE AND JPA MIGRATION CHANGES

5.7.1. Hibernate ORM 3.0

The integration classes that made it easier to use Hibernate ORM 3 in JBoss EAP 6.4 were removed
from JBoss EAP 7. If your application still uses Hibernate ORM 3 libraries, it is strongly recommended
that you migrate your application to use Hibernate ORM 5 as Hibernate ORM 3 will no longer work in
JBoss EAP without a lot of effort. If you can not migrate to Hibernate ORM 5, you must define a custom
JBoss Module for the Hibernate ORM 3 JARs and exclude the Hibernate ORM 5 classes from your
application.

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="com.company.my-ejb" annotations="true"/>
 <module name="com.company.other"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

CHAPTER 5. APPLICATION MIGRATION CHANGES

77

5.7.2. Hibernate ORM 4.0 - 4.3

If your application needs second-level cache enabled, be aware that Infinispan 8.x was integrated with
Hibernate ORM 5.0. Support for using Infinispan as a Hibernate 2nd-level cache provider was then
moved to the Infinispan project in Hibernate ORM 5.3, and as a result, the hibernate-infinispan
module was dropped from that release.

Applications written with Hibernate ORM 4.x can still use Hibernate ORM 4.x. You must define a custom
JBoss module for the Hibernate ORM 4.x JARs and exclude the Hibernate ORM 5 classes from your
application. However, it is strongly recommended that you rewrite your application code to use Hibernate
ORM 5. For information about migrating to Hibernate ORM 5, see Migrating to Hibernate ORM 5.

5.7.3. Migrating to Hibernate ORM 5

JBoss EAP 7.0 included Hibernate ORM 5.0. This section highlights the changes you need to make
when migrating from Hibernate ORM version 4.3 to version 5. For more information about the changes
implemented between Hibernate ORM 4 and Hibernate ORM 5, see the Hibernate ORM 5.0 Migration
Guide.

Removed and Deprecated Classes
The following deprecated classes were removed from Hibernate ORM 5:

org.hibernate.cfg.AnnotationConfiguration

org.hibernate.id.TableGenerator

org.hibernate.id.TableHiLoGenerator

org.hibernate.id.SequenceGenerator

Other Changes to Classes and Packages

The org.hibernate.integrator.spi.Integrator interface changed to account for
bootstrap redesign.

A new package org.hibernate.engine.jdbc.env.spi was created. It contains the
org.hibernate.engine.jdbc.env.spi.JdbcEnvironment interface, which was
extracted from the org.hibernate.engine.jdbc.spi.JdbcServices interface.

A new org.hibernate.boot.model.relational.ExportableProducer interface was
introduced that will affect org.hibernate.id.PersistentIdentifierGenerator
implementations.

The signature of org.hibernate.id.Configurable was changed to accept
org.hibernate.service.ServiceRegistry rather than just
org.hibernate.dialect.Dialect.

The org.hibernate.metamodel.spi.TypeContributor interface has migrated to
org.hibernate.boot.model.TypeContributor.

The org.hibernate.metamodel.spi.TypeContributions interface has migrated to
org.hibernate.boot.model.TypeContributions.

Type Handling

Built-in org.hibernate.type.descriptor.sql.SqlTypeDescriptor implementations

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

78

https://github.com/hibernate/hibernate-orm/blob/5.0/migration-guide.adoc
https://docs.jboss.org/hibernate/orm/3.5/api/org/hibernate/cfg/AnnotationConfiguration.html
https://docs.jboss.org/hibernate/orm/3.5/api/org/hibernate/id/TableGenerator.html
https://docs.jboss.org/hibernate/orm/3.5/api/org/hibernate/id/TableHiLoGenerator.html
https://docs.jboss.org/hibernate/orm/3.5/api/org/hibernate/id/SequenceGenerator.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/integrator/spi/Integrator.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/engine/jdbc/spi/package-frame.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/engine/jdbc/env/spi/JdbcEnvironment.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/engine/jdbc/spi/JdbcServices.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/boot/model/relational/ExportableProducer.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/id/PersistentIdentifierGenerator.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/id/Configurable.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/service/ServiceRegistry.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/dialect/Dialect.html
https://docs.jboss.org/hibernate/orm/4.3/javadocs/org/hibernate/metamodel/spi/TypeContributor.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/boot/model/TypeContributor.html
https://docs.jboss.org/hibernate/orm/4.3/javadocs/org/hibernate/metamodel/spi/TypeContributions.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/boot/model/TypeContributions.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/type/descriptor/sql/SqlTypeDescriptor.html

no longer auto-register themselves with
org.hibernate.type.descriptor.sql.SqlTypeDescriptorRegistry. Applications
using custom SqlTypeDescriptor implementations that extend the built-in implementations
and rely on that behavior must be updated to call
SqlTypeDescriptorRegistry.addDescriptor() themselves.

For IDs defined as generated UUIDs, some databases require you to explicitly set the
@Column(length=16) in order to generate BINARY(16) so that comparisons work properly.

For EnumType mappings defined in the hbm.xml, where you want
javax.persistence.EnumType.STRING name-mapping, this configuration must be
explicitly stated by using either the useNamed(true) setting or by specifying a VARCHAR
value of 12.

Transaction Management

The transaction SPI underwent a major redesign in Hibernate ORM 5. In Hibernate ORM 4.3,
you used the org.hibernate.Transaction API to directly access different back-end
transaction strategies. Hibernate ORM 5 introduced a level of indirection. On the back end, the
org.hibernate.Transaction implementation now talks to a
org.hibernate.resource.transaction.TransactionCoordinator, which represents
the transactional context for a given session according to the back-end strategy. While this does
not have a direct impact on developers, it could affect the bootstrap configuration. Previously
applications would specify hibernate.transaction.factory_class property, which is
now deprecated, and refer to a
org.hibernate.engine.transaction.spi.TransactionFactory FQN (fully qualified
name). With Hibernate ORM 5, you specify the
hibernate.transaction.coordinator_class setting and refer to a
org.hibernate.resource.transaction.TransactionCoordinatorBuilder. See
org.hibernate.cfg.AvailableSettings.TRANSACTION_COORDINATOR_STRATEGY for
additional details.

The following short names are now recognized:

jdbc: Manage transactions using the JDBC java.sql.Connection. This is the default for
non-JPA transactions.

jta: Manage transactions using JTA.

CHAPTER 5. APPLICATION MIGRATION CHANGES

79

https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/type/descriptor/sql/SqlTypeDescriptorRegistry.html
https://javaee.github.io/javaee-spec/javadocs/javax/persistence/EnumType.html#STRING
https://docs.oracle.com/javase/8/docs/api/java/sql/Types.html#VARCHAR
https://docs.jboss.org/hibernate/orm/4.3/javadocs/org/hibernate/Transaction.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/Transaction.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/resource/transaction/TransactionCoordinator.html
https://docs.jboss.org/hibernate/orm/4.3/javadocs/org/hibernate/engine/transaction/spi/TransactionFactory.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/resource/transaction/TransactionCoordinatorBuilder.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/cfg/AvailableSettings.html#TRANSACTION_COORDINATOR_STRATEGY
https://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html

IMPORTANT

If a JPA application does not provide a setting for the
hibernate.transaction.coordinator_class property, Hibernate will
automatically build the proper transaction coordinator based on the
transaction type for the persistence unit.

If a non-JPA application does not provide a setting for the
hibernate.transaction.coordinator_class property, Hibernate will
default to jdbc to manage the transactions. This default will cause problems
if the application actually uses JTA-based transactions. A non-JPA application
that uses JTA-based transactions should explicitly set the
hibernate.transaction.coordinator_class property value to jta or
provide a custom
org.hibernate.resource.transaction.TransactionCoordinator
Builder that builds a
org.hibernate.resource.transaction.TransactionCoordinator
that properly coordinates with JTA-based transactions.

Other Hibernate ORM 5 Changes

The cfg.xml files are again fully parsed and integrated with events, security, and other
functions.

The properties loaded from the cfg.xml using the EntityManagerFactory did not previously
prefix names with hibernate. This has now been made consistent.

The configuration is no longer serializable.

The org.hibernate.dialect.Dialect.getQuerySequencesString() method now
retrieves catalog, schema, and increment values.

The AuditConfiguration modifier was removed from
org.hibernate.envers.boot.internal.EnversService.

The AuditStrategy method parameters were changed to remove the obsolete
AuditConfiguration and use the new EnversService.

Various classes and interfaces in the org.hibernate.hql.spi package and subpackages
have been moved to the new org.hibernate.hql.spi.id package. This includes the
MultiTableBulkIdStrategy class and the AbstractTableBasedBulkIdHandler,
TableBasedDeleteHandlerImpl, and TableBasedUpdateHandlerImpl interfaces and
their subclasses.

There was a complete redesign of property access contracts.

Valid hibernate.cache.default_cache_concurrency_strategy setting values are now
defined using the
org.hibernate.cache.spi.access.AccessType.getExternalName() method rather
than the org.hibernate.cache.spi.access.AccessType enum constants. This is more
consistent with other Hibernate settings.

5.7.4. Migrating from Hibernate ORM 5.0 to Hibernate ORM 5.1

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

80

https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/resource/transaction/TransactionCoordinatorBuilder.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/resource/transaction/TransactionCoordinator.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/dialect/Dialect.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/envers/boot/internal/EnversService.html
https://docs.jboss.org/hibernate/orm/4.3/javadocs/org/hibernate/hql/spi/package-frame.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/hql/spi/id/package-frame.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/cache/spi/access/AccessType.html
https://docs.jboss.org/hibernate/orm/5.0/javadocs/org/hibernate/cache/spi/access/AccessType.html

JBoss EAP 7.1 included Hibernate ORM 5.1. This section highlights the differences and the changes
needed when migrating from Hibernate ORM version 5.0 to version 5.1.

Hibernate ORM 5.1 Features
This release of Hibernate includes many performance improvements and bug fixes, which are detailed in
Hibernate ORM 5.1 Features in the JBoss EAP 7.1.0 Release Notes. For additional information about
the changes implemented between Hibernate ORM 5.0 and Hibernate ORM 5.1, see the Hibernate
ORM 5.1 Migration Guide.

Schema Management Tooling Changes
Schema Management Tooling Changes in JBoss EAP 7
Schema management tooling changes in Hibernate ORM 5.1 are mainly focused in the following areas:

Unifying the handling of hbm2ddl.auto and Hibernate’s JPA schema-generation support.

Removing JDBC concerns from the SPI to facilitate true replacement for Hibernate OGM, a
persistence engine that provides Java Persistence (JPA) support for NoSQL data stores.

The schema management tooling changes should only be a migration concern for applications that
directly use any of the following classes:

org.hibernate.tool.hbm2ddl.SchemaExport

org.hibernate.tool.hbm2ddl.SchemaUpdate

org.hibernate.tool.hbm2ddl.SchemaValidator

org.hibernate.tool.schema.spi.SchemaManagementTool, or any of its delegates

Schema Management Tooling Changes in JBoss EAP 7.1
Hibernate ORM 5.1.10 which is included in JBoss EAP 7.1, introduced a new strategy for retrieving
database tables that improves SchemaMigrator and SchemaValidator performance. This strategy
executes a single java.sql.DatabaseMetaData#getTables(String, String, String,
String[]) call to determine if each javax.persistence.Entity has a mapped database table.
This is the default strategy, and it uses the
hibernate.hbm2ddl.jdbc_metadata_extraction_strategy=grouped property setting. This
strategy might require hibernate.default_schema and/or hibernate.default_catalog to be
provided.

To use the old strategy, which executes a java.sql.DatabaseMetaData#getTables(String,
String, String, String[]) call for each javax.persistence.Entity, use the
hibernate.hbm2ddl.jdbc_metadata_extraction_strategy=individually property setting.

5.7.5. Migrating from Hibernate ORM 5.1 to Hibernate ORM 5.3

JBoss EAP 7.2 includes Hibernate ORM 5.3. This section highlights some the changes needed when
migrating from Hibernate ORM 5.1 to Hibernate ORM 5.3.

Hibernate ORM 5.2 Features
Hibernate ORM 5.2 is built using the Java 8 JDK and requires the Java 8 JRE at runtime. The following
is a list of some of the changes made in this release.

The hibernate-java8 module was merged into hibernate-core, and the Java 8 date/time
datatypes are now natively supported.

CHAPTER 5. APPLICATION MIGRATION CHANGES

81

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/7.1.0_release_notes/#hibernate_5_1_features
https://github.com/hibernate/hibernate-orm/blob/5.1/migration-guide.adoc

The hibernate-entitymanager module was merged into hibernate-core.
HibernateEntityManager and HibernateEntityManagerFactory are deprecated.

The Session, StatelessSession, and SessionFactory class hierarchies were refactored
to remove deprecated classes and to better align with the JPA Metamodel API.

The SPIs in the org.hibernate.persister and com.hibernate.tuplizer packages
have changed. Any custom classes using those SPIs will need to be reviewed and updated.

LimitHandler changes introduced a new hibernate.legacy_limit_handler setting,
which is set to false by default, that is designed to allow you to enable the legacy Hibernate
4.3 limit handler behavior. This impacts a limited list of dialects.

A new strategy for retrieving database tables was introduced that improves SchemaMigrator
and SchemaValidator performance.

This release changes how CLOB values for String, character[], and Character[]
attributes that are annotated with @Lob are processed when using PostgreSQL81Dialect and its
subclasses.

The scope of @TableGenerator and @SequenceGenerator names has changed from global
to local.

For the complete list of changes implemented in Hibernate 5.2, see the Hibernate ORM 5.2 Migration
Guide.

Hibernate ORM 5.3 Features
Hibernate ORM 5.3 adds support for the JPA 2.2 specification. This release contains changes to comply
with this specification along with other improvements. The following is a list of some of these changes.

Changes to positional query parameter handling has resulted in the following changes:

Removal of support for JDBC-style parameter declarations in HQL/JPQL queries.

JPA positional parameters behave more like named parameters.

JDBC-style parameter declarations in native queries use one-based instead of zero-based
parameter binding to be consistent with JPA. You can revert back to zero-based binding by
setting the hibernate.query.sql.jdbc_style_params_base property to true.

To comply with the JPA specification, the sequence value stored by the @TableGenerator
stored value is that last generated value. Previously, Hibernate stored the next sequence value.
You can use the hibernate.id.generator.stored_last_used property to enable the
legacy Hibernate behavior. Existing applications that use @TableGenerator and migrate to
Hibernate 5.3 must set the hibernate.id.generator.stored_last_used
configuration property to false.

The getType() method in the org.hibernate.query.QueryParameter class was
renamed to getHibernateType().

Hibernate’s second-level cache SPI was redesigned to better meet the requirements of the
various caching providers. Details can be found in HHH-11356.

Changes for HHH-11356 also required changes in consumers, which impacts the Hibernate
Statistics system.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

82

https://github.com/hibernate/hibernate-orm/blob/5.2/migration-guide.adoc
https://hibernate.atlassian.net/browse/HHH-11356
https://hibernate.atlassian.net/browse/HHH-11356

Some methods were temporarily added to the org.hibernate.Query class to make it easier
to migrate native applications from Hibernate ORM 5.1 to 5.3 and maintain the Hibernate 5.1
pagination behavior. These methods are deprecated, and to be portable with future versions of
Hibernate, applications should be updated to use the JPA methods.

Support for using Infinispan as a Hibernate 2nd-level cache provider has been moved to the
Infinispan project. As a result, the hibernate-infinispan module has been dropped.

The API of the org.hibernate.tool.enhance.EnhancementTask Ant task was changed.
The addFileset() method was dropped in favor of the setBase() and the setDir()
methods. Details can be found in HHH-11795.

A bug introduced in Hibernate 4.3 caused many-to-one associations in embeddable collection
elements and composite IDs to be eagerly fetched, even when explicitly mapped as lazy. In
Hibernate 5.3.2, this bug was fixed. As a result, these associations are fetched as specified by
their mappings. Details can be found in HHH-12687.

JPA and native implementations of Hibernate event listeners were unified in this release. As a
result, the JpaIntegrator class is obsolete. Classes that extend
org.hibernate.jpa.event.spi.JpaIntegrator must be modified to have to change
these classes to implement the org.hibernate.integrator.spi.Integrator interface.
Details can be found in HHH-11264.

The SPIs in the org.hibernate.persister package have changed. Any custom classes
using those SPIs will need to be reviewed and updated.

For the complete list of these and other changes implemented in Hibernate 5.3, see the Hibernate ORM
5.3 Migration Guide.

5.7.5.1. Exception Handling Changes Between Hibernate 5.1 and Hibernate 5.3

In Hibernate 5.2 and 5.3, exception handling for a SessionFactory that is built using Hibernate’s
native bootstrapping, wraps or converts HibernateException according to the JPA specification. The
only exception to this behavior is when the operation is Hibernate-specific, for example
Session.save() or Session.saveOrUpdate().

In Hibernate 5.3.3, the hibernate.native_exception_handling_51_compliance property was
added. This property indicates whether exception handling for a SessionFactory built using
Hibernate’s native bootstrapping should behave the same as native exception handling in Hibernate
ORM 5.1. When set to true, HibernateException is not wrapped or converted according to the JPA
specification. This setting is ignored for a SessionFactory built using JPA bootstrapping.

5.7.5.2. Compatibility Transformer

JBoss EAP 7.2 incudes a compatibility transformer that addresses Hibernate ORM 5.3 API methods that
are no longer compatible with Hibernate ORM 5.1. The transformer is a temporary measure to allow
applications built using Hibernate ORM 5.1 to exhibit the same behavior with Hibernate 5.3 in JBoss
EAP 7.2. This is a temporary solution and you should replace these method calls with the recommended
JPA method calls.

You can enable the transformer in one of the following ways.

You can enable the transformer globally for all applications by setting the
Hibernate51CompatibilityTransformer system property to true.

CHAPTER 5. APPLICATION MIGRATION CHANGES

83

https://hibernate.atlassian.net/browse/HHH-11795
https://hibernate.atlassian.net/browse/HHH-12687
https://hibernate.atlassian.net/browse/HHH-11264
https://github.com/hibernate/hibernate-orm/blob/5.3/migration-guide.adoc

You can use the jboss-deployment-structure.xml file to enable the transformer at the
application level.

The following table lists the Hibernate 5.1 methods that are transformed and the Hibernate 5.3 method it
is converted to.

Hibernate 5.1 Reference or Method Transformed to Hibernate 5.3 Reference or
Method

org.hibernate.BasicQueryContract.getFlushMode() org.hibernate.BasicQueryContract.getHibernateFlush
Mode()

org.hibernate.Session.getFlushMode() org.Session.getHibernateFlushMode()

Enum org.hibernate.FlushMode.NEVER (0) Enum org.hibernate.FlushMode.MANUAL (0)

org.hibernate.Query.getMaxResults() org.hibernate.Query.getHibernateMaxResults()

org.hibernate.Query.setMaxResults(int) org.hibernate.Query.setHibernateMaxResults(int)

org.hibernate.Query.getFirstResult(int) org.hibernate.Query.getHibernateFirstResult()

org.hibernate.Query.setFirstResult(int) org.hibernate.Query.setHibernateFirstResult(int)

5.8. HIBERNATE SEARCH CHANGES

The version of Hibernate Search that ships with JBoss EAP 7 has changed. The previous release of
JBoss EAP shipped with Hibernate Search 4.6.x. JBoss EAP 7 ships with Hibernate Search 5.5.x.

Hibernate Search 5.5 is built upon Apache Lucene 5.3.1. If you use any native Lucene APIs, be sure to
align with this version. The Hibernate Search 5.5 API wraps and hides the complexity of many of the
Lucene API changes made between version 3 and version 5; however, some classes are now
deprecated, renamed, or repackaged. This section describes how these changes might impact your
application code.

Hibernate Search Mapping Changes

<jboss-deployment-structure>
 <deployment>
 <transformers>
 <transformer
class="org.jboss.as.hibernate.Hibernate51CompatibilityTransformer"/>
 </transformers>
 </deployment>
 <sub-deployment name="main.war">
 <transformers>
 <transformer
class="org.jboss.as.hibernate.Hibernate51CompatibilityTransformer"/>
 </transformers>
 </sub-deployment>
</jboss-deployment-structure>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

84

http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/BasicQueryContract.html#getFlushMode--
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/BasicQueryContract.html#getHibernateFlushMode--
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/Session.html#getFlushMode--
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/Session.html#getFlushMode--
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/FlushMode.html#NEVER
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/FlushMode.html#MANUAL
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/Query.html#getMaxResults--
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/Query.html#getHibernateMaxResults--
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/Query.html#setMaxResults-int-
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/Query.html#setHibernateMaxResults-int-
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/Query.html#getFirstResult--
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/Query.html#getHibernateFirstResult--
http://docs.jboss.org/hibernate/orm/5.1/javadocs/org/hibernate/Query.html#setFirstResult-int-
http://docs.jboss.org/hibernate/orm/5.3/javadocs/org/hibernate/Query.html#setHibernateFirstResult-int-
https://docs.jboss.org/hibernate/search/5.5/api/index.html

Indexing of id Fields of Embedded Relations
When using an @IndexedEmbedded annotation to include fields from a related entity, the id of the
related entity is no longer included. You can enable the inclusion of the id by using the
includeEmbeddedObjectId attribute of the @IndexedEmbedded annotation.

Example: @IndexedEmbedded Annotation

Number and Date Index Formatting Changes
Numbers and dates are now indexed as numeric fields by default. Properties of type int, long, float,
double, and their corresponding wrapper classes are no longer indexed as strings. Instead, they are
now indexed using Lucene’s appropriate numeric encoding. The id fields are an exception to this rule.
Even when they are represented by a numeric type, they are still indexed as a string keyword by default.
The use of @NumericField is now obsolete unless you want to specify a custom precision for the
numeric encoding. You can keep the old string-based index format by explicitly specifying a string
encoding field bridge. In the case of integers, this is the org.hibernate.search.bridge.builtin.IntegerBridge.
Check the org.hibernate.search.bridge.builtin package for other publicly available field bridges.

Date and Calendar are no longer indexed as strings. Instead, instances are encoded as long values
representing the number of milliseconds since January 1, 1970, 00:00:00 GMT. You can switch the
indexing format by using the new EncodingType enum. For example:

Example: @DateBridge and @CalendarBridge Annotation

The encoding change for numbers and dates is important and can have a big impact on application
behavior. If you have a query that targets a field that was previously string-encoded, but is now encoded
numerically, you must update the query. Numeric fields must be searched with a NumericRangeQuery.
You must also make sure that all fields targeted by faceting are string encoded. If you use the Search
query DSL, the correct query should be created automatically for you.

Miscellaneous Hibernate Search Changes

Sorting options have improved and field encoding specified incorrectly for sorting options now
results in runtime exceptions. Lucene also offers more performant sorting if the fields used in the
sort are known up front. Hibernate Search 5.5 provides the new @SortableField annotation
and its multi-valued companion @SortableFields. See the Migration Guide from Hibernate
Search 5.4 to 5.5 for more information.

The Lucene SortField API requires the following application code change.
In the previous release of JBoss EAP, you set the type of the sort field in the query as follows.

The following is an example of how you set it in JBoss EAP 7.

@IndexedEmbedded(includeEmbeddedObjectId=true)

@DateBridge(encoding=EncodingType.STRING)
@CalendarBridge(encoding=EncodingType.STRING)

fulltextQuery.setSort(new Sort(new SortField("title",
SortField.STRING)));

fulltextQuery.setSort(new Sort(new SortField("title",
SortField.Type.STRING)));

CHAPTER 5. APPLICATION MIGRATION CHANGES

85

http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/bridge/builtin/IntegerBridge.html
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/bridge/builtin/package-summary.html
http://docs.jboss.org/hibernate/search/5.0/api/org/hibernate/search/annotations/EncodingType.html
http://hibernate.org/search/documentation/migrate/5.5/
https://lucene.apache.org/core/5_3_1/core/org/apache/lucene/search/SortField.html

Since SearchFactory should only be used by ORM integration, it was moved from the
hibernate-search-engine module to the hibernate-search-orm module. Other
integrators should depend exclusively on SearchIntegrator, which replaces the deprecated
SearchFactoryIntegrator.

The enum value SpatialMode.GRID was renamed to SpatialMode.HASH.

FullTextIndexEventListener is now a final class. If you currently extend this class, you
must find an alternate solution to achieve the same functionality.

The hibernate-search-analyzers module was removed. The recommended approach is
to directly use the appropriate Lucene artifact, for example org.apache.lucene:lucene-
analyzers-common.

The JMS controller API has changed. The JMS back-end dependency on Hibernate ORM was
removed so that it could be used in other non-ORM environments. A consequence is that
implementors of
org.hibernate.search.backend.impl.jms.AbstractJMSHibernateSearchControl
ler must adjust to the new signature. This class is an internal class and it is recommended to
use it as an example instead of extending it.

The org.hibernate.search.spi.ServiceProvider SPI was refactored. If you were
integrating with the old service contract, refer to the Hibernate Search 5.5 Javadoc of
ServiceManager, Service, Startable and Stoppable for details about the new contract.

If you have kept indexes generated by Lucene 3.x and have not rebuilt them with Hibernate
Search 5.0 or later, you will get an IndexFormatTooOldException. It is recommended that
you rebuild the indexes with the mass indexer. If you are not able to do that, try to use Lucene’s
IndexUpgrader. You must carefully update the Hibernate Search mappings in case the
default behavior has changed. For more information, see the Apache Lucene Migration Guide.

Apache Lucene was upgraded from 3.6 to 5.3 in JBoss EAP 7. If your code imports Lucene code
directly, see the Apache Lucene Migration Guide for details of the changes. Additional
information can also be found in the Lucene Change Log.

When using @Field(indexNullAs=) to encode a null marker value in the index, the type of
the marker must be compatible with all other values that are indexed in that same field. For
example, it was previously possible to encode a null value for numeric fields using a string "null".
This is no longer allowed. Instead, you must choose a number to represent the null value, such
as -1.

Significant improvements were made to the faceting engine. Most of the changes do not affect
the API. The one notable exception is that you must now annotate any fields you intend to use
for faceting with the @Facet or @Facets annotation.

Hibernate Search Renamed and Repackaged Classes
The following is a list of Hibernate Search classes that were repackaged or renamed.

Previous Package and Class New Package and Class

org.hibernate.search.Environment org.hibernate.search.cfg.Environment

org.hibernate.search.FullTextFilter org.hibernate.search.filter.FullTextFilter

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

86

https://docs.jboss.org/hibernate/search/5.5/api/index.html
http://lucene.apache.org/core/5_3_0/MIGRATE.html
http://lucene.apache.org/core/5_3_0/MIGRATE.html
http://lucene.apache.org/core/5_3_0/changes/Changes.html

org.hibernate.search.ProjectionConstants org.hibernate.search.engine.ProjectionConstants

org.hibernate.search.SearchException org.hibernate.search.exception.SearchException

org.hibernate.search.Version org.hibernate.search.engine.Version

Previous Package and Class New Package and Class

Lucene - Renamed and Repackaged Classes
Query parsers were moved to a new module, resulting in a packaging change from
org.apache.lucene.queryParser.QueryParser to
org.apache.lucene.queryparser.classic.QueryParser.

Many of the Lucene analyzers were refactored, resulting in packaging changes. See the Apache Lucene
Documentation to find the replacement packages.

Some Apache Solr utility classes, for example TokenizerFactory or TokenFilterFactory, were
moved into Apache Lucene. If your application uses those utilities or custom analyzers, you must find the
new package name in Apache Lucene.

See the Apache Lucene Migration Guide for more information.

