
JBoss Enterprise Application Platform
6.1

Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 6
Edition 1

Last Updated: 2017-10-16

JBoss Enterprise Application Platform 6.1 Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 6
Edition 1

Nidhi Chaudhary

Lucas Costi

Russell Dickenson

Sande Gilda

Vikram Goyal

Eamon Logue

Darrin Mison

Scott Mumford

David Ryan

Misty Stanley-Jones

Keerat Verma

Tom Wells

Legal Notice

Copyright © 2014 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book provides references and examples for Java EE 6 developers using Red Hat JBoss
Enterprise Application Platform 6 and its patch releases.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

Table of Contents

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS
1.1. INTRODUCTION

1.1.1. About Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6)
1.1.2. About the Use of EAP_HOME in this Document

1.2. PREREQUISITES
1.2.1. Become Familiar with Java Enterprise Edition 6

1.2.1.1. Overview of EE 6 Profiles
1.2.1.2. Java Enterprise Edition 6 Web Profile
1.2.1.3. Java Enterprise Edition 6 Full Profile

1.2.2. About Modules and the New Modular Class Loading System used in JBoss EAP 6
1.2.2.1. Modules
1.2.2.2. Overview of Class Loading and Modules

1.3. SET UP THE DEVELOPMENT ENVIRONMENT
1.3.1. Download and Install JBoss Developer Studio

1.3.1.1. Setup the JBoss Developer Studio
1.3.1.2. Download JBoss Developer Studio 5
1.3.1.3. Install JBoss Developer Studio 5
1.3.1.4. Start JBoss Developer Studio
1.3.1.5. Add the JBoss EAP 6 Server to JBoss Developer Studio

1.4. RUN YOUR FIRST APPLICATION
1.4.1. Replace the Default Welcome Web Application
1.4.2. Download the Quickstart Code Examples

1.4.2.1. Access the Quickstarts
1.4.3. Run the Quickstarts

1.4.3.1. Run the Quickstarts in JBoss Developer Studio
1.4.3.2. Run the Quickstarts Using a Command Line

1.4.4. Review the Quickstart Tutorials
1.4.4.1. Explore the helloworld Quickstart
1.4.4.2. Explore the numberguess Quickstart

CHAPTER 2. MAVEN GUIDE
2.1. LEARN ABOUT MAVEN

2.1.1. About the Maven Repository
2.1.2. About the Maven POM File
2.1.3. Minimum Requirements of a Maven POM File
2.1.4. About the Maven Settings File

2.2. INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY
2.2.1. Download and Install Maven
2.2.2. Install the JBoss EAP 6 Maven Repository
2.2.3. Install the JBoss EAP 6 Maven Repository Locally
2.2.4. Install the JBoss EAP 6 Maven Repository for Use with Apache httpd
2.2.5. Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository Manager
2.2.6. About Maven Repository Managers

2.3. USE THE MAVEN REPOSITORY
2.3.1. Configure the JBoss EAP Maven Repository
2.3.2. Configure the JBoss EAP 6 Maven Repository Using the Maven Settings
2.3.3. Configure the JBoss EAP 6 Maven Repository Using the Project POM
2.3.4. Manage Project Dependencies

JBoss JavaEE Specs Bom
JBoss BOM and Quickstarts
JBoss Client BOMs

13
13
13
13
13
13
13
13
14
15
15
16
16
16
16
16
17
17
18
23
23
24
24
24
24
27
27
27
32

41
41
41
41
41
42
43
43
43
44
44
45
46
47
47
48
51
53
53
54
55

Table of Contents

1

. .

. .

. .

. .

CHAPTER 3. CLASS LOADING AND MODULES
3.1. INTRODUCTION

3.1.1. Overview of Class Loading and Modules
3.1.2. Class Loading
3.1.3. Modules
3.1.4. Module Dependencies
3.1.5. Class Loading in Deployments
3.1.6. Class Loading Precedence
3.1.7. Dynamic Module Naming
3.1.8. jboss-deployment-structure.xml

3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT
3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN
3.4. PREVENT A MODULE BEING IMPLICITLY LOADED
3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT
3.6. CLASS LOADING AND SUBDEPLOYMENTS

3.6.1. Modules and Class Loading in Enterprise Archives
3.6.2. Subdeployment Class Loader Isolation
3.6.3. Disable Subdeployment Class Loader Isolation Within a EAR

3.7. REFERENCE
3.7.1. Implicit Module Dependencies
3.7.2. Included Modules
3.7.3. JBoss Deployment Structure Deployment Descriptor Reference

CHAPTER 4. GLOBAL VALVES
4.1. ABOUT VALVES
4.2. ABOUT GLOBAL VALVES
4.3. ABOUT AUTHENTICATOR VALVES
4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE
4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR VALVE
4.6. CREATE A CUSTOM VALVE

CHAPTER 5. LOGGING FOR DEVELOPERS
5.1. INTRODUCTION

5.1.1. About Logging
5.1.2. Application Logging Frameworks Supported By JBoss LogManager
5.1.3. About Log Levels
5.1.4. Supported Log Levels
5.1.5. Default Log File Locations

5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK
5.2.1. About JBoss Logging
5.2.2. Features of JBoss Logging
5.2.3. Add Logging to an Application with JBoss Logging

5.3. LOGGING PROFILES
5.3.1. About Logging Profiles
5.3.2. Specify a Logging Profile in an Application

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION
6.1. INTRODUCTION

6.1.1. About Internationalization
6.1.2. About Localization

6.2. JBOSS LOGGING TOOLS
6.2.1. Overview

6.2.1.1. JBoss Logging Tools Internationalization and Localization
6.2.1.2. JBoss Logging Tools Quickstart

57
57
57
57
57
58
59
59
60
61
61
63
64
65
67
67
67
67
68
68
73
81

83
83
83
83
83
84
85

88
88
88
88
88
88
89
90
90
90
90
92
92
93

95
95
95
95
95
95
95
95

Development Guide

2

. .

6.2.1.3. Message Logger
6.2.1.4. Message Bundle
6.2.1.5. Internationalized Log Messages
6.2.1.6. Internationalized Exceptions
6.2.1.7. Internationalized Messages
6.2.1.8. Translation Properties Files
6.2.1.9. JBoss Logging Tools Project Codes
6.2.1.10. JBoss Logging Tools Message Ids

6.2.2. Creating Internationalized Loggers, Messages and Exceptions
6.2.2.1. Create Internationalized Log Messages
6.2.2.2. Create and Use Internationalized Messages
6.2.2.3. Create Internationalized Exceptions

6.2.3. Localizing Internationalized Loggers, Messages and Exceptions
6.2.3.1. Generate New Translation Properties Files with Maven
6.2.3.2. Translate an Internationalized Logger, Exception or Message

6.2.4. Customizing Internationalized Log Messages
6.2.4.1. Add Message Ids and Project Codes to Log Messages
6.2.4.2. Specify the Log Level for a Message
6.2.4.3. Customize Log Messages with Parameters
6.2.4.4. Specify an Exception as the Cause of a Log Message

6.2.5. Customizing Internationalized Exceptions
6.2.5.1. Add Message Ids and Project Codes to Exception Messages
6.2.5.2. Customize Exception Messages with Parameters
6.2.5.3. Specify One Exception as the Cause of Another Exception

6.2.6. Reference
6.2.6.1. JBoss Logging Tools Maven Configuration
6.2.6.2. Translation Property File Format
6.2.6.3. JBoss Logging Tools Annotations Reference

CHAPTER 7. ENTERPRISE JAVABEANS
7.1. INTRODUCTION

7.1.1. Overview of Enterprise JavaBeans
7.1.2. EJB 3.1 Feature Set
7.1.3. EJB 3.1 Lite
7.1.4. EJB 3.1 Lite Features
7.1.5. Enterprise Beans
7.1.6. Overview of Writing Enterprise Beans
7.1.7. Session Bean Business Interfaces

7.1.7.1. Enterprise Bean Business Interfaces
7.1.7.2. EJB Local Business Interfaces
7.1.7.3. EJB Remote Business Interfaces
7.1.7.4. EJB No-interface Beans

7.2. CREATING ENTERPRISE BEAN PROJECTS
7.2.1. Create an EJB Archive Project Using JBoss Developer Studio
7.2.2. Create an EJB Archive Project in Maven
7.2.3. Create an EAR Project containing an EJB Project
7.2.4. Add a Deployment Descriptor to an EJB Project

7.3. SESSION BEANS
7.3.1. Session Beans
7.3.2. Stateless Session Beans
7.3.3. Stateful Session Beans
7.3.4. Singleton Session Beans
7.3.5. Add Session Beans to a Project in JBoss Developer Studio

96
96
96
96
96
97
97
97
97
97
99

100
101
101
102
103
103
104
105
106
107
107
108
109
111
111
112
112

114
114
114
114
115
115
115
116
116
116
116
116
117
117
117
121
123
126
127
127
127
128
128
128

Table of Contents

3

. .

. .

7.4. MESSAGE-DRIVEN BEANS
7.4.1. Message-Driven Beans
7.4.2. Resource Adapters
7.4.3. Create a JMS-based Message-Driven Bean in JBoss Developer Studio

7.5. INVOKING SESSION BEANS
7.5.1. Invoke a Session Bean Remotely using JNDI
7.5.2. About EJB Client Contexts
7.5.3. Considerations When Using a Single EJB Context
7.5.4. Using Scoped EJB Client Contexts
7.5.5. Configure EJBs Using a Scoped EJB Client Context
7.5.6. EJB Client Properties

7.6. CONTAINER INTERCEPTORS
7.6.1. About Container Interceptors
7.6.2. Create a Container Interceptor Class
7.6.3. Configure a Container Interceptor
7.6.4. Change the Security Context Identity
7.6.5. Pass Additional Security For EJB Authentication
7.6.6. Use a Client Side Interceptor in an Application

7.7. CLUSTERED ENTERPRISE JAVABEANS
7.7.1. About Clustered Enterprise JavaBeans (EJBs)

7.8. REFERENCE
7.8.1. EJB JNDI Naming Reference
7.8.2. EJB Reference Resolution
7.8.3. Project dependencies for Remote EJB Clients
7.8.4. jboss-ejb3.xml Deployment Descriptor Reference

CHAPTER 8. CLUSTERING IN WEB APPLICATIONS
8.1. SESSION REPLICATION

8.1.1. About HTTP Session Replication
8.1.2. About the Web Session Cache
8.1.3. Configure the Web Session Cache
8.1.4. Enable Session Replication in Your Application

8.2. HTTPSESSION PASSIVATION AND ACTIVATION
8.2.1. About HTTP Session Passivation and Activation
8.2.2. Configure HttpSession Passivation in Your Application

8.3. COOKIE DOMAIN
8.3.1. About the Cookie Domain
8.3.2. Configure the Cookie Domain

8.4. IMPLEMENT AN HA SINGLETON

CHAPTER 9. CDI
9.1. OVERVIEW OF CDI

9.1.1. Overview of CDI
9.1.2. About Contexts and Dependency Injection (CDI)
9.1.3. Benefits of CDI
9.1.4. About Type-safe Dependency Injection
9.1.5. Relationship Between Weld, Seam 2, and JavaServer Faces

9.2. USE CDI
9.2.1. First Steps

9.2.1.1. Enable CDI
9.2.2. Use CDI to Develop an Application

9.2.2.1. Use CDI to Develop an Application
9.2.2.2. Use CDI with Existing Code

131
131
131
131
133
133
136
136
138
139
140
144
144
144
145
147
151
158
158
158
159
159
160
160
162

165
165
165
165
165
166
169
169
170
171
172
172
172

181
181
181
181
181
181
182
182
182
182
183
183
184

Development Guide

4

. .

9.2.2.3. Exclude Beans From the Scanning Process
9.2.2.4. Use an Injection to Extend an Implementation

9.2.3. Ambiguous or Unsatisfied Dependencies
9.2.3.1. About Ambiguous or Unsatisfied Dependencies
9.2.3.2. About Qualifiers
9.2.3.3. Use a Qualifier to Resolve an Ambiguous Injection

9.2.4. Managed Beans
9.2.4.1. About Managed Beans
9.2.4.2. Types of Classes That are Beans
9.2.4.3. Use CDI to Inject an Object Into a Bean

9.2.5. Contexts, Scopes, and Dependencies
9.2.5.1. Contexts and Scopes
9.2.5.2. Available Contexts

9.2.6. Bean Lifecycle
9.2.6.1. Manage the Lifecycle of a Bean
9.2.6.2. Use a Producer Method

9.2.7. Named Beans and Alternative Beans
9.2.7.1. About Named Beans
9.2.7.2. Use Named Beans
9.2.7.3. About Alternative Beans
9.2.7.4. Override an Injection with an Alternative

9.2.8. Stereotypes
9.2.8.1. About Stereotypes
9.2.8.2. Use Stereotypes

9.2.9. Observer Methods
9.2.9.1. About Observer Methods
9.2.9.2. Fire and Observe Events

9.2.10. Interceptors
9.2.10.1. About Interceptors
9.2.10.2. Use Interceptors with CDI

9.2.11. About Decorators
9.2.12. About Portable Extensions
9.2.13. Bean Proxies

9.2.13.1. About Bean Proxies
9.2.13.2. Use a Proxy in an Injection

CHAPTER 10. JAVA TRANSACTION API (JTA)
10.1. OVERVIEW

10.1.1. Overview of Java Transactions API (JTA)
10.2. TRANSACTION CONCEPTS

10.2.1. About Transactions
10.2.2. About ACID Properties for Transactions
10.2.3. About the Transaction Coordinator or Transaction Manager
10.2.4. About Transaction Participants
10.2.5. About Java Transactions API (JTA)
10.2.6. About Java Transaction Service (JTS)
10.2.7. About XA Datasources and XA Transactions
10.2.8. About XA Recovery
10.2.9. About the 2-Phase Commit Protocol
10.2.10. About Transaction Timeouts
10.2.11. About Distributed Transactions
10.2.12. About the ORB Portability API
10.2.13. About Nested Transactions

184
185
186
186
186
187
188
188
189
189
191
191
191
191
191
192
194
194
194
195
195
196
196
196
197
197
198
199
199
199
201
201
202
202
202

204
204
204
204
204
204
205
205
205
206
206
206
207
207
207
207
208

Table of Contents

5

. .

10.3. TRANSACTION OPTIMIZATIONS
10.3.1. Overview of Transaction Optimizations
10.3.2. About the LRCO Optimization for Single-phase Commit (1PC)
10.3.3. About the Presumed-Abort Optimization
10.3.4. About the Read-Only Optimization

10.4. TRANSACTION OUTCOMES
10.4.1. About Transaction Outcomes
10.4.2. About Transaction Commit
10.4.3. About Transaction Roll-Back
10.4.4. About Heuristic Outcomes
10.4.5. JBoss Transactions Errors and Exceptions

10.5. OVERVIEW OF JTA TRANSACTIONS
10.5.1. About Java Transactions API (JTA)
10.5.2. Lifecycle of a JTA Transaction

10.6. TRANSACTION SUBSYSTEM CONFIGURATION
10.6.1. Transactions Configuration Overview
10.6.2. Transactional Datasource Configuration

10.6.2.1. Configure Your Datasource to Use JTA Transactions
10.6.2.2. Configure an XA Datasource
10.6.2.3. Log in to the Management Console
10.6.2.4. Create a Non-XA Datasource with the Management Interfaces
10.6.2.5. Datasource Parameters

10.6.3. Transaction Logging
10.6.3.1. About Transaction Log Messages
10.6.3.2. Configure Logging for the Transaction Subsystem
10.6.3.3. Browse and Manage Transactions

10.7. USE JTA TRANSACTIONS
10.7.1. Transactions JTA Task Overview
10.7.2. Control Transactions
10.7.3. Begin a Transaction
10.7.4. Nest Transactions
10.7.5. Commit a Transaction
10.7.6. Roll Back a Transaction
10.7.7. Handle a Heuristic Outcome in a Transaction
10.7.8. Transaction Timeouts

10.7.8.1. About Transaction Timeouts
10.7.8.2. Configure the Transaction Manager

10.7.9. JTA Transaction Error Handling
10.7.9.1. Handle Transaction Errors

10.8. ORB CONFIGURATION
10.8.1. About Common Object Request Broker Architecture (CORBA)
10.8.2. Configure the ORB for JTS Transactions

10.9. TRANSACTION REFERENCES
10.9.1. JBoss Transactions Errors and Exceptions
10.9.2. JTA Clustering Limitations
10.9.3. JTA Transaction Example
10.9.4. API Documentation for JBoss Transactions JTA

CHAPTER 11. HIBERNATE
11.1. ABOUT HIBERNATE CORE
11.2. JAVA PERSISTENCE API (JPA)

11.2.1. About JPA
11.2.2. Hibernate EntityManager

208
208
209
209
209
210
210
210
210
210
211
211
211
211
212
212
213
213
214
214
215
217
223
223
224
225
229
229
230
230
231
232
233
234
235
235
236
239
240
240
240
241
242
242
242
242
244

246
246
246
246
246

Development Guide

6

11.2.3. Getting Started
11.2.3.1. Create a JPA project in JBoss Developer Studio
11.2.3.2. Create the Persistence Settings File in JBoss Developer Studio
11.2.3.3. Example Persistence Settings File
11.2.3.4. Create the Hibernate Configuration File in JBoss Developer Studio
11.2.3.5. Example Hibernate Configuration File

11.2.4. Configuration
11.2.4.1. Hibernate Configuration Properties
11.2.4.2. Hibernate JDBC and Connection Properties
11.2.4.3. Hibernate Cache Properties
11.2.4.4. Hibernate Transaction Properties
11.2.4.5. Miscellaneous Hibernate Properties
11.2.4.6. Hibernate SQL Dialects

11.2.5. Second-Level Caches
11.2.5.1. About Second-Level Caches
11.2.5.2. Configure a Second Level Cache for Hibernate

11.3. HIBERNATE ANNOTATIONS
11.3.1. Hibernate Annotations

11.4. HIBERNATE QUERY LANGUAGE
11.4.1. About Hibernate Query Language
11.4.2. HQL Statements
11.4.3. About the INSERT Statement
11.4.4. About the FROM Clause
11.4.5. About the WITH Clause
11.4.6. About Bulk Update, Insert and Delete
11.4.7. About Collection Member References
11.4.8. About Qualified Path Expressions
11.4.9. About Scalar Functions
11.4.10. HQL Standardized Functions
11.4.11. About the Concatenation Operation
11.4.12. About Dynamic Instantiation
11.4.13. About HQL Predicates
11.4.14. About Relational Comparisons
11.4.15. About the IN Predicate
11.4.16. About HQL Ordering

11.5. HIBERNATE SERVICES
11.5.1. About Hibernate Services
11.5.2. About Service Contracts
11.5.3. Types of Service Dependencies
11.5.4. The ServiceRegistry

11.5.4.1. About the ServiceRegistry
11.5.5. Custom Services

11.5.5.1. About Custom Services
11.5.6. The Bootstrap Registry

11.5.6.1. About the Boot-strap Registry
11.5.6.2. Using BootstrapServiceRegistryBuilder
11.5.6.3. BootstrapRegistry Services

11.5.7. The SessionFactory Registry
11.5.7.1. SessionFactory Registry
11.5.7.2. SessionFactory Services

11.5.8. Integrators
11.5.8.1. Integrators
11.5.8.2. Integrator use-cases

246
246
249
250
251
251
252
252
254
256
256
257
258
260
260
261
261
262
266
266
266
267
268
268
269
271
271
273
273
274
274
275
277
278
279
280
280
280
280
281
281
281
281
283
283
283
283
284
284
285
285
285
285

Table of Contents

7

. .

11.6. BEAN VALIDATION
11.6.1. About Bean Validation
11.6.2. Hibernate Validator
11.6.3. Validation Constraints

11.6.3.1. About Validation Constraints
11.6.3.2. Create a Constraint Annotation in the JBoss Developer Studio
11.6.3.3. Create a New Java Class in the JBoss Developer Studio
11.6.3.4. Hibernate Validator Constraints

11.6.4. Configuration
11.6.4.1. Example Validation Configuration File

11.7. ENVERS
11.7.1. About Hibernate Envers
11.7.2. About Auditing Persistent Classes
11.7.3. Auditing Strategies

11.7.3.1. About Auditing Strategies
11.7.3.2. Set the Auditing Strategy

11.7.4. Getting Started with Entity Auditing
11.7.4.1. Add Auditing Support to a JPA Entity

11.7.5. Configuration
11.7.5.1. Configure Envers Parameters
11.7.5.2. Enable or Disable Auditing at Runtime
11.7.5.3. Configure Conditional Auditing
11.7.5.4. Envers Configuration Properties

11.7.6. Queries
11.7.6.1. Retrieve Auditing Information

CHAPTER 12. JAX-RS WEB SERVICES
12.1. ABOUT JAX-RS
12.2. ABOUT RESTEASY
12.3. ABOUT RESTFUL WEB SERVICES
12.4. RESTEASY DEFINED ANNOTATIONS
12.5. RESTEASY CONFIGURATION

12.5.1. RESTEasy Configuration Parameters
12.6. JAX-RS WEB SERVICE SECURITY

12.6.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
12.6.2. Secure a JAX-RS Web Service using Annotations

12.7. RESTEASY LOGGING
12.7.1. About JAX-RS Web Service Logging
12.7.2. Configure a Log Category in the Management Console
12.7.3. Logging Categories Defined in RESTEasy

12.8. EXCEPTION HANDLING
12.8.1. Create an Exception Mapper
12.8.2. RESTEasy Internally Thrown Exceptions

12.9. RESTEASY INTERCEPTORS
12.9.1. Intercept JAX-RS Invocations
12.9.2. Bind an Interceptor to a JAX-RS Method
12.9.3. Register an Interceptor
12.9.4. Interceptor Precedence Families

12.9.4.1. About Interceptor Precedence Families
12.9.4.2. Define a Custom Interceptor Precedence Family

12.10. STRING BASED ANNOTATIONS
12.10.1. Convert String Based @*Param Annotations to Objects

12.11. CONFIGURE FILE EXTENSIONS

286
286
287
287
287
287
289
289
291
291
292
292
292
293
293
293
294
294
295
295
296
296
297
299
299

304
304
304
304
304
306
306
308
308
310
310
310
311
312
312
312
313
315
315
317
318
318
318
319
320
320
323

Development Guide

8

. .

. .

12.11.1. Map File Extensions to Media Types in the web.xml File
12.11.2. Map File Extensions to Languages in the web.xml File
12.11.3. RESTEasy Supported Media Types

12.12. RESTEASY JAVASCRIPT API
12.12.1. About the RESTEasy JavaScript API
12.12.2. Enable the RESTEasy JavaScript API Servlet
12.12.3. RESTEasy Javascript API Parameters
12.12.4. Build AJAX Queries with the JavaScript API
12.12.5. REST.Request Class Members

12.13. RESTEASY ASYNCHRONOUS JOB SERVICE
12.13.1. About the RESTEasy Asynchronous Job Service
12.13.2. Enable the Asynchronous Job Service
12.13.3. Configure Asynchronous Jobs for RESTEasy
12.13.4. Asynchronous Job Service Configuration Parameters

12.14. RESTEASY JAXB
12.14.1. Create a JAXB Decorator

12.15. RESTEASY ATOM SUPPORT
12.15.1. About the Atom API and Provider

CHAPTER 13. JAX-WS WEB SERVICES
13.1. ABOUT JAX-WS WEB SERVICES
13.2. CONFIGURE THE WEBSERVICES SUBSYSTEM
13.3. JAX-WS WEB SERVICE ENDPOINTS

13.3.1. About JAX-WS Web Service Endpoints
13.3.2. Write and Deploy a JAX-WS Web Service Endpoint

13.4. JAX-WS WEB SERVICE CLIENTS
13.4.1. Consume and Access a JAX-WS Web Service
13.4.2. Develop a JAX-WS Client Application

13.5. JAX-WS DEVELOPMENT REFERENCE
13.5.1. Enable Web Services Addressing (WS-Addressing)
13.5.2. JAX-WS Common API Reference

CHAPTER 14. IDENTITY WITHIN APPLICATIONS
14.1. FOUNDATIONAL CONCEPTS

14.1.1. About Encryption
14.1.2. About Security Domains
14.1.3. About SSL Encryption
14.1.4. About Declarative Security

14.2. ROLE-BASED SECURITY IN APPLICATIONS
14.2.1. About Application Security
14.2.2. About Authentication
14.2.3. About Authorization
14.2.4. About Security Auditing
14.2.5. About Security Mapping
14.2.6. About the Security Extension Architecture
14.2.7. Java Authentication and Authorization Service (JAAS)
14.2.8. About Java Authentication and Authorization Service (JAAS)
14.2.9. Use a Security Domain in Your Application
14.2.10. Use Role-Based Security In Servlets
14.2.11. Use A Third-Party Authentication System In Your Application

14.3. SECURITY REALMS
14.3.1. About Security Realms
14.3.2. Add a New Security Realm

323
324
325
325
325
326
327
327
328
329
329
329
330
331
333
333
334
334

335
335
336
339
339
341
343
343
348
354
354
355

359
359
359
359
359
360
360
360
360
361
361
361
362
363
363
367
369
371
378
378
379

Table of Contents

9

. .

. .

14.3.3. Add a User to a Security Realm
14.4. EJB APPLICATION SECURITY

14.4.1. Security Identity
14.4.1.1. About EJB Security Identity
14.4.1.2. Set the Security Identity of an EJB

14.4.2. EJB Method Permissions
14.4.2.1. About EJB Method Permissions
14.4.2.2. Use EJB Method Permissions

14.4.3. EJB Security Annotations
14.4.3.1. About EJB Security Annotations
14.4.3.2. Use EJB Security Annotations

14.4.4. Remote Access to EJBs
14.4.4.1. About Remote Method Access
14.4.4.2. About Remoting Callbacks
14.4.4.3. About Remoting Server Detection
14.4.4.4. Configure the Remoting Subsystem
14.4.4.5. Use Security Realms with Remote EJB Clients
14.4.4.6. Add a New Security Realm
14.4.4.7. Add a User to a Security Realm
14.4.4.8. About Remote EJB Access Using SSL Encryption

14.5. JAX-RS APPLICATION SECURITY
14.5.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
14.5.2. Secure a JAX-RS Web Service using Annotations

14.6. SECURE REMOTE PASSWORD PROTOCOL
14.6.1. About Secure Remote Password Protocol (SRP)
14.6.2. Configure Secure Remote Password (SRP) Protocol

14.7. PASSWORD VAULTS FOR SENSITIVE STRINGS
14.7.1. About Securing Sensitive Strings in Clear-Text Files
14.7.2. Create a Java Keystore to Store Sensitive Strings
14.7.3. Mask the Keystore Password and Initialize the Password Vault
14.7.4. Configure JBoss EAP 6 to Use the Password Vault
14.7.5. Store and Retrieve Encrypted Sensitive Strings in the Java Keystore
14.7.6. Store and Resolve Sensitive Strings In Your Applications

14.8. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
14.8.1. About Java Authorization Contract for Containers (JACC)
14.8.2. Configure Java Authorization Contract for Containers (JACC) Security

14.9. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
14.9.1. About Java Authentication SPI for Containers (JASPI) Security
14.9.2. Configure Java Authentication SPI for Containers (JASPI) Security

CHAPTER 15. SINGLE SIGN ON (SSO)
15.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
15.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
15.3. CHOOSE THE RIGHT SSO IMPLEMENTATION
15.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION
15.5. ABOUT KERBEROS
15.6. ABOUT SPNEGO
15.7. ABOUT MICROSOFT ACTIVE DIRECTORY
15.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB
APPLICATIONS

CHAPTER 16. DEVELOPMENT SECURITY REFERENCES
16.1. JBOSS-WEB.XML CONFIGURATION REFERENCE

379
380
380
380
380
381
381
382
385
385
385
386
386
387
388
388
396
397
398
398
398
398
400
401
401
401
403
403
403
406
407
408
411
413
413
414
415
415
415

417
417
418
418
419
421
422
422

422

427
427

Development Guide

10

. .

. .

16.2. EJB SECURITY PARAMETER REFERENCE

CHAPTER 17. SUPPLEMENTAL REFERENCES
17.1. TYPES OF JAVA ARCHIVES

APPENDIX A. REVISION HISTORY

430

432
432

434

Table of Contents

11

Development Guide

12

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

1.1. INTRODUCTION

1.1.1. About Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6)

Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a fast, secure, powerful middleware
platform built upon open standards, and compliant with the Java Enterprise Edition 6 specification. It
integrates JBoss Application Server 7 with high-availability clustering, powerful messaging, distributed
caching, and other technologies to create a stable and scalable platform.

The new modular structure allows for services to be enabled only when required, significantly increasing
start up speed. The Management Console and Management Command Line Interface remove the need
to edit XML configuration files by hand, adding the ability to script and automate tasks. In addition, it
includes APIs and development frameworks that can be used to develop secure, powerful, and scalable
Java EE applications quickly.

Report a bug

1.1.2. About the Use of EAP_HOME in this Document

In this document, the variable EAP_HOME is used to denote the path to the JBoss EAP 6 installation.
Replace this variable with the actual path to your JBoss EAP 6 installation.

Report a bug

1.2. PREREQUISITES

1.2.1. Become Familiar with Java Enterprise Edition 6

1.2.1.1. Overview of EE 6 Profiles

Java Enterprise Edition 6 (EE 6) includes support for multiple profiles, or subsets of APIs. The only two
profiles that the EE 6 specification defines are the Full Profile and the Web Profile.

EE 6 Full Profile includes all APIs and specifications included in the EE 6 specification. EE 6 Web Profile
includes a subset of APIs which are useful to web developers.

JBoss EAP 6 is a certified implementation of the Java Enterprise Edition 6 Full Profile and Web Profile
specifications.

Section 1.2.1.2, “Java Enterprise Edition 6 Web Profile”

Section 1.2.1.3, “Java Enterprise Edition 6 Full Profile”

Report a bug

1.2.1.2. Java Enterprise Edition 6 Web Profile

The Web Profile is one of two profiles defined by the Java Enterprise Edition 6 specification. It is
designed for web application development. The other profile defined by the Java Enterprise Edition 6
specification is the Full Profile. See Section 1.2.1.3, “Java Enterprise Edition 6 Full Profile” for more
details.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

13

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+228-458161+%5BSpecified%5D&comment=Title%3A+About+Red+Hat+JBoss+Enterprise+Application+Platform+6+%28JBoss+EAP+6%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=228-458161+07+Jun+2013+12%3A15+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+22345-502600+%5BSpecified%5D&comment=Title%3A+About+the+Use+of+EAP_HOME+in+this+Document%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22345-502600+27+Aug+2013+21%3A54+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4488-459875+%5BSpecified%5D&comment=Title%3A+Overview+of+EE+6+Profiles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4488-459875+14+Jun+2013+09%3A08+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Java EE 6 Web Profile Requirements

Java Platform, Enterprise Edition 6

Java Web Technologies

Servlet 3.0 (JSR 315)

JSP 2.2 and Expression Language (EL) 1.2

JavaServer Faces (JSF) 2.0 (JSR 314)

Java Standard Tag Library (JSTL) for JSP 1.2

Debugging Support for Other Languages 1.0 (JSR 45)

Enterprise Application Technologies

Contexts and Dependency Injection (CDI) (JSR 299)

Dependency Injection for Java (JSR 330)

Enterprise JavaBeans 3.1 Lite (JSR 318)

Java Persistence API 2.0 (JSR 317)

Common Annotations for the Java Platform 1.1 (JSR 250)

Java Transaction API (JTA) 1.1 (JSR 907)

Bean Validation (JSR 303)

Report a bug

1.2.1.3. Java Enterprise Edition 6 Full Profile

The Java Enterprise Edition 6 (EE 6) specification defines a concept of profiles, and defines two of them
as part of the specification. Besides the items supported in the Java Enterprise Edition 6 Web Profile (
Section 1.2.1.2, “Java Enterprise Edition 6 Web Profile”), the Full Profile supports the following APIs.
JBoss Enterprise Edition 6 supports the Full Profile.

Items Included in the EE 6 Full Profile

EJB 3.1 (not Lite) (JSR 318)

Java EE Connector Architecture 1.6 (JSR 322)

Java Message Service (JMS) API 1.1 (JSR 914)

JavaMail 1.4 (JSR 919)

Web Service Technologies

Jax-RS RESTful Web Services 1.1 (JSR 311)

Implementing Enterprise Web Services 1.3 (JSR 109)

Development Guide

14

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4489-336224+%5BSpecified%5D&comment=Title%3A+Java+Enterprise+Edition+6+Web+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4489-336224+28+Nov+2012+05%3A11+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

JAX-WS Java API for XML-Based Web Services 2.2 (JSR 224)

Java Architecture for XML Binding (JAXB) 2.2 (JSR 222)

Web Services Metadata for the Java Platform (JSR 181)

Java APIs for XML-based RPC 1.1 (JSR 101)

Java APIs for XML Messaging 1.3 (JSR 67)

Java API for XML Registries (JAXR) 1.0 (JSR 93)

Management and Security Technologies

Java Authentication Service Provider Interface for Containers 1.0 (JSR 196)

Java Authentication Contract for Containers 1.3 (JSR 115)

Java EE Application Deployment 1.2 (JSR 88)

J2EE Management 1.1 (JSR 77)

Report a bug

1.2.2. About Modules and the New Modular Class Loading System used in JBoss
EAP 6

1.2.2.1. Modules

A Module is a logical grouping of classes used for class loading and dependency management. JBoss
EAP 6 identifies two different types of modules, sometimes called static and dynamic modules. However
the only difference between the two is how they are packaged. All modules provide the same features.

Static Modules

Static Modules are predefined in the EAP_HOME/modules/ directory of the application server. Each
sub-directory represents one module and contains one or more JAR files and a configuration file
(module.xml). The name of the module is defined in the module.xml file. All the application server
provided APIs are provided as static modules, including the Java EE APIs as well as other APIs such
as JBoss Logging.

Example 1.1. Example module.xml file

The module name, com.mysql, should match the directory structure for the module.

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.mysql">
 <resources>
 <resource-root path="mysql-connector-java-5.1.15.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

15

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4490-336229+%5BSpecified%5D&comment=Title%3A+Java+Enterprise+Edition+6+Full+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4490-336229+28+Nov+2012+05%3A17+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Creating custom static modules can be useful if many applications are deployed on the same server
that use the same third party libraries. Instead of bundling those libraries with each application, a
module containing these libraries can be created and installed by the JBoss administrator. The
applications can then declare an explicit dependency on the custom static modules.

Dynamic Modules

Dynamic Modules are created and loaded by the application server for each JAR or WAR
deployment (or subdeployment in an EAR). The name of a dynamic module is derived from the name
of the deployed archive. Because deployments are loaded as modules, they can configure
dependencies and be used as dependencies by other deployments.

Modules are only loaded when required. This usually only occurs when an application is deployed that
has explicit or implicit dependencies.

Report a bug

1.2.2.2. Overview of Class Loading and Modules

JBoss EAP 6 uses a new modular class loading system for controlling the class paths of deployed
applications. This system provides more flexibility and control than the traditional system of hierarchical
class loaders. Developers have fine-grained control of the classes available to their applications, and can
configure a deployment to ignore classes provided by the application server in favour of their own.

The modular class loader separates all Java classes into logical groups called modules. Each module
can define dependencies on other modules in order to have the classes from that module added to its
own class path. Because each deployed JAR and WAR file is treated as a module, developers can
control the contents of their application's class path by adding module configuration to their application.

The following material covers what developers need to know to successfully build and deploy
applications on JBoss EAP 6.

Report a bug

1.3. SET UP THE DEVELOPMENT ENVIRONMENT

1.3.1. Download and Install JBoss Developer Studio

1.3.1.1. Setup the JBoss Developer Studio

1. Section 1.3.1.2, “Download JBoss Developer Studio 5”

2. Section 1.3.1.3, “Install JBoss Developer Studio 5”

3. Section 1.3.1.4, “Start JBoss Developer Studio”

Report a bug

1.3.1.2. Download JBoss Developer Studio 5

1. Go to https://access.redhat.com/.

Development Guide

16

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4360-458732+%5BSpecified%5D&comment=Title%3A+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4360-458732+11+Jun+2013+14%3A00+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4352-459876+%5BSpecified%5D&comment=Title%3A+Overview+of+Class+Loading+and+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4352-459876+14+Jun+2013+09%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4583-155458+%5BSpecified%5D&comment=Title%3A+Setup+the+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4583-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://access.redhat.com/

2. Select Downloads → Red Hat JBoss Middleware → Downloads.

3. Select JBoss Developer Studio from the dropbox.

4. Select the appropriate version and click Download.

Report a bug

1.3.1.3. Install JBoss Developer Studio 5

Prerequisites:

Section 1.3.1.2, “Download JBoss Developer Studio 5”

Procedure 1.1. Install JBoss Developer Studio 5

1. Open a terminal.

2. Move into the directory containing the downloaded .jar file.

3. Run the following command to launch the GUI installer:

java -jar jbdevstudio-build_version.jar

4. Click Next to start the installation process.

5. Select I accept the terms of this license agreement and click Next.

6. Adjust the installation path and click Next.

NOTE

If the installation path folder does not exist, a prompt will appear. Click Ok to
create the folder.

7. Choose a JVM, or leave the default JVM selected, and click Next.

8. Add any application platforms available, and click Next.

9. Review the installation details, and click Next.

10. Click Next when the installation process is complete.

11. Configure the desktop shortcuts for JBoss Developer Studio, and click Next.

12. Click Done.

Report a bug

1.3.1.4. Start JBoss Developer Studio

Prerequisites:

Section 1.3.1.3, “Install JBoss Developer Studio 5”

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

17

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4580-481828+%5BSpecified%5D&comment=Title%3A+Download+JBoss+Developer+Studio+5%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4580-481828+25+Jul+2013+15%3A32+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4581-433133+%5BSpecified%5D&comment=Title%3A+Install+JBoss+Developer+Studio+5%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4581-433133+11+Apr+2013+16%3A07+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Procedure 1.2. Command to start JBoss Developer Studio

1. Open a terminal.

2. Change into the installation directory.

3. Run the following command to start the JBoss Developer Studio:

[localhost]$./jbdevstudio

Report a bug

1.3.1.5. Add the JBoss EAP 6 Server to JBoss Developer Studio

These instructions assume this is your first introduction to JBoss Developer Studio and you have not yet
added any JBoss EAP 6 servers.

Procedure 1.3. Add the server

1. Open the Servers tab. If there is no Servers tab, add it to the panel as follows:

a. Click Window → Show View → Other....

b. Select Servers from the Server folder and click OK.

2. Click on the new server wizard link or right click within the blank Server panel and select
New → Server.

Figure 1.1. Add a new server - No servers available

Development Guide

18

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4582-433134+%5BSpecified%5D&comment=Title%3A+Start+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4582-433134+11+Apr+2013+16%3A11+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3. Expand JBoss Enterprise Middleware and choose JBoss Enterprise Application
Platform 6.x.Then click Next.

Figure 1.2. Choose server type

4. Click Browse and navigate to your JBoss EAP 6 install location. Then click Next.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

19

Figure 1.3. Browse to server install

5. On this screen you define the server behavior. You can start the server manually or let JBoss
Developer Studio manage it for you. You can also define a remote server for deployment and
determine if you want to expose the management port for that server, for example, if you need
connect to it using JMX. In this example, we assume the server is local and you want JBoss
Developer Studio to manage your server so you do not need to check anything. Click Next.

Development Guide

20

Figure 1.4. Define the new JBoss server behavior

6. This screen allows you to configure existing projects for the new server. Because you do not
have any projects at this point, click Finish.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

21

Figure 1.5. Modify resources for the new JBoss server

Result

The JBoss Enterprise Application Server 6.0 Runtime Server is listed in the Servers tab.

Development Guide

22

Figure 1.6. Server appears in the server list

Report a bug

1.4. RUN YOUR FIRST APPLICATION

1.4.1. Replace the Default Welcome Web Application

JBoss EAP 6 includes a Welcome application, which displays when you open the URL of the server at
port 8080. You can replace this application with your own web application by following this procedure.

Procedure 1.4. Replace the Default Welcome Web Application With Your Own Web Application

1. Disable the Welcome application.
Use the Management CLI script EAP_HOME/bin/jboss-cli.sh to run the following
command. You may need to change the profile to modify a different managed domain profile, or
remove the /profile=default portion of the command for a standalone server.

/profile=default/subsystem=web/virtual-server=default-host:write-
attribute(name=enable-welcome-root,value=false)

2. Configure your Web application to use the root context.
To configure your web application to use the root context (/) as its URL address, modify its
jboss-web.xml, which is located in the META-INF/ or WEB-INF/ directory. Replace its
<context-root> directive with one that looks like the following.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

23

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8022-459877+%5BSpecified%5D&comment=Title%3A+Add+the+JBoss+EAP+6+Server+to+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8022-459877+14+Jun+2013+09%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3. Deploy your application.
Deploy your application to the server group or server you modified in the first step. The
application is now available on http://SERVER_URL:PORT/.

Report a bug

1.4.2. Download the Quickstart Code Examples

1.4.2.1. Access the Quickstarts

Summary

JBoss EAP 6 comes with a series of quickstart examples designed to help users begin writing
applications using the Java EE 6 technologies.

Prerequisites

Maven 3.0.0 or higher. For more information on installing Maven, refer to
http://maven.apache.org/download.html.

Section 2.1.1, “About the Maven Repository”

Section 2.2.3, “Install the JBoss EAP 6 Maven Repository Locally”

Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”

Procedure 1.5. Download the Quickstarts

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Quickstarts" in the list.

3. Click the Download button to download a Zip archive containing the examples.

4. Unzip the archive in a directory of your choosing.

Result

The JBoss EAP Quickstarts have been downloaded and unzipped. Refer to the README.md file in the
top-level directory of the Quickstart archive for instructions about deploying each quickstart.

Report a bug

1.4.3. Run the Quickstarts

1.4.3.1. Run the Quickstarts in JBoss Developer Studio

<jboss-web>
 <context-root>/</context-root>
</jboss-web>

Development Guide

24

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9017-458837+%5BSpecified%5D&comment=Title%3A+Replace+the+Default+Welcome+Web+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9017-458837+11+Jun+2013+16%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://maven.apache.org/download.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5720-502226+%5BSpecified%5D&comment=Title%3A+Access+the+Quickstarts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5720-502226+27+Aug+2013+10%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Procedure 1.6. Import the quickstarts into JBoss Developer Studio

Each quickstart ships with a POM (Project Object Model) file that contains project and configuration
information for the quickstart. Using this POM file, you can easily import the quickstart into JBoss
Developer Studio.

1. If you have not done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the
Maven Settings”.

2. Start JBoss Developer Studio.

3. From the menu, select File → Import.

4. In the selection list, choose Maven → Existing Maven Projects, then click Next.

Figure 1.7. Import Existing Maven Projects

5. Browse to the directory of the quickstart you want to import and click OK. The Projects list box
will be populated with the pom.xml file of the selected quickstart project.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

25

Figure 1.8. Select Maven Projects

6. Click Next, then click Finish.

Procedure 1.7. Build and Deploy the helloworld quickstart

The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that the JBoss
server is configured and running correctly.

1. Open the Servers tab. To add it to the panel:

a. Click Window → Show View → Other....

b. Select Servers from the Server folder and click Ok.

2. Right click on helloworld in the Project Explorer tab, and select Run As → Run on
Server.

3. Select the JBoss EAP 6.0 Runtime Server server and click Next. This should deploy the
helloworld quickstart to the JBoss server.

Development Guide

26

4. To verify that the helloworld quickstart was deployed successfully to the JBoss server, open a
web browser and access the application at this URL: http://localhost:8080/jboss-as-helloworld

Report a bug

1.4.3.2. Run the Quickstarts Using a Command Line

Procedure 1.8. Build and Deploy the Quickstarts Using a Command Line

You can easily build and deploy the quickstarts using a command line. Be aware that, when using a
command line, you are responsible for starting the JBoss server if it is required.

1. Review the README file in the root directory of the quickstarts.
This file contains general information about system requirements, how to configure Maven, how
to add users, and how to run the Quickstarts. Be sure to read through it before you get started.

It also contains a table listing the available quickstarts. The table lists each quickstart name and
the technologies it demonstrates. It gives a brief description of each quickstart and the level of
experience required to set it up. For more detailed information about a quickstart, click on the
quickstart name.

Some quickstarts are designed to enhance or extend other quickstarts. These are noted in the
Prerequisites column. If a quickstart lists prerequisites, you must install them first before
working with the quickstart.

Some quickstarts require the installation and configuration of optional components. Do not install
these components unless the quickstart requires them.

2. Run the helloworld quickstart.
The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that
the JBoss server is configured and running correctly. Open the README file in the root of the
helloworld quickstart. It contains detailed instructions on how to build and deploy the
quickstart and access the running application

3. Run the other quickstarts.
Follow the instructions in the README file located in the root folder of each quickstart to run the
example.

Report a bug

1.4.4. Review the Quickstart Tutorials

1.4.4.1. Explore the helloworld Quickstart

Summary

The helloworld quickstart shows you how to deploy a simple Servlet to JBoss EAP 6. The business
logic is encapsulated in a service which is provided as a CDI (Contexts and Dependency Injection) bean
and injected into the Servlet. This quickstart is very simple. All it does is print "Hello World" onto a web
page. It is a good starting point to make sure you have configured and started your server properly.

Detailed instructions to build and deploy this quickstart using a command line can be found in the
README file at the root of the helloworld quickstart directory. Here we show you how to use JBoss
Developer Studio to run the quickstart.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

27

http://localhost:8080/jboss-as-helloworld
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7306-372917+%5BSpecified%5D&comment=Title%3A+Run+the+Quickstarts+in+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7306-372917+11+Feb+2013+13%3A50+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7307-331991+%5BSpecified%5D&comment=Title%3A+Run+the+Quickstarts+Using+a+Command+Line%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7307-331991+09+Nov+2012+04%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Procedure 1.9. Import the helloworld quickstart into JBoss Developer Studio

If you previously imported all of the quickstarts into JBoss Developer Studio following the steps here
Section 1.4.3.1, “Run the Quickstarts in JBoss Developer Studio”, you can skip to the next section.

1. If you have not done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the
Maven Settings”.

2. If you have not done so, Section 1.3.1.3, “Install JBoss Developer Studio 5”.

3. Section 1.3.1.4, “Start JBoss Developer Studio”.

4. From the menu, select File → Import.

5. In the selection list, choose Maven → Existing Maven Projects, then click Next.

Figure 1.9. Import Existing Maven Projects

6. Browse to the QUICKSTART_HOME/quickstart/helloworld/ directory and click OK. The
Projects list box is populated with the pom.xml file from the helloworld quickstart project.

Development Guide

28

Figure 1.10. Select Maven Projects

7. Click Finish.

Procedure 1.10. Build and Deploy the helloworld quickstart

1. If you have not yet configured JBoss Developer Studio for JBoss EAP 6, you must
Section 1.3.1.5, “Add the JBoss EAP 6 Server to JBoss Developer Studio”.

2. Right click on jboss-as-helloworld in the Project Explorer tab, and select Run As →
Run on Server.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

29

Figure 1.11. Run on Server

3. Select the JBoss EAP 6.0 Runtime Server server and click Next. This deploys the
helloworld quickstart to the JBoss server.

4. To verify that the helloworld quickstart was deployed successfully to the JBoss server, open a
web browser and access the application at this URL: http://localhost:8080/jboss-as-helloworld

Procedure 1.11. Examine the Directory Structure

The code for the helloworld quickstart can be found in the QUICKSTART_HOME/helloworld
directory. The helloworld quickstart is comprised a Servlet and a CDI bean. It also includes an empty
beans.xml file which tells JBoss EAP 6 to look for beans in this application and to activate the CDI.

1. The beans.xml file is located in the WEB-INF/ folder in the src/main/webapp/ directory of
the quickstart.

2. The src/main/webapp/ directory also includes an index.html file which uses a simple meta
refresh to redirect the user's browser to the Servlet, which is located at
http://localhost:8080/jboss-as-helloworld/HelloWorld.

3. All the configuration files for this example are located in WEB-INF/, which can be found in the
src/main/webapp/ directory of the example.

Development Guide

30

http://localhost:8080/jboss-as-helloworld
http://localhost:8080/jboss-as-helloworld/HelloWorld

4. Notice that the quickstart doesn't even need a web.xml file!

Procedure 1.12. Examine the Code

The package declaration and imports have been excluded from these listings. The complete listing is
available in the quickstart source code.

1. Review the HelloWorldServlet code
The HelloWorldServlet.java file is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This Servlet
sends the information to the browser.

Table 1.1. HelloWorldServlet Details

Line Note

27 Before Java EE 6, an XML file was used to register Servlets. It is now much cleaner. All you
need to do is add the @WebServlet annotation and provide a mapping to a URL used to
access the servlet.

30-32 Every web page needs correctly formed HTML. This quickstart uses static Strings to write
the minimum header and footer output.

34-35 These lines inject the HelloService CDI bean which generates the actual message. As long
as we don't alter the API of HelloService, this approach allows us to alter the
implementation of HelloService at a later date without changing the view layer.

27. @WebServlet("/HelloWorld")
28. public class HelloWorldServlet extends HttpServlet {
29.
30. static String PAGE_HEADER = "<html><head /><body>";
31.
32. static String PAGE_FOOTER = "</body></html>";
33.
34. @Inject
35. HelloService helloService;
36.
37. @Override
38. protected void doGet(HttpServletRequest req,
HttpServletResponse resp)
 throws ServletException, IOException
{
39. PrintWriter writer = resp.getWriter();
40. writer.println(PAGE_HEADER);
41. writer.println("<h1>" +
helloService.createHelloMessage("World") + "</h1>");
42. writer.println(PAGE_FOOTER);
43. writer.close();
44. }
45.
46. }

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

31

41 This line calls into the service to generate the message "Hello World", and write it out to the
HTTP request.

Line Note

2. Review the HelloService code
The HelloService.java file is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This service is
very simple. It returns a message. No XML or annotation registration is required.

Report a bug

1.4.4.2. Explore the numberguess Quickstart

Summary

This quickstart shows you how to create and deploy a simple application to JBoss EAP 6. This
application does not persist any information. Information is displayed using a JSF view, and business
logic is encapsulated in two CDI (Contexts and Dependency Injection) beans. In the numberguess
quickstart, you get 10 attempts to guess a number between 1 and 100. After each attempt, you're told
whether your guess was too high or too low.

The code for the numberguess quickstart can be found in the QUICKSTART_HOME/numberguess
directory. The numberguess quickstart is comprised of a number of beans, configuration files and
Facelets (JSF) views, packaged as a WAR module.

Detailed instructions to build and deploy this quickstart using a command line can be found in the
README file at the root of the numberguess quickstart directory. Here we show you how to use JBoss
Developer Studio to run the quickstart.

Procedure 1.13. Import the numberguess quickstart into JBoss Developer Studio

If you previously imported all of the quickstarts into JBoss Developer Studio following the steps in the
following procedure, Section 1.4.3.1, “Run the Quickstarts in JBoss Developer Studio”, you can skip to
the next section.

1. If you have not done so, perform the following procedures: Section 1.3.1.3, “Install JBoss
Developer Studio 5”

2. Section 1.3.1.4, “Start JBoss Developer Studio”

3. From the menu, select File → Import.

4. In the selection list, choose Maven → Existing Maven Projects, then click Next.

 9. public class HelloService {
10.
11. String createHelloMessage(String name) {
12. return "Hello " + name + "!";
32. }
33. }
34.

Development Guide

32

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7881-459879+%5BSpecified%5D&comment=Title%3A+Explore+the+helloworld+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7881-459879+14+Jun+2013+09%3A15+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Figure 1.12. Import Existing Maven Projects

5. Browse to the QUICKSTART_HOME/quickstart/numberguess/ directory and click OK. The
Projects list box is populated with the pom.xml file from the numberguess quickstart project.

6. Click Finish.

Procedure 1.14. Build and Deploy the numberguess quickstart

1. If you have not yet configured JBoss Developer Studio for JBoss EAP 6, you must do the
following: Section 1.3.1.5, “Add the JBoss EAP 6 Server to JBoss Developer Studio”.

2. Right click on jboss-as-numberguess in the Project Explorer tab, and select Run As →
Run on Server.

3. Select the JBoss EAP 6.0 Runtime Server server and click Next. This deploys the
numberguess quickstart to the JBoss server.

4. To verify that the numberguess quickstart was deployed successfully to the JBoss server, open
a web browser and access the application at this URL: http://localhost:8080/jboss-as-
numberguess

Procedure 1.15. Examine the Configuration Files

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

33

http://localhost:8080/jboss-as-numberguess

All the configuration files for this example are located in WEB-INF/ directory which can be found in the
src/main/webapp/ directory of the quickstart.

1. Examine the faces-config file
This quickstart uses the JSF 2.0 version of faces-config.xml filename. A standardized
version of Facelets is the default view handler in JSF 2.0, so there's really nothing that you have
to configure. JBoss EAP 6 goes above and beyond Java EE here. It will automatically configure
the JSF for you if you include this configuration file. As a result, the configuration consists of only
the root element:

2. Examine the beans.xml file
There's also an empty beans.xml file, which tells JBoss EAP 6 to look for beans in this
application and to activate the CDI.

3. There is no web.xml file
Notice that the quickstart doesn't even need a web.xml file!

Procedure 1.16. Examine the JSF Code

JSF uses the .xhtml file extension for source files, but serves up the rendered views with the .jsf
extension.

Examine the home.xhtml code
The home.xhtml file is located in the src/main/webapp/ directory.

03. <faces-config version="2.0"
04. xmlns="http://java.sun.com/xml/ns/javaee"
05. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
06. xsi:schemaLocation="
07. http://java.sun.com/xml/ns/javaee>
08. http://java.sun.com/xml/ns/javaee/web-
facesconfig_2_0.xsd">
09.
10. </faces-config>

03. <html xmlns="http://www.w3.org/1999/xhtml"
04. xmlns:ui="http://java.sun.com/jsf/facelets"
05. xmlns:h="http://java.sun.com/jsf/html"
06. xmlns:f="http://java.sun.com/jsf/core">
07.
08. <head>
09. <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1" />
10. <title>Numberguess</title>
11. </head>
12.
13. <body>
14. <div id="content">
15. <h1>Guess a number...</h1>
16. <h:form id="numberGuess">
17.
18. <!-- Feedback for the user on their guess -->
19. <div style="color: red">
20. <h:messages id="messages" globalOnly="false" />

Development Guide

34

Table 1.2. JSF Details

Line Note

20-24 These are the messages which can be sent to the user: "Higher!" and "Lower!"

29-32 As the user guesses, the range of numbers they can guess gets smaller. This sentence
changes to make sure they know the number range of a valid guess.

21. <h:outputText id="Higher" value="Higher!"
22. rendered="#{game.number gt game.guess and
game.guess ne 0}" />
23. <h:outputText id="Lower" value="Lower!"
24. rendered="#{game.number lt game.guess and
game.guess ne 0}" />
25. </div>
26.
27. <!-- Instructions for the user -->
28. <div>
29. I'm thinking of a number between #
{game.smallest} and #{game.biggest}.
You have
32. #{game.remainingGuesses} guesses remaining.
33. </div>
34.
35. <!-- Input box for the users guess, plus a button to
submit, and reset -->
36. <!-- These are bound using EL to our CDI beans -->
37. <div>
38. Your guess:
39. <h:inputText id="inputGuess" value="#{game.guess}"
40. required="true" size="3"
41. disabled="#{game.number eq game.guess}"
42. validator="#{game.validateNumberRange}" />
43. <h:commandButton id="guessButton" value="Guess"
44. action="#{game.check}"
45. disabled="#{game.number eq game.guess}" />
46. </div>
47. <div>
48. <h:commandButton id="restartButton" value="Reset"
49. action="#{game.reset}" immediate="true" />
50. </div>
51. </h:form>
52.
53. </div>
54.
55. <br style="clear: both" />
56.
57. </body>
58. </html>

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

35

38-42 This input field is bound to a bean property using a value expression.

42 A validator binding is used to make sure the user does not accidentally input a number
outside of the range in which they can guess. If the validator was not here, the user might
use up a guess on an out of bounds number.

43-45 There must be a way for the user to send their guess to the server. Here we bind to an
action method on the bean.

Line Note

Procedure 1.17. Examine the Class Files

All of the numberguess quickstart source files can be found in the
src/main/java/org/jboss/as/quickstarts/numberguess/ directory. The package declaration
and imports have been excluded from these listings. The complete listing is available in the quickstart
source code.

1. Review the Random.java qualifier code
A qualifier is used to remove ambiguity between two beans, both of which are eligible for
injection based on their type. For more information on qualifiers, refer to Section 9.2.3.3, “Use a
Qualifier to Resolve an Ambiguous Injection”

The @Random qualifier is used for injecting a random number.

2. Review the MaxNumber.java qualifier code
The @MaxNumberqualifier is used for injecting the maximum number allowed.

3. Review the Generator code
The Generator class is responsible for creating the random number via a producer method. It
also exposes the maximum possible number via a producer method. This class is application
scoped so you don't get a different random each time.

21. @Target({ TYPE, METHOD, PARAMETER, FIELD })
22. @Retention(RUNTIME)
23. @Documented
24. @Qualifier
25. public @interface Random {
26.
27. }

21. @Target({ TYPE, METHOD, PARAMETER, FIELD })
22. @Retention(RUNTIME)
23. @Documented
24. @Qualifier
25. public @interface MaxNumber {
26.
27. }

28. @ApplicationScoped

Development Guide

36

4. Review the Game code
The session scoped class Game is the primary entry point of the application. It is responsible for
setting up or resetting the game, capturing and validating the user's guess, and providing
feedback to the user with a FacesMessage. It uses the post-construct lifecycle method to
initialize the game by retrieving a random number from the @Random Instance<Integer>
bean.

Notice the @Named annotation in the class. This annotation is only required when you want to
make the bean accessible to a JSF view via Expression Language (EL), in this case #{game}.

29. public class Generator implements Serializable {
30. private static final long serialVersionUID =
-7213673465118041882L;
31.
32. private java.util.Random random = new
java.util.Random(System.currentTimeMillis());
33.
34. private int maxNumber = 100;
35.
36. java.util.Random getRandom() {
37. return random;
38. }
39.
40. @Produces
41. @Random
42. int next() {
43. // a number between 1 and 100
44. return getRandom().nextInt(maxNumber - 1) + 1;
45. }
46.
47. @Produces
48. @MaxNumber
49. int getMaxNumber() {
50. return maxNumber;
51. }
52. }

035. @Named
036. @SessionScoped
037. public class Game implements Serializable {
038.
039. private static final long serialVersionUID =
991300443278089016L;
040.
041. /**
042. * The number that the user needs to guess
043. */
044. private int number;
045.
046. /**
047. * The users latest guess
048. */
049. private int guess;
050.
051. /**

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

37

052. * The smallest number guessed so far (so we can track the
valid guess range).
053. */
054. private int smallest;
055.
056. /**
057. * The largest number guessed so far
058. */
059. private int biggest;
060.
061. /**
062. * The number of guesses remaining
063. */
064. private int remainingGuesses;
065.
066. /**
067. * The maximum number we should ask them to guess
068. */
069. @Inject
070. @MaxNumber
071. private int maxNumber;
072.
073. /**
074. * The random number to guess
075. */
076. @Inject
077. @Random
078. Instance<Integer> randomNumber;
079.
080. public Game() {
081. }
082.
083. public int getNumber() {
084. return number;
085. }
086.
087. public int getGuess() {
088. return guess;
089. }
090.
091. public void setGuess(int guess) {
092. this.guess = guess;
093. }
094.
095. public int getSmallest() {
096. return smallest;
097. }
098.
099. public int getBiggest() {
100. return biggest;
101. }
102.
103. public int getRemainingGuesses() {
104. return remainingGuesses;
105. }
106.

Development Guide

38

107. /**
108. * Check whether the current guess is correct, and update
the biggest/smallest guesses as needed.
109. * Give feedback to the user if they are correct.
110. */
111. public void check() {
112. if (guess > number) {
113. biggest = guess - 1;
114. } else if (guess < number) {
115. smallest = guess + 1;
116. } else if (guess == number) {
117. FacesContext.getCurrentInstance().addMessage(null, new
FacesMessage("Correct!"));
118. }
119. remainingGuesses--;
120. }
121.
122. /**
123. * Reset the game, by putting all values back to their
defaults, and getting a new random number.
124. * We also call this method when the user starts playing for
the first time using
125. * {@linkplain PostConstruct @PostConstruct} to set the
initial values.
126. */
127. @PostConstruct
128. public void reset() {
129. this.smallest = 0;
130. this.guess = 0;
131. this.remainingGuesses = 10;
132. this.biggest = maxNumber;
133. this.number = randomNumber.get();
134. }
135.
136. /**
137. * A JSF validation method which checks whether the guess is
valid. It might not be valid because
138. * there are no guesses left, or because the guess is not in
range.
139. *
140. */
141. public void validateNumberRange(FacesContext context,
UIComponent toValidate, Object value) {
142. if (remainingGuesses <= 0) {
143. FacesMessage message = new FacesMessage("No guesses
left!");
144. context.addMessage(toValidate.getClientId(context),
message);
145. ((UIInput) toValidate).setValid(false);
146. return;
147. }
148. int input = (Integer) value;
149.
150. if (input < smallest || input > biggest) {
151. ((UIInput) toValidate).setValid(false);
152.

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

39

Report a bug

153. FacesMessage message = new FacesMessage("Invalid
guess");
154. context.addMessage(toValidate.getClientId(context),
message);
155. }
156. }
157. }

Development Guide

40

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8023-459880+%5BSpecified%5D&comment=Title%3A+Explore+the+numberguess+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8023-459880+14+Jun+2013+09%3A17+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 2. MAVEN GUIDE

2.1. LEARN ABOUT MAVEN

2.1.1. About the Maven Repository

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model, or POM, files to define projects and manage the build process. POMs describe the module and
component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built in a correct and uniform manner.

Maven achieves this by using a repository. A Maven repository stores Java libraries, plug-ins, and other
build artifacts. The default public repository is the Maven 2 Central Repository, but repositories can be
private and internal within a company with a goal to share common artifacts among development teams.
Repositories are also available from third-parties. JBoss EAP 6 includes a Maven repository that contains
many of the requirements that Java EE developers typically use to build applications on JBoss EAP 6. To
configure your project to use this repository, see Section 2.3.1, “Configure the JBoss EAP Maven
Repository”.

A repository can be local or remote. Remote repositories are accessed using common protocols such as
http:// for a repository on an HTTP server or file:// for a repository a file server. A local repository
is a cached download of the artifacts from a remote repository.

For more information about Maven, see Welcome to Apache Maven.

For more information about Maven repositories, see Apache Maven Project - Introduction to
Repositories.

For more information about Maven POM files, see the Apache Maven Project POM Reference and
Section 2.1.2, “About the Maven POM File”.

Report a bug

2.1.2. About the Maven POM File

The Project Object Model, or POM, file is a configuration file used by Maven to build projects. It is an
XML file that contains information about the project and how to build it, including the location of the
source, test, and target directories, the project dependencies, plug-in repositories, and goals it can
execute. It can also include additional details about the project including the version, description,
developers, mailing list, license, and more. A pom.xml file requires some configuration options and will
default all others. See Section 2.1.3, “Minimum Requirements of a Maven POM File” for details.

The schema for the pom.xml file can be found at http://maven.apache.org/maven-v4_0_0.xsd.

For more information about POM files, see the Apache Maven Project POM Reference.

Report a bug

2.1.3. Minimum Requirements of a Maven POM File

Minimum requirements

The minimum requirements of a pom.xml file are as follows:

CHAPTER 2. MAVEN GUIDE

41

http://search.maven.org/#browse
http://maven.apache.org/
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/pom.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+1841-459881+%5BSpecified%5D&comment=Title%3A+About+the+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1841-459881+14+Jun+2013+09%3A18+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/pom.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5721-155458+%5BSpecified%5D&comment=Title%3A+About+the+Maven+POM+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5721-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

project root

modelVersion

groupId - the id of the project's group

artifactId - the id of the artifact (project)

version - the version of the artifact under the specified group

Sample pom.xml file

A basic pom.xml file might look like this:

Report a bug

2.1.4. About the Maven Settings File

The Maven settings.xml file contains user-specific configuration information for Maven. It contains
information that should not be distributed with the pom.xml file, such as developer identity, proxy
information, local repository location, and other settings specific to a user.

There are two locations where the settings.xml can be found.

In the Maven install

The settings file can be found in the M2_HOME/conf/ directory. These settings are referred to as
global settings. The default Maven settings file is a template that can be copied and used as a
starting point for the user settings file.

In the user's install

The settings file can be found in the USER_HOME/.m2/ directory. If both the Maven and user
settings.xml files exist, the contents are merged. Where there are overlaps, the user's
settings.xml file takes precedence.

The following is an example of a Maven settings.xml file:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.jboss.app</groupId>
 <artifactId>my-app</artifactId>
 <version>1</version>
</project>

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <profiles>
 <!-- Configure the JBoss EAP Maven repository -->
 <profile>
 <id>jboss-eap-maven-repository</id>
 <repositories>

Development Guide

42

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5723-332011+%5BSpecified%5D&comment=Title%3A+Minimum+Requirements+of+a+Maven+POM+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5723-332011+09+Nov+2012+04%3A50+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The schema for the settings.xml file can be found at http://maven.apache.org/xsd/settings-1.0.0.xsd.

Report a bug

2.2. INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY

2.2.1. Download and Install Maven

1. Go to Apache Maven Project - Download Maven and download the latest distribution for your
operating system.

2. See the Maven documentation for information on how to download and install Apache Maven for
your operating system.

Report a bug

2.2.2. Install the JBoss EAP 6 Maven Repository

There are three ways to install the repository; on your local file system, on Apache Web Server, or with a
Maven repository manager.

Section 2.2.3, “Install the JBoss EAP 6 Maven Repository Locally”

 <repository>
 <id>jboss-eap</id>
 <url>file:///path/to/repo/jboss-eap-6.0-maven-repository</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-eap-maven-plugin-repository</id>
 <url>file:///path/to/repo/jboss-eap-6.0-maven-repository</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
 </profile>
 </profiles>
 <activeProfiles>
 <!-- Optionally, make the repository active by default -->
 <activeProfile>jboss-eap-maven-repository</activeProfile>
 </activeProfiles>
</settings>

CHAPTER 2. MAVEN GUIDE

43

http://maven.apache.org/xsd/settings-1.0.0.xsd
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5756-155458+%5BSpecified%5D&comment=Title%3A+About+the+Maven+Settings+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5756-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://maven.apache.org/download.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8896-332015+%5BSpecified%5D&comment=Title%3A+Download+and+Install+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8896-332015+09+Nov+2012+04%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Section 2.2.4, “Install the JBoss EAP 6 Maven Repository for Use with Apache httpd”

Section 2.2.5, “Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository
Manager”

Report a bug

2.2.3. Install the JBoss EAP 6 Maven Repository Locally

Summary

There are three ways to install the repository; on your local file system, on Apache Web Server, or with a
Maven repository manager. This example covers the steps to download the JBoss EAP 6 Maven
Repository to the local file system. This option is easy to configure and allows you to get up and running
quickly on your local machine. It can help you become familiar with the using Maven for development but
is not recommended for team production environments.

Procedure 2.1. Download and Install the JBoss EAP 6 Maven Repository to the Local File System

1. Download the JBoss EAP 6 Maven Repository ZIP archive
Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Application Platform 6.1.0 Maven Repository" in the list.

3. Click the Download button to download a .zip file containing the repository.

4. Unzip the file in the same directory on the local file system into a directory of your choosing.

5. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.

Result

This creates a Maven repository directory called jboss-eap-6.1.0.maven-repository.

IMPORTANT

If you want to continue to use an older local repository, you must configure it separately in
the Maven settings.xml configuration file. Each local repository must be configured
within its own <repository> tag.

IMPORTANT

When downloading a new Maven repository, remove the cached repository/
subdirectory located under the .m2/directory before attempting to use the new Maven
repository.

Report a bug

2.2.4. Install the JBoss EAP 6 Maven Repository for Use with Apache httpd

There are three ways to install the repository; on your local file system, on Apache Web Server, or with a
Maven repository manager. This example will cover the steps to download the JBoss EAP 6 Maven
Repository for use with Apache httpd. This option is good for multi-user and cross-team development

Development Guide

44

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8321-459882+%5BSpecified%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8321-459882+14+Jun+2013+09%3A19+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5707-467303+%5BSpecified%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+Locally%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5707-467303+21+Jun+2013+02%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

environments because any developer that can access the web server can also access the Maven
repository.

Prerequisites

You must configure Apache httpd. See Apache HTTP Server Project documentation for instructions.

Procedure 2.2. Download the JBoss EAP 6 Maven Repository ZIP archive

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Application Platform 6.1.0 Maven Repository" in the list.

3. Click the Download button to download a .zip file containing the repository.

4. Unzip the files in a directory that is web accessible on the Apache server.

5. Configure Apache to allow read access and directory browsing in the created directory.

6. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.

Result

This allows a multi-user environment to access the Maven repository on Apache httpd.

NOTE

If you're upgrading from a previous version of the repository, note that JBoss EAP 6.1.0
Maven Repository artifacts can be simply extracted into an existing JBoss product Maven
repository (such as JBoss EAP 6.0.1) without any conflicts. After the repository archive
has been extracted, the artifacts can be used with the existing Maven settings for this
repository.

Report a bug

2.2.5. Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository
Manager

There are three ways to install the repository; on your local file system, on Apache Web Server, or with a
Maven repository manager. This option is best if you have a licences and already use a repository
manager because you can host the JBoss repository alongside your existing repositories. For more
information about Maven repository managers, see Section 2.2.6, “About Maven Repository Managers”.

This example will cover the steps to install the JBoss EAP 6 Maven Repository using Sonatype Nexus
Maven Repository Manager. For more complete instructions, see Sonatype Nexus: Manage Artifacts.

Procedure 2.3. Download the JBoss EAP 6 Maven Repository ZIP archive

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Application Platform 6.1.0 Maven Repository" in the list.

3. Click the Download button to download a .zip file containing the repository.

CHAPTER 2. MAVEN GUIDE

45

http://httpd.apache.org/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5722-471760+%5BSpecified%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+for+Use+with+Apache+httpd%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5722-471760+27+Jun+2013+06%3A16+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://www.sonatype.org/nexus/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform

4. Unzip the files into a directory of your choosing.

Procedure 2.4. Add the JBoss EAP 6 Maven Repository using Nexus Maven Repository Manager

1. Log into Nexus as an Administrator.

2. Select the Repositories section from the Views → Repositories menu to the left of your
repository manager.

3. Click the Add... dropdown, then select Hosted Repository.

4. Give the new repository a name and ID.

5. Enter the path on disk to the unzipped repository in the field Override Local Storage
Location.

6. Continue if you want the artifact to be available in a repository group. Do not continue with this
procedure if this is not what you want.

7. Select the repository group.

8. Click on the Configure tab.

9. Drag the new JBoss Maven repository from the Available Repositories list to the
Ordered Group Repositories list on the left.

NOTE

Note that the order of this list determines the priority for searching Maven
artifacts.

10. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.

Result

The repository is configured using Nexus Maven Repository Manager.

Report a bug

2.2.6. About Maven Repository Managers

A repository manager is a tool that allows you to easily manage Maven repositories. Repository
managers are useful in multiple ways:

They provide the ability to configure proxies between your organization and remote Maven
repositories. This provides a number of benefits, including faster and more efficient deployments
and a better level of control over what is downloaded by Maven.

They provide deployment destinations for your own generated artifacts, allowing collaboration
between different development teams across an organization.

For more information about Maven repository managers, see Apache Maven Project - The List of
Repository Managers.

Commonly used Maven repository managers

Development Guide

46

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7827-471761+%5BSpecified%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+Using+Nexus+Maven+Repository+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7827-471761+27+Jun+2013+06%3A19+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://maven.apache.org/repository-management.html

Sonatype Nexus

See Sonatype Nexus: Manage Artifacts for more information about Nexus.

Artifactory

See Artifactory Open Source for more information about Artifactory.

Apache Archiva

See Apache Archiva: The Build Artifact Repository Manager for more information about Apache
Archiva.

Report a bug

2.3. USE THE MAVEN REPOSITORY

2.3.1. Configure the JBoss EAP Maven Repository

Overview

There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:

You can configure the repositories in the Maven global or user settings.

You can configure the repositories in the project's POM file.

Procedure 2.5. Configure Maven Settings to Use the JBoss EAP 6 Maven Repository

1. Configure the Maven repository using Maven settings
This is the recommended approach. Maven settings used with a repository manager or
repository on a shared server provide better control and manageability of projects. Settings also
provide the ability to use an alternative mirror to redirect all lookup requests for a specific
repository to your repository manager without changing the project files. For more information
about mirrors, see http://maven.apache.org/guides/mini/guide-mirror-settings.html.

This method of configuration applies across all Maven projects, as long as the project POM file
does not contain repository configuration.

Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.

2. Configure the Maven repository using the project POM
This method of configuration is generally not recommended. If you decide to configure
repositories in your project POM file, plan carefully and be aware that it can slow down your build
and you may even end up with artifacts that are not from the expected repository.

CHAPTER 2. MAVEN GUIDE

47

http://www.sonatype.org/nexus/
http://www.jfrog.com/products.php
http://archiva.apache.org/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8765-332098+%5BSpecified%5D&comment=Title%3A+About+Maven+Repository+Managers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8765-332098+09+Nov+2012+05%3A08+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://maven.apache.org/guides/mini/guide-mirror-settings.html

NOTE

In an Enterprise environment, where a repository manager is usually used, Maven
should query all artifacts for all projects using this manager. Because Maven uses
all declared repositories to find missing artifacts, if it can't find what it's looking
for, it will try and look for it in the repository central (defined in the built-in parent
POM). To override this central location, you can add a definition with central so
that the default repository central is now your repository manager as well. This
works well for established projects, but for clean or 'new' projects it causes a
problem as it creates a cyclic dependency.

Transitively included POMs are also an issue with this type of configuration.
Maven has to query these external repositories for missing artifacts. This not only
slows down your build, it also causes you to lose control over where your artifacts
are coming from and likely to cause broken builds.

This method of configuration overrides the global and user Maven settings for the configured
project.

Section 2.3.3, “Configure the JBoss EAP 6 Maven Repository Using the Project POM”.

Report a bug

2.3.2. Configure the JBoss EAP 6 Maven Repository Using the Maven Settings

There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:

You can modify the Maven settings.

You can configure the project's POM file.

This task shows you how to direct Maven to use the JBoss EAP 6 Maven Repository across all projects
using the Maven global or user settings. This is the recommended approach.

NOTE

The URL of the repository will depend on where the repository is located; on the
filesystem, or web server. For information on how to install the repository, refer to the
chapter entitled Maven Guide in the Development Guide for JBoss EAP 6 on
https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/.
The following are examples for each of the installation options:

File System

file:///path/to/repo/jboss-eap-6.x-maven-repository

Apache Web Server

http://intranet.acme.com/jboss-eap-6.x-maven-repository/

Nexus Repository Manager

 https://intranet.acme.com/nexus/content/repositories/jboss-
eap-6.x-maven-repository

You can configure Maven to use the JBoss EAP 6 Repository using either the Maven install or the user
install settings. For more information about the location of the settings and how they behave, refer to the
chapter entitled Maven Guide in the Development Guide for JBoss EAP 6 on

Development Guide

48

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8418-459886+%5BSpecified%5D&comment=Title%3A+Configure+the+JBoss+EAP+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8418-459886+14+Jun+2013+09%3A25+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/

https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/. .

To use the JBoss EAP 6 repository on a local user system, follow these instructions:

Procedure 2.6. Configure the Settings

1. Open the settings.xml for the type of configuration you have chosen.

Global Settings
If you are configuring the global settings, open the M2_HOME/conf/settings.xml file.

User Settings
If you are configuring user specific settings and you do not yet have a
USER_HOME/.m2/settings.xml file, copy the settings.xml file from the
M2_HOME/conf/ directory into the USER_HOME/.m2/ directory.

2. Copy the following XML into the <profiles> element of the settings.xml file. Be sure to
change the <url> to the actual repository location.

<profile>
 <id>jboss-eap-repository</id>
 <repositories>
 <repository>
 <id>jboss-eap-repository</id>
 <name>JBoss EAP Maven Repository</name>
 <url>file:///path/to/repo/jboss-eap-6.x-maven-repository</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>jboss-eap-repository-group</id>
 <name>JBoss EAP Maven Repository</name>
 <url>
 file:///path/to/repo/jboss-eap-6.x-maven-repository
 </url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </pluginRepository>

CHAPTER 2. MAVEN GUIDE

49

https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/

Copy the following XML into the <activeProfiles> element of the settings.xml file.

3. If you modify the settings.xml file while JBoss Developer Studio is running, you must refresh
the user settings. From the menu, choose Window → Preferences. In the Preferences
Window, expand Maven and choose User Settings. Click the Update Settings button to
refresh the Maven user settings in JBoss Developer Studio.

Figure 2.1. Update Maven User Settings

 </pluginRepositories>
</profile>

<activeProfile>jboss-eap-repository</activeProfile>

Development Guide

50

IMPORTANT

If your Maven repository contains outdated artifacts, you may encounter one of the
following Maven error messages when you build or deploy your project:

Missing artifact ARTIFACT_NAME

[ERROR] Failed to execute goal on project PROJECT_NAME; Could not resolve
dependencies for PROJECT_NAME

To resolve the issue, delete the cached version of your local repository to force a
download of the latest Maven artifacts. The cached repository is located in your
~/.m2/repository/ subdirectory on Linux, or the
%SystemDrive%\Users\USERNAME\.m2\repository\ subdirectory on Windows.

Result

The JBoss EAP 6 repository has now been configured.

