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WHAT THIS BOOK COVERS
The primary focus of this book is the presentation of the standard JBoss Enterprise Application
Platform 5.0 architecture components from both the perspective of their configuration and
architecture. As a user of a standard JBoss distribution you will be given an understanding of how to
configure the standard components. This book is not an introduction to JavaEE or how to use JavaEE
in applications. It focuses on the internal details of the JBoss server architecture and how our
implementation of a given JavaEE container can be configured and extended.

As a JBoss developer, you will be given a good understanding of the architecture and integration of the
standard components to enable you to extend or replace the standard components for your
infrastructure needs. We also show you how to obtain the JBoss source code, along with how to build
and debug the JBoss server.
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CHAPTER 1. INTRODUCTION
JBoss Enterprise Application Platform 5 is built on top of the new JBoss Microcontainer. The JBoss
Microcontainer is a lightweight container that supports direct deployment, configuration and lifecycle
of plain old Java objects (POJOs). The JBoss Microcontainer project is standalone and replaces the
JBoss JMX Microkernel used in the 4.x JBoss Enterprise Application Platforms.

The JBoss Microcontainer integrates nicely with the JBoss Aspect Oriented Programming framework
(JBoss AOP). JBoss AOP is discussed in Chapter 8, JBoss AOP Support for JMX in JBoss Enterprise
Application Platform 5 remains strong and MBean services written against the old Microkernel are
expected to work.

A sample Java EE 5 application that can be run on top of JBoss Enterprise Application Platform
5.0.0.GA and above which demonstrates many interesting technologies is the Seam Booking
Application available with this distribution. This example application makes use of the following
technologies running on JBoss Enterprise Application Platform 5:

EJB3

Stateful Session Beans

Stateless Session Beans

JPA (w/ Hibernate validation)

JSF

Facelets

Ajax4JSF

Seam

Many key features of JBoss Enterprise Application Platform 5 are provided by integrating standalone
JBoss projects which include:

JBoss EJB3 included with JBoss Enterprise Application Platform 5 provides the
implementation of the latest revision of the Enterprise Java Beans (EJB) specification. EJB 3.0
is a deep overhaul and simplification of the EJB specification. EJB 3.0's goals are to simplify
development, facilitate a test driven approach, and focus more on writing plain old java objects
(POJOs) rather than coding against complex EJB APIs.

JBoss Messaging is a high performance JMS provider included in JBoss Enterprise Application
Platform 5 as the default messaging provider. It is also the backbone of the JBoss ESB
infrastructure. JBoss Messaging is a complete rewrite of JBossMQ, which is the default JMS
provider for JBoss Enterprise Application Platform 4.2.

JBoss Cache comes in two flavors: a traditional tree-structured node-based cache, and a
PojoCache, an in-memory, transactional, and replicated cache system that allows users to
operate on simple POJOs transparently without active user management of either replication
or persistency aspects.

JBossWS 3.x is the web services stack for JBoss Enterprise Application Platform 5 providing
Java EE compatible web services, JAXWS-2.x.

JBoss Transactions is the default transaction manager for JBoss Enterprise Application
Platform 5. JBoss Transactions is founded on industry proven technology and 18 year history
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as a leader in distributed transactions, and is one of the most interoperable implementations
available.

JBoss Web is the Web container in JBoss Enterprise Application Platform 5, an
implementation based on Apache Tomcat that includes the Apache Portable Runtime (APR)
and Tomcat native technologies to achieve scalability and performance characteristics that
match and exceed the Apache Http server.

1.1. JBOSS ENTERPRISE APPLICATION PLATFORM USE CASES

99% of web applications involving a database

Mission critical web applications likely to be clustered.

Simple web applications with JSPs/Servlets upgrades to JBoss Enterprise Application
Platform with Tomcat Embedded.

Intermediate web applications with JSPs/Servlets using a web framework such as Struts, Java
Server Faces, Cocoon, Tapestry, Spring, Expresso, Avalon, Turbine.

Complex web applications with JSPs/Servlets, SEAM, Enterprise Java Beans (EJB), Java
Messaging (JMS), caching etc.

Cross application middleware (JMS, Corba, JMX etc).
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PART I. JBOSS ENTERPRISE APPLICATION PLATFORM
INFRASTRUCTURE
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CHAPTER 2. JBOSS ENTERPRISE APPLICATION PLATFORM 5
ARCHITECTURE
The following diagram illustrates an overview of the JBoss Enterprise Application Server and its
components.

The directory structure of JBoss Enterprise Application Platform 5 resembles that of the 4.x series
with some notable differences:

-jboss-as - the path to your JBoss Enterprise Application Server.
  |-- bin - contains start scripts and run.jar
  |-- client - client jars 
  |-- common/lib - static jars shared across server profile
  |-- docs - schemas/dtds, examples
  |-- lib - core bootstrap jars
  |   lib/endorsed - added to the server JVM java.endorsed.dirs path
  `-- server - server profile directories. See Section 3.2 
                     for details of the server profiles included in this 
release.

-seam - the path to JBoss SEAM application framework 
  |-- bootstrap
  |-- build
  |-- examples - examples demonstrating uses of SEAM's features
  |-- extras
  |-- lib - library directory
  |-- seam-gen - command-line utility used to generate simple skeletal 
SEAM code to get your project started
  |-- ui -
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-resteasy - RESTEasy - a portable implementation of JSR-311 JAX-RS 
Specification
  |-- embedded-lib
  |-- lib
  |-- resteasy-jaxrs.war

2.1. THE JBOSS ENTERPRISE APPLICATION PLATFORM BOOTSTRAP

The JBoss Enterprise Application Platform 5 bootstrap is similar to the JBoss Enterprise Application
Platform 4.x versions in that the org.jboss.Main entry point loads an org.jboss.system.server.Server
implementation. In JBoss Enterprise Application Platform 4.x this was a JMX based microkernel. In
JBoss Enterprise Application Platform 5 this is a JBoss Microcontainer.

The default JBoss Enterprise Application Platform 5 org.jboss.system.server.Server 
implementation is org.jboss.bootstrap.microcontainer.ServerImpl. This implementation
is an extension of the kernel basic bootstrap that boots the MC from the bootstrap beans declared in 
{jboss.server.config.url}/bootstrap.xml descriptors using a BasicXMLDeployer. In
addition, the ServerImpl registers install callbacks for any beans that implement the 
org.jboss.bootstrap.spi.Bootstrap interface. The bootstrap/profile*.xml
configurations include a ProfileServiceBootstrap bean that implements the Bootstrap interface.

The org.jboss.system.server.profileservice.ProfileServiceBootstrap is an
implementation of the org.jboss.bootstrap.spi.Bootstrap interface that loads the
deployments associated with the current profile. The {profile-name} is the name of the profile being
loaded and corresponds to the server -c command line argument. The default {profile-name} is
default. The deployers, deploy

2.2. HOT DEPLOYMENT

Hot deployment in JBoss Enterprise Application Platform 5 is controlled by the Profile
implementations associated with the ProfileService. The HDScanner bean deployed via the 
deploy/hdscanner-jboss-beans.xml MC deployment, queries the profile service for changes in
application directory contents and redeploys updated content, undeploys removed content, and adds
new deployment content to the current profile via the ProfileService.

Disabling hot deployment is achieved by removing the hdscanner-jboss-beans.xml file from
deployment.
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PART II. JBOSS ENTERPRISE APPLICATION PLATFORM 5
CONFIGURATION
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CHAPTER 3. LOGGING
Logging is the most important tool to troubleshoot errors and monitor the status of the components of
the Platform. log4j provides a familiar, flexible framework, familiar to Java developers.

Section 3.1, “Logging Defaults” contains information about customizing the default logging behavior
for the Platform. See Section 3.2, “Component-Specific Logging”  for additional customization.
Appendix B, Logging Information and Recipes provides some logging recipes, which you can customize to
your needs.

3.1. LOGGING DEFAULTS

The log4j configuration is loaded from the JBOSS_HOME/server/PROFILE/conf/jboss-
log4j.xml deployment descriptor. log4j uses appenders to control its logging behavior. An appender
is a directive for where to log information, and how to do it. The jboss-log4j.xml file contains many
sample appenders, including FILE, CONSOLE, and SMTP.

Table 3.1. Common log4j Configuration Directives

Configuration Option Description

appender The main appender. Gives the name and the
implementing class.

errorHandler Delegates an external class to handle exceptions
passed to the logger, especially if the appender
cannot write the log for some reason.

param Options specific to the type of appender. In this
instance, the <param> is the name of the file that
stores the logs for the FILE appender.

layout Controls the logging format. Tweak this to work with
your log-parsing software of choice.

Example 3.1. Sample Appender

<appender name="FILE" 
class="org.jboss.logging.appender.DailyRollingFileAppender">
  <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
  <param name="File" value="${jboss.server.log.dir}/server.log"/>
  <param name="Append" value="true"/>
  <!-- In AS 5.0.x the server log threshold was set by a system 
property.
   In 5.1 and later, the system property sets the priority on the root
   logger (see <root/> below)
   <param name="Threshold" value="${jboss.server.log.threshold}"/> -->
 
  <!-- Rollover at midnight each day -->
  <param name="DatePattern" value="'.'yyyy-MM-dd"/>
  <layout class="org.apache.log4j.PatternLayout">
  <!-- The default pattern: Date Priority [Category] (Thread) Message\n 
-->
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For more information on configuring log4j, see http://logging.apache.org/log4j/1.2/.

3.2. COMPONENT-SPECIFIC LOGGING

Some Platform components have extra logging options available, or extra mechanisms for customizing
logging.

3.2.1. SQL Logging with Hibernate

Hibernate has two ways to enable logging of SQL statements. These statements are most useful during
the testing and debugging phases of application development.

The first way is to explicitly enable it in your code.

Alternately, you can configure Hibernate to send all SQL messages to log4j, using a specific facility:

log4j.logger.org.hibernate.SQL=DEBUG, SQL_APPENDER
log4j.additivity.org.hibernate.SQL=false

The additivity option controls whether these log messages are propagated upward to parent
handlers, and is a matter of preference.

3.2.2. Transaction Service Logging

The TransactionManagerService included with the Enterprise Platform handles logging differently than
the stand-alone Transaction Service. Specifically, it overrides the value of the
com.arjuna.common.util.logger property given in the jbossjta-properties.xml file, forcing use of
the log4j_releveler logger. All INFO level messages in the transaction code behave as DEBUG
messages. Therefore, these messages are only present in log files if the filter level is DEBUG. All other
log messages behave as normal.

  <param name="ConversionPattern" value="%d %-5p [%c] (%t) %m%n"/>
  </layout>
</appender>

SessionFactory sf = new Configuration()
  .setProperty("hibernate.show_sql", "true")
  // ...
  .buildSessionFactory();
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CHAPTER 4. DEPLOYMENT
Deploying applications on JBoss Enterprise Application Platform is achieved by copying the
application into the $JBOSS_HOME/server/default/deploy directory. You can replace default
with different server profiles such as all or minimal (profiles are covered later in this guide). The JBoss
Enterprise Application Platform constantly scans the deploy directory to pick up new applications or
any changes to existing applications. This enables hot deployment of applications on the fly, while
JBoss Enterprise Application Platform is still running.

4.1. DEPLOYABLE APPLICATION TYPES

With JBoss Enterprise Application Platform 4.x, a deployer existed to handle a specified deployment
type and that was the only deployer that would process the deployment. In JBoss Enterprise
Application Platform 5, multiple deployers transform the metadata associated with a deployment until
its processed by a deployer that creates a runtime component from the metadata. Deployment has to
contain a descriptor that causes the component metadata to be added to the deployment. The types of
deployments for which deployers exists by default in the JBoss Enterprise Application Platform
include:

WAR

The WAR application archive (e.g., myapp.war) packages Java EE web applications in a JAR file. It
contains servlet classes, view pages, libraries, and deployment descriptors in WEB-INF such as
web.xml, faces-config.xml, and jboss-web.xml etc..

EAR

The EAR application archive (e.g., myapp.ear) packages a Java EE enterprise application in a JAR
file. It typically contains a WAR file for the web module, JAR files for EJB modules, as well as META-
INF deployment descriptors such as application.xml and jboss-app.xml etc.

JBoss Microcontainer

The JBoss Microcontainer (MC) beans archive (typical suffixes include, .beans, .deployer) packages
a POJO deployment in a JAR file with a META-INF/jboss-beans.xml descriptor. This format is
commonly used by the JBoss Enterprise Application Platform component deployers.

You can deploy *-jboss-beans.xml files with MC beans definitions. If you have the approriate
JAR files available in the deploy or lib directories, the MC beans can be deployed using such a
standalone XML file.

SAR

The SAR application archive (e.g., myservice.sar) packages a JBoss service in a JAR file. It is mostly
used by JBoss Enterprise Application Platform internal services that have not been updated to
support MC beans style deployments.

You can deploy *-service.xml files with MBean service definitions. If you have the appropriate
JAR files available in the deploy or lib directories, the MBeans specified in the XML files will be
started. This is the way you deploy many JBoss Enterprise Application Platform internal services
that have not been updated to support POJO style deployment, such as the JMS queues.

You can also deploy JAR files containing EJBs or other service objects directly in JBoss Enterprise
Application Platform. The list of suffixes that are recognized as JAR files is specified in the 
conf/bootstrap/deployers.xml JARStructure bean constructor set.

DataSource
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The *-ds.xml file defines connections to external databases. The data source can then be reused
by all applications and services in JBoss Enterprise Application Platform via the internal JNDI.

NOTE

The WAR, EAR, MC beans and SAR deployment packages are really just JAR files with
special XML deployment descriptors in directories like META-INF and WEB-INF. JBoss
Enterprise Application Platform allows you to deploy those archives as expanded
directories instead of JAR files. That allows you to make changes to web pages etc on
the fly without re-deploying the entire application. If you do need to re-deploy the
exploded directory without re-start the server, you can just touch the deployment
descriptors (e.g., the WEB-INF/web.xml in a WAR and the META-
INF/application.xml in an EAR) to update their timestamps.

4.2. STANDARD SERVER PROFILES

The JBoss Enterprise Application Platform ships with six server profiles. You can choose which
configuration to start by passing the -c parameter to the server startup script. For instance, the 
run.sh -c all command starts the server in the all profile.

Each profile is contained in a directory named install_directory/server/[profile name]/.
You can look into each server profile's directory to see the services, applications, and libraries included
in the profile.

NOTE

The exact contents of the server/[profile name] directory depends on the profile
service implementation and is subject to change as the management layer and
embedded server evolve.

all

Default profile loaded when run.sh is executed without the -c parameter. The profile provides
clustering support and other enterprise extensions.

production

The production profile is based on the all profile and provides configuration optimized for
production environments.

minimal

Starts the core server container without any of the enterprise services. Use the minimal profile as
a base to build a customized version of JBoss Enterprise Application Platform that only contains
the services you need.

default

The default profile is the mostly common used profile for application developers. It supports the
standard Java EE 5.0 programming APIs (e.g., Annotations, JPA, and EJB3).
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NOTE

The default profile is a misnomer; it is not loaded automatically if you do not
specify a profile at start up. The all profile is loaded when you do not specify a
profile at startup.

standard

The standard profile is the profile that has been tested for Java EE compliance. The major
differences with the existing configurations is that call-by-value and deployment isolation are
enabled by default, along with support for rmiiiop and juddi (taken from the all config).

web

The web profile is an experimental, lightweight configuration created around JBoss Web that will
follow the developments of the Java EE 6 web profile. Except for the servlet/jsp container, it
provides support for JTA/JCA and JPA. It also limits itself to allowing access to the server only
through the http port. Please note that this configuration is not Java EE certified and will most
likely change in the following releases.

The detailed services and APIs supported in each of those profiles will be discussed throughout.
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CHAPTER 5. MICROCONTAINER
JBoss Enterprise Application Platform 5.0 uses the Microcontainer to integrate enterprise services
together with a Servlet/JSP container, EJB container, deployers and management utilities in order to
provide a standard Java EE environment. If you need additional services, you can deploy these on top
of Java EE to provide the functionality you need. Likewise any services that you do not need can be
removed by changing the configuration. You can even use the Microcontainer to do this in other
environments such as Tomcat and GlassFish by plugging in different classloading models during the
service deployment phase.

Since JBoss Microcontainer is very lightweight and deals with POJOs, it can also be used to deploy
services into a Java ME runtime environment. This opens up new possibilities for mobile applications
that can now take advantage of enterprise services without requiring a full JEE application server. As
with other lightweight containers, JBoss Microcontainer uses dependency injection to wire individual
POJOs together to create services. Configuration is performed using either annotations or XML
depending on where the information is best located. Unit testing is made extremely simple thanks to a
helper class that extends JUnit to setup the test environment, allowing you to access POJOs and
services from your test methods using just a few lines of code.

NOTE

For detailed information regarding the Microcontainer architecture, refer to the
Microcontainer User Guide hosted on docs.redhat.com.
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CHAPTER 6. THE JNDI NAMING SERVICE
The naming service plays a key role in enterprise Java applications, providing the core infrastructure
that is used to locate objects or services in an application server. It is also the mechanism that clients
external to the application server use to locate services inside the application server. Application code,
whether it is internal or external to the JBoss Enterprise Application Platform instance, needs only
know that it needs to talk to the a message queue named queue/IncomingOrders and need not
worry about any of the queue's configuration details.

In a clustered environment, naming services are even more valuable. A client of a service must be able
to look up a ProductCatalog session bean from the cluster without needing to know which machine it
resides on. Whether it is a large clustered service, a local resource or an application component that is
needed, the JNDI naming service provides the glue that lets code find the objects in the system by
name.

6.1. AN OVERVIEW OF JNDI

JNDI is a standard Java API that is bundled with the Java Development Kit. JNDI provides a common
interface to a variety of existing naming services: DNS, LDAP, Active Directory, RMI registry, COS
registry, NIS, and file systems. The JNDI API is divided logically into a client API that is used to access
naming services, and a service provider interface (SPI) that allows the user to create JNDI
implementations for naming services.

The SPI layer is an abstraction that naming service providers must implement to enable the core JNDI
classes to expose the naming service using the common JNDI client interface. An implementation of
JNDI for a naming service is referred to as a JNDI provider. JBoss naming is an example JNDI
implementation, based on the SPI classes. Note that the JNDI SPI is not needed by J2EE component
developers.

The main JNDI API package is the javax.naming package. It contains five interfaces, 10 classes, and
several exceptions. There is one key class, InitialContext, and two key interfaces, Context and 
Name

6.1.1. Names

The notion of a name is of fundamental importance in JNDI. The naming system determines the syntax
that the name must follow. The syntax of the naming system allows the user to parse string
representations of names into its components. A name is used with a naming system to locate objects.
In the simplest sense, a naming system is just a collection of objects with unique names. To locate an
object in a naming system you provide a name to the naming system, and the naming system returns
the object store under the name.

As an example, consider the Unix file system's naming convention. Each file is named from its path
relative to the root of the file system, with each component in the path separated by the forward slash
character ("/"). The file's path is ordered from left to right. The pathname /usr/jboss/readme.txt,
for example, names a file readme.txt in the directory jboss, under the directory usr, located in the
root of the file system. JBoss Enterprise Application Platform naming uses a Unix-style namespace as
its naming convention.

The javax.naming.Name interface represents a generic name as an ordered sequence of
components. It can be a composite name (one that spans multiple namespaces), or a compound name
(one that is used within a single hierarchical naming system). The components of a name are
numbered. The indexes of a name with N components range from 0 up to, but not including, N. The most
significant component is at index 0. An empty name has no components.
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A composite name is a sequence of component names that span multiple namespaces. An example of a
composite name would be the hostname and file combination commonly used with Unix commands like
scp. For example, the following command copies localfile.txt to the file remotefile.txt in the 
tmp directory on host ahost.someorg.org:

A compound name is derived from a hierarchical namespace. Each component in a compound name is
an atomic name, meaning a string that cannot be parsed into smaller components. A file pathname in
the Unix file system is an example of a compound name. 
ahost.someorg.org:/tmp/remotefile.txt is a composite name that spans the DNS and Unix file
system namespaces. The components of the composite name are ahost.someorg.org and 
/tmp/remotefile.txt. A component is a string name from the namespace of a naming system. If the
component comes from a hierarchical namespace, that component can be further parsed into its
atomic parts by using the javax.naming.CompoundName class. The JNDI API provides the 
javax.naming.CompositeName class as the implementation of the Name interface for composite
names.

6.1.2. Contexts

The javax.naming.Context interface is the primary interface for interacting with a naming service.
The Context interface represents a set of name-to-object bindings. Every context has an associated
naming convention that determines how the context parses string names into javax.naming.Name
instances. To create a name-to-object binding you invoke the bind method of a Context and specify a
name and an object as arguments. The object can later be retrieved using its name using the Context
lookup method. A Context will typically provide operations for binding a name to an object, unbinding
a name, and obtaining a listing of all name-to-object bindings. The object you bind into a Context can
itself be of type Context. The Context object that is bound is referred to as a subcontext of the 
Context on which the bind method was invoked.

As an example, consider a file directory with a pathname /usr, which is a context in the Unix file
system. A file directory named relative to another file directory is a subcontext (commonly referred to
as a subdirectory). A file directory with a pathname /usr/jboss names a jboss context that is a
subcontext of usr. In another example, a DNS domain, such as org, is a context. A DNS domain named
relative to another DNS domain is another example of a subcontext. In the DNS domain jboss.org,
the DNS domain jboss is a subcontext of org because DNS names are parsed right to left.

6.1.2.1. Obtaining a Context using InitialContext

All naming service operations are performed on some implementation of the Context interface.
Therefore, you need a way to obtain a Context for the naming service you are interested in using. The 
javax.naming.IntialContext class implements the Context interface, and provides the starting
point for interacting with a naming service.

When you create an InitialContext, it is initialized with properties from the environment. JNDI
determines each property's value by merging the values from the following two sources, in order.

The first occurrence of the property from the constructor's environment parameter and (for
appropriate properties) the applet parameters and system properties.

All jndi.properties resource files found on the classpath.

For each property found in both of these two sources, the property's value is determined as follows. If
the property is one of the standard JNDI properties that specify a list of JNDI factories, all of the values

scp localfile.txt ahost.someorg.org:/tmp/remotefile.txt
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are concatenated into a single colon-separated list. For other properties, only the first value found is
used. The preferred method of specifying the JNDI environment properties is through a 
jndi.properties file, which allows your code to externalize the JNDI provider specific information
so that changing JNDI providers will not require changes to your code or recompilation.

The Context implementation used internally by the InitialContext class is determined at runtime.
The default policy uses the environment property java.naming.factory.initial, which contains
the class name of the javax.naming.spi.InitialContextFactory implementation. You obtain
the name of the InitialContextFactory class from the naming service provider you are using.

Example 6.1, “A sample jndi.properties file”  gives a sample jndi.properties file a client application
would use to connect to a JBossNS service running on the local host at port 1099. The client
application would need to have the jndi.properties file available on the application classpath.
These are the properties that the JBossNS JNDI implementation requires. Other JNDI providers will
have different properties and values.

Example 6.1. A sample jndi.properties file

6.2. THE JBOSS NAMING SERVICE ARCHITECTURE

The JBoss Naming Service (JBossNS) architecture is a Java socket/RMI based implementation of the 
javax.naming.Context interface. It is a client/server implementation that can be accessed
remotely. The implementation is optimized so that access from within the same VM in which the
JBossNS server is running does not involve sockets. Same VM access occurs through an object
reference available as a global singleton. Figure 6.1, “Key components in the JBoss Naming Service
architecture.” illustrates some of the key classes in the JBossNS implementation and their
relationships.

### JBossNS properties
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

Administration And Configuration Guide

24



Figure 6.1. Key components in the JBoss Naming Service architecture.

We will start with the NamingService MBean. The NamingService MBean provides the JNDI naming
service. This is a key service used pervasively by the J2EE technology components. The configurable
attributes for the NamingService are as follows.

Port: The jnp protocol listening port for the NamingService. If not specified default is 1099,
the same as the RMI registry default port.

RmiPort: The RMI port on which the RMI Naming implementation will be exported. If not
specified the default is 0 which means use any available port.

BindAddress: The specific address the NamingService listens on. This can be used on a
multi-homed host for a java.net.ServerSocket that will only accept connect requests on
one of its addresses.

RmiBindAddress: The specific address the RMI server portion of the NamingService listens
on. This can be used on a multi-homed host for a java.net.ServerSocket that will only
accept connect requests on one of its addresses. If this is not specified and the BindAddress
is, the RmiBindAddress defaults to the BindAddress value.

Backlog: The maximum queue length for incoming connection indications (a request to
connect) is set to the backlog parameter. If a connection indication arrives when the queue is
full, the connection is refused.

ClientSocketFactory: An optional custom java.rmi.server.RMIClientSocketFactory
implementation class name. If not specified the default RMIClientSocketFactory is used.
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ServerSocketFactory: An optional custom java.rmi.server.RMIServerSocketFactory
implementation class name. If not specified the default RMIServerSocketFactory is used.

JNPServerSocketFactory: An optional custom javax.net.ServerSocketFactory
implementation class name. This is the factory for the ServerSocket used to bootstrap the
download of the JBoss Naming Service Naming interface. If not specified the 
javax.net.ServerSocketFactory.getDefault() method value is used.

The NamingService also creates the java:comp context such that access to this context is isolated
based on the context class loader of the thread that accesses the java:comp context. This provides
the application component private ENC that is required by the J2EE specs. This segregation is
accomplished by binding a javax.naming.Reference to a context that uses the 
org.jboss.naming.ENCFactory as its javax.naming.ObjectFactory. When a client performs a
lookup of java:comp, or any subcontext, the ENCFactory checks the thread context ClassLoader,
and performs a lookup into a map using the ClassLoader as the key.

If a context instance does not exist for the class loader instance, one is created and associated with
that class loader in the ENCFactory map. Thus, correct isolation of an application component's ENC
relies on each component receiving a unique ClassLoader that is associated with the component
threads of execution.

The NamingService delegates its functionality to an org.jnp.server.Main MBean. The reason for
the duplicate MBeans is because JBoss Naming Service started out as a stand-alone JNDI
implementation, and can still be run as such. The NamingService MBean embeds the Main instance
into the JBoss server so that usage of JNDI with the same VM as the JBoss server does not incur any
socket overhead. The configurable attributes of the NamingService are really the configurable
attributes of the JBoss Naming Service Main MBean. The setting of any attributes on the 
NamingService MBean simply set the corresponding attributes on the Main MBean the 
NamingService contains. When the NamingService is started, it starts the contained Main MBean
to activate the JNDI naming service.

In addition, the NamingService exposes the Naming interface operations through a JMX detyped
invoke operation. This allows the naming service to be accessed via JMX adaptors for arbitrary
protocols. We will look at an example of how HTTP can be used to access the naming service using the
invoke operation later in this chapter.

When the Main MBean is started, it performs the following tasks:

Instantiates an org.jnp.naming.NamingService instance and sets this as the local VM
server instance. This is used by any org.jnp.interfaces.NamingContext instances that
are created within the JBoss server VM to avoid RMI calls over TCP/IP.

Exports the NamingServer instance's org.jnp.naming.interfaces.Naming RMI
interface using the configured RmiPort, ClientSocketFactory, ServerSocketFactory
attributes.

Creates a socket that listens on the interface given by the BindAddress and Port attributes.

Spawns a thread to accept connections on the socket.

6.3. THE NAMING INITIALCONTEXT FACTORIES

The JBoss JNDI provider currently supports several different InitialContext factory
implementations.
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6.3.1. The standard naming context factory

The most commonly used factory is the org.jnp.interfaces.NamingContextFactory
implementation. Its properties include:

java.naming.factory.initial: The name of the environment property for specifying the initial
context factory to use. The value of the property should be the fully qualified class name of the
factory class that will create an initial context. If it is not specified, a 
javax.naming.NoInitialContextException will be thrown when an InitialContext
object is created.

java.naming.provider.url: The name of the environment property for specifying the location of
the JBoss JNDI service provider the client will use. The NamingContextFactory class uses
this information to know which JBossNS server to connect to. The value of the property should
be a URL string. For JBossNS the URL format is jnp://host:port/[jndi_path]. The jnp:
portion of the URL is the protocol and refers to the socket/RMI based protocol used by JBoss.
The jndi_path portion of the URL is an optional JNDI name relative to the root context, for
example, apps or apps/tmp. Everything but the host component is optional. The following
examples are equivalent because the default port value is 1099.

jnp://www.jboss.org:1099/

www.jboss.org:1099

www.jboss.org

java.naming.factory.url.pkgs: The name of the environment property for specifying the list of
package prefixes to use when loading in URL context factories. The value of the property
should be a colon-separated list of package prefixes for the class name of the factory class that
will create a URL context factory. For the JBoss JNDI provider this must be 
org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp:
and java: URL context factories of the JBoss JNDI provider.

jnp.socketFactory: The fully qualified class name of the javax.net.SocketFactory
implementation to use to create the bootstrap socket. The default value is 
org.jnp.interfaces.TimedSocketFactory. The TimedSocketFactory is a simple 
SocketFactory implementation that supports the specification of a connection and read
timeout. These two properties are specified by:

jnp.timeout: The connection timeout in milliseconds. The default value is 0 which means the
connection will block until the VM TCP/IP layer times out.

jnp.sotimeout: The connected socket read timeout in milliseconds. The default value is 0 which
means reads will block. This is the value passed to the Socket.setSoTimeout on the newly
connected socket.

When a client creates an InitialContext with these JBossNS properties available, the 
org.jnp.interfaces.NamingContextFactory object is used to create the Context instance
that will be used in subsequent operations. The NamingContextFactory is the JBossNS
implementation of the javax.naming.spi.InitialContextFactory interface. When the 
NamingContextFactory class is asked to create a Context, it creates an 
org.jnp.interfaces.NamingContext instance with the InitialContext environment and
name of the context in the global JNDI namespace. It is the NamingContext instance that actually
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performs the task of connecting to the JBossNS server, and implements the Context interface. The 
Context.PROVIDER_URL information from the environment indicates from which server to obtain a 
NamingServer RMI reference.

The association of the NamingContext instance to a NamingServer instance is done in a lazy
fashion on the first Context operation that is performed. When a Context operation is performed and
the NamingContext has no NamingServer associated with it, it looks to see if its environment
properties define a Context.PROVIDER_URL. A Context.PROVIDER_URL defines the host and port
of the JBossNS server the Context is to use. If there is a provider URL, the NamingContext first
checks to see if a Naming instance keyed by the host and port pair has already been created by
checking a NamingContext class static map. It simply uses the existing Naming instance if one for
the host port pair has already been obtained. If no Naming instance has been created for the given
host and port, the NamingContext connects to the host and port using a java.net.Socket, and
retrieves a Naming RMI stub from the server by reading a java.rmi.MarshalledObject from the
socket and invoking its get method. The newly obtained Naming instance is cached in the 
NamingContext server map under the host and port pair. If no provider URL was specified in the JNDI
environment associated with the context, the NamingContext simply uses the in VM Naming instance
set by the Main MBean.

The NamingContext implementation of the Context interface delegates all operations to the 
Naming instance associated with the NamingContext. The NamingServer class that implements the
Naming interface uses a java.util.Hashtable as the Context store. There is one unique 
NamingServer instance for each distinct JNDI Name for a given JBossNS server. There are zero or
more transient NamingContext instances active at any given moment that refers to a 
NamingServer instance. The purpose of the NamingContext is to act as a Context to the Naming
interface adaptor that manages translation of the JNDI names passed to the NamingContext .
Because a JNDI name can be relative or a URL, it needs to be converted into an absolute name in the
context of the JBossNS server to which it refers. This translation is a key function of the 
NamingContext.

6.3.2. The org.jboss.naming.NamingContextFactory

This version of the InitialContextFactory implementation is a simple extension of the jnp version
which differs from the jnp version in that it stores the last configuration passed to its 
InitialContextFactory.getInitialContext(Hashtable env) method in a public thread
local variable. This is used by EJB handles and other JNDI sensitive objects like the 
UserTransaction factory to keep track of the JNDI context that was in effect when they were
created. If you want this environment to be bound to the object even after its serialized across vm
boundaries, then you should the org.jboss.naming.NamingContextFactory. If you want the
environment that is defined in the current VM jndi.properties or system properties, then you
should use the org.jnp.interfaces.NamingContextFactory version.

6.3.3. Naming Discovery in Clustered Environments

When running in a clustered JBoss environment, you can choose not to specify a 
Context.PROVIDER_URL value and let the client query the network for available naming services.
This only works with JBoss servers running with the all configuration, or an equivalent configuration
that has org.jboss.ha.framework.server.ClusterPartition and 
org.jboss.ha.jndi.HANamingService services deployed. The discovery process consists of
sending a multicast request packet to the discovery address/port and waiting for any node to respond.
The response is a HA-RMI version of the Naming interface. The following InitialContext properties
affect the discovery configuration:
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jnp.partitionName: The cluster partition name discovery should be restricted to. If you are
running in an environment with multiple clusters, you may want to restrict the naming
discovery to a particular cluster. There is no default value, meaning that any cluster response
will be accepted.

jnp.discoveryGroup: The multicast IP/address to which the discovery query is sent. The
default is 230.0.0.4.

jnp.discoveryPort: The port to which the discovery query is sent. The default is 1102.

jnp.discoveryTimeout: The time in milliseconds to wait for a discovery query response. The
default value is 5000 (5 seconds).

jnp.disableDiscovery: A flag indicating if the discovery process should be avoided. Discovery
occurs when either no Context.PROVIDER_URL is specified, or no valid naming service could
be located among the URLs specified. If the jnp.disableDiscovery flag is true, then
discovery will not be attempted.

6.3.4. The HTTP InitialContext Factory Implementation

The JNDI naming service can be accessed over HTTP. From a JNDI client's perspective this is a
transparent change as they continue to use the JNDI Context interface. Operations through the 
Context interface are translated into HTTP posts to a servlet that passes the request to the
NamingService using its JMX invoke operation. Advantages of using HTTP as the access protocol
include better access through firewalls and proxies setup to allow HTTP, as well as the ability to secure
access to the JNDI service using standard servlet role based security.

To access JNDI over HTTP you use the org.jboss.naming.HttpNamingContextFactory as the
factory implementation. The complete set of support InitialContext environment properties for
this factory are:

java.naming.factory.initial: The name of the environment property for specifying the initial
context factory, which must be org.jboss.naming.HttpNamingContextFactory.

java.naming.provider.url (or Context.PROVIDER_URL): This must be set to the HTTP URL of
the JNDI factory. The full HTTP URL would be the public URL of the JBoss servlet container
plus /invoker/JNDIFactory. Examples include:

http://www.jboss.org:8080/invoker/JNDIFactory

http://www.jboss.org/invoker/JNDIFactory

https://www.jboss.org/invoker/JNDIFactory

The first example accesses the servlet using the port 8080. The second uses the standard
HTTP port 80, and the third uses an SSL encrypted connection to the standard HTTPS port
443.

java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be 
org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp:
and java: URL context factories of the JBoss JNDI provider.

The JNDI Context implementation returned by the HttpNamingContextFactory is a proxy that
delegates invocations made on it to a bridge servlet which forwards the invocation to the 
NamingService through the JMX bus and marshalls the reply back over HTTP. The proxy needs to
know what the URL of the bridge servlet is in order to operate. This value may have been bound on the
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server side if the JBoss web server has a well known public interface. If the JBoss web server is sitting
behind one or more firewalls or proxies, the proxy cannot know what URL is required. In this case, the
proxy will be associated with a system property value that must be set in the client VM. For more
information on the operation of JNDI over HTTP see Section 6.4.1, “Accessing JNDI over HTTP” .

6.3.5. The Login InitialContext Factory Implementation

JAAS is the preferred method for authenticating a remote client to JBoss. However, for simplicity and
to ease the migration from other application server environment that do not use JAAS, JBoss allows
you the security credentials to be passed through the InitialContext. JAAS is still used under the
covers, but there is no manifest use of the JAAS interfaces in the client application.

The factory class that provides this capability is the 
org.jboss.security.jndi.LoginInitialContextFactory. The complete set of support 
InitialContext environment properties for this factory are:

java.naming.factory.initial: The name of the environment property for specifying the initial
context factory, which must be 
org.jboss.security.jndi.LoginInitialContextFactory.

java.naming.provider.url: This must be set to a NamingContextFactory provider URL. The 
LoginIntialContext is really just a wrapper around the NamingContextFactory that
adds a JAAS login to the existing NamingContextFactory behavior.

java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be 
org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp:
and java: URL context factories of the JBoss JNDI provider.

java.naming.security.principal (or Context.SECURITY_PRINCIPAL): The principal to
authenticate. This may be either a java.security.Principal implementation or a string
representing the name of a principal.

java.naming.security.credentials (or Context.SECURITY_CREDENTIALS), The credentials
that should be used to authenticate the principal, e.g., password, session key, etc.

java.naming.security.protocol: (Context.SECURITY_PROTOCOL) This gives the name of the
JAAS login module to use for the authentication of the principal and credentials.

6.3.6. The ORBInitialContextFactory

When using Sun's CosNaming it is necessary to use a different naming context factory from the default.
CosNaming looks for the ORB in JNDI instead of using the the ORB configured in deploy/iiop-
service.xml?. It is necessary to set the global context factory to 
org.jboss.iiop.naming.ORBInitialContextFactory, which sets the ORB to JBoss's ORB. This
is done in the conf/jndi.properties file:

It is also necessary to use ORBInitialContextFactory when using CosNaming in an application
client.

# DO NOT EDIT THIS FILE UNLESS YOU KNOW WHAT YOU ARE DOING
#
java.naming.factory.initial=org.jboss.iiop.naming.ORBInitialContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
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6.4. JNDI OVER HTTP

In addition to the legacy RMI/JRMP with a socket bootstrap protocol, JBoss provides support for
accessing its JNDI naming service over HTTP.

6.4.1. Accessing JNDI over HTTP

This capability is provided by http-invoker.sar. The structure of the http-invoker.sar is:

The jboss-service.xml descriptor defines the HttpInvoker and HttpInvokerHA MBeans. These
services handle the routing of methods invocations that are sent via HTTP to the appropriate target
MBean on the JMX bus.

The http-invoker.war web application contains servlets that handle the details of the HTTP
transport. The NamingFactoryServlet handles creation requests for the JBoss JNDI naming service
javax.naming.Context implementation. The InvokerServlet handles invocations made by
RMI/HTTP clients. The ReadOnlyAccessFilter allows one to secure the JNDI naming service while
making a single JNDI context available for read-only access by unauthenticated clients.

Figure 6.2. The HTTP invoker proxy/server structure for a JNDI Context

Before looking at the configurations let's look at the operation of the http-invoker services.
Figure 6.2, “The HTTP invoker proxy/server structure for a JNDI Context”  shows a logical view of the
structure of a JBoss JNDI proxy and its relationship to the JBoss server side components of the http-
invoker. The proxy is obtained from the NamingFactoryServlet using an InitialContext with

http-invoker.sar
+- META-INF/jboss-service.xml
+- invoker.war
| +- WEB-INF/jboss-web.xml
| +- WEB-
INF/classes/org/jboss/invocation/http/servlet/InvokerServlet.class
| +- WEB-
INF/classes/org/jboss/invocation/http/servlet/NamingFactoryServlet.class
| +- WEB-
INF/classes/org/jboss/invocation/http/servlet/ReadOnlyAccessFilter.class
| +- WEB-INF/classes/roles.properties
| +- WEB-INF/classes/users.properties
| +- WEB-INF/web.xml
| +- META-INF/MANIFEST.MF
+- META-INF/MANIFEST.MF
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the Context.INITIAL_CONTEXT_FACTORY property set to 
org.jboss.naming.HttpNamingContextFactory, and the Context.PROVIDER_URL property
set to the HTTP URL of the NamingFactoryServlet. The resulting proxy is embedded in an 
org.jnp.interfaces.NamingContext instance that provides the Context interface
implementation.

The proxy is an instance of org.jboss.invocation.http.interfaces.HttpInvokerProxy, and
implements the org.jnp.interfaces.Naming interface. Internally the HttpInvokerProxy
contains an invoker that marshalls the Naming interface method invocations to the InvokerServlet
via HTTP posts. The InvokerServlet translates these posts into JMX invocations to the 
NamingService, and returns the invocation response back to the proxy in the HTTP post response.

There are several configuration values that need to be set to tie all of these components together and
Figure 6.3, “The relationship between configuration files and JNDI/HTTP component”  illustrates the
relationship between configuration files and the corresponding components.

Figure 6.3. The relationship between configuration files and JNDI/HTTP component

The http-invoker.sar/META-INF/jboss-service.xml descriptor defines the 
HttpProxyFactory that creates the HttpInvokerProxy for the NamingService. The attributes
that need to be configured for the HttpProxyFactory include:

InvokerName: The JMX ObjectName of the NamingService defined in the conf/jboss-
service.xml descriptor. The standard setting used in the JBoss distributions is 
jboss:service=Naming.

InvokerURL or InvokerURLPrefix + InvokerURLSuffix + UseHostName. You can specify the
full HTTP URL to the InvokerServlet using the InvokerURL attribute, or you can specify
the hostname independent parts of the URL and have the HttpProxyFactory fill them in. An
example InvokerURL value would be 
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http://jbosshost1.dot.com:8080/invoker/JMXInvokerServlet. This can be broken
down into:

InvokerURLPrefix: the URL prefix prior to the hostname. Typically this will be http:// or
https:// if SSL is to be used.

InvokerURLSuffix: the URL suffix after the hostname. This will include the port number of
the web server as well as the deployed path to the InvokerServlet. For the example 
InvokerURL value the InvokerURLSuffix would be 
:8080/invoker/JMXInvokerServlet without the quotes. The port number is
determined by the web container service settings. The path to the InvokerServlet is
specified in the http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor.

UseHostName: a flag indicating if the hostname should be used in place of the host IP
address when building the hostname portion of the full InvokerURL. If true, 
InetAddress.getLocalHost().getHostName method will be used. Otherwise, the 
InetAddress.getLocalHost().getHostAddress() method is used.

ExportedInterface: The org.jnp.interfaces.Naming interface the proxy will expose to
clients. The actual client of this proxy is the JBoss JNDI implementation NamingContext
class, which JNDI client obtain from InitialContext lookups when using the JBoss JNDI
provider.

JndiName: The name in JNDI under which the proxy is bound. This needs to be set to a
blank/empty string to indicate the interface should not be bound into JNDI. We can't use the
JNDI to bootstrap itself. This is the role of the NamingFactoryServlet.

The http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor defines the mappings of the 
NamingFactoryServlet and InvokerServlet along with their initialization parameters. The
configuration of the NamingFactoryServlet relevant to JNDI/HTTP is the JNDIFactory entry
which defines:

A namingProxyMBean initialization parameter that maps to the HttpProxyFactory MBean
name. This is used by the NamingFactoryServlet to obtain the Naming proxy which it will
return in response to HTTP posts. For the default http-invoker.sar/META-INF/jboss-
service.xml settings the name jboss:service=invoker,type=http,target=Naming.

A proxy initialization parameter that defines the name of the namingProxyMBean attribute to
query for the Naming proxy value. This defaults to an attribute name of Proxy.

The servlet mapping for the JNDIFactory configuration. The default setting for the
unsecured mapping is /JNDIFactory/*. This is relative to the context root of the http-
invoker.sar/invoker.war, which by default is the WAR name minus the .war suffix.

The configuration of the InvokerServlet relevant to JNDI/HTTP is the JMXInvokerServlet which
defines:

The servlet mapping of the InvokerServlet. The default setting for the unsecured mapping
is /JMXInvokerServlet/*. This is relative to the context root of the http-
invoker.sar/invoker.war, which by default is the WAR name minus the .war suffix.

6.4.2. Accessing JNDI over HTTPS

To be able to access JNDI over HTTP/SSL you need to enable an SSL connector on the web container.
The details of this are covered in the Integrating Servlet Containers for Tomcat. We will demonstrate
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the use of HTTPS with a simple example client that uses an HTTPS URL as the JNDI provider URL. We
will provide an SSL connector configuration for the example, so unless you are interested in the details
of the SSL connector setup, the example is self contained.

We also provide a configuration of the HttpProxyFactory setup to use an HTTPS URL. The following
example shows the section of the http-invoker.sarjboss-service.xml descriptor that the
example installs to provide this configuration. All that has changed relative to the standard HTTP
configuration are the InvokerURLPrefix and InvokerURLSuffix attributes, which setup an
HTTPS URL using the 8443 port.

At a minimum, a JNDI client using HTTPS requires setting up a HTTPS URL protocol handler. We will be
using the Java Secure Socket Extension (JSSE) for HTTPS. The JSSE documentation does a good job
of describing what is necessary to use HTTPS, and the following steps were needed to configure the
example client shown in Example 6.2, “A JNDI client that uses HTTPS as the transport” :

A protocol handler for HTTPS URLs must be made available to Java. The JSSE release
includes an HTTPS handler in the com.sun.net.ssl.internal.www.protocol package.
To enable the use of HTTPS URLs you include this package in the standard URL protocol
handler search property, java.protocol.handler.pkgs. We set the 
java.protocol.handler.pkgs property in the Ant script.

The JSSE security provider must be installed in order for SSL to work. This can be done either
by installing the JSSE jars as an extension package, or programatically. We use the
programatic approach in the example since this is less intrusive. Line 18 of the ExClient code
demonstrates how this is done.

The JNDI provider URL must use HTTPS as the protocol. Lines 24-25 of the ExClient code
specify an HTTP/SSL connection to the localhost on port 8443. The hostname and port are

<!-- Expose the Naming service interface via HTTPS -->
<mbean code="org.jboss.invocation.http.server.HttpProxyFactory" 
       name="jboss:service=invoker,type=https,target=Naming">
    <!-- The Naming service we are proxying -->
    <attribute name="InvokerName">jboss:service=Naming</attribute>
    <!-- Compose the invoker URL from the cluster node address -->
    <attribute name="InvokerURLPrefix">https://</attribute>
    <attribute name="InvokerURLSuffix">:8443/invoker/JMXInvokerServlet 
</attribute>
    <attribute name="UseHostName">true</attribute>
    <attribute name="ExportedInterface">org.jnp.interfaces.Naming 
</attribute>
    <attribute name="JndiName"/>
    <attribute name="ClientInterceptors">
        <interceptors>
            <interceptor>org.jboss.proxy.ClientMethodInterceptor 
</interceptor>
            <interceptor>org.jboss.proxy.SecurityInterceptor
</interceptor>
            
<interceptor>org.jboss.naming.interceptors.ExceptionInterceptor 
</interceptor>
            <interceptor>org.jboss.invocation.InvokerInterceptor 
</interceptor>
        </interceptors>
    </attribute>
</mbean>
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defined by the web container SSL connector.

The validation of the HTTPS URL hostname against the server certificate must be disabled. By
default, the JSSE HTTPS protocol handler employs a strict validation of the hostname portion
of the HTTPS URL against the common name of the server certificate. This is the same check
done by web browsers when you connect to secured web site. We are using a self-signed
server certificate that uses a common name of "Chapter 8 SSL Example" rather than a
particular hostname, and this is likely to be common in development environments or
intranets. The JBoss HttpInvokerProxy will override the default hostname checking if a 
org.jboss.security.ignoreHttpsHost system property exists and has a value of true.
We set the org.jboss.security.ignoreHttpsHost property to true in the Ant script.

Example 6.2. A JNDI client that uses HTTPS as the transport

To test the client, first build the chapter 3 example to create the chap3 configuration fileset.

Next, start the JBoss server using the naming configuration fileset:

And finally, run the ExClient using:

package org.jboss.chap3.ex1;

import java.security.Security;
import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;
                    
public class ExClient
{
    public static void main(String args[]) throws Exception
    {
        Properties env = new Properties();
        env.setProperty(Context.INITIAL_CONTEXT_FACTORY,
                        "org.jboss.naming.HttpNamingContextFactory");
        env.setProperty(Context.PROVIDER_URL,
                        
"https://localhost:8443/invoker/JNDIFactorySSL");

        Context ctx = new InitialContext(env);
        System.out.println("Created InitialContext, env=" + env);

        Object data = ctx.lookup("jmx/invoker/RMIAdaptor");
        System.out.println("lookup(jmx/invoker/RMIAdaptor): " + data);
    }
}

[examples]$ ant -Dchap=naming config

[bin]$ sh run.sh -c naming

[examples]$ ant -Dchap=naming -Dex=1 run-example
...
run-example1:
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6.4.3. Securing Access to JNDI over HTTP

One benefit to accessing JNDI over HTTP is that it is easy to secure access to the JNDI 
InitialContext factory as well as the naming operations using standard web declarative security.
This is possible because the server side handling of the JNDI/HTTP transport is implemented with two
servlets. These servlets are included in the http-invoker.sar/invoker.war directory found in the
default and all configuration deploy directories as shown previously. To enable secured access to
JNDI you need to edit the invoker.war/WEB-INF/web.xml descriptor and remove all unsecured
servlet mappings. For example, the web.xml descriptor shown in Example 6.3, “An example web.xml
descriptor for secured access to the JNDI servlets” only allows access to the invoker.war servlets if
the user has been authenticated and has a role of HttpInvoker.

Example 6.3. An example web.xml descriptor for secured access to the JNDI servlets

[java] Created InitialContext, env={java.naming. \ 
provider.url=https://localhost:8443/invoker/JNDIFactorySSL, java.naming. \
factory.initial=org.jboss.naming.HttpNamingContextFactory}
     [java] lookup(jmx/invoker/RMIAdaptor): org.jboss.invocation.jrmp. \
     interfaces.JRMPInvokerP
roxy@cac3fa

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
          "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
          "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
    <!-- ### Servlets -->
    <servlet>
        <servlet-name>JMXInvokerServlet</servlet-name>
        <servlet-class>
            org.jboss.invocation.http.servlet.InvokerServlet
        </servlet-class>
        <load-on-startup>1</load-on-startup>
    </servlet>   <servlet>
        <servlet-name>JNDIFactory</servlet-name>
        <servlet-class>
            org.jboss.invocation.http.servlet.NamingFactoryServlet
        </servlet-class>
        <init-param>
            <param-name>namingProxyMBean</param-name>
            <param-
value>jboss:service=invoker,type=http,target=Naming</param-value>
        </init-param>
        <init-param>
            <param-name>proxyAttribute</param-name>
            <param-value>Proxy</param-value>
        </init-param>
        <load-on-startup>2</load-on-startup>
    </servlet>  
    <!-- ### Servlet Mappings -->
    <servlet-mapping>
        <servlet-name>JNDIFactory</servlet-name>
        <url-pattern>/restricted/JNDIFactory/*</url-pattern>
    </servlet-mapping>

Administration And Configuration Guide

36



The web.xml descriptor only defines which sevlets are secured, and which roles are allowed to access
the secured servlets. You must additionally define the security domain that will handle the
authentication and authorization for the war. This is done through the jboss-web.xml descriptor,
and an example that uses the http-invoker security domain is given below.

The security-domain element defines the name of the security domain that will be used for the
JAAS login module configuration used for authentication and authorization.

6.4.4. Securing Access to JNDI with a Read-Only Unsecured Context

Another feature available for the JNDI/HTTP naming service is the ability to define a context that can
be accessed by unauthenticated users in read-only mode. This can be important for services used by
the authentication layer. For example, the SRPLoginModule needs to lookup the SRP server interface
used to perform authentication. The rest of this section explains how read-only works in JBoss
Enterprise Application Platform.

First, the ReadOnlyJNDIFactory is declared in invoker.sar/WEB-INF/web.xml. It will be
mapped to /invoker/ReadOnlyJNDIFactory.

    <servlet-mapping>
        <servlet-name>JMXInvokerServlet</servlet-name>
        <url-pattern>/restricted/JMXInvokerServlet/*</url-pattern>
    </servlet-mapping>   <security-constraint>
        <web-resource-collection>
            <web-resource-name>HttpInvokers</web-resource-name>
            <description>An example security config that only allows 
users with
                the role HttpInvoker to access the HTTP invoker 
servlets </description>
            <url-pattern>/restricted/*</url-pattern>
            <http-method>GET</http-method>
            <http-method>POST</http-method>
        </web-resource-collection>
        <auth-constraint>
            <role-name>HttpInvoker</role-name>
        </auth-constraint>
    </security-constraint>
    <login-config>
        <auth-method>BASIC</auth-method>
        <realm-name>JBoss HTTP Invoker</realm-name>
    </login-config>   <security-role>
        <role-name>HttpInvoker</role-name>
    </security-role>
</web-app>

<jboss-web>
    <security-domain>java:/jaas/http-invoker</security-domain>
</jboss-web>

<servlet>
    <servlet-name>ReadOnlyJNDIFactory</servlet-name>
    <description>A servlet that exposes the JBoss JNDI Naming service stub
          through http, but only for a single read-only context. The 
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The factory only provides a JNDI stub which needs to be connected to an invoker. Here the invoker is 
jboss:service=invoker,type=http,target=Naming,readonly=true. This invoker is
declared in the http-invoker.sar/META-INF/jboss-service.xml file.

return content 
          is serialized MarshalledValue containing the 
org.jnp.interfaces.Naming 
          stub.
    </description>
    <servlet-
class>org.jboss.invocation.http.servlet.NamingFactoryServlet</servlet-
class>
    <init-param>
        <param-name>namingProxyMBean</param-name>
        <param-
value>jboss:service=invoker,type=http,target=Naming,readonly=true</param-
value>
    </init-param>
    <init-param>
        <param-name>proxyAttribute</param-name>
        <param-value>Proxy</param-value>
    </init-param>
    <load-on-startup>2</load-on-startup>
</servlet>

<!-- ... -->
                        
<servlet-mapping>
    <servlet-name>ReadOnlyJNDIFactory</servlet-name>
    <url-pattern>/ReadOnlyJNDIFactory/*</url-pattern>
</servlet-mapping>

   <mbean code="org.jboss.invocation.http.server.HttpProxyFactory"
      name="jboss:service=invoker,type=http,target=Naming,readonly=true">
      <attribute name="InvokerName">jboss:service=Naming</attribute>
      <attribute name="InvokerURLPrefix">http://</attribute>
      <attribute 
name="InvokerURLSuffix">:8080/invoker/readonly/JMXInvokerServlet</attribut
e>
      <attribute name="UseHostName">true</attribute>
      <attribute 
name="ExportedInterface">org.jnp.interfaces.Naming</attribute>
      <attribute name="JndiName"></attribute>
      <attribute name="ClientInterceptors">
          <interceptors>
             
<interceptor>org.jboss.proxy.ClientMethodInterceptor</interceptor>
             
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
             
<interceptor>org.jboss.naming.interceptors.ExceptionInterceptor</intercept
or>
             
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
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The proxy on the client side needs to talk back to a specific invoker servlet on the server side. The
configuration here has the actual invocations going to /invoker/readonly/JMXInvokerServlet.
This is actually the standard JMXInvokerServlet with a read-only filter attached.

The readOnlyContext parameter is set to readonly which means that when you access JBoss
through the ReadOnlyJNDIFactory, you will only be able to access data in the readonly context.
Here is a code fragment that illustrates the usage:

          </interceptors>
      </attribute>
   </mbean>

    <filter>
        <filter-name>ReadOnlyAccessFilter</filter-name>
        <filter-
class>org.jboss.invocation.http.servlet.ReadOnlyAccessFilter</filter-
class>
        <init-param>
            <param-name>readOnlyContext</param-name>
            <param-value>readonly</param-value>
            <description>The top level JNDI context the filter will 
enforce
                read-only access on. If specified only Context.lookup 
operations
                will be allowed on this context. Another other operations 
or
                lookups on any other context will fail. Do not associate 
this
                filter with the JMXInvokerServlets if you want 
unrestricted
                access. </description>
        </init-param>
        <init-param>
            <param-name>invokerName</param-name>
            <param-value>jboss:service=Naming</param-value>
            <description>The JMX ObjectName of the naming service mbean 
</description>
        </init-param>
    </filter>
    
    <filter-mapping>
        <filter-name>ReadOnlyAccessFilter</filter-name>
        <url-pattern>/readonly/*</url-pattern>
    </filter-mapping>

    <!-- ... -->
    <!-- A mapping for the JMXInvokerServlet that only allows invocations 
            of lookups under a read-only context. This is enforced by the
            ReadOnlyAccessFilter 
            -->
    <servlet-mapping>
        <servlet-name>JMXInvokerServlet</servlet-name>
        <url-pattern>/readonly/JMXInvokerServlet/*</url-pattern>
    </servlet-mapping>
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Attempts to look up any objects outside of the readonly context will fail. Note that JBoss doesn't ship
with any data in the readonly context, so the readonly context won't be bound usable unless you
create it.

6.5. ADDITIONAL NAMING MBEANS

In addition to the NamingService MBean that configures an embedded JBossNS server within JBoss,
there are several additional MBean services related to naming that ship with JBoss. They are 
JndiBindingServiceMgr, NamingAlias, ExternalContext, and JNDIView.

6.5.1. JNDI Binding Manager

The JNDI binding manager service allows you to quickly bind objects into JNDI for use by application
code. The MBean class for the binding service is org.jboss.naming.JNDIBindingServiceMgr. It
has a single attribute, BindingsConfig, which accepts an XML document that conforms to the jndi-
binding-service_1_0.xsd schema. The content of the BindingsConfig attribute is
unmarshalled using the JBossXB framework. The following is an MBean definition that shows the most
basic form usage of the JNDI binding manager service.

This binds the text string "Hello, JNDI!" under the JNDI name bindexample/message. An
application would look up the value just as it would for any other JNDI value. The trim attribute
specifies that leading and trailing whitespace should be ignored. The use of the attribute here is purely
for illustrative purposes as the default value is true.

Properties env = new Properties();
env.setProperty(Context.INITIAL_CONTEXT_FACTORY, 
                "org.jboss.naming.HttpNamingContextFactory");
env.setProperty(Context.PROVIDER_URL, 
                "http://localhost:8080/invoker/ReadOnlyJNDIFactory");

Context ctx2 = new InitialContext(env);
Object data = ctx2.lookup("readonly/data");

<mbean code="org.jboss.naming.JNDIBindingServiceMgr" 
       name="jboss.tests:name=example1">
    <attribute name="BindingsConfig" serialDataType="jbxb">
        <jndi:bindings xmlns:xs="http://www.w3.org/2001/XMLSchema-
instance" 
                       xmlns:jndi="urn:jboss:jndi-binding-service:1.0"
                       xs:schemaLocation="urn:jboss:jndi-binding-service  
\
         resource:jndi-binding-service_1_0.xsd"> 
            <jndi:binding name="bindexample/message">
                <jndi:value trim="true">
                    Hello, JNDI!
                </jndi:value>
            </jndi:binding>
        </jndi:bindings>
    </attribute>
</mbean>

InitialContext ctx  = new InitialContext();
String         text = (String) ctx.lookup("bindexample/message");
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String values themselves are not that interesting. If a JavaBeans property editor is available, the
desired class name can be specified using the type attribute

The editor attribute can be used to specify a particular property editor to use.

For more complicated structures, any JBossXB-ready schema may be used. The following example
shows how a java.util.Properties object would be mapped.

6.5.2. The org.jboss.naming.NamingAlias MBean

The NamingAlias MBean is a simple utility service that allows you to create an alias in the form of a
JNDI javax.naming.LinkRef from one JNDI name to another. This is similar to a symbolic link in
the Unix file system. To an alias you add a configuration of the NamingAlias MBean to the jboss-
service.xml configuration file. The configurable attributes of the NamingAlias service are as
follows:

FromName: The location where the LinkRef is bound under JNDI.

ToName: The to name of the alias. This is the target name to which the LinkRef refers. The
name is a URL, or a name to be resolved relative to the InitialContext, or if the first
character of the name is a dot (.), the name is relative to the context in which the link is bound.

The following example provides a mapping of the JNDI name QueueConnectionFactory to the name
ConnectionFactory.

<jndi:binding name="urls/jboss-home">
    <jndi:value type="java.net.URL">http://www.jboss.org</jndi:value>
</jndi:binding>

<jndi:binding name="hosts/localhost">
    <jndi:value editor="org.jboss.util.propertyeditor.InetAddressEditor"> 
        127.0.0.1 
    </jndi:value>
</jndi:binding>

<jndi:binding name="maps/testProps">
    <java:properties xmlns:java="urn:jboss:java-properties" 
                     xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
                     xs:schemaLocation="urn:jboss:java-properties \
       resource:java-properties_1_0.xsd">
        <java:property>
            <java:key>key1</java:key>
            <java:value>value1</java:value>
        </java:property>
        <java:property>
            <java:key>key2</java:key>
            <java:value>value2</java:value>
        </java:property>
    </java:properties>
</jndi:binding>

<mbean code="org.jboss.naming.NamingAlias" 
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6.5.3. org.jboss.naming.ExternalContext MBean

The ExternalContext MBean allows you to federate external JNDI contexts into the JBoss server
JNDI namespace. The term external refers to any naming service external to the JBossNS naming
service running inside of the JBoss server VM. You can incorporate LDAP servers, file systems, DNS
servers, and so on, even if the JNDI provider root context is not serializable. The federation can be
made available to remote clients if the naming service supports remote access.

To incorporate an external JNDI naming service, you have to add a configuration of the 
ExternalContext MBean service to the jboss-service.xml configuration file. The configurable
attributes of the ExternalContext service are as follows:

JndiName: The JNDI name under which the external context is to be bound.

RemoteAccess: A boolean flag indicating if the external InitialContext should be bound
using a Serializable form that allows a remote client to create the external 
InitialContext . When a remote client looks up the external context via the JBoss JNDI 
InitialContext, they effectively create an instance of the external InitialContext using
the same env properties passed to the ExternalContext MBean. This will only work if the
client can do a new InitialContext(env) remotely. This requires that the 
Context.PROVIDER_URL value of env is resolvable in the remote VM that is accessing the
context. This should work for the LDAP example. For the file system example this most likely
won't work unless the file system path refers to a common network path. If this property is not
given it defaults to false.

CacheContext: The cacheContext flag. When set to true, the external Context is only
created when the MBean is started and then stored as an in memory object until the MBean is
stopped. If cacheContext is set to false, the external Context is created on each lookup using
the MBean properties and InitialContext class. When the uncached Context is looked up by a
client, the client should invoke close() on the Context to prevent resource leaks.

InitialContext: The fully qualified class name of the InitialContext implementation to use.
Must be one of: javax.naming.InitialContext, 
javax.naming.directory.InitialDirContext or 
javax.naming.ldap.InitialLdapContext. In the case of the InitialLdapContext a
null Controls array is used. The default is javax.naming.InitialContex.

Properties: The Properties attribute contains the JNDI properties for the external 
InitialContext. The input should be the text equivalent to what would go into a 
jndi.properties file.

PropertiesURL: This set the jndi.properties information for the external 
InitialContext from an external properties file. This is either a URL, string or a classpath
resource name. Examples are as follows:

file:///config/myldap.properties

http://config.mycompany.com/myldap.properties

/conf/myldap.properties

name="jboss.mq:service=NamingAlias,fromName=QueueConnectionFactory">
    <attribute name="ToName">ConnectionFactory</attribute>
    <attribute name="FromName">QueueConnectionFactory</attribute>
</mbean>
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myldap.properties

The MBean definition below shows a binding to an external LDAP context into the JBoss JNDI
namespace under the name external/ldap/jboss.

With this configuration, you can access the external LDAP context located at 
ldap://ldaphost.jboss.org:389/o=jboss.org from within the JBoss VM using the following
code fragment:

Using the same code fragment outside of the JBoss server VM will work in this case because the 
RemoteAccess property was set to true. If it were set to false, it would not work because the remote
client would receive a Reference object with an ObjectFactory that would not be able to recreate
the external InitialContext

This configuration describes binding a local file system directory /usr/local into the JBoss JNDI
namespace under the name external/fs/usr/local.

With this configuration, you can access the external file system context located at 
file:///usr/local from within the JBoss VM using the following code fragment:

<!-- Bind a remote LDAP server -->
<mbean code="org.jboss.naming.ExternalContext" 
       
name="jboss.jndi:service=ExternalContext,jndiName=external/ldap/jboss">
    <attribute name="JndiName">external/ldap/jboss</attribute>
    <attribute name="Properties">
        java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
        java.naming.provider.url=ldap://ldaphost.jboss.org:389/o=jboss.org
        java.naming.security.principal=cn=Directory Manager
        java.naming.security.authentication=simple
        java.naming.security.credentials=secret
    </attribute>
    <attribute name="InitialContext"> javax.naming.ldap.InitialLdapContext 
</attribute>
    <attribute name="RemoteAccess">true</attribute>
</mbean>

InitialContext iniCtx = new InitialContext();
LdapContext ldapCtx = iniCtx.lookup("external/ldap/jboss");

<!-- Bind the /usr/local file system directory  -->
<mbean code="org.jboss.naming.ExternalContext" 
       
name="jboss.jndi:service=ExternalContext,jndiName=external/fs/usr/local">
    <attribute name="JndiName">external/fs/usr/local</attribute>
    <attribute name="Properties">
        
java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory
        java.naming.provider.url=file:///usr/local
    </attribute>
    <attribute 
name="InitialContext">javax.naming.IntialContext</attribute>
</mbean>
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6.5.4. The org.jboss.naming.JNDIView MBean

The JNDIView MBean allows the user to view the JNDI namespace tree as it exists in the JBoss server
using the JMX agent view interface. To view the JBoss JNDI namespace using the JNDIView MBean,
you connect to the JMX Agent View using the http interface. The default settings put this at 
http://localhost:8080/jmx-console/. On this page you will see a section that lists the
registered MBeans sorted by domain. It should look something like that shown in Figure 6.4, “The JMX
Console view of the configured JBoss MBeans”.

Figure 6.4. The JMX Console view of the configured JBoss MBeans

Selecting the JNDIView link takes you to the JNDIView MBean view, which will have a list of the
JNDIView MBean operations. This view should look similar to that shown in Figure 6.5, “The JMX
Console view of the JNDIView MBean”.

InitialContext iniCtx = new InitialContext();
                Context ldapCtx = iniCtx.lookup("external/fs/usr/local");
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Figure 6.5. The JMX Console view of the JNDIView MBean

The list operation dumps out the JBoss server JNDI namespace as an HTML page using a simple text
view. As an example, invoking the list operation produces the view shown in Figure 6.6, “The JMX
Console view of the JNDIView list operation output”.
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Figure 6.6. The JMX Console view of the JNDIView list operation output

6.6. J2EE AND JNDI - THE APPLICATION COMPONENT ENVIRONMENT

JNDI is a fundamental aspect of the J2EE specifications. One key usage is the isolation of J2EE
component code from the environment in which the code is deployed. Use of the application
component's environment allows the application component to be customized without the need to
access or change the application component's source code. The application component environment is
referred to as the ENC, the enterprise naming context. It is the responsibility of the application
component container to make an ENC available to the container components in the form of JNDI
Context. The ENC is utilized by the participants involved in the life cycle of a J2EE component in the
following ways.

Application component business logic should be coded to access information from its ENC. The
component provider uses the standard deployment descriptor for the component to specify
the required ENC entries. The entries are declarations of the information and resources the
component requires at runtime.

The container provides tools that allow a deployer of a component to map the ENC references
made by the component developer to the deployment environment entity that satisfies the
reference.

The component deployer utilizes the container tools to ready a component for final
deployment.
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The component container uses the deployment package information to build the complete
component ENC at runtime

The complete specification regarding the use of JNDI in the J2EE platform can be found in section 5 of
the J2EE 1.4 specification.

An application component instance locates the ENC using the JNDI API. An application component
instance creates a javax.naming.InitialContext object by using the no argument constructor
and then looks up the naming environment under the name java:comp/env. The application
component's environment entries are stored directly in the ENC, or in its subcontexts. Example 6.4,
“ENC access sample code” illustrates the prototypical lines of code a component uses to access its
ENC.

Example 6.4. ENC access sample code

An application component environment is a local environment that is accessible only by the
component when the application server container thread of control is interacting with the application
component. This means that an EJB Bean1 cannot access the ENC elements of EJB Bean2, and vice
versa. Similarly, Web application Web1 cannot access the ENC elements of Web application Web2 or 
Bean1 or Bean2 for that matter. Also, arbitrary client code, whether it is executing inside of the
application server VM or externally cannot access a component's java:comp JNDI context. The
purpose of the ENC is to provide an isolated, read-only namespace that the application component can
rely on regardless of the type of environment in which the component is deployed. The ENC must be
isolated from other components because each component defines its own ENC content. Components A
and B, for example, may define the same name to refer to different objects. For example, EJB Bean1
may define an environment entry java:comp/env/red to refer to the hexadecimal value for the RGB
color for red, while Web application Web1 may bind the same name to the deployment environment
language locale representation of red.

There are three commonly used levels of naming scope in JBoss: names under java:comp, names
under java:, and any other name. As discussed, the java:comp context and its subcontexts are only
available to the application component associated with that particular context. Subcontexts and object
bindings directly under java: are only visible within the JBoss server virtual machine and not to
remote clients. Any other context or object binding is available to remote clients, provided the context
or object supports serialization. You'll see how the isolation of these naming scopes is achieved in the
Section 6.2, “The JBoss Naming Service Architecture” .

An example of where the restricting a binding to the java: context is useful would be a 
javax.sql.DataSource connection factory that can only be used inside of the JBoss server where
the associated database pool resides. On the other hand, an EJB home interface would be bound to a
globally visible name that should accessible by remote client.