Hibernate Search Deprecated APIs
For the complete list of Hibernate Search deprecated interfaces, classes, enums, annotation types,
methods, constructors, and enum constants, see the Hibernate Search Deprecated API document.

Hibernate Search Deprecated Interfaces

Interface Description

org.hibernate.search.store.IndexShardingStrategy Deprecated as of Hibernate Search 4.4. Might be
removed in Search 5. Use
ShardIdentifierProvider instead.

org.hibernate.search.store.Workspace This interface will be moved and should be
considered non-public API. For more information,
see HSEARCH-1915.

Hibernate Search Deprecated Classes

Class Description

org.hibernate.search.filter.FilterKey Custom filter keys are deprecated and are scheduled
for removal in Hibernate Search 6. As of Hibernate
Search 5.1, keys for caching Lucene filters are
calculated automatically based on the given filter
parameters.

CHAPTER 5. APPLICATION MIGRATION CHANGES

87

http://lucene.apache.org/core/4_10_2/
http://lucene.apache.org/core/4_10_2/MIGRATE.html
https://docs.jboss.org/hibernate/search/5.5/api/deprecated-list.html
https://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/store/ShardIdentifierProvider.html
https://hibernate.atlassian.net/browse/HSEARCH-1915

org.hibernate.search.filter.StandardFilterKey Custom filter keys are deprecated and are scheduled
for removal in Hibernate Search 6. As of Hibernate
Search 5.1, keys for caching Lucene filters are
calculated automatically based on the given filter
parameters.

Class Description

Hibernate Search Deprecated Enums

Enum Description

org.hibernate.search.annotations.FieldCacheType Remove the CacheFromIndex annotation as it is
deprecated. See Hibernate Search Deprecated
Annotations.

Hibernate Search Deprecated Annotations

Annotation Description

org.hibernate.search.annotations.CacheFromIndex Remove the annotation. No alternative replacement
is necessary.

org.hibernate.search.annotations.Key Custom filter cache keys are a deprecated feature
and are scheduled to be removed in Hibernate
Search 6. As of Hibernate Search 5.1, the filter cache
keys are determined automatically based on the filter
parameters so it is no longer required to provide a
key object.

Hibernate Search Deprecated Methods

Method Description

org.hibernate.search.FullTextSharedSessionBuilder.a
utoClose()

No replacement

org.hibernate.search.FullTextSharedSessionBuilder.a
utoClose(boolean)

No replacement

org.hibernate.search.cfg.IndexedMapping.cacheFrom
Index(FieldCacheType… ​)

This will be removed with no replacement.

org.hibernate.search.cfg.EntityDescriptor.getCacheIn
Memory()

This will be removed with no replacement.

org.hibernate.search.cfg.ContainedInMapping.numeri
cField()

Invoke field().numericField() instead.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

88

org.hibernate.search.cfg.EntityDescriptor.setCacheIn
Memory(Map<String, Object>)

This will be removed with no replacement.

org.hibernate.search.MassIndexer.threadsForSubseq
uentFetching(int)

This method will be removed.

org.hibernate.search.query.dsl.FuzzyContext.withThr
eshold(float)

Use
FuzzyContext.withEditDistanceUpTo(in
t).

Method Description

Hibernate Search Deprecated Constructors

Constructor Description

org.hibernate.search.cfg.NumericFieldMapping(Prope
rtyDescriptor, EntityDescriptor, SearchMapping)

Use
NumericFieldMapping.NumericFieldMapp
ing(String, PropertyDescriptor,
EntityDescriptor, SearchMapping)
instead.

Changes Impacting Advanced Integrators
This section describes changes that are not part of the public API. They should not impact the average
developer as these artifacts should only be accessed by integrators who extend the Hibernate Search
framework.

The IndexWriterSetting.MAX_THREAD_STATES and
IndexWriterSetting.TERM_INDEX_INTERVAL enum constants are deprecated. They affect
which properties are read from the configuration, so the fact they they are missing means that
configuration properties such as
hibernate.search.Animals.2.indexwriter.term_index_interval = default are
now ignored. The only side effect is that the property is not applied.

The SearchFactoryIntegrator interface is now deprecated. You should immediately
migrate all code to use SearchIntegrator.

The SearchFactoryBuilder class is now deprecated. Use SearchIntegrationBuilder
instead.

The HSQuery.getExtendedSearchIntegrator() method has been deprecated. It might be
possible to use SearchIntegrator, but it is preferable to remove it altogether.

The DocumentBuilderIndexedEntity.getFieldCacheOption() method has been
deprecated. There is no replacement.

The BuildContext.getIndexingStrategy() method is deprecated. Use
BuildContext.getIndexingMode() instead.

The DirectoryHelper.getVerifiedIndexDir(String, Properties, boolean)
method is deprecated. Use
DirectoryHelper.getVerifiedIndexPath(java.lang.String,

CHAPTER 5. APPLICATION MIGRATION CHANGES

89

http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/backend/configuration/impl/IndexWriterSetting.html#MAX_THREAD_STATES
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/backend/configuration/impl/IndexWriterSetting.html#TERM_INDEX_INTERVAL
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/spi/SearchFactoryIntegrator.html
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/spi/SearchIntegrator.html
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/spi/SearchFactoryBuilder.html
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/spi/SearchIntegratorBuilder.html
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/query/engine/spi/HSQuery.html#getExtendedSearchIntegrator--
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/spi/SearchIntegrator.html
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/engine/spi/DocumentBuilderIndexedEntity.html#getFieldCacheOption--
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/spi/BuildContext.html#getIndexingStrategy--
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/spi/BuildContext.html#getIndexingMode--
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/store/spi/DirectoryHelper.html#getVerifiedIndexDir-java.lang.String-java.util.Properties-boolean-
http://docs.jboss.org/hibernate/search/5.5/api/org/hibernate/search/store/spi/DirectoryHelper.html#getVerifiedIndexPath-java.lang.String-java.util.Properties-boolean-

java.util.Properties, boolean) instead.

The following is a list of Hibernate Search classes that were repackaged or renamed.

Previous Package and Class New Package and Class

org.hibernate.search.engine.impl.SearchMappin
gBuilder

org.hibernate.search.engine.spi.SearchMapping
Helper

org.hibernate.search.indexes.impl.DirectoryBase
dIndexManager

org.hibernate.search.indexes.spi.DirectoryBased
IndexManager

org.hibernate.search.spi.MassIndexerFactory org.hibernate.search.batchindexing.spi.MassInde
xerFactory

org.hibernate.search.spi.SearchFactoryBuilder org.hibernate.search.spi.SearchIntegratorBuilder

org.hibernate.search.spi.SearchFactoryIntegrator org.hibernate.search.spi.SearchIntegrator

5.9. MIGRATE ENTITY BEANS TO JPA

Support for EJB Entity Beans is optional in Java EE 7 and they are not supported in JBoss EAP 7. This
means container-managed persistence (CMP) and bean-managed persistence (BMP) entity beans must
be rewritten to use Java Persistence API (JPA) entities when you migrate to JBoss EAP 7.

In previous releases of JBoss EAP, entity beans were created in application source code by extending
the javax.ejb.EntityBean class and implementing the required methods. They were then configured
in the ejb-jar.xml file. A CMP entity bean was specified using an <entity> element that contained a
<persistence-type> child element with a value of Container. A BMP entity bean was specified using
an <entity> element that contained a <persistence-type> child element with a value of Bean.

In JBoss EAP 7, you must replace any CMP and BMP entity beans in your code with Java Persistence
API (JPA) entities. JPA entities are created using the javax.persistence.* classes and are defined in the
persistence.xml file.

The following is an example of a JPA entity class.

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
// User is a keyword in some SQL dialects!
@Table(name = "MyUsers")
public class MyUser {
 @Id
 @GeneratedValue
 private Long id;

 @Column(unique = true)
 private String username;

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

90

https://docs.oracle.com/javaee/7/api/index.html?javax/persistence/package-summary.html

The following is an example of a persistence.xml file.

For working examples of JPA entities, see the bmt, cmt, and hibernate5 quickstarts that ship with
JBoss EAP 7.

5.10. JPA PERSISTENCE PROPERTY CHANGES

JPA Persistence Property Changes Introduced in JBoss EAP 7.0
A new persistence property, jboss.as.jpa.deferdetach, was added to provide compatibility with
the persistence behavior in previous releases of JBoss EAP.

The jboss.as.jpa.deferdetach property controls whether the transaction-scoped persistence
context used in a non-JTA transaction thread detaches loaded entities after each EntityManager
invocation or whether it waits until the persistence context is closed, for example, when the session bean
invocation ends. The property value defaults to false, meaning entities are detached or cleared after

 private String firstName;
 private String lastName;

 public Long getId() {
 return id;
 }
 public String getUsername() {
 return username;
 }
 public void setUsername(String username) {
 this.username = username;
 }
 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

<persistence version="2.1"
 xmlns="http://xmlns.jcp.org/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://xmlns.jcp.org/xml/ns/persistence
 http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd">
 <persistence-unit name="my-unique-persistence-unit-name">
 <properties>
 // properties...
 </properties>
 </persistence-unit>
</persistence>

CHAPTER 5. APPLICATION MIGRATION CHANGES

91

each EntityManager invocation. This is the correct default behavior as defined in the JPA
specification. If the property value is set to true, the entities are not detached until the persistence
context is closed.

In JBoss EAP 5, persistence behaved as if the jboss.as.jpa.deferdetach property was set to
true. To get this same behavior when migrating your application from JBoss EAP 5 to JBoss EAP 7,
you must set the jboss.as.jpa.deferdetach property value to true in your persistence.xml as
shown in the following example.

In JBoss EAP 6, persistence behaved as if the jboss.as.jpa.deferdetach property was set to
false. This is the same behavior as seen in JBoss EAP 7, so no changes are necessary when you
migrate your application.

JPA Persistence Property Changes Introduced in JBoss EAP 7.1
In JBoss EAP 7.0, unsynchronized persistence context error checking was not as strict as it should have
been in the following areas.

A synchronized container-managed persistence context was allowed to use an unsynchronized
extended persistence context that was associated with a JTA transaction. Instead, it should
have thrown an IllegalStateException to prevent the unsynchronized persistence context
from being used.

An unsynchronized persistence context specified in a deployment descriptor was treated as
synchronized.

In addition, PersistenceProperty hints in the @PersistenceContext were mistakenly ignored in
JBoss EAP 7.0.

These issues were addressed and fixed in JBoss EAP 7.1 and later. Because these updates can result
in an unwanted change in application behavior, two new persistence unit properties were introduced in
JBoss EAP 7.1 to provide backward compatibility and preserve the previous behavior.

Property Description

wildfly.jpa.skipmixedsynctypecheckin
g

This property disables the error checking. It should
only be used as a temporary measure for backward
compatibility in situations where applications worked
in JBoss EAP 7.0 and fail in JBoss EAP 7.1 and
later. Because this property might be deprecated in a
future release, it is recommended that you correct
your application code as soon as you are able to do
so.

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">
 <persistence-unit name="EAP5_COMPAT_PU">
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <properties>
 <property name="jboss.as.jpa.deferdetach" value="true" />
 </properties>
 </persistence-unit>
</persistence>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

92

https://jcp.org/en/jsr/detail?id=338

wildfly.jpa.allowjoinedunsync This property is an alternative to
wildfly.jpa.skipmixedsynctypecheckin
g. It allows the application to treat unsynchronized
persistence contexts that are associated with a JTA
transaction as if they are synchronized persistence
contexts.

Property Description

5.11. MIGRATE EJB CLIENT CODE

5.11.1. EJB Client Changes in JBoss EAP 7

The default remote connector and port has changed in JBoss EAP 7. For details about this change, see
Update the Remote URL Connector and Port.

If you used the migrate operation to migrate your server configuration, the old settings are preserved
and you do not need to make the changes detailed below. However, if you run with the new JBoss EAP
7 default configuration, you must make the following changes.

5.11.1.1. Update the Default Remote Connection Port

Change the remote connection port value from 4447 to 8080 in the jboss-ejb-client.properties
file.

The following are examples of a jboss-ejb-client.properties file in the previous and the current
release.

Example: JBoss EAP 6 jboss-ejb-client.properties File

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=fals
e
remote.connections=default
remote.connection.default.host=localhost
remote.connection.default.port=4447
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOA
NONYMOUS=false

Example: JBoss EAP 7 jboss-ejb-client.properties File

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=fals
e
remote.connections=default
remote.connection.default.host=localhost
remote.connection.default.port=8080
remote.connection.default.connect.options.org.xnio.Options.SASL_POLICY_NOA
NONYMOUS=false

5.11.1.2. Update the Default Connector

CHAPTER 5. APPLICATION MIGRATION CHANGES

93

If you are running with the new JBoss EAP 7 configuration, the default connector has changed from
remote to http-remoting. This change impacts clients that use libraries from one release of JBoss
EAP and to connect to server in a different release.

If a client application uses the EJB client library from JBoss EAP 6 and wants to connect to
JBoss EAP 7 server, the server must be configured to expose a remote connector on a port
other than 8080. The client must then connect using that newly configured connector.

A client application that uses the EJB client library from JBoss EAP 7 and wants to connect to
JBoss EAP 6 server must be aware that the server instance does not use the http-remoting
connector and instead uses a remote connector. This is achieved by defining a new client-side
connection property.

Example: remote Connection Property

remote.connection.default.protocol=remote

5.11.2. Migrate Remote Naming Client Code

If you are running with the new default JBoss EAP 7 configuration, you must modify your client code to
use the new default remote port and connector.

The following is an example of how remote naming properties were specified in the client code in JBoss
EAP 6.

java.naming.factory.initial=org.jboss.naming.remote.client.InitialContextF
actory
java.naming.provider.url=remote://localhost:4447

The following is an example of how to specify the remote naming properties in the client code in JBoss
EAP 7.

java.naming.factory.initial=org.wildfly.naming.client.WildFlyInitialContex
tFactory
java.naming.provider.url=http-remoting://localhost:8080

5.11.3. Additional EJB Client Changes Introduced in JBoss EAP 7.1

While JBoss EAP 7.0 shipped with JBoss EJB Client 2.1.4, JBoss EAP 7.1 and later ship with JBoss EJB
Client 4.0.x, which includes a number of changes to the API.

The org.ejb.client.EJBClientInvocationContext class has added the following new
methods.

Method Type Description

isBlockingCaller() boolean Determine whether this invocation is currently
blocking the calling thread.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

94

isClientAsync() boolean Determine whether the method is marked client-
asynchronous, meaning that invocation should
be asynchronous regardless of whether the
server-side method is asynchronous.

isIdempotent() boolean Determine whether the method is marked
idempotent, meaning that the method may be
invoked more than one time with no additional
effect.

setBlockingCaller(
boolean)

void Establish whether this invocation is currently
blocking the calling thread.

setLocator(EJBLoca
tor<T>)

<T> void Set the locator for the invocation target.

Method Type Description

The org.ejb.client.EJBLocator class has added the following new methods.

Method Type Description

asStateful() StatefulEJB
Locator<T>

Return this locator as a stateful locator, if it is
one.

asStateless() StatelessEJ
BLocator<T>

Return this locator as a stateless locator, if it is
one.

isEntity() boolean Determine if this is an entity locator.

isHome() boolean Determine if this is a home locator.

isStateful() boolean Determine if this is a stateful locator.

isStateless() boolean Determine if this is a stateless locator.

withNewAffinity(Af
finity)

abstract
EJBLocator<
T>

Create a copy of this locator, but with the new
given affinity.

A new org.ejb.client.EJBClientPermission class, which is a subclass of
java.security.Permission, has been introduced for controlling access to privileged EJB
operations.

It provides the following constructors.

EJBClientPermission(String name)

EJBClientPermission(String name, String actions)

CHAPTER 5. APPLICATION MIGRATION CHANGES

95

https://docs.oracle.com/javase/8/docs/api/java/security/Permission.html?is-external=true

It provides the following methods.

Method Type Description

equals(EJBClientP
ermission obj)

boolean Checks two EJBClientPermission
objects for equality.

equals(Object
obj)

boolean Checks two Permission objects for
equality.

equals(Permission
obj)

boolean Checks two Permission objects for
equality.

getActions() String Returns the actions as a string.

hashcode() int Returns the hash code value for this
Permission object.

implies(EJBClient
Permission
permission)

boolean Checks if the specified permission’s actions
are implied by this
EJBClientPermission object’s actions.

implies(Permissio
n permission)

boolean Checks if the specified permission’s actions
are implied by this Permission object’s
actions.

A new org.ejb.client.EJBMethodLocator class has been introduced for locating a
specific EJB method.

It provides the following constructor.

EJBMethodLocator(String methodName, String… ​ parameterTypeNames)

It provides the following methods.

Method Type Description

equals(EJBMethodL
ocator other)

boolean Determine whether this object is equal to
another.

equals(Object
other)

boolean Determine whether this object is equal to
another.

forMethod(Method
method)

static
EJBMethodL
ocator

Get a method locator for the given reflection
method.

getMethodName() String Get the method name.

getParameterCount
()

int Get the parameter count.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

96

getParameterTypeN
ame(int index)

String Get the name of the parameter at the given
index.

hashCode() int Get the hash code.

Method Type Description

A new
org.jboss.ejb.client.EJBReceiverInvocationContext.ResultProducer.Failed
class has been introduced for failure cases.

It provides the following constructor.

Failed(Exception cause)

It provides the following methods.

Method Type Description

discardResult() void Discard the result, indicating that it will not be
used.

getResult() Object Get the result.

A new
org.jboss.ejb.client.EJBReceiverInvocationContext.ResultProducer.Immedi
ate class has been introduced for immediate results.

It provides the following constructor.

Failed(Exception cause)

It provides the following methods.

Method Type Description

discardResult() void Discard the result, indicating that it will not be
used.

getResult() Object Get the result.

A new org.jboss.ejb.client.URIAffinity class, which is a subclass of
org.jboss.ejb.client.Affinity has been introduced for URI affinity specification.

It is created using Affinity.forUri(URI).

It provides the following methods.

CHAPTER 5. APPLICATION MIGRATION CHANGES

97

Method Type Description

equals(Affinity
other)

boolean Indicates whether another object is equal to
this one.

equals(Object
other)

boolean Indicates whether another object is equal to
this one.

equals(URIAffinit
y other)

boolean Indicates whether another object is equal to
this one.

getURI() URI Get the associated URI.

hashCode() int Get the hash code.

toString() String Returns a string representation of the object.

The org.jboss.ejb.client.EJBMetaDataImpl class has deprecated the following
methods.

toAbstractEJBMetaData()

EJBMetaDataImpl(AbstractEJBMetaData<?,?>)

5.11.4. EJB Client Changes Needed for JBoss EAP 7.2

The upgrade of the org.apache.santuario.xmlsec module from 2.0.8 to 2.1.1 in JBoss EAP 7.2
has caused a regression with remoting in PicketLinkSTS. The issue manifests itself as the following
runtime exception.

java.lang.IllegalArgumentException: ELY05131: Invalid ASCII control "0xA"

This is caused by a change in the formatting in the generated SignatureValue in the assertion. In the
previous release, the generated value looked similar to the following example.

In JBoss EAP 7.2, the generated string value now contains instances of invalid hidden ASCII 0xD
carriage return and 0xA line feed control characters.

<dsig:SignatureValue
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">cUNpFJIZlLYrBDZtQSTDrq2K6P
bnAHyg2qbx/D5FuB4XMjdQ5oxQjkMejLyelnA7s4GFusoLhahlqlTOT8UrOyxrR4yYAmJ/e5s+
f4gys926+tbiraT/3/wG8wM/Lvcjvk5Ap69zODuRYpypsWfA4jrI7TTBXVPGy8g4KUdnFviUiT
uFTc2Ghgxp53AmUuLis/THyP28jE7+28//q8bi/bQrFwHC6tWX67+NK1duFCOcQ6IPIKeVrePZ
z55Ivgl+WWdkF6uYCz5IdMzurhzmeQ3K8DAMIxz/MG67VWJIOnuGNWF7nmdye5zd9AFcRsr1Xa
dvZJCbGNfuc89AL5inCg==</dsig:SignatureValue>

<dsig:SignatureValue
xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">cUNpFJIZlLYrBDZtQSTDrq2K6P
bnAHyg2qbx/D5FuB4XMjdQ5oxQjkMejLyelnA7s4GFusoLhahl
qlTOT8UrOyxrR4yYAmJ/e5s+f4gys926+tbiraT/3/wG8wM/Lvcjvk5Ap69zODuRYpypsWfA4j

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

98

If you experience the above runtime exception, you must update your client code to remove occurrences
of the hidden ASCII characters from the the returned assertion string.

For example, assume your current code looks similar to the following example.

You must add a line of code to remove the occurrences of the invalid hidden ASCII 0xD carriage return
and 0xA line feed characters as shown below.

5.12. MIGRATE CLIENTS TO USE THE WILDFLY CONFIGURATION FILE

Prior to release 7.1, JBoss EAP client libraries, such as EJB and naming, used different configuration
strategies. JBoss EAP 7.1 introduced the wildfly-config.xml file with the purpose of unifying all
client configurations into one single configuration file, in a similar manner to the way the server
configuration is handled.

For example, prior to JBoss EAP 7.1, you might create a new InitialContext for a Java EJB client
using a jboss-ejb-client.properties file, or by programmatically setting the properties using a
Properties class.

Example: jboss-ejb-client.properties Properties File

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=fals

rI
7TTBXVPGy8g4KUdnFviUiTuFTc2Ghgxp53AmUuLis/THyP28jE7+28//q8bi/bQrFwHC6tWX67
+N
K1duFCOcQ6IPIKeVrePZz55Ivgl+WWdkF6uYCz5IdMzurhzmeQ3K8DAMIxz/MG67VWJIOnuGNW
F7
nmdye5zd9AFcRsr1XadvZJCbGNfuc89AL5inCg==</dsig:SignatureValue>

WSTrustClient client = new WSTrustClient("PicketLinkSTS",
"PicketLinkSTSPort",
 "http://localhost:8080/picketlink-sts/PicketLinkSTS", new
WSTrustClient.SecurityInfo(username, password));
Element assertion = client.issueToken(SAMLUtil.SAML2_TOKEN_TYPE);

// Return the assertion as a string
String assertionString = DocumentUtil.getNodeAsString(assertion);
...
properties.put("remote.connection.main.password", assertionString);

WSTrustClient client = new WSTrustClient("PicketLinkSTS",
"PicketLinkSTSPort",
 "http://localhost:8080/picketlink-sts/PicketLinkSTS", new
WSTrustClient.SecurityInfo(username, password));
Element assertion = client.issueToken(SAMLUtil.SAML2_TOKEN_TYPE);

// Return the assertion as a string, stripping the invalid hidden ASCII
characters
String assertionString =
DocumentUtil.getNodeAsString(assertion).replace(String.valueOf((char)
0xA), "").replace(String.valueOf((char) 0xD), "");
...
properties.put("remote.connection.main.password", assertionString);

CHAPTER 5. APPLICATION MIGRATION CHANGES

99

e
remote.connections=one
remote.connection.one.port=8080
remote.connection.one.host=127.0.0.1
remote.connection.one.username=quickuser
remote.connection.one.password=quick-123

In JBoss EAP 7.1 and later, you create a wildfly-config.xml file in the META-INF/ directory of the
client archive. This is the equivalent configuration using a wildfly-config.xml file.

Example: Equivalent Configuration Using the wildfly-config.xml File

For information about how to configure client authentication for the Elytron Client using the wildfly-
config.xml file, see Configure Client Authentication with Elytron Client in How to Configure Identity
Management for JBoss EAP.

For more information about the types of client configurations that can be done using the wildfly-
config.xml file, see Client Configuration Using the wildfly-config.xml File in the JBoss EAP
Development Guide.

5.13. MIGRATE DEPLOYMENT PLAN CONFIGURATIONS

The Java EE Application Deployment specification (JSR-88) was intended to define a standard contract
to enable tools from multiple providers to configure and deploy applications on any Java EE platform
product. The contract required Java EE Product Providers to implement the DeploymentManager and
other javax.enterprise.deploy.spi interfaces to be accessed by the Tool Providers. In case of
JBoss EAP 6, a deployment plan is identified by an XML descriptor named deployment-plan.xml
that is bundled in a ZIP or JAR archive.

This specification saw very little adoption because most application server products provide their own
more "feature rich" deployment solutions. For this reason, JSR-88 support was dropped from Java EE 7
and, in turn, from JBoss EAP 7.

<configuration>
 <authentication-client xmlns="urn:elytron:1.2">
 <authentication-rules>
 <rule use-configuration="ejb"/>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="ejb">
 <set-user-name name="quickuser"/>
 <credentials>
 <clear-password password="quick-123"/>
 </credentials>
 </configuration>
 </authentication-configurations>
 </authentication-client>
 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.0">
 <connections>
 <connection uri="remote+http://127.0.0.1:8080" />
 </connections>
 </jboss-ejb-client>
</configuration>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

100

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/how_to_configure_identity_management/#elytron_client_authentication
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#client_configuration_using_the_wildfly_config_file
https://jcp.org/en/jsr/detail?id=88

If you used JSR-88 to deploy your application, you must now use another method to deploy the
application. The JBoss EAP management CLI deploy command provides a standard way to deploy
archives to standalone servers or to server groups in a managed domain. For more information about
the management CLI, see the Management CLI Guide.

5.14. MIGRATE CUSTOM APPLICATION VALVES

You must manually migrate custom valves or any valves that are defined in the jboss-web.xml XML
file. This includes valves created by extending the org.apache.catalina.valves.ValveBase
class and configured in the <valve> element of the jboss-web.xml descriptor file.

IMPORTANT

Custom valves and valves that are defined in the jboss-web.xml file must be rewritten
or replaced by the corresponding Undertow built-in handler. For information about
mapping valves to Undertow handlers, see Migrate JBoss Web Valves.

Authentication valves must be replaced manually using Undertow built-in authentication
mechanisms.

Migrate Valves Configured in Deployments
In JBoss EAP 6, you could define custom valves at the application level by configuring them in the
jboss-web.xml web application descriptor file. In JBoss EAP 7, it is possible to do this with Undertow
handlers as well.

The following is an example of a valve configured in the jboss-web.xml file in JBoss EAP 6.

For more information about how to create and configure custom handlers in JBoss EAP, see Creating
Custom Handlers in the JBoss EAP Development Guide.

Migrate Custom Authenticator Valves
For information about how to migrate authenticator valves, see Migrate Authenticator Valves in this
guide.

5.15. SECURITY APPLICATION CHANGES

The replacement of JBoss Web with Undertow requires changes to security configuration in JBoss EAP
7.

5.15.1. Migrate Authenticator Valves

If you created a custom authenticator valve that extended AuthenticatorBase in JBoss EAP 6.4, you
must manually replace it with a custom HTTP authentication implementation in JBoss EAP 7. The HTTP

<jboss-web>
 <valve>
 <class-name>org.jboss.examples.MyValve</class-name>
​ <param>
 ​ <param-name>myParam</param-name>
​ <param-value>foobar</param-value>
 ​ </param>
 </valve>
</jboss-web>

CHAPTER 5. APPLICATION MIGRATION CHANGES

101

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/management_cli_guide/
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#creating_custom_handler

authentication mechanism is created in the elytron subsystem and then registered with the undertow
subsystem. For information about how to implement a custom HTTP authentication mechanism, see
Implementing a Custom HTTP Mechanism in the Development Guide for JBoss EAP.

5.15.2. PicketLink Changes

For information about the changes required for SSO with SAML v2 configuration, see Changes from
Previous Versions of JBoss EAP in How To Set Up SSO with SAML v2 for JBoss EAP.