Report a bug

2.3.3. Configure the JBoss EAP 6 Maven Repository Using the Project POM

There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:

You can modify the Maven settings.

You can configure the project's POM file.

This task shows you how to configure a specific project to use the JBoss EAP 6 Maven Repository by
adding repository information to the project pom.xml. This configuration method supercedes and
overrides the global and user settings configurations.

This method of configuration is generally not recommended. If you decide to configure repositories in
your project POM file, plan carefully and be aware that it can slow down your build and you may even
end up with artifacts that are not from the expected repository.

NOTE

In an Enterprise environment, where a repository manager is usually used, Maven should
query all artifacts for all projects using this manager. Because Maven uses all declared
repositories to find missing artifacts, if it can't find what it's looking for, it will try and look
for it in the repository central (defined in the built-in parent POM). To override this central
location, you can add a definition with central so that the default repository central is
now your repository manager as well. This works well for established projects, but for
clean or 'new' projects it causes a problem as it creates a cyclic dependency.

Transitively included POMs are also an issue with this type of configuration. Maven has to
query these external repositories for missing artifacts. This not only slows down your
build, it also causes you to lose control over where your artifacts are coming from and
likely to cause broken builds.

CHAPTER 2. MAVEN GUIDE

51

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5709-503028+%5BSpecified%5D&comment=Title%3A+Configure+the+JBoss+EAP+6+Maven+Repository+Using+the+Maven+Settings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5709-503028+29+Aug+2013+06%3A43+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

NOTE

The URL of the repository will depend on where the repository is located; on the
filesystem, or web server. For information on how to install the repository, see:
Section 2.2.2, “Install the JBoss EAP 6 Maven Repository”. The following are examples
for each of the installation options:

File System

file:///path/to/repo/jboss-eap-6.0.0-maven-repository

Apache Web Server

http://intranet.acme.com/jboss-eap-6.0.0-maven-repository/

Nexus Repository Manager

 https://intranet.acme.com/nexus/content/repositories/jboss-
eap-6.0.0-maven-repository

1. Open your project's pom.xml file in a text editor.

2. Add the following repository configuration. If there is already a <repositories> configuration
in the file, then add the <repository> element to it. Be sure to change the <url> to the actual
repository location.

3. Add the following plug-in repository configuration. If there is already a
<pluginRepositories> configuration in the file, then add the <pluginRepository>
element to it.

<repositories>
 <repository>
 <id>jboss-eap-repository-group</id>
 <name>JBoss EAP Maven Repository</name>
 <url>file:///path/to/repo/jboss-eap-6.0.0-maven-
repository/</url>
 <layout>default</layout>
 <releases>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 </snapshots>
 </repository>
</repositories>

<pluginRepositories>
 <pluginRepository>
 <id>jboss-eap-repository-group</id>
 <name>JBoss EAP Maven Repository</name>
 <url>file:///path/to/repo/jboss-eap-6.0.0-maven-
repository/</url>
 <releases>
 <enabled>true</enabled>
 </releases>

Development Guide

52

Report a bug

2.3.4. Manage Project Dependencies

This topic describes the usage of Bill of Materials (BOM) POMs for Red Hat JBoss Enterprise
Application Platform 6.

A BOM is a Maven pom.xml (POM) file that specifies the versions of all runtime dependencies for a
given module. Version dependencies are listed in the dependency management section of the file.

A project uses a BOM by adding its groupId:artifactId:version (GAV) to the dependency
management section of the project pom.xml file and specifying the <scope>import</scope> and
<type>pom</type> element values.

NOTE

In many cases, dependencies in project POM files use the provided scope. This is
because these classes are provided by the application server at runtime and it is not
necessary to package them with the user application.

JBoss JavaEE Specs Bom
The jboss-javaee-6.0 BOM contains the Java EE Specification API JARs used by JBoss EAP.

To use this BOM in a project, add a dependency for the GAV that contains the version of the JSP and
Servlet API JARs needed to build and deploy the application.

The following example uses the 3.0.2.Final-redhat-4 version of the jboss-javaee-6.0 BOM.

 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </pluginRepository>
</pluginRepositories>

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.spec</groupId>
 <artifactId>jboss-javaee-6.0</artifactId>
 <version>3.0.2.Final-redhat-4</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 ...
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.jboss.spec.javax.servlet<groupId>
 <artifactId>jboss-servlet-api_3.0_spec</artifactId>
 <scope>provided</scope>
 </dependency>

CHAPTER 2. MAVEN GUIDE

53

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4606-459888+%5BSpecified%5D&comment=Title%3A+Configure+the+JBoss+EAP+6+Maven+Repository+Using+the+Project+POM%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4606-459888+14+Jun+2013+09%3A29+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

JBoss BOM and Quickstarts
The JBoss BOMs are located in the jboss-bom project at https://github.com/jboss-eap/jboss-bom.

The quickstarts provide the primary use case examples for the Maven repository. The following table
lists the Maven BOMs used by the quickstarts.

Table 2.1. JBoss BOMs Used by the Quickstarts

Maven artifactId Description

jboss-javaee-6.0-with-errai This BOM builds on the Java EE full profile BOM, adding the Errai
framework and the Google Web Toolkit (GWT) plus its Maven plugin.

jboss-javaee-6.0-with-hibernate This BOM builds on the Java EE full profile BOM, adding Hibernate
Community projects including Hibernate ORM, Hibernate Search and
Hibernate Validator. It also provides tool projects such as Hibernate JPA
Model Gen and Hibernate Validator Annotation Processor.

jboss-javaee-6.0-with-hibernate3 This BOM builds on the Java EE full profile BOM, adding Hibernate
Community projects including Hibernate 3 ORM, Hibernate Entity
Manager (JPA 1.0) and Hibernate Validator.

jboss-javaee-6.0-with-infinispan This BOM builds on the Java EE full profile BOM, adding Infinispan.

jboss-javaee-6.0-with-logging This BOM builds on the Java EE full profile BOM, adding the JBoss
Logging Tools and Log4 framework.

jboss-javaee-6.0-with-osgi This BOM builds on the Java EE full profile BOM, adding OSGI.

jboss-javaee-6.0-with-security This BOM builds on the Java EE full profile BOM, adding Picketlink.

jboss-javaee-6.0-with-tools This BOM builds on the Java EE full profile BOM, adding Arquillian to
the mix. It also provides a version of JUnit and TestNG recommended for
use with Arquillian.

jboss-javaee-6.0-with-
transactions

This BOM includes a world class transaction manager. Use the JBossTS
APIs to access its full capabilities.

The following example uses the 1.0.4.Final-redhat-9 version of the jboss-javaee-6.0-with-
hibernate BOM.

 <dependency>
 <groupId>org.jboss.spec.javax.servlet.jsp</groupId>
 <artifactId>jboss-jsp-api_2.2_spec</artifactId>
 <scope>provided</scope>
 </dependency>
 ...
</dependencies>

<dependencyManagement>
 <dependencies>

Development Guide

54

https://github.com/jboss-eap/jboss-bom

JBoss Client BOMs
The JBoss EAP server build includes two client BOMs: jboss-as-ejb-client-bom and jboss-as-
jms-client-bom.

The client BOMs do not create a dependency management section or define dependencies. Instead,
they are an aggregate of other BOMs and are used to package the set of dependencies necessary for a
remote client use case.

The following example uses the 7.2.1.Final-redhat-10 version of the jboss-as-ejb-client-
bom client BOM.

This example uses the 7.2.1.Final-redhat-10 version of the jboss-as-jms-client-bom client
BOM.

 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-javaee-6.0-with-hibernate</artifactId>
 <version>1.0.4.Final-redhat-9</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 ...
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>
 <groupId>org.hibernate<groupId>
 <artifactId>hibernate-core</artifactId>
 <scope>provided</scope>
 </dependency>
 ...
</dependencies>

<dependencies>
 <dependency>
 <groupId>org.jboss.as<groupId>
 <artifactId>jboss-as-ejb-client-bom</artifactId>
 <version>7.2.1.Final-redhat-10</version>
 <type>pom</type>
 </dependency>
 ...
</dependencies>

<dependencies>
 <dependency>
 <groupId>org.jboss.as<groupId>
 <artifactId>jboss-as-jms-client-bom</artifactId>
 <version>7.2.1.Final-redhat-10</version>
 <type>pom</type>
 </dependency>
 ...

CHAPTER 2. MAVEN GUIDE

55

For more information about Maven Dependencies and BOM POM files, see Apache Maven Project -
Introduction to the Dependency Mechanism.

Report a bug

</dependencies>

Development Guide

56

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+22363-503951+%5BSpecified%5D&comment=Title%3A+Manage+Project+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22363-503951+30+Aug+2013+01%3A03+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 3. CLASS LOADING AND MODULES

3.1. INTRODUCTION

3.1.1. Overview of Class Loading and Modules

JBoss EAP 6 uses a new modular class loading system for controlling the class paths of deployed
applications. This system provides more flexibility and control than the traditional system of hierarchical
class loaders. Developers have fine-grained control of the classes available to their applications, and can
configure a deployment to ignore classes provided by the application server in favour of their own.

The modular class loader separates all Java classes into logical groups called modules. Each module
can define dependencies on other modules in order to have the classes from that module added to its
own class path. Because each deployed JAR and WAR file is treated as a module, developers can
control the contents of their application's class path by adding module configuration to their application.

The following material covers what developers need to know to successfully build and deploy
applications on JBoss EAP 6.

Report a bug

3.1.2. Class Loading

Class Loading is the mechanism by which Java classes and resources are loaded into the Java Runtime
Environment.

Report a bug

3.1.3. Modules

A Module is a logical grouping of classes used for class loading and dependency management. JBoss
EAP 6 identifies two different types of modules, sometimes called static and dynamic modules. However
the only difference between the two is how they are packaged. All modules provide the same features.

Static Modules

Static Modules are predefined in the EAP_HOME/modules/ directory of the application server. Each
sub-directory represents one module and contains one or more JAR files and a configuration file
(module.xml). The name of the module is defined in the module.xml file. All the application server
provided APIs are provided as static modules, including the Java EE APIs as well as other APIs such
as JBoss Logging.

Example 3.1. Example module.xml file

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.mysql">
 <resources>
 <resource-root path="mysql-connector-java-5.1.15.jar"/>
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>

CHAPTER 3. CLASS LOADING AND MODULES

57

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4352-459876+%5BSpecified%5D&comment=Title%3A+Overview+of+Class+Loading+and+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4352-459876+14+Jun+2013+09%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4549-155458+%5BSpecified%5D&comment=Title%3A+Class+Loading%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4549-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The module name, com.mysql, should match the directory structure for the module.

Creating custom static modules can be useful if many applications are deployed on the same server
that use the same third party libraries. Instead of bundling those libraries with each application, a
module containing these libraries can be created and installed by the JBoss administrator. The
applications can then declare an explicit dependency on the custom static modules.

Dynamic Modules

Dynamic Modules are created and loaded by the application server for each JAR or WAR
deployment (or subdeployment in an EAR). The name of a dynamic module is derived from the name
of the deployed archive. Because deployments are loaded as modules, they can configure
dependencies and be used as dependencies by other deployments.

Modules are only loaded when required. This usually only occurs when an application is deployed that
has explicit or implicit dependencies.

Report a bug

3.1.4. Module Dependencies

A module dependency is a declaration that one module requires the classes of another module in order
to function. Modules can declare dependencies on any number of other modules. When the application
server loads a module, the modular class loader parses the dependencies of that module and adds the
classes from each dependency to its class path. If a specified dependency cannot be found, the module
will fail to load.

Deployed applications (JAR and WAR) are loaded as dynamic modules and make use of dependencies
to access the APIs provided by JBoss EAP 6.

There are two types of dependencies: explicit and implicit.

Explicit dependencies are declared in configuration by the developer. Static modules can declare
dependencies in the modules.xml file. Dynamic modules can have dependencies declared in the
MANIFEST.MF or jboss-deployment-structure.xml deployment descriptors of the deployment.

Explicit dependencies can be specified as optional. Failure to load an optional dependency will not cause
a module to fail to load. However if the dependency becomes available later it will NOT be added to the
module's class path. Dependencies must be available when the module is loaded.

Implicit dependencies are added automatically by the application server when certain conditions or meta-
data are found in a deployment. The Java EE 6 APIs supplied with JBoss EAP 6 are examples of
modules that are added by detection of implicit dependencies in deployments.

Deployments can also be configured to exclude specific implicit dependencies. This is done with the
jboss-deployment-structure.xml deployment descriptor file. This is commonly done when an application
bundles a specific version of a library that the application server will attempt to add as an implicit
dependency.

A module's class path contains only its own classes and that of it's immediate dependencies. A module is
not able to access the classes of the dependencies of one of its dependencies. However a module can

 </dependencies>
</module>

Development Guide

58

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4360-458732+%5BSpecified%5D&comment=Title%3A+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4360-458732+11+Jun+2013+14%3A00+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

specify that an explicit dependency is exported. An exported dependency is provided to any module that
depends on the module that exports it.

Example 3.2. Module dependencies

Module A depends on Module B and Module B depends on Module C. Module A can access the
classes of Module B, and Module B can access the classes of Module C. Module A cannot access the
classes of Module C unless:

Module A declares an explicit dependency on Module C, or

Module B exports its dependency on Module C.

Report a bug

3.1.5. Class Loading in Deployments

For the purposes of classloading all deployments are treated as modules by JBoss EAP 6. These are
called dynamic modules. Class loading behavior varies according to the deployment type.

WAR Deployment

A WAR deployment is considered to be a single module. Classes in the WEB-INF/lib directory are
treated the same as classes in WEB-INF/classes directory. All classes packaged in the war will be
loaded with the same class loader.

EAR Deployment

EAR deployments are made up more than one module. The definition of these modules follows these
rules:

1. The lib/ directory of the EAR is a single module called the parent module.

2. Each WAR deployment within the EAR is a single module.

3. Each EJB JAR deployment within the EAR is a single module.

Subdeployment modules (the WAR and JAR deployments within the EAR) have an automatic
dependency on the parent module. However they do not have automatic dependencies on each
other. This is called subdeployment isolation and can be disabled on a per deployment basis or for
the entire application server.

Explicit dependencies between subdeployment modules can be added by the same means as any
other module.

Report a bug

3.1.6. Class Loading Precedence

The JBoss EAP 6 modular class loader uses a precedence system to prevent class loading conflicts.

During deployment a complete list of packages and classes is created for each deployment and each of
its dependencies. The list is ordered according to the class loading precedence rules. When loading
classes at runtime, the class loader searches this list, and loads the first match. This prevents multiple

CHAPTER 3. CLASS LOADING AND MODULES

59

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5825-458735+%5BSpecified%5D&comment=Title%3A+Module+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5825-458735+11+Jun+2013+14%3A01+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4550-459889+%5BSpecified%5D&comment=Title%3A+Class+Loading+in+Deployments%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4550-459889+14+Jun+2013+09%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

copies of the same classes and packages within the deployments class path from conflicting with each
other.

The class loader loads classes in the following order, from highest to lowest:

1. Implicit dependencies.

These are the dependencies that are added automatically by JBoss EAP 6, such as the JAVA
EE APIs. These dependencies have the highest class loader precedence because they contain
common functionality and APIs that are supplied by JBoss EAP 6.

Refer to Section 3.7.1, “Implicit Module Dependencies” for complete details about each implicit
dependency.

2. Explicit dependencies.

These are dependencies that are manually added in the application configuration. This can be
done using the application's MANIFEST.MF file or the new optional JBoss deployment descriptor
jboss-deployment-structure.xml file.

Refer to Section 3.2, “Add an Explicit Module Dependency to a Deployment” to learn how to add
explicit dependencies.

3. Local resources.

Class files packaged up inside the deployment itself, e.g. from the WEB-INF/classes or WEB-
INF/lib directories of a WAR file.

4. Inter-deployment dependencies.

These are dependencies on other deployments in a EAR deployment. This can include classes
in the lib directory of the EAR or classes defined in other EJB jars.

Report a bug

3.1.7. Dynamic Module Naming

All deployments are loaded as modules by JBoss EAP 6 and named according to the following
conventions.

1. Deployments of WAR and JAR files are named with the following format:

 deployment.DEPLOYMENT_NAME

For example, inventory.war and store.jar will have the module names of
deployment.inventory.war and deployment.store.jar respectively.

2. Subdeployments within an Enterprise Archive are named with the following format:

 deployment.EAR_NAME.SUBDEPLOYMENT_NAME

For example, the subdeployment of reports.war within the enterprise archive accounts.ear
will have the module name of deployment.accounts.ear.reports.war.

Report a bug

Development Guide

60

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4561-459890+%5BSpecified%5D&comment=Title%3A+Class+Loading+Precedence%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4561-459890+14+Jun+2013+09%3A32+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4562-458740+%5BSpecified%5D&comment=Title%3A+Dynamic+Module+Naming%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4562-458740+11+Jun+2013+14%3A04+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3.1.8. jboss-deployment-structure.xml

jboss-deployment-structure.xml is a new optional deployment descriptor for JBoss EAP 6. This
deployment descriptor provides control over class loading in the deployment.

The XML schema for this deployment descriptor is in EAP_HOME/docs/schema/jboss-
deployment-structure-1_2.xsd

Report a bug

3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT

This task shows how to add an explicit dependency to an application. Explicit module dependencies can
be added to applications to add the classes of those modules to the class path of the application at
deployment.

Some dependencies are automatically added to deployments by JBoss EAP 6. Refer to Section 3.7.1,
“Implicit Module Dependencies” for details.

Prerequisites

1. You must already have a working software project that you want to add a module dependency
to.

2. You must know the name of the module being added as a dependency. Refer to Section 3.7.2,
“Included Modules” for the list of static modules included with JBoss EAP 6. If the module is
another deployment then refer to Section 3.1.7, “Dynamic Module Naming” to determine the
module name.

Dependencies can be configured using two different methods:

1. Adding entries to the MANIFEST.MF file of the deployment.

2. Adding entries to the jboss-deployment-structure.xml deployment descriptor.

Procedure 3.1. Add dependency configuration to MANIFEST.MF

Maven projects can be configured to create the required dependency entries in the MANIFEST.MF file.
Refer to Section 3.3, “Generate MANIFEST.MF entries using Maven”.

1. Add MANIFEST.MF file
If the project has no MANIFEST.MF file, create a file called MANIFEST.MF. For a web
application (WAR) add this file to the META-INF directory. For an EJB archive (JAR) add it to the
META-INF directory.

2. Add dependencies entry
Add a dependencies entry to the MANIFEST.MF file with a comma-separated list of dependency
module names.

3. Optional: Make a dependency optional
A dependency can be made optional by appending optional to the module name in the
dependency entry.

Dependencies: org.javassist, org.apache.velocity

CHAPTER 3. CLASS LOADING AND MODULES

61

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4611-459892+%5BSpecified%5D&comment=Title%3A+jboss-deployment-structure.xml%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4611-459892+14+Jun+2013+09%3A33+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

4. Optional: Export a dependency
A dependency can be exported by appending export to the module name in the dependency
entry.

Procedure 3.2. Add dependency configuration to jboss-deployment-structure.xml

1. Add jboss-deployment-structure.xml
If the application has no jboss-deployment-structure.xml file then create a new file
called jboss-deployment-structure.xml and add it to the project. This file is an XML file
with the root element of <jboss-deployment-structure> .

For a web application (WAR) add this file to the WEB-INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

2. Add dependencies section
Create a <deployment> element within the document root and a <dependencies> element
within that.

3. Add module elements
Within the dependencies node, add a module element for each module dependency. Set the
name attribute to the name of the module.

4. Optional: Make a dependency optional
A dependency can be made optional by adding the optional attribute to the module entry with
the value of TRUE. The default value for this attribute is FALSE.

5. Optional: Export a dependency
A dependency can be exported by adding the export attribute to the module entry with the
value of TRUE. The default value for this attribute is FALSE.

Example 3.3. jboss-deployment-structure.xml with two dependencies

Dependencies: org.javassist optional, org.apache.velocity

Dependencies: org.javassist, org.apache.velocity export

<jboss-deployment-structure>

</jboss-deployment-structure>

<module name="org.javassist" />

<module name="org.javassist" optional="TRUE" />

<module name="org.javassist" export="TRUE" />

<jboss-deployment-structure>

 <deployment>

 <dependencies>

Development Guide

62

JBoss EAP 6 will add the classes from the specified modules to the class path of the application when it
is deployed.

Report a bug

3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN

Maven projects that use the Maven JAR, EJB or WAR packaging plug-ins can generate a MANIFEST.MF
file with a Dependencies entry. This does not automatically generate the list of dependencies, this
process only creates the MANIFEST.MF file with the details specified in the pom.xml.

Prerequisites

1. You must already have a working Maven project.

2. The Maven project must be using one of the JAR, EJB, or WAR plug-ins (maven-jar-plugin,
maven-ejb-plugin, maven-war-plugin).

3. You must know the name of the project's module dependencies. Refer to Section 3.7.2,
“Included Modules” for the list of static modules included with JBoss EAP 6. If the module is
another deployment , then refer to Section 3.1.7, “Dynamic Module Naming” to determine the
module name.

Procedure 3.3. Generate a MANIFEST.MF file containing module dependencies

1. Add Configuration
Add the following configuration to the packaging plug-in configuration in the project's pom.xml
file.

2. List Dependencies
Add the list of the module dependencies in the <Dependencies> element. Use the same format
that is used when adding the dependencies to the MANIFEST.MF. Refer to Section 3.2, “Add an
Explicit Module Dependency to a Deployment” for details about that format.

 <module name="org.javassist" />
 <module name="org.apache.velocity" export="TRUE" />
 </dependencies>

 </deployment>

</jboss-deployment-structure>

<configuration>
 <archive>
 <manifestEntries>
 <Dependencies></Dependencies>
 </manifestEntries>
 </archive>
</configuration>

<Dependencies>org.javassist, org.apache.velocity</Dependencies>

CHAPTER 3. CLASS LOADING AND MODULES

63

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4551-459893+%5BSpecified%5D&comment=Title%3A+Add+an+Explicit+Module+Dependency+to+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4551-459893+14+Jun+2013+09%3A34+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3. Build the Project
Build the project using the Maven assembly goal.

[Localhost]$ mvn assembly:assembly

When the project is built using the assembly goal, the final archive contains a MANIFEST.MF file with the
specified module dependencies.

Example 3.4. Configured Module Dependencies in pom.xml

The example here shows the WAR plug-in but it also works with the JAR and EJB plug-ins (maven-
jar-plugin and maven-ejb-plugin).

Report a bug

3.4. PREVENT A MODULE BEING IMPLICITLY LOADED

This task describes how to configure your application to exclude a list of module dependencies.

You can configure a deployable application to prevent implicit dependencies from being loaded. This is
commonly done when the application includes a different version of a library or framework than the one
that will be provided by the application server as an implicit dependency.

Prerequisites

1. You must already have a working software project that you want to exclude an implicit
dependency from.

2. You must know the name of the module to exclude. Refer to Section 3.7.1, “Implicit Module
Dependencies” for a list of implicit dependencies and their conditions.

Procedure 3.4. Add dependency exclusion configuration to jboss-deployment-structure.xml

1. If the application has no jboss-deployment-structure.xml file, create a new file called
jboss-deployment-structure.xml and add it to the project. This file is an XML file with
the root element of <jboss-deployment-structure> .

<plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <archive>
 <manifestEntries>
 <Dependencies>org.javassist,
org.apache.velocity</Dependencies>
 </manifestEntries>
 </archive>
 </configuration>
 </plugin>
</plugins>

Development Guide

64

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5828-459894+%5BSpecified%5D&comment=Title%3A+Generate+MANIFEST.MF+entries+using+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5828-459894+14+Jun+2013+09%3A45+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

For a web application (WAR) add this file to the WEB-INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

2. Create a <deployment> element within the document root and an <exclusions> element
within that.

3. Within the exclusions element, add a <module> element for each module to be excluded. Set
the name attribute to the name of the module.

Example 3.5. Excluding two modules

Report a bug

3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT

Summary

This topic covers the steps required to exclude a subsystem from a deployment. This is done by editing
the jboss-deployment-structure.xml configuration file. Excluding a subsystem provides the
same effect as removing the subsystem, but it applies only to a single deployment.

Procedure 3.5. Exclude a Subsystem

1. Open the jboss-deployment-structure.xml file in a text editor.

2. Add the following XML inside the <deployment> tags:

<exclude-subsystems>
 <subsystem name="SUBSYSTEM_NAME" />
</exclude-subsystems>

<jboss-deployment-structure>

</jboss-deployment-structure>

<deployment>
 <exclusions>

 </exclusions>
</deployment>

<module name="org.javassist" />

<jboss-deployment-structure>
 <deployment>
 <exclusions>
 <module name="org.javassist" />
 <module name="org.dom4j" />
 </exclusions>
 </deployment>
</jboss-deployment-structure>

CHAPTER 3. CLASS LOADING AND MODULES

65

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4552-155458+%5BSpecified%5D&comment=Title%3A+Prevent+a+Module+Being+Implicitly+Loaded%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4552-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3. Save the jboss-deployment-structure.xml file.

Result

The subsystem has been successfully excluded. The subsystem's deployment unit processors will no
longer run on the deployment.

Example 3.6. Example jboss-deployment-structure.xml file.

Report a bug

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <ear-subdeployments-isolated>true</ear-subdeployments-isolated>
 <deployment>
 <exclude-subsystems>
 <subsystem name="resteasy" />
 </exclude-subsystems>
 <exclusions>
 <module name="org.javassist" />
 </exclusions>
 <dependencies>
 <module name="deployment.javassist.proxy" />
 <module name="deployment.myjavassist" />
 <module name="myservicemodule" services="import"/>
 </dependencies>
 <resources>
 <resource-root path="my-library.jar" />
 </resources>
 </deployment>
 <sub-deployment name="myapp.war">
 <dependencies>
 <module name="deployment.myear.ear.myejbjar.jar" />
 </dependencies>
 <local-last value="true" />
 </sub-deployment>
 <module name="deployment.myjavassist" >
 <resources>
 <resource-root path="javassist.jar" >
 <filter>
 <exclude path="javassist/util/proxy" />
 </filter>
 </resource-root>
 </resources>
 </module>
 <module name="deployment.javassist.proxy" >
 <dependencies>
 <module name="org.javassist" >
 <imports>
 <include path="javassist/util/proxy" />
 <exclude path="/**" />
 </imports>
 </module>
 </dependencies>
 </module>
</jboss-deployment-structure>

Development Guide

66

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11440-386280+%5BSpecified%5D&comment=Title%3A+Exclude+a+Subsystem+from+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11440-386280+20+Mar+2013+12%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3.6. CLASS LOADING AND SUBDEPLOYMENTS

3.6.1. Modules and Class Loading in Enterprise Archives

Enterprise Archives (EAR) are not loaded as a single module like JAR or WAR deployments. They are
loaded as multiple unique modules.

The following rules determine what modules exist in an EAR.

Each WAR and EJB JAR subdeployment is a module.

The contents of the lib/ directory in the root of the EAR archive is a module. This is called the
parent module.

These modules have the same behaviour as any other module with the following additional implicit
dependencies:

WAR subdeployments have implicit dependencies on the parent module and any EJB JAR
subdeployments.

EJB JAR subdeployments have implicit dependencies on the parent module and any other EJB
JAR subdeployments.

IMPORTANT

No subdeployment ever gains an implicit dependency on a WAR subdeployment. Any
subdeployment can be configured with explicit dependencies on another subdeployment
as would be done for any other module.

The implicit dependencies described above occur because JBoss EAP 6 has subdeployment class
loader isolation disabled by default.

Subdeployment class loader isolation can be enabled if strict compatibility is required. This can be
enabled for a single EAR deployment or for all EAR deployments. The Java EE 6 specification
recommends that portable applications should not rely on subdeployments being able to access each
other unless dependencies are explicitly declared as Class-Path entries in the MANIFEST.MF file of
each subdeployment.

Report a bug

3.6.2. Subdeployment Class Loader Isolation

Each subdeployment in an Enterprise Archive (EAR) is a dynamic module with its own class loader. By
default a subdeployment can access the resources of other subdeployments.

If a subdeployment should not access the resources of other subdeployments (strict subdeployment
isolation is required) then this can be enabled.

Report a bug

3.6.3. Disable Subdeployment Class Loader Isolation Within a EAR

CHAPTER 3. CLASS LOADING AND MODULES

67

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4354-459895+%5BSpecified%5D&comment=Title%3A+Modules+and+Class+Loading+in+Enterprise+Archives%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4354-459895+14+Jun+2013+09%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4565-373289+%5BSpecified%5D&comment=Title%3A+Subdeployment+Class+Loader+Isolation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4565-373289+12+Feb+2013+12%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

This task shows you how to disable Subdeployment class loader isolation in an EAR deployment by
using a special deployment descriptor in the EAR. This does not require any changes to be made to the
application server and does not affect any other deployments.

IMPORTANT

Even when subdeployment class loader isolation is disabled it is not possible to add a
WAR deployment as a dependency.

1. Add the deployment descriptor file
Add the jboss-deployment-structure.xml deployment descriptor file to the META-INF
directory of the EAR if it doesn't already exist and add the following content:

2. Add the <ear-subdeployments-isolated> element
Add the <ear-subdeployments-isolated> element to the jboss-deployment-
structure.xml file if it doesn't already exist with the content of false.

Result:

Subdeployment class loader isolation will now be disabled for this EAR deployment. This means that the
subdeployments of the EAR will have automatic dependencies on each of the non-WAR
subdeployments.

Report a bug

3.7. REFERENCE

3.7.1. Implicit Module Dependencies

The following table lists the modules that are automatically added to deployments as dependencies and
the conditions that trigger the dependency.

Table 3.1. Implicit Module Dependencies

Subsyste
m

Modules Always added Modules Conditional
added

Conditions

<jboss-deployment-structure>

</jboss-deployment-structure>

<ear-subdeployments-isolated>false</ear-subdeployments-isolated>

Development Guide

68

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4566-155458+%5BSpecified%5D&comment=Title%3A+Disable+Subdeployment+Class+Loader+Isolation+Within+a+EAR%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4566-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Core
Server javax.api

sun.jdk

org.jboss.
logging

org.apache
.log4j

org.apache
.commons.l
ogging

org.slf4j

org.jboss.
logging.ju
l-to-
slf4j-stub

- -

EE
Subsystem javaee.api

- -

EJB3
subsystem

-
javaee.api

The presence of ejb-jar.xml in
valid locations in the deployment, as
specified by the Java EE 6
specification or the presence of
annotation-based EJBs (e.g.
@Stateless, @Stateful,
@MessageDriven etc)

Subsyste
m

Modules Always added Modules Conditional
added

Conditions

CHAPTER 3. CLASS LOADING AND MODULES

69

JAX-RS
(Resteasy)
subsystem

javax.xml.
bind.api

org.jboss.
resteasy.r
esteasy-
atom-
provider

org.jboss.
resteasy.r
esteasy-
cdi

org.jboss.
resteasy.r
esteasy-
jaxrs

org.jboss.
resteasy.r
esteasy-
jaxb-
provider

org.jboss.
resteasy.r
esteasy-
jackson-
provider

org.jboss.
resteasy.r
esteasy-
jsapi

org.jboss.
resteasy.r
esteasy-
multipart-
provider

org.jboss.
resteasy.a
sync-http-
servlet-30

The presence of JAX-RS annotations
in the deployment

Subsyste
m

Modules Always added Modules Conditional
added

Conditions

Development Guide

70

JCA sub-
system javax.reso

urce.api
javax.jms.
api

javax.vali
dation.api

org.jboss.
logging

org.jboss.
ironjacama
r.api

org.jboss.
ironjacama
r.impl

org.hibern
ate.valida
tor

If the deployment is a resource adaptor
(RAR) deployment.

JPA
(Hibernate
)
subsystem

javax.pers
istence.ap
i

javaee.api

org.jboss.
as.jpa

org.hibern
ate

org.javass
ist

The presence of an
@PersistenceUnit or
@PersistenceContext
annotation, or a <persistence-
unit-ref> or <persistence-
context-ref> in a deployment
descriptor.

SAR
Subsystem

-
org.jboss.
logging

org.jboss.
modules

The deployment is a SAR archive

Security
Subsystem org.picket

box

- -

Subsyste
m

Modules Always added Modules Conditional
added

Conditions

CHAPTER 3. CLASS LOADING AND MODULES

71

Web
Subsystem

-
javaee.api

com.sun.js
f-impl

org.hibern
ate.valida
tor

org.jboss.
as.web

org.jboss.
logging

The deployment is a WAR archive.
JavaServer Faces(JSF) is only added
if used.

Web
Services
Subsystem

org.jboss.
ws.api

org.jboss.
ws.spi

- -

Weld
(CDI)
Subsystem

-
javax.pers
istence.ap
i

javaee.api

org.javass
ist

org.jboss.
intercepto
r

org.jboss.
as.weld

org.jboss.
logging

org.jboss.
weld.core

org.jboss.
weld.api

org.jboss.
weld.spi

If a beans.xml file is detected in the
deployment

Subsyste
m

Modules Always added Modules Conditional
added

Conditions

Report a bug

Development Guide

72

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4353-378345+%5BSpecified%5D&comment=Title%3A+Implicit+Module+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4353-378345+04+Mar+2013+11%3A09+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3.7.2. Included Modules

asm.asm

ch.qos.cal10n

com.google.guava

com.h2database.h2

com.sun.jsf-impl

com.sun.jsf-impl

com.sun.xml.bind

com.sun.xml.messaging.saaj

gnu.getopt

javaee.api

javax.activation.api

javax.annotation.api

javax.api

javax.ejb.api

javax.el.api

javax.enterprise.api

javax.enterprise.deploy.api

javax.faces.api

javax.faces.api

javax.inject.api

javax.interceptor.api

javax.jms.api

javax.jws.api

javax.mail.api

javax.management.j2ee.api

javax.persistence.api

javax.resource.api

CHAPTER 3. CLASS LOADING AND MODULES

73

javax.rmi.api

javax.security.auth.message.api

javax.security.jacc.api

javax.servlet.api

javax.servlet.jsp.api

javax.servlet.jstl.api

javax.transaction.api

javax.validation.api

javax.ws.rs.api

javax.wsdl4j.api

javax.xml.bind.api

javax.xml.jaxp-provider

javax.xml.registry.api

javax.xml.rpc.api

javax.xml.soap.api

javax.xml.stream.api

javax.xml.ws.api

jline

net.sourceforge.cssparser

net.sourceforge.htmlunit

net.sourceforge.nekohtml

nu.xom

org.antlr

org.apache.ant

org.apache.commons.beanutils

org.apache.commons.cli

org.apache.commons.codec

org.apache.commons.collections

Development Guide

74

org.apache.commons.io

org.apache.commons.lang

org.apache.commons.logging

org.apache.commons.pool

org.apache.cxf

org.apache.httpcomponents

org.apache.james.mime4j

org.apache.log4j

org.apache.neethi

org.apache.santuario.xmlsec

org.apache.velocity

org.apache.ws.scout

org.apache.ws.security

org.apache.ws.xmlschema

org.apache.xalan

org.apache.xerces

org.apache.xml-resolver

org.codehaus.jackson.jackson-core-asl

org.codehaus.jackson.jackson-jaxrs

org.codehaus.jackson.jackson-mapper-asl

org.codehaus.jackson.jackson-xc

org.codehaus.woodstox

org.dom4j

org.hibernate

org.hibernate.envers

org.hibernate.infinispan

org.hibernate.validator

org.hornetq

CHAPTER 3. CLASS LOADING AND MODULES

75

org.hornetq.ra

org.infinispan

org.infinispan.cachestore.jdbc

org.infinispan.cachestore.remote

org.infinispan.client.hotrod

org.jacorb

org.javassist

org.jaxen

org.jboss.as.aggregate

org.jboss.as.appclient

org.jboss.as.cli

org.jboss.as.clustering.api

org.jboss.as.clustering.common

org.jboss.as.clustering.ejb3.infinispan

org.jboss.as.clustering.impl

org.jboss.as.clustering.infinispan

org.jboss.as.clustering.jgroups

org.jboss.as.clustering.service

org.jboss.as.clustering.singleton

org.jboss.as.clustering.web.infinispan

org.jboss.as.clustering.web.spi

org.jboss.as.cmp

org.jboss.as.connector

org.jboss.as.console

org.jboss.as.controller

org.jboss.as.controller-client

org.jboss.as.deployment-repository

org.jboss.as.deployment-scanner

Development Guide

76

org.jboss.as.domain-add-user

org.jboss.as.domain-http-error-context

org.jboss.as.domain-http-interface

org.jboss.as.domain-management

org.jboss.as.ee

org.jboss.as.ee.deployment

org.jboss.as.ejb3

org.jboss.as.embedded

org.jboss.as.host-controller

org.jboss.as.jacorb

org.jboss.as.jaxr

org.jboss.as.jaxrs

org.jboss.as.jdr

org.jboss.as.jmx

org.jboss.as.jpa

org.jboss.as.jpa.hibernate

org.jboss.as.jpa.hibernate

org.jboss.as.jpa.hibernate.infinispan

org.jboss.as.jpa.openjpa

org.jboss.as.jpa.spi

org.jboss.as.jpa.util

org.jboss.as.jsr77

org.jboss.as.logging

org.jboss.as.mail

org.jboss.as.management-client-content

org.jboss.as.messaging

org.jboss.as.modcluster

org.jboss.as.naming

CHAPTER 3. CLASS LOADING AND MODULES

77

org.jboss.as.network

org.jboss.as.osgi

org.jboss.as.platform-mbean

org.jboss.as.pojo

org.jboss.as.process-controller

org.jboss.as.protocol

org.jboss.as.remoting

org.jboss.as.sar

org.jboss.as.security

org.jboss.as.server

org.jboss.as.standalone

org.jboss.as.threads

org.jboss.as.transactions

org.jboss.as.web

org.jboss.as.webservices

org.jboss.as.webservices.server.integration

org.jboss.as.webservices.server.jaxrpc-integration

org.jboss.as.weld

org.jboss.as.xts

org.jboss.classfilewriter

org.jboss.com.sun.httpserver

org.jboss.common-core

org.jboss.dmr

org.jboss.ejb-client

org.jboss.ejb3

org.jboss.iiop-client

org.jboss.integration.ext-content

org.jboss.interceptor

Development Guide

78

org.jboss.interceptor.spi

org.jboss.invocation

org.jboss.ironjacamar.api

org.jboss.ironjacamar.impl

org.jboss.ironjacamar.jdbcadapters

org.jboss.jandex

org.jboss.jaxbintros

org.jboss.jboss-transaction-spi

org.jboss.jsfunit.core

org.jboss.jts

org.jboss.jts.integration

org.jboss.logging

org.jboss.logmanager

org.jboss.logmanager.log4j

org.jboss.marshalling

org.jboss.marshalling.river

org.jboss.metadata

org.jboss.modules

org.jboss.msc

org.jboss.netty

org.jboss.osgi.deployment

org.jboss.osgi.framework

org.jboss.osgi.resolver

org.jboss.osgi.spi

org.jboss.osgi.vfs

org.jboss.remoting3

org.jboss.resteasy.resteasy-atom-provider

org.jboss.resteasy.resteasy-cdi

CHAPTER 3. CLASS LOADING AND MODULES

79

org.jboss.resteasy.resteasy-jackson-provider

org.jboss.resteasy.resteasy-jaxb-provider

org.jboss.resteasy.resteasy-jaxrs

org.jboss.resteasy.resteasy-jsapi

org.jboss.resteasy.resteasy-multipart-provider

org.jboss.sasl

org.jboss.security.negotiation

org.jboss.security.xacml

org.jboss.shrinkwrap.core

org.jboss.staxmapper

org.jboss.stdio

org.jboss.threads

org.jboss.vfs

org.jboss.weld.api

org.jboss.weld.core

org.jboss.weld.spi

org.jboss.ws.api

org.jboss.ws.common

org.jboss.ws.cxf.jbossws-cxf-client

org.jboss.ws.cxf.jbossws-cxf-factories

org.jboss.ws.cxf.jbossws-cxf-server

org.jboss.ws.cxf.jbossws-cxf-transports-httpserver

org.jboss.ws.jaxws-client

org.jboss.ws.jaxws-jboss-httpserver-httpspi

org.jboss.ws.native.jbossws-native-core

org.jboss.ws.native.jbossws-native-factories

org.jboss.ws.native.jbossws-native-services

org.jboss.ws.saaj-impl

Development Guide

80

org.jboss.ws.spi

org.jboss.ws.tools.common

org.jboss.ws.tools.wsconsume

org.jboss.ws.tools.wsprovide

org.jboss.xb

org.jboss.xnio

org.jboss.xnio.nio

org.jboss.xts

org.jdom

org.jgroups

org.joda.time

org.junit

org.omg.api

org.osgi.core

org.picketbox

org.picketlink

org.python.jython.standalone

org.scannotation.scannotation

org.slf4j

org.slf4j.ext

org.slf4j.impl

org.slf4j.jcl-over-slf4j

org.w3c.css.sac

sun.jdk

Report a bug

3.7.3. JBoss Deployment Structure Deployment Descriptor Reference

The key tasks that can be performed using this deployment descriptor are:

Defining explicit module dependencies.

CHAPTER 3. CLASS LOADING AND MODULES

81

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+3891-299121+%5BSpecified%5D&comment=Title%3A+Included+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=3891-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Preventing specific implicit dependencies from loading.

Defining additional modules from the resources of that deployment.

Changing the subdeployment isolation behaviour in that EAR deployment.

Adding additional resource roots to a module in an EAR.

Report a bug

Development Guide

82

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4614-155458+%5BSpecified%5D&comment=Title%3A+JBoss+Deployment+Structure+Deployment+Descriptor+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4614-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 4. GLOBAL VALVES

4.1. ABOUT VALVES

A Valve is a Java class that gets inserted into the request processing pipeline for an application. It is
inserted in the pipeline before servlet filters. Valves can make changes to the request before passing it
on or perform any other processing such as authentication or even cancelling the request. Valves are
usually packaged with an application.

Version 6.1.0 and later supports global valves.

Report a bug

4.2. ABOUT GLOBAL VALVES

A Global Valve is a valve that is inserted into the request processing pipeline of all deployed
applications. A valve is made global by being packaged and installed as a static module in JBoss EAP 6.
Global valves are configured in the web subsystem.

Only version 6.1.0 and later supports global valves.

Report a bug

4.3. ABOUT AUTHENTICATOR VALVES

An authenticator valve is a valve that authenticates the credentials of a request. Such valve is a sub-
class of org.apache.catalina.authenticator.AuthenticatorBase and overrides the
authenticate() method.

This can be used to implement additional authentication schemes.

Report a bug

4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE

Valves that are not installed as global valves must be included with your application and configured in the
jboss-web.xml deployment descriptor.

IMPORTANT

Valves that are installed a global valves are automatically applied to all deployed
applications.

Prerequisites

The valve must be created and included in your application's classpath. This can be done by
either including it in the application's WAR file or any module that is added as a dependency.
Examples of such modules include a static module installed on the server or a JAR file in the
lib/ directory of an EAR archive if the WAR is deployed in an EAR.

The application must include a jboss-web.xml deployment descriptor.

CHAPTER 4. GLOBAL VALVES

83

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14168-431207+%5BSpecified%5D&comment=Title%3A+About+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14168-431207+04+Apr+2013+09%3A45+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14169-458741+%5BSpecified%5D&comment=Title%3A+About+Global+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14169-458741+11+Jun+2013+14%3A05+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14172-431207+%5BSpecified%5D&comment=Title%3A+About+Authenticator+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14172-431207+04+Apr+2013+09%3A45+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Procedure 4.1. Configure an application for a local valve

1. Add Valve element
Add a valve element with the attributes of name and class-name to the application's jboss-
web.xml file. Name is a unique identifier for the valve and class-name is the name of the valve
class.

2. Specific Parameters
If the valve has configurable parameters, add a param child element to the valve element for
each parameter, specifying the name and value for each.

When the application is deployed, the valve will be enabled for the application with the specified
configuration.

Example 4.1. jboss-web.xml valve configuration

Report a bug

4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR
VALVE

Configuring an application to use an authenticator valve requires the valve to be installed and configured
(either local to the application or as a global valve) and the web.xml deployment descriptor of the
application to be configured. In the simplest case, the web.xml configuration is the same as using
BASIC authentication except the auth-method child element of login-config is set to the name of
the valve performing the configuration.

Prerequisites

Authentication valve must already be created.

If the authentication valve is a global valve then it must already be installed and configured, and
you must know the name that it was configured as.

You need to know the realm name of the security realm that the application will use.

If you do not know the valve or security realm name to use, ask your server administrator for this
information.

<valve name="VALVENAME" class-name="VALVECLASSNAME">

</valve>

<param name="PARAMNAME" value = "VALUE" />

<valve name="clientlimiter" class-
name="org.jboss.samplevalves.restrictedUserAgentsValve">
 <param name="restricteduseragents" value = "^.*MS Web Services
Client Protocol.*$" />
</valve>

Development Guide

84

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14173-431208+%5BSpecified%5D&comment=Title%3A+Configure+a+Web+Application+to+use+a+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14173-431208+04+Apr+2013+09%3A49+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Procedure 4.2. Configure an Application to use an Authenticator Valve

1. Configure the valve
When using a local valve, it must be configured in the applications jboss-web.xml
deployment descriptor. Refer to Section 4.4, “Configure a Web Application to use a Valve”.

When using a global valve, this is unnecessary.

2. Add security configuration to web.xml
Add the security configuration the the web.xml file for your application, using the standard
elements such as security-constraint, login-config, and security-role. In the login-config element,
set the value of auth-method to the name of the authenticator valve. The realm-name element
also needs to be set to the name of the JBoss security realm being used by the application.

When the application is deployed, the authentication of requests is handled by the configured
authentication valve.

Report a bug

4.6. CREATE A CUSTOM VALVE

A Valve is a Java class that gets inserted into the request processing pipeline for an application before
the application's servlet filters. This can be used to modify the request or perform any other behavior.
This task demonstrates the basic steps required for implementing a valve.

Procedure 4.3. Create a Custom Valve

1. Create the Valve class
Create a subclass of org.apache.catalina.valves.ValveBase.

2. Implement the invoke method
The invoke() method is called when this valve is executed in the pipeline. The request and
response objects are passed as parameters. Perform any processing and modification of the
request and response here.

<login-config>
 <auth-method>VALVE_NAME</auth-method>
 <realm-name>REALM_NAME</realm-name>
</login-config>

package org.jboss.samplevalves;

import org.apache.catalina.valves.ValveBase;
import org.apache.catalina.connector.Request;
import org.apache.catalina.connector.Response;

public class restrictedUserAgentsValve extends ValveBase {

}

public void invoke(Request request, Response response)
{

}

CHAPTER 4. GLOBAL VALVES

85

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14174-431211+%5BSpecified%5D&comment=Title%3A+Configure+a+Web+Application+to+use+an+Authenticator+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14174-431211+04+Apr+2013+10%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3. Invoke the next pipeline step
The last thing the invoke method must do is invoke the next step of the pipeline and pass the
modified request and response objects along. This is done using the getNext().invoke()
method

4. Optional: Specify parameters
If the valve must be configurable, enable this by adding a parameter. Do this by adding an
instance variable and a setter method for each parameter.

Example 4.2. Sample Custom Valve

getNext().invoke(request, response);

private String restrictedUserAgents = null;

public void setRestricteduseragents(String mystring)
{
 this.restrictedUserAgents = mystring;
}

package org.jboss.samplevalves;

import java.io.IOException;
import java.util.regex.Pattern;

import javax.servlet.ServletException;
import org.apache.catalina.valves.ValveBase;
import org.apache.catalina.connector.Request;
import org.apache.catalina.connector.Response;

public class restrictedUserAgentsValve extends ValveBase
{
 private String restrictedUserAgents = null;

 public void setRestricteduseragents(String mystring)
 {
 this.restrictedUserAgents = mystring;
 }

 public void invoke(Request request, Response response) throws
IOException, ServletException
 {
 String agent = request.getHeader("User-Agent");
 System.out.println("user-agent: " + agent + " : " +
restrictedUserAgents);
 if (Pattern.matches(restrictedUserAgents, agent))
 {
 System.out.println("user-agent: " + agent + " matches: " +
restrictedUserAgents);
 response.addHeader("Connection", "close");
 }
 getNext().invoke(request, response);
 }
}

Development Guide

86

Report a bug

CHAPTER 4. GLOBAL VALVES

87

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14175-431208+%5BSpecified%5D&comment=Title%3A+Create+a+Custom+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14175-431208+04+Apr+2013+09%3A49+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 5. LOGGING FOR DEVELOPERS

5.1. INTRODUCTION

5.1.1. About Logging

Logging is the practice of recording a series of messages from an application that provide a record (or
log) of the application's activities.

Log messages provide important information for developers when debugging an application and for
system administrators maintaining applications in production.

Most modern logging frameworks in Java also include other details such as the exact time and the origin
of the message.

Report a bug

5.1.2. Application Logging Frameworks Supported By JBoss LogManager

JBoss LogManager supports the following logging frameworks:

JBoss Logging - included with JBoss EAP 6

Apache Commons Logging - http://commons.apache.org/logging/

Simple Logging Facade for Java (SLF4J) - http://www.slf4j.org/

Apache log4j - http://logging.apache.org/log4j/1.2/

Java SE Logging (java.util.logging) -
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html

Report a bug

5.1.3. About Log Levels

Log levels are an ordered set of enumerated values that indicate the nature and severity of a log
message. The level of a given log message is specified by the developer using the appropriate methods
of their chosen logging framework to send the message.

JBoss EAP 6 supports all the log levels used by the supported application logging frameworks. The most
commonly used six log levels are (in order of lowest to highest): TRACE, DEBUG, INFO, WARN, ERROR and
FATAL.

Log levels are used by log categories and handlers to limit the messages they are responsible for. Each
log level has an assigned numeric value which indicates its order relative to other log levels. Log
categories and handlers are assigned a log level and they only process log messages of that level or
higher. For example a log handler with the level of WARN will only record messages of the levels WARN,
ERROR and FATAL.

Report a bug

5.1.4. Supported Log Levels

Development Guide

88

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4576-155458+%5BSpecified%5D&comment=Title%3A+About+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4576-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://commons.apache.org/logging/
http://www.slf4j.org/
http://logging.apache.org/log4j/1.2/
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4496-458824+%5BSpecified%5D&comment=Title%3A+Application+Logging+Frameworks+Supported+By+JBoss+LogManager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4496-458824+11+Jun+2013+15%3A59+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8869-458826+%5BSpecified%5D&comment=Title%3A+About+Log+Levels%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8869-458826+11+Jun+2013+16%3A01+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Table 5.1. Supported Log Levels

Log Level Value Description

FINEST 300 -

FINER 400 -

TRACE 400 Use for messages that provide detailed information about the running state of an
application. Log messages of TRACE are usually only captured when debugging an
application.

DEBUG 500 Use for messages that indicate the progress individual requests or activities of an
application. Log messages of DEBUG are usually only captured when debugging an
application.

FINE 500 -

CONFIG 700 -

INFO 800 Use for messages that indicate the overall progress of the application. Often used
for application startup, shutdown and other major lifecycle events.

WARN 900 Use to indicate a situation that is not in error but is not considered ideal. May
indicate circumstances that may lead to errors in the future.

WARNING 900 -

ERROR 1000 Use to indicate an error that has occurred that could prevent the current activity or
request from completing but will not prevent the application from running.

SEVERE 1000 -

FATAL 1100 Use to indicate events that could cause critical service failure and application
shutdown and possibly cause JBoss EAP 6 to shutdown.

Report a bug

5.1.5. Default Log File Locations

These are the log files that get created for the default logging configurations. The default configuration
writes the server log files using periodic log handlers

Table 5.2. Default Log File for a standalone server

Log File Description

EAP_HOME/standalone/log/server.log The Server Log. Contains all server log messages,
including server startup messages.

Table 5.3. Default Log Files for a managed domain

CHAPTER 5. LOGGING FOR DEVELOPERS

89

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8872-458827+%5BSpecified%5D&comment=Title%3A+Supported+Log+Levels%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8872-458827+11+Jun+2013+16%3A01+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Log File Description

EAP_HOME/domain/log/host-
controller.log

Host Controller boot log. Contains log messages
related to the startup of the host controller.

EAP_HOME/domain/log/process-
controller.log

Process controller boot log. Contains log messages
related to the startup of the process controller.

EAP_HOME/domain/servers/SERVERNAME/
log/server.log

The server log for the named server. Contains all log
messages for that server, including server startup
messages.

Report a bug

5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK

5.2.1. About JBoss Logging

JBoss Logging is the application logging framework that is included in JBoss EAP 6.

JBoss Logging provide an easy way to add logging to an application. You add code to your application
that uses the framework to send log messages in a defined format. When the application is deployed to
an application server, these messages can be captured by the server and displayed and/or written to file
according to the server's configuration.

Report a bug

5.2.2. Features of JBoss Logging

Provides an innovative, easy to use "typed" logger.

Full support for internationalization and localization. Translators work with message bundles in
properties files while developers can work with interfaces and annotations.

Build-time tooling to generate typed loggers for production, and runtime generation of typed
loggers for development.

Report a bug

5.2.3. Add Logging to an Application with JBoss Logging

To log messages from your application you create a Logger object (org.jboss.logging.Logger)
and call the appropriate methods of that object. This task describes the steps required to add support for
this to your application.

Prerequisites

You must meet the following conditions before continuing with this task:

If you are using Maven as your build system, the project must already be configured to include
the JBoss Maven Repository. Refer to Section 2.3.2, “Configure the JBoss EAP 6 Maven
Repository Using the Maven Settings”

Development Guide

90

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4495-453128+%5BSpecified%5D&comment=Title%3A+Default+Log+File+Locations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4495-453128+27+May+2013+13%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4575-459896+%5BSpecified%5D&comment=Title%3A+About+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4575-459896+14+Jun+2013+09%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4578-155458+%5BSpecified%5D&comment=Title%3A+Features+of+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4578-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The JBoss Logging JAR files must be in the build path for your application. How you do this
depends on whether you build your application using JBoss Developer Studio or with Maven.

When building using JBoss Developer Studio this can be done selecting Project ->
Properties from the JBoss Developer Studio menu, selecting Targeted Runtimes and
ensuring the runtime for JBoss EAP 6 is checked.

When building using Maven this can be done by adding the following dependency
configuration to your project's pom.xml file.

You do not need to include the JARs in your built application because JBoss EAP 6 provides
them to deployed applications.

Once your project is setup correctly. You need to follow the following steps for each class that you want
to add logging to:

1. Add imports
Add the import statements for the JBoss Logging class namespaces that you will be using. At a
minimum you will need to import import org.jboss.logging.Logger.

2. Create a Logger object
Create an instance of org.jboss.logging.Logger and initialize it by calling the static
method Logger.getLogger(Class). Red Hat recommends creating this as a single instance
variable for each class.

3. Add logging messages
Add calls to the methods of the Logger object to your code where you want it to send log
messages. The Logger object has many different methods with different parameters for
different types of messages. The easiest to use are:

debug(Object message)

info(Object message)

error(Object message)

trace(Object message)

fatal(Object message)

<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging</artifactId>
 <version>3.1.2.GA-redhat-1</version>
 <scope>provided</scope>
</dependency>

import org.jboss.logging.Logger;

private static final Logger LOGGER =
Logger.getLogger(HelloWorld.class);

CHAPTER 5. LOGGING FOR DEVELOPERS

91

These methods send a log message with the corresponding log level and the message
parameter as a string.

For the complete list of JBoss Logging methods refer to the org.jboss.logging package in
the JBoss EAP 6 API Documentation.

Example 5.1. Using JBoss Logging when opening a properties file

This example shows an extract of code from a class that loads customized configuration for an
application from a properties file. If the specified file is not found, a ERROR level log message is
recorded.

Report a bug

5.3. LOGGING PROFILES

5.3.1. About Logging Profiles

IMPORTANT

Logging Profiles are only available in version 6.1.0 and later.

Logging Profiles are independent sets of logging configuration that can be assigned to deployed

LOGGER.error("Configuration file not found.");

import org.jboss.logging.Logger;
public class LocalSystemConfig
{
 private static final Logger LOGGER =
Logger.getLogger(LocalSystemConfig.class);

 public Properties openCustomProperties(String configname) throws
CustomConfigFileNotFoundException
 {
 Properties props = new Properties();
 try
 {
 LOGGER.info("Loading custom configuration from "+configname);
 props.load(new FileInputStream(configname));
 }
 catch(IOException e) //catch exception in case properties file
does not exist
 {
 LOGGER.error("Custom configuration file ("+configname+") not
found. Using defaults.");
 throw new CustomConfigFileNotFoundException(configname);
 }

 return props;
 }

Development Guide

92

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4501-459897+%5BSpecified%5D&comment=Title%3A+Add+Logging+to+an+Application+with+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4501-459897+14+Jun+2013+09%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

applications. A logging profile can define handlers, categories and a root logger just like the regular
logging subsystem but cannot refer to configuration in other profiles or the main logging subsystem. The
design of logging profiles mimics the logging subsystem for ease of configuration.

The use of logging profiles allows administrators to create logging configuration that is specific to one or
more applications without affecting any other logging configuration. Because each profile is defined in
the server configuration it means that the logging configuration can be changed without requiring that the
affected applications be re-deployed.

Each logging profile can have the following configuration:

A unique name. This is required.

Any number of log handlers.

Any number of log categories.

Up to one root logger.

An application can specify a logging profile to use in it's MANIFEST.MF file, using the Logging-profile
attribute.

IMPORTANT

Logging profiles cannot be configured using the management console.

Report a bug

5.3.2. Specify a Logging Profile in an Application

An application specifies the logging profile to use in its MANIFEST.MF file.

Prerequisites:

1. You must know the name of the logging profile that has been setup on the server for this
application to use. Ask your server administrator for the name of the profile to use.

Procedure 5.1. Add Logging Profile configuration to an Application

Edit MANIFEST.MF
If your application does not have a MANIFEST.MF file: create one with the following content,
replacing NAME with the required profile name.

Manifest-Version: 1.0
 Logging-Profile: NAME

If your application already has a MANIFEST.MF file: add the following line to it, replacing NAME
with the required profile name.

Logging-Profile: NAME

CHAPTER 5. LOGGING FOR DEVELOPERS

93

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14116-429839+%5BSpecified%5D&comment=Title%3A+About+Logging+Profiles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14116-429839+03+Apr+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

NOTE

If you are using Maven and the maven-war-plugin, you can put your MANIFEST.MF
file in src/main/resources/META-INF/ and add the following configuration to your
pom.xml file.

When the application is deployed it will use the configuration in the specified logging profile for its log
messages.

Report a bug

<plugin>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <archive>
 <manifestFile>src/main/resources/META-
INF/MANIFEST.MF</manifestFile>
 </archive>
 </configuration>
 </plugin>

Development Guide

94

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14120-429839+%5BSpecified%5D&comment=Title%3A+Specify+a+Logging+Profile+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14120-429839+03+Apr+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

6.1. INTRODUCTION

6.1.1. About Internationalization

Internationalization is the process of designing software so that it can be adapted to different languages
and regions without engineering changes.

Report a bug

6.1.2. About Localization

Localization is the process of adapting internationalized software for a specific region or language by
adding locale-specific components and translations of text.

Report a bug

6.2. JBOSS LOGGING TOOLS

6.2.1. Overview

6.2.1.1. JBoss Logging Tools Internationalization and Localization

JBoss Logging Tools is a Java API that provides support for the internationalization and localization of
log messages, exception messages, and generic strings. In addition to providing a mechanism for
translation, JBoss Logging tools also provides support for unique identifiers for each log message.

Internationalized messages and exceptions are created as method definitions inside of interfaces
annotated using org.jboss.logging annotations. It is not necessary to implement the interfaces,
JBoss Logging Tools does this at compile time. Once defined you can use these methods to log
messages or obtain exception objects in your code.

Internationalized logging and exception interfaces created with JBoss Logging Tools can be localized by
creating a properties file for each bundle containing the translations for a specific language and region.
JBoss Logging Tools can generate template property files for each bundle that can then be edited by a
translator.

JBoss Logging Tools creates an implementation of each bundle for each corresponding translations
property file in your project. All you have to do is use the methods defined in the bundles and JBoss
Logging Tools ensures that the correct implementation is invoked for your current regional settings.

Message ids and project codes are unique identifiers that are prepended to each log message. These
unique identifiers can be used in documentation to make it easy to find information about log messages.
With adequate documentation, the meaning of a log message can be determined from the identifiers
regardless of the language that the message was written in.

Report a bug

6.2.1.2. JBoss Logging Tools Quickstart

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

95

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4891-332111+%5BSpecified%5D&comment=Title%3A+About+Internationalization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4891-332111+09+Nov+2012+05%3A11+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4892-332110+%5BSpecified%5D&comment=Title%3A+About+Localization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4892-332110+09+Nov+2012+05%3A11+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4890-332067+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Internationalization+and+Localization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4890-332067+09+Nov+2012+05%3A03+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The JBoss Logging Tools quickstart, logging-tools, contains a simple Maven project that
demonstrates the features of JBoss Logging Tools. It has been used extensively in this documentation
for code samples.

Refer to this quickstart for a complete working demonstration of all the features described in this
documentation.

Report a bug

6.2.1.3. Message Logger

A Message Logger is an interface that is used to define internationalized log messages. A Message
Logger interface is annotated with @org.jboss.logging.MessageLogger.

Report a bug

6.2.1.4. Message Bundle

A message bundle is an interface that can be used to define generic translatable messages and
Exception objects with internationalized messages . A message bundle is not used for creating log
messages.

A message bundle interface is annotated with @org.jboss.logging.MessageBundle.

Report a bug

6.2.1.5. Internationalized Log Messages

Internationalized Log Messages are log messages created by defining a method in a Message Logger.
The method must be annotated with the @LogMessage and @Message annotations and specify the log
message using the value attribute of @Message. Internationalized log messages are localized by
providing translations in a properties file.

JBoss Logging Tools generates the required logging classes for each translation at compile time and
invokes the correct methods for the current locale at runtime.

Report a bug

6.2.1.6. Internationalized Exceptions

An internationalized exception is an exception object returned from a method defined in a message
bundle. Message bundle methods that return Java Exception objects can be annotated to define a
default exception message. The default message is replaced with a translation if one is found in a
matching properties file for the current locale. Internationalized exceptions can also have project codes
and message ids assigned to them.

Report a bug

6.2.1.7. Internationalized Messages

An internationalized message is a string returned from a method defined in a message bundle. Message
bundle methods that return Java String objects can be annotated to define the default content of that
String, known as the message. The default message is replaced with a translation if one is found in a
matching properties file for the current locale.

Development Guide

96

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6715-432919+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6715-432919+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6716-432920+%5BSpecified%5D&comment=Title%3A+Message+Logger%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6716-432920+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6717-432921+%5BSpecified%5D&comment=Title%3A+Message+Bundle%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6717-432921+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6714-168867+%5BSpecified%5D&comment=Title%3A+Internationalized+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6714-168867+27+Jul+2012+21%3A49+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6718-432922+%5BSpecified%5D&comment=Title%3A+Internationalized+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6718-432922+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

6.2.1.8. Translation Properties Files

Translation properties files are Java properties files that contain the translations of messages from one
interface for one locale, country, and variant. Translation properties files are used by the JBoss Logging
Tools to generated the classes that return the messages.

Report a bug

6.2.1.9. JBoss Logging Tools Project Codes

Project codes are strings of characters that identify groups of messages. They are displayed at the
beginning of each log message, prepended to the message Id. Project codes are defined with the
projectCode attribute of the @MessageLogger annotation.

Report a bug

6.2.1.10. JBoss Logging Tools Message Ids

Message Ids are numbers, that when combined with a project code, uniquely identify a log message.
Message Ids are displayed at the beginning of each log message, appended to the project code for the
message. Message Ids are defined with the id attribute of the @Message annotation.

Report a bug

6.2.2. Creating Internationalized Loggers, Messages and Exceptions

6.2.2.1. Create Internationalized Log Messages

This task shows you how to use JBoss Logging Tools to create internationalized log messages by
creating MessageLogger interfaces. It does not cover all optional features or the localization of those log
messages.

Refer to the logging-tools quick start for a complete example.

Prerequisites:

1. You must already have a working Maven project. Refer to Section 6.2.6.1, “JBoss Logging Tools
Maven Configuration”.

2. The project must have the required maven configuration for JBoss Logging Tools.

Procedure 6.1. Create an Internationalized Log Message Bundle

1. Create an Message Logger interface
Add a Java interface to your project to contain the log message definitions. Name the interface
descriptively for the log messages that will be defined in it.

The log message interface has the following requirements:

It must be annotated with @org.jboss.logging.MessageLogger.

It must extend org.jboss.logging.BasicLogger.

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

97

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6719-432923+%5BSpecified%5D&comment=Title%3A+Internationalized+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6719-432923+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6720-432924+%5BSpecified%5D&comment=Title%3A+Translation+Properties+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6720-432924+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5148-332119+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Project+Codes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5148-332119+09+Nov+2012+05%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5149-332118+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Message+Ids%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5149-332118+09+Nov+2012+05%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The interface must define a field of that is a typed logger that implements this interface. Do
this with the getMessageLogger() method of org.jboss.logging.Logger.

2. Add method definitions
Add a method definition to the interface for each log message. Name each method descriptively
for the log message that it represents.

Each method has the following requirements:

The method must return void.

It must be annotated with the @org.jboss.logging.LogMessage annotation.

It must be annotated with the @org.jboss.logging.Message annotation.

The value attribute of @org.jboss.logging.Message contains the default log message.
This is the message that is used if no translation is available.

The default log level is INFO.

3. Invoke the methods
Add the calls to the interface methods in your code where the messages must be logged from. It
is not necessary to create implementations of the interfaces, the annotation processor does this
for you when the project is compiled.

The custom loggers are sub-classed from BasicLogger so the logging methods of BasicLogger
(debug(), error() etc) can also be used. It is not necessary to create other loggers to log
non-internationalized messages.

RESULT: the project now supports one or more internationalized loggers that can now be localized.

Report a bug

package com.company.accounts.loggers;

import org.jboss.logging.BasicLogger;
import org.jboss.logging.Logger;
import org.jboss.logging.MessageLogger;

@MessageLogger(projectCode="")
interface AccountsLogger extends BasicLogger
{
 AccountsLogger LOGGER = Logger.getMessageLogger(
 AccountsLogger.class,
 AccountsLogger.class.getPackage().getName());
}

@LogMessage
@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

AccountsLogger.LOGGER.customerQueryFailDBClosed();

AccountsLogger.LOGGER.error("Invalid query syntax.");

Development Guide

98

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4898-436449+%5BSpecified%5D&comment=Title%3A+Create+Internationalized+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4898-436449+19+Apr+2013+13%3A54+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

6.2.2.2. Create and Use Internationalized Messages

This task shows you how to create internationalized messages and how to use them. This task does not
cover all optional features or the process of localizing those messages.

Refer to the logging-tools quickstart for a complete example.

Prerequisites

1. You have a working Maven project using the JBoss EAP 6 repository. Refer to Section 2.3.2,
“Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.

2. The required Maven configuration for JBoss Logging Tools has been added. Refer to
Section 6.2.6.1, “JBoss Logging Tools Maven Configuration”.

Procedure 6.2. Create and Use Internationalized Messages

1. Create an interface for the exceptions
JBoss Logging Tools defines internationalized messages in interfaces. Name each interface
descriptively for the messages that will be defined in it.

The interface has the following requirements:

It must be declared as public

It must be annotated with @org.jboss.logging.MessageBundle.

The interface must define a field that is a message bundle of the same type as the interface.

2. Add method definitions
Add a method definition to the interface for each message. Name each method descriptively for
the message that it represents.

Each method has the following requirements:

It must return an object of type String.

It must be annotated with the @org.jboss.logging.Message annotation.

The value attribute of @org.jboss.logging.Message must be set to the default
message. This is the message that is used if no translation is available.

3. Invoke methods
Invoke the interface methods in your application where you need to obtain the message.

@MessageBundle(projectCode="")
public interface GreetingMessageBundle
{
 GreetingMessageBundle MESSAGES =
Messages.getBundle(GreetingMessageBundle.class);
}

@Message(value = "Hello world.")
 String helloworldString();

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

99

RESULT: the project now supports internationalized message strings that can be localized.

Report a bug

6.2.2.3. Create Internationalized Exceptions

This task shows you how to create internationalized exceptions and how to use them. This task does not
cover all optional features or the process of localization of those exceptions.

Refer to the logging-tools quick start for a complete example.

For this task it is assumed that you already have a software project, that is being built in either JBoss
Developer Studio or Maven, to which you want to add internationalized exceptions.

Procedure 6.3. Create and use Internationalized Exceptions

1. Add JBoss Logging Tools configuration
Add the required project configuration to support JBoss Logging Tools. Refer to Section 6.2.6.1,
“JBoss Logging Tools Maven Configuration”

2. Create an interface for the exceptions
JBoss Logging Tools defines internationalized exceptions in interfaces. Name each interface
descriptively for the exceptions that will be defined in it.

The interface has the following requirements:

It must be declared as public.

It must be annotated with @org.jboss.logging.MessageBundle.

The interface must define a field that is a message bundle of the same type as the interface.

3. Add method definitions
Add a method definition to the interface for each exception. Name each method descriptively for
the exception that it represents.

Each method has the following requirements:

It must return an object of type Exception or a sub-type of Exception.

It must be annotated with the @org.jboss.logging.Message annotation.

The value attribute of @org.jboss.logging.Message must be set to the default
exception message. This is the message that is used if no translation is available.

System.console.out.println(helloworldString());

@MessageBundle(projectCode="")
public interface ExceptionBundle
{
 ExceptionBundle EXCEPTIONS =
Messages.getBundle(ExceptionBundle.class);
}

Development Guide

100

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4900-459898+%5BSpecified%5D&comment=Title%3A+Create+and+Use+Internationalized+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4900-459898+14+Jun+2013+09%3A50+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

If the exception being returned has a constructor that requires parameters in addition to a
message string, then those parameters must be supplied in the method definition using the
@Param annotation. The parameters must be the same type and order as the constructor.

4. Invoke methods
Invoke the interface methods in your code where you need to obtain one of the exceptions. The
methods do not throw the exceptions, they return the exception object which you can then throw.

RESULT: the project now supports internationalized exceptions that can be localized.

Report a bug

6.2.3. Localizing Internationalized Loggers, Messages and Exceptions

6.2.3.1. Generate New Translation Properties Files with Maven

Projects that are being built with Maven can generate empty translation property files for each Message
Logger and Message Bundle it contains. These files can then be used as new translation property files.

The following procedure shows how to configure a Maven project to generate new translation property
files.

Refer to the logging-tools quick start for a complete example.

Prerequisites:

1. You must already have a working Maven project.

2. The project must already be configured for JBoss Logging Tools.

3. The project must contain one or more interfaces that define internationalized log messages or
exceptions.

Procedure 6.4. Generate New Translation Properties Files with Maven

1. Add Maven configuration

@Message(value = "The config file could not be opened.")
IOException configFileAccessError();

@Message(id = 13230, value = "Date string '%s' was invalid.")
ParseException dateWasInvalid(String dateString, @Param int
errorOffset);

try
{
 propsInFile=new File(configname);
 props.load(new FileInputStream(propsInFile));
}
catch(IOException ioex) //in case props file does not exist
{
 throw ExceptionBundle.EXCEPTIONS.configFileAccessError();
}

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

101

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4899-436457+%5BSpecified%5D&comment=Title%3A+Create+Internationalized+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4899-436457+19+Apr+2013+13%3A57+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Add the -AgenereatedTranslationFilePath compiler argument to the Maven compiler
plug-in configuration and assign it the path where the new files will be created.

The above configuration will create the new files in the target/generated-translation-
files directory of your Maven project.

2. Build the project
Build the project using Maven.

[Localhost]$ mvn compile

One properties files is created per interface annotated with @MessageBundle or @MessageLogger.
The new files are created in a subdirectory corresponding to the Java package that each interface is
declared in.

Each new file is named using the following syntax where InterfaceName is the name of the interface
that this file was generated for: InterfaceName.i18n_locale_COUNTRY_VARIANT.properties.

These files can now be copied into your project as the basis for new translations.

Report a bug

6.2.3.2. Translate an Internationalized Logger, Exception or Message

Logging and Exception messages defined in interfaces using JBoss Logging Tools can have translations
provided in properties files.

The following procedure shows how to create and use a translation properties file. It is assumed that you
already have a project with one or more interfaces defined for internationalized exceptions or log
messages.

Refer to the logging-tools quick start for a complete example.

Prerequisites

1. You must already have a working Maven project.

2. The project must already be configured for JBoss Logging Tools.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 <compilerArgument>
 -
AgeneratedTranslationFilesPath=${project.basedir}/target/generated-
translation-files
 </compilerArgument>
 <showDeprecation>true</showDeprecation>
 </configuration>
</plugin>

Development Guide

102

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5127-436425+%5BSpecified%5D&comment=Title%3A+Generate+New+Translation+Properties+Files+with+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5127-436425+19+Apr+2013+13%3A33+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3. The project must contain one or interfaces that define internationalized log messages or
exceptions.

4. The project must be configured to generate template translation property files.

Procedure 6.5. Translate an internationalized logger, exception or message

1. Generate the template properties files
Run the mvn compile command to create the template translation properties files.

2. Add the template file to your project
Copy the template for the interfaces that you want to translate from the directory where they
were created into the src/main/resources directory of your project. The properties files must
be in the same package as the interfaces they are translating.

3. Rename the copied template file
Rename the copy of the template file according to the translation it will contain. E.g.
GreeterLogger.i18n_fr_FR.properties.

4. Translate the contents of the template.
Edit the new translation properties file to contain the appropriate translation.

Repeat steps two, three, and four for each translation of each bundle being performed.

RESULT: The project now contains translations for one or more message or logger bundles. Building the
project will generate the appropriate classes to log messages with the supplied translations. It is not
necessary to explicitly invoke methods or supply parameters for specific languages, JBoss Logging
Tools automatically uses the correct class for the current locale of the application server.

The source code of the generated classes can be viewed under target/generated-
sources/annotations/.

Report a bug

6.2.4. Customizing Internationalized Log Messages

6.2.4.1. Add Message Ids and Project Codes to Log Messages

This task shows how to add message ids and project codes to internationalized log messages created
using JBoss Logging Tools. A log message must have both a project code and message id for them to
be displayed in the log. If a message does not have both a project code and a message id, then neither
is displayed.

Refer to the logging-tools quick start for a complete example.

Prerequisites

1. You must already have a project with internationalized log messages. Refer to Section 6.2.2.1,
“Create Internationalized Log Messages”.

Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyé.

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

103

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4901-435192+%5BSpecified%5D&comment=Title%3A+Translate+an+Internationalized+Logger%2C+Exception+or+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4901-435192+16+Apr+2013+15%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

2. You need to know what the project code you will be using is. You can use a single project code,
or define different ones for each interface.

Procedure 6.6. Add message Ids and Project Codes to Log Messages

1. Specify the project code for the interface.
Specify the project code using the projectCode attribute of the @MessageLogger annotation
attached to a custom logger interface. All messages that are defined in the interface will use that
project code.

2. Specify Message Ids
Specify a message id for each message using the id attribute of the @Message annotation
attached to the method that defines the message.

The log messages that have both a message ID and project code have been associated with them will
prepend these to the logged message.

10:55:50,638 INFO [com.company.accounts.ejb] (MSC service thread 1-4)
ACCNTS000043: Customer query failed, Database not available.

Report a bug

6.2.4.2. Specify the Log Level for a Message

The default log level of a message defined by an interface by JBoss Logging Tools is INFO. A different
log level can be specified with the level attribute of the @LogMessage annotation attached to the
logging method.

Procedure 6.7. Specify the log level for a message

1. Specify level attribute
Add the level attribute to the @LogMessage annotation of the log message method definition.

2. Assign log level
Assign the level attribute the value of the log level for this message. The valid values for
level are the six enumerated constants defined in org.jboss.logging.Logger.Level:
DEBUG, ERROR, FATAL, INFO, TRACE, and WARN.

@MessageLogger(projectCode="ACCNTS")
interface AccountsLogger extends BasicLogger
{

}

@LogMessage
@Message(id=43, value = "Customer query failed, Database not
available.") void customerQueryFailDBClosed();

Import org.jboss.logging.Logger.Level;

@LogMessage(level=Level.ERROR)

Development Guide

104

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5171-332120+%5BSpecified%5D&comment=Title%3A+Add+Message+Ids+and+Project+Codes+to+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5171-332120+09+Nov+2012+05%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Invoking the logging method in the above sample will produce a log message at the level of ERROR.

10:55:50,638 ERROR [com.company.app.Main] (MSC service thread 1-4)
 Customer query failed, Database not available.

Report a bug

6.2.4.3. Customize Log Messages with Parameters

Custom logging methods can define parameters. These parameters are used to pass additional
information to be displayed in the log message. Where the parameters appear in the log message is
specified in the message itself using either explicit or ordinary indexing.

Procedure 6.8. Customize log messages with parameters

1. Add parameters to method definition
Parameters of any type can be added to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the log message
References can use explicit or ordinary indexes.

To use ordinary indexes, insert the characters %s in the message string where you want
each parameter to appear. The first instance of %s will insert the first parameter, the second
instance will insert the second parameter, and so on.

To use explicit indexes, insert the characters %{#} in the message where # is the number of
the parameter you want to appear.

IMPORTANT

Using explicit indexes allows the parameter references in the message to be in a different
order than they are defined in the method. This is important for translated messages
which may require different ordering of parameters.

The number of parameters must match the number of references to the parameters in the specified
message or the code will not compile. A parameter marked with the @Cause annotation is not included
in the number of parameters.