6.6.1. ENC Usage Conventions

JNDI is used as the API for externalizing a great deal of information from an application component.
The JNDI name that the application component uses to access the information is declared in the
standard ejb-jar.xml deployment descriptor for EJB components, and the standard web.xml
deployment descriptor for Web components. Several different types of information may be stored in
and retrieved from JNDI including:

// Obtain the application component's ENC
Context iniCtx = new InitialContext();
Context compEnv = (Context) iniCtx.lookup("java:comp/env");

CHAPTER 6. THE JNDI NAMING SERVICE

47



Environment entries as declared by the env-entry elements

EJB references as declared by ejb-ref and ejb-local-ref elements.

Resource manager connection factory references as declared by the resource-ref elements

Resource environment references as declared by the resource-env-ref elements

Each type of deployment descriptor element has a JNDI usage convention with regard to the name of
the JNDI context under which the information is bound. Also, in addition to the standard
deploymentdescriptor element, there is a JBoss server specific deployment descriptor element that
maps the JNDI name as used by the application component to the deployment environment JNDI
name.

6.6.1.1. Environment Entries

Environment entries are the simplest form of information stored in a component ENC, and are similar
to operating system environment variables like those found on Unix or Windows. Environment entries
are a name-to-value binding that allows a component to externalize a value and refer to the value using
a name.

An environment entry is declared using an env-entry element in the standard deployment
descriptors. The env-entry element contains the following child elements:

An optional description element that provides a description of the entry

An env-entry-name element giving the name of the entry relative to java:comp/env

An env-entry-type element giving the Java type of the entry value that must be one of:

java.lang.Byte

java.lang.Boolean

java.lang.Character

java.lang.Double

java.lang.Float

java.lang.Integer

java.lang.Long

java.lang.Short

java.lang.String

An env-entry-value element giving the value of entry as a string

An example of an env-entry fragment from an ejb-jar.xml deployment descriptor is given in
Example 6.5, “An example ejb-jar.xml env-entry fragment” . There is no JBoss specific deployment
descriptor element because an env-entry is a complete name and value specification. Example 6.6,
“ENC env-entry access code fragment” shows a sample code fragment for accessing the 
maxExemptions and taxRate and env-entry values declared in the deployment descriptor.
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Example 6.5. An example ejb-jar.xml env-entry fragment

Example 6.6. ENC env-entry access code fragment

6.6.1.2. EJB References

It is common for EJBs and Web components to interact with other EJBs. Because the JNDI name
under which an EJB home interface is bound is a deployment time decision, there needs to be a way for
a component developer to declare a reference to an EJB that will be linked by the deployer. EJB
references satisfy this requirement.

An EJB reference is a link in an application component naming environment that points to a deployed
EJB home interface. The name used by the application component is a logical link that isolates the
component from the actual name of the EJB home in the deployment environment. The J2EE
specification recommends that all references to enterprise beans be organized in the 
java:comp/env/ejb context of the application component's environment.

An EJB reference is declared using an ejb-ref element in the deployment descriptor. Each ejb-ref
element describes the interface requirements that the referencing application component has for the
referenced enterprise bean. The ejb-ref element contains the following child elements:

An optional description element that provides the purpose of the reference.

An ejb-ref-name element that specifies the name of the reference relative to the 
java:comp/env context. To place the reference under the recommended 
java:comp/env/ejb context, use an ejb/link-name form for the ejb-ref-name value.

<!-- ... -->
<session>
    <ejb-name>ASessionBean</ejb-name>
    <!-- ... -->
    <env-entry>
        <description>The maximum number of tax exemptions allowed 
</description>
        <env-entry-name>maxExemptions</env-entry-name>
        <env-entry-type>java.lang.Integer</env-entry-type>
        <env-entry-value>15</env-entry-value>
    </env-entry>
    <env-entry>
        <description>The tax rate </description>
        <env-entry-name>taxRate</env-entry-name>
        <env-entry-type>java.lang.Float</env-entry-type>
        <env-entry-value>0.23</env-entry-value>
    </env-entry>
</session>
<!-- ... -->

InitialContext iniCtx = new InitialContext();
Context envCtx = (Context) iniCtx.lookup("java:comp/env");
Integer maxExemptions = (Integer) envCtx.lookup("maxExemptions");
Float taxRate = (Float) envCtx.lookup("taxRate");

CHAPTER 6. THE JNDI NAMING SERVICE

49



An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or 
Session.

A home element that gives the fully qualified class name of the EJB home interface.

A remote element that gives the fully qualified class name of the EJB remote interface.

An optional ejb-link element that links the reference to another enterprise bean in the same
EJB JAR or in the same J2EE application unit. The ejb-link value is the ejb-name of the
referenced bean. If there are multiple enterprise beans with the same ejb-name, the value
uses the path name specifying the location of the ejb-jar file that contains the referenced
component. The path name is relative to the referencing ejb-jar file. The Application
Assembler appends the ejb-name of the referenced bean to the path name separated by #.
This allows multiple beans with the same name to be uniquely identified.

An EJB reference is scoped to the application component whose declaration contains the ejb-ref
element. This means that the EJB reference is not accessible from other application components at
runtime, and that other application components may define ejb-ref elements with the same ejb-
ref-name without causing a name conflict. Example 6.7, “An example ejb-jar.xml ejb-ref descriptor
fragment” provides an ejb-jar.xml fragment that illustrates the use of the ejb-ref element. A
code sample that illustrates accessing the ShoppingCartHome reference declared in Example 6.7,
“An example ejb-jar.xml ejb-ref descriptor fragment” is given in Example 6.8, “ENC ejb-ref access code
fragment”.

Example 6.7. An example ejb-jar.xml ejb-ref descriptor fragment

<!-- ... -->
<session>
    <ejb-name>ShoppingCartBean</ejb-name>
    <!-- ...-->
</session>

<session>
    <ejb-name>ProductBeanUser</ejb-name>
    <!--...-->
    <ejb-ref>
        <description>This is a reference to the store products entity 
</description>
        <ejb-ref-name>ejb/ProductHome</ejb-ref-name>
        <ejb-ref-type>Entity</ejb-ref-type>
        <home>org.jboss.store.ejb.ProductHome</home>
        <remote> org.jboss.store.ejb.Product</remote>
    </ejb-ref>

</session>

<session>
    <ejb-ref>
        <ejb-name>ShoppingCartUser</ejb-name>
        <!--...-->
        <ejb-ref-name>ejb/ShoppingCartHome</ejb-ref-name>
        <ejb-ref-type>Session</ejb-ref-type>
        <home>org.jboss.store.ejb.ShoppingCartHome</home>
        <remote> org.jboss.store.ejb.ShoppingCart</remote>
        <ejb-link>ShoppingCartBean</ejb-link>

Administration And Configuration Guide

50



Example 6.8. ENC ejb-ref access code fragment

6.6.1.3. EJB References with jboss.xml and jboss-web.xml

The JBoss specific jboss.xml EJB deployment descriptor affects EJB references in two ways. First,
the jndi-name child element of the session and entity elements allows the user to specify the
deployment JNDI name for the EJB home interface. In the absence of a jboss.xml specification of the
jndi-name for an EJB, the home interface is bound under the ejb-jar.xmlejb-name value. For
example, the session EJB with the ejb-name of ShoppingCartBean in Example 6.7, “An example
ejb-jar.xml ejb-ref descriptor fragment” would have its home interface bound under the JNDI name 
ShoppingCartBean in the absence of a jboss.xmljndi-name specification.

The second use of the jboss.xml descriptor with respect to ejb-refs is the setting of the
destination to which a component's ENC ejb-ref refers. The ejb-link element cannot be used to
refer to EJBs in another enterprise application. If your ejb-ref needs to access an external EJB, you
can specify the JNDI name of the deployed EJB home using the jboss.xmlejb-ref/jndi-name
element.

The jboss-web.xml descriptor is used only to set the destination to which a Web application ENC 
ejb-ref refers. The content model for the JBoss ejb-ref is as follows:

An ejb-ref-name element that corresponds to the ejb-ref-name element in the ejb-jar.xml or
web.xml standard descriptor

A jndi-name element that specifies the JNDI name of the EJB home interface in the
deployment environment

Example 6.9, “An example jboss.xml ejb-ref fragment”  provides an example jboss.xml descriptor
fragment that illustrates the following usage points:

The ProductBeanUserejb-ref link destination is set to the deployment name of 
jboss/store/ProductHome

The deployment JNDI name of the ProductBean is set to jboss/store/ProductHome

    </ejb-ref>
</session>

<entity>
    <description>The Product entity bean </description>
    <ejb-name>ProductBean</ejb-name>
    <!--...-->
</entity>

<!--...-->

InitialContext iniCtx = new InitialContext();
Context ejbCtx = (Context) iniCtx.lookup("java:comp/env/ejb");
ShoppingCartHome home = (ShoppingCartHome) 
ejbCtx.lookup("ShoppingCartHome");
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Example 6.9. An example jboss.xml ejb-ref fragment

6.6.1.4. EJB Local References

EJB 2.0 added local interfaces that do not use RMI call by value semantics. These interfaces use a call
by reference semantic and therefore do not incur any RMI serialization overhead. An EJB local
reference is a link in an application component naming environment that points to a deployed EJB
local home interface. The name used by the application component is a logical link that isolates the
component from the actual name of the EJB local home in the deployment environment. The J2EE
specification recommends that all references to enterprise beans be organized in the 
java:comp/env/ejb context of the application component's environment.

An EJB local reference is declared using an ejb-local-ref element in the deployment descriptor.
Each ejb-local-ref element describes the interface requirements that the referencing application
component has for the referenced enterprise bean. The ejb-local-ref element contains the
following child elements:

An optional description element that provides the purpose of the reference.

An ejb-ref-name element that specifies the name of the reference relative to the 
java:comp/env context. To place the reference under the recommended 
java:comp/env/ejb context, use an ejb/link-name form for the ejb-ref-name value.

An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or 
Session.

A local-home element that gives the fully qualified class name of the EJB local home interface.

A local element that gives the fully qualified class name of the EJB local interface.

An ejb-link element that links the reference to another enterprise bean in the ejb-jar file or
in the same J2EE application unit. The ejb-link value is the ejb-name of the referenced
bean. If there are multiple enterprise beans with the same ejb-name, the value uses the path
name specifying the location of the ejb-jar file that contains the referenced component. The
path name is relative to the referencing ejb-jar file. The Application Assembler appends the 

<!-- ... -->
<session>
    <ejb-name>ProductBeanUser</ejb-name>
    <ejb-ref>
        <ejb-ref-name>ejb/ProductHome</ejb-ref-name>
        <jndi-name>jboss/store/ProductHome</jndi-name>
    </ejb-ref>
</session>
                        
<entity>
    <ejb-name>ProductBean</ejb-name>
    <jndi-name>jboss/store/ProductHome</jndi-name>
     <!-- ... -->
</entity>
<!-- ... -->
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ejb-name of the referenced bean to the path name separated by #. This allows multiple beans
with the same name to be uniquely identified. An ejb-link element must be specified in
JBoss to match the local reference to the corresponding EJB.

An EJB local reference is scoped to the application component whose declaration contains the ejb-
local-ref element. This means that the EJB local reference is not accessible from other application
components at runtime, and that other application components may define ejb-local-ref elements
with the same ejb-ref-name without causing a name conflict. Example 6.10, “An example ejb-jar.xml
ejb-local-ref descriptor fragment” provides an ejb-jar.xml fragment that illustrates the use of the 
ejb-local-ref element. A code sample that illustrates accessing the ProbeLocalHome reference
declared in Example 6.10, “An example ejb-jar.xml ejb-local-ref descriptor fragment”  is given in
Example 6.11, “ENC ejb-local-ref access code fragment” .

Example 6.10. An example ejb-jar.xml ejb-local-ref descriptor fragment

    <!-- ... -->
    <session>
        <ejb-name>Probe</ejb-name>
        <home>org.jboss.test.perf.interfaces.ProbeHome</home>
        <remote>org.jboss.test.perf.interfaces.Probe</remote>
        <local-
home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
        <local>org.jboss.test.perf.interfaces.ProbeLocal</local>
        <ejb-class>org.jboss.test.perf.ejb.ProbeBean</ejb-class>
        <session-type>Stateless</session-type>
        <transaction-type>Bean</transaction-type>
    </session>
    <session>
        <ejb-name>PerfTestSession</ejb-name>
        <home>org.jboss.test.perf.interfaces.PerfTestSessionHome</home>
        <remote>org.jboss.test.perf.interfaces.PerfTestSession</remote>
        <ejb-class>org.jboss.test.perf.ejb.PerfTestSessionBean</ejb-
class>
        <session-type>Stateless</session-type>
        <transaction-type>Container</transaction-type>
        <ejb-ref>
            <ejb-ref-name>ejb/ProbeHome</ejb-ref-name>
            <ejb-ref-type>Session</ejb-ref-type>
            <home>org.jboss.test.perf.interfaces.SessionHome</home>
            <remote>org.jboss.test.perf.interfaces.Session</remote>
            <ejb-link>Probe</ejb-link>
        </ejb-ref>
        <ejb-local-ref>
            <ejb-ref-name>ejb/ProbeLocalHome</ejb-ref-name>
            <ejb-ref-type>Session</ejb-ref-type>
            <local-
home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
            <local>org.jboss.test.perf.interfaces.ProbeLocal</local>
            <ejb-link>Probe</ejb-link>
        </ejb-local-ref>
    </session>
    <!-- ... -->
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Example 6.11. ENC ejb-local-ref access code fragment

6.6.1.5. Resource Manager Connection Factory References

Resource manager connection factory references allow application component code to refer to
resource factories using logical names called resource manager connection factory references.
Resource manager connection factory references are defined by the resource-ref elements in the
standard deployment descriptors. The Deployer binds the resource manager connection factory
references to the actual resource manager connection factories that exist in the target operational
environment using the jboss.xml and jboss-web.xml descriptors.

Each resource-ref element describes a single resource manager connection factory reference. The 
resource-ref element consists of the following child elements:

An optional description element that provides the purpose of the reference.

A res-ref-name element that specifies the name of the reference relative to the 
java:comp/env context. The resource type based naming convention for which subcontext
to place the res-ref-name into is discussed in the next paragraph.

A res-type element that specifies the fully qualified class name of the resource manager
connection factory.

A res-auth element that indicates whether the application component code performs resource
signon programmatically, or whether the container signs on to the resource based on the
principal mapping information supplied by the Deployer. It must be one of Application or 
Container.

An optional res-sharing-scope element. This currently is not supported by JBoss.

The J2EE specification recommends that all resource manager connection factory references be
organized in the subcontexts of the application component's environment, using a different subcontext
for each resource manager type. The recommended resource manager type to subcontext name is as
follows:

JDBC DataSource references should be declared in the java:comp/env/jdbc subcontext.

JMS connection factories should be declared in the java:comp/env/jms subcontext.

JavaMail connection factories should be declared in the java:comp/env/mail subcontext.

URL connection factories should be declared in the java:comp/env/url subcontext.

Example 6.12, “A web.xml resource-ref descriptor fragment”  shows an example web.xml descriptor
fragment that illustrates the resource-ref element usage. Example 6.13, “ENC resource-ref access
sample code fragment” provides a code fragment that an application component would use to access
the DefaultMail resource declared by the resource-ref.

Example 6.12. A web.xml resource-ref descriptor fragment

InitialContext iniCtx = new InitialContext();
Context ejbCtx = (Context) iniCtx.lookup("java:comp/env/ejb");
ProbeLocalHome home = (ProbeLocalHome) ejbCtx.lookup("ProbeLocalHome");
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Example 6.13. ENC resource-ref access sample code fragment

6.6.1.6. Resource Manager Connection Factory References with jboss.xml and jboss-
web.xml

The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web
application deployment descriptor is to provide the link from the logical name defined by the res-
ref-name element to the JNDI name of the resource factory as deployed in JBoss. This is
accomplished by providing a resource-ref element in the jboss.xml or jboss-web.xml
descriptor. The JBoss resource-ref element consists of the following child elements:

A res-ref-name element that must match the res-ref-name of a corresponding resource-
ref element from the ejb-jar.xml or web.xml standard descriptors

An optional res-type element that specifies the fully qualified class name of the resource
manager connection factory

A jndi-name element that specifies the JNDI name of the resource factory as deployed in

<web>
    <!-- ... -->
    <servlet>
        <servlet-name>AServlet</servlet-name>
        <!-- ... -->
    </servlet>
    <!-- ... -->
    <!-- JDBC DataSources (java:comp/env/jdbc) -->
    <resource-ref>
        <description>The default DS</description>
        <res-ref-name>jdbc/DefaultDS</res-ref-name>
        <res-type>javax.sql.DataSource</res-type>
        <res-auth>Container</res-auth>
    </resource-ref>
    <!-- JavaMail Connection Factories (java:comp/env/mail) -->
    <resource-ref>
        <description>Default Mail</description>
        <res-ref-name>mail/DefaultMail</res-ref-name>
        <res-type>javax.mail.Session</res-type>
        <res-auth>Container</res-auth>
    </resource-ref>
    <!-- JMS Connection Factories (java:comp/env/jms) -->
    <resource-ref>
        <description>Default QueueFactory</description>
        <res-ref-name>jms/QueueFactory</res-ref-name>
        <res-type>javax.jms.QueueConnectionFactory</res-type>
        <res-auth>Container</res-auth>
    </resource-ref> 
<web>

Context initCtx = new InitialContext();
javax.mail.Session s = (javax.mail.Session)
initCtx.lookup("java:comp/env/mail/DefaultMail");
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JBoss

A res-url element that specifies the URL string in the case of a resource-ref of type 
java.net.URL

Example 6.14, “A sample jboss-web.xml resource-ref descriptor fragment”  provides a sample jboss-
web.xml descriptor fragment that shows sample mappings of the resource-ref elements given in
Example 6.12, “A web.xml resource-ref descriptor fragment” .

Example 6.14. A sample jboss-web.xml resource-ref descriptor fragment

6.6.1.7. Resource Environment References

Resource environment references are elements that refer to administered objects that are associated
with a resource (for example, JMS destinations) using logical names. Resource environment references
are defined by the resource-env-ref elements in the standard deployment descriptors. The 
Deployer binds the resource environment references to the actual administered objects location in
the target operational environment using the jboss.xml and jboss-web.xml descriptors.

Each resource-env-ref element describes the requirements that the referencing application
component has for the referenced administered object. The resource-env-ref element consists of
the following child elements:

An optional description element that provides the purpose of the reference.

A resource-env-ref-name element that specifies the name of the reference relative to the 
java:comp/env context. Convention places the name in a subcontext that corresponds to the
associated resource factory type. For example, a JMS queue reference named MyQueue should
have a resource-env-ref-name of jms/MyQueue.

A resource-env-ref-type element that specifies the fully qualified class name of the
referenced object. For example, in the case of a JMS queue, the value would be 
javax.jms.Queue.

<jboss-web>
    <!-- ... -->
    <resource-ref>
        <res-ref-name>jdbc/DefaultDS</res-ref-name>
        <res-type>javax.sql.DataSource</res-type>
        <jndi-name>java:/DefaultDS</jndi-name>
    </resource-ref>
    <resource-ref>
        <res-ref-name>mail/DefaultMail</res-ref-name>
        <res-type>javax.mail.Session</res-type>
        <jndi-name>java:/Mail</jndi-name>
    </resource-ref>
    <resource-ref>
        <res-ref-name>jms/QueueFactory</res-ref-name>
        <res-type>javax.jms.QueueConnectionFactory</res-type>
        <jndi-name>QueueConnectionFactory</jndi-name>
    </resource-ref>
    <!-- ... -->
</jboss-web>
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Example 6.15, “An example ejb-jar.xml resource-env-ref fragment”  provides an example resource-
ref-env element declaration by a session bean. Example 6.16, “ENC resource-env-ref access code
fragment” gives a code fragment that illustrates how to look up the StockInfo queue declared by the 
resource-env-ref.

Example 6.15. An example ejb-jar.xml resource-env-ref fragment

Example 6.16. ENC resource-env-ref access code fragment

6.6.1.8. Resource Environment References and jboss.xml, jboss-web.xml

The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web
application deployment descriptor is to provide the link from the logical name defined by the 
resource-env-ref-name element to the JNDI name of the administered object deployed in JBoss.
This is accomplished by providing a resource-env-ref element in the jboss.xml or jboss-
web.xml descriptor. The JBoss resource-env-ref element consists of the following child elements:

A resource-env-ref-name element that must match the resource-env-ref-name of a
corresponding resource-env-ref element from the ejb-jar.xml or web.xml standard
descriptors

A jndi-name element that specifies the JNDI name of the resource as deployed in JBoss

Example 6.17, “A sample jboss.xml resource-env-ref descriptor fragment”  provides a sample 
jboss.xml descriptor fragment that shows a sample mapping for the StockInforesource-env-
ref.

Example 6.17. A sample jboss.xml resource-env-ref descriptor fragment

<session>
    <ejb-name>MyBean</ejb-name>
    <!-- ... -->
    <resource-env-ref>
        <description>This is a reference to a JMS queue used in the
            processing of Stock info
        </description>
        <resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
        <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
    </resource-env-ref>
    <!-- ... -->
</session>

InitialContext iniCtx = new InitialContext();
javax.jms.Queue q = (javax.jms.Queue)
envCtx.lookup("java:comp/env/jms/StockInfo");

<session>
    <ejb-name>MyBean</ejb-name>
    <!-- ... -->
    <resource-env-ref>
        <resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
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        <jndi-name>queue/StockInfoQueue</jndi-name>
    </resource-env-ref>
    <!-- ... -->
</session>
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CHAPTER 7. WEB SERVICES
Web services are a key contributing factor in the way Web commerce is conducted today. Web services
enable applications to communicate by sending small and large chunks of data to each other.

A web service is essentially a software application that supports interaction of applications over a
computer network or the world wide web. Web services usually interact through XML documents that
map to an object, computer program, business process or database. To communicate, an application
sends a message in XML document format to a web service which sends this message to the respective
programs. Responses may be received based on requirements, the web service receives and then
sends them in XML document format to the required program or applications. Web services can be
used in many ways, examples include supply chain information management and business integration.

JBossWS is a web service framework included as part of the JBoss Enterprise Application Platform. It
implements the JAX-WS specification that defines a programming model and run-time architecture for
implementing web services in Java, targeted at the Java Platform, Enterprise Edition 5 (Java EE 5).
Even though JAX-RPC is still supported (the web service specification for J2EE 1.4), JBossWS does
put a clear focus on JAX-WS.

WARNING

JAX-RPC is not supported for JBoss Web Services CXF Stack.

7.1. THE NEED FOR WEB SERVICES

Enterprise systems communication may benefit from a wise adoption of web service technologies.
Focusing attention on well designed contracts allows developers to establish an abstract view of their
service capabilities. Considering the standardized way contracts are written, this definitely helps
communication with third-party systems and eventually supports business-to-business integration;
everything is clear and standardized in the contract the provider and consumer agree on. This also
reduces the dependencies between implementations allowing other consumers to easily use the
provided service without major changes.

Other benefits exist for enterprise systems that incorporate web service technologies for internal
heterogenous subsystems communication as web service interoperability boosts service reuse and
composition. Web services eliminates the need to rewrite whole functionalities because they were
developed by another enterprise department using a different software language.

7.2. WHAT WEB SERVICES ARE NOT

Web services are not the solution for every software system communication.

Nowadays they are meant to be used for loosely-coupled coarse-grained communication, message
(document) exchange. Recent times has seen many specifications (WS-*) discussed and finally
approved to establish standardized ws-related advanced aspects, including reliable messaging,
message-level security and cross-service transactions. Web service specifications also include the
notion of registries to collect service contract references, to easily discover service implementations.

This all means that the web services technology platform suits complex enterprise communication and
is not simply the latest way of doing remote procedure calls.
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7.3. DOCUMENT/LITERAL

With document style web services two business partners agree on the exchange of complex business
documents that are well defined in XML schema. For example, one party sends a document describing a
purchase order, the other responds (immediately or later) with a document that describes the status of
the purchase order. The payload of the SOAP message is an XML document that can be validated
against XML schema. The document is defined by the style attribute on the SOAP binding.

With document style web services the payload of every message is defined by a complex type in XML
schema.

Therefore, message parts must refer to an element from the schema.

The following message definition is invalid.

7.4. DOCUMENT/LITERAL (BARE)

Bare is an implementation detail from the Java domain. Neither in the abstract contract (for instance,
wsdl+schema) nor at the SOAP message level is a bare endpoint recognizable. A bare endpoint or client
uses a Java bean that represents the entire document payload.

<binding name='EndpointInterfaceBinding' type='tns:EndpointInterface'>
   <soap:binding style='document' 
transport='http://schemas.xmlsoap.org/soap/http'/>
   <operation name='concat'>
      <soap:operation soapAction=''/>
      <input>
         <soap:body use='literal'/>
      </input>
      <output>
         <soap:body use='literal'/>
      </output>
   </operation>
</binding>

<complexType name='concatType'>
   <sequence>
      <element name='String_1' nillable='true' type='string'/>
      <element name='long_1' type='long'/>
   </sequence>
</complexType>
<element name='concat' type='tns:concatType'/>

<message name='EndpointInterface_concat'>
   <part name='parameters' element='tns:concat'/>
</message>

<message name='EndpointInterface_concat'>
   <part name='parameters' type='tns:concatType'/>
</message>

@WebService
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
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The trick is that the Java beans representing the payload contain JAXB annotations that define how
the payload is represented on the wire.

7.5. DOCUMENT/LITERAL (WRAPPED)

Wrapped is an implementation detail from the Java domain. Neither in the abstract contract (for
instance, wsdl+schema) nor at the SOAP message level is a wrapped endpoint recognizable. A wrapped
endpoint or client uses the individual document payload properties. Wrapped is the default and does
not have to be declared explicitly.

NOTE

With JBossWS the request and response wrapper annotations are not required, they will
be generated on demand using sensible defaults.

7.6. RPC/LITERAL

public class DocBareServiceImpl
{
   @WebMethod
   public SubmitBareResponse submitPO(SubmitBareRequest poRequest)
   {
      ...
   }
}

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "SubmitBareRequest", 
namespace="http://soapbinding.samples.jaxws.ws.test.jboss.org/", propOrder 
= { "product" })
@XmlRootElement(namespace="http://soapbinding.samples.jaxws.ws.test.jboss.
org/", name = "SubmitPO")
public class SubmitBareRequest
{
   
@XmlElement(namespace="http://soapbinding.samples.jaxws.ws.test.jboss.org/
",  required = true)
   private String product;

   ...
}

@WebService
public class DocWrappedServiceImpl
{
   @WebMethod
   @RequestWrapper (className="org.somepackage.SubmitPO")
   @ResponseWrapper (className="org.somepackage.SubmitPOResponse")
   public String submitPO(String product, int quantity)
   {
   ...
   }
}
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With RPC there is a wrapper element that names the endpoint operation. Child elements of the RPC
parent are the individual parameters. The SOAP body is constructed based on some simple rules:

The port type operation name defines the endpoint method name

Message parts are endpoint method parameters

RPC is defined by the style attribute on the SOAP binding.

With RPC style web services the portType names the operation (i.e. the java method on the endpoint)

Operation parameters are defined by individual message parts.

NOTE

There is no complex type in XML schema that could validate the entire SOAP message
payload.

<binding name='EndpointInterfaceBinding' type='tns:EndpointInterface'>
   <soap:binding style='rpc' 
transport='http://schemas.xmlsoap.org/soap/http'/>
   <operation name='echo'>
      <soap:operation soapAction=''/>
      <input>
         <soap:body namespace='http://org.jboss.ws/samples/jsr181pojo' 
use='literal'/>
      </input>
      <output>
         <soap:body namespace='http://org.jboss.ws/samples/jsr181pojo' 
use='literal'/>
      </output>
   </operation>
</binding>

<portType name='EndpointInterface'>
   <operation name='echo' parameterOrder='String_1'>
      <input message='tns:EndpointInterface_echo'/>
      <output message='tns:EndpointInterface_echoResponse'/>
   </operation>
</portType>

<message name='EndpointInterface_echo'>
   <part name='String_1' type='xsd:string'/>
</message>
<message name='EndpointInterface_echoResponse'>
   <part name='result' type='xsd:string'/>
</message>

@WebService
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class JSEBean01
{
   @WebMethod
   @WebResult(name="result")
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The element names of RPC parameters/return values may be defined using the JAX-WS
Annotations#javax.jws.WebParam and JAX-WS Annotations#javax.jws.WebResult respectively.

7.7. RPC/ENCODED

SOAP encoding style is defined by chapter 5  of the SOAP-1.1 specification. It has inherent
interoperability issues that cannot be fixed. The Basic Profile-1.0 prohibits this encoding style in 4.1.7
SOAP encodingStyle Attribute. JBossWS has basic support for RPC/Encoded that is provided as is for
simple interop scenarios with SOAP stacks that do not support literal encoding. Specifically, JBossWS
does not support:-

element references

soap arrays as bean properties

NOTE

This section should not be used in conjuction with JBoss Web Services CXF Stack.

7.8. WEB SERVICE ENDPOINTS

JAX-WS simplifies the development model for a web service endpoint a great deal. In short, an endpoint
implementation bean is annotated with JAX-WS annotations and deployed to the server. The server
automatically generates and publishes the abstract contract (for instance, wsdl+schema) for client
consumption. All marshalling/unmarshalling is delegated to JAXB.

7.9. PLAIN OLD JAVA OBJECT (POJO)

Let us take a look at simple POJO endpoint implementation. All endpoint associated metadata are
provided via JSR-181 annotations

7.10. THE ENDPOINT AS A WEB APPLICATION

A JAX-WS java service endpoint (JSE) is deployed as a web application.

   public String echo(@WebParam(name="String_1") String input)
   {
   ...
   }
}

@WebService
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class JSEBean01
{
   @WebMethod
   public String echo(String input)
   {
    ...
   }
}

<web-app ...>
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7.11. PACKAGING THE ENDPOINT

A JSR-181 java service endpoint (JSE) is packaged as a web application in a *.war file.

NOTE

Only the endpoint implementation bean and web.xml file are required.

7.12. ACCESSING THE GENERATED WSDL

A successfully deployed service endpoint will show up in the service endpoint manager. This is also
where you find the links to the generated WSDL.

http://yourhost:8080/jbossws/services

It is also possible to generate the abstract contract off line using jboss tools. For details of that see Top
Down (Using wsconsume)

7.13. EJB3 STATELESS SESSION BEAN (SLSB)

The JAX-WS programming model support the same set of annotations on EJB3 stateless session beans
as on Plain old Java Object (POJO)  endpoints. EJB-2.1 endpoints are supported using the JAX-RPC
progamming model.

   <servlet>
      <servlet-name>TestService</servlet-name>
      <servlet-
class>org.jboss.test.ws.jaxws.samples.jsr181pojo.JSEBean01</servlet-class>
   </servlet>
   <servlet-mapping>
      <servlet-name>TestService</servlet-name>
      <url-pattern>/*</url-pattern>
   </servlet-mapping>
</web-app>

<war warfile="${build.dir}/libs/jbossws-samples-jsr181pojo.war" 
webxml="${build.resources.dir}/samples/jsr181pojo/WEB-INF/web.xml">
   <classes dir="${build.dir}/classes">
      <include 
name="org/jboss/test/ws/samples/jsr181pojo/JSEBean01.class"/>
   </classes>
</war>

@Stateless
@Remote(EJB3RemoteInterface.class)
@RemoteBinding(jndiBinding = "/ejb3/EJB3EndpointInterface")
   
@WebService
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class EJB3Bean01 implements EJB3RemoteInterface
{
   @WebMethod
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Above you see an EJB-3.0 stateless session bean that exposes one method both on the remote
interface and as an endpoint operation.

Packaging the endpoint

A JSR-181 EJB service endpoint is packaged as an ordinary ejb deployment.

Accessing the generated WSDL

A successfully deployed service endpoint will show up in the service endpoint manager. This is also
where you will find the links to the generated WSDL.

It is also possible to generate the abstract contract offline using JbossWS tools. For details of that
please see Top Down (Using wsconsume)

7.14. ENDPOINT PROVIDER

JAX-WS services typically implement a native Java service endpoint interface (SEI), perhaps mapped
from a WSDL port type, either directly or via the use of annotations.

Java SEIs provide a high level Java-centric abstraction that hides the details of converting between
Java objects and their XML representations for use in XML-based messages. However, in some cases it
is desirable for services to be able to operate at the XML message level. The Provider interface offers
an alternative to SEIs and may be implemented by services wishing to work at the XML message level.

A Provider based service instance’s invoke method is called for each message received for the service.

   public String echo(String input)
   {
   ...
   }
}

<jar jarfile="${build.dir}/libs/jbossws-samples-jsr181ejb.jar">
   <fileset dir="${build.dir}/classes">
      <include 
name="org/jboss/test/ws/samples/jsr181ejb/EJB3Bean01.class"/>
      <include 
name="org/jboss/test/ws/samples/jsr181ejb/EJB3RemoteInterface.class"/>
   </fileset>
</jar>

 
  http://yourhost:8080/jbossws/services

@WebServiceProvider
@ServiceMode(value = Service.Mode.PAYLOAD)
public class ProviderBeanPayload implements Provider<Source>
{
   public Source invoke(Source req)
   {
      // Access the entire request PAYLOAD and return the response PAYLOAD
   }
}
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Service.Mode.PAYLOAD is the default and does not have to be declared explicitly. You can also use
Service.Mode.MESSAGE to access the entire SOAP message (for example, with MESSAGE the Provider
can also see SOAP Headers)

7.15. WEBSERVICECONTEXT

The WebServiceContext is treated as an injectable resource that can be set at the time an endpoint
is initialized. The WebServiceContext object will then use thread-local information to return the
correct information regardless of how many threads are concurrently being used to serve requests
addressed to the same endpoint object.

7.16. WEB SERVICE CLIENTS

7.16.1. Service

Service is an abstraction that represents a WSDL service. A WSDL service is a collection of related
ports, each of which consists of a port type bound to a particular protocol and available at a particular
endpoint address.

For most clients, you will start with a set of stubs generated from the WSDL. One of these will be the
service, and you will create objects of that class in order to work with the service (see "static case"
below).

7.16.1.1. Service Usage

@WebService
public class EndpointJSE
{
   @Resource
   WebServiceContext wsCtx;
 
   @WebMethod
   public String testGetMessageContext()
   {
      SOAPMessageContext jaxwsContext = 
(SOAPMessageContext)wsCtx.getMessageContext();
      return jaxwsContext != null ? "pass" : "fail";
   }
   ...
   @WebMethod
   public String testGetUserPrincipal()
   {
      Principal principal = wsCtx.getUserPrincipal();
      return principal.getName();
   }
  
   @WebMethod
   public boolean testIsUserInRole(String role)
   {
      return wsCtx.isUserInRole(role);
   }
}
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Static case

Most clients will start with a WSDL file, and generate some stubs using jbossws tools like wsconsume.
This usually gives a mass of files, one of which is the top of the tree. This is the service implementation
class.

The generated implementation class can be recognised as it will have two public constructors, one with
no arguments and one with two arguments, representing the wsdl location (a java.net.URL) and the
service name (a javax.xml.namespace.QName) respectively.

Usually you will use the no-argument constructor. In this case the WSDL location and service name are
those found in the WSDL. These are set implicitly from the WebServiceClient annotation that decorates
the generated class.

The following code snippet shows the generated constructors from the generated class:

Section Dynamic Proxy explains how to obtain a port from the service and how to invoke an operation
on the port. If you need to work with the XML payload directly or with the XML representation of the
entire SOAP message, have a look at Dispatch.

Dynamic case

In the dynamic case, when nothing is generated, a web service client uses Service.create to create
Service instances, the following code illustrates this process.

This is not the recommended way to use JBossWS.

7.16.1.2. Handler Resolver

JAX-WS provides a flexible plug-in framework for message processing modules, known as handlers,

// Generated Service Class
  
@WebServiceClient(name="StockQuoteService", 
targetNamespace="http://example.com/stocks", 
wsdlLocation="http://example.com/stocks.wsdl")
public class StockQuoteService extends javax.xml.ws.Service 
{

   public StockQuoteService() 
   {
      super(new URL("http://example.com/stocks.wsdl"), new 
QName("http://example.com/stocks", "StockQuoteService"));
   }
  
   public StockQuoteService(String wsdlLocation, QName serviceName) 
   {
      super(wsdlLocation, serviceName);
   }
  
   ...
}

URL wsdlLocation = new URL("http://example.org/my.wsdl");
QName serviceName = new QName("http://example.org/sample", "MyService");
Service service = Service.create(wsdlLocation, serviceName);
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that may be used to extend the capabilities of a JAX-WS runtime system. Handler Framework
describes the handler framework in detail. A Service instance provides access to a 
HandlerResolver via a pair of getHandlerResolver and setHandlerResolver methods that
may be used to configure a set of handlers on a per-service, per-port or per-protocol binding basis.

When a Service instance is used to create a proxy or a Dispatch instance then the handler resolver
currently registered with the service is used to create the required handler chain. Subsequent changes
to the handler resolver configured for a Service instance do not affect the handlers on previously
created proxies, or Dispatch instances.

7.16.1.3. Executor

Service instances can be configured with a java.util.concurrent.Executor. The executor will
then be used to invoke any asynchronous callbacks requested by the application. The setExecutor
and getExecutor methods of Service can be used to modify and retrieve the executor configured
for a service.

7.16.2. Dynamic Proxy

You can create an instance of a client proxy using one of getPort methods on the Service .

The Service Endpoint Interface (SEI) is usually generated using tools. For details see Top Down (Using
wsconsume).

A generated static Service usually also offers typed methods to get ports. These methods also return
dynamic proxies that implement the SEI.

/** 
 * The getPort method returns a proxy. A service client
 * uses this proxy to invoke operations on the target
 * service endpoint. The <code>serviceEndpointInterface</code>
 * specifies the service endpoint interface that is supported by
 * the created dynamic proxy instance.
 */
public <T> T getPort(QName portName, Class<T> serviceEndpointInterface)
{
...
}
  
/** 
 * The getPort method returns a proxy. The parameter
 * <code>serviceEndpointInterface</code> specifies the service
 * endpoint interface that is supported by the returned proxy.
 * In the implementation of this method, the JAX-WS
 * runtime system takes the responsibility of selecting a protocol
 * binding (and a port) and configuring the proxy accordingly.
 * The returned proxy should not be reconfigured by the client.
 *
 */
public <T> T getPort(Class<T> serviceEndpointInterface)
{
...
}
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7.16.3. WebServiceRef

The WebServiceRef annotation is used to declare a reference to a Web service. It follows the
resource pattern exemplified by the javax.annotation.Resource annotation in JSR-250 [5]

There are two uses to the WebServiceRef annotation:

1. To define a reference whose type is a generated service class. In this case, the type and value
element will both refer to the generated service class type. Moreover, if the reference type can
be inferred by the field or method declaration then the annotation is applied to the type, and
value elements may have the default value ( Object.class, that is). If the type cannot be
inferred, then at least the type element must be present with a non-default value.

2. To define a reference whose type is a SEI. In this case, the type element may be present with
its default value if the type of the reference can be inferred from the annotated field and
method declaration, but the value element must always be present and refer to a generated
service class type (a subtype of javax.xml.ws.Service). The wsdlLocation element, if
present, overrides theWSDL location information specified in the WebService annotation of
the referenced generated service class.

WebServiceRef Customization

In JBoss Enterprise Application Platform 5.0 we offer a number of overrides and extensions to the 
WebServiceRef annotation. These include:

define the port that should be used to resolve a container-managed port

@WebServiceClient(name = "TestEndpointService", targetNamespace = 
"http://org.jboss.ws/wsref", 
  wsdlLocation = "http://localhost.localdomain:8080/jaxws-samples-
webserviceref?wsdl")
public class TestEndpointService extends Service
{
   ...
   
   public TestEndpointService(URL wsdlLocation, QName serviceName) {
      super(wsdlLocation, serviceName);
   }
   
   @WebEndpoint(name = "TestEndpointPort")
   public TestEndpoint getTestEndpointPort() 
   {
      return (TestEndpoint)super.getPort(TESTENDPOINTPORT, 
TestEndpoint.class);
   }
}

public class EJB3Client implements EJB3Remote
{
   @WebServiceRef
   public TestEndpointService service4;
   
   @WebServiceRef
   public TestEndpoint port3;
}
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define default Stub property settings for Stub objects

define the URL of a final WSDL document to be used

Example:

7.16.4. Dispatch

XML Web Services use XML messages for communication between services and service clients. The
higher level JAX-WS APIs are designed to hide the details of converting between Java method
invocations and the corresponding XML messages, but in some cases operating at the XML message
level is desirable. The Dispatch interface provides support for this mode of interaction.

Dispatch supports two usage modes, identified by the constants javax.xml.ws.Service.Mode.MESSAGE
and javax.xml.ws.Service.Mode.PAYLOAD respectively:

Message

<service-ref>
   <service-ref-name>OrganizationService</service-ref-name>
   <wsdl-override>file:/wsdlRepository/organization-service.wsdl</wsdl-
override>
</service-ref>
.. 
<service-ref>
   <service-ref-name>OrganizationService</service-ref-name>
   <config-name>Secure Client Config</config-name>
   <config-file>META-INF/jbossws-client-config.xml</config-file>
   <handler-chain>META-INF/jbossws-client-handlers.xml</handler-chain>
</service-ref>
  
<service-ref>
   <service-ref-name>SecureService</service-ref-name>
   <service-class-
name>org.jboss.tests.ws.jaxws.webserviceref.SecureEndpointService</service
-class-name>
   <service-qname>
{http://org.jboss.ws/wsref}SecureEndpointService</service-qname>
   <port-info>
      <service-endpoint-
interface>org.jboss.tests.ws.jaxws.webserviceref.SecureEndpoint</service-
endpoint-interface>
      <port-qname>{http://org.jboss.ws/wsref}SecureEndpointPort</port-
qname>
      <stub-property>
         <name>javax.xml.ws.security.auth.username</name>
         <value>kermit</value>
      </stub-property>
      <stub-property>
         <name>javax.xml.ws.security.auth.password</name>
         <value>thefrog</value>
      </stub-property>
   </port-info>
</service-ref>
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In this mode, client applications work directly with protocol-specific message structures. For example,
when used with a SOAP protocol binding, a client application would work directly with a SOAP
message.

Message Payload

In this mode, client applications work with the payload of messages rather than the messages
themselves. For example, when used with a SOAP protocol binding, a client application would work with
the contents of the SOAP Body rather than the SOAP message as a whole.

Dispatch is a low level API that requires clients to construct messages or message payloads as XML
and requires an intimate knowledge of the desired message or payload structure. Dispatch is a generic
class that supports input and output of messages or message payloads of any type.

7.16.5. Asynchronous Invocations

The BindingProvider interface represents a component that provides a protocol binding for use by
clients, it is implemented by proxies and is extended by the Dispatch interface.

BindingProvider instances may provide asynchronous operation capabilities. When used,
asynchronous operation invocations are decoupled from the BindingProvider instance at
invocation time such that the response context is not updated when the operation completes. Instead
a separate response context is made available using the Response interface.

7.16.6. Oneway Invocations

Service service = Service.create(wsdlURL, serviceName);
Dispatch dispatch = service.createDispatch(portName, StreamSource.class, 
Mode.PAYLOAD);
  
String payload = "<ns1:ping 
xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";
dispatch.invokeOneWay(new StreamSource(new StringReader(payload)));
  
payload = "<ns1:feedback 
xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";
Source retObj = (Source)dispatch.invoke(new StreamSource(new 
StringReader(payload)));

public void testInvokeAsync() throws Exception
{
   URL wsdlURL = new URL("http://" + getServerHost() + ":8080/jaxws-
samples-asynchronous?wsdl");
   QName serviceName = new QName(targetNS, "TestEndpointService");
   Service service = Service.create(wsdlURL, serviceName);
   TestEndpoint port = service.getPort(TestEndpoint.class);
  
   Response response = port.echoAsync("Async");
  
   // access future
   String retStr = (String) response.get();
   assertEquals("Async", retStr);
}
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@Oneway indicates that the given web method has only an input message and no output. Typically, a
one-way method returns the thread of control to the calling application prior to executing the actual
business method.

7.17. COMMON API

This sections describes concepts that apply equally to Web Service Endpoints  and Web Service Clients

7.17.1. Handler Framework

The handler framework is implemented by a JAX-WS protocol binding in both client and server side
runtimes. Proxies, and Dispatch instances, known collectively as binding providers, each use protocol
bindings to bind their abstract functionality to specific protocols.

Client and server-side handlers are organized into an ordered list known as a handler chain. The
handlers within a handler chain are invoked each time a message is sent or received. Inbound
messages are processed by handlers prior to binding provider processing. Outbound messages are
processed by handlers after any binding provider processing.

Handlers are invoked with a message context that provides methods to access and modify inbound
and outbound messages and to manage a set of properties. Message context properties may be used
to facilitate communication between individual handlers and between handlers and client and service
implementations. Different types of handlers are invoked with different types of message context.

7.17.1.1. Logical Handler

Handlers that only operate on message context properties and message payloads. Logical handlers are
protocol agnostic and are unable to affect protocol specific parts of a message. Logical handlers are
handlers that implement javax.xml.ws.handler.LogicalHandler.

7.17.1.2. Protocol Handler

@WebService (name="PingEndpoint")
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class PingEndpointImpl
{
   private static String feedback;
   ...
   @WebMethod
   @Oneway
   public void ping()
   {
      log.info("ping");
      feedback = "ok";
   }
   ...
   @WebMethod
   public String feedback()
   {
   log.info("feedback");
   return feedback;
   }
}
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Handlers that operate on message context properties and protocol specific messages. Protocol
handlers are specific to a particular protocol and may access and change protocol specific aspects of a
message. Protocol handlers are handlers that implement any interface derived from 
javax.xml.ws.handler.Handler except javax.xml.ws.handler.LogicalHandler.

7.17.1.3. Service endpoint handlers

On the service endpoint, handlers are defined using the @HandlerChain annotation.

The location of the handler chain file supports 2 formats

1. An absolute java.net.URL in externalForm. (ex: http://myhandlers.foo.com/handlerfile1.xml)

2. A relative path from the source file or class file. (ex: bar/handlerfile1.xml)

7.17.1.4. Service client handlers

On the client side, handler can be configured using the @HandlerChain annotation on the SEI or
dynamically using the API.

7.17.2. Message Context

MessageContext is the super interface for all JAX-WS message contexts. It extends
Map<String,Object> with additional methods and constants to manage a set of properties that enable
handlers in a handler chain to share processing related state. For example, a handler may use the put
method to insert a property in the message context that one or more other handlers in the handler
chain may subsequently obtain via the get method.

Properties are scoped as either APPLICATION or HANDLER. All properties are available to all handlers
associated with particular endpoint. E.g., if a logical handler puts a property in the message context,
that property will also be available to any protocol handlers in the chain during the execution.
APPLICATION scoped properties are also made available to client applications and service endpoint
implementations. The default scope for a property is HANDLER.

7.17.2.1. Accessing the message context

@WebService
@HandlerChain(file = "jaxws-server-source-handlers.xml")
public class SOAPEndpointSourceImpl
{
...
}

Service service = Service.create(wsdlURL, serviceName);
Endpoint port = (Endpoint)service.getPort(Endpoint.class);
  
BindingProvider bindingProvider = (BindingProvider)port;
List<Handler> handlerChain = new ArrayList<Handler>();
handlerChain.add(new LogHandler());
handlerChain.add(new AuthorizationHandler());
handlerChain.add(new RoutingHandler());
bindingProvider.getBinding().setHandlerChain(handlerChain); // important!
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Users can access the message context in handlers or in endpoints via @WebServiceContext
annotation.

7.17.2.2. Logical Message Context

LogicalMessageContext is passed to Logical Handlers at invocation time. LogicalMessageContext
extends MessageContext with methods to obtain and modify the message payload, it does not provide
access to the protocol specific aspects of a message. A protocol binding defines what component of a
message are available via a logical message context. The SOAP binding defines that a logical handler
deployed in a SOAP binding can access the contents of the SOAP body but not the SOAP headers
whereas the XML/HTTP binding defines that a logical handler can access the entire XML payload of a
message.

7.17.2.3. SOAP Message Context

SOAPMessageContext is passed to SOAP handlers at invocation time. SOAPMessageContext
extends MessageContext with methods to obtain and modify the SOAP message payload.

7.17.3. Fault Handling

An implementation may throw a SOAPFaultException

or an application specific user exception

NOTE

In case of the latter JBossWS generates the required fault wrapper beans at runtime if
they are not part of the deployment

7.18. DATABINDING

7.18.1. Using JAXB with non annotated classes

JAXB is heavily driven by Java Annotations on the Java Bindings. It currently doesn't support an
external binding configuration.

public void throwSoapFaultException()
{
   SOAPFactory factory = SOAPFactory.newInstance();
   SOAPFault fault = factory.createFault("this is a fault string!", new 
QName("http://foo", "FooCode"));
   fault.setFaultActor("mr.actor");
   fault.addDetail().addChildElement("test");
   throw new SOAPFaultException(fault);
}

public void throwApplicationException() throws UserException
{
   throw new UserException("validation", 123, "Some validation error");
}
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In order to support this, we built on a JAXB RI feature whereby it allows you to specify a
RuntimeInlineAnnotationReader implementation during JAXBContext creation (see JAXBRIContext).

We call this feature "JAXB Annotation Introduction" and we've made it available for general
consumption i.e. it can be checked out, built and used from SVN:

http://anonsvn.jboss.org/repos/jbossws/projects/jaxbintros/

Complete documentation can be found here:

JAXB Introductions

7.19. ATTACHMENTS

JBoss-WS4EE relied on a deprecated attachments technology called SwA (SOAP with Attachments).
SwA required soap/encoding which is disallowed by the WS-I Basic Profile. JBossWS provides support
for WS-I AP 1.0, and MTOM instead.

7.19.1. MTOM/XOP

This section describes Message Transmission Optimization Mechanism (MTOM) and XML-binary
Optimized Packaging (XOP), a means of more efficiently serializing XML Infosets that have certain
types of content. The related specifications are

SOAP Message Transmission Optimization Mechanism (MTOM)

XML-binary Optimized Packaging (XOP)

7.19.1.1. Supported MTOM parameter types

image/jpeg java.awt.Image

text/xml javax.xml.transform.Source

application/xml javax.xml.transform.Source

application/octet-stream javax.activation.DataHandler

The above table shows a list of supported endpoint parameter types. The recommended approach is to
use the javax.activation.DataHandler classes to represent binary data as service endpoint parameters.

NOTE

Microsoft endpoints tend to send any data as application/octet-stream. The only Java
type that can easily cope with this ambiguity is javax.activation.DataHandler

7.19.1.2. Enabling MTOM per endpoint

On the server side MTOM processing is enabled through the @BindingType annotation. JBossWS
does handle SOAP1.1 and SOAP1.2. Both come with or without MTOM flavours:

MTOM enabled service implementations
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1. The MTOM enabled SOAP 1.1 binding ID

MTOM enabled clients

Web service clients can use the same approach described above or rely on the Binding API to enable
MTOM (Excerpt taken from the 
org.jboss.test.ws.jaxws.samples.xop.doclit.XOPTestCase):

NOTE

You might as well use the JBossWS configuration templates to setup deployment
defaults.

7.19.2. SwaRef

WS-I Attachment Profile 1.0 defines mechanism to reference MIME attachment parts using swaRef. In
this mechanism the content of XML element of type wsi:swaRef is sent as MIME attachment and the
element inside SOAP Body holds the reference to this attachment in the CID URI scheme as defined by
RFC 2111.

7.19.2.1. Using SwaRef with JAX-WS endpoints

JAX-WS endpoints delegate all marshalling/unmarshalling to the JAXB API. The most simple way to
enable SwaRef encoding for DataHandler types is to annotate a payload bean with the 
@XmlAttachmentRef annotation as shown below:

package org.jboss.test.ws.jaxws.samples.xop.doclit;
  
import javax.ejb.Remote;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.xml.ws.BindingType;
  
@Remote
@WebService(targetNamespace = "http://org.jboss.ws/xop/doclit")
@SOAPBinding(style = SOAPBinding.Style.DOCUMENT, parameterStyle = 
SOAPBinding.ParameterStyle.BARE)
@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http?mtom=true")                         
(1)
public interface MTOMEndpoint
{
...
}

...
Service service = Service.create(wsdlURL, serviceName);
port = service.getPort(MTOMEndpoint.class);
  
// enable MTOM
binding = (SOAPBinding)((BindingProvider)port).getBinding();
binding.setMTOMEnabled(true);

/**
 * Payload bean that will use SwaRef encoding
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With document wrapped endpoints you may even specify the @XmlAttachmentRef annotation on the
service endpoint interface:

The message would then refer to the attachment part by CID:

 */
@XmlRootElement
public class DocumentPayload
{
   private DataHandler data;
  
   public DocumentPayload()
   {
   }
  
   public DocumentPayload(DataHandler data)
   {
      this.data = data;
   }
  
   @XmlElement
   @XmlAttachmentRef
   public DataHandler getData()
   {
      return data;
   }
  
   public void setData(DataHandler data)
   {
      this.data = data;
   }
}

@WebService
public interface DocWrappedEndpoint
{
   @WebMethod
   DocumentPayload beanAnnotation(DocumentPayload dhw, String test);
  
   @WebMethod
   @XmlAttachmentRef
   DataHandler parameterAnnotation(@XmlAttachmentRef DataHandler data, 
String test);
  
}

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
   <env:Header/>
   <env:Body>
      <ns2:parameterAnnotation 
xmlns:ns2='http://swaref.samples.jaxws.ws.test.jboss.org/'>
         <arg0>cid:0-1180017772935-32455963@ws.jboss.org</arg0>
         <arg1>Wrapped test</arg1>
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7.19.2.2. Starting from WSDL

If you chose the contract first approach then you need to ensure that any element declaration that
should use SwaRef encoding simply refers to wsi:swaRef schema type:

Any wsi:swaRef schema type would then be mapped to DataHandler.

7.20. TOOLS

The JAX-WS tools provided by JBossWS can be used in a variety of ways. First we will look at server-
side development strategies, and then proceed to the client. When developing a Web Service Endpoint
(the server-side) you have the option of starting from Java (bottom-up development), or from the
abstact contract (WSDL) that defines your service (top-down development). If this is a new service (no
existing contract), the bottom-up approach is the fastest route; you only need to add a few annotations
to your classes to get a service up and running. However, if you are developing a service with an
already defined contract, it is far simpler to use the top-down approach, since the provided tool will
generate the annotated code for you.

Bottom-up use cases:

Exposing an already existing EJB3 bean as a Web Service

Providing a new service, and you want the contract to be generated for you

Top-down use cases:

Replacing the implementation of an existing Web Service without breaking compatibility with
older clients

Exposing a service that conforms to a contract specified by a third party (e.g. a vender that
calls you back using an already defined protocol).

Creating a service that adheres to the XML Schema and WSDL you developed by hand up front

The following JAX-WS command line tools are included in JBossWS:

Command Description

wsprovide Generates JAX-WS portable artifacts, and provides
the abstract contract. Used for bottom-up
development.

wsconsume Consumes the abstract contract (WSDL and Schema
files), and produces artifacts for both a server and
client. Used for top-down and client development

      </ns2:parameterAnnotation>
   </env:Body>
</env:Envelope>

<element name="data" type="wsi:swaRef" 
xmlns:wsi="http://ws-i.org/profiles/basic/1.1/xsd"/>
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wsrunclient Executes a Java client (that has a main method)
using the JBossWS classpath.

7.20.1. Bottom-Up (Using wsprovide)

The bottom-up strategy involves developing the Java code for your service, and then annotating it
using JAX-WS annotations. These annotations can be used to customize the contract that is generated
for your service. For example, you can change the operation name to map to anything you like.
However, all of the annotations have sensible defaults, so only the @WebService annotation is required.

This can be as simple as creating a single class:

A JSE or EJB3 deployment can be built using this class, and it is the only Java code needed to deploy
on JBossWS. The WSDL, and all other Java artifacts called "wrapper classes" will be generated for you
at deploy time. This actually goes beyond the JAX-WS specification, which requires that wrapper
classes be generated using an offline tool. The reason for this requirement is purely a vender
implementation problem, and since we do not believe in burdening a developer with a bunch of
additional steps, we generate these as well. However, if you want your deployment to be portable to
other application servers, you will need to use a tool and add the generated classes to your
deployment.

This is the primary purpose of the wsprovide tool, to generate portable JAX-WS artifacts. Additionally,
it can be used to "provide" the abstract contract (WSDL file) for your service. This can be obtained by
invoking wsprovide using the "-w" option:

Inspecting the WSDL reveals a service called EchoService:

As expected, this service defines one operation, "echo":

package echo;
  
@javax.jws.WebService
public class Echo
{
   public String echo(String input)
   {
      return input;
   }
}

$ javac -d . -classpath jboss-jaxws.jar Echo.java
$ wsprovide -w echo.Echo
Generating WSDL:
EchoService.wsdl
Writing Classes:
echo/jaxws/Echo.class
echo/jaxws/EchoResponse.class

<service name='EchoService'>
   <port binding='tns:EchoBinding' name='EchoPort'>
      <soap:address location='REPLACE_WITH_ACTUAL_URL'/>
   </port>
</service>
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NOTE

Remember that when deploying on JBossWS you do not need to run this tool.  You only
need it for generating portable artifacts and/or the abstract contract for your service.

Let us create a POJO endpoint for deployment on JBoss Enterprise Application Platform. A simple 
web.xml needs to be created:

The web.xml and the single class can now be used to create a WAR:

The war can then be deployed:

<portType name='Echo'>
   <operation name='echo' parameterOrder='echo'>
      <input message='tns:Echo_echo'/>
      <output message='tns:Echo_echoResponse'/>
   </operation>
</portType>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee 
http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">
  
   <servlet>
      <servlet-name>Echo</servlet-name>
      <servlet-class>echo.Echo</servlet-class>
   </servlet>
  
   <servlet-mapping>
      <servlet-name>Echo</servlet-name>
      <url-pattern>/Echo</url-pattern>
   </servlet-mapping>
</web-app>

 
$ mkdir -p WEB-INF/classes
$ cp -rp echo WEB-INF/classes/
$ cp web.xml WEB-INF
$ jar cvf echo.war WEB-INF
added manifest
adding: WEB-INF/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/echo/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/echo/Echo.class(in = 340) (out= 247)(deflated 27%)
adding: WEB-INF/web.xml(in = 576) (out= 271)(deflated 52%)

 
 cp echo.war <replaceable>$JBOSS_HOME</replaceable>/server/default/deploy
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At deploy time JBossWS will internally invoke wsprovide, which will generate the WSDL. If deployment
was successful, and you are using the default settings, it should be available here:
http://localhost:8080/echo/Echo?wsdl

For a portable JAX-WS deployment, the wrapper classes generated earlier could be added to the
deployment.

7.20.2. Top-Down (Using wsconsume)

The top-down development strategy begins with the abstract contract for the service, which includes
the WSDL file and zero or more schema files. The wsconsume tool is then used to consume this
contract, and produce annotated Java classes (and optionally sources) that define it.

NOTE

wsconsume seems to have a problem with symlinks on unix systems

Using the WSDL file from the bottom-up example, a new Java implementation that adheres to this
service can be generated. The "-k" option is passed to wsconsume to preserve the Java source files
that are generated, instead of providing just classes:

The following table shows the purpose of each generated file:

File Purpose

Echo.java Service Endpoint Interface

Echo_Type.java Wrapper bean for request message

EchoResponse.java Wrapper bean for response message

ObjectFactory.java JAXB XML Registry

package-info.java Holder for JAXB package annotations

EchoService.java Used only by JAX-WS clients

 
  
$ wsconsume -k EchoService.wsdl
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java
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Examining the Service Endpoint Interface reveals annotations that are more explicit than in the class
written by hand in the bottom-up example, however, these evaluate to the same contract:

The only missing piece (besides the packaging) is the implementation class, which can now be written
using the above interface.

7.20.3. Client Side

Before going into detail on the client-side it is important to understand the decoupling concept that is
central to Web Services. Web Services are not the best fit for internal RPC, even though they can be
used in this way; there are much better technologies for achieving this (CORBA, and RMI for example).
Web Services were designed specifically for interoperable coarse-grained correspondence. There is no
expectation or guarantee that any party participating in a Web Service interaction will be at any
particular location, running on any particular operating system, or written in any particular
programming language. So because of this, it is important to clearly separate client and server
implementations. The only thing they should have in common is the abstract contract definition. If, for
whatever reason, your software does not adhere to this principal, then you should not be using Web
Services. For the above reasons, the recommended methodology for developing a client is to follow the
top-down approach , even if the client is running on the same server.

Let's repeat the process of the top-down section, although using the deployed WSDL, instead of the
one generated offline by wsprovide. The reason why we do this is just to get the right value for
soap:address. This value must be computed at deploy time, since it is based on container configuration
specifics. You could of course edit the WSDL file yourself, although you need to ensure that the path is
correct.

Offline version:

@WebService(name = "Echo", targetNamespace = "http://echo/")
public interface Echo
{
   @WebMethod
   @WebResult(targetNamespace = "")
   @RequestWrapper(localName = "echo", targetNamespace = "http://echo/", 
className = "echo.Echo_Type")
   @ResponseWrapper(localName = "echoResponse", targetNamespace = 
"http://echo/", className = "echo.EchoResponse")
   public String echo(@WebParam(name = "arg0", targetNamespace = "") 
String arg0);
}

package echo;
  
@javax.jws.WebService(endpointInterface="echo.Echo")
public class EchoImpl implements Echo
{
   public String echo(String arg0)
   {
      return arg0;
   }
}

<service name='EchoService'>
   <port binding='tns:EchoBinding' name='EchoPort'>
      <soap:address location='REPLACE_WITH_ACTUAL_URL'/>
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Online version:

Using the online deployed version with wsconsume:

The one class that was not examined in the top-down section, was EchoService.java. Notice how it
stores the location the WSDL was obtained from.

   </port>
</service>

<service name="EchoService">
   <port binding="tns:EchoBinding" name="EchoPort">
      <soap:address 
location="http://localhost.localdomain:8080/echo/Echo"/>
   </port>
</service>

$ wsconsume -k http://localhost:8080/echo/Echo?wsdl
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java
echo/Echo.java
echo/EchoResponse.java
echo/EchoService.java
echo/Echo_Type.java
echo/ObjectFactory.java
echo/package-info.java

@WebServiceClient(name = "EchoService", targetNamespace = "http://echo/", 
wsdlLocation = "http://localhost:8080/echo/Echo?wsdl")
public class EchoService extends Service
{
   private final static URL ECHOSERVICE_WSDL_LOCATION;
  
   static
   {
      URL url = null;
      try
      {
         url = new URL("http://localhost:8080/echo/Echo?wsdl");
      }
      catch (MalformedURLException e)
      {
         e.printStackTrace();
      }
      ECHOSERVICE_WSDL_LOCATION = url;
   }
  
   public EchoService(URL wsdlLocation, QName serviceName)
   {
      super(wsdlLocation, serviceName);
   }
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As you can see, this generated class extends the main client entry point in JAX-WS, 
javax.xml.ws.Service. While you can use Service directly, this is far simpler since it provides the
configuration info for you. The only method we really care about is the getEchoPort() method,
which returns an instance of our Service Endpoint Interface. Any Web Services operation can
then be called by just invoking a method on the returned interface.

NOTE

It is not recommended to refer to a remote WSDL URL in a production application. This
causes network I/O every time you instantiate the Service Object. Instead, use the tool
on a saved local copy, or use the URL version of the constructor to provide a new WSDL
location.

All that is left to do, is write and compile the client:

It can then be easily executed using the wsrunclient tool. This is just a convenience tool that invokes
java with the needed classpath:

  
   public EchoService()
   {
      super(ECHOSERVICE_WSDL_LOCATION, new QName("http://echo/", 
"EchoService"));
   }
  
   @WebEndpoint(name = "EchoPort")
   public Echo getEchoPort()
   {
      return (Echo)super.getPort(new QName("http://echo/", "EchoPort"), 
Echo.class);
   }
}

import echo.*;
..
public class EchoClient
{
   public static void main(String args[])
   {
      if (args.length != 1)
      {
         System.err.println("usage: EchoClient <message>");
         System.exit(1);
      }
  
      EchoService service = new EchoService();
      Echo echo = service.getEchoPort();
      System.out.println("Server said: " + echo.echo(args[0]));
   } 
}

 
$ wsrunclient EchoClient 'Hello World!'
Server said: Hello World!
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It is easy to change the endpoint address of your operation at runtime, setting
ENDPOINT_ADDRESS_PROPERTY as shown below:

7.20.4. Command-line & Ant Task Reference

wsconsume reference page

wsprovide reference page

wsrunclient reference page

7.20.5. JAX-WS binding customization

An introduction to binding customizations:

http://java.sun.com/webservices/docs/2.0/jaxws/customizations.html

The schema for the binding customization files can be found here:

binding customization

7.21. WEB SERVICE EXTENSIONS

7.21.1. WS-Addressing

This section describes how WS-Addressing can be used to provide a stateful service endpoint.

7.21.1.1. Specifications

WS-Addressing is defined by a combination of the following specifications from the W3C
Recommendation. The WS-Addressing API is standardized by JSR-224 - Java API for XML-Based Web
Services (JAX-WS)

Web Services Addressing 1.0 - Core

Web Services Addressing 1.0 - SOAP Binding

7.21.1.2. Addressing Endpoint

...
EchoService service = new EchoService();
Echo echo = service.getEchoPort();
  
/* Set NEW Endpoint Location */
String endpointURL = "http://NEW_ENDPOINT_URL";
BindingProvider bp = (BindingProvider)echo;
bp.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, 
endpointURL);
  
System.out.println("Server said: " + echo.echo(args[0]));
...
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NOTE

The following information should not be used in conjuction with JBoss Web Services
CXF Stack.

The following endpoint implementation has a set of operation for a typical stateful shopping chart
application.

It uses the JAX-WS 2.1 defined javax.xml.ws.soap.Addressing annotation to enable the server
side addressing handler.

7.21.1.3. Addressing Client

The client code uses javax.xml.ws.soap.AddressingFeature feature from JAX-WS 2.1 API to
enable the WS-Addressing.

A client connecting to the stateful endpoint

@WebService(name = "StatefulEndpoint", targetNamespace = 
"http://org.jboss.ws/samples/wsaddressing", serviceName = "TestService")
@Addressing(enabled=true, required=true)
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class StatefulEndpointImpl implements StatefulEndpoint, 
ServiceLifecycle
{
   @WebMethod
   public void addItem(String item)
   { ... }
  
   @WebMethod
   public void checkout()
   { ... }
  
   @WebMethod
   public String getItems()
   { ... }
}

Service service = Service.create(wsdlURL, serviceName);
port1 = (StatefulEndpoint)service.getPort(StatefulEndpoint.class,  new 
AddressingFeature());

public class AddressingStatefulTestCase extends JBossWSTest
{
   ...
   public void testAddItem() throws Exception
   {
      port1.addItem("Ice Cream");
      port1.addItem("Ferrari");
  
      port2.addItem("Mars Bar");
      port2.addItem("Porsche");
   }
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SOAP message exchange

Below you see the SOAP messages that are beeing exchanged.

   public void testGetItems() throws Exception
   {
      String items1 = port1.getItems();
      assertEquals("[Ice Cream, Ferrari]", items1);
  
      String items2 = port2.getItems();
      assertEquals("[Mars Bar, Porsche]", items2);
   }
}

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
<wsa:To>uri:jbossws-samples-wsaddr/TestService</wsa:To>
<wsa:Action>http://org.jboss.ws/addressing/stateful/action</wsa:Action>
<wsa:ReferenceParameters>
<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
</wsa:ReferenceParameters>
</env:Header>
<env:Body>
<ns1:addItem xmlns:ns1='http://org.jboss.ws/samples/wsaddr'>
<String_1>Ice Cream</String_1>
</ns1:addItem>
</env:Body>
</env:Envelope>
  
<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
<wsa:To>http://www.w3.org/2005/08/addressing/anonymous</wsa:To>
<wsa:Action>http://org.jboss.ws/addressing/stateful/actionReply</wsa:Actio
n>
<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
</env:Header>
<env:Body>
<ns1:addItemResponse xmlns:ns1='http://org.jboss.ws/samples/wsaddr'/>
</env:Body>
</env:Envelope>
  
...
  
<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
<wsa:To>uri:jbossws-samples-wsaddr/TestService</wsa:To>
<wsa:Action>http://org.jboss.ws/addressing/stateful/action</wsa:Action>
<wsa:ReferenceParameters>
<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
</wsa:ReferenceParameters>
</env:Header>
<env:Body>
<ns1:getItems xmlns:ns1='http://org.jboss.ws/samples/wsaddr'/>
</env:Body>
</env:Envelope>
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7.21.2. WS-Security

WS-Security addresses message level security. It standardizes authorization, encryption, and digital
signature processing of web services. Unlike transport security models, such as SSL, WS-Security
applies security directly to the elements of the web service message. This increases the flexibility of
your web services, by allowing any message model to be used (for example, point to point, or multi-hop
relay).

This chapter describes how to use WS-Security to sign and encrypt a simple SOAP message.