5.15.3. Other Security Application Changes

For information about the differences in SSO configuration with Kerberos, see Differences from
Configuring Previous Versions JBoss EAP in How to Set Up SSO with Kerberos for JBoss EAP.

5.16. JBOSS LOGGING CHANGES

If your application uses JBoss Logging, be aware that the annotations in the org.jboss.logging
package are now deprecated in JBoss EAP 7. They have been moved to the
org.jboss.logging.annotations package, so you must update your source code to import the
new package.

The annotations have also moved to a separate Maven groupId:artifactId:version (GAV) ID so
you need to add a new project dependency for org.jboss.logging:jboss-logging-
annotations in your project pom.xml file.

NOTE

Only the logging annotations have moved. The org.jboss.logging.BasicLogger
and org.jboss.logging.Logger still exist in the org.jboss.logging package.

The following table lists the deprecated annotation classes and corresponding replacements.

Table 5.1. Deprecated Logging Annotation Replacements

Deprecated Class Replacement Class

org.jboss.logging.Cause org.jboss.logging.annotations.Cause

org.jboss.logging.Field org.jboss.logging.annotations.Field

org.jboss.logging.FormatWith org.jboss.logging.annotations.FormatWith

org.jboss.logging.LoggingClass org.jboss.logging.annotations.LoggingClass

org.jboss.logging.LogMessage org.jboss.logging.annotations.LogMessage

org.jboss.logging.Message org.jboss.logging.annotations.Message

org.jboss.logging.MessageBundle org.jboss.logging.annotations.MessageBundle

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

102

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#custom_http_mechanism
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/how_to_set_up_sso_with_saml_v2/#picketlink-changes-from-prev-version
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/how_to_set_up_sso_with_kerberos/#differences_from_configuring_previous_versions_jboss_eap

org.jboss.logging.MessageLogger org.jboss.logging.annotations.MessageLogger

org.jboss.logging.Param org.jboss.logging.annotations.Param

org.jboss.logging.Property org.jboss.logging.annotations.Property

Deprecated Class Replacement Class

5.17. JAVASERVER FACES (JSF) CODE CHANGES

Dropped Support for JSF 1.2
JBoss EAP 6.4 allowed you to continue to use JSF 1.2 with your application deployment by creating a
jboss-deployment-structure.xml file.

JBoss EAP 7.2 includes JSF 2.3 and no longer supports the JSF 1.2 API. If your application uses JSF
1.2, you must rewrite it to use JSF 2.3.

Compatibility Issue Between JSF 2.1 and JSF 2.3
The JSF 2.1 and JSF 2.3 APIs are not fully compatible. The FACELET_CONTEXT_KEY constant value
changed from com.sun.faces.facelets.FACELET_CONTEXT to
javax.faces.FACELET_CONTEXT between the releases. This value is inlined by the compiler and
code compiled against one release will not work against the other.

Applications that contain code similar to the following example, and are compiled with the JSF 2.1 API
but are run in JBoss EAP 7.2, which uses the JSF 2.3 API, result in a NullPointerException. To fix
the problem, you must recompile the application against the JSF 2.3 API.

Example: Java Code That Uses the JSF 2.1 API

See Prevent FaceletContext.FACELET_CONTEXT_KEY constant to be inlined by compiler for more
information.

5.18. MODULE CLASS LOADING CHANGES

In JBoss EAP 7, the class loading behavior has changed in cases where multiple modules contain the
same classes or packages.

Assume there are two modules, MODULE_A and MODULE_B, that depend upon each other and contain
some of the same packages. In JBoss EAP 6, the classes or packages that were loaded from the
dependencies took precedence over those specified in the resource-root of the module.xml file.
This meant MODULE_A saw the packages for MODULE_B and MODULE_B saw the packages for
MODULE_A. This behavior was confusing and could cause conflicts. This behavior has changed in JBoss
EAP 7. Now the classes or packages specified by the resource-root in the module.xml file take
precedence over those specified by the dependency. This means MODULE_A sees the packages for
MODULE_A and MODULE_B sees the packages for MODULE_B. This prevents conflicts and provides a
more appropriate behavior.

Object obj =
FacesContext.getCurrentInstance().getAttributes().get(FaceletContext.FACEL
ET_CONTEXT_KEY);

CHAPTER 5. APPLICATION MIGRATION CHANGES

103

https://github.com/javaee/javaserverfaces-spec/issues/1257

If you have defined custom modules that include resource-root libraries or packages that contain
classes that are duplicated in their module dependencies, you might see ClassCastException,
LinkageError, class loading errors, or other changes in behavior when you migrate to JBoss EAP 7.
To resolve these issues, you must configure your module.xml file to ensure only one version of a class
is used. This can be accomplished by using either of the following approaches.

You can avoid specifying a resource-root that duplicates classes in the module dependency.

You can use the include and exclude sub-elements of the imports and exports elements
to control class loading in the module.xml file. The following is an export element that excludes
classes is in the specified package.

If you prefer to preserve your existing behavior, you must filter the dependency packages from the
dependent resource-root in the module.xml file using the filter element. This allows you to
retain the existing behavior without the odd looping that you would see under JBoss EAP 6. The following
is an example of a root-resource that filters classes in a specified package.

For more information about modules and class loading, see Class Loading and Modules in the JBoss
EAP Development Guide.

5.19. APPLICATION CLUSTERING CHANGES

5.19.1. Overview of New Clustering Features

The following list describes some of the new clustering features to be aware of when migrating your
application from JBoss EAP 6 to JBoss EAP 7.

JBoss EAP 7 introduces a new public API for building singleton services that significantly
simplifies the process. For information on singleton services, see HA Singleton Service in the
JBoss EAP Development Guide

A singleton deployment can be configured to deploy and start on only a single node in the cluster
at a time. For more information, see HA Singleton Deployments in the JBoss EAP Development
Guide.

You can now define clustered singleton MDBs. For more information, see Clustered Singleton
MDBs in Developing EJB Applications for JBoss EAP.

JBoss EAP 7 includes the Undertow mod_cluster implementation. This offers a pure Java load
balancing solution that does not require an httpd web server. For more information, see
Configuring JBoss EAP as a Front-end Load Balancer in the JBoss EAP Configuration Guide.

The remainder of this section describes how clustering changes might impact the migration of your
applications to JBoss EAP 7.

<exports>
 <exclude path="com/mycompany/duplicateclassespath/"/>
</exports>

<resource-root path="mycompany.jar">
 <filter>
 <exclude path="com/mycompany/duplicateclassespath"/>
 </filter>
</resource-root>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

104

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#class_loading_and_modules
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#clustered_ha_singleton_service
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#ha_singleton_deployments
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/developing_ejb_applications/#clustered_singleton_mdbs
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#configuring_jboss_eap_load_balancer

5.19.2. Web Session Clustering Changes

JBoss EAP 7 introduces a new web session clustering implementation. It replaces the previous
implementation, which was tightly coupled to the legacy JBoss Web subsystem source code.

The new web session clustering implementation impacts how the application is configured in the jboss-
web.xml JBoss EAP proprietary web application XML descriptor file. The following are the only
clustering configuration elements that remain in this file.

The following table describes how to achieve similar behavior for elements in the jboss-web.xml file
that are now obsolete.

Configuration Element Description of Change

<max-active-sessions/> Previously, the session creation would fail if it caused the number of active
sessions to exceed the value specified by <max-active-sessions/>.

In the new implementation, <max-active-sessions/> is used to
enable session passivation. If session creation will cause the number of
active sessions to exceed the <max-active-sessions/>, then the
oldest session known to the session manager will passivate to make room
for the new session.

<passivation-config/> This configuration element and its sub-elements are no longer used in
JBoss EAP 7.

<use-session-passivation/> Previously, passivation was enabled using this attribute.

In the new implementation, passivation is enabled by specifying a non-
negative value for <max-active-sessions/>.

<passivation-min-idle-time/> Previously, sessions needed to be active for a minimum amount of time
before becoming a candidate for passivation. This could cause session
creation to fail, even when passivation was enabled.

The new implementation does not support this logic and thus avoids this
Denial of Service (DoS) vulnerability.

<jboss-web>
 ...
 <max-active-sessions>...</max-active-sessions>
 ...
 <replication-config>
 <replication-granularity>...</replication-granularity>
 <cache-name>...</cache-name>
 </replication-config>
 ...
</jboss-web>

CHAPTER 5. APPLICATION MIGRATION CHANGES

105

<passivation-max-idle-time/> Previously, a session would be passivated after it was idle for a specific
amount of time.

The new implementation only supports lazy passivation. It does not support
eager passivation. Sessions are only passivated when necessary to comply
with <max-active-sessions/>.

<replication-config/> The new implementation deprecates a number of sub-elements.

<replication-trigger/> Previously, this element was used to determine when session replication
was triggered. The new implementation replaces this configuration option
with a single, robust strategy. For more information, see Immutable Session
Attributes in the JBoss EAP Development Guide.

<use-jk/> Previously, the instance-id of the node handling a given request was
appended to the jsessionid, for use by load balancers such as mod_jk,
mod_proxy_balancer, mod_cluster, depending on the value specified for
<use-jk/>.

In the new implementation, the instance-id, if defined, is always
appended to the jsessionid.

<max-unreplicated-interval/> Previously, this configuration option was intended as an optimization to
prevent the replication of a session’s timestamp if no session attribute was
changed. While this sounds nice, in practice it does not prevent any RPCs,
since session access requires cache transaction RPCs regardless of
whether any session attributes changed.

In the new implementation, the timestamp of a session is replicated on every
request. This prevents stale session metadata following a failover.

<snapshot-mode/> Previously, one could configure <snapshot-mode/> as INSTANT or
INTERVAL. Infinispan’s asynchronous replication makes this configuration
option obsolete.

<snapshot-interval/> This was only relevant for <snapshot-
mode>INTERVAL</snapshot-mode>. Since <snapshot-mode/>
is obsolete, this option is now obsolete as well.

<session-notification-policy/> Previously, the value specified by this attribute defined a policy for triggering
session events.

In the new implementation, this behavior is specification-driven and not
configurable.

Configuration Element Description of Change

This new implementation also supports write-through cache stores as well as passivation-only cache
stores. Typically, a write-through cache store is used in conjunction with an invalidation cache. The web
session clustering implementation in JBoss EAP 6 did not operate correctly when used with an

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

106

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#immutable_session_attributes

invalidation cache.

5.19.3. Stateful Session EJB Clustering Changes

In JBoss EAP 6, you were required to enabled the clustering behavior for stateful session beans (SFSBs)
in one of the following ways.

You could add the org.jboss.ejb3.annotation.Clustered annotation in the session
bean.

You could add the <clustered> element to the jboss-ejb3.xml file.

JBoss EAP 7 no longer requires you to enable the clustering behavior. By default, if the server is started
using an HA profile, the state of SFSBs will be replicated automatically.

You can disable this default behavior in one of the following ways.

You can disable the default behavior for a single stateful session bean by using
@Stateful(passivationCapable=false), which is new to the EJB 3.2 specification.

You can disable this behavior globally in the configuration of the ejb3 subsystem in the server
configuration.

NOTE

If the @Clustered annotation is not removed from the application, it is simply ignored
and does not affect the deployment of the application.

5.19.4. Clustering Services Changes

In JBoss EAP 6, the APIs for clustering services were in private modules and were not supported.

JBoss EAP 7 introduces a public clustering services API for use by applications. The new services are
designed to be lightweight, easily injectable, and require no external dependencies.

The new org.wildfly.clustering.group.Group interface provides access to the current
cluster status and allows listening for cluster membership changes.

The new org.wildfly.clustering.dispatcher.CommandDispatcher interface allows
running code in the cluster, on all or a selected subset of nodes.

@Stateful
@Clustered
public class MyBean implements MySessionInt {

 public void myMethod() {
 //
 }
}

<c:clustering>
 <ejb-name>DDBasedClusteredSFSB</ejb-name>
 <c:clustered>true</c:clustered>
</c:clustering>

CHAPTER 5. APPLICATION MIGRATION CHANGES

107

These services replace similar APIs that were available in previous releases, namely HAPartition
from JBoss EAP 5 and GroupCommunicationService, GroupMembershipNotifier, and
GroupRpcDispatcher in JBoss EAP 6.

For more information, see Public API for Clustering Services in the JBoss EAP Development Guide.

5.19.5. Migrate Clustering HA Singleton

In JBoss EAP 6, there was no public API available for the cluster-wide HA singleton service. If you used
the private org.jboss.as.clustering.singleton.* classes, you must change your code to use
the new public org.wildfly.clustering.singleton.* packages when you migrate your
application to JBoss EAP 7.

For more information about HA singleton services, see HA Singleton Service in the Development Guide
for JBoss EAP. For information about HA singleton deployments, see HA Singleton Deployments in the
Development Guide for JBoss EAP.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

108

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#public_API_for_clustering-services
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#clustered_ha_singleton_service
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#ha_singleton_deployments

CHAPTER 6. MISCELLANEOUS CHANGES

6.1. CHANGES TO DELIVERY OF JBOSS EAP NATIVES AND APACHE
HTTP SERVER

JBoss EAP 7 natives are delivered differently in this release than in the past. Some now ship with the
new Red Hat JBoss Core Services product, which is a set of supplementary software that is common to
many of the Red Hat JBoss middleware products. The new product allows for faster distribution of
updates and a more consistent update experience. The JBoss Core Services product is available for
download in a different location on the Red Hat Customer Portal.

The following table lists the differences in the delivery methods between the releases.

Package JBoss EAP 6 JBoss EAP 7

AIO Natives for
Messaging

Delivered with the product in a
separate "Native Utilities" download

Included within the JBoss EAP
distribution. No additional download is
required.

Apache HTTP
Server

Delivered with the product in a
separate "Apache HTTP Server"
download

Delivered with the new JBoss Core
Services product

mod_cluster,
mod_jk, isapi,
and nsapi
connectors

Delivered with the product in a
separate "Webserver Connector
Natives" download

Delivered with the new JBoss Core
Services product

JSVC Delivered with the product in a
separate "Native Utilities" download

Delivered with the new JBoss Core
Services product

OpenSSL Delivered with the product in a
separate "Native Utilities" download

Delivered with the new JBoss Core
Services product

tcnatives Delivered with the product in a
separate "Native Components"
download

This was dropped in JBoss EAP 7

You should also be aware of the following changes:

Support was dropped for mod_cluster and mod_jk connectors used with Apache HTTP
Server from Red Hat Enterprise Linux RPM channels. If you run Apache HTTP Server from
Red Hat Enterprise Linux RPM channels and need to configure load balancing for JBoss
EAP 7 servers, you can do one of the following:

Use the Apache HTTP Server provided by JBoss Core Services.

You can configure JBoss EAP 7 to act as a front-end load balancer. For more
information, see Configuring JBoss EAP as a Front-end Load Balancer in the JBoss
EAP Configuration Guide.

CHAPTER 6. MISCELLANEOUS CHANGES

109

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#configuring_jboss_eap_load_balancer

You can deploy Apache HTTP Server on a machine that is supported and certified and
then run the load balancer on that machine. For the list of supported configurations, see
Overview of HTTP Connectors in the JBoss EAP 7 Configuration Guide.

You can find more information about JBoss Core Services in the Apache HTTP Server
Installation Guide.

6.2. CHANGES TO DEPLOYMENTS ON AMAZON EC2

A number of changes have been made to the Amazon Machine Images (AMI) in JBoss EAP 7. This
section briefly summarizes some of those changes.

The way you launch non-clustered and clustered JBoss EAP instances and domains in Amazon
EC2 has changed significantly.

JBoss EAP 6 used the User Data: field for JBoss EAP configuration. The AMI scripts that
parsed the configuration in the User Data: field and started the servers automatically on
instance startup have been removed from JBoss EAP 7.

Red Hat JBoss Operations Network agent was installed in the previous release of JBoss EAP. In
JBoss EAP 7, you must install it separately.

For details on deploying JBoss EAP 7 on Amazon EC2, see Deploying JBoss EAP on Amazon Web
Services.

6.3. UNDEPLOYING APPLICATIONS THAT INCLUDE SHARED
MODULES

Changes in the JBoss EAP 7.1 server and the Maven plug-in can result in the following failure when you
attempt to undeploy your application. This error can occur if your application contains modules that
interact with or depend on each other.

WFLYCTL0184: New missing/unsatisfied dependencies

For example, assume you have an application that contains two Maven WAR project modules,
application-A and application-B, that share data managed by the data-sharing module.

When you deploy this application, you must deploy the shared data-sharing module first, and then
deploy the modules that depend on it. The deployment order is specified in the <modules> element of
the parent pom.xml file. This is true in JBoss EAP 6.4 through JBoss EAP 7.2.

In releases prior to JBoss EAP 7.1, you could undeploy all of the archives for this application from the
root of the parent project using the following command.

$ mvn wildfly:undeploy

In JBoss EAP 7.1 and later, you must first undeploy the archives that use the shared modules, and then
undeploy the shared modules. Since there is no way to specify the order of undeployment in the project
pom.xml file, you must undeploy the modules manually. You can accomplish this by running the
following commands from the root of the parent directory.

$ mvn wildfly:undeploy -pl application-A,application-B
$ mvn wildfly:undeploy -pl data-shared

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

110

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#overview_http_connectors
https://access.redhat.com/documentation/en-us/red_hat_jboss_core_services_apache_http_server/2.4/html-single/apache_http_server_installation_guide/#about_red_hat_jboss_core_services
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/deploying_red_hat_jboss_enterprise_application_platform_on_amazon_ec2/

This new undeploy behavior is more correct and ensures that you do not end up in an unstable
deployment state.

6.4. CHANGES TO JBOSS EAP SCRIPTS

The add-user script behavior has changed in JBoss EAP 7 due to a change in password policy. JBoss
EAP 6 had a strict password policy. As a result, the add-user script rejected weak passwords that did
not satisfy the minimum requirements. In JBoss EAP 7, weak passwords are accepted and a warning is
issued. For more information, see Setting Add-User Utility Password Restrictions in the JBoss EAP
Configuration Guide.

6.5. REMOVAL OF OSGI SUPPORT

When JBoss EAP 6.0 GA was first released, JBoss OSGi, an implementation of the OSGi specification,
was included as a Technology Preview feature. With the release of JBoss EAP 6.1.0, JBoss OSGi was
demoted from Technology Preview to Unsupported.

In JBoss EAP 6.1.0, the configadmin and osgi extension modules and subsystem configuration for a
standalone server were moved to a separate
EAP_HOME/standalone/configuration/standalone-osgi.xml configuration file. Because you
should not migrate this unsupported configuration file, the removal of JBoss OSGi support should not
impact the migration of a standalone server configuration. If you modified any of the other standalone
configuration files to configure osgi or configadmin, those configurations must be removed.

For a managed domain, the osgi extension and subsystem configuration were removed from the
EAP_HOME/domain/configuration/domain.xml file in the JBoss EAP 6.1.0 release. However, the
configadmin module extension and subsystem configuration remain in the
EAP_HOME/domain/configuration/domain.xml file. This configuration is no longer supported in
JBoss EAP 7 and must be removed.

CHAPTER 6. MISCELLANEOUS CHANGES

111

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#setting_add_user_password_restrictions

CHAPTER 7. MIGRATING TO ELYTRON

7.1. OVERVIEW OF ELYTRON

JBoss EAP 7.1 introduced Elytron, which provides a single unified framework that can manage and
configure access for both standalone servers and managed domains. It can also be used to configure
security access for applications deployed to JBoss EAP servers.

IMPORTANT

The architectures of Elytron and the legacy security subsystem that is based on PicketBox
are very different. With Elytron, an attempt was made to create a solution that allows you
to operate in the same security environments in which you currently operate; however,
this does not mean that every PicketBox configuration option has an equivalent
configuration option in Elytron.

If you are not able to find information in the documentation to help you achieve similar
functionality using Elytron that you had when using the legacy security implementation,
you can find help in one of the following ways.

If you have a Red Hat Development subscription, you have access to Support
Cases, Solutions, and Knowledge Articles on the Red Hat Customer Portal. You
can also open a case with Technical Support and get help from the WildFly
community as described below.

If you do not have a Red Hat Development subscription, you can still access
Knowledge Articles on the Red Hat Customer Portal. You can also join the user
forums and live chat to ask questions of the WildFly community. The WildFly
community offerings are actively monitored by the Elytron engineering team.

Your JBoss EAP 7.0 server configuration and deployments that use the legacy security subsystem,
which is based on PicketBox, should run without changes on JBoss EAP 7.1 and later. PicketBox
continues to support security domains, which allows applications to continue to use existing login
modules. Security realms, which are used by the management layer for security, are also carried over
and emulated by Elytron. This allows you to define authentication in both the elytron and legacy
security subsystems and use them in parallel. For more information about how to configure your
application to use Elytron and legacy security, see Configure Web Applications to Use Elytron or Legacy
Security for Authentication in How to Configure Identity Management for JBoss EAP.

Even though PicketBox authentication continues to be supported, you are encouraged to switch to
Elytron when you are ready to migrate your applications. One of the advantages for using Elytron
security is that it provides a consistent security solution across the server and your applications. For
information on how to migrate PicketBox authentication and authorization to use Elytron, see Migrate
Authentication Configuration in this guide.

For an overview of the new resources that are available in the elytron subsystem, see Resources in
the Elytron Subsystem in the JBoss EAP Security Architecture guide.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

112

https://access.redhat.com/support/offerings/developer/
https://access.redhat.com/support/cases/#/case/list
https://access.redhat.com/solutions
https://access.redhat.com/articles
https://access.redhat.com/support
http://wildfly.org/gethelp/
https://access.redhat.com/articles
http://wildfly.org/gethelp/
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/how_to_configure_identity_management/#configure-app-authentication
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/security_architecture/#resources_in_the_elytron_subsystem

IMPORTANT

Be aware that if you do choose to use both the legacy security subsystem and Elytron
in your deployments, invocations between deployments using different security
architectures is not supported.

For more information about using these subsystems in parallel, see Using Elytron and
Legacy Security Subsystems in Parallel in How to Configure Identity Management for
JBoss EAP.

7.2. MIGRATE SECURE VAULTS AND PROPERTIES

7.2.1. Migrate Vaults to Secure Credential Storage

The vault that was used to store plain text string encryption in the legacy security subsystem in JBoss
EAP 7.0 is not compatible with Elytron in JBoss EAP 7.1 or later, which uses a newly designed credential
store to store strings. Credential stores safely encrypt credentials in a storage file outside of the JBoss
EAP configuration files. You can use the implementation provided by Elytron or you can customize the
configuration using the credential store APIs and SPIs. Each JBoss EAP server can contain multiple
credential stores.

NOTE

If you previously used vault expressions to parameterize nonsensitive data, it is
recommended that you replace the data with Elytron security properties.

If you continue to use the legacy security subsystem, you should not need to modify or update your
vault data. However, if you plan to migrate your application to use Elytron, you must convert your existing
vaults to credential stores so that they can be processed by the elytron subsystem. For more
information about credential stores, see Credential Stores in How to Configure Server Security for JBoss
EAP.

Migrating Vault Data Using the WildFly Elytron Tool
The WildFly Elytron Tool that ships with JBoss EAP provides a vault command to help you migrate
vault content to credential stores. You execute the tool by running the elytron-tool script, which is
located in the EAP_HOME/bin directory.

$ EAP_HOME/bin/elytron-tool.sh vault VAULT_ARGUMENTS

If you prefer, you can execute the tool by running the java -jar command.

$ java -jar EAP_HOME/bin/wildfly-elytron-tool.jar vault VAULT_ARGUMENTS

You can use the following command to get a description of all of the available arguments.

$ EAP_HOME/bin/elytron-tool.sh vault --help

CHAPTER 7. MIGRATING TO ELYTRON

113

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/how_to_configure_identity_management/#using_elytron_and_legacy_security_subsystems_in_parallel
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/how_to_configure_server_security/#credential_store

NOTE

The WildFly Elytron Tool cannot handle the first version of the security vault data
files.

You can enter the --keystore-password argument in masked format, as
shown in the below example to migrate a single vault, or in clear text.

The --salt and --iteration arguments are provided to supply information to
decrypt the masked password or to generate a masked password in the output. If
the --salt and --iteration arguments are omitted, default values are used.

The --summary argument produces formatted management CLI commands that
can be used to add the converted credential stores to the JBoss EAP
configuration. Plain text passwords are masked in the summary output.

IMPORTANT

Be aware that credential stores can only be used for securing passwords. They do not
support the vault expression feature that could be used anywhere in the management
model.

Choose one of the following migration options:

Migrate a Single Security Vault to a Credential Store

Migrate Multiple Security Vaults to a Credential Store in Bulk

Migrate a Single Security Vault to a Credential Store
The following is an example of the command used to convert a single security vault to a credential store.

$ EAP_HOME/bin/elytron-tool.sh vault --enc-dir vault_data/ --keystore
vault-jceks.keystore --keystore-password MASK-2hKo56F1a3jYGnJwhPmiF5 --
iteration 34 --salt 12345678 --alias test --location cs-v1.store --summary

This command converts the security vault to a credential store and prints the summary of the
management CLI commands that were used to convert it in the output.

Vault (enc-dir="vault_data/";keystore="vault-jceks.keystore") converted to
credential store "cs-v1.store"
Vault Conversion summary:

Vault Conversion Successful
CLI command to add new credential store:
/subsystem=elytron/credential-store=test:add(relative-
to=jboss.server.data.dir,create=true,modifiable=true,location="cs-
v1.store",implementation-properties={"keyStoreType"=>"JCEKS"},credential-
reference={clear-text="MASK-2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

Migrate Multiple Security Vaults to a Credential Store in Bulk
You can convert multiple vaults to a credential store using the --bulk-convert argument and pointing
to a bulk conversion descriptor file.

The examples in this section use the following bulk conversion descriptor file.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

114

Example: bulk-vault-conversion-descriptor.txt File

keystore:vault-v1/vault-jceks.keystore
keystore-password:MASK-2hKo56F1a3jYGnJwhPmiF5
enc-dir:vault-v1/vault_data/
salt:12345678
iteration:34
location:v1-cs-1.store
alias:test

keystore:vault-v1/vault-jceks.keystore
keystore-password:secretsecret
enc-dir:vault-v1/vault_data/
location:v1-cs-2.store
alias:test

different vault vault-v1-more
keystore:vault-v1-more/vault-jceks.keystore
keystore-password:MASK-2hKo56F1a3jYGnJwhPmiF5
enc-dir:vault-v1-more/vault_data/
salt:12345678
iteration:34
location:v1-cs-more.store
alias:test

A new conversion starts when each new keystore: line is encountered. All options are mandatory
except for salt, iteration, and properties.

To perform the bulk conversion and generate output that formats the management CLI commands,
execute the following command.

$ EAP_HOME/bin/elytron-tool.sh vault --bulk-convert path/to/bulk-vault-
conversion-descriptor.txt --summary

This command converts all of the security vaults specified in the file to a credential store and prints the
summary of the management CLI commands that were used to convert them in the output.