Example 6.1. Message parameters using ordinary indexes

Example 6.2. Message parameters using explicit indexes

@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

@LogMessage(level=Logger.Level.DEBUG)
@Message(id=2, value="Customer query failed, customerid:%s, user:%s")
void customerLookupFailed(Long customerid, String username);

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

105

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5174-332121+%5BSpecified%5D&comment=Title%3A+Specify+the+Log+Level+for+a+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5174-332121+09+Nov+2012+05%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

6.2.4.4. Specify an Exception as the Cause of a Log Message

JBoss Logging Tools allows one parameter of a custom logging method to be defined as the cause of the
message. This parameter must be of the type Throwable or any of its sub-classes and is marked with
the @Cause annotation. This parameter cannot be referenced in the log message like other parameters
and is displayed after the log message.

The following procedure shows how to update a logging method using the @Cause parameter to
indicate the "causing" exception. It is assumed that you have already created internationalized logging
messages to which you want to add this functionality.

Procedure 6.9. Specify an exception as the cause of a log message

1. Add the parameter
Add a parameter of the type Throwable or a sub-class to the method.

2. Add the annotation
Add the @Cause annotation to the parameter.

3. Invoke the method
When the method is invoked in your code, an object of the correct type must be passed and will
be displayed after the log message.

@LogMessage(level=Logger.Level.DEBUG)
@Message(id=2, value="Customer query failed, customerid:%{1}, user:%
{2}")
void customerLookupFailed(Long customerid, String username);

@Message(id=404, value="Loading configuration failed. Config
file:%s")
void loadConfigFailed(Exception ex, File file);

import org.jboss.logging.Cause

@Message(value = "Loading configuration failed. Config file: %s")
void loadConfigFailed(@Cause Exception ex, File file);

try
{
 confFile=new File(filename);
 props.load(new FileInputStream(confFile));
}
catch(Exception ex) //in case properties file cannot be read
{
 ConfigLogger.LOGGER.loadConfigFailed(ex, filename);
}

Development Guide

106

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5172-435189+%5BSpecified%5D&comment=Title%3A+Customize+Log+Messages+with+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5172-435189+16+Apr+2013+15%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Below is the output of the above code samples if the code threw an exception of type
FileNotFoundException.

10:50:14,675 INFO [com.company.app.Main] (MSC service thread 1-3)
Loading configuration failed. Config file: customised.properties
java.io.FileNotFoundException: customised.properties (No such file
or directory)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:120)
 at com.company.app.demo.Main.openCustomProperties(Main.java:70)
 at com.company.app.Main.go(Main.java:53)
 at com.company.app.Main.main(Main.java:43)

Report a bug

6.2.5. Customizing Internationalized Exceptions

6.2.5.1. Add Message Ids and Project Codes to Exception Messages

The following procedure shows the steps required to add message IDs and project codes to
internationalized Exception messages created using JBoss Logging Tools.

Message IDs and project codes are unique identifiers that are prepended to each message displayed by
internationalized exceptions. These identifying codes make it possible to create a reference of all the
exception messages for an application so that someone can lookup the meaning of an exception
message written in language that they do not understand.

Prerequisites

1. You must already have a project with internationalized exceptions. Refer to Section 6.2.2.3,
“Create Internationalized Exceptions”.

2. You need to know what the project code you will be using is. You can use a single project code,
or define different ones for each interface.

Procedure 6.10. Add message IDs and project codes to exception messages

1. Specify a project code
Specify the project code using the projectCode attribute of the @MessageBundle annotation
attached to a exception bundle interface. All messages that are defined in the interface will use
that project code.

2. Specify message IDs
Specify a message id for each exception using the id attribute of the @Message annotation
attached to the method that defines the exception.

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle
{
 ExceptionBundle EXCEPTIONS =
Messages.getBundle(ExceptionBundle.class);
}

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

107

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5175-332124+%5BSpecified%5D&comment=Title%3A+Specify+an+Exception+as+the+Cause+of+a+Log+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5175-332124+09+Nov+2012+05%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

IMPORTANT

A message that has both a project code and message ID displays them prepended to the
message. If a message does not have both a project code and a message ID, neither is
displayed.

Example 6.3. Creating internationalized exceptions

This exception bundle interface has the project code of ACCTS, with a single exception method with
the id of 143.

The exception object can be obtained and thrown using the following code.

This would display an exception message like the following:

Exception in thread "main" java.io.IOException: ACCTS000143: The config
file could not be opened.
at com.company.accounts.Main.openCustomProperties(Main.java:78)
at com.company.accounts.Main.go(Main.java:53)
at com.company.accounts.Main.main(Main.java:43)

Report a bug

6.2.5.2. Customize Exception Messages with Parameters

Exception bundle methods that define exceptions can specify parameters to pass additional information
to be displayed in the exception message. Where the parameters appear in the exception message is
specified in the message itself using either explicit or ordinary indexing.

The following procedure shows the steps required to use method parameters to customize method
exceptions.

Procedure 6.11. Customize an exception message with parameters

1. Add parameters to method definition

@Message(id=143, value = "The config file could not be opened.")
IOException configFileAccessError();

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle
{
 ExceptionBundle EXCEPTIONS =
Messages.getBundle(ExceptionBundle.class);

 @Message(id=143, value = "The config file could not be opened.")
 IOException configFileAccessError();
}

throw ExceptionBundle.EXCEPTIONS.configFileAccessError();

Development Guide

108

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5191-438962+%5BSpecified%5D&comment=Title%3A+Add+Message+Ids+and+Project+Codes+to+Exception+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5191-438962+22+Apr+2013+08%3A59+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Parameters of any type can be added to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the exception message
References can use explicit or ordinary indexes.

To use ordinary indexes, insert the characters %s in the message string where you want
each parameter to appear. The first instance of %s will insert the first parameter, the second
instance will insert the second parameter, and so on.

To use explicit indexes, insert the characters %{#} in the message where #is the number of
the parameter you want to appear.

Using explicit indexes allows the parameter references in the message to be in a different order
than they are defined in the method. This is important for translated messages which may
require different ordering of parameters.

IMPORTANT

The number of parameters must match the number of references to the parameters in the
specified message or the code will not compile. A parameter marked with the @Cause
annotation is not included in the number of parameters.

Example 6.4. Using ordinary indexes

Example 6.5. Using explicit indexes

Report a bug

6.2.5.3. Specify One Exception as the Cause of Another Exception

Exceptions returned by exception bundle methods can have another exception specified as the
underlying cause. This is done by adding a parameter to the method and annotating the parameter with
@Cause. This parameter is used to pass the causing exception. This parameter cannot be referenced in
the exception message.

The following procedure shows how to update a method from an exception bundle using the @Cause
parameter to indicate the causing exception. It is assumed that you have already created an exception
bundle to which you want to add this functionality.

Procedure 6.12. Specify one exception as the cause of another exception

1. Add the parameter
Add the a parameter of the type Throwable or a sub-class to the method.

@Message(id=143, value = "The config file %s could not be opened.")
IOException configFileAccessError(File config);

@Message(id=143, value = "The config file %{1} could not be opened.")
IOException configFileAccessError(File config);

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

109

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5195-432385+%5BSpecified%5D&comment=Title%3A+Customize+Exception+Messages+with+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5195-432385+09+Apr+2013+13%3A23+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

2. Add the annotation
Add the @Cause annotation to the parameter.

3. Invoke the method
Invoke the interface method to obtain an exception object. The most common use case is to
throw a new exception from a catch block using the caught exception as the cause.

Example 6.6. Specify one exception as the cause of another exception

This exception bundle defines a single method that returns an exception of type ArithmeticException.

This code snippet performs an operation that throws an exception because it attempts to divide an
integer by zero. The exception is caught and a new exception is created using the first one as the
cause.

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError(Throwable cause, String msg);

import org.jboss.logging.Cause

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError(@Cause Throwable cause, String
msg);

try
{
 ...
}
catch(Exception ex)
{
 throw ExceptionBundle.EXCEPTIONS.calculationError(
 ex, "calculating payment due
per day");
}

@MessageBundle(projectCode = "TPS")
interface CalcExceptionBundle
{
 CalcExceptionBundle EXCEPTIONS =
Messages.getBundle(CalcExceptionBundle.class);

 @Message(id=328, value = "Error calculating: %s.")
 ArithmeticException calcError(@Cause Throwable cause, String value);

}

int totalDue = 5;
int daysToPay = 0;
int amountPerDay;

try
{
 amountPerDay = totalDue/daysToPay;

Development Guide

110

This is what the exception message looks like:

Exception in thread "main" java.lang.ArithmeticException: TPS000328:
Error calculating: payments per day.
 at com.company.accounts.Main.go(Main.java:58)
 at com.company.accounts.Main.main(Main.java:43)
Caused by: java.lang.ArithmeticException: / by zero
 at com.company.accounts.Main.go(Main.java:54)
 ... 1 more

Report a bug

6.2.6. Reference

6.2.6.1. JBoss Logging Tools Maven Configuration

To build a Maven project that uses JBoss Logging Tools for internationalization you must make the
following changes to the project's configuration in the pom.xml file.

Refer to the logging-tools quick start for an example of a complete working pom.xml file.

1. JBoss Maven Repository must be enabled for the project. Refer to Section 2.3.2, “Configure the
JBoss EAP 6 Maven Repository Using the Maven Settings”.

2. The Maven dependencies for jboss-logging and jboss-logging-processor must be
added. Both of dependencies are available in JBoss EAP 6 so the scope element of each can be
set to provided as shown.

3. The maven-compiler-plugin must be at least version 2.2 and be configured for target and
generated sources of 1.6.

}
catch (Exception ex)
{
 throw CalcExceptionBundle.EXCEPTIONS.calcError(ex, "payments per
day");
}

<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging-processor</artifactId>
 <version>1.0.0.Final</version>
 <scope>provided</scope>
</dependency>

<dependency>
 <groupId>org.jboss.logging</groupId>
 <artifactId>jboss-logging</artifactId>
 <version>3.1.0.GA</version>
 <scope>provided</scope>
</dependency>

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

111

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5206-332127+%5BSpecified%5D&comment=Title%3A+Specify+One+Exception+as+the+Cause+of+Another+Exception%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5206-332127+09+Nov+2012+05%3A15+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

6.2.6.2. Translation Property File Format

The property files used for translations of messages in JBoss Logging Tools are standard Java property
files. The format of the file is the simple line-oriented, key=value pair format described in the
documentation for the java.util.Properties class,
http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html.

The file name format has the following format:

InterfaceName.i18n_locale_COUNTRY_VARIANT.properties

InterfaceName is the name of the interface that the translations apply to.

locale, COUNTRY, and VARIANT identify the regional settings that the translation applies to.

locale and COUNTRY specify the language and country using the ISO-639 and ISO-3166
Language and Country codes respectively. COUNTRY is optional.

VARIANT is an optional identifier that can be used to identify translations that only apply to a
specific operating system or browser.

The properties contained in the translation file are the names of the methods from the interface being
translated. The assigned value of the property is the translation. If a method is overloaded then this is
indicated by appending a dot and then the number of parameters to the name. Methods for translation
can only be overloaded by supplying a different number of parameters.

Example 6.7. Sample Translation Properties File

File name: GreeterService.i18n_fr_FR_POSIX.properties.

Report a bug

6.2.6.3. JBoss Logging Tools Annotations Reference

The following annotations are defined in JBoss Logging for use with internationalization and localization
of log messages, strings, and exceptions.

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
</plugin>

Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyé.

Development Guide

112

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4896-459899+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Maven+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4896-459899+14+Jun+2013+09%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6723-435193+%5BSpecified%5D&comment=Title%3A+Translation+Property+File+Format%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6723-435193+16+Apr+2013+15%3A32+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Table 6.1. JBoss Logging Tools Annotations

Annotation Target Description Attributes

@MessageBundle Interface Defines the interface as a
Message Bundle.

projectCod
e

@MessageLogger Interface Defines the interface as a
Message Logger.

projectCod
e

@Message Method Can be used in Message Bundles
and Message Loggers. In a
Message Logger it defines a
method as being a localized
logger. In a Message Bundle it
defines the method as being one
that returns a localized String or
Exception object.

value, id

@LogMessage Method Defines a method in a Message
Logger as being a logging
method.

level (default
INFO)

@Cause Parameter Defines a parameter as being one
that passes an Exception as the
cause of either a Log message or
another Exception.

-

@Param Parameter Defines a parameter as being one
that is passed to the constructor
of the Exception.

-

Report a bug

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

113

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4895-432372+%5BSpecified%5D&comment=Title%3A+JBoss+Logging+Tools+Annotations+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4895-432372+09+Apr+2013+12%3A30+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 7. ENTERPRISE JAVABEANS

7.1. INTRODUCTION

7.1.1. Overview of Enterprise JavaBeans

Enterprise JavaBeans (EJB) 3.1 is an API for developing distributed, transactional, secure and portable
Java EE applications through the use of server-side components called Enterprise Beans. Enterprise
Beans implement the business logic of an application in a decoupled manner that encourages reuse.
Enterprise JavaBeans 3.1 is documented as the Java EE specification JSR-318.

JBoss EAP 6 has full support for applications built using the Enterprise JavaBeans 3.1 specification. The
EJB Container is implemented using the JBoss EJB3 community project, http://www.jboss.org/ejb3.

Report a bug

7.1.2. EJB 3.1 Feature Set

The following features are supported in EJB 3.1

Session Beans

Message Driven Beans

No-interface views

local interfaces

remote interfaces

JAX-WS web services

JAX-RS web services

Timer Service

Asynchronous Calls

Interceptors

RMI/IIOP interoperability

Transaction support

Security

Embeddable API

The following features are supported in EJB 3.1 but are proposed for "pruning". This means that these
features may become optional in Java EE 7.

Entity Beans (container and bean-managed persistence)

EJB 2.1 Entity Bean client views

EJB Query Language (EJB QL)

Development Guide

114

http://www.jboss.org/ejb3
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4525-459154+%5BSpecified%5D&comment=Title%3A+Overview+of+Enterprise+JavaBeans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4525-459154+12+Jun+2013+11%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

JAX-RPC based Web Services (endpoints and client views)

Report a bug

7.1.3. EJB 3.1 Lite

EJB Lite is a sub-set of the EJB 3.1 specification. It provides a simpler version of the full EJB 3.1
specification as part of the Java EE 6 web profile.

EJB Lite simplifies the implementation of business logic in web applications with enterprise beans by:

1. Only supporting the features that make sense for web-applications, and

2. allowing EJBs to be deployed in the same WAR file as a web-application.

Report a bug

7.1.4. EJB 3.1 Lite Features

EJB Lite includes the following features:

Stateless, stateful, and singleton session beans

Local business interfaces and "no interface" beans

Interceptors

Container-managed and bean-managed transactions

Declarative and programmatic security

Embeddable API

The following features of EJB 3.1 are specifically not included:

Remote interfaces

RMI-IIOP Interoperability

JAX-WS Web Service Endpoints

EJB Timer Service

Asynchronous session bean invocations

Message-driven beans

Report a bug

7.1.5. Enterprise Beans

Enterprise beans are server-side application components as defined in the Enterprise JavaBeans (EJB)
3.1 specification, JSR-318. Enterprise beans are designed for the implementation of application business
logic in a decoupled manner to encourage reuse.

Enterprise beans are written as Java classes and annotated with the appropriate EJB annotations. They
can be deployed to the application server in their own archive (a JAR file) or be deployed as part of a

CHAPTER 7. ENTERPRISE JAVABEANS

115

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4533-331976+%5BSpecified%5D&comment=Title%3A+EJB+3.1+Feature+Set%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4533-331976+09+Nov+2012+02%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4529-155458+%5BSpecified%5D&comment=Title%3A+EJB+3.1+Lite%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4529-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4531-155458+%5BSpecified%5D&comment=Title%3A+EJB+3.1+Lite+Features%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4531-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Java EE application. The application server manages the lifecycle of each enterprise bean and provides
services to them such as security, transactions, and concurrency management.

An enterprise bean can also define any number of business interfaces. Business interfaces provide
greater control over which of the bean's methods are available to clients and can also allow access to
clients running in remote JVMs.

There are three types of Enterprise Bean: Session beans, Message-driven beans and Entity beans.

IMPORTANT

Entity beans are now deprecated in EJB 3.1 and Red Hat recommends the use of JPA
entities instead. Red Hat only recommends the use of Entity beans for backwards
compatibility with legacy systems.

Report a bug

7.1.6. Overview of Writing Enterprise Beans

Enterprise beans are server-side components designed to encapsulate business logic in a manner
decoupled from any one specific application client. By implementing your business logic within enterprise
beans you will be able to reuse those beans in multiple applications.

Enterprise beans are written as annotated Java classes and do not have to implement any specific EJB
interfaces or be sub-classed from any EJB super classes to be considered an enterprise bean.

EJB 3.1 enterprise beans are packaged and deployed in Java archive (JAR) files. An enterprise bean
JAR file can be deployed to your application server, or included in an enterprise archive (EAR) file and
deployed with that application. It is also possible to deploy enterprise beans in a WAR file along side a
web application if the beans comply with the EJB 3.1 Lite specification.

Report a bug

7.1.7. Session Bean Business Interfaces

7.1.7.1. Enterprise Bean Business Interfaces

An EJB business interface is a Java interface written by the bean developer which provides declarations
of the public methods of a session bean that are available for clients. Session beans can implement any
number of interfaces including none (a "no-interface" bean).

Business interfaces can be declared as local or remote interfaces but not both.

Report a bug

7.1.7.2. EJB Local Business Interfaces

An EJB local business interface declares the methods which are available when the bean and the client
are in the same JVM. When a session bean implements a local business interface only the methods
declared in that interface will be available to clients.

Report a bug

7.1.7.3. EJB Remote Business Interfaces

Development Guide

116

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5089-299121+%5BSpecified%5D&comment=Title%3A+Enterprise+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5089-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5090-336507+%5BSpecified%5D&comment=Title%3A+Overview+of+Writing+Enterprise+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5090-336507+29+Nov+2012+00%3A32+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5096-336522+%5BSpecified%5D&comment=Title%3A+Enterprise+Bean+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5096-336522+29+Nov+2012+00%3A35+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5354-432911+%5BSpecified%5D&comment=Title%3A+EJB+Local+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5354-432911+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

An EJB remote business interface declares the methods which are available to remote clients. Remote
access to a session bean that implements a remote interface is automatically provided by the EJB
container.

A remote client is any client running in a different JVM and can include desktop applications as well as
web applications, services and enterprise beans deployed to a different application server.

Local clients can access the methods exposed by a remote business interface. This is done using the
same methods as remote clients and incurs all the normal overhead of making a remote request.

Report a bug

7.1.7.4. EJB No-interface Beans

A session bean that does not implement any business interfaces is called a no-interface bean. All of the
public methods of no-interface beans are accessible to local clients.

A session bean that implements a business interface can also be written to expose a "no-interface" view.

Report a bug

7.2. CREATING ENTERPRISE BEAN PROJECTS

7.2.1. Create an EJB Archive Project Using JBoss Developer Studio

This task describes how to create an Enterprise JavaBeans (EJB) project in JBoss Developer Studio.

Prerequisites

A server and server runtime for JBoss EAP 6 has been set up.

Procedure 7.1. Create an EJB Project in JBoss Developer Studio

1. Create new project
To open the New EJB Project wizard, navigate to the File menu, select New, and then EJB
Project.

CHAPTER 7. ENTERPRISE JAVABEANS

117

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5355-432912+%5BSpecified%5D&comment=Title%3A+EJB+Remote+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5355-432912+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5356-432913+%5BSpecified%5D&comment=Title%3A+EJB+No-interface+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5356-432913+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Figure 7.1. New EJB Project wizard

2. Specify Details
Supply the following details:

Project name.

As well as the being the name of the project that appears in JBoss Developer Studio this is
also the default filename for the deployed JAR file.

Project location.

Development Guide

118

The directory where the project's files will be saved. The default is a directory in the current
workspace.

Target Runtime.

This is the server runtime used for the project. This will need to be set to the same JBoss
EAP 6 runtime used by the server that you will be deploying to.

EJB module version. This is the version of the EJB specification that your enterprise beans
will comply with. Red Hat recommends using 3.1.

Configuration. This allows you to adjust the supported features in your project. Use the
default configuration for your selected runtime.

Click Next to continue.

3. Java Build Configuration
This screen allows you to customize the directories will contain Java source files and the
directory where the built output is placed.

Leave this configuration unchanged and click Next.

4. EJB Module settings
Check the Generate ejb-jar.xml deployment descriptor checkbox if a deployment
descriptor is required. The deployment descriptor is optional in EJB 3.1 and can be added later if
required.

Click Finish and the project is created and will be displayed in the Project Explorer.

CHAPTER 7. ENTERPRISE JAVABEANS

119

Figure 7.2. Newly created EJB Project in the Project Explorer

5. Add Build Artifact to Server for Deployment
Open the Add and Remove dialog by right-clicking on the server you want to deploy the built
artifact to in the server tab, and select "Add and Remove".

Select the resource to deploy from the Available column and click the Add button. The
resource will be moved to the Configured column. Click Finish to close the dialog.

Development Guide

120

Figure 7.3. Add and Remove dialog

Result

You now have an EJB Project in JBoss Developer Studio that can build and deploy to the specified
server.

If no enterprise beans are added to the project then JBoss Developer Studio will display the warning "An
EJB module must contain one or more enterprise beans." This warning will disappear once one or more
enterprise beans have been added to the project.

Report a bug

7.2.2. Create an EJB Archive Project in Maven

This task demonstrates how to create a project using Maven that contains one or more enterprise beans
packaged in a JAR file.

Prerequisites:

Maven is already installed.

You understand the basic usage of Maven.

CHAPTER 7. ENTERPRISE JAVABEANS

121

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5385-459900+%5BSpecified%5D&comment=Title%3A+Create+an+EJB+Archive+Project+Using+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5385-459900+14+Jun+2013+09%3A52+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Procedure 7.2. Create an EJB Archive project in Maven

1. Create the Maven project
An EJB project can be created using Maven's archetype system and the ejb-javaee6
archetype. To do this run the mvn command with parameters as shown:

 mvn archetype:generate -
DarchetypeGroupId=org.codehaus.mojo.archetypes -
DarchetypeArtifactId=ejb-javaee6

Maven will prompt you for the groupId, artifactId, version and package for your project.

[localhost]$ mvn archetype:generate -
DarchetypeGroupId=org.codehaus.mojo.archetypes -
DarchetypeArtifactId=ejb-javaee6
[INFO] Scanning for projects...
[INFO]
[INFO] --

[INFO] Building Maven Stub Project (No POM) 1
[INFO] --

[INFO]
[INFO] >>> maven-archetype-plugin:2.0:generate (default-cli) @
standalone-pom >>>
[INFO]
[INFO] <<< maven-archetype-plugin:2.0:generate (default-cli) @
standalone-pom <<<
[INFO]
[INFO] --- maven-archetype-plugin:2.0:generate (default-cli) @
standalone-pom ---
[INFO] Generating project in Interactive mode
[INFO] Archetype [org.codehaus.mojo.archetypes:ejb-javaee6:1.5]
found in catalog remote
Define value for property 'groupId': : com.shinysparkly
Define value for property 'artifactId': : payment-arrangments
Define value for property 'version': 1.0-SNAPSHOT: :
Define value for property 'package': com.shinysparkly: :
Confirm properties configuration:
groupId: com.company
artifactId: payment-arrangments
version: 1.0-SNAPSHOT
package: com.company.collections
Y: :
[INFO] --

[INFO] BUILD SUCCESS
[INFO] --

[INFO] Total time: 32.440s
[INFO] Finished at: Mon Oct 31 10:11:12 EST 2011
[INFO] Final Memory: 7M/81M
[INFO] --

[localhost]$

Development Guide

122

2. Add your enterprise beans
Write your enterprise beans and add them to the project under the src/main/java directory in
the appropriate sub-directory for the bean's package.

3. Build the project
To build the project, run the mvn package command in the same directory as the pom.xml file.
This will compile the Java classes and package the JAR file. The built JAR file is named
artifactId-version.jar and is placed in the target/ directory.

RESULT: You now have a Maven project that builds and packages a JAR file. This project can contain
enterprise beans and the JAR file can be deployed to an application server.

Report a bug

7.2.3. Create an EAR Project containing an EJB Project

This task describes how to create a new Enterprise Archive (EAR) project in JBoss Developer Studio
that contains an EJB Project.

Prerequisites

A server and server runtime for JBoss EAP 6 has been set up. Refer to Section 1.3.1.5, “Add the
JBoss EAP 6 Server to JBoss Developer Studio”.

Procedure 7.3. Create an EAR Project containing an EJB Project

1. Open the New EAR Application Project Wizard
Navigate to the File menu, select New, then Project and the New Project wizard appears.
Select Java EE/Enterprise Application Project and click Next.

CHAPTER 7. ENTERPRISE JAVABEANS

123

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5099-336535+%5BSpecified%5D&comment=Title%3A+Create+an+EJB+Archive+Project+in+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5099-336535+29+Nov+2012+00%3A36+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Figure 7.4. New EAR Application Project Wizard

2. Supply details
Supply the following details:

Project name.

As well as the being the name of the project that appears in JBoss Developer Studio this is
also the default filename for the deployed EAR file.

Project location.

Development Guide

124

The directory where the project's files will be saved. The default is a directory in the current
workspace.

Target Runtime.

This is the server runtime used for the project. This will need to be set to the same JBoss
EAP 6 runtime used by the server that you will be deploying to.

EAR version.

This is the version of the Java Enterprise Edition specification that your project will comply
with. Red Hat recommends using 6.

Configuration. This allows you to adjust the supported features in your project. Use the
default configuration for your selected runtime.

Click Next to continue.

3. Add a new EJB Module
New Modules can be added from the Enterprise Application page of the wizard. To add a
new EJB Project as a module follow the steps below:

a. Add new EJB Module
Click New Module, uncheck Create Default Modules checkbox, select the
Enterprise Java Bean and click Next. The New EJB Project wizard appears.

b. Create EJB Project
New EJB Project wizard is the same as the wizard used to create new standalone EJB
Projects and is described in Section 7.2.1, “Create an EJB Archive Project Using JBoss
Developer Studio”.

The minimal details required to create the project are:

Project name

Target Runtime

EJB Module version

Configuration

All the other steps of the wizard are optional. Click Finish to complete creating the EJB
Project.

The newly created EJB project is listed in the Java EE module dependencies and the checkbox
is checked.

4. Optional: add an application.xml deployment descriptor
Check the Generate application.xml deployment descriptor checkbox if one is
required.

5. Click Finish
Two new project will appear, the EJB project and the EAR project

6. Add Build Artifact to Server for Deployment

CHAPTER 7. ENTERPRISE JAVABEANS

125

Open the Add and Remove dialog by right-clicking in the Servers tab on the server you want
to deploy the built artifact to in the server tab, and select Add and Remove.

Select the EAR resource to deploy from the Available column and click the Add button. The
resource will be moved to the Configured column. Click Finish to close the dialog.

Figure 7.5. Add and Remove dialog

Result

You now have an Enterprise Application Project with a member EJB Project. This will build and deploy to
the specified server as a single EAR deployment containing an EJB subdeployment.

Report a bug

7.2.4. Add a Deployment Descriptor to an EJB Project

An EJB deployment descriptor can be added to an EJB project that was created without one. To do this,
follow the procedure below.

Perquisites:

You have a EJB Project in JBoss Developer Studio to which you want to add an EJB deployment
descriptor.

Development Guide

126

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5098-459901+%5BSpecified%5D&comment=Title%3A+Create+an+EAR+Project+containing+an+EJB+Project%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5098-459901+14+Jun+2013+09%3A54+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Procedure 7.4. Add an Deployment Descriptor to an EJB Project

1. Open the Project
Open the project in JBoss Developer Studio.

2. Add Deployment Descriptor
Right-click on the Deployment Descriptor folder in the project view and select Generate
Deployment Descriptor Stub.

Figure 7.6. Adding a Deployment Descriptor

The new file, ejb-jar.xml, is created in ejbModule/META-INF/. Double-clicking on the Deployment
Descriptor folder in the project view will also open this file.

Report a bug

7.3. SESSION BEANS

7.3.1. Session Beans

Session Beans are Enterprise Beans that encapsulate a set of related business processes or tasks and
are injected into the classes that request them. There are three types of session bean: stateless, stateful,
and singleton.

Report a bug

7.3.2. Stateless Session Beans

Stateless session beans are the simplest yet most widely used type of session bean. They provide
business methods to client applications but do not maintain any state between method calls. Each
method is a complete task that does not rely on any shared state within that session bean. Because
there is no state, the application server is not required to ensure that each method call is performed on
the same instance. This makes stateless session beans very efficient and scalable.

Report a bug

CHAPTER 7. ENTERPRISE JAVABEANS

127

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5386-336549+%5BSpecified%5D&comment=Title%3A+Add+a+Deployment+Descriptor+to+an+EJB+Project%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5386-336549+29+Nov+2012+00%3A38+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4527-299121+%5BSpecified%5D&comment=Title%3A+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4527-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5236-336541+%5BSpecified%5D&comment=Title%3A+Stateless+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5236-336541+29+Nov+2012+00%3A36+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

7.3.3. Stateful Session Beans

Stateful session beans are Enterprise Beans that provide business methods to client applications and
maintain conversational state with the client. They should be used for tasks that must be done in several
steps (method calls), each of which replies on the state of the previous step being maintained. The
application server ensures that each client receives the same instance of a stateful session bean for
each method call.

Report a bug

7.3.4. Singleton Session Beans

Singleton session beans are session beans that are instantiated once per application and every client
request for a singleton bean goes to the same instance. Singleton beans are an implementation of the
Singleton Design Pattern as described in the book Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides; published by
Addison-Wesley in 1994.

Singleton beans provide the smallest memory footprint of all the session bean types but must be
designed as thread-safe. EJB 3.1 provides container-managed concurrency (CMC) to allow developers
to implement thread safe singleton beans easily. However singleton beans can also be written using
traditional multi-threaded code (bean-managed concurrency or BMC) if CMC does not provide enough
flexibility.

Report a bug

7.3.5. Add Session Beans to a Project in JBoss Developer Studio

JBoss Developer Studio has several wizards that can be used to quickly create enterprise bean classes.
The following procedure shows how to use the JBoss Developer Studio wizards to add a session bean to
a project.

Prerequisites:

You have a EJB or Dynamic Web Project in JBoss Developer Studio to which you want to add
one or more session beans.

Procedure 7.5. Add Session Beans to a Project in JBoss Developer Studio

1. Open the Project
Open the project in JBoss Developer Studio.

2. Open the "Create EJB 3.x Session Bean" wizard
To open the Create EJB 3.x Session Bean wizard, navigate to the File menu, select New,
and then Session Bean (EJB 3.x).

Development Guide

128

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5237-336540+%5BSpecified%5D&comment=Title%3A+Stateful+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5237-336540+29+Nov+2012+00%3A36+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5238-336543+%5BSpecified%5D&comment=Title%3A+Singleton+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5238-336543+29+Nov+2012+00%3A37+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Figure 7.7. Create EJB 3.x Session Bean wizard

3. Specify class information
Supply the following details:

Project

Verify the correct project is selected.

Source folder

This is the folder that the Java source files will be created in. This should not usually need to
be changed.

Package

Specify the package that the class belongs to.

Class name

Specify the name of the class that will be the session bean.

CHAPTER 7. ENTERPRISE JAVABEANS

129

Superclass

The session bean class can inherit from a super class. Specify that here if your session has
a super class.

State type

Specify the state type of the session bean: stateless, stateful, or singleton.

Business Interfaces

By default the No-interface box is checked so no interfaces will be created. Check the boxes
for the interfaces you wish to define and adjust the names if necessary.

Remember that enterprise beans in a web archive (WAR) only support EJB 3.1 Lite and this
does not include remote business interfaces.

Click Next.

4. Session Bean Specific Information
You can enter in additional information here to further customize the session bean. It is not
required to change any of the information here.

Items that you can change are:

Bean name.

Mapped name.

Transaction type (Container managed or Bean managed).

Additional interfaces can be supplied that the bean must implement.

You can also specify EJB 2.x Home and Component interfaces if required.

5. Finish
Click Finish and the new session bean will be created and added to the project. The files for
any new business interfaces will also be created if they were specified.

RESULT: A new session bean is added to the project.

Development Guide

130

Figure 7.8. New Session Bean in JBoss Developer Studio

Report a bug

7.4. MESSAGE-DRIVEN BEANS

7.4.1. Message-Driven Beans

Message-driven Beans (MDBs) provide an event driven model for application development. The
methods of MDBs are not injected into or invoked from client code but are triggered by the receipt of
messages from a messaging service such as a Java Messaging Service (JMS) server. The Java EE 6
specification requires that JMS is supported but other messaging systems can be supported as well.

Report a bug

7.4.2. Resource Adapters

A resource adapter is a deployable Java EE component that provides communication between a Java
EE application and an Enterprise Information System (EIS) using the Java Connector Architecture (JCA)
specification. A resource adapter is often provided by EIS vendors to allow easy integration of their
products with Java EE applications.

An Enterprise Information System can be any other software system within an organization. Examples
include Enterprise Resource Planning (ERP) systems, database systems, e-mail servers and proprietary
messaging systems.

A resource adapter is packaged in a Resource Adapter Archive (RAR) file which can be deployed to
JBoss EAP 6. A RAR file may also be included in an Enterprise Archive (EAR) deployment.

Report a bug

7.4.3. Create a JMS-based Message-Driven Bean in JBoss Developer Studio

This procedure shows how to add a JMS-based Message-Driven Bean to a project in JBoss Developer
Studio. This procedure creates an EJB 3.x Message-Driven Bean that uses annotations.

CHAPTER 7. ENTERPRISE JAVABEANS

131

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5440-336550+%5BSpecified%5D&comment=Title%3A+Add+Session+Beans+to+a+Project+in+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5440-336550+29+Nov+2012+00%3A39+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4528-299121+%5BSpecified%5D&comment=Title%3A+Message-Driven+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4528-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4516-465334+%5BSpecified%5D&comment=Title%3A+Resource+Adapters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4516-465334+19+Jun+2013+09%3A39+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Prerequisites:

1. You must have an existing project open in JBoss Developer Studio.

2. You must know the name and type of the JMS destination that the bean will be listening to.

3. Support for Java Messaging Service (JMS) must be enabled in the JBoss EAP 6 configuration to
which this bean will be deployed.

Procedure 7.6. Add a JMS-based Message-Driven Bean in JBoss Developer Studio

1. Open the Create EJB 3.x Message-Driven Bean Wizard
Go to File → New → Other. Select EJB/Message-Driven Bean (EJB 3.x) and click the
Next button.

Figure 7.9. Create EJB 3.x Message-Driven Bean Wizard

2. Specify class file destination details
There are three sets of details to specify for the bean class here: Project, Java class, and
message destination.

Project

If multiple projects exist in the Workspace, ensure that the correct one is selected in the
Project menu.

Development Guide

132

Project menu.

The folder where the source file for the new bean will be created is ejbModule under the
selected project's directory. Only change this if you have a specific requirement.

Java class

The required fields are: Java package and class name.

It is not necessary to supply a Superclass unless the business logic of your application
requires it.

Message Destination

These are the details you must supply for a JMS-based Message-Driven Bean:

Destination name. This is the queue or topic name that contains the messages that
the bean will respond to.

By default the JMS checkbox is selected. Do not change this.

Set Destination type to Queue or Topic as required.

Click the Next button.

3. Enter Message-Driven Bean specific information
The default values here are suitable for a JMS-based Message-Driven bean using Container-
managed transactions.

Change the Transaction type to Bean if the Bean will use Bean-managed transactions.

Change the Bean name if a different bean name than the class name is required.

The JMS Message Listener interface will already be listed. You do not need to add or
remove any interfaces unless they are specific to your applications business logic.

Leave the checkboxes for creating method stubs selected.

Click the Finish button.

Result: The Message-Driven Bean is created with stub methods for the default constructor and the
onMessage() method. A JBoss Developer Studio editor window opened with the corresponding file.

Report a bug

7.5. INVOKING SESSION BEANS

7.5.1. Invoke a Session Bean Remotely using JNDI

This task describes how to add support to a remote client for the invocation of session beans using JNDI.
The task assumes that the project is being built using Maven.

The ejb-remote quickstart contains working Maven projects that demonstrate this functionality. The
quickstart contains projects for both the session beans to deploy and the remote client. The code
samples below are taken from the remote client project.

CHAPTER 7. ENTERPRISE JAVABEANS

133

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5094-459902+%5BSpecified%5D&comment=Title%3A+Create+a+JMS-based+Message-Driven+Bean+in+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5094-459902+14+Jun+2013+09%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

This task assumes that the session beans do not require authentication.

Prerequisites

The following prerequisites must be satisfied before beginning:

You must already have a Maven project created ready to use.

Configuration for the JBoss EAP 6 Maven repository has already been added.

The session beans that you want to invoke are already deployed.

The deployed session beans implement remote business interfaces.

The remote business interfaces of the session beans are available as a Maven dependency. If
the remote business interfaces are only available as a JAR file then it is recommended to add
the JAR to your Maven repository as an artifact. Refer to the Maven documentation for the
install:install-file goal for directions, http://maven.apache.org/plugins/maven-install-
plugin/usage.html

You need to know the hostname and JNDI port of the server hosting the session beans.

To invoke a session bean from a remote client you must first configure the project correctly.

Procedure 7.7. Add Maven Project Configuration for Remote Invocation of Session Beans

1. Add the required project dependencies
The pom.xml for the project must be updated to include the necessary dependencies.

2. Add the jboss-ejb-client.properties file
The JBoss EJB client API expects to find a file in the root of the project named jboss-ejb-
client.properties that contains the connection information for the JNDI service. Add this
file to the src/main/resources/ directory of your project with the following content.

Change the host name and port to match your server. 4447 is the default port number. For a
secure connection, set the SSL_ENABLED line to true and uncomment the SSL_STARTTLS
lines. The Remoting interface in the container supports secured and unsecured connections
using the same port.

3. Add dependencies for the remote business interfaces
Add the Maven dependencies to the pom.xml for the remote business interfaces of the session
beans.

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLE
D=false

remote.connections=default

remote.connection.default.host=localhost
remote.connection.default.port = 4447
remote.connection.default.connect.options.org.xnio.Options.SASL_POLI
CY_NOANONYMOUS=false

<dependency>

Development Guide

134

http://maven.apache.org/plugins/maven-install-plugin/usage.html

Now that the project has been configured correctly, you can add the code to access and invoke the
session beans.

Procedure 7.8. Obtain a Bean Proxy using JNDI and Invoke Methods of the Bean

1. Handle checked exceptions
Two of the methods used in the following code (InitialContext() and lookup()) have a
checked exception of type javax.naming.NamingException. These method calls must
either be enclosed in a try/catch block that catches NamingException or in a method that is
declared to throw NamingException. The ejb-remote quickstart uses the second technique.

2. Create a JNDI Context
A JNDI Context object provides the mechanism for requesting resources from the server. Create
a JNDI context using the following code:

The connection properties for the JNDI service are read from the jboss-ejb-
client.properties file.

3. Use the JNDI Context's lookup() method to obtain a bean proxy
Invoke the lookup() method of the bean proxy and pass it the JNDI name of the session bean
you require. This will return an object that must be cast to the type of the remote business
interface that contains the methods you want to invoke.

Session bean JNDI names are defined using a special syntax.

4. Invoke methods
Now that you have a proxy bean object you can invoke any of the methods contained in the
remote business interface.

 <groupId>org.jboss.as.quickstarts</groupId>
 <artifactId>jboss-as-ejb-remote-server-side</artifactId>
 <type>ejb-client</type>
 <version>${project.version}</version>
</dependency>

final Hashtable jndiProperties = new Hashtable();
jndiProperties.put(Context.URL_PKG_PREFIXES,
"org.jboss.ejb.client.naming");
final Context context = new InitialContext(jndiProperties);

final RemoteCalculator statelessRemoteCalculator =
(RemoteCalculator) context.lookup(
 "ejb:/jboss-as-ejb-remote-server-side/CalculatorBean!" +
 RemoteCalculator.class.getName());

int a = 204;
int b = 340;
System.out.println("Adding " + a + " and " + b + " via the remote
stateless calculator deployed on the server");
int sum = statelessRemoteCalculator.add(a, b);
System.out.println("Remote calculator returned sum = " + sum);

CHAPTER 7. ENTERPRISE JAVABEANS

135

The proxy bean passes the method invocation request to the session bean on the server, where
it is executed. The result is returned to the proxy bean which then returns it to the caller. The
communication between the proxy bean and the remote session bean is transparent to the caller.

You should now be able to configure a Maven project to support invoking session beans on a remote
server and write the code invoke the session beans methods using a proxy bean retrieved from the
server using JNDI.

Report a bug

7.5.2. About EJB Client Contexts

JBoss EAP 6 introduced the EJB client API for managing remote EJB invocations. The JBoss EJB client
API uses the EJBClientContext, which may be associated with and be used by one or more threads
concurrently. The means an EJBClientContext can potentially contain any number of EJB receivers. An
EJB receiver is a component that knows how to communicate with a server that is capable of handling
the EJB invocation. Typically, EJB remote applications can be classified into the following:

A remote client, which runs as a standalone Java application.

A remote client, which runs within another JBoss EAP 6 instance.

Depending on the type of remote client, from an EJB client API point of view, there can potentially be
more than one EJBClientContext within a JVM.

While standalone applications typically have a single EJBClientContext that may be backed by any
number of EJB receivers, this isn't mandatory. If a standalone application has more than one
EJBClientContext, an EJB client context selector is responsible for returning the appropriate context.

In case of remote clients that run within another JBoss EAP 6 instance, each deployed application will
have a corresponding EJB client context. Whenever that application invokes another EJB, the
corresponding EJB client context is used to find the correct EJB receiver, which then handles the
invocation.

Report a bug

7.5.3. Considerations When Using a Single EJB Context

Summary

You must consider your application requirements when using a single EJB client context with standalone
remote clients. For more information about the different types of remote clients, refer to: Section 7.5.2,
“About EJB Client Contexts” .

Typical Process for a Remote Standalone Client with a Single EJB Client Context

A remote standalone client typically has just one EJB client context backed by any number of EJB
receivers. The following is an example of a standalone remote client application:

public class MyApplication {
 public static void main(String args[]) {
 final javax.naming.Context ctxOne = new
javax.naming.InitialContext();
 final MyBeanInterface beanOne =
ctxOne.lookup("ejb:app/module/distinct/bean!interface");
 beanOne.doSomething();

Development Guide

136

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5719-459903+%5BSpecified%5D&comment=Title%3A+Invoke+a+Session+Bean+Remotely+using+JNDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5719-459903+14+Jun+2013+09%3A56+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14184-459904+%5BSpecified%5D&comment=Title%3A+About+EJB+Client+Contexts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14184-459904+14+Jun+2013+09%3A57+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Remote client JNDI lookups are usually backed by a jboss-ejb-client.properties file, which is
used to set up the EJB client context and the EJB receivers. This configuration also includes the security
credentials, which are then used to create the EJB receiver that connects to the JBoss EAP 6 server.
When the above code is invoked, the EJB client API looks for the EJB client context, which is then used
to select the EJB receiver that will receive and process the EJB invocation request. In this case, there is
just the single EJB client context, so that context is used by the above code to invoke the bean. The
procedure to invoke a session bean remotely using JNDI is described in greater detail here:
Section 7.5.1, “Invoke a Session Bean Remotely using JNDI” .

Remote Standalone Client Requiring Different Credentials

A user application may want to invoke a bean more than once, but connect to the JBoss EAP 6 server
using different security credentials. The following is an example of a standalone remote client application
that invokes the same bean twice:

In this case, the application wants to connect to the same server instance to invoke the EJB hosted on
that server, but wants to use two different credentials while connecting to the server. Because the client
application has a single EJB client context, which can have only one EJB receiver for each server
instance, this means the above code uses just one credential to connect to the server and the code does
not execute as the application expects it to.

Solution

Scoped EJB client contexts offer a solution to this issue. They provide a way to have more control over
the EJB client contexts and their associated JNDI contexts, which are typically used for EJB invocations.
For more information about scoped EJB client contexts, refer to Section 7.5.4, “Using Scoped EJB Client
Contexts” and Section 7.5.5, “Configure EJBs Using a Scoped EJB Client Context” .

Report a bug

 ...
 }
}

public class MyApplication {
 public static void main(String args[]) {
 // Use the "foo" security credential connect to the server and
invoke this bean instance
 final javax.naming.Context ctxOne = new
javax.naming.InitialContext();
 final MyBeanInterface beanOne =
ctxOne.lookup("ejb:app/module/distinct/bean!interface");
 beanOne.doSomething();
 ...

 // Use the "bar" security credential to connect to the server and
invoke this bean instance
 final javax.naming.Context ctxTwo = new
javax.naming.InitialContext();
 final MyBeanInterface beanTwo =
ctxTwo.lookup("ejb:app/module/distinct/bean!interface");
 beanTwo.doSomething();
 ...
 }
}

CHAPTER 7. ENTERPRISE JAVABEANS

137

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14185-459905+%5BSpecified%5D&comment=Title%3A+Considerations+When+Using+a+Single+EJB+Context%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14185-459905+14+Jun+2013+11%3A12+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

7.5.4. Using Scoped EJB Client Contexts

Summary

To invoke an EJB In earlier versions of JBoss EAP 6, you would typically create a JNDI context and pass
it the PROVIDER_URL, which would point to the target server. Any invocations done on EJB proxies that
were looked up using that JNDI context, would end up on that server. With scoped EJB client contexts,
user applications have control over which EJB receiver is used for a specific invocation.

Use Scoped EJB Client Context in a Remote Standalone Client

Prior to the introduction of scoped EJB client contexts, the context was typically scoped to the client
application. Scoped client contexts now allow the EJB client contexts to be scoped with the JNDI
contexts. The following is an example of a standalone remote client application that invokes the same
bean twice using a scoped EJB client context:

To use the scoped EJB client context, you configure EJB client properties programmatically and pass the
properties on context creation. The properties are the same set of properties that are used in the
standard jboss-ejb-client.properties file. To scope the EJB client context to the JNDI context,
you must also specify the org.jboss.ejb.client.scoped.context property and set its value to
true. This property notifies the EJB client API that it must create an EJB client context, which is backed
by EJB receivers, and that the created context is then scoped or visible only to the JNDI context that
created it. Any EJB proxies looked up or invoked using this JNDI context will only know of the EJB client
context associated with this JNDI context. Other JNDI contexts used by the application to lookup and
invoke EJBs will not know about the other scoped EJB client contexts.

public class MyApplication {
 public static void main(String args[]) {

 // Use the "foo" security credential connect to the server and
invoke this bean instance
 final Properties ejbClientContextPropsOne =
getPropsForEJBClientContextOne():
 final javax.naming.Context ctxOne = new
javax.naming.InitialContext(ejbClientContextPropsOne);
 final MyBeanInterface beanOne =
ctxOne.lookup("ejb:app/module/distinct/bean!interface");
 beanOne.doSomething();
 ...
 ctxOne.close();

 // Use the "bar" security credential to connect to the server and
invoke this bean instance
 final Properties ejbClientContextPropsTwo =
getPropsForEJBClientContextTwo():
 final javax.naming.Context ctxTwo = new
javax.naming.InitialContext(ejbClientContextPropsTwo);
 final MyBeanInterface beanTwo =
ctxTwo.lookup("ejb:app/module/distinct/bean!interface");
 beanTwo.doSomething();
 ...
 ctxTwo.close();
 }
}

Development Guide

138

JNDI contexts that do not pass the org.jboss.ejb.client.scoped.context property and aren't
scoped to an EJB client context will use the default behavior, which is to use the existing EJB client
context that is typically tied to the entire application.

Scoped EJB client contexts provide user applications with the flexibility that was associated with the JNP
based JNDI invocations in previous versions of JBoss EAP. It provides user applications with more
control over which JNDI context communicates to which server and how it connects to that server.

NOTE

With the scoped context, the underlying resources are no longer handled by the container
or the API, so you must close the InitialContext when it is no longer needed. When
the InitialContext is closed, the resources are released immediately. The proxies
that are bound to it are no longer valid and any invocation will throw an Exception. Failure
to close the InitialContext may result in resource and performance issues.

Report a bug

7.5.5. Configure EJBs Using a Scoped EJB Client Context

Summary

EJBs can be configured using a map-based scoped context. This is achieved by programmatically
populating a Properties map using the standard properties found in the jboss-ejb-
client.properties, specifying true for the org.jboss.ejb.client.scoped.context
property, and passing the properties on the InitialContext creation.

The benefit of using a scoped context is that it allows you to configure access without directly referencing
the EJB or importing JBoss classes. It also provides a way to configure and load balance a host at
runtime in a multithreaded environment.

Procedure 7.9. Configure an EJB Using a Map-Based Scoped Context

1. Set the Properties
Configure the EJB client properties programmatically, specifiying the same set of properties that
are used in the standard jboss-ejb-client.properties file. To enable the scoped context,
you must specify the org.jboss.ejb.client.scoped.context property and set its value
to true. The following is an example that configures the properties programmatically.

2. Pass the Properties on the Context Creation

// Configure EJB Client properties for the InitialContext
Properties ejbClientContextProps = new Properties();
ejbClientContextProps.put(“remote.connections”,”name1”);
ejbClientContextProps.put(“remote.connection.name1.host”,”localhost”
);
ejbClientContextProps.put(“remote.connection.name1.port”,”4447”);
// Property to enable scoped EJB client context which will be tied
to the JNDI context
ejbClientContextProps.put("org.jboss.ejb.client.scoped.context",
“true”);

// Create the context using the configured properties
InitialContext ic = new InitialContext(ejbClientContextProps);

CHAPTER 7. ENTERPRISE JAVABEANS

139

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14186-479497+%5BSpecified%5D&comment=Title%3A+Using+Scoped+EJB+Client+Contexts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14186-479497+18+Jul+2013+23%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Additional Information

Contexts generated by lookup EJB proxies are bound by this scoped context and use only the
relevant connection parameters. This makes it possible to create different contexts to access
data within a client application or to independently access servers using different logins.

In the client, both the scoped InitialContext and the scoped proxy are passed to threads,
allowing each thread to work with the given context. It is also possible to pass the proxy to
multiple threads that can use it concurrently.

The scoped context EJB proxy is serialized on the remote call and then deserialized on the
server. When it is deserialized, the scoped context information is removed and it returns to its
default state. If the deserialized proxy is used on the remote server, because it no longer has the
scoped context that was used when it was created, this can result in an EJBCLIENT000025
error or possibly call an unwanted target by using the EJB name.

Report a bug

7.5.6. EJB Client Properties

Summary

The following tables list properties that can be configured programmatically or in the jboss-ejb-
client.properties file.

EJB Client Global Properties

The following table lists properties that are vaild for the whole library within the same scope.

Table 7.1. Global Properties

Property Name Description

endpoint.name Name of the client endpoint. If not set, the default value is client-endpoint

This can be helpful to distinguish different endpoint settings because the thread
name contains this property.

remote.connectio
nprovider.create
.options.org.xni
o.Options.SSL_EN
ABLED

Boolean value that specifies whether the SSL protocol is enabled for all
connections.

deployment.node.
selector

The fully qualified name of the implementation of
org.jboss.ejb.client.DeploymentNodeSelector.

This is used to load balance the invocation for the EJBs.

MySLSB bean = ic.lookup("ejb:myapp/ejb//MySLSBBean!" +
MySLSB.class.getName());

Development Guide

140

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14110-458055+%5BSpecified%5D&comment=Title%3A+Configure+EJBs+Using+a+Scoped+EJB+Client+Context%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14110-458055+07+Jun+2013+06%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

invocation.timeo
ut

The timeout for the EJB handshake or method invocation request/response cycle.
The value is in milliseconds.

The invocation of any method throws a
java.util.concurrent.TimeoutException if the execution takes
longer than the timeout period. The execution completes and the server is not
interrupted.

reconnect.tasks.
timeout

The timeout for the background reconnect tasks. The value is in milliseconds.

If a number of connections are down, the next client EJB invocation will use an
algorithm to decide if a reconnect is necessary to find the right node.

org.jboss.ejb.cl
ient.scoped.cont
ext

Boolean value that specifies whether to enable the scoped EJB client context. The
default value is false.

If set to true, the EJB Client will use the scoped context that is tied to the JNDI
context. Otherwise the EJB client context will use the global selector in the JVM to
determine the properties used to call the remote EJB and host.

Property Name Description

EJB Client Connection Properties

The connection properties start with the prefix remote.connection.CONNECTION_NAME where the
CONNECTION_NAME is a local identifer only used to uniquely identify the connection.

Table 7.2. Connection Properties

Property Name Description

remote.connectio
ns

A comma-separated list of active connection-names. Each connection is
configured by using this name.

remote.connectio
n.CONNECTION_NAM
E.host

The host name or IP for the connection.

remote.connectio
n.CONNECTION_NAM
E.port

The port for the connection. The default value is 4447.

remote.connectio
n.CONNECTION_NAM
E.username

The user name used to authenticate connection security.

remote.connectio
n.CONNECTION_NAM
E.password

The password used to authenticate the user.

CHAPTER 7. ENTERPRISE JAVABEANS

141

remote.connectio
n.CONNECTION_NAM
E.connect.timeou
t

The timeout period for the initial connection. After that, the reconnect task will
periodicaly check whether the connection can be established. The value is in
milliseconds.

remote.connectio
n.CONNECTION_NAM
E.callback.handl
er.class

Full qualified name of the CallbackHandler class. It will be used to establish
the connection and can not changed as long as the connection is open.

remote.connectio
n.CONNECTION_NAM
E.

channel.options.
org.jboss.remoti
ng3.RemotingOpti
ons.MAX_OUTBOUND
_MESSAGES

Integer value specifying the maximum number of outbound requests. The default
is 80.

There is only one connection from the client (JVM) to the server to handle all
invocations.

remote.connectio
n.CONNECTION_NAM
E.

connect.options.
org.xnio.Options
.SASL_POLICY_NOA
NONYMOUS

Boolean value that determines whether credentials must be provided by the client
to connect successfully. The default value is true.

If set to true, the client must provide credentials. If set to false, invocation is
allowed as long as the remoting connector does not request a security realm.

remote.connectio
n.CONNECTION_NAM
E.

connect.options.
org.xnio.Options
.SASL_DISALLOWED
_MECHANISMS

Disables certain SASL mechanisms used for authenticating during connection
creation.

JBOSS_LOCAL_USER means the silent authentication mechanism, used when
the client and server are on the same machine, is disabled.

remote.connectio
n.CONNECTION_NAM
E.

connect.options.
org.xnio.Options
.SASL_POLICY_NOP
LAINTEXT

Boolean value that enables or disables the use of plain text messages during the
authentication. If using JAAS, it must be set to false to allow a plain text password.

Property Name Description

Development Guide

142

remote.connectio
n.CONNECTION_NAM
E.

connect.options.
org.xnio.Options
.SSL_ENABLED

Boolean value that specifies whether the SSL protocol is enabled for this
connection.

remote.connectio
n.CONNECTION_NAM
E.

connect.options.
org.jboss.remoti
ng3.RemotingOpti
ons.HEARTBEAT_IN
TERVAL

Interval to send a heartbeat between client and server to preven automatic close,
for example, in the case of a firewall. The value is in milliseconds.

Property Name Description

EJB Client Cluster Properties

If the initial connection connects to a clustered environment, the topology of the cluster is received
automatically and asynchronously. These properties are used to connect to each received member.
Each property starts with the prefix remote.cluster.CLUSTER_NAME where the CLUSTER_NAME
refers to the related to the servers Infinispan subsystem configuration.

Table 7.3. Cluster Properties

Property Name Description

remote.cluster.C
LUSTER_NAME.

clusternode.sele
ctor

The fully qualified name of the implementation of
org.jboss.ejb.client.ClusterNodeSelector.

This class, rather than
org.jboss.ejb.clientDeploymentNodeSelector, is used to load
balance EJB invocations in a clustered environment. If the cluster is completely
down, the invocation will fail with No ejb receiver available.

remote.cluster.C
LUSTER_NAME.

channel.options.
org.jboss.remoti
ng3.RemotingOpti
ons.MAX_OUTBOUND
_MESSAGES

Integer value specifying the maximum number of outbound requests that can be
made to the entire cluster.

CHAPTER 7. ENTERPRISE JAVABEANS

143

remote.cluster.C
LUSTER_NAME.

node.NODE_NAME.
channel.options.
org.jboss.remoti
ng3.RemotingOpti
ons.MAX_OUTBOUND
_MESSAGES

Integer value specifying the maximum number of outbound requests that can be
made to this specific cluster-node.

Property Name Description

Report a bug

7.6. CONTAINER INTERCEPTORS

7.6.1. About Container Interceptors

Standard Java EE interceptors, as defined by the JSR 318, Enterprise JavaBeans 3.1 specification, are
expected to run after the container has completed security context propagation, transaction
management, and other container provided invocation processing. This is a problem if the user
application needs to intercept a call before a certain container specific interceptor is run.

Releases prior to JBoss EAP 6.0 provided a way to plug server side interceptors into the invocation flow
so you could run user application specific logic before the container completed invocation processing.
JBoss EAP 6.1 now implements this feature. This implementation allows standard Java EE interceptors
to be used as container interceptors, meaning they use the same XSD elements that are allowed in
ejb-jar.xml file for the 3.1 version of the ejb-jar deployment descriptor.

Positioning of the Container Interceptor in the Interceptor Chain

The container interceptors configured for an EJB are guaranteed to be run before the JBoss EAP 6.1
provided security interceptors, transaction management interceptors, and other server provided
interceptors. This allows the user application specific container interceptors to process or configure any
relevant context data before the invocation proceeds.

Differences Between the Container Interceptor and the Java EE Interceptor API

Although container interceptors are modeled to be similar to Java EE interceptors, there are some
differences in the API semantics. For example, it is illegal for container interceptors to invoke the
javax.interceptor.InvocationContext.getTarget() method because these interceptors are
invoked long before the EJB components are setup or instantiated.

Report a bug

7.6.2. Create a Container Interceptor Class

Summary

Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the
@javax.annotation.AroundInvoke to mark the method that will be invoked during the invocation on
the bean.

Development Guide

144

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14113-458060+%5BSpecified%5D&comment=Title%3A+EJB+Client+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14113-458060+07+Jun+2013+06%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://jcp.org/en/jsr/detail?id=318
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+13885-460027+%5BSpecified%5D&comment=Title%3A+About+Container+Interceptors%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13885-460027+14+Jun+2013+14%3A43+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The following is an example of a container interceptor class that marks the iAmAround method for
invocation:

Example 7.1. Container Interceptor Class Example

To see an example of a container interceptor descriptor file configured to use this class, refer to the
example jboss-ejb3.xml file here: Section 7.6.3, “Configure a Container Interceptor”.

Report a bug

7.6.3. Configure a Container Interceptor

Summary

Container interceptors use the standard Java EE interceptor libraries, meaning they use the same XSD
elements that are allowed in ejb-jar.xml file for the 3.1 version of the ejb-jar deployment descriptor.
Because they are based on the standard Jave EE interceptor libraries, container interceptors may only
be configured using deployment descriptors. This was done by design so applications would not require
any JBoss specific annotation or other library dependencies. For more information about container
interceptors, refer to: Section 7.6.1, “About Container Interceptors”.

Procedure 7.10. Create the Descriptor File to Configure the Container Interceptor

1. Create a jboss-ejb3.xml file in the META-INF directory of the EJB deployment.

2. Configure the container interceptor elements in the descriptor file.

a. Use the urn:container-interceptors:1.0 namespace to specify configuration of
container interceptor elements.

b. Use the <container-interceptors> element to specify the container interceptors.

c. Use the <interceptor-binding> elements to bind the container interceptor to the EJBs.
The interceptors can be bound in either of the following ways:

Bind the interceptor to all the EJBs in the deployment using the the * wildcard.

Bind the interceptor at the individual bean level using the specific EJB name.

Bind the interceptor at the specific method level for the EJBs.

public class ClassLevelContainerInterceptor {
 @AroundInvoke
 private Object iAmAround(final InvocationContext invocationContext)
throws Exception {
 return this.getClass().getName() + " " +
invocationContext.proceed();
 }
}

CHAPTER 7. ENTERPRISE JAVABEANS

145

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+13887-382767+%5BSpecified%5D&comment=Title%3A+Create+a+Container+Interceptor+Class%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13887-382767+08+Mar+2013+06%3A37+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

NOTE

These elements are configured using the EJB 3.1 XSD in the same way it is
done for Java EE interceptors.

3. Review the following descriptor file for examples of the above elements.

Example 7.2. jboss-ejb3.xml

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:jee="http://java.sun.com/xml/ns/javaee"
 xmlns:ci ="urn:container-interceptors:1.0">

 <jee:assembly-descriptor>
 <ci:container-interceptors>
 <!-- Default interceptor -->
 <jee:interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Cont
ainerInterceptorOne</interceptor-class>
 </jee:interceptor-binding>
 <!-- Class level container-interceptor -->
 <jee:interceptor-binding>
 <ejb-name>AnotherFlowTrackingBean</ejb-name>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Clas
sLevelContainerInterceptor</interceptor-class>
 </jee:interceptor-binding>
 <!-- Method specific container-interceptor -->
 <jee:interceptor-binding>
 <ejb-name>AnotherFlowTrackingBean</ejb-name>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Meth
odSpecificContainerInterceptor</interceptor-class>
 <method>
 <method-
name>echoWithMethodSpecificContainerInterceptor</method-name>
 </method>
 </jee:interceptor-binding>
 <!-- container interceptors in a specific order -->
 <jee:interceptor-binding>
 <ejb-name>AnotherFlowTrackingBean</ejb-name>
 <interceptor-order>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Clas
sLevelContainerInterceptor</interceptor-class>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Meth
odSpecificContainerInterceptor</interceptor-class>
 <interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Cont
ainerInterceptorOne</interceptor-class>
 </interceptor-order>
 <method>

Development Guide

146

The XSD for the urn:container-interceptors:1.0 namespace is available here:
https://github.com/jbossas/jboss-as/blob/master/ejb3/src/main/resources/jboss-ejb-container-
interceptors_1_0.xsd.

Report a bug

7.6.4. Change the Security Context Identity

Summary

By default, when you make a remote call to an EJB deployed to the application server, the connection to
the server is authenticated and any request received over this connection is executed as the identity that
authenticated the connection. This is true for both client-to-server and server-to-server calls. If you need
to use different identities from the same client, you normally need to open multiple connections to the
server so that each one is authenticated as a different identity. Rather than open multiple client
connections, you can give permission to the authenticated user to execute a request as a different user.

This topic describes how to to switch identities on the existing client connection. Refer to the ejb-
security-interceptors quickstart for a complete working example. The following code examples
are abridged versions of the code in the quickstart.

Procedure 7.11. Change the Identity of the Security Context

To change the identity of a secured connection, you must create the following 3 components.

1. Create the client side interceptor
This interceptor must implement the org.jboss.ejb.client.EJBClientInterceptor.
The interceptor is expected to pass the requested identity through the context data map, which
can be obtained via a call to EJBClientInvocationContext.getContextData(). The
following is an example of client side interceptor code:

 <method-
name>echoInSpecificOrderOfContainerInterceptors</method-name>
 </method>
 </jee:interceptor-binding>
 </ci:container-interceptors>
 </jee:assembly-descriptor>
</jboss>

public class ClientSecurityInterceptor implements
EJBClientInterceptor {

 public void handleInvocation(EJBClientInvocationContext context)
throws Exception {
 Principal currentPrincipal =
SecurityActions.securityContextGetPrincipal();

 if (currentPrincipal != null) {
 Map<String, Object> contextData =
context.getContextData();

contextData.put(ServerSecurityInterceptor.DELEGATED_USER_KEY,

CHAPTER 7. ENTERPRISE JAVABEANS

147

https://github.com/jbossas/jboss-as/blob/master/ejb3/src/main/resources/jboss-ejb-container-interceptors_1_0.xsd
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+13886-458061+%5BSpecified%5D&comment=Title%3A+Configure+a+Container+Interceptor%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13886-458061+07+Jun+2013+06%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

User applications can then plug in the interceptor in the EJBClientContext in one of the
following ways:

Programmatically
With this approach, you call the
org.jboss.ejb.client.EJBClientContext.registerInterceptor(int order,
EJBClientInterceptor interceptor) API and pass the order and the
interceptor instance. The order is used to determine where exactly in the client
interceptor chain this interceptor is placed.

ServiceLoader Mechanism
This approach requires the creation of a META-
INF/services/org.jboss.ejb.client.EJBClientInterceptor file and placing or
packaging it in the classpath of the client application. The rules for the file are dictated by
the Java ServiceLoader Mechanism. This file is expected to contain in each separate line
the fully qualified class name of the EJB client interceptor implementation. The EJB client
interceptor classes must be available in the classpath. EJB client interceptors added using
the ServiceLoader mechanism are added to the end of the client interceptor chain, in the
order they are found in the classpath. The ejb-security-interceptors quickstart uses
this approach.

2. Create and configure the server side container interceptor
Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the
@javax.annotation.AroundInvoke to mark the method that will be invoked during the
invocation on the bean. For more information about container interceptors, refer to:
Section 7.6.1, “About Container Interceptors”.

a. Create the container interceptor
This interceptor receives the InvocationContext with the identity and requests the
switch. The following is an abridged version of the actual code example:

currentPrincipal.getName());
 }
 context.sendRequest();
 }

 public Object handleInvocationResult(EJBClientInvocationContext
context) throws Exception {
 return context.getResult();
 }
}

 public class ServerSecurityInterceptor {

 private static final Logger logger =
Logger.getLogger(ServerSecurityInterceptor.class);
 static final String DELEGATED_USER_KEY =
ServerSecurityInterceptor.class.getName() + ".DelegationUser";

 @AroundInvoke
 public Object aroundInvoke(final InvocationContext
invocationContext) throws Exception {
 Principal desiredUser = null;
 RealmUser connectionUser = null;

Development Guide

148

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

 Map<String, Object> contextData =
invocationContext.getContextData();
 if (contextData.containsKey(DELEGATED_USER_KEY)) {
 desiredUser = new SimplePrincipal((String)
contextData.get(DELEGATED_USER_KEY));
 Connection con =
SecurityActions.remotingContextGetConnection();
 if (con != null) {
 UserInfo userInfo = con.getUserInfo();
 if (userInfo instanceof SubjectUserInfo) {
 SubjectUserInfo sinfo =
(SubjectUserInfo) userInfo;
 for (Principal current :
sinfo.getPrincipals()) {
 if (current instanceof RealmUser) {
 connectionUser = (RealmUser)
current;
 break;
 }
 }
 }
 } else {
 throw new IllegalStateException("Delegation
user requested but no user on connection found.");
 }
 }

 SecurityContext cachedSecurityContext = null;
 boolean contextSet = false;
 try {
 if (desiredUser != null && connectionUser !=
null
 &&
(desiredUser.getName().equals(connectionUser.getName()) ==
false)) {
 // The final part of this check is to verify
that the change does actually indicate a change in user.
 try {
 // We have been requested to switch user
and have successfully identified the user from the connection
 // so now we attempt the switch.
 cachedSecurityContext =
SecurityActions.securityContextSetPrincipalInfo(desiredUser,
 new
OuterUserCredential(connectionUser));
 // keep track that we switched the
security context
 contextSet = true;
 SecurityActions.remotingContextClear();
 } catch (Exception e) {
 logger.error("Failed to switch security
context for user", e);
 // Don't propagate the exception
stacktrace back to the client for security reasons
 throw new EJBAccessException("Unable to

CHAPTER 7. ENTERPRISE JAVABEANS

149

b. Configure the container interceptor
For information on how to configure server side container interceptors, refer to:
Section 7.6.3, “Configure a Container Interceptor”.

3. Create the JAAS LoginModule
This component is responsible for verifying that user is allowed to execute requests as the
requested identity. The following code examples show the methods that peform the login and
validation:

attempt switching of user.");
 }
 }
 return invocationContext.proceed();
 } finally {
 // switch back to original security context
 if (contextSet) {

SecurityActions.securityContextSet(cachedSecurityContext);
 }
 }
 }
 }

@SuppressWarnings("unchecked")
@Override
public boolean login() throws LoginException {
 if (super.login() == true) {
 log.debug("super.login()==true");
 return true;
 }

 // Time to see if this is a delegation request.
 NameCallback ncb = new NameCallback("Username:");
 ObjectCallback ocb = new ObjectCallback("Password:");

 try {
 callbackHandler.handle(new Callback[] { ncb, ocb });
 } catch (Exception e) {
 if (e instanceof RuntimeException) {
 throw (RuntimeException) e;
 }
 return false; // If the CallbackHandler can not handle the
required callbacks then no chance.
 }
 String name = ncb.getName();
 Object credential = ocb.getCredential();
 if (credential instanceof OuterUserCredential) {
 // This credential type will only be seen for a delegation
request, if not seen then the request is not for us.
 if (delegationAcceptable(name, (OuterUserCredential)
credential)) {
 identity = new SimplePrincipal(name);
 if (getUseFirstPass()) {
 String userName = identity.getName();
 if (log.isDebugEnabled())
 log.debug("Storing username '" + userName + "'

Development Guide

150

See the quickstart README file for complete instructions and more detailed information about the code.

Report a bug

7.6.5. Pass Additional Security For EJB Authentication

Summary

By default, when you make a remote call to an EJB deployed to the application server, the connection to
the server is authenticated and any request received over this connection is executed using the
credentials that authenticated the connection. Authentication at the connection level is dependent on the
capabilities of the underlying SASL (Simple Authentication and Security Layer) mechanisms. Rather than
write custom SASL mechanisms, you can open and authenticate a connection to the server, then later
add additional security tokens prior to invoking an EJB. This topic describes how to to pass additional
information on the existing client connection for EJB authentication.

The code examples below are for demonstration purposes only. They present only one possible

and empty password");
 // Add the username and an empty password to the
shared state map
 sharedState.put("javax.security.auth.login.name",
identity);

sharedState.put("javax.security.auth.login.password", "");
 }
 loginOk = true;
 return true;
 }
 }
 return false; // Attempted login but not successful.
}

protected boolean delegationAcceptable(String requestedUser,
OuterUserCredential connectionUser) {
 if (delegationMappings == null) {
 return false;
 }

 String[] allowedMappings =
loadPropertyValue(connectionUser.getName(),
connectionUser.getRealm());
 if (allowedMappings.length == 1 &&
"*".equals(allowedMappings[1])) {
 // A wild card mapping was found.
 return true;
 }
 for (String current : allowedMappings) {
 if (requestedUser.equals(current)) {
 return true;
 }
 }
 return false;
}

CHAPTER 7. ENTERPRISE JAVABEANS

151

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+13166-382767+%5BSpecified%5D&comment=Title%3A+Change+the+Security+Context+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13166-382767+08+Mar+2013+06%3A37+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

approach and must be customized to suit the exact needs of the application. The password is exchanged
using the SASL mechanism. If SASL DIGEST-MD5 Authentication is used, the password is still hashed
with a challenge and not sent in the clear. The remaining tokens, however are sent in the clear. If those
tokens contain any sensitive information, you may want to enable encryption for the connection.

Procedure 7.12. Pass Security Information for EJB Authentication

To supply an additional security token for an authenticated connection, you must create the following 3
components.

1. Create the client side interceptor
This interceptor must implement the org.jboss.ejb.client.EJBClientInterceptor.
The interceptor is expected to pass the additional security token through the context data map,
which can be obtained via a call to EJBClientInvocationContext.getContextData().
The following is an example of client side interceptor code that creates an additional security
token:

For information on how to plug the client interceptor into an application, refer to Section 7.6.6,
“Use a Client Side Interceptor in an Application”.

2. Create and configure the server side container interceptor
Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the
@javax.annotation.AroundInvoke to mark the method that is invoked during the
invocation on the bean. For more information about container interceptors, refer to:
Section 7.6.1, “About Container Interceptors”.

public class ClientSecurityInterceptor implements
EJBClientInterceptor {

 public void handleInvocation(EJBClientInvocationContext context)
throws Exception {
 Object credential =
SecurityActions.securityContextGetCredential();

 if (credential != null && credential instanceof
PasswordPlusCredential) {
 PasswordPlusCredential ppCredential =
(PasswordPlusCredential) credential;
 Map<String, Object> contextData =
context.getContextData();

contextData.put(ServerSecurityInterceptor.SECURITY_TOKEN_KEY,
 ppCredential.getAuthToken());
 }
 context.sendRequest();
 }

 public Object handleInvocationResult(EJBClientInvocationContext
context)
 throws Exception {
 return context.getResult();
 }
}

Development Guide

152

a. Create the container interceptor
This interceptor retrieves the security authentication token from the context and passes it to
the JAAS (Java Authentication and Authorization Service) domain for verification. The
following is an example of container interceptor code:

public class ServerSecurityInterceptor {

 private static final Logger logger =
Logger.getLogger(ServerSecurityInterceptor.class);
 static final String SECURITY_TOKEN_KEY =
ServerSecurityInterceptor.class.getName() + ".SecurityToken";

 @AroundInvoke
 public Object aroundInvoke(final InvocationContext
invocationContext) throws Exception {
 Principal userPrincipal = null;
 RealmUser connectionUser = null;
 String authToken = null;

 Map<String, Object> contextData =
invocationContext.getContextData();
 if (contextData.containsKey(SECURITY_TOKEN_KEY)) {
 authToken = (String)
contextData.get(SECURITY_TOKEN_KEY);

 Connection con =
SecurityActions.remotingContextGetConnection();

 if (con != null) {
 UserInfo userInfo = con.getUserInfo();
 if (userInfo instanceof SubjectUserInfo) {
 SubjectUserInfo sinfo = (SubjectUserInfo)
userInfo;
 for (Principal current :
sinfo.getPrincipals()) {
 if (current instanceof RealmUser) {
 connectionUser = (RealmUser)
current;
 break;
 }
 }
 }
 userPrincipal = new
SimplePrincipal(connectionUser.getName());

 } else {
 throw new IllegalStateException("Token
authentication requested but no user on connection found.");
 }
 }

 SecurityContext cachedSecurityContext = null;
 boolean contextSet = false;
 try {
 if (userPrincipal != null && connectionUser != null
&& authToken != null) {

CHAPTER 7. ENTERPRISE JAVABEANS

153

b. Configure the container interceptor
For information on how to configure server side container interceptors, refer to:
Section 7.6.3, “Configure a Container Interceptor”.

3. Create the JAAS LoginModule
This custom module performs the authentication using the existing authenticated connection
information plus any additional security token. The following is an example of code that uses the
additional security token and performs the authentication:

 try {
 // We have been requested to use an
authentication token
 // so now we attempt the switch.
 cachedSecurityContext =
SecurityActions.securityContextSetPrincipalCredential(userPrincip
al,
 new
OuterUserPlusCredential(connectionUser, authToken));
 // keep track that we switched the security
context
 contextSet = true;
 SecurityActions.remotingContextClear();
 } catch (Exception e) {
 logger.error("Failed to switch security
context for user", e);
 // Don't propagate the exception stacktrace
back to the client for security reasons
 throw new EJBAccessException("Unable to
attempt switching of user.");
 }
 }

 return invocationContext.proceed();
 } finally {
 // switch back to original security context
 if (contextSet) {

SecurityActions.securityContextSet(cachedSecurityContext);
 }
 }
 }
}

public class SaslPlusLoginModule extends AbstractServerLoginModule {

 private static final String ADDITIONAL_SECRET_PROPERTIES =
"additionalSecretProperties";
 private static final String DEFAULT_AS_PROPERTIES = "additional-
secret.properties";
 private Properties additionalSecrets;
 private Principal identity;

 @Override
 public void initialize(Subject subject, CallbackHandler
callbackHandler, Map<String, ?> sharedState, Map<String, ?> options)

Development Guide

154

{
 addValidOptions(new String[] { ADDITIONAL_SECRET_PROPERTIES
});
 super.initialize(subject, callbackHandler, sharedState,
options);

 // Load the properties that contain the additional security
tokens
 String propertiesName;
 if (options.containsKey(ADDITIONAL_SECRET_PROPERTIES)) {
 propertiesName = (String)
options.get(ADDITIONAL_SECRET_PROPERTIES);
 } else {
 propertiesName = DEFAULT_AS_PROPERTIES;
 }
 try {
 additionalSecrets =
SecurityActions.loadProperties(propertiesName);
 } catch (IOException e) {
 throw new
IllegalArgumentException(String.format("Unable to load properties
'%s'", propertiesName), e);
 }
 }

 @Override
 public boolean login() throws LoginException {
 if (super.login() == true) {
 log.debug("super.login()==true");
 return true;
 }

 // Time to see if this is a delegation request.
 NameCallback ncb = new NameCallback("Username:");
 ObjectCallback ocb = new ObjectCallback("Password:");

 try {
 callbackHandler.handle(new Callback[] { ncb, ocb });
 } catch (Exception e) {
 if (e instanceof RuntimeException) {
 throw (RuntimeException) e;
 }
 return false; // If the CallbackHandler can not handle
the required callbacks then no chance.
 }

 String name = ncb.getName();
 Object credential = ocb.getCredential();

 if (credential instanceof OuterUserPlusCredential) {
 OuterUserPlusCredential oupc = (OuterUserPlusCredential)
credential;
 if (verify(name, oupc.getName(), oupc.getAuthToken())) {
 identity = new SimplePrincipal(name);
 if (getUseFirstPass()) {
 String userName = identity.getName();

CHAPTER 7. ENTERPRISE JAVABEANS

155

4. Add the Custom LoginModule to the Chain
You must add the new custom LoginModule to the correct location the chain so that it is invoked
in the correct order. In this example, the SaslPlusLoginModule must be chained before the
LoginModule that loads the roles with the password-stacking option set.

Configure the LoginModule Order using the Management CLI
The following is an example of Management CLI commands that chain the custom
SaslPlusLoginModule before the RealmDirect LoginModule that sets the password-
stacking option.