Specifications

WS-Security is defined by the combination of the following specifications:

SOAP Message Security 1.0

Username Token Profile 1.0

X.509 Token Profile 1.0

W3C XML Encryption

W3C XML Signature

Basic Security Profile 1.0 (Still in Draft)

7.21.2.1. Endpoint configuration

JBossWS uses handlers to identify ws-security encoded requests and invoke the security components
to sign and encrypt messages. In order to enable security processing, the client and server side must
include a corressponding handler configuration. The preferred way is to reference a predefined JAX-
WS Endpoint Configuration or JAX-WS Client Configuration respectively.

NOTE

You must setup both the endpoint configuration and the WSSE declarations. These are
two separate steps.

7.21.2.2. Server side WSSE declaration (jboss-wsse-server.xml)

In this example we configure both the client and the server to sign the message body. Both also require

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
<env:Header xmlns:wsa='http://schemas.xmlsoap.org/ws/2004/08/addressing'>
<wsa:To>http://www.w3.org/2005/08/addressing/anonymous</wsa:To>
<wsa:Action>http://org.jboss.ws/addressing/stateful/actionReply</wsa:Actio
n>
<ns1:clientid xmlns:ns1='http://somens'>clientid-1</ns1:clientid>
</env:Header>
<env:Body>
<ns1:getItemsResponse xmlns:ns1='http://org.jboss.ws/samples/wsaddr'>
<result>[Ice Cream, Ferrari]</result>
</ns1:getItemsResponse>
</env:Body>
</env:Envelope>
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this from each other. So, if you remove either the client or the server security deployment descriptor,
you will notice that the other party will throw a fault explaining that the message did not conform to
the proper security requirements.

1. This specifies that the key store we wish to use is WEB-INF/wsse.keystore, which is located
in our war file.

2. This specifies that the store password is "jbossws". Password can be encypted using the {EXT}
and {CLASS} commands. Please see samples for their usage.

3. This specifies that the trust store we wish to use is WEB-INF/wsse.truststore, which is
located in our war file.

4. This specifies that the trust store password is also "jbossws". Password can be encrypted
using the {EXT} and {CLASS} commands. Please see samples for their usage.

5. Here we start our root config block. The root config block is the default configuration for all
services in this war file.

6. This means that the server must sign the message body of all responses. Type means that we
are using X.509v3 certificate (a standard certificate). The alias option says that the certificate
and key pair to use for signing is in the key store under the "wsse" alias

7. Here we start our optional requires block. This block specifies all security requirements that
must be met when the server receives a message.

8. This means that all web services in this war file require the message body to be signed.

By default an endpoint does not use the WS-Security configuration. Users can use proprietary 
@EndpointConfig annotation to set the config name. See JAX-WS_Endpoint_Configuration for the
list of available config names.

<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.jboss.com/ws-security/config 
http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
(1)  <key-store-file>WEB-INF/wsse.keystore</key-store-file>
(2)  <key-store-password>jbossws</key-store-password>
(3)  <trust-store-file>WEB-INF/wsse.truststore</trust-store-file>
(4)  <trust-store-password>jbossws</trust-store-password>
(5)  <config>
(6)     <sign type="x509v3" alias="wsse"/>
(7)     <requires>
(8)        <signature/>
        </requires>
     </config>
</jboss-ws-security>

@WebService
@EndpointConfig(configName = "Standard WSSecurity Endpoint")
public class HelloJavaBean
{
...
}
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7.21.2.3. Client side WSSE declaration (jboss-wsse-client.xml)

1. Here we start our root config block. The root config block is the default configuration for all
web service clients (Call, Proxy objects).

2. This means that the client must sign the message body of all requests it sends. Type means
that we are to use a X.509v3 certificate (a standard certificate). The alias option says that the
certificate/key pair to use for signing is in the key store under the "wsse" alias

3. Here we start our optional requires block. This block specifies all security requirements that
must be met when the client receives a response.

4. This means that all web service clients must receive signed response messages.

7.21.2.3.1. Client side key store configuration

We did not specify a key store or trust store, because client apps instead use the wsse System
properties instead. If this was a web or ejb client (meaning a webservice client in a war or ejb jar file),
then we would have specified them in the client descriptor.

Here is an excerpt from the JBossWS samples:

SOAP message exchange

Below you see the incomming SOAP message with the details of the security headers ommited. The
idea is, that the SOAP body is still plain text, but it is signed in the security header and therefore can
not be manipulated in transit.

<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.jboss.com/ws-security/config 
http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
(1)  <config>
(2)     <sign type="x509v3" alias="wsse"/>
(3)     <requires>
(4)        <signature/>
        </requires>
     </config>
</jboss-ws-security>

<sysproperty key="org.jboss.ws.wsse.keyStore"
value="${tests.output.dir}/resources/jaxrpc/samples/wssecurity/wsse.keysto
re"/>
<sysproperty key="org.jboss.ws.wsse.trustStore" 
value="${tests.output.dir}/resources/jaxrpc/samples/wssecurity/wsse.trusts
tore"/>
<sysproperty key="org.jboss.ws.wsse.keyStorePassword" value="jbossws"/>
<sysproperty key="org.jboss.ws.wsse.trustStorePassword" value="jbossws"/>
<sysproperty key="org.jboss.ws.wsse.keyStoreType" value="jks"/>
<sysproperty key="org.jboss.ws.wsse.trustStoreType" value="jks"/>

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">
<env:Header>
<wsse:Security env:mustUnderstand="1" ...>
<wsu:Timestamp wsu:Id="timestamp">...</wsu:Timestamp>
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7.21.2.4. Installing the BouncyCastle JCE provider

The information below has originaly been provided by The Legion of the Bouncy Castle .

The provider can be configured as part of your environment via static registration by adding an entry
to the java.security properties file (found in 
$JAVA_HOME/jre/lib/security/java.security, where $JAVA_HOME is the location of your JDK
and JRE distribution). You will find detailed instructions in the file but basically it comes down to
adding a line:

Where <n> is the preference you want the provider at.

NOTE

Issues may arise if the Sun provided providers are not first.

Where users will put the provider jar is mostly up to them, although with jdk5 the best (and in some
cases only) place to have it is in $JAVA_HOME/jre/lib/ext. Under Windows there will normally be a
JRE and a JDK install of Java. If user think he have installed it correctly and it still doesn't work then
with high probability the provider installation is not used.

7.21.2.5. Username Token AuthenticationJBOSSCC-50

If you need to authenticate clients through a Username Token, the JAAS integration will verify the
received token against the configured JBoss JAAS Security Domain.

Example 7.1. Basic Username Token Configuration

To implement this feature, you must append a <jboss-ws-security> element to jboss-wsse-
client.xml that contains the following information.

<wsse:BinarySecurityToken ...>
...
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
...
</ds:Signature>
</wsse:Security>
</env:Header>
<env:Body wsu:Id="element-1-1140197309843-12388840" ...>
<ns1:echoUserType xmlns:ns1="http://org.jboss.ws/samples/wssecurity">
<UserType_1 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<msg>Kermit</msg>
</UserType_1>
</ns1:echoUserType>
</env:Body>
</env:Envelope>

 
security.provider.<n>=org.bouncycastle.jce.provider.BouncyCastleProvider

<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
                         xmlns:xsi="http://www.w3.org/2001/XMLSchema-
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Line (2) specifies that a <timestamp> element must be present in the message and that the
message can not be older than 300 seconds. The seconds limitation is used to prevent replay
attacks.

You must then specify the same <timestamp> element and seconds attribute in the jboss-
wsse-server.xml file so both headers match. You must also specify the <requires/> element to
enforce this condition.

WARNING

This example configuration results in simple text user information being sent in
SOAP headers. You should strongly consider implementing JBossWS Secure
Transport

Password Digest, Nonces, and Timestamp

Example 7.1, “Basic Username Token Configuration”  results in the client password being sent as plain
text. You can use a combination of digested passwords, nonces, and timestamps to provide further
protection from replay attacks.

To enable password digesting, you must implement the following items as described in Example 7.2,
“Enable Password Digesting”:

Example 7.2. Enable Password Digesting

instance"
                         xsi:schemaLocation="http://www.jboss.com/ws-
security/config 
                         http://www.jboss.com/ws-
security/schema/jboss-ws-security_1_0.xsd">
     <config>
(1)    <username/>
(2)    <timestamp ttl="300"/>
     </config>
</jboss-ws-security>

<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
                   xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
                   xsi:schemaLocation="http://www.jboss.com/ws-
security/config
                   http://www.jboss.com/ws-security/schema/jboss-ws-
security_1_0.xsd">
     <config>
          <timestamp ttl="300"/>
          <requires/>
     </config>
</jboss-ws-security>
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In the <username> element of the jboss-wsse-client.xml file:

enable the digestPassword attribute

enable the nonces and timestamps attributes.

In the login-config.xml file, you must also implement the UsernameTokenCallback module option.

Example 7.3. UsernameTokenCallback Module

You may wish to use a more sophisticated custom login module to provide more security against
replay attacks. You can use your own custom login module provided you implement the following:

plug the UsernameTokenCallback callback into your login module

extend the org.jboss.security.auth.spi.UsernamePasswordLoginModule

set the hash attributes (hashAlgorithm, hashEncoding, hashUserPassword, 
hashStorePassword) as shown in Example 7.3, “UsernameTokenCallback Module”.

<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://www.jboss.com/ws-security/config
    http://www.jboss.com/ws-security/schema/jboss-ws-security_1_0.xsd">
  <config>
(3)     <username digestPassword="true" useNonce="true" 
useCreated="true"/>
       <timestamp ttl="300"/>
  </config>
</jboss-ws-security>

<application-policy name="JBossWSDigest">
  <authentication>
    <login-module 
code="org.jboss.security.auth.spi.UsersRolesLoginModule" 
flag="required">
      <module-option name="usersProperties">META-INF/jbossws-
users.properties</module-option>
      <module-option name="rolesProperties">META-INF/jbossws-
roles.properties</module-option>
      <module-option name="hashAlgorithm">SHA</module-option>
      <module-option name="hashEncoding">BASE64</module-option>
      <module-option name="hashUserPassword">false</module-option>
      <module-option name="hashStorePassword">true</module-option>
      <module-option 
name="storeDigestCallback">org.jboss.ws.extensions.security.auth.callbac
k.UsernameTokenCallback</module-option>
      <module-option name="unauthenticatedIdentity">anonymous</module-
option>
    </login-module>
  </authentication>
</application-policy>
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Advanced Tuning - Nonce Factory

The way nonces are created, and subsequently checked and stored on the server side, influences
overall security against replay attacks. Currently JBossWS ships with a basic implementation of a
nonce store that does not cache the received tokens on the server side.

More complex implementation can be plugged into your modules by implementing the NonceFactory
and NonceStore interfaces. You can find these interfaces in the
org.jboss.ws.extensions.security.nonce package.

Once included, you specify your factory class through the <nonce-factory-class> element in the 
jboss-wsse-server.xml file.

Advanced Tuning - Timestamp Verification

If a Timestamp is present in the wsse:Security header, header verification does not allow for any
tolerance whatsoever in the time comparisons. If the message appears to have been created even
slightly in the future or if the message has just expired it will be rejected. A new element called
<timestamp-verification> is available for the wsse configuration. Example 7.4, “<timestamp-
verification> Configuration” describes the required attributes for the <timestamp-verification>
element.

Example 7.4. <timestamp-verification> Configuration

The <timestamp-verification> element attributes allow you to specify the tolerance in seconds that
is used when verifying the 'Created' or 'Expires' element of the 'Timestamp' header.

createdTolerance

Number of seconds in the future a message will be accepted. The default value is 0

expiresTolerance

Number of seconds a message is rejected after being classed as expired. The default value is 0.

warnCreated

Specifies whether to log a warning message if a message is accepted with a 'Created' value in the
future. The default value is true.

warnExpires

Specifies whether to log a warning message if a message is accepted with an 'Expired' value in
the past. The default value is true.

<jboss-ws-security xmlns='http://www.jboss.com/ws-security/config'
                   xmlns:xsi='http://www.w3.org/2001/XMLSchema-
instance'
                   xsi:schemaLocation='http://www.jboss.com/ws-
security/config     
                   http://www.jboss.com/ws-security/schema/jboss-ws-
security_1_0.xsd'>
  <timestamp-verification createdTolerance="5" warnCreated="false" 
expiresTolerance="10" warnExpires="false" />
</jboss-ws-security>
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NOTE

The warnCreated and warnExpires attributes can be used to identify accepted
messages that would normally be rejected. You can use this data to identify clients that
are out of sync with the server time, without rejecting the client messages.

7.21.2.5.1. Secure Transport

7.21.2.6. X509 Certificate TokenJBOSSCC-50

By using X509v3 certificates, you can both sign and encrypt messages.

Encryption

To configure encryption, you must specify the items in Example 7.5, “X509 Encryption Configuration”.
The configuration is the same for clients and servers.

Example 7.5. X509 Encryption Configuration

The server configuration includes the following encryption information:

1. Keystore and Truststore information: location of each store, the password, and type of
store.

2. Signature configuration: you must provide the certificate and key pair aliases to use. 
includeTimestamp specifies whether the timestamp is signed to prevent tampering.

<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
                   xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
                   xsi:schemaLocation="http://www.jboss.com/ws-
security/config
                   http://www.jboss.com/ws-security/schema/jboss-ws-
security_1_0.xsd">
(1) <key-store-file>WEB-INF/bob-sign_enc.jks</key-store-file>
    <key-store-password>password</key-store-password>
    <key-store-type>jks</key-store-type>
    <trust-store-file>WEB-INF/wsse10.truststore</trust-store-file>
    <trust-store-password>password</trust-store-password>

    <config>
     <timestamp ttl="300"/>
(2)     <sign type="x509v3" alias="1" includeTimestamp="true"/>
(3)     <encrypt type="x509v3"
              alias="alice"
              algorithm="aes-256"
              keyWrapAlgorithm="rsa_oaep"
              tokenReference="keyIdentifier" />
(4)         <requires>
            <signature/>
              <encryption/>      
            </requires>
    </config>
</jboss-ws-security>
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3. Encryption configuration: you must provide the certificate and key pair aliases to use. Refer
to Algorithms for more information.

4. Optional security requirements: incoming messages must be both signed, and encrypted.

Dynamic Encryption

When replying to multiple clients, a service provider must encrypt a message according to its
destination using the correct public key. The JBossWS native implementation of WS-Security obtains
the correct key to use from the signature received (and verified) in the incoming message.

Example 7.6. Dynamic Encryption Configuration

To configure dynamic encryption, do not specify any encryption alias on the server side (1), and
declare that a signature is required (2).

Algorithms

Asymmetric and symmetric encryption is performed whenever the <encrypt> element is declared.
Message data are encrypted using a generated symmetric secured key. This key is written in the SOAP
header after being encrypted (wrapped) with the receiver public key. You can set both the encryption
and key wrap algorithms.

The supported encryption algorithms include:

AES 128 (aes-128) (default)

<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
                   xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
                   xsi:schemaLocation="http://www.jboss.com/ws-
security/config
                   http://www.jboss.com/ws-security/schema/jboss-ws-
security_1_0.xsd">
    <key-store-file>WEB-INF/bob-sign_enc.jks</key-store-file>
    <key-store-password>password</key-store-password>
    <key-store-type>jks</key-store-type>
    <trust-store-file>WEB-INF/wsse10.truststore</trust-store-file>
    <trust-store-password>password</trust-store-password>

    <config>
     <timestamp ttl="300"/>
        <sign type="x509v3" alias="1" includeTimestamp="true"/>
(1)     <encrypt type="x509v3"
              algorithm="aes-256"
              keyWrapAlgorithm="rsa_oaep"
               tokenReference="keyIdentifier" />
            <requires>
(2)         <signature/>
              <encryption/>      
           </requires>
    </config>
</jboss-ws-security>
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AES 192 (aes-192)

AES 256 (aes-256)

Triple DES (triple-des)

The supported key-wrap algorithms include:

RSA v1.5 (rsa_15) (default)

RSA OAEP (rsa_oaep)

NOTE

The Unlimited Strength Java(TM) Cryptography Extension  installation might be
required to run some strong algorithms (for example, aes-256). Your country may
impose limitations on the allowed cryptographic strength in applications. It is your
responsibility to select the encryption level suitable for your jurisdiction.

Encryption Token Reference

For interoperability reasons, you may need to configure the type of reference to encryption token to
be used. For example, Microsoft Indigo does not support direct reference to local binary security
tokens which are the default reference type used by JBossWS.

To configure this reference, you specify the tokenReference attribute in the <encrypt> element. The
values for the tokenReference attribute are:

directReference (default)

keyIdentifier - specifies the token data by means of an X509 SubjectKeyIdentifier
reference.

x509IssuerSerial - uniquely identifies an end entity certificate by its X509 Issuer and
Serial Number

NOTE

Complete information about X509 Token Profiles are available in the WSS X501
Certificate Token Profile 1.0 document, which can be obtained from the Oasis.org docs
portal.

Targets Configuration

JBossWS gives you precise control over elements that must be signed or encrypted. This allows you to
encrypt important data only (such as credit card numbers) instead of other, security-trivial,
information exchanged by the same service (email addresses, for example). To configure this, you must
specify the Qualified Name (qname) of the SOAP elements to encrypt. The default behavior is to
encrypt the whole SOAP body.

<encrypt type="x509v3" alias="alice">
  <targets>
    <target type="qname">{http://www.my-company.com/cc}CardNumber</target>
    <target type="qname">{http://www.my-
company.com/cc}CardExpiration</target>
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Payload Carriage Returns

Signature verification errors can occur in signed message payloads that contain carriage returns (\r)
due to the way the special character is parsed by XML parsers. To prevent this issue, you can choose to
implement custom encoding before sending the payload. Users can either encrypt the message, or
force JBossWS to perform canonical normalization of messages.

The org.jboss.ws.DOMContentCanonicalNormalization property can normalize the payload if set to 
true in the MessageContext. The property must be set just before the invocation on the client side and
in the endpoint implementation.

7.21.2.7. JAAS IntegrationJBOSSCC-50

The WS-Security implementation allows users to achieve J2EE declarative security through JAAS
integration. The calling user's identity and credentials are derived from the wsse headers of the
incoming message, according to the parameters provided in the server wsse configuration file.
Authentication and authorization is subsequently achieved delegating to the JAAS login modules
configured for the specified security domain.

Username Token

Username Token Profile provides a mean of specifying the caller's username and password. The wsse
server configuration file can be used to have those information used when performing authentication
and authorization through configured login module.

NOTE

Prior to JBossWs 3.0.2 Native the username token was always used to set principal and
credential of the caller whenever specified. This means that for backward compatibility
reasons, this behavior is obtained also when no authenticate tag at all is specified and
the username token is used.

X.509 Certificate Token

In previous versions of JBossWS, the username token was always used to set the principal and
credential of the caller whenever specified. This behavior is retained for backward compatibility
reasons where no <authenticate> element is specified and the username token is used.

    <target type="qname" contentOnly="true">{http://www.my-
company.com/cc}CustomerData</target>
  </targets>
</encrypt>

<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://www.jboss.com/ws-security/config
                      http://www.jboss.com/ws-security/schema/jboss-ws-
security_1_0.xsd">
  <config>
    <username/>
    <authenticate>
      <usernameAuth/>
    </authenticate>
  </config>
</jboss-ws-security>
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The optional certificatePrincipal attribute (1) specifies the class used to retrieve the principal
from the X.509 certificate's attributes. The selected class must extend CertificatePrincipal. The
default class used when no attribute is specified is 
org.jboss.security.auth.certs.SubjectDNMapping.

The configured security domain must have a correctly configured BaseCertLoginModule, as described
in Example 7.7, “BaseCertLoginModule Security Domain” .

Example 7.7. BaseCertLoginModule Security Domain

The following code sample shows a security domain with a CertRolesLoginModule that also
enables authorization (using the specified jbossws-roles.properties file).

The BaseCertLoginModule uses a central keystore to authenticate users. This store is configured
through the org.jboss.security.plugins.JaasSecurityDomain MBean as shown in
Example 7.8, “BaseCertLoginModule Keystore”.

<jboss-ws-security xmlns="http://www.jboss.com/ws-security/config"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://www.jboss.com/ws-security/config
                      http://www.jboss.com/ws-security/schema/jboss-ws-
security_1_0.xsd">
  <key-store-file>META-INF/bob-sign.jks</key-store-file>
  <key-store-password>password</key-store-password>
  <key-store-type>jks</key-store-type>
  <trust-store-file>META-INF/wsse10.truststore</trust-store-file>
  <trust-store-password>password</trust-store-password>
  <config>
    <sign type="x509v3" alias="1" includeTimestamp="false"/>
    <requires>
      <signature/>
    </requires>
    <authenticate>
(1)   <signatureCertAuth 
certificatePrincipal="org.jboss.security.auth.certs.SubjectCNMapping"/>
    </authenticate>
  </config>
</jboss-ws-security>

<application-policy name="JBossWSCert">
  <authentication>
    <login-module 
code="org.jboss.security.auth.spi.CertRolesLoginModule" flag="required">
      <module-option name="rolesProperties">jbossws-
roles.properties</module-option>
      <module-option name="unauthenticatedIdentity">anonymous</module-
option>
      <module-option 
name="securityDomain">java:/jaas/JBossWSCert</module-option>
    </login-module>
  </authentication>
</application-policy>
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Example 7.8. BaseCertLoginModule Keystore

At authentication time, the specified CertificatePrincipal mapping class accesses the keystore
using the principal obtained from the associated wsse header. If a certificate is found and is the same
as the one specified in the wsse header, the user is successfully authenticated.

7.21.2.8. POJO Endpoint Authentication and Authorization JBOSSCC-50

The credentials obtained by WS-Security are generally used for EJB endpoints, or for POJO endpoints
when they make a call to another secured resource. It is now possible to enable authentication and
authorization checking for POJO endpoints.

IMPORTANT

Authentication and Authorization should not be enabled for EJB based endpoints
because the EJB container handles the security requirements of the deployed bean.

Procedure 7.1. Enabling POJO Authentication and Authorization

This procedure describes the additional configuration required to enable authentication and
authorization for POJO endpoints.

1. Define Security Domain in Web Archive
You must define a security domain in the WAR containing the POJO.

Specify a <security-domain> in the jboss-web deployment descriptor within the /WEB-INF
folder.

2. Configure the jboss-wsse-server.xml <authorize> element
Specify an <authorize> element within the <config> element.

The <config> element can be defined globally, be port-specific, or operation-specific.

The <authorize> element must contain either the <unchecked/> element or one or more
<role> elements. Each <role> element must contain the name of a valid RoleName.

You can choose to implement two types of authentication: unchecked, and role-based
authentication.

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
       name="jboss.security:service=SecurityDomain">
  <constructor>
    <arg type="java.lang.String" value="JBossWSCert"/>
  </constructor>
  <attribute name="KeyStoreURL">resource:META-
INF/keystore.jks</attribute>
  <attribute name="KeyStorePass">password</attribute>
  <depends>jboss.security:service=JaasSecurityManager</depends>
</mbean>

<jboss-web>
  <security-domain>java:/jaas/JBossWS</security-domain>
</jboss-web>

Administration And Configuration Guide

100



Unchecked Authentication

The authentication step is performed to validate the user's username and password, but no
further role checking takes place. If the user's username and password are invalid, the request
is rejected.

Example 7.9. Unchecked Authentication

Role-based Authentication

The user is authenticated using their username and password as per Unchecked
Authentication. Once the user's username and password is verified, user credentials are
checked again to ensure at least of of the roles specified in the <role> element is assigned to
the user.

NOTE

Authentication and authorization proceeds even if no username and password,
or certificate was provided in the request message. In this scenario,
authentication may proceed if the security domain's login module has been
configured with an anonymous identity.

Example 7.10. Role-based Authentication

7.21.3. XML Registries

J2EE 5.0 mandates support for Java API for XML Registries (JAXR). Inclusion of a XML Registry with
the J2EE 5.0 certified Application Server is optional. JBoss EAP ships a UDDI v2.0 compliant registry,
the Apache jUDDI registry. JAXR Capability Level 0 (UDDI Registries) is also supported through
Apache Scout integration.

<jboss-ws-security>
  
  <config>
    <authorize>      
      <unchecked/>
    </authorize>
  </config>
  
</jboss-ws-security>

<jboss-ws-security>
  
  <config>
    <authorize>      
      <role>friend</role>
      <role>family</role>
    </authorize>
  </config>
  
</jboss-ws-security>
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Section 7.21.3, “XML Registries” describes how to configure the jUDDI registry in JBoss and some
sample code outlines for using JAXR API to publish and query the jUDDI registry.

7.21.3.1. Apache jUDDI Configuration

jUDDI registry configuration happens via a MBean Service that is deployed in the juddi-
service.sar archive in the "all" configuration. The configuration of this service can be done in the 
jboss-service.xml of the META-INF directory in the juddi-service.sar

Let us look at the individual configuration items that can be changed.

DataSources configuration

Database Tables (Should they be created on start, Should they be dropped on stop, Should they be
dropped on start etc)

JAXR Connection Factory to be bound in JNDI. (Should it be bound? and under what name?)

Other common configuration:

Add authorized users to access the jUDDI registry. (Add a sql insert statement in a single line)

7.21.3.2. JBoss JAXR Configuration

In this section, we will discuss the configuration needed to run the JAXR API. The JAXR configuration
relies on System properties passed to the JVM. The System properties that are needed are:

<!-- Datasource to Database -->
<attribute name="DataSourceUrl">java:/DefaultDS</attribute>

<!-- Should all tables be created on Start-->
<attribute name="CreateOnStart">false</attribute>
<!-- Should all tables be dropped on Stop-->
<attribute name="DropOnStop">true</attribute>
<!-- Should all tables be dropped on Start-->
<attribute name="DropOnStart">false</attribute>

<!-- Should I bind a Context to which JaxrConnectionFactory bound-->
<attribute name="ShouldBindJaxr">true</attribute>
  
<!-- Context to which JaxrConnectionFactory to bind to. If you have remote 
clients, please bind it to the global namespace(default behavior). 
To just cater to clients running on the same VM as JBoss, change to 
java:/JAXR -->
<attribute name="BindJaxr">JAXR</attribute>

 
Look at the script META-INF/ddl/juddi_data.ddl for more details. Example 
for a user 'jboss'
  
INSERT INTO PUBLISHER (PUBLISHER_ID,PUBLISHER_NAME,
EMAIL_ADDRESS,IS_ENABLED,IS_ADMIN) 
VALUES ('jboss','JBoss User','jboss@xxx','true','true');
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Please remember to change the hostname from "localhost" to the hostname of the UDDI
service/JBoss Server.

You can pass the System Properties to the JVM in the following ways:

When the client code is running inside JBoss (maybe a servlet or an EJB). Then you will need
to pass the System properties in the run.sh or run.bat scripts to the java process via the "-
D" option.

When the client code is running in an external JVM. Then you can pass the properties either as
"-D" options to the java process or explicitly set them in the client code(not recommended).

7.21.3.3. JAXR Sample Code

There are two categories of API: JAXR Publish API and JAXR Inquiry API. The important JAXR
interfaces that any JAXR client code will use are the following.

javax.xml.registry.RegistryService From J2EE 5.0 JavaDoc: "This is the principal interface
implemented by a JAXR provider. A registry client can get this interface from a Connection to a
registry. It provides the methods that are used by the client to discover various capability
specific interfaces implemented by the JAXR provider."

javax.xml.registry.BusinessLifeCycleManager From J2EE 5.0 JavaDoc: "The 
BusinessLifeCycleManager interface, which is exposed by the Registry Service,
implements the life cycle management functionality of the Registry as part of a business level
API. There is no authentication information provided, because the Connection interface keeps
that state and context on behalf of the client."

javax.xml.registry.BusinessQueryManager From J2EE 5.0 JavaDoc: "The 
BusinessQueryManager interface, which is exposed by the Registry Service, implements the
business style query interface. It is also referred to as the focused query interface."

Let us now look at some of the common programming tasks performed while using the JAXR API:

Getting a JAXR Connection to the registry.

 
javax.xml.registry.ConnectionFactoryClass=org.apache.ws.scout.registry.
ConnectionFactoryImpl 
jaxr.query.url=http://localhost:8080/juddi/inquiry 
jaxr.publish.url=http://localhost:8080/juddi/publish
scout.proxy.transportClass=org.jboss.jaxr.scout.transport.SaajTransport

 
System.setProperty(propertyname, propertyvalue);

String queryurl = System.getProperty("jaxr.query.url", 
"http://localhost:8080/juddi/inquiry");
String puburl = System.getProperty("jaxr.publish.url", 
"http://localhost:8080/juddi/publish");
.. 
Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL", queryurl);
props.setProperty("javax.xml.registry.lifeCycleManagerURL", puburl);
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Authentication with the registry.

Save a Business

String transportClass = System.getProperty("scout.proxy.transportClass", 
"org.jboss.jaxr.scout.transport.SaajTransport");
System.setProperty("scout.proxy.transportClass", transportClass);
  
// Create the connection, passing it the configuration properties
factory = ConnectionFactory.newInstance();
factory.setProperties(props);
connection = factory.createConnection();

/**
 * Does authentication with the uddi registry
 */
protected void login() throws JAXRException
{
   PasswordAuthentication passwdAuth = new PasswordAuthentication(userid, 
passwd.toCharArray());
   Set creds = new HashSet();
   creds.add(passwdAuth);
  
   connection.setCredentials(creds);
}

/**
 * Creates a Jaxr Organization with 1 or more services
 */
protected Organization createOrganization(String orgname) throws 
JAXRException
{
   Organization org = blm.createOrganization(getIString(orgname));
   org.setDescription(getIString("JBoss Inc"));
   Service service = blm.createService(getIString("JBOSS JAXR Service"));
   service.setDescription(getIString("Services of XML Registry"));
   //Create serviceBinding
   ServiceBinding serviceBinding = blm.createServiceBinding();
   serviceBinding.setDescription(blm.createInternationalString("Test 
Service Binding"));
  
   //Turn validation of URI off
   serviceBinding.setValidateURI(false);
   serviceBinding.setAccessURI("http://testjboss.org");
   ...
   // Add the serviceBinding to the service
   service.addServiceBinding(serviceBinding);
  
   User user = blm.createUser();
   org.setPrimaryContact(user);
   PersonName personName = blm.createPersonName("Anil S");
   TelephoneNumber telephoneNumber = blm.createTelephoneNumber();
   telephoneNumber.setNumber("111-111-7777");
   telephoneNumber.setType(null);
   PostalAddress address = blm.createPostalAddress("111", "My Drive", 
"BuckHead", "GA", "USA", "1111-111", "");
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Query a Business

   Collection postalAddresses = new ArrayList();
   postalAddresses.add(address);
   Collection emailAddresses = new ArrayList();
   EmailAddress emailAddress = blm.createEmailAddress("anil@apache.org");
   emailAddresses.add(emailAddress);
  
   Collection numbers = new ArrayList();
   numbers.add(telephoneNumber);
   user.setPersonName(personName);
   user.setPostalAddresses(postalAddresses);
   user.setEmailAddresses(emailAddresses);
   user.setTelephoneNumbers(numbers);
  
   ClassificationScheme cScheme = getClassificationScheme("ntis-
gov:naics", "");
   Key cKey = blm.createKey("uuid:C0B9FE13-324F-413D-5A5B-2004DB8E5CC2");
   cScheme.setKey(cKey);
   Classification classification = blm.createClassification(cScheme, 
"Computer Systems Design and Related Services", "5415");
   org.addClassification(classification);
   ClassificationScheme cScheme1 = getClassificationScheme("D-U-N-S", "");
   Key cKey1 = blm.createKey("uuid:3367C81E-FF1F-4D5A-B202-3EB13AD02423");
   cScheme1.setKey(cKey1);
   ExternalIdentifier ei = blm.createExternalIdentifier(cScheme1, "D-U-N-S 
number", "08-146-6849");
   org.addExternalIdentifier(ei);
   org.addService(service);

   return org;
}

/**
 * Locale aware Search a business in the registry
 */
public void searchBusiness(String bizname) throws JAXRException
{
   try
   {
      // Get registry service and business query manager
      this.getJAXREssentials();
  
      // Define find qualifiers and name patterns
      Collection findQualifiers = new ArrayList();
      findQualifiers.add(FindQualifier.SORT_BY_NAME_ASC);
      Collection namePatterns = new ArrayList();
      String pattern = "%" + bizname + "%";
      LocalizedString ls = blm.createLocalizedString(Locale.getDefault(), 
pattern);
      namePatterns.add(ls);
  
      // Find based upon qualifier type and values
      BulkResponse response = bqm.findOrganizations(findQualifiers, 
namePatterns, null, null, null, null);
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For more examples of code using the JAXR API, please refer to the resources in the Resources
Section.

7.21.3.4. Troubleshooting

I cannot connect to the registry from JAXR.  Please check the inquiry and publish url passed
to the JAXR ConnectionFactory.

I cannot connect to the jUDDI registry.  Please check the jUDDI configuration and see if there
are any errors in the server.log. And also remember that the jUDDI registry is available only in
the "all" configuration.

I cannot authenticate to the jUDDI registry.  Have you added an authorized user to the jUDDI
database, as described earlier in the chapter?

I would like to view the SOAP messages in transit between the client and the UDDI Registry.
Please use the tcpmon tool to view the messages in transit. TCPMon

7.21.3.5. Resources

JAXR Tutorial and Code Camps

J2EE 1.4 Tutorial

J2EE Web Services by Richard Monson-Haefel

7.22. JBOSSWS EXTENSIONS

      // check how many organisation we have matched
      Collection orgs = response.getCollection();
      if (orgs == null)
      {
         log.debug(" -- Matched 0 orgs");
      }
      else
      {
         log.debug(" -- Matched " + orgs.size() + " organizations -- ");
  
         // then step through them
         for (Iterator orgIter = orgs.iterator(); orgIter.hasNext();)
         {
            Organization org = (Organization)orgIter.next();
            log.debug("Org name: " + getName(org));
            log.debug("Org description: " + getDescription(org));
            log.debug("Org key id: " + getKey(org));
            checkUser(org);
            checkServices(org);
         }
      }
   }
   finally
   {
      connection.close();
   }
}
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This section describes propriatary JBoss extensions to JAX-WS.

7.22.1. Proprietary Annotations

For the set of standard annotations, please have a look at JAX-WS Annotations

7.22.1.1. EndpointConfig

7.22.1.2. WebContext

/**
 * Defines an endpoint or client configuration. 
 * This annotation is valid on an endpoint implementaion bean or a SEI.
 */
@Retention(value = RetentionPolicy.RUNTIME)
@Target(value = { ElementType.TYPE })
public @interface EndpointConfig
{
   ... 
   /**
    * The optional config-name element gives the configuration name that 
must be present in
    * the configuration given by element config-file.
    * 
    * Server side default: Standard Endpoint
    * Client side default: Standard Client
    */
   String configName() default "";
   ...
   /**
    * The optional config-file element is a URL or resource name for the 
configuration.
    *
    * Server side default: standard-jaxws-endpoint-config.xml
    * Client side default: standard-jaxws-client-config.xml
    */
   String configFile() default "";
}

/**
 * Provides web context specific meta data to EJB based web service 
endpoints.
 *
 * @author thomas.diesler@jboss.org
 * @since 26-Apr-2005
 */
@Retention(value = RetentionPolicy.RUNTIME)
@Target(value = { ElementType.TYPE })
public @interface WebContext
{
   ... 
   /** 
    * The contextRoot element specifies the context root that the web 
service endpoint is deployed to.
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    * If it is not specified it will be derived from the deployment short 
name.
    * 
    * Applies to server side port components only. 
    */
   String contextRoot() default "";
   ...
   /** 
    * The virtual hosts that the web service endpoint is deployed to.
    * 
    * Applies to server side port components only.
    */
   String[] virtualHosts() default {};
    
   /** 
    * Relative path that is appended to the contextRoot to form fully 
qualified
    * endpoint address for the web service endpoint.
    * 
    * Applies to server side port components only. 
    */
   String urlPattern() default "";
    
   /**
    * The authMethod is used to configure the authentication mechanism for 
the web service. 
    * As a prerequisite to gaining access to any web service which are 
protected by an authorization
    * constraint, a user must have authenticated using the configured 
mechanism.
    *
    * Legal values for this element are "BASIC", or "CLIENT-CERT".
    */
   String authMethod() default "";
   
   /**
    * The transportGuarantee specifies that the communication
    * between client and server should be NONE, INTEGRAL, or
    * CONFIDENTIAL. NONE means that the application does not require any
    * transport guarantees. A value of INTEGRAL means that the application
    * requires that the data sent between the client and server be sent in
    * such a way that it can't be changed in transit. CONFIDENTIAL means
    * that the application requires that the data be transmitted in a
    * fashion that prevents other entities from observing the contents of
    * the transmission. In most cases, the presence of the INTEGRAL or
    * CONFIDENTIAL flag will indicate that the use of SSL is required.
    */
   String transportGuarantee() default "";
    
   /**
    * A secure endpoint does not by default publish it's wsdl on an 
unsecure transport.
    * You can override this behaviour by explicitly setting the 
secureWSDLAccess flag to false.
    * 
    * Protect access to WSDL. See http://jira.jboss.org/jira/browse/JBWS-
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7.22.1.3. SecurityDomain

7.23. WEB SERVICES APPENDIX

NOTE

This information can be used with JBoss Web Services CXF Stack.

JAX-WS Endpoint Configuration

JAX-WS Client Configuration

JAX-WS Annotations

7.24. REFERENCES

1. JSR-224 - Java API for XML-Based Web Services (JAX-WS) 2.0

2. JSR 222 - Java Architecture for XML Binding (JAXB) 2.0

3. JSR-250 - Common Annotations for the Java Platform

4. JSR 181 - Web Services Metadata for the Java Platform

723   
    */
   boolean secureWSDLAccess() default true;
}

/**
 * Annotation for specifying the JBoss security domain for an EJB
 */
@Target(ElementType.TYPE) @Retention(RetentionPolicy.RUNTIME)
public @interface SecurityDomain
{
   /**
    * The required name for the security domain.
    * 
    * Do not use the JNDI name
    * 
    *    Good: "MyDomain"
    *    Bad:  "java:/jaas/MyDomain"
    */
   String value();
   
   /**
    * The name for the unauthenticated pricipal
    */
   String unauthenticatedPrincipal() default "";
}
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CHAPTER 8. JBOSS AOP
JBoss AOP is a 100% Pure Java Aspected Oriented Framework usable in any programming
environment or tightly integrated with our application server. Aspects allow you to more easily
modularize your code base when regular object oriented programming just doesn't fit the bill. It can
provide a cleaner separation from application logic and system code. It provides a great way to expose
integration points into your software. Combined with JDK 1.5 Annotations, it also is a great way to
expand the Java language in a clean pluggable way rather than using annotations solely for code
generation.

JBoss AOP is not only a framework, but also a prepackaged set of aspects that are applied via
annotations, pointcut expressions, or dynamically at runtime. Some of these include caching,
asynchronous communication, transactions, security, remoting, and many many more.

An aspect is a common feature that is typically scattered across methods, classes, object hierarchies,
or even entire object models. It is behavior that looks and smells like it should have structure, but you
can't find a way to express this structure in code with traditional object-oriented techniques.

For example, metrics is one common aspect. To generate useful logs from your application, you have to
(often liberally) sprinkle informative messages throughout your code. However, metrics is something
that your class or object model really shouldn't be concerned about. After all, metrics is irrelevant to
your actual application: it doesn't represent a customer or an account, and it doesn't realize a business
rule. It's simply orthogonal.

8.1. SOME KEY TERMS

Joinpoint

A joinpoint is any point in your Java program. The call of a method, the execution of a constructor, the
access of a field; all these are joinpoints. You could also think of a joinpoint as a particular Java event,
where an event is a method call, constructor call, field access, etc.

Invocation

An invocation is a JBoss AOP class that encapsulates what a joinpiont is at runtime. It could contain
information like which method is being called, the arguments of the method, etc.

Advice

An advice is a method that is called when a particular joinpoint is executed, such as the behavior that is
triggered when a method is called. It could also be thought of as the code that performs the
interception. Another analogy is that an advice is an "event handler".

Pointcut

Pointcuts are AOP's expression language. Just as a regular expression matches strings, a pointcut
expression matches a particular joinpoint.

Introduction

An introduction modifies the type and structure of a Java class. It can be used to force an existing class
to implement an interface or to add an annotation to anything.

Aspect

An aspect is a plain Java class that encapsulates any number of advices, pointcut definitions, mixins, or
any other JBoss AOP construct.

Interceptor
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An interceptor is an aspect with only one advice, named invoke. It is a specific interface that you can
implement if you want your code to be checked by forcing your class to implement an interface. It also
will be portable and can be reused in other JBoss environments like EJBs and JMX MBeans.

In AOP, a feature like metrics is called a crosscutting concern, as it is a behavior that "cuts" across
multiple points in your object models, yet is distinctly different. As a development methodology, AOP
recommends that you abstract and encapsulate crosscutting concerns.

For example, let's say you wanted to add code to an application to measure the amount of time it would
take to invoke a particular method. In plain Java, the code would look something like the following.

While this code works, there are a few problems with this approach:

1. It's extremely difficult to turn metrics on and off, as you have to manually add the code in the 
try/finally blocks to each and every method or constructor you want to benchmark.

2. Profiling code should not be combined with your application code. It makes your code more
verbose and difficult to read, since the timings must be enclosed within the try/finally
blocks.

3. If you wanted to expand this functionality to include a method or failure count, or even to
register these statistics to a more sophisticated reporting mechanism, you'd have to modify a
lot of different files (again).

This approach to metrics is very difficult to maintain, expand, and extend, because it is dispersed
throughout your entire code base. In many cases, OOP may not always be the best way to add metrics
to a class.

Aspect-oriented programming gives you a way to encapsulate this type of behavior functionality. It
allows you to add behavior such as metrics "around" your code. For example, AOP provides you with
programmatic control to specify that you want calls to BankAccountDAO to go through a metrics
aspect before executing the actual body of that code.

8.2. CREATING ASPECTS IN JBOSS AOP

In short, all AOP frameworks define two things: a way to implement crosscutting concerns, and a
programmatic construct — a programming language or a set of tags to specify how you want to apply
those snippets of code. Let's take a look at how JBoss AOP, its cross-cutting concerns, and how you
can implement a metrics aspect in JBoss Enterprise Application Platform.

public class BankAccountDAO
{
 public void withdraw(double amount)
 {
  long startTime = System.currentTimeMillis();
  try
  {
   // Actual method body...
  }
  finally
  {
   long endTime = System.currentTimeMillis() - startTime;
   System.out.println("withdraw took: " + endTime);
  }
 }
}
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The first step in creating a metrics aspect in JBoss AOP is to encapsulate the metrics feature in its
own Java class. The following code extracts the try/finally block in our first code example's 
BankAccountDAO.withdraw() method into Metrics, an implementation of a JBoss AOP
Interceptor class.

The following example code demonstrates implementing metrics in a JBoss AOP Interceptor

Under JBoss AOP, the Metrics class wraps withdraw(): when calling code invokes withdraw(), the
AOP framework breaks the method call into its parts and encapsulates those parts into an Invocation
object. The framework then calls any aspects that sit between the calling code and the actual method
body.

When the AOP framework is done dissecting the method call, it calls Metrics's invoke method at line
3. Line 8 wraps and delegates to the actual method and uses an enclosing try/finally block to
perform the timings. Line 13 obtains contextual information about the method call from the 
Invocation object, while line 14 displays the method name and the calculated metrics.

Having the Metrics code within its own object allows us to easily expand and capture additional
measurements later on. Now that metrics are encapsulated into an aspect, let's see how to apply it.

8.3. APPLYING ASPECTS IN JBOSS AOP

To apply an aspect, you define when to execute the aspect code. Those points in execution are called
pointcuts. An analogy to a pointcut is a regular expression. Where a regular expression matches strings,
a pointcut expression matches events or points within your application. For example, a valid pointcut
definition would be, "for all calls to the JDBC method executeQuery(), call the aspect that verifies
SQL syntax."

An entry point could be a field access, or a method or constructor call. An event could be an exception
being thrown. Some AOP implementations use languages akin to queries to specify pointcuts. Others
use tags. JBoss AOP uses both.

The following listing demonstrates defining a pointcut for the Metrics example in JBoss AOP:

01. public class Metrics implements org.jboss.aop.advice.Interceptor
02. {
03.   public Object invoke(Invocation invocation) throws Throwable
04.   {
05.     long startTime = System.currentTimeMillis();
06.     try
07.     {
08.       return invocation.invokeNext();
09.     }
10.     finally
11.     {
12.       long endTime = System.currentTimeMillis() - startTime;
13.       java.lang.reflect.Method m = 
((MethodInvocation)invocation).method;
14.       System.out.println("method " + m.toString() + " time: " + 
endTime + "ms");
15.     }
16.   }
17. }

1. <bind pointcut="public void com.mc.BankAccountDAO->withdraw(double 
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Lines 1-3 define a pointcut that applies the metrics aspect to the specific method 
BankAccountDAO.withdraw(). Lines 4-6 define a general pointcut that applies the metrics aspect
to all methods in all classes in the com.mc.billing package. There is also an optional annotation
mapping if you prefer to avoid XML. For more information, see the JBoss AOP reference
documentation.

JBoss AOP has a rich set of pointcut expressions that you can use to define various points or events in
your Java application. Once your points are defined, you can apply aspects to them. You can attach
your aspects to a specific Java class in your application or you can use more complex compositional
pointcuts to specify a wide range of classes within one expression.

With AOP, as this example shows, you can combine all crosscutting behavior into one object and apply
it easily and simply, without complicating your code with features unrelated to business logic. Instead,
common crosscutting concerns can be maintained and extended in one place.

Note that code within the BankAccountDAO class does not detect that it is being profiled. Profiling is
part of what aspect-oriented programmers deem orthogonal concerns. In the object-oriented
programming code snippet at the beginning of this chapter, profiling was part of the application code.
AOP allows you to remove that code. A modern promise of middleware is transparency, and AOP
clearly delivers.

Orthogonal behavior can also be included after development. In object-oriented code, monitoring and
profiling must be added at development time. With AOP, a developer or an administrator can easily add
monitoring and metrics as needed without touching the code. This is a very subtle but significant part
of AOP, as this separation allows aspects to be layered on top of or below the code that they cut
across. A layered design allows features to be added or removed at will. For instance, perhaps you snap
on metrics only when you're doing some benchmarks, but remove it for production. With AOP, this can
be done without editing, recompiling, or repackaging the code.

8.4. PACKAGING AOP APPLICATIONS

To deploy an AOP application in JBoss Enterprise Application Platform you need to package it. AOP is
packaged similarly to SARs (MBeans). You can either deploy an XML file directly in the deploy/
directory with the signature *-aop.xml along with your package (this is how the base-aop.xml,
included in the jboss-aop.deployer file works) or you can include it in the JAR file containing your
classes. If you include your XML file in your JAR, it must have the file extension .aop and a jboss-
aop.xml file must be contained in a META-INF directory, for instance: META-INF/jboss-aop.xml.

In the JBoss Enterprise Application Platform 5, you must specify the schema used, otherwise your
information will not be parsed correctly. You do this by adding the xmlns="urn:jboss:aop-
beans:1:0 attribute to the root aop element, as shown here:

If you want to create anything more than a non-trivial example, using the .aop JAR files, you can
make any top-level deployment contain an AOP file containing the XML binding configuration. For

amount)">
2.       <interceptor class="com.mc.Metrics"/>
3. </bind >
    
4. <bind pointcut="* com.mc.billing.*->*(..)">
5.       <interceptor class="com.mc.Metrics"/>
6. </bind >

<aop xmlns="urn:jboss:aop-beans:1.0">
</aop>
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instance you can have an AOP file in an EAR file, or an AOP file in a WAR file. The bindings specified in
the META-INF/jboss-aop.xml file contained in the AOP file will affect all the classes in the whole
WAR file.

To pick up an AOP file in an EAR file, it must be listed in the .ear/META-INF/application.xml as a
Java module, as follows:

IMPORTANT

In the JBoss Enterprise Application Platform 5, the contents of the .ear file are
deployed in the order they are listed in the application.xml. When using loadtime
weaving the bindings listed in the example.aop file must be deployed before the
classes being advised are deployed, so that the bindings exist in the system before (for
example) the ejb and servlet classes are loaded. This is acheived by listing the AOP
file at the start of the application.xml. Other types of archives are deployed before
anything else and so do not require special consideration, such as .sar and .war files.

8.5. THE JBOSS ASPECTMANAGER SERVICE

The AspectManager Service can be managed at runtime using the JMX console, which is found at 
http://localhost:8080/jmx-console. It is registered under the ObjectName 
jboss.aop:service=AspectManager. If you want to configure it on startup you need to edit some
configuration files.

In JBoss Enterprise Application Platform 5 the AspectManager Service is configured using a JBoss
Microcontainer bean. The configuration file is jboss-as/server/xxx/conf/bootstrap/aop.xml.
The AspectManager Service is deployed with the following XML:

<?xml version='1.0'  encoding='UTF-8'?>
<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD J2EE 
Application 1.2//EN''http://java.sun.com/j2ee/dtds/application_1_2.dtd'>
 
<application>
    <display-name>AOP in JBoss example</display-name>
    <module>
        <java>example.aop</java>
    </module>
    <module>
        <ejb>aopexampleejb.jar</ejb>
    </module>
    <module>
        <web>
            <web-uri>aopexample.war</web-uri>
            <context-root>/aopexample</context-root>
        </web>
    </module>
</application>

    <bean name="AspectManager" 
class="org.jboss.aop.deployers.AspectManagerJDK5">
     
    <property name="jbossIntegration"><inject bean="AOPJBossIntegration"/>
</property>
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Later we will talk about changing the class of the AspectManager Service. To do this, replace the
contents of the class attribute of the bean element.

8.6. LOADTIME TRANSFORMATION IN THE JBOSS ENTERPRISE
APPLICATION PLATFORM USING SUN JDK

The JBoss Enterprise Application Platform has special integration with JDK to do loadtime
transformations. This section explains how to use it.

If you want to do load-time transformations with JBoss Enterprise Application Platform 5 and Sun
JDK, these are the steps you must take.

Set the enableLoadtimeWeaving attribute/property to true. By default, JBoss Application
Server will not do load-time bytecode manipulation of AOP files unless this is set. If 
suppressTransformationErrors is true, failed bytecode transformation will only give an
error warning. This flag is needed because sometimes a JBoss deployment will not include all
of the classes referenced.

                               
    <property name="enableLoadtimeWeaving">false</property>
    <!-- only relevant when EnableLoadtimeWeaving is true.
    When transformer is on, every loaded class gets transformed.
    If AOP can't find the class, then it throws an exception.  
    Sometimes, classes may not have all the classes they reference.  
    So, the Suppressing is needed.  (For instance, JBoss cache in the 
default configuration) -->
    
    <property name="suppressTransformationErrors">true</property>
    
    <property name="prune">true</property>
    
    <property name="include">org.jboss.test., org.jboss.injbossaop.
</property>
    
    <property name="exclude">org.jboss.</property>
    <!-- This avoids instrumentation of hibernate cglib enhanced proxies
    
    <property name="ignore">*$$EnhancerByCGLIB$$*</property> -->
    
    <property name="optimized">true</property>
    
    <property name="verbose">false</property>
    <!-- Available choices for this attribute are: 
org.jboss.aop.instrument.ClassicInstrumentor (default)
    org.jboss.aop.instrument.GeneratedAdvisorInstrumentor -->
    
    <!-- <property 
name="instrumentor">org.jboss.aop.instrument.ClassicInstrumentor</property
>-->
    
    <!-- By default the deployment of the aspects contained in 
    ../deployers/jboss-aop-jboss5.deployer/base-aspects.xml
    are not deployed. To turn on deployment uncomment this property
    <property name="useBaseXml">true</property>-->
</bean>
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Copy the pluggable-instrumentor.jar from the lib/ directory of your JBoss AOP
distribution to the bin/ directory of your JBoss Enterprise Application Platform.

Next edit run.sh or run.bat (depending on what OS you're on) and add the following to the 
JAVA_OPTS environment variable:

IMPORTANT

The class of the AspectManager Service must be 
org.jboss.aop.deployers.AspectManagerJDK5 or 
org.jboss.aop.deployment.AspectManagerServiceJDK5 as these are what
work with the -javaagent option.

8.7. JROCKIT

JRockit also supports the -javaagent switch mentioned in Section 8.6, “Loadtime transformation in
the JBoss Enterprise Application Platform Using Sun JDK”. If you wish to use that, then the steps in
Section 8.6, “Loadtime transformation in the JBoss Enterprise Application Platform Using Sun JDK”
are sufficient. However, JRockit also comes with its own framework for intercepting when classes are
loaded, which might be faster than the -javaagent switch. If you want to do load-time
transformations using the special JRockit hooks, these are the steps you must take.

Set the enableLoadtimeWeaving attribute/property to true. By default, JBoss Enterprise
Application Platform will not do load-time bytecode manipulation of AOP files unless this is set.
If suppressTransformationErrors is true, failed bytecode transformation will only give
an error warning. This flag is needed because sometimes a JBoss deployment will not include
all the classes referenced.

Copy the jrockit-pluggable-instrumentor.jar from the lib/ directory of your JBoss
AOP distribution to the bin/ directory of your the JBoss Enterprise Application Platform
installation.

Next edit run.sh or run.bat (depending on what OS you're on) and add the following to the 
JAVA_OPTS and JBOSS_CLASSPATH environment variables:

Set the class of the AspectManager Service to 
org.jboss.aop.deployers.AspectManagerJRockit on JBoss Enterprise Application
Platform 5, or org.jboss.aop.deployment.AspectManagerService as these are what
work with special hooks in JRockit.

set JAVA_OPTS=%JAVA_OPTS% -Dprogram.name=%PROGNAME% -
javaagent:pluggable-instrumentor.jar

# Setup JBoss specific properties

JAVA_OPTS="$JAVA_OPTS -Dprogram.name=$PROGNAME \

-
Xmanagement:class=org.jboss.aop.hook.JRockitPluggableClassPreProcess
or"

JBOSS_CLASSPATH="$JBOSS_CLASSPATH:jrockit-pluggable-
instrumentor.jar"
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8.8. IMPROVING LOADTIME PERFORMANCE IN THE JBOSS
ENTERPRISE APPLICATION PLATFORM ENVIRONMENT

The same rules apply to the JBoss Enterprise Application Platform for tuning loadtime weaving
performance as standalone Java. Switches such as pruning, optimized, include and exclude are
configured through the jboss-5.x.x.GA/server/xxx/conf/aop.xml file talked about earlier in
this chapter.

8.9. SCOPING THE AOP TO THE CLASSLOADER

By default all deployments in JBoss are global to the whole application server. That means that any
EAR, SAR, or JAR (for example), that is put in the deploy directory can see the classes from any other
deployed archive. Similarly, AOP bindings are global to the whole virtual machine. This global visibility
can be turned off per top-level deployment.

8.9.1. Deploying as part of a scoped classloader

The following process may change in future versions of JBoss AOP. If you deploy an AOP file as part of
a scoped archive, the bindings (for instance) applied within the .aop/META-INF/jboss-aop.xml file
will only apply to the classes within the scoped archive and not to anything else in the application
server. Another alternative is to deploy -aop.xml files as part of a service archive (SAR). Again, if the
SAR is scoped, the bindings contained in the -aop.xml files will only apply to the contents of the SAR
file. It is not currently possible to deploy a standalone -aop.xml file and have that attach to a scoped
deployment. Standalone -aop.xml files will apply to classes in the whole application server.

8.9.2. Attaching to a scoped deployment

If you have an application that uses classloader isolation, as long as you have prepared your classes,
you can later attach an AOP file to that deployment. If we have an EAR file scoped using a jboss-
app.xml file, with the scoped loader repository jboss.test:service=scoped:

We can later deploy an AOP file containing aspects and configuration to attach that deployment to the
scoped EAR. This is done using the loader-repository tag in the AOP file's META-INF/jboss-
aop.xml file.

This has the same effect as deploying the AOP file as part of the EAR as we saw previously, but allows
you to hot deploy aspects into your scoped application.

<jboss-app>
    <loader-repository>
        jboss.test:service=scoped
    </loader-repository>
</jboss-app>

<?xml version="1.0" encoding="UTF-8"?>
<aop>
    <loader-repository>jboss.test:service=scoped</loader-repository>
                                    
    <!-- Aspects and bindings --> 
</aop>
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CHAPTER 9. TRANSACTION MANAGEMENT
This chapter presents a brief overview of the main configuration options for the JBoss Transaction
Service. For more information, please refer to the JBoss Transactions Administration Guide.

9.1. OVERVIEW

Transaction support in JBoss Enterprise Application Platform is provided by JBoss Transaction
Service, a mature, modular,standards based, highly configurable transaction manager. By default, the
server runs with the local-only JTA module of JBoss Transaction Service installed. This module
provides an implementation of the standard JTA API for use by other internal components, such as the
EJB container, as well as direct use by applications. It is suitable for coordinating ACID transactions
that involve one or more XA Resource managers, such as relational databases or message queues.

Two additional, optional, JBoss Transaction Service transaction modules are also shipped with JBoss
Enterprise Application Platform and may be deployed to provide additional functionality if required.

JBoss Transaction Service JTS

A Transaction Manager capable of distributing transaction context on remote IIOP method calls,
creating a single distributed transaction which spans multiple Java Virtual Machines. This is useful
for large-scale applications that span multiple servers, or for standards based interoperability with
transactional business logic running in CORBA based systems. The functionality of this module can
be accessed through the standard JTA API. In this way, it is a drop-in replacement and does not
require changes to transactional business logic. To enable it, refer to Section 9.8, “Using the JTS
Module” for more information.

JBoss Transaction Service XTS

A Transaction Manager, based on XML, which implements the WS-AtomicTransaction (WS-AT) and
WS-BusinessActivity (WS-BA) specifications. This additional module uses core transaction support
provided by the JTA or JTS managers, along with web services functionality provided by JBossWS
Native. It is deployed into the server as an application. Applications may use WS-AT to provide
standards based, distributed ACID transactions in a manner similar to JTS but using a Web Services
transport, instead of CORBA. The WS-BA implementation compliments this by providing an
alternative, compensation-based transaction model, well suited to coordinating long-running,
loosely coupled business processes. XTS also implements a WS-Coordination (WS-C) service which is
usually accessed internally by the local WS-AT and WS-BA implementations. However, this WS-C
service can also be used to provide remote coordination for WS-AT and WS-BA transactions
created in other JBoss server instances or non-JBoss containers. Refer to the JBoss Transactions
Web Services Programmer's Guide for more details. To enable XTS, refer to Section 9.9, “Using the
XTS Module”.

9.2. CONFIGURATION ESSENTIALS

Configuration of the default JBossTS JTA is managed though a combination of the transaction
manager's own properties file and the application server's deployment configuration. The configuration
file resides at $JBOSS_HOME/server/[name]/conf/jbossts-properties.xml. It contains
defaults for the most commonly used properties. Many more are detailed in the accompanying JBoss
Transaction Service Administration Guide. Each setting has a hard-coded default, but the system may
not function properly if a configuratino file does not exist. Additional configuratino is also possible as
part of the Microcontainer beans configuration found in the 
$JBOSS_HOME/server/[name]/deploy/transaction-jboss-beans.xml file. This ties the
transaction manager into the overall server configuration, overriding the transaction configuration file
settings with values specific to the application server where appropriate. In particular, it uses the
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Service Binding Manager to set port binding information, as well as overriding selected other
properties. Configuration properties are read by the Transaction Service at server initialization, and
the server must be restarted to incorporate any changes made to the configuration files.

Table 9.1. Most Critical Properties for JBoss Transaction Service

Property Name Default Value Description

transactionTimeout 300 seconds the default time, in seconds, after
which a transaction will time out
and be rolled back by. Adjust this
to suit your environment and
workload.

It may come as a surprise that
transactions are processed
asynchronously. This was a
design decision, and needs to be
accounted for by your code.

objectStoreDir The directory where transaction
data is logged. The transaction
log is required to complete
transactions in the case of system
failure, and needs to be on
reliable storage. Normally one file
is generated per transaction, and
each file is a few kilobytes in size.
These are distributed over a
directory tree for optimal
performance. If a RAID controller
is used, it should be configured for
write through cache, in much the
same manner as database storage
devices. Writing of the transaction
log is automatically skipped in the
case of transactions that are
rolling back or contain only a
single resource.

Table 9.2. Additional Properties for JBoss Transaction Service

Property Name Default Value Description
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com.arjuna.common.util.logging.
DebugLevel

0x00000000, which equates to
no logging

determines the internal log
threshold for the transaction
manager codebase. It is
independent of the overall
server's log4j logging
configuration, and acts to
suppress extraneous log entries
from being printed. When the
default value is active, INFO and
WARN messages are still printed,
and this setting provides optimal
performance. 0xffffffff
enables full debug logging. This
setting results in large log files.

Log messages that pass the
internal DebugLevel check are
passed to the server's logging
system for further processing. In
theory, full debugging may be left
on and log4j can be used to turn
logging on or off, but in reality this
has a performance impact.

com.arjuna.ats.arjuna.coordinator
.commitOnePhase

YES Determines whether the
transaction manager
automatically applies the one-
phase commit optimization to the
transaction completion protocol,
when only a single resource is
registered with the transaction.
Enabled by default to prevent
writing transaction logs
needlessly.

com.arjuna.ats.arjuna.objectstore
.transactionSync

ON Controls the flushing of
transaction logs to disk during
transaction termination. The
default value results in a 
FileDescriptor.sync call
for each committing transaction.
This behavior is required to
provide recovery and ACID
properties. If these features are
unimportant to the application in
question, you can achieve better
performance by disabling this
property. This is discouraged,
since it is usually better to write
such applications in a way that
avoids using transactions at all.

Property Name Default Value Description
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com.arjuna.ats.arjuna.xa.nodeIde
ntifier

com.arjuna.ats.jta.xaRecoveryNo
de

These properties determine the
behavior of the transaction
recovery system. They must be
configured correctly to ensure
that transactions are resolved
correctly so that recovery can
happen if the server crashes.
Please refer to the Recovery
chapter of the JBoss
Transactions Administration
Guide for more details.

com.arjuna.ats.arjuna.coordinator
.enableStatistics

NO Enables gathering of transaction
statistics. The statistics can be
viewed using methods on the 
TransactionManagerServi
ce bean or its corresponding JMX
MBean. Disabled by default.

Property Name Default Value Description

9.3. TRANSACTIONAL RESOURCES

The Transaction Service coordinates transaction state updates using XAResource implementations,
which are provided by the various resource managers. Resource managers may include databases,
message queues or third-party JCA resource adapters. The list of databases and JDBC drivers which
have been certified on JBoss Enterprise Application Platform is located at
http://www.jboss.com/products/platforms/application/supportedconfigurations/. Most standards-
compliant JDBC drivers should function correctly, but you should perform extensive testing when using
an uncertified configuration, since interpretations of the XA specifications different from one vendor to
another.

Database connection pools are configured via the application server's Datasource files, which are files
named like -ds.xml. Datasources which use the <xa-datasource> property automatically interact
with the transaction manager. Connections obtained by looking up such datasource in JNDI and calling
getConnection automatically participate in ongoing transactions. This is the preferred use case
when transactional guarantees for data access are required.

If you are using a database which cannot support XA transactions, you can deploy a connection pool
using <local-xa-datasource>. This type of datasource participates in the managed transaction using
the Section 9.4, “Last Resource Commit Optimization (LRCO)” , providing more limited transactional
guarantees. Connections obtained from a <no-tx-datasource> do not interact with the transaction
manager, and any work done on such connections must be explicitly committed or rolled back by the
application, using the JDBC API.

Many databases require additional configuration before they can function as XA resource managers.
Vendor-specific information for configuring databases is presented in Appendix A, Vendor-Specific
Datasource Definitions. Refer to your database administrator and the documentation which ships with
your database for additional configuration directives. In addition, please consult the JBoss
Transactions Administration Guide for information on setting up XA recovery properly.

JBoss Messaging provides an XA-aware driver and can participate in XA transactions. Please consult
the JBoss Messaging User Guide for more details.
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A:

Q:

9.4. LAST RESOURCE COMMIT OPTIMIZATION (LRCO)

Although the XA transaction protocol is designed to provide ACID properties by using a two-phase
commit protocol, model may not always be appropriate. Sometimes it is necessary to allow a non-XA-
aware resource manager to participate in a transaction. This is often the case with data stores that do
not support distributed transactions.

In this situation, you can use a technique known as Last Resource Commit Optimization (LRCO). This is
sometimes called the Last Resource Gambit. The one-phase-aware resource is processed last in the 
prepare phase of the transaction, at which time an attempt is made to commit it. If the attempt is
successful, the transaction log is written and the remaining resources go through the phase-two
commit. If the last resource fails to commit, the transaction is rolled back. Although this protocol
allows most transactions to complete normally, some errors can cause an inconsistent transaction
outcome. For this reason, use LRCO as a last resort. When a single <local-tx-datasource> is used in a
transaction, the LRCO is automatically applied to it. In other situations, you can designate a last
resource by using a special marker interface. Refer to the JBoss Transactions Programmer's Guide for
more details.

Using more than a single one-phase resource in the same transaction is not transactionally safe, and is
not recommended. JBoss Transaction Service sees an attempt to enlist a second such resource as an
error and terminates the transaction. This type of error is most often found when migrating from a
legacy version of JBoss Application Server. Whenever possible the <local-tx-datasource> should be
converted to an <xa-datasource> to resolve the difficulty.

9.5. TRANSACTION TIMEOUT HANDLING

In order to prevent indefinite locking of resources, the transaction manager aborts in-flight
transactions that have not completed after a specified interval, using a set of background processes
coordinated by the TransactionReaper. The reaper rolls back transactions without interrupting any
threads that may be operating within their scope. This prevents instability that results from
interrupting threads executing arbitrary code. Furthermore, it allows for timely abort of transactions
where the business logic thread may be executing non-interruptable operations such as network I/O
operations. This approach may, cause unexpected behavior in code that is not designed to handle
multithreaded transactions. Warning or error messages may be printed from transaction-aware
components as a result of the unexpected change in transaction status. The transaction outcome
should usually be unaffected. Any problems can be minimized by tuning the transaction timeout
values. See Chapter 13, Datasource Configuration for more information.

9.6. RECOVERY CONFIGURATION

To ensure that your configuration is robust, it is important to configure JBoss Transaction Service
properly for failure and recovery. This is covered in detail in the JBoss Transactions Administration
Guide, in the "Resource Recovery in JBoss Transaction Service" chapter.

9.7. TRANSACTION SERVICE FAQ

This section presents some of the most common configuration issues with JBoss Transaction Service.

I turned on debug logging, but nothing is logged.

JBossTS sends log statements though two levels of filters.

1. Logs go through JBoss Transaction Service's own logging abstraction layer.

2. Logs go through JBoss Enterprise Application Platform's log4j logging system.

Administration And Configuration Guide

122



Q:

A:

Q:

A:

Q:

A:

A log statement must pass both filters to be printed. A typical mistake is enabling only one or the
other of the logging systems. See Table 9.2, “Additional Properties for JBoss Transaction
Service” for more information.

Why do server logs show WARN Adding multiple last resources is disallowed.,
and why are my transactions are aborted?

You are probably using a <local-xa-datasource> and trying to use more than one one-phase
aware participant. This is a configuration to be avoided. See Section 9.4, “Last Resource Commit
Optimization (LRCO)” for more information. If you have further concerns, please contact Global
Support Services.

My server terminated unexpectedly. It is running again, but my logs are filling with messages
like WARN  [com.arjuna.ats.jta.logging.loggerI18N] 
[com.arjuna.ats.internal.jta.resources.arjunacore.norecoveryxa] Could not 
find new XAResource to use for recovering non-serializable XAResource.

You may not have configured all resource managers for recovery. Refer to the Recovery chapter
of the JBoss Transactions Administration Guide for more information on configuring resource
managers for recovery.

My transactions take a long time and sometimes strange things happen. The server log
contains WARN [arjLoggerI18N] [BasicAction_58] - Abort of action id ... 
invoked while multiple threads active within it.

Transactions which exceed their timeout may be rolled back. This is done by a background
thread, which can confuse some application code that may be expecting an interrupt. Refer to
Section 9.5, “Transaction Timeout Handling” for more information.

If you have questions besides the ones addressed above, please consult the other JBoss Transactions
guides, or contact Global Support Services.

9.8. USING THE JTS MODULE

If you need transaction propagation betweenb usiness logic in different servers, you can use the JTS
API. Although you can use it directly, it is typical to access it via the standard JTA classes. It is a drop-
in replacement for the default local-only JTA implementation. The necessary classes are already in
place, and you only need to modify the jbossts-properties.xml file to move between the JTA and
JTS modules.

A sample jbossts-properties.xml file is located in the 
$JBOSS_HOME/docs/examples/transactions/ directory. Consult the README.txt file in the
same directory for more information about changes that need to be made to other files, including the 
transactions-jboss-beans.xml file. An ANT script is provided to perform all of the steps
automatically, but it is recommended to consult the README.txt carefully before running the script,
as well as backing up your existing configuration.

The JTS requires the server configuration to also contain the CORBA ORB service. The "all"
configuration referenced in the examples is a good starting point. The choice of JTS or JTA impacts
the entire server, and JTS does require additional resources. Therefore, only use it when it is needed.
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At application start-up, a server that is configured to use JTA outputs log files like this one:

      INFO [TransactionManagerService] JBossTS Transaction Service (JTA 
version - ...)