Vault (enc-dir="vault-v1/vault_data/";keystore="vault-v1/vault-
jceks.keystore") converted to credential store "v1-cs-1.store"
Vault Conversion summary:

Vault Conversion Successful
CLI command to add new credential store:
/subsystem=elytron/credential-store=test:add(relative-
to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-
1.store",implementation-properties={"keyStoreType"=>"JCEKS"},credential-
reference={clear-text="MASK-2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

Vault (enc-dir="vault-v1/vault_data/";keystore="vault-v1/vault-
jceks.keystore") converted to credential store "v1-cs-2.store"
Vault Conversion summary:

Vault Conversion Successful
CLI command to add new credential store:

CHAPTER 7. MIGRATING TO ELYTRON

115

/subsystem=elytron/credential-store=test:add(relative-
to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-
2.store",implementation-properties={"keyStoreType"=>"JCEKS"},credential-
reference={clear-text="secretsecret"})

Vault (enc-dir="vault-v1-more/vault_data/";keystore="vault-v1-more/vault-
jceks.keystore") converted to credential store "v1-cs-more.store"
Vault Conversion summary:

Vault Conversion Successful
CLI command to add new credential store:
/subsystem=elytron/credential-store=test:add(relative-
to=jboss.server.data.dir,create=true,modifiable=true,location="v1-cs-
more.store",implementation-properties=
{"keyStoreType"=>"JCEKS"},credential-reference={clear-text="MASK-
2hKo56F1a3jYGnJwhPmiF5;12345678;34"})

7.2.2. Migrate Security Properties to Elytron

The examples in this section assume that the group.name and encoding.algorithm security
properties are defined as security-properties in the legacy security subsystem as follows.

Example: Security Properties Defined in the security Subsystem

To define the same security properties in the elytron subsystem, set the security-properties
attribute of the elytron subsystem using the following management CLI command.

/subsystem=elytron:write-attribute(name=security-properties, value={
group.name = "engineering-group", encoding.algorithm = "BASE64" })

This configures the following security-properties in the elytron subsystem in the server
configuration file.

The write-attribute operation used in the previous command overwrites the existing properties. To
add or change a security property without impacting other security properties, use the map operation in

<subsystem xmlns="urn:jboss:domain:security:2.0">
 ...
 <security-properties>
 <property name="group.name" value="engineering-group" />
 <property name="encoding.algorithm" value="BASE64" />
 </security-properties>
</subsystem>

<subsystem xmlns="urn:wildfly:elytron:1.2" final-providers="combined-
providers" disallowed-providers="OracleUcrypto">
 <security-properties>
 <security-property name="group.name" value="engineering-group"/>
 <security-property name="encoding.algorithm" value="BASE64"/>
 </security-properties>
 ...
</subsystem>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

116

the management CLI command.

/subsystem=elytron:map-put(name=security-properties, key=group.name,
value=technical-support)

In a similar manner, you can remove a specific security property by using the map-remove operation.

/subsystem=elytron:map-remove(name=security-properties, key=group.name)

7.3. MIGRATE AUTHENTICATION CONFIGURATION

7.3.1. Migrate Properties-based Authentication and Authorization to Elytron

7.3.1.1. Migrate PicketBox Properties-based Configuration to Elytron

This section describes how to migrate PicketBox properties-based authentication to Elytron. You can
choose to partially migrate properties-based authentication by only exposing the PicketBox security
domain to Elytron or you can fully migrate the properties-based authentication configurations to use
Elytron.

The following procedures assume that the deployed web application you plan to migrate is configured to
require form-based authentication. The application is referencing a PicketBox security domain and is
using the UsersRolesLoginModule to load user information from the example-users.properties
and example-roles.properties files. These examples also assume that the security domain is
defined in the legacy security subsystem using the following management CLI commands.

Example: PicketBox Properties-based Configuration Commands

/subsystem=security/security-domain=application-security:add
/subsystem=security/security-domain=application-
security/authentication=classic:add(login-modules=[{code=UsersRoles,
flag=Required, module-options=
{usersProperties=file://${jboss.server.config.dir}/example-
users.properties,
rolesProperties=file://${jboss.server.config.dir}/example-
roles.properties}}])

This results in the following server configuration.

Example: PicketBox Properties-based Security Domain Configuration

<security-domain name="application-security">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 <module-option name="usersProperties"
value="file://${jboss.server.config.dir}/example-users.properties"/>
 <module-option name="rolesProperties"
value="file://${jboss.server.config.dir}/example-roles.properties"/>
 </login-module>
 </authentication>
</security-domain>

CHAPTER 7. MIGRATING TO ELYTRON

117

Choose one of the following migration options:

Partially Migrate by Exposing the PicketBox Security Domain to Elytron.

Fully Migrate Properties-based Authentication to Elytron

Partially Migrate by Exposing the PicketBox Security Domain to Elytron
You can expose a PicketBox security domain as an Elytron security realm so that it can be wired into an
Elytron configuration; however, doing so creates a dependency on the legacy security subsystem. If
you are only migrating properties-based authentication, it is recommended that you fully migrate the
application to Elytron to avoid the unnecessary dependency on the legacy security subsystem.
However, a partial migration can be an intermediate solution when it is not possible to fully migrate the
application to use Elytron.

Follow this procedure to add an existing PicketBox security realm configuration as an Elytron security
realm.

1. Add a mapping to the Elytron security realm within the legacy security subsystem.

/subsystem=security/elytron-realm=application-security:add(legacy-
jaas-config=application-security)

This configures the following Elytron security realm in the security subsystem of the server
configuration file.

2. Define a security domain in the elytron subsystem that references the exported security
realm.

/subsystem=elytron/security-domain=application-security:add(realms=
[{realm=application-security}], default-realm=application-security,
permission-mapper=default-permission-mapper)

This results in the following elytron subsystem configuration in the server configuration file.

<subsystem xmlns="urn:jboss:domain:security:2.0">
 ...
 <elytron-integration>
 <security-realms>
 <elytron-realm name="application-security" legacy-jaas-
config="application-security"/>
 </security-realms>
 </elytron-integration>
 ...
</subsystem>

<subsystem xmlns="urn:wildfly:elytron:1.2" final-
providers="combined-providers" disallowed-providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="application-security" default-
realm="application-security" permission-mapper="default-permission-
mapper">
 <realm name="application-security"/>
 </security-domain>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

118

3. In the undertow subsystem, map the application security domain referenced by the deployment
to the newly defined security domain.

/subsystem=undertow/application-security-domain=application-
security:add(security-domain=application-security)

This results in the following undertow subsystem configuration in the server configuration file.

NOTE

If the application was already deployed prior to this configuration, you must
reload the server or redeploy the application for the new application security
domain mapping to take effect.

4. Verify the mapping was applied to the deployment using the following management CLI
command. The deployment used in this example is HelloWorld.war. The output from the this
command shows this deployment is referencing the Elytron mapping.

/subsystem=undertow/application-security-domain=application-
security:read-resource(include-runtime=true)

{
"outcome" => "success",
 "result" => {
 "enable-jacc" => false,
 "http-authentication-factory" => undefined,
 "override-deployment-config" => false,
 "referencing-deployments" => ["HelloWorld.war"],
 "security-domain" => "application-security",
 "setting" => undefined
 }
}

At this stage, the previously defined security domain is used for its LoginModule configuration, but it is
wrapped by Elytron components, which take over authentication.

Fully Migrate Properties-based Authentication to Elytron
Follow these steps to fully migrate the PicketBox properties-based authentication to Elytron. This
procedure assumes you are starting with the legacy configuration described in the introduction to this
section and have not migrated to the partially migrated solution. When you have complete this process,

 </security-domains>
 ...
</subsystem>

<subsystem xmlns="urn:wildfly:elytron:1.2">
 ...
 <application-security-domains>
 <application-security-domain name="application-security"
security-domain="application-security"/>
 </application-security-domains>
 ...
</subsystem>

CHAPTER 7. MIGRATING TO ELYTRON

119

any security domain definition that exists in the legacy security subsystem remains completely
independent from the Elytron configuration.

1. Define a new security realm in the elytron subsystem that references the PicketBox properties
files.

/subsystem=elytron/properties-realm=application-
properties:add(users-properties={path=example-users.properties,
relative-to=jboss.server.config.dir, plain-text=true, digest-realm-
name="Application Security"}, groups-properties={path=example-
roles.properties, relative-to=jboss.server.config.dir}, groups-
attribute=Roles)

2. Define a security domain subsystem in the elytron subsystem.

/subsystem=elytron/security-domain=application-security:add(realms=
[{realm=application-properties}], default-realm=application-
properties, permission-mapper=default-permission-mapper)

This results in the following elytron subsystem configuration in the server configuration file.

3. Map the application security domain referenced by the deployment to the newly defined HTTP
authentication factory in the undertow subsystem.

/subsystem=undertow/application-security-domain=application-
security:add(security-domain=application-security)

This results in the following undertow subsystem configuration in the server configuration file.

<subsystem xmlns="urn:wildfly:elytron:1.2" final-
providers="combined-providers" disallowed-providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="application-security" default-
realm="application-properties" permission-mapper="default-
permission-mapper">
 <realm name="application-properties"/>
 </security-domain>
 </security-domains>
 <security-realms>
 ...
 <properties-realm name="application-properties" groups-
attribute="Roles">
 <users-properties path="example-users.properties" relative-
to="jboss.server.config.dir" digest-realm-name="Application
Security" plain-text="true"/>
 <groups-properties path="example-roles.properties" relative-
to="jboss.server.config.dir"/>
 </properties-realm>
 </security-realms>
 ...
</subsystem>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

120

4. You must reload the server or redeploy the application for the new application security domain
mapping to take effect.

Authentication is now configured to be equivalent to the PicketBox configuration; however Elytron
components are now used exclusively for authentication.

7.3.1.2. Migrate Legacy Properties-based Configuration to Elytron

This section describes how to migrate a legacy security realm that loads user, password, and group
information from properties files to Elytron. This type of legacy security realm is typically used to secure
either the management interfaces or remoting connectors.

These examples assume that the legacy security domain is defined using the following management CLI
commands.

Example: Legacy Security Realm Commands

/core-service=management/security-realm=ApplicationSecurity:add
/core-service=management/security-
realm=ApplicationSecurity/authentication=properties:add(relative-
to=jboss.server.config.dir, path=example-users.properties, plain-
text=true)
/core-service=management/security-
realm=ApplicationSecurity/authorization=properties:add(relative-
to=jboss.server.config.dir, path=example-roles.properties)

This results in the following server configuration.

Example: Legacy Security Realm Configuration

One of the motivations for adding the Elytron security to the application server is to allow a consistent
security solution to be used across the server. The initial steps to migrate a properties-based legacy
security realm to Elytron are similar to those used to migrate a PicketBox properties-based

<subsystem xmlns="urn:jboss:domain:undertow:7.0">
 ...
 <application-security-domains>
 <application-security-domain name="application-security"
security-domain="application-security"/>
 </application-security-domains>
 ...
</subsystem>

<security-realm name="ApplicationSecurity">
 <authentication>
 <properties path="example-users.properties" relative-
to="jboss.server.config.dir" plain-text="true"/>
 </authentication>
 <authorization>
 <properties path="example-roles.properties" relative-
to="jboss.server.config.dir"/>
 </authorization>
</security-realm>

CHAPTER 7. MIGRATING TO ELYTRON

121

authentication to Elytron. Follow these steps to migrate a properties-based legacy security realm to
Elytron.

1. Define a new security realm in the elytron subsystem that references the properties files.

/subsystem=elytron/properties-realm=application-
properties:add(users-properties={path=example-users.properties,
relative-to=jboss.server.config.dir, plain-text=true, digest-realm-
name="Application Security"}, groups-properties={path=example-
roles.properties, relative-to=jboss.server.config.dir}, groups-
attribute=Roles)

2. Define a security domain subsystem in the elytron subsystem.

/subsystem=elytron/security-domain=application-security:add(realms=
[{realm=application-properties}], default-realm=application-
properties, permission-mapper=default-permission-mapper)

This results in the following Elytron configuration.

3. Define a sasl-authentication-factory so that the legacy security realm can also be used
for Simple Authentication Security Layer (SASL) authentication.

/subsystem=elytron/sasl-authentication-factory=application-security-
sasl:add(sasl-server-factory=elytron, security-domain=application-
security, mechanism-configurations=[{mechanism-name=PLAIN}])

This results in the following Elytron configuration.

<subsystem xmlns="urn:wildfly:elytron:1.2" final-
providers="combined-providers" disallowed-providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="application-security" default-
realm="application-properties" permission-mapper="default-
permission-mapper">
 <realm name="application-properties"/>
 </security-domain>
 </security-domains>
 <security-realms>
 ...
 <properties-realm name="application-properties" groups-
attribute="Roles">
 <users-properties path="example-users.properties" relative-
to="jboss.server.config.dir" digest-realm-name="Application
Security" plain-text="true"/>
 <groups-properties path="example-roles.properties" relative-
to="jboss.server.config.dir"/>
 </properties-realm>
 </security-realms>
 ...
</subsystem>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

122

4. Configure a remoting connector for the SASL authentication and remove the association with the
legacy security realm.

/subsystem=remoting/http-connector=http-remoting-connector:write-
attribute(name=sasl-authentication-factory, value=application-
security-sasl)
/subsystem=remoting/http-connector=http-remoting-connector:undefine-
attribute(name=security-realm)

This results in the following configuration in the remoting subsystem of the server
configuration file.

5. Add the two authentication factories and remove the legacy security realm references to secure
the http-interface with Elytron.

/core-service=management/management-interface=http-interface:write-
attribute(name=http-authentication-factory, value=application-
security-http)
/core-service=management/management-interface=http-interface:write-
attribute(name=http-upgrade.sasl-authentication-factory,
value=application-security-sasl)
/core-service=management/management-interface=http-
interface:undefine-attribute(name=security-realm)

This results in the following configuration.

<subsystem xmlns="urn:wildfly:elytron:1.2" final-
providers="combined-providers" disallowed-providers="OracleUcrypto">
 ...
 <sasl>
 ...
 <sasl-authentication-factory name="application-security-sasl"
sasl-server-factory="elytron" security-domain="application-
security">
 <mechanism-configuration>
 <mechanism mechanism-name="PLAIN"/>
 </mechanism-configuration>
 </sasl-authentication-factory>
 ...
 </sasl>
</subsystem>

<subsystem xmlns="urn:jboss:domain:remoting:4.0">
 ...
 <http-connector name="http-remoting-connector" connector-
ref="default" sasl-authentication-factory="application-security-
sasl"/>
</subsystem>

<management-interfaces>
 <http-interface http-authentication-factory="application-security-
http">
 <http-upgrade enabled="true" sasl-authentication-
factory="application-security-sasl"/>

CHAPTER 7. MIGRATING TO ELYTRON

123

NOTE

You should choose more suitable names than those used in these examples
when securing management interfaces.

The migration of the legacy properties-based configuration to Elytron is now complete.

7.3.2. Migrate LDAP Authentication Configuration to Elytron

This section describes how to migrate legacy LDAP authentication to Elytron so that it can manage the
information as identity attributes. Much of the information provided in the section entitled Migrate
Properties-based Authentication and Authorization to Elytron applies here, particularly regarding how to
define security domains and authentication factories, and how to map them to be used for authentication.
This section does not repeat those instructions, so be sure to read through that section before you
continue.

The following examples assume that group or role information is loaded directly from LDAP and that the
legacy LDAP authentication is configured as follows.

The LDAP server contains the following user and group entries.

Example: LDAP Server User Entries

dn: uid=TestUserOne,ou=users,dc=group-to-principal,dc=wildfly,dc=org
objectClass: top
objectClass: inetOrgPerson
objectClass: uidObject
objectClass: person
objectClass: organizationalPerson
cn: Test User One
sn: Test User One
uid: TestUserOne
userPassword: {SSHA}UG8ov2rnrnBKakcARVvraZHqTa7mFWJZlWt2HA==

Example: LDAP Server Group Entries

dn: uid=GroupOne,ou=groups,dc=group-to-principal,dc=wildfly,dc=org
objectClass: top
objectClass: groupOfUniqueNames
objectClass: uidObject
cn: Group One
uid: GroupOne
uniqueMember: uid=TestUserOne,ou=users,dc=group-to-
principal,dc=wildfly,dc=org

For authentication purposes the user name is matched against the uid attribute and the
resulting group name is taken from the uid attribute of the group entry.

The connection to the LDAP server and related security realm is defined using the following
management CLI commands.

 <socket-binding http="management-http"/>
 </http-interface>
</management-interfaces>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

124

Example: LDAP Security Realm Configuration Commands

batch
/core-service=management/ldap-
connection=MyLdapConnection:add(url="ldap://localhost:10389",
search-dn="uid=admin,ou=system", search-credential="secret")

/core-service=management/security-realm=LDAPRealm:add
/core-service=management/security-
realm=LDAPRealm/authentication=ldap:add(connection="MyLdapConnection
", username-attribute=uid, base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org")

/core-service=management/security-
realm=LDAPRealm/authorization=ldap:add(connection=MyLdapConnection)
/core-service=management/security-
realm=LDAPRealm/authorization=ldap/username-to-dn=username-
filter:add(attribute=uid, base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org")
/core-service=management/security-
realm=LDAPRealm/authorization=ldap/group-search=group-to-
principal:add(base-dn="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org", iterative=true, prefer-original-
connection=true, principal-attribute=uniqueMember, search-
by=DISTINGUISHED_NAME, group-name=SIMPLE, group-name-attribute=uid)
run-batch

This results in the following server configuration.

Example: LDAP Security Realm Configuration

<management>
 <security-realms>
 ...
 <security-realm name="LDAPRealm">
 <authentication>
 <ldap connection="MyLdapConnection" base-
dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">
 <username-filter attribute="uid"/>
 </ldap>
 </authentication>
 <authorization>
 <ldap connection="MyLdapConnection">
 <username-to-dn>
 <username-filter base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org" attribute="uid"/>
 </username-to-dn>
 <group-search group-name="SIMPLE" iterative="true" group-
name-attribute="uid">
 <group-to-principal search-by="DISTINGUISHED_NAME" base-
dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org" prefer-
original-connection="true">
 <membership-filter principal-
attribute="uniqueMember"/>
 </group-to-principal>

CHAPTER 7. MIGRATING TO ELYTRON

125

The following management CLI commands are used to configure a PicketBox security domain,
which uses the LdapExtLoginModule to verify a user name and password.

Example: Security Domain Configuration Commands

/subsystem=security/security-domain=application-security:add
/subsystem=security/security-domain=application-
security/authentication=classic:add(login-modules=
[{code=LdapExtended, flag=Required, module-options={
java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory,
java.naming.provider.url=ldap://localhost:10389,
java.naming.security.authentication=simple,
bindDN="uid=admin,ou=system", bindCredential=secret,
baseCtxDN="ou=users,dc=group-to-principal,dc=wildfly,dc=org",
baseFilter="(uid={0})", rolesCtxDN="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org", roleFilter="(uniqueMember={1})",
roleAttributeID="uid" }}])

This results in the following server configuration.

Example: Security Domain Configuration

 </group-search>
 </ldap>
 </authorization>
 </security-realm>
 </security-realms>
 <outbound-connections>
 <ldap name="MyLdapConnection" url="ldap://localhost:10389"
search-dn="uid=admin,ou=system" search-credential="secret"/>
 </outbound-connections>
 ...
</management>

<subsystem xmlns="urn:jboss:domain:security:2.0">
 ...
 <security-domains>
 ...
 <security-domain name="application-security">
 <authentication>
 <login-module code="LdapExtended" flag="required">
 <module-option name="java.naming.factory.initial"
value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <module-option name="java.naming.provider.url"
value="ldap://localhost:10389"/>
 <module-option name="java.naming.security.authentication"
value="simple"/>
 <module-option name="bindDN" value="uid=admin,ou=system"/>
 <module-option name="bindCredential" value="secret"/>
 <module-option name="baseCtxDN" value="ou=users,dc=group-
to-principal,dc=wildfly,dc=org"/>
 <module-option name="baseFilter" value="(uid={0})"/>
 <module-option name="rolesCtxDN"
value="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>
 <module-option name="roleFilter" value="(uniqueMember=

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

126

7.3.2.1. Migrate the Legacy LDAP Authentication to Elytron

Follow these steps to migrate the previous LDAP authentication example configuration to Elytron. This
section applies to the migration of a legacy security LDAP realm as well as a PicketBox LDAP security
domain.

1. Define a connection to LDAP in the elytron subsystem.

/subsystem=elytron/dir-context=ldap-
connection:add(url=ldap://localhost:10389, principal="uid=admin,
ou=system", credential-reference={clear-text=secret})

2. Create a security realm to search LDAP and verify the supplied password.

/subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-
connection, direct-verification=true, identity-mapping={search-base-
dn="ou=users, dc=group-to-principal, dc=wildfly, dc=org", rdn-
identifier="uid", attribute-mapping=[{filter-base-dn="ou=groups,
dc=group-to-principal, dc=wildfly, dc=org", filter="(uniqueMember=
{1})", from="uid", to="Roles"}]})

These steps result in the following elytron subsystem configuration in the server configuration file.

{1})"/>
 <module-option name="roleAttributeID" value="uid"/>
 </login-module>
 </authentication>
 </security-domain>
 </security-domains>
</subsystem>

<subsystem xmlns="urn:wildfly:elytron:1.2" final-providers="combined-
providers" disallowed-providers="OracleUcrypto">
 ...
 <security-realms>
 ...
 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-
verification="true">
 <identity-mapping rdn-identifier="uid" search-base-
dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">
 <attribute-mapping>
 <attribute from="uid" to="Roles" filter="(uniqueMember={1})"
filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>
 </attribute-mapping>
 </identity-mapping>
 </ldap-realm>
 </security-realms>
 ...
 <dir-contexts>
 <dir-context name="ldap-connection" url="ldap://localhost:10389"
principal="uid=admin,ou=system">
 <credential-reference clear-text="secret"/>
 </dir-context>
 </dir-contexts>
</subsystem>

CHAPTER 7. MIGRATING TO ELYTRON

127

NOTE

By default, if no role-decoder is defined for a given security-domain, the "Roles"
identity attribute is mapped to the identity roles.

Information loaded from LDAP can now be associated with identities as attributes. These attributes can
be mapped to roles, but they can also be loaded and used for other purposes. The newly created
security realm can be used in a security domain in the same way as it is described in the Migrate
Properties-based Authentication and Authorization to Elytron section of this guide.

7.3.3. Migrate Database Authentication Configuration to Elytron

This section describes how to migrate JDBC datasource-based PicketBox authentication to Elytron.
Much of the information provided in the section entitled Migrate Properties-based Authentication and
Authorization to Elytron applies here, particularly regarding how to define security domains and
authentication factories, and how to map them to be used for authentication. This section does not repeat
those instructions, so be sure to read through that section before you continue.

The following examples assume that the user authentication data is stored in a database table created
using syntax similar to the following example.

Example: Syntax to Create the Database User Table

CREATE TABLE User (
 id BIGINT NOT NULL,
 username VARCHAR(255),
 password VARCHAR(255),
 role ENUM('admin', 'manager', 'user'),
 PRIMARY KEY (id),
 UNIQUE (username)
)

For authentication purposes the username is matched against data stored in the username column, the
password is expected to be stored as a hex-encoded MD5 hash in the password column, and the user
role for authorization purposes is stored in the role column.

The PicketBox security domain is configured to use a JBDC datasource to retrieve data from the
database table, and then use it to verify the username and password, and to assign roles. Assume the
PicketBox security domain is configured using the following management CLI commands.

Example: PicketBox Database LoginModule Configuration Commands

/subsystem=security/security-domain=application-security:add
/subsystem=security/security-domain=application-
security/authentication=classic:add(login-modules=[{ code=Database,
flag=Required, module-options={
dsJndiName="java:jboss/datasources/ExampleDS", principalsQuery="SELECT
password FROM User WHERE username = ?", rolesQuery="SELECT role, 'Roles'
FROM User WHERE username = ?", hashAlgorithm=MD5, hashEncoding=base64 } }]
)

This results in the following login-module configuration in the legacy security subsystem.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

128

Example: PicketBox LoginModule Configuration

7.3.3.1. Migrate the Legacy Database Authentication to Elytron

To migrate the previous database authentication example configuration to Elytron, you must define a
JDBC realm to enable JDBC datasource access by Elytron.

Use the following management command to define the jdbc-realm.

/subsystem=elytron/jdbc-realm=jdbc-realm:add(principal-query=[{ data-
source=ExampleDS, sql="SELECT role, password FROM User WHERE username =
?", attribute-mapping=[{index=1, to=Roles }] simple-digest-mapper=
{algorithm=simple-digest-md5, password-index=2} }])

This results in the following jdbc-realm configuration in the elytron subsystem of the server
configuration file.

<subsystem xmlns="urn:jboss:domain:security:2.0">
 <security-domains>
 ...
 <security-domain name="application-security">
 <authentication>
 <login-module code="Database" flag="required">
 <module-option name="dsJndiName"
value="java:jboss/datasources/ExampleDS"/>
 <module-option name="principalsQuery" value="SELECT password
FROM User WHERE username = ?"/>
 <module-option name="rolesQuery" value="SELECT role, 'Roles'
FROM User WHERE username = ?"/>
 <module-option name="hashAlgorithm" value="MD5"/>
 <module-option name="hashEncoding" value="base64"/>
 </login-module>
 </authentication>
 </security-domain>
 </security-domains>
</subsystem>

<subsystem xmlns="urn:wildfly:elytron:1.2" final-providers="combined-
providers" disallowed-providers="OracleUcrypto">
 ...
 <security-realms>
 ...
 <jdbc-realm name="jdbc-realm">
 <principal-query sql="SELECT role, password FROM User WHERE username
= ?" data-source="ExampleDS">
 <attribute-mapping>
 <attribute to="Roles" index="1"/>
 </attribute-mapping>
 <simple-digest-mapper password-index="2"/>
 </principal-query>
 </jdbc-realm>
 ...
 </security-realms>
 ...
</subsystem>

CHAPTER 7. MIGRATING TO ELYTRON

129

Elytron now manages the database authentication using the JDBC realm configuration. Elytron is more
efficient than PicketBox because it uses one SQL query to obtain all of the user attributes and
credentials, and then extracts data from the SQL results and creates a mapping of the attributes to use
for authentication.

7.3.4. Migrate Kerberos Authentication to Elytron

When working with a Kerberos configuration, the JBoss EAP server can rely on configuration information
from the environment, or the key configuration can be specified using system properties. This section
discusses how to migrate Kerberos HTTP and Kerberos SASL authentication.

The examples that follow assume that Kerberos is configured using the following system properties.
These system properties are applicable to both the legacy configuration and the migrated Elytron
configuration.

Example: Kerberos System Properties Management CLI Commands

Enable debugging
/system-property=sun.security.krb5.debug:add(value=true)
Identify the Kerberos realm to use
/system-property=java.security.krb5.realm:add(value=ELYTRON.ORG)
Identify the address of the KDC
/system-property=java.security.krb5.kdc:add(value=kdc.elytron.org)

Example: Kerberos System Properties Server Configuration

Choose one of the following migration options:

Migrate Kerberos HTTP Authentication .

Migrate Kerberos Remoting SASL Authentication.

Migrate Kerberos HTTP Authentication
In legacy security configurations, you can define a security realm to enable SPNEGO authentication for
the HTTP management interface as follows.

Example: Enable SPNEGO authentication for the HTTP management interface

/core-service=management/security-realm=Kerberos:add
/core-service=management/security-realm=Kerberos/server-
identity=kerberos:add
/core-service=management/security-realm=Kerberos/server-
identity=kerberos/keytab=HTTP\/test-
server.elytron.org@ELYTRON.ORG:add(path=/path/to/test-server.keytab,
debug=true)
/core-service=management/security-
realm=Kerberos/authentication=kerberos:add(remove-realm=true)

<system-properties>
 <property name="sun.security.krb5.debug" value="true"/>
 <property name="java.security.krb5.realm" value="ELYTRON.ORG"/>
 <property name="java.security.krb5.kdc" value="kdc.elytron.org"/>
</system-properties>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

130

Example: Kerberos Security Realm Configuration

You can also define a pair of legacy security domains to allow applications to use Kerberos HTTP
authentication.