[standalone@localhost:9999 /] ./subsystem=security/security-
domain=quickstart-domain:add(cache-type=default)

 if (log.isDebugEnabled())
 log.debug("Storing username '" + userName +
"' and empty password");
 // Add the username and an empty password to
the shared state map

sharedState.put("javax.security.auth.login.name", identity);

sharedState.put("javax.security.auth.login.password", oupc);
 }
 loginOk = true;
 return true;
 }
 }

 return false; // Attempted login but not successful.
 }

 private boolean verify(final String authName, final String
connectionUser, final String authToken) {
 // For the purpose of this quick start we are not supporting
switching users, this login module is validation an
 // additional security token for a user that has already
passed the sasl process.
 return authName.equals(connectionUser) &&
authToken.equals(additionalSecrets.getProperty(authName));
 }

 @Override
 protected Principal getIdentity() {
 return identity;
 }

 @Override
 protected Group[] getRoleSets() throws LoginException {
 Group roles = new SimpleGroup("Roles");
 Group callerPrincipal = new SimpleGroup("CallerPrincipal");
 Group[] groups = { roles, callerPrincipal };
 callerPrincipal.addMember(getIdentity());
 return groups;
 }
}

Development Guide

156

[standalone@localhost:9999 /] ./subsystem=security/security-
domain=quickstart-domain/authentication=classic:add
[standalone@localhost:9999 /] ./subsystem=security/security-
domain=quickstart-domain/authentication=classic/login-
module=DelegationLoginModule:add(code=org.jboss.as.quickstarts.ej
b_security_plus.SaslPlusLoginModule,flag=optional,module-options=
{password-stacking=useFirstPass})
[standalone@localhost:9999 /] ./subsystem=security/security-
domain=quickstart-domain/authentication=classic/login-
module=RealmDirect:add(code=RealmDirect,flag=required,module-
options={password-stacking=useFirstPass})

For more information about the Management CLI, refer to the chapter entitled Management
Interfaces in the Administration and Configuration Guide for JBoss EAP 6 located on the
Customer Portal at
https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/

Configure the LoginModule Order Manually
The following is an example of XML that configures the LoginModule order in the security
subsystem of the server configuration file. The custom SaslPlusLoginModule must
precede the RealmDirect LoginModule so that it can verify the remote user before the
user roles are loaded and the password-stacking option is set.

5. Create the Remote Client
In the following code example, assume the additional-secret.properties file accessed
by the JAAS LoginModule above contains the following property:

The following code demonstrates how create the security token and set it before the the EJB
call. The secret token is hard-coded for demonstration purposes only. This client simply prints
the results to the console.

<security-domain name="quickstart-domain" cache-type="default">
 <authentication>
 <login-module
code="org.jboss.as.quickstarts.ejb_security_plus.SaslPlusLoginMod
ule" flag="required">
 <module-option name="password-stacking"
value="useFirstPass"/>
 </login-module>
 <login-module code="RealmDirect" flag="required">
 <module-option name="password-stacking"
value="useFirstPass"/>
 </login-module>
 </authentication>
</security-domain>

quickstartUser=7f5cc521-5061-4a5b-b814-bdc37f021acc

import static
org.jboss.as.quickstarts.ejb_security_plus.EJBUtil.lookupSecuredEJB;

public class RemoteClient {

CHAPTER 7. ENTERPRISE JAVABEANS

157

https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/

Report a bug

7.6.6. Use a Client Side Interceptor in an Application

Summary

You can plug a client-side interceptor into an application programmatically or using a ServiceLoader
mechanism. The following procedure describes the two methods.

Procedure 7.13. Plug the Interceptor into

Programmatically
With this approach, you call the
org.jboss.ejb.client.EJBClientContext.registerInterceptor(int order,
EJBClientInterceptor interceptor) API and pass the order and the
interceptor instance. The order is used to determine where exactly in the client
interceptor chain this interceptor is placed.

ServiceLoader Mechanism
This approach requires the creation of a META-
INF/services/org.jboss.ejb.client.EJBClientInterceptor file and placing or
packaging it in the classpath of the client application. The rules for the file are dictated by
the Java ServiceLoader Mechanism. This file is expected to contain in each separate line
the fully qualified class name of the EJB client interceptor implementation. The EJB client
interceptor classes must be available in the classpath. EJB client interceptors added using
the ServiceLoader mechanism are added to the end of the client interceptor chain, in the
order they are found in the classpath.

Report a bug

7.7. CLUSTERED ENTERPRISE JAVABEANS

7.7.1. About Clustered Enterprise JavaBeans (EJBs)

 /**
 * @param args
 */
 public static void main(String[] args) throws Exception {
 SimplePrincipal principal = new
SimplePrincipal("quickstartUser");
 Object credential = new
PasswordPlusCredential("quickstartPwd1!".toCharArray(), "7f5cc521-
5061-4a5b-b814-bdc37f021acc");

SecurityActions.securityContextSetPrincipalCredential(principal,
credential);
 SecuredEJBRemote secured = lookupSecuredEJB();

 System.out.println(secured.getPrincipalInformation());
 }
}

Development Guide

158

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14139-460028+%5BSpecified%5D&comment=Title%3A+Pass+Additional+Security+For+EJB+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14139-460028+14+Jun+2013+14%3A44+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14138-429130+%5BSpecified%5D&comment=Title%3A+Use+a+Client+Side+Interceptor+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14138-429130+28+Mar+2013+17%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

EJB components can be clustered for high-availability scenarios. They use different protocols than HTTP
components, so they are clustered in different ways. EJB 2 and 3 stateful and stateless beans can be
clustered.

For information on singletons, refer here: Section 8.4, “Implement an HA Singleton”.

NOTE

EJB 2 entity beans cannot be clustered. This limitation is not expected to be changed.

Report a bug

7.8. REFERENCE

7.8.1. EJB JNDI Naming Reference

The JNDI lookup name for a session bean has the syntax of:

 ejb:<appName>/<moduleName>/<distinctName>/<beanName>!<viewClassName>?
stateful

<appName>

If the session bean's JAR file has been deployed within an enterprise archive (EAR) then this is the
name of that EAR. By default, the name of an EAR is its filename without the .ear suffix. The
application name can also be overridden in its application.xml file. If the session bean is not
deployed in an EAR then leave this blank.

<moduleName>

The module name is the name of the JAR file that the session bean is deployed in. By the default, the
name of the JAR file is its filename without the .jar suffix. The module name can also be overridden
in the JAR's ejb-jar.xml file.

<distinctName>

JBoss EAP 6 allows each deployment to specify an optional distinct name. If the deployment does
not have a distinct name then leave this blank.

<beanName>

The bean name is the classname of the session bean to be invoked.

<viewClassName>

The view class name is the fully qualified classname of the remote interface. This includes the
package name of the interface.

?stateful

The ?stateful suffix is required when the JNDI name refers to a stateful session bean. It is not
included for other bean types.

Report a bug

CHAPTER 7. ENTERPRISE JAVABEANS

159

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4663-203379+%5BSpecified%5D&comment=Title%3A+About+Clustered+Enterprise+JavaBeans+%28EJBs%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4663-203379+20+Aug+2012+21%3A23+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5119-459907+%5BSpecified%5D&comment=Title%3A+EJB+JNDI+Naming+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5119-459907+14+Jun+2013+11%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

7.8.2. EJB Reference Resolution

This section covers how JBoss implements @EJB and @Resource. Please note that XML always
overrides annotations but the same rules apply.

Rules for the @EJB annotation

The @EJB annotation also has a mappedName() attribute. The specification leaves this as
vendor specific metadata, but JBoss recognizes mappedName() as the global JNDI name of the
EJB you are referencing. If you have specified a mappedName(), then all other attributes are
ignored and this global JNDI name is used for binding.

If you specify @EJB with no attributes defined:

Then the following rules apply:

The EJB jar of the referencing bean is searched for an EJB with the interface used in the
@EJB injection. If there are more than one EJB that publishes same business interface, then
an exception is thrown. If there is only one bean with that interface then that one is used.

Search the EAR for EJBs that publish that interface. If there are duplicates, then an
exception is thrown. Otherwise the matching bean is returned.

Search globally in JBoss runtime for an EJB of that interface. Again, if duplicates are found,
an exception is thrown.

@EJB.beanName() corresponds to <ejb-link>. If the beanName() is defined, then use the
same algorithm as @EJB with no attributes defined except use the beanName() as a key in the
search. An exception to this rule is if you use the ejb-link '#' syntax. The '#' syntax allows you to
put a relative path to a jar in the EAR where the EJB you are referencing is located. Refer to the
EJB 3.1 specification for more details.

Report a bug

7.8.3. Project dependencies for Remote EJB Clients

Maven projects that include the invocation of session beans from remote clients require the following
dependencies from the JBoss EAP 6 Maven repository.

Table 7.4. Maven dependencies for Remote EJB Clients

GroupID ArtifactID

org.jboss.spec jboss-javaee-6.0

org.jboss.as jboss-as-ejb-client-bom

org.jboss.spec.javax.transaction jboss-transaction-api_1.1_spec

org.jboss.spec.javax.ejb jboss-ejb-api_3.1_spec

@EJB
ProcessPayment myEjbref;

Development Guide

160

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4543-213148+%5BSpecified%5D&comment=Title%3A+EJB+Reference+Resolution%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4543-213148+22+Aug+2012+23%3A11+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

org.jboss jboss-ejb-client

org.jboss.xnio xnio-api

org.jboss.xnio xnio-nio

org.jboss.remoting3 jboss-remoting

org.jboss.sasl jboss-sasl

org.jboss.marshalling jboss-marshalling-river

GroupID ArtifactID

With the exception of jboss-javaee-6.0 and jboss-as-ejb-client-bom, these dependencies
must be added to the <dependencies> section of the pom.xml file.

The jboss-javaee-6.0 and jboss-as-ejb-client-bom dependencies should be added to the
<dependencyManagement> section of your pom.xml with the scope of import.

NOTE

The artifactID's versions are subject to change. Refer to the Maven repository for the
relevant version.

Refer to the remote-ejb/client/pom.xml for a complete example of dependency configuration for
remote session bean invocation.

Report a bug

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.jboss.spec</groupId>
 <artifactId>jboss-javaee-6.0</artifactId>
 <version>3.0.0.Final-redhat-1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>

 <dependency>
 <groupId>org.jboss.as</groupId>
 <artifactId>jboss-as-ejb-client-bom</artifactId>
 <version>7.1.1.Final-redhat-1</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

CHAPTER 7. ENTERPRISE JAVABEANS

161

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5726-459908+%5BSpecified%5D&comment=Title%3A+Project+dependencies+for+Remote+EJB+Clients%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5726-459908+14+Jun+2013+11%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

7.8.4. jboss-ejb3.xml Deployment Descriptor Reference

jboss-ejb3.xml is a custom deployment descriptor that can be used in either EJB JAR or WAR
archives. In an EJB JAR archive it must be located in the META-INF/ directory. In a WAR archive it must
be located in the WEB-INF/ directory.

The format is similar to ejb-jar.xml, using some of the same namespaces and providing some other
additional namespaces. The contents of jboss-ejb3.xml are merged with the contents of ejb-
jar.xml, with the jboss-ejb3.xml items taking precedence.

This document only covers the additional non-standard namespaces used by jboss-ejb3.xml. Refer
to http://java.sun.com/xml/ns/javaee/ for documentation on the standard namespaces.

The root namespace is http://www.jboss.com/xml/ns/javaee.

Assembly descriptor namespaces

The following namespaces can all be used in the <assembly-descriptor> element. They can be
used to apply their configuration to a single bean, or to all beans in the deployment by using * as the
ejb-name.

The clustering namespace: urn:clustering:1.0

This allows you to mark EJB's as clustered. It is the deployment descriptor equivalent to
@org.jboss.ejb3.annotation.Clustered.

The security namespace (urn:security)

This allows you to set the security domain and the run-as principal for an EJB.

The resource adaptor namespace: urn:resource-adapter-binding

This allows you to set the resource adaptor for an Message-Driven Bean.

xmlns:c="urn:clustering:1.0"

<c:clustering>
 <ejb-name>DDBasedClusteredSFSB</ejb-name>
 <c:clustered>true</c:clustered>
</c:clustering>

xmlns:s="urn:security"

<s:security>
 <ejb-name>*</ejb-name>
 <s:security-domain>myDomain</s:security-domain>
 <s:run-as-principal>myPrincipal</s:run-as-principal>
</s:security>

xmlns:r="urn:resource-adapter-binding"

<r:resource-adapter-binding>
 <ejb-name>*</ejb-name>

Development Guide

162

http://java.sun.com/xml/ns/javaee/

The IIOP namespace: urn:iiop

The IIOP namespace is where IIOP settings are configured.

The pool namespace: urn:ejb-pool:1.0

This allows you to select the pool that is used by the included stateless session beans or Message-
Driven Beans. Pools are defined in the server configuration.

The cache namespace: urn:ejb-cache:1.0

This allows you to select the cache that is used by the included stateful session beans. Caches are
defined in the server configuration.

Example 7.3. Example jboss-ejb3.xml file

 <r:resource-adapter-name>myResourceAdaptor</r:resource-adapter-name>
</r:resource-adapter-binding>

xmlns:u="urn:iiop"

xmlns:p="urn:ejb-pool:1.0"

<p:pool>
 <ejb-name>*</ejb-name>
 <p:bean-instance-pool-ref>my-pool</p:bean-instance-pool-ref>
</p:pool>

xmlns:c="urn:ejb-cache:1.0"

<c:cache>
 <ejb-name>*</ejb-name>
 <c:cache-ref>my-cache</c:cache-ref>
</c:cache>

<?xml version="1.1" encoding="UTF-8"?>
 <jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:c="urn:clustering:1.0"

xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd
http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-
jar_3_1.xsd"
 version="3.1"
 impl-version="2.0">
 <enterprise-beans>
 <message-driven>
 <ejb-name>ReplyingMDB</ejb-name>
 <ejb-
class>org.jboss.as.test.integration.ejb.mdb.messagedestination.ReplyingM

CHAPTER 7. ENTERPRISE JAVABEANS

163

Report a bug

DB</ejb-class>
 <activation-config>
 <activation-config-property>
 <activation-config-property-
name>destination</activation-config-property-name>
 <activation-config-property-
value>java:jboss/mdbtest/messageDestinationQueue
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>
 </enterprise-beans>
 <assembly-descriptor>
 <c:clustering>
 <ejb-name>DDBasedClusteredSFSB</ejb-name>
 <c:clustered>true</c:clustered>
 </c:clustering>
 </assembly-descriptor>
 </jboss:ejb-jar>

Development Guide

164

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9019-432942+%5BSpecified%5D&comment=Title%3A+jboss-ejb3.xml+Deployment+Descriptor+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9019-432942+11+Apr+2013+10%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 8. CLUSTERING IN WEB APPLICATIONS

8.1. SESSION REPLICATION

8.1.1. About HTTP Session Replication

Session replication ensures that client sessions of distributable applications are not disrupted by failovers
by nodes in a cluster. Each node in the cluster shares information about ongoing sessions, and can take
them over if the originally-involved node disappears.

Session replication is the mechanism by which mod_cluster, mod_jk, mod_proxy, ISAPI, and NSAPI
clusters provide high availability.

Report a bug

8.1.2. About the Web Session Cache

The web session cache can be configured when you use any of the HA profiles, including the
standalone-ha.xml profile, or the managed domain profiles ha or full-ha. The most commonly
configured elements are the cache mode and the number of cache owners for a distributed cache.

Cache Mode

The cache mode can either be REPL (the default) or DIST.

REPL

The REPL mode replicates the entire cache to every other node in the cluster. This is the safest
option, but introduces more overhead.

DIST

The DIST mode is similar to the buddy mode provided in previous implementations. It reduces
overhead by distributing the cache to the number of nodes specified in the owners parameter. This
number of owners defaults to 2.

Owners

The owners parameter controls how many cluster nodes hold replicated copies of the session. The
default is 2.

Report a bug

8.1.3. Configure the Web Session Cache

The web session cache defaults to REPL. If you wish to use DIST mode, run the following two
commands in the Management CLI. If you use a different profile, change the profile name in the
commands. If you use a standalone server, remove the /profile=ha portion of the commands.

Procedure 8.1. Configure the Web Session Cache

1. Change the default cache mode to DIST.

CHAPTER 8. CLUSTERING IN WEB APPLICATIONS

165

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4686-328712+%5BSpecified%5D&comment=Title%3A+About+HTTP+Session+Replication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4686-328712+05+Nov+2012+15%3A25+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+12554-341870+%5BSpecified%5D&comment=Title%3A+About+the+Web+Session+Cache%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=12554-341870+10+Dec+2012+15%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

/profile=ha/subsystem=infinispan/cache-container=web/:write-
attribute(name=default-cache,value=dist)

2. Set the number of owners for a distributed cache.
The following command sets 5 owners. The default is 2.

/profile=ha/subsystem=infinispan/cache-container=web/distributed-
cache=dist/:write-attribute(name=owners,value=5)

3. Change the default cache mode back to REPL.

/profile=ha/subsystem=infinispan/cache-container=web/:write-
attribute(name=default-cache,value=repl)

4. Restart the Server
After changing the web cache mode, you must restart the server.

Result

Your server is configured for session replication. To use session replication in your own applications,
refer to the following topic: Section 8.1.4, “Enable Session Replication in Your Application”.

Report a bug

8.1.4. Enable Session Replication in Your Application

Summary

To take advantage of JBoss EAP 6 High Availability (HA) features, you must configure your application
to be distributable. This procedure shows how to do that, and then explains some of the advanced
configuration options you can use.

Procedure 8.2. Make your Application Distributable

1. Required: Indicate that your application is distributable.
If your application is not marked as distributable, its sessions will never be distributed. Add the
<distributable /> element inside the <web-app> tag of your application's web.xml
descriptor file. Here is an example.

Example 8.1. Minimum Configuration for a Distributable Application

<?xml version="1.0"?>
<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
 version="2.4">

 <distributable/>

</web-app>

Development Guide

166

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+12555-341870+%5BSpecified%5D&comment=Title%3A+Configure+the+Web+Session+Cache%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=12555-341870+10+Dec+2012+15%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

2. Modify the default replication behavior if desired.
If you want to change any of the values affecting session replication, you can override them
inside a <replication-config> element which is a child element of the <jboss-web>
element. For a given element, only include it if you want to override the defaults. The following
example lists all of the default settings, and is followed by a table which explains the most
commonly changed options.

Example 8.2. Default <replication-config>Values

Table 8.1. Common Options for session Replication

Option Description

<!DOCTYPE jboss-web PUBLIC
 "-//JBoss//DTD Web Application 5.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web>

 <replication-config>
 <cache-name>custom-session-cache</cache-name>
 <replication-trigger>SET</replication-trigger>
 <replication-granularity>ATTRIBUTE</replication-
granularity>
 <use-jk>false</use-jk>
 <max-unreplicated-interval>30</max-unreplicated-interval>
 <snapshot-mode>INSTANT</snapshot-mode>
 <snapshot-interval>1000</snapshot-interval>
 <session-notification-
policy>com.example.CustomSessionNotificationPolicy</session-
notification-policy>
 </replication-config>

</jboss-web>

CHAPTER 8. CLUSTERING IN WEB APPLICATIONS

167

<replication-trigger> Controls which conditions should trigger session data replication across
the cluster. This option is necessary because after a mutable object
stored as a session attribute is accessed from the session, the container
has no clear way to know if the object has been modified and needs to
be replicated, unless method setAttribute() is called directly.

Valid Values for <replication-trigger>

SET_AND_GET

This is the safest but worst-performing option. Session data is always
replicated, even if its content has only been accessed, and not
modified. This setting is preserved for legacy purposes only. To get
the same behavior with better performance, you may, instead of
using this setting, set <max_unreplicated_interval> to 0.

SET_AND_NON_PRIMITIVE_GET

The default value. Session data is only replicated if an object of a
non-primitive type is accessed. This means that the object is not of a
well-known Java type such as Integer, Long, or String.

SET

This option assumes that the application will explicitly call
setAttributeon the session when the data needs to be
replicated. It prevents unnecessary replication and can benefit overall
performance, but is inherently unsafe.

Regardless of the setting, you can always trigger session replication by
calling setAttribute().

<replication-
granularity>

Determines the granularity of data that is replicated. It defaults to
SESSION, but can be set to ATTRIBUTE instead, to increase
performance on sessions where most attributes remain unchanged.

Option Description

The following options rarely need to be changed.

Table 8.2. Less Commonly Changed Options for Session Replication

Option Description

<useJK> Whether to assume that a load balancer such as mod_cluster,
mod_jk, or mod_proxy is in use. The default is false. If set to
true, the container examines the session ID associated with each
request and replaces the jvmRouteportion of the session ID if there is
a failover.

Development Guide

168

<max-unreplicated-
interval>

The maximum interval (in seconds) to wait after a session before
triggering a replication of a session's timestamp, even if it is considered
to be unchanged. This ensures that cluster nodes are aware of each
session's timestamp and that an unreplicated session will not expire
incorrectly during a failover. It also ensures that you can rely on a correct
value for calls to method
HttpSession.getLastAccessedTime()during a failover.

By default, no value is specified. This means that the jvmRoute
configuration of the container determines whether JK failover is being
used. A value of 0 causes the timestamp to be replicated whenever the
session is accessed. A value of -1 causes the timestamp to be
replicated only if other activity during the request triggers a replication. A
positive value greater than
HttpSession.getMaxInactiveInterval() is treated as a
misconfiguration and converted to 0.

<snapshot-mode> Specifies when sessions are replicated to other nodes. The default is
INSTANTand the other possible value is INTERVAL.

In INSTANT mode, changes are replicated at the end of a request, by
means of the request processing thread. The <snapshot-
interval> option is ignored.

In INTERVAL mode, a background task runs at the interval specified by
<snapshot-interval>, and replicates modified sessions.

<snapshot-interval> The interval, in milliseconds, at which modified sessions should be
replicated when using INTERVALfor the value of <snapshot-
mode>.

<session-notification-
policy>

The fully-qualified class name of the implementation of interface
ClusteredSessionNotificationPolicy which governs
whether servlet specification notifications are emitted to any registered
HttpSessionListener, HttpSessionAttributeListener,
or HttpSessionBindingListener.

Option Description

Report a bug

8.2. HTTPSESSION PASSIVATION AND ACTIVATION

8.2.1. About HTTP Session Passivation and Activation

Passivation is the process of controlling memory usage by removing relatively unused sessions from
memory while storing them in persistent storage.

Activation is when passivated data is retrieved from persisted storage and put back into memory.

Passivation occurs at three different times in a HTTP session's lifetime:

CHAPTER 8. CLUSTERING IN WEB APPLICATIONS

169

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4687-459911+%5BSpecified%5D&comment=Title%3A+Enable+Session+Replication+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4687-459911+14+Jun+2013+11%3A24+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

When the container requests the creation of a new session, if the number of currently active
session exceeds a configurable limit, the server attempts to passivate some sessions to make
room for the new one.

Periodically, at a configured interval, a background task checks to see if sessions should be
passivated.

When a web application is deployed and a backup copy of sessions active on other servers is
acquired by the newly deploying web application's session manager, sessions may be
passivated.

A session is passivated if it meets the following conditions:

The session has not been in use for longer than a configurable maximum idle time.

The number of active sessions exceeds a configurable maximum and the session has not been
in use for longer than a configurable minimum idle time.

Sessions are always passivated using a Least Recently Used (LRU) algorithm.

Report a bug

8.2.2. Configure HttpSession Passivation in Your Application

Overview

HttpSession passivation is configured in your application's WEB_INF/jboss-web.xml or
META_INF/jboss-web.xml file.

Example 8.3. Example jboss-web.xml File

Passivation Configuration Elements

<!DOCTYPE jboss-web PUBLIC
 "-//JBoss//DTD Web Application 5.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web version="6.0"
 xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
http://www.jboss.org/j2ee/schema/jboss-web_6_0.xsd">

 <max-active-sessions>20</max-active-sessions>
 <passivation-config>
 <use-session-passivation>true</use-session-passivation>
 <passivation-min-idle-time>60</passivation-min-idle-time>
 <passivation-max-idle-time>600</passivation-max-idle-time>
 </passivation-config>

</jboss-web>

Development Guide

170

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4689-432884+%5BSpecified%5D&comment=Title%3A+About+HTTP+Session+Passivation+and+Activation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4689-432884+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

<max-active-sessions>

The maximum number of active sessions allowed. If the number of sessions managed by the session
manager exceeds this value and passivation is enabled, the excess will be passivated based on the
configured <passivation-min-idle-time>. Then, if the number of active sessions still exceeds
this limit, attempts to create new sessions will fail. The default value of -1 sets no limit on the
maximum number of active sessions.

<passivation-config>

This element holds the rest of the passivation configuration parameters, as child elements.

<passivation-config> Child Elements

<use-session-passivation>

Whether or not to use session passivation. The default value is false.

<passivation-min-idle-time>

The minimum time, in seconds, that a session must be inactive before the container will consider
passivating it in order to reduce the active session count to conform to value defined by max-active-
sessions. The default value of -1 disables passivating sessions before <passivation-max-idle-
time> has elapsed. Neither a value of -1 nor a high value are recommended if <max-active-
sessions> is set.

<passivation-max-idle-time>

The maximum time, in seconds, that a session can be inactive before the container attempts to
passivate it to save memory. Passivation of such sessions takes place regardless of whether the
active session count exceeds <max-active-sessions>. This value should be less than the
<session-timeout> setting in the web.xml. The default value of -1 disables passivation based
on maximum inactivity.

NOTE

The total number of sessions in memory includes sessions replicated from other cluster
nodes that are not being accessed on this node. Take this into account when setting
<max-active-sessions>. The number of sessions replicated from other nodes also
depends on whether REPL or DIST cache mode is enabled. In REPL cache mode, each
session is replicated to each node. In DIST cache mode, each session is replicated only
to the number of nodes specified by the owner parameter. Refer to Section 8.1.2, “About
the Web Session Cache” and Section 8.1.3, “Configure the Web Session Cache” for
information on configuring session cache modes.

For example, consider an eight node cluster, where each node handles requests from 100
users. With REPL cache mode, each node would store 800 sessions in memory. With
DIST cache mode enabled, and the default owners setting of 2, each node stores 200
sessions in memory.

Report a bug

8.3. COOKIE DOMAIN

CHAPTER 8. CLUSTERING IN WEB APPLICATIONS

171

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4690-432885+%5BSpecified%5D&comment=Title%3A+Configure+HttpSession+Passivation+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4690-432885+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

8.3.1. About the Cookie Domain

The cookie domain refers to the set of hosts able to read a cookie from the client browser which is
accessing your application. It is a configuration mechanism to minimize the risk of third parties accessing
information your application stores in browser cookies.

The default value for the cookie domain is /. This means that only the issuing host can read the contents
of a cookie. Setting a specific cookie domain makes the contents of the cookie available to a wider range
of hosts. To set the cookie domain, refer to Section 8.3.2, “Configure the Cookie Domain”.

Report a bug

8.3.2. Configure the Cookie Domain

To enable your SSO valve to share a SSO context, configure the cookie domain in the valve
configuration. The following configuration would allow applications on http://app1.xyz.com and
http://app2.xyz.com to share an SSO context, even if these applications run on different servers in
a cluster or the virtual host with which they are associated has multiple aliases.

Example 8.4. Example Cookie Domain Configuration

Report a bug

8.4. IMPLEMENT AN HA SINGLETON

Summary

In JBoss EAP 5, HA singleton archives were deployed in the deploy-hasingleton/ directory
separate from other deployments. This was done to prevent automatic deployment and to ensure the
HASingletonDeployer service controlled the deployment and deployed the archive only on the master
node in the cluster. There was no hot deployment feature, so redeployment required a server restart.
Also, if the master node failed requiring another node to take over as master, the singleton service had to
go through the entire deployment process in order to provide the service.

In JBoss EAP 6 this has changed. Using a SingletonService, the target service is installed on every node
in the cluster but is only started on one node at any given time. This approach simplifies the deployment
requirements and minimizes the time required to relocate the singleton master service between nodes.

Procedure 8.3. Implement an HA Singleton Service

1. Write the HA singleton service application.
The following is a simple example of a Service that is wrapped with the SingletonService
decorater to be deployed as a singleton service.

a. Create a singleton service.
The following listing is an example of a singleton service:

<Valve
className="org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn"
 cookieDomain="xyz.com" />

package com.mycompany.hasingleton.service.ejb;

Development Guide

172

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4697-432889+%5BSpecified%5D&comment=Title%3A+About+the+Cookie+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4697-432889+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4698-432890+%5BSpecified%5D&comment=Title%3A+Configure+the+Cookie+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4698-432890+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

import java.util.concurrent.atomic.AtomicBoolean;
import java.util.logging.Logger;

import org.jboss.as.server.ServerEnvironment;
import org.jboss.msc.inject.Injector;
import org.jboss.msc.service.Service;
import org.jboss.msc.service.ServiceName;
import org.jboss.msc.service.StartContext;
import org.jboss.msc.service.StartException;
import org.jboss.msc.service.StopContext;
import org.jboss.msc.value.InjectedValue;

/**
 * @author Wolf-Dieter Fink
 */
public class EnvironmentService implements Service<String> {
 private static final Logger LOGGER =
Logger.getLogger(EnvironmentService.class.getCanonicalName());
 public static final ServiceName SINGLETON_SERVICE_NAME =
ServiceName.JBOSS.append("quickstart", "ha", "singleton");
 /**
 * A flag whether the service is started.
 */
 private final AtomicBoolean started = new
AtomicBoolean(false);

 private String nodeName;

 private final InjectedValue<ServerEnvironment> env = new
InjectedValue<ServerEnvironment>();

 public Injector<ServerEnvironment> getEnvInjector() {
 return this.env;
 }

 /**
 * @return the name of the server node
 */
 public String getValue() throws IllegalStateException,
IllegalArgumentException {
 if (!started.get()) {
 throw new IllegalStateException("The service '" +
this.getClass().getName() + "' is not ready!");
 }
 return this.nodeName;
 }

 public void start(StartContext arg0) throws StartException {
 if (!started.compareAndSet(false, true)) {
 throw new StartException("The service is still
started!");
 }
 LOGGER.info("Start service '" + this.getClass().getName()
+ "'");
 this.nodeName = this.env.getValue().getNodeName();

CHAPTER 8. CLUSTERING IN WEB APPLICATIONS

173

b. Create a singleton EJB to start the service as a SingletonService at server start.
The following listing is an example of a singleton EJB that startes a SingletonService on
server start:

 }

 public void stop(StopContext arg0) {
 if (!started.compareAndSet(true, false)) {
 LOGGER.warning("The service '" +
this.getClass().getName() + "' is not active!");
 } else {
 LOGGER.info("Stop service '" +
this.getClass().getName() + "'");
 }
 }
}

package com.mycompany.hasingleton.service.ejb;

import java.util.Collection;
import java.util.EnumSet;

import javax.annotation.PostConstruct;
import javax.annotation.PreDestroy;
import javax.ejb.Singleton;
import javax.ejb.Startup;

import org.jboss.as.clustering.singleton.SingletonService;
import org.jboss.as.server.CurrentServiceContainer;
import org.jboss.as.server.ServerEnvironment;
import org.jboss.as.server.ServerEnvironmentService;
import org.jboss.msc.service.AbstractServiceListener;
import org.jboss.msc.service.ServiceController;
import org.jboss.msc.service.ServiceController.Transition;
import org.jboss.msc.service.ServiceListener;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * A Singleton EJB to create the SingletonService during startup.
 *
 * @author Wolf-Dieter Fink
 */
@Singleton
@Startup
public class StartupSingleton {
 private static final Logger LOGGER =
LoggerFactory.getLogger(StartupSingleton.class);

 /**
 * Create the Service and wait until it is started.

 * Will log a message if the service will not start in 10sec.
 */
 @PostConstruct

Development Guide

174

 protected void startup() {
 LOGGER.info("StartupSingleton will be initialized!");

 EnvironmentService service = new EnvironmentService();
 SingletonService<String> singleton = new
SingletonService<String>(service,
EnvironmentService.SINGLETON_SERVICE_NAME);
 // if there is a node where the Singleton should deployed the
election policy might set,
 // otherwise the JGroups coordinator will start it
 //singleton.setElectionPolicy(new
PreferredSingletonElectionPolicy(new
NamePreference("node2/cluster"), new
SimpleSingletonElectionPolicy()));
 ServiceController<String> controller =
singleton.build(CurrentServiceContainer.getServiceContainer())
 .addDependency(ServerEnvironmentService.SERVICE_NAME,
ServerEnvironment.class, service.getEnvInjector())
 .install();

 controller.setMode(ServiceController.Mode.ACTIVE);
 try {
 wait(controller, EnumSet.of(ServiceController.State.DOWN,
ServiceController.State.STARTING), ServiceController.State.UP);
 LOGGER.info("StartupSingleton has started the Service");
 } catch (IllegalStateException e) {
 LOGGER.warn("Singleton Service {} not started, are you sure
to start in a cluster (HA)
environment?",EnvironmentService.SINGLETON_SERVICE_NAME);
 }
 }

 /**
 * Remove the service during undeploy or shutdown
 */
 @PreDestroy
 protected void destroy() {
 LOGGER.info("StartupSingleton will be removed!");
 ServiceController<?> controller =
CurrentServiceContainer.getServiceContainer().getRequiredService(
EnvironmentService.SINGLETON_SERVICE_NAME);
 controller.setMode(ServiceController.Mode.REMOVE);
 try {
 wait(controller, EnumSet.of(ServiceController.State.UP,
ServiceController.State.STOPPING, ServiceController.State.DOWN),
ServiceController.State.REMOVED);
 } catch (IllegalStateException e) {
 LOGGER.warn("Singleton Service {} has not be stopped
correctly!",EnvironmentService.SINGLETON_SERVICE_NAME);
 }
 }

 private static <T> void wait(ServiceController<T> controller,
Collection<ServiceController.State> expectedStates,
ServiceController.State targetState) {
 if (controller.getState() != targetState) {

CHAPTER 8. CLUSTERING IN WEB APPLICATIONS

175

c. Create a Stateless Session Bean to access the service from a client.
The following is an example of a stateless session bean that accesses the service from a
client:

 ServiceListener<T> listener = new
NotifyingServiceListener<T>();
 controller.addListener(listener);
 try {
 synchronized (controller) {
 int maxRetry = 2;
 while (expectedStates.contains(controller.getState())
&& maxRetry > 0) {
 LOGGER.info("Service controller state is {}, waiting
for transition to {}", new Object[] {controller.getState(),
targetState});
 controller.wait(5000);
 maxRetry--;
 }
 }
 } catch (InterruptedException e) {
 LOGGER.warn("Wait on startup is interrupted!");
 Thread.currentThread().interrupt();
 }
 controller.removeListener(listener);
 ServiceController.State state = controller.getState();
 LOGGER.info("Service controller state is now {}",state);
 if (state != targetState) {
 throw new IllegalStateException(String.format("Failed to
wait for state to transition to %s. Current state is %s",
targetState, state), controller.getStartException());
 }
 }
 }

 private static class NotifyingServiceListener<T> extends
AbstractServiceListener<T> {
 @Override
 public void transition(ServiceController<? extends T>
controller, Transition transition) {
 synchronized (controller) {
 controller.notify();
 }
 }
 }
}

package com.mycompany.hasingleton.service.ejb;

import javax.ejb.Stateless;

import org.jboss.as.server.CurrentServiceContainer;
import org.jboss.msc.service.ServiceController;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

Development Guide

176

d. Create the business logic interface for the SingletonService.
The following is an example of a business logic interface for the SingletonService:

2. Start each JBoss EAP 6 instance with clustering enabled.

The method for enabling clustering depends on whether the servers are standalone or running
in a managed domain.

a. Enable clustering for servers running in a managed domain.
You can enable clustering using the Management CLI or you can manually edit the
configuration file.

Enable clustering using the Management CLI.

/**
 * A simple SLSB to access the internal SingletonService.
 *
 * @author Wolf-Dieter Fink
 */
@Stateless
public class ServiceAccessBean implements ServiceAccess {
 private static final Logger LOGGER =
LoggerFactory.getLogger(ServiceAccessBean.class);

 public String getNodeNameOfService() {
 LOGGER.info("getNodeNameOfService() is called()");
 ServiceController<?> service =
CurrentServiceContainer.getServiceContainer().getService(
 EnvironmentService.SINGLETON_SERVICE_NAME);
 LOGGER.debug("SERVICE {}", service);
 if (service != null) {
 return (String) service.getValue();
 } else {
 throw new IllegalStateException("Service '" +
EnvironmentService.SINGLETON_SERVICE_NAME + "' not found!");
 }
 }
}

package com.mycompany.hasingleton.service.ejb;

import javax.ejb.Remote;

/**
 * Business interface to access the SingletonService via this EJB
 *
 * @author Wolf-Dieter Fink
 */
@Remote
public interface ServiceAccess {
 public abstract String getNodeNameOfService();
}

CHAPTER 8. CLUSTERING IN WEB APPLICATIONS

177

i. Start your domain controller.

ii. Open a command prompt for your operating system.

iii. Connect to the Management CLI passing the domain controller IP address or
DNS name.
In this example, assume the IP address of the domain controller is 192.168.0.14.

For Linux, enter the following at the command line:

$ EAP_HOME/bin/jboss-cli.sh --connect --
controller=192.168.0.14

For Windows, enter the following at a command line:

C:\>EAP_HOME\bin\jboss-cli.bat --connect --
controller=192.168.0.14

You should see the following response:

Connected to domain controller at 192.168.0.14

iv. Add the main-server server group.

[domain@192.168.0.14:9999 /] /server-group=main-server-
group:add(profile="ha",socket-binding-group="ha-sockets")
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => undefined
}

v. Create a server named server-one and add it to the main-server server
group.

[domain@192.168.0.14:9999 /] /host=station14Host2/server-
config=server-one:add(group=main-server-group,auto-
start=false)
{
 "outcome" => "success",
 "result" => undefined
}

vi. Configure the JVM for the main-server server group.

[domain@192.168.0.14:9999 /] /server-group=main-server-
group/jvm=default:add(heap-size=64m,max-heap-size=512m)
{
 "outcome" => "success",
 "result" => undefined,
 "server-groups" => undefined
}

Development Guide

178

vii. Create a server named server-two, put it in a separate server group, and set
its port offset to 100.

[domain@192.168.0.14:9999 /] /host=station14Host2/server-
config=server-two:add(group=distinct2,socket-binding-port-
offset=100)
{
 "outcome" => "success",
 "result" => undefined
}

Enable clustering by manually editing the server configuration files.

i. Stop the JBoss EAP 6 server.

IMPORTANT

You must stop the server before editing the server configuration file
for your change to be persisted on server restart.

ii. Open the domain.xml configuration file for editing
Designate a server group to use the ha profile and ha-sockets socket binding
group as follows:

iii. Open the host.xml configuration file for editing
Modify the file as follows:

iv. Start the server.

For Linux, type: EAP_HOME/bin/domain.sh

For Microsoft Windows, type: EAP_HOME\bin\domain.bat

b. Enable clustering for standalone servers

<server-groups>
 <server-group name="main-server-group" profile="ha">
 <jvm name="default">
 <heap size="64m" max-size="512m"/>
 </jvm>
 <socket-binding-group ref="ha-sockets"/>
 </server-group>
</server-groups>

<servers>
 <server name="server-one" group="main-server-group" auto-
start="false"/>
 <server name="server-two" group="distinct2">
 <socket-bindings port-offset="100"/>
 </server>
<servers>

CHAPTER 8. CLUSTERING IN WEB APPLICATIONS

179

To enable clustering for standalone servers, start the server using the node name and the
standalone-ha.xml configuration file as follows:

For Linux, type: EAP_HOME/bin/standalone.sh --server-
config=standalone-ha.xml -Djboss.node.name=UNIQUE_NODE_NAME

For Microsoft Windows, type: EAP_HOME\bin\standalone.bat --server-
config=standalone-ha.xml -Djboss.node.name=UNIQUE_NODE_NAME

NOTE

To avoid port conflicts when running multiple servers on one machine, configure
the standalone-ha.xml file for each server instance to bind on a separate
interface. Alternatively, you can start subsequent server instances with a port
offset using an argument like the following on the command line: -
Djboss.socket.binding.port-offset=100.

3. Deploy the application to the servers
If you use Maven to deploy your application, use the following Maven command to deploy to the
server running on the default ports:

mvn clean install jboss-as:deploy

To deploy to additional servers, pass the server name and port number on the command line:

mvn clean package jboss-as:deploy -Ddeploy.hostname=localhost -
Ddeploy.port=10099

Report a bug

Development Guide

180

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9154-473006+%5BSpecified%5D&comment=Title%3A+Implement+an+HA+Singleton%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9154-473006+02+Jul+2013+02%3A58+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 9. CDI

9.1. OVERVIEW OF CDI

9.1.1. Overview of CDI

Section 9.1.2, “About Contexts and Dependency Injection (CDI)”

Section 9.1.5, “Relationship Between Weld, Seam 2, and JavaServer Faces”

Section 9.1.3, “Benefits of CDI”

Report a bug

9.1.2. About Contexts and Dependency Injection (CDI)

Contexts and Dependency Injection (CDI) is a specification designed to enable EJB 3.0 components "to
be used as Java Server Faces (JSF) managed beans, unifying the two component models and enabling
a considerable simplification to the programming model for web-based applications in Java." The
preceding quote is taken from the JSR-299 specification, which can be found at
http://www.jcp.org/en/jsr/detail?id=299.

JBoss EAP 6 includes Weld, which is the reference implementation of JSR-299. For more information,
about type-safe dependency injection, see Section 9.1.4, “About Type-safe Dependency Injection”.

Report a bug

9.1.3. Benefits of CDI

CDI simplifies and shrinks your code base by replacing big chunks of code with annotations.

CDI is flexible, allowing you to disable and enable injections and events, use alternative beans,
and inject non-CDI objects easily.

It is easy to use your old code with CDI. You only need to include a beans.xml in your META-
INF/ or WEB-INF/ directory. The file can be empty.

CDI simplifies packaging and deployments and reduces the amount of XML you need to add to
your deployments.

CDI provides lifecycle management via contexts. You can tie injections to requests, sessions,
conversations, or custom contexts.

CDI provides type-safe dependency injection, which is safer and easier to debug than string-
based injection.

CDI decouples interceptors from beans.

CDI provides complex event notification.

Report a bug

9.1.4. About Type-safe Dependency Injection

CHAPTER 9. CDI

181

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4436-155458+%5BSpecified%5D&comment=Title%3A+Overview+of+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4436-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://www.jcp.org/en/jsr/detail?id=299
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4437-459913+%5BSpecified%5D&comment=Title%3A+About+Contexts+and+Dependency+Injection+%28CDI%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4437-459913+14+Jun+2013+11%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4447-155458+%5BSpecified%5D&comment=Title%3A+Benefits+of+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4447-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Before JSR-299 and CDI, the only way to inject dependencies in Java was to use strings. This was prone
to errors. CDI introduces the ability to inject dependencies in a type-safe way.

For more information about CDI, refer to Section 9.1.2, “About Contexts and Dependency Injection
(CDI)”.

Report a bug

9.1.5. Relationship Between Weld, Seam 2, and JavaServer Faces

The goal of Seam 2 was to unify Enterprise Java Beans (EJBs) and JavaServer Faces (JSF) managed
beans.

JavaServer Faces (JSF) implements JSR-314. It is an API for building server-side user interfaces. JBoss
Web Framework Kit includes RichFaces, which is an implementation of JavaServer Faces and AJAX.

Weld is the reference implementation of Contexts and Dependency Injection (CDI), which is defined in
JSR-299. Weld was inspired by Seam 2 and other dependency injection frameworks. Weld is included in
JBoss EAP 6.

Report a bug

9.2. USE CDI

9.2.1. First Steps

9.2.1.1. Enable CDI

Summary

Contexts and Dependency Injection (CDI) is one of the core technologies in JBoss EAP 6, and is enabled
by default. If for some reason it is disabled and you need to enable it, follow this procedure.

Procedure 9.1. Enable CDI in JBoss EAP 6

1. Check to see if the CDI subsystem details are commented out of the configuration file.
A subsystem can be disabled by commenting out the relevant section of the domain.xml or
standalone.xml configuration files, or by removing the relevant section altogether.

To find the CDI subsystem in EAP_HOME/domain/configuration/domain.xml or
EAP_HOME/standalone/configuration/standalone.xml, search them for the following
string. If it exists, it is located inside the <extensions> section.

<extension module="org.jboss.as.weld"/>

The following line must also be present in the profile you are using. Profiles are in individual
<profile> elements within the <profiles> section.

<subsystem xmlns="urn:jboss:domain:weld:1.0"/>

2. Before editing any files, stop JBoss EAP 6.
JBoss EAP 6 modifies the configuration files during the time it is running, so you must stop the
server before you edit the configuration files directly.

Development Guide

182

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4438-155458+%5BSpecified%5D&comment=Title%3A+About+Type-safe+Dependency+Injection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4438-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4445-459914+%5BSpecified%5D&comment=Title%3A+Relationship+Between+Weld%2C+Seam+2%2C+and+JavaServer+Faces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4445-459914+14+Jun+2013+11%3A29+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3. Edit the configuration file to restore the CDI subsystem.
If the CDI subsystem was commented out, remove the comments.

If it was removed entirely, restore it by adding this line to the file in a new line directly above the
</extensions> tag:

<extension module="org.jboss.as.weld"/>

4. You also need to add the following line to the relevant profile in the <profiles> section.

<subsystem xmlns="urn:jboss:domain:weld:1.0"/>

5. Restart JBoss EAP 6.
Start JBoss EAP 6 with your updated configuration.

Result

JBoss EAP 6 starts with the CDI subsystem enabled.

Report a bug

9.2.2. Use CDI to Develop an Application

9.2.2.1. Use CDI to Develop an Application

Introduction

Contexts and Dependency Injection (CDI) gives you tremendous flexibility in developing applications,
reusing code, adapting your code at deployment or run-time, and unit testing. JBoss EAP 6 includes
Weld, the reference implementation of CDI. These tasks show you how to use CDI in your enterprise
applications.

Section 9.2.1.1, “Enable CDI”

Section 9.2.2.2, “Use CDI with Existing Code”

Section 9.2.2.3, “Exclude Beans From the Scanning Process”

Section 9.2.2.4, “Use an Injection to Extend an Implementation”

Section 9.2.3.3, “Use a Qualifier to Resolve an Ambiguous Injection”

Section 9.2.7.4, “Override an Injection with an Alternative”

Section 9.2.7.2, “Use Named Beans”

Section 9.2.6.1, “Manage the Lifecycle of a Bean”

Section 9.2.6.2, “Use a Producer Method”

Section 9.2.10.2, “Use Interceptors with CDI”

Section 9.2.8.2, “Use Stereotypes”

Section 9.2.9.2, “Fire and Observe Events”

CHAPTER 9. CDI

183

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4451-481732+%5BSpecified%5D&comment=Title%3A+Enable+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4451-481732+25+Jul+2013+12%3A08+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

9.2.2.2. Use CDI with Existing Code

Almost every concrete Java class that has a constructor with no parameters, or a constructor designated
with the annotation @Inject, is a bean. The only thing you need to do before you can start injecting beans
is create a file called beans.xml in the META-INF/ or WEB-INF/ directory of your archive. The file can
be empty.

Procedure 9.2. Use legacy beans in CDI applications

1. Package your beans into an archive.
Package your beans into a JAR or WAR archive.

2. Include a beans.xml file in your archive.
Place a beans.xml file into your JAR archive's META-INF/ or your WAR archive's WEB-INF/
directory. The file can be empty.

Result:

You can use these beans with CDI. The container can create and destroy instances of your beans and
associate them with a designated context, inject them into other beans, use them in EL expressions,
specialize them with qualifier annotations, and add interceptors and decorators to them, without any
modifications to your existing code. In some circumstances, you may need to add some annotations.

Report a bug

9.2.2.3. Exclude Beans From the Scanning Process

Summary

One of the features of Weld, the JBoss EAP 6 implementation of CDI, is the ability to exclude classes in
your archive from scanning, having container lifecycle events fired, and being deployed as beans. This is
not part of the JSR-299 specification.

Example 9.1. Exclude packages from your bean

The following example has several <weld:exclude> tags.

1. The first one excludes all Swing classes.

2. The second excludes Google Web Toolkit classes if Google Web Toolkit is not installed.

3. The third excludes classes which end in the string Blether (using a regular expression), if
the system property verbosity is set to low.

4. The fourth excludes Java Server Faces (JSF) classes if Wicket classes are present and the
viewlayer system property is not set.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:weld="http://jboss.org/schema/weld/beans"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
http://docs.jboss.org/cdi/beans_1_0.xsd

Development Guide

184

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4454-459918+%5BSpecified%5D&comment=Title%3A+Use+CDI+to+Develop+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4454-459918+14+Jun+2013+11%3A33+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4452-436021+%5BSpecified%5D&comment=Title%3A+Use+CDI+with+Existing+Code%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4452-436021+19+Apr+2013+10%3A05+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The formal specification of Weld-specific configuration options can be found at
http://jboss.org/schema/weld/beans_1_1.xsd.

Report a bug

9.2.2.4. Use an Injection to Extend an Implementation

Summary

You can use an injection to add or change a feature of your existing code. This example shows you how
to add a translation ability to an existing class. The translation is a hypothetical feature and the way it is
implemented in the example is pseudo-code, and only provided for illustration.

The example assumes you already have a Welcome class, which has a method buildPhrase. The
buildPhrase method takes as an argument the name of a city, and outputs a phrase like "Welcome to
Boston." Your goal is to create a version of the Welcome class which can translate the greeting into a
different language.

 http://jboss.org/schema/weld/beans
http://jboss.org/schema/weld/beans_1_1.xsd">

 <weld:scan>

 <!-- Don't deploy the classes for the swing app! -->
 <weld:exclude name="com.acme.swing.**" />

 <!-- Don't include GWT support if GWT is not installed -->
 <weld:exclude name="com.acme.gwt.**">
 <weld:if-class-available name="!com.google.GWT"/>
 </weld:exclude>

 <!--
 Exclude classes which end in Blether if the system property
verbosity is set to low
 i.e.
 java ... -Dverbosity=low
 -->
 <weld:exclude pattern="^(.*)Blether$">
 <weld:if-system-property name="verbosity" value="low"/>
 </weld:exclude>

 <!--
 Don't include JSF support if Wicket classes are present,
and the viewlayer system
 property is not set
 -->
 <weld:exclude name="com.acme.jsf.**">
 <weld:if-class-available name="org.apache.wicket.Wicket"/>
 <weld:if-system-property name="!viewlayer"/>
 </weld:exclude>
 </weld:scan>
</beans>

CHAPTER 9. CDI

185

http://jboss.org/schema/weld/beans_1_1.xsd
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4453-459920+%5BSpecified%5D&comment=Title%3A+Exclude+Beans+From+the+Scanning+Process%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4453-459920+14+Jun+2013+11%3A34+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Example 9.2. Inject a Translator Bean Into the Welcome Class

The following pseudo-code injects a hypothetical Translator object into the Welcome class. The
Translator object may be an EJB stateless bean or another type of bean, which can translate
sentences from one language to another. In this instance, the Translator is used to translate the
entire greeting, without actually modifying the original Welcome class at all. The Translator is
injected before the buildPhrase method is implemented.

The code sample below is an example Translating Welcome class.

Report a bug

9.2.3. Ambiguous or Unsatisfied Dependencies

9.2.3.1. About Ambiguous or Unsatisfied Dependencies

Ambiguous dependencies exist when the container is unable to resolve an injection to exactly one bean.

Unsatisfied dependencies exist when the container is unable to resolve an injection to any bean at all.

The container takes the following steps to try to resolve dependencies:

1. It resolves the qualifier annotations on all beans that implement the bean type of an injection
point.

2. It filters out disabled beans. Disabled beans are @Alternative beans which are not explicitly
enabled.

In the event of an ambiguous or unsatisfied dependency, the container aborts deployment and throws an
exception.

To fix an ambiguous dependency, see Section 9.2.3.3, “Use a Qualifier to Resolve an Ambiguous
Injection”.

Report a bug

9.2.3.2. About Qualifiers

A qualifier is an annotation which ties a bean to a bean type. It allows you to specify exactly which bean
you mean to inject. Qualifiers have a retention and a target, which are defined as in the example below.

Example 9.3. Define the @Synchronous and @Asynchronous Qualifiers

public class TranslatingWelcome extends Welcome {

 @Inject Translator translator;

 public String buildPhrase(String city) {
 return translator.translate("Welcome to " + city + "!");
 }
 ...
}

Development Guide

186

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4457-433114+%5BSpecified%5D&comment=Title%3A+Use+an+Injection+to+Extend+an+Implementation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4457-433114+11+Apr+2013+15%3A53+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4477-155458+%5BSpecified%5D&comment=Title%3A+About+Ambiguous+or+Unsatisfied+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4477-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Example 9.4. Use the @Synchronous and @Asynchronous Qualifiers

Report a bug

9.2.3.3. Use a Qualifier to Resolve an Ambiguous Injection

Summary

This task shows an ambiguous injection and removes the ambiguity with a qualifier. Read more about
ambiguous injections at Section 9.2.3.1, “About Ambiguous or Unsatisfied Dependencies”.

Example 9.5. Ambiguous injection

You have two implementations of Welcome, one which translates and one which does not. In that
situation, the injection below is ambiguous and needs to be specified to use the translating Welcome.

Procedure 9.3. Resolve an Ambiguous Injection with a Qualifier

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Synchronous {}

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Asynchronous {}

@Synchronous
public class SynchronousPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

@Asynchronous
public class AsynchronousPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }
}

public class Greeter {
 private Welcome welcome;

 @Inject
 void init(Welcome welcome) {
 this.welcome = welcome;
 }
 ...
}

CHAPTER 9. CDI

187

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4478-155458+%5BSpecified%5D&comment=Title%3A+About+Qualifiers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4478-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Procedure 9.3. Resolve an Ambiguous Injection with a Qualifier

1. Create a qualifier annotation called @Translating.

2. Annotate your translating Welcome with the @Translating annotation.

3. Request the translating Welcome in your injection.
You must request a qualified implementation explicitly, similar to the factory method pattern. The
ambiguity is resolved at the injection point.

Result

The TranslatingWelcome is used, and there is no ambiguity.

Report a bug

9.2.4. Managed Beans

9.2.4.1. About Managed Beans

Managed beans, also called MBeans, are JavaBeans which are created using dependency injection.
Each MBean represents a resource which runs in the Java Virtual Machine (JVM).

Java EE 6 expands upon this definition. A bean is implemented by a Java class, which is referred to as
its bean class. A managed bean is a top-level Java class.

For more information about managed beans, refer to the JSR-255 specification at
http://jcp.org/en/jsr/detail?id=255. For more information about CDI, refer to Section 9.1.2, “About
Contexts and Dependency Injection (CDI)”.

@Qualifier
@Retention(RUNTIME)
@Target({TYPE,METHOD,FIELD,PARAMETERS})
public @interface Translating{}

@Translating
public class TranslatingWelcome extends Welcome {
 @Inject Translator translator;
 public String buildPhrase(String city) {
 return translator.translate("Welcome to " + city + "!");
 }
 ...
}

public class Greeter {
 private Welcome welcome;
 @Inject
 void init(@Translating Welcome welcome) {
 this.welcome = welcome;
 }
 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase("San Francisco"));
 }
}

Development Guide

188

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4458-433115+%5BSpecified%5D&comment=Title%3A+Use+a+Qualifier+to+Resolve+an+Ambiguous+Injection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4458-433115+11+Apr+2013+15%3A54+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://jcp.org/en/jsr/detail?id=255

Report a bug

9.2.4.2. Types of Classes That are Beans

A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by
the Managed Beans specification. You can explicitly declare a managed bean by annotating the bean
class @ManagedBean, but in CDI you do not need to. According to the specification, the CDI container
treats any class that satisfies the following conditions as a managed bean:

It is not a non-static inner class.

It is a concrete class, or is annotated @Decorator.

It is not annotated with an EJB component-defining annotation or declared as an EJB bean class
in ejb-jar.xml.

It does not implement interface javax.enterprise.inject.spi.Extension.

It has either a constructor with no parameters, or a constructor annotated with @Inject.

The unrestricted set of bean types for a managed bean contains the bean class, every superclass and all
interfaces it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @Dependent.

Report a bug

9.2.4.3. Use CDI to Inject an Object Into a Bean

When your deployment archive includes a META-INF/beans.xml or WEB-INF/beans.xml file, each
object in your deployment can be injected using CDI.

This procedure introduces the main ways to inject objects into other objects.

1. Inject an object into any part of a bean with the @Inject annotation.
To obtain an instance of a class, within your bean, annotate the field with @Inject.

Example 9.6. Injecting a TextTranslator instance into a TranslateController

2. Use your injected object's methods
You can use your injected object's methods directly. Assume that TextTranslator has a
method translate.

Example 9.7. Use your injected object's methods

public class TranslateController {

 @Inject TextTranslator textTranslator;
 ...

// in TranslateController class

public void translate() {

CHAPTER 9. CDI

189

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4439-155458+%5BSpecified%5D&comment=Title%3A+About+Managed+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4439-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4482-155458+%5BSpecified%5D&comment=Title%3A+Types+of+Classes+That+are+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4482-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3. Use injection in the constructor of a bean
You can inject objects into the constructor of a bean, as an alternative to using a factory or
service locator to create them.

Example 9.8. Using injection in the constructor of a bean

4. Use the Instance(<T>) interface to get instances programmatically.
The Instance interface can return an instance of TextTranslator when parameterized with the
bean type.

Example 9.9. Obtaining an instance programmatically

 translation = textTranslator.translate(inputText);

}

public class TextTranslator {

 private SentenceParser sentenceParser;

 private Translator sentenceTranslator;

 @Inject

 TextTranslator(SentenceParser sentenceParser, Translator
sentenceTranslator) {

 this.sentenceParser = sentenceParser;

 this.sentenceTranslator = sentenceTranslator;

 }

 // Methods of the TextTranslator class
 ...
}

@Inject Instance<TextTranslator> textTranslatorInstance;

...

public void translate() {

 textTranslatorInstance.get().translate(inputText);

}

Development Guide

190

Result:

When you inject an object into a bean all of the object's methods and properties are available to your
bean. If you inject into your bean's constructor, instances of the injected objects are created when your
bean's constructor is called, unless the injection refers to an instance which already exists. For instance,
a new instance would not be created if you inject a session-scoped bean during the lifetime of the
session.

Report a bug

9.2.5. Contexts, Scopes, and Dependencies

9.2.5.1. Contexts and Scopes

A context, in terms of CDI, is a storage area which holds instances of beans associated with a specific
scope.

A scope is the link between a bean and a context. A scope/context combination may have a specific
lifecycle. Several pre-defined scopes exist, and you can create your own scopes. Examples of pre-
defined scopes are @RequestScoped, @SessionScoped, and @ConversationScope.

Report a bug

9.2.5.2. Available Contexts

Table 9.1. Available contexts

Context Description

@Dependent The bean is bound to the lifecycle of the bean holding
the reference.

@ApplicationScoped Bound to the lifecycle of the application.

@RequestScoped Bound to the lifecycle of the request.

@SessionScoped Bound to the lifecycle of the session.

@ConversationScoped Bound to the lifecycle of the conversation. The
conversation scope is between the lengths of the
request and the session, and is controlled by the
application.

Custom scopes If the above contexts do not meet your needs, you
can define custom scopes.

Report a bug

9.2.6. Bean Lifecycle

9.2.6.1. Manage the Lifecycle of a Bean

CHAPTER 9. CDI

191

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4563-332297+%5BSpecified%5D&comment=Title%3A+Use+CDI+to+Inject+an+Object+Into+a+Bean%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4563-332297+09+Nov+2012+05%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4440-155458+%5BSpecified%5D&comment=Title%3A+Contexts+and+Scopes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4440-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4484-155458+%5BSpecified%5D&comment=Title%3A+Available+Contexts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4484-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Summary

This task shows you how to save a bean for the life of a request. Several other scopes exist, and you can
define your own scopes.

The default scope for an injected bean is @Dependent. This means that the bean's lifecycle is
dependent upon the lifecycle of the bean which holds the reference. For more information, see
Section 9.2.5.1, “Contexts and Scopes”.

Procedure 9.4. Manage Bean Lifecycles

1. Annotate the bean with the scope corresponding to your desired scope.

2. When your bean is used in the JSF view, it holds state.

Result:

Your bean is saved in the context relating to the scope that you specify, and lasts as long as the scope
applies.

Section 9.2.13.1, “About Bean Proxies”

Section 9.2.13.2, “Use a Proxy in an Injection”

Report a bug

9.2.6.2. Use a Producer Method

Summary

This task shows how to use producer methods to produce a variety of different objects which are not
beans for injection.

Example 9.10. Use a producer method instead of an alternative, to allow polymorphism after
deployment

@RequestScoped
@Named("greeter")
public class GreeterBean {
 private Welcome welcome;
 private String city; // getter & setter not shown
 @Inject void init(Welcome welcome) {
 this.welcome = welcome;
 }
 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase(city));
 }
}

<h:form>
 <h:inputText value="#{greeter.city}"/>
 <h:commandButton value="Welcome visitors" action="#
{greeter.welcomeVisitors}"/>
</h:form>

Development Guide

192

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4462-433118+%5BSpecified%5D&comment=Title%3A+Manage+the+Lifecycle+of+a+Bean%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4462-433118+11+Apr+2013+15%3A56+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The @Preferred annotation in the example is a qualifier annotation. For more information about
qualifiers, refer to: Section 9.2.3.2, “About Qualifiers”.

The following injection point has the same type and qualifier annotations as the producer method, so
it resolves to the producer method using the usual CDI injection rules. The producer method is called
by the container to obtain an instance to service this injection point.

Example 9.11. Assign a scope to a producer method

The default scope of a producer method is @Dependent. If you assign a scope to a bean, it is bound
to the appropriate context. The producer method in this example is only called once per session.

Example 9.12. Use an injection inside a producer method

Objects instantiated directly by an application cannot take advantage of dependency injection and do
not have interceptors. However, you can use dependency injection into the producer method to obtain
bean instances.

@SessionScoped
public class Preferences implements Serializable {
 private PaymentStrategyType paymentStrategy;
 ...
 @Produces @Preferred
 public PaymentStrategy getPaymentStrategy() {
 switch (paymentStrategy) {
 case CREDIT_CARD: return new CreditCardPaymentStrategy();
 case CHECK: return new CheckPaymentStrategy();
 default: return null;
 }
 }
}

@Inject @Preferred PaymentStrategy paymentStrategy;

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy() {
 ...
}

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy(CreditCardPaymentStrategy
ccps,
 CheckPaymentStrategy cps)
{
 switch (paymentStrategy) {
 case CREDIT_CARD: return ccps;
 case CHEQUE: return cps;
 default: return null;
 }
}

CHAPTER 9. CDI

193

If you inject a request-scoped bean into a session-scoped producer, the producer method promotes
the current request-scoped instance into session scope. This is almost certainly not the desired
behavior, so use caution when you use a producer method in this way.

NOTE

The scope of the producer method is not inherited from the bean that declares the
producer method.

Result

Producer methods allow you to inject non-bean objects and change your code dynamically.

Report a bug

9.2.7. Named Beans and Alternative Beans

9.2.7.1. About Named Beans

A bean is named by using the @Named annotation. Naming a bean allows you to use it directly in Java
Server Faces (JSF).

The @Named annotation takes an optional parameter, which is the bean name. If this parameter is
omitted, the lower-cased bean name is used as the name.

Report a bug

9.2.7.2. Use Named Beans

1. Use the @Named annotation to assign a name to a bean.

The bean name itself is optional. If it is omitted, the bean is named after the class name, with the
first letter decapitalized. In the example above, the default name would be greeterBean.

2. Use the named bean in a JSF view.

@Named("greeter")
public class GreeterBean {
 private Welcome welcome;

 @Inject
 void init (Welcome welcome) {
 this.welcome = welcome;
 }

 public void welcomeVisitors() {
 System.out.println(welcome.buildPhrase("San Francisco"));
 }
}

<h:form>
 <h:commandButton value="Welcome visitors" action="#
{greeter.welcomeVisitors}"/>

Development Guide

194

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4463-433119+%5BSpecified%5D&comment=Title%3A+Use+a+Producer+Method%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4463-433119+11+Apr+2013+15%3A57+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4480-155458+%5BSpecified%5D&comment=Title%3A+About+Named+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4480-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Result:

Your named bean is assigned as an action to the control in your JSF view, with a minimum of coding.

Report a bug

9.2.7.3. About Alternative Beans

Alternatives are beans whose implementation is specific to a particular client module or deployment
scenario.

Example 9.13. Defining Alternatives

This alternative defines a mock implementation of both @Synchronous PaymentProcessor and
@Asynchronous PaymentProcessor, all in one:

By default, @Alternative beans are disabled. They are enabled for a specific bean archive by editing its
beans.xml file.

Report a bug

9.2.7.4. Override an Injection with an Alternative

Summary

Alternative beans let you override existing beans. They can be thought of as a way to plug in a class
which fills the same role, but functions differently. They are disabled by default. This task shows you how
to specify and enable an alternative.

Procedure 9.5. Override an Injection

This task assumes that you already have a TranslatingWelcome class in your project, but you want
to override it with a "mock" TranslatingWelcome class. This would be the case for a test deployment,
where the true Translator bean cannot be used.

1. Define the alternative.

</h:form>

@Alternative @Synchronous @Asynchronous

public class MockPaymentProcessor implements PaymentProcessor {

 public void process(Payment payment) { ... }

}

@Alternative
@Translating
public class MockTranslatingWelcome extends Welcome {
 public String buildPhrase(string city) {
 return "Bienvenue Ã " + city + "!");
 }
}

CHAPTER 9. CDI

195

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4461-203379+%5BSpecified%5D&comment=Title%3A+Use+Named+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4461-203379+20+Aug+2012+21%3A23+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4479-155458+%5BSpecified%5D&comment=Title%3A+About+Alternative+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4479-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

2. Substitute the alternative.
To activate the substitute implementation, add the fully-qualified class name to your META-
INF/beans.xml or WEB-INF/beans.xml file.

Result

The alternative implementation is now used instead of the original one.

Report a bug

9.2.8. Stereotypes

9.2.8.1. About Stereotypes

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype
allows you to identify such a role and declare some common metadata for beans with that role in a
central place.

A stereotype encapsulates any combination of:

default scope

a set of interceptor bindings

A stereotype may also specify either of these two scenarios:

all beans with the stereotype have defaulted bean EL names

all beans with the stereotype are alternatives

A bean may declare zero, one or multiple stereotypes. Stereotype annotations may be applied to a bean
class or producer method or field.

A stereotype is an annotation, annotated @Stereotype, that packages several other annotations.

A class that inherits a scope from a stereotype may override that stereotype and specify a scope directly
on the bean.

In addition, if a stereotype has a @Named annotation, any bean it is placed on has a default bean name.
The bean may override this name if the @Named annotation is specified directly on the bean. For more
information about named beans, see Section 9.2.7.1, “About Named Beans”.

Report a bug

9.2.8.2. Use Stereotypes

Summary

<beans>
 <alternatives>
 <class>com.acme.MockTranslatingWelcome</class>
 </alternatives>
</beans>

Development Guide

196

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4460-435153+%5BSpecified%5D&comment=Title%3A+Override+an+Injection+with+an+Alternative%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4460-435153+16+Apr+2013+13%3A54+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4481-155458+%5BSpecified%5D&comment=Title%3A+About+Stereotypes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4481-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Without stereotypes, annotations can become cluttered. This task shows you how to use stereotypes to
reduce the clutter and streamline your code. For more information about what stereotypes are, see
Section 9.2.8.1, “About Stereotypes”.

Example 9.14. Annotation clutter

Procedure 9.6. Define and Use Stereotypes

1. Define the stereotype,

2. Use the stereotype.

Result:

Stereotypes streamline and simplify your code.

Report a bug

9.2.9. Observer Methods

9.2.9.1. About Observer Methods

Observer methods receive notifications when events occur.

@Secure
@Transactional
@RequestScoped
@Named
public class AccountManager {
 public boolean transfer(Account a, Account b) {
 ...
 }
}

@Secure
@Transactional
@RequestScoped
@Named
@Stereotype
@Retention(RUNTIME)
@Target(TYPE)
public @interface BusinessComponent {
 ...
}

@BusinessComponent
public class AccountManager {
 public boolean transfer(Account a, Account b) {
 ...
 }
}

CHAPTER 9. CDI

197

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4465-431899+%5BSpecified%5D&comment=Title%3A+Use+Stereotypes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4465-431899+08+Apr+2013+14%3A26+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CDI provides transactional observer methods, which receive event notifications during the before
completion or after completion phase of the transaction in which the event was fired.

Report a bug

9.2.9.2. Fire and Observe Events

Example 9.15. Fire an event

This code shows an event being injected and used in a method.

Example 9.16. Fire an event with a qualifier

You can annotate your event injection with a qualifier, to make it more specific. For more information
about qualifiers, see Section 9.2.3.2, “About Qualifiers”.

Example 9.17. Observe an event

To observe an event, use the @Observes annotation.

Example 9.18. Observe a qualified event

You can use qualifiers to observe only specific types of events. For more information about qualifiers,
see Section 9.2.3.2, “About Qualifiers”.

public class AccountManager {
 @Inject Event<Withdrawal> event;

 public boolean transfer(Account a, Account b) {
 ...
 event.fire(new Withdrawal(a));
 }
}

public class AccountManager {
 @Inject @Suspicious Event <Withdrawal> event;

 public boolean transfer(Account a, Account b) {
 ...
 event.fire(new Withdrawal(a));
 }
}

public class AccountObserver {
 void checkTran(@Observes Withdrawal w) {
 ...
 }
}

public class AccountObserver {

Development Guide

198

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4441-432863+%5BSpecified%5D&comment=Title%3A+About+Observer+Methods%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4441-432863+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

9.2.10. Interceptors

9.2.10.1. About Interceptors

Interceptors are defined as part of the Enterprise JavaBeans specification, which can be found at
http://jcp.org/aboutJava/communityprocess/final/jsr318/. Interceptors allow you to add functionality to the
business methods of a bean without modifying the bean's method directly. The interceptor is executed
before any of the business methods of the bean.

CDI enhances this functionality by allowing you to use annotations to bind interceptors to beans.

Interception points

business method interception

A business method interceptor applies to invocations of methods of the bean by clients of the bean.

lifecycle callback interception

A lifecycle callback interceptor applies to invocations of lifecycle callbacks by the container.

timeout method interception

A timeout method interceptor applies to invocations of the EJB timeout methods by the container.

Report a bug

9.2.10.2. Use Interceptors with CDI

Example 9.19. Interceptors without CDI

Without CDI, interceptors have two problems.

The bean must specify the interceptor implementation directly.

Every bean in the application must specify the full set of interceptors in the correct order. This
makes adding or removing interceptors on an application-wide basis time-consuming and
error-prone.

 void checkTran(@Observes @Suspicious Withdrawal w) {
 ...
 }
}

@Interceptors({
 SecurityInterceptor.class,
 TransactionInterceptor.class,
 LoggingInterceptor.class
})
@Stateful public class BusinessComponent {

CHAPTER 9. CDI

199

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4466-155458+%5BSpecified%5D&comment=Title%3A+Fire+and+Observe+Events%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4466-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://jcp.org/aboutJava/communityprocess/final/jsr318/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4442-155458+%5BSpecified%5D&comment=Title%3A+About+Interceptors%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4442-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Procedure 9.7. Use interceptors with CDI

1. Define the interceptor binding type.

2. Mark the interceptor implementation.

3. Use the interceptor in your business code.

4. Enable the interceptor in your deployment, by adding it to META-INF/beans.xml or WEB-
INF/beans.xml.

The interceptors are applied in the order listed.

Result:

CDI simplifies your interceptor code and makes it easier to apply to your business code.

Report a bug

 ...
}

@InterceptorBinding
@Retention(RUNTIME)
@Target({TYPE, METHOD})
public @interface Secure {}

@Secure
@Interceptor
public class SecurityInterceptor {
 @AroundInvoke
 public Object aroundInvoke(InvocationContext ctx) throws Exception
{
 // enforce security ...
 return ctx.proceed();
 }
}

@Secure
public class AccountManager {
 public boolean transfer(Account a, Account b) {
 ...
 }
}

<beans>
 <interceptors>
 <class>com.acme.SecurityInterceptor</class>
 <class>com.acme.TransactionInterceptor</class>
 </interceptors>
</beans>

Development Guide

200

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4464-155458+%5BSpecified%5D&comment=Title%3A+Use+Interceptors+with+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4464-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

9.2.11. About Decorators

A decorator intercepts invocations from a specific Java interface, and is aware of all the semantics
attached to that interface. Decorators are useful for modeling some kinds of business concerns, but do
not have the generality of interceptors. They are a bean, or even an abstract class, that implements the
type it decorates, and are annotated with @Decorator.

Example 9.20. Example Decorator

Report a bug

9.2.12. About Portable Extensions

CDI is intended to be a foundation for frameworks, extensions and integration with other technologies.
Therefore, CDI exposes a set of SPIs for the use of developers of portable extensions to CDI.
Extensions can provide the following types of functionality:

integration with Business Process Management engines

integration with third-party frameworks such as Spring, Seam, GWT or Wicket

new technology based upon the CDI programming model

According to the JSR-299 specification, a portable extension may integrate with the container in the
following ways:

Providing its own beans, interceptors and decorators to the container

Injecting dependencies into its own objects using the dependency injection service

@Decorator

public abstract class LargeTransactionDecorator

 implements Account {

 @Inject @Delegate @Any Account account;

 @PersistenceContext EntityManager em;

 public void withdraw(BigDecimal amount) {

 ...

 }

 public void deposit(BigDecimal amount);

 ...

 }

}

CHAPTER 9. CDI

201

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4443-203379+%5BSpecified%5D&comment=Title%3A+About+Decorators%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4443-203379+20+Aug+2012+21%3A23+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Providing a context implementation for a custom scope

Augmenting or overriding the annotation-based metadata with metadata from some other source

Report a bug

9.2.13. Bean Proxies

9.2.13.1. About Bean Proxies

A proxy is a subclass of a bean, which is generated at runtime. It is injected at bean creation time, and
dependent scoped beans can be injected from it, because the lifecycles of the dependent beans are tied
to proxy. Proxies are used as a substitute for dependency injection, and solve two different problems.

Problems of dependency injection, which are solved by using proxies

Performance - Proxies are much faster than dependency injection, so you can use them in
beans which need good performance.

Thread safety - Proxies forward requests to the correct bean instance, even when multiple
threads access a bean at the same time. Dependency injection does not guarantee thread
safety.

Types of classes that cannot be proxied

Primitive types or array types

Classes that are final or have final methods

Classes which have a non-private default constructor

Report a bug

9.2.13.2. Use a Proxy in an Injection

Overview

A proxy is used for injection when the lifecycles of the beans are different from each other. The proxy is a
subclass of the bean that is created at run-time, and overrides all the non-private methods of the bean
class. The proxy forwards the invocation onto the actual bean instance.

In this example, the PaymentProcessor instance is not injected directly into Shop. Instead, a proxy is
injected, and when the processPayment() method is called, the proxy looks up the current
PaymentProcessor bean instance and calls the processPayment() method on it.

Example 9.21. Proxy Injection

@ConversationScoped
class PaymentProcessor
{
 public void processPayment(int amount)
 {
 System.out.println("I'm taking $" + amount);
 }
}

Development Guide

202

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4444-155458+%5BSpecified%5D&comment=Title%3A+About+Portable+Extensions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4444-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4584-432880+%5BSpecified%5D&comment=Title%3A+About+Bean+Proxies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4584-432880+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Fore more information about proxies, including which types of classes can be proxied, refer to
Section 9.2.13.1, “About Bean Proxies”.

Report a bug

@ApplicationScoped
public class Shop
{

 @Inject
 PaymentProcessor paymentProcessor;

 public void buyStuff()
 {
 paymentProcessor.processPayment(100);
 }
}

CHAPTER 9. CDI

203

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4585-432881+%5BSpecified%5D&comment=Title%3A+Use+a+Proxy+in+an+Injection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4585-432881+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 10. JAVA TRANSACTION API (JTA)

10.1. OVERVIEW

10.1.1. Overview of Java Transactions API (JTA)

Introduction

These topics provide a foundational understanding of the Java Transactions API (JTA).

Section 10.2.5, “About Java Transactions API (JTA)”

Section 10.5.2, “Lifecycle of a JTA Transaction”

Section 10.9.3, “JTA Transaction Example”

Report a bug

10.2. TRANSACTION CONCEPTS

10.2.1. About Transactions

A transaction consists of two or more actions which must either all succeed or all fail. A successful
outcome is a commit, and a failed outcome is a roll-back. In a roll-back, each member's state is reverted
to its state before the transaction attempted to commit.

The typical standard for a well-designed transaction is that it is Atomic, Consistent, Isolated, and
Durable (ACID).

Report a bug

10.2.2. About ACID Properties for Transactions

ACID is an acronym which stands for Atomicity, Consistency, Isolation, and Durability. This
terminology is usually used in the context of databases or transactional operations.

ACID Definitions

Atomicity

For a transaction to be atomic, all transaction members must make the same decision. Either they all
commit, or they all roll back. If atomicity is broken, what results is termed a heuristic outcome.

Consistency

Consistency means that data written to the database is guaranteed to be valid data, in terms of the
database schema. The database or other data source must always be in a consistent state. One
example of an inconsistent state would be a field in which half of the data is written before an
operation aborts. A consistent state would be if all the data were written, or the write were rolled back
when it could not be completed.

Isolation

Isolation means that data being operated on by a transaction must be locked before modification, to
prevent processes outside the scope of the transaction from modifying the data.