If JTS is enabled, the message looks like this one:

      INFO [TransactionManagerService] JBossTS Transaction Service (JTS 
version - ...)

9.9. USING THE XTS MODULE

XTS, which is the Web Services component of JBoss Transaction Service, can be installed to provide
WS-AT and WS-BA support for web services hosted on the Enterprise Application Platform. The
module is packaged as a Service Archive (.sar) located in 
$JBOSS_HOME/docs/examples/transactions/.

Procedure 9.1. Installing the XTS Module

1. Create a subdirectory in the $JBOSS_HOME/server/[name]/deploy/ directory, called 
jbossxts.sar/.

2. Unpack the .sar, which is a ZIP archive, into this new directory.

3. Restart JBoss Enterprise Application Platform for the module to be active.

The server must use either the JTA or JTS module, as well as JBossWS Native.

NOTE

XTS is not currently expected to work with other JBossWS backends such as CXF. The
default XTS configuration is suitable for most deployments. It automatically detects
information about the network interfaces and port bindings from the EAP configuration.
manual configuration changes are only necessary for deployments whose applications
need to use a transaction coordinator on a separate host. Consult the JBoss Web
Service Transactions Programmer's Guide for more information.

Developers can link against the jbossxts-api.jar file included in the XTS Service Archive, but
should avoid packaging it with their applications, to avoid classloading problems. All other JAR files
contain internal implementation classes and should not be used directly.

Consult $JBOSS_HOME/docs/examples/transactions/README.txt for emore configuration
information. The JBoss Web Services Transactions User Guide contains information about using XTS in
your applications.

9.10. TRANSACTION MANAGEMENT CONSOLE

The Transaction Management Console is a simle GUI tool that is included in 
$JBOSS_HOME/docs/example/transactions/. It is provided as an unsupported, experimental
prototype. Consult the README.txt file for its capabilities and information about its use.

9.11. EXPERIMENTAL COMPONENTS
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In addition to the supported components of JBoss Transaction Service which are included in JBoss
Enterprise Application Platform, there is ongoing feature work that may eventually find its way into
future releases of the product. In the meantime, these prototype components are available via from
the http://jboss.org Community website.

WARNING

There is no guarantee these components will work correctly and they are not
covered under the Enterprise Application Platform support agreement. However,
some of the advanced functionality available may useful for projects in the early
stages of development. Users downloading these prototypes must be aware of the
limitations concerning module compatibility, in accordance with the Section 9.12,
“Source Code and Upgrading”.

txbridge

Sometimes you may need the ability to invoke traditional transaction components, such as EJBs,
within the scope of a Web Services transaction. Conversely, some traditional transactional
applications may need to invoke transactional web services. The Transaction Bridge (txbridge)
provides mechanisms for linking these two types of transactional services together.

BA Framework

The XTS API operates at a very low level, requiring the developer to undertake much of the
transaction infrastructure work involved in WS-BA. The BA Framework provides high-level
annotations that enable JBoss Transaction Service to handle this infrastructure. The developer can
then focus more on business logic instead.

9.12. SOURCE CODE AND UPGRADING

Most problems relating to transactions can be diagnosed by Global Support Services, after you provide
debug logging information from the server.

However, you can debug or review the source code yourself, using your own tools. You can download
the source code using the Subversion repository at
http://anonsvn.jboss.org/repos/labs/labs/jbosstm/. Enterprise Application Platform outputs the
version of the Transaction Service at start-up, using a string similar to this one:

      INFO [TransactionManagerService] JBossTS Transaction Service (JTA 
version - tag:JBOSSTS_4_6_1_GA_CP02) - JBoss Inc.

The tag element corresponds to a tree under /tags/ in the Subversion repository. Note that the
version refers to the version of the JBoss Transaction Service component used in the Enterprise
Application Platform, not the version of EAP itself. If you build Enterprise Application Platform from
source, you can also find the version by searching for the string version.jboss.jbossts in the 
component-matix/pom.xml file.
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WARNING

Installing any version of JBossTS other than those provided with the Enterprise
Application Platform you are using is not supported. While some JBoss
Transaction Service components are packaged separately, it is unsupported to use
different versions than the ones suppolied with Enterprise Application Platform.
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CHAPTER 10. REMOTING
The main objective of JBoss Remoting is to provide a single API for most network based invocations
and related services that use pluggable transports and data marshallers. The JBoss Remoting API
provides the ability for making synchronous and asynchronous remote calls, push and pull callbacks,
and automatic discovery of remoting servers. The intention is to allow for the addition of different
transports to fit different needs, yet still maintain the same API for making the remote invocations and
only requiring configuration changes, not code changes, to fit these different needs.

Out of the box, Remoting supplies multiple transports (bisocket, http, rmi, socket, servlet, and their ssl
enabled counterparts), standard and compressing data marshallers, and a configurable facility for
switching between standard jdk serialization and JBoss Serializabion. It is also capable of remote
classloading, has extensive facilities for connection failure notification, performs call by reference
optimization for client/server invocations collocated in a single JVM, and implements multihomed
servers.

In the Enterprise Application Platform, Remoting supplies the transport layer for the EJB2, EJB3, and
Messaging subsystems. In each case, the configuration of Remoting is largely predetermined and fixed,
but there are times when it is useful to know how to alter a Remoting configuration.

10.1. BACKGROUND

A Remoting server consists of a Connector, which wraps and configures a transport specific server
invoker. A connector is represented by an InvokerLocator string, such as

which indicates that a server using the socket transport is accessible at port 8888 of host
bluemonkeydiamond.com, and that the server is configured to use a socket timeout of 10000 and to
use JBoss Serialization. A Remoting client can use an InvokerLocator to connect to a given server.

In the Enterprise Application Platform, Remoting servers and clients are created far below the surface
and are accessible only through configuration files. Moreover, when a proxy for a SLSB, for example, is
downloaded from the JNDI directory, it comes with a copy of the InvokerLocator, so that it knows how
to contact the appropriate Remoting server. The important fact to note is that, since the server and
its clients share the InvokerLocator, the parameters in the InvokerLocator serve to configure both
clients and servers.

10.2. JBOSS REMOTING CONFIGURATION

There are two kinds of XML files that can be used to create and configure a Remoting Connector. A file
with a name of the form *-service.xml can be used to define a Connector as an MBean, and a file of the
form *-jboss-beans.xml can be used to define a Connector as a POJO.

10.2.1. MBeans

In the JBoss Messaging JMS subsystem, a Remoting server is configured in the file remoting-bisocket-
service.xml, which, in abbreviated form, looks like

    socket://bluemonkeydiamond.com:8888/?timeout=10000&serialization=jboss

    <mbean code="org.jboss.remoting.transport.Connector"
            name="jboss.messaging:service=Connector,transport=bisocket"
            display-name="Bisocket Transport Connector">
      <attribute name="Configuration">
        <config>

CHAPTER 10. REMOTING

127



This configuration file tells us several facts, including

This server uses the bisocket transport;

it runs on port 4457 of host ${jboss.bind.address}; and

JBoss Messaging uses its own marshalling algorithm.

The InvokerLocator is derived from this file. The important fact to note is that the attribute
"isParam" determines if a parameter is to be included in the InvokerLocator. If "isParam" is omitted
or set to false, the parameter will apply only to the server. In this case, the parameter will not be
transmitted to the client. The InvokerLocator for a Remoting server with a ${jboss.bind.address} of
bluemonkeydiamond.com would be:

Note that the parameter "callbackTimeout" is not included in the InvokerLocator.

10.2.2. POJOs

The same Connector could be configured by way of the 
org.jboss.remoting.ServerConfiguration POJO:

          <invoker transport="bisocket">         
            <attribute name="marshaller" 
isParam="true">org.jboss.jms.wireformat.JMSWireFormat</attribute>
            <attribute name="unmarshaller" 
isParam="true">org.jboss.jms.wireformat.JMSWireFormat</attribute>             
            <attribute name="serverBindAddress">${jboss.bind.address}
</attribute>
            <attribute name="serverBindPort">4457</attribute>
            <attribute name="callbackTimeout">10000</attribute>
                 ...     
          </invoker>
              ...
        </config>
      </attribute>
    </mbean>

      bisocket://bluemonkeydiamond.com:4457/?marshaller=
      org.jboss.jms.wireformat.JMSWireFormat&
      unmarshaller=org.jboss.jms.wireformat.JMSWireFormat

     <bean name="JBMConnector" 
class="org.jboss.remoting.transport.Connector">
       <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
        (name="jboss.messaging:service=Connector,transport=bisocket",
        
exposedInterface=org.jboss.remoting.transport.ConnectorMBean.class,
        registerDirectly=true)</annotation>
       <property name="serverConfiguration"><inject 
bean="JBMConfiguration"/></property>
     </bean>
     
     <!-- Remoting server configuration -->
     <bean name="JBMConfiguration" 
class="org.jboss.remoting.ServerConfiguration">
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In this version, the configuration information is expressed in the JBMConfiguration 
ServerConfiguration POJO, which is then injected into the JBMConnector 
org.jboss.remoting.transport.Connector POJO. The syntax is that of the Microcontainer,
which is beyond the scope of this chapter. See Chapter 5, Microcontainer for details. One variation from
the MBean version is the use of the ServiceBindingManager, which is also beyond the scope of this
chapter. Note that the @org.jboss.aop.microcontainer.aspects.jmx.JMX annotation causes the
JBMConnector to be visible as an MBean named
"jboss.messaging:service=Connector,transport=bisocket".

10.3. MULTIHOMED SERVERS

       <constructor>
         <parameter>bisocket</parameter>
       </constructor>
     
        <!-- Parameters visible to both client and server -->
       <property name="invokerLocatorParameters">
         <map keyClass="java.lang.String" valueClass="java.lang.String">
           <entry>
             <key>serverBindAddress</key>
             <value>
               <value-factory bean="ServiceBindingManager" 
method="getStringBinding">
                 <parameter>JBMConnector</parameter>
                 <parameter>${host}</parameter>
               </value-factory>
             </value>
           </entry>
           <entry>
             <key>serverBindPort</key>
             <value>
               <value-factory bean="ServiceBindingManager" 
method="getStringBinding">
                 <parameter>JBMConnector</parameter>
                 <parameter>${port}</parameter>
               </value-factory>
             </value>
           </entry>
              ...
           <entry><key>marshaller</key> 
<value>org.jboss.jms.wireformat.JMSWireFormat</value></entry>
           <entry><key>unmarshaller</key> 
<value>org.jboss.jms.wireformat.JMSWireFormat</value></entry>
         </map
       </property>
       
       <!-- Parameters visible only to server -->
       <property name="serverParameters">
         <map keyClass="java.lang.String" valueClass="java.lang.String">
           <entry><key>callbackTimeout</key> <value>10000</value></entry>
         </map>
       </property>
                                  
        ...
     </bean>
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Remoting can create servers bound to multiple interfaces. One application of this facility would be
binding a server to one interface that faces the internet and another that faces a LAN. For example, the
preceding POJO example can be modified by (1) adding POJOs

which results in a StringBuffer with a value something like (according to the ServiceBindingManager
configuration values for JBMConnector:bindingHome1 and JBMConnector:bindingHome2)
"external.acme.com:5555!internal.acme.com:4444", and (2) replacing the "serverBindAddress" and
"serverBindPort" parameters with

which transforms the StringBuffer into the String "external.acme.com:5555!internal.acme.com:4444"
and injects it into the JBMConnector. The resulting InvokerLocator will look like

10.4. ADDRESS TRANSLATION

Sometimes a server must be accessed through an address translating firewall, and a Remoting server
can be configured with both a binding address/port and an address/port to be used by a client. Two
more parameters are used: "clientConnectAddress" and "clientConnectPort". The
"serverBindAddress" and "serverBindPort" values are used to create the server, and the values of
"clientConnectAddress" and "clientConnectPort" are used in the InvokerLocator, which tells the client

   
   <bean name="homes1" class="java.lang.StringBuffer">
      <constructor>
         <parameter class="java.lang.String">
            <value-factory bean="ServiceBindingManager" 
method="getStringBinding">
               <parameter>JBMConnector:bindingHome1</parameter>
               <parameter>${host}:${port}</parameter>
            </value-factory>
         </parameter>
      </constructor>
   </bean>
   
   <bean name="homes2" class="java.lang.StringBuffer">
      <constructor factoryMethod="append">
         <factory bean="homes1"/>
         <parameter>
            <value-factory bean="ServiceBindingManager" 
method="getStringBinding">
               <parameter>JBMConnector:bindingHome2</parameter>
               <parameter>!${host}:${port}</parameter>
            </value-factory>
         </parameter>
      </constructor>
   </bean>

    <entry>
      <key>homes</key>
      <value><value-factory bean="homes2" method="toString"/></value>
    </entry>

    bisocket://multihome/?homes=external.acme.com:5555!internal.acme.com:
    4444&marshaller=org.jboss.jms.wireformat.JMSWireFormat&
    unmarshaller=org.jboss.jms.wireformat.JMSWireFormat
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where the server is. There is also an analogous "connecthomes" parameter for multihome servers. In
this case, "homes" is used to configure the server, and "connecthomes" tells the client where the
server is.

10.5. WHERE ARE THEY NOW?

The actual Remoting configuration files for the supported subsystems are as follows:

EJB2: ${JBOSS_HOME}/server/${CONFIG}/deploy/remoting-jboss-beans.xml

EJB3: ${JBOSS_HOME}/server/${CONFIG}/deploy/ejb3-connectors-jboss-beans.xml

JBM: ${JBOSS_HOME}/server/${CONFIG}/deploy/messaging/remoting-bisocket-service.xml

10.6. FURTHER INFORMATION.

Additional details may be found in the Remoting Guide at
http://www.jboss.org/jbossremoting/docs/guide/2.5/html/index.html.
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CHAPTER 11. JBOSS MESSAGING
The most current information about using JBoss Messaging is always available from the relevant JBoss
Messaging User Guide at http://www.redhat.com/docs/en-
US/JBoss_Enterprise_Application_Platform/.
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CHAPTER 12. USE ALTERNATIVE DATABASES WITH JBOSS
ENTERPRISE APPLICATION PLATFORM

12.1. HOW TO USE ALTERNATIVE DATABASES

JBoss utilizes the Hypersonic database as its default database. While this is good for development and
prototyping, you or your company will probably require another database to be used for production.
This chapter covers configuring JBoss Enterprise Application Platform to use alternative databases.
We cover the procedures for all officially supported databases on the JBoss Enterprise Application
Platform. For a complete list of certified databases, refer to
http://www.jboss.com/products/platforms/application/supportedconfigurations/.

Please note that in this chapter, we explain how to use alternative databases to support all services in
JBoss Enterprise Application Platform. This includes all the system level services such as EJB and
JMS. For individual applications (e.g., WAR or EAR) deployed in JBoss Enterprise Application Platform,
you can still use any backend database by setting up the appropriate data source connection.

Installing the external database is out of the scope of this document. Use the tools provided by your
database vendor to set up an empty database. You will need the database name, connection URL,
username, and password, in order to create the datasource the Platform will use to connect to the
database.

12.2. INSTALL JDBC DRIVERS

To use the selected external database, you must also install the JDBC driver for your database. The
JDBC driver is a JAR file, which must be placed into the JBOSS_HOME/server/PROFILE/lib
directory. Replace PROFILE  with the server profile you are using.

This file is loaded when JBoss Enterprise Application Platform starts up, so if you have the JBoss
Enterprise Application Platform running, you will need to shut down and restart. Review the list below
for a suitable JDBC driver. For a full list of certified JBoss Enterprise Application Platform database
drivers, refer to
http://www.jboss.com/products/platforms/application/supportedconfigurations/#JEAP5-0. If the
links fail to work, please file a JIRA against this documentation, but be aware that Red Hat does not
control these external links. Contact your database vendor for the most current version of the driver
for your database.

JBDC Driver Download Locations

MySQL

Download from http://www.mysql.com/products/connector/.

PostgreSQL

Download from http://jdbc.postgresql.org/.

Oracle

Download from http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html.

IBM

Download from http://www-306.ibm.com/software/data/db2/java/.
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Sybase

Download from the Sybase jConnect product page http://www.sybase.com/products/allproductsa-
z/softwaredeveloperkit/jconnect.

NOTE

When using Sybase database with this driver, the MaxParams attribute cannot be set
higher than 481 due to a limitation in the driver's PreparedStatement class.

Microsoft

Download from the MSDN web site http://msdn.microsoft.com/data/jdbc/.

12.2.1. Special Notes on Sybase

Some of the services in JBoss uses null values for the default tables that are created. Sybase Adaptive
Server should be configured to allow nulls by default.

sp_dboption db_name, "allow nulls by default", true

Refer to the Sybase manuals for more options.

Additionally, text and image values stored in the database can be very large. When a select list
includes both text and image values, the length limit of the data returned is determined by the 
@@textsize global variable. The default setting for this variable depends on the software used to
access Adaptive Server. For the JDBC driver, the default value is 32 kilobytes.

12.2.1.1. Enable JAVA services

To use any Java service (for example; JMS, CMP, timers) configured with Sybase, Java must be enabled
on Sybase Adaptive Server. To do this use:

sp_configure "enable java",1

Refer to the sybase manuals for more information.

If Java is not enabled for Sybase Adaptive Server, the following error message may be echoed in the
console.

com.sybase.jdbc2.jdbc.SybSQLException: Cannot run this command because 
Java services are not
        enabled. A user with System Administrator (SA) role must 
reconfigure the system to enable Java

12.2.1.2. CMP Configuration

To use Container Managed Persistence for user defined Java objects with Sybase Adaptive Server
Enterprise, the Java classes should be installed in the database. The system table sysxtypes contains
one row for each extended Java-SQL datatype. This table is only used for Adaptive Servers enabled for
Java. Install Java classes using the installjava program.
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installjava -f <jar-file-name> -S<sybase-server> -U<super-user> -P<super-
pass> -D<db-name>

Refer to the installjava manual in Sybase for more options.

12.2.1.3. Installing Java Classes

1. You have to be a super-user with required privileges to install Java classes.

2. The JAR file you are trying to install should be created without compression.

3. Java classes that you install and use in the server must be compiled with JDK 1.2.2. If you
compile a class with a later JDK, you will be able to install it in the server using the installjava
utility, but you will get a java.lang.ClassFormatError exception when you attempt to use the
class. This is because Sybase Adaptive Server uses an older JVM internally, and requires the
Java classes to be compiled with the same.

12.2.2. Configuring JDBC DataSources

Datasources correspond to the simplified JCA Datasource configuration specifications.

Datasources need to reside in the JBOSS_HOME/server/PROFILE/deploy directory, alongside
other deployable applications and resources. The files use a standard naming scheme of DBNAME-
ds.xml.

Example datasources for all certified databases are located in the 
$JBOSS_HOME/docs/examples/jca directory. Edit the datasource that corresponds to your
database, and copy it to the deploy/ directory before restarting the application server.

See Chapter 13, Datasource Configuration for information on configuring datasources. As a minimum,
you will need to change the connection-url, user-name, and password to correspond to your
database of choice.

12.3. COMMON DATABASE-RELATED TASKS

12.3.1. Security and Pooling

Unless the ResourceAdapter has <reauthentication-support>, using multiple security
identities will create subpools for each identity.

NOTE

The min and max pool size are per subpool, so be careful with these parameters if you
have lots of identities.

12.3.2. Change Database for the JMS Services

The JMS service in the JBoss Enterprise Application Platform uses relational databases to persist its
messages. For improved performance, we should change the JMS service to take advantage of the
external database. To do that, we need to replace the file 
$JBOSS_HOME/server/$PROFILE/deploy/messaging/$DATABASE-persistence-
service.xml with the $DATABASE-persistence-service.xml filename depending on your
external database.
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MySQL: mysql-persistence-service.xml

PostgreSQL: postgresql-persistence-service.xml

Oracle: oracle-persistence-service.xml

DB2: db2-persistence-service.xml

Sybase: sybase-persistence-service.xml

MS SQL Server: mssql-persistence-service.xml

12.3.3. Support Foreign Keys in CMP Services

Next, we need to go change the $JBOSS_HOME/server/$PROFILE/conf/standardjbosscmp-
jdbc.xml file so that the fk-constraint property is true. That is needed for all external databases
we support on the JBoss Enterprise Application Platform. This file configures the database connection
settings for the EJB2 CMP beans deployed in the JBoss Enterprise Application Platform.

12.3.4. Specify Database Dialect for Java Persistence API

The Java Persistence API (JPA) entity manager can save EJB3 entity beans to any backend database.
Hibernate provides the JPA implementation in JBoss Enterprise Application Platform. Hibernate has a
dialect auto-detection mechanism that works for most databases including the dialects for databases
referenced in this appendix which are listed below. If a specific dialect is needed for alternative
databases, you can configure the database dialect in the 
$JBOSS_HOME/server/$PROFILE/deployers/ejb3.deployer/META-INF/jpa-deployers-
jboss-beans.xml file. To configure this file you need to uncomment the set of tags related to the
map entry hibernate.dialect and change the values to the following based on the database you
setup.

Oracle 10g: org.hibernate.dialect.Oracle10gDialect

Oracle 11g: org.hibernate.dialect.Oracle10gDialect

Microsoft SQL Server 2005: org.hibernate.dialect.SQLServerDialect

Microsoft SQL Server 2008: org.hibernate.dialect.SQLServerDialect

PostgresSQL 8.2.3: org.hibernate.dialect.PostgreSQLDialect

PostgresSQL 8.3.7: org.hibernate.dialect.PostgreSQLDialect

MySQL 5.0: org.hibernate.dialect.MySQL5InnoDBDialect

MySQL 5.1: org.hibernate.dialect.MySQL5InnoDBDialect

DB2 9.1: org.hibernate.dialect.DB2Dialect

Sybase ASE 15: org.hibernate.dialect.SybaseASE15Dialect

<fk-constraint>true</fk-constraint>
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12.3.5. Change Other JBoss Enterprise Application Platform Services to use the
External Database

Besides JMS, CMP, and JPA, we still need to hook up the rest of JBoss services with the external
database. There are two ways to do it. One is easy but inflexible. The other is flexible but requires more
steps. Now, let's discuss those two approaches respectively.

12.3.5.1. The Easy Way

The easy way is just to change the JNDI name for the external database to DefaultDS. Most JBoss
services are hard-wired to use the DefaultDS by default. So, by changing the DataSource name, we
do not need to change the configuration for each service individually.

To change the JNDI name, just open the *-ds.xml file for your external database, and change the
value of the jndi-name property to DefaultDS. For instance, in mysql-ds.xml, you would change 
MySqlDS to DefaultDS and so on. You will need to remove the 
$JBOSS_HOME/server/$PROFILE/deploy/hsqldb-ds.xml file after you are done to avoid
duplicated DefaultDS definition.

In the messaging/$DATABASE-persistence-service.xml file, you should also change the
datasource name in the depends tag for the PersistenceManagers MBean to DefaultDS. For
instance, for mysql-persistence-service.xml file, we change the MySqlDS to DefaultDS.

12.3.5.2. The More Flexible Way

Changing the external datasource to DefaultDS is convenient. But if you have applications that
assume the DefaultDS always points to the factory-default HSQL DB, that approach could break your
application. Also, changing DefaultDS destination forces all JBoss services to use the external
database. What if you want to use the external database only on some services?

A safer and more flexible way to hook up JBoss Enterprise Application Platform services with the
external DataSource is to manually change the DefaultDS in all standard JBoss services to the
DataSource JNDI name defined in your *-ds.xml file (for example, the MySqlDS in mysql-ds.xml,
etc.). Below is a complete list of files that contain DefaultDS. You can update them all to use the
external database on all JBoss services or update some of them to use different combination of
DataSources for different services.

$JBOSS_HOME/server/$PROFILE/conf/login-config.xml: This file is used in Java EE
container managed security services.

$JBOSS_HOME/server/$PROFILE/conf/standardjbosscmp-jdbc.xml: This file
configures the CMP beans in the EJB container.

$JBOSS_HOME/server/$PROFILE/deploy/ejb2-timer-service.xml: This file
configures the EJB timer services.

<mbean 
            
code="org.jboss.messaging.core.jmx.JDBCPersistenceManagerService" 
            name="jboss.messaging:service=PersistenceManager" 
            xmbean-dd="xmdesc/JDBCPersistenceManager-xmbean.xml">
            
            
<depends>jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>
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$JBOSS_HOME/server/$PROFILE/deploy/juddi-service.sar/META-INF/jboss-
service.xml: This file configures the UUDI service.

$JBOSS_HOME/server/$PROFILE/deploy/juddi-service.sar/juddi.war/WEB-
INF/jboss-web.xml: This file configures the UUDI service.

$JBOSS_HOME/server/$PROFILE/deploy/juddi-service.sar/juddi.war/WEB-
INF/juddi.properties: This file configures the UUDI service.

$JBOSS_HOME/server/$PROFILE/deploy/uuid-key-generator.sar/META-
INF/jboss-service.xml: This file configures the UUDI service.

$JBOSS_HOME/server/$PROFILE/deploy/messaging/messaging-jboss-beans.xml
and $JBOSS_HOME/server/$PROFILE/deploy/messaging/persistence-
service.xml: Those files configure the JMS persistence service as we discussed earlier.

12.3.6. A Special Note About Oracle Databases

In our setup discussed in this chapter, we rely on the JBoss Enterprise Application Platform to
automatically create needed tables in the external database upon server startup. That works most of
the time. But for databases like Oracle, there might be some minor issues if you try to use the same
database server to back more than one JBoss Enterprise Application Platform instance.

The Oracle database creates tables of the form schemaname.tablename. The TIMERS and 
HILOSEQUENCES tables needed by JBoss Enterprise Application Platform would not be created on a
schema if the table already existed on a different schema. To work around this issue, you need to edit
the $JBOSS_HOME/server/$PROFILE/deploy/ejb2-timer-service.xml file to change the
table name from TIMERS to something like schemaname2.tablename.

Similarly, you need to change the $JBOSS_HOME/server/$PROFILE/deploy/uuid-key-
generator.sar/META-INF/jboss-service.xml file to change the table name from 
HILOSEQUENCES to something like schemaname2.tablename as well.

          <mbean code="org.jboss.ejb.txtimer.DatabasePersistencePolicy" 
          
name="jboss.ejb:service=EJBTimerService,persistencePolicy=database">
          <!-- DataSourceBinding ObjectName -->
          <depends optional-attribute-name="DataSource">
          jboss.jca:service=DataSourceBinding,name=DefaultDS
          </depends>
          <!-- The plugin that handles database persistence -->
          <attribute name="DatabasePersistencePlugin">
          org.jboss.ejb.txtimer.GeneralPurposeDatabasePersistencePlugin
          </attribute>
          <!-- The timers table name -->
          <attribute name="TimersTable">TIMERS</attribute>
          </mbean>

 <!-- HiLoKeyGeneratorFactory --> <mbean
          
code="org.jboss.ejb.plugins.keygenerator.hilo.HiLoKeyGeneratorFactory"
          name="jboss:service=KeyGeneratorFactory,type=HiLo">
          
          <depends>jboss:service=TransactionManager</depends>
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IMPORTANT

Oracle JDBC driver version 11.1.0.7.0 causes the JBoss Messaging Test Suite to fail with
a SQLException ("Bigger type length than Maximum") on Oracle 11g R1.

This is caused by a regression in Oracle JDBC driver 11.1.0.7.0.

We recommend Oracle JDBC driver version 11.2.0.1.0 for use with Oracle 11g R1, Oracle
11g R2, Oracle RAC 11g R1 and Oracle RAC 11g R2.

          
          <!-- Attributes common to HiLo factory instances -->
          
          <!-- DataSource JNDI name -->
          <depends optional-attribute-
name="DataSource">jboss.jca:service=DataSourceBinding,name=DefaultDS</depe
nds>
          
          <!-- table name -->
          <attribute name="TableName">HILOSEQUENCES</attribute>
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CHAPTER 13. DATASOURCE CONFIGURATION

WARNING

The default persistence configuration works out of the box with Hypersonic
(HSQLDB) so that the JBoss Enterprise Platforms are able to run "out of the box".
However, Hypersonic is not supported in production and should not be used in a
production environment.

Known issues with the Hypersonic Database include:

no transaction isolation

thread and socket leaks (connection.close() does not tidy up
resources)

persistence quality (logs commonly become corrupted after a failure,
preventing automatic recovery)

database corruption

stability under load (database processes cease when dealing with too
much data)

not viable in clustered environments

Check the "Using Other Databases" chapter of the Getting Started Guide for
assistance.

Datasources are defined inside a <datasources> element. The exact element depends on the type of
datasource required.

13.1. TYPES OF DATASOURCES

Datasource Definitions

<no-tx-datasource>

Does not take part in JTA transactions. The java.sql.Driver is used.

<local-tx-datasource>

Does not support two phase commit. The java.sql.Driver is used. Suitable for a single database
or a non-XA-aware resource.

<xa-datasource>

Supports two phase commit. The javax.sql.XADataSource driver is used.
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13.2. DATASOURCE PARAMETERS

Common Datasource Parameters

<mbean>

A standard JBoss MBean deployment.

<depends>

The ObjectName of an MBean service this ConnectionFactory orDataSource deployment
depends upon.

<jndi-name>

The JNDI name under which the Datasource should be bound.

<use-java-context>

Boolean value indicating whether the jndi-name should be prefixed with java:. This prefix causes the
Datasource to only be accessible from within the JBoss Enterprise Application Platform virtual
machine. Defaults to TRUE.

<user-name>

The user name used to create the connection to the datasource.

NOTE

Not used when security is configured.

<password>

The password used to create the connection to the datasource.

NOTE

Not used when security is configured.

<transaction-isolation>

The default transaction isolation of the connection. If not specified, the database-provided default is
used.

Possible values for <transaction-isolation>

TRANSACTION_READ_UNCOMMITTED

TRANSACTION_READ_COMMITTED

TRANSACTION_REPEATABLE_READ

TRANSACTION_SERIALIZABLE

TRANSACTION_NONE
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<new-connection-sql>

An SQL statement that is executed against each new connection. This can be used to set up the
connection schema, for instance.

<check-valid-connection-sql>

An SQL statement that is executed before the connection is checked out from the pool to make
sure it is still valid. If the SQL statement fails, the connection is closed and a new one is created.

<valid-connection-checker-class-name>

A class that checks whether a connection is valid using a vendor-specific mechanism.

<exception-sorter-class-name>

A class that parses vendor-specific messages to determine whether SQL errors are fatal, and
destroys the connection if so. If empty, no errors are treated as fatal.

<track-statements>

Whether to monitor for unclosed Statements and ResultSets and issue warnings when they haven't
been closed. The default value is NOWARN.

<prepared-statement-cach-size>

The number of prepared statements per connection to be kept open and reused in subsequent
requests. They are stored in a Least Recently Used (LRU) cache. The default value is 0, meaning that
no cache is kept.

<share-prepared-statements>

When the <prepared-statement-cache-size> is non-zero, determines whether two requests in the
same transaction should return the same statement. Defaults to FALSE.

Example 13.1. Using <share-prepared-statements>

The goal is to work around questionable driver behavior, where the driver applies auto-commit
semantics to local transactions.

This assumes that the prepared statements are the same. For some drivers, 
ps2.executeQuery() automatically closes rs1, so you actually need two real prepared
statements behind the scenes. This only applies to the auto-commit semantic, where re-running
the query starts a new transaction automatically. For drivers that follow the specification, you
can set it to TRUE to share the same real prepared statement.

<set-tx-query-timeout>

Whether to enable query timeout based on the length of time remaining until the transaction times
out. Defaults to FALSE.

       Connection c = dataSource.getConnection(); // auto-commit == 
false
       PreparedStatement ps1 = c.prepareStatement(...);
       ResultSet rs1 = ps1.executeQuery();
       PreparedStatement ps2 = c.prepareStatement(...);
       ResultSet rs2 = ps2.executeQuery();
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<query-timeout>

The maximum time, in seconds, before a query times out. You can override this value by setting
<set-tx-query-timeout> to TRUE.

<metadata>><type-mapping>

A pointer to the type mapping in conf/standardjbosscmp.xml. A legacy from JBoss4.

<validate-on-match>

Whether to validate the connection when the JCA layer matches a managed connection, such as
when the connection is checked out of the pool. With the addition of <background-validation> this
is not required. It is usually not necessary to specify TRUE for <validate-on-match> in conjunction
with specifying TRUE for <background-validation>. Defaults to TRUE.

<prefill>

Whether to attempt to prefill the connection pool to the minimum number of connections. Only
supporting pools (OnePool) support this feature. A warning is logged if the pool does not support
prefilling. Defaults to TRUE.

<background-validation>

Background connection validation reduces the overall load on the RDBMS system when validating a
connection. When using this feature, EAP checks whether the current connection in the pool a
seperate thread (ConnectionValidator). <background-validation-minutes> depends on this value
also being set to TRUE. Defaults to FALSE.

<background-validation-millis>

Background connection validation reduces the overall load on the RDBMS system when validating a
connection. Setting this parameter means that JBoss will attempt to validate the current
connections in the pool as a separate thread (ConnectionValidator). This parameter's value
defines the interval, in milliseconds, for which the ConnectionValidator will run. (This value
should not be the same as your <idle-timeout-minutes value.)

<idle-timeout-minutes>

The maximum time, in minutes, before an idle connection is closed. A value of 0 disables timeout.
Defaults to 15 minutes.

<track-connection-by-tx>

Whether the connection should be locked to the transaction, instead of returning it to the pool at
the end of the transaction. In previous releases, this was true for local connection factories and 
false for XA connection factories. The default is now true for both local and XA connection
factories, and the element has been deprecated.

<interleaving>

Enables interleaving for XA connection factories.

<background-validation-minutes>

How often, in minutes, the ConnectionValidator runs. Defaults to 10 minutes.
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NOTE

You should set this to a smallervalue than <idle-timeout-minutes>, unless you have
specified <min-pool-size> a minimum pool size set.

<url-delimiter>, <url-property>, <url-selector-strategy-class-name>

Parameters dealing with database failover. As of JBoss Enterprise Application Platform 5.1, these
are configured as part of the main datasource configuration. In previous versions, <url-delimiter>
appeared as <url-delimeter>.

<stale-connection-checker-class-name>

An implementation of org.jboss.resource.adapter.jdbc.StateConnectionChecker that
decides whether SQLExceptions that notify of bad connections throw the 
org.jboss.resource.adapter.jdbc.StateConnectionException exception.

<max-pool-size>

The maximum number of connections allowed in the pool. Defaults to 20.

<min-pool-size>

The minimum number of connections maintained in the pool. Unless <prefill> is TRUE, the pool
remains empty until the first use, at which point the pool is filled to the <min-pool-size>. When the
pool size drops below the <min-pool-size> due to idle timeouts, the pool is refilled to the <min-
pool-size>. Defaults to 0.

<blocking-timeout-millis>

The length of time, in milliseconds, to wait for a connection to become available when all the
connections are checked out. Defaults to 30000, which is 30 seconds.

<use-fast-fail>

Whether to continue trying to acquire a connection from the pool even if the previous attempt has
failed, or begin failover. This is to address performance issues where validation SQL takes
significant time and resources to execute. Defaults to FALSE.

Parameters for javax.sql.XADataSource Usage

<connection-url>

The JDBC driver connection URL string

<driver-class>

The JDBC driver class implementing the java.sql.Driver

<connection-property>

Used to configure the connections retrieved from the java.sql.Driver.

Example 13.2. Example <connection-property>

       <connection-property name="char.encoding">UTF-8</connection-
property>
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Parameters for javax.sql.XADataSource Usage

<xa-datasource-class>

The class implementing the XADataSource

<xa-datasource-property>

Properties used to configure the XADataSource.

Example 13.3. Example <xa-datasource-property> Declarations

<xa-resource-timeout>

The number of seconds passed to XAResource.setTransactionTimeout() when not zero.

<isSameRM-override-value>

When set to FALSE, fixes some problems with Oracle databases.

<no-tx-separate-pools>

Pool transactional and non-transactinal connections separately

WARNING

Using this option will cause your total pool size to be twice max-pool-size,
because two actual pools will be created.

Used to fix problems with Oracle.

Security Parameters

<application-managed-security>

<xa-datasource-property name="IfxWAITTIME">10</xa-datasource-
property>
<xa-datasource-property name="IfxIFXHOST">myhost.mydomain.com</xa-
datasource-property>
<xa-datasource-property name="PortNumber">1557</xa-datasource-
property>
<xa-datasource-property name="DatabaseName">mydb</xa-datasource-
property>
<xa-datasource-property name="ServerName">myserver</xa-datasource-
property>
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Uses the username and password passed on the getConnection or createConnection request
by the application.

<security-domain>

Uses the identified login module configured in conf/login-module.xml.

<security-domain-and-application>

Uses the identified login module configured in conf/login-module.xml and other connection
request information supplied by the application, for example JMS Queues and Topics.

13.3. DATASOURCE EXAMPLES

For database-specific examples, see Appendix A, Vendor-Specific Datasource Definitions.

13.3.1. Generic Datasource Example

Example 13.4. Generic Datasource Example

<datasources>
  <local-tx-datasource>
    <jndi-name>GenericDS</jndi-name>
    <connection-url>[jdbc: url for use with Driver class]</connection-
url>
    <driver-class>[fully qualified class name of java.sql.Driver 
implementation]</driver-class>
    <user-name>x</user-name>
    <password>y</password>
    <!-- you can include connection properties that will get passed in 
  the DriverManager.getConnection(props) call-->
    <!-- look at your Driver docs to see what these might be -->
    <connection-property name="char.encoding">UTF-8</connection-
property>
    <transaction-isolation>TRANSACTION_SERIALIZABLE</transaction-
isolation>

    <!--pooling parameters-->
    <min-pool-size>5</min-pool-size>
    <max-pool-size>100</max-pool-size>
    <blocking-timeout-millis>5000</blocking-timeout-millis>
    <idle-timeout-minutes>15</idle-timeout-minutes>
    <!-- sql to call when connection is created
  <new-connection-sql>some arbitrary sql</new-connection-sql>
    -->

    <!-- sql to call on an existing pooled connection when it is 
obtained from pool 
  <check-valid-connection-sql>some arbitrary sql</check-valid-
connection-sql>
    -->

    <set-tx-query-timeout></set-tx-query-timeout>
    <query-timeout>300</query-timeout> <!-- maximum of 5 minutes for 
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queries -->

    <!-- pooling criteria.  USE AT MOST ONE-->
    <!--  If you don't use JAAS login modules or explicit login 
  getConnection(usr,pw) but rely on user/pw specified above, 
  don't specify anything here -->

    <!-- If you supply the usr/pw from a JAAS login module -->
    <security-domain>MyRealm</security-domain>

    <!-- if your app supplies the usr/pw explicitly getConnection(usr, 
pw) -->
    <application-managed-security></application-managed-security>

    <!--Anonymous depends elements are copied verbatim into the 
ConnectionManager mbean config-->
    <depends>myapp.service:service=DoSomethingService</depends>

  </local-tx-datasource>

  <!-- you can include regular mbean configurations like this one -->
  <mbean code="org.jboss.tm.XidFactory" 
  name="jboss:service=XidFactory">
    <attribute name="Pad">true</attribute>
  </mbean>

  <!-- Here's an xa example -->
  <xa-datasource>
    <jndi-name>GenericXADS</jndi-name>
    <xa-datasource-class>[fully qualified name of class implementing 
javax.sql.XADataSource goes here]</xa-datasource-class>
    <xa-datasource-property name="SomeProperty">SomePropertyValue</xa-
datasource-property>
    <xa-datasource-property 
name="SomeOtherProperty">SomeOtherValue</xa-datasource-property>

    <user-name>x</user-name>
    <password>y</password>
    <transaction-isolation>TRANSACTION_SERIALIZABLE</transaction-
isolation>

    <!--pooling parameters-->
    <min-pool-size>5</min-pool-size>
    <max-pool-size>100</max-pool-size>
    <blocking-timeout-millis>5000</blocking-timeout-millis>
    <idle-timeout-minutes>15</idle-timeout-minutes>
    <!-- sql to call when connection is created
  <new-connection-sql>some arbitrary sql</new-connection-sql>
    -->

    <!-- sql to call on an existing pooled connection when it is 
obtained from pool 
  <check-valid-connection-sql>some arbitrary sql</check-valid-
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13.3.2. Configuring a DataSource for Remote Usage

JBoss EAP supports accessing a DataSource from a remote client. See Example 13.5, “Configuring a
Datasource for Remote Usage” for the change that gives the client the ability to look up the
DataSource from JNDI, which is to specify use-java-context=false.

Example 13.5. Configuring a Datasource for Remote Usage

This causes the DataSource to be bound under the JNDI name GenericDS instead of the default of 
java:/GenericDS, which restricts the lookup to the same Virtual Machine as the EAP server.

NOTE

Use of the <use-java-context> setting is not recommended in a production environment.
It requires accessing a connection pool remotely and this can cause unexpected
problems, since connections are not serializable. Also, transaction propagation is not
supported, since it can lead to connection leaks if unreliability is present, such as in a
system crash or network failure. A remote session bean facade is the preferred way to
access a datasource remotely.

13.3.3. Configuring a Datasource to Use Login Modules

Procedure 13.1. Configuring a Datasource to Use Login Modules

connection-sql>
    -->

    <!-- pooling criteria.  USE AT MOST ONE-->
    <!--  If you don't use JAAS login modules or explicit login 
  getConnection(usr,pw) but rely on user/pw specified above, 
  don't specify anything here -->

    <!-- If you supply the usr/pw from a JAAS login module -->
    <security-domain></security-domain>

    <!-- if your app supplies the usr/pw explicitly getConnection(usr, 
pw) -->
    <application-managed-security></application-managed-security>

  </xa-datasource>

</datasources>

   <datasources>
     <local-tx-datasource>
       <jndi-name>GenericDS</jndi-name>
       <use-java-context>false</use-java-context>
       <connection-url>...</connection-url>
       ...
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1. Add the <security-domain-parameter> to the XML file for the datasource.

2. Add an application policy to the login-config.xml file.
The authentication section needs to include the configuration for your login-module. For
example, to encrypt the database password, use the SecureIdentityLoginModule login
module.

3. If you plan to fetch the data source connection from a web application, authentication must be
enabled for the web application, so that the Subject is populated.

4. If users need the ability to connect anonymously, add an additional login module to the
application-policy, to populate the security credentials.

5. Add the UsersRolesLoginModule module to the beginning of the chain. The 
usersProperties and rolesProperties parameters can be directed to dummy files.

     <datasources>
       <local-tx-datasource>
         ...
         <security-domain>MyDomain</security-domain>
         ...
       </local-tx-datasource>
     </datasources>

<application-policy name="MyDomain">
   <authentication>
      <login-module 
code="org.jboss.resource.security.SecureIdentityLoginModule" 
flag="required">
         <module-option name="username">scott</module-option>
         <module-option name="password">-170dd0fbd8c13748</module-
option>
         <module-option 
name="managedConnectionFactoryName">jboss.jca:service=LocalTxCM,name
=OracleDSJAAS</module-option>
      </login-module>
   </authentication>
</application-policy>

<login-module 
code="org.jboss.security.auth.spi.UsersRolesLoginModule" 
flag="required">
   <module-option name="unauthenticatedIdentity">nobody</module-
option>
   <module-option 
name="usersProperties">props/users.properties</module-option>
   <module-option 
name="rolesProperties">props/roles.properties</module-option>
</login-module>
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CHAPTER 14. POOLING

14.1. STRATEGY

JBossJCA uses a ManagedConnectionPool to perform the pooling. The ManagedConnectionPool
is made up of subpools depending upon the strategy chosen and other pooling parameters.

xml mbean Internal Name Description

 ByNothing OnePool A single pool of
equivalent connections

<application-managed-
security/>

ByApplication PoolByCRI Use the connection
properties from
allocateConnection()

<security-domain/> ByContainer PoolBySubject A pool per Subject, e.g.
preconfigured or
EJB/Web login subjects

<security-domain-and-
applicaton/>

ByContainerAndApplica
ton

PoolBySubjectAndCri A per Subject and
connection property
combination

NOTE

The xml names imply this is just about security. This is misleading.

For <security-domain-and-application/> the Subject always overrides any user/password from
createConnection(user, password) in the CRI:

(
ConnectionRequestInfo
)

14.2. TRANSACTION STICKNESS

You can force the same connection from a (sub-)pool to get reused throughout a transaction with the
<track-connection-by-tx/> flag

NOTE

This is the only supported behaviour for "local" transactions. This element is deprecated
in JBoss Enterprise Application Platform 5 where transaction stickiness is enabled by
default. XA users can explicitly enable interleaving with <interleaving/> element.

14.3. WORKAROUND FOR ORACLE

Oracle does not like XA connections getting used both inside and outside a JTA transaction. To
workaround the problem you can create separate sub-pools for the different contexts using <no-tx-
separate-pools/>.
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14.4. POOL ACCESS

The pool is designed for concurrent usage.

Upto <max-pool-size/> threads can be inside the pool at the same time (or using connections from a
pool).

Once this limit is reached, threads wait for the <blocking-timeout-seconds/> to use the pool before
throwing a No Managed Connections Available

You may want to use the <allocation-retry/> and <allocation-retry-wait-millis/> elements to have the
pool retry to obtain a connection before throwing the exception.

14.5. POOL FILLING

The number of connections in the pool is controlled by the pool sizes.

<min-pool-size/> - When the number of connections falls below this size, new connections are
created

<max-pool-size/> - No more than this number of connections are created

<prefill/> - Feature Request has been implemented for 4.0.5. Note: the only pooling strategy
that supports this feature is OnePool?, or ByNothing? pooling criteria.

The pool filling is done by a separate "Pool Filler" thread rather than blocking application threads.

14.6. IDLE CONNECTIONS

You can configure connections to be closed when they are idle. e.g. If you just had a peak period and
now want to reap the unused ones. This is done via the <idle-timeout-minutes/>.

Idle checking is done on a separate "Idle Remover" thread on an LRU (least recently used) basis. The
check is done every idle-timeout-minutes divided by 2 for connections unused for idle-timeout-
minutes.

The pool itself operates on an MRU (most recently used) basis. This allows the excess connections to
be easily identified.

Should closing idle connections cause the pool to fall below the min-pool-size, new/fresh connections
are created.

NOTE

If you have long running transactions and you use interleaving (i.e. don't track-
connection-by-tx) make sure the idle timeout is greater than the transaction timeout.
When interleaving the connection is returned to the pool for others to use. If however
nobody does use it, it would be a candidate for removal before the transaction is
committed.

14.7. DEAD CONNECTIONS

The JDBC protocol does not provide a natural connectionErrorOccured() event when a
connection is broken. To support dead/broken connection checking there are a number of plugins.
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14.7.1. Valid connection checking

The simplest format is to just run a "quick" sql statement:

<check-valid-connection-sql>select 1 from dual</check-valid-connection-
sql>

before handing the connection to the application. If this fails, another connection is selected until there
are no more connections at which point new connections are constructed.

The potentially more performant check is to use vendor specific features, e.g. Oracle's or MySQL's
pingDatabase() via the

<valid-connection-checker-class-name/>

14.7.2. Errors during SQL queries

You can check if a connection broke during a query by the looking the error codes or messages of the
SQLException for FATAL errors rather than normal SQLExceptions. These codes/messages can be
vendor specific, e.g.

<exception-sorter-class-
name>org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter</excepti
on-sorter-class-name>

For FATAL errors, the connection will be closed.

14.7.3. Changing/Closing/Flushing the pool

change or flush()  the pool

closing/undeploying the pool will do a flush first

14.7.4. Other pooling

Thirdparty Pools  - only if you know what you are doing
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CHAPTER 15. FREQUENTLY ASKED QUESTIONS

15.1. I HAVE PROBLEMS WITH ORACLE XA?

Check that you:

1. You have pad=true for the XidFactory? in conf/jboss-service.xml.

2. You have <track-connection-by-tx/> in your oracle-xa-ds.xml (not necessarily for JBoss
Enterprise Application Platform 5.x where it is enabled by default and the element is
deprecated).

3. You have <isSameRM-override-value>false</isSameRM-override-value> in your oracle-xa-
ds.xml.

4. You have <no-tx-separate-pools/> in your oracle-xa-ds.xml.

5. That your jbosscmp-jdbc.xml is specifying the same version of oracle as the one you use.

6. That the oracle server you connect to has XA.

Configuring Oracle Database for XA Support You can configure Oracle database to support XA
resources. This enables you to use JDBC 2.0-compliant Oracle driver. To XA-initialize Oracle database,
complete the following steps:

Make sure that Oracle JServer is installed with your database. If it is not installed, you must add it using
Oracle Database Configuration Assistant. Choose "Change an Existing DB" and then select the
database to which you want to add Oracle JServer. Choose "Next", then "Oracle JServer" and then
"Finish". If the settings you have made to your database previously, are not suitable or insufficient for
the Oracle JServer installation, the system prompts you to enter additional parameters. The database
configuration file ( init.ora ) is located in \oracle\admin\<your_db_name>\pfile directory.
Execute initxa.sql over your database. By default, this script file is located in 
\oracle\ora81\javavm\install. If errors occur during the execution of the file, you must execute
the SQL statements from the file manually. Use DBA Studio to create a package and package body
named JAVA_XA in SYS schema, and a synonym of this package (also named JAVA_XA) in PUBLIC
schema.

A slightly more detailed set of instructions can be found at Configuring and using XA distributed
transactions in WebSphere Studio - Oracle Exception section.
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PART III. CLUSTERING GUIDE
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CHAPTER 16. INTRODUCTION AND QUICK START
Clustering allows you to run an application on several parallel servers (a.k.a cluster nodes) while
providing a single view to application clients. Load is distributed across different servers, and even if
one or more of the servers fails, the application is still accessible via the surviving cluster nodes.
Clustering is crucial for scalable enterprise applications, as you can improve performance by adding
more nodes to the cluster. Clustering is crucial for highly available enterprise applications, as it is the
clustering infrastructure that supports the redundancy needed for high availability.

The JBoss Enterprise Application Platform comes with clustering support out of the box, as part of the 
all configuration. The all configuration includes support for the following:

A scalable, fault-tolerant JNDI implementation (HA-JNDI).

Web tier clustering, including:

High availability for web session state via state replication.

Ability to integrate with hardware and software load balancers, including special
integration with mod_jk and other JK-based software load balancers.

Single Sign-on support across a cluster.

EJB session bean clustering, for both stateful and stateless beans, and for both EJB3 and
EJB2.

A distributed cache for JPA/Hibernate entities.

A framework for keeping local EJB2 entity caches consistent across a cluster by invalidating
cache entries across the cluster when a bean is changed on any node.

Distributed JMS queues and topics via JBoss Messaging.

Deploying a service or application on multiple nodes in the cluster but having it active on only
one (but at least one) node is called a HA Singleton.

Keeping deployed content in sync on all nodes in the cluster via the Farm service.

In this Clustering Guide we aim to provide you with an in depth understanding of how to use JBoss
Enterprise Application Platform's clustering features. In this first part of the guide, the goal is to
provide some basic "Quick Start" steps to encourage you to start experimenting with JBoss Enterprise
Application Platform Clustering, and then to provide some background information that will allow you
to understand how JBoss Enterprise Application Platform Clustering works. The next part of the guide
then explains in detail how to use these features to cluster your JEE services. Finally, we provide some
more details about advanced configuration of JGroups and JBoss Cache, the core technologies that
underlie JBoss Enterprise Application Platform Clustering.

16.1. QUICK START GUIDE

The goal of this section is to give you the minimum information needed to let you get started
experimenting with JBoss Enterprise Application Platform Clustering. Most of the areas touched on in
this section are covered in much greater detail later in this guide.

16.1.1. Initial Preparation
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Preparing a set of servers to act as a JBoss Enterprise Application Platform cluster involves a few
simple steps:

Install JBoss Enterprise Application Platform on all your servers.  In its simplest form, this is
just a matter of unzipping the JBoss download onto the filesystem on each server.

If you want to run multiple JBoss Enterprise Application Platform instances on a single server,
you can either install the full JBoss distribution onto multiple locations on your filesystem, or
you can simply make copies of the all configuration. For example, assuming the root of the
JBoss distribution was unzipped to /var/jboss, you would:

For each node, determine the address to bind sockets to.  When you start JBoss, whether
clustered or not, you need to tell JBoss on what address its sockets should listen for traffic.
(The default is localhost which is secure but isn't very useful, particularly in a cluster.) So,
you need to decide what those addresses will be.

Ensure multicast is working.  By default JBoss Enterprise Application Platform uses UDP
multicast for most intra-cluster communications. Make sure each server's networking
configuration supports multicast and that multicast support is enabled for any switches or
routers between your servers. If you are planning to run more than one node on a server, make
sure the server's routing table includes a multicast route. See the JGroups documentation at
http://www.jgroups.org for more on this general area, including information on how to use
JGroups' diagnostic tools to confirm that multicast is working.

NOTE

JBoss Enterprise Application Platform clustering does not require the use of
UDP multicast; the Enterprise Application Platform can also be reconfigured to
use TCP unicast for intra-cluster communication.

Determine a unique integer "ServerPeerID" for each node.  This is needed for JBoss
Messaging clustering, and can be skipped if you will not be running JBoss Messaging (i.e. you
will remove JBM from your server configuration's deploy directory). JBM requires that each
node in a cluster has a unique integer id, known as a "ServerPeerID", that should remain
consistent across server restarts. A simple 1, 2, 3, ..., x naming scheme is fine. We'll cover how
to use these integer ids in the next section.

Beyond the above required steps, the following two optional steps are recommended to help ensure
that your cluster is properly isolated from other JBoss Enterprise Application Platform clusters that
may be running on your network:

Pick a unique name for your cluster.  The default name for a JBoss Enterprise Application
Platform cluster is "DefaultPartition". Come up with a different name for each cluster in your
environment, e.g. "QAPartition" or "BobsDevPartition". The use of "Partition" is not required;
it's just a semi-convention. As a small aid to performance try to keep the name short, as it gets
included in every message sent around the cluster. We'll cover how to use the name you pick
in the next section.

Pick a unique multicast address for your cluster.  By default JBoss Enterprise Application
Platform uses UDP multicast for most intra-cluster communication. Pick a different multicast
address for each cluster you run. Generally a good multicast address is of the form 

$ cd /var/jboss/server
$ cp -r all node1
$ cp -r all node2
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239.255.x.y. See http://www.29west.com/docs/THPM/multicast-address-assignment.html
for a good discussion on multicast address assignment. We'll cover how to use the address you
pick in the next section.

See Section 25.6.2, “Isolating JGroups Channels”  for more on isolating clusters.

16.1.2. Launching a JBoss Enterprise Application Platform Cluster

The simplest way to start a JBoss server cluster is to start several JBoss instances on the same local
network, using the -c all command line option for each instance. Those server instances will detect
each other and automatically form a cluster.

Let's look at a few different scenarios for doing this. In each scenario we'll be creating a two node
cluster, where the ServerPeerID for the first node is 1 and for the second node is 2 . We've decided to
call our cluster "DocsPartition" and to use 239.255.100.100 as our multicast address. These
scenarios are meant to be illustrative; the use of a two node cluster shouldn't be taken to mean that is
the best size for a cluster; it's just that's the simplest way to do the examples.

Scenario 1: Nodes on Separate Machines

This is the most common production scenario. Assume the machines are named "node1" and
"node2", while node1 has an IP address of 192.168.0.101 and node2 has an address of 
192.168.0.102. Assume the "ServerPeerID" for node1 is 1 and for node2 it's 2. Assume on
each machine JBoss is installed in /var/jboss.

On node1, to launch JBoss:

On node2, it's the same except for a different -b value and ServerPeerID:

The -c switch says to use the all config, which includes clustering support. The -g switch
sets the cluster name. The -u switch sets the multicast address that will be used for intra-
cluster communication. The -b switch sets the address on which sockets will be bound. The -D
switch sets system property jboss.messaging.ServerPeerID, from which JBoss
Messaging gets its unique id.

Scenario 2: Two Nodes on a Single, Multihomed, Server

Running multiple nodes on the same machine is a common scenario in a development
environment, and is also used in production in combination with Scenario 1. (Running all the
nodes in a production cluster on a single machine is generally not recommended, since the
machine itself becomes a single point of failure.) In this version of the scenario, the machine is
multihomed, i.e. has more than one IP address. This allows the binding of each JBoss instance
to a different address, preventing port conflicts when the nodes open sockets.

Assume the single machine has the 192.168.0.101 and 192.168.0.102 addresses
assigned, and that the two JBoss instances use the same addresses and ServerPeerIDs as in
Scenario 1. The difference from Scenario 1 is we need to be sure each Enterprise Application

$ cd /var/jboss/bin
$ ./run.sh -c all -g DocsPartition -u 239.255.100.100 \
    -b 192.168.0.101 -Djboss.messaging.ServerPeerID=1

$ cd /var/jboss/bin
$ ./run.sh -c all -g DocsPartition -u 239.255.100.100 \
    -b 192.168.0.102 -Djboss.messaging.ServerPeerID=2
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Platform instance has its own work area. So, instead of using the all config, we are going to
use the node1 and node2 configs we copied from all earlier in the previous section.

To launch the first instance, open a console window and:

For the second instance, it's the same except for different -b and -c values and a different
ServerPeerID:

Scenario 3: Two Nodes on a Single, Non-Multihomed, Server

This is similar to Scenario 2, but here the machine only has one IP address available. Two
processes can't bind sockets to the same address and port, so we'll have to tell JBoss to use
different ports for the two instances. This can be done by configuring the
ServiceBindingManager service by setting the jboss.service.binding.set system
property.

To launch the first instance, open a console window and:

For the second instance:

This tells the ServiceBindingManager on the first node to use the standard set of ports (e.g.
JNDI on 1099). The second node uses the "ports-01" binding set, which by default for each port
has an offset of 100 from the standard port number (e.g. JNDI on 1199). See the 
conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml file for the full
ServiceBindingManager configuration.

Note that this setup is not advised for production use, due to the increased management
complexity that comes with using different ports. But it is a fairly common scenario in
development environments where developers want to use clustering but cannot multihome
their workstations.

$ cd /var/jboss/bin
$ ./run.sh -c node1 -g DocsPartition -u 239.255.100.100 \
    -b 192.168.0.101 -Djboss.messaging.ServerPeerID=1

$ cd /var/jboss/bin
$ ./run.sh -c node2 -g DocsPartition -u 239.255.100.100 \
    -b 192.168.0.102 -Djboss.messaging.ServerPeerID=2

$ cd /var/jboss/bin
$ ./run.sh -c node1 -g DocsPartition -u 239.255.100.100 \
    -b 192.168.0.101 -Djboss.messaging.ServerPeerID=1 \
    -Djboss.service.binding.set=ports-default

$ cd /var/jboss/bin
$ ./run.sh -c node2 -g DocsPartition -u 239.255.100.100 \
    -b 192.168.0.101 -Djboss.messaging.ServerPeerID=2 \
    -Djboss.service.binding.set=ports-01
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NOTE

Including -Djboss.service.binding.set=ports-default on the
command line for node1 isn't technically necessary, since ports-default is
the default value. But using a consistent set of command line arguments across
all servers is helpful to people less familiar with all the details.

That's it; that's all it takes to get a cluster of JBoss Enterprise Application Platform servers up and
running.

16.1.3. Web Application Clustering Quick Start

JBoss Enterprise Application Platform supports clustered web sessions, where a backup copy of each
user's HttpSession state is stored on one or more nodes in the cluster. In case the primary node
handling the session fails or is shut down, any other node in the cluster can handle subsequent
requests for the session by accessing the backup copy. Web tier clustering is discussed in detail in
Chapter 22, HTTP Services.

There are two aspects to setting up web tier clustering:

Configuring an External Load Balancer . Web applications require an external load balancer
to balance HTTP requests across the cluster of JBoss Enterprise Application Platform
instances (see Section 17.2.2, “External Load Balancer Architecture”  for more on why that is).
JBoss Enterprise Application Platform itself doesn't act as an HTTP load balancer. So, you will
need to set up a hardware or software load balancer. There are many possible load balancer
choices, so how to configure one is really beyond the scope of a Quick Start. But see
Section 22.1, “Configuring load balancing using Apache and mod_jk”  for details on how to set
up the popular mod_jk software load balancer.

Configuring Your Web Application for Clustering . This aspect involves telling JBoss you want
clustering behavior for a particular web app, and it couldn't be simpler. Just add an empty 
distributable element to your application's web.xml file:

Simply doing that is enough to get the default JBoss Enterprise Application Platform web
session clustering behavior, which is appropriate for most applications. See Section 22.2,
“Configuring HTTP session state replication” for more advanced configuration options.

16.1.4. EJB Session Bean Clustering Quick Start

JBoss Enterprise Application Platform supports clustered EJB session beans, whereby requests for a
bean are balanced across the cluster. For stateful beans a backup copy of bean state is maintained on
one or more cluster nodes, providing high availability in case the node handling a particular session
fails or is shut down. Clustering of both EJB2 and EJB3 beans is supported.

<?xml version="1.0"?> 
<web-app  xmlns="http://java.sun.com/xml/ns/javaee"
          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
          xsi:schemaLocation="http://java.sun.com/xml/ns/javaee 
                              
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" 
          version="2.5">
          
    <distributable/>
    
</web-app>
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For EJB3 session beans, simply add the org.jboss.ejb3.annotation.Clustered annotation to
the bean class for your stateful or stateless bean:

For EJB2 session beans, or for EJB3 beans where you prefer XML configuration over annotations,
simply add a clustered element to the bean's section in the JBoss-specific deployment descriptor, 
jboss.xml:

See Chapter 20, Clustered Session EJBs for more advanced configuration options.

16.1.5. Entity Clustering Quick Start

One of the big improvements in the clustering area in JBoss Enterprise Application Platform 5 is the
use of the new Hibernate/JBoss Cache integration for second level entity caching that was introduced
in Hibernate 3.3. In the JPA/Hibernate context, a second level cache refers to a cache whose contents
are retained beyond the scope of a transaction. A second level cache may improve performance by
reducing the number of database reads. You should always load test your application with second level
caching enabled and disabled to see whether it has a beneficial impact on your particular application.

If you use more than one JBoss Enterprise Application Platform instance to run your JPA/Hibernate
application and you use second level caching, you must use a cluster-aware cache. Otherwise a cache
on server A will still hold out-of-date data after activity on server B updates some entities.

JBoss Enterprise Application Platform provides a cluster-aware second level cache based on JBoss
Cache. To tell JBoss Enterprise Application Platform's standard Hibernate-based JPA provider to
enable second level caching with JBoss Cache, configure your persistence.xml as follows:

@javax.ejb.Stateless
@org.jboss.ejb3.annotation.Clustered
public class MyBean implements MySessionInt {
   
   public void test() {
      // Do something cool
   }
}

<jboss>    
    <enterprise-beans>      
        <session>        
            <ejb-name>example.StatelessSession</ejb-name>        
            <jndi-name>example.StatelessSession</jndi-name>        
            <clustered>true</clustered>
        </session>
    </enterprise-beans>
</jboss>

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
   http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
   version="1.0"> 
   <persistence-unit name="somename" transaction-type="JTA">
      <jta-data-source>java:/SomeDS</jta-data-source>
      <properties>
         <property name="hibernate.cache.use_second_level_cache" 
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That tells Hibernate to use the JBoss Cache-based second level cache, but it doesn't tell it what
entities to cache. That can be done by adding the org.hibernate.annotations.Cache annotation
to your entity class:

See Chapter 21, Clustered Entity EJBs for more advanced configuration options and details on how to
configure the same thing for a non-JPA Hibernate application.

NOTE

Clustering can add significant overhead to a JPA/Hibernate second level cache, so don't
assume that just because second level caching adds a benefit to a non-clustered
application that it will be beneficial to a clustered application. Even if clustered second
level caching is beneficial overall, caching of more frequently modified entity types may
be beneficial in a non-clustered scenario but not in a clustered one. Always load test
your application.

value="true"/>
         <property name="hibernate.cache.region.factory_class" 
                   
value="org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory"/>
         <property name="hibernate.cache.region.jbc2.cachefactory" 
value="java:CacheManager"/>
         <!-- Other configuration options ... -->
      </properties>
   </persistence-unit>
</persistence>

package org.example.entities;
 
import java.io.Serializable;
import javax.persistence.Entity;
import org.hibernate.annotations.Cache;
import org.hibernate.annotations.CacheConcurrencyStrategy;
 
@Entity
@Cache(usage=CacheConcurrencyStrategy.TRANSACTIONAL)
public class Account implements Serializable {
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CHAPTER 17. CLUSTERING CONCEPTS
In the next section, we discuss basic concepts behind JBoss' clustering services. It is helpful that you
understand these concepts before reading the rest of the Clustering Guide.

17.1. CLUSTER DEFINITION

A cluster is a set of nodes that communicate with each other and work toward a common goal. In a
JBoss Enterprise Application Platform cluster (also known as a “partition”), a node is an JBoss
Enterprise Application Platform instance. Communication between the nodes is handled by the
JGroups group communication library, with a JGroups Channel providing the core functionality of
tracking who is in the cluster and reliably exchanging messages between the cluster members.
JGroups channels with the same configuration and name have the ability to dynamically discover each
other and form a group. This is why simply executing “run -c all” on two Enterprise Application
Platform instances on the same network is enough for them to form a cluster – each Enterprise
Application Platform starts a Channel (actually, several) with the same default configuration, so they
dynamically discover each other and form a cluster. Nodes can be dynamically added to or removed
from clusters at any time, simply by starting or stopping a Channel with a configuration and name that
matches the other cluster members.

On the same Enterprise Application Platform instance, different services can create their own 
Channel. In a standard startup of the Enterprise Application Platform 5 all configuration, two different
services create a total of four different channels – JBoss Messaging creates two and a core general
purpose clustering service known as HAPartition creates two more. If you deploy clustered web
applications, clustered EJB3 SFSBs or a clustered JPA/Hibernate entity cache, additional channels will
be created. The channels the Enterprise Application Platform connects can be divided into three broad
categories: a general purpose channel used by the HAPartition service, channels created by JBoss
Cache for special purpose caching and cluster wide state replication, and two channels used by JBoss
Messaging.

So, if you go to two Enterprise Application Platform 5.0.x instances and execute run -c all, the
channels will discover each other and you'll have a conceptual cluster. It's easy to think of this as a
two node cluster, but it's important to understand that you really have multiple channels, and hence
multiple two node clusters.

On the same network, you may have different sets of servers whose services wish to cluster.
Figure 17.1, “Clusters and server nodes”  shows an example network of JBoss server instances divided
into three sets, with the third set only having one node. This sort of topology can be set up simply by
configuring the Enterprise Application Platform instances such that within a set of nodes meant to
form a cluster the Channel configurations and names match while they differ from any other channel
configurations and names match while they differ from any other channels on the same network. The
Enterprise Application Platform tries to make this is easy as possible, such that servers that are meant
to cluster only need to have the same values passed on the command line to the -g (partition name)
and -u (multicast address) startup switches. For each set of servers, different values should be chosen.
The sections on “JGroups Configuration” and “Isolating JGroups Channels” cover in detail how to
configure the Enterprise Application Platform such that desired peers find each other and unwanted
peers do not.
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Figure 17.1. Clusters and server nodes

17.2. SERVICE ARCHITECTURES

The clustering topography defined by the JGroups configuration on each node is of great importance
to system administrators. But for most application developers, the greater concern is probably the
cluster architecture from a client application's point of view. Two basic clustering architectures are
used with JBoss Enterprise Application Platform: client-side interceptors (a.k.a. smart proxies or
stubs) and external load balancers. Which architecture your application will use will depend on what
type of client you have.

17.2.1. Client-side interceptor architecture

Most remote services provided by the JBoss Enterprise Application Platform, including JNDI, EJB,
JMS, RMI and JBoss Remoting, require the client to obtain (for example, to look up and download) a
remote proxy object. The proxy object is generated by the server and it implements the business
interface of the service. The client then makes local method calls against the proxy object. The proxy
automatically routes the call across the network where it is invoked against service objects managed
in the server. The proxy object figures out how to find the appropriate server node, marshal call
parameters, unmarshal call results, and return the result to the caller client. In a clustered
environment, the server-generated proxy object includes an interceptor that understands how to
route calls to multiple nodes in the cluster.

The proxy's clustering logic maintains up-to-date knowledge about the cluster. For instance, it knows
the IP addresses of all available server nodes, the algorithm to distribute load across nodes (see next
section), and how to failover the request if the target node not available. As part of handling each
service request, if the cluster topology has changed the server node updates the proxy with the latest
changes in the cluster. For instance, if a node drops out of the cluster, each proxy is updated with the
new topology the next time it connects to any active node in the cluster. All the manipulations done by
the proxy's clustering logic are transparent to the client application. The client-side interceptor
clustering architecture is illustrated in Figure 17.2, “The client-side interceptor (proxy) architecture for
clustering”.
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Figure 17.2. The client-side interceptor (proxy) architecture for clustering

17.2.2. External Load Balancer Architecture

The HTTP-based JBoss services do not require the client to download anything. The client (for
example, a web browser) sends in requests and receives responses directly over the wire using the
HTTP protocol). In this case, an external load balancer is required to process all requests and dispatch
them to server nodes in the cluster. The client only needs to know how to contact the load balancer; it
has no knowledge of the JBoss Enterprise Application Platform instances behind the load balancer.
The load balancer is logically part of the cluster, but we refer to it as “external” because it is not
running in the same process as either the client or any of the JBoss Enterprise Application Platform
instances. It can be implemented either in software or hardware. There are many vendors of hardware
load balancers; the mod_jk Apache module is an excellent example of a software load balancer. An
external load balancer implements its own mechanism for understanding the cluster configuration and
provides its own load balancing and failover policies. The external load balancer clustering
architecture is illustrated in Figure 17.3, “The external load balancer architecture for clustering” .