Example: Define Multiple Security Domains

Define the first security domain
/subsystem=security/security-domain=host:add
/subsystem=security/security-domain=host/authentication=classic:add
/subsystem=security/security-domain=host/authentication=classic/login-
module=1:add(code=Kerberos, flag=Required, module-options={storeKey=true,
useKeyTab=true, principal=HTTP/test-server.elytron.org@ELYTRON.ORG,
keyTab=path/to/test-server.keytab, debug=true}

Define the second SPNEGO security domain
/subsystem=security/security-domain=SPNEGO:add
/subsystem=security/security-domain=SPNEGO/authentication=classic:add
/subsystem=security/security-domain=SPNEGO/authentication=classic/login-
module=1:add(code=SPNEGO, flag=requisite, module-options={password-
stacking=useFirstPass, serverSecurityDomain=host})
/subsystem=security/security-domain=SPNEGO/authentication=classic/login-
module=1:write-attribute(name=module,
value=org.jboss.security.negotiation)
/subsystem=security/security-domain=SPNEGO/authentication=classic/login-
module=2:add(code=UsersRoles, flag=required, module-options={password-
stacking=useFirstPass, usersProperties= /path/to/kerberos/spnego-
users.properties, rolesProperties= /path/to/kerberos/spnego-
roles.properties, defaultUsersProperties= /path/to/kerberos/spnego-
users.properties, defaultRolesProperties= /path/to/kerberos/spnego-
roles.properties})

Example: Configuration Using a Pair of Security Domains

<security-realms>
 ...
 <security-realm name="Kerberos">
 <server-identities>
 <kerberos>
 <keytab principal="HTTP/test-server.elytron.org@ELYTRON.ORG"
path="/path/to/test-server.keytab" debug="true"/>
 </kerberos>
 </server-identities>
 <authentication>
 <kerberos remove-realm="true"/>
 </authentication>
 </security-realm>
</security-realms>

<subsystem xmlns="urn:jboss:domain:security:2.0">
 <security-domains>
 ...
 <security-domain name="host">
 <authentication>
 <login-module name="1" code="Kerberos" flag="required">

CHAPTER 7. MIGRATING TO ELYTRON

131

The legacy applications are then deployed referencing the SPNEGO security domain and secured with
the SPNEGO mechanism.

Migrate the Kerberos HTTP Authentication to Elytron
Both the management interface and applications can be secured in Elytron by using a security realm and
a Kerberos security factory.

1. Define a security realm to be used to load identity information.

/subsystem=elytron/properties-realm=spnego-properties:add(users-
properties={path=path/to/spnego-users.properties, plain-text=true,
digest-realm-name=ELYTRON.ORG}, groups-properties=
{path=path/to/spnego-roles.properties})

2. Define a Kerberos security factory that allows the server to load its own Kerberos identity.

/subsystem=elytron/kerberos-security-factory=test-
server:add(path=path/to/test-server.keytab, principal=HTTP/test-
server.elytron.org@ELYTRON.ORG, debug=true)

3. Define a security domain to pull together the policy as well as an HTTP authentication factory for
the authentication policy.

 <module-option name="storeKey" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="principal" value="HTTP/test-
server.elytron.org@ELYTRON.ORG"/>
 <module-option name="keyTab" value="/path/to/test-
server.keytab"/>
 <module-option name="debug" value="true"/>
 </login-module>
 </authentication>
 </security-domain>
 <security-domain name="SPNEGO">
 <authentication>
 <login-module name="1" code="SPNEGO" flag="requisite"
module="org.jboss.security.negotiation">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="serverSecurityDomain" value="host"/>
 </login-module>
 <login-module name="2" code="UsersRoles" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="usersProperties"
value="path/to/kerberos/spnego-users.properties"/>
 <module-option name="rolesProperties" value="
/path/to/kerberos/spnego-roles.properties"/>
 <module-option name="defaultUsersProperties" value="
/path/to/kerberos/spnego-users.properties"/>
 <module-option name="defaultRolesProperties" value="
/path/to/kerberos/spnego-roles.properties"/>
 </login-module>
 </authentication>
 </security-domain>
 </security-domains>
</subsystem>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

132

/subsystem=elytron/security-domain=SPNEGODomain:add(default-
realm=spnego-properties, realms=[{realm=spnego-properties, role-
decoder=groups-to-roles}], permission-mapper=default-permission-
mapper)
/subsystem=elytron/http-authentication-factory=spnego-http-
authentication:add(security-domain=SPNEGODomain, http-server-
mechanism-factory=global,mechanism-configurations=[{mechanism-
name=SPNEGO, credential-security-factory=test-server}])

This results in the following configuration in the elytron subsystem of the server configuration
file.

Example: Migrated Elytron Configuration

4. To secure the application, define an application security domain in the undertow subsystem to

<subsystem xmlns="urn:wildfly:elytron:1.2" final-
providers="combined-providers" disallowed-providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="SPNEGODomain" default-realm="spnego-
properties" permission-mapper="default-permission-mapper">
 <realm name="spnego-properties" role-decoder="groups-to-
roles"/>
 </security-domain>
 </security-domains>
 <security-realms>
 ...
 <properties-realm name="spnego-properties">
 <users-properties path="path/to/spnego-users.properties"
digest-realm-name="ELYTRON.ORG" plain-text="true"/>
 <groups-properties path="path/to/spnego-roles.properties"/>
 </properties-realm>
 </security-realms>
 <credential-security-factories>
 <kerberos-security-factory name="test-server"
principal="HTTP/test-server.elytron.org@ELYTRON.ORG"
path="path/to/test-server.keytab" debug="true"/>
 </credential-security-factories>
 ...
 <http>
 ...
 <http-authentication-factory name="spnego-http-authentication"
http-server-mechanism-factory="global" security-
domain="SPNEGODomain">
 <mechanism-configuration>
 <mechanism mechanism-name="SPNEGO" credential-security-
factory="test-server"/>
 </mechanism-configuration>
 </http-authentication-factory>
 ...
 </http>
 ...
</subsystem>

CHAPTER 7. MIGRATING TO ELYTRON

133

map security domains to this http-authentication-factory. The HTTP management
interface can be updated to reference the http-authentication-factory defined in this
configuration. This process is documented in the Migrate Properties-based Authentication and
Authorization to Elytron section of this guide.

Migrate Kerberos Remoting SASL Authentication
It is possible to define a legacy security realm for Kerberos / GSSAPI SASL authentication to be used for
remoting authentication, such as the native management interface.

Example: Kerberos Authentication for Remoting Management CLI Commands

/core-service=management/security-realm=Kerberos:add
/core-service=management/security-realm=Kerberos/server-
identity=kerberos:add
/core-service=management/security-realm=Kerberos/server-
identity=kerberos/keytab=remote\/test-
server.elytron.org@ELYTRON.ORG:add(path=path/to/remote-test-server.keytab,
debug=true)
/core-service=management/security-
realm=Kerberos/authentication=kerberos:add(remove-realm=true)

Example: Kerberos Remoting Security Realm Configuration

Migrate the Kerberos Remoting SASL Authentication to Elytron
The steps to define the equivalent Elytron configuration are very similar to those described in Migrate
Kerberos HTTP Authentication.

1. Define a security realm to be used to load identity information.

/path=kerberos:add(relative-to=user.home, path=src/kerberos)
/subsystem=elytron/properties-realm=kerberos-properties:add(users-
properties={path=kerberos-users.properties, relative-to=kerberos,
digest-realm-name=ELYTRON.ORG}, groups-properties={path=kerberos-
groups.properties, relative-to=kerberos})

2. Define the Kerberos security factory for the server’s identity.

<management>
 <security-realms>
 ...
 <security-realm name="Kerberos">
 <server-identities>
 <kerberos>
 <keytab principal="remote/test-server.elytron.org@ELYTRON.ORG"
path="path/to/remote-test-server.keytab" debug="true"/>
 </kerberos>
 </server-identities>
 <authentication>
 <kerberos remove-realm="true"/>
 </authentication>
 </security-realm>
 </security-realms>
 ...
</management>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

134

/subsystem=elytron/kerberos-security-factory=test-
server:add(relative-to=kerberos, path=remote-test-server.keytab,
principal=remote/test-server.elytron.org@ELYTRON.ORG)

3. Define the security domain and a SASL authentication factory.

/subsystem=elytron/security-domain=KerberosDomain:add(default-
realm=kerberos-properties, realms=[{realm=kerberos-properties, role-
decoder=groups-to-roles}], permission-mapper=default-permission-
mapper)
/subsystem=elytron/sasl-authentication-factory=gssapi-
authentication-factory:add(security-domain=KerberosDomain, sasl-
server-factory=elytron, mechanism-configurations=[{mechanism-
name=GSSAPI, credential-security-factory=test-server}])

This results in the following configuration in the elytron subsystem of the server configuration file.

<subsystem xmlns="urn:wildfly:elytron:1.2" final-providers="combined-
providers" disallowed-providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="KerberosDomain" default-realm="kerberos-
properties" permission-mapper="default-permission-mapper">
 <realm name="kerberos-properties" role-decoder="groups-to-roles"/>
 </security-domain>
 </security-domains>
 <security-realms>
 ...
 <properties-realm name="kerberos-properties">
 <users-properties path="kerberos-users.properties" relative-
to="kerberos" digest-realm-name="ELYTRON.ORG"/>
 <groups-properties path="kerberos-groups.properties" relative-
to="kerberos"/>
 </properties-realm>
 </security-realms>
 <credential-security-factories>
 <kerberos-security-factory name="test-server" principal="remote/test-
server.elytron.org@ELYTRON.ORG" path="remote-test-server.keytab" relative-
to="kerberos"/>
 </credential-security-factories>
 ...
 <sasl>
 ...
 <sasl-authentication-factory name="gssapi-authentication-factory"
sasl-server-factory="elytron" security-domain="KerberosDomain">
 <mechanism-configuration>
 <mechanism mechanism-name="GSSAPI" credential-security-
factory="test-server"/>
 </mechanism-configuration>
 </sasl-authentication-factory>
 ...
 </sasl>
 </subsystem>

CHAPTER 7. MIGRATING TO ELYTRON

135

The management interface or remoting connectors can now be updated to reference the SASL
authentication factory.

The two Elytron examples defined here could also be combined to use a shared security domain and
security realm and just use protocol-specific authentication factories each referencing their own
Kerberos security factory.

7.3.5. Migrate Composite Stores to Elytron

This section describes how to migrate a PicketBox or legacy security realm configuration that uses
multiple identity stores to Elytron. When using either PicketBox or the legacy security realms, it is
possible to define a configuration where authentication is performed against one identity store while the
information used for authorization is loaded from a different store. When migrating to Elytron, this can be
achieved by using an aggregate security realm.

The following examples perform user authentication using the example-users.properties
properties file, and then query LDAP to load the group and role information.

NOTE

The configurations shown are based on the examples in the following sections, which
provide additional background information:

Migrate Properties-based Authentication and Authorization to Elytron

Migrate LDAP Authentication Configuration to Elytron

PicketBox Composite Store Configuration
The PicketBox security domain for this scenario is configured using the following management CLI
commands.

Example: PicketBox Configuration Commands

/subsystem=security/security-domain=application-security:add

/subsystem=security/security-domain=application-
security/authentication=classic:add(login-modules=[{code=UsersRoles,
flag=Required, module-options={ password-stacking=useFirstPass,
usersProperties=file://${jboss.server.config.dir}/example-
users.properties}} {code=LdapExtended, flag=Required, module-options={
password-stacking=useFirstPass,
java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory,
java.naming.provider.url=ldap://localhost:10389,
java.naming.security.authentication=simple, bindDN="uid=admin,ou=system",
bindCredential=secret, baseCtxDN="ou=users,dc=group-to-
principal,dc=wildfly,dc=org", baseFilter="(uid={0})",
rolesCtxDN="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org",roleFilter="(uniqueMember={1})",
roleAttributeID="uid" }}])

This results in the following server configuration.

Example: PicketBox Security Domain Configuration

<security-domain name="application-security">

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

136

See Elytron Aggregate Security Realm Configuration for how to configure an aggregate security realm in
the elytron subsystem to accomplish this.

Legacy Security Realm Composite Store Configuration
The legacy security realm configuration for this scenario is configured using the following management
CLI commands.

Example: Legacy Security Realm Configuration Commands

/core-service=management/ldap-
connection=MyLdapConnection:add(url="ldap://localhost:10389", search-
dn="uid=admin,ou=system", search-credential="secret")

/core-service=management/security-realm=ApplicationSecurity:add
/core-service=management/security-
realm=ApplicationSecurity/authentication=properties:add(path=example-
users.properties, relative-to=jboss.server.config.dir, plain-text=true)

batch
/core-service=management/security-
realm=ApplicationSecurity/authorization=ldap:add(connection=MyLdapConnecti
on)
/core-service=management/security-
realm=ApplicationSecurity/authorization=ldap/username-to-dn=username-
filter:add(attribute=uid, base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org")
/core-service=management/security-
realm=ApplicationSecurity/authorization=ldap/group-search=group-to-
principal:add(base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",

 <authentication>
 <login-module code="UsersRoles" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="usersProperties"
value="file://${jboss.server.config.dir}/example-users.properties"/>
 </login-module>
 <login-module code="LdapExtended" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="java.naming.factory.initial"
value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <module-option name="java.naming.provider.url"
value="ldap://localhost:10389"/>
 <module-option name="java.naming.security.authentication"
value="simple"/>
 <module-option name="bindDN" value="uid=admin,ou=system"/>
 <module-option name="bindCredential" value="secret"/>
 <module-option name="baseCtxDN" value="ou=users,dc=group-to-
principal,dc=wildfly,dc=org"/>
 <module-option name="baseFilter" value="(uid={0})"/>
 <module-option name="rolesCtxDN" value="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org"/>
 <module-option name="roleFilter" value="(uniqueMember={1})"/>
 <module-option name="roleAttributeID" value="uid"/>
 </login-module>
 </authentication>
</security-domain>

CHAPTER 7. MIGRATING TO ELYTRON

137

iterative=true, prefer-original-connection=true, principal-
attribute=uniqueMember, search-by=DISTINGUISHED_NAME, group-name=SIMPLE,
group-name-attribute=uid)
run-batch

This results in the following server configuration.

Example: Legacy Security Realm Configuration

See Elytron Aggregate Security Realm Configuration for how to configure an aggregate security realm in
the elytron subsystem to accomplish this.

Elytron Aggregate Security Realm Configuration
The equivalent Elytron configuration for this scenario is configured using the following management CLI
commands.

Example: Elytron Configuration Commands

/subsystem=elytron/dir-context=ldap-
connection:add(url=ldap://localhost:10389,
principal="uid=admin,ou=system", credential-reference={clear-text=secret})

/subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-connection,
direct-verification=true, identity-mapping={search-base-
dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org", rdn-

<security-realms>
 ...
 <security-realm name="ApplicationSecurity">
 <authentication>
 <properties path="example-users.properties" relative-
to="jboss.server.config.dir" plain-text="true"/>
 </authentication>
 <authorization>
 <ldap connection="MyLdapConnection">
 <username-to-dn>
 <username-filter base-dn="ou=users,dc=group-to-
principal,dc=wildfly,dc=org" attribute="uid"/>
 </username-to-dn>
 <group-search group-name="SIMPLE" iterative="true" group-name-
attribute="uid">
 <group-to-principal search-by="DISTINGUISHED_NAME" base-
dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org" prefer-original-
connection="true">
 <membership-filter principal-attribute="uniqueMember"/>
 </group-to-principal>
 </group-search>
 </ldap>
 </authorization>
 </security-realm>
</security-realms>
<outbound-connections>
 <ldap name="MyLdapConnection" url="ldap://localhost:10389" search-
dn="uid=admin,ou=system" search-credential="secret"/>
</outbound-connections>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

138

identifier="uid", attribute-mapping=[{filter-base-dn="ou=groups,dc=group-
to-principal,dc=wildfly,dc=org",filter="(uniqueMember=
{1})",from="uid",to="Roles"}]})

/subsystem=elytron/properties-realm=application-properties:add(users-
properties={path=example-users.properties, relative-
to=jboss.server.config.dir, plain-text=true, digest-realm-
name="Application Security"})

/subsystem=elytron/aggregate-realm=combined-realm:add(authentication-
realm=application-properties, authorization-realm=ldap-realm)

/subsystem=elytron/security-domain=application-security:add(realms=
[{realm=combined-realm}], default-realm=combined-realm, permission-
mapper=default-permission-mapper)
/subsystem=elytron/http-authentication-factory=application-security-
http:add(http-server-mechanism-factory=global, security-
domain=application-security, mechanism-configurations=[{mechanism-
name=BASIC}])

This results in the following server configuration.

Example: Elytron Configuration

<subsystem xmlns="urn:wildfly:elytron:1.2" final-providers="combined-
providers" disallowed-providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="application-security" default-realm="combined-
realm" permission-mapper="default-permission-mapper">
 <realm name="combined-realm"/>
 </security-domain>
 </security-domains>
 <security-realms>
 <aggregate-realm name="combined-realm" authentication-
realm="application-properties" authorization-realm="ldap-realm"/>
 ...
 <properties-realm name="application-properties">
 <users-properties path="example-users.properties" relative-
to="jboss.server.config.dir" digest-realm-name="Application Security"
plain-text="true"/>
 </properties-realm>
 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-
verification="true">
 <identity-mapping rdn-identifier="uid" search-base-
dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">
 <attribute-mapping>
 <attribute from="uid" to="Roles" filter="(uniqueMember={1})"
filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>
 </attribute-mapping>
 </identity-mapping>
 </ldap-realm>
 </security-realms>
 ...
 <http>

CHAPTER 7. MIGRATING TO ELYTRON

139

In the elytron subsystem, an aggregate-realm has been defined that specifies which security
realms to use for authentication and which to use for authorization decisions.

7.3.6. Migrate Security Domains That Use Caching to Elytron

When using PicketBox, it is possible to define a security domain and enable in-memory caching for its
access. This allows you to access the identity data in memory and avoids additional direct access to the
identity store. It is possible to achieve a similar configuration with Elytron. This section describes how to
configure security domain caching when using Elytron.

PicketBox Cached Security Domain Configuration
The following commands show how to configure a PicketBox security domain that enables caching.

Example: PicketBox Cached Security Domain Commands

/subsystem=security/security-domain=application-security:add(cache-
type=default)
/subsystem=security/security-domain=application-
security/authentication=classic:add(login-modules=[{code=LdapExtended,
flag=Required, module-options={
java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory,
java.naming.provider.url=ldap://localhost:10389,
java.naming.security.authentication=simple, bindDN="uid=admin,ou=system",
bindCredential=secret, baseCtxDN="ou=users,dc=group-to-
principal,dc=wildfly,dc=org", baseFilter="(uid={0})",
rolesCtxDN="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",
roleFilter="(uniqueMember={1})", roleAttributeID="uid" }}])

This results in the following server configuration.

Example: PicketBox Cached Security Domain Configuration

 ...
 <http-authentication-factory name="application-security-http" http-
server-mechanism-factory="global" security-domain="application-security">
 <mechanism-configuration>
 <mechanism mechanism-name="BASIC"/>
 </mechanism-configuration>
 </http-authentication-factory>
 ...
 </http>
 ...
 <dir-contexts>
 <dir-context name="ldap-connection" url="ldap://localhost:10389"
principal="uid=admin,ou=system">
 <credential-reference clear-text="secret"/>
 </dir-context>
 </dir-contexts>
</subsystem>

<subsystem xmlns="urn:jboss:domain:security:2.0">
 <security-domains>
 ...
 <security-domain name="application-security" cache-type="default">
 <authentication>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

140

NOTE

This command and resulting configuration is similar to the example shown in Migrate
LDAP Authentication Configuration to Elytron; however, here the attribute cache-type is
defined with a value of default. The default cache type is an in-memory cache. When
using PicketBox, you can also specify a cache-type of infinispan, however this type
is not supported with Elytron.

Elytron Cached Security Domain Configuration
Follow the steps below to create a similar configuration that caches a security domain when using
Elytron.

1. Define a security realm and wrap the security realm in a caching realm. The caching realm can
then be used in a security domain and subsequently in an authentication factory.

Example: Elytron Security Realm Configuration Commands

/subsystem=elytron/dir-context=ldap-
connection:add(url=ldap://localhost:10389,
principal="uid=admin,ou=system", credential-reference={clear-
text=secret})
/subsystem=elytron/ldap-realm=ldap-realm:add(dir-context=ldap-
connection, direct-verification=true, identity-mapping={search-base-
dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org", rdn-
identifier="uid", attribute-mapping=[{filter-base-
dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org",filter="
(uniqueMember={1})",from="uid",to="Roles"}]})
/subsystem=elytron/caching-realm=cached-ldap:add(realm=ldap-realm)

2. Define a security domain and an HTTP authentication factory that use the cached-ldap realm
defined in the previous step.

 <login-module code="LdapExtended" flag="required">
 <module-option name="java.naming.factory.initial"
value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <module-option name="java.naming.provider.url"
value="ldap://localhost:10389"/>
 <module-option name="java.naming.security.authentication"
value="simple"/>
 <module-option name="bindDN" value="uid=admin,ou=system"/>
 <module-option name="bindCredential" value="secret"/>
 <module-option name="baseCtxDN" value="ou=users,dc=group-to-
principal,dc=wildfly,dc=org"/>
 <module-option name="baseFilter" value="(uid={0})"/>
 <module-option name="rolesCtxDN" value="ou=groups,dc=group-to-
principal,dc=wildfly,dc=org"/>
 <module-option name="roleFilter" value="(uniqueMember={1})"/>
 <module-option name="roleAttributeID" value="uid"/>
 </login-module>
 </authentication>
 </security-domain>
 </security-domains>
</subsystem>

CHAPTER 7. MIGRATING TO ELYTRON

141

Example: Elytron Security Domain and Authentication Factory Configuration
Commands

/subsystem=elytron/security-domain=application-security:add(realms=
[{realm=cached-ldap}], default-realm=cached-ldap, permission-
mapper=default-permission-mapper)
/subsystem=elytron/http-authentication-factory=application-security-
http:add(http-server-mechanism-factory=global, security-
domain=application-security, mechanism-configurations=[{mechanism-
name=BASIC}])

NOTE

In this step, it is important that you reference the caching-realm instead of the
original realm. Otherwise, caching is bypassed.

These commands result in the following additions to the server configuration.

Example: Elytron Cached Security Domain Configuration

<subsystem xmlns="urn:wildfly:elytron:1.2" final-providers="combined-
providers" disallowed-providers="OracleUcrypto">
 ...
 <security-domains>
 ...
 <security-domain name="application-security" default-realm="cached-
ldap" permission-mapper="default-permission-mapper">
 <realm name="cached-ldap"/>
 </security-domain>
 </security-domains>
 ...
 <security-realms>

 <ldap-realm name="ldap-realm" dir-context="ldap-connection" direct-
verification="true">
 <identity-mapping rdn-identifier="uid" search-base-
dn="ou=users,dc=group-to-principal,dc=wildfly,dc=org">
 <attribute-mapping>
 <attribute from="uid" to="Roles" filter="(uniqueMember={1})"
filter-base-dn="ou=groups,dc=group-to-principal,dc=wildfly,dc=org"/>
 </attribute-mapping>
 </identity-mapping>
 </ldap-realm>
 <caching-realm name="cached-ldap" realm="ldap-realm"/>
 </security-realms>
 ...
 <http>
 ...
 <http-authentication-factory name="application-security-http" http-
server-mechanism-factory="global" security-domain="application-security">
 <mechanism-configuration>
 <mechanism mechanism-name="BASIC"/>
 </mechanism-configuration>
 </http-authentication-factory>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

142

7.3.7. Migrate JACC Security to Elytron

By default, JBoss EAP uses the legacy security subsystem to configure the Java Authorization
Contract for Containers (JACC) policy provider and factory. The default configuration maps to
implementations from PicketBox.

The elytron subsystem provides a built-in policy provider based on the JACC specification. Before you
configure your server to allow Elytron to manage JACC configurations and other policies, you must first
disable JACC in the legacy security subsystem by using the following management CLI command.

/subsystem=security:write-attribute(name=initialize-jacc, value=false)

Failure to do so can result in the following error in the server log: MSC000004: Failure during
stop of service org.wildfly.security.policy: java.lang.StackOverflowError.

For information about how to enable JACC and define a JACC policy provider in the elytron
subsystem, see Enabling JACC Using the elytron Subsystem in the Development Guide for JBoss
EAP.

7.4. MIGRATE APPLICATION CLIENTS

7.4.1. Migrate a Naming Client Configuration to Elytron

This section describes how to migrate a client application that performs a remote JNDI lookup using an
org.jboss.naming.remote.client.InitialContext class, which is backed by an
org.jboss.naming.remote.client.InitialContextFactory class, to Elytron.

The following examples assume that the InitialContextFactory class is created by specifying
properties for the user credentials and for the URL of the naming provider that it connects to.

Example: InitialContext Code Used in the Previous Release

 ...
 </http>
 ...
 <dir-contexts>
 <dir-context name="ldap-connection" url="ldap://localhost:10389"
principal="uid=admin,ou=system">
 <credential-reference clear-text="secret"/>
 </dir-context>
 </dir-contexts>
 ...

Properties properties = new Properties();
properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.jboss.naming.remote.client.InitialContextFactory");
properties.put(Context.PROVIDER_URL,"http-remoting://127.0.0.1:8080");
properties.put(Context.SECURITY_PRINCIPAL, "bob");
properties.put(Context.SECURITY_CREDENTIALS, "secret");
InitialContext context = new InitialContext(properties);
Bar bar = (Bar) context.lookup("foo/bar");
...

CHAPTER 7. MIGRATING TO ELYTRON

143

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#enabling_jacc_using_elytron

You can choose from one of the following migration approaches:

Migrate the Naming Client Using the Configuration File Approach

Migrate the Naming Client Using the Programmatic Approach

7.4.1.1. Migrate the Naming Client Using the Configuration File Approach

Follow these steps to migrate your naming client to Elytron using the configuration approach.

1. Create a wildfly-config.xml file in the client application META-INF/ directory. The file
should contain the user credentials that are to be used when establishing a connection to the
naming provider.

Example: wildfly-config.xml File

2. Create an InitialContext as in the following example. Note that the InitialContext is
backed by the org.wildfly.naming.client.WildFlyInitialContextFactory class.

Example: InitialContext Code

7.4.1.2. Migrate the Naming Client Using the Programmatic Approach

Using this approach, you provide the user credentials that are used to establish a connection to the
naming provider directly in the application code.

Example: Code Using the Programmatic Approach

<configuration>
 <authentication-client xmlns="urn:elytron:1.2">
 <authentication-rules>
 <rule use-configuration="namingConfig">
 <match-host name="127.0.0.1"/>
 </rule>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="namingConfig">
 <set-user-name name="bob"/>
 <credentials>
 <clear-password password="secret"/>
 </credentials>
 </configuration>
 </authentication-configurations>
 </authentication-client>
</configuration>

Properties properties = new Properties();
properties.put(Context.INITIAL_CONTEXT_FACTORY,"org.wildfly.naming.c
lient.WildFlyInitialContextFactory");
properties.put(Context.PROVIDER_URL,"remote+http://127.0.0.1:8080");
InitialContext context = new InitialContext(properties);
Bar bar = (Bar) context.lookup("foo/bar");
...

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

144

7.4.2. Migrate an EJB Client to Elytron

This migration example assumes that the client application is configured to invoke an EJB deployed to a
remote server using a jboss-ejb-client.properties file. This file, which is located in the client
application META-INF/ directory, contains the following information needed to connect to the remote
server.