Development Guide

204

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4377-163183+%5BSpecified%5D&comment=Title%3A+Overview+of+Java+Transactions+API+%28JTA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4377-163183+18+Jul+2012+16%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4268-155458+%5BSpecified%5D&comment=Title%3A+About+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4268-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Durability

Durability means that in the event of an external failure after transaction members have been
instructed to commit, all members will be able to continue committing the transaction when the failure
is resolved. This failure may be related to hardware, software, network, or any other involved system.

Report a bug

10.2.3. About the Transaction Coordinator or Transaction Manager

The terms Transaction Coordinator and Transaction Manager are mostly interchangeable in terms of
transactions with JBoss EAP 6. The term Transaction Coordinator is usually used in the context of
distributed transactions.

In JTA transactions, The Transaction Manager runs within JBoss EAP 6 and communicates with
transaction participants during the two-phase commit protocol.

The Transaction Manager tells transaction participants whether to commit or roll back their data,
depending on the outcome of other transaction participants. In this way, it ensures that transactions
adhere to the ACID standard.

In JTS transactions, the Transaction Coordinator manages interactions between transaction managers
on different servers.

Section 10.2.4, “About Transaction Participants”

Section 10.2.2, “About ACID Properties for Transactions”

Section 10.2.9, “About the 2-Phase Commit Protocol”

Report a bug

10.2.4. About Transaction Participants

A transaction participant is any process within a transaction, which has the ability to commit or roll back
state. This may be a database or other application. Each participant of a transaction independently
decides whether it is able to commit or roll back its state, and only if all participants can commit, does the
transaction as a whole succeed. Otherwise, each participant rolls back its state, and the transaction as a
whole fails. The Transaction Manager coordinates the commit or rollback operations and determines the
outcome of the transaction.

Section 10.2.1, “About Transactions”

Section 10.2.3, “About the Transaction Coordinator or Transaction Manager”

Report a bug

10.2.5. About Java Transactions API (JTA)

Java Transactions API (JTA) is a specification for using transactions in Java Enterprise Edition
applications. It is defined in JSR-907.

JTA transactions are not distributed across multiple application servers, and cannot be nested.

JTA transactions are controlled by the EJB container. Annotations are one method for creating and
controlling transactions within your code.

CHAPTER 10. JAVA TRANSACTION API (JTA)

205

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4271-155458+%5BSpecified%5D&comment=Title%3A+About+ACID+Properties+for+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4271-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4269-459922+%5BSpecified%5D&comment=Title%3A+About+the+Transaction+Coordinator+or+Transaction+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4269-459922+14+Jun+2013+11%3A36+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4270-495481+%5BSpecified%5D&comment=Title%3A+About+Transaction+Participants%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4270-495481+16+Aug+2013+16%3A36+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

10.2.6. About Java Transaction Service (JTS)

Java Transaction Service (JTS) is a mechanism for supporting Java Transaction API (JTA) transactions
when participants of the transactions reside in multiple Java Enterprise Edition containers (application
servers). Just as in local JTA transactions, each container runs a process called Transaction Manager
(TM). The TMs communicate with each other using a process called an Object Request Broker (ORB),
using a communication standard called Common Object Request Broker Architecture (CORBA).

From an application standpoint, a JTS transaction behaves in the same ways as a JTA transaction. The
difference is that transaction participants and datasources reside in different containers.

NOTE

The implementation of JTS included in JBoss EAP 6 supports distributed JTA
transactions. The difference between distributed JTA transactions and fully-compliant JTS
transactions is interoperability with external third-party ORBs. This feature is unsupported
with JBoss EAP 6. Supported configurations distribute transactions across multiple JBoss
EAP 6 containers only.

Section 10.2.11, “About Distributed Transactions”

Section 10.2.3, “About the Transaction Coordinator or Transaction Manager”

Report a bug

10.2.7. About XA Datasources and XA Transactions

An XA datasource is a datasource which can participate in an XA global transaction.

An XA transaction is a transaction which can span multiple resources. It involves a coordinating
transaction manager, with one or more databases or other transactional resources, all involved in a
single global transaction.

Report a bug

10.2.8. About XA Recovery

The Java Transaction API (JTA) allows distributed transactions across multiple X/Open XA resources.
XA stands for Extended Architecture which was developed by the X/Open Group to define a transaction
which uses more than one back-end data store. The XA standard describes the interface between a
global Transaction Manager (TM) and a local resource manager. XA allows multiple resources, such as
application servers, databases, caches, and message queues, to participate in the same transaction,
while preserving atomicity of the transaction. Atomicity means that if one of the participants fails to
commit its changes, the other participants abort the transaction, and restore their state to the same status
as before the transaction occurred.

XA Recovery is the process of ensuring that all resources affected by a transaction are updated or rolled
back, even if any of the resources are transaction participants crash or become unavailable. Within the
scope of JBoss EAP 6, the Transaction subsystem provides the mechanisms for XA Recovery to any XA
resources or subsystems which use them, such as XA datasources, JMS message queues, and JCA
resource adapters.

Development Guide

206

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4300-432593+%5BSpecified%5D&comment=Title%3A+About+Java+Transactions+API+%28JTA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4300-432593+10+Apr+2013+10%3A29+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4318-459924+%5BSpecified%5D&comment=Title%3A+About+Java+Transaction+Service+%28JTS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4318-459924+14+Jun+2013+11%3A38+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4286-155458+%5BSpecified%5D&comment=Title%3A+About+XA+Datasources+and+XA+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4286-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

XA Recovery happens without user intervention. In the event of an XA Recovery failure, errors are
recorded in the log output. Contact Red Hat Global Support Services if you need assistance.

Report a bug

10.2.9. About the 2-Phase Commit Protocol

The Two-phase commit protocol (2PC) refers to an algorithm to determine the outcome of a transaction.

Phase 1

In the first phase, the transaction participants notify the transaction coordinator whether they are able to
commit the transaction or must roll back.

Phase 2

In the second phase, the transaction coordinator makes the decision about whether the overall
transaction should commit or roll back. If any one of the participants cannot commit, the transaction must
roll back. Otherwise, the transaction can commit. The coordinator directs the transactions about what to
do, and they notify the coordinator when they have done it. At that point, the transaction is finished.

Report a bug

10.2.10. About Transaction Timeouts

In order to preserve atomicity and adhere to the ACID standard for transactions, some parts of a
transaction can be long-running. Transaction participants need to lock parts of datasources when they
commit, and the transaction manager needs to wait to hear back from each transaction participant before
it can direct them all whether to commit or roll back. Hardware or network failures can cause resources to
be locked indefinitely.

Transaction timeouts can be associated with transactions in order to control their lifecycle. If a timeout
threshold passes before the transaction commits or rolls back, the timeout causes the transaction to be
rolled back automatically.

You can configure default timeout values for the entire transaction subsystem, or you disable default
timeout values, and specify timeouts on a per-transaction basis.

Report a bug

10.2.11. About Distributed Transactions

A distributed transaction, or distributed Java Transaction API (JTA) transaction is a transaction with
participants on multiple JBoss EAP 6 servers. Distributed transactions differ from Java Transaction
Service (JTS) transactions in that the JTS specifications mandate that transactions be able to be
distributed across application servers from different vendors. JBoss EAP 6 supports distributed JTA
transactions.

Report a bug

10.2.12. About the ORB Portability API

The Object Request Broker (ORB) is a process which sends and receives messages to transaction
participants, coordinators, resources, and other services distributed across multiple application servers.
An ORB uses a standardized Interface Description Language (IDL) to communicate and interpret

CHAPTER 10. JAVA TRANSACTION API (JTA)

207

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4821-459925+%5BSpecified%5D&comment=Title%3A+About+XA+Recovery%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4821-459925+14+Jun+2013+11%3A38+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4272-502288+%5BSpecified%5D&comment=Title%3A+About+the+2-Phase+Commit+Protocol%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4272-502288+27+Aug+2013+11%3A19+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4378-155458+%5BSpecified%5D&comment=Title%3A+About+Transaction+Timeouts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4378-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4279-459927+%5BSpecified%5D&comment=Title%3A+About+Distributed+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4279-459927+14+Jun+2013+11%3A39+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

messages. Common Object Request Broker Architecture (CORBA) is the IDL used by the ORB in JBoss
EAP 6.

The main type of service which uses an ORB is a system of distributed Java Transactions, using the
Java Transaction Service (JTS) protocol. Other systems, especially legacy systems, may choose to use
an ORB for communication, rather than other mechanisms such as remote Enterprise JavaBeans or
JAX-WS or JAX-RS Web Services.

The ORB Portability API provides mechanisms to interact with an ORB. This API provides methods for
obtaining a reference to the ORB, as well as placing an application into a mode where it listens for
incoming connections from an ORB. Some of the methods in the API are not supported by all ORBs. In
those cases, an exception is thrown.

The API consists of two different classes:

ORB Portability API Classes

com.arjuna.orbportability.orb

com.arjuna.orbportability.oa

Refer to the JBoss EAP 6 Javadocs bundle on the Red Hat Customer Portal for specific details about the
methods and properties included in the ORB Portability API.

Report a bug

10.2.13. About Nested Transactions

Nested transactions are transactions where some participants are also transactions.

Benefits of Nested Transactions

Fault Isolation

If a subtransaction rolls back, perhaps because an object it is using fails, the enclosing transaction
does not need to roll back.

Modularity

If a transaction is already associated with a call when a new transaction begins, the new transaction
is nested within it. Therefore, if you know that an object requires transactions, you can them within
the object. If the object's methods are invoked without a client transaction, then the object's
transactions are top-level. Otherwise, they are nested within the scope of the client's transactions.
Likewise, a client does not need to know whether an object is transactional. It can begin its own
transaction.

Nested Transactions are only supported as part of the Java Transaction Service (JTS) API, and not part
of the Java Transaction API (JTA). Attempting to nest (non-distributed) JTA transactions results in an
exception.

Report a bug

10.3. TRANSACTION OPTIMIZATIONS

10.3.1. Overview of Transaction Optimizations

Development Guide

208

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4320-459928+%5BSpecified%5D&comment=Title%3A+About+the+ORB+Portability+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4320-459928+14+Jun+2013+11%3A41+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4287-435148+%5BSpecified%5D&comment=Title%3A+About+Nested+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4287-435148+16+Apr+2013+13%3A44+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Introduction

The Transactions subsystem of JBoss EAP 6 includes several optimizations which you can take
advantage of in your applications.

Section 10.3.3, “About the Presumed-Abort Optimization”

Section 10.3.4, “About the Read-Only Optimization”

Section 10.3.2, “About the LRCO Optimization for Single-phase Commit (1PC)”

Report a bug

10.3.2. About the LRCO Optimization for Single-phase Commit (1PC)

Although the 2-phase commit protocol (2PC) is more commonly encountered with transactions, some
situations do not require, or cannot accommodate, both phases. In these cases, you can use the single
phase commit (1PC) protocol. One situation where this might happen is when a non-XA-aware
datasource needs to participate in the transaction.

In these situations, an optimization known as the Last Resource Commit Optimization (LRCO) is
employed. The single-phase resource is processed last in the prepare phase of the transaction, and an
attempt is made to commit it. If the commit succeeds, the transaction log is written and the remaining
resources go through the 2PC. If the last resource fails to commit, the transaction is rolled back.

While this protocol allows for most transactions to complete normally, certain types of error can cause an
inconsistent transaction outcome. Therefore, use this approach only as a last resort.

Where a single local TX datasource is used in a transaction, the LRCO is automatically applied to it.

Section 10.2.9, “About the 2-Phase Commit Protocol”

Report a bug

10.3.3. About the Presumed-Abort Optimization

If a transaction is going to roll back, it can record this information locally and notify all enlisted
participants. This notification is only a courtesy, and has no effect on the transaction outcome. After all
participants have been contacted, the information about the transaction can be removed.

If a subsequent request for the status of the transaction occurs there will be no information available. In
this case, the requester assumes that the transaction has aborted and rolled back. This presumed-abort
optimization means that no information about participants needs to be made persistent until the
transaction has decided to commit, since any failure prior to this point will be assumed to be an abort of
the transaction.

Report a bug

10.3.4. About the Read-Only Optimization

When a participant is asked to prepare, it can indicate to the coordinator that it has not modified any data
during the transaction. Such a participant does not need to be informed about the outcome of the
transaction, since the fate of the participant has no affect on the transaction. This read-only participant
can be omitted from the second phase of the commit protocol.

Report a bug

CHAPTER 10. JAVA TRANSACTION API (JTA)

209

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4274-459929+%5BSpecified%5D&comment=Title%3A+Overview+of+Transaction+Optimizations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4274-459929+14+Jun+2013+11%3A41+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4273-155458+%5BSpecified%5D&comment=Title%3A+About+the+LRCO+Optimization+for+Single-phase+Commit+%281PC%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4273-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4275-155458+%5BSpecified%5D&comment=Title%3A+About+the+Presumed-Abort+Optimization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4275-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4277-155458+%5BSpecified%5D&comment=Title%3A+About+the+Read-Only+Optimization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4277-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

10.4. TRANSACTION OUTCOMES

10.4.1. About Transaction Outcomes

There are three possible outcomes for a transaction.

Roll-back

If any transaction participant cannot commit, or the transaction coordinator cannot direct participants
to commit, the transaction is rolled back. See Section 10.4.3, “About Transaction Roll-Back” for more
information.

Commit

If every transaction participant can commit, the transaction coordinator directs them to do so. See
Section 10.4.2, “About Transaction Commit” for more information.

Heuristic outcome

If some transaction participants commit and others roll back. it is termed a heuristic outcome.
Heuristic outcomes require human intervention. See Section 10.4.4, “About Heuristic Outcomes” for
more information.

Report a bug

10.4.2. About Transaction Commit

When a transaction participant commits, it makes its new state durable. The new state is created by the
participant doing the work involved in the transaction. The most common example is when a transaction
member writes records to a database.

After commit, information about the transaction is removed from the transaction coordinator, and the
newly-written state is now the durable state.

Report a bug

10.4.3. About Transaction Roll-Back

A transaction participant rolls back by restoring its state to reflect the state before the transaction began.
After a roll-back, the state is the same as if the transaction had never been started.

Report a bug

10.4.4. About Heuristic Outcomes

A heuristic outcome, or non-atomic outcome, is a transaction anomaly. It refers to a situation where
some transaction participants committed their state, and others rolled back. A heuristic outcome causes
state to be inconsistent.

Heuristic outcomes typically happen during the second phase of the 2-phase commit (2PC) protocol.
They are often caused by failures to the underlying hardware or communications subsystems of the
underlying servers.

There are four different types of heuristic outcome.

Development Guide

210

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4283-155458+%5BSpecified%5D&comment=Title%3A+About+Transaction+Outcomes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4283-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4282-155458+%5BSpecified%5D&comment=Title%3A+About+Transaction+Commit%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4282-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4281-155458+%5BSpecified%5D&comment=Title%3A+About+Transaction+Roll-Back%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4281-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Heuristic rollback

The commit operation failed because some or all of the participants unilaterally rolled back the
transaction.

Heuristic commit

An attempted rollback operation failed because all of the participants unilaterally committed. This may
happen if, for example, the coordinator is able to successfully prepare the transaction but then
decides to roll it back because of a failure on its side, such as a failure to update its log. In the interim,
the participants may decide to commit.

Heuristic mixed

Some participants committed and others rolled back.

Heuristic hazard

The outcome of some of the updates is unknown. For the ones that are known, they have either all
committed or all rolled back.

Heuristic outcomes can cause loss of integrity to the system, and usually require human intervention to
resolve. Do not write code which relies on them.

Section 10.2.9, “About the 2-Phase Commit Protocol”

Report a bug

10.4.5. JBoss Transactions Errors and Exceptions

For details about exceptions thrown by methods of the UserTransaction class, see the
UserTransaction API specification at
http://download.oracle.com/javaee/1.3/api/javax/transaction/UserTransaction.html.

Report a bug

10.5. OVERVIEW OF JTA TRANSACTIONS

10.5.1. About Java Transactions API (JTA)

Java Transactions API (JTA) is a specification for using transactions in Java Enterprise Edition
applications. It is defined in JSR-907.

JTA transactions are not distributed across multiple application servers, and cannot be nested.

JTA transactions are controlled by the EJB container. Annotations are one method for creating and
controlling transactions within your code.

Report a bug

10.5.2. Lifecycle of a JTA Transaction

When a resource asks to participate in a transaction, a chain of events is set in motion. The Transaction
Manager is a process that lives within the application server and manages transactions. Transaction
participants are objects which participate in a transaction. Resources are datasources, JMS connection
factories, or other JCA connections.

CHAPTER 10. JAVA TRANSACTION API (JTA)

211

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4285-155458+%5BSpecified%5D&comment=Title%3A+About+Heuristic+Outcomes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4285-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://download.oracle.com/javaee/1.3/api/javax/transaction/UserTransaction.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4299-299121+%5BSpecified%5D&comment=Title%3A+JBoss+Transactions+Errors+and+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4299-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4300-432593+%5BSpecified%5D&comment=Title%3A+About+Java+Transactions+API+%28JTA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4300-432593+10+Apr+2013+10%3A29+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

1. Your application starts a new transaction
To begin a transaction, your application obtains an instance of class UserTransaction from
JNDI or, if it is an EJB, from an annotation. The UserTransaction interface includes methods
for beginning, committing, and rolling back top-level transactions. Newly-created transactions
are automatically associated with their invoking thread. Nested transactions are not supported in
JTA, so all transactions are top-level transactions.

Calling UserTransaction.begin() starts a new transaction. Any resource that is used after
that point is associated with the transaction. If more than one resource is enlisted, your
transaction becomes an XA transaction, and participates in the two-phase commit protocol at
commit time.

2. Your application modifies its state.
In the next step, your transaction performs its work and makes changes to its state.

3. Your application decides to commit or roll back
When your application has finished changing its state, it decides whether to commit or roll back.
It calls the appropriate method. It calls UserTransaction.commit() or
UserTransaction.rollback(). This is when the two-phase commit protocol (2PC) happens
if you have enlisted more than one resource. Section 10.2.9, “About the 2-Phase Commit
Protocol”

4. The transaction manager removes the transaction from its records.
After the commit or rollback completes, the transaction manager cleans up its records and
removes information about your transaction.

Failure recovery

Failure recovery happens automatically. If a resource, transaction participant, or the application server
become unavailable, the Transaction Manager handles recovery when the underlying failure is resolved.

Section 10.2.1, “About Transactions”

Section 10.2.3, “About the Transaction Coordinator or Transaction Manager”

Section 10.2.4, “About Transaction Participants”

Section 10.2.9, “About the 2-Phase Commit Protocol”

Section 10.2.7, “About XA Datasources and XA Transactions”

Report a bug

10.6. TRANSACTION SUBSYSTEM CONFIGURATION

10.6.1. Transactions Configuration Overview

Introduction

The following procedures show you how to configure the transactions subsystem of JBoss EAP 6.

Section 10.6.2.1, “Configure Your Datasource to Use JTA Transactions”

Section 10.6.2.2, “Configure an XA Datasource”

Section 10.7.8.2, “Configure the Transaction Manager”

Development Guide

212

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4301-155458+%5BSpecified%5D&comment=Title%3A+Lifecycle+of+a+JTA+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4301-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Section 10.6.3.2, “Configure Logging for the Transaction Subsystem”

Report a bug

10.6.2. Transactional Datasource Configuration

10.6.2.1. Configure Your Datasource to Use JTA Transactions

Summary

This task shows you how to enable Java Transactions API (JTA) on your datasource.

Prerequisites

You must meet the following conditions before continuing with this task:

Your database or other resource must support JTA. If in doubt, consult the documentation for
your database or other resource.

Create a datasource. Refer to Section 10.6.2.4, “Create a Non-XA Datasource with the
Management Interfaces”.

Stop JBoss EAP 6.

Have access to edit the configuration files directly, in a text editor.

Procedure 10.1. Configure the Datasource to use JTA Transactions

1. Open the configuration file in a text editor.
Depending on whether you run JBoss EAP 6 in a managed domain or standalone server, your
configuration file will be in a different location.

Managed domain
The default configuration file for a managed domain is in
EAP_HOME/domain/configuration/domain.xml for Red Hat Enterprise Linux, and
EAP_HOME\domain\configuration\domain.xml for Microsoft Windows Server.

Standalone server
The default configuration file for a standalone server is in
EAP_HOME/standalone/configuration/standalone.xml for Red Hat Enterprise
Linux, and EAP_HOME\standalone\configuration\standalone.xml for Microsoft
Windows Server.

2. Locate the <datasource> tag that corresponds to your datasource.
The datasource will have the jndi-name attribute set to the one you specified when you
created it. For example, the ExampleDS datasource looks like this:

<datasource jndi-name="java:jboss/datasources/ExampleDS" pool-
name="H2DS" enabled="true" jta="true" use-java-context="true" use-
ccm="true">

3. Set the jta attribute to true.
Add the following to the contents of your <datasource> tag, as they appear in the previous
step: jta="true"

CHAPTER 10. JAVA TRANSACTION API (JTA)

213

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4374-459144+%5BSpecified%5D&comment=Title%3A+Transactions+Configuration+Overview%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4374-459144+12+Jun+2013+10%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

4. Save the configuration file.
Save the configuration file and exit the text editor.

5. Start JBoss EAP 6.
Relaunch the JBoss EAP 6 server.

Result:

JBoss EAP 6 starts, and your datasource is configured to use JTA transactions.

Report a bug

10.6.2.2. Configure an XA Datasource

Prerequisites

In order to add an XA Datasource, you need to log into the Management Console. See Section 10.6.2.3,
“Log in to the Management Console” for more information.

1. Add a new datasource.
Add a new datasource to JBoss EAP 6. Follow the instructions in Section 10.6.2.4, “Create a
Non-XA Datasource with the Management Interfaces”, but click the XA Datasource tab at the
top.

2. Configure additional properties as appropriate.
All datasource parameters are listed in Section 10.6.2.5, “Datasource Parameters”.

Result

Your XA Datasource is configured and ready to use.

Report a bug

10.6.2.3. Log in to the Management Console

Prerequisites

JBoss EAP 6 must be running.

Procedure 10.2. Log in to the Management Console

1. Navigate to the Management Console start page
Navigate to the Management Console in your web browser. The default location is
http://localhost:9990/console/, where port 9990 is predefined as the Management Console
socket binding.

2. Log in to the Management Console
Enter the username and password of the account that you created previously to log into the
Management Console login screen.

Development Guide

214

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4295-459146+%5BSpecified%5D&comment=Title%3A+Configure+Your+Datasource+to+Use+JTA+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4295-459146+12+Jun+2013+10%3A54+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4303-459147+%5BSpecified%5D&comment=Title%3A+Configure+an+XA+Datasource%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4303-459147+12+Jun+2013+10%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://localhost:9990/console/

Figure 10.1. Log in screen for the Management Console

Result

Once logged in, one of the Management Console landing pages appears:

Managed domain

http://localhost:9990/console/App.html#server-instances

Standalone server

http://localhost:9990/console/App.html#server-overview

Report a bug

10.6.2.4. Create a Non-XA Datasource with the Management Interfaces

Summary

This topic covers the steps required to create a non-XA datasource, using either the Management
Console or the Management CLI.

Prerequisites

The JBoss EAP 6 server must be running.

NOTE

Prior to version 10.2 of the Oracle datasource, the <no-tx-separate-pools/> parameter was
required, as mixing non-transactional and transactional connections would result in an
error. This parameter may no longer be required for certain applications.

Procedure 10.3. Create a Datasource using either the Management CLI or the Management
Console

Management CLI

a. Launch the CLI tool and connect to your server.

CHAPTER 10. JAVA TRANSACTION API (JTA)

215

http://localhost:9990/console/App.html#server-instances
http://localhost:9990/console/App.html#server-overview
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+3569-458677+%5BSpecified%5D&comment=Title%3A+Log+in+to+the+Management+Console%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=3569-458677+11+Jun+2013+11%3A56+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

b. Run the following command to create a non-XA datasource, configuring the variables as
appropriate:

data-source add --name=DATASOURCE_NAME --jndi-name=JNDI_NAME -
-driver-name=DRIVER_NAME --connection-url=CONNECTION_URL

c. Enable the datasource:

data-source enable --name=DATASOURCE_NAME

Management Console

a. Login to the Management Console.

b. Navigate to the Datasources panel in the Management Console

i. Standalone Mode
Select the Profile tab from the top-right of the console.

Domain Mode

A. Select the Profiles tab from the top-right of the console.

B. Select the appropriate profile from the drop-down box in the top left.

C. Expand the Subsystems menu on the left of the console.

ii. Select Connector → Datasources from the menu on the left of the console.

Figure 10.2. Datasources panel

c. Create a new datasource

i. Select the Add button at the top of the Datasources panel.

Development Guide

216

ii. Enter the new datasource attributes in the Create Datasource wizard and
proceed with the Next button.

iii. Enter the JDBC driver details in the Create Datasource wizard and proceed
with the Next button.

iv. Enter the connection settings in the Create Datasource wizard and select the
Done button.

Result

The non-XA datasource has been added to the server. It is now visible in either the standalone.xml
or domain.xml file, as well as the management interfaces.

Report a bug

10.6.2.5. Datasource Parameters

Table 10.1. Datasource parameters common to non-XA and XA datasources

Parameter Description

jndi-name The unique JNDI name for the datasource.

pool-name The name of the management pool for the
datasource.

enabled Whether or not the datasource is enabled.

use-java-context Whether to bind the datasource to global JNDI.

spy Enable spy functionality on the JDBC layer. This
logs all JDBC traffic to the datasource. The
logging-category parameter must also be set
to org.jboss.jdbc.

use-ccm Enable the cached connection manager.

new-connection-sql A SQL statement which executes when the
connection is added to the connection pool.

transaction-isolation One of the following:

TRANSACTION_READ_UNCOMMITTED

TRANSACTION_READ_COMMITTED

TRANSACTION_REPEATABLE_READ

TRANSACTION_SERIALIZABLE

TRANSACTION_NONE

CHAPTER 10. JAVA TRANSACTION API (JTA)

217

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4805-458713+%5BSpecified%5D&comment=Title%3A+Create+a+Non-XA+Datasource+with+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4805-458713+11+Jun+2013+13%3A53+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

url-delimiter The delimiter for URLs in a connection-url for High
Availability (HA) clustered databases.

url-selector-strategy-class-name A class that implements interface
org.jboss.jca.adapters.jdbc.URLSelec
torStrategy.

security Contains child elements which are security settings.
Refer to Table 10.6, “Security parameters”.

validation Contains child elements which are validation settings.
Refer to Table 10.7, “Validation parameters”.

timeout Contains child elements which are timeout settings.
Refer to Table 10.8, “Timeout parameters”.

statement Contains child elements which are statement settings.
Refer to Table 10.9, “Statement parameters”.

Parameter Description

Table 10.2. Non-XA datasource parameters

Parameter Description

jta Enable JTA integration for non-XA datasources. Does
not apply to XA datasources.

connection-url The JDBC driver connection URL.

driver-class The fully-qualified name of the JDBC driver class.

connection-property Arbitrary connection properties passed to the method
Driver.connect(url,props). Each
connection-property specifies a string name/value
pair. The property name comes from the name, and
the value comes from the element content.

pool Contains child elements which are pooling settings.
Refer to Table 10.4, “Pool parameters common to
non-XA and XA datasources”.

Table 10.3. XA datasource parameters

Parameter Description

xa-datasource-property A property to assign to implementation class
XADataSource. Specified by name=value. If a
setter method exists, in the format setName, the
property is set by calling a setter method in the
format of setName(value).

Development Guide

218

xa-datasource-class The fully-qualified name of the implementation class
javax.sql.XADataSource.

driver A unique reference to the classloader module which
contains the JDBC driver. The accepted format is
driverName#majorVersion.minorVersion.

xa-pool Contains child elements which are pooling settings.
Refer to Table 10.4, “Pool parameters common to
non-XA and XA datasources” and Table 10.5, “XA
pool parameters”.

recovery Contains child elements which are recovery settings.
Refer to Table 10.10, “Recovery parameters”.

Parameter Description

Table 10.4. Pool parameters common to non-XA and XA datasources

Parameter Description

min-pool-size The minimum number of connections a pool holds.

max-pool-size The maximum number of connections a pool can
hold.

prefill Whether to try to prefill the connection pool. An
empty element denotes a true value. The default is
false.

use-strict-min Whether the pool-size is strict. Defaults to false.

flush-strategy Whether the pool should be flushed in the case of an
error. Valid values are:

FailingConnectionOnly

IdleConnections

EntirePool

The default is FailingConnectionOnly.

allow-multiple-users Specifies if multiple users will access the datasource
through the getConnection(user, password) method,
and whether the internal pool type should account for
this behavior.

Table 10.5. XA pool parameters

CHAPTER 10. JAVA TRANSACTION API (JTA)

219

Parameter Description

is-same-rm-override Whether the
javax.transaction.xa.XAResource.isSa
meRM(XAResource) class returns true or
false.

interleaving Whether to enable interleaving for XA connection
factories.

no-tx-separate-pools Whether to create separate sub-pools for each
context. This is required for Oracle datasources,
which do not allow XA connections to be used both
inside and outside of a JTA transaction.

pad-xid Whether to pad the Xid.

wrap-xa-resource Whether to wrap the XAResource in an
org.jboss.tm.XAResourceWrapper
instance.

Table 10.6. Security parameters

Parameter Description

user-name The username to use to create a new connection.

password The password to use to create a new connection.

security-domain Contains the name of a JAAS security-manager
which handles authentication. This name correlates
to the application-policy/name attribute of the JAAS
login configuration.

reauth-plugin Defines a reauthentication plugin to use to
reauthenticate physical connections.

Table 10.7. Validation parameters

Parameter Description

valid-connection-checker An implementation of interface
org.jboss.jca.adaptors.jdbc.ValidCon
nectionChecker which provides a
SQLException.isValidConnection(Conne
ction e) method to validate a connection. An
exception means the connection is destroyed. This
overrides the parameter check-valid-
connection-sql if it is present.

Development Guide

220

check-valid-connection-sql An SQL statement to check validity of a pool
connection. This may be called when a managed
connection is taken from a pool for use.

validate-on-match Indicates whether connection level validation is
performed when a connection factory attempts to
match a managed connection for a given set.

Specifying "true" for validate-on-match is
typically not done in conjunction with specifying "true"
for background-validation. Validate-
on-match is needed when a client must have a
connection validated prior to use. This parameter is
true by default.

background-validation Specifies that connections are validated on a
background thread. Background validation is a
performance optimization when not used with
validate-on-match. If validate-on-
match is true, using background-validation
could result in redundant checks. Background
validation does leave open the opportunity for a bad
connection to be given to the client for use (a
connection goes bad between the time of the
validation scan and prior to being handed to the
client), so the client application must account for this
possibility.

background-validation-millis The amount of time, in milliseconds, that background
validation runs.

use-fast-fail If true, fail a connection allocation on the first
attempt, if the connection is invalid. Defaults to
false.

stale-connection-checker An instance of
org.jboss.jca.adapters.jdbc.StaleCon
nectionChecker which provides a Boolean
isStaleConnection(SQLException e)
method. If this method returns true, the exception is
wrapped in an
org.jboss.jca.adapters.jdbc.StaleCon
nectionException, which is a subclass of
SQLException.

exception-sorter An instance of
org.jboss.jca.adapters.jdbc.Exceptio
nSorter which provides a Boolean
isExceptionFatal(SQLException e)
method. This method validates whether an exception
should be broadcast to all instances of
javax.resource.spi.ConnectionEventLi
stener as a connectionErrorOccurred
message.

Parameter Description

CHAPTER 10. JAVA TRANSACTION API (JTA)

221

Table 10.8. Timeout parameters

Parameter Description

use-try-lock Uses tryLock() instead of lock(). This
attempts to obtain the lock for the configured number
of seconds, before timing out, rather than failing
immediately if the lock is unavailable. Defaults to 60
seconds. As an example, to set a timeout of 5
minutes, set <use-try-lock>300</use-try-
lock>.

blocking-timeout-millis The maximum time, in milliseconds, to block while
waiting for a connection. After this time is exceeded,
an exception is thrown. This blocks only while waiting
for a permit for a connection, and does not throw an
exception if creating a new connection takes a long
time. Defaults to 30000, which is 30 seconds.

idle-timeout-minutes The maximum time, in minutes, before an idle
connection is closed. The actual maximum time
depends upon the idleRemover scan time, which is
half of the smallest idle-timeout-minutes of
any pool.

set-tx-query-timeout Whether to set the query timeout based on the time
remaining until transaction timeout. Any configured
query timeout is used if no transaction exists.
Defaults to false.

query-timeout Timeout for queries, in seconds. The default is no
timeout.

allocation-retry The number of times to retry allocating a connection
before throwing an exception. The default is 0, so an
exception is thrown upon the first failure.

allocation-retry-wait-millis How long, in milliseconds, to wait before retrying to
allocate a connection. The default is 5000, which is 5
seconds.

xa-resource-timeout If non-zero, this value is passed to method
XAResource.setTransactionTimeout.

Table 10.9. Statement parameters

Parameter Description

Development Guide

222

track-statements Whether to check for unclosed statements when a
connection is returned to a pool and a statement is
returned to the prepared statement cache. If false,
statements are not tracked.

Valid values

true: statements and result sets are
tracked, and a warning is issued if they are
not closed.

false: neither statements or result sets
are tracked.

nowarn: statements are tracked but no
warning is issued. This is the default.

prepared-statement-cache-size The number of prepared statements per connection,
in a Least Recently Used (LRU) cache.

share-prepared-statements Whether asking for the same statement twice without
closing it uses the same underlying prepared
statement. The default is false.

Parameter Description

Table 10.10. Recovery parameters

Parameter Description

recover-credential A username/password pair or security domain to use
for recovery.

recover-plugin An implementation of the
org.jboss.jca.core.spi.recoveryRecov
eryPlugin class, to be used for recovery.

Report a bug

10.6.3. Transaction Logging

10.6.3.1. About Transaction Log Messages

To track transaction status while keeping the log files readable, use the DEBUG log level for the
transaction logger. For detailed debugging, use the TRACE log level. Refer to Section 10.6.3.2,
“Configure Logging for the Transaction Subsystem” for information on configuring the transaction logger.

The transaction manager can generate a lot of logging information when configured to log in the TRACE
log level. Following are some of the most commonly-seen messages. This list is not comprehensive, so
you may see other messages than these.

Table 10.11. Transaction State Change

CHAPTER 10. JAVA TRANSACTION API (JTA)

223

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2772-455537+%5BSpecified%5D&comment=Title%3A+Datasource+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2772-455537+29+May+2013+11%3A16+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Transaction Begin When a transaction begins, the following code is
executed:

com.arjuna.ats.arjuna.coordinator
.BasicAction::Begin:1342

tsLogger.logger.trace("BasicActio
n::Begin() for action-id "+
get_uid());

Transaction Commit When a transaction commits, the following code is
executed:

com.arjuna.ats.arjuna.coordinator
.BasicAction::End:1342

tsLogger.logger.trace("BasicActio
n::End() for action-id "+
get_uid());

Transaction Rollback When a transaction rolls back, the following code is
executed:

com.arjuna.ats.arjuna.coordinator
.BasicAction::Abort:1575

tsLogger.logger.trace("BasicActio
n::Abort() for action-id "+
get_uid());

Transaction Timeout When a transaction times out, the following code is
executed:

com.arjuna.ats.arjuna.coordinator
.TransactionReaper::doCancellatio
ns:349

tsLogger.logger.trace("Reaper
Worker " + Thread.currentThread()
+ " attempting to cancel " +
e._control.get_uid());

You will then see the same thread rolling back the
transaction as shown above.

Report a bug

10.6.3.2. Configure Logging for the Transaction Subsystem

Development Guide

224

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9018-436166+%5BSpecified%5D&comment=Title%3A+About+Transaction+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9018-436166+19+Apr+2013+11%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Summary

Use this procedure to control the amount of information logged about transactions, independent of other
logging settings in JBoss EAP 6. The main procedure shows how to do this in the web-based
Management Console. The Management CLI command is given afterward.

Procedure 10.4. Configure the Transaction Logger Using the Management Console

1. Navigate to the Logging configuration area.
In the Management Console, click the Profiles tab at the top left of the screen. If you use a
managed domain, choose the server profile you wish to configure, from the Profile selection
box at the top right.

Expand the Core menu, and click the Logging label.

2. Edit the com.arjuna attributes.
Click the Edit button in the Details section, toward the bottom of the page. This is where you
can add class-specific logging information. The com.arjuna class is already present. You can
change the log level and whether to use parent handlers.

Log Level

The log level is WARN by default. Because transactions can produce a large quantity of
logging output, the meaning of the standard logging levels is slightly different for the
transaction logger. In general, messages tagged with levels at a lower severity than the
chosen level are discarded.

Transaction Logging Levels, from Most to Least Verbose

TRACE

DEBUG

INFO

WARN

ERROR

FAILURE

Use Parent Handlers

Whether the logger should send its output to its parent logger. The default behavior is true.

3. Changes take effect immediately.

Report a bug

10.6.3.3. Browse and Manage Transactions

The command-line based Management CLI supports the ability to browse and manipulate transaction
records. This functionality is provided by the interaction between the Transaction Manager and the
Management API of JBoss EAP 6.

The transaction manager stores information about each pending transaction and the participants

CHAPTER 10. JAVA TRANSACTION API (JTA)

225

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4311-459148+%5BSpecified%5D&comment=Title%3A+Configure+Logging+for+the+Transaction+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4311-459148+12+Jun+2013+10%3A56+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

involved the transaction, in a persistent storage called the object store. The Management API exposes
the object store as a resource called the log-store. An API operation called probe reads the
transaction logs and creates a node for each log. You can call the probe command manually, whenever
you need to refresh the log-store. It is normal for transaction logs to appear and disappear quickly.

Example 10.1. Refresh the Log Store

This command refreshes the Log Store for server groups which use the profile default in a
managed domain. For a standalone server, remove the profile=default from the command.

/profile=default/subsystem=transactions/log-store=log-store/:probe

Example 10.2. View All Prepared Transactions

To view all prepared transactions, first refresh the log store (see Example 10.1, “Refresh the Log
Store”), then run the following command, which functions similarly to a filesystem ls command.

ls /profile=default/subsystem=transactions/log-store=log-
store/transactions

Each transaction is shown, along with its unique identifier. Individual operations can be run against an
individual transaction (see Manage a Transaction).

Manage a Transaction

View a transaction's attributes.

To view information about a transaction, such as its JNDI name, EIS product name and version, or its
status, use the :read-resource CLI command.

/profile=default/subsystem=transactions/log-store=log-
store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9:read-resource

View the participants of a transaction.

Each transaction log contains a child element called participants. Use the read-resource CLI
command on this element to see the participants of the transaction. Participants are identified by their
JNDI names.

/profile=default/subsystem=transactions/log-store=log-
store/transactions=0\:ffff7f000001\:-
b66efc2\:4f9e6f8f\:9/participants=java\:\/JmsXA:read-resource

The result may look similar to this:

{
 "outcome" => "success",
 "result" => {
 "eis-product-name" => "HornetQ",
 "eis-product-version" => "2.0",
 "jndi-name" => "java:/JmsXA",
 "status" => "HEURISTIC",

Development Guide

226

 "type" => "/StateManager/AbstractRecord/XAResourceRecord"
 }
}

The outcome status shown here is in a HEURISTIC state and is eligible for recover. Refer to Recover
a transaction. for more details.

Delete a transaction.

Each transaction log supports a :delete operation, to delete the transaction log representing the
transaction.

/profile=default/subsystem=transactions/log-store=log-
store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9:delete

Recover a transaction.

Each transaction log supports recovery via the :recover CLI command.

Recovery of Heuristic Transactions and Participants

If the transaction's status is HEURISTIC, the recovery operation changes the state to
PREPARE and triggers a recovery.

If one of the transaction's participants is heuristic, the recovery operation tries to replay the
commit operation. If successful, the participant is removed from the transaction log. You can
verify this by re-running the :probe operation on the log-store and checking that the
participant is no longer listed. If this is the last participant, the transaction is also deleted.

Refresh the status of a transaction which needs recovery.

If a transaction needs recovery, you can use the :refresh CLI command to be sure it still requires
recovery, before attempting the recovery.

/profile=default/subsystem=transactions/log-store=log-
store/transactions=0\:ffff7f000001\:-b66efc2\:4f9e6f8f\:9:refresh

NOTE

For JTS transactions, if participants are on remote servers, a limited amount of
information may be available to the Transaction Manager. In this case, it is recommended
that you use the file-based object store, rather than the HornetQ storage mode. This is
the default behavior. To use the HornetQ storage mode, you can set the value of the
use-hornetq-store option to true, in the Transaction Manager configuration. Refer to
Section 10.7.8.2, “Configure the Transaction Manager” for information on configuring the
Transaction Manager.

View Transaction Statistics

If Transaction Manager (TM) statistics are enabled, you can view statistics about the Transaction
Manager and transaction subsystem. Refer to Section 10.7.8.2, “Configure the Transaction Manager” for
information about how to enable TM statistics.

You can view statistics either via the web-based Management Console or the command-line

CHAPTER 10. JAVA TRANSACTION API (JTA)

227

Management CLI. In the web-based Management Console, Transaction statistics are available via
Runtime → Subsystem Metrics → Transactions. Transaction statistics are available for each server in
a managed domain, as well. You can specify the server in the Server selection box at the top left.

The following table shows each available statistic, its description, and the CLI command to view the
statistic.

Table 10.12. Transaction Subsystem Statistics

Statistic Description CLI Command

Total The total number of transactions
processed by the Transaction
Manager on this server.

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-
transactions,include
-defaults=true)

Committed The number of committed
transactions processed by the
Transaction Manager on this
server.

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-committed-
transactions,include
-defaults=true)

Aborted The number of aborted
transactions processed by the
Transaction Manager on this
server.

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-aborted-
transactions,include
-defaults=true)

Timed Out The number of timed out
transactions processed by the
Transaction Manager on this
server.

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-timed-out-
transactions,include
-defaults=true)

Development Guide

228

Heuristics Not available in the Management
Console. Number of transactions
in a heuristic state.

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-
heuristics,include-
defaults=true)

In-Flight Transactions Not available in the Management
Console. Number of transactions
which have begun but not yet
terminated.

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-inflight-
transactions,include
-defaults=true)

Failure Origin - Applications The number of failed transactions
whose failure origin was an
application.

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-application-
rollbacks,include-
defaults=true)

Failure Origin - Resources The number of failed transactions
whose failure origin was a
resource.

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-resource-
rollbacks,include-
defaults=true)

Statistic Description CLI Command

Report a bug

10.7. USE JTA TRANSACTIONS

10.7.1. Transactions JTA Task Overview

Introduction

CHAPTER 10. JAVA TRANSACTION API (JTA)

229

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4312-459149+%5BSpecified%5D&comment=Title%3A+Browse+and+Manage+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4312-459149+12+Jun+2013+10%3A58+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The following procedures are useful when you need to use transactions in your application.

Section 10.7.2, “Control Transactions”

Section 10.7.3, “Begin a Transaction”

Section 10.7.5, “Commit a Transaction”

Section 10.7.6, “Roll Back a Transaction”

Section 10.7.7, “Handle a Heuristic Outcome in a Transaction”

Section 10.7.8.2, “Configure the Transaction Manager”

Section 10.7.9.1, “Handle Transaction Errors”

Report a bug

10.7.2. Control Transactions

Introduction

This list of procedures outlines the different ways to control transactions in your applications which use
JTA or JTS APIs.

Section 10.7.3, “Begin a Transaction”

Section 10.7.5, “Commit a Transaction”

Section 10.7.6, “Roll Back a Transaction”

Section 10.7.7, “Handle a Heuristic Outcome in a Transaction”

Report a bug

10.7.3. Begin a Transaction

This procedure shows how to begin a new JTA transaction, or how to participate in a distributed
transaction using the Java Transaction Service (JTS) protocol.

Distributed Transactions

A distributed transaction is one where the transaction participants are in separate applications on
multiple servers. If a participant joins a transaction that already exists, rather than creating a new
transaction context, the two (or more) participants which share the context are participating a distributed
transaction. In order to use distribured transactions, you must configure the ORB. Refer to Refer to the
ORB Configuration section of the Administration and Configuration Guide for more information on ORB
configuration.

1. Get an instance of UserTransaction.
You can get the instance using JNDI, injection, or an EJB's EjbContext, if the EJB uses bean-
managed transactions, by means of a
@TransactionManagement(TransactionManagementType.BEAN) annotation.

JNDI

new InitialContext().lookup("java:comp/UserTransaction")

Development Guide

230

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4375-155458+%5BSpecified%5D&comment=Title%3A+Transactions+JTA+Task+Overview%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4375-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4313-334104+%5BSpecified%5D&comment=Title%3A+Control+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4313-334104+16+Nov+2012+12%3A41+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Injection

EjbContext

2. Call UserTransaction.begin() after you connect to your datasource.

Participate in an existing transaction using the JTS API.

One of the benefits of EJBs is that the container manages all of the transactions. If you have set up the
ORB, the container will manage distributed transactions for you.

Result:

The transaction begins. All uses of your datasource until you commit or roll back the transaction are
transactional.

NOTE

For a full example, see Section 10.9.3, “JTA Transaction Example”.

Report a bug

10.7.4. Nest Transactions

Nested transactions are only supported when you use distributed transactions, with the JTS API. In
addition, many database vendors do not support nested transactions, so check with your database
vendor before you add nested transactions to your application.

The OTS specifications allow for a limited type of nested transaction, where the subtransaction commit
protocol is the same as a top-level transactions. There are two phases, a prepare phase and a commit
or abort phase. This type of nested transaction can lead to inconsistent results, such as in a scenario
in which a subtransaction coordinator discovers part of the way through committing that a resources
cannot commit. The coordinator may not be able to tell the committed resources to abort, and a heuristic
outcome occurs. This strict OTS nested transaction is available via the
CosTransactions::SubtransactionAwareResource interface.

The JBoss EAP 6 implementation of JTS supports this type of nested transaction. It also supports a type
of nested transaction with a multi-phase commit protocol, which avoids the problems that are possible

@Resource UserTransaction userTransaction;

EjbContext.getUserTransaction()

...
try {
 System.out.println("\nCreating connection to database: "+url);
 stmt = conn.createStatement(); // non-tx statement
 try {
 System.out.println("Starting top-level transaction.");
 userTransaction.begin();
 stmtx = conn.createStatement(); // will be a tx-statement
 ...
 }
}

CHAPTER 10. JAVA TRANSACTION API (JTA)

231

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4304-369115+%5BSpecified%5D&comment=Title%3A+Begin+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4304-369115+23+Jan+2013+16%3A52+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

with the strict OTS model. This type of nested transaction is available via the
ArjunaOTS::ArjunaSubtranAwareResource. It is driven by a two-phase commit protocol whenever
a nested transaction commits.

To create a nested transaction, you create a new transaction within a parent transaction. Refer to
Section 10.7.3, “Begin a Transaction” for information on creating a transaction.

The effect of a nested transaction depends on upon the commit/roll back of its enclosing transactions.
The effects are recovered if the enclosing transaction aborts, even if the nested transaction has
committed.

Report a bug

10.7.5. Commit a Transaction

This procedure shows how to commit a transaction using the Java Transaction API (JTA). This API is
used for both local transactions and distributed transactions. Distributed transactions are managed by
the Java Transaction Server (JTS) and require configuration of an Object Request Broker (ORB). For
more information on ORB configuration, refer to the ORB Configuration section of the Administration and
Configuration Guide.

Prerequisites

You must begin a transaction before you can commit it. For information on how to begin a transaction,
refer to Section 10.7.3, “Begin a Transaction”.

1. Call the commit() method on the UserTransaction.
When you call the commit() method on the UserTransaction, the Transaction Manager
attempts to commit the transaction.

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value)
 EntityManager entityManager =
entityManagerFactory.createEntityManager();
 try {
 userTransaction.begin():
 <!-- Perform some data manipulation using entityManager -->
 ...
 // Commit the transaction
 userTransaction.commit();
 } catch (Exception ex) {
 <!-- Log message or notify Web page -->
 ...
 try {
 userTransaction.rollback();
 } catch (SystemException se) {
 throw new RuntimeException(se);
 }
 throw new RuntimeException(e);
 } finally {
 entityManager.close();
 }
}

Development Guide

232

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4308-459931+%5BSpecified%5D&comment=Title%3A+Nest+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4308-459931+14+Jun+2013+11%3A43+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

2. If you use Container Managed Transactions (CMT), you do not need to manually commit.
If you configure your bean to use Container Managed Transactions, the container will manage
the transaction lifecycle for you based on annotations you configure in the code.

Result

Your datasource commits and your transaction ends, or an exception is thrown.

NOTE

For a full example, see Section 10.9.3, “JTA Transaction Example”.

Report a bug

10.7.6. Roll Back a Transaction

This procedure shows how to roll back a transaction using the Java Transaction API (JTA). This API is
used for both local transactions and distributed transactions. Distributed transactions are managed by
the Java Transaction Server (JTS) and require configuration of an Object Request Broker (ORB). For
more information on ORB configuration, refer to the ORB Configuration section of the Administration and
Configuration Guide.

Prerequisites

You must begin a transaction before you can roll it back. For information on how to begin a transaction,
refer to Section 10.7.3, “Begin a Transaction”.

1. Call the rollback() method on the UserTransaction.
When you call the rollback() method on the UserTransaction, the Transaction Manager
attempts to roll back the transaction and return the data to its previous state.

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value)
 EntityManager entityManager =
entityManagerFactory.createEntityManager();
 try {
 userTransaction.begin():
 <!-- Perform some data manipulation using entityManager -->
 ...
 // Commit the transaction
 userTransaction.commit();
 } catch (Exception ex) {
 <!-- Log message or notify Web page -->
 ...
 try {
 userTransaction.rollback();
 } catch (SystemException se) {
 throw new RuntimeException(se);
 }
 throw new RuntimeException(e);
 } finally {
 entityManager.close();
 }

CHAPTER 10. JAVA TRANSACTION API (JTA)

233

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4305-433106+%5BSpecified%5D&comment=Title%3A+Commit+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4305-433106+11+Apr+2013+15%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

2. If you use Container Managed Transactions (CMT), you do not need to manually roll back
the transaction.
If you configure your bean to use Container Managed Transactions, the container will manage
the transaction lifecycle for you based on annotations you configure in the code.

Result

Your transaction is rolled back by the Transaction Manager.

NOTE

For a full example, see Section 10.9.3, “JTA Transaction Example”.

Report a bug

10.7.7. Handle a Heuristic Outcome in a Transaction

This procedure shows how to handle a heuristic outcome in a JTA transaction, whether it is local or
distributed, using the Java Transaction Service (JTS). To use distributed transactions, you need to
configure the ORB. Refer to the ORB Configuration section of the Administration and Configuration
Guide for more information on ORB configuration.

Heuristic transaction outcomes are uncommon and usually have exceptional causes. The word heuristic
means "by hand", and that is the way that these outcomes usually have to be handled. Refer to
Section 10.4.4, “About Heuristic Outcomes” for more information about heuristic transaction outcomes.

Procedure 10.5. Handle a heuristic outcome in a transaction

1. Determine the cause
The over-arching cause of a heuristic outcome in a transaction is that a resource manager
promised it could commit or roll-back, and then failed to fulfill the promise. This could be due to a
problem with a third-party component, the integration layer between the third-party component
and JBoss EAP 6, or JBoss EAP 6 itself.

By far, the most common two causes of heuristic errors are transient failures in the environment
and coding errors in the code dealing with resource managers.

2. Fix transient failures in the environment
Typically, if there is a transient failure in your environment, you will know about it before you find
out about the heuristic error. This could be a network outage, hardware failure, database failure,
power outage, or a host of other things.

If you experienced the heuristic outcome in a test environment, during stress testing, it provides
information about weaknesses in your environment.

}

Development Guide

234

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4306-433108+%5BSpecified%5D&comment=Title%3A+Roll+Back+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4306-433108+11+Apr+2013+15%3A49+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

WARNING

JBoss EAP 6 will automatically recover transactions that were in a non-
heuristic state at the time of the failure, but it does not attempt to recover
heuristic transactions.

3. Contact resource manager vendors
If you have no obvious failure in your environment, or the heuristic outcome is easily
reproducible, it is probably a coding error. Contact third-party vendors to find out if a solution is
available. If you suspect the problem is in the transaction manager of JBoss EAP 6 itself, contact
Red Hat Global Support Services.

4. In a test environment, delete the logs and restart JBoss EAP 6.
In a test environment, or if you do not care about the integrity of the data, deleting the
transaction logs and restarting JBoss EAP 6 gets rid of the heuristic outcome. The transaction
logs are located in EAP_HOME/standalone/data/tx-object-store/ for a standalone
server, or EAP_HOME/domain/servers/SERVER_NAME/data/tx-object-store in a
managed domain, by default. In the case of a managed domain, SERVER_NAME refers to the
name of the individual server participating in a server group.

5. Resolve the outcome by hand
The process of resolving the transaction outcome by hand is very dependent on the exact
circumstance of the failure. Typically, you need to take the following steps, applying them to your
situation:

a. Identify which resource managers were involved.

b. Examine the state in the transaction manager and the resource managers.

c. Manually force log cleanup and data reconciliation in one or more of the involved
components.

The details of how to perform these steps are out of the scope of this documentation.

Report a bug

10.7.8. Transaction Timeouts

10.7.8.1. About Transaction Timeouts

In order to preserve atomicity and adhere to the ACID standard for transactions, some parts of a
transaction can be long-running. Transaction participants need to lock parts of datasources when they
commit, and the transaction manager needs to wait to hear back from each transaction participant before
it can direct them all whether to commit or roll back. Hardware or network failures can cause resources to
be locked indefinitely.

Transaction timeouts can be associated with transactions in order to control their lifecycle. If a timeout
threshold passes before the transaction commits or rolls back, the timeout causes the transaction to be
rolled back automatically.



CHAPTER 10. JAVA TRANSACTION API (JTA)

235

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4307-459932+%5BSpecified%5D&comment=Title%3A+Handle+a+Heuristic+Outcome+in+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4307-459932+14+Jun+2013+11%3A45+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

You can configure default timeout values for the entire transaction subsystem, or you disable default
timeout values, and specify timeouts on a per-transaction basis.

Report a bug

10.7.8.2. Configure the Transaction Manager

You can configure the Transaction Manager (TM) using the web-based Management Console or the
command-line Management CLI. For each command or option given, the assumption is made that you
are running JBoss EAP 6 as a Managed Domain. If you use a Standalone Server or you want to modify
a different profile than default, you may need to modify the steps and commands in the following ways.

Notes about the Example Commands

For the Management Console, the default profile is the one which is selected when you first
log into the console. If you need to modify the Transaction Manager's configuration in a different
profile, select your profile instead of default, in each instruction.

Similarly, substitute your profile for the default profile in the example CLI commands.

If you use a Standalone Server, only one profile exists. Ignore any instructions to choose a
specific profile. In CLI commands, remove the /profile=default portion of the sample
commands.

NOTE

In order for the TM options to be visible in the Management Console or Management CLI,
the transactions subsystem must be enabled. It is enabled by default, and required for
many other subsystems to function properly, so it is very unlikely that it would be
disabled.

Configure the TM Using the Management Console

To configure the TM using the web-based Management Console, select the Runtime tab from the list in
the upper left side of the Management Console screen. If you use a managed domain, you have the
choice of several profiles. Choose the correct one from the Profile selection box at the upper right of
the Profiles screen. Expand the Container menu and select Transactions.

Most options are shown in the Transaction Manager configuration page. The Recovery options are
hidden by default. Click the Recovery header to expand them. Click the Edit button to edit any of the
options. Changes take effect immediately.

Click the Need Help? label to display in-line help text.

Configure the TM using the Management CLI

In the Management CLI, you can configure the TM using a series of commands. The commands all begin
with /profile=default/subsystem=transactions/ for a managed domain with profile default,
or /subsystem=transactions for a Standalone Server.

Table 10.13. TM Configuration Options

Development Guide

236

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4378-155458+%5BSpecified%5D&comment=Title%3A+About+Transaction+Timeouts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4378-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Option Description CLI Command

Enable Statistics Whether to enable transaction
statistics. These statistics can be
viewed in the Management
Console in the Subsystem
Metrics section of the
Runtime tab.

/profile=default/subsys
tem=transactions/:write
-attribute(name=enable-
statistics,value=true)

Enable TSM Status Whether to enable the transaction
status manager (TSM) service,
which is used for out-of-process
recovery.

/profile=default/subsys
tem=transactions/:write
-attribute(name=enable-
tsm-status,value=false)

Default Timeout The default transaction timeout.
This defaults to 300 seconds.
You can override this
programmatically, on a per-
transaction basis.

/profile=default/subsys
tem=transactions/:write
-
attribute(name=default-
timeout,value=300)

Path The relative or absolute filesystem
path where the transaction
manager core stores data. By
default the value is a path relative
to the value of the relative-
to attribute.

/profile=default/subsys
tem=transactions/:write
-
attribute(name=path,val
ue=var)

Relative To References a global path
configuration in the domain
model. The default value is the
data directory for JBoss EAP 6,
which is the value of the property
jboss.server.data.dir,
and defaults to
EAP_HOME/domain/data/
for a Managed Domain, or
EAP_HOME/standalone/dat
a/ for a Standalone Server
instance. The value of the path
TM attribute is relative to this path.
Use an empty string to disable the
default behavior and force the
value of the path attribute to be
treated as an absolute path.

/profile=default/subsys
tem=transactions/:write
-
attribute(name=relative
-
to,value=jboss.server.d
ata.dir)

Object Store Path A relative or absolute filesystem
path where the TM object store
stores data. By default relative to
the object-store-
relative-to parameter's
value.

/profile=default/subsys
tem=transactions/:write
-attribute(name=object-
store-path,value=tx-
object-store)

CHAPTER 10. JAVA TRANSACTION API (JTA)

237

Object Store Path Relative To References a global path
configuration in the domain
model. The default value is the
data directory for JBoss EAP 6,
which is the value of the property
jboss.server.data.dir,
and defaults to
EAP_HOME/domain/data/
for a Managed Domain, or
EAP_HOME/standalone/dat
a/ for a Standalone Server
instance. The value of the path
TM attribute is relative to this path.
Use an empty string to disable the
default behavior and force the
value of the path attribute to be
treated as an absolute path.

/profile=default/subsys
tem=transactions/:write
-attribute(name=object-
store-relative-
to,value=jboss.server.d
ata.dir)

Socket Binding Specifies the name of the socket
binding used by the Transaction
Manager for recovery and
generating transaction identifiers,
when the socket-based
mechanism is used. Refer to
process-id-socket-max-
ports for more information on
unique identifier generation.
Socket bindings are specified per
server group in the Server tab
of the Management Console.

/profile=default/subsys
tem=transactions/:write
-attribute(name=socket-
binding,value=txn-
recovery-environment)

Status Socket Binding Specifies the socket binding to
use for the Transaction Status
manager.

/profile=default/subsys
tem=transactions/:write
-attribute(name=status-
socket-
binding,value=txn-
status-manager)

Recovery Listener Whether or not the Transaction
Recovery process should listen on
a network socket. Defaults to
false.

/profile=default/subsys
tem=transactions/:write
-
attribute(name=recovery
-listener,value=false)

Option Description CLI Command

The following options are for advanced use and can only be modified using the Management CLI. Be
cautious when changing them from the default configuration. Contact Red Hat Global Support Services
for more information.

Table 10.14. Advanced TM Configuration Options

Option Description CLI Command

Development Guide

238

jts Whether to use Java Transaction
Service (JTS) transactions.
Defaults to false, which uses
JTA transactions only.

/profile=default/subsys
tem=transactions/:write
-
attribute(name=jts,valu
e=false)

node-identifier The node identifier for the JTS
service. This should be unique per
JTS service, because the
Transaction Manager uses this for
recovery.

/profile=default/subsys
tem=transactions/:write
-attribute(name=node-
identifier,value=1)

process-id-socket-max-ports The Transaction Manager creates
a unique identifier for each
transaction log. Two different
mechanisms are provided for
generating unique identifiers: a
socket-based mechanism and a
mechanism based on the process
identifier of the process.

In the case of the socket-based
identifier, a socket is opened and
its port number is used for the
identifier. If the port is already in
use, the next port is probed, until
a free one is found. The
process-id-socket-max-
ports represents the maximum
number of sockets the TM will try
before failing. The default value is
10.

/profile=default/subsys
tem=transactions/:write
-
attribute(name=process-
id-socket-max-
ports,value=10)

process-id-uuid Set to true to use the process
identifier to create a unique
identifier for each transaction.
Otherwise, the socket-based
mechanism is used. Defaults to
true. Refer to process-id-
socket-max-ports for more
information.

/profile=default/subsys
tem=transactions/:write
-
attribute(name=process-
id-uuid,value=true)

use-hornetq-store Use HornetQ's journaled storage
mechanisms instead of file-based
storage, for the transaction logs.
This is disabled by default, but
can improve I/O performance. It is
not recommended for JTS
transactions on separate
Transaction Managers. .

/profile=default/subsys
tem=transactions/:write
-attribute(name=use-
hornetq-
store,value=false)

Option Description CLI Command

Report a bug

10.7.9. JTA Transaction Error Handling

CHAPTER 10. JAVA TRANSACTION API (JTA)

239

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4310-459145+%5BSpecified%5D&comment=Title%3A+Configure+the+Transaction+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4310-459145+12+Jun+2013+10%3A52+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

10.7.9.1. Handle Transaction Errors

Transaction errors are challenging to solve because they are often dependent on timing. Here are some
common errors and ideas for troubleshooting them.

NOTE

These guidelines do not apply to heuristic errors. If you experience heuristic errors, refer
to Section 10.7.7, “Handle a Heuristic Outcome in a Transaction” and contact Red Hat
Global Support Services for assistance.

The transaction timed out but the business logic thread did not notice

This type of error often manifests itself when Hibernate is unable to obtain a database connection for
lazy loading. If it happens frequently, you can lengthen the timeout value. Refer to Section 10.7.8.2,
“Configure the Transaction Manager”.

If that is not feasible, you may be able to tune your external environment to perform more quickly, or
restructure your code to be more efficient. Contact Red Hat Global Support Services if you still have
trouble with timeouts.

The transaction is already running on a thread, or you receive a NotSupportedException
exception

The NotSupportedException exception usually indicates that you attempted to nest a JTA
transaction, and this is not supported. If you were not attempting to nest a transaction, it is likely that
another transaction was started in a thread pool task, but finished the task without suspending or ending
the transaction.

Applications typically use UserTransaction, which handles this automatically. If so, there may be a
problem with a framework.

If your code does use TransactionManager or Transaction methods directly, be aware of the
following behavior when committing or rolling back a transaction. If your code uses
TransactionManager methods to control your transactions, committing or rolling back a transaction
disassociates the transaction from the current thread. However, if your code uses Transaction
methods, the transaction may not be associated with the running thread, and you need to disassociate it
from its threads manually, before returning it to the thread pool.

You are unable to enlist a second local resource

This error happens if you try to enlist a second non-XA resource into a transaction. If you need multiple
resources in a transaction, they must be XA.

Report a bug

10.8. ORB CONFIGURATION

10.8.1. About Common Object Request Broker Architecture (CORBA)

Common Object Request Broker Architecture (CORBA) is a standard that enables applications and
services to work together even when they are written in multiple, otherwise-incompatible, languages or
hosted on separate platforms. CORBA requests are brokered by a server-side component called an
Object Request Broker (ORB). JBoss EAP 6 provides an ORB instance, by means of the JacORB
component.

Development Guide

240

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4376-308941+%5BSpecified%5D&comment=Title%3A+Handle+Transaction+Errors%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4376-308941+15+Oct+2012+15%3A33+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The ORB is used internally for Java Transaction Service (JTS) transactions, and is also available for use
by your own applications.

Report a bug

10.8.2. Configure the ORB for JTS Transactions

In a default installation of JBoss EAP 6, the ORB is disabled. You can enable the ORB using the
command-line Management CLI.

NOTE

In a managed domain, the JacORB subsystem is available in full and full-ha profiles
only. In a standalone server, it is available when you use the standalone-full.xml or
standalone-full-ha.xml configurations.

Procedure 10.6. Configure the ORB using the Management Console

1. View the profile settings.
Select Profiles (managed domain) or Profile (standalone server) from the top right of the
management console. If you use a managed domain, select either the full or full-ha profile
from the selection box at the top left.

2. Modify the Initializers Settings
Expand the Subsystems menu at the left, if necessary. Expand the Container sub-menu and
click JacORB.

In the form that appears in the main screen, select the Initializers tab and click the Edit
button.

Enable the security interceptors by setting the value of Security to on.

To enable the ORB for JTS, set the Transaction Interceptors value to on, rather than the
default spec.

Refer to the Need Help? link in the form for detailed explanations about these values. Click
Save when you have finished editing the values.

3. Advanced ORB Configuration
Refer to the other sections of the form for advanced configuration options. Each section includes
a Need Help? link with detailed information about the parameters.

Configure the ORB using the Management CLI

You can configure each aspect of the ORB using the Management CLI. The following commands
configure the initializers to the same values as the procedure above, for the Management Console. This
is the minimum configuration for the ORB to be used with JTS.

These commands are configured for a managed domain using the full profile. If necessary, change the
profile to suit the one you need to configure. If you use a standalone server, omit the /profile=full
portion of the commands.

Example 10.3. Enable the Security Interceptors

CHAPTER 10. JAVA TRANSACTION API (JTA)

241

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4979-459152+%5BSpecified%5D&comment=Title%3A+About+Common+Object+Request+Broker+Architecture+%28CORBA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4979-459152+12+Jun+2013+11%3A12+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

/profile=full/subsystem=jacorb/:write-attribute(name=security,value=on)

Example 10.4. Enable the ORB for JTS

/profile=full/subsystem=jacorb/:write-
attribute(name=transactions,value=on)

Report a bug

10.9. TRANSACTION REFERENCES

10.9.1. JBoss Transactions Errors and Exceptions

For details about exceptions thrown by methods of the UserTransaction class, see the
UserTransaction API specification at
http://download.oracle.com/javaee/1.3/api/javax/transaction/UserTransaction.html.

Report a bug

10.9.2. JTA Clustering Limitations

JTA transactions cannot be clustered across multiple instances of JBoss EAP 6. For this behavior, use
JTS transactions.

To use JTS transactions, you need to configure the ORB: Section 10.8.2, “Configure the ORB for JTS
Transactions”.

Report a bug

10.9.3. JTA Transaction Example

This example illustrates how to begin, commit, and roll back a JTA transaction. You need to adjust the
connection and datasource parameters to suit your environment, and set up two test tables in your
database.

Example 10.5. JTA Transaction example

public class JDBCExample {
 public static void main (String[] args) {
 Context ctx = new InitialContext();
 // Change these two lines to suit your environment.
 DataSource ds = (DataSource)ctx.lookup("jdbc/ExampleDS");
 Connection conn = ds.getConnection("testuser", "testpwd");
 Statement stmt = null; // Non-transactional statement
 Statement stmtx = null; // Transactional statement
 Properties dbProperties = new Properties();

 // Get a UserTransaction
 UserTransaction txn = new
InitialContext().lookup("java:comp/UserTransaction");

Development Guide

242

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4981-459153+%5BSpecified%5D&comment=Title%3A+Configure+the+ORB+for+JTS+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4981-459153+12+Jun+2013+11%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://download.oracle.com/javaee/1.3/api/javax/transaction/UserTransaction.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4299-299121+%5BSpecified%5D&comment=Title%3A+JBoss+Transactions+Errors+and+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4299-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4316-459151+%5BSpecified%5D&comment=Title%3A+JTA+Clustering+Limitations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4316-459151+12+Jun+2013+11%3A11+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

 try {
 stmt = conn.createStatement(); // non-tx statement

 // Check the database connection.
 try {
 stmt.executeUpdate("DROP TABLE test_table");
 stmt.executeUpdate("DROP TABLE test_table2");
 }
 catch (Exception e) {
 // assume not in database.
 }

 try {
 stmt.executeUpdate("CREATE TABLE test_table (a
INTEGER,b INTEGER)");
 stmt.executeUpdate("CREATE TABLE test_table2 (a
INTEGER,b INTEGER)");
 }
 catch (Exception e) {
 }

 try {
 System.out.println("Starting top-level transaction.");

 txn.begin();

 stmtx = conn.createStatement(); // will be a tx-
statement

 // First, we try to roll back changes

 System.out.println("\nAdding entries to table 1.");

 stmtx.executeUpdate("INSERT INTO test_table (a, b)
VALUES (1,2)");

 ResultSet res1 = null;

 System.out.println("\nInspecting table 1.");

 res1 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res1.next()) {
 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }
 System.out.println("\nAdding entries to table 2.");

 stmtx.executeUpdate("INSERT INTO test_table2 (a, b)
VALUES (3,4)");
 res1 = stmtx.executeQuery("SELECT * FROM test_table2");

 System.out.println("\nInspecting table 2.");

 while (res1.next()) {

CHAPTER 10. JAVA TRANSACTION API (JTA)

243

Report a bug

10.9.4. API Documentation for JBoss Transactions JTA

The API documentation for the Transaction subsystem of JBoss EAP 6 is available at the following
location:

 System.out.println("Column 1: "+res1.getInt(1));
 System.out.println("Column 2: "+res1.getInt(2));
 }

 System.out.print("\nNow attempting to rollback
changes.");

 txn.rollback();

 // Next, we try to commit changes
 txn.begin();
 stmtx = conn.createStatement();
 ResultSet res2 = null;

 System.out.println("\nNow checking state of table 1.");

 res2 = stmtx.executeQuery("SELECT * FROM test_table");

 while (res2.next()) {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 System.out.println("\nNow checking state of table 2.");

 stmtx = conn.createStatement();

 res2 = stmtx.executeQuery("SELECT * FROM test_table2");

 while (res2.next()) {
 System.out.println("Column 1: "+res2.getInt(1));
 System.out.println("Column 2: "+res2.getInt(2));
 }

 txn.commit();
 }
 catch (Exception ex) {
 ex.printStackTrace();
 System.exit(0);
 }
 }
 catch (Exception sysEx) {
 sysEx.printStackTrace();
 System.exit(0);
 }
 }
}

Development Guide

244

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4314-155458+%5BSpecified%5D&comment=Title%3A+JTA+Transaction+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4314-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

UserTransaction -
http://download.oracle.com/javaee/1.3/api/javax/transaction/UserTransaction.html

If you use JBoss Development Studio to develop your applications, the API documentation is included in
the Help menu.

Report a bug

CHAPTER 10. JAVA TRANSACTION API (JTA)

245

http://download.oracle.com/javaee/1.3/api/javax/transaction/UserTransaction.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4315-459933+%5BSpecified%5D&comment=Title%3A+API+Documentation+for+JBoss+Transactions+JTA%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4315-459933+14+Jun+2013+11%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 11. HIBERNATE

11.1. ABOUT HIBERNATE CORE

Hibernate Core is an object/relational mapping library. It provides the framework for mapping Java
classes to database tables, allowing applications to avoid direct interaction with the database.

For more information, refer to Section 11.2.2, “Hibernate EntityManager” and the Section 11.2.1, “About
JPA”.

Report a bug

11.2. JAVA PERSISTENCE API (JPA)

11.2.1. About JPA

The Java Persistence API (JPA) is the standard for using persistence in Java projects. Java EE 6
applications use the Java Persistence 2.0 specification, documented here:
http://www.jcp.org/en/jsr/detail?id=317.

Hibernate EntityManager implements the programming interfaces and life-cycle rules defined by the
specification. It provides JBoss EAP 6 with a complete Java Persistence solution.

JBoss EAP 6 is 100% compliant with the Java Persistence 2.0 specification. Hibernate also provides
additional features to the specification.

To get started with JPA and JBoss EAP 6, refer to the bean-validation, greeter, and
kitchensink quickstarts: Section 1.4.2.1, “Access the Quickstarts”.

Report a bug

11.2.2. Hibernate EntityManager

Hibernate EntityManager implements the programming interfaces and life-cycle rules defined by the JPA
2.0 specification. It provides JBoss EAP 6 with a complete Java Persistence solution.

For more information about Java Persistence or Hibernate, refer to the Section 11.2.1, “About JPA” and
Section 11.1, “About Hibernate Core”.

Report a bug

11.2.3. Getting Started

11.2.3.1. Create a JPA project in JBoss Developer Studio

Summary

This example covers the steps required to create a JPA project in JBoss Developer Studio.

Procedure 11.1. Create a JPA project in JBoss Developer Studio

1. In the JBoss Developer Studio window, click File → New → JPA Project.

Development Guide

246

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2252-291984+%5BSpecified%5D&comment=Title%3A+About+Hibernate+Core%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2252-291984+26+Sep+2012+19%3A58+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://www.jcp.org/en/jsr/detail?id=317
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+1089-459934+%5BSpecified%5D&comment=Title%3A+About+JPA%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1089-459934+14+Jun+2013+11%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://jcp.org/en/jsr/detail?id=317
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2246-459935+%5BSpecified%5D&comment=Title%3A+Hibernate+EntityManager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2246-459935+14+Jun+2013+11%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

2. In the project dialog, type the name of the project.

CHAPTER 11. HIBERNATE

247

3. Select a Target runtime from the dropdown box.

4. a. If no Target runtime is available, click Target Runtime.

b. Find the JBoss Community Folder in the list.

c. Select JBoss Enterprise Application Platform 6.x Runtime

d. Click Next.

e. In the Home Directory field, click Browse to set the JBoss EAP source folder as the Home
Directory.

Development Guide

248

f. Click Finish.

5. Click Next.

6. Leave the source folders on build path window as default, and click Next.

7. In the Platform dropdown, ensure Hibernate (JPA 2.x) is selected.

8. Click Finish.

9. If prompted, choose whether you wish to open the JPA perspective window.

Report a bug

11.2.3.2. Create the Persistence Settings File in JBoss Developer Studio

Summary

This topic covers the process for creating the persistence.xml file in a Java project using the JBoss
Developer Studio.

Prerequisites

Section 1.3.1.4, “Start JBoss Developer Studio”

CHAPTER 11. HIBERNATE

249

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5462-432366+%5BSpecified%5D&comment=Title%3A+Create+a+JPA+project+in+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5462-432366+09+Apr+2013+12%3A24+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Procedure 11.2. Create and Configure a new Persistence Settings File

1. Open an EJB 3.x project in the JBoss Developer Studio.

2. Right click the project root directory in the Project Explorer panel.

3. Select New → Other....

4. Select XML File from the XML folder and click Next.

5. Select the ejbModule/META-INF folder as the parent directory.

6. Name the file persistence.xml and click Next.

7. Select Create XML file from an XML schema file and click Next.

8. Select http://java.sun.com/xml/ns/persistence/persistence_2.0.xsd from the
Select XML Catalog entry list and click Next.

9. Click Finish to create the file.

Result:

The persistence.xml has been created in the META-INF/ folder and is ready to be configured.
An example file is available here: Section 11.2.3.3, “Example Persistence Settings File”

Report a bug

11.2.3.3. Example Persistence Settings File

Example 11.1. persistence.xml

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">
 <persistence-unit name="example" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-
source>
 <mapping-file>ormap.xml</mapping-file>
 <jar-file>TestApp.jar</jar-file>
 <class>org.test.Test</class>
 <shared-cache-mode>NONE</shared-cache-mode>
 <validation-mode>CALLBACK</validation-mode>
 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 </properties>
 </persistence-unit>
</persistence>

Development Guide

250

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4430-431891+%5BSpecified%5D&comment=Title%3A+Create+the+Persistence+Settings+File+in+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4430-431891+08+Apr+2013+14%3A16+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

11.2.3.4. Create the Hibernate Configuration File in JBoss Developer Studio

Prerequisites

Section 1.3.1.4, “Start JBoss Developer Studio”

Summary

This topic covers the process for creating the hibernate.cfg.xml file in a Java project using the
JBoss Developer Studio.

Procedure 11.3. Create a New Hibernate Configuration File

1. Open a Java project in the JBoss Developer Studio.

2. Right click the project root directory in the Project Explorer panel.

3. Select New → Other....

4. Select Hibernate Configuration File from the Hibernate folder and click Next.

5. Select the src/ directory and click Next.

6. Configure the following:

Session factory name

Database dialect

Driver class

Connection URL

Username

Password

7. Click Finish to create the file.

Result:

The hibernate.cfg.xml has been created in the src/ folder. An example file is available here:
Section 11.2.3.5, “Example Hibernate Configuration File”.

Report a bug

11.2.3.5. Example Hibernate Configuration File

Example 11.2. hibernate.cfg.xml

<?xml version='1.0' encoding='utf-8'?>

CHAPTER 11. HIBERNATE

251

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4431-299121+%5BSpecified%5D&comment=Title%3A+Example+Persistence+Settings+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4431-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5177-432042+%5BSpecified%5D&comment=Title%3A+Create+the+Hibernate+Configuration+File+in+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5177-432042+08+Apr+2013+16%3A34+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

11.2.4. Configuration

11.2.4.1. Hibernate Configuration Properties

Table 11.1. Properties

Property Name Description

<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <session-factory>

 <!-- Datasource Name -->
 <property name="connection.datasource">ExampleDS</property>

 <!-- SQL dialect -->
 <property
name="dialect">org.hibernate.dialect.H2Dialect</property>

 <!-- Enable Hibernate's automatic session context management --
>
 <property
name="current_session_context_class">thread</property>

 <!-- Disable the second-level cache -->
 <property
name="cache.provider_class">org.hibernate.cache.NoCacheProvider</propert
y>

 <!-- Echo all executed SQL to stdout -->
 <property name="show_sql">true</property>

 <!-- Drop and re-create the database schema on startup -->
 <property name="hbm2ddl.auto">update</property>

 <mapping
resource="org/hibernate/tutorial/domain/Event.hbm.xml"/>

 </session-factory>

</hibernate-configuration>

Development Guide

252

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4413-299121+%5BSpecified%5D&comment=Title%3A+Example+Hibernate+Configuration+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4413-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

hibernate.dialect The classname of a Hibernate
org.hibernate.dialect.Dialect. Allows
Hibernate to generate SQL optimized for a particular
relational database.