Administration And Configuration Guide

164



Figure 17.3. The external load balancer architecture for clustering

A potential problem with an external load balancer architecture is that the load balancer itself may be
a single point of failure. It needs to be monitored closely to ensure high availability of the entire
cluster's services.

17.3. LOAD BALANCING POLICIES

Both the JBoss client-side interceptor (stub) and load balancer use load balancing policies to
determine to which server node a new request should be sent. In this section, let's go over the load
balancing policies available in JBoss Enterprise Application Platform.

17.3.1. Client-side interceptor architecture

In JBoss Enterprise Application Platform 5, the following load balancing options are available when the
client-side interceptor architecture is used. The client-side stub maintains a list of all nodes providing
the target service; the job of the load balance policy is to pick a node from this list for each request.
Each policy has two implementation classes, one meant for use by legacy services like EJB2 that use
the legacy detached invoker architecture, and the other meant for services like EJB3 that use AOP-
based invocations.

Round-Robin: each call is dispatched to a new node, proceeding sequentially through the list of
nodes. The first target node is randomly selected from the list. Implemented by 
org.jboss.ha.framework.interfaces.RoundRobin (legacy) and 
org.jboss.ha.client.loadbalance.RoundRobin (EJB3).

Random-Robin: for each call the target node is randomly selected from the list. Implemented
by org.jboss.ha.framework.interfaces.RandomRobin (legacy) and 
org.jboss.ha.client.loadbalance.RandomRobin  (EJB3).

First Available: one of the available target nodes is elected as the main target and is thereafter
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used for every call; this elected member is randomly chosen from the list of members in the
cluster. When the list of target nodes changes (because a node starts or dies), the policy will
choose a new target node unless the currently elected node is still available. Each client-side
proxy elects its own target node independently of the other proxies, so if a particular client
downloads two proxies for the same target service (for example, an EJB), each proxy will
independently pick its target. This is an example of a policy that provides “session affinity” or
“sticky sessions”, since the target node does not change once established. Implemented by 
org.jboss.ha.framework.interfaces.FirstAvailable (legacy) and 
org.jboss.ha.client.loadbalance.aop.FirstAvailable (EJB3).

First Available Identical All Proxies: has the same behavior as the "First Available" policy but
the elected target node is shared by all proxies in the same client-side VM that are associated
with the same target service. So if a particular client downloads two proxies for the same target
service (e.g. an EJB), each proxy will use the same target. Implemented by 
org.jboss.ha.framework.interfaces.FirstAvailableIdenticalAllProxies
(legacy) and 
org.jboss.ha.client.loadbalance.aop.FirstAvailableIdenticalAllProxies
(EJB3).

Each of the above is an implementation of the 
org.jboss.ha.framework.interfaces.LoadBalancePolicy interface; users are free to write
their own implementation of this simple interface if they need some special behavior. In later sections
we'll see how to configure the load balance policies used by different services.

17.3.2. External load balancer architecture

New in JBoss Enterprise Application Platform 5 are a set of "TransactionSticky" load balance policies.
These extend the standard policies above to add behavior such that all invocations that occur within
the scope of a transaction are routed to the same node (if that node still exists). These are based on the
legacy detached invoker architecture, so they are not available for AOP-based services like EJB3.

Transaction-Sticky Round-Robin: Transaction-sticky variant of Round-Robin. Implemented by 
org.jboss.ha.framework.interfaces.TransactionStickyRoundRobin.

Transaction-Sticky Random-Robin: Transaction-sticky variant of Random-Robin. Implemented
by org.jboss.ha.framework.interfaces.TransactionStickyRandomRobin.

Transaction-Sticky First Available: Transaction-sticky variant of First Available. Implemented
by org.jboss.ha.framework.interfaces.TransactionStickyFirstAvailable.

Transaction-Sticky First Available Identical All Proxies: Transaction-sticky variant of First
Available Identical All Proxies. Implemented by 
org.jboss.ha.framework.interfaces.TransactionStickyFirstAvailableIdenti
calAllProxies.

Each of the above is an implementation of a simple interface; users are free to write their own
implementations if they need some special behavior. In later sections we'll see how to configure the
load balance policies used by different services.
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CHAPTER 18. CLUSTERING BUILDING BLOCKS
The clustering features in JBoss Enterprise Application Platform are built on top of lower level libraries
that provide much of the core functionality. Figure 18.1, “The JBoss Enterprise Application Platform
clustering architecture” shows the main pieces:

Figure 18.1. The JBoss Enterprise Application Platform clustering architecture

JGroups is a toolkit for reliable point-to-point and point-to-multipoint communication. JGroups is
used for all clustering-related communications between nodes in a JBoss Enterprise Application
Platform cluster.

JBoss Cache is a highly flexible clustered transactional caching library. Many Enterprise Application
Platform clustering services need to cache some state in memory while (1) ensuring for high
availability purposes that a backup copy of that state is available on another node if it can't otherwise
be recreated (e.g. the contents of a web session) and (2) ensuring that the data cached on each node in
the cluster is consistent. JBoss Cache handles these concerns for most JBoss Enterprise Application
Platform clustered services. JBoss Cache uses JGroups to handle its group communication
requirements. POJO Cache is an extension of the core JBoss Cache that JBoss Enterprise Application
Platform uses to support fine-grained replication of clustered web session state. See Section 18.2,
“Distributed Caching with JBoss Cache” for more on how JBoss Enterprise Application Platform uses
JBoss Cache and POJO Cache.

HAPartition is an adapter on top of a JGroups channel that allows multiple services to use the
channel. HAPartition also supports a distributed registry of which HAPartition-based services are
running on which cluster members. It provides notifications to interested listeners when the cluster
membership changes or the clustered service registry changes. See Section 18.3, “The HAPartition
Service” for more details on HAPartition.

The other higher level clustering services make use of JBoss Cache or HAPartition, or, in the case of
HA-JNDI, both. The exception to this is JBoss Messaging's clustering features, which interact with
JGroups directly.

18.1. GROUP COMMUNICATION WITH JGROUPS
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JGroups provides the underlying group communication support for JBoss Enterprise Application
Platform clusters. Services deployed on JBoss Enterprise Application Platform which need group
communication with their peers will obtain a JGroups Channel and use it to communicate. The 
Channel handles such tasks as managing which nodes are members of the group, detecting node
failures, ensuring lossless, first-in-first-out delivery of messages to all group members, and providing
flow control to ensure fast message senders cannot overwhelm slow message receivers.

The characteristics of a JGroups Channel are determined by the set of protocols that compose it. Each
protocol handles a single aspect of the overall group communication task; for example the UDP
protocol handles the details of sending and receiving UDP datagrams. A Channel that uses the UDP
protocol is capable of communicating with UDP unicast and multicast; alternatively one that uses the 
TCP protocol uses TCP unicast for all messages. JGroups supports a wide variety of different protocols
(see Section 25.1, “Configuring a JGroups Channel's Protocol Stack”  for details), but the Enterprise
Application Platform ships with a default set of channel configurations that should meet most needs.

By default, UDP multicast is used by all JGroups channels used by the Enterprise Application Platform
(except for one TCP-based channel used by JBoss Messaging).

18.1.1. The Channel Factory Service

A significant difference in JBoss Enterprise Application Platform 5 versus previous releases is that
JGroups Channels needed by clustering services (for example, a channel used by a distributed
HttpSession cache) are no longer configured in detail as part of the consuming service's configuration,
and are no longer directly instantiated by the consuming service. Instead, a new ChannelFactory
service is used as a registry for named channel configurations and as a factory for Channel instances.
A service that needs a channel requests the channel from the ChannelFactory, passing in the name
of the desired configuration.

The ChannelFactory service is deployed in the server/all/deploy/cluster/jgroups-
channelfactory.sar. On startup the ChannelFactory service parses the 
server/all/deploy/cluster/jgroups-channelfactory.sar/META-INF/jgroups-
channelfactory-stacks.xml file, which includes various standard JGroups configurations
identified by name (for example, UDP or TCP). Services needing a channel access the channel factory
and ask for a channel with a particular named configuration.

NOTE

If several services request a channel with the same configuration name from the
ChannelFactory, they are not handed a reference to the same underlying Channel. Each
receives its own Channel, but the channels will have an identical configuration. A logical
question is how those channels avoid forming a group with each other if each, for
example, is using the same multicast address and port. The answer is that when a
consuming service connects its Channel, it passes a unique-to-that-service 
cluster_name argument to the Channel.connect(String cluster_name)
method. The Channel uses that cluster_name as one of the factors that determine
whether a particular message received over the network is intended for it.

18.1.1.1. Standard Protocol Stack Configurations

The standard protocol stack configurations that ship with Enterprise Application Platform 5 are
described below. Note that not all of these are actually used; many are included as a convenience to
users who may wish to alter the default server configuration. The configurations actually used in a
stock Enterprise Application Platform 5 all configuration are udp, jbm-control and jbm-data, with
all clustering services other than JBoss Messaging using udp.
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You can add a new stack configuration by adding a new stack element to the 
server/all/deploy/cluster/jgroups-channelfactory.sar/META-INF/jgroups-
channelfactory-stacks.xml file. You can alter the behavior of an existing configuration by editing
this file. Before doing this though, have a look at the other standard configurations the Enterprise
Application Platform ships; perhaps one of those meets your needs. Also, please note that before
editing a configuration you should understand what services are using that configuration; make sure
the change you are making is appropriate for all affected services. If the change isn't appropriate for a
particular service, perhaps its better to create a new configuration and change some services to use
that new configuration.

udp

UDP multicast based stack meant to be shared between different channels. Message bundling
is disabled, as it can add latency to synchronous group RPCs. Services that only make
asynchronous RPCs (for example, JBoss Cache configured for REPL_ASYNC) and do so in high
volume may be able to improve performance by configuring their cache to use the udp-async
stack below. Services that only make synchronous RPCs (for example JBoss Cache configured
for REPL_SYNC or INVALIDATION_SYNC) may be able to improve performance by using the 
udp-sync stack below, which does not include flow control.

udp-async

Same as the default udp stack above, except message bundling is enabled in the transport
protocol (enable_bundling=true). Useful for services that make high-volume
asynchronous RPCs (e.g. high volume JBoss Cache instances configured for REPL_ASYNC)
where message bundling may improve performance.

udp-sync

UDP multicast based stack, without flow control and without message bundling. This can be
used instead of udp if (1) synchronous calls are used and (2) the message volume (rate and
size) is not that large. Don't use this configuration if you send messages at a high sustained
rate, or you might run out of memory.

tcp

TCP based stack, with flow control and message bundling. TCP stacks are usually used when IP
multicasting cannot be used in a network (e.g. routers discard multicast).

tcp-sync

TCP based stack, without flow control and without message bundling. TCP stacks are usually
used when IP multicasting cannot be used in a network (e.g.routers discard multicast). This
configuration should be used instead of tcp above when (1) synchronous calls are used and (2)
the message volume (rate and size) is not that large. Don't use this configuration if you send
messages at a high sustained rate, or you might run out of memory.

jbm-control

Stack optimized for the JBoss Messaging Control Channel. By default uses the same UDP
transport protocol configuration as is used for the default udp stack defined above. This allows
the JBoss Messaging Control Channel to use the same sockets, network buffers and thread
pools as are used by the other standard JBoss Enterprise Application Platform clustered
services (see Section 18.1.2, “The JGroups Shared Transport” )

jbm-data
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TCP-based stack optimized for the JBoss Messaging Data Channel.

18.1.2. The JGroups Shared Transport

As the number of JGroups-based clustering services running in the Enterprise Application Platform
has risen over the years, the need to share the resources (particularly sockets and threads) used by
these channels became a glaring problem. A stock Enterprise Application Platform 5 all configuration
will connect 4 JGroups channels during startup, and a total of 7 or 8 will be connected if distributable
web apps, clustered EJB3 SFSBs and a clustered JPA/Hibernate second level cache are all used. So
many channels can consume a lot of resources, and can be a real configuration nightmare if the
network environment requires configuration to ensure cluster isolation.

Beginning with Enterprise Application Platform 5, JGroups supports sharing of transport protocol
instances between channels. A JGroups channel is composed of a stack of individual protocols, each of
which is responsible for one aspect of the channel's behavior. A transport protocol is a protocol that is
responsible for actually sending messages on the network and receiving them from the network. The
resources that are most desirable for sharing (sockets and thread pools) are managed by the transport
protocol, so sharing a transport protocol between channels efficiently accomplishes JGroups resource
sharing.

To configure a transport protocol for sharing, simply add a singleton_name="someName" attribute
to the protocol's configuration. All channels whose transport protocol configuration uses the same 
singleton_name value will share their transport. All other protocols in the stack will not be shared.
Figure 18.2, “Services using a Shared Transport”  illustrates 4 services running in a VM, each with its
own channel. Three of the services are sharing a transport; the fourth is using its own transport.

Figure 18.2. Services using a Shared Transport

The protocol stack configurations used by the Enterprise Application Platform 5 ChannelFactory all
have a singleton_name configured. In fact, if you add a stack to the ChannelFactory that doesn't
include a singleton_name, before creating any channels for that stack, the ChannelFactory will
synthetically create a singleton_name by concatenating the stack name to the string "unnamed_",
e.g. unnamed_customStack.
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18.2. DISTRIBUTED CACHING WITH JBOSS CACHE

JBoss Cache is a fully featured distributed cache framework that can be used in any application server
environment or standalone. JBoss Cache provides the underlying distributed caching support used by
many of the standard clustered services in a JBoss Enterprise Application Platform cluster, including:

replication of clustered webapp sessions

replication of clustered EJB3 Stateful Session beans

clustered caching of JPA and Hibernate entities

clustered Single Sign-On

the HA-JNDI replicated tree

DistributedStateService

Users can also create their own JBoss Cache and POJO Cache instances for custom use by their
applications, see Chapter 26, JBoss Cache Configuration and Deployment for more on this.

18.2.1. The JBoss Enterprise Application Platform CacheManager Service

Many of the standard clustered services in JBoss Enterprise Application Platform use JBoss Cache to
maintain consistent state across the cluster. Different services (e.g. web session clustering or second
level caching of JPA/Hibernate entities) use different JBoss Cache instances, with each cache
configured to meet the needs of the service that uses it. In Enterprise Application Platform 4, each of
these caches was independently deployed in the deploy/ directory, which had a number of
disadvantages:

Caches that end user applications didn't need were deployed anyway, with each creating an
expensive JGroups channel. For example, even if there were no clustered EJB3 SFSBs, a cache
to store them was started.

Caches are internal details of the services that use them. They shouldn't be first-class
deployments.

Services would find their cache via JMX lookups. Using JMX for purposes other exposing
management interfaces is just not the JBoss Enterprise Application Platform 5 way.

In JBoss Enterprise Application Platform 5, the scattered cache deployments have been replaced with
a new CacheManager service, deployed via the 
JBOSS_HOME/server/all/deploy/cluster/jboss-cache-manager.sar. The CacheManager is
a factory and registry for JBoss Cache instances. It is configured with a set of named JBoss Cache
configurations. Services that need a cache ask the cache manager for the cache by name; the cache
manager creates the cache (if not already created) and returns it. The cache manager keeps a
reference to each cache it has created, so all services that request the same cache configuration name
will share the same cache. When a service is done with the cache, it releases it to the cache manager.
The cache manager keeps track of how many services are using each cache, and will stop and destroy
the cache when all services have released it.

18.2.1.1. Standard Cache Configurations

The following standard JBoss Cache configurations ship with JBoss Enterprise Application Platform 5.
You can add others to suit your needs, or edit these configurations to adjust cache behavior. Additions
or changes are done by editing the deploy/cluster/jboss-cache-manager.sar/META-
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INF/jboss-cache-manager-jboss-beans.xml file (see Section 26.2.1, “Deployment Via the
CacheManager Service” for details). Note however that these configurations are specifically optimized
for their intended use, and except as specifically noted in the documentation chapters for each service
in this guide, it is not advisable to change them.

standard-session-cache

Standard cache used for web sessions.

field-granularity-session-cache

Standard cache used for FIELD granularity web sessions.

sfsb-cache

Standard cache used for EJB3 SFSB caching.

ha-partition

Used by web tier Clustered Single Sign-On, HA-JNDI, Distributed State.

mvcc-entity

A configuration appropriate for JPA/Hibernate entity/collection caching that uses JBoss
Cache's MVCC locking (see notes below).

optimistic-entity

A configuration appropriate for JPA/Hibernate entity/collection caching that uses JBoss
Cache's optimistic locking (see notes below).

pessimistic-entity

A configuration appropriate for JPA/Hibernate entity/collection caching that uses JBoss
Cache's pessimistic locking (see notes below).

mvcc-entity-repeatable

Same as "mvcc-entity" but uses JBoss Cache's REPEATABLE_READ isolation level instead of
READ_COMMITTED (see notes below).

pessimistic-entity-repeatable

Same as "pessimistic-entity" but uses JBoss Cache's REPEATABLE_READ isolation level
instead of READ_COMMITTED (see notes below).

local-query

A configuration appropriate for JPA/Hibernate query result caching. Does not replicate query
results. DO NOT store the timestamp data Hibernate uses to verify validity of query results in
this cache.

replicated-query

A configuration appropriate for JPA/Hibernate query result caching. Replicates query results.
DO NOT store the timestamp data Hibernate uses to verify validity of query result in this
cache.
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timestamps-cache

A configuration appropriate for the timestamp data cached as part of JPA/Hibernate query
result caching. A replicated timestamp cache is required if query result caching is used, even if
the query results themselves use a non-replicating cache like local-query.

mvcc-shared

A configuration appropriate for a cache that's shared for JPA/Hibernate entity, collection,
query result and timestamp caching. Not an advised configuration, since it requires cache
mode REPL_SYNC, which is the least efficient mode. Also requires a full state transfer at
startup, which can be expensive. Maintained for backwards compatibility reasons, as a shared
cache was the only option in JBoss 4. Uses JBoss Cache's MVCC locking.

optimistic-shared

A configuration appropriate for a cache that's shared for JPA/Hibernate entity, collection,
query result and timestamp caching. Not an advised configuration, since it requires cache
mode REPL_SYNC, which is the least efficient mode. Also requires a full state transfer at
startup, which can be expensive. Maintained for backwards compatibility reasons, as a shared
cache was the only option in JBoss 4. Uses JBoss Cache's optimistic locking.

pessimistic-shared

A configuration appropriate for a cache that's shared for JPA/Hibernate entity, collection,
query result and timestamp caching. Not an advised configuration, since it requires cache
mode REPL_SYNC, which is the least efficient mode. Also requires a full state transfer at
startup, which can be expensive. Maintained for backwards compatibility reasons, as a shared
cache was the only option in JBoss 4. Uses JBoss Cache's pessimistic locking.

mvcc-shared-repeatable

Same as "mvcc-shared" but uses JBoss Cache's REPEATABLE_READ isolation level instead of
READ_COMMITTED (see notes below).

pessimistic-shared-repeatable

Same as "pessimistic-shared" but uses JBoss Cache's REPEATABLE_READ isolation level
instead of READ_COMMITTED. (see notes below).

NOTE

For more on JBoss Cache's locking schemes, see Section 26.1.4, “Concurrent Access” )

NOTE

For JPA/Hibernate second level caching, REPEATABLE_READ is only useful if the
application evicts/clears entities from the EntityManager/Hibernate Session and then
expects to repeatably re-read them in the same transaction. Otherwise, the Session's
internal cache provides a repeatable-read semantic.

18.2.1.2. Cache Configuration Aliases

The CacheManager also supports aliasing of caches; i.e. allowing caches registered under one name to
be looked up under a different name. Aliasing is useful for sharing caches between services whose
configuration may specify different cache configuration names. It's also useful for supporting legacy
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EJB3 application configurations ported over from Enterprise Application Platform 4.

Aliases can be configured by editing the "CacheManager" bean in the jboss-cache-manager-
jboss-beans.xml file. The following redacted configuration shows the standard aliases in Enterprise
Application Platform 5:

18.3. THE HAPARTITION SERVICE

HAPartition is a general purpose service used for a variety of tasks in Enterprise Application Platform
clustering. At its core, it is an abstraction built on top of a JGroups Channel that provides support for
making/receiving RPC invocations on/from one or more cluster members. HAPartition allows services
that use it to share a single Channel and multiplex RPC invocations over it, eliminating the
configuration complexity and runtime overhead of having each service create its own Channel.
HAPartition also supports a distributed registry of which clustering services are running on which
cluster members. It provides notifications to interested listeners when the cluster membership
changes or the clustered service registry changes. HAPartition forms the core of many of the
clustering services we'll be discussing in the rest of this guide, including smart client-side clustered
proxies, EJB 2 SFSB replication and entity cache management, farming, HA-JNDI and HA singletons.
Custom services can also make use of HAPartition.

The following snippet shows the HAPartition service definition packaged with the standard JBoss
Enterprise Application Platform distribution. This configuration can be found in the 
server/all/deploy/cluster/hapartition-jboss-beans.xml file.

<bean name="CacheManager" class="org.jboss.ha.cachemanager.CacheManager">

    . . .

    <!-- Aliases for cache names. Allows caches to be shared across 
         services that may expect different cache configuration names. -->
    <property name="configAliases">
       <map keyClass="java.lang.String" valueClass="java.lang.String">
          <!-- Use the HAPartition cache for ClusteredSSO caching -->
          <entry>
             <key>clustered-sso</key>
             <value>ha-partition</value>
          </entry>
          <!-- Handle the legacy name for the EJB3 SFSB cache -->
          <entry>
             <key>jboss.cache:service=EJB3SFSBClusteredCache</key>
             <value>sfsb-cache</value>
          </entry>
          <!-- Handle the legacy name for the EJB3 Entity cache -->
          <entry>
             <key>jboss.cache:service=EJB3EntityTreeCache</key>
             <value>mvcc-shared</value>
          </entry>
       </map>
    </property>
    
    . . .
    
</bean>
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<bean name="HAPartitionCacheHandler" 
class="org.jboss.ha.framework.server.HAPartitionCacheHandlerImpl">
 <property name="cacheManager"><inject bean="CacheManager"/></property>
 <property name="cacheConfigName">ha-partition</property>
</bean>
<bean name="HAPartition" 
class="org.jboss.ha.framework.server.ClusterPartition">
 <depends>jboss:service=Naming</depends>
 <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
      
(name="jboss:service=HAPartition,partition=${jboss.partition.name:DefaultP
artition}", 
exposedInterface=org.jboss.ha.framework.server.ClusterPartitionMBean.class
, registerDirectly=true)</annotation>
           
 <!-- ClusterPartition requires a Cache for state management -->
           
 <property name="cacheHandler"><inject bean="HAPartitionCacheHandler"/>
</property>
           
 <!-- Name of the partition being built -->
           
 <property name="partitionName">${jboss.partition.name:DefaultPartition}
</property>
           
 <!-- The address used to determine the node name -->
           
 <property name="nodeAddress">${jboss.bind.address}</property>
           
  <!-- Max time (in ms) to wait for state transfer to complete. Increase 
for large states -->
           
 <property name="stateTransferTimeout">30000</property>
           
 <!-- Max time (in ms) to wait for RPC calls to complete. -->
           
 <property name="methodCallTimeout">60000</property>
           
 <!-- Optionally provide a thread source to allow async connect of our 
channel -->
           
 <property name="threadPool"><inject 
bean="jboss.system:service=ThreadPool"/></property>
 <property name="distributedStateImpl">
 <bean name="DistributedState" 
class="org.jboss.ha.framework.server.DistributedStateImpl">         
             
    <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
    
(name="jboss:service=DistributedState,partitionName=${jboss.partition.name
:DefaultPartition}", 
exposedInterface=org.jboss.ha.framework.server.DistributedStateImplMBean.c
lass, registerDirectly=true)</annotation>
             
  <property name="cacheHandler"><inject bean="HAPartitionCacheHandler"/>
</property>                  
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Much of the above is generic; below we'll touch on the key points relevant to end users. There are two
beans defined above, the HAPartitionCacheHandler and the HAPartition itself.

The HAPartition bean itself exposes the following configuration properties:

partitionName is an optional attribute to specify the name of the cluster. Its default value is 
DefaultPartition. Use the -g  (a.k.a. --partition) command line switch to set this value at
server startup.

nodeAddress is unused and can be ignored.

stateTransferTimeout specifies the timeout (in milliseconds) for initial application state
transfer. State transfer refers to the process of obtaining a serialized copy of initial application
state from other already-running cluster members at service startup. Its default value is 
30000.

methodCallTimeout specifies the timeout (in milliseconds) for obtaining responses to group
RPCs from the other cluster members. Its default value is 60000.

The HAPartitionCacheHandler is a small utility service that helps the HAPartition integrate with
JBoss Cache (see Section 18.2.1, “The JBoss Enterprise Application Platform CacheManager Service” ).
HAPartition exposes a child service called DistributedState (see Section 18.3.2, “DistributedState
Service”) that uses JBoss Cache; the HAPartitionCacheHandler helps ensure consistent
configuration between the JGroups Channel used by Distributed State's cache and the one used
directly by HAPartition.

cacheConfigName the name of the JBoss Cache configuration to use for the HAPartition-
related cache. Indirectly, this also specifies the name of the JGroups protocol stack
configuration HAPartition should use. See Section 26.1.5, “JGroups Integration” for more on
how the JGroups protocol stack is configured.

In order for nodes to form a cluster, they must have the exact same partitionName and the 
HAPartitionCacheHandler's cacheConfigName must specify an identical JBoss Cache
configuration. Changes in either element on some but not all nodes would prevent proper clustering
behavior.

You can view the current cluster information by pointing your browser to the JMX console of any
JBoss instance in the cluster (i.e., http://hostname:8080/jmx-console/) and then clicking on
the jboss:service=HAPartition,partition=DefaultPartition MBean (change the MBean
name to reflect your partitionr name if you use the -g startup switch). A list of IP addresses for the
current cluster members is shown in the CurrentView field.

NOTE

While it is technically possible to put a JBoss server instance into multiple HAPartitions
at the same time, this practice is generally not recommended, as it increases
management complexity.

18.3.1. DistributedReplicantManager Service

The DistributedReplicantManager (DRM) service is a component of the HAPartition service

 </bean>
 </property>
</bean>
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made available to HAPartition users via the HAPartition.getDistributedReplicantManager()
method. Generally speaking, JBoss Enterprise Application Platform users will not directly make use of
the DRM; we discuss it here as an aid to those who want a deeper understanding of how Enterprise
Application Platform clustering internals work.

The DRM is a distributed registry that allows HAPartition users to register objects under a given key,
making available to callersthe set of objects registered under that key by the various members of t he
cluster. The DRM also provides a notification mechanism so interested listeners can be notified when
the contents of the registry changes.

There are two main usages for the DRM in JBoss Enterprise Application Platform:

Clustered Smart Proxies

Here the keys are the names of the various services that need a clustered smart proxy (see
Section 17.2.1, “Client-side interceptor architecture”, e.g. the name of a clustered EJB. The
value object each node stores in the DRM is known as a "target". It's something a smart
proxy's transport layer can use to contact the node (e.g. an RMI stub, an HTTP URL or a JBoss
Remoting InvokerLocator). The factory that builds clustered smart proxies accesses the
DRM to get the set of "targets" that should be injected into the proxy to allow it to
communicate with all the nodes in a cluster.

HASingleton

Here the keys are the names of the various services that need to function as High Availablity
Singletons (see the HASingleton chapter). The value object each node stores in the DRM is
simply a String that acts as a token to indicate that the node has the service deployed, and thus
is a candidate to become the "master" node for the HA singleton service.

In both cases, the key under which objects are registered identifies a particular clustered service. It is
useful to understand that every node in a cluster doesn't have to register an object under every key.
Only services that are deployed on a particular node will register something under that service's key,
and services don't have to be deployed homogeneously across the cluster. The DRM is thus useful as a
mechanism for understanding a service's "topology" around the cluster — which nodes have the service
deployed.

18.3.2. DistributedState Service

The DistributedState service is a legacy component of the HAPartition service made available to
HAPartition users via the HAPartition.getDistributedState() method. This service provides
coordinated management of arbitary application state around the cluster. It is supported for
backwards compatibility reasons, but new applications should not use it; they should use the much
more sophisticated JBoss Cache instead.

In JBoss Enterprise Application Platform 5 the DistributedState service actually delegates to an
underlying JBoss Cache instance.

18.3.3. Custom Use of HAPartition

Custom services can also use make use of HAPartition to handle interactions with the cluster.
Generally the easiest way to do this is to extend the 
org.jboss.ha.framework.server.HAServiceImpl base class, or the 
org.jboss.ha.jxm.HAServiceMBeanSupport class if JMX registration and notification support
are desired.
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CHAPTER 19. CLUSTERED JNDI SERVICES
JNDI is one of the most important services provided by the application server. The JBoss HA-JNDI
(High Availability JNDI) service brings the following features to JNDI:

Transparent failover of naming operations. If an HA-JNDI naming Context is connected to the
HA-JNDI service on a particular JBoss Enterprise Application Platform instance, and that
service fails or is shut down, the HA-JNDI client can transparently fail over to another
Enterprise Application Platform instance.

Load balancing of naming operations. A HA-JNDI naming Context will automatically load
balance its requests across all the HA-JNDI servers in the cluster.

Automatic client discovery of HA-JNDI servers (using multicast).

Unified view of JNDI trees cluster-wide. A client can connect to the HA-JNDI service running on
any node in the cluster and find objects bound in JNDI on any other node. This is accomplished
via two mechanisms:

Cross-cluster lookups. A client can perform a lookup and the server side HA-JNDI service
has the ability to find things bound in regular JNDI on any node in the cluster.

A replicated cluster-wide context tree. An object bound into the HA-JNDI service will be
replicated around the cluster, and a copy of that object will be available in-VM on each
node in the cluster.

JNDI is a key component for many other interceptor-based clustering services: those services register
themselves with JNDI so the client can look up their proxies and make use of their services. HA-JNDI
completes the picture by ensuring that clients have a highly-available means to look up those proxies.
However, it is important to understand that using HA-JNDI (or not) has no effect whatsoever on the
clustering behavior of the objects that are looked up. To illustrate:

If an EJB is not configured as clustered, looking up the EJB via HA-JNDI does not somehow
result in the addition of clustering capabilities (load balancing of EJB calls, transparent
failover, state replication) to the EJB.

If an EJB is configured as clustered, looking up the EJB via regular JNDI instead of HA-JNDI
does not somehow result in the removal of the bean proxy's clustering capabilities.

19.1. HOW IT WORKS

The JBoss client-side HA-JNDI naming Context is based on the client-side interceptor architecture
(see the Introduction and Quick Start chapter). The client obtains an HA-JNDI proxy object (via the 
InitialContext object) and invokes JNDI lookup services on the remote server through the proxy.
The client specifies that it wants an HA-JNDI proxy by configuring the naming properties used by the 
InitialContext object. This is covered in detail in Section 19.2, “Client configuration” . Other than
the need to ensure the appropriate naming properties are provided to the InitialContext, the fact
that the naming Context is using HA-JNDI is completely transparent to the client.

On the server side, the HA-JNDI service maintains a cluster-wide context tree. The cluster wide tree is
always available as long as there is one node left in the cluster. Each node in the cluster also maintains
its own local JNDI context tree. The HA-JNDI service on each node is able to find objects bound into
the local JNDI context tree, and is also able to make a cluster-wide RPC to find objects bound in the
local tree on any other node. An application can bind its objects to either tree, although in practice
most objects are bound into the local JNDI context tree. The design rationale for this architecture is as
follows:
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It avoids migration issues with applications that assume that their JNDI implementation is
local. This allows clustering to work out-of-the-box with just a few tweaks of configuration files.

In a homogeneous cluster, this configuration actually cuts down on the amount of network
traffic. A homogenous cluster is one where the same types of objects are bound under the
same names on each node.

Designing it in this way makes the HA-JNDI service an optional service since all underlying
cluster code uses a straight new InitialContext to lookup or create bindings.

On the server side, a naming Context obtained via a call to new InitialContext() will be bound to
the local-only, non-cluster-wide JNDI Context. So, all EJB homes and such will not be bound to the
cluster-wide JNDI Context, but rather, each home will be bound into the local JNDI.

When a remote client does a lookup through HA-JNDI, HA-JNDI will delegate to the local JNDI service
when it cannot find the object within the global cluster-wide Context. The detailed lookup rule is as
follows.

If the binding is available in the cluster-wide JNDI tree, return it.

If the binding is not in the cluster-wide tree, delegate the lookup query to the local JNDI
service and return the received answer if available.

If not available, the HA-JNDI service asks all other nodes in the cluster if their local JNDI
service owns such a binding and returns the answer from the set it receives.

If no local JNDI service owns such a binding, a NameNotFoundException is finally raised.

In practice, objects are rarely bound in the cluster-wide JNDI tree; rather they are bound in the local
JNDI tree. For example, when EJBs are deployed, their proxies are always bound in local JNDI, not HA-
JNDI. So, an EJB home lookup done through HA-JNDI will always be delegated to the local JNDI
instance.

NOTE

If different beans (even of the same type, but participating in different clusters) use the
same JNDI name, this means that each JNDI server will have a logically different "target"
bound under the same name (JNDI on node 1 will have a binding for bean A and JNDI on
node 2 will have a binding, under the same name, for bean B). Consequently, if a client
performs a HA-JNDI query for this name, the query will be invoked on any JNDI server of
the cluster and will return the locally bound stub. Nevertheless, it may not be the
correct stub that the client is expecting to receive! So, it is always best practice to
ensure that across the cluster different names are used for logically different bindings.

NOTE

If a binding is only made available on a few nodes in the cluster (for example because a
bean is only deployed on a small subset of nodes in the cluster), the probability is higher
that a lookup will hit a HA-JNDI server that does not own this binding and thus the
lookup will need to be forwarded to all nodes in the cluster. Consequently, the query
time will be longer than if the binding would have been available locally. Moral of the
story: as much as possible, cache the result of your JNDI queries in your client.

CHAPTER 19. CLUSTERED JNDI SERVICES

179



NOTE

You cannot currently use a non-JNP JNDI implementation (i.e. LDAP) for your local
JNDI implementation if you want to use HA-JNDI. However, you can use JNDI federation
using the ExternalContext MBean to bind non-JBoss JNDI trees into the JBoss JNDI
namespace. Furthermore, nothing prevents you using one centralized JNDI server for
your whole cluster and scrapping HA-JNDI and JNP.

19.2. CLIENT CONFIGURATION

Configuring a client to use HA-JNDI is a matter of ensuring the correct set of naming environment
properties are available when a new InitialContext is created. How this is done varies depending
on whether the client is running inside JBoss Enterprise Application Platform itself or is in another VM.

19.2.1. For clients running inside the Enterprise Application Platform

If you want to access HA-JNDI from inside the Enterprise Application Platform, you must explicitly
configure your InitialContext by passing in JNDI properties to the constructor. The following code
shows how to create a naming Context bound to HA-JNDI:

The Context.PROVIDER_URL property points to the HA-JNDI service configured in the 
deploy/cluster/hajndi-jboss-beans.xml file (see Section 19.3, “JBoss configuration” ). By
default this service listens on the interface named via the jboss.bind.address system property,
which itself is set to whatever value you assign to the -b command line option when you start JBoss
Enterprise Application Platform (or localhost if not specified). The above code shows an example of
accessing this property.

However, this does not work in all cases, especially when running several JBoss Enterprise Application
Platform instances on the same machine and bound to the same IP address, but configured to use
different ports. A safer method is to not specify the Context.PROVIDER_URL but instead allow the 
InitialContext to statically find the in-VM HA-JNDI by specifying the jnp.partitionName
property:

Properties p = new Properties();  
p.put(Context.INITIAL_CONTEXT_FACTORY, 
"org.jnp.interfaces.NamingContextFactory");  
p.put(Context.URL_PKG_PREFIXES, "jboss.naming:org.jnp.interfaces");
// HA-JNDI is listening on the address passed to JBoss via -b  
String bindAddress = System.getProperty("jboss.bind.address", 
"localhost");
p.put(Context.PROVIDER_URL, bindAddress + ":1100"); // HA-JNDI address and 
port.  
return new InitialContext(p);

Properties p = new Properties();
p.put(Context.INITIAL_CONTEXT_FACTORY, 
"org.jnp.interfaces.NamingContextFactory");
p.put(Context.URL_PKG_PREFIXES, "jboss.naming:org.jnp.interfaces");
// HA-JNDI is registered under the partition name passed to JBoss via -g  
String partitionName = System.getProperty("jboss.partition.name", 
"DefaultPartition");
p.put("jnp.partitionName", partitionName);
return new InitialContext(p);
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This example uses the jboss.partition.name system property to identify the partition with which
the HA-JNDI service works. This system property is set to whatever value you assign to the -g
command line option when you start JBoss Enterprise Application Platform (or DefaultPartition if
not specified).

Do not attempt to simplify things by placing a jndi.properties file in your deployment or by editing
the Enterprise Application Platform's conf/jndi.properties file. Doing either will almost certainly
break things for your application and quite possibly across the server. If you want to externalize your
client configuration, one approach is to deploy a properties file not named jndi.properties, and
then programatically create a Properties object that loads that file's contents.

19.2.1.1. Accessing HA-JNDI Resources from EJBs and WARs -- Environment Naming
Context

If your HA-JNDI client is an EJB or servlet, the least intrusive way to configure the lookup of resources
is to bind the resources to the environment naming context of the bean or webapp performing the
lookup. The binding can then be configured to use HA-JNDI instead of a local mapping. Following is an
example of doing this for a JMS connection factory and queue (the most common use case for this kind
of thing).

Within the bean definition in the ejb-jar.xml or in the war's web.xml you will need to define two
resource-ref mappings, one for the connection factory and one for the destination.

Using these examples the bean performing the lookup can obtain the connection factory by looking up
'java:comp/env/jms/ConnectionFactory' and can obtain the queue by looking up
'java:comp/env/jms/Queue'.

Within the JBoss-specific deployment descriptor (jboss.xml for EJBs, jboss-web.xml for a WAR) these
references need to be mapped to a URL that makes use of HA-JNDI.

The URL should be the URL to the HA-JNDI server running on the same node as the bean; if the bean is
available the local HA-JNDI server should also be available. The lookup will then automatically query all
of the nodes in the cluster to identify which node has the JMS resources available.

<resource-ref>
 <res-ref-name>jms/ConnectionFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
</resource-ref>
 
<resource-ref>
 <res-ref-name>jms/Queue</res-ref-name>
 <res-type>javax.jms.Queue</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

<resource-ref>
 <res-ref-name>jms/ConnectionFactory</res-ref-name>
 <jndi-name>jnp://${jboss.bind.address}:1100/ConnectionFactory</jndi-name>
</resource-ref>
 
<resource-ref>
 <res-ref-name>jms/Queue</res-ref-name>
 <jndi-name>jnp://${jboss.bind.address}:1100/queue/A</jndi-name>
 </resource-ref>
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The ${jboss.bind.address} syntax used above tells JBoss to use the value of the 
jboss.bind.address system property when determining the URL. That system property is itself set
to whatever value you assign to the -b command line option when you start JBoss Enterprise
Application Platform.

19.2.1.2. Why do this programmatically and not just put this in a jndi.properties file?

The JBoss Enterprise Application Platform's internal naming environment is controlled by the 
conf/jndi.properties file, which should not be edited.

No other jndi.properties file should be deployed inside the Enterprise Application Platform because of
the possibility of its being found on the classpath when it shouldn't and thus disrupting the internal
operation of the server. For example, if an EJB deployment included a jndi.properties configured for
HA-JNDI, when the server binds the EJB proxies into JNDI it will likely bind them into the replicated
HA-JNDI tree and not into the local JNDI tree where they belong.

19.2.1.3. How can I tell if things are being bound into HA-JNDI that shouldn't be?

Go into the the jmx-console and execute the list operation on the jboss:service=JNDIView
mbean. Towards the bottom of the results, the contents of the "HA-JNDI Namespace" are listed.
Typically this will be empty; if any of your own deployments are shown there and you didn't explicitly
bind them there, there's probably an improper jndi.properties file on the classpath. Please visit the
following link for an example: Problem with removing a Node from Cluster .

19.2.2. For clients running outside the Enterprise Application Platform

The JNDI client needs to be aware of the HA-JNDI cluster. You can pass a list of JNDI servers (i.e., the
nodes in the HA-JNDI cluster) to the java.naming.provider.url JNDI setting in the 
jndi.properties file. Each server node is identified by its IP address and the JNDI port number. The
server nodes are separated by commas (see Section 19.3, “JBoss configuration”  for how to configure
the servers and ports).

When initializing, the JNP client code will try to get in touch with each server node from the list, one
after the other, stopping as soon as one server has been reached. It will then download the HA-JNDI
stub from this node.

NOTE

There is no load balancing behavior in the JNP client lookup process itself. It just goes
through the provider lists and uses the first available server to obtain the stub. The HA-
JNDI provider list only needs to contain a subset of HA-JNDI nodes in the cluster; once
the HA-JNDI stub is downloaded, the stub will include information on all the available
servers. A good practice is to include a set of servers such that you are certain that at
least one of those in the list will be available.

The downloaded smart proxy contains the list of currently running nodes and the logic to load balance
naming requests and to fail-over to another node if necessary. Furthermore, each time a JNDI
invocation is made to the server, the list of targets in the proxy interceptor is updated (only if the list
has changed since the last call).

If the property string java.naming.provider.url is empty or if all servers it mentions are not

java.naming.provider.url=server1:1100,server2:1100,server3:1100,server4:11
00
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reachable, the JNP client will try to discover a HA-JNDI server through a multicast call on the network
(auto-discovery). See Section 19.3, “JBoss configuration”  for how to configure auto-discovery on the
JNDI server nodes. Through auto-discovery, the client might be able to get a valid HA-JNDI server
node without any configuration. Of course, for auto-discovery to work, the network segment(s)
between the client and the server cluster must be configured to propagate such multicast datagrams.

NOTE

By default the auto-discovery feature uses multicast group address 230.0.0.4 and port
1102.

In addition to the java.naming.provider.url property, you can specify a set of other properties.
The following list shows all clustering-related client side properties you can specify when creating a
new InitialContext. (All of the standard, non-clustering-related environment properties used with
regular JNDI are also available.)

java.naming.provider.url: Provides a list of IP addresses and port numbers for HA-JNDI
provider nodes in the cluster. The client tries those providers one by one and uses the first one
that responds.

jnp.disableDiscovery: When set to true, this property disables the automatic discovery
feature. Default is false.

jnp.partitionName: In an environment where multiple HA-JNDI services bound to distinct
clusters (a.k.a. partitions), are running, this property allows you to ensure that your client only
accepts automatic-discovery responses from servers in the desired partition. If you do not use
the automatic discovery feature (i.e. jnp.disableDiscovery is true), this property is not used. By
default, this property is not set and the automatic discovery selects the first HA-JNDI server
that responds, regardless of the cluster partition name.

jnp.discoveryTimeout: Determines how many milliseconds the context will wait for a
response to its automatic discovery packet. Default is 5000 ms.

jnp.discoveryGroup: Determines which multicast group address is used for the automatic
discovery. Default is 230.0.0.4. Must match the value of the AutoDiscoveryAddress configured
on the server side HA-JNDI service. Note that the server side HA-JNDI service by default
listens on the address specified via the -u startup switch, so if -u is used on the server side
(as is recommended), jnp.discoveryGroup will need to be configured on the client side.

jnp.discoveryPort: Determines which multicast port is used for the automatic discovery.
Default is 1102. Must match the value of the AutoDiscoveryPort configured on the server side
HA-JNDI service.

jnp.discoveryTTL: specifies the TTL (time-to-live) for autodiscovery IP multicast packets.
This value represents the number of network hops a multicast packet can be allowed to
propagate before networking equipment should drop the packet. Despite its name, it does not
represent a unit of time.

19.3. JBOSS CONFIGURATION

The hajndi-jboss-beans.xml file in the JBOSS_HOME/server/all/deploy/cluster directory
includes the following bean to enable HA-JNDI services.

<bean name="HAJNDI" class="org.jboss.ha.jndi.HANamingService">    
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      <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
      (name="jboss:service=HAJNDI", 
         exposedInterface=org.jboss.ha.jndi.HANamingServiceMBean.class)
</annotation>  
      
      <!-- The partition used for group RPCs to find locally bound objects 
on other nodes -->
      <property name="HAPartition"><inject bean="HAPartition"/></property>
      
      <!-- Handler for the replicated tree -->
      <property name="distributedTreeManager">
         <bean 
class="org.jboss.ha.jndi.impl.jbc.JBossCacheDistributedTreeManager">
            <property name="cacheHandler"><inject 
bean="HAPartitionCacheHandler"/></property>
         </bean>
      </property>
      
      <property name="localNamingInstance">
         <inject bean="jboss:service=NamingBeanImpl" 
property="namingInstance"/>
      </property>
      
      <!-- The thread pool used to control the bootstrap and auto 
discovery lookups -->
      <property name="lookupPool"><inject 
bean="jboss.system:service=ThreadPool"/></property>
      
      <!-- Bind address of bootstrap endpoint -->
      <property name="bindAddress">${jboss.bind.address}</property>
      <!-- Port on which the HA-JNDI stub is made available -->
      <property name="port">
         <!-- Get the port from the ServiceBindingManager -->
         <value-factory bean="ServiceBindingManager" 
method="getIntBinding">
            <parameter>jboss:service=HAJNDI</parameter>
            <parameter>Port</parameter>
         </value-factory>
      </property>
      
      <!-- Bind address of the HA-JNDI RMI endpoint -->
      <property name="rmiBindAddress">${jboss.bind.address}</property>
      
      <!-- RmiPort to be used by the HA-JNDI service once bound. 0 = 
ephemeral. -->
      <property name="rmiPort">
         <!-- Get the port from the ServiceBindingManager -->
         <value-factory bean="ServiceBindingManager" 
method="getIntBinding">
            <parameter>jboss:service=HAJNDI</parameter>
            <parameter>RmiPort</parameter>
         </value-factory>
      </property>
      
      <!-- Accept backlog of the bootstrap socket -->
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You can see that this bean has a number of other services injected into different properties:

HAPartition accepts the core clustering service used manage HA-JNDI's clustered proxies and
to make the group RPCs that find locally bound objects on other nodes. See Section 18.3, “The
HAPartition Service” for more.

distributedTreeManager accepts a handler for the replicated tree. The standard handler uses
JBoss Cache to manage the replicated tree. The JBoss Cache instance is retrieved using the
injected HAPartitionCacheHandler bean. See Section 18.3, “The HAPartition Service”  for
more details.

localNamingInstance accepts the reference to the local JNDI service.

lookupPool accepts the thread pool used to provide threads to handle the bootstrap and auto
discovery lookups.

Besides the above dependency injected services, the available configuration attributes for the HA-
JNDI bean are as follows:

bindAddress specifies the address to which the HA-JNDI server will bind to listen for naming
proxy download requests from JNP clients. The default value is the value of the 
jboss.bind.address system property, or localhost if that property is not set. The 
jboss.bind.address system property is set if the -b command line switch is used when
JBoss is started.

      <property name="backlog">50</property>

      <!-- A flag to disable the auto discovery via multicast -->
      <property name="discoveryDisabled">false</property>
      <!-- Set the auto-discovery bootstrap multicast bind address. If not  
      specified and a BindAddress is specified, the BindAddress will be 
used. -->
      <property name="autoDiscoveryBindAddress">${jboss.bind.address}
</property>
      <!-- Multicast Address and group port used for auto-discovery -->
      <property 
name="autoDiscoveryAddress">${jboss.partition.udpGroup:230.0.0.4}
</property>
      <property name="autoDiscoveryGroup">1102</property>
      <!-- The TTL (time-to-live) for autodiscovery IP multicast packets -
->
      <property name="autoDiscoveryTTL">16</property>
      
      <!-- The load balancing policy for HA-JNDI -->
      <property 
name="loadBalancePolicy">org.jboss.ha.framework.interfaces.RoundRobin</pro
perty>

      <!-- Client socket factory to be used for client-server
           RMI invocations during JNDI queries
      <property name="clientSocketFactory">custom</property>
      -->
      <!-- Server socket factory to be used for client-server
           RMI invocations during JNDI queries
      <property name="serverSocketFactory">custom</property>
      -->
   </bean>
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port specifies the port to which the HA-JNDI server will bind to listen for naming proxy
download requests from JNP clients. The value is obtained from the ServiceBindingManager
bean configured in conf/bootstrap/bindings.xml. The default value is 1100.

backlog specifies the maximum queue length for incoming connection indications for the TCP
server socket on which the service listens for naming proxy download requests from JNP
clients. The default value is 50.

rmiBindAddress specifies the address to which the HA-JNDI server will bind to listen for RMI
requests (e.g. for JNDI lookups) from naming proxies. The default value is the value of the 
jboss.bind.address system property, or localhost if that property is not set. The 
jboss.bind.address system property is set if the -b command line switch is used when
JBoss is started.

rmiPort specifies the port to which the server will bind to communicate with the downloaded
stub. The value is obtained from the ServiceBindingManager bean configured in 
conf/bootstrap/bindings.xml. The default value is 1101. If no value is set, the operating
system automatically assigns a port.

discoveryDisabled is a boolean flag that disables configuration of the auto discovery multicast
listener. The default is false.

autoDiscoveryAddress specifies the multicast address to listen to for JNDI automatic
discovery. The default value is the value of the jboss.partition.udpGroup system
property, or 230.0.0.4 if that is not set. The jboss.partition.udpGroup system property
is set if the -u command line switch is used when JBoss is started.

autoDiscoveryGroup specifies the port to listen on for multicast JNDI automatic discovery
packets. The default value is 1102.

autoDiscoveryBindAddress sets the interface on which HA-JNDI should listen for auto-
discovery request packets. If this attribute is not specified and a bindAddress is specified,
the bindAddress will be used.

autoDiscoveryTTL specifies the TTL (time-to-live) for autodiscovery IP multicast packets.
This value represents the number of network hops a multicast packet can be allowed to
propagate before networking equipment should drop the packet. Despite its name, it does not
represent a unit of time.

loadBalancePolicy specifies the class name of the LoadBalancePolicy implementation that
should be included in the client proxy. See Chapter 16, Introduction and Quick Start the
Introduction and Quick Start chapter for details.

clientSocketFactory is an optional attribute that specifies the fully qualified classname of the 
java.rmi.server.RMIClientSocketFactory that should be used to create client
sockets. The default is null.

serverSocketFactory is an optional attribute that specifies the fully qualified classname of the
java.rmi.server.RMIServerSocketFactory that should be used to create server
sockets. The default is null.

19.3.1. Adding a Second HA-JNDI Service

It is possible to start several HA-JNDI services that use different HAPartitions. This can be used, for
example, if a node is part of many logical clusters. In this case, make sure that you set a different port
or IP address for each service. For instance, if you wanted to hook up HA-JNDI to the example cluster
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you set up and change the binding port, the bean descriptor would look as follows (properties that do
not vary from the standard deployments are omitted):

   <-- Cache Handler for secondary HAPartition -->
   <bean name="SecondaryHAPartitionCacheHandler"
         
class="org.jboss.ha.framework.server.HAPartitionCacheHandlerImpl">
         <property name="cacheManager"><inject bean="CacheManager"/>
</property>
         <property name="cacheConfigName">secondary-ha-
partition</property>
   </bean>
   
   <-- The secondary HAPartition -->
   <bean name="SecondaryHAPartition" 
class="org.jboss.ha.framework.server.ClusterPartition">     

      <depends>jboss:service=Naming</depends>
       
      <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
      (name="jboss:service=HAPartition,partition=SecondaryPartition", 
      
exposedInterface=org.jboss.ha.framework.server.ClusterPartitionMBean.class
, registerDirectly=true)</annotation>
       
      <property name="cacheHandler"><inject 
bean="SecondaryHAPartitionCacheHandler"/></property>
               
      <property name="partitionName">SecondaryPartition</property>
      
      ....      
   </bean>
   
   <bean name="MySpecialPartitionHAJNDI" 
class="org.jboss.ha.jndi.HANamingService">    

      <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
      (name="jboss:service=HAJNDI,partitionName=SecondaryPartition", 
         exposedInterface=org.jboss.ha.jndi.HANamingServiceMBean.class)
</annotation>  
      
      <property name="HAPartition"><inject bean="SecondaryHAPartition"/>
</property>
      
      <property name="distributedTreeManager">
         <bean 
class="org.jboss.ha.jndi.impl.jbc.JBossCacheDistributedTreeManager">
            <property name="cacheHandler"><inject 
bean="SecondaryHAPartitionPartitionCacheHandler"/></property>
         </bean>
      </property>
      
      <property name="port">56789</property>
      
      <property name="rmiPort">56790</property>
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      <property name="autoDiscoveryGroup">56791</property>
      
      .....
   </bean>
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CHAPTER 20. CLUSTERED SESSION EJBS
Session EJBs provide remote invocation services. They are clustered based on the client-side
interceptor architecture. The client application for a clustered session bean is the same as the client
for the non-clustered version of the session bean, except for some minor changes. No code change or
re-compilation is needed on the client side. Now, let's check out how to configure clustered session
beans in EJB 3.0 and EJB 2.x server applications respectively.

20.1. STATELESS SESSION BEAN IN EJB 3.0

Clustering stateless session beans is probably the easiest case since no state is involved. Calls can be
load balanced to any participating node (i.e. any node that has this specific bean deployed) of the
cluster.

To cluster a stateless session bean in EJB 3.0, simply annotate the bean class with the @Clustered
annotation. This annotation contains optional parameters for overriding both the load balance policy
and partition to use.

partition specifies the name of the cluster the bean participates in. While the @Clustered
annotation lets you override the default partition, DefaultPartition, for an individual bean,
you can override this for all beans using the jboss.partition.name system property.

loadBalancePolicy defines the name of a class implementing 
org.jboss.ha.client.loadbalance.LoadBalancePolicy, indicating how the bean stub
should balance calls made on the nodes of the cluster. The default value, 
LoadBalancePolicy is a special token indicating the default policy for the session bean type.
For stateless session beans, the default policy is 
org.jboss.ha.client.loadbalance.RoundRobin. You can override the default value
using your own implementation, or choose one from the list of available policies:

org.jboss.ha.client.loadbalance.RoundRobin

Starting with a random target, always favors the next available target in the list, ensuring
maximum load balancing always occurs.

org.jboss.ha.client.loadbalance.RandomRobin

Randomly selects its target without any consideration to previously selected targets.

org.jboss.ha.client.loadbalance.aop.FirstAvailable

Once a target is chosen, always favors that same target; i.e. no further load balancing
occurs. Useful in cases where "sticky session" behavior is desired, e.g. stateful session
beans.

org.jboss.ha.client.loadbalance.aop.FirstAvailableIdenticalAllProxies

Similar to FirstAvailable, except that the favored target is shared across all proxies.

public @interface Clustered
{
   String partition() default "${jboss.partition.name:DefaultPartition}";
   String loadBalancePolicy() default "LoadBalancePolicy";
}
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Here is an example of a clustered EJB 3.0 stateless session bean implementation.

Rather than using the @Clustered annotation, you can also enable clustering for a session bean in
jboss.xml:

NOTE

The <clustered>true</clustered> element is really just an alias for the 
<container-name>Clustered Stateless SessionBean</container-name>
element in the conf/standardjboss.xml file.

In the bean configuration, only the <clustered> element is necessary to indicate that the bean needs to
support clustering features. The default values for the optional <cluster-config> elements match those
of the corresponding properties from the @Clustered annotation.

20.2. STATEFUL SESSION BEANS IN EJB 3.0

Clustering stateful session beans is more complex than clustering their stateless counterparts since
JBoss needs to manage the state information. The state of all stateful session beans are replicated and
synchronized across the cluster each time the state of a bean changes.

20.2.1. The EJB application configuration

To cluster stateful session beans in EJB 3.0, you need to tag the bean implementation class with the 
@Clustered annotation, just as we did with the EJB 3.0 stateless session bean earlier. In contrast to
stateless session beans, stateful session bean method invocations are load balanced using 
org.jboss.ha.client.loadbalance.aop.FirstAvailable policy, by default. Using this policy,
methods invocations will stick to a randomly chosen node.

@Stateless
@Clustered
public class MyBean implements MySessionInt
{
   public void test()
   {
      // Do something cool
   }
}

 
<jboss>    
   <enterprise-beans>
      <session>
         <ejb-name>NonAnnotationStateful</ejb-name>
         <clustered>true</clustered>
         <cluster-config>
            <partition-name>FooPartition</partition-name>
            <load-balance-
policy>org.jboss.ha.framework.interfaces.RandomRobin</load-balance-policy>
         </cluster-config>
      </session>    
   </enterprise-beans>
</jboss>
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The @org.jboss.ejb3.annotation.CacheConfig annotation can also be applied to the bean to
override the default caching behavior. Below is the definition of the @CacheConfig annotation:

name specifies the name of a cache configuration registered with the CacheManager service
discussed in Section 20.2.3, “CacheManager service configuration” . By default, the sfsb-
cache configuration will be used.

maxSize specifies the maximum number of beans that can cached before the cache should
start passivating beans, using an LRU algorithm.

idleTimeoutSeconds specifies the max period of time a bean can go unused before the
cache should passivate it (regardless of whether maxSize beans are cached.)

removalTimeoutSeconds specifies the max period of time a bean can go unused before the
cache should remove it altogether.

replicationIsPassivation specifies whether the cache should consider a replication as
being equivalent to a passivation, and invoke any @PrePassivate and @PostActivate callbacks
on the bean. By default true, since replication involves serializing the bean, and preparing for
and recovering from serialization is a common reason for implementing the callback methods.

Here is an example of a clustered EJB 3.0 stateful session bean implementation.

As with stateless beans, the @Clustered annotation can alternatively be omitted and the clustering
configuration instead applied to jboss.xml:

public @interface CacheConfig
{
   String name() default "";
   int maxSize() default 10000;
   long idleTimeoutSeconds() default 300;   
   boolean replicationIsPassivation() default true;   
   long removalTimeoutSeconds() default 0;
}

@Stateful
@Clustered
@CacheConfig(maxSize=5000, removalTimeoutSeconds=18000)
public class MyBean implements MySessionInt
{
   private int state = 0;

   public void increment()
   {
      System.out.println("counter: " + (state++));
   }
}

<jboss>    
   <enterprise-beans>
      <session>
         <ejb-name>NonAnnotationStateful</ejb-name>
         <clustered>true</clustered>
         <cache-config>
            <cache-max-size>5000</cache-max-size>
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20.2.2. Optimize state replication

As the replication process is a costly operation, you can optimise this behaviour by optionally
implementing the org.jboss.ejb3.cache.Optimized interface in your bean class:

Before replicating your bean, the container will check if your bean implements the Optimized
interface. If this is the case, the container calls the isModified() method and will only replicate the
bean when the method returns true. If the bean has not been modified (or not enough to require
replication, depending on your own preferences), you can return false and the replication would not
occur.

20.2.3. CacheManager service configuration

JBoss Cache provides the session state replication service for EJB 3.0 stateful session beans. The 
CacheManager service, described in Section 18.2.1, “The JBoss Enterprise Application Platform
CacheManager Service” is both a factory and registry of JBoss Cache instances. By default, stateful
session beans use the sfsb-cache configuration from the CacheManager, defined as follows:

            <remove-timeout-seconds>18000</remove-timeout-seconds>
         </cache-config>
      </session>    
   </enterprise-beans>
</jboss>

public interface Optimized
{
   boolean isModified();
}

<bean name="StandardSFSBCacheConfig" 
class="org.jboss.cache.config.Configuration">

  <!--  No transaction manager lookup -->
  
  <!-- Name of cluster. Needs to be the same for all members -->
  <property name="clusterName">${jboss.partition.name:DefaultPartition}-
SFSBCache</property>
  <!--
    Use a UDP (multicast) based stack. Need JGroups flow control (FC)
    because we are using asynchronous replication.
  -->
  <property name="multiplexerStack">${jboss.default.jgroups.stack:udp}
</property>
  <property name="fetchInMemoryState">true</property>
  
  <property name="nodeLockingScheme">PESSIMISTIC</property>
  <property name="isolationLevel">REPEATABLE_READ</property>
  <property name="useLockStriping">false</property>
  <property name="cacheMode">REPL_ASYNC</property>
  
  <!--
    Number of milliseconds to wait until all responses for a
    synchronous call have been received. Make this longer 
    than lockAcquisitionTimeout.
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  -->
  <property name="syncReplTimeout">17500</property>
  <!-- Max number of milliseconds to wait for a lock acquisition -->
  <property name="lockAcquisitionTimeout">15000</property>
  <!-- The max amount of time (in milliseconds) we wait until the
  state (ie. the contents of the cache) are retrieved from
  existing members at startup. -->
  <property name="stateRetrievalTimeout">60000</property>
  
  <!--
    SFSBs use region-based marshalling to provide for partial state
    transfer during deployment/undeployment.
  -->
  <property name="useRegionBasedMarshalling">false</property>
  <!-- Must match the value of "useRegionBasedMarshalling" -->
  <property name="inactiveOnStartup">false</property>
  
  <!-- Disable asynchronous RPC marshalling/sending -->
  <property name="serializationExecutorPoolSize">0</property>        
  <!-- We have no asynchronous notification listeners -->
  <property name="listenerAsyncPoolSize">0</property>
  
  <property name="exposeManagementStatistics">true</property>
  
  <property name="buddyReplicationConfig">
    <bean class="org.jboss.cache.config.BuddyReplicationConfig">
    
      <!--  Just set to true to turn on buddy replication -->
      <property name="enabled">false</property>
      
      <!--
        A way to specify a preferred replication group.  We try
        and pick a buddy who shares the same pool name (falling 
        back to other buddies if not available).
      -->
      <property name="buddyPoolName">default</property>
      
      <property name="buddyCommunicationTimeout">17500</property>
      
      <!-- Do not change these -->
      <property name="autoDataGravitation">false</property>
      <property name="dataGravitationRemoveOnFind">true</property>
      <property name="dataGravitationSearchBackupTrees">true</property>
               
      <property name="buddyLocatorConfig">
        <bean 
class="org.jboss.cache.buddyreplication.NextMemberBuddyLocatorConfig">
          <!-- The number of backup nodes we maintain -->
          <property name="numBuddies">1</property>
          <!-- Means that each node will *try* to select a buddy on 
               a different physical host. If not able to do so 
               though, it will fall back to colocated nodes. -->
          <property name="ignoreColocatedBuddies">true</property>
        </bean>
      </property>
    </bean>
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Eviction

The default SFSB cache is configured to support eviction. The EJB3 SFSB container uses the JBoss
Cache eviction mechanism to manage SFSB passivation. When beans are deployed, the EJB container
will programatically add eviction regions to the cache, one region per bean type.

CacheLoader

A JBoss Cache CacheLoader is also configured; again to support SFSB passivation. When beans are
evicted from the cache, the cache loader passivates them to a persistent store; in this case to the
filesystem in the  $JBOSS_HOME /server/all/data/sfsb directory. JBoss Cache supports a
variety of different CacheLoader implementations that know how to store data to different persistent

  </property>
  <property name="cacheLoaderConfig">
    <bean class="org.jboss.cache.config.CacheLoaderConfig">
      <!-- Do not change these -->
      <property name="passivation">true</property>
      <property name="shared">false</property>
      
      <property name="individualCacheLoaderConfigs">
        <list>
          <bean class="org.jboss.cache.loader.FileCacheLoaderConfig">
            <!-- Where passivated sessions are stored -->
            <property 
name="location">${jboss.server.data.dir}${/}sfsb</property>
            <!-- Do not change these -->
            <property name="async">false</property>
            <property name="fetchPersistentState">true</property>
            <property name="purgeOnStartup">true</property>
            <property name="ignoreModifications">false</property>
            <property name="checkCharacterPortability">false</property>
          </bean>
        </list>
      </property>
    </bean>
  </property>

  <!-- EJBs use JBoss Cache eviction -->
  <property name="evictionConfig">
    <bean class="org.jboss.cache.config.EvictionConfig">
      <property name="wakeupInterval">5000</property>
      <!--  Overall default -->
      <property name="defaultEvictionRegionConfig">
        <bean class="org.jboss.cache.config.EvictionRegionConfig">
          <property name="regionName">/</property>
          <property name="evictionAlgorithmConfig">
            <bean 
class="org.jboss.cache.eviction.NullEvictionAlgorithmConfig"/>
          </property>
        </bean>
      </property>
      <!-- EJB3 integration code will programatically create other regions 
as beans are deployed -->
    </bean>
  </property>
</bean>
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store types; see the JBoss Cache documentation for details. However, if you change the
CacheLoaderConfiguration, be sure that you do not use a shared store, e.g. a single schema in a shared
database. Each node in the cluster must have its own persistent store, otherwise as nodes
independently passivate and activate clustered beans, they will corrupt each other's data.

Buddy Replication

Using buddy replication, state is replicated to a configurable number of backup servers in the cluster
(a.k.a. buddies), rather than to all servers in the cluster. To enable buddy replication, adjust the
following properties in the buddyReplicationConfig property bean:

Set enabled to true.

Use the buddyPoolName to form logical subgroups of nodes within the cluster. If possible,
buddies will be chosen from nodes in the same buddy pool.

Adjust the buddyLocatorConfig.numBuddies property to reflect the number of backup
nodes to which each node should replicate its state.

20.3. STATELESS SESSION BEAN IN EJB 2.X

To make an EJB 2.x bean clustered, you need to modify its jboss.xml descriptor to contain a 
<clustered> tag.

partition-name specifies the name of the cluster the bean participates in. The default value is 
DefaultPartition. The default partition name can also be set system-wide using the 
jboss.partition.name system property.

home-load-balance-policy indicates the class to be used by the home stub to balance calls
made on the nodes of the cluster. By default, the proxy will load-balance calls in a 
RoundRobin fashion.

bean-load-balance-policy Indicates the class to be used by the bean stub to balance calls
made on the nodes of the cluster. By default, the proxy will load-balance calls in a 
RoundRobin fashion.

<jboss>
  <enterprise-beans>
    <session>
      <ejb-name>nextgen.StatelessSession</ejb-name>
      <jndi-name>nextgen.StatelessSession</jndi-name>
      <clustered>true</clustered>
      <cluster-config>
        <partition-name>DefaultPartition</partition-name>
        <home-load-balance-
policy>org.jboss.ha.framework.interfaces.RoundRobin</home-load-balance-
policy>
        <bean-load-balance-
policy>org.jboss.ha.framework.interfaces.RoundRobin</bean-load-balance-
policy>
      </cluster-config>
    </session>
  </enterprise-beans>
</jboss>
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20.4. STATEFUL SESSION BEAN IN EJB 2.X

Clustering stateful session beans is more complex than clustering their stateless counterparts since
JBoss needs to manage the state information. The state of all stateful session beans are replicated and
synchronized across the cluster each time the state of a bean changes. The JBoss Enterprise
Application Platform uses the HASessionStateService bean to manage distributed session states
for clustered EJB 2.x stateful session beans. In this section, we cover both the session bean
configuration and the HASessionStateService bean configuration.

20.4.1. The EJB application configuration

In the EJB application, you need to modify the jboss.xml descriptor file for each stateful session
bean and add the <clustered> tag.

In the bean configuration, only the <clustered> tag is mandatory to indicate that the bean works in a
cluster. The <cluster-config> element is optional and its default attribute values are indicated in
the sample configuration above.

The <session-state-manager-jndi-name> tag is used to give the JNDI name of the 
HASessionStateService to be used by this bean.

The description of the remaining tags is identical to the one for stateless session bean. Actions on the
clustered stateful session bean's home interface are by default load-balanced, round-robin. Once the
bean's remote stub is available to the client, calls will not be load-balanced round-robin any more and
will stay "sticky" to the first node in the list.

20.4.2. Optimize state replication

As the replication process is a costly operation, you can optimise this behaviour by optionally
implementing in your bean class a method with the following signature:

<jboss>    
  <enterprise-beans>
    <session>        
      <ejb-name>nextgen.StatefulSession</ejb-name>
      <jndi-name>nextgen.StatefulSession</jndi-name>
      <clustered>True</clustered>
      <cluster-config>
        <partition-name>DefaultPartition</partition-nam>
        <home-load-balance-
policy>org.jboss.ha.framework.interfaces.RoundRobin</home-load-balance-
policy>
        <bean-load-balance-
policy>org.jboss.ha.framework.interfaces.FirstAvailable</bean-load-
balance-policy>          
        <session-state-manager-jndi-name>/HASessionState/Default</session-
state-manager-jndi-name>        
      </cluster-config>
    </session>
  </enterprise-beans>
</jboss>

public boolean isModified();
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Before replicating your bean, the container will detect if your bean implements this method. If your
bean does, the container calls the isModified() method and it only replicates the bean when the
method returns true. If the bean has not been modified (or not enough to require replication,
depending on your own preferences), you can return false and the replication would not occur.