Example: jboss-ejb-client.properties File

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=fals
e
remote.connections=default
remote.connection.default.host=127.0.0.1
remote.connection.default.port = 8080
remote.connection.default.username=bob
remote.connection.default.password=secret

The client looks up the EJB and calls one of its methods using code similar to the following example.

Example: Client Code That Calls a Remote EJB

// Create the authentication configuration
AuthenticationConfiguration namingConfig =
AuthenticationConfiguration.empty().useName("bob").usePassword("secret");

// Create the authentication context
AuthenticationContext context =
AuthenticationContext.empty().with(MatchRule.ALL.matchHost("127.0.0.1"),
namingConfig);

// Create a callable that creates and uses an InitialContext
Callable<Void> callable = () -> {
 Properties properties = new Properties();

properties.put(Context.INITIAL_CONTEXT_FACTORY,"org.wildfly.naming.client.
WildFlyInitialContextFactory");
 properties.put(Context.PROVIDER_URL,"remote+http://127.0.0.1:8080");
 InitialContext context = new InitialContext(properties);
 Bar bar = (Bar) context.lookup("foo/bar");
 ...
 return null;
};

// Use the authentication context to run the callable
context.runCallable(callable);

// Create an InitialContext
Properties properties = new Properties();
properties.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
InitialContext context = new InitialContext(properties);

// Look up the EJB and invoke one of its methods
RemoteCalculator statelessRemoteCalculator = (RemoteCalculator)
context.lookup(

CHAPTER 7. MIGRATING TO ELYTRON

145

You can choose from one of the following migration approaches:

Migrate the EJB Client Using the Configuration File Approach

Migrate the EJB Client Using the Programmatic Approach

7.4.2.1. Migrate the EJB Client Using the Configuration File Approach

Follow these steps to migrate your naming client to Elytron using the configuration approach.

1. Configure a wildfly-config.xml file in the client application META-INF/ directory. The file
should contain the user credentials that are to be used when establishing a connection to the
naming provider.

Example: wildfly-config.xml File

2. Create an InitialContext as in the following example. Note that the InitialContext is
backed by the org.wildfly.naming.client.WildFlyInitialContextFactory class.

Example: InitialContext Code

 "ejb:/ejb-remote-server-side//CalculatorBean!" +
RemoteCalculator.class.getName());
int sum = statelessRemoteCalculator.add(101, 202);

<configuration>
 <authentication-client xmlns="urn:elytron:1.2">
 <authentication-rules>
 <rule use-configuration="ejbConfig">
 <match-host name="127.0.0.1"/>
 </rule>
 </authentication-rules>
 <authentication-configurations>
 <configuration name="ejbConfig">
 <set-user-name name="bob"/>
 <credentials>
 <clear-password password="secret"/>
 </credentials>
 </configuration>
 </authentication-configurations>
 </authentication-client>
 <jboss-ejb-client xmlns="urn:jboss:wildfly-client-ejb:3.0">
 <connections>
 <connection uri="remote+http://127.0.0.1:8080" />
 </connections>
 </jboss-ejb-client>
</configuration>

// Create an InitialContext
Properties properties = new Properties();
properties.put(Context.INITIAL_CONTEXT_FACTORY,"org.wildfly.naming.c
lient.WildFlyInitialContextFactory");
InitialContext context = new InitialContext(properties);

// Look up an EJB and invoke one of its methods

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

146

3. You can now delete the obsolete jboss-ejb-client.properties file as that file is no
longer needed.

7.4.2.2. Migrate the EJB Client Using the Programmatic Approach

Using this approach, you provide the information needed to connect to the remote server directly in the
application code.

Example: Code Using the Programmatic Approach

You can now delete the obsolete jboss-ejb-client.properties file as that file is no longer
needed.

7.5. MIGRATE SSL CONFIGURATIONS

// Note that this code is the same as before
RemoteCalculator statelessRemoteCalculator = (RemoteCalculator)
context.lookup(
 "ejb:/ejb-remote-server-side//CalculatorBean!" +
RemoteCalculator.class.getName());
int sum = statelessRemoteCalculator.add(101, 202);----

// Create the authentication configuration
AuthenticationConfiguration ejbConfig =
AuthenticationConfiguration.empty().useName("bob").usePassword("secret");

// Create the authentication context
AuthenticationContext context =
AuthenticationContext.empty().with(MatchRule.ALL.matchHost("127.0.0.1"),
ejbConfig);

// Create a callable that invokes the EJB
Callable<Void> callable = () -> {

 // Create an InitialContext
 Properties properties = new Properties();
 properties.put(Context.INITIAL_CONTEXT_FACTORY,
"org.wildfly.naming.client.WildFlyInitialContextFactory");
 properties.put(Context.PROVIDER_URL, "remote+http://127.0.0.1:8080");
 InitialContext context = new InitialContext(properties);

 // Look up the EJB and invoke one of its methods
 // Note that this code is the same as before
 RemoteCalculator statelessRemoteCalculator = (RemoteCalculator)
context.lookup(
 "ejb:/ejb-remote-server-side//CalculatorBean!" +
RemoteCalculator.class.getName());
 int sum = statelessRemoteCalculator.add(101, 202);
 ...
 return null;
};

// Use the authentication context to run the callable
context.runCallable(callable);

CHAPTER 7. MIGRATING TO ELYTRON

147

7.5.1. Migrate a Simple SSL Configuration to Elytron

If you secured HTTP connections to the JBoss EAP server using a security realm, you can migrate that
configuration to Elytron using the information provided in this section.

The following examples assume you have the following keystore configured in the security-realm.

Example: SSL Configuration Using a Security Realm Keystore

Follow the steps below to achieve the same configuration using Elytron.

1. Create a key-store in the elytron subsystem that specifies the location of the keystore and
the password by which it is encrypted. This command assumes the keystore was generated
using the keytool command and its type is JKS.

/subsystem=elytron/key-
store=LocalhostKeyStore:add(path=server.keystore,relative-
to=jboss.server.config.dir,credential-reference={clear-
text="keystore_password"},type=JKS)

2. Create a key-manager in the elytron subsystem that specifies the key-store defined in the
previous step, the alias, and password of the key.

/subsystem=elytron/key-manager=LocalhostKeyManager:add(key-
store=LocalhostKeyStore,alias-filter=server,credential-reference=
{clear-text="key_password"})

3. Create a server-ssl-context in the elytron subsystem that references the key-manager
that was defined in the previous step.

/subsystem=elytron/server-ssl-context=LocalhostSslContext:add(key-
manager=LocalhostKeyManager)

4. Switch the https-listener from the legacy security-realm to the newly created Elytron
ssl-context.

batch
/subsystem=undertow/server=default-server/https-
listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-
listener=https:write-attribute(name=ssl-
context,value=LocalhostSslContext)
run-batch

<security-realm name="ApplicationRealm">
 <server-identities>
 <ssl>
 <keystore path="server.keystore" relative-
to="jboss.server.config.dir" keystore-password="keystore_password"
alias="server" key-password="key_password" />
 </ssl>
 </server-identities>
</security-realm>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

148

5. Reload the server.

reload

This results in the following elytron subsystem configuration in the server configuration file.

This results in the following undertow subsystem configuration in the server configuration file.

For more information, see Elytron Subsystem and How to Secure the Management Interfaces in How to
Configure Server Security for JBoss EAP.

7.5.2. Migrate CLIENT-CERT SSL Authentication to Elytron

To enable CLIENT-CERT SSL authentication, add a truststore element to the authentication
element.

<subsystem xmlns="urn:wildfly:elytron:1.2" ...>
 ...
 <tls>
 <key-stores>
 <key-store name="LocalhostKeyStore">
 <credential-reference clear-text="keystore_password"/>
 <implementation type="JKS"/>
 <file path="server.keystore" relative-
to="jboss.server.config.dir"/>
 </key-store>
 </key-stores>
 <key-managers>
 <key-manager name="LocalhostKeyManager" key-
store="LocalhostKeyStore" alias-filter="server">
 <credential-reference clear-text="key_password"/>
 </key-manager>
 </key-managers>
 <server-ssl-contexts>
 <server-ssl-context name="LocalhostSslContext" key-
manager="LocalhostKeyManager"/>
 </server-ssl-contexts>
 </tls>
</subsystem>

<https-listener name="https" socket-binding="https" ssl-
context="LocalhostSslContext" enable-http2="true"/>

<security-realm name="ManagementRealm">
 <server-identities>
 <ssl>
 <keystore path="server.keystore" relative-
to="jboss.server.config.dir" keystore-password="KEYSTORE_PASSWORD"
alias="server" key-password="key_password" />
 </ssl>
 </server-identities>
 <authentication>
 <truststore path="server.truststore" relative-
to="jboss.server.config.dir" keystore-password="TRUSTSTORE_PASSWORD" />

CHAPTER 7. MIGRATING TO ELYTRON

149

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/how_to_configure_server_security/#elytron_subsystem
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/how_to_configure_server_security/#secure_the_management_interfaces

NOTE

With this configuration if the CLIENT-CERT authentication does not occur, clients can fall
back to use either the local mechanism or the username/password authentication
mechanism. To make CLIENT-CERT based authentication mandatory, remove the local
and properties elements.

A legacy truststore can be used in two ways:

Legacy truststore containing only CA

Legacy truststore containing client’s certificate

Legacy truststore Containing Only CA
Follow these steps to configure the server to prevent users without a valid certificate and private key
from accessing the server using Elytron.

1. Create a key-store in the elytron subsystem that specifies the location of the keystore and
the password by which it is encrypted. This command assumes the keystore was generated
using the keytool command and its type is JKS.

/subsystem=elytron/key-
store=LocalhostKeyStore:add(path=server.keystore,relative-
to=jboss.server.config.dir,credential-reference={clear-
text="keystore_password"},type=JKS)

2. Create a key-store in the elytron subsystem that specifies the location of the truststore and
the password by which it is encrypted. This command assumes the keystore was generated
using the keytool command and its type is JKS.

/subsystem=elytron/key-
store=TrustStore:add(path=server.truststore,relative-
to=jboss.server.config.dir,credential-reference={clear-
text="truststore_password"},type=JKS)

3. Create a key-manager in the elytron subsystem that specifies the previously defined
LocalhostKeyStore keystore, the alias, and password of the key.

/subsystem=elytron/key-manager=LocalhostKeyManager:add(key-
store=LocalhostKeyStore,alias-filter=server,credential-reference=
{clear-text="key_password"})

4. Create a trust-manager in the elytron subsystem that specifies the key-store of the
previously created truststore.

/subsystem=elytron/trust-manager=TrustManager:add(key-
store=TrustStore)

 <local default-user="$local"/>
 <properties path="mgmt-users.properties" relative-
to="jboss.server.config.dir"/>
 </authentication>
</security-realm>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

150

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/how_to_configure_identity_management/#configure_authentication_with_certificates

5. Create a server-ssl-context in the elytron subsystem that references the previously
defined key-manager, sets the trust-manager attribute, and enables client authentication.

/subsystem=elytron/server-ssl-context=LocalhostSslContext:add(key-
manager=LocalhostKeyManager,trust-manager=TrustManager,need-client-
auth=true)

6. Switch the https-listener from the legacy security-realm to the newly created Elytron
ssl-context.

batch
/subsystem=undertow/server=default-server/https-
listener=https:undefine-attribute(name=security-realm)
/subsystem=undertow/server=default-server/https-
listener=https:write-attribute(name=ssl-
context,value=LocalhostSslContext)
run-batch

7. Reload the server.

reload

This results in the following elytron subsystem configuration in the server configuration file.

<subsystem xmlns="urn:wildfly:elytron:1.2"...>
 ...
 <tls>
 <key-stores>
 <key-store name="LocalhostKeyStore">
 <credential-reference clear-text="keystore_password"/>
 <implementation type="JKS"/>
 <file path="server.keystore" relative-
to="jboss.server.config.dir"/>
 </key-store>
 <key-store name="TrustStore">
 <credential-reference clear-text="truststore_password"/>
 <implementation type="JKS"/>
 <file path="server.truststore" relative-
to="jboss.server.config.dir"/>
 </key-store>
 </key-stores>
 <key-managers>
 <key-manager name="LocalhostKeyManager" key-
store="LocalhostKeyStore" alias-filter="server">
 <credential-reference clear-text="key_password"/>
 </key-manager>
 </key-managers>
 <trust-managers>
 <trust-manager name="TrustManager" key-store="TrustStore"/>
 </trust-managers>
 <server-ssl-contexts>
 <server-ssl-context name="LocalhostSslContext" need-client-
auth="true" key-manager="LocalhostKeyManager" trust-
manager="TrustManager"/>

CHAPTER 7. MIGRATING TO ELYTRON

151

This results in the following undertow subsystem configuration in the server configuration file.

Realms and Domains
To allow using the predefined Elytron ManagementDomain security domain and ManagementRealm
security realm, users are stored in standard properties files.

The security realm is used in two situations:

When certificate authentication fails, the security realm is used in password fallback case.

When authorization is done for password as well as certificate, the realm provides the roles of
individual users.

Thus, for any client certificate, a user must exist in the security realm.

Principal Decoder
When certificate authentication is used and the security realm accepts user names to resolve an identity,
there has to be a defined way to obtain the username from a client certificate.

In this case the CN attribute is used in the certificate subject.

/subsystem=elytron/x500-attribute-principal-decoder=x500-
decoder:add(attribute-name=CN)

HTTP Authentication Factory
For the HTTP connections, an HTTP authentication factory is defined, using the previously defined
resources. It is configured to support CLIENT_CERT and DIGEST authentication.

 </server-ssl-contexts>
 </tls>
</subsystem>

<subsystem xmlns="urn:jboss:domain:undertow:7.0">
...
<https-listener name="https" socket-binding="https" ssl-
context="LocalhostSslContext" enable-http2="true"/>
...
</subsystem>

<security-domains>
 <security-domain name="ManagementDomain" default-
realm="ManagementRealm" permission-mapper="default-permission-mapper">
 <realm name="ManagementRealm" role-decoder="groups-to-roles"/>
 <realm name="local"/>
 </security-domain>
</security-domains>
<security-realms>
 <properties-realm name="ManagementRealm">
 <users-properties path="mgmt-users.properties" relative-
to="jboss.server.config.dir" digest-realm-name="ManagementRealm"/>
 <groups-properties path="mgmt-groups.properties" relative-
to="jboss.server.config.dir"/>
 </properties-realm>
</security-realms>

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

152

Since a properties realm only verifies passwords and is not able to verify client certificates, you need to
first add a configuring mechanism factory. This disables certificate verification against the security realm.

/subsystem=elytron/configurable-http-server-mechanism-factory=configured-
cert:add(http-server-mechanism-factory=global, properties=
{org.wildfly.security.http.skip-certificate-verification=true})

The HTTP authentication can be created as:

./subsystem=elytron/http-authentication-factory=client-cert-
digest:add(http-server-mechanism-factory=configured-cert,security-
domain=ManagementDomain,mechanism-configurations=[{mechanism-
name=CLIENT_CERT,pre-realm-principal-transformer=x500-decoder},{mechanism-
name=DIGEST, mechanism-realm-configurations=[{realm-
name=ManagementRealm}]}])

The above command results in:

<subsystem xmlns="urn:wildfly:elytron:1.2" final-providers="combined-
providers" disallowed-providers="OracleUcrypto">
 ...
 <http>
 ...
 <http-authentication-factory name="client-cert-digest" http-server-
mechanism-factory="configured-cert" security-domain="ManagementDomain">
 <mechanism-configuration>
 <mechanism mechanism-name="CLIENT_CERT" pre-realm-principal-
transformer="x500-decoder"/>
 <mechanism mechanism-name="DIGEST">
 <mechanism-realm realm-name="ManagementRealm"/>
 </mechanism>
 </mechanism-configuration>
 </http-authentication-factory>
 ...
 <configurable-http-server-mechanism-factory name="configured-cert"
http-server-mechanism-factory="configured-cert">
 <properties>
 <property name="org.wildfly.security.http.skip-certificate-
verification" value="true"/>
 </properties>
 </configurable-http-server-mechanism-factory>
 ...
 </http>
 ...
</subsystem>

CHAPTER 7. MIGRATING TO ELYTRON

153

CHAPTER 8. MIGRATING FROM OLDER RELEASES OF JBOSS
EAP

8.1. MIGRATING FROM JBOSS EAP 5 TO JBOSS EAP 7

This guide focuses on the changes that are required to successfully run and deploy JBoss EAP 6
applications on JBoss EAP 7. If you plan to migrate your applications directly from JBoss EAP 5 to JBoss
EAP 7, there are a number of resources available to help you plan and execute your migration. We
suggest you take the following approach.

1. See Summary of Changes Made to Each Release in this guide for a quick, high-level overview
of the changes made to each release of JBoss EAP.

2. Read through the JBoss EAP 6 Migration Guide and this guide to become familiar with the
contents of each one.

3. Use the JBoss EAP 5 Component Upgrade Reference as a quick reference to migration
information about specific components and features.

4. The rule-based Red Hat Application Migration Toolkit continues to add rules to help you migrate
directly from JBoss EAP 5 to JBoss EAP 7. You can use these tools to analyze your application
and to generate detailed reports about the changes needed to migrate to JBoss EAP 7. For
more information, see Use Red Hat Application Migration Toolkit to Analyze Applications for
Migration.

5. The Customer Portal Knowledgebase currently contains articles and solutions to help with
migration from JBoss EAP 5 to JBoss EAP 6. There are plans in place to add additional content
for migration from JBoss EAP 5 to JBoss EAP 7 over time.

8.2. SUMMARY OF CHANGES MADE TO EACH RELEASE

Before you plan your migration, you should be aware of the changes that were made to JBoss EAP 6
and JBoss EAP 7.

The JBoss EAP 6 Migration Guide covers changes that were made between JBoss EAP 5 and JBoss
EAP 6. The following is a condensed list of the most significant changes made in JBoss EAP 6.

Implemented a new architecture built on the Modular Service Container

Was a certified implementation of the Java Enterprise Edition 6 specification

Introduced domain management, new deployment configuration, and a new file directory
structure and scripts

Standardized on new portable JNDI namespaces

See Review What’s New and Different in JBoss EAP 6 in the JBoss EAP 6 Migration Guide for a
detailed list of changes made in that release.

JBoss EAP 7 is built on the same modular structure as JBoss EAP 6 and includes the same domain
management, deployment configuration, file directory structure, and scripts. It also still uses the same
standardized JNDI namespaces. However, JBoss EAP 7 introduces the following changes.

Adds support for the Java Enterprise Edition 7 specification

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

154

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html
https://access.redhat.com/search/#/knowledgebase?q=migration JBoss EAP 5 JBoss EAP 6&p=1&sort=relevant&rows=12&srch=any&product=Red Hat JBoss Enterprise Application Platform&language=en&documentKind=Solution,Article
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#Review_Whats_New_and_Different_in_JBoss_Enterprise_Application_Platform_61

Replaces the web server with Undertow

Replaces the JacORB IIOP implementation with a downstream branch of the OpenJDK ORB

Includes Apache ActiveMQ Artemis as the new messaging provider

Removes the cmp, jaxr, and threads subsystems

Removes support for EJB entity beans

For a more complete list of changes, see Review What’s New in JBoss EAP 7

8.3. REVIEW THE CONTENT IN THE MIGRATION GUIDES

Review the entire contents of the Migration Guide for each release to become aware of the features that
were added or deprecated, and to understand the server configuration and the application changes
required to run existing applications for that release.

Because the underlying architecture was not changed between JBoss EAP 6 and JBoss EAP 7, many of
the changes documented in the JBoss EAP 6 Migration Guide still apply. For example, changes
documented under Changes Required by Most Applications are related to the underlying architectural
changes made in JBoss EAP 6, which still apply to this release. The change to the new modular class
loading system is significant and impacts the packaging and dependencies of almost every JBoss EAP 5
application. Many of the changes listed under Changes Dependent on Your Application Architecture and
Components are also still valid. However, because JBoss EAP 7 replaced the web server, ORB, and
messaging provider, removed the cmp, threads, and jaxr subsystems, and removed support for EJB
entity beans, you must consult this guide for any changes related to those component areas. Pay
particular attention to the Server Configuration Changes and Application Migration Changes detailed in
this guide before you begin.

8.4. JBOSS EAP 5 COMPONENT UPGRADE REFERENCE

Use the following table to find information about how to migrate a particular feature or component from
JBoss EAP 5 to JBoss EAP 7.2.

JBoss EAP 5
Feature or Component

Summary of Changes and
Where to Find Migration Information

Application Packaging
and Class Loading

In JBoss EAP 6, the previous hierarchical class loading structure was replaced
with a modular architecture based on JBoss Modules. Application packaging also
changed due to the new modular class loading structure. This architecture is still
used in JBoss EAP 7. For information about the new modular architecture, see
the following chapter in the JBoss EAP 7.2 Development Guide.

Class Loading and Modules

For information about how to update and repackage applications for the new
modular architecture, see the following section in the JBoss EAP 6 Migration
Guide.

Class Loading Changes

CHAPTER 8. MIGRATING FROM OLDER RELEASES OF JBOSS EAP

155

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Changes_Required_by_Most_Applications
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Changes_Dependent_on_Your_Application_Architecture_and_Components
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/development_guide/#class_loading_and_modules
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Class_Loading_Changes

Application
Configuration Files

Due to the changes in JBoss EAP 6 to use modular class loading, you might need
to create or modify one or more application configuration files to add
dependencies or to prevent automatic dependencies from loading. This has not
changed in JBoss EAP 7. For details, see the following section in the JBoss EAP
6 Migration Guide.

Configuration File Changes

Caching and Infinispan JBoss Cache was replaced by Infinispan for internal use by the server only in
JBoss EAP 6. See the following sections in the JBoss EAP 6 Migration Guide for
information about how to replace JBoss Cache in application code.

Cache Changes

Infinispan caching strategy and configuration changes for JBoss EAP 7 are
documented in the following section of this guide.

Infinispan Server Configuration Changes

Data Sources and
Resource Adapters

JBoss EAP 6 consolidated configuration of data sources and resource adapters
into mainly one file and this is still true in JBoss EAP 7. See the following section
in the JBoss EAP 6 Migration Guide for more information.

Datasource and Resource Adapter Configuration Changes

Directory Structure,
Scripts, and Deployment
Configuration

In JBoss EAP 6, the directory structure, scripts, and deployment configuration
changed. These changes are still valid in JBoss EAP 7. See the following section
of the JBoss EAP 6 Migration Guide for more information.

Review What’s New and Different in JBoss EAP 6

JBoss EAP 5
Feature or Component

Summary of Changes and
Where to Find Migration Information

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

156

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Configuration_File_Changes
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Cache_Changes
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Datasource_and_Resource_Adapter_Configuration_Changes
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#Review_Whats_New_and_Different_in_JBoss_Enterprise_Application_Platform_61

EJB The Java EE 7 specification made EJB 2.x and earlier features optional, so it is
strongly recommended that you rewrite your application code to use the EJB 3.x
specification and JPA. For information about deprecated features and changes
required to run EJB 2.x, see the following section in the JBoss EAP 6 Migration
Guide.

EJB 2.x and Earlier Changes

In JBoss EAP 6, stateful EJB cache and stateless session bean pool size is
configured in the ejb3 subsystem of the server configuration file. The jboss-
ejb3.xml deployment descriptor replaces the jboss.xml deployment
descriptor file. For more information about these changes, see the following
section in the JBoss EAP 6 Migration Guide.

EJB Changes

The default remote connector and port has changed in JBoss EAP 7. For more
information about this and server configuration changes, see the following
sections in this guide.

EJB Server Configuration Changes

Migrate EJB Client Code

EJB entity beans are not supported in JBoss EAP 7. For information about how to
migrate entity beans to JPA, see the following section in this guide.

Migrate Entity Beans to JPA

Hibernate and JPA In JBoss EAP 6, Hibernate was updated from version 3 to version 4. This version
of JBoss EAP also implemented the JPA 2.0 specification and changes were
made to JPA persistence properties. For information about how to modify your
application for these changes, see the following section in the JBoss EAP 6
Migration Guide.

Hibernate and JPA Changes

JBoss EAP 7.2 implements JPA 2.2 and includes Hibernate 5.3. It also includes
Hibernate Search version 5.10. Other changes include removal of support for EJB
entity beans and additional updates to JPA persistence properties. For information
about how these changes impact your applications, see the following sections in
this guide.

Hibernate and JPA Migration Changes

Hibernate Search Changes

Migrate Entity Beans to JPA

JPA Persistence Property Changes

JBoss EAP 5
Feature or Component

Summary of Changes and
Where to Find Migration Information

CHAPTER 8. MIGRATING FROM OLDER RELEASES OF JBOSS EAP

157

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-EJB_2.x_and_Earlier_Changes
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-EJB_Changes
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Hibernate_and_JPA_Changes

JAX-RS and RESTEasy JBoss EAP 6 bundled RESTEasy 2, which automatically configured RESTEasy
and required changes in application configuration. See the following section in the
JBoss EAP 6 Migration Guide for information.

JAX-RS and RESTEasy Changes

JBoss EAP 7 includes RESTEasy 3 and many classes have been deprecated. The
version of Jackson changed from version 1.9.9 to version 2.6.3 or greater. For
details about these changes, see the following section in this guide.

JAX-RS and RESTEasy Application Changes

JBoss AOP JBoss AOP (Aspect Oriented Programming) was removed in JBoss EAP 6. For
information about how to refactor applications that use JBoss AOP, see the
following section in the JBoss EAP 6 Migration Guide.

JBoss AOP Changes

JGroups and Clustering The way you enable clustering and specify bind addresses changed in JBoss EAP
6. See the following section in the JBoss EAP 6 Migration Guide for more
information.

Clustering Changes

In JBoss EAP 7, JGroups now defaults to using a private network interface
instead of a public network interface and also introduces <channel> elements to
the jgroups subsystem. JBoss EAP 7 also includes the Undertow mod_cluster
implementation, introduces a new API for building singleton services, and other
new clustering features. These changes are documented in the following sections
of this guide.

JGroups Server Configuration Changes

Application Clustering Changes

JNDI JBoss EAP 6 implemented a new standardized global JNDI namespace and a
series of related namespaces that map to the various scopes of a Java EE
application. See the following section of the JBoss EAP 6 Migration Guide for
information about application changes needed to use the new JNDI namespace
rules.

JNDI Changes

JBoss EAP 5
Feature or Component

Summary of Changes and
Where to Find Migration Information

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

158

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-JAX-RS_and_RESTEasy_Changes
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-JBoss_AOP_Changes
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Clustering_Changes
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-JNDI_Changes

JSF JBoss EAP 6.4 included both JSF 1.2 and JSF 2.1 and allowed you to configure
your application to use the older version. This is no longer possible in JBoss EAP
7.2, which now includes JSF 2.3. See the following section in this guide for more
information.

JavaServer Faces (JSF) Code Changes

Logging JBoss EAP 6 introduced a new JBoss Logging framework that is still used in JBoss
EAP 7. Applications that use third-party logging frameworks might be impacted by
the modular class loading changes. Review the following section in the JBoss
EAP 6 Migration Guide for information about these changes.

Logging Changes

In JBoss EAP 7, annotations in the org.jboss.logging package are now
deprecated, which impacts source code and Maven GAVs
(groupId:artifactId:version). The prefixes for all log messages were also changed.
For more information about these changes, see the following sections in this
guide.

JBoss Logging Changes

Logging Message Prefix Changes

Messaging and JMS In JBoss EAP 6, HornetQ replaced JBoss Messaging as the default JMS
implementation. Then in JBoss EAP 7, ActiveMQ Artemis replaced HornetQ as
the built-in messaging provider.

The best approach to migrating your messaging configuration is to start with the
JBoss EAP 7 default server configuration and use the following guide to apply
your current messaging configuration changes.