In most cases Hibernate will be able to choose the
correct org.hibernate.dialect.Dialect
implementation, based on the JDBC metadata
returned by the JDBC driver.

hibernate.show_sql Boolean. Writes all SQL statements to console. This
is an alternative to setting the log category
org.hibernate.SQL to debug.

hibernate.format_sql Boolean. Pretty print the SQL in the log and console.

hibernate.default_schema Qualify unqualified table names with the given
schema/tablespace in generated SQL.

hibernate.default_catalog Qualifies unqualified table names with the given
catalog in generated SQL.

hibernate.session_factory_name The org.hibernate.SessionFactory will
be automatically bound to this name in JNDI after it
has been created. For example,
jndi/composite/name.

hibernate.max_fetch_depth Sets a maximum "depth" for the outer join fetch tree
for single-ended associations (one-to-one, many-to-
one). A 0 disables default outer join fetching. The
recommended value is between 0 and 3.

hibernate.default_batch_fetch_size Sets a default size for Hibernate batch fetching of
associations. The recommended values are 4, 8,
and 16.

hibernate.default_entity_mode Sets a default mode for entity representation for all
sessions opened from this SessionFactory.
Values include: dynamic-map, dom4j, pojo.

hibernate.order_updates Boolean. Forces Hibernate to order SQL updates by
the primary key value of the items being updated.
This will result in fewer transaction deadlocks in
highly concurrent systems.

hibernate.generate_statistics Boolean. If enabled, Hibernate will collect statistics
useful for performance tuning.

hibernate.use_identifier_rollback Boolean. If enabled, generated identifier properties
will be reset to default values when objects are
deleted.

Property Name Description

CHAPTER 11. HIBERNATE

253

hibernate.use_sql_comments Boolean. If turned on, Hibernate will generate
comments inside the SQL, for easier debugging.
Default value is false.

hibernate.id.new_generator_mappings Boolean. This property is relevant when using
@GeneratedValue. It indicates whether or not the
new IdentifierGenerator implementations
are used for
javax.persistence.GenerationType.AUT
O,
javax.persistence.GenerationType.TAB
LE and
javax.persistence.GenerationType.SEQ
UENCE. Default value is false to keep backward
compatibility.

Property Name Description

IMPORTANT

It is recommended that all new projects that use @GeneratedValue also set
hibernate.id.new_generator_mappings=true. This is because the new
generators are more efficient and closer to the JPA 2 specification semantic.

However, they are not backward compatible with existing databases (if a sequence or a
table is used for id generation).

Report a bug

11.2.4.2. Hibernate JDBC and Connection Properties

Table 11.2. Properties

Property Name Description

hibernate.jdbc.fetch_size A non-zero value that determines the JDBC fetch
size (calls Statement.setFetchSize()).

hibernate.jdbc.batch_size A non-zero value enables use of JDBC2 batch
updates by Hibernate. The recommended values are
between 5 and 30.

hibernate.jdbc.batch_versioned_data Boolean. Set this property to true if the JDBC driver
returns correct row counts from executeBatch().
Hibernate will then use batched DML for
automatically versioned data. Default value is to
false.

hibernate.jdbc.factory_class Select a custom
org.hibernate.jdbc.Batcher. Most
applications will not need this configuration property.

Development Guide

254

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7447-369030+%5BSpecified%5D&comment=Title%3A+Hibernate+Configuration+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7447-369030+23+Jan+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

hibernate.jdbc.use_scrollable_resultset Boolean. Enables use of JDBC2 scrollable resultsets
by Hibernate. This property is only necessary when
using user-supplied JDBC connections. Hibernate
uses connection metadata otherwise.

hibernate.jdbc.use_streams_for_binary Boolean. This is a system-level property. Use
streams when writing/reading binary or
serializable types to/from JDBC.

hibernate.jdbc.use_get_generated_keys Boolean. Enables use of JDBC3
PreparedStatement.getGeneratedKeys()
to retrieve natively generated keys after insert.
Requires JDBC3+ driver and JRE1.4+. Set to false if
JDBC driver has problems with the Hibernate
identifier generators. By default, it tries to determine
the driver capabilities using connection metadata.

hibernate.connection.provider_class The classname of a custom
org.hibernate.connection.ConnectionP
rovider which provides JDBC connections to
Hibernate.

hibernate.connection.isolation Sets the JDBC transaction isolation level. Check
java.sql.Connection for meaningful values,
but note that most databases do not support all
isolation levels and some define additional, non-
standard isolations. Standard values are 1, 2, 4,
8.

hibernate.connection.autocommit Boolean. This property is not recommended for use.
Enables autocommit for JDBC pooled connections.

hibernate.connection.release_mode Specifies when Hibernate should release JDBC
connections. By default, a JDBC connection is held
until the session is explicitly closed or disconnected.
The default value auto will choose
after_statement for the JTA and CMT
transaction strategies, and after_transaction
for the JDBC transaction strategy.

Available values are auto (default) | on_close |
after_transaction | after_statement.

This setting only affects Sessions returned from
SessionFactory.openSession. For
Sessions obtained through
SessionFactory.getCurrentSession, the
CurrentSessionContext implementation
configured for use controls the connection release
mode for those Sessions.

hibernate.connection.<propertyName> Pass the JDBC property <propertyName> to
DriverManager.getConnection().

Property Name Description

CHAPTER 11. HIBERNATE

255

hibernate.jndi.<propertyName> Pass the property <propertyName> to the JNDI
InitialContextFactory.

Property Name Description

Report a bug

11.2.4.3. Hibernate Cache Properties

Table 11.3. Properties

Property Name Description

hibernate.cache.provider_class The classname of a custom CacheProvider.

hibernate.cache.use_minimal_puts Boolean. Optimizes second-level cache operation to
minimize writes, at the cost of more frequent reads.
This setting is most useful for clustered caches and,
in Hibernate3, is enabled by default for clustered
cache implementations.

hibernate.cache.use_query_cache Boolean. Enables the query cache. Individual queries
still have to be set cacheable.

hibernate.cache.use_second_level_cac
he

Boolean. Used to completely disable the second level
cache, which is enabled by default for classes that
specify a <cache> mapping.

hibernate.cache.query_cache_factory The classname of a custom QueryCache interface.
The default value is the built-in
StandardQueryCache.

hibernate.cache.region_prefix A prefix to use for second-level cache region names.

hibernate.cache.use_structured_entri
es

Boolean. Forces Hibernate to store data in the
second-level cache in a more human-friendly format.

hibernate.cache.default_cache_concur
rency_strategy

Setting used to give the name of the default
org.hibernate.annotations.CacheConcu
rrencyStrategy to use when either
@Cacheable or @Cache is used.
@Cache(strategy="..") is used to override
this default.

Report a bug

11.2.4.4. Hibernate Transaction Properties

Table 11.4. Properties

Development Guide

256

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7448-369030+%5BSpecified%5D&comment=Title%3A+Hibernate+JDBC+and+Connection+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7448-369030+23+Jan+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7449-369030+%5BSpecified%5D&comment=Title%3A+Hibernate+Cache+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7449-369030+23+Jan+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Property Name Description

hibernate.transaction.factory_class The classname of a TransactionFactory to
use with Hibernate Transaction API. Defaults to
JDBCTransactionFactory).

jta.UserTransaction A JNDI name used by
JTATransactionFactory to obtain the JTA
UserTransaction from the application server.

hibernate.transaction.manager_lookup
_class

The classname of a
TransactionManagerLookup. It is required
when JVM-level caching is enabled or when using
hilo generator in a JTA environment.

hibernate.transaction.flush_before_c
ompletion

Boolean. If enabled, the session will be automatically
flushed during the before completion phase of the
transaction. Built-in and automatic session context
management is preferred.

hibernate.transaction.auto_close_ses
sion

Boolean. If enabled, the session will be automatically
closed during the after completion phase of the
transaction. Built-in and automatic session context
management is preferred.

Report a bug

11.2.4.5. Miscellaneous Hibernate Properties

Table 11.5. Properties

Property Name Description

hibernate.current_session_context_cl
ass

Supply a custom strategy for the scoping of the
"current" Session. Values include jta | thread |
managed | custom.Class.

hibernate.query.factory_class Chooses the HQL parser implementation:
org.hibernate.hql.internal.ast.ASTQu
eryTranslatorFactory or
org.hibernate.hql.internal.classic.C
lassicQueryTranslatorFactory.

hibernate.query.substitutions Used to map from tokens in Hibernate queries to
SQL tokens (tokens might be function or literal
names). For example,
hqlLiteral=SQL_LITERAL,
hqlFunction=SQLFUNC.

CHAPTER 11. HIBERNATE

257

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7450-369030+%5BSpecified%5D&comment=Title%3A+Hibernate+Transaction+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7450-369030+23+Jan+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

hibernate.hbm2ddl.auto Automatically validates or exports schema DDL to
the database when the SessionFactory is
created. With create-drop, the database schema
will be dropped when the SessionFactory is
closed explicitly. Property value options are
validate | update | create | create-drop

hibernate.hbm2ddl.import_files Comma-separated names of the optional files
containing SQL DML statements executed during the
SessionFactory creation. This is useful for
testing or demonstrating. For example, by adding
INSERT statements, the database can be populated
with a minimal set of data when it is deployed. An
example value is /humans.sql,/dogs.sql.

File order matters, as the statements of a given file
are executed before the statements of the following
files. These statements are only executed if the
schema is created (i.e. if
hibernate.hbm2ddl.auto is set to create or
create-drop).

hibernate.hbm2ddl.import_files_sql_e
xtractor

The classname of a custom
ImportSqlCommandExtractor. Defaults to the
built-in SingleLineSqlCommandExtractor.
This is useful for implementing a dedicated parser
that extracts a single SQL statement from each
import file. Hibernate also provides
MultipleLinesSqlCommandExtractor,
which supports instructions/comments and quoted
strings spread over multiple lines (mandatory
semicolon at the end of each statement).

hibernate.bytecode.use_reflection_op
timizer

Boolean. This is a system-level property, which
cannot be set in the hibernate.cfg.xml file.
Enables the use of bytecode manipulation instead of
runtime reflection. Reflection can sometimes be
useful when troubleshooting. Hibernate always
requires either CGLIB or javassist even if the
optimizer is turned off.

hibernate.bytecode.provider Both javassist or cglib can be used as byte
manipulation engines. The default is javassist.
Property value is either javassist or cglib

Property Name Description

Report a bug

11.2.4.6. Hibernate SQL Dialects

Development Guide

258

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7451-369030+%5BSpecified%5D&comment=Title%3A+Miscellaneous+Hibernate+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7451-369030+23+Jan+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

IMPORTANT

The hibernate.dialect property should be set to the correct
org.hibernate.dialect.Dialect subclass for the application database. If a dialect
is specified, Hibernate will use sensible defaults for some of the other properties. This
means that they do not have to be specified manually.

Table 11.6. SQL Dialects (hibernate.dialect)

RDBMS Dialect

DB2 org.hibernate.dialect.DB2Dialect

DB2 AS/400 org.hibernate.dialect.DB2400Dialect

DB2 OS390 org.hibernate.dialect.DB2390Dialect

PostgreSQL org.hibernate.dialect.PostgreSQLDial
ect

MySQL5 org.hibernate.dialect.MySQL5Dialect

MySQL5 with InnoDB org.hibernate.dialect.MySQL5InnoDBDi
alect

MySQL with MyISAM org.hibernate.dialect.MySQLMyISAMDia
lect

Oracle (any version) org.hibernate.dialect.OracleDialect

Oracle 9i org.hibernate.dialect.Oracle9iDialec
t

Oracle 10g org.hibernate.dialect.Oracle10gDiale
ct

Oracle 11g org.hibernate.dialect.Oracle10gDiale
ct

Sybase org.hibernate.dialect.SybaseASE15Dia
lect

Sybase Anywhere org.hibernate.dialect.SybaseAnywhere
Dialect

Microsoft SQL Server 2000 org.hibernate.dialect.SQLServerDiale
ct

CHAPTER 11. HIBERNATE

259

Microsoft SQL Server 2005 org.hibernate.dialect.SQLServer2005D
ialect

Microsoft SQL Server 2008 org.hibernate.dialect.SQLServer2008D
ialect

SAP DB org.hibernate.dialect.SAPDBDialect

Informix org.hibernate.dialect.InformixDialec
t

HypersonicSQL org.hibernate.dialect.HSQLDialect

H2 Database org.hibernate.dialect.H2Dialect

Ingres org.hibernate.dialect.IngresDialect

Progress org.hibernate.dialect.ProgressDialec
t

Mckoi SQL org.hibernate.dialect.MckoiDialect

Interbase org.hibernate.dialect.InterbaseDiale
ct

Pointbase org.hibernate.dialect.PointbaseDiale
ct

FrontBase org.hibernate.dialect.FrontbaseDiale
ct

Firebird org.hibernate.dialect.FirebirdDialec
t

RDBMS Dialect

Report a bug

11.2.5. Second-Level Caches

11.2.5.1. About Second-Level Caches

A second-level cache is a local data store that holds information persisted outside the application
session. The cache is managed by the persistence provider, improving run-time by keeping the data
separate from the application.

JBoss EAP 6 supports caching for the following purposes:

Web Session Clustering

Development Guide

260

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7452-369030+%5BSpecified%5D&comment=Title%3A+Hibernate+SQL+Dialects%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7452-369030+23+Jan+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Stateful Session Bean Clustering

SSO Clustering

Hibernate Second Level Cache

Each cache container defines a "repl" and a "dist" cache. These caches should not be used directly by
user applications.

Report a bug

11.2.5.2. Configure a Second Level Cache for Hibernate

This topic covers the configuration requirements for enabling Infinispan to act as the second level cache
for Hibernate.

Procedure 11.4. Create and Edit the hibernate.cfg.xml file

1. Create the hibernate.cfg.xml file
Create the hibernate.cfg.xml in the deployment's classpath. For specifics, refer to
Section 11.2.3.4, “Create the Hibernate Configuration File in JBoss Developer Studio” .

2. Add these lines of XML to the hibernate.cfg.xml file in your application. The XML needs to
be inside the <session-factory> tags:

3. Add one of the following to the <session-factory> section of the hibernate.cfg.xml file:

If the Infinispan CacheManager is bound to JNDI:

If the Infinispan CacheManager is standalone:

Result

Infinispan is configured as the Second Level Cache for Hibernate.

Report a bug

11.3. HIBERNATE ANNOTATIONS

<property
name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>

<property name="hibernate.cache.region.factory_class">
 org.hibernate.cache.infinispan.JndiInfinispanRegionFactory
</property>
<property name="hibernate.cache.infinispan.cachemanager">
 java:CacheManager
</property>

<property name="hibernate.cache.region.factory_class">
 org.hibernate.cache.infinispan.InfinispanRegionFactory
</property>

CHAPTER 11. HIBERNATE

261

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+1411-459936+%5BSpecified%5D&comment=Title%3A+About+Second-Level+Caches%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1411-459936+14+Jun+2013+11%3A49+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4362-433111+%5BSpecified%5D&comment=Title%3A+Configure+a+Second+Level+Cache+for+Hibernate%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4362-433111+11+Apr+2013+15%3A52+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

11.3.1. Hibernate Annotations

Table 11.7. Hibernate Defined Annotations

Annotation Description

AccessType Property Access type.

Any Defines a ToOne association pointing to several
entity types. Matching the according entity type is
done through a metadata discriminator column. This
kind of mapping should be only marginal.

AnyMetaDef Defines @Any and @manyToAny metadata.

AnyMedaDefs Defines @Any and @ManyToAny set of metadata.
Can be defined at the entity level or the package
level.

BatchSize Batch size for SQL loading.

Cache Add caching strategy to a root entity or a collection.

Cascade Apply a cascade strategy on an association.

Check Arbitrary SQL check constraints which can be defined
at the class, property or collection level.

Columns Support an array of columns. Useful for component
user type mappings.

ColumnTransformer Custom SQL expression used to read the value from
and write a value to a column. Use for direct object
loading/saving as well as queries. The write
expression must contain exactly one '?' placeholder
for the value.

ColumnTransformers Plural annotation for @ColumnTransformer. Useful
when more than one column is using this behavior.

DiscriminatorFormula Discriminator formula to be placed at the root entity.

DiscriminatorOptions Optional annotation to express Hibernate specific
discriminator properties.

Entity Extends Entity with Hibernate features.

Fetch Defines the fetching strategy used for the given
association.

Development Guide

262

FetchProfile Defines the fetching strategy profile.

FetchProfiles Plural annotation for @FetchProfile.

Filter Adds filters to an entity or a target entity of a
collection.

FilterDef Filter definition.

FilterDefs Array of filter definitions.

FilterJoinTable Adds filters to a join table collection.

FilterJoinTables Adds multiple @FilterJoinTable to a collection.

Filters Adds multiple @Filters.

Formula To be used as a replacement for @Column in most
places. The formula has to be a valid SQL fragment.

Generated This annotated property is generated by the
database.

GenericGenerator Generator annotation describing any kind of
Hibernate generator in a detyped manner.

GenericGenerators Array of generic generator definitions.

Immutable Mark an Entity or a Collection as immutable. No
annotation means the element is mutable.

An immutable entity may not be updated by the
application. Updates to an immutable entity will be
ignored, but no exception is thrown.

@Immutable placed on a collection makes the
collection immutable, meaning additions and
deletions to and from the collection are not allowed. A
HibernateException is thrown in this case.

Index Defines a database index.

JoinFormula To be used as a replacement for @JoinColumn in
most places. The formula has to be a valid SQL
fragment.

LazyCollection Defines the lazy status of a collection.

Annotation Description

CHAPTER 11. HIBERNATE

263

LazyToOne Defines the lazy status of a ToOne association (i.e.
OneToOne or ManyToOne).

Loader Overwrites Hibernate default FIND method.

ManyToAny Defines a ToMany association pointing to different
entity types. Matching the according entity type is
done through a metadata discriminator column. This
kind of mapping should be only marginal.

MapKeyType Defines the type of key of a persistent map.

MetaValue Represents a discriminator value associated to a
given entity type.

NamedNativeQueries Extends NamedNativeQueries to hold Hibernate
NamedNativeQuery objects.

NamedNativeQuery Extends NamedNativeQuery with Hibernate features.

NamedQueries Extends NamedQueries to hold Hibernate
NamedQuery objects.

NamedQuery Extends NamedQuery with Hibernate features.

NaturalId Specifies that a property is part of the natural id of the
entity.

NotFound Action to do when an element is not found on an
association.

OnDelete Strategy to use on collections, arrays and on joined
subclasses delete. OnDelete of secondary tables is
currently not supported.

OptimisticLock Whether or not a change of the annotated property
will trigger an entity version increment. If the
annotation is not present, the property is involved in
the optimistic lock strategy (default).

OptimisticLocking Used to define the style of optimistic locking to be
applied to an entity. In a hierarchy, only valid on the
root entity.

OrderBy Order a collection using SQL ordering (not HQL
ordering).

Annotation Description

Development Guide

264

ParamDef A parameter definition.

Parameter Key/value pattern.

Parent Reference the property as a pointer back to the
owner (generally the owning entity).

Persister Specify a custom persister.

Polymorphism Used to define the type of polymorphism Hibernate
will apply to entity hierarchies.

Proxy Lazy and proxy configuration of a particular class.

RowId Support for ROWID mapping feature of Hibernate.

Sort Collection sort (Java level sorting).

Source Optional annotation in conjunction with Version and
timestamp version properties. The annotation value
decides where the timestamp is generated.

SQLDelete Overwrites the Hibernate default DELETE method.

SQLDeleteAll Overwrites the Hibernate default DELETE ALL
method.

SQLInsert Overwrites the Hibernate default INSERT INTO
method.

SQLUpdate Overwrites the Hibernate default UPDATE method.

Subselect Maps an immutable and read-only entity to a given
SQL subselect expression.

Synchronize Ensures that auto-flush happens correctly and that
queries against the derived entity do not return stale
data. Mostly used with Subselect.

Table Complementary information to a table either primary
or secondary.

Tables Plural annotation of Table.

Target Defines an explicit target, avoiding reflection and
generics resolving.

Annotation Description

CHAPTER 11. HIBERNATE

265

Tuplizer Defines a tuplizer for an entity or a component.

Tuplizers Defines a set of tuplizers for an entity or a
component.

Type Hibernate Type.

TypeDef Hibernate Type definition.

TypeDefs Hibernate Type definition array.

Where Where clause to add to the element Entity or target
entity of a collection. The clause is written in SQL.

WhereJoinTable Where clause to add to the collection join table. The
clause is written in SQL.

Annotation Description

Report a bug

11.4. HIBERNATE QUERY LANGUAGE

11.4.1. About Hibernate Query Language

The Hibernate Query Language (HQL) and Java Persistence Query Language (JPQL) are both object
model focused query languages similar in nature to SQL. HQL is a superset of JPQL. A HQL query is
not always a valid JPQL query, but a JPQL query is always a valid HQL query.

Both HQL and JPQL are non-type-safe ways to perform query operations. Criteria queries offer a type-
safe approach to querying.

Report a bug

11.4.2. HQL Statements

HQL allows SELECT, UPDATE, DELETE, and INSERT statements. The HQL INSERT statement has no
equivalent in JPQL.

IMPORTANT

Care should be taken as to when an UPDATE or DELETE statement is executed.

Table 11.8. HQL Statements

Statement Description

Development Guide

266

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7345-369030+%5BSpecified%5D&comment=Title%3A+Hibernate+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7345-369030+23+Jan+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11474-272032+%5BSpecified%5D&comment=Title%3A+About+Hibernate+Query+Language%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11474-272032+18+Sep+2012+13%3A58+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

SELECT The BNF for SELECT statements in HQL is:

The simplest possible HQL SELECT statement is of
the form:

UDPATE The BNF for UPDATE statement in HQL is the same
as it is in JPQL

DELETE The BNF for DELETE statements in HQL is the same
as it is in JPQL

Statement Description

Report a bug

11.4.3. About the INSERT Statement

HQL adds the ability to define INSERT statements. There is no JPQL equivalent to this. The BNF for an
HQL INSERT statement is:

The attribute_list is analogous to the column specification in the SQL INSERT statement.
For entities involved in mapped inheritance, only attributes directly defined on the named entity can be
used in the attribute_list. Superclass properties are not allowed and subclass properties do not
make sense. In other words, INSERT statements are inherently non-polymorphic.

select_statement :: =
 [select_clause]
 from_clause
 [where_clause]
 [groupby_clause]
 [having_clause]
 [orderby_clause]

from com.acme.Cat

insert_statement ::= insert_clause select_statement

insert_clause ::= INSERT INTO entity_name (attribute_list)

attribute_list ::= state_field[, state_field]*

CHAPTER 11. HIBERNATE

267

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11476-292105+%5BSpecified%5D&comment=Title%3A+HQL+Statements%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11476-292105+27+Sep+2012+16%3A37+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

WARNING

select_statement can be any valid HQL select query, with the caveat that the
return types must match the types expected by the insert. Currently, this is checked
during query compilation rather than allowing the check to relegate to the database.
This may cause problems between Hibernate Types which are equivalent as
opposed to equal. For example, this might cause lead to issues with mismatches
between an attribute mapped as a org.hibernate.type.DateType and an
attribute defined as a org.hibernate.type.TimestampType, even though the
database might not make a distinction or might be able to handle the conversion.

For the id attribute, the insert statement gives you two options. You can either explicitly specify the id
property in the attribute_list, in which case its value is taken from the corresponding select
expression, or omit it from the attribute_list in which case a generated value is used. This latter
option is only available when using id generators that operate "in the database"; attempting to use this
option with any "in memory" type generators will cause an exception during parsing.

For optimistic locking attributes, the insert statement again gives you two options. You can either specify
the attribute in the attribute_list in which case its value is taken from the corresponding select
expressions, or omit it from the attribute_list in which case the seed value defined by the
corresponding org.hibernate.type.VersionType is used.

Example 11.3. Example INSERT Query Statements

Report a bug

11.4.4. About the FROM Clause

The FROM clause is responsible defining the scope of object model types available to the rest of the
query. It also is responsible for defining all the "identification variables" available to the rest of the query.

Report a bug

11.4.5. About the WITH Clause

HQL defines a WITH clause to qualify the join conditions. This is specific to HQL; JPQL does not define
this feature.

Example 11.4. with-clause Join Example



String hqlInsert = "insert into DelinquentAccount (id, name) select
c.id, c.name from Customer c where ...";
int createdEntities = s.createQuery(hqlInsert).executeUpdate();

select distinct c
from Customer c
 left join c.orders o
 with o.value > 5000.00

Development Guide

268

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11618-292524+%5BSpecified%5D&comment=Title%3A+About+the+INSERT+Statement%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11618-292524+28+Sep+2012+14%3A06+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11478-292349+%5BSpecified%5D&comment=Title%3A+About+the+FROM+Clause%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11478-292349+28+Sep+2012+11%3A56+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The important distinction is that in the generated SQL the conditions of the with clause are made part
of the on clause in the generated SQL as opposed to the other queries in this section where the
HQL/JPQL conditions are made part of the where clause in the generated SQL. The distinction in this
specific example is probably not that significant. The with clause is sometimes necessary in more
complicated queries.

Explicit joins may reference association or component/embedded attributes. In the case of
component/embedded attributes, the join is simply logical and does not correlate to a physical (SQL) join.

Report a bug

11.4.6. About Bulk Update, Insert and Delete

Hibernate allows the use of Data Manipulation Language (DML) to bulk insert, update and delete data
directly in the mapped database through the Hibernate Query Language.

WARNING

Using DML may violate the object/relational mapping and may affect object state.
Object state stays in memory and by using DML, the state of an in-memory object is
not affected depending on the operation that is performed on the underlying
database. In-memory data must be used with care if DML is used.

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROM?
EntityName (WHERE where_conditions)?.

NOTE

The FROM keyword and the WHERE Clause are optional.

The result of execution of a UPDATE or DELETE statement is the number of rows that are actually
affected (updated or deleted).

Example 11.5. Example of a Bulk Update Statement



Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlUpdate = "update Company set name = :newName where name =
:oldName";
int updatedEntities = s.createQuery(hqlUpdate)
 .setString("newName", newName)
 .setString("oldName", oldName)
 .executeUpdate();
tx.commit();
session.close();

CHAPTER 11. HIBERNATE

269

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11736-292524+%5BSpecified%5D&comment=Title%3A+About+the+WITH+Clause%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11736-292524+28+Sep+2012+14%3A06+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Example 11.6. Example of a Bulk Delete statement

The int value returned by the Query.executeUpdate() method indicates the number of entities
within the database that were affected by the operation.

Internally, the database might use multiple SQL statements to execute the operation in response to a
DML Update or Delete request. This might be because of relationships that exist between tables and the
join tables that may need to be updated or deleted.

For example, issuing a delete statement (as in the example above) may actually result in deletes being
executed against not just the Company table for companies that are named with oldName, but also
against joined tables. Thus, a Company table in a BiDirectional ManyToMany relationship with an
Employee table, would lose rows from the corresponding join table Company_Employee as a result of
the successful execution of the previous example.

The int deletedEntries value above will contain a count of all the rows affected due to this
operation, including the rows in the join tables.

The pseudo-syntax for INSERT statements is: INSERT INTO EntityName properties_list
select_statement.

NOTE

Only the INSERT INTO ... SELECT ... form is supported; not the INSERT INTO ...
VALUES ... form.

Example 11.7. Example of a Bulk Insert statement

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlDelete = "delete Company where name = :oldName";
int deletedEntities = s.createQuery(hqlDelete)
 .setString("oldName", oldName)
 .executeUpdate();
tx.commit();
session.close();

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlInsert = "insert into Account (id, name) select c.id, c.name
from Customer c where ...";
int createdEntities = s.createQuery(hqlInsert)
 .executeUpdate();
tx.commit();
session.close();

Development Guide

270

If you do not supply the value for the id attribute via the SELECT statement, an ID is generated for you,
as long as the underlying database supports auto-generated keys. The return value of this bulk insert
operation is the number of entries actually created in the database.

Report a bug

11.4.7. About Collection Member References

References to collection-valued associations actually refer to the values of that collection.

Example 11.8. Collection References Example

In the example, the identification variable o actually refers to the object model type Order which is the
type of the elements of the Customer#orders association.

The example also shows the alternate syntax for specifying collection association joins using the IN
syntax. Both forms are equivalent. Which form an application chooses to use is simply a matter of taste.

Report a bug

11.4.8. About Qualified Path Expressions

It was previously stated that collection-valued associations actually refer to the values of that collection.
Based on the type of collection, there are also available a set of explicit qualification expressions.

Table 11.9. Qualified Path Expressions

Expression Description

VALUE Refers to the collection value. Same as not specifying
a qualifier. Useful to explicitly show intent. Valid for
any type of collection-valued reference.

select c
from Customer c
 join c.orders o
 join o.lineItems l
 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

// alternate syntax
select c
from Customer c,
 in(c.orders) o,
 in(o.lineItems) l
 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

CHAPTER 11. HIBERNATE

271

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+14122-429130+%5BSpecified%5D&comment=Title%3A+About+Bulk+Update%2C+Insert+and+Delete%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14122-429130+28+Mar+2013+17%3A13+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11737-292524+%5BSpecified%5D&comment=Title%3A+About+Collection+Member+References%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11737-292524+28+Sep+2012+14%3A06+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

INDEX According to HQL rules, this is valid for both Maps
and Lists which specify a
javax.persistence.OrderColumn
annotation to refer to the Map key or the List position
(aka the OrderColumn value). JPQL however,
reserves this for use in the List case and adds KEY
for the MAP case. Applications interested in JPA
provider portability should be aware of this distinction.

KEY Valid only for Maps. Refers to the map's key. If the
key is itself an entity, can be further navigated.

ENTRY Only valid only for Maps. Refers to the Map's logical
java.util.Map.Entry tuple (the combination of
its key and value). ENTRY is only valid as a terminal
path and only valid in the select clause.

Expression Description

Example 11.9. Qualified Collection References Example

// Product.images is a Map<String,String> : key = a name, value = file
path

// select all the image file paths (the map value) for Product#123
select i
from Product p
 join p.images i
where p.id = 123

// same as above
select value(i)
from Product p
 join p.images i
where p.id = 123

// select all the image names (the map key) for Product#123
select key(i)
from Product p
 join p.images i
where p.id = 123

// select all the image names and file paths (the 'Map.Entry') for
Product#123
select entry(i)
from Product p
 join p.images i
where p.id = 123

// total the value of the initial line items for all orders for a
customer
select sum(li.amount)
from Customer c
 join c.orders o

Development Guide

272

Report a bug

11.4.9. About Scalar Functions

HQL defines some standard functions that are available regardless of the underlying database in use.
HQL can also understand additional functions defined by the Dialect as well as the application.

Report a bug

11.4.10. HQL Standardized Functions

The following functions are available in HQL regardless of the underlying database in use.

Table 11.10. HQL Standardized Funtions

Function Description

BIT_LENGTH Returns the length of binary data.

CAST Performs a SQL cast. The cast target should name
the Hibernate mapping type to use. See the chapter
on data types for more information.

EXTRACT Performs a SQL extraction on datetime values. An
extraction extracts parts of the datetime (the year, for
example). See the abbreviated forms below.

SECOND Abbreviated extract form for extracting the second.

MINUTE Abbreviated extract form for extracting the minute.

HOUR Abbreviated extract form for extracting the hour.

DAY Abbreviated extract form for extracting the day.

MONTH Abbreviated extract form for extracting the month.

YEAR Abbreviated extract form for extracting the year.

STR Abbreviated form for casting a value as character
data.

Application developers can also supply their own set of functions. This would usually represent either
custom SQL functions or aliases for snippets of SQL. Such function declarations are made by using the
addSqlFunction method of org.hibernate.cfg.Configuration

 join o.lineItems li
where c.id = 123
 and index(li) = 1

CHAPTER 11. HIBERNATE

273

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11738-432954+%5BSpecified%5D&comment=Title%3A+About+Qualified+Path+Expressions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11738-432954+11+Apr+2013+10%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11780-292524+%5BSpecified%5D&comment=Title%3A+About+Scalar+Functions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11780-292524+28+Sep+2012+14%3A06+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

11.4.11. About the Concatenation Operation

HQL defines a concatenation operator in addition to supporting the concatenation (CONCAT) function.
This is not defined by JPQL, so portable applications should avoid using it. The concatenation operator
is taken from the SQL concatenation operator - ||.

Example 11.10. Concatenation Operation Example

Report a bug

11.4.12. About Dynamic Instantiation

There is a particular expression type that is only valid in the select clause. Hibernate calls this "dynamic
instantiation". JPQL supports some of this feature and calls it a "constructor expression".

Example 11.11. Dynamic Instantiation Example - Constructor

So rather than dealing with the Object[] here we are wrapping the values in a type-safe java object that
will be returned as the results of the query. The class reference must be fully qualified and it must have a
matching constructor.

The class here need not be mapped. If it does represent an entity, the resulting instances are returned in
the NEW state (not managed!).

This is the part JPQL supports as well. HQL supports additional "dynamic instantiation" features. First,
the query can specify to return a List rather than an Object[] for scalar results:

Example 11.12. Dynamic Instantiation Example - List

The results from this query will be a List<List> as opposed to a List<Object[]>

HQL also supports wrapping the scalar results in a Map.

select 'Mr. ' || c.name.first || ' ' || c.name.last
from Customer c
where c.gender = Gender.MALE

select new Family(mother, mate, offspr)
from DomesticCat as mother
 join mother.mate as mate
 left join mother.kittens as offspr

select new list(mother, offspr, mate.name)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

Development Guide

274

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11479-292385+%5BSpecified%5D&comment=Title%3A+HQL+Standardized+Functions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11479-292385+28+Sep+2012+12%3A05+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11783-292524+%5BSpecified%5D&comment=Title%3A+About+the+Concatenation+Operation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11783-292524+28+Sep+2012+14%3A06+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Example 11.13. Dynamic Instantiation Example - Map

The results from this query will be a List<Map<String,Object>> as opposed to a List<Object[]> . The keys
of the map are defined by the aliases given to the select expressions.

Report a bug

11.4.13. About HQL Predicates

Predicates form the basis of the where clause, the having clause and searched case expressions. They
are expressions which resolve to a truth value, generally TRUE or FALSE, although boolean comparisons
involving NULLs generally resolve to UNKNOWN.

HQL Predicates

Nullness Predicate

Check a value for nullness. Can be applied to basic attribute references, entity references and
parameters. HQL additionally allows it to be applied to component/embeddable types.

Example 11.14. Nullness Checking Examples

Like Predicate

Performs a like comparison on string values. The syntax is:

The semantics follow that of the SQL like expression. The pattern_value is the pattern to attempt
to match in the string_expression. Just like SQL, pattern_value can use "_" and "%" as

select new map(mother as mother, offspr as offspr, mate as mate)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

select new map(max(c.bodyWeight) as max, min(c.bodyWeight) as min,
count(*) as n)
from Cat cxt"/>

// select everyone with an associated address
select p
from Person p
where p.address is not null

// select everyone without an associated address
select p
from Person p
where p.address is null

like_expression ::=
 string_expression
 [NOT] LIKE pattern_value
 [ESCAPE escape_character]

CHAPTER 11. HIBERNATE

275

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11480-292395+%5BSpecified%5D&comment=Title%3A+About+Dynamic+Instantiation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11480-292395+28+Sep+2012+12%3A11+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

wildcards. The meanings are the same. "_" matches any single character. "%" matches any number
of characters.

The optional escape_character is used to specify an escape character used to escape the special
meaning of "_" and "%" in the pattern_value. This is useful when needing to search on patterns
including either "_" or "%".

Example 11.15. Like Predicate Examples

Between Predicate

Analogous to the SQL BETWEEN expression. Perform a evaluation that a value is within the range of 2
other values. All the operands should have comparable types.

Example 11.16. Between Predicate Examples

Report a bug

select p
from Person p
where p.name like '%Schmidt'

select p
from Person p
where p.name not like 'Jingleheimmer%'

// find any with name starting with "sp_"
select sp
from StoredProcedureMetadata sp
where sp.name like 'sp|_%' escape '|'

select p
from Customer c
 join c.paymentHistory p
where c.id = 123
 and index(p) between 0 and 9

select c
from Customer c
where c.president.dateOfBirth
 between {d '1945-01-01'}
 and {d '1965-01-01'}

select o
from Order o
where o.total between 500 and 5000

select p
from Person p
where p.name between 'A' and 'E'

Development Guide

276

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11481-292397+%5BSpecified%5D&comment=Title%3A+About+HQL+Predicates%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11481-292397+28+Sep+2012+12%3A12+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

11.4.14. About Relational Comparisons

Comparisons involve one of the comparison operators - =, >, >=, <, <=, <>]>. HQL also defines <!
[CDATA[!= as a comparison operator synonymous with <> . The operands should be of the same type.

Example 11.17. Relational Comparison Examples

Comparisons can also involve subquery qualifiers - ALL, ANY, SOME. SOME and ANY are synonymous.

The ALL qualifier resolves to true if the comparison is true for all of the values in the result of the
subquery. It resolves to false if the subquery result is empty.

Example 11.18. ALL Subquery Comparison Qualifier Example

// numeric comparison
select c
from Customer c
where c.chiefExecutive.age < 30

// string comparison
select c
from Customer c
where c.name = 'Acme'

// datetime comparison
select c
from Customer c
where c.inceptionDate < {d '2000-01-01'}

// enum comparison
select c
from Customer c
where c.chiefExecutive.gender = com.acme.Gender.MALE

// boolean comparison
select c
from Customer c
where c.sendEmail = true

// entity type comparison
select p
from Payment p
where type(p) = WireTransferPayment

// entity value comparison
select c
from Customer c
where c.chiefExecutive = c.chiefTechnologist

// select all players that scored at least 3 points
// in every game.
select p
from Player p

CHAPTER 11. HIBERNATE

277

The ANY/SOME qualifier resolves to true if the comparison is true for some of (at least one of) the values
in the result of the subquery. It resolves to false if the subquery result is empty.

Report a bug

11.4.15. About the IN Predicate

The IN predicate performs a check that a particular value is in a list of values. Its syntax is:

The types of the single_valued_expression and the individual values in the
single_valued_list must be consistent. JPQL limits the valid types here to string, numeric, date,
time, timestamp, and enum types. In JPQL, single_valued_expression can only refer to:

"state fields", which is its term for simple attributes. Specifically this excludes association and
component/embedded attributes.

entity type expressions.

In HQL, single_valued_expression can refer to a far more broad set of expression types. Single-
valued association are allowed. So are component/embedded attributes, although that feature depends
on the level of support for tuple or "row value constructor syntax" in the underlying database.
Additionally, HQL does not limit the value type in any way, though application developers should be
aware that different types may incur limited support based on the underlying database vendor. This is
largely the reason for the JPQL limitations.

The list of values can come from a number of different sources. In the constructor_expression and
collection_valued_input_parameter, the list of values must not be empty; it must contain at
least one value.

Example 11.19. In Predicate Examples

where 3 > all (
 select spg.points
 from StatsPerGame spg
 where spg.player = p
)

in_expression ::= single_valued_expression
 [NOT] IN single_valued_list

single_valued_list ::= constructor_expression |
 (subquery) |
 collection_valued_input_parameter

constructor_expression ::= (expression[, expression]*)

select p
from Payment p
where type(p) in (CreditCardPayment, WireTransferPayment)

select c
from Customer c
where c.hqAddress.state in ('TX', 'OK', 'LA', 'NM')

Development Guide

278

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11784-292524+%5BSpecified%5D&comment=Title%3A+About+Relational+Comparisons%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11784-292524+28+Sep+2012+14%3A06+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

11.4.16. About HQL Ordering

The results of the query can also be ordered. The ORDER BY clause is used to specify the selected
values to be used to order the result. The types of expressions considered valid as part of the order-by
clause include:

state fields

component/embeddable attributes

scalar expressions such as arithmetic operations, functions, etc.

identification variable declared in the select clause for any of the previous expression types

HQL does not mandate that all values referenced in the order-by clause must be named in the select
clause, but it is required by JPQL. Applications desiring database portability should be aware that not all
databases support referencing values in the order-by clause that are not referenced in the select clause.

Individual expressions in the order-by can be qualified with either ASC (ascending) or DESC (descending)
to indicated the desired ordering direction.

Example 11.20. Order-by Examples

select c
from Customer c
where c.hqAddress.state in ?

select c
from Customer c
where c.hqAddress.state in (
 select dm.state
 from DeliveryMetadata dm
 where dm.salesTax is not null
)

// Not JPQL compliant!
select c
from Customer c
where c.name in (
 ('John','Doe'),
 ('Jane','Doe')
)

// Not JPQL compliant!
select c
from Customer c
where c.chiefExecutive in (
 select p
 from Person p
 where ...
)

CHAPTER 11. HIBERNATE

279

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11785-292524+%5BSpecified%5D&comment=Title%3A+About+the+IN+Predicate%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11785-292524+28+Sep+2012+14%3A06+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

11.5. HIBERNATE SERVICES

11.5.1. About Hibernate Services

Services are classes that provide Hibernate with pluggable implementations of various types of
functionality. Specifically they are implementations of certain service contract interfaces. The interface is
known as the service role; the implementation class is know as the service implementation. Generally
speaking, users can plug in alternate implementations of all standard service roles (overriding); they can
also define additional services beyond the base set of service roles (extending).

Report a bug

11.5.2. About Service Contracts

The basic requirement for a service is to implement the marker interface
org.hibernate.service.Service. Hibernate uses this internally for some basic type safety.

Optionally, the service can also implement the org.hibernate.service.spi.Startable and
org.hibernate.service.spi.Stoppable interfaces to receive notifications of being started and
stopped. Another optional service contract is org.hibernate.service.spi.Manageable which
marks the service as manageable in JMX provided the JMX integration is enabled.

Report a bug

11.5.3. Types of Service Dependencies

Services are allowed to declare dependencies on other services using either of 2 approaches:

@org.hibernate.service.spi.InjectService

Any method on the service implementation class accepting a single parameter and annotated with
@InjectService is considered requesting injection of another service.

By default the type of the method parameter is expected to be the service role to be injected. If the
parameter type is different than the service role, the serviceRole attribute of the InjectService
should be used to explicitly name the role.

By default injected services are considered required, that is the start up will fail if a named dependent
service is missing. If the service to be injected is optional, the required attribute of the
InjectService should be declared as false (default is true).

// legal because p.name is implicitly part of p
select p
from Person p
order by p.name

select c.id, sum(o.total) as t
from Order o
 inner join o.customer c
group by c.id
order by t

Development Guide

280

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+11482-292405+%5BSpecified%5D&comment=Title%3A+About+HQL+Ordering%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11482-292405+28+Sep+2012+12%3A15+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9992-163735+%5BSpecified%5D&comment=Title%3A+About+Hibernate+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9992-163735+19+Jul+2012+17%3A24+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9993-163735+%5BSpecified%5D&comment=Title%3A+About+Service+Contracts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9993-163735+19+Jul+2012+17%3A24+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

org.hibernate.service.spi.ServiceRegistryAwareService

The second approach is a pull approach where the service implements the optional service interface
org.hibernate.service.spi.ServiceRegistryAwareService which declares a single
injectServices method.

During startup, Hibernate will inject the org.hibernate.service.ServiceRegistry itself into
services which implement this interface. The service can then use the ServiceRegistry reference
to locate any additional services it needs.

Report a bug

11.5.4. The ServiceRegistry

11.5.4.1. About the ServiceRegistry

The central service API, aside from the services themselves, is the
org.hibernate.service.ServiceRegistry interface. The main purpose of a service registry is to
hold, manage and provide access to services.

Service registries are hierarchical. Services in one registry can depend on and utilize services in that
same registry as well as any parent registries.

Use org.hibernate.service.ServiceRegistryBuilder to build a
org.hibernate.service.ServiceRegistry instance.

Example 11.21. Use ServiceRegistryBuilder to create a ServiceRegistry

Report a bug

11.5.5. Custom Services

11.5.5.1. About Custom Services

Once a org.hibernate.service.ServiceRegistry is built it is considered immutable; the
services themselves might accept re-configuration, but immutability here means adding/replacing
services. So another role provided by the org.hibernate.service.ServiceRegistryBuilder is
to allow tweaking of the services that will be contained in the
org.hibernate.service.ServiceRegistry generated from it.

There are 2 means to tell a org.hibernate.service.ServiceRegistryBuilder about custom
services.

Implement a org.hibernate.service.spi.BasicServiceInitiator class to control on-
demand construction of the service class and add it to the
org.hibernate.service.ServiceRegistryBuilder via its addInitiator method.

ServiceRegistryBuilder registryBuilder = new ServiceRegistryBuilder(
bootstrapServiceRegistry);
 ServiceRegistry serviceRegistry =
registryBuilder.buildServiceRegistry();

CHAPTER 11. HIBERNATE

281

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9994-164357+%5BSpecified%5D&comment=Title%3A+Types+of+Service+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9994-164357+20+Jul+2012+14%3A54+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9995-169847+%5BSpecified%5D&comment=Title%3A+About+the+ServiceRegistry%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9995-169847+30+Jul+2012+15%3A18+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Just instantiate the service class and add it to the
org.hibernate.service.ServiceRegistryBuilder via its addService method.

Either approach the adding a service approach or the adding an initiator approach are valid for extending
a registry (adding new service roles) and overriding services (replacing service implementations).

Example 11.22. Use ServiceRegistryBuilder to Replace an Existing Service with a Custom
Service

 ServiceRegistryBuilder registryBuilder = new ServiceRegistryBuilder(
bootstrapServiceRegistry);
 serviceRegistryBuilder.addService(JdbcServices.class, new
FakeJdbcService());
 ServiceRegistry serviceRegistry =
registryBuilder.buildServiceRegistry();

 public class FakeJdbcService implements JdbcServices{

 @Override
 public ConnectionProvider getConnectionProvider() {
 return null;
 }

 @Override
 public Dialect getDialect() {
 return null;
 }

 @Override
 public SqlStatementLogger getSqlStatementLogger() {
 return null;
 }

 @Override
 public SqlExceptionHelper getSqlExceptionHelper() {
 return null;
 }

 @Override
 public ExtractedDatabaseMetaData getExtractedMetaDataSupport() {
 return null;
 }

 @Override
 public LobCreator getLobCreator(LobCreationContext
lobCreationContext) {
 return null;
 }

 @Override
 public ResultSetWrapper getResultSetWrapper() {
 return null;
 }

 @Override

Development Guide

282

Report a bug

11.5.6. The Bootstrap Registry

11.5.6.1. About the Boot-strap Registry

The boot-strap registry holds services that absolutely have to be available for most things to work. The
main service here is the ClassLoaderService which is a perfect example. Even resolving
configuration files needs access to class loading services (resource look ups). This is the root registry (no
parent) in normal use.

Instances of boot-strap registries are built using the
org.hibernate.service.BootstrapServiceRegistryBuilder class.

Report a bug

11.5.6.2. Using BootstrapServiceRegistryBuilder

Example 11.23. Using BootstrapServiceRegistryBuilder

Report a bug

11.5.6.3. BootstrapRegistry Services

org.hibernate.service.classloading.spi.ClassLoaderService

 public JdbcEnvironment getJdbcEnvironment() {
 return null;
 }
 }

BootstrapServiceRegistry bootstrapServiceRegistry = new
BootstrapServiceRegistryBuilder()
 // pass in org.hibernate.integrator.spi.Integrator instances
which are not
 // auto-discovered (for whatever reason) but which should be
included
 .with(anExplicitIntegrator)
 // pass in a class-loader Hibernate should use to load
application classes
 .withApplicationClassLoader(
anExplicitClassLoaderForApplicationClasses)
 // pass in a class-loader Hibernate should use to load
resources
 .withResourceClassLoader(anExplicitClassLoaderForResources)
 // see BootstrapServiceRegistryBuilder for rest of available
methods
 ...
 // finally, build the bootstrap registry with all the above
options
 .build();

CHAPTER 11. HIBERNATE

283

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9997-169859+%5BSpecified%5D&comment=Title%3A+About+Custom+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9997-169859+30+Jul+2012+16%3A07+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9998-163735+%5BSpecified%5D&comment=Title%3A+About+the+Boot-strap+Registry%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9998-163735+19+Jul+2012+17%3A24+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9999-169840+%5BSpecified%5D&comment=Title%3A+Using+BootstrapServiceRegistryBuilder%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9999-169840+30+Jul+2012+15%3A06+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Hibernate needs to interact with ClassLoaders. However, the manner in which Hibernate (or any library)
should interact with ClassLoaders varies based on the runtime environment which is hosting the
application. Application servers, OSGi containers, and other modular class loading systems impose very
specific class-loading requirements. This service is provides Hibernate an abstraction from this
environmental complexity. And just as importantly, it does so in a single-swappable-component manner.

In terms of interacting with a ClassLoader, Hibernate needs the following capabilities:

the ability to locate application classes

the ability to locate integration classes

the ability to locate resources (properties files, xml files, etc)

the ability to load java.util.ServiceLoader

NOTE

Currently, the ability to load application classes and the ability to load integration classes
are combined into a single "load class" capability on the service. That may change in a
later release.

org.hibernate.integrator.spi.IntegratorService

Applications, add-ons and others all need to integrate with Hibernate which used to require something,
usually the application, to coordinate registering the pieces of each integration needed on behalf of each
integrator. The intent of this service is to allow those integrators to be discovered and to have them
integrate themselves with Hibernate.

This service focuses on the discovery aspect. It leverages the standard Java
java.util.ServiceLoader capability provided by the
org.hibernate.service.classloading.spi.ClassLoaderService in order to discover
implementations of the org.hibernate.integrator.spi.Integrator contract.

Integrators would simply define a file named /META-
INF/services/org.hibernate.integrator.spi.Integrator and make it available on the
classpath. java.util.ServiceLoader covers the format of this file in detail, but essentially it list
classes by FQN that implement the org.hibernate.integrator.spi.Integrator one per line.

Report a bug

11.5.7. The SessionFactory Registry

11.5.7.1. SessionFactory Registry

While it is best practice to treat instances of all the registry types as targeting a given
org.hibernate.SessionFactory, the instances of services in this group explicitly belong to a single
org.hibernate.SessionFactory.

The difference is a matter of timing in when they need to be initiated. Generally they need access to the
org.hibernate.SessionFactory to be initiated. This special registry is
org.hibernate.service.spi.SessionFactoryServiceRegistry

Report a bug

Development Guide

284

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+10000-164434+%5BSpecified%5D&comment=Title%3A+BootstrapRegistry+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10000-164434+20+Jul+2012+15%3A43+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+10001-164504+%5BSpecified%5D&comment=Title%3A+SessionFactory+Registry%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10001-164504+20+Jul+2012+16%3A44+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

11.5.7.2. SessionFactory Services

org.hibernate.event.service.spi.EventListenerRegistry

Description

Service for managing event listeners.

Initiator

org.hibernate.event.service.internal.EventListenerServiceInitiator

Implementations

org.hibernate.event.service.internal.EventListenerRegistryImpl

Report a bug

11.5.8. Integrators

11.5.8.1. Integrators

The org.hibernate.integrator.spi.Integrator is intended to provide a simple means for
allowing developers to hook into the process of building a functioning SessionFactory. The
org.hibernate.integrator.spi.Integrator interface defines 2 methods of interest:
integrate allows us to hook into the building process; disintegrate allows us to hook into a
SessionFactory shutting down.

NOTE

There is a 3rd method defined on org.hibernate.integrator.spi.Integrator,
an overloaded form of integrate accepting a
org.hibernate.metamodel.source.MetadataImplementor instead of
org.hibernate.cfg.Configuration. This form is intended for use with the new
metamodel code scheduled for completion in 5.0.

In addition to the discovery approach provided by the IntegratorService, applications can manually
register Integrator implementations when building the BootstrapServiceRegistry.

Report a bug

11.5.8.2. Integrator use-cases

The main use cases for an org.hibernate.integrator.spi.Integrator right now are
registering event listeners and providing services (see
org.hibernate.integrator.spi.ServiceContributingIntegrator). With 5.0 we plan on
expanding that to allow altering the metamodel describing the mapping between object and relational
models.

Example 11.24. Registering event listeners

public class MyIntegrator implements
org.hibernate.integrator.spi.Integrator {

CHAPTER 11. HIBERNATE

285

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+10002-164504+%5BSpecified%5D&comment=Title%3A+SessionFactory+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10002-164504+20+Jul+2012+16%3A44+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+10004-164504+%5BSpecified%5D&comment=Title%3A+Integrators%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10004-164504+20+Jul+2012+16%3A44+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

11.6. BEAN VALIDATION

11.6.1. About Bean Validation

Bean Validation, or JavaBeans Validation, is a model for validating data in Java objects. The model uses
built-in and custom annotation constraints to ensure the integrity of application data. The specification is
documented here: http://jcp.org/en/jsr/detail?id=303.

Hibernate Validator is the JBoss EAP 6 implementation of Bean Validation. It is also the reference
implementation of the JSR.

JBoss EAP 6 is 100% compliant with JSR 303 - Bean Validation. Hibernate Validator also provides
additional features to the specification.

To get started with Bean Validation, refer to the bean-validation quickstart example: Section 1.4.2.1,
“Access the Quickstarts”.

Report a bug

 public void integrate(
 Configuration configuration,
 SessionFactoryImplementor sessionFactory,
 SessionFactoryServiceRegistry serviceRegistry) {
 // As you might expect, an EventListenerRegistry is the thing
with which event listeners are registered It is a
 // service so we look it up using the service registry
 final EventListenerRegistry eventListenerRegistry =
serviceRegistry.getService(EventListenerRegistry.class);

 // If you wish to have custom determination and handling of
"duplicate" listeners, you would have to add an
 // implementation of the
org.hibernate.event.service.spi.DuplicationStrategy contract like this
 eventListenerRegistry.addDuplicationStrategy(
myDuplicationStrategy);

 // EventListenerRegistry defines 3 ways to register listeners:
 // 1) This form overrides any existing registrations with
 eventListenerRegistry.setListeners(EventType.AUTO_FLUSH,
myCompleteSetOfListeners);
 // 2) This form adds the specified listener(s) to the
beginning of the listener chain
 eventListenerRegistry.prependListeners(EventType.AUTO_FLUSH,
myListenersToBeCalledFirst);
 // 3) This form adds the specified listener(s) to the end of the
listener chain
 eventListenerRegistry.appendListeners(EventType.AUTO_FLUSH,
myListenersToBeCalledLast);
 }
}

Development Guide

286

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+10267-245962+%5BSpecified%5D&comment=Title%3A+Integrator+use-cases%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=10267-245962+07+Sep+2012+14%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://jcp.org/en/jsr/detail?id=303
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2243-459937+%5BSpecified%5D&comment=Title%3A+About+Bean+Validation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2243-459937+14+Jun+2013+11%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

11.6.2. Hibernate Validator

Hibernate Validator is the reference implementation of JSR 303 - Bean Validation.

Bean Validation provides users with a model for validating Java object data. For more information, refer
to Section 11.6.1, “About Bean Validation” and Section 11.6.3.1, “About Validation Constraints”.

Report a bug

11.6.3. Validation Constraints

11.6.3.1. About Validation Constraints

Validation constraints are rules applied to a java element, such as a field, property or bean. A constraint
will usually have a set of attributes used to set its limits. There are predefined constraints, and custom
ones can be created. Each constraint is expressed in the form of an annotation.

The built-in validation constraints for Hibernate Validator are listed here: Section 11.6.3.4, “Hibernate
Validator Constraints”

For more information, refer to Section 11.6.2, “Hibernate Validator” and Section 11.6.1, “About Bean
Validation”.

Report a bug

11.6.3.2. Create a Constraint Annotation in the JBoss Developer Studio

Summary

This task covers the process of creating a constraint annotation in the JBoss Developer Studio, for use
within a Java application.

Prerequisites

Section 1.3.1.4, “Start JBoss Developer Studio”

Procedure 11.5. Create a Constraint Annotation

1. Open a Java project in the JBoss Developer Studio.

2. Create a Data Set
A constraint annotation requires a data set that defines the acceptable values.

a. Right click on the project root folder in the Project Explorer panel.

b. Select New → Enum.

c. Configure the following elements:

Package:

Name:

d. Click the Add... button to add any required interfaces.

e. Click Finish to create the file.

CHAPTER 11. HIBERNATE

287

http://jcp.org/en/jsr/detail?id=303
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4416-291984+%5BSpecified%5D&comment=Title%3A+Hibernate+Validator%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4416-291984+26+Sep+2012+19%3A58+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2396-291984+%5BSpecified%5D&comment=Title%3A+About+Validation+Constraints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2396-291984+26+Sep+2012+19%3A58+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

f. Add a set of values to the data set and click Save.

Example 11.25. Example Data Set

3. Create the Annotation File
Create a new Java class. For more information, refer to Section 11.6.3.3, “Create a New Java
Class in the JBoss Developer Studio”.

4. Configure the constraint annotation and click Save.

Example 11.26. Example Constraint Annotation File

Result

A custom constraint annotation with a set of possible values has been created, ready to be used in
the Java project.

package com.example;

public enum CaseMode {
 UPPER,
 LOWER;
}

package com.mycompany;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import javax.validation.Constraint;
import javax.validation.Payload;

@Target({ METHOD, FIELD, ANNOTATION_TYPE })
@Retention(RUNTIME)
@Constraint(validatedBy = CheckCaseValidator.class)
@Documented
public @interface CheckCase {

 String message() default "
{com.mycompany.constraints.checkcase}";

 Class<?>[] groups() default {};

 Class<? extends Payload>[] payload() default {};

 CaseMode value();

}

Development Guide

288

Report a bug

11.6.3.3. Create a New Java Class in the JBoss Developer Studio

Prerequisites

Section 1.3.1.4, “Start JBoss Developer Studio”

Summary

This topic covers the process of creating a Java class for an existing Java project, using the JBoss
Developer Studio.

Procedure 11.6. Create a New Java Class

1. Right click on the project root folder in the Project Explorer panel.

2. Select New → Class.

3. Configure the following elements:

Package:

Name:

4. Optional: Add an Interface

a. Click Add...

b. Search for the interface name

c. Select the correct interface

d. Repeat steps 2 and 3 for each required interface

e. Click Add.

5. Click Finish to create the file.

Result

A new Java class has been created within the project, ready for configuration.

Report a bug

11.6.3.4. Hibernate Validator Constraints

Table 11.11. Built-in Constraints

Annotation Apply on Runtime checking Hibernate Metadata
impact

@Length(min=, max=) property (String) Check if the string length
matches the range.

Column length will be
set to max.

CHAPTER 11. HIBERNATE

289

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2448-431807+%5BSpecified%5D&comment=Title%3A+Create+a+Constraint+Annotation+in+the+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2448-431807+08+Apr+2013+11%3A08+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5176-432039+%5BSpecified%5D&comment=Title%3A+Create+a+New+Java+Class+in+the+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5176-432039+08+Apr+2013+16%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

@Max(value=) property (numeric or
string representation of a
numeric)

Check if the value is
less than or equal to
max.

Add a check constraint
on the column.

@Min(value=) property (numeric or
string representation of a
numeric)

Check if the value is
more than or equal to
Min.

Add a check constraint
on the column.

@NotNull property Check if the value is not
null.

Column(s) are not null.

@NotEmpty property Check if the string is not
null nor empty. Check if
the connection is not null
nor empty.

Column(s) are not null
(for String).

@Past property (date or
calendar)

Check if the date is in
the past.

Add a check constraint
on the column.

@Future property (date or
calendar)

Check if the date is in
the future.

None.

@Pattern(regex="regexp
", flag=) or @Patterns(
{@Pattern(...)})

property (string) Check if the property
matches the regular
expression given a
match flag (see
java.util.regex.
Pattern).

None.

@Range(min=, max=) property (numeric or
string representation of a
numeric)

Check if the value is
between min and max
(included).

Add a check constraint
on the column.

@Size(min=, max=) property (array,
collection, map)

Check if the element
size is between min and
max (included).

None.

@AssertFalse property Check that the method
evaluates to false
(useful for constraints
expressed in code rather
than annotations).

None.

@AssertTrue property Check that the method
evaluates to true (useful
for constraints
expressed in code rather
than annotations).

None.

Annotation Apply on Runtime checking Hibernate Metadata
impact

Development Guide

290

@Valid property (object) Perform validation
recursively on the
associated object. If the
object is a Collection or
an array, the elements
are validated recursively.
If the object is a Map,
the value elements are
validated recursively.

None.

@Email property (String) Check whether the string
is conform to the e-mail
address specification.

None.

@CreditCardNumber property (String) Check whether the string
is a well formatted credit
card number (derivative
of the Luhn algorithm).

None.

@Digits(integerDigits=1) property (numeric or
string representation of a
numeric)

Check whether the
property is a number
having up to
integerDigits
integer digits and
fractionalDigits
fractional digits.

Define column precision
and scale.

@EAN property (string) Check whether the string
is a properly formatted
EAN or UPC-A code.

None.

Annotation Apply on Runtime checking Hibernate Metadata
impact

Report a bug

11.6.4. Configuration

11.6.4.1. Example Validation Configuration File

Example 11.27. validation.xml

<validation-config
xmlns="http://jboss.org/xml/ns/javax/validation/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://jboss.org/xml/ns/javax/validation/configurati
on">

 <default-provider>
 org.hibernate.validator.HibernateValidator
 </default-provider>

CHAPTER 11. HIBERNATE

291

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2432-299121+%5BSpecified%5D&comment=Title%3A+Hibernate+Validator+Constraints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2432-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

11.7. ENVERS

11.7.1. About Hibernate Envers

Hibernate Envers is an auditing and versioning system, providing JBoss EAP 6 with a means to track
historical changes to persistent classes. Audit tables are created for entities annotated with @Audited,
which store the history of changes made to the entity. The data can then be retrieved and queried.

Envers allows developers to:

audit all mappings defined by the JPA specification,

audit all hibernate mappings that extend the JPA specification,

audit entities mapped by or using the native Hibernate API

log data for each revision using a revision entity, and

query historical data.

Report a bug

11.7.2. About Auditing Persistent Classes

Auditing of persistent classes is done in JBoss EAP 6 through Hibernate Envers and the @Audited
annotation. When the annotation is applied to a class, a table is created, which stores the revision history
of the entity.

Each time a change is made to the class, an entry is added to the audit table. The entry contains the
changes to the class, and is given a revision number. This means that changes can be rolled back, or
previous revisions can be viewed.

Report a bug

 <message-interpolator>

org.hibernate.validator.messageinterpolation.ResourceBundleMessageInterp
olator
 </message-interpolator>
 <constraint-validator-factory>
 org.hibernate.validator.engine.ConstraintValidatorFactoryImpl
 </constraint-validator-factory>

 <constraint-mapping>
 /constraints-example.xml
 </constraint-mapping>

 <property name="prop1">value1</property>
 <property name="prop2">value2</property>
</validation-config>

Development Guide

292

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4623-299121+%5BSpecified%5D&comment=Title%3A+Example+Validation+Configuration+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4623-299121+09+Oct+2012+10%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5010-459938+%5BSpecified%5D&comment=Title%3A+About+Hibernate+Envers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5010-459938+14+Jun+2013+11%3A52+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5011-459940+%5BSpecified%5D&comment=Title%3A+About+Auditing+Persistent+Classes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5011-459940+14+Jun+2013+11%3A52+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

11.7.3. Auditing Strategies

11.7.3.1. About Auditing Strategies

Auditing strategies define how audit information is persisted, queried and stored. There are currently two
audit strategies available with Hibernate Envers:

Default Audit Strategy

This strategy persists the audit data together with a start revision. For each row that is inserted,
updated or deleted in an audited table, one or more rows are inserted in the audit tables, along with
the start revision of its validity.

Rows in the audit tables are never updated after insertion. Queries of audit information use
subqueries to select the applicable rows in the audit tables, which are slow and difficult to index.

Validity Audit Strategy

This strategy stores the start revision, as well as the end revision of the audit information. For each
row that is inserted, updated or deleted in an audited table, one or more rows are inserted in the audit
tables, along with the start revision of its validity.

At the same time, the end revision field of the previous audit rows (if available) is set to this revision.
Queries on the audit information can then use between start and end revision, instead of subqueries.
This means that persisting audit information is a little slower because of the extra updates, but
retrieving audit information is a lot faster.

This can also be improved by adding extra indexes.

For more information on auditing, refer to Section 11.7.2, “About Auditing Persistent Classes”. To set the
auditing strategy for the application, refer here: Section 11.7.3.2, “Set the Auditing Strategy”.

Report a bug

11.7.3.2. Set the Auditing Strategy

Summary

There are two audit strategies supported by JBoss EAP 6: the default and validity audit strategies. This
task covers the steps required to define the auditing strategy for an application.

Procedure 11.7. Define a Auditing Strategy

Configure the org.hibernate.envers.audit_strategy property in the
persistence.xml file of the application. If the property is not set in the persistence.xml
file, then the default audit strategy is used.

Example 11.28. Set the Default Audit Strategy

Example 11.29. Set the Validity Audit Strategy

<property name="org.hibernate.envers.audit_strategy"
value="org.hibernate.envers.strategy.DefaultAuditStrategy"/>

CHAPTER 11. HIBERNATE

293

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5028-369076+%5BSpecified%5D&comment=Title%3A+About+Auditing+Strategies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5028-369076+23+Jan+2013+16%3A25+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

11.7.4. Getting Started with Entity Auditing

11.7.4.1. Add Auditing Support to a JPA Entity

JBoss EAP 6 uses entity auditing, through Section 11.7.1, “About Hibernate Envers”, to track the
historical changes of a persistent class. This topic covers adding auditing support for a JPA entity.

Procedure 11.8. Add Auditing Support to a JPA Entity

1. Configure the available auditing parameters to suit the deployment: Section 11.7.5.1, “Configure
Envers Parameters”.

2. Open the JPA entity to be audited.

3. Import the org.hibernate.envers.Audited interface.

4. Apply the @Audited annotation to each field or property to be audited, or apply it once to the
whole class.

Example 11.30. Audit Two Fields

<property name="org.hibernate.envers.audit_strategy"
value="org.hibernate.envers.strategy.ValidityAuditStrategy"/>

import org.hibernate.envers.Audited;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
public class Person {
 @Id
 @GeneratedValue
 private int id;

 @Audited
 private String name;

 private String surname;

 @ManyToOne
 @Audited
 private Address address;

 // add getters, setters, constructors, equals and hashCode
here
}

Development Guide

294

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5014-459943+%5BSpecified%5D&comment=Title%3A+Set+the+Auditing+Strategy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5014-459943+14+Jun+2013+11%3A53+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Example 11.31. Audit an entire Class

Result

The JPA entity has been configured for auditing. A table called Entity_AUD will be created to store the
historical changes.

Report a bug

11.7.5. Configuration

11.7.5.1. Configure Envers Parameters

JBoss EAP 6 uses entity auditing, through Hibernate Envers, to track the historical changes of a
persistent class. This topic covers configuring the available Envers parameters.

Procedure 11.9. Configure Envers Parameters

1. Open the persistence.xml file for the application.

2. Add, remove or configure Envers properties as required. For a list of available properties, refer
to Section 11.7.5.4, “Envers Configuration Properties”.

Example 11.32. Example Envers Parameters

import org.hibernate.envers.Audited;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
@Audited
public class Person {
 @Id
 @GeneratedValue
 private int id;

 private String name;

 private String surname;

 @ManyToOne
 private Address address;

 // add getters, setters, constructors, equals and hashCode
here
}

<persistence-unit name="mypc">
 <description>Persistence Unit.</description>

CHAPTER 11. HIBERNATE

295

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5016-459944+%5BSpecified%5D&comment=Title%3A+Add+Auditing+Support+to+a+JPA+Entity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5016-459944+14+Jun+2013+11%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Result

Auditing has been configured for all JPA entities in the application.

Report a bug

11.7.5.2. Enable or Disable Auditing at Runtime

Summary

This task covers the configuration steps required to enable/disable entity version auditing at runtime.

Procedure 11.10. Enable/Disable Auditing

1. Subclass the AuditEventListener class.

2. Override the following methods that are called on Hibernate events:

onPostInsert

onPostUpdate

onPostDelete

onPreUpdateCollection

onPreRemoveCollection

onPostRecreateCollection

3. Specify the subclass as the listener for the events.

4. Determine if the change should be audited.

5. Pass the call to the superclass if the change should be audited.

Report a bug

11.7.5.3. Configure Conditional Auditing

 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop" />
 <property name="hibernate.show_sql" value="true" />
 <property name="hibernate.cache.use_second_level_cache" value="true"
/>
 <property name="hibernate.cache.use_query_cache" value="true" />
 <property name="hibernate.generate_statistics" value="true" />
 <property name="org.hibernate.envers.versionsTableSuffix" value="_V"
/>
 <property name="org.hibernate.envers.revisionFieldName"
value="ver_rev" />
 </properties>
</persistence-unit>

Development Guide

296

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5013-459945+%5BSpecified%5D&comment=Title%3A+Configure+Envers+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5013-459945+14+Jun+2013+11%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5025-432016+%5BSpecified%5D&comment=Title%3A+Enable+or+Disable+Auditing+at+Runtime%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5025-432016+08+Apr+2013+16%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Summary

Hibernate Envers persists audit data in reaction to various Hibernate events, using a series of event
listeners. These listeners are registered automatically if the Envers jar is in the class path. This task
covers the steps required to implement conditional auditing, by overriding some of the Envers event
listeners.

Procedure 11.11. Implement Conditional Auditing

1. Set the hibernate.listeners.envers.autoRegister Hibernate property to false in the
persistence.xml file.

2. Subclass each event listener to be overridden. Place the conditional auditing logic in the
subclass, and call the super method if auditing should be performed.

3. Create a custom implementation of org.hibernate.integrator.spi.Integrator, similar
to org.hibernate.envers.event.EnversIntegrator. Use the event listener subclasses
created in step two, rather than the default classes.

4. Add a META-INF/services/org.hibernate.integrator.spi.Integrator file to the
jar. This file should contain the fully qualified name of the class implementing the interface.

Result

Conditional auditing has been configured, overriding the default Envers event listeners.

Report a bug

11.7.5.4. Envers Configuration Properties

Table 11.12. Entity Data Versioning Configuration Parameters

Property Name Default Value Description

org.hibernate.envers.audit_table_
prefix

A string that is prepended to the
name of an audited entity, to
create the name of the entity that
will hold the audit information.

org.hibernate.envers.audit_table_
suffix

_AUD A string that is appended to the
name of an audited entity to
create the name of the entity that
will hold the audit information. For
example, if an entity with a table
name of Person is audited,
Envers will generate a table called
Person_AUD to store the
historical data.

org.hibernate.envers.revision_field
_name

REV The name of the field in the audit
entity that holds the revision
number.

CHAPTER 11. HIBERNATE

297

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5023-432014+%5BSpecified%5D&comment=Title%3A+Configure+Conditional+Auditing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5023-432014+08+Apr+2013+16%3A19+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

org.hibernate.envers.revision_type
_field_name

REVTYPE The name of the field in the audit
entity that holds the type of
revision. The current types of
revisions possible are: add, mod
and del.

org.hibernate.envers.revision_on_
collection_change

true This property determines if a
revision should be generated if a
relation field that is not owned
changes. This can either be a
collection in a one-to-many
relation, or the field using the
mappedBy attribute in a one-to-
one relation.

org.hibernate.envers.do_not_audit
_optimistic_locking_field

true When true, properties used for
optimistic locking (annotated with
@Version) will automatically be
excluded from auditing.

org.hibernate.envers.store_data_a
t_delete

false This property defines whether or
not entity data should be stored in
the revision when the entity is
deleted, instead of only the ID,
with all other properties marked
as null. This is not usually
necessary, as the data is present
in the last-but-one revision.
Sometimes, however, it is easier
and more efficient to access it in
the last revision. However, this
means the data the entity
contained before deletion is
stored twice.

org.hibernate.envers.default_sche
ma

null (same as normal tables) The default schema name used
for audit tables. Can be
overridden using the
@AuditTable(schema="...
") annotation. If not present, the
schema will be the same as the
schema of the normal tables.

org.hibernate.envers.default_catal
og

null (same as normal tables) The default catalog name that
should be used for audit tables.
Can be overridden using the
@AuditTable(catalog="..
.") annotation. If not present,
the catalog will be the same as
the catalog of the normal tables.

Property Name Default Value Description

Development Guide

298

org.hibernate.envers.audit_strateg
y

org.hibernate.envers.strategy.Def
aultAuditStrategy

This property defines the audit
strategy that should be used when
persisting audit data. By default,
only the revision where an entity
was modified is stored.
Alternatively,
org.hibernate.envers.st
rategy.ValidityAuditStr
ategy stores both the start
revision and the end revision.
Together, these define when an
audit row was valid.

org.hibernate.envers.audit_strateg
y_validity_end_rev_field_name

REVEND The column name that will hold
the end revision number in audit
entities. This property is only valid
if the validity audit strategy is
used.

org.hibernate.envers.audit_strateg
y_validity_store_revend_timestam
p

false This property defines whether the
timestamp of the end revision,
where the data was last valid,
should be stored in addition to the
end revision itself. This is useful to
be able to purge old audit records
out of a relational database by
using table partitioning.
Partitioning requires a column that
exists within the table. This
property is only evaluated if the
ValidityAuditStrategy is
used.

org.hibernate.envers.audit_strateg
y_validity_revend_timestamp_field
_name

REVEND_TSTMP Column name of the timestamp of
the end revision at which point the
data was still valid. Only used if
the
ValidityAuditStrategy is
used, and
org.hibernate.envers.au
dit_strategy_validity_s
tore_revend_timestamp
evaluates to true.

Property Name Default Value Description

Report a bug

11.7.6. Queries

11.7.6.1. Retrieve Auditing Information

Summary

Hibernate Envers provides the functionality to retrieve audit information through queries. This topic
provides examples of those queries.

CHAPTER 11. HIBERNATE

299

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5015-369030+%5BSpecified%5D&comment=Title%3A+Envers+Configuration+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5015-369030+23+Jan+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

NOTE

Queries on the audited data will be, in many cases, much slower than corresponding
queries on live data, as they involve correlated subselects.

Example 11.33. Querying for Entities of a Class at a Given Revision

The entry point for this type of query is:

Constraints can then be specified, using the AuditEntity factory class. The query below only
selects entities where the name property is equal to John:

The queries below only select entities that are related to a given entity:

The results can then be ordered, limited, and have aggregations and projections (except grouping)
set. The example below is a full query.

Example 11.34. Query Revisions where Entities of a Given Class Changed

The entry point for this type of query is:

Constraints can be added to this query in the same way as the previous example. There are
additional possibilities for this query:

AuditEntity.revisionNumber()

Specify constraints, projections and order on the revision number in which the audited entity was
modified.

AuditEntity.revisionProperty(propertyName)

AuditQuery query = getAuditReader()
 .createQuery()
 .forEntitiesAtRevision(MyEntity.class, revisionNumber);

query.add(AuditEntity.property("name").eq("John"));

query.add(AuditEntity.property("address").eq(relatedEntityInstance));
// or
query.add(AuditEntity.relatedId("address").eq(relatedEntityId));

List personsAtAddress = getAuditReader().createQuery()
 .forEntitiesAtRevision(Person.class, 12)
 .addOrder(AuditEntity.property("surname").desc())
 .add(AuditEntity.relatedId("address").eq(addressId))
 .setFirstResult(4)
 .setMaxResults(2)
 .getResultList();

AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true);

Development Guide

300

Specify constraints, projections and order on a property of the revision entity, corresponding to the
revision in which the audited entity was modified.

AuditEntity.revisionType()

Provides accesses to the type of the revision (ADD, MOD, DEL).

The query results can then be adjusted as necessary. The query below selects the smallest revision
number at which the entity of the MyEntity class, with the entityId ID has changed, after revision
number 42:

Queries for revisions can also minimize/maximize a property. The query below selects the revision at
which the value of the actualDate for a given entity was larger than a given value, but as small as
possible:

The minimize() and maximize() methods return a criteria, to which constraints can be added,
which must be met by the entities with the maximized/minimized properties.

There are two boolean parameters passed when creating the query.

selectEntitiesOnly

This parameter is only valid when an explicit projection is not set.

If true, the result of the query will be a list of entities that changed at revisions satisfying the
specified constraints.

If false, the result will be a list of three element arrays. The first element will be the changed entity
instance. The second will be an entity containing revision data. If no custom entity is used, this will
be an instance of DefaultRevisionEntity. The third element array will be the type of the
revision (ADD, MOD, DEL).

selectDeletedEntities

This parameter specified if revisions in which the entity was deleted should be included in the
results. If true, the entities will have the revision type DEL, and all fields, except id, will have the
value null.

Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.id().eq(entityId))
 .add(AuditEntity.revisionNumber().gt(42))
 .getSingleResult();

Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 // We are only interested in the first revision
 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.property("actualDate").minimize()
 .add(AuditEntity.property("actualDate").ge(givenDate))
 .add(AuditEntity.id().eq(givenEntityId)))
 .getSingleResult();

CHAPTER 11. HIBERNATE

301

Example 11.35. Query Revisions of an Entity that Modified a Given Property

The query below will return all revisions of MyEntity with a given id, where the actualDate
property has been changed.

The hasChanged condition can be combined with additional criteria. The query below will return a
horizontal slice for MyEntity at the time the revisionNumber was generated. It will be limited to the
revisions that modified prop1, but not prop2.

The result set will also contain revisions with numbers lower than the revisionNumber. This means
that this query cannot be read as "Return all MyEntities changed in revisionNumber with prop1
modified and prop2 untouched."