20.4.3. The HASessionStateService configuration

The HASessionStateService bean is defined in the <profile>/deploy/cluster/ha-legacy-
jboss-beans.xml file.

The configuration attributes in the HASessionStateService bean are listed below.

HAPartition is a required attribute to inject the HAPartition service that HA-JNDI uses for
intra-cluster communication.

jndiName is an optional attribute to specify the JNDI name under which this 
HASessionStateService bean is bound. The default value is /HAPartition/Default.

beanCleaningDelay is an optional attribute to specify the number of miliseconds after which
the HASessionStateService can clean a state that has not been modified. If a node, owning
a bean, crashes, its brother node will take ownership of this bean. Nevertheless, the container
cache of the brother node will not know about it (because it has never seen it before) and will
never delete according to the cleaning settings of the bean. That is why the 
HASessionStateService needs to do this cleanup sometimes. The default value is 
30*60*1000 milliseconds (i.e., 30 minutes).

20.4.4. Handling Cluster Restart

We have covered the HA smart client architecture in Section 17.2.1, “Client-side interceptor
architecture”. The default HA smart proxy client can only failover as long as one node in the cluster
exists. If there is a complete cluster shutdown, the proxy becomes orphaned and loses knowledge of
the available nodes in the cluster. There is no way for the proxy to recover from this. The proxy needs
to look up a fresh set of targets out of JNDI/HA-JNDI when the nodes are restarted.

 
<bean name="HASessionStateService"
      class="org.jboss.ha.hasessionstate.server.HASessionStateService">
  
  <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
  (name="jboss:service=HASessionState", 
  exposedInterface=org.jboss.ha.hasessionstate.server.
  HASessionStateServiceMBean.class, 
  registerDirectly=true)</annotation>
  
  <!--  Partition used for group RPCs -->
  <property name="HAPartition"><inject bean="HAPartition"/></property>
  
  <!-- JNDI name under which the service is bound -->
  <property name="jndiName">/HASessionState/Default</property>
  <!-- Max delay before cleaning unreclaimed state.
       Defaults to 30*60*1000 => 30 minutes -->
  <property name="beanCleaningDelay">0</property>
   
</bean>
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RetryInterceptor can be added to the proxy client side interceptor stack to allow for a transparent
recovery from such a restart failure. To enable it for an EJB, setup an invoker-proxy-binding that
includes the RetryInterceptor. Below is an example jboss.xml configuration.

20.4.5. JNDI Lookup Process

In order to recover the HA proxy, the RetryInterceptor does a lookup in JNDI. This means that
internally it creates a new InitialContext and does a JNDI lookup. But, for that lookup to succeed, the
InitialContext needs to be configured properly to find your naming server. The RetryInterceptor will go
through the following steps in attempting to determine the proper naming environment properties:

1. It will check its own static retryEnv field. This field can be set by client code via a call to

 
<jboss>
  <session>
    <ejb-name>nextgen_RetryInterceptorStatelessSession</ejb-name>
    <invoker-bindings>
      <invoker>
        <invoker-proxy-binding-name>clustered-retry-stateless-rmi-
invoker</invoker-proxy-binding-name>
        <jndi-name>nextgen_RetryInterceptorStatelessSession</jndi-name>
      </invoker>
    </invoker-bindings>
    <clustered>true</clustered>
  </session>
  <invoker-proxy-binding>
    <name>clustered-retry-stateless-rmi-invoker</name>
    <invoker-mbean>jboss:service=invoker,type=jrmpha</invoker-mbean>
    <proxy-factory>org.jboss.proxy.ejb.ProxyFactoryHA</proxy-factory>
    <proxy-factory-config>
      <client-interceptors>
        <home>
          <interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
          <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
          
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
          <interceptor>org.jboss.proxy.ejb.RetryInterceptor</interceptor>
          
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
        </home>
        <bean>
          
<interceptor>org.jboss.proxy.ejb.StatelessSessionInterceptor</interceptor>
          <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
          
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
          <interceptor>org.jboss.proxy.ejb.RetryInterceptor</interceptor>
          
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
        </bean>
      </client-interceptors>
    </proxy-factory-config>
  </invoker-proxy-binding>
</jboss>
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RetryInterceptor.setRetryEnv(Properties). This approach to configuration has two downsides:
first, it reduces portability by introducing JBoss-specific calls to the client code; and second,
since a static field is used only a single configuration per VM is possible.

2. If the retryEnv field is null, it will check for any environment properties bound to a ThreadLocal
by the org.jboss.naming.NamingContextFactory class. To use this class as your naming context
factory, in your jndi.properties set property
java.naming.factory.initial=org.jboss.naming.NamingContextFactory. The advantage of this
approach is use of org.jboss.naming.NamingContextFactory is simply a configuration option in
your jndi.properties file, and thus your java code is unaffected. The downside is the naming
properties are stored in a ThreadLocal and thus are only visible to the thread that originally
created an InitialContext.

3. If neither of the above approaches yield a set of naming environment properties, a default
InitialContext is used. If the attempt to contact a naming server is unsuccessful, by default the
InitialContext will attempt to fall back on multicast discovery to find an HA-JNDI naming
server. See Chapter 19, Clustered JNDI Services for more on multicast discovery of HA-JNDI.

20.4.6. SingleRetryInterceptor

The RetryInterceptor is useful in many use cases, but a disadvantage it has is that it will continue
attempting to re-lookup the HA proxy in JNDI until it succeeds. If for some reason it cannot succeed,
this process could go on forever, and thus the EJB call that triggered the RetryInterceptor will never
return. For many client applications, this possibility is unacceptable. As a result, JBoss doesn't make
the RetryInterceptor part of its default client interceptor stacks for clustered EJBs.

In a previous release, a new flavor of retry interceptor was introduced, the
org.jboss.proxy.ejb.SingleRetryInterceptor. This version works like the RetryInterceptor, but only
makes a single attempt to re-lookup the HA proxy in JNDI. If this attempt fails, the EJB call will fail just
as if no retry interceptor was used. The SingleRetryInterceptor is now part of the default client
interceptor stacks for clustered EJBs.

The downside of the SingleRetryInterceptor is that if the retry attempt is made during a portion of a
cluster restart where no servers are available, the retry will fail and no further attempts will be made.
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CHAPTER 21. CLUSTERED ENTITY EJBS
In a JBoss Enterprise Application Platform cluster, entity bean instance caches need to be kept in sync
across all nodes. If an entity bean provides remote services, the service methods need to be load
balanced as well.

21.1. ENTITY BEAN IN EJB 3.0

In EJB 3.0, entity beans primarily serve as a persistence data model. They do not provide remote
services. Hence, the entity bean clustering service in EJB 3.0 primarily deals with distributed caching
and replication, instead of load balancing.

21.1.1. Configure the distributed cache

To avoid round trips to the database, you can use a cache for your entities. JBoss EJB 3.0 entity beans
are implemented by Hibernate, which has support for a second-level cache. The second-level cache
provides the following functionalities:

If you persist a cache-enabled entity bean instance to the database via the entity manager, the
entity will be inserted into the cache.

If you update an entity bean instance, and save the changes to the database via the entity
manager, the entity will be updated in the cache.

If you remove an entity bean instance from the database via the entity manager, the entity will
be removed from the cache.

If loading a cached entity from the database via the entity manager, and that entity does not
exist in the database, it will be inserted into the cache.

As well as a region for caching entities, the second-level cache also contains regions for caching
collections, queries, and timestamps. The Hibernate setup used for the JBoss EJB 3.0 implementation
uses JBoss Cache as its underlying second-level cache implementation.

Configuration of a the second-level cache is done via your EJB3 deployment's persistence.xml, like
so:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns="http://java.sun.com/xml/ns/persistence"
    xsi:schemaLocation="http://java.sun.com/xml/ns/persistence 
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
  <persistence-unit name="tempdb" transaction-type="JTA">
    <jta-data-source>java:/DefaultDS</jta-data-source>
    <properties>
      <property name="hibernate.cache.use_second_level_cache" 
value="true"/>
      <property name="hibernate.cache.use_query_cache" value="true"/>
      <property name="hibernate.cache.region.factory_class" 
value="org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory"/>
      <!-- region factory specific properties -->
      <property name="hibernate.cache.region.jbc2.cachefactory" 
value="java:CacheManager"/>
      <property name="hibernate.cache.region.jbc2.cfg.entity" value="mvcc-
entity"/>
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hibernate.cache.use_second_level_cache

Enables second-level caching of entities and collections.

hibernate.cache.use_query_cache

Enables second-level caching of queries.

hibernate.cache.region.factory_class

Defines the RegionFactory implementation that dictates region-specific caching behavior.
Hibernate ships with 2 types of JBoss Cache-based second-level caches: shared and multiplexed.

A shared region factory uses the same Cache for all cache regions - much like the legacy
CacheProvider implementation in older Hibernate versions.

Hibernate ships with 2 shared region factory implementations:

org.hibernate.cache.jbc2.SharedJBossCacheRegionFactory

Uses a single JBoss Cache configuration, from a newly instantiated CacheManager, for all cache
regions.

Table 21.1. Additional properties for SharedJBossCacheRegionFactory

Property Default Description

hibernate.cache.region.jbc2.cf
g.shared

treecache.xml The classpath or filesystem
resource containing the JBoss
Cache configuration settings.

hibernate.cache.region.jbc2.cf
g.jgroups.stacks

org/hibernate/cache/jbc2/buil
der/jgroups-stacks.xml

The classpath or filesystem
resource containing the
JGroups protocol stack
configurations.

org.hibernate.cache.jbc2.JndiSharedJBossCacheRegionFactory

Uses a single JBoss Cache configuration, from an existing CacheManager bound to JNDI, for all
cache regions.

Table 21.2. Additional properties for JndiSharedJBossCacheRegionFactory

Property Default Description

hibernate.cache.region.jbc2.cf
g.shared

Required JNDI name to which the shared
Cache instance is bound.

      <property name="hibernate.cache.region.jbc2.cfg.collection" 
value="mvcc-entity"/>
    </properties>
  </persistence-unit>
</persistence>
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A multiplexed region factory uses separate Cache instances, using optimized configurations for
each cache region.

Table 21.3. Common properties for multiplexed region factory implementations

Property Default Description

hibernate.cache.region.jbc2.cfg.
entity

optimistic-entity The JBoss Cache configuration
used for the entity cache region.
Alternative configurations:
mvcc-entity, pessimistic-entity,
mvcc-entity-repeatable,
optimistic-entity-repeatable,
pessimistic-entity-repeatable

hibernate.cache.region.jbc2.cfg.
collection

optimistic-entity The JBoss Cache configuration
used for the collection cache
region. The collection cache
region typically uses the same
configuration as the entity
cache region.

hibernate.cache.region.jbc2.cfg.
query

local-query The JBoss Cache configuration
used for the query cache region.
By default, cached query results
are not replicated. Alternative
configurations: replicated-query

hibernate.cache.region.jbc2.cfg.
ts

timestamps-cache The JBoss Cache configuration
used for the timestamp cache
region. If query caching is used,
the corresponding timestamp
cache must be replicating, even
if the query cache is non-
replicating. The timestamp
cache region must never share
the same cache as the query
cache.

Hibernate ships with 2 shared region factory implementations:

org.hibernate.cache.jbc2.MultiplexedJBossCacheRegionFactory

Uses separate JBoss Cache configurations, from a newly instantiated CacheManager, per cache
region.

Table 21.4. Additional properties for MultiplexedJBossCacheRegionFactory

Property Default Description

hibernate.cache.region.jbc2.co
nfigs

org/hibernate/cache/jbc2/buil
der/jbc2-configs.xml

The classpath or filesystem
resource containing the JBoss
Cache configuration settings.
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hibernate.cache.region.jbc2.cf
g.jgroups.stacks

org/hibernate/cache/jbc2/buil
der/jgroups-stacks.xml

The classpath or filesystem
resource containing the
JGroups protocol stack
configurations.

Property Default Description

org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory

Uses separate JBoss Cache configurations, from a JNDI-bound CacheManager, see
Section 18.2.1, “The JBoss Enterprise Application Platform CacheManager Service” , per cache
region.

Table 21.5. Additional properties for JndiMultiplexedJBossCacheRegionFactory

Property Default Description

hibernate.cache.region.jbc2.ca
chefactory

Required JNDI name to which the 
CacheManager instance is
bound.

Now, we have JBoss Cache configured to support distributed caching of EJB 3.0 entity beans. We still
have to configure individual entity beans to use the cache service.

21.1.2. Configure the entity beans for cache

Next we need to configure which entities to cache. The default is to not cache anything, even with the
settings shown above. We use the @org.hibernate.annotations.Cache annotation to tag entity
beans that needs to be cached.

A very simplified rule of thumb is that you will typically want to do caching for objects that rarely
change, and which are frequently read. You can fine tune the cache for each entity bean in the
appropriate JBoss Cache configuration file, e.g. jboss-cache-manager-jboss-beans.xml. For
instance, you can specify the size of the cache. If there are too many objects in the cache, the cache
can evict the oldest or least used objects, depending on configuration, to make room for new objects.
Assuming the region_prefix specified in persistence.xml was myprefix, the default name of the
cache region for the com.mycompany.entities.Account entity bean would be 
/myprefix/com/mycompany/entities/Account.

@Entity 
@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL) 
public class Account implements Serializable
{
   // ... ... 
}

<bean name="..." class="org.jboss.cache.config.Configuration">
   ... ...
  <property name="evictionConfig">
    <bean class="org.jboss.cache.config.EvictionConfig">
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If you do not specify a cache region for an entity bean class, all instances of this class will be cached
using the defaultEvictionRegionConfig as defined above. The @Cache annotation exposes an
optional attribute "region" that lets you specify the cache region where an entity is to be stored, rather
than having it be automatically be created from the fully-qualified class name of the entity class.

The eviction configuration would then become:

      <property name="wakeupInterval">5000</property>
      <!--  Overall default -->
      <property name="defaultEvictionRegionConfig">
        <bean class="org.jboss.cache.config.EvictionRegionConfig">
          <property name="regionName">/</property>
          <property name="evictionAlgorithmConfig">
            <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
              <!-- Evict LRU node once we have more than this number of 
nodes -->
              <property name="maxNodes">10000</property>
              <!-- And, evict any node that hasn't been accessed in this 
many seconds -->
              <property name="timeToLiveSeconds">1000</property>
              <!-- Don't evict a node that's been accessed within this 
many seconds. 
                  Set this to a value greater than your max expected 
transaction length. -->
              <property name="minTimeToLiveSeconds">120</property>
            </bean>
          </property>
        </bean>
      </property>
      <property name="evictionRegionConfigs">
        <list>
          <bean class="org.jboss.cache.config.EvictionRegionConfig">
            <property 
name="regionName">/myprefix/com/mycompany/entities/Account</property>
            <property name="evictionAlgorithmConfig">
              <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
                <property name="maxNodes">10000</property>
                <property name="timeToLiveSeconds">5000</property>
                <property name="minTimeToLiveSeconds">120</property>
              </bean>
            </property>
          </bean>
           ... ...
        </list>
      </property>
    </bean>
  </property>
</bean>

@Entity 
@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL, region = "Account")  
public class Account implements Serializable
{ 
  // ... ... 
}
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21.1.3. Query result caching

The EJB3 Query API also provides means for you to save the results (i.e., collections of primary keys of
entity beans, or collections of scalar values) of specified queries in the second-level cache. Here we
show a simple example of annotating a bean with a named query, also providing the Hibernate-specific
hints that tells Hibernate to cache the query.

First, in persistence.xml you need to tell Hibernate to enable query caching:

<property name="hibernate.cache.use_query_cache" value="true"/>

Next, you create a named query associated with an entity, and tell Hibernate you want to cache the
results of that query:

<bean name="..." class="org.jboss.cache.config.Configuration">
   ... ...
  <property name="evictionConfig">
    <bean class="org.jboss.cache.config.EvictionConfig">
      <property name="wakeupInterval">5000</property>
      <!--  Overall default -->
      <property name="defaultEvictionRegionConfig">
        <bean class="org.jboss.cache.config.EvictionRegionConfig">
          <property name="regionName">/</property>
          <property name="evictionAlgorithmConfig">
            <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
              <property name="maxNodes">5000</property>
              <property name="timeToLiveSeconds">1000</property>
              <property name="minTimeToLiveSeconds">120</property>
            </bean>
          </property>
        </bean>
      </property>
      <property name="evictionRegionConfigs">
        <list>
          <bean class="org.jboss.cache.config.EvictionRegionConfig">
            <property name="regionName">/myprefix/Account</property>
            <property name="evictionAlgorithmConfig">
              <bean class="org.jboss.cache.eviction.LRUAlgorithmConfig">
                <property name="maxNodes">10000</property>
                <property name="timeToLiveSeconds">5000</property>
                <property name="minTimeToLiveSeconds">120</property>
              </bean>
            </property>
          </bean>
           ... ...
        </list>
      </property>
    </bean>
  </property>
</bean>

 
@Entity
@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL, region = "Account")
@NamedQueries(
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The @NamedQueries, @NamedQuery and @QueryHint annotations are all in the javax.persistence
package. See the Hibernate and EJB3 documentation for more on how to use EJB3 queries and on how
to instruct EJB3 to cache queries.

By default, Hibernate stores query results in JBoss Cache in a region named
<region_prefix>/org/hibernate/cache/StandardQueryCache. Based on this, you can set up separate
eviction handling for your query results. So, if the region prefix were set to myprefix in 
persistence.xml, you could, for example, create this sort of eviction handling:

{
  @NamedQuery(
    name = "account.bybranch",
    query = "select acct from Account as acct where acct.branch = ?1",
    hints = { @QueryHint(name = "org.hibernate.cacheable", value = "true") 
}
  )
})
public class Account implements Serializable
{
  // ... ... 
}

<bean name="..." class="org.jboss.cache.config.Configuration">
    ... ...
   <property name="evictionConfig">
       <bean class="org.jboss.cache.config.EvictionConfig">
         <property name="wakeupInterval">5000</property>
         <!--  Overall default -->
         <property name="defaultEvictionRegionConfig">
            <bean class="org.jboss.cache.config.EvictionRegionConfig">
               <property name="regionName">/</property>
               <property name="evictionAlgorithmConfig">
                  <bean 
class="org.jboss.cache.eviction.LRUAlgorithmConfig">
                     <property name="maxNodes">5000</property>
                     <property name="timeToLiveSeconds">1000</property>
                     <property name="minTimeToLiveSeconds">120</property>
                  </bean>
               </property>
            </bean>
         </property>
         <property name="evictionRegionConfigs">
            <list>
               <bean class="org.jboss.cache.config.EvictionRegionConfig">
                  <property 
name="regionName">/myprefix/Account</property>
                  <property name="evictionAlgorithmConfig">
                     <bean 
class="org.jboss.cache.eviction.LRUAlgorithmConfig">
                        <property name="maxNodes">10000</property>
                        <property 
name="timeToLiveSeconds">5000</property>
                        <property 
name="minTimeToLiveSeconds">120</property>
                     </bean>
                  </property>
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The @NamedQuery.hints attribute shown above takes an array of vendor-specific @QueryHints as a
value. Hibernate accepts the "org.hibernate.cacheRegion" query hint, where the value is the name of a
cache region to use instead of the default /org/hibernate/cache/StandardQueryCache. For example:

The related eviction configuration:

               </bean>
               <bean class="org.jboss.cache.config.EvictionRegionConfig">
                  <property 
name="regionName">/myprefix/org/hibernate/cache/StandardQueryCache</proper
ty>
                  <property name="evictionAlgorithmConfig">
                     <bean 
class="org.jboss.cache.eviction.LRUAlgorithmConfig">
                        <property name="maxNodes">100</property>
                        <property name="timeToLiveSeconds">600</property>
                        <property 
name="minTimeToLiveSeconds">120</property>
                     </bean>
                  </property>
               </bean>
            </list>
         </property>
      </bean>
   </property>
</bean>

@Entity
@Cache(usage = CacheConcurrencyStrategy.TRANSACTIONAL, region = "Account")
@NamedQueries(
{
  @NamedQuery(
    name = "account.bybranch",
    query = "select acct from Account as acct where acct.branch = ?1",
    hints = 
    {
      @QueryHint(name = "org.hibernate.cacheable", value = "true"),
      @QueryHint(name = "org.hibernate.cacheRegion", value = "Queries")
    }
  )
})
public class Account implements Serializable
{
  // ... ... 
}

<bean name="..." class="org.jboss.cache.config.Configuration">
    ... ...
   <property name="evictionConfig">
       <bean class="org.jboss.cache.config.EvictionConfig">
         <property name="wakeupInterval">5000</property>
         <!--  Overall default -->
         <property name="defaultEvictionRegionConfig">
            <bean class="org.jboss.cache.config.EvictionRegionConfig">
               <property name="regionName">/</property>
               <property name="evictionAlgorithmConfig">
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21.2. ENTITY BEAN IN EJB 2.X

First of all, it is worth noting that clustering 2.x entity beans is a bad thing to do. Its exposes elements
that generally are too fine grained for use as remote objects to clustered remote objects and
introduces data synchronization problems that are non-trivial. Do NOT use EJB 2.x entity bean
clustering unless you fit into the special case situation of read-only, or one read-write node with read-
only nodes synchronized with the cache invalidation services.

To use a clustered entity bean, the application does not need to do anything special, except for looking
up EJB 2.x remote bean references from the clustered HA-JNDI.

                  <bean 
class="org.jboss.cache.eviction.LRUAlgorithmConfig">
                     <property name="maxNodes">5000</property>
                     <property name="timeToLiveSeconds">1000</property>
                     <property name="minTimeToLiveSeconds">120</property>
                  </bean>
               </property>
            </bean>
         </property>
         <property name="evictionRegionConfigs">
            <list>
               <bean class="org.jboss.cache.config.EvictionRegionConfig">
                  <property 
name="regionName">/myprefix/Account</property>
                  <property name="evictionAlgorithmConfig">
                     <bean 
class="org.jboss.cache.eviction.LRUAlgorithmConfig">
                        <property name="maxNodes">10000</property>
                        <property 
name="timeToLiveSeconds">5000</property>
                        <property 
name="minTimeToLiveSeconds">120</property>
                     </bean>
                  </property>
               </bean>
               <bean class="org.jboss.cache.config.EvictionRegionConfig">
                  <property 
name="regionName">/myprefix/Queries</property>
                  <property name="evictionAlgorithmConfig">
                     <bean 
class="org.jboss.cache.eviction.LRUAlgorithmConfig">
                        <property name="maxNodes">100</property>
                        <property name="timeToLiveSeconds">600</property>
                        <property 
name="minTimeToLiveSeconds">120</property>
                     </bean>
                  </property>
               </bean>
                ... ...
            </list>
         </property>
      </bean>
   </property>
</bean>
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To cluster EJB 2.x entity beans, you need to add the <clustered> element to the application's 
jboss.xml descriptor file. Below is a typical jboss.xml file.

The EJB 2.x entity beans are clustered for load balanced remote invocations. All the bean instances
are synchronized to have the same contents on all nodes.

However, clustered EJB 2.x Entity Beans do not have a distributed locking mechanism or a distributed
cache. They can only be synchronized by using row-level locking at the database level (see <row-
lock> in the CMP specification) or by setting the Transaction Isolation Level of your JDBC driver to be
TRANSACTION_SERIALIZABLE. Because there is no supported distributed locking mechanism or
distributed cache Entity Beans use Commit Option "B" by default (see standardjboss.xml and the
container configurations Clustered CMP 2.x EntityBean, Clustered CMP EntityBean, or Clustered BMP
EntityBean). It is not recommended that you use Commit Option "A" unless your Entity Bean is read-
only.

NOTE

If you are using Bean Managed Persistence (BMP), you are going to have to implement
synchronization on your own.

<jboss>
  <enterprise-beans>
    <entity>
      <ejb-name>nextgen.EnterpriseEntity</ejb-name>
      <jndi-name>nextgen.EnterpriseEntity</jndi-name>
      <clustered>True</clustered>
      <cluster-config>
        <partition-name>DefaultPartition</partition-name>
        <home-load-balance-
policy>org.jboss.ha.framework.interfaces.RoundRobin</home-load-balance-
policy>
        <bean-load-balance-
policy>org.jboss.ha.framework.interfaces.FirstAvailable</bean-load-
balance-policy>
      </cluster-config>
    </entity>
  </enterprise-beans>
</jboss>
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CHAPTER 22. HTTP SERVICES
HTTP session replication is used to replicate the state associated with web client sessions to other
nodes in a cluster. Thus, in the event one of your nodes crashes, another node in the cluster will be able
to recover. Two distinct functions must be performed:

Session state replication

Load-balancing HTTP Requests

State replication is directly handled by JBoss. When you run JBoss in the all configuration, session
state replication is enabled by default. Just configure your web application as <distributable> in
its web.xml (see Section 22.2, “Configuring HTTP session state replication” ), deploy it, and its session
state is automatically replicated across all JBoss instances in the cluster.

However, load-balancing is a different story; it is not handled by JBoss itself and requires an external
load balancer. This function could be provided by specialized hardware switches or routers (Cisco
LoadDirector for example) or by specialized software running on commodity hardware. As a very
common scenario, we will demonstrate how to set up a software load balancer using Apache httpd and
mod_jk.

NOTE

A load-balancer tracks HTTP requests and, depending on the session to which the
request is linked, it dispatches the request to the appropriate node. This is called load-
balancing with sticky-sessions or session affinity: once a session is created on a node,
every future request will also be processed by that same node. Using a load-balancer
that supports sticky-sessions but not configuring your web application for session
replication allows you to scale very well by avoiding the cost of session state replication:
each request for a session will always be handled by the same node. But in case a node
dies, the state of all client sessions hosted by this node (the shopping carts, for example)
will be lost and the clients will most probably need to login on another node and restart
with a new session. In many situations, it is acceptable not to replicate HTTP sessions
because all critical state is stored in a database or on the client. In other situations,
losing a client session is not acceptable and, in this case, session state replication is the
price one has to pay.

22.1. CONFIGURING LOAD BALANCING USING APACHE AND MOD_JK

Apache is a well-known web server which can be extended by plugging in modules. One of these
modules, mod_jk has been specifically designed to allow the forwarding of requests from Apache to a
Servlet container. Furthermore, it is also able to load-balance HTTP calls to a set of Servlet containers
while maintaining sticky sessions, which is what is most interesting for us in this section.

22.1.1. Download the software

First of all, make sure that you have Apache installed. You can download Apache directly from Apache
web site at http://httpd.apache.org/. Its installation is pretty straightforward and requires no specific
configuration. As several versions of Apache exist, we advise you to use the latest stable 2.2.x version.
We will assume, for the next sections, that you have installed Apache in the APACHE_HOME directory.

Next, download mod_jk binaries. Several versions of mod_jk exist as well. We strongly advise the use of
mod_jk 1.2.x, as both earlier versions of mod_jk, and mod_jk2, are deprecated, unsupported and no
further development is going on in the community. The mod_jk 1.2.x binary can be downloaded from
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http://www.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/. Rename the downloaded file to 
mod_jk.so and copy it under APACHE_HOME/modules/.

22.1.2. Configure Apache to load mod_jk

Modify APACHE_HOME/conf/httpd.conf and add a single line at the end of the file:

Next, create a new file named APACHE_HOME/conf/mod-jk.conf:

# Include mod_jk's specific configuration file  
Include conf/mod-jk.conf

# Load mod_jk module
# Specify the filename of the mod_jk lib
LoadModule jk_module modules/mod_jk.so
 
# Where to find workers.properties
JkWorkersFile conf/workers.properties

# Where to put jk logs
JkLogFile logs/mod_jk.log
 
# Set the jk log level [debug/error/info]
JkLogLevel info 
 
# Select the log format
JkLogStampFormat  "[%a %b %d %H:%M:%S %Y]"
 
# JkOptions indicates to send SSK KEY SIZE
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories
 
# JkRequestLogFormat
JkRequestLogFormat "%w %V %T"
               
# Mount your applications
JkMount /application/* loadbalancer
 
# You can use external file for mount points.
# It will be checked for updates each 60 seconds.
# The format of the file is: /url=worker
# /examples/*=loadbalancer
JkMountFile conf/uriworkermap.properties               

# Add shared memory.
# This directive is present with 1.2.10 and
# later versions of mod_jk, and is needed for
# for load balancing to work properly
JkShmFile logs/jk.shm 
              
# Add jkstatus for managing runtime data
<Location /jkstatus/>
    JkMount status
    Order deny,allow
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Please note that two settings are very important:

The LoadModule directive must reference the mod_jk library you have downloaded in the
previous section. You must indicate the exact same name with the "modules" file path prefix.

The JkMount directive tells Apache which URLs it should forward to the mod_jk module (and,
in turn, to the Servlet containers). In the above file, all requests with URL path 
/application/* are sent to the mod_jk load-balancer. This way, you can configure Apache
to serve static contents (or PHP contents) directly and only use the loadbalancer for Java
applications. If you only use mod_jk as a loadbalancer, you can also forward all URLs (i.e., /*)
to mod_jk.

In addition to the JkMount directive, you can also use the JkMountFile directive to specify a mount
points configuration file, which contains multiple Tomcat forwarding URL mappings. You just need to
create a uriworkermap.properties file in the APACHE_HOME/conf directory. The format of the
file is /url=worker_name. To get things started, paste the following example into the file you
created:

This will configure mod_jk to forward requests to /jmx-console and /web-console to Tomcat.

You will most probably not change the other settings in mod_jk.conf. They are used to tell mod_jk
where to put its logging file, which logging level to use and so on.

22.1.3. Configure worker nodes in mod_jk

Next, you need to configure mod_jk workers file conf/workers.properties. This file specifies
where the different Servlet containers are located and how calls should be load-balanced across them.
The configuration file contains one section for each target servlet container and one global section. For
a two nodes setup, the file could look like this:

    Deny from all
    Allow from 127.0.0.1
</Location>

# Simple worker configuration file

# Mount the Servlet context to the ajp13 worker
/jmx-console=loadbalancer
/jmx-console/*=loadbalancer
/web-console=loadbalancer
/web-console/*=loadbalancer

# Define list of workers that will be used
# for mapping requests
worker.list=loadbalancer,status

# Define Node1
# modify the host as your host IP or DNS name.
worker.node1.port=8009
worker.node1.host=node1.mydomain.com
worker.node1.type=ajp13
worker.node1.ping_mode=A
worker.node1.lbfactor=1 

# Define Node2
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Basically, the above file configures mod_jk to perform weighted round-robin load balancing with sticky
sessions between two servlet containers (that is, JBoss Enterprise Application Platform instances)
node1 and node2 listening on port 8009.

In the workers.properties file, each node is defined using the worker.XXX naming convention
where XXX represents an arbitrary name you choose for each of the target Servlet containers. For each
worker, you must specify the host name (or IP address) and the port number of the AJP13 connector
running in the Servlet container.

The lbfactor attribute is the load-balancing factor for this specific worker. It is used to define the
priority (or weight) a node should have over other nodes. The higher this number is for a given worker
relative to the other workers, the more HTTP requests the worker will receive. This setting can be used
to differentiate servers with different processing power.

The ping_mode attribute enables CPing/CPong. It determines when established connections are
probed to determine whether they are still working. In this case, ping_mode is set to A, which means
that the connection is probed once after connecting to the backend, before sending each request to
the backend, and at regular intervals during the internal maintenance cycle.

The last part of the conf/workers.properties file defines the loadbalancer worker. The only thing
you must change is the worker.loadbalancer.balanced_workers line: it must list all workers
previously defined in the same file. Load-balancing will happen over these workers.

The sticky_session property specifies the cluster behavior for HTTP sessions. If you specify 
worker.loadbalancer.sticky_session=0, each request will be load balanced between node1 and
node2; i.e., different requests for the same session will go to different servers. But when a user opens a
session on one server, it is always necessary to always forward this user's requests to the same server,
as long as that server is available. This is called a "sticky session", as the client is always using the
same server he reached on his first request. To enable session stickiness, you need to set 
worker.loadbalancer.sticky_session to 1.

NOTE

A non-loadbalanced setup with a single node requires a worker.list=node1 entry.

22.1.4. Configuring JBoss to work with mod_jk

Finally, we must configure the JBoss Enterprise Application Platform instances on all clustered nodes
so that they can expect requests forwarded from the mod_jk loadbalancer.

# modify the host as your host IP or DNS name.
worker.node2.port=8009
worker.node2.host=node2.mydomain.com
worker.node2.type=ajp13
worker.node2.ping_mode=A
worker.node2.lbfactor=1

# Load-balancing behaviour
worker.loadbalancer.type=lb
worker.loadbalancer.balance_workers=node1,node2
worker.loadbalancer.sticky_session=1
#worker.list=loadbalancer

# Status worker for managing load balancer
worker.status.type=status
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On each clustered JBoss node, we have to name the node according to the name specified in 
workers.properties. For instance, on JBoss instance node1, edit the 
JBOSS_HOME/server/all/deploy/jbossweb.sar/server.xml file (replace /all with your own
server name if necessary). Locate the <Engine> element and add an attribute jvmRoute:

You also need to be sure the AJP connector in server.xml is enabled (i.e., uncommented). It is enabled
by default.

At this point, you have a fully working Apache with mod_jk load-balancer setup that will balance call to
the Servlet containers of your cluster while taking care of session stickiness (clients will always use the
same Servlet container).

NOTE

For more updated information on using mod_jk 1.2 with JBoss AS, please refer to the
JBoss wiki page at 
http://www.jboss.org/community/wiki/UsingModjk12WithJBoss.

22.1.5. Configuring the NSAPI connector on Solaris

This section shows you how to configure the NSAPI connector to use a JBoss Enterprise Platform as a
worker node for a Sun Java System Web Server (SJWS) master node.

NOTE

Sun Java System Web Server has recently been renamed to the Oracle iPlanet Web
Server.

In this section, all of the server instances are on the same machine. To use different machines for each
instance, use the -b switch to bind your instance of JBoss Enterprise Platform to a public IP address.
Remember to edit the workers.properties file on the SJWS machine to reflect these changes in IP
address.

22.1.5.1. Prerequisites

This section assumes that:

Your worker node(s) are already installed with a JBoss Enterprise Platform 5.1 or later. The
Native components are not a requirement of the NSAPI connector. Refer to the Installation
Guide for assistance with this prerequisite.

Your master node is already installed with any of the following technology combinations, and
the appropriate Native binary for its operating system and architecture. Refer to the
Installation Guide for assistance with this prerequisite.

<Engine name="jboss.web" defaultHost="localhost" jvmRoute="node1">
...
</Engine>

 
<!-- Define an AJP 1.3 Connector on port 8009 --> 
<Connector protocol="AJP/1.3" port="8009" address="${jboss.bind.address}"
   redirectPort="8443" />
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Solaris 9 x86 with Sun Java System Web Server 6.1 SP12

Solaris 9 SPARC 64 with Sun Java System Web Server 6.1 SP12

Solaris 10 x86 with Sun Java System Web Server 7.0 U8

Solaris 10 SPARC 64 with Sun Java System Web Server 7.0 U8

22.1.5.2. Configure JBoss Enterprise Platform as a Worker Node

This section shows you how to safely configure your JBoss Enterprise Platform instance as a worker
node for use with Sun SJWS.

Procedure 22.1. Configure a JBoss Enterprise Platform instance as a worker node

1. Create a server profile for each worker node
Make a copy of the server profile that you wish to configure as a worker node. (This procedure
uses the default server profile.)

[user@workstation jboss-eap-5.1]$ cd jboss-as/server
[user@workstation server]$ cp -r default/ default-01
[user@workstation server]$ cp -r default/ default-02

2. Give each instance a unique name
Edit the following line in the deploy/jbossweb.sar/server.xml file of each new worker
instance:

<Engine name="jboss.web" defaultHost="localhost">

Add a unique jvmRoute value, as shown. This value is the identifier for this node in the cluster.

For the default-01 server profile:

<Engine name="jboss.web" defaultHost="localhost" 
jvmRoute="worker01">

For the default-02 server profile:

<Engine name="jboss.web" defaultHost="localhost" 
jvmRoute="worker02">

3. Enable session handling
Edit the following line in the deployers/jbossweb.deployer/META-INF/war-
deployers-jboss-beans.xml file of each worker node:

<property name="useJK">false</property>

This property controls whether special session handling is used to coordinate with mod_jk and
other connector variants. Set this property to true in both worker nodes:

<property name="useJK">true</property>
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4. Start your worker nodes
Start each worker node in a separate command line interface. Ensure that each node is bound
to a different IP address with the -b switch.

[user@workstation jboss-eap-5.1]$ ./jboss-as/bin/run.sh -b 127.0.0.1 
-c default-01

[user@workstation jboss-eap-5.1]$ ./jboss-as/bin/run.sh -b 
127.0.0.100 -c default-02

22.1.5.3. Configure Sun Java System Web Server for Clustering

The procedures in the following sections assume that the contents of the Native zip appropriate for
your operating system and architecture have been extracted to /tmp/connectors/jboss-ep-
native-5.1/. This path is referred to as NATIVE in the procedures that follow. These procedures also
assume that the /tmp/connectors directory is used to store logs, properties files and NSAPI locks.

These procedures also assume that your installation of Sun Java System Web Server is in one of the
following locations, depending on your version of Solaris:

for Solaris 9 x86 or SPARC 64: /opt/SUNWwbsrv61/

for Solaris 10 x86 or SPARC 64: /opt/SUNWwbsrv70/

This path is referred to as SJWS in the procedures that follow.

Procedure 22.2. Initial clustering configuration

1. Disable servlet mappings
Under Built In Servlet Mappings in the SJWS/PROFILE/config/default-web.xml file,
disable the mappings for the following servlets, as shown in the code sample:

default

invoker

jsp

<!-- ==================== Built In Servlet Mappings 
===================== -->

<!-- The servlet mappings for the built in servlets defined above. -
->

<!-- The mapping for the default servlet -->
<!--servlet-mapping>
 <servlet-name>default</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping-->

<!-- The mapping for the invoker servlet -->
<!--servlet-mapping>
 <servlet-name>invoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
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</servlet-mapping-->

<!-- The mapping for the JSP servlet -->
<!--servlet-mapping>
 <servlet-name>jsp</servlet-name>
 <url-pattern>*.jsp</url-pattern>
</servlet-mapping-->

2. Load the required modules and properties
Append the following lines to the SJWS/PROFILE/config/magnus.conf file:

Init fn="load-modules" funcs="jk_init,jk_service" 
shlib="NATIVE/lib/nsapi_redirector.so" shlib_flags="(global|now)"
Init fn="jk_init" worker_file="/tmp/connectors/workers.properties" 
log_level="debug" log_file="/tmp/connectors/nsapi.log" 
shm_file="/tmp/connectors/jk_shm"

These lines define the location of the nsapi_redirector.so module used by the jk_init
and jk_service functions, and the location of the workers.properties file, which defines
the worker nodes and their attributes.

NOTE

The lib directory in the NATIVE/lib/nsapi_redirector.so path applies
only to 32-bit machines. On 64-bit machines, this directory is called lib64.

22.1.5.3.1. Configure a basic cluster with NSAPI

Use the following procedure to configure a basic cluster, where requests for particular paths are
forwarded to particular worker nodes. In Procedure 22.3, “Configure a basic cluster with NSAPI” ,
worker02 serves the /nc path, while worker01 serves /status and all other paths defined in the first
part of the obj.conf file.

Procedure 22.3. Configure a basic cluster with NSAPI

1. Define the paths to serve via NSAPI
Edit the SJWS/PROFILE/config/obj.conf file. Define paths that should be served via
NSAPI at the end of the default Object definition, as shown:

<Object name="default">
      [...]
   NameTrans fn="assign-name" from="/status" name="jknsapi"
   NameTrans fn="assign-name" from="/images(|/*)" name="jknsapi"
   NameTrans fn="assign-name" from="/css(|/*)" name="jknsapi"
   NameTrans fn="assign-name" from="/nc(|/*)" name="jknsapi"
   NameTrans fn="assign-name" from="/jmx-console(|/*)" 
name="jknsapi"
</Object>

You can map the path of any application deployed on your JBoss Enterprise Platform instance
in this obj.conf file. In the example code, the /nc path is mapped to an application deployed
under the name nc.
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2. Define the worker that serves each path
Edit the SJWS/PROFILE/config/obj.conf file and add the following jknsapi Object
definition after the default Object definition.

<Object name="jknsapi">
   ObjectType fn=force-type type=text/plain
   Service fn="jk_service" worker="worker01" path="/status"
   Service fn="jk_service" worker="worker02" path="/nc(/*)"
   Service fn="jk_service" worker="worker01"
</Object>

This jknsapi Object defines the worker nodes used to serve each path that was assigned to 
name="jknsapi" in the default Object.

In the example code, the third Service definition does not specify a path value, so the worker
node defined (worker01) serves all of the paths assigned to jknsapi by default. In this case,
the first Service definition in the example code, which assigns the /status path to worker01,
is superfluous.

3. Define the workers and their attributes
Create a workers.properties file in the location you defined in Step 2. Define the list of
worker nodes and each worker node's properties in this file, like so:

# An entry that lists all the workers defined
worker.list=worker01, worker02

# Entries that define the host and port associated with these 
workers
worker.worker01.host=127.0.0.1
worker.worker01.port=8009
worker.worker01.type=ajp13

worker.worker02.host=127.0.0.100
worker.worker02.port=8009
worker.worker02.type=ajp13

22.1.5.3.2. Configure a Load-balanced Cluster with NSAPI

Procedure 22.4. Configure a load-balancing cluster with NSAPI

1. Define the paths to serve via NSAPI
Edit the SJWS/PROFILE/config/obj.conf file. Define paths that should be served via
NSAPI at the end of the default Object definition, as shown:

<Object name="default">
      [...]
   NameTrans fn="assign-name" from="/status" name="jknsapi"
   NameTrans fn="assign-name" from="/images(|/*)" name="jknsapi"
   NameTrans fn="assign-name" from="/css(|/*)" name="jknsapi"
   NameTrans fn="assign-name" from="/nc(|/*)" name="jknsapi"
   NameTrans fn="assign-name" from="/jmx-console(|/*)" 
name="jknsapi"
   NameTrans fn="assign-name" from="/jkmanager/*" name="jknsapi"
</Object>
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You can map the path of any application deployed on your JBoss Enterprise Platform instance
in this obj.conf file. In the example code, the /nc path is mapped to an application deployed
under the name nc.

2. Define the worker that serves each path
Edit the SJWS/PROFILE/config/obj.conf file and add the following jknsapi Object
definition after the default Object definition.

<Object name="jknsapi">
   ObjectType fn=force-type type=text/plain
   Service fn="jk_service" worker="status" path="/jkmanager(/*)"
   Service fn="jk_service" worker="router"
</Object>

This jknsapi Object defines the worker nodes used to serve each path that was assigned to 
name="jknsapi" in the default Object.

3. Define the workers and their attributes
Create a workers.properties file in the location you defined in Step 2. Define the list of
worker nodes and each worker node's properties in this file, like so:

# The advanced router LB worker
worker.list=router,status

# Define a worker using ajp13
worker.worker01.port=8009
worker.worker01.host=127.0.0.1
worker.worker01.type=ajp13
worker.worker01.ping_mode=A
worker.worker01.socket_timeout=10
worker.worker01.lbfactor=3

# Define another worker using ajp13
worker.worker02.port=8009
worker.worker02.host=127.0.0.100
worker.worker02.type=ajp13
worker.worker02.ping_mode=A
worker.worker02.socket_timeout=10
worker.worker02.lbfactor=1

# Define the LB worker
worker.router.type=lb
worker.router.balance_workers=worker01,worker02

# Define the status worker
worker.status.type=status

22.1.5.3.3. Restart Sun Java System Web Server

Once your Sun Java System Web Server instance is configured, restart it so that your changes take
effect.

For Sun Java System Web Server 6.1:
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SJWS/PROFILE/stop
SJWS/PROFILE/start

For Sun Java System Web Server 7.0:

SJWS/PROFILE/bin/stopserv
SJWS/PROFILE/bin/startserv

22.2. CONFIGURING HTTP SESSION STATE REPLICATION

The preceding discussion has been focused on using mod_jk as a load balancer. The content of the
remainder our discussion of clustering HTTP services in JBoss Enterprise Application Platform applies
no matter what load balancer is used.

In Section 22.1.3, “Configure worker nodes in mod_jk” , we covered how to use sticky sessions to make
sure that a client in a session always hits the same server node in order to maintain the session state.
However, sticky sessions by themselves are not an ideal solution. If a node goes down, all its session
data is lost. A better and more reliable solution is to replicate session data across the nodes in the
cluster. This way, if a server node fails or is shut down, the load balancer can fail over the next client
request to any server node and obtain the same session state.

22.2.1. Enabling session replication in your application

To enable replication of your web application you must tag the application as distributable in the 
web.xml descriptor. Here's an example:

You can futher configure session replication using the replication-config element in the jboss-
web.xml file. However, the replication-config element only needs to be set if one or more of the
default values described below is unacceptable. Here is an example:

<?xml version="1.0"?> 
<web-app  xmlns="http://java.sun.com/xml/ns/j2ee"
          xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
          xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee 
                              http://java.sun.com/xml/ns/j2ee/web-
app_2_4.xsd" 
          version="2.4">
          
    <distributable/>
    
</web-app>

<!DOCTYPE jboss-web PUBLIC
    -//JBoss//DTD Web Application 5.0//EN
    http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd>

<jboss-web>
   
   <replication-config>
      <cache-name>custom-session-cache</cache-name>
      <replication-trigger>SET</replication-trigger>
      <replication-granularity>ATTRIBUTE</replication-granularity>
      <replication-field-batch-mode>true</replication-field-batch-mode>
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All of the above configuration elements are optional and can be ommitted if the default value is
acceptable. A couple are commonly used; the rest are very infrequently changed from the defaults.
We'll cover the commonly used ones first.

The replication-trigger element determines when the container should consider that session
data must be replicated across the cluster. The rationale for this setting is that after a mutable object
stored as a session attribute is accessed from the session, in the absence of a setAttribute call the
container has no clear way to know if the object (and hence the session state) has been modified and
needs to be replicated. This element has 3 valid values:

SET_AND_GET is conservative but not optimal (performance-wise): it will always replicate
session data even if its content has not been modified but simply accessed. This setting made
(a little) sense in JBoss Enterprise Application Platform 4 since using it was a way to ensure
that every request triggered replication of the session's timestamp. Since setting 
max_unreplicated_interval to 0 accomplishes the same thing at much lower cost, using 
SET_AND_GET makes no sense with Enterprise Application Platform 5.

SET_AND_NON_PRIMITIVE_GET is conservative but will only replicate if an object of a non-
primitive type has been accessed (i.e. the object is not of a well-known immutable JDK type
such as Integer, Long, String, etc.) This is the default value.

SET assumes that the developer will explicitly call setAttribute on the session if the data
needs to be replicated. This setting prevents unnecessary replication and can have a major
beneficial impact on performance, but requires very good coding practices to ensure 
setAttribute is always called whenever a mutable object stored in the session is modified.

In all cases, calling setAttribute marks the session as needing replication.

The replication-granularity element determines the granularity of what gets replicated if the
container determines session replication is needed. The supported values are:

SESSION indicates that the entire session attribute map should be replicated when any
attribute is considered modified. Replication occurs at request end. This option replicates the
most data and thus incurs the highest replication cost, but since all attributes values are
always replicated together it ensures that any references between attribute values will not be
broken when the session is deserialized. For this reason it is the default setting.

ATTRIBUTE indicates that only attributes that the session considers to be potentially
modified are replicated. Replication occurs at request end. For sessions carrying large
amounts of data, parts of which are infrequently updated, this option can significantly increase
replication performance. However, it is not suitable for applications that store objects in
different attributes that share references with each other (e.g. a Person object in the
"husband" attribute sharing with another Person in the "wife" attribute a reference to an 
Address object). This is because if the attributes are separately replicated, when the session
is deserialized on remote nodes the shared references will be broken.

      <use-jk>false</use-jk>
      <max-unreplicated-interval>30</max-unreplicated-interval>
      <snapshot-mode>INSTANT</snapshot-mode>
      <snapshot-interval>1000</snapshot-interval>
      <session-notification-
policy>com.example.CustomSessionNotificationPolicy</session-notification-
policy>
   </replication-config>

</jboss-web>
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FIELD is useful if the classes stored in the session have been bytecode enhanced for use by
POJO Cache. If they have been, the session management layer will detect field level changes
within objects stored to the session, and will replicate only those changes. This is the most
performant setting. Replication is only for individual changed data fields inside session
attribute objects. Shared object references will be preserved across the cluster. Potentially
most performant, but requires changes to your application (this will be discussed later).

The other elements under the replication-config element are much less frequently used.

The cacheName element indicates the name of the JBoss Cache configuration that should be used for
storing distributable sessions and replicating them around the cluster. This element lets web
applications that require different caching characteristics specify the use of separate, differently
configured, JBoss Cache instances. In JBoss Enterprise Application Platform 4 the cache to use was a
server-wide configuration that could not be changed per web application. The default value is 
standard-session-cache if the replication-granularity is not FIELD, field-
granularity-session-cache if it is. See Section 22.2.3, “Configuring the JBoss Cache instance
used for session state replication” for more details on JBoss Cache configuration for web tier
clustering.

The replication-field-batch-mode element indicates whether all replication messages
associated with a request will be batched into one message. This is applicable only if replication-
granularity is FIELD. If replication-field-batch-mode is set to true, fine-grained changes
made to objects stored in the session attribute map will replicate only when the HTTP request is
finished; otherwise they replicate as they occur. Setting this to false is not advised. Default is true.

The useJK element indicates whether the container should assume that a JK-based software load
balancer (e.g. mod_jk, mod_proxy, mod_cluster) is being used for load balancing for this web
application. If set to true, the container will examine the session ID associated with every request and
replace the jvmRoute portion of the session ID if it detects a failover.

The default value is null (i.e. unspecified). In this case the session manager will use the presence or
absence of a jvmRoute configuration on its enclosing JBoss Web Engine (see Section 22.1.4,
“Configuring JBoss to work with mod_jk”) to determine whether JK is used.

You need only set this to false for web applications whose URL cannot be handled by the JK load
balancer.

The max-unreplicated-interval element configures the maximum interval between requests, in
seconds, after which a request will trigger replication of the session's timestamp regardless of whether
the request has otherwise made the session dirty. Such replication ensures that other nodes in the
cluster are aware of the most recent value for the session's timestamp and won't incorrectly expire an
unreplicated session upon failover. It also results in correct values for 
HttpSession.getLastAccessedTime() calls following failover.

A value of 0 means the timestamp will be replicated whenever the session is accessed. A value of -1
means the timestamp will be replicated only if some other activity during the request (e.g. modifying
an attribute) has resulted in other replication work involving the session. A positive value greater than
the HttpSession.getMaxInactiveInterval() value will be treated as probable misconfiguration
and converted to 0; i.e. replicate the metadata on every request. Default value is 60.

The snapshot-mode element configures when sessions are replicated to the other nodes. Possible
values are INSTANT (the default) and INTERVAL.
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The typical value, INSTANT, replicates changes to the other nodes at the end of requests, using the
request processing thread to perform the replication. In this case, the snapshot-interval property
is ignored.

With INTERVAL mode, a background task is created that runs every snapshot-interval
milliseconds, checking for modified sessions and replicating them.

Note that this property has no effect if replication-granularity is set to FIELD. If it is FIELD, 
instant mode will be used.

The snapshot-interval element defines how often (in milliseconds) the background task that
replicates modified sessions should be started for this web application. Only meaningful if snapshot-
mode is set to interval.

The session-notification-policy element specifies the fully qualified class name of the
implementation of the ClusteredSessionNotificationPolicy interface that should be used to
govern whether servlet specification notifications should be emitted to any registered 
HttpSessionListener, HttpSessionAttributeListener and/or 
HttpSessionBindingListener.

Event notifications that may make sense in a non-clustered environment may or may not make sense
in a clustered environment; see https://jira.jboss.org/jira/browse/JBAS-5778 for an example of why a
notification may not be desired. Configuring an appropriate 
ClusteredSessionNotificationPolicy gives the application author fine-grained control over
what notifications are issued.

In previous releases, the default value if not explicitly set is the 
LegacyClusteredSessionNotificationPolicy, which implements the behavior in previous
JBoss versions. In JBoss Enterprise Application Platform 5, this was changed to 
IgnoreUndeployLegacyClusteredSessionNotificationPolicy, which implements the same
behavior except during undeployment, during which no HttpSessionListener and 
HttpSessionAttributeListener notifications are sent.

22.2.2. HttpSession Passivation and Activation

Passivation is the process of controlling memory usage by removing relatively unused sessions from
memory while storing them in persistent storage. If a passivated session is requested by a client, it can
be "activated" back into memory and removed from the persistent store. JBoss Enterprise Application
Platform 5 supports passivation of HttpSessions from web applications whose web.xml includes the 
distributable tag (i.e. clustered web applications).

Passivation occurs at three points during the lifecycle of a web application:

When the container requests the creation of a new session. If the number of currently active
sessions exceeds a configurable limit, an attempt is made to passivate sessions to make room
in memory.

Periodically (by default every ten seconds) as the JBoss Web background task thread runs.

When the web application is deployed and a backup copy of sessions active on other servers is
acquired by the newly deploying web application's session manager.

A session will be passivated if one of the following holds true:

The session has not been in use for longer than a configurable maximum idle time.
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The number of active sessions exceeds a configurable maximum and the session has not been
in use for longer than a configurable minimum idle time.

In both cases, sessions are passivated on a Least Recently Used (LRU) basis.

22.2.2.1. Configuring HttpSession Passivation

Session passivation behavior is configured via the jboss-web.xml deployment descriptor in your
web application's WEB-INF directory.

max-active-session

Determines the maximum number of active sessions allowed. If the number of sessions
managed by the the session manager exceeds this value and passivation is enabled, the excess
will be passivated based on the configured passivation-min-idle-time. If after
passivation is completed (or if passivation is disabled), the number of active sessions still
exceeds this limit, attempts to create new sessions will be rejected. If set to -1 (the default),
there is no limit.

use-session-passivation

Determines whether session passivation will be enabled for the web application. Default is 
false.

passivation-min-idle-time

Determines the minimum time (in seconds) that a session must have been inactive before the
container will consider passivating it in order to reduce the active session count to obey the
value defined by max-active-sessions. A value of -1 (the default) disables passivating
sessions before passivation-max-idle-time. Neither a value of -1 nor a high value are
recommended if max-active-sessions is set.

passivation-max-idle-time

Determines the maximum time (in seconds) that a session can be inactive before the container
should attempt to passivate it to save memory. Passivation of such sessions will take place
regardless of whether the active session count exceeds max-active-sessions. Should be
less than the web.xml session-timeout setting. A value of -1 (the default) disables
passivation based on maximum inactivity.

<!DOCTYPE jboss-web PUBLIC
    -//JBoss//DTD Web Application 5.0//EN
    http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd>

<jboss-web>
   
   <max-active-sessions>20</max-active-sessions>
   <passivation-config>
      <use-session-passivation>true</use-session-passivation>
      <passivation-min-idle-time>60</passivation-min-idle-time>
      <passivation-max-idle-time>600</passivation-max-idle-time>
   </passivation-config>

</jboss-web>
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The total number of sessions in memory includes sessions replicated from other cluster nodes that are
not being accessed on this node. Take this into account when setting max-active-sessions. The
number of sessions replicated from other nodes will also depend on whether buddy replication is
enabled.

Say, for example, that you have an eight node cluster, and each node handles requests from 100 users.
With total replication, each node would store 800 sessions in memory. With buddy replication enabled,
and the default numBuddies setting (1), each node will store 200 sessions in memory.

22.2.3. Configuring the JBoss Cache instance used for session state replication

The container for a distributable web application makes use of JBoss Cache to provide HTTP session
replication services around the cluster. The container integrates with the CacheManager service to
obtain a reference to a JBoss Cache instance (see Section 18.2.1, “The JBoss Enterprise Application
Platform CacheManager Service”).

The name of the JBoss Cache configuration to use is controlled by the cacheName element in the
application's jboss-web.xml (see Section 22.2.1, “Enabling session replication in your application” ).
In most cases, though, this does not need to be set as the default values of standard-session-
cache and field-granularity-session-cache (for applications configured for FIELD
granularity) are appropriate.

The JBoss Cache configurations in the CacheManager service expose a number of options. See
Chapter 26, JBoss Cache Configuration and Deployment and the JBoss Cache documentation for a more
complete discussion. The standard-session-cache and field-granularity-session-cache
configurations are already optimized for the web session replication use case, and most of the settings
should not be altered. Administrators may be interested in altering the following settings:

cacheMode

The default is REPL_ASYNC, which specifies that a session replication message sent to the
cluster does not wait for responses from other cluster nodes confirming that the message has
been received and processed. The alternative mode, REPL_SYNC, offers a greater degree of
confirmation that session state has been received, but reduces performance significantly. See
Section 26.1.2, “Cache Mode” for further details.

enabled property in the buddyReplicationConfig section

Set to true to enable buddy replication. See Section 26.1.8, “Buddy Replication”. Default is 
false.

numBuddies property in the buddyReplicationConfig section

Set to a value greater than the default (1) to increase the number of backup nodes onto which
sessions are replicated. Only relevant if buddy replication is enabled. See Section 26.1.8,
“Buddy Replication”.

buddyPoolName property in the buddyReplicationConfig section

A way to specify a preferred replication group when buddy replication is enabled. JBoss Cache
tries to pick a buddy who shares the same pool name (falling back to other buddies if not
available). Only relevant if buddy replication is enabled. See Section 26.1.8, “Buddy
Replication”.

multiplexerStack
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Name of the JGroups protocol stack the cache should use. See Section 18.1.1, “The Channel
Factory Service”.

clusterName

Identifying name JGroups will use for this cache's channel. Only change this if you create a
new cache configuration, in which case this property should have a different value from all
other cache configurations.

If you wish to use a completely new JBoss Cache configuration rather than editing one of the existing
ones, please see Section 26.2.1, “Deployment Via the CacheManager Service” .

22.3. USING FIELD-LEVEL REPLICATION

WARNING

This feature is deprecated as of JBoss Enterprise Web Platform 5.1, and will be
removed in a future release of JBoss Enterprise Web Platform. Customers are
recommended to migrate away from this feature in existing implementations, and
not use it in new implementations.

FIELD-level replication only replicates modified data fields inside objects stored in the session. It can
reduce the data traffic between clustered nodes, and hence improve the performance of the whole
cluster. To use FIELD-level replication, you must first prepare (that is, bytecode enhance) your Java
class to allow the session cache to detect when fields in cached objects have been changed and need
to be replicated.

First, you need to identify the classes that you need to prepare. You can identify these classes by using
annotations, like so:

If you annotate a class with @Replicable, then all of its subclasses will be automatically annotated as
well. Similarly, you can annotate an interface with @Replicable and all of its implementing classes
will be annotated. For example:



@org.jboss.cache.pojo.annotation.Replicable
public class Address 
{
...
}

@org.jboss.cache.aop.InstanceOfAopMarker
public class Person 
{
...
}

public class Student extends Person
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There is no need to annotate Student. POJO Cache will recognize it as @Replicable because it is a
sub-class of Person.

JBoss Enterprise Application Platform 5 requires JDK 5 at runtime, but some users may still need to
build their projects using JDK 1.4. In this case, annotating classes can be done via JDK 1.4 style
annotations embedded in JavaDocs. For example:

Once you have annotated your classes, you will need to perform a pre-processing step to bytecode
enhance your classes for use by POJO Cache. You need to use the JBoss AOP pre-compiler 
annotationc and post-compiler aopc to process the above source code before and after they are
compiled by the Java compiler. The annotationc step is only need if the JDK 1.4 style annotations
are used; if JDK 5 annotations are used it is not necessary. Here is an example of how to invoke those
commands from command line.

Please see the JBoss AOP documentation for the usage of the pre- and post-compiler. The JBoss AOP
project also provides easy to use ANT tasks to help integrate those steps into your application build
process.

NOTE

You can see a complete example of how to build, deploy, and validate a FIELD-level
replicated web application from this page:
http://www.jboss.org/community/wiki/httpsessionfieldlevelexample. The example
bundles the pre- and post-compile tools so you do not need to download JBoss AOP
separately.

Finally, let's see an example on how to use FIELD-level replication on those data classes. First, we see
some servlet code that reads some data from the request parameters, creates a couple of objects and
stores them in the session:

{
...
}

/**
 * Represents a street address.
 * @org.jboss.cache.pojo.annotation.Replicable
 */
public class Address 
{
...
}

$ annotationc [classpath] [source files or directories]
$ javac -cp [classpath] [source files or directories]
$ aopc [classpath] [class files or directories]

Person husband = new Person(getHusbandName(request), 
getHusbandAge(request)); Person wife = new
Person(getWifeName(request), getWifeAge(request)); Address addr = new 
Address();
addr.setPostalCode(getPostalCode(request));

husband.setAddress(addr);
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Later, a different servlet could update the family's postal code:

Notice that in there is no need to call session.setAttribute() after you make changes to the
data object, and all changes to the fields are automatically replicated across the cluster.

Besides plain objects, you can also use regular Java collections of those objects as session attributes.
POJO Cache automatically figures out how to handle those collections and replicate field changes in
their member objects.

22.4. USING CLUSTERED SINGLE SIGN-ON (SSO)

JBoss supports clustered single sign-on, allowing a user to authenticate to one web application and to
be recognized on all web applications that are deployed on the same virtual host, whether or not they
are deployed on that same machine or on another node in the cluster. Authentication replication is
handled by JBoss Cache. Clustered single sign-on support is a JBoss-specific extension of the non-
clustered org.apache.catalina.authenticator.SingleSignOn valve that is a standard part of
Tomcat and JBoss Web. Both the non-clustered and clustered versions allow users to sign on to any
one of the web apps associated with a virtual host and have their identity recognized by all other web
apps on the same virtual host. The clustered version brings the added benefits of enabling SSO failover
and allowing a load balancer to direct requests for different webapps to different servers, while
maintaining the SSO.

22.4.1. Configuration

To enable clustered single sign-on, you must add the ClusteredSingleSignOn valve to the
appropriate Host elements of the 
JBOSS_HOME/server/all/deploy/jbossweb.sar/server.xml file. The valve element is already
included in the standard file; you just need to uncomment it. The valve configuration is shown here:

The element supports the following attributes:

className is a required attribute to set the Java class name of the valve implementation to
use. This must be set to org.jboss.web.tomcat.service.sso.ClusteredSingleSign.

cacheConfig is the name of the cache configuration (see Section 18.2.1, “The JBoss Enterprise
Application Platform CacheManager Service”) to use for the clustered SSO cache. Default is 
clustered-sso.

treeCacheName is deprecated; use cacheConfig. Specifies a JMX ObjectName of the JBoss
Cache MBean to use for the clustered SSO cache. If no cache can be located from the
CacheManager service using the value of cacheConfig, an attempt to locate an mbean

wife.setAddress(addr); // husband and wife share the same address!

session.setAttribute("husband", husband); // that's it.
session.setAttribute("wife", wife); // that's it.

Person wife = (Person)session.getAttribute("wife"); 
wife.getAddress().setPostalCode(getPostalCode(request));
// this will update and replicate the postal code

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn" 
/>
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registered in JMX under this ObjectName will be made. Default value is 
jboss.cache:service=TomcatClusteringCache.

cookieDomain is used to set the host domain to be used for sso cookies. See Section 22.4.4,
“Configuring the Cookie Domain” for more. Default is "/".

maxEmptyLife is the maximum number of seconds an SSO with no active sessions will be
usable by a request. The clustered SSO valve tracks what cluster nodes are managing sessions
related to an SSO. A positive value for this attribute allows proper handling of shutdown of a
node that is the only one that had handled any of the sessions associated with an SSO. The
shutdown invalidates the local copy of the sessions, eliminating all sessions from the SSO. If
maxEmptyLife were zero, the SSO would terminate along with the local session copies. But,
backup copies of the sessions (if they are from clustered webapps) are available on other
cluster nodes. Allowing the SSO to live beyond the life of its managed sessions gives the user
time to make another request which can fail over to a different cluster node, where it activates
the the backup copy of the session. Default is 1800, i.e. 30 minutes.

processExpiresInterval is the minimum number of seconds between efforts by the valve to
find and invalidate SSO's that have exceeded their 'maxEmptyLife'. Does not imply effort will
be spent on such cleanup every 'processExpiresInterval', just that it won't occur more
frequently than that. Default is 60.

requireReauthentication is a flag to determine whether each request needs to be
reauthenticated to the security Realm. If "true", this Valve uses cached security credentials
(username and password) to reauthenticate to the JBoss Web security Realm each request
associated with an SSO session. If false, the valve can itself authenticate requests based on
the presence of a valid SSO cookie, without rechecking with the Realm. Setting to true can
allow web applications with different security-domain configurations to share an SSO.
Default is false.

22.4.2. SSO Behavior

The user will not be challenged as long as they access only unprotected resources in any of the web
applications on the virtual host.

Upon access to a protected resource in any web app, the user will be challenged to authenticate, using
the login method defined for the web app.

Once authenticated, the roles associated with this user will be utilized for access control decisions
across all of the associated web applications, without challenging the user to authenticate themselves
to each application individually.

If the web application invalidates a session (by invoking the 
javax.servlet.http.HttpSession.invalidate() method), the user's sessions in all web
applications will be invalidated.

A session timeout does not invalidate the SSO if other sessions are still valid.

22.4.3. Limitations

There are a number of known limitations to this Tomcat valve-based SSO implementation:

Only useful within a cluster of JBoss servers; SSO does not propagate to other resources.

Requires use of container managed authentication (via <login-config> element in 
web.xml)
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Requires cookies. SSO is maintained via a cookie and URL rewriting is not supported.

Unless requireReauthentication is set to true, all web applications configured for the
same SSO valve must share the same JBoss Web Realm and JBoss Security security-
domain. This means:

In server.xml you can nest the Realm element inside the Host element (or the
surrounding Engine element), but not inside a context.xml packaged with one of the
involved web applications.

The security-domain configured in jboss-web.xml or jboss-app.xml must be
consistent for all of the web applications.

Even if you set requireReauthentication to true and use a different security-
domain (or, less likely, a different Realm) for different webapps, the varying security
integrations must all accept the same credentials (e.g. username and password).

22.4.4. Configuring the Cookie Domain

As noted above the SSO valve supports a cookieDomain configuration attribute. This attribute allows
configuration of the SSO cookie's domain (i.e. the set of hosts to which the browser will present the
cookie). By default the domain is "/", meaning the browser will only present the cookie to the host
that issued it. The cookieDomain attribute allows the cookie to be scoped to a wider domain.

For example, suppose we have a case where two apps, with URLs http://app1.xyz.com and 
http://app2.xyz.com, that wish to share an SSO context. These apps could be running on different
servers in a cluster or the virtual host with which they are associated could have multiple aliases. This
can be supported with the following configuration:

<Valve className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn"
                 cookieDomain="xyz.com" />
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CHAPTER 23. JBOSS MESSAGING CLUSTERING NOTES
The most current information about using JBoss Messaging in a clustered environment is always
available from the relevant JBoss Messaging User Guide at http://www.redhat.com/docs/en-
US/JBoss_Enterprise_Application_Platform/.
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CHAPTER 24. CLUSTERED DEPLOYMENT OPTIONS

24.1. CLUSTERED SINGLETON SERVICES

A clustered singleton service (also known as a HA singleton) is a service that is deployed on multiple
nodes in a cluster, but is providing its service on only one of the nodes. The node running the singleton
service is typically called the master node.

Figure 24.1. Topology before the Master Node fails

When the master fails or is shut down, another master is selected from the remaining nodes and the
service is restarted on the new master. Thus, other than a brief interval when one master has stopped
and another has yet to take over, the service is always being provided by one but only one node.
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Figure 24.2. Topology after the Master Node fails

24.1.1. HASingleton Deployment Options

The JBoss Enterprise Application Platform provides support for a number of strategies for helping you
deploy clustered singleton services. In this section we will explore the different strategies. All of the
strategies are built on top of the HAPartition service described in the introduction. They rely on the 
HAPartition to provide notifications when different nodes in the cluster start and stop; based on
those notifications each node in the cluster can independently (but consistently) determine if it is now
the master node and needs to begin providing a service.

24.1.1.1. HASingletonDeployer service

The simplest and most commonly used strategy for deploying an HA singleton is to take an ordinary
deployment (war, ear, jar, whatever you would normally put in deploy) and deploy it in the 
$JBOSS_HOME/server/all/deploy-hasingleton directory instead of in deploy. The deploy-
hasingleton directory does not lie under deploy nor farm directories, so its contents are not
automatically deployed when an Enterprise Application Platform instance starts. Instead, deploying
the contents of this directory is the responsibility of a special service, the HASingletonDeployer
bean (which itself is deployed via the deploy/deploy-hasingleton-jboss-beans.xml file). The
HASingletonDeployer service is itself an HA Singleton, one whose provided service, when it becomes
master, is to deploy the contents of deploy-hasingleton; and whose service, when it stops being the
master (typically at server shutdown), is to undeploy the contents of deploy-hasingleton.

So, by placing your deployments in deploy-hasingleton you know that they will be deployed only
on the master node in the cluster. If the master node cleanly shuts down, they will be cleanly
undeployed as part of shutdown. If the master node fails or is shut down, they will be deployed on
whatever node takes over as master.