Configuring Messaging for JBoss EAP 7.2

If you want to understand the changes required to move from JBoss Messaging to
HornetQ, review the following section of the JBoss EAP 6 Migration Guide.

HornetQ Changes

Then review the following information about how to migrate the HornetQ
configuration and related messaging data in this guide.

Messaging Server Configuration Changes

Messaging Application Changes

JBoss EAP 5
Feature or Component

Summary of Changes and
Where to Find Migration Information

CHAPTER 8. MIGRATING FROM OLDER RELEASES OF JBOSS EAP

159

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Logging_Changes
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuring_messaging/
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-HornetQ_Changes

ORB In JBoss EAP 6, JacORB configuration was moved from the
EAP_HOME/server/production/conf/jacorb.properties file to
the server configuration file. JBoss EAP 7 then replaced the JacORB IIOP
implementation with a downstream branch of the OpenJDK ORB.

The best approach to migrating your ORB configuration is to start with the JBoss
EAP 7 default server configuration and use the following section in the JBoss EAP
7.2 Configuration Guide to apply the your current ORB configuration changes.

ORB Configuration

Remote Invocation A new EJB client API was introduced in JBoss EAP 6 for remote invocations;
however, if you preferred not to rewrite your application code to use the new API,
you could modify your existing code to use the ejb:BEAN_REFERENCE for
remote access to EJBs. See the following section in the JBoss EAP 6 Migration
Guide for more information.

Remote Invocation Changes

In JBoss EAP 7, the default connector and default remote connection port
changed. For more information, see the following sections in this guide.

Update the Remote URL Connector and Port

Update External Clients

Migrate EJB Client Code

Seam 2.x While official support for Seam 2.2 applications was dropped in JBoss EAP 6, it
was still possible to configure dependencies for JSF 1.2 and Hibernate 3 to allow
Seam 2.2 applications to run on that release. JBoss EAP 7.2, which now includes
JSF 2.3 and Hibernate 5.3.1, does not support Seam 2.2 or Seam 2.3 due to end
of life of Red Hat JBoss Web Framework Kit. It is recommended that you rewrite
your Seam components using Weld CDI beans.

Security Security updates in JBoss EAP 6 included changes to security domain names and
changes to how to configure security for basic authentication. The LDAP security
realm configuration was moved to the server configuration file. See the following
sections in the JBoss EAP 6 Migration Guide for more information.

Security Changes

LDAP Security Realm Changes

Updates that impact security in JBoss EAP 7 include server configuration changes
and application changes. Information can be found in the following sections of this
guide.

Security Server Configuration Changes

Security Application Changes

JBoss EAP 5
Feature or Component

Summary of Changes and
Where to Find Migration Information

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

160

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#orb_configuration
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Remote_Invocation_Changes
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Security_Changes
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-LDAP_Security_Realm_Changes

Spring Applications Spring 4.2.x is the earliest stable Spring version supported by JBoss EAP 7. For
information about Apache CXF Spring web services and Spring RESTEasy
integration changes, see the following sections in this guide.

Apache CXF Spring Web Services Changes

Spring RESTEasy Integration Changes

Transactions JBoss EAP 6 consolidated transaction configuration and moved it to the server
configuration file. Other updates included changes to JTA node identifier settings
and how to enable JTS. For details, see the following section in the JBoss EAP 6
Migration Guide.

JTS and JTA Changes

Some Transaction Manager configuration attributes that were available in the
transactions subsystem in JBoss EAP 6 have changed in JBoss EAP 7. For
more information, see the following section in this guide.

Transactions Subsystem Changes

Valves Undertow replaced JBoss Web in JBoss EAP 7 and valves are no longer
supported. See the following sections in this guide.

Migrate Global Valves

Migrate Custom Application Valves

Migrate Authenticator Valves

Web Services JBoss EAP 6 included JBossWS 4. For information about the changes required by
that version update, see the following section in the JBoss EAP 6 Migration
Guide.

Web Services Changes

JBoss EAP 7 introduced JBossWS 5. See the following section in this guide for
required updates.

Web Services Applications Changes

JBoss EAP 5
Feature or Component

Summary of Changes and
Where to Find Migration Information

CHAPTER 8. MIGRATING FROM OLDER RELEASES OF JBOSS EAP

161

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-JTS_and_JTA_Changes
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-Web_Services_Changes

APPENDIX A. REFERENCE MATERIAL

A.1. JACORB SUBSYSTEM MIGRATION OPERATION WARNINGS

The migrate operation is not able to process all resources and attributes. The following table lists some
of the warnings you might see when you run either the migrate or describe-migration operation
for the jacorb subsystem.

NOTE

If you see "Could not migrate" or "Can not migrate" entries in the output of the migrate
operation, this indicates the migration of the server configuration completed successfully
but it was not able to automatically migrate all of the elements and attributes. You must
follow the suggestions provided by the "migration-warnings" to modify those
configurations.

Warning Message What It Means / How to Fix It

The iiop migration can be performed when the
server is in admin-only mode

The migrate operation requires starting the server
in admin-only mode, which is done by adding --
start-mode=admin-only to the server start
command:

$ EAP_HOME/bin/standalone.sh --
start-mode=admin-only

Properties X cannot be emulated using OpenJDK
ORB and are not supported

Configuration of the specified property is not
supported and is not included in the new iiop-
openjdk subsystem configuration. The behavior
exhibited by this property in the previous release of
JBoss EAP is not migrated and the administrator
must verify that the new iiop-openjdk
subsystem in JBoss EAP 7 is able to operate
correctly without that behavior.

Unsupported properties include: cache-poa-
names, cache-typecodes, chunk-custom-
rmi-valuetypes, client-timeout, comet,
indirection-encoding-disable, iona,
lax-boolean-encoding, max-managed-
buf-size, max-server-connections, max-
threads, outbuf-cache-timeout, outbuf-
size, queue-max, queue-min, poa-
monitoring, print-version, retries,
retry-interval, queue-wait, server-
timeout, strict-check-on-tc-creation,
use-bom, use-imr.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

162

The properties X use expressions. Configuration
properties that are used to resolve those expressions
should be transformed manually to the new iiop-
openjdk subsystem format

Properties that use expressions must be configured
manually by the administrator.

For example, the jacorb subsystem in JBoss EAP
6 defined a giop-minor-version property. The
iiop-openjdk subsystem in JBoss EAP 7 defines
a giop-version property. Suppose the jacorb
subsystem minor version attribute is set to ${iiop-
giop-minor-version} and the system property
is configured in the standalone.conf file as -
Diiop-giop-minor-version=1. After the
migrate operation, the adminstrator must change
the system property value to 1.1 to ensure the new
subsystem is configured correctly.

Can not migrate: the new iiop-openjdk
subsystem is already defined

The message contains the explanation.

Warning Message What It Means / How to Fix It

A.2. MESSAGING SUBSYSTEM MIGRATION OPERATION WARNINGS

The migrate operation is not able to process all resources and attributes. The following table lists some
of the warnings you might see when you run either the migrate or describe-migration operation
for the messaging subsystem.

NOTE

If you see "Could not migrate" or "Can not migrate" entries in the output of the migrate
operation, this indicates the migration of the server configuration completed successfully
but it was not able to automatically migrate all of the elements and attributes. You must
follow the suggestions provided by the "migration-warnings" to modify those
configurations.

Warning Message What It Means / How to Fix It

The migrate operation can not be performed: the
server must be in admin-only mode

The migrate operation requires starting the server
in admin-only mode, which is done by adding --
start-mode=admin-only to the server start
command:

$ EAP_HOME/bin/standalone.sh --
start-mode=admin-only

Can not migrate attribute local-bind-address
from resource X. Use instead the socket-
binding attribute to configure this broadcast-
group.

The message contains the explanation and how to fix
it.

APPENDIX A. REFERENCE MATERIAL

163

Can not migrate attribute local-bind-port from
resource X. Use instead the socket-binding
attribute to configure this broadcast-group.

The message contains the explanation and how to fix
it.

Can not migrate attribute group-address from
resource X. Use instead the socket-binding
attribute to configure this broadcast-group.

The message contains the explanation and how to fix
it.

Can not migrate attribute group-port from
resource X. Use instead the socket-binding
attribute to configure this broadcast-group.

The broadcast-group resource no longer
accepts the local-bind-address, local-
bind-port, group-address, or group-port
attributes. It only accepts a socket-binding
attribute. The warning is notification that resource X
has an unsupported attribute. You must manually set
the socket-binding attribute on the resource
and ensure it corresponds to a defined socket-
binding resource.

Classes providing the X are discarded during the
migration. To use them in the new messaging-
activemq subsystem, you will have to extend the
Artemis-based Interceptor.

Messaging interceptors support is significantly
different in JBoss EAP 7. Any interceptors configured
in the previous version of the subsystem are
discarded during migration. See Migrate Messaging
Interceptors for more information.

Can not migrate the HA configuration of X. Its
shared-store and backup attributes holds
expressions and it is not possible to determine
unambiguously how to create the corresponding ha-
policy for the messaging-activemq’s server.

This means the hornetq-server X’s shared-
store or backup attributes contained an
expression, such as ${xxx}, and the migration
operation was not able to resolve it to a concrete
expression. The value is discarded and the ha-
policy for the messaging-activemq must be
updated manually.

Can not migrate attribute local-bind-address
from resource X. Use instead the socket-
binding attribute to configure this discovery-
group.

The message contains the explanation and how to fix
it.

Can not migrate attribute local-bind-port from
resource X. Use instead the socket-binding
attribute to configure this discovery-group.

The message contains the explanation and how to fix
it.

Can not migrate attribute group-address from
resource X. Use instead the socket-binding
attribute to configure this discovery-group.

The message contains the explanation and how to fix
it.

Warning Message What It Means / How to Fix It

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

164

Can not migrate attribute group-port from
resource X. Use instead the socket-binding
attribute to configure this discovery-group.

The discovery-group resources no longer
accept local-bind-address, local-bind-
port, group-address, or group-port
attributes. It only accepts a socket-binding. The
warning is notification that resource X has an
unsupported attribute. You must manually set the
socket-binding attribute on the resource and
ensures it corresponds to a defined socket-
binding resource.

Can not create a legacy-connection-
factory based on connection-factory X. It
uses a HornetQ in-vm connector that is not
compatible with Artemis in-vm connector

The legacy HornetQ remote connection-
factory resources are migrated into legacy-
connection-factory resources to allow JBoss
EAP 6 clients to connect to JBoss EAP 7. However,
legacy-connection-factory resources are
only created when the connection-factory is
using remote connectors. Any connection-
factory using in-vm is not migrated because
in-vm clients are based on JBoss EAP 7, not JBoss
EAP 6. This warning is notification that the in-vm
connection-factory was not migrated.

Can not migrate attribute X from resource Y. The
attribute uses an expression that can be resolved
differently depending on system properties. After
migration, this attribute must be added back with an
actual value instead of the expression.

This warning appears when the migration can not
resolve attribute X to a concrete value during the
migration process. The value is discarded and the
attribute must be migrated manually. This happens in
the following cases:

cluster-connection forward-
when-no-consumers:
This boolean attribute has been replaced by
the message-load-balancing-type
attribute, which is an enum with a value of
OFF, STRICT, or ON_DEMAND.

broadcast-group and discovery-
group’s jgroups-stack and
jgroups-channel attributes
They reference other resources and JBoss
EAP 7 no longer accepts these expressions.

Warning Message What It Means / How to Fix It

APPENDIX A. REFERENCE MATERIAL

165

Can not migrate attribute X from resource Y. This
attribute is not supported by the new messaging-
activemq subsystem.

Some attributes are no longer supported in the new
messaging-activemq subsystem and are simply
discarded:

hornetq-server’s failback-delay

http-connector’s use-nio attribute

http-acceptor’s use-nio attribute

remote-connector’s use-nio
attribute

remote-acceptor’s use-nio attribute

Can not migrate attribute failback-delay from
resource X. Artemis detects failback deterministically
and it no longer requires to specify a delay for
failback to occur.

The message contains the explanation.

Warning Message What It Means / How to Fix It

Replace the Deprecated broadcast-group or discovery-group Attributes
If you are advised to replace the deprecated broadcast-group or discovery-group attributes with
the socket-binding attribute, you can add the new attribute using the management CLI.

This example assumes you are migrating a standalone server that contains the following discovery-
group configuration in the messaging subsystem.

When you run the migrate operation for the messaging subsystem, you see the following output and
warnings:

<discovery-groups>
 <discovery-group name="my-discovery-group">
 <group-address>224.0.1.105</group-address>
 <group-port>56789</group-port>
 </discovery-group>
</discovery-groups>

/subsystem=messaging:migrate
{
 "outcome" => "success",
 "result" => {"migration-warnings" => [
 "WFLYMSG0084: Can not migrate attribute group-address from
resource [
 (\"subsystem\" => \"messaging-activemq\"),
 (\"server\" => \"default\"),
 (\"discovery-group\" => \"my-discovery-group\")
]. Use instead the socket-binding attribute to configure this discovery-
group.",
 "WFLYMSG0084: Can not migrate attribute group-port from resource [
 (\"subsystem\" => \"messaging-activemq\"),
 (\"server\" => \"default\"),

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

166

The migrate operation creates a discovery-group named "my-discovery-group" in the new
messaging-activemq subsystem that is now configured like the following.

You must now use the following management CLI command to create a socket-binding element in
the server configuration file named "my-discovery-group-socket-binding".

/socket-binding-group=standard-sockets/socket-binding=my-discovery-group-
socket-binding:add(multicast-address=224.0.1.105, multicast-port=56789)

Next, add the newly created socket-binding to the discovery-group named "my-discovery-group"
in the messaging-activemq subsystem in the server configuration file using the following
management CLI command.

/subsystem=messaging-activemq/server=default/discovery-group=my-discovery-
group:write-attribute(name=socket-binding,value=my-discovery-group-socket-
binding)

These commands create the following XML in the server configuration file.

A.3. WEB SUBSYSTEM MIGRATION OPERATION WARNINGS

The migrate operation is not able to process all resources and attributes. The following table lists some
of the warnings you might see when you run either the migrate or describe-migration operation
for the web subsystem.

 (\"discovery-group\" => \"my-discovery-group\")
]. Use instead the socket-binding attribute to configure this discovery-
group."
]}
}

<discovery-group name="my-discovery-group"/>

<subsystem xmlns="urn:jboss:domain:messaging-activemq:4.0">
 <server name="default">
 ...
 <discovery-group name="my-discovery-group" socket-binding="my-
discovery-group-socket-binding"/>
 ...
 </server>
</subsystem>
...
<socket-binding-group name="standard-sockets" default-interface="public"
port-offset="${jboss.socket.binding.port-offset:0}">
 ...
 <socket-binding name="my-discovery-group-socket-binding" multicast-
address="224.0.1.105" multicast-port="56789"/>
 ...
</socket-binding-group>

APPENDIX A. REFERENCE MATERIAL

167

NOTE

If you see "Could not migrate" or "Can not migrate" entries in the output of the migrate
operation, this indicates the migration of the server configuration completed successfully
but it was not able to automatically migrate all of the elements and attributes. You must
follow the suggestions provided by the "migration-warnings" to modify those
configurations.

Warning Message What It Means / How to Fix It

Migrate operation only allowed in admin only mode The migrate operation requires starting the server
in admin-only mode, which is done by adding
parameter --admin-only to the server start
command:

$ EAP_HOME/bin/standalone.sh --
admin-only

Could not migrate resource X The behavior exhibited by this resource in the
previous release of JBoss EAP was not migrated.
The administrator must verify if the new undertow
subsystem in JBoss EAP 7 is able to operate
correctly without that behavior or whether the
behavior must be migrated manually.

Could not migrate attribute X from resource Y. The behavior exhibited by this resource attribute in
the previous release of JBoss EAP was not migrated.
The administrator must verify if the new undertow
subsystem in JBoss EAP 7 is able to operate
correctly without that behavior or whether the
behavior must be migrated manually.

See Web Subsystem Migration Operation Attribute
Warnings for the list of attributes that are not
migrated.

Could not migrate SSL connector as no SSL config is
defined

The message contains the explanation.

Could not migrate verify-client attribute X to
the Undertow equivalent

The message contains the explanation.

Could not migrate verify-client expression X The message contains the explanation.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

168

Could not migrate valve X The behavior exhibited by this valve in the previous
release of JBoss EAP was not migrated. The
administrator must verify if the new undertow
subsystem in JBoss EAP 7 is able to operate
correctly without that behavior or whether the
behavior must be migrated manually.

This warning can occur for the following valves:

org.apache.catalina.valves.Re
moteAddrValve
It must have at least one allowed or denied
value.

org.apache.catalina.valves.Re
moteHostValve
It must have at least one allowed or denied
value.

org.apache.catalina.authentic
ator.BasicAuthenticator

org.apache.catalina.authentic
ator.DigestAuthenticator

org.apache.catalina.authentic
ator.FormAuthenticator

org.apache.catalina.authentic
ator.SSLAuthenticator

org.apache.catalina.authentic
ator.SpnegoAuthenticator

custom valves

Warning Message What It Means / How to Fix It

APPENDIX A. REFERENCE MATERIAL

169

Could not migrate attribute X from valve Y The behavior exhibited by this valve attribute in the
previous release of JBoss EAP was not migrated.
The administrator must verify if the new undertow
subsystem in JBoss EAP 7 is able to operate
correctly without that behavior or whether the
behavior must be migrated manually. This warning
can occur for the following valve attributes:

org.apache.catalina.valves.Ac
cessLogValve

resolveHosts

fileDateFormat

renameOnRotate

encoding

locale

requestAttributesEnabled

buffered

org.apache.catalina.valves.Ex
tendedAccessLogValve

resolveHosts

fileDateFormat

renameOnRotate

encoding

locale

requestAttributesEnabled

buffered

org.apache.catalina.valves.Re
moteIpValve

httpServerPort

httpsServerPort

remoteIpHeader
If it is defined but not set to "x-
forwarded-for"

protocolHeader
If it is defined but not set to "x-
forwarded-proto"

Warning Message What It Means / How to Fix It

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

170

Web Subsystem Migration Operation Attribute Warnings
The migrate operation is not able to process all JBoss Web attributes. See the following reference
tables for information about how to migrate the unprocessed attributes manually.

Web SSL Connector Attributes
The following attributes were used in JBoss EAP 6 to configure the SSL connector. OpenSSL native
libraries are not supported in JBoss EAP 7 so there are no equivalent settings.

Attribute Description Undertow Equivalent

ca-revocation-url The file or URL that contains the
revocation list.

No equivalent in Undertow.

certificate-file When using OpenSSL encryption, the
path to the file containing the server
certificate.

No equivalent in Undertow.

ssl-protocol The SSL protocol string. No equivalent in Undertow.

verify-depth The maximum number of intermediate
certificate issuers checked before
deciding that the clients do not have a
valid certificate.

No equivalent in Undertow.

Web Static Resource Attributes
The following static-resources element attributes were used to describe how static resources were
handled by the DefaultServlet or by the WebdavServlet. There are no equivalents for these
attributes because WebDAV is not supported by Undertow. For more information, see
https://issues.jboss.org/browse/JBEAP-1036.

Attribute Description Undertow Equivalent

disabled Enable the default Servlet mapping. No equivalent setting in Undertow.

file-encoding File encoding to be used when reading
static files.

No equivalent setting in Undertow.

max-depth Maximum recursion for PROPFIND. This is a WebDAV setting and
WebDAV is not supported by
Undertow.

read-only Allow write HTTP methods (PUT,
DELETE).

This is a WebDAV setting and
WebDAV is not supported by
Undertow.

secret Secret for WebDAV locking operations. This is a WebDAV setting and
WebDAV is not supported by
Undertow.

APPENDIX A. REFERENCE MATERIAL

171

https://issues.jboss.org/browse/JBEAP-1036

sendfile Enable sendfile if possible, for files
bigger than the specified byte size.

This is set to a sensible default value in
Undertow and is not configurable.

webdav Enable WebDAV functionality. WebDAV is not supported by
Undertow.

Attribute Description Undertow Equivalent

Web SSO Resource Attributes
SSO is handled differently than in the previous release and there are no equivalent attribute settings in
JBoss EAP 7.

JBoss Web Attribute Description Undertow Equivalent

cache-container Name of the cache container to use for
clustered SSO.

This setting is no longer needed in
Undertow. This works by default across
a distributed clustered environment.

cache-name Name of the cache to use for clustered
SSO.

This setting is no longer needed in
Undertow. This works by default across
a distributed clustered environment.

reauthenticate Whether each request should cause a
reauthentication.

There is no equivalent setting in
Undertow, which behaves similarly to
the reauthenticate=true setting
in JBoss EAP 6. While
reauthenticate=false could
possibly improve performance, it could
also create security issues.

Web Access Log Attributes

JBoss Web Attribute Description Undertow Equivalent

resolve-hosts Whether to enable resolving hosts for
access logging.

Use the setting on the connector to
accomplish the same behavior.

Web Connector Attributes

JBoss Web Attribute Description Undertow Equivalent

executor The name of the executor that should
be used to process the threads of this
connector.

You now reference a worker that is
defined in the io subsystem.

See Migrate the Threads Subsystem
Configuration for more information.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

172

proxy-binding The socket binding to define the host
and port that is used when sending a
redirect.

There is no direct equivalent.

See https-listener Attributes in the
JBoss EAP Configuration Guide for
available configuration options.

redirect-port The port for redirection to a secure
connector.

This attribute was deprecated in JBoss
EAP 6 and replaced with redirect-
binding. Undertow provides the
redirect-socket attribute on the
http-listener element, which is a
replacement for redirect-
binding.

See https-listener Attributes in the
JBoss EAP Configuration Guide for
more information.

JBoss Web Attribute Description Undertow Equivalent

A.4. MIGRATE JBOSS WEB SYSTEM PROPERTIES REFERENCE

This reference describes how to map system properties previously used for JBoss Web configuration to
the equivalent configuration for Undertow in JBoss EAP 7.

Map Servlet Container and Connectors System Properties

Map EL System Properties

Map JSP System Properties

Map Security System Properties

Table A.1. Map Servlet Container and Connectors System Properties

JBoss EAP 6 System Property Description

Equivalent in JBoss EAP 7

jvmRoute Provides a default value for the jvmRoute attribute. It does not
override the automatically generated value when using the
standalone-ha.xml configuration file.

It supports reload.

Management CLI command:

/subsystem=undertow:write-
attribute(name=instance-id,value=VALUE)

org.apache.tomcat.util.buf.StringCache.by
te.enabled

If true, the String cache is enabled for ByteChunk. If the
value is not specified, the default value of false is used.

APPENDIX A. REFERENCE MATERIAL

173

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#https_listener_attributes
https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform_continuous_delivery/14/html-single/configuration_guide/#https_listener_attributes

No equivalent configuration

org.apache.tomcat.util.buf.StringCache.ch
ar.enabled

If true, the String cache is enabled for CharChunk. If the
value is not specified, the default value of false is used.

No equivalent configuration

org.apache.tomcat.util.buf.StringCache.ca
cheSize

The size of the String cache. If the value is not specified, the
default value of 5000 is used.

No equivalent configuration

org.apache.tomcat.util.buf.StringCache.m
axStringSize

The maximum length of String that will be cached. If the value is
not specified, the default value of 128 is used.

No equivalent configuration

org.apache.tomcat.util.http.FastHttpDateF
ormat.CACHE_SIZE

The size of the cache to use parsed and formatted date value. If
the value is not specified, the default value of 1000 is used.

No equivalent configuration

org.apache.catalina.core.StandardService
.DELAY_CONNECTOR_STARTUP

If true, the connector startup is not done automatically. It is
useful in embedded mode.

No equivalent configuration

org.apache.catalina.connector.Request.S
ESSION_ID_CHECK

If true, the Servlet container verifies that a session exists in a
context with the specified session ID before creating a session
with that ID.

No equivalent configuration

org.apache.coyote.USE_CUSTOM_STAT
US_MSG_IN_HEADER

If true, custom HTTP status messages are used within HTTP
headers. Users must ensure that any such message is ISO-
8859-1 encoded, particularly if user provided input is included
in the message, to prevent a possible XSS vulnerability. If value
is not specified the default value of false is used.

Must be enabled programmatically by implementing a custom
io.undertow.servlet.ServletExtension. Then use
the extension to call
setSendCustomReasonPhraseOnError(true) on the
io.undertow.servlet.api.DeploymentInfo
structure instance.

org.apache.tomcat.util.http.Parameters.M
AX_COUNT

The maximum number of parameters that can be parsed in a
post body. If exceeded, parsing fails using an
IllegalStateException. The default value is 512
parameters.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

174

https://access.redhat.com/webassets/avalon/d/jboss_enterprise_application_platform_continuous_delivery/14/javadocs//io/undertow/servlet/ServletExtension.html
https://access.redhat.com/webassets/avalon/d/jboss_enterprise_application_platform_continuous_delivery/14/javadocs//io/undertow/servlet/api/DeploymentInfo.html#setSendCustomReasonPhraseOnError-boolean-
https://access.redhat.com/webassets/avalon/d/jboss_enterprise_application_platform_continuous_delivery/14/javadocs//io/undertow/servlet/api/DeploymentInfo.html

Management CLI command:

/subsystem=undertow/server=default-
server/http-listener=default:write-
attribute(name=max-
parameters,value=VALUE)
/subsystem=undertow/server=default-
server/https-listener=default:write-
attribute(name=max-
parameters,value=VALUE)
/subsystem=undertow/server=default-
server/ajp-listener=default:write-
attribute(name=max-
parameters,value=VALUE)

org.apache.tomcat.util.http.MimeHeaders.
MAX_COUNT

The maximum number of headers that can be sent in the HTTP
request. If exceeded, parsing will fail using an
IllegalStateException. The default value is 128
headers.

Management CLI command:

/subsystem=undertow/server=default-
server/http-listener=default:write-
attribute(name=max-headers,value=VALUE)
/subsystem=undertow/server=default-
server/https-listener=default:write-
attribute(name=max-headers,value=VALUE)
/subsystem=undertow/server=default-
server/ajp-listener=default:write-
attribute(name=max-headers,value=VALUE)

org.apache.tomcat.util.net.MAX_THREAD
S

The maximum number of threads a connector is going to use to
process requests. The default value is 32 x 512. (512 x
Runtime.getRuntime().availableProcessors()
for the JIO connector)

Management CLI command:

/subsystem=io/worker=default:write-
attribute(name=task-max-threads,
value=VALUE)

org.apache.coyote.http11.Http11Protocol.
MAX_HEADER_SIZE

The maximum size of the HTTP headers, in bytes. If exceeded,
parsing will fail using an ArrayOutOfBoundsException.
The default value is 8192 bytes.

APPENDIX A. REFERENCE MATERIAL

175

Management CLI command:

/subsystem=undertow/server=default-
server/http-listener=default:write-
attribute(name=max-header-
size,value=VALUE)
/subsystem=undertow/server=default-
server/https-listener=default:write-
attribute(name=max-header-
size,value=VALUE)
/subsystem=undertow/server=default-
server/ajp-listener=default:write-
attribute(name=max-header-
size,value=VALUE)

org.apache.coyote.http11.Http11Protocol.
COMPRESSION

Allows using simple compression with the HTTP connector. The
default value is off, and compression can be enabled using the
value on to enable it conditionally, or force to always enable it.

Configure a filter using the management CLI:

Create a filter
/subsystem=undertow/configuration=filter/
gzip=gzipfilter:add()
/subsystem=undertow/server=default-
server/host=default-host/filter-
ref=gzipfilter:add()

org.apache.coyote.http11.Http11Protocol.
COMPRESSION_RESTRICTED_UA

User agents regexps that will not receive compressed content.
The default value is empty.