The query below shows how this result can be returned, using the
forEntitiesModifiedAtRevision query:

Example 11.36. Query Entities Modified in a Given Revision

The example below shows the basic query for entities modified in a given revision. It allows entity
names and corresponding Java classes changed in a specified revision to be retrieved:

There are a number of other queries that are also accessible from
org.hibernate.envers.CrossTypeRevisionChangesReader:

List<Object> findEntities(Number)

Returns snapshots of all audited entities changed (added, updated and removed) in a given
revision.Executes n+1 SQL queries, where n is a number of different entity classes modified
within the specified revision.

List<Object> findEntities(Number, RevisionType)

AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .add(AuditEntity.id().eq(id));
 .add(AuditEntity.property("actualDate").hasChanged())

AuditQuery query = getAuditReader().createQuery()
 .forEntitiesAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

AuditQuery query = getAuditReader().createQuery()
 .forEntitiesModifiedAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

Set<Pair<String, Class>> modifiedEntityTypes = getAuditReader()

.getCrossTypeRevisionChangesReader().findEntityTypes(revisionNumber);

Development Guide

302

Returns snapshots of all audited entities changed (added, updated or removed) in a given revision
filtered by modification type. Executes n+1 SQL queries, where n is a number of different entity
classes modified within specified revision.

Map<RevisionType, List<Object>> findEntitiesGroupByRevisionType(Number)

Returns a map containing lists of entity snapshots grouped by modification operation (e.g.
addition, update and removal). Executes 3n+1 SQL queries, where n is a number of different
entity classes modified within specified revision.

Report a bug

CHAPTER 11. HIBERNATE

303

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5017-369030+%5BSpecified%5D&comment=Title%3A+Retrieve+Auditing+Information%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5017-369030+23+Jan+2013+16%3A22+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 12. JAX-RS WEB SERVICES

12.1. ABOUT JAX-RS

JAX-RS is the Java API for RESTful web services. It provides support for building web services using
REST, through the use of annotations. These annotations simplify the process of mapping Java objects
to web resources. The specification is defined here: http://www.jcp.org/en/jsr/detail?id=311.

RESTEasy is the JBoss EAP 6 implementation of JAX-RS. It also provides additional features to the
specification.

JBoss EAP 6 is 100% compliant with JSR 311 - JAX-RS.

To get started with JAX-RS and JBoss EAP 6, refer to the helloworld-rs, jax-rs-client, and
kitchensink quickstart: Section 1.4.2.1, “Access the Quickstarts”.

Report a bug

12.2. ABOUT RESTEASY

RESTEasy is a portable implementation of the JAX-RS Java API. It also provides additional features,
including a client side framework (the RESTEasy JAX-RS Client Framework) for mapping outgoing
requests to remote servers, allowing JAX-RS to operate as a client or server-side specification.

Report a bug

12.3. ABOUT RESTFUL WEB SERVICES

RESTful web services are designed to expose APIs on the web. They aim to provide better performance,
scalability, and flexibility than traditional web services by allowing clients to access data and resources
using predictable URLs.

The Java Enterprise Edition 6 specification for RESTful services is JAX-RS. For more information about
JAX-RS, refer to Section 12.1, “About JAX-RS” and Section 12.2, “About RESTEasy”.

Report a bug

12.4. RESTEASY DEFINED ANNOTATIONS

Table 12.1. JAX-RS/RESTEasy Annotations

Annotation Usage

ClientResponseType This is an annotation that you can add to a
RESTEasy client interface that has a return type of
Response.

ContentEncoding Meta annotation that specifies a Content-Encoding to
be applied via the annotated annotation.

DecorateTypes Must be placed on a DecoratorProcessor class to
specify the supported types.

Development Guide

304

http://www.jcp.org/en/jsr/detail?id=311
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+1759-459946+%5BSpecified%5D&comment=Title%3A+About+JAX-RS%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1759-459946+14+Jun+2013+11%3A57+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+1760-456473+%5BSpecified%5D&comment=Title%3A+About+RESTEasy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1760-456473+31+May+2013+10%3A59+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+1758-432838+%5BSpecified%5D&comment=Title%3A+About+RESTful+Web+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1758-432838+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Decorator Meta-annotation to be placed on another annotation
that triggers decoration.

Form This can be used as a value object for
incoming/outgoing request/responses.

StringParameterUnmarshallerBinder Meta-annotation to be placed on another annotation
that triggers a StringParameterUnmarshaller to be
applied to a string based annotation injector.

Cache Set response Cache-Control header automatically.

NoCache Set Cache-Control response header of "nocache".

ServerCached Specifies that the response to this jax-rs method
should be cached on the server.

ClientInterceptor Identifies an interceptor as a client-side interceptor.

DecoderPrecedence This interceptor is an Content-Encoding decoder.

EncoderPrecedence This interceptor is an Content-Encoding encoder.

HeaderDecoratorPrecedence HeaderDecoratorPrecedence interceptors should
always come first as they decorate a response (on
the server), or an outgoing request (on the client)
with special, user-defined, headers.

RedirectPrecedence Should be placed on a PreProcessInterceptor.

SecurityPrecedence Should be placed on a PreProcessInterceptor.

ServerInterceptor Identifies an interceptor as a server-side interceptor.

NoJackson Placed on class, parameter, field or method when
you don't want the Jackson provider to be triggered.

ImageWriterParams An annotation that a resource class can use to pass
parameters to the IIOImageProvider.

DoNotUseJAXBProvider Put this on a class or parameter when you do not
want the JAXB MessageBodyReader/Writer used but
instead have a more specific provider you want to
use to marshall the type.

Formatted Format XML output with indentations and newlines.
This is a JAXB Decorator.

Annotation Usage

CHAPTER 12. JAX-RS WEB SERVICES

305

IgnoreMediaTypes Placed on a type, method, parameter, or field to tell
JAXRS not to use JAXB provider for a certain media
type

Stylesheet Specifies an XML stylesheet header.

Wrapped Put this on a method or parameter when you want to
marshal or unmarshal a collection or array of JAXB
objects.

WrappedMap Put this on a method or parameter when you want to
marshal or unmarshal a map of JAXB objects.

XmlHeader Sets an XML header for the returned document.

BadgerFish A JSONConfig.

Mapped A JSONConfig.

XmlNsMap A JSONToXml.

MultipartForm This can be used as a value object for
incoming/outgoing request/responses of the
multipart/form-data mime type.

PartType Must be used in conjunction with Multipart providers
when writing out a List or Map as a multipart/* type.

XopWithMultipartRelated This annotation can be used to process/produce
incoming/outgoing XOP messages (packaged as
multipart/related) to/from JAXB annotated objects.

After Used to add an expiration attribute when signing or
as a stale check for verification.

Signed Convenience annotation that triggers the signing of a
request or response using the DOSETA specification.

Verify Verification of input signature specified in a signature
header.

Annotation Usage

Report a bug

12.5. RESTEASY CONFIGURATION

12.5.1. RESTEasy Configuration Parameters

Development Guide

306

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5368-332130+%5BSpecified%5D&comment=Title%3A+RESTEasy+Defined+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5368-332130+09+Nov+2012+05%3A15+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Table 12.2. Elements

Option Name Default Value Description

resteasy.servlet.mapping.prefix No default If the url-pattern for the Resteasy
servlet-mapping is not /*.

resteasy.scan false Automatically scan WEB-INF/lib
jars and WEB-INF/classes
directory for both @Provider and
JAX-RS resource classes
(@Path, @GET, @POST etc..)
and register them.

resteasy.scan.providers false Scan for @Provider classes and
register them.

resteasy.scan.resources false Scan for JAX-RS resource
classes.

resteasy.providers no default A comma delimited list of fully
qualified @Provider class names
you want to register.

resteasy.use.builtin.providers true Whether or not to register default,
built-in @Provider classes.

resteasy.resources No default A comma delimited list of fully
qualified JAX-RS resource class
names you want to register.

resteasy.jndi.resources No default A comma delimited list of JNDI
names which reference objects
you want to register as JAX-RS
resources.

javax.ws.rs.Application No default Fully qualified name of Application
class to bootstrap in a spec
portable way.

resteasy.media.type.mappings No default Replaces the need for an Accept
header by mapping file name
extensions (like .xml or .txt) to a
media type. Used when the client
is unable to use a Accept header
to choose a representation (i.e. a
browser).

CHAPTER 12. JAX-RS WEB SERVICES

307

resteasy.language.mappings No default Replaces the need for an Accept-
Language header by mapping file
name extensions (like .en or .fr) to
a language. Used when the client
is unable to use a Accept-
Language header to choose a
language (i.e. a browser).

Option Name Default Value Description

IMPORTANT

In a Servlet 3.0 container, the resteasy.scan.* configurations in the web.xml file are
ignored, and all JAX-RS annotated components will be automatically scanned.

Report a bug

12.6. JAX-RS WEB SERVICE SECURITY

12.6.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

Summary

RESTEasy supports the @RolesAllowed, @PermitAll, and @DenyAll annotations on JAX-RS methods.
However, it does not recognize these annotations by default. Follow these steps to configure the
web.xml file and enable role-based security.

WARNING

Do not activate role-based security if the application uses EJBs. The EJB container
will provide the functionality, instead of RESTEasy.

Procedure 12.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

1. Open the web.xml file for the application in a text editor.

2. Add the following <context-param> to the file, within the web-app tags:

<context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>
</context-param>

3. Declare all roles used within the RESTEasy JAX-RS WAR file, using the <security-role> tags:



Development Guide

308

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5555-332191+%5BSpecified%5D&comment=Title%3A+RESTEasy+Configuration+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5555-332191+09+Nov+2012+05%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>
<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>

4. Authorize access to all URLs handled by the JAX-RS runtime for all roles:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/PATH</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>ROLE_NAME</role-name>
 <role-name>ROLE_NAME</role-name>
 </auth-constraint>
</security-constraint>

Result

Role-based security has been enabled within the application, with a set of defined roles.

Example 12.1. Example Role-Based Security Configuration

<web-app>

 <context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>
 </context-param>

 <servlet-mapping>
 <servlet-name>Resteasy</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/security</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>

CHAPTER 12. JAX-RS WEB SERVICES

309

Report a bug

12.6.2. Secure a JAX-RS Web Service using Annotations

Summary

This topic covers the steps to secure a JAX-RS web service using the supported security annotations

Procedure 12.2. Secure a JAX-RS Web Service using Supported Security Annotations

1. Enable role-based security. For more information, refer to: Section 12.6.1, “Enable Role-Based
Security for a RESTEasy JAX-RS Web Service”

2. Add security annotations to the JAX-RS web service. RESTEasy supports the following
annotations:

@RolesAllowed

Defines which roles can access the method. All roles should be defined in the web.xml file.

@PermitAll

Allows all roles defined in the web.xml file to access the method.

@DenyAll

Denies all access to the method.

Report a bug

12.7. RESTEASY LOGGING

12.7.1. About JAX-RS Web Service Logging

RESTEasy supports logging via java.util.logging, log4j, and slf4j. The framework is chosen via the
following algorithm:

1. If log4j is in the application's classpath, log4j will be used.

2. If slf4j is in the application's classpath, slf4j will be used.

3. java.util.logging is the default if neither log4j or slf4j is in the classpath.

4. If the servlet context param resteasy.logger.type is set to java.util.logging, log4j, or slf4j will
override this default behavior

To configure logging for a JAX-RS application, refer here: Section 12.7.2, “Configure a Log Category in
the Management Console”.

Report a bug

</web-app>

Development Guide

310

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5945-431989+%5BSpecified%5D&comment=Title%3A+Enable+Role-Based+Security+for+a+RESTEasy+JAX-RS+Web+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5945-431989+08+Apr+2013+16%3A03+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6095-431984+%5BSpecified%5D&comment=Title%3A+Secure+a+JAX-RS+Web+Service+using+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6095-431984+08+Apr+2013+15%3A59+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6096-432916+%5BSpecified%5D&comment=Title%3A+About+JAX-RS+Web+Service+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6096-432916+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

12.7.2. Configure a Log Category in the Management Console

Log Categories define what log messages to capture and which log handlers to send them to.

IMPORTANT

Currently Log Categories can only be fully configured in the server configuration file. The
final release will support full configuration using the management console and command
line administration tools.

To add a new Log Handler in the server configuration file:

1. Halt the server
Stop the JBoss EAP 6 server if it is already running.

2. Open the configuration file in a text editor.
Depending on whether you run JBoss EAP 6 as a managed domain or standalone server, the
default configuration file location is EAP_HOME/domain/configuration/domain.xml or
EAP_HOME/standalone/configuration/standalone.xml.

3. Find the Logging Subsystem node
Locate the Logging Subsystem configuration node. It will look like this:

The Logging Subsystem configuration will already contain many items such as Log Handlers and
Categories.

4. Add a new logger node
Add a new <logger> node as a child of the Logging Subsystem node. It must have an attribute
called category which is the class or package name which this logger will receive messages
from.

Optionally the use-parent-handlers attribute can also be added. This attribute can be set to
true or false. When set to true all messages received by this log category are also
processed by the handlers of the root logger. If not specified, this attribute defaults to true.

5. Specify log level
Add a <level> element with an attribute called name. The value of name must be the log level
that this category will apply to.

6. Optional: Specify log handlers

<subsystem xmlns="urn:jboss:domain:logging:1.1">

</subsystem>

<logger category="com.acme.accounts.receivables">

</logger>

<logger category="com.acme.accounts.receivables">
 <level name="DEBUG"/>
</logger>

CHAPTER 12. JAX-RS WEB SERVICES

311

Add a <handlers> element containing a <handler> element for each log handler you wish to
use to process the log messages from this category.

If no handlers are specified then the log message will not be processed any further unless use-
parent-handler is set to true in which case the handlers of the root-logger are used.

7. Restart the JBoss EAP 6 server.

Report a bug

12.7.3. Logging Categories Defined in RESTEasy

Table 12.3. Categories

Category Function

org.jboss.resteasy.core Logs all activity by the core RESTEasy
implementation.

org.jboss.resteasy.plugins.providers Logs all activity by RESTEasy entity providers.

org.jboss.resteasy.plugins.server Logs all activity by the RESTEasy server
implementation.

org.jboss.resteasy.specimpl Logs all activity by JAX-RS implementing classes.

org.jboss.resteasy.mock Logs all activity by the RESTEasy mock framework.

Report a bug

12.8. EXCEPTION HANDLING

12.8.1. Create an Exception Mapper

Summary

Exception mappers are custom, application provided components that catch thrown exceptions and write
specific HTTP responses.

Example 12.2. Exception Mapper

An exception mapper is a class that is annotated with the @Provider annotation, and implements the
ExceptionMapper interface.

<logger category="com.acme.accounts.receivables">
 <level name="DEBUG"/>
 <handlers>
 <handler name="ACCOUNTS-DEBUG-FILE"/>
 </handlers>
</logger>

Development Guide

312

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4597-459993+%5BSpecified%5D&comment=Title%3A+Configure+a+Log+Category+in+the+Management+Console%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4597-459993+14+Jun+2013+14%3A21+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+1772-332175+%5BSpecified%5D&comment=Title%3A+Logging+Categories+Defined+in+RESTEasy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1772-332175+09+Nov+2012+05%3A24+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

An example exception mapper is shown below.

To register an exception mapper, list it in the web.xml file under the resteasy.providers context-
param, or register it programatically through the ResteasyProviderFactory class.

Report a bug

12.8.2. RESTEasy Internally Thrown Exceptions

Table 12.4. Exception List

Exception HTTP Code Description

BadRequestException 400 Bad Request. The request was
not formatted correctly, or there
was a problem processing the
request input.

UnauthorizedException 401 Unauthorized. Security exception
thrown if you are using
RESTEasy's annotation-based
role-based security.

InternalServerErrorException 500 Internal Server Error.

MethodNotAllowedException 405 There is no JAX-RS method for
the resource that can handle the
invoked HTTP operation.

NotAcceptableException 406 There is no JAX-RS method that
can produce the media types
listed in the Accept header.

NotFoundException 404 There is no JAX-RS method that
serves the request path/resource.

@Provider
public class EJBExceptionMapper implements
ExceptionMapper<javax.ejb.EJBException>
 {
 Response toResponse(EJBException exception) {
 return Response.status(500).build();
 }
}

CHAPTER 12. JAX-RS WEB SERVICES

313

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6097-332219+%5BSpecified%5D&comment=Title%3A+Create+an+Exception+Mapper%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6097-332219+09+Nov+2012+05%3A34+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

ReaderException 400 All exceptions thrown from
MessageBodyReaders are
wrapped within this exception. If
there is no
ExceptionMapper for the
wrapped exception, or if the
exception is not a
WebApplicationException
, then RESTEasy will return a 400
code by default.

WriterException 500 All exceptions thrown from
MessageBodyWriters are
wrapped within this exception. If
there is no
ExceptionMapper for the
wrapped exception, or if the
exception is not a
WebApplicationException
, then RESTEasy will return a 400
code by default.

o.j.r.plugins.providers.jaxb.JAXBU
nmarshalException

400 The JAXB providers (XML and
Jettison) throw this exception on
reads. They may be wrapping
JAXBExceptions. This class
extends ReaderException.

o.j.r.plugins.providers.jaxb.JAXBM
arshalException

500 The JAXB providers (XML and
Jettison) throw this exception on
writes. They may be wrapping
JAXBExceptions. This class
extends WriterException.

ApplicationException N/A Wraps all exceptions thrown from
application code. It functions in
the same way as
InvocationTargetExcepti
on. If there is an
ExceptionMapper for wrapped
exception, then that is used to
handle the request.

Failure N/A Internal RESTEasy error. Not
logged.

LoggableFailure N/A Internal RESTEasy error. Logged.

Exception HTTP Code Description

Development Guide

314

DefaultOptionsMethodException N/A If the user invokes HTTP
OPTIONS and no JAX-RS
method for it, RESTEasy provides
a default behavior by throwing this
exception.

Exception HTTP Code Description

Report a bug

12.9. RESTEASY INTERCEPTORS

12.9.1. Intercept JAX-RS Invocations

Summary

RESTEasy can intercept JAX-RS invocations and route them through listener-like objects called
interceptors. This topic covers descriptions of the four types of interceptors.

Example 12.3. MessageBodyReader/Writer Interceptors

MessageBodyReaderInterceptors and MessageBodyWriterInterceptors can be used on the either the
server or client side. They are annotated with @Provider, as well as either @ServerInterceptor
or @ClientInterceptor so that RESTEasy knows whether or not to add them to the interceptor
list.

These interceptors wrap around the invocation of MessageBodyReader.readFrom() or
MessageBodyWriter.writeTo(). They can be used to wrap the Output or Input streams.

RESTEasy GZIP support has interceptors that create and override the default Output and Input
streams with a GzipOutputStream or GzipInputStream so that gzip encoding can work. They can also
be used to append headers to the response, or the outgoing request on the client side.

The interceptors and the MessageBodyReader or Writer is invoked in one big Java call stack.
MessageBodyReaderContext.proceed() or MessageBodyWriterContext.proceed() is
called in order to go to the next interceptor or, if there are no more interceptors to invoke, the

public interface MessageBodyReaderInterceptor
 {
 Object read(MessageBodyReaderContext context) throws IOException,
WebApplicationException;

 }

public interface MessageBodyWriterInterceptor
 {
 void write(MessageBodyWriterContext context) throws IOException,
WebApplicationException;

 }

CHAPTER 12. JAX-RS WEB SERVICES

315

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2811-432841+%5BSpecified%5D&comment=Title%3A+RESTEasy+Internally+Thrown+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2811-432841+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

readFrom() or writeTo() method of the MessageBodyReader or MessageBodyWriter. This
wrapping allows objects to be modified before they get to the Reader or Writer, and then cleaned up
after proceed() returns.

The example below is a server side interceptor, that adds a header value to the response.

Example 12.4. PreProcessInterceptor

PreProcessInterceptors run after a JAX-RS resource method is found to invoke on, but before the
actual invocation happens. They are annotated with @ServerInterceptor, and run in sequence.

These interfaces are only usable on the server. They can be used to implement security features, or
to handle the Java request. The RESTEasy security implementation uses this type of interceptor to
abort requests before they occur if the user does not pass authorization. The RESTEasy caching
framework also uses this to return cached responses to avoid invoking methods again.

If the preProcess() method returns a ServerResponse then the underlying JAX-RS method will not
get invoked, and the runtime will process the response and return to the client. If the preProcess()
method does not return a ServerResponse, the underlying JAX-RS method will be invoked.

Example 12.5. PostProcessInterceptors

PostProcessInterceptors run after the JAX-RS method was invoked, but before MessageBodyWriters
are invoked. They are used if a response header needs to be set when a MessageBodyWriter may
not be invoked.

They can only be used on the server side. They do not wrap anything, and are invoked in sequence.

@Provider
@ServerInterceptor
public class MyHeaderDecorator implements MessageBodyWriterInterceptor {

 public void write(MessageBodyWriterContext context) throws
IOException, WebApplicationException
 {
 context.getHeaders().add("My-Header", "custom");
 context.proceed();
 }
}

public interface PreProcessInterceptor
 {
 ServerResponse preProcess(HttpRequest request, ResourceMethod
method) throws Failure, WebApplicationException;
 }

public interface PostProcessInterceptor
 {
 void postProcess(ServerResponse response);

Development Guide

316

Example 12.6. ClientExecutionInterceptors

ClientExecutionInterceptors are only usable on the client side. They wrap around the HTTP invocation
that goes to the server. They must be annotated with @ClientInterceptor and @Provider.
These interceptors run after the MessageBodyWriter, and after the ClientRequest has been built on
the client side.

RESTEasy GZIP support uses ClientExecutionInterceptors to set the Accept header to contain "gzip,
deflate" before the request goes out. The RESTEasy client cache uses it to check to see if its cache
contains the resource before going over the wire.

Report a bug

12.9.2. Bind an Interceptor to a JAX-RS Method

Summary

All registered interceptors are invoked for every request by default. The AcceptedByMethod interface
can be implemented to fine tune this behavior.

Example 12.7. Binding Interceptors Example

RESTEasy will call the accept() method for interceptors that implement the
AcceptedByMethod interface. If the method returns true, the interceptor will be added to the JAX-
RS method's call chain; otherwise it will be ignored for that method.

In the example below, accept() determines if the @GET annotationn is present on the JAX-RS
method. If it is, the interceptor will be applied to the method's call chain.

 }

public interface ClientExecutionInterceptor
{
 ClientResponse execute(ClientExecutionContext ctx) throws Exception;
}

public interface ClientExecutionContext
{
 ClientRequest getRequest();

 ClientResponse proceed() throws Exception;
}

@Provider
@ServerInterceptor
public class MyHeaderDecorator implements MessageBodyWriterInterceptor,
AcceptedByMethod {

 public boolean accept(Class declaring, Method method) {
 return method.isAnnotationPresent(GET.class);

CHAPTER 12. JAX-RS WEB SERVICES

317

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2924-432842+%5BSpecified%5D&comment=Title%3A+Intercept+JAX-RS+Invocations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2924-432842+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

12.9.3. Register an Interceptor

Summary

This topic covers how to register a RESTEasy JAX-RS interceptor in an application.

Procedure 12.3. Register an Interceptor

To register an interceptor, list it in the web.xml file under the resteasy.providers context-
param, or return it as a class or as an object in the Application.getClasses() or
Application.getSingletons() method.

Report a bug

12.9.4. Interceptor Precedence Families

12.9.4.1. About Interceptor Precedence Families

Summary

Interceptors can be sensitive to the order they are invoked. RESTEasy groups interceptors in families to
make ordering them simpler. This reference topic covers the built-in interceptor precedence families and
the interceptors associated with each.

There are five predefined families. They are invoked in the following order:

SECURITY

SECURITY interceptors are usually PreProcessInterceptors. They are invoked first because as little
as possible should be done before the invocation is authorized.

HEADER_DECORATOR

HEADER_DECORATOR interceptors add headers to a response or an outgoing request. They follow
the security interceptors as the added headers may affect the behavior of other interceptor families.

ENCODER

ENCODER interceptors change the OutputStream. For example, the GZIP interceptor creates a
GZIPOutputStream to wrap the real OutputStream for compression.

REDIRECT

 }

 public void write(MessageBodyWriterContext context) throws
IOException, WebApplicationException
 {
 context.getHeaders().add("My-Header", "custom");
 context.proceed();
 }
}

Development Guide

318

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2927-432843+%5BSpecified%5D&comment=Title%3A+Bind+an+Interceptor+to+a+JAX-RS+Method%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2927-432843+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2935-432844+%5BSpecified%5D&comment=Title%3A+Register+an+Interceptor%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2935-432844+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

REDIRECT interceptors are usually used in PreProcessInterceptors, as they may reroute the request
and totally bypass the JAX-RS method.

DECODER

DECODER interceptors wrap the InputStream. For example, the GZIP interceptor decoder wraps the
InputStream in a GzipInputStream instance.

Interceptors that are not associated with a precedence family are invoked after all others. To assign an
interceptor to a precedence family, use the @Precedence annotation, referred to in Section 12.4,
“RESTEasy Defined Annotations”.

Report a bug

12.9.4.2. Define a Custom Interceptor Precedence Family

Summary

Custom precedence families can be created and registered in the web.xml file. This topic covers
examples of the context params available for defining interceptor precedence families.

There are three context params that can be used to define a new precedence family.

Example 12.8. resteasy.append.interceptor.precedence

The resteasy.append.interceptor.precedence context param appends the new precedence
family to the default precedence family list.

Example 12.9. resteasy.interceptor.before.precedence

The resteasy.interceptor.before.precedence context param defines the default
precedence family that the custom family is executed before. The parameter value takes the form
DEFAULT_PRECEDENCE_FAMILY/CUSTOM_PRECEDENCE_FAMILY, delimited by a ':'.

Example 12.10. resteasy.interceptor.after.precedence

The resteasy.interceptor.after.precedence context param defines the default precedence
family that the custom family is executed after. The parameter value takes the form
DEFAULT_PRECEDENCE_FAMILY/CUSTOM_PRECEDENCE_FAMILY, delimited by a :.

<context-param>
 <param-name>resteasy.append.interceptor.precedence</param-name>
 <param-value>CUSTOM_PRECEDENCE_FAMILY</param-value>
</context-param>

<context-param>
 <param-name>resteasy.interceptor.before.precedence</param-name>
 <param-value>DEFAULT_PRECEDENCE_FAMILY :
CUSTOM_PRECEDENCE_FAMILY</param-value>
</context-param>

CHAPTER 12. JAX-RS WEB SERVICES

319

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6092-332203+%5BSpecified%5D&comment=Title%3A+About+Interceptor+Precedence+Families%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6092-332203+09+Nov+2012+05%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Precedence families are applied to interceptors using the @Precedence annotation. For the default
precedence family list, refer to: Section 12.9.4.1, “About Interceptor Precedence Families”.

Report a bug

12.10. STRING BASED ANNOTATIONS

12.10.1. Convert String Based @*Param Annotations to Objects

JAX-RS @*Param annotations, including @PathParam and @FormParam, are represented as strings in
a raw HTTP request. These types of injected parameters can be converted to objects if these objects
have a valueOf(String) static method or a constructor that takes one String parameter.

RESTEasy provides two proprietary @Provider interfaces to handle this conversion for classes that
don't have either a valueOf(String) static method, or a string constructor.

Example 12.11. StringConverter

The StringConverter interface is implemented to provide custom string marshalling. It is registered
under the resteasy.providers context-param in the web.xml file. It can also be registered manually by
calling the ResteasyProviderFactory.addStringConverter() method.

The example below is a simple example of using StringConverter.

<context-param>
 <param-name>resteasy.interceptor.after.precedence</param-name>
 <param-value>DEFAULT_PRECEDENCE_FAMILY :
CUSTOM_PRECEDENCE_FAMILY</param-value>
</context-param>

import org.jboss.resteasy.client.ProxyFactory;
import org.jboss.resteasy.spi.StringConverter;
import org.jboss.resteasy.test.BaseResourceTest;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

import javax.ws.rs.HeaderParam;
import javax.ws.rs.MatrixParam;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.ext.Provider;

public class StringConverterTest extends BaseResourceTest
{
 public static class POJO
 {
 private String name;

 public String getName()

Development Guide

320

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2939-432845+%5BSpecified%5D&comment=Title%3A+Define+a+Custom+Interceptor+Precedence+Family%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2939-432845+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

 {
 return name;
 }

 public void setName(String name)
 {
 this.name = name;
 }
 }

 @Provider
 public static class POJOConverter implements StringConverter<POJO>
 {
 public POJO fromString(String str)
 {
 System.out.println("FROM STRNG: " + str);
 POJO pojo = new POJO();
 pojo.setName(str);
 return pojo;
 }

 public String toString(POJO value)
 {
 return value.getName();
 }
 }

 @Path("/")
 public static class MyResource
 {
 @Path("{pojo}")
 @PUT
 public void put(@QueryParam("pojo")POJO q, @PathParam("pojo")POJO
pp,
 @MatrixParam("pojo")POJO mp, @HeaderParam("pojo")POJO hp)
 {
 Assert.assertEquals(q.getName(), "pojo");
 Assert.assertEquals(pp.getName(), "pojo");
 Assert.assertEquals(mp.getName(), "pojo");
 Assert.assertEquals(hp.getName(), "pojo");
 }
 }

 @Before
 public void setUp() throws Exception
 {

dispatcher.getProviderFactory().addStringConverter(POJOConverter.class);
 dispatcher.getRegistry().addPerRequestResource(MyResource.class);
 }

 @Path("/")
 public static interface MyClient
 {
 @Path("{pojo}")
 @PUT

CHAPTER 12. JAX-RS WEB SERVICES

321

Example 12.12. StringParameterUnmarshaller

The StringParameterUnmarshaller interface is sensitive to the annotations placed on the
parameter or field you are injecting into. It is created per injector. The setAnnotations() method is
called by resteasy to initialize the unmarshaller.

This interface can be added by creating and registering a provider that implements the interface. It
can also be bound using a meta-annotation called
org.jboss.resteasy.annotations.StringsParameterUnmarshallerBinder.

The example below formats a java.util.Date based @PathParam.

 void put(@QueryParam("pojo")POJO q, @PathParam("pojo")POJO pp,
 @MatrixParam("pojo")POJO mp, @HeaderParam("pojo")POJO hp);
 }

 @Test
 public void testIt() throws Exception
 {
 MyClient client = ProxyFactory.create(MyClient.class,
"http://localhost:8081");
 POJO pojo = new POJO();
 pojo.setName("pojo");
 client.put(pojo, pojo, pojo, pojo);
 }
}

public class StringParamUnmarshallerTest extends BaseResourceTest
{
 @Retention(RetentionPolicy.RUNTIME)
 @StringParameterUnmarshallerBinder(DateFormatter.class)
 public @interface DateFormat
 {
 String value();
 }

 public static class DateFormatter implements
StringParameterUnmarshaller<Date>
 {
 private SimpleDateFormat formatter;

 public void setAnnotations(Annotation[] annotations)
 {
 DateFormat format = FindAnnotation.findAnnotation(annotations,
DateFormat.class);
 formatter = new SimpleDateFormat(format.value());
 }

 public Date fromString(String str)
 {
 try
 {
 return formatter.parse(str);

Development Guide

322

It defines a new annotation called @DateFormat. The annotation is annotated with the meta-
annotation StringParameterUnmarshallerBinder with a reference to the DateFormater classes.

The Service.get() method has a @PathParam parameter that is also annotated with @DateFormat.
The application of @DateFormat triggers the binding of the DateFormatter. The DateFormatter will
now be run to unmarshal the path parameter into the date paramter of the get() method.

Report a bug

12.11. CONFIGURE FILE EXTENSIONS

12.11.1. Map File Extensions to Media Types in the web.xml File

 }
 catch (ParseException e)
 {
 throw new RuntimeException(e);
 }
 }
 }

 @Path("/datetest")
 public static class Service
 {
 @GET
 @Produces("text/plain")
 @Path("/{date}")
 public String get(@PathParam("date") @DateFormat("MM-dd-yyyy")
Date date)
 {
 System.out.println(date);
 Calendar c = Calendar.getInstance();
 c.setTime(date);
 Assert.assertEquals(3, c.get(Calendar.MONTH));
 Assert.assertEquals(23, c.get(Calendar.DAY_OF_MONTH));
 Assert.assertEquals(1977, c.get(Calendar.YEAR));
 return date.toString();
 }
 }

 @BeforeClass
 public static void setup() throws Exception
 {
 addPerRequestResource(Service.class);
 }

 @Test
 public void testMe() throws Exception
 {
 ClientRequest request = new
ClientRequest(generateURL("/datetest/04-23-1977"));
 System.out.println(request.getTarget(String.class));
 }
}

CHAPTER 12. JAX-RS WEB SERVICES

323

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2792-432840+%5BSpecified%5D&comment=Title%3A+Convert+String+Based+%40*Param+Annotations+to+Objects%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2792-432840+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Summary

Some clients, like browsers, cannot use the Accept and Accept-Language headers to negotiate the
representation's media type or language. RESTEasy can map file name suffixes to media types and
languages to deal with this issue. Follow these steps to map media types to file extensions, in the
web.xml file.

Procedure 12.4. Map Media Types to File Extensions

1. Open the web.xml file for the application in a text editor.

2. Add the context-param resteasy.media.type.mappings to the file, inside the web-app
tags:

<context-param>
 <param-name>resteasy.media.type.mappings</param-name>
</context-param>

3. Configure the parameter values. The mappings form a comma delimited list. Each mapping is
delimited by a ::

Example 12.13. Example Mapping

Report a bug

12.11.2. Map File Extensions to Languages in the web.xml File

Summary

Some clients, like browsers, cannot use the Accept and Accept-Language headers to negotiate the
representation's media type or language. RESTEasy can map file name suffixes to media types and
languages to deal with this issue. Follow these steps to map languages to file extensions, in the
web.xml file.

Procedure 12.5. Map File Extensions to Languages in the web.xml File

1. Open the web.xml file for the application in a text editor.

2. Add the context-param resteasy.language.mappings to the file, inside the web-app tags:

<context-param>
 <param-name>resteasy.language.mappings</param-name>
</context-param>

<context-param>
 <param-name>resteasy.media.type.mappings</param-name>
 <param-value>html : text/html, json : application/json, xml :
application/xml</param-value>
</context-param>

Development Guide

324

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5416-445265+%5BSpecified%5D&comment=Title%3A+Map+File+Extensions+to+Media+Types+in+the+web.xml+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5416-445265+26+Apr+2013+10%3A25+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3. Configure the parameter values. The mappings form a comma delimited list. Each mapping is
delimited by a ::

Example 12.14. Example Mapping

Report a bug

12.11.3. RESTEasy Supported Media Types

Table 12.5. Media Types

Media Type Java Type

application/*+xml, text/*+xml, application/*+json,
application/*+fastinfoset, application/atom+*

JaxB annotated classes

application/*+xml, text/*+xml org.w3c.dom.Document

/ java.lang.String

/ java.io.InputStream

text/plain primtives, java.lang.String, or any type that has a
String constructor, or static valueOf(String) method
for input, toString() for output

/ javax.activation.DataSource

/ byte[]

/ java.io.File

application/x-www-form-urlencoded javax.ws.rs.core.MultivaluedMap

Report a bug

12.12. RESTEASY JAVASCRIPT API

12.12.1. About the RESTEasy JavaScript API

<context-param>
 <param-name>resteasy.language.mappings</param-name>
 <param-value> en : en-US, es : es, fr : fr</param-name>
</context-param>

CHAPTER 12. JAX-RS WEB SERVICES

325

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5944-431995+%5BSpecified%5D&comment=Title%3A+Map+File+Extensions+to+Languages+in+the+web.xml+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5944-431995+08+Apr+2013+16%3A09+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+1822-432839+%5BSpecified%5D&comment=Title%3A+RESTEasy+Supported+Media+Types%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1822-432839+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

RESTEasy can generate a JavaScript API that uses AJAX calls to invoke JAX-RS operations. Each JAX-
RS resource class will generate a JavaScript object of the same name as the declaring class or interface.
The JavaScript object contains each JAX-RS method as properties.

Example 12.15. Simple JAX-RS JavaScript API Example

The interface above defines the methods Y and Z, which become properties in the JavaScript API,
shown below:

Each JavaScript API method takes an optional object as single parameter where each property is a
cookie, header, path, query or form parameter as identified by their name, or the API parameter
properties. The properties are available here: Section 12.12.3, “RESTEasy Javascript API Parameters”.

Report a bug

12.12.2. Enable the RESTEasy JavaScript API Servlet

Summary

The RESTEasy JavaScript API is not enabled by default. Follow these steps to enable it using the
web.xml file.

Procedure 12.6. Edit web.xml to enable RESTEasy JavaScript API

1. Open the web.xml file of the application in a text editor.

2. Add the following configuration to the file, inside the web-app tags:

<servlet>
 <servlet-name>RESTEasy JSAPI</servlet-name>
 <servlet-class>org.jboss.resteasy.jsapi.JSAPIServlet</servlet-
class>
</servlet>

<servlet-mapping>
 <servlet-name>RESTEasy JSAPI</servlet-name>
 <url-pattern>/URL</url-pattern>
</servlet-mapping>

@Path("/")
public interface X{
 @GET
 public String Y();
 @PUT
 public void Z(String entity);
}

var X = {
 Y : function(params){...},
 Z : function(params){...}
};

Development Guide

326

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6102-452219+%5BSpecified%5D&comment=Title%3A+About+the+RESTEasy+JavaScript+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6102-452219+24+May+2013+10%3A41+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

12.12.3. RESTEasy Javascript API Parameters

Table 12.6. Parameter Properties

Property Default Value Description

$entity The entity to send as a PUT,
POST request.

$contentType The MIME type of the body entity
sent as the Content-Type header.
Determined by the @Consumes
annotation.

$accepts */* The accepted MIME types sent as
the Accept header. Determined by
the @Provides annotation.

$callback Set to a function (httpCode,
xmlHttpRequest, value) for an
asynchronous call. If not present,
the call will be synchronous and
return the value.

@apiURL Set to the base URI of the JAX-
RS endpoint, not including the last
slash.

$username If username and password are
set, they will be used for
credentials for the request.

$password If username and password are
set, they will be used for
credentials for the request.

Report a bug

12.12.4. Build AJAX Queries with the JavaScript API

Summary

The RESTEasy JavaScript API can be used to manually construct requests. This topic covers examples
of this behavior.

Example 12.16. The REST Object

The REST object can be used to override RESTEasy JavaScript API client behavior:

// Change the base URL used by the API:

CHAPTER 12. JAX-RS WEB SERVICES

327

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4921-433120+%5BSpecified%5D&comment=Title%3A+Enable+the+RESTEasy+JavaScript+API+Servlet%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4921-433120+11+Apr+2013+15%3A57+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4922-432904+%5BSpecified%5D&comment=Title%3A+RESTEasy+Javascript+API+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4922-432904+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The REST object contains the following read-write properties:

apiURL

Set by default to the JAX-RS root URL. Used by every JavaScript client API functions when
constructing the requests.

log

Set to a function(string) in order to receive RESTEasy client API logs. This is useful if you want to
debug your client API and place the logs where you can see them.

Example 12.17. The REST.Request Class

The REST.Request class can be used to build custom requests:

Report a bug

12.12.5. REST.Request Class Members

Table 12.7. REST.Request Class

Member Description

execute(callback) Executes the request with all the information set in
the current object. The value is passed to the
optional argument callback, not returned.

setAccepts(acceptHeader) Sets the Accept request header. Defaults to */*.

setCredentials(username, password) Sets the request credentials.

REST.apiURL = "http://api.service.com";

// log everything in a div element
REST.log = function(text){
 jQuery("#log-div").append(text);
};

var r = new REST.Request();
r.setURI("http://api.service.com/orders/23/json");
r.setMethod("PUT");
r.setContentType("application/json");
r.setEntity({id: "23"});
r.addMatrixParameter("JSESSIONID", "12309812378123");
r.execute(function(status, request, entity){
 log("Response is "+status);
});

Development Guide

328

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5415-332241+%5BSpecified%5D&comment=Title%3A+Build+AJAX+Queries+with+the+JavaScript+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5415-332241+09+Nov+2012+05%3A38+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

setEntity(entity) Sets the request entity.

setContentType(contentTypeHeader) Sets the Content-Type request header.

setURI(uri) Sets the request URI. This should be an absolute
URI.

setMethod(method) Sets the request method. Defaults to GET.

setAsync(async) Controls whether the request should be
asynchronous. Defaults to true.

addCookie(name, value) Sets the given cookie in the current document when
executing the request. This will be persistent in the
browser.

addQueryParameter(name, value) Adds a query parameter to the URI query part.

addMatrixParameter(name, value) Adds a matrix parameter (path parameter) to the last
path segment of the request URI.

addHeader(name, value) Adds a request header.

Member Description

Report a bug

12.13. RESTEASY ASYNCHRONOUS JOB SERVICE

12.13.1. About the RESTEasy Asynchronous Job Service

The RESTEasy Asynchronous Job Service is designed to add asynchronous behavior to the HTTP
protocol. While HTTP is a synchronous protocol it does have a faint idea of asynchronous invocations.
The HTTP 1.1 response code 202, "Accepted" means that the server has received and accepted the
response for processing, but the processing has not yet been completed. The Asynchronous Job Service
builds around this.

To enable the service, refer to: Section 12.13.2, “Enable the Asynchronous Job Service”. For examples
of how the service works, refer to Section 12.13.3, “Configure Asynchronous Jobs for RESTEasy”.

Report a bug

12.13.2. Enable the Asynchronous Job Service

Procedure 12.7. Modify the web.xml file

Enable the asynchronous job service in the web.xml file:

<context-param>

CHAPTER 12. JAX-RS WEB SERVICES

329

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5435-332242+%5BSpecified%5D&comment=Title%3A+REST.Request+Class+Members%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5435-332242+09+Nov+2012+05%3A38+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6103-332199+%5BSpecified%5D&comment=Title%3A+About+the+RESTEasy+Asynchronous+Job+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6103-332199+09+Nov+2012+05%3A30+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Result

The asynchronous job service has been enabled. For configuration options, refer to: Section 12.13.4,
“Asynchronous Job Service Configuration Parameters”.

Report a bug

12.13.3. Configure Asynchronous Jobs for RESTEasy

Summary

This topic covers examples of the query parameters for asynchronous jobs with RESTEasy.

WARNING

Role based security does not work with the Asynchronous Job Service, as it cannot
be implemented portably. If the Asynchronous Job Serivce is used, application
security must be done through XML declarations in the web.xml file instead.

IMPORTANT

While GET, DELETE, and PUT methods can be invoked asynchronously, this breaks the
HTTP 1.1 contract of these methods. While these invocations may not change the state of
the resource if invoked more than once, they do change the state of the server as new
Job entries with each invocation.

Example 12.18. The Asynch Parameter

The asynch query parameter is used to run invocations in the background. A 202 Accepted
response is returned, as well as a Location header with a URL pointing to where the response of the
background method is located.

POST http://example.com/myservice?asynch=true

The example above will return a 202 Accepted response. It will also return a Location header with a
URL pointing to where the response of the background method is located. An example of the location
header is shown below:

HTTP/1.1 202 Accepted
Location: http://example.com/asynch/jobs/3332334

The URI will take the form of:

/asynch/jobs/{job-id}?wait={millisconds}|nowait=true

 <param-name>resteasy.async.job.service.enabled</param-name>
 <param-value>true</param-value>
</context-param>



Development Guide

330

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2968-432847+%5BSpecified%5D&comment=Title%3A+Enable+the+Asynchronous+Job+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2968-432847+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

GET, POST and DELETE operations can be performed on this URL.

GET returns the JAX-RS resource method invoked as a response if the job was completed. If
the job has not been completed, this GET will return a 202 Accepted response code. Invoking
GET does not remove the job, so it can be called multiple times.

POST does a read of the job response and removes the job if it has been completed.

DELETE is called to manually clean up the job queue.

NOTE

When the Job queue is full, it will evict the earliest job from memory
automatically, without needing to call DELETE.

Example 12.19. Wait / Nowait

The GET and POST operations allow for the maximum wait time to be defined, using the wait and
nowait query parameters. If the wait parameter is not specified, the operation will default to
nowait=true, and will not wait at all if the job is not complete. The wait parameter is defined in
milliseconds.

POST http://example.com/asynch/jobs/122?wait=3000

Example 12.20. The Oneway Parameter

RESTEasy supports fire and forget jobs, using the oneway query parameter.

POST http://example.com/myservice?oneway=true

The example above will return a 202 Accepted response, but no job will be created.

Report a bug

12.13.4. Asynchronous Job Service Configuration Parameters

Summary

The table below details the configurable context-params for the Asynchronous Job Service. These
parameters can be configured in the web.xml file.

Table 12.8. Configuration Parameters

Parameter Description

resteasy.async.job.service.max.job.results Number of job results that can be held in the memory
at any one time. Default value is 100.

CHAPTER 12. JAX-RS WEB SERVICES

331

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+2965-432846+%5BSpecified%5D&comment=Title%3A+Configure+Asynchronous+Jobs+for+RESTEasy%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2965-432846+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

resteasy.async.job.service.max.wait Maximum wait time on a job when a client is querying
for it. Default value is 300000.

resteasy.async.job.service.thread.pool.size Thread pool size of the background threads that run
the job. Default value is 100.

resteasy.async.job.service.base.path Sets the base path for the job URIs. Default value is
/asynch/jobs

Parameter Description

Example 12.21. Example Asynchronous Jobs Configuration

<web-app>
 <context-param>
 <param-name>resteasy.async.job.service.enabled</param-name>
 <param-value>true</param-value>
 </context-param>

 <context-param>
 <param-name>resteasy.async.job.service.max.job.results</param-
name>
 <param-value>100</param-value>
 </context-param>
 <context-param>
 <param-name>resteasy.async.job.service.max.wait</param-name>
 <param-value>300000</param-value>
 </context-param>
 <context-param>
 <param-name>resteasy.async.job.service.thread.pool.size</param-
name>
 <param-value>100</param-value>
 </context-param>
 <context-param>
 <param-name>resteasy.async.job.service.base.path</param-name>
 <param-value>/asynch/jobs</param-value>
 </context-param>

 <listener>
 <listener-class>
 org.jboss.resteasy.plugins.server.servlet.ResteasyBootstrap
 </listener-class>
 </listener>

 <servlet>
 <servlet-name>Resteasy</servlet-name>
 <servlet-class>

org.jboss.resteasy.plugins.server.servlet.HttpServletDispatcher
 </servlet-class>
 </servlet>

 <servlet-mapping>

Development Guide

332

Report a bug

12.14. RESTEASY JAXB

12.14.1. Create a JAXB Decorator

Summary

RESTEasy's JAXB providers have a pluggable way to decorate Marshaller and Unmarshaller instances.
An annotation is created that can trigger either a Marshaller or Unmarshaller instance. This topic covers
the steps to create a JAXB decorator with RESTEasy.

Procedure 12.8. Create a JAXB Decorator with RESTEasy

1. Create the Processor Class

a. Create a class that implements DecoratorProcessor<Target, Annotation>. The target is
either the JAXB Marshaller or Unmarshaller class. The annotation is created in step two.

b. Annotate the class with @DecorateTypes, and declare the MIME Types the decorator
should decorate.

c. Set properties or values within the decorate function.

Example 12.22. Example Processor Class

 <servlet-name>Resteasy</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

</web-app>

import org.jboss.resteasy.core.interception.DecoratorProcessor;
import org.jboss.resteasy.annotations.DecorateTypes;

import javax.xml.bind.Marshaller;
import javax.xml.bind.PropertyException;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.Produces;
import java.lang.annotation.Annotation;

@DecorateTypes({"text/*+xml", "application/*+xml"})
public class PrettyProcessor implements
DecoratorProcessor<Marshaller, Pretty>
{
 public Marshaller decorate(Marshaller target, Pretty
annotation,
 Class type, Annotation[] annotations, MediaType mediaType)
 {
 target.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
Boolean.TRUE);

CHAPTER 12. JAX-RS WEB SERVICES

333

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6614-332231+%5BSpecified%5D&comment=Title%3A+Asynchronous+Job+Service+Configuration+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6614-332231+09+Nov+2012+05%3A36+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

2. Create the Annotation

a. Create a custom interface that is annotated with the @Decorator annotation.

b. Declare the processor and target for the @Decorator annotation. The processor is created in
step one. The target is either the JAXB Marshaller or Unmarshaller class.

Example 12.23. Example Annotation

3. Add the annotation created in step two to a function so that either the input or output is
decorated when it is marshalled.

Result

The JAXB decorator has been created and applied within the JAX-RS web service.

Report a bug

12.15. RESTEASY ATOM SUPPORT

12.15.1. About the Atom API and Provider

The RESTEasy Atom API and Provider is a simple object model that RESTEasy defines to represent
Atom. The main classes for the API are in the org.jboss.resteasy.plugins.providers.atom
package. RESTEasy uses JAXB to marshal and unmarshal the API. The provider is JAXB based, and is
not limited to sending atom objects using XML. All JAXB providers that RESTEasy has can be reused by
the Atom API and provider, including JSON and fastinfoset. Refer to the javadocs for more information on
the API.

Report a bug

 }
}

import org.jboss.resteasy.annotations.Decorator;

@Target({ElementType.TYPE, ElementType.METHOD,
ElementType.PARAMETER, ElementType.FIELD})
@Retention(RetentionPolicy.RUNTIME)
@Decorator(processor = PrettyProcessor.class, target =
Marshaller.class)
public @interface Pretty {}

Development Guide

334

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6099-433130+%5BSpecified%5D&comment=Title%3A+Create+a+JAXB+Decorator%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6099-433130+11+Apr+2013+16%3A04+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6849-155458+%5BSpecified%5D&comment=Title%3A+About+the+Atom+API+and+Provider%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6849-155458+10+Jul+2012+13%3A20+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 13. JAX-WS WEB SERVICES

13.1. ABOUT JAX-WS WEB SERVICES

Java API for XML Web Services (JAX-WS) is an API included in the Java Enterprise Edition (EE)
platform, and is used to create Web Services. Web Services are applications designed to communicate
with each other over a network, typically exchanging information in XML or other structured text formats.
Web Services are platform-independent. A typical JAX-WS application uses a client/server model. The
server component is called a Web Service Endpoint.

JAX-WS has a counterpart for smaller and simpler Web Services, which use a protocol called JAX-RS.
JAX-RS is a protocol for Representational State Transfer, or REST. JAX-RS applications are typically
light-weight, and rely only on the HTTP protocol itself for communication. JAX-WS makes it easier to
support various Web Service oriented protocols, such as WS-Notification, WS-Addressing, WS-
Policy, WS-Security, and WS-Trust. They communicate using a specialized XML languaged called
Simple Object Access Protocol (SOAP), which defines a message architecture and message formats.

A JAX-WS Web Services also includes a machine-readable description of the operations it provides,
written in Web Services Description Language (WSDL), which is a specialized XML document type.

A Web Service Endpoint consists of a class which implements WebService and WebMethod interfaces.

A Web Service Client consists of a client which depends upon several classes called stubs, which are
generated from the WSDL definition. JBoss EAP 6 includes the tools to generate the classes from
WSDL.

In a JAX-WS Web service, a formal contract is established to describe the interface that the Web
Service offers. The contract is typically written in WSDL, but may be written in SOAP messages. The
architecture of the Web Service typically addresses business requirements, such as transactions,
security, messaging, and coordination. JBoss EAP 6 provides mechanisms for handling these business
concerns.

Web Services Description Language (WSDL) is an XML-based language used to describe Web Services
and how to access them. The Web Service itself is written in Java or another programming language.
The WSDL definition consists of references to the interface, port definitions, and instructions for how
other Web Services should interact with it over a network. Web Services communicate with each other
using Simple Object Access Protocol (SOAP). This type of Web Service contrasts with RESTful Web
Services, built using Representative State Transfer (REST) design principles. These RESTful Web
Services do not require the use of WSDL or SOAP, but rely on the structure of the HTTP protocol itself to
define how other services interact with them.

JBoss EAP 6 includes support for deploying JAX-WS Web Service endpoints. This support is provided
by JBossWS. Configuration of the Web Services subsystem, such as endpoint configuration, handler
chains, and handlers, is provided through the webservices subsystem.

Working Examples

The JBoss EAP Quickstarts include several fully-functioning JAX-WS Web Service applications. These
examples include:

wsat-simple

wsba-coordinator-completion-simple

wsba-participant-completion-simple

CHAPTER 13. JAX-WS WEB SERVICES

335

Report a bug

13.2. CONFIGURE THE WEBSERVICES SUBSYSTEM

Many configuration options are available for the webservices subsystem, which controls the behavior
of Web Services deployed into JBoss EAP 6. The command to modify each element in the Management
CLI script (EAP_HOME/bin/jboss-cli.sh or EAP_HOME/bin/jboss-cli.bat) is provided.
Remove the /profile=default portion of the command for a standalone server, or modify it to modify
the subsystem for a different profile on a managed domain.

Published Endpoint Address

You can rewrite the <soap:address> element in endpoint-published WSDL contracts. This ability can
be used to control the server address that is advertised to clients for each endpoint. Each of the following
optional elements can be modified to suit your needs. Modification of any of these elements requires a
server restart.

Table 13.1. Configuration Elements for Published Endpoint Addresses

Element Description CLI Command

modify-wsdl-address Whether to always modify the
WSDL address. If true, the
content of <soap:address>
will always be overwritten. If false,
the content of
<soap:address> will only be
overwritten if it is not a valid URL.
The values used will be the
wsdl-host, wsdl-port, and
wsdl-secure-port described
below.

/profile=default/subsys
tem=webservices/:write-
attribute(name=modify-
wsdl-
address,value=true)

wsdl-host The hostname / IP address to be
used for rewriting
<soap:address>. If wsdl-
host is set to the string
jbossws.undefined.host,
the requestor's host is used when
rewriting the
<soap:address>.

/profile=default/subsys
tem=webservices/:write-
attribute(name=wsdl-
host,value=10.1.1.1)

wsdl-port An integer which explicitly defines
the HTTP port that will be used for
rewriting the SOAP address. If
undefined, the HTTP port is
identified by querying the list of
installed HTTP connectors.

/profile=default/subsys
tem=webservices/:write-
attribute(name=wsdl-
port,value=8080)

wsdl-secure-port An integer which explicitly defines
the HTTPS port that will be used
for rewriting the SOAP address. If
undefined, the HTTPS port is
identified by querying the list of
installed HTTPS connectors.

/profile=default/subsys
tem=webservices/:write-
attribute(name=wsdl-
secure-port,value=8443)

Development Guide

336

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8420-502224+%5BSpecified%5D&comment=Title%3A+About+JAX-WS+Web+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8420-502224+27+Aug+2013+10%3A08+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Predefined Endpoint Configurations

You can define endpoint configurations which can be referenced by endpoint implementations. One way
this might be used is to add a given handler to any WS endpoint that is marked with a given endpoint
configuration with the annotation @org.jboss.ws.api.annotation.EndpointConfig.

JBoss EAP 6 includes a default Standard-Endpoint-Config. An example of a custom configuration,
Recording-Endpoint-Config, is also included. This provides an example of a recording handler.
The Standard-Endpoint-Config is automatically used for any endpoint which is not associated with
any other configuration.

To read the Standard-Endpoint-Config using the Management CLI, use the following command:

/profile=default/subsystem=webservices/endpoint-config=Standard-Endpoint-
Config/:read-resource(recursive=true,proxies=false,include-
runtime=false,include-defaults=true)

Endpoint Configurations

An endpoint configuration, referred to as an endpoint-config in the Management API, includes a
post-handler-chain, post-handler-chain and some properties, which are applied to a particular
endpoint. The following commands read and add and endpoint config.

Example 13.1. Read an Endpoint Config

/profile=default/subsystem=webservices/endpoint-config=Recording-
Endpoint-Config:read-resource

Example 13.2. Add an Endpoint Config

/profile=default/subsystem=webservices/endpoint-config=My-Endpoint-
Config:add

Handler Chains

Each endpoint config may be associated with PRE and POST handler chains. Each handler chain may
include JAXWS-compliant handlers. For outbound messages, PRE handler chain handlers are executed
before any handler attached to the endpoints using standard JAXWS means, such as the
@HandlerChain annotation. POST handler chain handlers are executed after usual endpoint handlers.
For inbound messages, the opposite applies. JAX-WS is a standard API for XML-based web services,
and is documented at http://jcp.org/en/jsr/detail?id=224.

A handler chain may also include a protocol-binding attribute, which sets the protocols which trigger
the chain to start.

Example 13.3. Read a Handler Chain

/profile=default/subsystem=webservices/endpoint-config=Recording-
Endpoint-Config/pre-handler-chain=recording-handlers:read-resource

CHAPTER 13. JAX-WS WEB SERVICES

337

http://jcp.org/en/jsr/detail?id=224

Example 13.4. Add a Handler Chain

/profile=default/subsystem=webservices/endpoint-config=My-Endpoint-
Config/post-handler-chain=my-handlers:add(protocol-
bindings="##SOAP11_HTTP")

Handlers

A JAXWS handler is a child element <handler>, within a handler chain. The handler takes a class
attribute, which is the fully-qualified classname of the handler class. When the endpoint is deployed, an
instance of that class is created for each referencing deployment. Either the deployment classloader or
the classloader for module org.jboss.as.webservices.server.integration must be able to
load the handler class.

Example 13.5. Read a Handler

/profile=default/subsystem=webservices/endpoint-config=Recording-
Endpoint-Config/pre-handler-chain=recording-
handlers/handler=RecordingHandler:read-resource

Example 13.6. Add a Handler

/profile=default/subsystem=webservices/endpoint-config=My-Endpoint-
Config/post-handler-chain=my-handlers/handler=foo-
handler:add(class="org.jboss.ws.common.invocation.RecordingServerHandler
")

Runtime Information About Web Services

You can view runtime information about Web Services, such as the web context and the WSDL URL, by
querying the endpoints themselves. You can use the * character to query all endpoints at once. The
following two informations show the command for a server in a managed domain, then a standalone
server.

Example 13.7. View Runtime Information about All Endpoints on A Server In A Managed
Domain

This command shows information about all endpoints on the server called server-one hosted on
physical host master in a managed domain.

/host=master/server=server-
one/deployment="*"/subsystem=webservices/endpoint="*":read-resource

Example 13.8. View Runtime Information about All Endpoints on A Server In A Standalone
Server

This command shows information about all endpoints on a standalone server named server-one
on a physical host named master.

Development Guide

338

/host=master/server=server-
one/deployment="*"/subsystem=webservices/endpoint="*":read-resource

Example 13.9. Example Endpoint Information

The following is example, hypothetical output.

{
 "outcome" => "success",
 "result" => [{
 "address" => [
 ("deployment" => "jaxws-samples-handlerchain.war"),
 ("subsystem" => "webservices"),
 ("endpoint" => "jaxws-samples-handlerchain:TestService")
],
 "outcome" => "success",
 "result" => {
 "class" =>
"org.jboss.test.ws.jaxws.samples.handlerchain.EndpointImpl",
 "context" => "jaxws-samples-handlerchain",
 "name" => "TestService",
 "type" => "JAXWS_JSE",
 "wsdl-url" => "http://localhost:8080/jaxws-samples-
handlerchain?wsdl"
 }
 }]
}

Report a bug

13.3. JAX-WS WEB SERVICE ENDPOINTS

13.3.1. About JAX-WS Web Service Endpoints

This topic is an overview of JAX-WS web service endpoints and accompanying concepts. A JAX-WS
Web Service endpoint is the server component of a Web Service. clients and other Web Services
communicate it over the HTTP protocol using an XML language called Simple Object Access Protocol
(SOAP). The endpoint itself is deployed into the JBoss EAP 6 container.

You can write a WSDL descriptor by hand, or you can use JAX-WS annotations to create it
automatically. This is the more normal usage pattern.

An endpoint implementation bean is annotated with JAX-WS annotations and deployed to the server.
The server automatically generates and publishes the abstract contract in WSDL format for client
consumption. All marshalling and unmarshalling is delegated to the Java Architecture for XML Binding
(JAXB) service.

The endpoint itself may be a POJO (Plain Old Java Object) or a Java EE Web Application. You can also
expose endpoints using an EJB3 stateless session bean. It is packaged into a Web Archive (WAR) file.
The specification for packaging the endpoint, called a Java Service Endpoint (JSE) is defined in JSR-
181, which can be found at http://jcp.org/aboutJava/communityprocess/mrel/jsr181/index2.html.

CHAPTER 13. JAX-WS WEB SERVICES

339

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8421-459995+%5BSpecified%5D&comment=Title%3A+Configure+the+%3Cliteral%3Ewebservices%3C%2Fliteral%3E+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8421-459995+14+Jun+2013+14%3A24+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://jcp.org/aboutJava/communityprocess/mrel/jsr181/index2.html

Development Requirements

A Web Service must fulfill the requirements of the JAX-WS API and the Web Services metadata
specification at http://www.jcp.org/en/jsr/summary?id=181. A valid implementation meets the following
requirements:

It contains a javax.jws.WebService annotation.

All method parameters and return types are compatible with the JAXB 2.0 specification, JSR-
222. Refer to http://www.jcp.org/en/jsr/summary?id=222 for more information.

Example 13.10. Example POJO Endpoint

Example 13.11. Example Web Services Endpoint

Example 13.12. Exposing an Endpoint in an EJB

This EJB3 stateless session bean exposes the same method on the remote interface and as an
endpoint operation.

@WebService
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class JSEBean01
{
 @WebMethod
 public String echo(String input)
 {
 ...
 }
}

<web-app ...>
 <servlet>
 <servlet-name>TestService</servlet-name>
 <servlet-
class>org.jboss.test.ws.jaxws.samples.jsr181pojo.JSEBean01</servlet-
class>
 </servlet>
 <servlet-mapping>
 <servlet-name>TestService</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

@Stateless
@Remote(EJB3RemoteInterface.class)
@RemoteBinding(jndiBinding = "/ejb3/EJB3EndpointInterface")

@WebService

Development Guide

340

http://www.jcp.org/en/jsr/summary?id=181
http://www.jcp.org/en/jsr/summary?id=222

Endpoint Providers

JAX-WS services typically implement a Java service endpoint interface (SEI), which may be mapped
from a WSDL port type, either directly or using annotations. This SEI provides a high-level abstraction
which hides the details between Java objects and their XML representations. However, in some cases,
services need the ability to operate at the XML message level. The endpoint Provider interface
provides this functionality to Web Services which implement it.

Consuming and Accessing the Endpoint

After you deploy your Web Service, you can consume the WSDL to create the component stubs which
will be the basis for your application. Your application can then access the endpoint to do its work.

Working Examples

The JBoss EAP Quickstarts include several fully-functioning JAX-WS Web Service applications. These
examples include:

wsat-simple

wsba-coordinator-completion-simple

wsba-participant-completion-simple

Report a bug

13.3.2. Write and Deploy a JAX-WS Web Service Endpoint

Introduction

This topic discusses the development of a simple JAX-WS service endpoint, which is the server-side
component, which responds to requests from JAX-WS clients and publishes the WSDL definition for
itself. For more in-depth information about JAX-WS service endpoints, refer to Section 13.5.2, “JAX-WS
Common API Reference” and the API documentation bundle in Javadoc format, distributed with JBoss
EAP 6.

Development Requirements

A Web Service must fulfill the requirements of the JAXWS API and the Web Services meta data
specification at http://www.jcp.org/en/jsr/summary?id=181. A valid implementation meets the following
requirements:

It contains a javax.jws.WebService annotation.

All method parameters and return types are compatible with the JAXB 2.0 specification, JSR-
222. Refer to http://www.jcp.org/en/jsr/summary?id=222 for more information.

@SOAPBinding(style = SOAPBinding.Style.RPC)
public class EJB3Bean01 implements EJB3RemoteInterface
{
 @WebMethod
 public String echo(String input)
 {
 ...
 }
}

CHAPTER 13. JAX-WS WEB SERVICES

341

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8793-502221+%5BSpecified%5D&comment=Title%3A+About+JAX-WS+Web+Service+Endpoints%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8793-502221+27+Aug+2013+09%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://www.jcp.org/en/jsr/summary?id=181
http://www.jcp.org/en/jsr/summary?id=222

Example 13.13. Example Service Implementation

Example 13.14. Example XML Payload

The following is an example of the DiscountRequest class which is used by the
ProfileMgmtBean bean in the previous example. The annotations are included for verbosity.
Typically, the JAXB defaults are reasonable and do not need to be specified.

package org.jboss.test.ws.jaxws.samples.retail.profile;

import javax.ejb.Stateless;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;

@Stateless
@WebService(
 name="ProfileMgmt",
 targetNamespace = "http://org.jboss.ws/samples/retail/profile",
 serviceName = "ProfileMgmtService")
@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
public class ProfileMgmtBean {

 @WebMethod
 public DiscountResponse getCustomerDiscount(DiscountRequest request)
{
 return new DiscountResponse(request.getCustomer(), 10.00);
 }
}

package org.jboss.test.ws.jaxws.samples.retail.profile;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlType;

import org.jboss.test.ws.jaxws.samples.retail.Customer;

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType((1)
 name = "discountRequest",
 namespace="http://org.jboss.ws/samples/retail/profile",
 propOrder = { "customer" }
)
public class DiscountRequest {

 protected Customer customer;

 public DiscountRequest() {
 }

 public DiscountRequest(Customer customer) {

Development Guide

342

More complex mappings are possible. Refer to the JAXB API specification at https://jaxb.java.net/ for
more information.

Package Your Deployment

The implementation class is wrapped in a JAR deployment. Any metadata required for deployment is
taken from the annotations on the implementation class and the service endpoint interface. Deploy the
JAR using the Management CLI or the Management Interface, and the HTTP endpoint is created
automatically.

The following listing shows an example of the correct structure for JAR deployment of an EJB Web
Service.

Example 13.15. Example JAR Structure for a Web Service Deployment

[user@host ~]$ jar -tf jaxws-samples-retail.jar
org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.class
org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.class
org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtBean.class
org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.class
org/jboss/test/ws/jaxws/samples/retail/profile/package-info.class

Report a bug

13.4. JAX-WS WEB SERVICE CLIENTS

13.4.1. Consume and Access a JAX-WS Web Service

After creating a Web Service endpoint, either manually or using JAX-WS annotations, you can access its
WSDL, which can be used to create the basic client application which will communicate with the Web
Service. The process of generating Java code from the published WSDL is called consuming the Web
service. This happens in two phases:

1. Create the client artifacts.

2. Construct a service stub.

 this.customer = customer;
 }

 public Customer getCustomer() {
 return customer;
 }

 public void setCustomer(Customer value) {
 this.customer = value;
 }

}

CHAPTER 13. JAX-WS WEB SERVICES

343

https://jaxb.java.net/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8422-481834+%5BSpecified%5D&comment=Title%3A+Write+and+Deploy+a+JAX-WS+Web+Service+Endpoint%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8422-481834+25+Jul+2013+15%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

3. Access the endpoint.

Create the Client Artifacts

Before you can create client artifacts, you need to create your WSDL contract. The following WSDL
contract is used for the examples presented in the rest of this topic.

Example 13.16. Example WSDL Contract

<definitions
 name='ProfileMgmtService'
 targetNamespace='http://org.jboss.ws/samples/retail/profile'
 xmlns='http://schemas.xmlsoap.org/wsdl/'
 xmlns:ns1='http://org.jboss.ws/samples/retail'
 xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
 xmlns:tns='http://org.jboss.ws/samples/retail/profile'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'>

 <types>

 <xs:schema targetNamespace='http://org.jboss.ws/samples/retail'
 version='1.0'
xmlns:xs='http://www.w3.org/2001/XMLSchema'>
 <xs:complexType name='customer'>
 <xs:sequence>
 <xs:element minOccurs='0' name='creditCardDetails'
type='xs:string'/>
 <xs:element minOccurs='0' name='firstName'
type='xs:string'/>
 <xs:element minOccurs='0' name='lastName'
type='xs:string'/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>

 <xs:schema
 targetNamespace='http://org.jboss.ws/samples/retail/profile'
 version='1.0'
 xmlns:ns1='http://org.jboss.ws/samples/retail'
 xmlns:tns='http://org.jboss.ws/samples/retail/profile'
 xmlns:xs='http://www.w3.org/2001/XMLSchema'>

 <xs:import namespace='http://org.jboss.ws/samples/retail'/>
 <xs:element name='getCustomerDiscount'
 nillable='true' type='tns:discountRequest'/>
 <xs:element name='getCustomerDiscountResponse'
 nillable='true' type='tns:discountResponse'/>
 <xs:complexType name='discountRequest'>
 <xs:sequence>
 <xs:element minOccurs='0' name='customer'
type='ns1:customer'/>

 </xs:sequence>
 </xs:complexType>
 <xs:complexType name='discountResponse'>

Development Guide

344

 <xs:sequence>
 <xs:element minOccurs='0' name='customer'
type='ns1:customer'/>
 <xs:element name='discount' type='xs:double'/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>

 </types>

 <message name='ProfileMgmt_getCustomerDiscount'>
 <part element='tns:getCustomerDiscount'
name='getCustomerDiscount'/>
 </message>
 <message name='ProfileMgmt_getCustomerDiscountResponse'>
 <part element='tns:getCustomerDiscountResponse'
 name='getCustomerDiscountResponse'/>
 </message>
 <portType name='ProfileMgmt'>
 <operation name='getCustomerDiscount'
 parameterOrder='getCustomerDiscount'>

 <input message='tns:ProfileMgmt_getCustomerDiscount'/>
 <output
message='tns:ProfileMgmt_getCustomerDiscountResponse'/>
 </operation>
 </portType>
 <binding name='ProfileMgmtBinding' type='tns:ProfileMgmt'>
 <soap:binding style='document'
 transport='http://schemas.xmlsoap.org/soap/http'/>
 <operation name='getCustomerDiscount'>
 <soap:operation soapAction=''/>
 <input>

 <soap:body use='literal'/>
 </input>
 <output>
 <soap:body use='literal'/>
 </output>
 </operation>
 </binding>
 <service name='ProfileMgmtService'>
 <port binding='tns:ProfileMgmtBinding' name='ProfileMgmtPort'>

 <soap:address
 location='SERVER:PORT/jaxws-samples-
retail/ProfileMgmtBean'/>
 </port>
 </service>
</definitions>

CHAPTER 13. JAX-WS WEB SERVICES

345

NOTE

If you use JAX-WS annotations to create your Web Service endpoint, the WSDL contract
is generated automatically, and you only need its URL. You can get this URL from the
Webservices section of the Runtime section of the web-based Management Console,
after the endpoint is deployed.

The wsconsume.sh or wsconsume.bat tool is used to consume the abstract contract (WSDL) and
produce annotated Java classes and optional sources that define it. The command is located in the
EAP_HOME/bin/ directory of the JBoss EAP 6 installation.

Example 13.17. Syntax of the wsconsume.sh Command

[user@host bin]$./wsconsume.sh --help
WSConsumeTask is a cmd line tool that generates portable JAX-WS
artifacts from a WSDL file.

usage: org.jboss.ws.tools.cmd.WSConsume [options] <wsdl-url>

options:
 -h, --help Show this help message
 -b, --binding=<file> One or more JAX-WS or JAXB binding
files
 -k, --keep Keep/Generate Java source
 -c --catalog=<file> Oasis XML Catalog file for entity
resolution
 -p --package=<name> The target package for generated source
 -w --wsdlLocation=<loc> Value to use for
@WebService.wsdlLocation
 -o, --output=<directory> The directory to put generated artifacts
 -s, --source=<directory> The directory to put Java source
 -t, --target=<2.0|2.1|2.2> The JAX-WS specification target
 -q, --quiet Be somewhat more quiet
 -v, --verbose Show full exception stack traces
 -l, --load-consumer Load the consumer and exit (debug
utility)
 -e, --extension Enable SOAP 1.2 binding extension
 -a, --additionalHeaders Enable processing of implicit SOAP
headers
 -n, --nocompile Do not compile generated sources

The following command generates the source .java files listed in the output, from the
ProfileMgmtService.wsdl file. The sources use the directory structure of the package, which is
specified with the -p switch.

[user@host bin]$ wsconsume.sh -k -p
org.jboss.test.ws.jaxws.samples.retail.profile ProfileMgmtService.wsdl
output/org/jboss/test/ws/jaxws/samples/retail/profile/Customer.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.jav
a

Development Guide

346

output/org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.j
ava
output/org/jboss/test/ws/jaxws/samples/retail/profile/package-info.java
output/org/jboss/test/ws/jaxws/samples/retail/profile/Customer.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountRequest.clas
s
output/org/jboss/test/ws/jaxws/samples/retail/profile/DiscountResponse.cla
ss
output/org/jboss/test/ws/jaxws/samples/retail/profile/ObjectFactory.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmt.class
output/org/jboss/test/ws/jaxws/samples/retail/profile/ProfileMgmtService.c
lass
output/org/jboss/test/ws/jaxws/samples/retail/profile/package-info.class

Both .java source files and compiled .class files are generated into the output/ directory within the
directory where you run the command.

Table 13.2. Descriptions of Artifacts Created by wsconsume.sh

File Description

ProfileMgmt.java Service endpoint interface.

Customer.java Custom data type.

Discount*.java Custom data types.

ObjectFactory.java JAXB XML registry.

package-info.java JAXB package annotations.

ProfileMgmtService.java Service factory.

The wsconsume.sh command generates all custom data types (JAXB annotated classes), the service
endpoint interface and a service factory class. These artifacts are used the build web service client
implementations.

Construct a Service Stub

Web service clients use service stubs to abstract the details of a remote web service invocation. To a
client application, a WS invocation looks like an invocation of any other business component. In this case
the service endpoint interface acts as the business interface, and a service factory class is not used to
construct it as a service stub.

Example 13.18. Constructing a Service Stub and Accessing the Endpoint

The following example first creates a service factory using the WSDL location and the service name.
Next, it uses the service endpoint interface created by the wsconsume.sh command to build the
service stub. Finally, the stub can be used just as any other business interface would be.

CHAPTER 13. JAX-WS WEB SERVICES

347

You can find the WSDL URL for your endpoint in the web-based Management Console. Choose the
Runtime menu item at the upper left, then the Deployments menu item at the bottom left. Click
Webservices, and select your deployment to view its details.

Report a bug

13.4.2. Develop a JAX-WS Client Application

This topic discusses JAX-WS Web Service clients in general. The client communicates with, and
requests work from, the JAX-WS endpoint, which is deployed in the Java Enterprise Edition 6 container.
For detailed information about the classes, methods, and other implementation details mentioned below,
refer to Section 13.5.2, “JAX-WS Common API Reference” and the relevant sections of the Javadocs
bundle included with JBoss EAP 6.

Service

Overview

A Service is an abstraction which represents a WSDL service. A WSDL service is a collection of
related ports, each of which includes a port type bound to a particular protocol and a particular
endpoint address.

Usually, the Service is generated when the rest of the component stubs are generated from an
existing WSDL contract. The WSDL contract is available via the WSDL URL of the deployed
endpoint, or can be created from the endpoint source using the wsprovide.sh command in the
EAP_HOME/bin/ directory.

This type of usage is referred to as the static use case. In this case, you create instances of the
Service class which is created as one of the component stubs.

You can also create the service manually, using the Service.create method. This is referred to as
the dynamic use case.

Usage

Static Use Case

The static use case for a JAX-WS client assumes that you already have a WSDL contract. This
may be generated by an external tool or generated by using the correct JAX-WS annotations
when you create your JAX-WS endpoint.

To generate your component stubs, you use the wsconsume.sh or wsconsume.bat script which
is included in EAP_HOME/bin/. The script takes the WSDL URL or file as a parameter, and
generates multiple of files, structured in a directory tree. The source and class files representing

import javax.xml.ws.Service;
[...]
Service service = Service.create(
new URL("http://example.org/service?wsdl"),
new QName("MyService")
);
ProfileMgmt profileMgmt = service.getPort(ProfileMgmt.class);

// Use the service stub in your application

Development Guide

348

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8423-459998+%5BSpecified%5D&comment=Title%3A+Consume+and+Access+a+JAX-WS+Web+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8423-459998+14+Jun+2013+14%3A26+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

your Service are named CLASSNAME_Service.java and CLASSNAME_Service.class,
respectively.

The generated implementation class has two public constructors, one with no arguments and one
with two arguments. The two arguments represent the WSDL location (a java.net.URL) and the
service name (a javax.xml.namespace.QName) respectively.

The no-argument constructor is the one used most often. In this case the WSDL location and
service name are those found in the WSDL. These are set implicitly from the
@WebServiceClient annotation that decorates the generated class.

Example 13.19. Example Generated Service Class

Dynamic Use Case

In the dynamic case, no stubs are generated automatically. Instead, a web service client uses the
Service.create method to create Service instances. The following code fragment illustrates
this process.

Example 13.20. Creating Services Manually

Handler Resolver

JAX-WS provides a flexible plug-in framework for message processing modules, known as handlers.
These handlers extend the capabilities of a JAX-WS runtime system. A Service instance provides
access to a HandlerResolver via a pair of getHandlerResolver and setHandlerResolver

@WebServiceClient(name="StockQuoteService",
targetNamespace="http://example.com/stocks",
wsdlLocation="http://example.com/stocks.wsdl")
public class StockQuoteService extends javax.xml.ws.Service
{
 public StockQuoteService()
 {
 super(new URL("http://example.com/stocks.wsdl"), new
QName("http://example.com/stocks", "StockQuoteService"));
 }

 public StockQuoteService(String wsdlLocation, QName serviceName)
 {
 super(wsdlLocation, serviceName);
 }

 ...
}

URL wsdlLocation = new URL("http://example.org/my.wsdl");
QName serviceName = new QName("http://example.org/sample",
"MyService");
Service service = Service.create(wsdlLocation, serviceName);

CHAPTER 13. JAX-WS WEB SERVICES

349

methods that can configure a set of handlers on a per-service, per-port or per-protocol binding basis.