Using deploy-hasingleton is very simple, but it does have two drawbacks:

There is no hot-deployment feature for services in deploy-hasingleton . Redeploying a
service that has been deployed to deploy-hasingleton requires a server restart.
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If the master node fails and another node takes over as master, your singleton service needs to
go through the entire deployment process before it will be providing services. Depending on
the complexity of your service's deployment, and the extent of startup activity in which it
engages, this could take a while, during which time the service is not being provided.

24.1.1.2. POJO deployments using HASingletonController

If your service is a POJO (i.e., not a J2EE deployment like an ear or war or jar), you can deploy it along
with a service called an HASingletonController in order to turn it into an HA singleton. It is the job of
the HASingletonController to work with the HAPartition service to monitor the cluster and determine
if it is now the master node for its service. If it determines it has become the master node, it invokes a
method on your service telling it to begin providing service. If it determines it is no longer the master
node, it invokes a method on your service telling it to stop providing service. Let's walk through an
illustration.

First, we have a POJO that we want to make an HA singleton. The only thing special about it is it needs
to expose a public method that can be called when it should begin providing service, and another that
can be called when it should stop providing service:

We used startSingleton and stopSingleton in the above example, but you could name the
methods anything.

Next, we deploy our service, along with an HASingletonController to control it, most likely packaged in
a .sar file, with the following META-INF/jboss-beans.xml:

public interface HASingletonExampleMBean
{
   boolean isMasterNode();
}

public class HASingletonExample implements HASingletonExampleMBean
{
   private boolean isMasterNode = false; 

   public boolean isMasterNode()
   {
      return isMasterNode; 
   }

   public void startSingleton()
   { 
      isMasterNode = true;
   }

   public void stopSingleton()
   {
      isMasterNode = false; 
   }
}

<deployment xmlns="urn:jboss:bean-deployer:2.0">
  <!-- This bean is an example of a clustered singleton -->
  <bean name="HASingletonExample" 
class="org.jboss.ha.examples.HASingletonExample">
    <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
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Voila! A clustered singleton service.

The primary advantage of this approach over deploy-ha-singleton. is that the above example can be
placed in deploy or farm and thus can be hot deployed and farmed deployed. Also, if our example
service had complex, time-consuming startup requirements, those could potentially be implemented in
create() or start() methods. JBoss will invoke create() and start() as soon as the service is deployed; it
doesn't wait until the node becomes the master node. So, the service could be primed and ready to go,
just waiting for the controller to implement startSingleton() at which point it can immediately provide
service.

Although not demonstrated in the example above, the HASingletonController can support an
optional argument for either or both of the target start and stop methods. These are specified using the
targetStartMethodArgument and TargetStopMethodArgument properties, respectively.
Currently, only string values are supported.

24.1.1.3. HASingleton deployments using a Barrier

Services deployed normally inside deploy or farm that want to be started/stopped whenever the
content of deploy-hasingleton gets deployed/undeployed, (i.e., whenever the current node becomes
the master), need only specify a dependency on the Barrier service:

The way it works is that a BarrierController is deployed along with the HASingletonDeployer and
listens for JMX notifications from it. A BarrierController is a relatively simple MBean that can subscribe
to receive any JMX notification in the system. It uses the received notifications to control the lifecycle
of a dynamically created MBean called the Barrier. The Barrier is instantiated, registered and brought
to the CREATE state when the BarrierController is deployed. After that, the BarrierController starts
and stops the Barrier when matching JMX notifications are received. Thus, other services need only
depend on the Barrier bean using the usual <depends> tag, and they will be started and stopped in
tandem with the Barrier. When the BarrierController is undeployed the Barrier is also destroyed.

This provides an alternative to the deploy-hasingleton approach in that we can use farming to
distribute the service, while content in deploy-hasingleton must be copied manually on all nodes.

On the other hand, the barrier-dependent service will be instantiated/created (i.e., any create() method

      (name="jboss:service=HASingletonExample", 
      
exposedInterface=org.jboss.ha.examples.HASingletonExampleMBean.class)
</annotation>
  </bean>

  <bean name="ExampleHASingletonController" 
class="org.jboss.ha.singleton.HASingletonController">
    <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
      (name="jboss:service=ExampleHASingletonController", 
      
exposedInterface=org.jboss.ha.singleton.HASingletonControllerMBean.class, 
      registerDirectly=true)</annotation>
    <property name="HAPartition"><inject bean="HAPartition"/></property>
    <property name="target"><inject bean="HASingletonExample"/></property>
    <property name="targetStartMethod">startSingleton</property>
    <property name="targetStopMethod">stopSingleton</property>
  </bean>
</deployment>

<depends>HASingletonDeployerBarrierController</depends>
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invoked) on all nodes, but only started on the master node. This is different with the deploy-
hasingleton approach that will only deploy (instantiate/create/start) the contents of the deploy-
hasingleton directory on one of the nodes.

So services depending on the barrier will need to make sure they do minimal or no work inside their
create() step, rather they should use start() to do the work.

NOTE

The Barrier controls the start/stop of dependent services, but not their destruction,
which happens only when the BarrierController is itself destroyed/undeployed.
Thus using the Barrier to control services that need to be "destroyed" as part of their
normal “undeploy” operation (like, for example, an EJBContainer) will not have the
desired effect.

24.1.2. Determining the master node

The various clustered singleton management strategies all depend on the fact that each node in the
cluster can independently react to changes in cluster membership and correctly decide whether it is
now the “master node”. How is this done?

For each member of the cluster, the HAPartition service maintains an attribute called the CurrentView,
which is basically an ordered list of the current members of the cluster. As nodes join and leave the
cluster, JGroups ensures that each surviving member of the cluster gets an updated view. You can see
the current view by going into the JMX console, and looking at the CurrentView attribute in the 
jboss:service=DefaultPartition mbean. Every member of the cluster will have the same view,
with the members in the same order.

Let's say, for example, that we have a 4 node cluster, nodes A through D, and the current view can be
expressed as {A, B, C, D}. Generally speaking, the order of nodes in the view will reflect the order in
which they joined the cluster (although this is not always the case, and should not be assumed to be
the case).

To further our example, let's say there is a singleton service (i.e. an HASingletonController) named
Foo that's deployed around the cluster, except, for whatever reason, on B. The HAPartition service
maintains across the cluster a registry of what services are deployed where, in view order. So, on every
node in the cluster, the HAPartition service knows that the view with respect to the Foo service is
{A, C, D} (no B).

Whenever there is a change in the cluster topology of the Foo service, the HAPartition service
invokes a callback on Foo notifying it of the new topology. So, for example, when Foo started on D, the
Foo service running on A, C and D all got callbacks telling them the new view for Foo was {A, C, D}. That
callback gives each node enough information to independently decide if it is now the master. The Foo
service on each node uses the HAPartition's HASingletonElectionPolicy to determine if they
are the master, as explained in the Section 24.1.2.1, “HA singleton election policy” .

If A were to fail or shutdown, Foo on C and D would get a callback with a new view for Foo of {C, D}. C
would then become the master. If A restarted, A, C and D would get a callback with a new view for Foo
of {C, D, A}. C would remain the master – there's nothing magic about A that would cause it to become
the master again just because it was before.

24.1.2.1. HA singleton election policy

The HASingletonElectionPolicy object is responsible for electing a master node from a list of
available nodes, on behalf of an HA singleton, following a change in cluster topology.
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JBoss Enterprise Application Platform ships with two election policies:

HASingletonElectionPolicySimple

This policy selects a master node based relative age. The desired age is configured via the 
position property, which corresponds to the index in the list of available nodes. position = 0,
the default, refers to the oldest node; position = 1, refers to the 2nd oldest; etc. position can
also be negative to indicate youngness; imagine the list of available nodes as a circular linked list. 
position = -1, refers to the youngest node; position = -2, refers to the 2nd youngest node;
etc.

PreferredMasterElectionPolicy

This policy extends HASingletonElectionPolicySimple, allowing the configuration of a
preferred node. The preferredMaster property, specified as host:port or address:port, identifies a
specific node that should become master, if available. If the preferred node is not available, the
election policy will behave as described above.

24.2. FARMING DEPLOYMENT

The easiest way to deploy an application into the cluster is to use the farming service. Using the
farming service, you can deploy an application (e.g. EAR, WAR, or SAR; either an archive file or in
exploded form) to the all/farm/ directory of any cluster member and the application will be
automatically duplicate across all nodes in the same cluster. If a node joins the cluster later, it will pull
in all farm deployed applications in the cluster and deploy them locally at start-up time. If you delete
the application from a running clustered server node's farm/ directory, the application will be
undeployed locally and then removed from all other clustered server nodes' farm/ directories
(triggering undeployment).

Farming is enabled by default in the all configuration in JBoss Enterprise Application Platform and
thus requires no manual setup. The required farm-deployment-jboss-beans.xml and 
timestamps-jboss-beans.xml configuration files are located in the deploy/cluster directory. If
you want to enable farming in a custom configuration, simply copy these files to the corresponding
JBoss deploy directory $JBOSS_HOME/server/$your_own_config/deploy/cluster. Make sure
that your custom configuration has clustering enabled.

While there is little need to customize the farming service, it can be customized via the 
FarmProfileRepositoryClusteringHandler bean, whose properties and default values are listed
below:

public interface HASingletonElectionPolicy
{
   ClusterNode elect(List<ClusterNode> nodes);
}

<bean class="org.jboss.ha.singleton.HASingletonElectionPolicySimple">
  <property name="position">-1</property>
</bean>

<bean class="org.jboss.ha.singleton.PreferredMasterElectionPolicy">
  <property name="preferredMaster">server1:12345</property>
</bean>

CHAPTER 24. CLUSTERED DEPLOYMENT OPTIONS

237



partition is a required attribute to inject the HAPartition service that the farm service uses for
intra-cluster communication.

profile[Domain|Server|Name] are all used to identify the profile for which this handler is
intended.

immutable indicates whether or not this handler allows a node to push content changes to the
cluster. A value of true is equivalent to setting synchronizationPolicy to 
org.jboss.system.server.profileservice.repository.clustered.sync. 
ImmutableSynchronizationPolicy.

lockTimeout defines the number of milliseconds to wait for cluster-wide lock acquisition.

methodCallTimeout defines the number of milliseconds to wait for invocations on remote
cluster nodes.

synchronizationPolicy decides how to handle content additions, reincarnations, updates, or
removals from nodes attempting to join the cluster or from cluster merges. The policy is
consulted on the "authoritative" node, i.e. the master node for the service on the cluster.
Reincarnation refers to the phenomenon where a newly started node may contain an
application in its farm/ directory that was previously removed by the farming service but
might still exist on the starting node if it was not running when the removal took place. The
default synchronization policy is defined as follows:

<bean name="FarmProfileRepositoryClusteringHandler"
      class="org.jboss.profileservice.cluster.repository.
      DefaultRepositoryClusteringHandler">
  
  <property name="partition"><inject bean="HAPartition"/></property>
  <property name="profileDomain">default</property>
  <property name="profileServer">default</property>
  <property name="profileName">farm</property>
  <property name="immutable">false</property>
  <property name="lockTimeout">60000</property><!-- 1 minute -->
  <property name="methodCallTimeout">60000</property><!-- 1 minute -->
  <property name="synchronizationPolicy"><inject 
bean="FarmProfileSynchronizationPolicy"/></property>
</bean>

<bean name="FarmProfileSynchronizationPolicy"
      class="org.jboss.profileservice.cluster.repository.
      DefaultSynchronizationPolicy">
  <property name="allowJoinAdditions"><null/></property>
  <property name="allowJoinReincarnations"><null/></property>
  <property name="allowJoinUpdates"><null/></property>
  <property name="allowJoinRemovals"><null/></property>
  <property name="allowMergeAdditions"><null/></property>
  <property name="allowMergeReincarnations"><null/></property>
  <property name="allowMergeUpdates"><null/></property>
  <property name="allowMergeRemovals"><null/></property>
  <property name="developerMode">false</property>
  <property name="removalTrackingTime">2592000000</property><!-- 30 
days -->
  <property name="timestampService"><inject 
bean="TimestampDiscrepancyService"/></property>
</bean>
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allow[Join|Merge][Additions|Reincarnations|Updates|Removals] define fixed responses
to requests to allow additions, reincarnations, updates, or removals from joined or merged
nodes.

developerMode enables a lenient synchronization policy that allows all changes. Enabling
developer mode is equivalent to setting each of the above properties to true and is
intended for development environments.

removalTrackingTime defines the number of milliseconds for which this policy should
remembered removed items, for use in detecting reincarnations.

timestampService estimates and tracks discrepancies in system clocks for current and
past members of the cluster. Default implementation is defined in timestamps-jboss-
beans.xml.
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CHAPTER 25. JGROUPS SERVICES
JGroups provides the underlying group communication support for JBoss Enterprise Application
Platform clusters. The interaction of clustered services with JGroups was covered in Section 18.1,
“Group Communication with JGroups”. This chapter focuses on the details of this interaction, with
particular attention to configuration details and troubleshooting tips.

This chapter is not intended as complete JGroups documentation. If you want to know more about
JGroups, you can consult:

The JGroups project documentation at http://jgroups.org/ug.html

The JGroups wiki pages at jboss.org, rooted at
https://www.jboss.org/community/wiki/JGroups

The first section of this chapter covers the many JGroups configuration options in detail. JBoss
Enterprise Application Platform ships with a set of default JGroups configurations. Most applications
will work with the default configurations out of the box. You will only need to edit these configurations
when you deploy an application with special network or performance requirements.

25.1. CONFIGURING A JGROUPS CHANNEL'S PROTOCOL STACK

The JGroups framework provides services to enable peer-to-peer communications between nodes in a
cluster. Communication occurs over a communication channel. The channel built up from a stack of
network communication protocols, each of which is responsible for adding a particular capability to the
overall behavior of the channel. Key capabilities provided by various protocols include transport,
cluster discovery, message ordering, lossless message delivery, detection of failed peers, and cluster
membership management services.

Figure 25.1, “Protocol stack in JGroups”  shows a conceptual cluster with each member's channel
composed of a stack of JGroups protocols.

Figure 25.1. Protocol stack in JGroups
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This section of the chapter covers some of the most commonly used protocols, according to the type of
behaviour they add to the channel. We discuss a few key configuration attributes exposed by each
protocol, but since these attributes should be altered only by experts, this chapter focuses on
familiarizing users with the purpose of various protocols.

The JGroups configurations used in JBoss Enterprise Application Platform appear as nested elements
in the $JBOSS_HOME/server/all/deploy/cluster/jgroups-channelfactory.sar/META-
INF/jgroups-channelfactory-stacks.xml file. This file is parsed by the ChannelFactory
service, which uses the contents to provide correctly configured channels to the clustered services
that require them. See Section 18.1.1, “The Channel Factory Service”  for more on the 
ChannelFactory service.

The following is an example protocol stack configuration from jgroups-channelfactory-
stacks.xml:

<stack name="udp-async"
           description="Same as the default 'udp' stack above, except 
message bundling
                        is enabled in the transport protocol 
(enable_bundling=true). 
                        Useful for services that make high-volume 
asynchronous 
                        RPCs (e.g. high volume JBoss Cache instances 
configured 
                        for REPL_ASYNC) where message bundling may 
improve performance.">
        <config>
          <UDP
             singleton_name="udp-async"
             mcast_port="${jboss.jgroups.udp_async.mcast_port:45689}"
             mcast_addr="${jboss.partition.udpGroup:228.11.11.11}"
             tos="8"
             ucast_recv_buf_size="20000000"
             ucast_send_buf_size="640000"
             mcast_recv_buf_size="25000000"
             mcast_send_buf_size="640000"
             loopback="true"
             discard_incompatible_packets="true"
             enable_bundling="true"
             max_bundle_size="64000"
             max_bundle_timeout="30"
             ip_ttl="${jgroups.udp.ip_ttl:2}"
             thread_naming_pattern="cl"
             timer.num_threads="12"
             enable_diagnostics="${jboss.jgroups.enable_diagnostics:true}"
             
diagnostics_addr="${jboss.jgroups.diagnostics_addr:224.0.0.75}"
             diagnostics_port="${jboss.jgroups.diagnostics_port:7500}"

             thread_pool.enabled="true"
             thread_pool.min_threads="8"
             thread_pool.max_threads="200"
             thread_pool.keep_alive_time="5000"
             thread_pool.queue_enabled="true"
             thread_pool.queue_max_size="1000"
             thread_pool.rejection_policy="discard"

CHAPTER 25. JGROUPS SERVICES

241



The <config> element contains all the configuration data for JGroups. This information is used to
configure a JGroups channel, which is conceptually similar to a socket, and manages communication
between peers in a cluster. Each element within the <config> element defines a particular JGroups
protocol. Each protocol performs one function. The combination of these functions defines the
characteristics of the channel as a whole. The next few sections describe common protocols and
explain the options available to each.

25.1.1. Common Configuration Properties

The following property is exposed by all of the JGroups protocols discussed below:

stats whether the protocol should gather runtime statistics on its operations that can be
exposed via tools like the AS's JMX console or the JGroups Probe utility. What, if any, statistics
are gathered depends on the protocol. Default is true.

NOTE

All of the protocols in the versions of JGroups used in JBoss Application Server 3.x and
4.x exposed down_thread and up_thread attributes. The JGroups version included in
JBoss Application Server 5 and later no longer uses those attributes, and a WARN
message will be written to the server log if they are configured for any protocol.

      
             oob_thread_pool.enabled="true"
             oob_thread_pool.min_threads="8"
             oob_thread_pool.max_threads="200"
             oob_thread_pool.keep_alive_time="1000"
             oob_thread_pool.queue_enabled="false"
             oob_thread_pool.rejection_policy="discard"/>
          <PING timeout="2000" num_initial_members="3"/>
          <MERGE2 max_interval="100000" min_interval="20000"/>
          <FD_SOCK/>
          <FD timeout="6000" max_tries="5" shun="true"/>
          <VERIFY_SUSPECT timeout="1500"/>
          <BARRIER/>
          <pbcast.NAKACK use_mcast_xmit="true" gc_lag="0"
                   retransmit_timeout="300,600,1200,2400,4800"
                   discard_delivered_msgs="true"/>
          <UNICAST timeout="300,600,1200,2400,3600"/>
          <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
                   max_bytes="400000"/>          
          <VIEW_SYNC avg_send_interval="10000"/>
          <pbcast.GMS print_local_addr="true" join_timeout="3000"
                   shun="true"
                   view_bundling="true"
                   view_ack_collection_timeout="5000"
                   resume_task_timeout="7500"/>
          <FC max_credits="2000000" min_threshold="0.10" 
              ignore_synchronous_response="true"/>
          <FRAG2 frag_size="60000"/>
          <!-- pbcast.STREAMING_STATE_TRANSFER/ -->
          <pbcast.STATE_TRANSFER/>
          <pbcast.FLUSH timeout="0" start_flush_timeout="10000"/>
        </config>
    </stack>
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25.1.2. Transport Protocols

The transport protocols send and receive messages to and from the network. They also manage the
thread pools used to deliver incoming messages to addresses higher in the protocol stack. JGroups
supports UDP, TCP and TUNNEL as transport protocols.

NOTE

The UDP, TCP, and TUNNEL protocols are mutually exclusive. You can only have one
transport protocol in each JGroups Config element

25.1.2.1. UDP configuration

UDP is the preferred transport protocol for JGroups. UDP uses multicast (or, in an unusual
configuration, multiple unicasts) to send and receive messages. If you choose UDP as the transport
protocol for your cluster service, you need to configure it in the UDP sub-element in the JGroups 
config element. Here is an example.

          <UDP
             singleton_name="udp-async"
             mcast_port="${jboss.jgroups.udp_async.mcast_port:45689}"
             mcast_addr="${jboss.partition.udpGroup:228.11.11.11}"
             tos="8"
             ucast_recv_buf_size="20000000"
             ucast_send_buf_size="640000"
             mcast_recv_buf_size="25000000"
             mcast_send_buf_size="640000"
             loopback="true"
             discard_incompatible_packets="true"
             enable_bundling="true"
             max_bundle_size="64000"
             max_bundle_timeout="30"
             ip_ttl="${jgroups.udp.ip_ttl:2}"
             thread_naming_pattern="cl"
             timer.num_threads="12"
             enable_diagnostics="${jboss.jgroups.enable_diagnostics:true}"
             
diagnostics_addr="${jboss.jgroups.diagnostics_addr:224.0.0.75}"
             diagnostics_port="${jboss.jgroups.diagnostics_port:7500}"

             thread_pool.enabled="true"
             thread_pool.min_threads="8"
             thread_pool.max_threads="200"
             thread_pool.keep_alive_time="5000"
             thread_pool.queue_enabled="true"
             thread_pool.queue_max_size="1000"
             thread_pool.rejection_policy="discard"
      
             oob_thread_pool.enabled="true"
             oob_thread_pool.min_threads="8"
             oob_thread_pool.max_threads="200"
             oob_thread_pool.keep_alive_time="1000"
             oob_thread_pool.queue_enabled="false"
             oob_thread_pool.rejection_policy="discard"/>
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JGroups transport configurations have a number of attributes available. First we look at the attributes
available to the UDP protocol, followed by the attributes that are also used by the TCP and TUNNEL
transport protocols.

The attributes particular to the UDP protocol are:

ip_mcast specifies whether or not to use IP multicasting. The default is true. If set to false,
multiple unicast packets will be sent instead of one multicast packet. Any packet sent via UDP
protocol are UDP datagrams.

mcast_addr specifies the multicast address (class D) for communicating with the group (i.e.,
the cluster). The standard protocol stack configurations in JBoss AS use the value of system
property jboss.partition.udpGroup, if set, as the value for this attribute. Using the -u
command line switch when starting JBoss Application Server sets that value. See
Section 25.6.2, “Isolating JGroups Channels”  for information about using this configuration
attribute to ensure that JGroups channels are properly isolated from one another. If this
attribute is omitted, the default value is 228.11.11.11.

mcast_port specifies the port to use for multicast communication with the group. See
Section 25.6.2, “Isolating JGroups Channels”  for how to use this configuration attribute to
ensure JGroups channels are properly isolated from one another. If this attribute is omitted,
the default is 45688.

mcast_send_buf_size, mcast_recv_buf_size, ucast_send_buf_size and 
ucast_recv_buf_size define the socket send and receive buffer sizes that JGroups will
request from the operating system. A large buffer size helps to ensure that packets are not
dropped due to buffer overflow. However, socket buffer sizes are limited at the operating
system level, so obtaining the desired buffer may require configuration at the operating
system level. See Section 25.6.2.3, “Improving UDP Performance by Configuring OS UDP
Buffer Limits” for further details.

bind_port specifies the port to which the unicast receive socket should be bound. The default
is 0; i.e. use an ephemeral port.

port_range specifies the number of ports to try if the port identified by bind_port is not
available. The default is 1, which specifies that only bind_port will be tried.

ip_ttl specifies time-to-live (TTL) for IP Multicast packets. TTL is the commonly used term in
multicast networking, but is actually something of a misnomer, since the value here refers to
how many network hops a packet will be allowed to travel before networking equipment will
drop it.

tos specifies the traffic class for sending unicast and multicast datagrams.

The attributes that are common to all transport protocols, and thus have the same meanings when
used with TCP or TUNNEL, are:

singleton_name provides a unique name for this transport protocol configuration. Used by the
application server's ChannelFactory to support sharing of a transport protocol instance by
different channels that use the same transport protocol configuration. See Section 18.1.2, “The
JGroups Shared Transport”.

bind_addr specifies the interface on which to receive and send messages. By default, JGroups
uses the value of system property jgroups.bind_addr. This can also be set with the -b
command line switch. See Section 25.6, “Other Configuration Issues”  for more on binding
JGroups sockets.
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receive_on_all_interfaces specifies whether this node should listen on all interfaces for
multicasts. The default is false. It overrides the bind_addr property for receiving multicasts.
However, bind_addr (if set) is still used to send multicasts.

send_on_all_interfaces specifies whether this node sends UDP packets via all available
network interface controllers, if your machine has multiple network interface controllers
available. This means that the same multicast message is sent N times, so use with care.

receive_interfaces specifies a list of of interfaces on which to receive multicasts. The multicast
receive socket will listen on all of these interfaces. This is a comma-separated list of IP
addresses or interface names, for example, 192.168.5.1,eth1,127.0.0.1.

send_interfaces specifies a list of of interfaces via which to send multicasts. The multicast
sender socket will send on all of these interfaces. This is a comma-separated list of IP
addresses or interface names, for example, 192.168.5.1,eth1,127.0.0.1.This means that
the same multicast message is sent N times, so use with care.

enable_bundling specifies whether to enable message bundling. If true, the tranpsort
protocol queues outgoing messages until max_bundle_size bytes have accumulated, or 
max_bundle_time milliseconds have elapsed, whichever occurs first. Then the transport
protocol bundles queued messages into one large message and sends it. The messages are
unbundled at the receiver. The default is false.

Message bundling can have significant performance benefits for channels that are used for
high volume sending of messages where the sender does not block waiting for a response from
recipients (for example, a JBoss Cache instance configured for REPL_ASYNC.) It can add
considerable latency to applications where senders need to block waiting for responses, so it
is not recommended for certain situations, such as where a JBoss Cache instance is configured
for REPL_SYNC.

loopback specifies whether the thread sending a message to the group should itself carry the
message back up the stack for delivery. (Messages sent to the group are always delivered to
the sending node as well.) If false, the sending thread does not carry the message; the
transport protocol waits to read the message off the network and uses one of the message
delivery pool threads for delivery. The default is false, but true is recommended to ensure
that the channel receives its own messages, in case the network interface goes down.

discard_incompatible_packets specifies whether to discard packets sent by peers that use a
different version of JGroups. Each message in the cluster is tagged with a JGroups version. If 
discard_incompatible_packets is set to true, messages received from different
versions of JGroups will be silently discarded. Otherwise, a warning will be logged. In no case
will the message be delivered. The default value is false.

enable_diagnostics specifies that the transport should open a multicast socket on address 
diagnostics_addr and port diagnostics_port to listen for diagnostic requests sent by
the JGroups Probe utility.

The various thread_pool attributes configure the behavior of the pool of threads JGroups uses
to carry ordinary incoming messages up the stack. The various attributes provide the
constructor arguments for an instance of 
java.util.concurrent.ThreadPoolExecutorService. In the example above, the pool
will have a minimum or core size of 8 threads, and a maximum size of 200. If more than 8 pool
threads have been created, a thread returning from carrying a message will wait for up to 5000
milliseconds to be assigned a new message to carry, after which it will terminate. If no threads
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are available to carry a message, the (separate) thread reading messages off the socket will
place messages in a queue; the queue will hold up to 1000 messages. If the queue is full, the
thread reading messages off the socket will discard the message.

The various oob_thread_pool attributes are similar to the thread_pool attributes in that they
configure a java.util.concurrent.ThreadPoolExecutorService used to carry
incoming messages up the protocol stack. In this case, the pool is used to carry a special type
of message known as an Out-Of-Band (OOB) message. OOB messages are exempt from the
ordered-delivery requirements of protocols like NAKACK and UNICAST and thus can be
delivered up the stack even if NAKACK or UNICAST are queueing up messages from a
particular sender. OOB messages are often used internally by JGroups protocols and can be
used by applications as well. For example, when JBoss Cache is in REPL_SYNC mode, it uses
OOB messages for the second phase of its two-phase-commit protocol.

25.1.2.2. TCP configuration

Alternatively, a JGroups-based cluster can also work over TCP connections. Compared with UDP, TCP
generates more network traffic when the cluster size increases. TCP is fundamentally a unicast
protocol. To send multicast messages, JGroups uses multiple TCP unicasts. To use TCP as a transport
protocol, you should define a TCP element in the JGroups config element. Here is an example of the 
TCP element.

The following attributes are specific to the TCP element:

start_port and end_port define the range of TCP ports to which the server should bind. The
server socket is bound to the first available port beginning with start_port. If no available
port is found (for example, because the ports are in use by other sockets) before the 
end_port, the server throws an exception. If no end_port is provided, or end_port is lower
than start_port, no upper limit is applied to the port range. If start_port is equal to 
end_port, JGroups is forced to use the specified port, since start_port fails if the specified
port in not available. The default value is 7800. If set to 0, the operating system will select a
port. (This will only work for MPING or TCPGOSSIP discovery protocols. TCCPING requires that
nodes and their required ports are listed.)

bind_port in TCP acts as an alias for start_port. If configured internally, it sets start_port.

recv_buf_size, send_buf_size define receive and send buffer sizes. It is good to have a large
receiver buffer size, so packets are less likely to get dropped due to buffer overflow.

conn_expire_time specifies the time (in milliseconds) after which a connection can be closed
by the reaper if no traffic has been received.

reaper_interval specifies interval (in milliseconds) to run the reaper. If both values are 0, no
reaping will be done. If either value is > 0, reaping will be enabled. By default, reaper_interval is
0, which means no reaper.

sock_conn_timeout specifies max time in millis for a socket creation. When doing the initial
discovery, and a peer hangs, don't wait forever but go on after the timeout to ping other
members. Reduces chances of *not* finding any members at all. The default is 2000.

use_send_queues specifies whether to use separate send queues for each connection. This
prevents blocking on write if the peer hangs. The default is true.

<TCP singleton_name="tcp" 
        start_port="7800" end_port="7800"/>
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external_addr specifies external IP address to broadcast to other group members (if different
to local address). This is useful when you have use (Network Address Translation) NAT, e.g. a
node on a private network, behind a firewall, but you can only route to it via an externally
visible address, which is different from the local address it is bound to. Therefore, the node can
be configured to broadcast its external address, while still able to bind to the local one. This
avoids having to use the TUNNEL protocol, (and hence a requirement for a central gossip
router) because nodes outside the firewall can still route to the node inside the firewall, but
only on its external address. Without setting the external_addr, the node behind the firewall
will broadcast its private address to the other nodes which will not be able to route to it.

skip_suspected_members specifies whether unicast messages should not be sent to
suspected members. The default is true.

tcp_nodelay specifies TCP_NODELAY. TCP by default nagles messages, that is, conceptually,
smaller messages are bundled into larger ones. If we want to invoke synchronous cluster
method calls, then we need to disable nagling in addition to disabling message bundling (by
setting enable_bundling to false). Nagling is disabled by setting tcp_nodelay to true. The
default is false.

NOTE

All of the attributes common to all protocols discussed in the UDP protocol section also
apply to TCP.

25.1.2.3. TUNNEL configuration

The TUNNEL protocol uses an external router process to send messages. The external router is a Java
process that runs the org.jgroups.stack.GossipRouter main class. Each node has to register
with the router. All messages are sent to the router and forwarded on to their destinations. The
TUNNEL approach can be used to set up communication with nodes behind firewalls. A node can
establish a TCP connection to the GossipRouter through the firewall (you can use port 80). This
connection is also used by the router to send messages to nodes behind the firewall, as most firewalls
do not permit outside hosts to initiate a TCP connection to a host inside the firewall. The TUNNEL
configuration is defined in the TUNNEL element within the JGroups <config> element, like so:

The available attributes in the TUNNEL element are listed below.

router_host specifies the host on which the GossipRouter is running.

router_port specifies the port on which the GossipRouter is listening.

reconnect_interval specifies the interval of time (in milliseconds) for which TUNNEL will
attempt to connect to the GossipRouter if the connection is not established. The default
value is 5000.

NOTE

All of the attributes common to all protocols discussed in the UDP protocol section also
apply to TUNNEL.

<TUNNEL  singleton_name="tunnel"
            router_port="12001"
            router_host="192.168.5.1"/>
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25.1.3. Discovery Protocols

When a channel on a node first connects, it must determine which other nodes are running compatible
channels, and which of these nodes is currently acting as the coordinator (the node responsible for
letting new nodes join the group). Discovery protocols are used to find active nodes in the cluster and
to determine which is the coordinator. This information is then provided to the group membership
protocol (GMS), which communicates with the coordinator's GMS to add the newly-connecting node to
the group. (For more information about group membership protocols, see Section 25.1.6, “Group
Membership (GMS)”.)

Discovery protocols also assist merge protocols (see Section 25.5, “Merging (MERGE2)”) to detect
cluster-split situations.

The discovery protocols sit on top of the transport protocol, so you can choose to use different
discovery protocols depending on your transport protocol. These are also configured as sub-elements
in the JGroups <config> element.

25.1.3.1. PING

PING is a discovery protocol that works by either multicasting PING requests to an IP multicast
address or connecting to a gossip router. As such, PING normally sits on top of the UDP or TUNNEL
transport protocols. Each node responds with a packet {C, A}, where C=coordinator's address and
A=own address. After timeout milliseconds or num_initial_members replies, the joiner determines the
coordinator from the responses, and sends a JOIN request to it (handled by). If nobody responds, we
assume we are the first member of a group.

Here is an example PING configuration for IP multicast.

Here is another example PING configuration for contacting a Gossip Router.

The available attributes in the PING element are listed below.

timeout specifies the maximum number of milliseconds to wait for any responses. The default
is 3000.

num_initial_members specifies the maximum number of responses to wait for unless timeout
has expired. The default is 2.

gossip_host specifies the host on which the GossipRouter is running.

gossip_port specifies the port on which the GossipRouter is listening on.

gossip_refresh specifies the interval (in milliseconds) for the lease from the GossipRouter. The
default is 20000.

initial_hosts is a comma-separated list of addresses or ports (for example, 
host1[12345],host2[23456]) which are pinged for discovery. Default is null, meaning
multicast discovery should be used. If initial_hosts is specified, you must list all possible

<PING timeout="2000"
    num_initial_members="3"/>

<PING gossip_host="localhost"
      gossip_port="1234"
       timeout="2000" 
      num_initial_members="3"/>
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cluster members, not just a few well-known hosts, or MERGE2 cluster split discovery will not
work reliably.

If both gossip_host and gossip_port are defined, the cluster uses the GossipRouter for the initial
discovery. If the initial_hosts is specified, the cluster pings that static list of addresses for
discovery. Otherwise, the cluster uses IP multicasting for discovery.

NOTE

The discovery phase returns when the timeout ms have elapsed or the 
num_initial_members responses have been received.

25.1.3.2. TCPGOSSIP

The TCPGOSSIP protocol only works with a GossipRouter. It works essentially the same way as the
PING protocol configuration with valid gossip_host and gossip_port attributes. It works on top of
both UDP and TCP transport protocols. Here is an example.

The available attributes in the TCPGOSSIP element are listed below.

timeout specifies the maximum number of milliseconds to wait for any responses. The default
is 3000.

num_initial_members specifies the maximum number of responses to wait for unless timeout
has expired. The default is 2.

initial_hosts is a comma-separated list of addresses/ports (for example, 
host1[12345],host2[23456]) of GossipRouters to register

25.1.3.3. TCPPING

The TCPPING protocol takes a set of known members and pings them for discovery. This is essentially
a static configuration. It works on top of TCP. Here is an example of the TCPPING configuration
element in the JGroups config element.

The available attributes in the TCPPING element are listed below.

timeout specifies the maximum number of milliseconds to wait for any responses. The default
is 3000.

num_initial_members specifies the maximum number of responses to wait for unless timeout
has expired. The default is 2.

initial_hosts is a comma-seperated list of addresses (for example, 
host1[12345],host2[23456]) for pinging.

<TCPGOSSIP timeout="2000"
       num_initial_members="3"
       initial_hosts="192.168.5.1[12000],192.168.0.2[12000]"/>

<TCPPING timeout="2000"
     num_initial_members="3"/
     initial_hosts="hosta[2300],hostb[3400],hostc[4500]"
     port_range="3">
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port_range specifies the number of consecutive ports to be probed when getting the initial
membership, starting with the port specified in the initial_hosts parameter. Given the
current values of port_range and initial_hosts above, the TCPPING layer will try to
connect to hosta[2300], hosta[2301], hosta[2302], hostb[3400], hostb[3401], 
hostb[3402], hostc[4500], hostc[4501], and hostc[4502]. This configuration option
allows for multiple possible ports on the same host to be pinged without having to spell out all
possible combinations. If in your TCP protocol configuration your end_port is greater than
your start_port, we recommend using a TCPPING port_range equal to the difference, to
ensure a node is pinged no matter which port it is bound to within the allowed range.

25.1.3.4. MPING

MPING uses IP multicast to discover the initial membership. Unlike the other discovery protocols,
which delegate the sending and receiving of discovery messages on the network to the transport
protocol, MPING opens its own sockets to send and receive multicast discovery messages. As a result it
can be used with all transports, but it is most often used with TCP. TCP usually requires TCPPING,
which must explicitly list all possible group members. MPING does not have this requirement, and is
typically used where TCP is required for regular message transport, and UDP multicasting is allowed
for discovery.

The available attributes in the MPING element are listed below.

timeout specifies the maximum number of milliseconds to wait for any responses. The default
is 3000.

num_initial_members specifies the maximum number of responses to wait for unless timeout
has expired. The default is 2..

bind_addr specifies the interface on which to send and receive multicast packets. By default
JGroups uses the value of the system property jgroups.bind_addr, which can be set with
the -b command line switch. See Section 25.6, “Other Configuration Issues”  for more on
binding JGroups sockets.

bind_to_all_interfaces overrides the bind_addr and uses all interfaces in multihome nodes.

mcast_addr, mcast_port, ip_ttl attributes are the same as related attributes in the UDP
protocol configuration.

25.1.4. Failure Detection Protocols

The failure detection protocols are used to detect failed nodes. Once a failed node is detected, a
suspect verification phase can occur. If the node is still considered dead after this phase is complete, the
cluster updates its membership view so that further messages are not sent to the failed node. The
service using JGroups is informed that the node is no longer part of the cluster. Failure detection
protocols are configured as sub-elements in the JGroups <config> element.

25.1.4.1. FD

<MPING timeout="2000"
    num_initial_members="3"
    bind_to_all_interfaces="true"
    mcast_addr="228.8.8.8"
    mcast_port="7500"
    ip_ttl="8"/>
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FD is a failure detection protocol based on 'heartbeat' messages. This protocol requires that each node
periodically ping its neighbour. If the neighbour fails to respond, the calling node sends a SUSPECT
message to the cluster. The current group coordinator can optionally verify that the suspected node is
dead (VERIFY_SUSPECT). If the node is still considered dead after this verification step, the
coordinator updates the cluster's membership view. The following is an example of FD configuration:

The available attributes in the FD element are listed below.

timeout specifies the maximum number of milliseconds to wait for the responses to the are-
you-alive messages. The default is 3000.

max_tries specifies the number of missed are-you-alive messages from a node before the node
is suspected. The default is 2.

shun specifies whether a failed node will be forbidden from sending messages to the group
without formally rejoining. A shunned node would need to rejoin the cluster via the discovery
process. JGroups allows applications to configure a channel such that, when a channel is
shunned, the process of rejoining the cluster and transferring state takes place automatically.
(This is default behavior for JBoss Application Server.)

NOTE

Regular traffic from a node is proof of life, so heartbeat messages are only sent when no
regular traffic is detected on the node for a long period of time.

25.1.4.2. FD_SOCK

FD_SOCK is a failure detection protocol based on a ring of TCP sockets created between group
members. Each member in a group connects to its neighbor, with the final member connecting to the
first, forming a ring. Node B becomes suspected when its neighbour, Node A, detects an abnormally
closed TCP socket, presumably due to a crash in Node B. (When nodes intend to leave the group, they
inform their neighbours so that they do not become suspected.)

The simplest FD_SOCK configuration does not take any attribute. You can declare an empty FD_SOCK
element in the JGroups <config> element.

The attributes available to the FD_SOCK element are listed below.

bind_addr specifies the interface to which the server socket should be bound. By default,
JGroups uses the value of the system property jgroups.bind_addr. This system property
can be set with the -b command line switch. For more information about binding JGroups
sockets, see Section 25.6, “Other Configuration Issues” .

25.1.4.3. VERIFY_SUSPECT

This protocol verifies whether a suspected member is really dead by pinging that member once again.
This verification is performed by the coordinator of the cluster. The suspected member is dropped
from the cluster group if confirmed to be dead. The aim of this protocol is to minimize false suspicions.

<FD timeout="6000"
    max_tries="5"
    shun="true"/>

<FD_SOCK/>

CHAPTER 25. JGROUPS SERVICES

251



Here's an example.

The available attributes in the VERIFY_SUSPECT element are listed below.

timeout specifies how long to wait for a response from the suspected member before
considering it dead.

25.1.4.4. FD versus FD_SOCK

FD and FD_SOCK, each taken individually, do not provide a solid failure detection layer. Let's look at
the the differences between these failure detection protocols to understand how they complement
each other:

FD

An overloaded machine might be slow in sending are-you-alive responses.

A member will be suspected when suspended in a debugger/profiler.

Low timeouts lead to higher probability of false suspicions and higher network traffic.

High timeouts will not detect and remove crashed members for some time.

FD_SOCK:

Suspended in a debugger is no problem because the TCP connection is still open.

High load no problem either for the same reason.

Members will only be suspected when TCP connection breaks, so hung members will not be
detected.

Also, a crashed switch will not be detected until the connection runs into the TCP timeout
(between 2-20 minutes, depending on TCP/IP stack implementation).

A failure detection layer is intended to report real failures promptly, while avoiding false suspicions.
There are two solutions:

1. By default, JGroups configures the FD_SOCK socket with KEEP_ALIVE, which means that TCP
sends a heartbeat on socket on which no traffic has been received in 2 hours. If a host crashed
(or an intermediate switch or router crashed) without closing the TCP connection properly, we
would detect this after 2 hours (plus a few minutes). This is of course better than never closing
the connection (if KEEP_ALIVE is off), but may not be of much help. So, the first solution would
be to lower the timeout value for KEEP_ALIVE. This can only be done for the entire kernel in
most operating systems, so if this is lowered to 15 minutes, this will affect all TCP sockets.

2. The second solution is to combine FD_SOCK and FD; the timeout in FD can be set such that it is
much lower than the TCP timeout, and this can be configured individually per process.
FD_SOCK will already generate a suspect message if the socket was closed abnormally.
However, in the case of a crashed switch or host, FD will make sure the socket is eventually
closed and the suspect message generated. Example:

   
<VERIFY_SUSPECT timeout="1500"/>
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In this example, a member becomes suspected when the neighbouring socket has been closed
abnormally, in a process crash, for instance, since the operating system closes all sockets. However, if
a host or switch crashes, the sockets will not be closed. FD will suspect the neighbour after sixty
seconds (6000 milliseconds). Note that if this example system were stopped in a breakpoint in the
debugger, the node being debugged will be suspected once the timeout has elapsed.

A combination of FD and FD_SOCK provides a solid failure detection layer, which is why this technique
is used across the JGroups configurations included with JBoss Application Server.

25.1.5. Reliable Delivery Protocols

Reliable delivery protocols within the JGroups stack ensure that messages are actually delivered, and
delivered in the correct order (First In, First Out, or FIFO) to the destination node. The basis for reliable
message delivery is positive and negative delivery acknowledgments (ACK and NAK). In ACK mode, the
sender resends the message until acknowledgment is received from the receiver. In NAK mode, the
receiver requests retransmission when it discovers a gap.

25.1.5.1. UNICAST

The UNICAST protocol is used for unicast messages. It uses positive acknowlegements ( ACK). It is
configured as a sub-element under the JGroups config element. If the JGroups stack is configured
with the TCP transport protocol, UNICAST is not necessary because TCP itself guarantees FIFO
delivery of unicast messages. Here is an example configuration for the UNICAST protocol:

There is only one configurable attribute in the UNICAST element.

timeout specifies the retransmission timeout (in milliseconds). For instance, if the timeout is 
100,200,400,800, the sender resends the message if it has not received an ACK after 100
milliseconds the first time, and the second time it waits for 200 milliseconds before resending,
and so on. A low value for the first timeout allows for prompt retransmission of dropped
messages, but means that messages may be transmitted more than once if they have not
actually been lost (that is, the message has been sent, but the ACK has not been received
before the timeout). High values (1000,2000,3000) can improve performance if the network
is tuned such that UDP datagram loss is infrequent. High values on networks with frequent
losses will be harmful to performance, since later messages will not be delivered until lost
messages have been retransmitted.

25.1.5.2. NAKACK

The NAKACK protocol is used for multicast messages. It uses negative acknowlegements ( NAK). Under
this protocol, each message is tagged with a sequence number. The receiver keeps track of the
received sequence numbers and delivers the messages in order. When a gap in the series of received
sequence numbers is detected, the receiver schedules a task to periodically ask the sender to
retransmit the missing message. The task is cancelled if the missing message is received. NAKACK
protocol is configured as the pbcast.NAKACK sub-element under the JGroups <config> element.
Here is an example configuration:

<FD_SOCK/>
<FD timeout="6000" max_tries="5" shun="true"/>
<VERIFY_SUSPECT timeout="1500"/>

<UNICAST timeout="300,600,1200,2400,3600"/>
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The configurable attributes in the pbcast.NAKACK element are as follows.

retransmit_timeout specifies the series of timeouts (in milliseconds) after which
retransmission is requested if a missing message has not yet been received.

use_mcast_xmit determines whether the sender should send the retransmission to the entire
cluster rather than just to the node requesting it. This is useful when the sender's network
layer tends to drop packets, avoiding the need to individually retransmit to each node.

max_xmit_size specifies the maximum size (in bytes) for a bundled retransmission, if multiple
messages are reported missing.

discard_delivered_msgs specifies whether to discard delivered messages on the receiver
nodes. By default, nodes save delivered messages so any node can retransmit a lost message in
case the original sender has crashed or left the group. However, if we only ask the sender to
resend its messages, we can enable this option and discard delivered messages.

gc_lag specifies the number of messages to keep in memory for retransmission, even after the
periodic cleanup protocol (see Section 25.4, “Distributed Garbage Collection (STABLE)” )
indicates all peers have received the message. The default value is 20.

25.1.6. Group Membership (GMS)

The group membership service (GMS) protocol in the JGroups stack maintains a list of active nodes. It
handles the requests to join and leave the cluster. It also handles the SUSPECT messages sent by
failure detection protocols. All nodes in the cluster, as well as any interested services like JBoss Cache
or HAPartition, are notified if the group membership changes. The group membership service is
configured in the pbcast.GMS sub-element under the JGroups config element. Here is an example
configuration.

The configurable attributes in the pbcast.GMS element are as follows.

join_timeout specifies the maximum number of milliseconds to wait for a new node JOIN
request to succeed. Retry afterwards.

join_retry_timeout specifies the number of milliseconds to wait after a failed JOIN before
trying again.

print_local_addr specifies whether to dump the node's own address to the standard output
when started.

shun specifies whether a node should shun (that is, disconnect) itself if it receives a cluster
view in which it is not a member node.

disable_initial_coord specifies whether to prevent this node from becoming the cluster

<pbcast.NAKACK max_xmit_size="60000" use_mcast_xmit="false" 
   retransmit_timeout="300,600,1200,2400,4800" gc_lag="0"
   discard_delivered_msgs="true"/>

<pbcast.GMS print_local_addr="true"
    join_timeout="3000"
    join_retry_timeout="2000"
    shun="true"
    view_bundling="true"/>
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coordinator during the initial connection of the channel. This flag does not prevent a node
becoming the coordinator after the initial channel connection, if the current coordinator
leaves the group.

view_bundling specifies whether multiple JOIN or LEAVE requests arriving at the same time
are bundled and handled together at the same time, resulting in only one new view that
incorporates all changes. This is is more efficient than handling each request separately.

25.1.7. Flow Control (FC)

The flow control (FC) protocol tries to adapt the data sending rate to the data receipt rate among
nodes. If a sender node is too fast, it might overwhelm the receiver node and result in out-of-memory
conditions or dropped packets that have to be retransmitted. In JGroups, flow control is implemented
via a credit-based system. The sender and receiver nodes have the same number of credits (bytes) to
start with. The sender subtracts credits by the number of bytes in messages it sends. The receiver
accumulates credits for the bytes in the messages it receives. When the sender's credit drops to a
threshold, the receivers send some credit to the sender. If the sender's credit is used up, the sender
blocks until it receives credits from the receiver. The flow control protocol is configured in the FC sub-
element under the JGroups config element. Here is an example configuration.

The configurable attributes in the FC element are as follows.

max_credits specifies the maximum number of credits (in bytes). This value should be smaller
than the JVM heap size.

min_credits specifies the minimum number of bytes that must be received before the receiver
will send more credits to the sender.

min_threshold specifies the percentage of the max_credits that should be used to calculate 
min_credits. Setting this overrides the min_credits attribute.

ignore_synchronous_response specifies whether threads that have carried messages up to
the application should be allowed to carry outgoing messages back down through FC without
blocking for credits. Synchronous response refers to the fact that these messages are generally
responses to incoming RPC-type messages. Forbidding JGroups threads to carry messages up
to block in FC can help prevent certain deadlock scenarios, so we recommend setting this to 
true.

<FC max_credits="2000000"
    min_threshold="0.10" 
    ignore_synchronous_response="true"/>
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NOTE

FC is required for group communication where group messages must be sent at the
highest speed that the slowest receiver can handle. For example, say we have a cluster
comprised of nodes A, B, C and D. D is slow (perhaps overloaded), while the rest are fast.
When A sends a group message, it does so via TCP connections: A-A (theoretically), A-B,
A-C and A-D.

Say A sends 100 million messages to the cluster. TCP's flow control applies to A-B, A-C
and A-D individually, but not to A-BCD as a group. Therefore, A, B and C will receive the
100 million messages, but D will receive only 1 million. (This is also why NAKACK is
required, even though TCP handles its own retransmission.)

JGroups must buffer all messages in memory in case an original sender S dies and a
node requests retransmission of a message sent by S. Since all members buffer all
messages that they receive, stable messages (messages seen by every node) must
sometimes be purged. (The purging process is managed by the STABLE protocol. For
more information, see Section 25.4, “Distributed Garbage Collection (STABLE)” .)

In the above case, the slow node D will prevent the group from purging messages above
1M, so every member will buffer 99M messages ! This in most cases leads to OOM
exceptions. Note that - although the sliding window protocol in TCP will cause writes to
block if the window is full - we assume in the above case that this is still much faster for
A-B and A-C than for A-D.

So, in summary, even with TCP we need to FC to ensure we send messages at a rate the
slowest receiver (D) can handle.

NOTE

This depends on how the application uses the JGroups channel. Referring to the
example above, if there was something about the application that would naturally cause
A to slow down its rate of sending because D wasn't keeping up, then FC would not be
needed.

A good example of such an application is one that uses JGroups to make synchronous
group RPC calls. By synchronous, we mean the thread that makes the call blocks
waiting for responses from all the members of the group. In that kind of application, the
threads on A that are making calls would block waiting for responses from D, thus
naturally slowing the overall rate of calls.

A JBoss Cache cluster configured for REPL_SYNC is a good example of an application
that makes synchronous group RPC calls. If a channel is only used for a cache
configured for REPL_SYNC, we recommend you remove FC from its protocol stack.

And, of course, if your cluster only consists of two nodes, including FC in a TCP-based
protocol stack is unnecessary. There is no group beyond the single peer-to-peer
relationship, and TCP's internal flow control will handle that just fine.

Another case where FC may not be needed is for a channel used by a JBoss Cache
configured for buddy replication and a single buddy. Such a channel will in many
respects act like a two node cluster, where messages are only exchanged with one other
node, the buddy. (There may be other messages related to data gravitation that go to all
members, but in a properly engineered buddy replication use case these should be
infrequent. But if you remove FC be sure to load test your application.)
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25.2. FRAGMENTATION (FRAG2)

This protocol fragments messages that are larger than a certain size, and reassembles them at the
receiver's side. It works for both unicast and multicast messages. It is configured with the FRAG2 sub-
element in the JGroups config element. Here is an example configuration:

The configurable attributes in the FRAG2 element are as follows.

frag_size specifies the maximum message size (in bytes) before fragmentation occurs.
Messages larger than this size are fragmented. For stacks that use the UDP transport, this
value must be lower than 64 kilobytes (the maximum UDP datagram size). For TCP-based
stacks, it must be lower than the value of max_credits in the FC protocol.

NOTE

TCP protocol already provides fragmentation, but a JGroups fragmentation protocol is
still required if FC is used. The reason for this is that if you send a message larger than 
FC.max_credits, the FC protocol will block forever. So, frag_size within FRAG2
must always be set to a value lower than that of FC.max_credits.

25.3. STATE TRANSFER

The state transfer service transfers the state from an existing node (i.e., the cluster coordinator) to a
newly joining node. It is configured in the pbcast.STATE_TRANSFER sub-element under the JGroups 
Config element. It does not have any configurable attribute. Here is an example configuration.

25.4. DISTRIBUTED GARBAGE COLLECTION (STABLE)

In a JGroups cluster, all nodes must store all messages received for potential retransmission in case of
a failure. However, if we store all messages forever, we will run out of memory. The distributed garbage
collection service periodically purges messages that have been seen by all nodes, removing them from
the memory in each node. The distributed garbage collection service is configured in the 
pbcast.STABLE sub-element under the JGroups config element. Here is an example configuration.

The configurable attributes in the pbcast.STABLE element are as follows.

desired_avg_gossip specifies intervals (in milliseconds) of garbage collection runs. Set this to 
0 to disable interval-based garbage collection.

max_bytes specifies the maximum number of bytes received before the cluster triggers a
garbage collection run. Set to 0 to disable garbage collection based on the bytes received.

stability_delay specifies the maximum time period (in milliseconds) of a random delay

  
      <FRAG2 frag_size="60000"/>

<pbcast.STATE_TRANSFER/>

<pbcast.STABLE stability_delay="1000"
    desired_avg_gossip="5000" 
    max_bytes="400000"/>
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introduced before a node sends its STABILITY message at the end of a garbage collection run.
The delay gives other nodes concurrently running a STABLE task a chance to send first. If used
together with max_bytes, this attribute should be set to a small number.

NOTE

Set the max_bytes attribute when you have a high traffic cluster.

25.5. MERGING (MERGE2)

When a network error occurs, the cluster might be partitioned into several different partitions.
JGroups has a MERGE service that allows the coordinators in partitions to communicate with each
other and form a single cluster back again. The merging service is configured in the MERGE2 sub-
element under the JGroups Config element. Here is an example configuration.

The configurable attributes in the MERGE2 element are as follows.

max_interval specifies the maximum number of milliseconds to wait before sending a MERGE
message.

min_interval specifies the minimum number of milliseconds to wait before sending a MERGE
message.

JGroups chooses a random value between min_interval and max_interval to periodically send
the MERGE message.

NOTE

The application state maintained by the application using a channel is not merged by
JGroups during a merge. This must be done by the application.

NOTE

If MERGE2 is used in conjunction with TCPPING, the initial_hosts attribute must
contain all the nodes that could potentially be merged back, in order for the merge
process to work properly. Otherwise, the merge process may not detect all sub-groups,
and may miss those comprised solely of unlisted members.

25.6. OTHER CONFIGURATION ISSUES

25.6.1. Binding JGroups Channels to a Particular Interface

In the Transport Protocols section above, we briefly touched on how the interface to which JGroups
will bind sockets is configured. Let's get into this topic in more depth:

First, it is important to understand that the value set in any bind_addr element in an XML
configuration file will be ignored by JGroups if it finds that the system property jgroups.bind_addr
(or a deprecated earlier name for the same thing, bind.address) has been set. The system property

<MERGE2 max_interval="10000"
    min_interval="2000"/>
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has a higher priority level than the XML property. If JBoss Application Server is started with the -b (or 
--host) switch, the application server will set jgroups.bind_addr to the specified value. If -b is
not set, the application server will bind most services to localhost by default.

So, what are best practices for managing how JGroups binds to interfaces?

Binding JGroups to the same interface as other services. Simple, just use -b:

./run.sh -b 192.168.1.100 -c all

Binding services (e.g., JBoss Web) to one interface, but use a different one for JGroups:

./run.sh -b 10.0.0.100 -Djgroups.bind_addr=192.168.1.100 -c all

Specifically setting the system property overrides the -b value. This is a common usage
pattern; put client traffic on one network, with intra-cluster traffic on another.

Binding services (e.g., JBoss Web) to all interfaces. This can be done like this:

./run.sh -b 0.0.0.0 -c all

However, doing this will not cause JGroups to bind to all interfaces! Instead , JGroups will bind
to the machine's default interface. See the Transport Protocols section for how to tell JGroups
to receive or send on all interfaces, if that is what you really want.

Binding services (e.g., JBoss Web) to all interfaces, but specify the JGroups interface:

./run.sh -b 0.0.0.0 -Djgroups.bind_addr=192.168.1.100 -c all

Again, specifically setting the system property overrides the -b value.

Using different interfaces for different channels:

./run.sh -b 10.0.0.100 -Djgroups.ignore.bind_addr=true -c all

This setting tells JGroups to ignore the jgroups.bind_addr system property, and instead use
whatever is specfied in XML. You would need to edit the various XML configuration files to set the
various bind_addr attributes to the desired interfaces.

25.6.2. Isolating JGroups Channels

Within JBoss Application Server, there are a number of services that independently create JGroups
channels — possibly multiple different JBoss Cache services (used for HttpSession replication, EJB3
stateful session bean replication and EJB3 entity replication), two JBoss Messaging channels, and
HAPartition, the general purpose clustering service that underlies most other JBossHA services.

It is critical that these channels only communicate with their intended peers; not with the channels
used by other services and not with channels for the same service opened on machines not meant to
be part of the group. Nodes improperly communicating with each other is one of the most common
issues users have with JBoss Enterprise Application Platform clustering.

Whom a JGroups channel will communicate with is defined by its group name and, for UDP-based
channels, its multicast address and port. Isolating a JGroups channel means ensuring that different
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channels use different values for the group name, the multicast address and, in some cases, the
multicast port.

25.6.2.1. Isolating sets of Application Server instances from each other

This section addresses the issue of having multiple independent clusters running within the same
environment. For example, you might have a production cluster, a staging cluster, and a QA cluster, or
multiple clusters in a QA test lab or development team environment.

To isolate JGroups clusters from other clusters on the network, you must:

Make sure the channels in the various clusters use different group names. This can be
controlled with the command line arguments used to start JBoss; see Section 25.6.2.2.1,
“Changing the Group Name” for more information.

Make sure the channels in the various clusters use different multicast addresses. This is also
easy to control with the command line arguments used to start JBoss.

If you are not running on Linux, Windows, Solaris or HP-UX, you may also need to ensure that
the channels in each cluster use different multicast ports. This is more difficult than using
different group names, although it can still be controlled from the command line. See
Section 25.6.2.2.3, “Changing the Multicast Port” . Note that using different ports should not be
necessary if your servers are running on Linux, Windows, Solaris or HP-UX.

25.6.2.2. Isolating Channels for Different Services on the Same Set of AS Instances

This section addresses the usual case: a cluster of three machines, each of which has, for example, an
HAPartition deployed alongside JBoss Cache for web session clustering. The HAPartition channels
should not communicate with the JBoss Cache channels. Ensuring proper isolation of these channels is
straightforward, and is usually handled by the application server without any alterations on the part of
the user.

To isolate channels for different services from each other on the same set of application server
instances, each channel must have its own group name. The configurations that ship with JBoss
Application Server ensure that this is the case. However, if you create a custom service that uses
JGroups directly, you must use a unique group name. If you create a custom JBoss Cache
configuration, ensure that you provide a unique value in the clusterName configuration property.

In releases prior to JBoss Application Server 5, different channels running in the same application
server also had to use unique multicast ports. With the JGroups shared transport introduced in JBoss
AS 5 (see Section 18.1.2, “The JGroups Shared Transport” ), it is now common for multiple channels to
use the same tranpsort protocol and its sockets. This makes configuration easier, which is one of the
main benefits of the shared transport. However, if you decide to create your own custom JGroups
protocol stack configuration, be sure to configure its transport protocols with a multicast port that is
different from the ports used in other protocol stacks.

25.6.2.2.1. Changing the Group Name

The group name for a JGroups channel is configured via the service that starts the channel. For all the
standard clustered services, we make it easy for you to create unique groups names by simply using
the -g (or --partition) switch when starting JBoss:

./run.sh -g QAPartition -b 192.168.1.100 -c all
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This switch sets the jboss.partition.name system property, which is used as a component in the
configuration of the group name in all the standard clustering configuration files. For example,

25.6.2.2.2. Changing the multicast address and port

The -u (or --udp) command line switch may be used to control the multicast address used by the
JGroups channels opened by all standard AS services.

/run.sh -u 230.1.2.3 -g QAPartition -b 192.168.1.100 -c all

This switch sets the jboss.partition.udpGroup system property, which is referenced in all of the
standard protocol stack configurations in JBoss AS:

NOTE

If channels with different group names share the same multicast address and port, the
lower level JGroups protocols in each channel will see, process and eventually discard
messages intended for the other group. This will at a minimum hurt performance and
can lead to anomalous behavior.

25.6.2.2.3. Changing the Multicast Port

On some operating systems (Mac OS X for example), using different -g and -u values is not sufficient
to isolate clusters; the channels running in the different clusters must also use different multicast
ports. Unfortunately, setting the multicast ports is not as simple as -g and -u. By default, a JBoss AS
instance running the all configuration will use up to two different instances of the JGroups UDP
transport protocol, and will therefore open two multicast sockets. You can control the ports those
sockets use by using system properties on the command line. For example,

The jboss.messaging.datachanneludpport property controls the multicast port used by the 
MPING protocol in JBoss Messaging's DATA channel. The jboss.jgroups.udp.mcast_port
property controls the multicast port used by the UDP transport protocol shared by all other clustered
services.

The set of JGroups protocol stack configurations included in the 
$JBOSS_HOME/server/all/deploy/cluster/jgroups-channelfactory.sar/META-
INF/jgroups-channelfactory-stacks.xml file includes a number of other example protocol
stack configurations that the standard JBoss AS distribution doesn't actually use. Those
configurations also use system properties to set any multicast ports. So, if you reconfigure some AS
service to use one of those protocol stack configurations, use the appropriate system property to
control the port from the command line.

<property name="clusterName">${jboss.partition.name:DefaultPartition}-
SFSBCache</property>

<UDP mcast_addr="${jboss.partition.udpGroup:228.1.2.3}" ....

/run.sh -u 230.1.2.3 -g QAPartition -b 192.168.1.100 -c all \\
        -Djboss.jgroups.udp.mcast_port=12345 -
Djboss.messaging.datachanneludpport=23456
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NOTE

It should be sufficient to just change the address, but unfortunately the handling of
multicast sockets is one area where the JVM fails to hide operating system behavior
differences from the application. The java.net.MulticastSocket class provides
different overloaded constructors. On some operating systems, if you use one
constructor variant, packets addressed to a particular multicast port are delivered to all
listeners on that port, regardless of the multicast address on which they are listening.
We refer to this as the promiscuous traffic problem. On most operating systems that
exhibit the promiscuous traffic problem (Linux, Solaris and HP-UX) JGroups can use a
different constructor variant that avoids the problem. However, on some operating
systems with the promiscuous traffic problem (Mac OS X), multicast does not work
properly if the other constructor variant is used. So, on these operating systems the
recommendation is to configure different multicast ports for different clusters.

25.6.2.3. Improving UDP Performance by Configuring OS UDP Buffer Limits

By default, the JGroups channels in JBoss Enterprise Application Platform use the UDP transport
protocol to take advantage of IP multicast. However, one disadvantage of UDP is it does not come with
the reliable delivery guarantees provided by TCP. The protocols discussed in Section 25.1.5, “Reliable
Delivery Protocols” allow JGroups to guarantee delivery of UDP messages, but those protocols are
implemented in Java, not at the operating system network layer. For peak performance from a UDP-
based JGroups channel it is important to limit the need for JGroups to retransmit messages by limiting
UDP datagram loss.

One of the most common causes of lost UDP datagrams is an undersized receive buffer on the socket.
The UDP protocol's mcast_recv_buf_size and ucast_recv_buf_size configuration attributes
are used to specify the amount of receive buffer JGroups requests from the operating system, but the
actual size of the buffer the operating system provides is limited by operating system-level
maximums. These maximums are often very low:

Table 25.1. Default Max UDP Buffer Sizes

Operating System Default Max UDP Buffer (in bytes)

Linux 131071

Windows No known limit

Solaris 262144

FreeBSD, Darwin 262144

AIX 1048576

The command used to increase the above limits is operating system-specific. The table below shows
the command required to increase the maximum buffer to 25 megabytes. In all cases, root privileges
are required:

Table 25.2. Commands to Change Max UDP Buffer Sizes
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Operating System Command

Linux sysctl -w 
net.core.rmem_max=26214400

Solaris ndd -set /dev/udp udp_max_buf 
26214400

FreeBSD, Darwin sysctl -w 
kern.ipc.maxsockbuf=26214400

AIX no -o sb_max=8388608 (AIX will only allow 1
megabyte, 4 megabytes or 8 megabytes).

25.6.3. JGroups Troubleshooting

25.6.3.1. Nodes do not form a cluster

Make sure your machine is set up correctly for IP multicast. There are 2 test programs that can be
used to detect this: McastReceiverTest and McastSenderTest. Go to the 
$JBOSS_HOME/server/all/lib directory and start McastReceiverTest, for example:

[lib]$ java -cp jgroups.jar org.jgroups.tests.McastReceiverTest -
mcast_addr 224.10.10.10 -port 5555

Then in another window start McastSenderTest:

[lib]$ java -cp jgroups.jar org.jgroups.tests.McastSenderTest -mcast_addr 
224.10.10.10 -port 5555

If you want to bind to a specific network interface card (NIC), use -bind_addr 192.168.0.2, where
192.168.0.2 is the IP address of the NIC to which you want to bind. Use this parameter in both the
sender and the receiver.

You should be able to type in the McastSenderTest window and see the output in the 
McastReceiverTest window. If not, try to use -ttl 32 in the sender. If this still fails, consult a
system administrator to help you setup IP multicast correctly, and ask the admin to make sure that
multicast will work on the interface you have chosen or, if the machines have multiple interfaces, ask to
be told the correct interface. Once you know multicast is working properly on each machine in your
cluster, you can repeat the above test to test the network, putting the sender on one machine and the
receiver on another.

25.6.3.2. Causes of missing heartbeats in FD

Sometimes a member is suspected by FD because a heartbeat ack has not been received for some time
T (defined by timeout and max_tries). This can have multiple reasons, e.g. in a cluster of A,B,C,D; C can
be suspected if (note that A pings B, B pings C, C pings D and D pings A):

B or C are running at 100% CPU for more than T seconds. So even if C sends a heartbeat ack to
B, B may not be able to process it because it is at 100%
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B or C are garbage collecting, same as above.

A combination of the 2 cases above

The network loses packets. This usually happens when there is a lot of traffic on the network,
and the switch starts dropping packets (usually broadcasts first, then IP multicasts, TCP
packets last).

B or C are processing a callback. Let's say C received a remote method call over its channel
and takes T+1 seconds to process it. During this time, C will not process any other messages,
including heartbeats, and therefore B will not receive the heartbeat ack and will suspect C.
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CHAPTER 26. JBOSS CACHE CONFIGURATION AND
DEPLOYMENT
JBoss Cache provides the underlying distributed caching support used by many of the standard
clustered services in a JBoss Enterprise Application Platform cluster. You can also deploy JBoss
Cache in your own application to handle custom caching requirements. In this chapter we provide some
background on the main configuration options available with JBoss Cache, with an emphasis on how
those options relate to the JBoss Cache usage by the standard clustered services the Enterprise
Application Platform provides. We then discuss the different options available for deploying a custom
cache in the Enterprise Application Platform.

Users considering deploying JBoss Cache for direct use by their own application are strongly
encouraged to read the JBoss Cache documentation available at the Red Hat Documentation portal.

See also Section 18.2, “Distributed Caching with JBoss Cache”  for information on how the standard
JBoss Enterprise Application Platform clustered services use JBoss Cache.

26.1. KEY JBOSS CACHE CONFIGURATION OPTIONS

JBoss Enterprise Application Platform ships with a reasonable set of default JBoss Cache
configurations that are suitable for the standard clustered service use cases (e.g. web session
replication or JPA/Hibernate caching). Most applications that involve the standard clustered services
just work out of the box with the default configurations. You only need to tweak them when you are
deploying an application that has special network or performance requirements. In this section we
provide a brief overview of some of the key configuration choices. This is by no means a complete
discussion; for full details users interested in moving beyond the default configurations are
encouraged to read the JBoss Cache documentation available at http://www.redhat.com/docs/en-
US/JBoss_Enterprise_Application_Platform/.

Most JBoss Cache configuration examples in this section use the JBoss Microcontainer schema for
building up an org.jboss.cache.config.Configuration object graph from XML. JBoss Cache
has its own custom XML schema, but the standard JBoss Enterprise Application Platform
CacheManager service uses the JBoss Microcontainer schema to be consistent with most other
internal Enterprise Application Platform services.

Before getting into the key configuration options, let's have a look at the most likely place that a user
would encounter them.

26.1.1. Editing the CacheManager Configuration

As discussed in Section 18.2.1, “The JBoss Enterprise Application Platform CacheManager Service” ,
the standard JBoss Enterprise Application Platform clustered services use the CacheManager service
as a factory for JBoss Cache instances. So, cache configuration changes are likely to involve edits to
the CacheManager service.

NOTE

Users can also use the CacheManager as a factory for custom caches used by directly
by their own applications; see Section 26.2.1, “Deployment Via the CacheManager
Service”.