Configure a predicate in a filter using the management CLI:

Use a predicate in a filter
/subsystem=undertow/configuration=filter/
gzip=gzipfilter:add()
/subsystem=undertow/server=default-
server/host=default-host/filter-
ref=gzipfilter:add(predicate="regex[patte
rn='AppleWebKit',value=%{i,User-Agent}]")

org.apache.coyote.http11.Http11Protocol.
COMPRESSION_MIME_TYPES

Content type prefixes of compressible content. The default value
is text/html,text/xml,text/plain.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

176

Configure a predicate in a filter using the management CLI:

Use a predicate in a filter
/subsystem=undertow/configuration=filter/
gzip=gzipfilter:add()
/subsystem=undertow/server=default-
server/host=default-host/filter-
ref=gzipfilter:add(predicate="regex[patte
rn='text/html',value=%{o,Content-Type}]")

org.apache.coyote.http11.Http11Protocol.
COMPRESSION_MIN_SIZE

Minimum size of content that will be compressed. The default
value is 2048 bytes.

Configure a predicate in a filter using the management CLI:

Use a predicate in a filter
/subsystem=undertow/configuration=filter/
gzip=gzipfilter:add()
/subsystem=undertow/server=default-
server/host=default-host/filter-
ref=gzipfilter:add(predicate="max-
content-size[value=MIN_SIZE]")

org.apache.coyote.http11.DEFAULT_CO
NNECTION_TIMEOUT

Default socket timeout. The default value is 60000 ms.

Management CLI command:

/subsystem=undertow/server=default-
server/http-listener=default:write-
attribute(name=no-request-
timeout,value=VALUE)
/subsystem=undertow/server=default-
server/https-listener=default:write-
attribute(name=no-request-
timeout,value=VALUE)
/subsystem=undertow/server=default-
server/ajp-listener=default:write-
attribute(name=no-request-
timeout,value=VALUE)

org.jboss.as.web.deployment.DELETE_W
ORK_DIR_ONCONTEXTDESTROY

Use this property to remove .java and .class files to ensure
that JSP sources are recompiled. The default value is false.
Default socket timeout for keep-alive. The default value is -
1 ms, which means it will use the default socket timeout.

No equivalent configuration

org.apache.tomcat.util.buf.StringCache.tra
inThreshold

Specifies the number of times toString() must be invoked
before activating cache. The default value is 100000.

APPENDIX A. REFERENCE MATERIAL

177

No equivalent configuration

Table A.2. Map EL System Properties

JBoss EAP 6 System Property Description

Equivalent in JBoss EAP 7

org.apache.el.parser.COERCE_TO_ZER
O

If true, when coercing expressions to numbers, empty strings
("") and null will be coerced to zero as required by the
specification. If a value is not specified, the default value of
true is used.

System property is still valid and processed by the EL

Table A.3. Map JSP System Properties

JBoss EAP 6 System Property Description

Equivalent in JBoss EAP 7

org.apache.jasper.compiler.Generator.VA
R_EXPRESSIONFACTORY

The name of the variable to use for the expression language
expression factory. If value is not specified, the default value of
_el_expressionfactory is used.

System property has not changed

org.apache.jasper.compiler.Generator.VA
R_INSTANCEMANAGER

The name of the variable to use for the instance manager
factory. If value is not specified, the default value of
_jsp_instancemanager is used.

System property has not changed

org.apache.jasper.compiler.Parser.STRIC
T_QUOTE_ESCAPING

If false, the requirements for escaping quotes in JSP
attributes are relaxed so that a missing required quote does not
cause an error. If value is not specified, the specification
compliant default of true is used.

System property has not changed

org.apache.jasper.Constants.DEFAULT_
TAG_BUFFER_SIZE

Any tag buffer that expands beyond
org.apache.jasper.Constants.DEFAULT_TAG_BUF
FER_SIZE is destroyed and a new buffer is created of the
default size. If value is not specified, the default value of 512 is
used.

System property has not changed

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

178

org.apache.jasper.runtime.JspFactoryImpl
.USE_POOL

If true, a ThreadLocal PageContext pool is used. If value is not
specified, the default value of true is used.

System property has not changed

org.apache.jasper.runtime.JspFactoryImpl
.POOL_SIZE

The size of the ThreadLocal PageContext. If value is not
specified, the default value of 8 is used.

System property has not changed

org.apache.jasper.Constants.JSP_SERVL
ET_BASE

The base class of the Servlets generated from the JSPs. If value
is not specified, the default value of
org.apache.jasper.runtime.HttpJspBase is used.

System property has not changed

org.apache.jasper.Constants.SERVICE_
METHOD_NAME

The name of the service method called by the base class. If
value is not specified, the default value of _jspService is
used.

System property has not changed

org.apache.jasper.Constants.SERVLET_
CLASSPATH

The name of the ServletContext attribute that provides the class
path for the JSP. If value is not specified, the default value of
org.apache.catalina.jsp_classpath is used.

System property has not changed

org.apache.jasper.Constants.JSP_FILE The name of the request attribute for <jsp-file> element of
a servlet definition. If present on a request, this overrides the
value returned by request.getServletPath() to select
the JSP page to be executed. If value is not specified, the
default value of org.apache.catalina.jsp_file is
used.

System property has not changed

org.apache.jasper.Constants.PRECOMPI
LE

The name of the query parameter that causes the JSP engine to
just pregenerate the servlet but not invoke it. If value is not
specified, the default value of
org.apache.catalina.jsp_precompile is used.

System property has not changed

org.apache.jasper.Constants.JSP_PACK
AGE_NAME

The default package name for compiled JSP pages. If value not
specified, the default value of org.apache.jsp is used.

System property has not changed

APPENDIX A. REFERENCE MATERIAL

179

org.apache.jasper.Constants.TAG_FILE_
PACKAGE_NAME

The default package name for tag handlers generated from tag
files. If value is not specified, the default value of
org.apache.jsp.tag is used.

System property has not changed

org.apache.jasper.Constants.TEMP_VARI
ABLE_NAME_PREFIX

Prefix to use for generated temporary variable names. If value is
not specified, the default value of _jspx_temp is used.

System property has not changed

org.apache.jasper.Constants.USE_INSTA
NCE_MANAGER_FOR_TAGS

If true, the instance manager is used to obtain tag handler
instances. If value is not specified, true is used.

System property has not changed

org.apache.jasper.Constants.INJECT_TA
GS

If true, annotations specified in tags will be processed and
injected. This can have a performance impact when using simple
tags, or if tag pooling is disabled. If value is not specified,
false is used.

System property has not changed

Table A.4. Map Security System Properties

JBoss EAP 6 System Property Description

Equivalent in JBoss EAP 7

org.apache.catalina.connector.RECYCLE
_FACADES

If this is true or if a security manager is in use a new facade
object is created for each request. If value is not specified, the
default value of false is used.

No equivalent configuration

org.apache.catalina.connector.CoyoteAda
pter.ALLOW_BACKSLASH

If this is true the '\' character is permitted as a path delimiter. If
value is not specified, the default value of false is used.

No equivalent configuration

org.apache.tomcat.util.buf.UDecoder.ALL
OW_ENCODED_SLASH

If this is true, '%2F' and '%5C' is permitted as path delimiters. If
value is not specified, the default value of false is used.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

180

Management CLI command:

/subsystem=undertow/server=default-
server/http-listener=default:write-
attribute(name=allow-encoded-
slash,value=VALUE)
/subsystem=undertow/server=default-
server/https-listener=default:write-
attribute(name=allow-encoded-
slash,value=VALUE)
/subsystem=undertow/server=default-
server/ajp-listener=default:write-
attribute(name=allow-encoded-
slash,value=VALUE)

org.apache.catalina.STRICT_SERVLET_
COMPLIANCE

If value is not specified, true is used. If this is true the
following actions will occur: any wrapped request or response
object passed to an application dispatcher is checked to ensure
that it has wrapped the original request or response. (SRV.8.2 /
SRV.14.2.5.1) a call to Response.getWriter() if no
character encoding has been specified results in subsequent
calls to Response.getCharacterEncoding() returning
ISO-8859-1 and the Content-Type response header will
include a charset=ISO-8859-1 component.
(SRV.15.2.22.1) every request that is associated with a session
causes the session’s last accessed time to be updated
regardless of whether or not the request explicity accesses the
session. (SRV.7.6)

Compliant by default

org.apache.catalina.core.StandardWrappe
rValve.SERVLET_STATS

If true or if
org.apache.catalina.STRICT_SERVLET_COMPLIANCE is
true, the wrapper will collect the JSR-77 statistics for individual
servlets. If value is not specified, the default value of false is
used.

No equivalent configuration

org.apache.catalina.session.StandardSes
sion.ACTIVITY_CHECK

If this is true or if
org.apache.catalina.STRICT_SERVLET_COMPLIAN
CE is true Tomcat tracks the number of active requests for
each session. When determining if a session is valid, any
session with at least one active request is always be considered
valid. If value is not specified, the default value of false is
used.

No equivalent configuration

A.5. COMPATIBILITY AND INTEROPERABILITY BETWEEN RELEASES

APPENDIX A. REFERENCE MATERIAL

181

This section describes the compatibility and interoperability of client and server EJB and messaging
components between the JBoss EAP 5, JBoss EAP 6, and JBoss EAP 7 releases.

EJB remoting over IIOP
You should not encounter problems with any of the following configurations.

Connecting from a JBoss EAP 5 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 6 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 6 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 5 server

EJB remoting Using JNDI
You should not encounter problems with any of the following configurations.

Connecting from a JBoss EAP 6 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 6 server

JBoss EAP 6 provided support for the EJB 3.1 specification and introduced the use of standardized
global JNDI namespaces, which are still used in JBoss EAP 7. Due to the change in JNDI namespace
names, the following configurations are not compatible:

Connecting from a JBoss EAP 5 client to a JBoss EAP 7 or a JBoss EAP 6 server

Connecting from a JBoss EAP 7 or JBoss EAP 6 client to a JBoss EAP 5 server

For more information about standardized JNDI namespace changes, see JNDI Changes in the JBoss
EAP 6 Migration Guide.

EJB remoting Using @WebService
You should not encounter problems with any of the following configurations.

Connecting from a JBoss EAP 5 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 6 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 6 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 5 server

Messaging Standalone Client
You should not encounter problems with any of the following configurations.

Connecting from a JBoss EAP 6 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 6 server

In the following configuration, if the client is using the messaging broker-specific HornetQ API rather than
the generic JMS API, the connection is possible. However, JNDI lookups must be addressed using the
JBoss EAP legacy JNDI naming extension that is delivered with JBoss EAP 7.

Connecting from a JBoss EAP 5 client to a JBoss EAP 7 server

JBoss EAP 7 built-in messaging is not able to connect to HornetQ 2.2.x that shipped with JBoss EAP 5
due to protocol compatibility issues. For this reason, the following configurations are not compatible.

JBoss Enterprise Application Platform Continuous Delivery 14 Migration Guide

182

https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html-single/Migration_Guide/index.html#sect-JNDI_Changes

Connecting from a JBoss EAP 7 client to a JBoss EAP 5 server

Messaging MDBs
You should not encounter problems with any of the following configurations.

Connecting from a JBoss EAP 6 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 6 server

In the following configuration, if the client is using the messaging broker-specific HornetQ API rather than
the generic JMS API, the connection is possible. However, JNDI lookups must be addressed using the
JBoss EAP legacy JNDI naming extension that is delivered with JBoss EAP 7.

Connecting from a JBoss EAP 5 client to a JBoss EAP 7 server

JBoss EAP 7 built-in messaging is not able to connect to HornetQ 2.2.x that shipped with JBoss EAP 5
due to protocol compatibility issues. For this reason, the following configurations are not compatible.

Connecting from a JBoss EAP 7 client to a JBoss EAP 5 server

JMS bridges
You should not encounter problems with any of the following configurations.

Connecting from a JBoss EAP 5 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 6 client to a JBoss EAP 7 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 6 server

Connecting from a JBoss EAP 7 client to a JBoss EAP 5 server

Revised on 2018-10-30 11:47:07 UTC

APPENDIX A. REFERENCE MATERIAL

183

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT MIGRATIONS AND UPGRADES
	1.2. ABOUT THE USE OF EAP_HOME IN THIS DOCUMENT

	CHAPTER 2. PREPARE FOR MIGRATION
	2.1. PREPARATION OVERVIEW
	2.2. REVIEW THE JAVA EE 8 FEATURES
	2.3. REVIEW THE JAVA EE 7 FEATURES
	2.4. REVIEW WHAT’S NEW IN JBOSS EAP 7
	New Features and Enhancements Introduced JBoss EAP 7.0
	New Features and Enhancements Introduced in JBoss EAP 7.1
	New Features and Enhancements Introduced in JBoss EAP 7.2

	2.5. REVIEW THE LIST OF DEPRECATED AND UNSUPPORTED FEATURES
	2.6. REVIEW THE JBOSS EAP GETTING STARTED MATERIAL
	2.7. MIGRATION ANALYSIS AND PLANNING
	2.8. BACK UP IMPORTANT DATA AND REVIEW SERVER STATE
	2.9. MIGRATING AN RPM INSTALLATION
	2.10. MIGRATE JBOSS EAP RUNNING AS A SERVICE

	CHAPTER 3. TOOLS TO ASSIST IN MIGRATION
	3.1. USE RED HAT APPLICATION MIGRATION TOOLKIT TO ANALYZE APPLICATIONS FOR MIGRATION
	3.2. USE THE JBOSS SERVER MIGRATION TOOL TO MIGRATE SERVER CONFIGURATIONS

	CHAPTER 4. SERVER CONFIGURATION CHANGES
	4.1. RPM INSTALLATION CHANGES
	4.2. SERVER CONFIGURATION MIGRATION OPTIONS
	JBoss Server Migration Tool
	Management CLI Migrate Operation

	4.3. MANAGEMENT CLI MIGRATION OPERATION
	Start the Server and the Management CLI
	Migrate the JacORB, Messaging, and Web Subsystems

	4.4. LOGGING CHANGES
	4.4.1. Logging Message Prefix Changes
	4.4.2. Root Logger Console Handler Changes

	4.5. WEB SERVER CONFIGURATION CHANGES
	4.5.1. Replace the Web Subsystem with Undertow
	4.5.2. Migrate JBoss Web Rewrite Conditions
	4.5.3. Migrate JBoss Web System Properties
	4.5.4. Update the Access Log Header Pattern
	4.5.5. Migrate Global Valves
	Migrate JBoss Web Valves
	JDBCAccessLogValve Manual Migration Procedure

	4.5.6. Changes to Set-Cookie Behavior
	4.5.7. Changes to HTTP Method Call Behavior
	4.5.8. Changes in the Default Web Module Behavior
	4.5.9. Changes in the Undertow Subsystem Default Configuration

	4.6. JGROUPS SERVER CONFIGURATION CHANGES
	4.6.1. JGroups Defaults to a Private Network Interface
	4.6.2. JGroups Channels Changes

	4.7. INFINISPAN SERVER CONFIGURATION CHANGES
	4.7.1. Infinispan Default Cache Configuration Changes
	4.7.2. Infinispan Cache Strategy Changes
	4.7.3. Configuring Custom Stateful Session Bean Cache for Passivation
	4.7.4. Infinispan Cache Container Transport Changes

	4.8. EJB SERVER CONFIGURATION CHANGES
	DuplicateServiceException

	4.9. MESSAGING SERVER CONFIGURATION CHANGES
	4.9.1. Messaging Subsystem Server Configuration Changes
	Management Model
	Messaging Subsystem Migration and Forward Compatibility
	Change in Behavior of forward-when-no-consumers Attribute
	Change in Default Cluster Load Balancing Policy
	Messaging Subsystem XML Configuration

	4.9.2. Migrate Messaging Data
	4.9.2.1. Migrate Messaging Data Using Export and Import
	4.9.2.2. Migrate Messaging Data Using a JMS Bridge
	4.9.2.3. Mapping Messaging Folder Names
	4.9.2.4. Backing Up Messaging Folder Data

	4.9.3. Migrate JMS Destinations
	4.9.4. Migrate Messaging Interceptors
	4.9.5. Replace Netty Servlet Configuration
	4.9.6. Configuring a Generic JMS Resource Adapter
	4.9.7. Messaging Configuration Changes
	4.9.8. Changes in JMS Serialization Behavior Between Releases

	4.10. JMX MANAGEMENT CHANGES
	4.11. ORB SERVER CONFIGURATION CHANGES
	4.12. MIGRATE THE THREADS SUBSYSTEM CONFIGURATION
	4.13. MIGRATE THE REMOTING SUBSYSTEM CONFIGURATION
	4.14. WEBSOCKET SERVER CONFIGURATION CHANGES
	4.15. SINGLE SIGN-ON SERVER CHANGES
	4.16. DATASOURCE CONFIGURATION CHANGES
	4.16.1. JDBC Datasource Driver Name
	Driver Containing a Single Class
	Driver Containing Multiple Classes

	4.17. SECURITY SERVER CONFIGURATION CHANGES
	4.17.1. Changes in Legacy Security Behavior between JBoss EAP 7.0 and JBoss EAP 7.1
	4.17.1.1. HTTP Status Change for Unreachable LDAP Realms
	4.17.1.2. Enabling the LDAP Security Realm to Parse Roles from a DN
	4.17.1.3. Changes in Sending the JBoss EAP SSL Certificate to an LDAP Server

	4.17.2. FIPS Mode Changes

	4.18. TRANSACTIONS SUBSYSTEM CHANGES
	Removed Transactions Subsystem Attributes
	Deprecated Transactions Subsystem Attributes

	4.19. CHANGES TO MOD_CLUSTER CONFIGURATION
	4.20. VIEWING CONFIGURATION CHANGES

	CHAPTER 5. APPLICATION MIGRATION CHANGES
	5.1. WEB SERVICES APPLICATION CHANGES
	5.1.1. JAX-RPC Support Changes
	5.1.2. Apache CXF Spring Web Services Changes
	Apache CXF Interceptors
	Apache CXF Features
	Apache CXF HTTP Transport

	5.1.3. WS-Security Changes
	5.1.4. JBoss Modules Structure Change
	5.1.5. Bouncy Castle Requirements and Changes
	5.1.6. Apache CXF Bus Selection Strategy
	5.1.7. JAX-WS 2.2 Requirements for WebServiceRef
	5.1.8. IgnoreHttpsHost CN Check Change
	5.1.9. Server Side Configuration and Class Loading
	5.1.10. Deprecation of Java Endorsed Standards Override Mechanism
	5.1.11. Specification of Descriptor in EAR Archive

	5.2. UPDATE THE REMOTE URL CONNECTOR AND PORT
	5.3. MESSAGING APPLICATION CHANGES
	5.3.1. Replace or Update JMS Deployment Descriptors
	5.3.2. Update External JMS Clients
	5.3.3. Replace the HornetQ API

	5.4. JAX-RS AND RESTEASY APPLICATION CHANGES
	5.4.1. RESTEasy Deprecated Classes
	Interceptor and MessageBody Classes
	Client API
	StringConverter

	5.4.2. Removed or Protected RESTEasy Classes
	ResteasyProviderFactory Add methods
	Additional Classes Removed From RESTEasy 3

	5.4.3. Additional RESTEasy Changes
	SignedInput and SignedOuput
	Security Filters
	Client-side Filters
	Asynchronous HTTP Support
	Server-side Cache
	YAML Provider Setting Changes
	Default Charset UTF-8 in Content-Type Header
	SerializableProvider
	Matching Requests to Resource Methods
	Resource Method Algorithm Switch

	5.4.4. RESTEasy SPI Changes
	SPI Exceptions
	InjectorFactory and Registry

	5.4.5. Jackson Provider Changes
	5.4.6. Spring RESTEasy Integration Changes
	5.4.7. RESTEasy Jettison JSON Provider Changes

	5.5. CDI APPLICATION CHANGES
	Bean Archives
	Clarification of Conversation Resolution
	Observer Resolution

	5.6. MIGRATE EXPLICIT MODULE DEPENDENCIES
	Review Dependencies for Availability
	Dependencies That Require Annotation Scanning

	5.7. HIBERNATE AND JPA MIGRATION CHANGES
	5.7.1. Hibernate ORM 3.0
	5.7.2. Hibernate ORM 4.0 - 4.3
	5.7.3. Migrating to Hibernate ORM 5
	Removed and Deprecated Classes
	Other Changes to Classes and Packages
	Type Handling
	Transaction Management
	Other Hibernate ORM 5 Changes

	5.7.4. Migrating from Hibernate ORM 5.0 to Hibernate ORM 5.1
	Hibernate ORM 5.1 Features
	Schema Management Tooling Changes

	5.7.5. Migrating from Hibernate ORM 5.1 to Hibernate ORM 5.3
	Hibernate ORM 5.2 Features
	Hibernate ORM 5.3 Features
	5.7.5.1. Exception Handling Changes Between Hibernate 5.1 and Hibernate 5.3
	5.7.5.2. Compatibility Transformer

	5.8. HIBERNATE SEARCH CHANGES
	Hibernate Search Mapping Changes
	Indexing of id Fields of Embedded Relations
	Number and Date Index Formatting Changes

	Miscellaneous Hibernate Search Changes
	Hibernate Search Renamed and Repackaged Classes
	Lucene - Renamed and Repackaged Classes
	Hibernate Search Deprecated APIs
	Hibernate Search Deprecated Interfaces
	Hibernate Search Deprecated Classes
	Hibernate Search Deprecated Enums
	Hibernate Search Deprecated Annotations
	Hibernate Search Deprecated Methods
	Hibernate Search Deprecated Constructors

	Changes Impacting Advanced Integrators

	5.9. MIGRATE ENTITY BEANS TO JPA
	5.10. JPA PERSISTENCE PROPERTY CHANGES
	JPA Persistence Property Changes Introduced in JBoss EAP 7.0
	JPA Persistence Property Changes Introduced in JBoss EAP 7.1

	5.11. MIGRATE EJB CLIENT CODE
	5.11.1. EJB Client Changes in JBoss EAP 7
	5.11.1.1. Update the Default Remote Connection Port
	5.11.1.2. Update the Default Connector

	5.11.2. Migrate Remote Naming Client Code
	5.11.3. Additional EJB Client Changes Introduced in JBoss EAP 7.1
	5.11.4. EJB Client Changes Needed for JBoss EAP 7.2

	5.12. MIGRATE CLIENTS TO USE THE WILDFLY CONFIGURATION FILE
	5.13. MIGRATE DEPLOYMENT PLAN CONFIGURATIONS
	5.14. MIGRATE CUSTOM APPLICATION VALVES
	Migrate Valves Configured in Deployments
	Migrate Custom Authenticator Valves

	5.15. SECURITY APPLICATION CHANGES
	5.15.1. Migrate Authenticator Valves
	5.15.2. PicketLink Changes
	5.15.3. Other Security Application Changes

	5.16. JBOSS LOGGING CHANGES
	5.17. JAVASERVER FACES (JSF) CODE CHANGES
	Dropped Support for JSF 1.2
	Compatibility Issue Between JSF 2.1 and JSF 2.3

	5.18. MODULE CLASS LOADING CHANGES
	5.19. APPLICATION CLUSTERING CHANGES
	5.19.1. Overview of New Clustering Features
	5.19.2. Web Session Clustering Changes
	5.19.3. Stateful Session EJB Clustering Changes
	5.19.4. Clustering Services Changes
	5.19.5. Migrate Clustering HA Singleton

	CHAPTER 6. MISCELLANEOUS CHANGES
	6.1. CHANGES TO DELIVERY OF JBOSS EAP NATIVES AND APACHE HTTP SERVER
	6.2. CHANGES TO DEPLOYMENTS ON AMAZON EC2
	6.3. UNDEPLOYING APPLICATIONS THAT INCLUDE SHARED MODULES
	6.4. CHANGES TO JBOSS EAP SCRIPTS
	6.5. REMOVAL OF OSGI SUPPORT

	CHAPTER 7. MIGRATING TO ELYTRON
	7.1. OVERVIEW OF ELYTRON
	7.2. MIGRATE SECURE VAULTS AND PROPERTIES
	7.2.1. Migrate Vaults to Secure Credential Storage
	Migrating Vault Data Using the WildFly Elytron Tool

	7.2.2. Migrate Security Properties to Elytron

	7.3. MIGRATE AUTHENTICATION CONFIGURATION
	7.3.1. Migrate Properties-based Authentication and Authorization to Elytron
	7.3.1.1. Migrate PicketBox Properties-based Configuration to Elytron
	7.3.1.2. Migrate Legacy Properties-based Configuration to Elytron

	7.3.2. Migrate LDAP Authentication Configuration to Elytron
	7.3.2.1. Migrate the Legacy LDAP Authentication to Elytron

	7.3.3. Migrate Database Authentication Configuration to Elytron
	7.3.3.1. Migrate the Legacy Database Authentication to Elytron

	7.3.4. Migrate Kerberos Authentication to Elytron
	Migrate Kerberos HTTP Authentication
	Migrate Kerberos Remoting SASL Authentication

	7.3.5. Migrate Composite Stores to Elytron
	PicketBox Composite Store Configuration
	Legacy Security Realm Composite Store Configuration
	Elytron Aggregate Security Realm Configuration

	7.3.6. Migrate Security Domains That Use Caching to Elytron
	PicketBox Cached Security Domain Configuration
	Elytron Cached Security Domain Configuration

	7.3.7. Migrate JACC Security to Elytron

	7.4. MIGRATE APPLICATION CLIENTS
	7.4.1. Migrate a Naming Client Configuration to Elytron
	7.4.1.1. Migrate the Naming Client Using the Configuration File Approach
	7.4.1.2. Migrate the Naming Client Using the Programmatic Approach

	7.4.2. Migrate an EJB Client to Elytron
	7.4.2.1. Migrate the EJB Client Using the Configuration File Approach
	7.4.2.2. Migrate the EJB Client Using the Programmatic Approach

	7.5. MIGRATE SSL CONFIGURATIONS
	7.5.1. Migrate a Simple SSL Configuration to Elytron
	7.5.2. Migrate CLIENT-CERT SSL Authentication to Elytron
	Legacy truststore Containing Only CA
	Realms and Domains
	Principal Decoder
	HTTP Authentication Factory

	CHAPTER 8. MIGRATING FROM OLDER RELEASES OF JBOSS EAP
	8.1. MIGRATING FROM JBOSS EAP 5 TO JBOSS EAP 7
	8.2. SUMMARY OF CHANGES MADE TO EACH RELEASE
	8.3. REVIEW THE CONTENT IN THE MIGRATION GUIDES
	8.4. JBOSS EAP 5 COMPONENT UPGRADE REFERENCE

	APPENDIX A. REFERENCE MATERIAL
	A.1. JACORB SUBSYSTEM MIGRATION OPERATION WARNINGS
	A.2. MESSAGING SUBSYSTEM MIGRATION OPERATION WARNINGS
	Replace the Deprecated broadcast-group or discovery-group Attributes

	A.3. WEB SUBSYSTEM MIGRATION OPERATION WARNINGS
	Web Subsystem Migration Operation Attribute Warnings
	Web SSL Connector Attributes
	Web Static Resource Attributes
	Web SSO Resource Attributes
	Web Access Log Attributes
	Web Connector Attributes

	A.4. MIGRATE JBOSS WEB SYSTEM PROPERTIES REFERENCE
	A.5. COMPATIBILITY AND INTEROPERABILITY BETWEEN RELEASES
	EJB remoting over IIOP
	EJB remoting Using JNDI
	EJB remoting Using @WebService
	Messaging Standalone Client
	Messaging MDBs
	JMS bridges