The CacheManager is configured via the 
$JBOSS_HOME/server/$PROFILE/deploy/cluster/jboss-cache-manager.sar/META-
INF/jboss-cache-manager-jboss-beans.xml file. The element most likely to be edited is the
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"CacheConfigurationRegistry" bean, which maintains a registry of all the named JBC configurations the
CacheManager knows about. Most edits to this file would involve adding a new JBoss Cache
configuration or changing a property of an existing one.

The following is a redacted version of the "CacheConfigurationRegistry" bean configuration:

<bean name="CacheConfigurationRegistry" 
      
class="org.jboss.ha.cachemanager.DependencyInjectedConfigurationRegistry">
   
      <!-- If users wish to add configs using a more familiar JBC config 
format
           they can add them to a cache-configs.xml file specified by this 
property.
           However, use of the microcontainer format used below is 
recommended.
      <property name="configResource">META-INF/jboss-cache-
configs.xml</property>      
      -->
      
      <!-- The configurations. A Map<String name, Configuration config> --
>
      <property name="newConfigurations">
        <map keyClass="java.lang.String" 
valueClass="org.jboss.cache.config.Configuration">
   
   <!-- The standard configurations follow.  You can add your own and/or 
edit these. -->   
      
   <!-- Standard cache used for web sessions -->
   <entry><key>standard-session-cache</key>
   <value>      
      <bean name="StandardSessionCacheConfig" 
class="org.jboss.cache.config.Configuration">
         
         <!-- Provides batching functionality for caches that don't want 
to 
              interact with regular JTA Transactions -->
         <property name="transactionManagerLookupClass">
            org.jboss.cache.transaction.BatchModeTransactionManagerLookup
         </property>
               
         <!-- Name of cluster. Needs to be the same for all members -->
         <property 
name="clusterName">${jboss.partition.name:DefaultPartition}-
SessionCache</property>
         <!-- Use a UDP (multicast) based stack. Need JGroups flow control 
(FC)
              because we are using asynchronous replication. -->
         <property 
name="multiplexerStack">${jboss.default.jgroups.stack:udp}</property>
         <property name="fetchInMemoryState">true</property>
         
         <property name="nodeLockingScheme">PESSIMISTIC</property>
         <property name="isolationLevel">REPEATABLE_READ</property>
         <property name="cacheMode">REPL_ASYNC</property>
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The actual JBoss Cache configurations are specified using the JBoss Microcontainer's schema rather
than one of the standard JBoss Cache configuration formats. When JBoss Cache parses one of its
standard configuration formats, it creates a Java Bean of type 
org.jboss.cache.config.Configuration with a tree of child Java Beans for some of the more
complex sub-configurations (i.e. cache loading, eviction, buddy replication). Rather than delegating this
task of XML parsing/Java Bean creation to JBC, we let the Enterprise Application Platform's
microcontainer do it directly. This has the advantage of making the microcontainer aware of the
configuration beans, which in later Enterprise Application Platform 5.x releases will be helpful in
allowing external management tools to manage the JBC configurations.

The configuration format should be fairly self-explanatory if you look at the standard configurations
the Enterprise Application Platform ships; they include all the major elements. The types and
properties of the various java beans that make up a JBoss Cache configuration can be seen in the
JBoss Cache Javadocs. Here is a fairly complete example:

      
          .... more details of the standard-session-cache configuration
      </bean>      
   </value>
   </entry>
   
   <!-- Appropriate for web sessions with FIELD granularity -->
   <entry><key>field-granularity-session-cache</key>
   <value>      
      
      <bean name="FieldSessionCacheConfig" 
class="org.jboss.cache.config.Configuration">              
           .... details of the field-granularity-standard-session-cache 
configuration
      </bean>      

   </value>

   </entry>

   ... entry elements for the other configurations

  </map>
  </property>
</bean>

<bean name="StandardSFSBCacheConfig" 
class="org.jboss.cache.config.Configuration">

   <!--  No transaction manager lookup -->
         
   <!-- Name of cluster. Needs to be the same for all members -->
   <property name="clusterName">${jboss.partition.name:DefaultPartition}-
SFSBCache</property>
   <!-- Use a UDP (multicast) based stack. Need JGroups flow control (FC)
        because we are using asynchronous replication. -->
   <property name="multiplexerStack">${jboss.default.jgroups.stack:udp}
</property>
   <property name="fetchInMemoryState">true</property>
   
   <property name="nodeLockingScheme">PESSIMISTIC</property>
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   <property name="isolationLevel">REPEATABLE_READ</property>
   <property name="cacheMode">REPL_ASYNC</property>
   
   <property name="useLockStriping">false</property>

   <!-- Number of milliseconds to wait until all responses for a
        synchronous call have been received. Make this longer 
        than lockAcquisitionTimeout.-->
   <property name="syncReplTimeout">17500</property>
   <!-- Max number of milliseconds to wait for a lock acquisition -->
   <property name="lockAcquisitionTimeout">15000</property>
   <!-- The max amount of time (in milliseconds) we wait until the
    state (ie. the contents of the cache) are retrieved from
    existing members at startup. -->
   <property name="stateRetrievalTimeout">60000</property>

   <!--
    SFSBs use region-based marshalling to provide for partial state
    transfer during deployment/undeployment.
   -->
   <property name="useRegionBasedMarshalling">false</property>
   <!-- Must match the value of "useRegionBasedMarshalling" -->
   <property name="inactiveOnStartup">false</property>
   
   <!-- Disable asynchronous RPC marshalling/sending -->
   <property name="serializationExecutorPoolSize">0</property>        
   <!-- We have no asynchronous notification listeners -->
   <property name="listenerAsyncPoolSize">0</property>
     
   <property name="exposeManagementStatistics">true</property>

   <property name="buddyReplicationConfig">
      <bean class="org.jboss.cache.config.BuddyReplicationConfig">
         
         <!--  Just set to true to turn on buddy replication -->
         <property name="enabled">false</property>
         
         <!-- A way to specify a preferred replication group.  We try
              and pick a buddy who shares the same pool name (falling 
              back to other buddies if not available). -->
         <property name="buddyPoolName">default</property>
         
         <property name="buddyCommunicationTimeout">17500</property>
         
         <!-- Do not change these -->
         <property name="autoDataGravitation">false</property>
         <property name="dataGravitationRemoveOnFind">true</property>
         <property name="dataGravitationSearchBackupTrees">true</property>
         
         <property name="buddyLocatorConfig">
            <bean 
class="org.jboss.cache.buddyreplication.NextMemberBuddyLocatorConfig">
               <!-- The number of backup nodes we maintain -->
               <property name="numBuddies">1</property>
               <!-- Means that each node will *try* to select a buddy on 
                    a different physical host. If not able to do so 
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Basically, the XML specifies the creation of an org.jboss.cache.config.Configuration java
bean and the setting of a number of properties on that bean. Most of the properties are of simple types,

                    though, it will fall back to colocated nodes. -->
               <property name="ignoreColocatedBuddies">true</property>
             </bean>
         </property>
      </bean>
   </property>
   <property name="cacheLoaderConfig">
      <bean class="org.jboss.cache.config.CacheLoaderConfig">
             <!-- Do not change these -->
             <property name="passivation">true</property>
             <property name="shared">false</property>
             
             <property name="individualCacheLoaderConfigs">
               <list>
                  <bean 
class="org.jboss.cache.loader.FileCacheLoaderConfig">
                     <!-- Where passivated sessions are stored -->
                     <property 
name="location">${jboss.server.data.dir}${/}sfsb</property>
                     <!-- Do not change these -->
                     <property name="async">false</property>
                     <property 
name="fetchPersistentState">true</property>
                     <property name="purgeOnStartup">true</property>
                     <property 
name="ignoreModifications">false</property>
                     <property 
name="checkCharacterPortability">false</property>
                  </bean>
               </list>
             </property>
      </bean>
   </property>
  
   <!-- EJBs use JBoss Cache eviction -->
   <property name="evictionConfig">
       <bean class="org.jboss.cache.config.EvictionConfig">
         <property name="wakeupInterval">5000</property>
         <!--  Overall default -->
         <property name="defaultEvictionRegionConfig">
            <bean class="org.jboss.cache.config.EvictionRegionConfig">
               <property name="regionName">/</property>
               <property name="evictionAlgorithmConfig">
                  <bean 
class="org.jboss.cache.eviction.NullEvictionAlgorithmConfig"/>
               </property>
            </bean>
         </property>
         <!-- EJB3 integration code will programatically create
              other regions as beans are deployed -->
      </bean>
   </property>
</bean>
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but some, such as buddyReplicationConfig and cacheLoaderConfig take various types java
beans as their values.

Next we'll look at some of the key configuration options.

26.1.2. Cache Mode

JBoss Cache's cacheMode configuration attribute combines into a single property two related aspects:

Handling of Cluster Updates

This controls how a cache instance on one node should notify the rest of the cluster when it makes
changes in its local state. There are three options:

Synchronous means the cache instance sends a message to its peers notifying them of the
change(s) and before returning waits for them to acknowledge that they have applied the
same changes. If the changes are made as part of a JTA transaction, this is done as part of a
two-phase commit process during transaction commit. Any locks are held until this
acknowledgment is received. Waiting for acknowledgement from all nodes adds delays, but it
ensures consistency around the cluster. Synchronous mode is needed when all the nodes in
the cluster may access the cached data resulting in a high need for consistency.

Asynchronous means the cache instance sends a message to its peers notifying them of the
change(s) and then immediately returns, without any acknowledgement that they have applied
the same changes. It does not mean sending the message is handled by some other thread
besides the one that changed the cache content; the thread that makes the change still spends
some time dealing with sending messages to the cluster, just not as much as with synchronous
communication. Asynchronous mode is most useful for cases like session replication, where
the cache doing the sending expects to be the only one that accesses the data and the cluster
messages are used to provide backup copies in case of failure of the sending node.
Asynchronous messaging adds a small risk that a later user request that fails over to another
node may see out-of-date state, but for many session-type applications this risk is acceptable
given the major performance benefits asynchronous mode has over synchronous mode.

Local means the cache instance doesn't send a message at all. A JGroups channel isn't even
used by the cache. JBoss Cache has many useful features besides its clustering capabilities
and is a very useful caching library even when not used in a cluster. Also, even in a cluster,
some cached data does not need to be kept consistent around the cluster, in which case Local
mode will improve performance. Caching of JPA/Hibernate query result sets is an example of
this; Hibernate's second level caching logic uses a separate mechanism to invalidate stale
query result sets from the second level cache, so JBoss Cache doesn't need to send messages
around the cluster for a query result set cache.

Replication vs. Invalidation

This aspect deals with the content of messages sent around the cluster when a cache changes its local
state, i.e. what should the other caches in the cluster do to reflect the change:

Replication means the other nodes should update their state to reflect the new state on the
sending node. This means the sending node needs to include the changed state, increasing the
cost of the message. Replication is necessary if the other nodes have no other way to obtain
the state.

Invalidation means the other nodes should remove the changed state from their local state.
Invalidation reduces the cost of the cluster update messages, since only the cache key of the
changed state needs to be transmitted, not the state itself. However, it is only an option if the
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removed state can be retrieved from another source. It is an excellent option for a clustered
JPA/Hibernate entity cache, since the cached state can be re-read from the database.

These two aspects combine to form 5 valid values for the cacheMode configuration attribute:

LOCAL means no cluster messages are needed.

REPL_SYNC means synchronous replication messages are sent.

REPL_ASYNC means asynchronous replication messages are sent.

INVALIDATION_SYNC means synchronous invalidation messages are sent.

INVALIDATION_ASYNC means asynchronous invalidation messages are sent.

26.1.3. Transaction Handling

JBoss Cache integrates with JTA transaction managers to allow transactional access to the cache.
When JBoss Cache detects the presence of a transaction, any locks are held for the life of the
transaction, changes made to the cache will be reverted if the transaction rolls back, and any cluster-
wide messages sent to inform other nodes of changes are deferred and sent in a batch as part of
transaction commit (reducing chattiness).

Integration with a transaction manager is accomplished by setting the 
transactionManagerLookupClass configuration attribute; this specifies the fully qualified class
name of a class JBoss Cache can use to find the local transaction manager. Inside JBoss Enterprise
Application Platform, this attribute would have one of two values:

org.jboss.cache.transaction.JBossTransactionManagerLookup

This finds the standard transaction manager running in the application server. Use this for any
custom caches you deploy where you want caching to participate in any JTA transactions.

org.jboss.cache.transaction.BatchModeTransactionManagerLookup

This is used in the cache configurations used for web session and EJB SFSB caching. It
specifies a simple mock TransactionManager that ships with JBoss Cache called the 
BatchModeTransactionManager. This transaction manager is not a true JTA transaction
manager and should not be used for anything other than JBoss Cache. Its usage in JBoss
Enterprise Application Platform is to get most of the benefits of JBoss Cache's transactional
behavior for the session replication use cases, but without getting tangled up with end user
transactions that may run during a request.

26.1.4. Concurrent Access

JBoss Cache is a thread safe caching API, and uses its own efficient mechanisms of controlling
concurrent access. Concurrency is configured via the nodeLockingScheme and isolationLevel
configuration attributes.

There are three choices for nodeLockingScheme:

MVCC or multi-version concurrency control, is a locking scheme commonly used by modern
database implementations to control fast, safe concurrent access to shared data. JBoss Cache
3.x uses an innovative implementation of MVCC as the default locking scheme. MVCC is
designed to provide the following features for concurrent access:

Readers that don't block writers
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Writers that fail fast

It achieves this by using data versioning and copying for concurrent writers. The theory is that
readers continue reading shared state, while writers copy the shared state, increment a version
id, and write that shared state back after verifying that the version is still valid (i.e., another
concurrent writer has not changed this state first).

MVCC is the recommended choice for JPA/Hibernate entity caching.

PESSIMISTIC locking involves threads/transactions acquiring either exclusive or non-
exclusive locks on nodes before reading or writing. Which is acquired depends on the 
isolationLevel (see below) but in most cases a non-exclusive lock is acquired for a read
and an exclusive lock is acquired for a write. Pessimistic locking requires considerably more
overhead than MVCC and allows lesser concurrency, since reader threads must block until a
write has completed and released its exclusive lock (potentially a long time if the write is part
of a transaction). A write will also be delayed due to ongoing reads.

Generally MVCC is a better choice than PESSIMISTIC, which is deprecated as of JBoss Cache
3.0. But, for the session caching usage in JBoss Enterprise Application Platform 5.0.0,
PESSIMISTIC is still the default. This is largely because for the session use case there are
generally not concurrent threads accessing the same cache location, so the benefits of MVCC
are not as great.

OPTIMISTIC locking seeks to improve upon the concurrency available with PESSIMISTIC by
creating a "workspace" for each request/transaction that accesses the cache. Data accessed
by the request/transaction (even reads) is copied into the workspace, which is adds overhead.
All data is versioned; on completion of non-transactional requests or commits of transactions
the version of data in the workspace is compared to the main cache, and an exception is raised
if there are are inconsistencies. Otherwise changes to the workspace are applied to the main
cache.

OPTIMISTIC locking is deprecated but is still provided to support backward compatibility.
Users are encouraged to use MVCC instead, which provides the same benefits at lower cost.

The isolationLevel attribute has two possible values READ_COMMITTED and
REPEATABLE_READ which correspond in semantic to database-style isolation levels. Previous
versions of JBoss Cache supported all 5 database isolation levels, and if an unsupported isolation level
is configured, it is either upgraded or downgraded to the closest supported level.

REPEATABLE_READ is the default isolation level, to maintain compatibility with previous versions of
JBoss Cache. READ_COMMITTED, while providing a slightly weaker isolation, has a significant
performance benefit over REPEATABLE_READ.

26.1.5. JGroups Integration

Each JBoss Cache instance internally uses a JGroups Channel to handle group communications.
Inside JBoss Enterprise Application Platform, we strongly recommend that you use the Enterprise
Application Platform's JGroups Channel Factory service as the source for your cache's Channel. In
this section we discuss how to configure your cache to get it's channel from the Channel Factory; if you
wish to configure the channel in some other way see the JBoss Cache documentation.

Caches obtained from the CacheManager Service

This is the simplest approach. The CacheManager service already has a reference to the Channel
Factory service, so the only configuration task is to configure the name of the JGroups protocol stack
configuration to use.
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If you are configuring your cache via the CacheManager service's jboss-cache-manager-jboss-
beans.xml file (see Section 26.2.1, “Deployment Via the CacheManager Service”), add the following
to your cache configuration, where the value is the name of the protocol stack configuration.:

Caches Deployed via a -jboss-beans.xml File

If you are deploying a cache via a JBoss Microcontainer -jboss-beans.xml file (see Section 26.2.3,
“Deployment Via a -jboss-beans.xml File”), you need inject a reference to the Channel Factory
service as well as specifying the protocol stack configuration:

Caches Deployed via a -service.xml File

If you are deploying a cache MBean via -service.xml file (see Section 26.2.2, “Deployment Via a -
service.xml File”), CacheJmxWrapper is the class of your MBean; that class exposes a 
MuxChannelFactory MBean attribute. You dependency inject the Channel Factory service into this
attribute, and set the protocol stack name via the MultiplexerStack attribute:

26.1.6. Eviction

Eviction allows the cache to control memory by removing data (typically the least frequently used
data). If you wish to configure eviction for a custom cache, see the JBoss Cache documentation for all
of the available options. For details on configuring it for JPA/Hibernate caching, see the Eviction
chapter in the "Using JBoss Cache as a Hibernate Second Level Cache" guide at
http://www.jboss.org/jbossclustering/docs/hibernate-jbosscache-guide-3.pdf. For web session
caches, eviction should not be configured; the distributable session manager handles eviction itself. For
EJB 3 SFSB caches, stick with the eviction configuration in the Enterprise Application Platform's
standard sfsb-cache configuration (see Section 18.2.1, “The JBoss Enterprise Application Platform
CacheManager Service”). The EJB container will configure eviction itself using the values included in
each bean's configuration.

26.1.7. Cache Loaders

Cache loading allows JBoss Cache to store data in a persistent store in addition to what it keeps in
memory. This data can either be an overflow, where the data in the persistent store is not reflected in
memory. Or it can be a superset of what is in memory, where everything in memory is also reflected in
the persistent store, along with items that have been evicted from memory. Which of these two modes
is used depends on the setting of the passivation flag in the JBoss Cache cache loader configuration
section. A true value means the persistent store acts as an overflow area written to when data is
evicted from the in-memory cache.

<property name="multiplexerStack">udp</property>

<property name="runtimeConfig">
   <bean class="org.jboss.cache.config.RuntimeConfig">
      <property name="muxChannelFactory"><inject bean="JChannelFactory"/>
</property>
   </bean>
</property>
<property name="multiplexerStack">udp</property>

<attribute name="MuxChannelFactory"><inject bean="JChannelFactory"/>
</attribute>
<attribute name="MultiplexerStack">udp</attribute>
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If you wish to configure cache loading for a custom cache, see the JBoss Cache documentation for all
of the available options. Do not configure cache loading for a JPA/Hibernate cache, as the database
itself serves as a persistent store; adding a cache loader is just redundant.

The caches used for web session and EJB3 SFSB caching use passivation. Next we'll discuss the cache
loader configuration for those caches in some detail.

26.1.7.1. CacheLoader Configuration for Web Session and SFSB Caches

HttpSession and SFSB passivation rely on JBoss Cache's Cache Loader passivation for storing and
retrieving the passivated sessions. Therefore the cache instance used by your webapp's clustered
session manager or your bean's EJB container must be configured to enable Cache Loader passivaton.

In most cases you don't need to do anything to alter the cache loader configurations for the standard
web session and SFSB caches; the standard JBoss Enterprise Application Platform configurations
should suit your needs. The following is a bit more detail in case you're interested or want to change
from the defaults.

The Cache Loader configuration for the standard-session-cache config serves as a good example:

Some explanation:

passivation property MUST be true

shared property MUST be false. Do not passivate sessions to a shared persistent store,
otherwise if another node activates the session, it will be gone from the persistent store and
also gone from memory on other nodes that have passivated it. Backup copies will be lost.

<property name="cacheLoaderConfig">
   <bean class="org.jboss.cache.config.CacheLoaderConfig">
          <!-- Do not change these -->
          <property name="passivation">true</property>
          <property name="shared">false</property>
          
          <property name="individualCacheLoaderConfigs">
            <list>
               <bean 
class="org.jboss.cache.loader.FileCacheLoaderConfig">
                  <!-- Where passivated sessions are stored -->
                  <property 
name="location">${jboss.server.data.dir}${/}session</property>
                  <!-- Do not change these -->
                  <property name="async">false</property>
                  <property name="fetchPersistentState">true</property>
                  <property name="purgeOnStartup">true</property>
                  <property name="ignoreModifications">false</property>
                  <property 
name="checkCharacterPortability">false</property>
               </bean>
            </list>
          </property>
   </bean>
</property>
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individualCacheLoaderConfigs property accepts a list of Cache Loader configurations. JBC
allows you to chain cache loaders; see the JBoss Cache docs. For the session passivation use
case a single cache loader is sufficient.

class attribute on a cache loader config bean must refer to the configuration class for a cache
loader implementation (e.g. org.jboss.cache.loader.FileCacheLoaderConfig or 
org.jboss.cache.loader.JDBCCacheLoaderConfig). See the JBoss Cache
documentation for more on the available CacheLoader implementations. If you wish to use
JDBCCacheLoader (to persist to a database rather than the filesystem used by
FileCacheLoader) note the comment above about the shared property. Don't use a shared
database, or at least not a shared table in the database. Each node in the cluster must have its
own storage location.

location property for FileCacheLoaderConfig defines the root node of the filesystem tree
where passivated sessions should be stored. The default is to store them in your JBoss
Enterprise Application Platform configuration's data directory.

async MUST be false to ensure passivated sessions are promptly written to the persistent
store.

fetchPersistentState property MUST be true to ensure passivated sessions are included in
the set of session backup copies transferred over from other nodes when the cache starts.

purgeOnStartup should be true to ensure out-of-date session data left over from a previous
shutdown of a server doesn't pollute the current data set.

ignoreModifications should be false

checkCharacterPortability should be false as a minor performance optimization.

26.1.8. Buddy Replication

Buddy Replication is a JBoss Cache feature that allows you to suppress replicating your data to all
instances in a cluster. Instead, each instance picks one or more 'buddies' in the cluster, and only
replicates to those specific buddies. This greatly helps scalability as there is no longer a memory and
network traffic impact every time another instance is added to a cluster.

If the cache on another node needs data that it doesn't have locally, it can ask the other nodes in the
cluster to provide it; nodes that have a copy will provide it as part of a process called "data gravitation".
The new node will become the owner of the data, placing a backup copy of the data on its buddies. The
ability to gravitate data means there is no need for all requests for data to occur on a node that has a
copy of it; any node can handle a request for any data. However, data gravitation is expensive and
should not be a frequent occurence; ideally it should only occur if the node that is using some data fails
or is shut down, forcing interested clients to fail over to a different node. This makes buddy replication
primarily useful for session-type applications with session affinity (a.k.a. "sticky sessions") where all
requests for a particular session are normally handled by a single server.

Buddy replication can be enabled for the web session and EJB3 SFSB caches. Do not add buddy
replication to the cache configurations used for other standard clustering services (e.g. JPA/Hibernate
caching). Services not specifically engineered for buddy replication are highly unlikely to work
correctly if it is introduced.

Configuring buddy replication is fairly straightforward. As an example we'll look at the buddy
replication configuration section from the CacheManager service's standard-session-cache
config:
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The main things you would be likely to configure are:

buddyReplicationEnabled — true if you want buddy replication; false if data should be
replicated to all nodes in the cluster, in which case none of the other buddy replication
configurations matter.

numBuddies — to how many backup nodes should each node replicate its state.

buddyPoolName — allows logical subgrouping of nodes within the cluster; if possible, buddies
will be chosen from nodes in the same buddy pool.

The ignoreColocatedBuddies switch means that when the cache is trying to find a buddy, it will if
possible not choose a buddy on the same physical host as itself. If the only server it can find is running
on its own machine, it will use that server as a buddy.

Do not change the settings for autoDataGravitation, dataGravitationRemoveOnFind and 
dataGravitationSearchBackupTrees. Session replication will not work properly if these are
changed.

26.2. DEPLOYING YOUR OWN JBOSS CACHE INSTANCE

It's quite common for users to deploy their own instances of JBoss Cache inside JBoss Enterprise
Application Platform for custom use by their applications. In this section we describe the various ways
caches can be deployed.

<property name="buddyReplicationConfig">
   <bean class="org.jboss.cache.config.BuddyReplicationConfig">
               
      <!--  Just set to true to turn on buddy replication -->
      <property name="enabled">true</property>
               
      <!-- A way to specify a preferred replication group.  We try
           and pick a buddy who shares the same pool name (falling 
           back to other buddies if not available). -->
      <property name="buddyPoolName">default</property>
               
      <property name="buddyCommunicationTimeout">17500</property>
               
      <!-- Do not change these -->
      <property name="autoDataGravitation">false</property>
      <property name="dataGravitationRemoveOnFind">true</property>
      <property name="dataGravitationSearchBackupTrees">true</property>
               
      <property name="buddyLocatorConfig">
         <bean 
class="org.jboss.cache.buddyreplication.NextMemberBuddyLocatorConfig">
            <!-- The number of backup copies we maintain -->
            <property name="numBuddies">1</property>
            <!-- Means that each node will *try* to select a buddy on 
                 a different physical host. If not able to do so 
                 though, it will fall back to colocated nodes. -->
            <property name="ignoreColocatedBuddies">true</property>
          </bean>
      </property>
   </bean>
</property>
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26.2.1. Deployment Via the CacheManager Service

The standard JBoss clustered services that use JBoss Cache obtain a reference to their cache from
the Enterprise Application Platform's CacheManager service (see Section 18.2.1, “The JBoss
Enterprise Application Platform CacheManager Service”). End user applications can do the same thing;
here's how.

Section 26.1.1, “Editing the CacheManager Configuration”  shows the configuration of the
CacheManager's "CacheConfigurationRegistry" bean. To add a new configuration, you would add an
additional element inside that bean's newConfigurations <map>:

See Section 26.1.1, “Editing the CacheManager Configuration”  for an example configuration.

26.2.1.1. Accessing the CacheManager

Once you've added your cache configuration to the CacheManager, the next step is to provide a
reference to the CacheManager to your application. There are three ways to do this:

Dependency Injection

If your application uses the JBoss Microcontainer for configuration, the simplest mechanism is
to have it inject the CacheManager into your service.

JNDI Lookup

Alternatively, you can find look up the CacheManger is JNDI. It is bound under 
java:CacheManager.

<bean name="CacheConfigurationRegistry" 
      
class="org.jboss.ha.cachemanager.DependencyInjectedConfigurationRegistry">
   .....
   <property name="newConfigurations">
     <map keyClass="java.lang.String" 
valueClass="org.jboss.cache.config.Configuration">
                  
       <entry><key>my-custom-cache</key>
         <value>          
           <bean name="MyCustomCacheConfig" 
class="org.jboss.cache.config.Configuration">              
             .... details of the my-custom-cache configuration
           </bean> 
          </value>
       </entry>    
       .....

<bean name="MyService" class="com.example.MyService">
   <property name="cacheManager"><inject bean="CacheManager"/>
</property>
</bean>

import org.jboss.ha.cachemanager.CacheManager;

public class MyService {
   private CacheManager cacheManager;
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CacheManagerLocator

JBoss Enterprise Application Platform also provides a service locator object that can be used
to access the CacheManager.

Once a reference to the CacheManager is obtained; usage is simple. Access a cache by passing in the
name of the desired configuration. The CacheManager will not start the cache; this is the responsibility
of the application. The cache may, however, have been started by another application running in the
cache server; the cache may be shared. When the application is done using the cache, it should not
stop. Just inform the CacheManager that the cache is no longer being used; the manager will stop the
cache when all callers that have asked for the cache have released it.

   
   public void start() throws Exception {
       Context ctx = new InitialContext();
       cacheManager = (CacheManager) 
ctx.lookup("java:CacheManager");
   }
}

import org.jboss.ha.cachemanager.CacheManager;
import org.jboss.ha.framework.server.CacheManagerLocator;

public class MyService {
   private CacheManager cacheManager;
   
   public void start() throws Exception {
       CacheManagerLocator locator = 
CacheManagerLocator.getCacheManagerLocator();
       // Locator accepts as param a set of JNDI properties to help 
in lookup;
       // this isn't necessary inside the Enterprise Application 
Platform
       cacheManager = locator.getCacheManager(null);
   }
}

import org.jboss.cache.Cache;
import org.jboss.ha.cachemanager.CacheManager;
import org.jboss.ha.framework.server.CacheManagerLocator;

public class MyService {
   private CacheManager cacheManager;
   private Cache cache;
   
   public void start() throws Exception {
       Context ctx = new InitialContext();
       cacheManager = (CacheManager) ctx.lookup("java:CacheManager");
       
       // "true" param tells the manager to instantiate the cache if
       // it doesn't exist yet
       cache = cacheManager.getCache("my-cache-config", true);
       
       cache.start();
   }
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The CacheManager can also be used to access instances of POJO Cache.

26.2.2. Deployment Via a -service.xml File

As in JBoss Enterprise Application Platform 4.x, you can also deploy a JBoss Cache instance as an
MBean service via a -service.xml file. The primary difference from JBoss Enterprise Application
Platform 4.x is the value of the code attribute in the mbean element. In JBoss Enterprise Application
Platform 4.x, this was org.jboss.cache.TreeCache; in JBoss Enterprise Application Platform 5.x it
is org.jboss.cache.jmx.CacheJmxWrapper. Here's an example:

   
   public void stop() throws Exception {
       cacheManager.releaseCache("my-cache-config");
   }
}

import org.jboss.cache.pojo.PojoCache;
import org.jboss.ha.cachemanager.CacheManager;
import org.jboss.ha.framework.server.CacheManagerLocator;

public class MyService {
   private CacheManager cacheManager;
   private PojoCache pojoCache;
   
   public void start() throws Exception {
       Context ctx = new InitialContext();
       cacheManager = (CacheManager) ctx.lookup("java:CacheManager");
       
       // "true" param tells the manager to instantiate the cache if
       // it doesn't exist yet
       pojoCache = cacheManager.getPojoCache("my-cache-config", true);
       
       pojoCache.start();
   }
   
   public void stop() throws Exception {
       cacheManager.releasePojoCache("my-cache-config");
   }
}

<?xml version="1.0" encoding="UTF-8"?>

<server>
  <mbean code="org.jboss.cache.jmx.CacfheJmxWrapper" 
         name="foo:service=ExampleCacheJmxWrapper">
      
     <attribute name="TransactionManagerLookupClass">
       org.jboss.cache.transaction.JBossTransactionManagerLookup
     </attribute>
     
     <attribute name="MuxChannelFactory"><inject bean="JChannelFactory"/>
</attribute>
     
     <attribute name="MultiplexerStack">udp</attribute>
     <attribute name="ClusterName">Example-EntityCache</attribute>         
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The CacheJmxWrapper is not the cache itself (i.e. you can't store stuff in it). Rather, as it's name
implies, it's a wrapper around an org.jboss.cache.Cache that handles integration with JMX. 
CacheJmxWrapper exposes the org.jboss.cache.Cache via its CacheJmxWrapperMBean MBean
interfaces Cache attribute; services that need the cache can obtain a reference to it via that attribute.

26.2.3. Deployment Via a -jboss-beans.xml File

Much like it can deploy MBean services described with a -service.xml, JBoss Enterprise Application
Platform 5 can also deploy services that consist of Plain Old Java Objects (POJOs) if the POJOs are
described using the JBoss Microcontainer schema in a -jboss-beans.xml file. You create such a file
and deploy it, either directly in the deploy dir, or packaged in an ear or sar. Following is an example:

     <attribute name="IsolationLevel">REPEATABLE_READ</attribute>
     <attribute name="CacheMode">REPL_SYNC</attribute>
     <attribute name="InitialStateRetrievalTimeout">15000</attribute>
     <attribute name="SyncReplTimeout">20000</attribute>
     <attribute name="LockAcquisitionTimeout">15000</attribute>
     <attribute name="ExposeManagementStatistics">true</attribute>
         
  </mbean>
</server>

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

   <!-- First we create a Configuration object for the cache -->
   <bean name="ExampleCacheConfig"
         class="org.jboss.cache.config.Configuration">

      <!-- Externally injected services -->  
      <property name="runtimeConfig">
         <bean name="ExampleCacheRuntimeConfig" 
class="org.jboss.cache.config.RuntimeConfig">
            <property name="transactionManager">
               <inject bean="jboss:service=TransactionManager" 
                       property="TransactionManager"/>
            </property>
            <property name="muxChannelFactory"><inject 
bean="JChannelFactory"/></property>
         </bean>
      </property>
      
      <property name="multiplexerStack">udp</property>
      <property name="clusterName">Example-EntityCache</property>        
      <property name="isolationLevel">REPEATABLE_READ</property>
      <property name="cacheMode">REPL_SYNC</property>
      <property name="initialStateRetrievalTimeout">15000</property>
      <property name="syncReplTimeout">20000</property>
      <property name="lockAcquisitionTimeout">15000</property>
      <property name="exposeManagementStatistics">true</property>

   </bean>
 
   <!-- Factory to build the Cache. -->
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The bulk of the above is the creation of a JBoss Cache Configuration object; this is the same as
what we saw in the configuration of the CacheManager service (see Section 26.1.1, “Editing the
CacheManager Configuration”). In this case we're not using the CacheManager service as a cache
factory, so instead we create our own factory bean and then use it to create the cache (the
"ExampleCache" bean). The "ExampleCache" is then injected into a (fictitious) service that needs it.

An interesting thing to note in the above example is the use of the RuntimeConfig object. External
resources like a TransactionManager and a JGroups ChannelFactory that are visible to the
microcontainer are dependency injected into the RuntimeConfig. The assumption here is that in
some other deployment descriptor in the Enterprise Application Platform, the referenced beans have
already been described.

Using the configuration above, the "ExampleCache" cache will not be visible in JMX. Here's an
alternate approach that results in the cache being bound into JMX:

   <bean name="DefaultCacheFactory" 
class="org.jboss.cache.DefaultCacheFactory">      
      <constructor factoryClass="org.jboss.cache.DefaultCacheFactory" />
   </bean>
  
   <!-- The cache itself -->
   <bean name="ExampleCache" class="org.jboss.cache.Cache">
      <constructor factoryMethod="createCache">
          <factory bean="DefaultCacheFactory"/>
          <parameter class="org.jboss.cache.config.Configuration"><inject 
bean="ExampleCacheConfig"/></parameter>
          <parameter class="boolean">false</false>
      </constructor>
   </bean>
   
   <bean name="ExampleService" class="org.foo.ExampleService">
      <property name="cache"><inject bean="ExampleCache"/></property>
   </bean>

</deployment>

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

   <!-- First we create a Configuration object for the cache -->
   <bean name="ExampleCacheConfig"
         class="org.jboss.cache.config.Configuration">

      .... same as above

   </bean>
 
   <bean name="ExampleCacheJmxWrapper" 
class="org.jboss.cache.jmx.CacheJmxWrapper">
         
      <annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
      (name="foo:service=ExampleCacheJmxWrapper",
                  
exposedInterface=org.jboss.cache.jmx.CacheJmxWrapperMBean.class, 
                  registerDirectly=true)
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Here the "ExampleCacheJmxWrapper" bean handles the task of creating the cache from the
configuration. CacheJmxWrapper is a JBoss Cache class that provides an MBean interface for a cache.
Adding an <annotation> element binds the JBoss Microcontainer @JMX annotation to the bean; that in
turn results in JBoss Enterprise Application Platform registering the bean in JXM as part of the
deployment process.

The actual underlying org.jboss.cache.Cache instance is available from the CacheJmxWrapper
via its cache property; the example shows how this can be used to inject the cache into the
"ExampleService".

      </annotation>
      
      <property name="configuration"><inject bean="ExampleCacheConfig"/>
</property>
      
   </bean>
   
   <bean name="ExampleService" class="org.foo.ExampleService">
      <property name="cache"><inject bean="ExampleCacheJmxWrapper" 
property="cache"/></property>
   </bean>

</deployment>
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APPENDIX A. VENDOR-SPECIFIC DATASOURCE DEFINITIONS
This appendix includes datasource definitions for databases supported by JBoss Enterprise
Application Platform.

A.1. DEPLOYER LOCATION AND NAMING

All database deployers should be saved to the $JBOSS_HOME/server/default/deploy/oracle-
ds.xml directory on the server. Each deployer file needs to end with the suffix -ds.xml. For instance,
an Oracle datasource deployer might be named oracle-ds.xml. If files are not named properly, the
are not found by the server.

A.2. DB2

Example A.1. DB2 Local-XA

Copy the $db2_install_dir/java/db2jcc.jar and 
$db2_install_dir/java/db2jcc_license_cu.jar files into the 
$jboss_install_dir/server/default/lib directory. The db2java.zip file, which is part of
the legacy CLI driver, is normally not required when using the DB2 Universal JDBC driver included
in DB2 v8.1 and later.

<datasources>

  <local-tx-datasource>
    <jndi-name>DB2DS</jndi-name>
    <!-- Use the syntax 'jdbc:db2:yourdatabase' for jdbc type 2 
connection -->
    <!-- Use the syntax 'jdbc:db2://serveraddress:port/yourdatabase' for 
jdbc type 4 connection -->
    <connection-
url>jdbc:db2://serveraddress:port/yourdatabase</connection-url>
    <driver-class>com.ibm.db2.jcc.DB2Driver</driver-class>
    <user-name>x</user-name>
    <password>y</password>
    <min-pool-size>0</min-pool-size>
    <!-- sql to call when connection is created
  <new-connection-sql>some arbitrary sql</new-connection-sql>
    -->

    <!-- sql to call on an existing pooled connection when it is 
obtained from pool 
  <check-valid-connection-sql>some arbitrary sql</check-valid-
connection-sql>
    -->

    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>DB2</type-mapping>
    </metadata>
  </local-tx-datasource>

</datasources>
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Example A.2. DB2 XA

Copy the $db2_install_dir/java/db2jcc.jar and 
$db2_install_dir/java/db2jcc_license_cu.jar files into the 
$jboss_install_dir/server/default/lib directory.

The db2java.zip file is required when using the DB2 Universal JDBC driver (type 4) for XA on
DB2 v8.1 fixpak 14 (and the corresponding DB2 v8.2 fixpak 7).

Example A.3. DB2 on AS/400

<datasources>
  <!--
      XADatasource for DB2 v8.x (app driver)
  -->

  <xa-datasource>
    <jndi-name>DB2XADS</jndi-name>

    <xa-datasource-class>com.ibm.db2.jcc.DB2XADataSource</xa-
datasource-class>
    <xa-datasource-property name="ServerName">your_server_address</xa-
datasource-property>
    <xa-datasource-property name="PortNumber">your_server_port</xa-
datasource-property>
    <xa-datasource-property name="DatabaseName">your_database_name</xa-
datasource-property>
    <!-- DriverType can be either 2 or 4, but you most likely want to 
use the JDBC type 4 as it doesn't require a DB" client -->
    <xa-datasource-property name="DriverType">4</xa-datasource-
property>
    <!-- If driverType 4 is used, the following two tags are needed -->      
    <track-connection-by-tx></track-connection-by-tx>
    <isSameRM-override-value>false</isSameRM-override-value>

    <xa-datasource-property name="User">your_user</xa-datasource-
property>
    <xa-datasource-property name="Password">your_password</xa-
datasource-property>

    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>DB2</type-mapping>
    </metadata>
  </xa-datasource>

</datasources>

<?xml version="1.0" encoding="UTF-8"?>
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Example A.4. DB2 on AS/400 "native"

<!-- 
===================================================================== --
>
<!--                                                                       
-->
<!--  JBoss Server Configuration                                           
-->
<!--                                                                       
-->
<!-- 
===================================================================== --
>

<!-- $Id: db2-400-ds.xml,v 1.1.4.2 2004/10/27 18:44:10 pilhuhn Exp $ -->

<!-- You need the jt400.jar that is delivered with IBM iSeries Access or 
the
OpenSource Project jtopen.

[systemname] Hostame of the iSeries
[schema]     Default schema is needed so jboss could use metadat to 
test if the tables exists
-->

<datasources>
  <local-tx-datasource>
    <jndi-name>DB2-400</jndi-name>
    <connection-url>jdbc:as400://[systemname]/[schema];extended 
dynamic=true;package=jbpkg;package cache=true;package 
library=jboss;errors=full</connection-url>
    <driver-class>com.ibm.as400.access.AS400JDBCDriver</driver-class>
    <user-name>[username]</user-name>
    <password>[password]</password>
    <min-pool-size>0</min-pool-size>
    <!-- sql to call when connection is created
  <new-connection-sql>some arbitrary sql</new-connection-sql>
    -->

    <!-- sql to call on an existing pooled connection when it is 
obtained from pool 
  <check-valid-connection-sql>some arbitrary sql</check-valid-
connection-sql>
    -->
    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>DB2/400</type-mapping>
    </metadata>

  </local-tx-datasource>

</datasources>
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The Native JDBC driver is shipped as part of the IBM Developer Kit for Java (57xxJV1). It is
implemented by making native method calls to the SQL CLI (Call Level Interface), and it only runs on
the i5/OS JVM. The class name to register is com.ibm.db2.jdbc.app.DB2Driver. The URL
subprotocol is db2. See JDBC FAQKS at http://www-
03.ibm.com/systems/i/software/toolbox/faqjdbc.html#faqA1 for more information.

Tips

This driver is sensitive to the job’s CCSID, but works fine with CCSID=37.

<?xml version="1.0" encoding="UTF-8"?> 
<!-- 
===================================================================== --
> 
<!--                                                                       
--> 
<!--  JBoss Server Configuration                                           
--> 
<!--                                                                       
-->
<!-- 
===================================================================== --
> 
<!-- $Id: db2-400-ds.xml,v 1.1.4.2 2004/10/27 18:44:10 pilhuhn Exp $       
--> 
<!-- You need the jt400.jar that is delivered with IBM iSeries Access or 
the      
OpenSource Project jtopen.      
[systemname] Hostame of the iSeries      
[schema]     Default schema is needed so jboss could use metadat to 
test if the tables exists  --> 
<datasources>  
  <local-tx-datasource>    
    <jndi-name>DB2-400</jndi-name>    
    <connection-url>jdbc:db2://[systemname]/[schema];extended 
dynamic=true;package=jbpkg;package cache=true;package 
library=jboss;errors=full</connection-url>    
    <driver-class>com.ibm.db2.jdbc.app.DB2Driver</driver-class>    
    <user-name>[username]</user-name>    
    <password>[password]</password>    
    <min-pool-size>0</min-pool-size>        
    <!-- sql to call when connection is created
  <new-connection-sql>some arbitrary sql</new-connection-sql>        --
>        

    <!-- sql to call on an existing pooled connection when it is 
obtained from pool        
  <check-valid-connection-sql>some arbitrary sql</check-valid-
connection-sql>        -->      
    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->      
    <metadata>          
      <type-mapping>DB2/400</type-mapping>      
    </metadata>  
  </local-tx-datasource> 
</datasources>
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[systemname] must be defined as entry WRKRDBDIRE like *local.

A.3. ORACLE

Example A.5. Oracle Local-TX Datasource

<?xml version="1.0" encoding="UTF-8"?>

<!-- 
===================================================================== --
>
<!--                                                                       
-->
<!--  JBoss Server Configuration                                           
-->
<!--                                                                       
-->
<!-- 
===================================================================== --
>

<!-- $Id: oracle-ds.xml,v 1.6 2004/09/15 14:37:40 loubyansky Exp $ -->
<!-- 
==================================================================== -->
<!--  Datasource config for Oracle originally from Steven Coy             
-->
<!-- 
==================================================================== -->

<datasources>
  <local-tx-datasource>
    <jndi-name>OracleDS</jndi-name>
    <connection-
url>jdbc:oracle:thin:@youroraclehost:1521:yoursid</connection-url>
    <!--
 See on WIKI page below how to use Oracle's thin JDBC driver to connect 
with enterprise RAC.
    -->
    <!--
 Here are a couple of the possible OCI configurations.
 For more information, see 
http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/java.9
20/a96654/toc.htm

<connection-url>jdbc:oracle:oci:@youroracle-tns-name</connection-url>
or
<connection-url>jdbc:oracle:oci:@(description=(address=
(host=youroraclehost)(protocol=tcp)(port=1521))(connect_data=
(SERVICE_NAME=yourservicename)))</connection-url>

Clearly, its better to have TNS set up properly.
    -->
    <driver-class>oracle.jdbc.driver.OracleDriver</driver-class>
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Example A.6. Oracle XA Datasource

    <user-name>x</user-name>
    <password>y</password>
    
    <min-pool-size>5</min-pool-size>
    <max-pool-size>100</max-pool-size>

    <!-- Uses the pingDatabase method to check a connection is still 
valid before handing it out from the pool -->
    <!--valid-connection-checker-class-
name>org.jboss.resource.adapter.jdbc.vendor.OracleValidConnectionChecker
</valid-connection-checker-class-name-->
    <!-- Checks the Oracle error codes and messages for fatal errors -->
    <exception-sorter-class-
name>org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter</excep
tion-sorter-class-name>
    <!-- sql to call when connection is created
  <new-connection-sql>some arbitrary sql</new-connection-sql>
    -->

    <!-- sql to call on an existing pooled connection when it is 
obtained from pool - the OracleValidConnectionChecker is prefered
  <check-valid-connection-sql>some arbitrary sql</check-valid-
connection-sql>
    -->

    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>Oracle9i</type-mapping>
    </metadata>
  </local-tx-datasource>

</datasources>

<?xml version="1.0" encoding="UTF-8"?>

<!-- 
===================================================================== --
>
<!--                                                                       
-->
<!--  JBoss Server Configuration                                           
-->
<!--                                                                       
-->
<!-- 
===================================================================== --
>

<!-- $Id: oracle-xa-ds.xml,v 1.13 2004/09/15 14:37:40 loubyansky Exp $ -
->
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Example A.7. Oracle's Thin JDBC Driver with Enterprise RAC

<!-- 
===================================================================== --
>
<!-- ATTENTION:  DO NOT FORGET TO SET Pad=true IN transaction-
service.xml  -->
<!-- 
===================================================================== --
>

<datasources>
  <xa-datasource>
    <jndi-name>XAOracleDS</jndi-name>
    <track-connection-by-tx></track-connection-by-tx>
    <isSameRM-override-value>false</isSameRM-override-value>
    <xa-datasource-class>oracle.jdbc.xa.client.OracleXADataSource</xa-
datasource-class>
    <xa-datasource-property name="URL">jdbc:oracle:oci8:@tc</xa-
datasource-property>
    <xa-datasource-property name="User">scott</xa-datasource-property>
    <xa-datasource-property name="Password">tiger</xa-datasource-
property>
    <!-- Uses the pingDatabase method to check a connection is still 
valid before handing it out from the pool -->
    <!--valid-connection-checker-class-
name>org.jboss.resource.adapter.jdbc.vendor.OracleValidConnectionChecker
</valid-connection-checker-class-name-->
    <!-- Checks the Oracle error codes and messages for fatal errors -->
    <exception-sorter-class-
name>org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter</excep
tion-sorter-class-name>
    <!-- Oracles XA datasource cannot reuse a connection outside a 
transaction once enlisted in a global transaction and vice-versa -->
    <no-tx-separate-pools></no-tx-separate-pools>

    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>Oracle9i</type-mapping>
    </metadata>
  </xa-datasource>

  <mbean 
code="org.jboss.resource.adapter.jdbc.vendor.OracleXAExceptionFormatter"  
         name="jboss.jca:service=OracleXAExceptionFormatter">
    <depends optional-attribute-
name="TransactionManagerService">jboss:service=TransactionManager</depen
ds>
  </mbean>

</datasources>
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The extra configuration to use Oracle's Thin JDBC driver to connect with Enterprise RAC involves
the <connection-url>. The two hostnames provide load balancing and failover to the underlying
physical database.

NOTE

This example has only been tested against Oracle 10g.

A.3.1. Changes in Oracle 10g JDBC Driver

It is no longer necessary to enable the Pad option in your jboss-service.xml file. Further, you no
longer need the <no-tx-seperate-pool/>.

A.3.2. Type Mapping for Oracle 10g

You need to specify Oracle9i type mapping for Oracle 10g datasource configurations.

Example A.8. Oracle9i Type Mapping

A.3.3. Retrieving the Underlying Oracle Connection Object

Example A.9. Oracle Connection Object

A.4. SYBASE

Example A.10. Sybase Datasource

...
<connection-url>jdbc:oracle:thin:@(description=(address_list=
(load_balance=on)(failover=on)(address=(protocol=tcp)(host=xxxxhost1)
(port=1521))(address=(protocol=tcp)(host=xxxxhost2)(port=1521)))
(connect_data=(service_name=xxxxsid)(failover_mode=(type=select)
(method=basic))))</connection-url>
...

....
<metadata>
  <type-mapping>Oracle9i</type-mapping>
</metadata>
....

 Connection conn = myJBossDatasource.getConnection();
WrappedConnection wrappedConn = (WrappedConnection)conn;
Connection underlyingConn = wrappedConn.getUnderlyingConnection();
OracleConnection oracleConn = (OracleConnection)underlyingConn;

<?xml version="1.0" encoding="UTF-8"?>
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[1]

A.5. MICROSOFT SQL SERVER

To evaluate those drivers, you can use a simple JSP page to query the pubs database shipped with
Microsoft SQL Server.

Move the WAR archive located in files/mssql-test.zip to the /deploy, start the server, and navigate
your web browser to http://localhost:8080/test/test.jsp.

Example A.11. Local-TX Datasource Using DataDirect Driver

This example uses the DataDirect Connect for JDBC  drivers from http://www.datadirect.com.

<datasources>
  <local-tx-datasource>
    <jndi-name>jdbc/SybaseDB</jndi-name>
    <!-- Sybase jConnect URL for the database. 
  NOTE: The hostname and port are made up values. The optional
  database name is provided, as well as some additinal Driver
  parameters.
    -->
    <connection-url>jdbc:sybase:Tds:host.at.some.domain:5000/db_name?
JCONNECT_VERSION=6</connection-url>
    <driver-class>com.sybase.jdbc2.jdbc.SybDataSource</driver-class>
    <user-name>x</user-name>
    <password>y</password>
    <exception-sorter-class-
name>org.jboss.resource.adapter.jdbc.vendor.SybaseExceptionSorter</excep
tion-sorter-class-name>
    <!-- sql to call when connection is created
  <new-connection-sql>some arbitrary sql</new-connection-sql>
    -->

    <!-- sql to call on an existing pooled connection when it is 
obtained from pool 
  <check-valid-connection-sql>some arbitrary sql</check-valid-
connection-sql>
    -->

    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>Sybase</type-mapping>
    </metadata>
  </local-tx-datasource>

</datasources>

 <datasources>
  <local-tx-datasource>
    <jndi-name>MerliaDS</jndi-name>
    <connection-
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Example A.12. Local-TX Datasource Using Merlia Driver

This example uses the Merlia JDBC Driver drivers from http://www.inetsoftware.de.

Example A.13. XA Datasource Using Merlia Driver

This example uses the Merlia JDBC Driver drivers from http://www.inetsoftware.de.

url>jdbc:datadirect:sqlserver://localhost:1433;DatabaseName=jboss</conne
ction-url>
    <driver-class>com.ddtek.jdbc.sqlserver.SQLServerDriver</driver-
class>
    <user-name>sa</user-name>
    <password>sa</password>
    
    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>MS SQLSERVER2000</type-mapping>
    </metadata>
  </local-tx-datasource>
  
</datasources>

 <datasources>
  <local-tx-datasource>
    <jndi-name>MerliaDS</jndi-name>
    <connection-url>jdbc:inetdae7:localhost:1433?
database=pubs</connection-url>
    <driver-class>com.inet.tds.TdsDataSource</driver-class>
    <user-name>sa</user-name>
    <password>sa</password>
    
    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>MS SQLSERVER2000</type-mapping>
    </metadata>
  </local-tx-datasource>
  
</datasources>

 <datasources>
  <xa-datasource>
    <jndi-name>MerliaXADS</jndi-name>
    <track-connection-by-tx></track-connection-by-tx>
    <isSameRM-override-value>false</isSameRM-override-value>
    <xa-datasource-class>com.inet.tds.DTCDataSource</xa-datasource-
class>
    <xa-datasource-property name="ServerName">localhost</xa-datasource-
property>
    <xa-datasource-property name="DatabaseName">pubs</xa-datasource-
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A.5.1. Microsoft JDBC Drivers

The Microsoft JDBC driver for MS SQL Server comes now in two flavors:

SQL Server 2000 Driver for JDBC Service Pack 3 which can be used with SQL Server 2000

Microsoft SQL Server 2005 JDBC Driver which be used with either SQL Server 2000 or 2005.
This version contains numerous fixes and has been certified for JBoss Hibernate. This driver
runs under JDK 5.

Make sure to read the release.txt included in the driver distribution to understand the differences
between these drivers, especially the new package name introduced with 2005 and the potential
conflicts when using both drivers in the same app server.

Example A.14. Microsoft SQL Server 2000 Local-TX Datasource

Example A.15. Microsoft SQL Server 2005 Local-TX Datasource

property>
    <user-name>sa</user-name>
    <password>sa</password>
    
    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>MS SQLSERVER2000</type-mapping>
    </metadata>
  </xa-datasource>
  
</datasources>

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
  <local-tx-datasource>
    <jndi-name>MSSQL2000DS</jndi-name>
    <connection-
url>jdbc:microsoft:sqlserver://localhost:1433;SelectMethod=cursor;Databa
seName=pubs</connection-url>
    <driver-class>com.microsoft.jdbc.sqlserver.SQLServerDriver</driver-
class>
    <user-name>sa</user-name>
    <password>jboss</password>

    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>MS SQLSERVER2000</type-mapping>
    </metadata>
  </local-tx-datasource>

</datasources>
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Example A.16. Microsoft SQL Server 2005 XA Datasource

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
  <local-tx-datasource>
    <jndi-name>MSSQL2005DS</jndi-name>
    <connection-
url>jdbc:sqlserver://localhost:1433;DatabaseName=pubs</connection-url>
    <driver-class>com.microsoft.sqlserver.jdbc.SQLServerDriver</driver-
class>
    <user-name>sa</user-name>
    <password>jboss</password>

    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>MS SQLSERVER2000</type-mapping>
    </metadata>
  </local-tx-datasource>

</datasources>

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
  <xa-datasource>
    <jndi-name>MSSQL2005XADS</jndi-name>
    <track-connection-by-tx></track-connection-by-tx>
    <isSameRM-override-value>false</isSameRM-override-value>
    <xa-datasource-
class>com.microsoft.sqlserver.jdbc.SQLServerXADataSource</xa-datasource-
class>
    <xa-datasource-property name="ServerName">localhost</xa-datasource-
property>
    <xa-datasource-property name="DatabaseName">pubs</xa-datasource-
property>
    <xa-datasource-property name="SelectMethod">cursor</xa-datasource-
property>
    <xa-datasource-property name="User">sa</xa-datasource-property>
    <xa-datasource-property name="Password">jboss</xa-datasource-
property>

    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>MS SQLSERVER2000</type-mapping>
    </metadata>
  </xa-datasource>

</datasources>
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A.5.2. JSQL Drivers

Example A.17. JSQL Driver

A.5.3. jTDS JDBC Driver

jTDS is an open source 100% pure Java (type 4) JDBC 3.0 driver for Microsoft SQL Server (6.5, 7,
2000 and 2005) and Sybase (10, 11, 12, 15). jTDS is based on FreeTDS and is currently the fastest
production-ready JDBC driver for microsoft SQL Server and Sybase. jTDS is 100% JDBC 3.0
compatible, supporting forward-only and scrollable/updateable ResultSets, concurrent (completely
independent) Statements and implementing all the DatabaseMetaData and ResultSetMetaData
methods.

Download jTDS from http://jtds.sourceforge.net/.

Example A.18. jTDS Local-TX Datasource

 <?xml version="1.0" encoding="UTF-8"?>

<datasources>
  <local-tx-datasource>
    <jndi-name>JSQLDS</jndi-name>
    <connection-
url>jdbc:JSQLConnect://localhost:1433/databaseName=testdb</connection-
url>
    <driver-class>com.jnetdirect.jsql.JSQLDriver</driver-class>
    <user-name>x</user-name>
    <password>y</password>
    <!-- sql to call when connection is created
  <new-connection-sql>some arbitrary sql</new-connection-sql>
    -->

    <!-- sql to call on an existing pooled connection when it is 
obtained from pool 
  <check-valid-connection-sql>some arbitrary sql</check-valid-
connection-sql>
    -->

  </local-tx-datasource>

</datasources>

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
  <local-tx-datasource>
    <jndi-name>jtdsDS</jndi-name>
    <connection-
url>jdbc:jtds:sqlserver://localhost:1433;databaseName=pubs</connection-
url>
    <driver-class>net.sourceforge.jtds.jdbc.Driver</driver-class>
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Example A.19. jTDS XA Datasource

    <user-name>sa</user-name>
    <password>jboss</password>

    <!-- optional parameters -->
    <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-
isolation>
    <min-pool-size>10</min-pool-size>
    <max-pool-size>30</max-pool-size>
    <idle-timeout-minutes>15</idle-timeout-minutes>
    <blocking-timeout-millis>5000</blocking-timeout-millis>    
    <new-connection-sql>select 1</new-connection-sql>
    <check-valid-connection-sql>select 1</check-valid-connection-sql>
    <set-tx-query-timeout></set-tx-query-timeout>
    <metadata>
      <type-mapping>MS SQLSERVER2000</type-mapping>
    </metadata>
  </local-tx-datasource>
</datasources>

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
  <xa-datasource>
    <jndi-name>jtdsXADS</jndi-name>
    <xa-datasource-class>net.sourceforge.jtds.jdbcx.JtdsDataSource</xa-
datasource-class>
    <xa-datasource-property name="ServerName">localhost</xa-datasource-
property>
    <xa-datasource-property name="DatabaseName">pubs</xa-datasource-
property>
    <xa-datasource-property name="User">sa</xa-datasource-property>
    <xa-datasource-property name="Password">jboss</xa-datasource-
property>

    <!-- 
  When set to true, emulate XA distributed transaction support. Set to 
false to use experimental 
  true distributed transaction support. True distributed transaction 
support is only available for 
  SQL Server 2000 and requires the installation of an external stored 
procedure in the target server 
  (see the README.XA file in the distribution for details).
    -->
    <xa-datasource-property name="XaEmulation">true</xa-datasource-
property>

    <track-connection-by-tx></track-connection-by-tx>

    <!-- optional parameters -->
    <transaction-isolation>TRANSACTION_READ_COMMITTED</transaction-
isolation>
    <min-pool-size>10</min-pool-size>
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A.5.4. "Invalid object name 'JMS_SUBSCRIPTIONS' Exception

If you receive an exception like the one in Example A.20, “JMS_SUBSCRIPTIONS Exception”  during
startup, specify a SelectMethod in the connection URL, as shown in Example A.21, “Specifying a
SelectMethod”.

Example A.20. JMS_SUBSCRIPTIONS Exception

   17:17:57,167 WARN  [ServiceController] Problem starting service 
jboss.mq.destination:name=testTopic,service=Topic
   org.jboss.mq.SpyJMSException: Error getting durable subscriptions for 
topic TOPIC.testTopic; - nested throwable: (java.sql.SQLException: 
[Microsoft][SQLServer 2000 Driver for JDBC][SQLServer]Invalid object 
name 'JMS_SUBSCRIPTIONS'.)
   at 
org.jboss.mq.sm.jdbc.JDBCStateManager.getDurableSubscriptionIdsForTopic(
JDBCStateManager.java:290)
   at 
org.jboss.mq.server.JMSDestinationManager.addDestination(JMSDestinationM
anager.java:656)

Example A.21. Specifying a SelectMethod

A.6. MYSQL DATASOURCE

A.6.1. Installing the Driver

Procedure A.1. Installing the Driver

1. Download the driver from http://www.mysql.com/products/connector/j/. Make sure to choose
the driver based on your version of MySQL.

    <max-pool-size>30</max-pool-size>
    <idle-timeout-minutes>15</idle-timeout-minutes>
    <blocking-timeout-millis>5000</blocking-timeout-millis>    
    <new-connection-sql>select 1</new-connection-sql>
    <check-valid-connection-sql>select 1</check-valid-connection-sql>
    <set-tx-query-timeout></set-tx-query-timeout>
    <metadata>
      <type-mapping>MS SQLSERVER2000</type-mapping>
    </metadata>
  </xa-datasource>

</datasources>

   <connection-
url>jdbc:microsoft:sqlserver://localhost:1433;SelectMethod=cursor;Databa
seName=jboss</connection-url>
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2. Expand the driver ZIP or TAR file, and locate the .jar file.

3. Move the .jar file into $JBOSS_HOME/server/config_name/lib.

4. Copy the $JBOSS_HOMEdocs/examples/jca/mysql-ds.xml example datasource deployer
file to $JBOSS_HOME/server/config_name/deploy/, for use as a template.

A.6.2. MySQL Local-TX Datasource

Example A.22. MySQL Local-TX Datasource

This example uses a database hosted on localhost, on port 3306, with autoReconnect enabled.
This is not a recommended configuration, unless you do not need any Transactions support.

A.6.3. MySQL Using a Named Pipe

Example A.23. MySQL Using a Named Pipe

This example uses a database hosted locally, but uses a named pipe instead of TCP/IP.

<datasources> 
  <local-tx-datasource> 
    
    <jndi-name>MySqlDS</jndi-name> 
    
    <connection-url>jdbc:mysql://localhost:3306/database</connection-
url> 
    <driver-class>com.mysql.jdbc.Driver</driver-class> 
    
    <user-name>username</user-name> 
    <password>secret</password> 
    
    <connection-property name="autoReconnect">true</connection-
property>
    
    <!-- Typemapping for JBoss 4.0 --> 
    <metadata> 
      <type-mapping>mySQL</type-mapping> 
    </metadata> 
    
  </local-tx-datasource> 
</datasources> 

<datasources> 
  <local-tx-datasource> 
    
    <jndi-name>MySQLDS</jndi-name> 
    <connection-url>jdbc:mysql://./database</connection-url> 
    <driver-class>com.mysql.jdbc.Driver</driver-class> 
    
    <user-name>username</user-name> 
    <password>secret</password> 
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A.7. POSTGRESQL

Example A.24. PostgreSQL Local-TX Datasource

Example A.25. PostgreSQL XA Datasource

This configuratino works for PostgreSQL 8.x and later.

    <connection-property 
name="socketFactory">com.mysql.jdbc.NamedPipeSocketFactory</connection-
property> 

    <metadata> 
      <type-mapping>mySQL</type-mapping> 
    </metadata> 
    
  </local-tx-datasource> 
</datasources> 

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
  <local-tx-datasource>
    <jndi-name>PostgresDS</jndi-name>
    <connection-url>jdbc:postgresql://[servername]:[port]/[database 
name]</connection-url>
    <driver-class>org.postgresql.Driver</driver-class>
    <user-name>x</user-name>
    <password>y</password>
    <!-- sql to call when connection is created
  <new-connection-sql>some arbitrary sql</new-connection-sql>
    -->

    <!-- sql to call on an existing pooled connection when it is 
obtained from pool 
  <check-valid-connection-sql>some arbitrary sql</check-valid-
connection-sql>
    -->

    <!-- corresponding type-mapping in the standardjbosscmp-jdbc.xml 
(optional) -->
    <metadata>
      <type-mapping>PostgreSQL 7.2</type-mapping>
    </metadata>
  </local-tx-datasource>

</datasources>

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
  <xa-datasource>
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A.8. INGRES

Example A.26. Ingres Datasource

    <jndi-name>PostgresDS</jndi-name>

    <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-
datasource-class>
    <xa-datasource-property name="ServerName">[servername]</xa-
datasource-property>
    <xa-datasource-property name="PortNumber">5432</xa-datasource-
property>

    <xa-datasource-property name="DatabaseName">[database name]</xa-
datasource-property>
    <xa-datasource-property name="User">[username]</xa-datasource-
property>
    <xa-datasource-property name="Password">[password]</xa-datasource-
property>

    <track-connection-by-tx></track-connection-by-tx>
  </xa-datasource>
</datasources>

<?xml version="1.0" encoding="UTF-8"?>

<datasources>
  <local-tx-datasource>
    <jndi-name>IngresDS</jndi-name>
    <use-java-context>false</use-java-context>
    <driver-class>com.ingres.jdbc.IngresDriver</driver-class>
    <connection-url>jdbc:ingres://localhost:II7/testdb</connection-url>
    <datasource-class>com.ingres.jdbc.IngresDataSource</datasource-
class>
    <datasource-property name="ServerName">localhost</datasource-
property>
    <datasource-property name="PortName">II7</datasource-property>
    <datasource-property name="DatabaseName">testdb</datasource-
property>
    <datasource-property name="User">testuser</datasource-property>
    <datasource-property name="Password">testpassword</datasource-
property>
    <new-connection-sql>select count(*) from iitables</new-connection-
sql>

    <check-valid-connection-sql>select count(*) from iitables</check-
valid-connection-sql>
    <metadata>
      <type-mapping>Ingres</type-mapping>
    </metadata>
  </local-tx-datasource>
</datasources>
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[1] Source: http://community.jboss.org/wiki/SetUpASybaseDatasource

[2] Source: http://community.ingres.com

Administration And Configuration Guide

302

http://community.jboss.org/wiki/SetUpASybaseDatasource
http://community.ingres.com


APPENDIX B. LOGGING INFORMATION AND RECIPES

B.1. LOG LEVEL DESCRIPTIONS

Table B.1, “ log4j Log Level Definitions”  lists the typical meanings for different log levels in log4j. Your
application may interpret these levels differently, depending on your choices.

Table B.1. log4j Log Level Definitions

log4j Level JDK Level Description

FATAL The Application Service is likely
to crash.

ERROR SEVERE A definite problem exists.

WARN WARNING Likely to be a problem, but may be
recoverable.

INFO INFO Low-volume detailed logging.
Something of interest, but not a
problem.

DEBUG FINE Low-volume detailed logging.
Information that is probably not
of interest.

FINER Medium-volume detailed logging.

TRACE FINEST High-volume detailed logging.

NOTE

The more verbose logging levels are not appropriate for production systems, because of
the high level of output they generate.

Example B.1. Restricting Logged Information to a Specific Log Level

B.2. SEPARATE LOG FILES PER APPLICATION

To segregate logging output per application, assign log4j categories to specific appenders. This is
typically done in the conf/log4j.xml deployment descriptor.

<!-- Show the evolution of the DataSource pool in the logs 
[inUse/Available/Max]-->
<category 
name="org.jboss.resource.connectionmanager.JBossManagedConnectionPool">
  <priority value="TRACE" class="org.jboss.logging.XLevel"></priority>
</category>
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Example B.2. Filtering App1 Log Output to a Separate File

Example B.3. Using TCLMCFilter

Enterprise Platform 5.1 includes the new class jboss.logging.filter.TCLMCFilter, which
allows you to filter based on the deployment URL.

B.3. REDIRECTING CATEGORY OUTPUT

When you increase the level of logging for one or more categories, it is often useful to redirect the
output to a seperate file for easier investigation. To do this you add an appender-ref to the category.

 <appender name="App1Log" class="org.apache.log4j.FileAppender">
  <errorHandler 
class="org.jboss.logging.util.OnlyOnceErrorHandler"></errorHandler>
  <param name="Append" value="false"/>
  <param name="File" value="${jboss.server.home.dir}/log/app1.log"/>
  <layout class="org.apache.log4j.PatternLayout">
    <param name="ConversionPattern" value="%d{ABSOLUTE} %-5p [%c{1}] 
%m%n"/>
  </layout>
</appender>

...

<category name="com.app1">
  <appender-ref ref="App1Log"></appender-ref>
</category>
<category name="com.util">
  <appender-ref ref="App1Log"></appender-ref>
</category>

 <appender name="App1Log" class="org.apache.log4j.FileAppender">
  <errorHandler 
class="org.jboss.logging.util.OnlyOnceErrorHandler"></errorHandler>
  <param name="Append" value="false"/>
  <param name="File" value="${jboss.server.home.dir}/log/app1.log"/>
  <layout class="org.apache.log4j.PatternLayout">
  <param name="ConversionPattern" value="%d{ABSOLUTE} %-5p [%c{1}] 
%m%n"/>
  </layout>
  <filter class="org.jboss.logging.filter.TCLMCFilter">
  <param name="AcceptOnMatch" value="true"/>
  <param name="DeployURL" value="app1.ear"/>
  </filter>    
  
  <!-- end the filter chain here -->
  <filter class="org.apache.log4j.varia.DenyAllFilter"></filter>

</appender>
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Example B.4. Adding an appender-ref

All org.jboss.management output goes to the jsr77.log file. The additivity attribute controls
whether output continues to go to the root category appender. If false, output only goes to the
appenders referred to by the category.

 <appender name="JSR77" class="org.apache.log4j.FileAppender">
  <param name="File" value="${jboss.server.home.dir}/log/jsr77.log"/>
  ...
</appender>

<!-- Limit the JSR77 categories -->
<category name="org.jboss.management" additivity="false">
  <priority value="DEBUG"></priority>
  <appender-ref ref="JSR77"></appender-ref>
</category>
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