When a Service instance creates a proxy or a Dispatch instance, the handler resolver currently
registered with the service creates the required handler chain. Subsequent changes to the handler
resolver configured for a Service instance do not affect the handlers on previously created proxies
or Dispatch instances.

Executor

Service instances can be configured with a java.util.concurrent.Executor. The Executor
invokes any asynchronous callbacks requested by the application. The setExecutor and
getExecutor methods of Service can modify and retrieve the Executor configured for a service.

Dynamic Proxy

A dynamic proxy is an instance of a client proxy using one of the getPort methods provided in the
Service. The portName specifies the name of the WSDL port the service uses. The
serviceEndpointInterface specifies the service endpoint interface supported by the created
dynamic proxy instance.

Example 13.21. getPort Methods

The Service Endpoint Interface is usually generated using the wsconsume.sh command, which parses
the WSDL and creates Java classes from it.

A typed method which returns a port is also provided. These methods also return dynamic proxies that
implement the SEI. See the following example.

Example 13.22. Returning the Port of a Service

public <T> T getPort(QName portName, Class<T> serviceEndpointInterface)
public <T> T getPort(Class<T> serviceEndpointInterface)

@WebServiceClient(name = "TestEndpointService", targetNamespace =
"http://org.jboss.ws/wsref",
 wsdlLocation = "http://localhost.localdomain:8080/jaxws-samples-
webserviceref?wsdl")

public class TestEndpointService extends Service
{
 ...

 public TestEndpointService(URL wsdlLocation, QName serviceName) {
 super(wsdlLocation, serviceName);
 }

 @WebEndpoint(name = "TestEndpointPort")
 public TestEndpoint getTestEndpointPort()
 {
 return (TestEndpoint)super.getPort(TESTENDPOINTPORT,
TestEndpoint.class);

Development Guide

350

@WebServiceRef

The @WebServiceRef annotation declares a reference to a Web Service. It follows the resource pattern
shown by the javax.annotation.Resource annotation defined in
http://www.jcp.org/en/jsr/summary?id=250.

Use Cases for @WebServiceRef

You can use it to define a reference whose type is a generated Service class. In this case, the
type and value element each refer to the generated Service class type. Moreover, if the
reference type can be inferred by the field or method declaration the annotation is applied to, the
type and value elements may (but are not required to) have the default value of Object.class.
If the type cannot be inferred, then at least the type element must be present with a non-default
value.

You can use it to define a reference whose type is an SEI. In this case, the type element may
(but is not required to) be present with its default value if the type of the reference can be
inferred from the annotated field or method declaration. However, the value element must
always be present and refer to a generated service class type, which is a subtype of
javax.xml.ws.Service. The wsdlLocation element, if present, overrides the WSDL
location information specified in the @WebService annotation of the referenced generated
service class.

Example 13.23. @WebServiceRef Examples

Dispatch

XML Web Services use XML messages for communication between the endpoint, which is deployed in
the Java EE container, and any clients. The XML messages use an XML language called Simple Object
Access Protocol (SOAP). The JAX-WS API provides the mechanisms for the endpoint and clients to
each be able to send and receive SOAP messages and convert SOAP messages into Java, and vice
versa. This is called marshalling and unmarshalling.

In some cases, you need access to the raw SOAP messages themselves, rather than the result of the
conversion. The Dispatch class provides this functionality. Dispatch operates in one of two usage
modes, which are identified by one of the following constants.

javax.xml.ws.Service.Mode.MESSAGE - This mode directs client applications to work
directly with protocol-specific message structures. When used with a SOAP protocol binding, a
client application works directly with a SOAP message.

 }
}

public class EJB3Client implements EJB3Remote
{
 @WebServiceRef
 public TestEndpointService service4;

 @WebServiceRef
 public TestEndpoint port3;

CHAPTER 13. JAX-WS WEB SERVICES

351

http://www.jcp.org/en/jsr/summary?id=250

javax.xml.ws.Service.Mode.PAYLOAD - This mode causes the client to work with the
payload itself. For instance, if it is used with a SOAP protocol binding, a client application would
work with the contents of the SOAP body rather than the entire SOAP message.

Dispatch is a low-level API which requires clients to structure messages or payloads as XML, with
strict adherence to the standards of the individual protocol and a detailed knowledge of message or
payload structure. Dispatch is a generic class which supports input and output of messages or
message payloads of any type.

Example 13.24. Dispatch Usage

Asynchronous Invocations

The BindingProvider interface represents a component that provides a protocol binding which clients
can use. It is implemented by proxies and is extended by the Dispatch interface.

BindingProvider instances may provide asynchronous operation capabilities.Asynchronous
operation invocations are decoupled from the BindingProvider instance at invocation time. The
response context is not updated when the operation completes. Instead, a separate response context is
made available using the Response interface.

Example 13.25. Example Asynchronous Invocation

@Oneway Invocations

Service service = Service.create(wsdlURL, serviceName);
Dispatch dispatch = service.createDispatch(portName, StreamSource.class,
Mode.PAYLOAD);

String payload = "<ns1:ping
xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";
dispatch.invokeOneWay(new StreamSource(new StringReader(payload)));

payload = "<ns1:feedback
xmlns:ns1='http://oneway.samples.jaxws.ws.test.jboss.org/'/>";
Source retObj = (Source)dispatch.invoke(new StreamSource(new
StringReader(payload)));

public void testInvokeAsync() throws Exception
{
 URL wsdlURL = new URL("http://" + getServerHost() + ":8080/jaxws-
samples-asynchronous?wsdl");
 QName serviceName = new QName(targetNS, "TestEndpointService");
 Service service = Service.create(wsdlURL, serviceName);
 TestEndpoint port = service.getPort(TestEndpoint.class);
 Response response = port.echoAsync("Async");
 // access future
 String retStr = (String) response.get();
 assertEquals("Async", retStr);
}

Development Guide

352

The @Oneway annotation indicates that the given web method takes an input message but returns no
output message. Usually, a @Oneway method returns the thread of control to the calling application
before the business method is executed.

Example 13.26. Example @Oneway Invocation

Timeout Configuration

Two different properties control the timeout behavior of the HTTP connection and the timeout of a client
which is waiting to receive a message. The first is javax.xml.ws.client.connectionTimeout and
the second is javax.xml.ws.client.receiveTimeout. Each is expressed in milliseconds, and the
correct syntax is shown below.

Example 13.27. JAX-WS Timeout Configuration

@WebService (name="PingEndpoint")
@SOAPBinding(style = SOAPBinding.Style.RPC)
public class PingEndpointImpl
{
 private static String feedback;

 @WebMethod
 @Oneway
 public void ping()
 {
 log.info("ping");
 feedback = "ok";
 }

 @WebMethod
 public String feedback()
 {
 log.info("feedback");
 return feedback;
 }
}

public void testConfigureTimeout() throws Exception
{
 //Set timeout until a connection is established

((BindingProvider)port).getRequestContext().put("javax.xml.ws.client.con
nectionTimeout", "6000");

 //Set timeout until the response is received
 ((BindingProvider)
port).getRequestContext().put("javax.xml.ws.client.receiveTimeout",
"1000");

 port.echo("testTimeout");
}

CHAPTER 13. JAX-WS WEB SERVICES

353

Report a bug

13.5. JAX-WS DEVELOPMENT REFERENCE

13.5.1. Enable Web Services Addressing (WS-Addressing)

Prerequisites

Your application must have an existing JAX-WS service and client configuration.

Procedure 13.1. Annotate and Update client code

1. Annotate the service endpoint
Add the @Addressing annotation to the application's endpoint code.

Example 13.28. @Addressing annotation

This example demonstrates a regular JAX-WS endpoint with the @Addressing annotation
added.

2. Update client code
Update the client code in the application so that it configures WS-Addressing.

Example 13.29. Client configuration for WS-Addressing

This example demonstrates a regular JAX-WS client updated to configure WS-Addressing.

package org.jboss.test.ws.jaxws.samples.wsa;

import javax.jws.WebService;
import javax.xml.ws.soap.Addressing;

@WebService
(
 portName = "AddressingServicePort",
 serviceName = "AddressingService",
 wsdlLocation = "WEB-INF/wsdl/AddressingService.wsdl",
 targetNamespace = "http://www.jboss.org/jbossws/ws-
extensions/wsaddressing",
 endpointInterface =
"org.jboss.test.ws.jaxws.samples.wsa.ServiceIface"
)
@Addressing(enabled=true, required=true)
public class ServiceImpl implements ServiceIface
{
 public String sayHello()
 {
 return "Hello World!";
 }
}

package org.jboss.test.ws.jaxws.samples.wsa;

Development Guide

354

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8843-481836+%5BSpecified%5D&comment=Title%3A+Develop+a+JAX-WS+Client+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8843-481836+25+Jul+2013+15%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Result

The client and endpoint are now communicating using WS-Addressing.

Report a bug

13.5.2. JAX-WS Common API Reference

Several JAX-WS development concepts are shared between Web Service endpoints and clients. These
include the handler framework, message context, and fault handling.

Handler Framework

The handler framework is implemented by a JAX-WS protocol binding in the runtime of the client and the
endpoint, which is the server component. Proxies and Dispatch instances, known collectively as
binding providers, each use protocol bindings to bind their abstract functionality to specific protocols.

Client and server-side handlers are organized into an ordered list known as a handler chain. The
handlers within a handler chain are invoked each time a message is sent or received. Inbound
messages are processed by handlers before the binding provider processes them. Outbound messages
are processed by handlers after the binding provider processes them.

Handlers are invoked with a message context which provides methods to access and modify inbound
and outbound messages and to manage a set of properties. Message context properties facilitate
communication between individual handlers, as well as between handlers and client and service
implementations. Different types of handlers are invoked with different types of message contexts.

import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;
import javax.xml.ws.soap.AddressingFeature;

public final class AddressingTestCase
{
 private final String serviceURL =
 "http://localhost:8080/jaxws-samples-
wsa/AddressingService";

 public static void main(String[] args) throws Exception
 {
 // construct proxy
 QName serviceName =
 new QName("http://www.jboss.org/jbossws/ws-
extensions/wsaddressing",
 "AddressingService");
 URL wsdlURL = new URL(serviceURL + "?wsdl");
 Service service = Service.create(wsdlURL, serviceName);
 ServiceIface proxy =
 (ServiceIface)service.getPort(ServiceIface.class,
 new
AddressingFeature());
 // invoke method
 proxy.sayHello();
 }
}

CHAPTER 13. JAX-WS WEB SERVICES

355

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+3581-431816+%5BSpecified%5D&comment=Title%3A+Enable+Web+Services+Addressing+%28WS-Addressing%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=3581-431816+08+Apr+2013+11%3A36+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Types of Message Handlers

Logical Handler

Logical handlers only operate on message context properties and message payloads. Logical
handlers are protocol-independent and cannot affect protocol-specific parts of a message. Logical
handlers implement interface javax.xml.ws.handler.LogicalHandler.

Protocol Handler

Protocol handlers operate on message context properties and protocol-specific messages. Protocol
handlers are specific to a particular protocol and may access and change protocol-specific aspects of
a message. Protocol handlers implement any interface derived from
javax.xml.ws.handler.Handler except javax.xml.ws.handler.LogicalHandler.

Service Endpoint Handler

On a service endpoint, handlers are defined using the @HandlerChain annotation. The location of
the handler chain file can be either an absolute java.net.URL in externalForm or a relative path
from the source file or class file.

Example 13.30. Example Service Endpoint Handler

Service Client Handler

On a JAX-WS client, handlers are defined either by using the @HandlerChain annotation, as in
service endpoints, or dynamically, using the JAX-WS API.

Example 13.31. Defining a Service Client Handler Using the API

The call to the setHandlerChain method is required.

Message Context

@WebService
@HandlerChain(file = "jaxws-server-source-handlers.xml")
public class SOAPEndpointSourceImpl
{
 ...
}

Service service = Service.create(wsdlURL, serviceName);
Endpoint port = (Endpoint)service.getPort(Endpoint.class);

BindingProvider bindingProvider = (BindingProvider)port;
List<Handler> handlerChain = new ArrayList<Handler>();
handlerChain.add(new LogHandler());
handlerChain.add(new AuthorizationHandler());
handlerChain.add(new RoutingHandler());
bindingProvider.getBinding().setHandlerChain(handlerChain);

Development Guide

356

The MessageContext interface is the super interface for all JAX-WS message contexts. It extends
Map<String,Object> with additional methods and constants to manage a set of properties that
enable handlers in a handler chain to share processing related state. For example, a handler may use
the put method to insert a property into the message context. One or more other handlers in the handler
chain may subsequently obtain the message via the get method.

Properties are scoped as either APPLICATION or HANDLER. All properties are available to all handlers
for an instance of a message exchange pattern (MEP) of a particular endpoint. For instance, if a logical
handler puts a property into the message context, that property is also available to any protocol handlers
in the chain during the execution of an MEP instance.

NOTE

An asynchronous Message Exchange Pattern (MEP) allows for sending and receiving
messages asynchronously at the HTTP connection level. You can enable it by setting
additional properties in the request context.

Properties scoped at the APPLICATION level are also made available to client applications and service
endpoint implementations. The defaultscope for a property is HANDLER.

Logical amd SOAP messages use different contexts.

Logical Message Context

When logical handlers are invoked, they receive a message context of type
LogicalMessageContext. LogicalMessageContext extends MessageContext with methods
which obtain and modify the message payload. It does not provide access to the protocol-specific
aspects of a message. A protocol binding defines which components of a message are available via a
logical message context. A logical handler deployed in a SOAP binding can access the contents of
the SOAP body but not the SOAP headers. On the other hand, the XML/HTTP binding defines that a
logical handler can access the entire XML payload of a message.

SOAP Message Context

When SOAP handlers are invoked, they receive a SOAPMessageContext. SOAPMessageContext
extends MessageContext with methods which obtain and modify the SOAP message payload.

Fault Handling

An application may throw a SOAPFaultException or an application-specific user exception. In the c
ase of the latter, the required fault wrapper beans are generated at run-time if they are not already part
of the deployment.

Example 13.32. Fault Handling Examples

public void throwSoapFaultException()
{
 SOAPFactory factory = SOAPFactory.newInstance();
 SOAPFault fault = factory.createFault("this is a fault string!", new
QName("http://foo", "FooCode"));
 fault.setFaultActor("mr.actor");
 fault.addDetail().addChildElement("test");
 throw new SOAPFaultException(fault);
}

CHAPTER 13. JAX-WS WEB SERVICES

357

JAX-WS Annotations

The annotations available via the JAX-WS API are defined in JSR-224, which can be found at
http://www.jcp.org/en/jsr/detail?id=224. These annotations are in package javax.xml.ws.

The annotations available fvia the JWS API are defined in JSR-181, which can be found at
http://www.jcp.org/en/jsr/detail?id=181. These annotations are in package javax.jws.

Report a bug

public void throwApplicationException() throws UserException
{
 throw new UserException("validation", 123, "Some validation error");
}

Development Guide

358

http://www.jcp.org/en/jsr/detail?id=224
http://www.jcp.org/en/jsr/detail?id=181
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8841-432938+%5BSpecified%5D&comment=Title%3A+JAX-WS+Common+API+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8841-432938+11+Apr+2013+10%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

14.1. FOUNDATIONAL CONCEPTS

14.1.1. About Encryption

Encryption refers to obfuscating sensitive information by applying mathematical algorithms to it.
Encryption is one of the foundations of securing your infrastructure from data breaches, system outages,
and other risks.

Encryption can be applied to simple string data, such as passwords. It can also be applied to data
communication streams. The HTTPS protocol, for instance, encrypts all data before transferring it from
one party to another. If you connect from one server to another using the Secure Shell (SSH) protocol, all
of your communication is sent in an encrypted tunnel .

Report a bug

14.1.2. About Security Domains

Security domains are part of the JBoss EAP 6 security subsystem. All security configuration is now
managed centrally, by the domain controller of a managed domain, or by the standalone server.

A security domain consists of configurations for authentication, authorization, security mapping, and
auditing. It implements Java Authentication and Authorization Service (JAAS) declarative security.

Authentication refers to verifying the identity of a user. In security terminology, this user is referred to as
a principal. Although authentication and authorization are different, many of the included authentication
modules also handle authorization.

An authorization is a security policy, by which the server determines whether an authenticated user has
permission to access specific privileges or resources in the system or operation. In security terminology,
this is often referred to as a role.

Security mapping refers to the ability to add, modify, or delete information from a principal, role, or
attribute before passing the information to your application.

The auditing manager allows you to configure provider modules to control the way that security events
are reported.

If you use security domains, you can remove all specific security configuration from your application
itself. This allows you to change security parameters centrally. One common scenario that benefits from
this type of configuration structure is the process of moving applications between testing and production
environments.

Report a bug

14.1.3. About SSL Encryption

Secure Sockets Layer (SSL) encrypts network traffic between two systems. Traffic between the two
systems is encrypted using a two-way key, generated during the handshake phase of the connection and
known only by those two systems.

For secure exchange of the two-way encryption key, SSL makes use of Public Key Infrastructure (PKI), a
method of encryption that utilizes a key pair . A key pair consists of two separate but matching

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

359

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4774-435776+%5BSpecified%5D&comment=Title%3A+About+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4774-435776+18+Apr+2013+15%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4721-481770+%5BSpecified%5D&comment=Title%3A+About+Security+Domains%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4721-481770+25+Jul+2013+13%3A19+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

cryptographic keys - a public key and a private key. The public key is shared with others and is used to
encrypt data, and the private key is kept secret and is used to decrypt data that has been encrypted using
the public key.

When a client requests a secure connection, a handshake phase takes place before secure
communication can begin. During the SSL handshake the server passes its public key to the client in the
form of a certificate. The certificate contains the identity of the server (its URL), the public key of the
server, and a digital signature that validates the certificate. The client then validates the certificate and
makes a decision about whether the certificate is trusted or not. If the certificate is trusted, the client
generates the two-way encryption key for the SSL connection, encrypts it using the public key of the
server, and sends it back to the server. The server decrypts the two-way encryption key, using its private
key, and further communication between the two machines over this connection is encrypted using the
two-way encryption key.

Report a bug

14.1.4. About Declarative Security

Declarative security is a method to separate security concerns from your application code by using the
container to manage security. The container provides an authorization system based on either file
permissions or users, groups, and roles. This approach is usually superior to programmatic security,
which gives the application itself all of the responsibility for security.

JBoss EAP 6 provides declarative security via security domains.

Report a bug

14.2. ROLE-BASED SECURITY IN APPLICATIONS

14.2.1. About Application Security

Securing your applications is a multi-faceted and important concern for every application developer.
JBoss EAP 6 provides all the tools you need to write secure applications, including the following abilities:

Section 14.2.2, “About Authentication”

Section 14.2.3, “About Authorization”

Section 14.2.4, “About Security Auditing”

Section 14.2.5, “About Security Mapping”

Section 14.1.4, “About Declarative Security”

Section 14.4.2.1, “About EJB Method Permissions”

Section 14.4.3.1, “About EJB Security Annotations”

See also Section 14.2.9, “Use a Security Domain in Your Application”.

Report a bug

14.2.2. About Authentication

Authentication refers to identifying a subject and verifying the authenticity of the identification. The most

Development Guide

360

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4775-432896+%5BSpecified%5D&comment=Title%3A+About+SSL+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4775-432896+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4766-460002+%5BSpecified%5D&comment=Title%3A+About+Declarative+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4766-460002+14+Jun+2013+14%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4771-460003+%5BSpecified%5D&comment=Title%3A+About+Application+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4771-460003+14+Jun+2013+14%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

common authentication mechanism is a username and password combination. Other common
authentication mechanisms use shared keys, smart cards, or fingerprints. The outcome of a successful
authentication is referred to as a principal, in terms of Java Enterprise Edition declarative security.

JBoss EAP 6 uses a pluggable system of authentication modules to provide flexibility and integration
with the authentication systems you already use in your organization. Each security domain contains one
or more configured authentication modules. Each module includes additional configuration parameters to
customize its behavior. The easiest way to configure the authentication subsystem is within the web-
based management console.

Authentication is not the same as authorization, although they are often linked. Many of the included
authentication modules can also handle authorization.

Report a bug

14.2.3. About Authorization

Authorization is a mechanism for granting or denying access to a resource based on identity. It is
implemented as a set of declarative security roles which can be granted to principals.

JBoss EAP 6 uses a modular system to configure authorization. Each security domain can contain one
or more authorization policies. Each policy has a basic module which defines its behavior. It is configured
through specific flags and attributes. The easiest way to configure the authorization subsystem is by
using the web-based management console.

Authorization is different from authentication, and usually happens after authentication. Many of the
authentication modules also handle authorization.

Report a bug

14.2.4. About Security Auditing

Security auditing refers to triggering events, such as writing to a log, in response to an event that
happens within the security subsystem. Auditing mechanisms are configured as part of a security
domain, along with authentication, authorization, and security mapping details.

Auditing uses provider modules. You can use one of the included ones, or implement your own.

Report a bug

14.2.5. About Security Mapping

Security mapping allows you to combine authentication and authorization information after the
authentication or authorization happens, but before the information is passed to your application. One
example of this is using an X509 certificate for authentication, and then converting the principal from the
certificate to a logical name which your application can display.

You can map principals (authentication), roles (authorization), or credentials (attributes which are not
principals or roles).

Role Mapping is used to add, replace, or remove roles to the subject after authentication.

Principal mapping is used to modify a principal after authentication.

Attribute mapping is used to convert attributes from an external system to be used by your application,
and vice versa.

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

361

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4723-458757+%5BSpecified%5D&comment=Title%3A+About+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4723-458757+11+Jun+2013+14%3A27+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4725-458760+%5BSpecified%5D&comment=Title%3A+About+Authorization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4725-458760+11+Jun+2013+14%3A29+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4727-328515+%5BSpecified%5D&comment=Title%3A+About+Security+Auditing%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4727-328515+05+Nov+2012+14%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

14.2.6. About the Security Extension Architecture

The architecture of the JBoss EAP 6 security extensions consists of three parts. These three parts
connect your application to your underlying security infrastructure, whether it is LDAP, Kerberos, or
another external system.

JAAS

The first part of the infrastructure is the JAAS API. JAAS is a pluggable framework which provides a
layer of abstraction between your security infrastructure and your application.

The main implementation in JAAS is org.jboss.security.plugins.JaasSecurityManager,
which implements the AuthenticationManager and RealmMapping interfaces.
JaasSecurityManager integrates into the EJB and web container layers, based on the <security-
domain> element of the corresponding component deployment descriptor.

For more information about JAAS, refer to Section 14.2.7, “Java Authentication and Authorization
Service (JAAS)”.

The JaasSecurityManagerService MBean

The JaasSecurityManagerService MBean service manages security managers. Although its
name begins with Jaas, the security managers it handles need not use JAAS in their implementation.
The name reflects the fact that the default security manager implementation is the
JaasSecurityManager.

The primary role of the JaasSecurityManagerService is to externalize the security manager
implementation. You can change the security manager implementation by providing an alternate
implementation of the AuthenticationManager and RealmMapping interfaces.

The second fundamental role of the JaasSecurityManagerService is to provide a JNDI
javax.naming.spi.ObjectFactory implementation to allow for simple code-free management of
the binding between the JNDI name and the security manager implementation. To enable security,
specify the JNDI name of the security manager implementation via the <security-domain>
deployment descriptor element.

When you specify a JNDI name, an object-binding needs to already exist. To simplify the setup of the
binding between the JNDI name and security manager, the JaasSecurityManagerService binds a
next naming system reference, nominating itself as the JNDI ObjectFactory under the name
java:/jaas. This permits a naming convention of the form java:/jaas/XYZ as the value for the
<security-domain> element, and the security manager instance for the XYZ security domain is
created as needed, by creating an instance of the class specified by the
SecurityManagerClassName attribute, using a constructor that takes the name of the security
domain.

NOTE

You do not need to include the java:/jaas prefix in your deployment descriptor. You
may do so, for backward compatibility, but it is ignored.

The JaasSecurityDomain MBean

Development Guide

362

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4729-328516+%5BSpecified%5D&comment=Title%3A+About+Security+Mapping%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4729-328516+05+Nov+2012+14%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The org.jboss.security.plugins.JaasSecurityDomain is an extension of
JaasSecurityManager which adds the notion of a KeyStore, a KeyManagerFactory, and a
TrustManagerFactory for supporting SSL and other cryptographic use cases.

Further information

For more information, and practical examples of the security architecture in action, refer to
Section 14.2.8, “About Java Authentication and Authorization Service (JAAS)”.

Report a bug

14.2.7. Java Authentication and Authorization Service (JAAS)

Java Authentication and Authorization Service (JAAS) is a security API which consists of a set of Java
packages designed for user authentication and authorization. The API is a Java implementation of the
standard Pluggable Authentication Modules (PAM) framework. It extends the Java Enterprise Edition
access control architecture to support user-based authorization.

In JBoss EAP 6, JAAS only provides declarative role-based security. For more information about
declarative security, refer to Section 14.1.4, “About Declarative Security”.

JAAS is independent of any underlying authentication technologies, such as Kerberos or LDAP. You can
change your underlying security structure without changing your application. You only need to change
the JAAS configuration.

Report a bug

14.2.8. About Java Authentication and Authorization Service (JAAS)

The security architecture of JBoss EAP 6 is comprised of the security configuration subsystem,
application-specific security configurations which are included in several configuration files within the
application, and the JAAS Security Manager, which is implemented as an MBean.

Domain, Server Group, and Server Specific Configuration

Server groups (in a managed domain) and servers (in a standalone server) include the configuration for
security domains. A security domain includes information about a combination of authentication,
authorization, mapping, and auditing modules, with configuration details. An application specifies which
security domain it requires, by name, in its jboss-web.xml.

Application-specific Configuration

Application-specific configuration takes place in one or more of the following four files.

Table 14.1. Application-Specific Configuration Files

File Description

ejb-jar.xml The deployment descriptor for an Enterprise
JavaBean (EJB) application, located in the META-
INF directory of the EJB. Use the ejb-jar.xml to
specify roles and map them to principals, at the
application level. You can also limit specific methods
and classes to certain roles. It is also used for other
EJB-specific configuration not related to security.

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

363

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4770-460004+%5BSpecified%5D&comment=Title%3A+About+the+Security+Extension+Architecture%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4770-460004+14+Jun+2013+14%3A29+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4769-460006+%5BSpecified%5D&comment=Title%3A+Java+Authentication+and+Authorization+Service+%28JAAS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4769-460006+14+Jun+2013+14%3A30+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

web.xml The deployment descriptor for a Java Enterprise
Edition (EE) web application. Use the web.xml to
declare the security domain the application uses for
authentication and authorization, as well as resource
and transport constraints for the application, such as
limiting which types of HTTP requests are allowed.
You can also configure simple web-based
authentication in this file. It is also used for other
application-specific configuration not related to
security.

jboss-ejb3.xml Contains JBoss-specific extensions to the ejb-
jar.xml descriptor.

jboss-web.xml Contains JBoss-specific extensions to the web.xml
descriptor..

File Description

NOTE

The ejb-jar.xml and web.xml are defined in the Java Enterprise Edition (Java EE)
specification. The jboss-ejb3.xml provides JBoss-specific extensions for the ejb-
jar.xml, and the jboss-web.xml provides JBoss-specific extensions for the
web.xml.

The JAAS Security Manager MBean

The Java Authentication and Authorization Service (JAAS) is a framework for user-level security in Java
applications, using pluggable authentication modules (PAM). It is integrated into the Java Runtime
Environment (JRE). In JBoss EAP 6, the container-side component is the
org.jboss.security.plugins.JaasSecurityManager MBean. It provides the default
implementations of the AuthenticationManager and RealmMapping interfaces.

The JaasSecurityManager MBean integrates into the EJB and web container layers based on the
security domain specified in the EJB or web deployment descriptor files in the application. When an
application deploys, the container associates the security domain specified in the deployment descriptor
with the security manager instance of the container. The security manager enforces the configuration of
the security domain as configured on the server group or standalone server.

Flow of Interaction between the Client and the Container with JAAS

The JaasSecurityManager uses the JAAS packages to implement the AuthenticationManager and
RealmMapping interface behavior. In particular, its behavior derives from the execution of the login
module instances that are configured in the security domain to which the JaasSecurityManager has been
assigned. The login modules implement the security domain's principal authentication and role-mapping
behavior. You can use the JaasSecurityManager across different security domains by plugging in
different login module configurations for the domains.

To illustrate how the JaasSecurityManager uses the JAAS authentication process, the following steps
outline a client invocation of method which implements method EJBHome. The EJB has already been
deployed in the server and its EJBHome interface methods have been secured using <method-

Development Guide

364

permission> elements in the ejb-jar.xml descriptor. It uses the jwdomain security domain, which is
specified in the <security-domain> element of the jboss-ejb3.xml file. The image below shows the
steps, which are explained afterward.

Figure 14.1. Steps of a Secured EJB Method Invocation

1. The client performs a JAAS login to establish the principal and credentials for authentication.
This is labeled Client Side Login in the figure. This could also be performed via JNDI.

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

365

To perform a JAAS login, you create a LoginContext instance and pass in the name of the
configuration to use. Here, the configuration name is other. This one-time login associates the
login principal and credentials with all subsequent EJB method invocations. The process does
not necessarily authenticate the user. The nature of the client-side login depends on the login
module configuration that the client uses. In this example, the other client-side login
configuration entry uses the ClientLoginModule login module. This module binds the user
name and password to the EJB invocation layer for later authentication on the server. The
identity of the client is not authenticated on the client.

2. The client obtains the EJBHome method and invokes it on the server. The invocation includes the
method arguments passed by the client, along with the user identity and credentials from the
client-side JAAS login.

3. On the server, the security interceptor authenticates the user who invoked the method. This
involves another JAAS login.

4. The security domain under determines the choice of login modules. The name of the security
domain is passed to the LoginContext constructor as the login configuration entry name. The
EJB security domain is jwdomain. If the JAAS authentication is successful, a JAAS Subject is
created. A JAAS subject includes a PrincipalSet, which includes the following details:

A java.security.Principal instance that corresponds to the client identity from the
deployment security environment.

A java.security.acl.Group called Roles, which contains the role names from the
user's application domain. Objects of type org.jboss.security.SimplePrincipal
objects represent the role names. These roles validate access to EJB methods according to
constraints in ejb-jar.xml and the EJBContext.isCallerInRole(String) method
implementation.

An optional java.security.acl.Group named CallerPrincipal, which contains a
single org.jboss.security.SimplePrincipal that corresponds to the identity of the
application domain's caller. The CallerPrincipal group member is the value returned by the
EJBContext.getCallerPrincipal() method. This mapping allows a Principal in the
operational security environment to map to a Principal known to the application. In the
absence of a CallerPrincipal mapping, the operational principal is the same as the
application domain principal.

5. The server verifies that the user calling the EJB method has the permission to do so. Performing
this authorization involves the following steps:

Obtain the names of the roles allowed to access the EJB method from the EJB container.
The role names are determined by ejb-jar.xml descriptor <role-name> elements of all
<method-permission> elements containing the invoked method.

If no roles have been assigned, or the method is specified in an exclude-list element, access
to the method is denied. Otherwise, the doesUserHaveRole method is invoked on the
security manager by the security interceptor to check if the caller has one of the assigned
role names. This method iterates through the role names and checks if the authenticated
user's Subject Roles group contains a SimplePrincipal with the assigned role name.
Access is allowed if any role name is a member of the Roles group. Access is denied if none
of the role names are members.

If the EJB uses a custom security proxy, the method invocation is delegated to the proxy. If
the security proxy denies access to the caller, it throws a
java.lang.SecurityException. Otherwise, access to the EJB method is allowed and

Development Guide

366

the method invocation passes to the next container interceptor. The
SecurityProxyInterceptor handles this check and this interceptor is not shown.

For web connection requests, the web server checks the security constraints defined in
web.xml that match the requested resource and the accessed HTTP method.

If a constraint exists for the request, the web server calls the JaasSecurityManager to
perform the principal authentication, which in turn ensures the user roles are associated with
that principal object.

Report a bug

14.2.9. Use a Security Domain in Your Application

Overview

To use a security domain in your application, first you must configure the domain in either the server's
configuration file or the application's descriptor file. Then you must add the required annotations to the
EJB that uses it. This topic covers the steps required to use a security domain in your application.

WARNING

If an application is part of a security domain that uses an authentication cache, user
authentications for that application will also be available to other applications in that
security domain.

Procedure 14.1. Configure Your Application to Use a Security Domain

1. Define the Security Domain
You can define the security domain either in the server's configuration file or the application's
descriptor file.

Configure the security domain in the server's configuration file
The security domain is configured in the security subsystem of the server's configuration
file. If the JBoss EAP 6 instance is running in a managed domain, this is the
domain/configuration/domain.xml file. If the JBoss EAP 6 instance is running as a
standalone server, this is the standalone/configuration/standalone.xml file.

The other, jboss-web-policy, and jboss-ejb-policy security domains are
provided by default in JBoss EAP 6. The following XML example was copied from the
security subsystem in the server's configuration file.



<subsystem xmlns="urn:jboss:domain:security:1.2">
 <security-domains>
 <security-domain name="other" cache-type="default">
 <authentication>
 <login-module code="Remoting" flag="optional">
 <module-option name="password-stacking"
value="useFirstPass"/>
 </login-module>
 <login-module code="RealmDirect"

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

367

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4797-460007+%5BSpecified%5D&comment=Title%3A+About+Java+Authentication+and+Authorization+Service+%28JAAS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4797-460007+14+Jun+2013+14%3A31+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

You can configure additional security domains as needed using the Management Console
or CLI.

Configure the security domain in the application's descriptor file
The security domain is specified in the <security-domain> child element of the <jboss-
web> element in the application's WEB-INF/jboss-web.xml file. The following example
configures a security domain named my-domain.

This is only one of many settings which you can specify in the WEB-INF/jboss-web.xml
descriptor.

2. Add the Required Annotation to the EJB
You configure security in the EJB using the @SecurityDomain and @RolesAllowed
annotations. The following EJB code example limits access to the other security domain by
users in the guest role.

flag="required">
 <module-option name="password-stacking"
value="useFirstPass"/>
 </login-module>
 </authentication>
 </security-domain>
 <security-domain name="jboss-web-policy" cache-
type="default">
 <authorization>
 <policy-module code="Delegating"
flag="required"/>
 </authorization>
 </security-domain>
 <security-domain name="jboss-ejb-policy" cache-
type="default">
 <authorization>
 <policy-module code="Delegating"
flag="required"/>
 </authorization>
 </security-domain>
 </security-domains>
</subsystem>

<jboss-web>
 <security-domain>my-domain</security-domain>
</jboss-web>

package example.ejb3;

import java.security.Principal;

import javax.annotation.Resource;
import javax.annotation.security.RolesAllowed;
import javax.ejb.SessionContext;
import javax.ejb.Stateless;

import org.jboss.ejb3.annotation.SecurityDomain;

/**

Development Guide

368

For more code examples, see the ejb-security quickstart in the JBoss EAP 6 Quickstarts
bundle, which is available from the Red Hat Customer Portal.

Report a bug

14.2.10. Use Role-Based Security In Servlets

To add security to a servlet, you map each servlet to a URL pattern, and create security constraints on
the URL patterns which need to be secured. The security constraints limit access to the URLs to roles.
The authentication and authorization are handled by the security domain specified in the WAR's jboss-
web.xml.

Prerequisites

Before you use role-based security in a servlet, the security domain used to authenticate and authorize
access needs to be configured in the JBoss EAP 6 container.

Procedure 14.2. Add Role-Based Security to Servlets

1. Add mappings between servlets and URL patterns.
Use <servlet-mapping> elements in the web.xml to map individual servlets to URL
patterns. The following example maps the servlet called DisplayOpResult to the URL pattern
/DisplayOpResult.

2. Add security constraints to the URL patterns.

 * Simple secured EJB using EJB security annotations
 * Allow access to "other" security domain by users in a "guest"
role.
 */
@Stateless
@RolesAllowed({ "guest" })
@SecurityDomain("other")
public class SecuredEJB {

 // Inject the Session Context
 @Resource
 private SessionContext ctx;

 /**
 * Secured EJB method using security annotations
 */
 public String getSecurityInfo() {
 // Session context injected using the resource annotation
 Principal principal = ctx.getCallerPrincipal();
 return principal.toString();
 }
}

<servlet-mapping>
 <servlet-name>DisplayOpResult</servlet-name>
 <url-pattern>/DisplayOpResult</url-pattern>
</servlet-mapping>

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

369

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4765-627292+%5BSpecified%5D&comment=Title%3A+Use+a+Security+Domain+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4765-627292+03+Apr+2014+13%3A53+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

To map the URL pattern to a security constraint, use a <security-constraint>. The
following example constrains access from the URL pattern /DisplayOpResult to be accessed
by principals with the role eap_admin. The role needs to be present in the security domain.

You need to specify the authentication method, which can be any of the following: BASIC,
FORM, DIGEST, CLIENT-CERT, SPNEGO. This example uses BASIC authentication.

3. Specify the security domain in the WAR's jboss-web.xml
Add the security domain to the WAR's jboss-web.xml in order to connect the servlets to the
configured security domain, which knows how to authenticate and authorize principals against
the security constraints. The following example uses the security domain called acme_domain.

Example 14.1. Example web.xml with Role-Based Security Configured

<security-constraint>
 <display-name>Restrict access to role eap_admin</display-name>
 <web-resource-collection>
 <web-resource-name>Restrict access to role eap_admin</web-
resource-name>
 <url-pattern>/DisplayOpResult/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>eap_admin</role-name>
 </auth-constraint>
</security-constraint>

<security-role>
 <role-name>eap_admin</role-name>
</security-role>

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

<jboss-web>
 ...
 <security-domain>acme_domain</security-domain>
 ...
</jboss-web>

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">

<display-name>Use Role-Based Security In Servlets</display-name>

<welcome-file-list>

Development Guide

370

Report a bug

14.2.11. Use A Third-Party Authentication System In Your Application

You can integrate third-party security systems with JBoss EAP 6. These types of systems are usually
token-based. The external system performs the authentication and passes a token back to the Web
application through the request headers. This is often referred to as perimeter authentication. To
configure perimeter authentication in your application, add a custom authentication valve. If you have a
valve from a third-party provider, be sure it is in your classpath and follow the examples below, along
with the documentation for your third-party authentication module.

NOTE

The location for configuring valves has changed in JBoss EAP 6. There is no longer a
context.xml deployment descriptor. Valves are configured directly in the jboss-
web.xml descriptor instead. The context.xml is now ignored.

Example 14.2. Basic Authentication Valve

 <welcome-file>/index.jsp</welcome-file>
</welcome-file-list>

<servlet-mapping>
 <servlet-name>DisplayOpResult</servlet-name>
 <url-pattern>/DisplayOpResult</url-pattern>
</servlet-mapping>

<security-constraint>
 <display-name>Restrict access to role eap_admin</display-name>
 <web-resource-collection>
 <web-resource-name>Restrict access to role eap_admin</web-
resource-name>
 <url-pattern>/DisplayOpResult/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>eap_admin</role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>
 <role-name>eap_admin</role-name>
 </security-role>

 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>

</web-app>

<jboss-web>
 <valve>
 <class-

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

371

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4927-471360+%5BSpecified%5D&comment=Title%3A+Use+Role-Based+Security+In+Servlets%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4927-471360+26+Jun+2013+16%3A01+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

This valve is used for Kerberos-based SSO. It also shows the most simple pattern for specifying a
third-party authenticator for your Web application.

Example 14.3. Custom Valve With Header Attributes Set

This example shows how to set custom attributes on your valve. The authenticator checks for the
presence of the header ID and the session key, and passes them into the JAAS framework which
drives the security layer, as the username and password value. You need a custom JAAS login
module which can process the username and password and populate the subject with the correct
roles. If no header values match the configured values, regular form-based authentication semantics
apply.

Writing a Custom Authenticator

Writing your own authenticator is out of scope of this document. However, the following Java code is
provided as an example.

Example 14.4. GenericHeaderAuthenticator.java

name>org.jboss.security.negotiation.NegotiationAuthenticator</class-
name>
 </valve>
</jboss-web>

<jboss-web>
 <valve>
 <class-
name>org.jboss.web.tomcat.security.GenericHeaderAuthenticator</class-
name>
 <param>
 <param-name>httpHeaderForSSOAuth</param-name>
 <param-value>sm_ssoid,ct-remote-user,HTTP_OBLIX_UID</param-value>
 </param>
 <param>
 <param-name>sessionCookieForSSOAuth</param-name>
 <param-value>SMSESSION,CTSESSION,ObSSOCookie</param-value>
 </param>
 </valve>
</jboss-web>

/*
 * JBoss, Home of Professional Open Source.
 * Copyright 2006, Red Hat Middleware LLC, and individual contributors
 * as indicated by the @author tags. See the copyright.txt file in the
 * distribution for a full listing of individual contributors.
 *
 * This is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as
 * published by the Free Software Foundation; either version 2.1 of
 * the License, or (at your option) any later version.
 *

Development Guide

372

 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this software; if not, write to the Free
 * Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
 * 02110-1301 USA, or see the FSF site: http://www.fsf.org.
 */

package org.jboss.web.tomcat.security;

import java.io.IOException;
import java.security.Principal;
import java.util.StringTokenizer;

import javax.management.JMException;
import javax.management.ObjectName;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.catalina.Realm;
import org.apache.catalina.Session;
import org.apache.catalina.authenticator.Constants;
import org.apache.catalina.connector.Request;
import org.apache.catalina.connector.Response;
import org.apache.catalina.deploy.LoginConfig;
import org.jboss.logging.Logger;

import org.jboss.as.web.security.ExtendedFormAuthenticator;

/**
 * JBAS-2283: Provide custom header based authentication support
 *
 * Header Authenticator that deals with userid from the request header
Requires
 * two attributes configured on the Tomcat Service - one for the http
header
 * denoting the authenticated identity and the other is the SESSION
cookie
 *
 * @author Anil Saldhana
 * @author Stefan Guilhen
 * @version $Revision$
 * @since Sep 11, 2006
 */
public class GenericHeaderAuthenticator extends
ExtendedFormAuthenticator {
 protected static Logger log = Logger
 .getLogger(GenericHeaderAuthenticator.class);

 protected boolean trace = log.isTraceEnabled();

 // JBAS-4804: GenericHeaderAuthenticator injection of ssoid and

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

373

 // sessioncookie name.
 private String httpHeaderForSSOAuth = null;

 private String sessionCookieForSSOAuth = null;

 /**
 * <p>
 * Obtain the value of the <code>httpHeaderForSSOAuth</code>
attribute. This
 * attribute is used to indicate the request header ids that have to
be
 * checked in order to retrieve the SSO identity set by a third party
 * security system.
 * </p>
 *
 * @return a <code>String</code> containing the value of the
 * <code>httpHeaderForSSOAuth</code> attribute.
 */
 public String getHttpHeaderForSSOAuth() {
 return httpHeaderForSSOAuth;
 }

 /**
 * <p>
 * Set the value of the <code>httpHeaderForSSOAuth</code> attribute.
This
 * attribute is used to indicate the request header ids that have to
be
 * checked in order to retrieve the SSO identity set by a third party
 * security system.
 * </p>
 *
 * @param httpHeaderForSSOAuth
 * a <code>String</code> containing the value of the
 * <code>httpHeaderForSSOAuth</code> attribute.
 */
 public void setHttpHeaderForSSOAuth(String httpHeaderForSSOAuth) {
 this.httpHeaderForSSOAuth = httpHeaderForSSOAuth;
 }

 /**
 * <p>
 * Obtain the value of the <code>sessionCookieForSSOAuth</code>
attribute.
 * This attribute is used to indicate the names of the SSO cookies
that may
 * be present in the request object.
 * </p>
 *
 * @return a <code>String</code> containing the names (separated by a
 * <code>','</code>) of the SSO cookies that may have been
set by a
 * third party security system in the request.
 */
 public String getSessionCookieForSSOAuth() {
 return sessionCookieForSSOAuth;

Development Guide

374

 }

 /**
 * <p>
 * Set the value of the <code>sessionCookieForSSOAuth</code>
attribute. This
 * attribute is used to indicate the names of the SSO cookies that may
be
 * present in the request object.
 * </p>
 *
 * @param sessionCookieForSSOAuth
 * a <code>String</code> containing the names (separated
by a
 * <code>','</code>) of the SSO cookies that may have been
set by
 * a third party security system in the request.
 */
 public void setSessionCookieForSSOAuth(String sessionCookieForSSOAuth)
{
 this.sessionCookieForSSOAuth = sessionCookieForSSOAuth;
 }

 /**
 * <p>
 * Creates an instance of <code>GenericHeaderAuthenticator</code>.
 * </p>
 */
 public GenericHeaderAuthenticator() {
 super();
 }

 public boolean authenticate(Request request, HttpServletResponse
response,
 LoginConfig config) throws IOException {
 log.trace("Authenticating user");

 Principal principal = request.getUserPrincipal();
 if (principal != null) {
 if (trace)
 log.trace("Already authenticated '" + principal.getName() +
"'");
 return true;
 }

 Realm realm = context.getRealm();
 Session session = request.getSessionInternal(true);

 String username = getUserId(request);
 String password = getSessionCookie(request);

 // Check if there is sso id as well as sessionkey
 if (username == null || password == null) {
 log.trace("Username is null or password(sessionkey) is
null:fallback to form auth");
 return super.authenticate(request, response, config);

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

375

 }
 principal = realm.authenticate(username, password);

 if (principal == null) {
 forwardToErrorPage(request, response, config);
 return false;
 }

 session.setNote(Constants.SESS_USERNAME_NOTE, username);
 session.setNote(Constants.SESS_PASSWORD_NOTE, password);
 request.setUserPrincipal(principal);

 register(request, response, principal, HttpServletRequest.FORM_AUTH,
 username, password);
 return true;
 }

 /**
 * Get the username from the request header
 *
 * @param request
 * @return
 */
 protected String getUserId(Request request) {
 String ssoid = null;
 // We can have a comma-separated ids
 String ids = "";
 try {
 ids = this.getIdentityHeaderId();
 } catch (JMException e) {
 if (trace)
 log.trace("getUserId exception", e);
 }
 if (ids == null || ids.length() == 0)
 throw new IllegalStateException(
 "Http headers configuration in tomcat service missing");

 StringTokenizer st = new StringTokenizer(ids, ",");
 while (st.hasMoreTokens()) {
 ssoid = request.getHeader(st.nextToken());
 if (ssoid != null)
 break;
 }
 if (trace)
 log.trace("SSOID-" + ssoid);
 return ssoid;
 }

 /**
 * Obtain the session cookie from the request
 *
 * @param request
 * @return
 */
 protected String getSessionCookie(Request request) {
 Cookie[] cookies = request.getCookies();

Development Guide

376

 log.trace("Cookies:" + cookies);
 int numCookies = cookies != null ? cookies.length : 0;

 // We can have comma-separated ids
 String ids = "";
 try {
 ids = this.getSessionCookieId();
 log.trace("Session Cookie Ids=" + ids);
 } catch (JMException e) {
 if (trace)
 log.trace("checkSessionCookie exception", e);
 }
 if (ids == null || ids.length() == 0)
 throw new IllegalStateException(
 "Session cookies configuration in tomcat service missing");

 StringTokenizer st = new StringTokenizer(ids, ",");
 while (st.hasMoreTokens()) {
 String cookieToken = st.nextToken();
 String val = getCookieValue(cookies, numCookies, cookieToken);
 if (val != null)
 return val;
 }
 if (trace)
 log.trace("Session Cookie not found");
 return null;
 }

 /**
 * Get the configured header identity id in the tomcat service
 *
 * @return
 * @throws JMException
 */
 protected String getIdentityHeaderId() throws JMException {
 if (this.httpHeaderForSSOAuth != null)
 return this.httpHeaderForSSOAuth;
 return (String) mserver.getAttribute(new ObjectName(
 "jboss.web:service=WebServer"), "HttpHeaderForSSOAuth");
 }

 /**
 * Get the configured session cookie id in the tomcat service
 *
 * @return
 * @throws JMException
 */
 protected String getSessionCookieId() throws JMException {
 if (this.sessionCookieForSSOAuth != null)
 return this.sessionCookieForSSOAuth;
 return (String) mserver.getAttribute(new ObjectName(
 "jboss.web:service=WebServer"), "SessionCookieForSSOAuth");
 }

 /**
 * Get the value of a cookie if the name matches the token

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

377

Report a bug

14.3. SECURITY REALMS

14.3.1. About Security Realms

A security realm is a series of mappings between users and passwords, and users and roles. Security
realms are a mechanism for adding authentication and authorization to your EJB and Web applications.
JBoss EAP 6 provides two security realms by default:

ManagementRealm stores authentication information for the Management API, which provides
the functionality for the Management CLI and web-based Management Console. It provides an
authentication system for managing JBoss EAP 6 itself. You could also use the
ManagementRealm if your application needed to authenticate with the same business rules you
use for the Management API.

ApplicationRealm stores user, password, and role information for Web Applications and
EJBs.

Each realm is stored in two files on the filesystem:

REALM-users.properties stores usernames and hashed passwords.

REALM-users.properties stores user-to-role mappings.

 *
 * @param cookies
 * array of cookies
 * @param numCookies
 * number of cookies in the array
 * @param token
 * Key
 * @return value of cookie
 */
 protected String getCookieValue(Cookie[] cookies, int numCookies,
 String token) {
 for (int i = 0; i < numCookies; i++) {
 Cookie cookie = cookies[i];
 log.trace("Matching cookieToken:" + token + " with cookie name="
 + cookie.getName());
 if (token.equals(cookie.getName())) {
 if (trace)
 log.trace("Cookie-" + token + " value=" + cookie.getValue());
 return cookie.getValue();
 }
 }
 return null;
 }
}

Development Guide

378

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7825-468477+%5BSpecified%5D&comment=Title%3A+Use+A+Third-Party+Authentication+System+In+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7825-468477+24+Jun+2013+09%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The properties files are stored in the domain/configuration/ and standalone/configuration/
directories. The files are written simultaneously by the add-user.sh or add-user.bat command.
When you run the command, the first decision you make is which realm to add your new user to.

Report a bug

14.3.2. Add a New Security Realm

1. Run the Management CLI.
Start the jboss-cli.sh or jboss-cli.bat command and connect to the server.

2. Create the new security realm itself.
Run the following command to create a new security realm named MyDomainRealm on a
domain controller or a standalone server.

/host=master/core-service=management/security-
realm=MyDomainRealm:add()

3. Create the references to the properties file which will store information about the new
role.
Run the following command to create a pointer a file named myfile.properties, which will
contain the properties pertaining to the new role.

NOTE

The newly-created properties file is not managed by the included add-user.sh
and add-user.bat scripts. It must be managed externally.

/host=master/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path=myfile.proper
ties)

Result

Your new security realm is created. When you add users and roles to this new realm, the information will
be stored in a separate file from the default security realms. You can manage this new file using your
own applications or procedures.

Report a bug

14.3.3. Add a User to a Security Realm

1. Run the add-user.sh or add-user.bat command.
Open a terminal and change directories to the EAP_HOME/bin/ directory. If you run Red Hat
Enterprise Linux or another UNIX-like operating system, run add-user.sh. If you run Microsoft
Windows Server, run add-user.bat.

2. Choose whether to add a Management User or Application User.
For this procedure, type b to add an Application User.

3. Choose the realm the user will be added to.
By default, the only available realm is ApplicationRealm. If you have added a custom realm,
you can type its name instead.

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

379

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8269-495465+%5BSpecified%5D&comment=Title%3A+About+Security+Realms%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8269-495465+16+Aug+2013+16%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8272-455581+%5BSpecified%5D&comment=Title%3A+Add+a+New+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8272-455581+29+May+2013+13%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

4. Type the username, password, and roles, when prompted.
Type the desired username, password, and optional roles when prompted. Verify your choice by
typing yes, or type no to cancel the changes. The changes are written to each of the properties
files for the security realm.

Report a bug

14.4. EJB APPLICATION SECURITY

14.4.1. Security Identity

14.4.1.1. About EJB Security Identity

The security identity, which is also known as invocation identity, refers to the <security-identity>
tag in the security configuration. It refers to the identity another EJB must use when it invokes methods
on components.

The invocation identity can be either the current caller, or it can be a specific role. In the first case, the
<use-caller-identity> tag is present, and in the second case, the <run-as> tag is used.

For information about setting the security identity of an EJB, refer to Section 14.4.1.2, “Set the Security
Identity of an EJB”.

Report a bug

14.4.1.2. Set the Security Identity of an EJB

Example 14.5. Set the security identity of an EJB to be the same as its caller

This example sets the security identity for method invocations made by an EJB to be the same as the
current caller's identity. This behavior is the default if you do not specify a <security-identity>
element declaration.

Example 14.6. Set the security identity of an EJB to a specific role

To set the security identity to a specific role, use the <run-as> and <role-name> tags inside the
<security-identity> tag.

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 <!-- ... -->
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 <!-- ... -->
 </enterprise-beans>
</ejb-jar>

Development Guide

380

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8271-450875+%5BSpecified%5D&comment=Title%3A+Add+a+User+to+a+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8271-450875+21+May+2013+14%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4713-328592+%5BSpecified%5D&comment=Title%3A+About+EJB+Security+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4713-328592+05+Nov+2012+14%3A51+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

By default, when you use <run-as>, a principal named anonymous is assigned to outgoing calls. To
assign a different principal, uses the <run-as-principal>.

NOTE

You can also use the <run-as> and <run-as-principal> elements inside a servlet
element.

See also:

Section 14.4.1.1, “About EJB Security Identity”

Section 16.2, “EJB Security Parameter Reference”

Report a bug

14.4.2. EJB Method Permissions

14.4.2.1. About EJB Method Permissions

EJB provides a <method-permisison> element declaration. This declaration sets the roles which are
allowed to invoke an EJB's interface methods. You can specify permissions for the following
combinations:

All home and component interface methods of the named EJB

A specified method of the home or component interface of the named EJB

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <!-- ... -->
 <security-identity>
 <run-as>
 <description>A private internal role</description>
 <role-name>InternalRole</role-name>
 </run-as>
 </security-identity>
 </session>
 </enterprise-beans>
 <!-- ... -->
</ejb-jar>

<session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as-principal>internal</run-as-principal>
 </security-identity>
</session>

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

381

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5052-448698+%5BSpecified%5D&comment=Title%3A+Set+the+Security+Identity+of+an+EJB%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5052-448698+13+May+2013+11%3A10+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

A specified method within a set of methods with an overloaded name

For examples, see Section 14.4.2.2, “Use EJB Method Permissions”.

Report a bug

14.4.2.2. Use EJB Method Permissions

Overview

The <method-permission> element defines the logical roles that are allowed to access the EJB
methods defined by <method> elements. Several examples demonstrate the syntax of the XML.
Multiple method permission statements may be present, and they have a cumulative effect. The
<method-permission> element is a child of the <assembly-descriptor> element of the <ejb-
jar> descriptor.

The XML syntax is an alternative to using annotations for EJB method permissions.

Example 14.7. Allow roles to access all methods of an EJB

Example 14.8. Allow roles to access only specific methods of an EJB, and limiting which
method parameters can be passed.

<method-permission>
 <description>The employee and temp-employee roles may access any
method
 of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

<method-permission>
 <description>The employee role may access the findByPrimaryKey,
 getEmployeeInfo, and the updateEmployeeInfo(String) method of
 the AcmePayroll bean </description>
 <role-name>employee</role-name>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <method-params>

Development Guide

382

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4767-432892+%5BSpecified%5D&comment=Title%3A+About+EJB+Method+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4767-432892+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Example 14.9. Allow any authenticated user to access methods of EJBs

Using the <unchecked/> element allows any authenticated user to use the specified methods.

Example 14.10. Completely exclude specific EJB methods from being used

Example 14.11. A complete <assembly-descriptor> containing several <method-
permission> blocks

 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
</method-permission>

<method-permission>
 <description>Any authenticated user may access any method of the
 EmployeeServiceHelp bean</description>
 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

<exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring bean may be
 used in this deployment</description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
</exclude-list>

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles may
access any
 method of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

383

Report a bug

 <description>The employee role may access the
findByPrimaryKey,
 getEmployeeInfo, and the updateEmployeeInfo(String)
method of
 the AcmePayroll bean </description>
 <role-name>employee</role-name>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>
 <method>
 <ejb-name>AcmePayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>
 <method-permission>
 <description>The admin role may access any method of the
 EmployeeServiceAdmin bean </description>
 <role-name>admin</role-name>
 <method>
 <ejb-name>EmployeeServiceAdmin</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <method-permission>
 <description>Any authenticated user may access any method
of the
 EmployeeServiceHelp bean</description>
 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 <exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring
bean may be
 used in this deployment</description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
 </exclude-list>
 </assembly-descriptor>
</ejb-jar>

Development Guide

384

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4794-455574+%5BSpecified%5D&comment=Title%3A+Use+EJB+Method+Permissions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4794-455574+29+May+2013+13%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

14.4.3. EJB Security Annotations

14.4.3.1. About EJB Security Annotations

EJBs use security annotations to pass information about security to the deployer. These include:

@DeclareRoles

Declares which roles are available.

@RolesAllowed, @PermitAll, @DenyAll

Specifies which method permissions are allowed. For information about method permissions, refer to
Section 14.4.2.1, “About EJB Method Permissions”.

@RunAs

Configures the propagated security identify of a component.

For more information, refer to Section 14.4.3.2, “Use EJB Security Annotations”.

Report a bug

14.4.3.2. Use EJB Security Annotations

Overview

You can use either XML descriptors or annotations to control which security roles are able to call
methods in your Enterprise JavaBeans (EJBs). For information on using XML descriptors, refer to
Section 14.4.2.2, “Use EJB Method Permissions”.

Annotations for Controlling Security Permissions of EJBs

@DeclareRoles

Use @DeclareRoles to define which security roles to check permissions against. If no
@DeclareRoles is present, the list is built automatically from the @RolesAllowed annotation.

@SecurityDomain

Specifies the security domain to use for the EJB. If the EJB is annotated for authorization with
@RolesAllowed, authorization will only apply if the EJB is annotated with a security domain.

@RolesAllowed, @PermitAll, @DenyAll

Use @RolesAllowed to list which roles are allowed to access a method or methods. Use @PermitAll
or @DenyAll to either permit or deny all roles from using a method or methods.

@RunAs

Use @RunAs to specify a role a method will always be run as.

Example 14.12. Security Annotations Example

@Stateless
@RolesAllowed({"admin"})
@SecurityDomain("other")

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

385

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4768-481778+%5BSpecified%5D&comment=Title%3A+About+EJB+Security+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4768-481778+25+Jul+2013+13%3A36+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

In this code, all roles can access method WelcomeEveryone. The GoodBye method runs as the
tempemployee role. Only the admin role can access method GoodbyeAdmin, and any other
methods with no security annotation..

Report a bug

14.4.4. Remote Access to EJBs

14.4.4.1. About Remote Method Access

JBoss Remoting is the framework which provides remote access to EJBs, JMX MBeans, and other
similar services. It works within the following transport types, with or without SSL:

Supported Transport Types

Socket / Secure Socket

RMI / RMI over SSL

HTTP / HTTPS

Servlet / Secure Servlet

Bisocket / Secure Bisocket

JBoss Remoting also provides automatic discovery via Multicast or JNDI.

It is used by many of the subsystems within JBoss EAP 6, and also enables you to design, implement,
and deploy services that can be remotely invoked by clients over several different transport mechanisms.
It also allows you to access existing services in JBoss EAP 6.

Data Marshalling

The Remoting system also provides data marshalling and unmarshalling services. Data marshalling
refers to the ability to safely move data across network and platform boundaries, so that a separate
system can perform work on it. The work is then sent back to the original system and behaves as though
it were handled locally.

Architecture Overview

public class WelcomeEJB implements Welcome {
 @PermitAll
 public String WelcomeEveryone(String msg) {
 return "Welcome to " + msg;
 }
 @RunAs("tempemployee")
 public String GoodBye(String msg) {
 return "Goodbye, " + msg;
 }
 public String
 public String GoodbyeAdmin(String msg) {
 return "See you later, " + msg;
 }
}

Development Guide

386

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4795-336485+%5BSpecified%5D&comment=Title%3A+Use+EJB+Security+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4795-336485+28+Nov+2012+23%3A27+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

When you design a client application which uses Remoting, you direct your application to communicate
with the server by configuring it to use a special type of resource locator called an InvokerLocator,
which is a simple String with a URL-type format. The server listens for requests for remote resources on
a connector, which is configured as part of the remoting subsystem. The connector hands the
request off to a configured ServerInvocationHandler. Each ServerInvocationHandler
implements a method invoke(InvocationRequest), which knows how to handle the request.

The JBoss Remoting framework contains three layers that mirror each other on the client and server
side.

JBoss Remoting Framework Layers

The user interacts with the outer layer. On the client side, the outer layer is the Client class,
which sends invocation requests. On the server side, it is the InvocationHandler, which is
implemented by the user and receives invocation requests.

The transport is controlled by the invoker layer.

The lowest layer contains the marshaller and unmarshaller, which convert data formats to wire
formats.

Report a bug

14.4.4.2. About Remoting Callbacks

When a Remoting client requests information from the server, it can block and wait for the server to
reply, but this is often not the ideal behavior. To allow the client to listen for asynchronous events on the
server, and continue doing other work while waiting for the server to finish the request, your application
can ask the server to send a notification when it has finished. This is referred to as a callback. One client
can add itself as a listener for asynchronous events generated on behalf of another client, as well. There
are two different choices for how to receive callbacks: pull callbacks or push callbacks. Clients check for
pull callbacks synchronously, but passively listen for push callbacks.

In essence, a callback works by the server sending an InvocationRequest to the client. Your server-
side code works the same regardless of whether the callback is synchronous or asynchronous. Only the
client needs to know the difference. The server's InvocationRequest sends a responseObject to the
client. This is the payload that the client has requested. This may be a direct response to a request or an
event notification.

Your server also tracks listeners using an m_listeners object. It contains a list of all listeners that have
been added to your server handler. The ServerInvocationHandler interface includes methods that
allow you to manage this list.

The client handles pull and push callback in different ways. In either case, it must implement a callback
handler. A callback handler is an implementation of interface
org.jboss.remoting.InvokerCallbackHandler, which processes the callback data. After
implementing the callback handler, you either add yourself as a listener for a pull callback, or implement
a callback server for a push callback.

Pull Callbacks

For a pull callback, your client adds itself to the server's list of listeners using the
Client.addListener() method. It then polls the server periodically for synchronous delivery of
callback data. This poll is performed using the Client.getCallbacks().

Push Callback

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

387

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7882-466868+%5BSpecified%5D&comment=Title%3A+About+Remote+Method+Access%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7882-466868+20+Jun+2013+01%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

A push callback requires your client application to run its own InvocationHandler. To do this, you need to
run a Remoting service on the client itself. This is referred to as a callback server. The callback server
accepts incoming requests asynchronously and processes them for the requester (in this case, the
server). To register your client's callback server with the main server, pass the callback server's
InvokerLocator as the second argument to the addListener method.

Report a bug

14.4.4.3. About Remoting Server Detection

Remoting servers and clients can automatically detect each other using JNDI or Multicast. A Remoting
Detector is added to both the client and server, and a NetworkRegistry is added to the client.

The Detector on the server side periodically scans the InvokerRegistry and pulls all server invokers it
has created. It uses this information to publish a detection message which contains the locator and
subsystems supported by each server invoker. It publishes this message via a multicast broadcast or a
binding into a JNDI server.

On the client side, the Detector receives the multicast message or periodically polls the JNDI server to
retrieve detection messages. If the Detector notices that a detection message is for a newly-detected
remoting server, it registers it into the NetworkRegistry. The Detector also updates the NetworkRegistry
if it detects that a server is no longer available.

Report a bug

14.4.4.4. Configure the Remoting Subsystem

Overview

JBoss Remoting has three top-level configurable elements: the worker thread pool, one or more
connectors, and a series of local and remote connection URIs. This topic presents an explanation of
each configurable item, example CLI commands for how to configure each item, and an XML example of
a fully-configured subsystem. This configuration only applies to the server. Most people will not need to
configure the Remoting subsystem at all, unless they use custom connectors for their own applications.
Applications which act as Remoting clients, such as EJBs, need separate configuration to connect to a
specific connector.

NOTE

The Remoting subsystem configuration is not exposed to the web-based Management
Console, but it is fully configurable from the command-line based Management CLI.
Editing the XML by hand is not recommended.

Adapting the CLI Commands

The CLI commands are formulated for a managed domain, when configuring the default profile. To
configure a different profile, substitute its name. For a standalone server, omit the /profile=default
part of the command.

Configuration Outside the Remoting Subsystem

There are a few configuration aspects which are outside of the remoting subsystem:

Network Interface

The network interface used by the remoting subsystem is the unsecure interface defined in the
domain/configuration/domain.xml or standalone/configuration/standalone.xml.

Development Guide

388

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7883-432927+%5BSpecified%5D&comment=Title%3A+About+Remoting+Callbacks%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7883-432927+11+Apr+2013+10%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7890-432929+%5BSpecified%5D&comment=Title%3A+About+Remoting+Server+Detection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7890-432929+11+Apr+2013+10%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The per-host definition of the unsecure interface is defined in the host.xml in the same directory
as the domain.xml or standalone.xml. This interface is also used by several other subsystems.
Exercise caution when modifying it.

socket-binding

The default socket-binding used by the remoting subsystem binds to TCP port 4777. Refer to the
documentation about socket bindings and socket binding groups for more information if you need to
change this.

Remoting Connector Reference for EJB

The EJB subsystem contains a reference to the remoting connector for remote method invocations.
The following is the default configuration:

Secure Transport Configuration

Remoting transports use StartTLS to use a secure (HTTPS, Secure Servlet, etc) connection if the
client requests it. The same socket binding (network port) is used for secured and unsecured
connections, so no additional server-side configuration is necessary. The client requests the secure
or unsecured transport, as its needs dictate. JBoss EAP 6 components which use Remoting, such as
EJBs, the ORB, and the JMS provider, request secured interfaces by default.

<interfaces>
 <interface name="management"/>
 <interface name="public"/>
 <interface name="unsecure"/>
</interfaces>

<interfaces>
 <interface name="management">
 <inet-address
value="${jboss.bind.address.management:127.0.0.1}"/>
 </interface>
 <interface name="public">
 <inet-address value="${jboss.bind.address:127.0.0.1}"/>
 </interface>
 <interface name="unsecure">
 <!-- Used for IIOP sockets in the standard configuration.
 To secure JacORB you need to setup SSL -->
 <inet-address value="${jboss.bind.address.unsecure:127.0.0.1}"/>
 </interface>
</interfaces>

<remote connector-ref="remoting-connector" thread-pool-name="default"/>

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

389

WARNING

StartTLS works by activating a secure connection if the client requests it, and
otherwise defaulting to an unsecured connection. It is inherently susceptible to a
Man in the Middle style exploit, wherein an attacker intercepts the client's request
and modifies it to request an unsecured connection. Clients must be written to fail
appropriately if they do not receive a secure connection, unless an unsecured
connection actually is an appropriate fall-back.

Worker Thread Pool

The worker thread pool is the group of threads which are available to process work which comes in
through the Remoting connectors. It is a single element <worker-thread-pool>, and takes several
attributes. Tune these attributes if you get network timeouts, run out of threads, or need to limit memory
usage. Specific recommendations depend on your specific situation. Contact Red Hat Global Support
Services for more information.

Table 14.2. Worker Thread Pool Attributes

Attribute Description CLI Command

read-threads The number of read threads to
create for the remoting worker.
Defaults to 1.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
read-threads,value=1)

write-threads The number of write threads to
create for the remoting worker.
Defaults to 1.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
write-threads,value=1)

task-keepalive The number of milliseconds to
keep non-core remoting worker
task threads alive. Defaults to 60.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
task-
keepalive,value=60)

task-max-threads The maximum number of threads
for the remoting worker task
thread pool. Defaults to 16.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
task-max-
threads,value=16)

task-core-threads The number of core threads for
the remoting worker task thread
pool. Defaults to 4.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
task-core-
threads,value=4)



Development Guide

390

task-limit The maximum number of
remoting worker tasks to allow
before rejecting. Defaults to
16384.

/profile=default/subsys
tem=remoting/:write-
attribute(name=worker-
task-limit,value=16384)

Attribute Description CLI Command

Connector

The connector is the main Remoting configuration element. Multiple connectors are allowed. Each
consists of a element <connector> element with several sub-elements, as well as a few possible
attributes. The default connector is used by several subsystems of JBoss EAP 6. Specific settings for the
elements and attributes of your custom connectors depend on your applications, so contact Red Hat
Global Support Services for more information.

Table 14.3. Connector Attributes

Attribute Description CLI Command

socket-binding The name of the socket binding to
use for this connector.

/profile=default/subsys
tem=remoting/connector=
remoting-
connector/:write-
attribute(name=socket-
binding,value=remoting)

authentication-provider The Java Authentication Service
Provider Interface for Containers
(JASPIC) module to use with this
connector. The module must be in
the classpath.

/profile=default/subsys
tem=remoting/connector=
remoting-
connector/:write-
attribute(name=authenti
cation-
provider,value=myProvid
er)

security-realm Optional. The security realm
which contains your application's
users, passwords, and roles. An
EJB or Web Application can
authenticate against a security
realm. ApplicationRealm is
available in a default JBoss EAP 6
installation.

/profile=default/subsys
tem=remoting/connector=
remoting-
connector/:write-
attribute(name=security
-
realm,value=Application
Realm)

Table 14.4. Connector Elements

Attribute Description CLI Command

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

391

sasl Enclosing element for Simple
Authentication and Security Layer
(SASL) authentication
mechanisms

N/A

properties Contains one or more
<property> elements, each
with a name attribute and an
optional value attribute.

/profile=default/subsys
tem=remoting/connector=
remoting-
connector/property=myPr
op/:add(value=myPropVal
ue)

Attribute Description CLI Command

Outbound Connections

You can specify three different types of outbound connection:

Outbound connection to a URI.

Local outbound connection – connects to a local resource such as a socket.

Remote outbound connection – connects to a remote resource and authenticates using a
security realm.

All of the outbound connections are enclosed in an <outbound-connections> element. Each of these
connection types takes an outbound-socket-binding-ref attribute. The outbound-connection
takes a uri attribute. The remote outbound connection takes optional username and security-
realm attributes to use for authorization.

Table 14.5. Outbound Connection Elements

Attribute Description CLI Command

outbound-connection Generic outbound connection. /profile=default/subsys
tem=remoting/outbound-
connection=my-
connection/:add(uri=htt
p://my-connection)

local-outbound-connection Outbound connection with a
implicit local:// URI scheme.

/profile=default/subsys
tem=remoting/local-
outbound-connection=my-
connection/:add(outboun
d-socket-binding-
ref=remoting2)

remote-outbound-connection Outbound connections for
remote:// URI scheme, using
basic/digest authentication with a
security realm.

/profile=default/subsys
tem=remoting/remote-
outbound-connection=my-
connection/:add(outboun
d-socket-binding-
ref=remoting,username=m
yUser,security-
realm=ApplicationRealm)

Development Guide

392

SASL Elements

Before defining the SASL child elements, you need to create the initial SASL element. Use the following
command:

/profile=default/subsystem=remoting/connector=remoting-
connector/security=sasl:add

The child elements of the SASL element are described in the table below.

Attribute Description CLI Command

include-mechanisms Contains a value attribute,
which is a space-separated list of
SASL mechanisms.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl:write-
attribute(name=inclu
de-mechanisms,value=
["DIGEST","PLAIN","G
SSAPI"])

qop Contains a value attribute,
which is a space-separated list of
SASL Quality of protection values,
in decreasing order of preference.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl:write-
attribute(name=qop,v
alue=["auth"])

strength Contains a value attribute,
which is a space-separated list of
SASL cipher strength values, in
decreasing order of preference.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl:write-
attribute(name=stren
gth,value=
["medium"])

reuse-session Contains a value attribute which
is a boolean value. If true, attempt
to reuse sessions.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl:write-
attribute(name=reuse
-
session,value=false)

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

393

server-auth Contains a value attribute which
is a boolean value. If true, the
server authenticates to the client.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl:write-
attribute(name=serve
r-auth,value=false)

policy An enclosing element which
contains zero or more of the
following elements, which each
take a single value.

forward-secrecy –
whether mechanisms are
required to implement
forward secrecy
(breaking into one
session will not
automatically provide
information for breaking
into future sessions)

no-active – whether
mechanisms susceptible
to non-dictionary attacks
are permitted. A value of
false permits, and
true denies.

no-anonymous – whether
mechanisms that accept
anonymous login are
permitted. A value of
false permits, and
true denies.

no-dictionary – whether
mechanisms susceptible
to passive dictionary
attacks are allowed. A
value of false permits,
and true denies.

no-plain-text – whether
mechanisms which are
susceptible to simple
plain passive attacks are
allowed. A value of
false permits, and
true denies.

pass-credentials –
whether mechanisms
which pass client
credentials are allowed.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:add

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:write-
attribute(name=forwa
rd-
secrecy,value=true)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:write-
attribute(name=no-
active,value=false)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:write-
attribute(name=no-
anonymous,value=fals
e)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-

Attribute Description CLI Command

Development Guide

394

policy=policy:write-
attribute(name=no-
dictionary,value=tru
e)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:write-
attribute(name=no-
plain-
text,value=false)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/sasl-
policy=policy:write-
attribute(name=pass-
credentials,value=tr
ue)

properties Contains one or more
<property> elements, each
with a name attribute and an
optional value attribute.

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/property=myprop:
add(value=1)

/profile=default/sub
system=remoting/conn
ector=remoting-
connector/security=s
asl/property=myprop2
:add(value=2)

Attribute Description CLI Command

Example 14.13. Example Configurations

This example shows the default remoting subsystem that ships with JBoss EAP 6.

<subsystem xmlns="urn:jboss:domain:remoting:1.1">
 <connector name="remoting-connector" socket-binding="remoting"
security-realm="ApplicationRealm"/>
</subsystem>

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

395

This example contains many hypothetical values, and is presented to put the elements and attributes
discussed previously into context.

Configuration Aspects Not Yet Documented

JNDI and Multicast Automatic Detection

Report a bug

14.4.4.5. Use Security Realms with Remote EJB Clients

<subsystem xmlns="urn:jboss:domain:remoting:1.1">
 <worker-thread-pool read-threads="1" task-keepalive="60' task-max-
threads="16" task-core-thread="4" task-limit="16384" write-threads="1"
/>
 <connector name="remoting-connector" socket-binding="remoting"
security-realm="ApplicationRealm">
 <sasl>
 <include-mechanisms value="GSSAPI PLAIN DIGEST-MD5" />
 <qop value="auth" />
 <strength value="medium" />
 <reuse-session value="false" />
 <server-auth value="false" />
 <policy>
 <forward-secrecy value="true" />
 <no-active value="false" />
 <no-anonymous value="false" />
 <no-dictionary value="true" />
 <no-plain-text value="false" />
 <pass-credentials value="true" />
 </policy>
 <properties>
 <property name="myprop1" value="1" />
 <property name="myprop2" value="2" />
 </properties>
 </sasl>
 <authentication-provider name="myprovider" />
 <properties>
 <property name="myprop3" value="propValue" />
 </properties>
 </connector>
 <outbound-connections>
 <outbound-connection name="my-outbound-connection"
uri="http://myhost:7777/"/>
 <remote-outbound-connection name="my-remote-connection"
outbound-socket-binding-ref="my-remote-socket" username="myUser"
security-realm="ApplicationRealm"/>
 <local-outbound-connection name="myLocalConnection" outbound-
socket-binding-ref="my-outbound-socket"/>
 </outbound-connections>
</subsystem>

Development Guide

396

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7884-460018+%5BSpecified%5D&comment=Title%3A+Configure+the+Remoting+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7884-460018+14+Jun+2013+14%3A37+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

One way to add security to clients which invoke EJBs remotely is to use security realms. A security
realm is a simple database of username/password pairs and username/role pairs. The terminology is
also used in the context of web containers, with a slightly different meaning.

To authenticate an EJB to a specific username and password which exists in a security realm, follow
these steps:

Add a new security realm to the domain controller or standalone server.

Add the following parameters to the jboss-ejb-client.properties file, which is in the
classpath of the application. This example assumes the connection is referred to as default by
the other parameters in the file.

Create a custom Remoting connector on the domain or standalone server, which uses your new
security realm.

Deploy your EJB to the server group which is configured to use the profile with the custom
Remoting connector, or to your standalone server if you are not using a managed domain.

Report a bug

14.4.4.6. Add a New Security Realm

1. Run the Management CLI.
Start the jboss-cli.sh or jboss-cli.bat command and connect to the server.

2. Create the new security realm itself.
Run the following command to create a new security realm named MyDomainRealm on a
domain controller or a standalone server.

/host=master/core-service=management/security-
realm=MyDomainRealm:add()

3. Create the references to the properties file which will store information about the new
role.
Run the following command to create a pointer a file named myfile.properties, which will
contain the properties pertaining to the new role.

NOTE

The newly-created properties file is not managed by the included add-user.sh
and add-user.bat scripts. It must be managed externally.

/host=master/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path=myfile.proper
ties)

Result

remote.connection.default.username=appuser
remote.connection.default.password=apppassword

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

397

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8270-432931+%5BSpecified%5D&comment=Title%3A+Use+Security+Realms+with+Remote+EJB+Clients%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8270-432931+11+Apr+2013+10%3A48+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Your new security realm is created. When you add users and roles to this new realm, the information will
be stored in a separate file from the default security realms. You can manage this new file using your
own applications or procedures.

Report a bug

14.4.4.7. Add a User to a Security Realm

1. Run the add-user.sh or add-user.bat command.
Open a terminal and change directories to the EAP_HOME/bin/ directory. If you run Red Hat
Enterprise Linux or another UNIX-like operating system, run add-user.sh. If you run Microsoft
Windows Server, run add-user.bat.

2. Choose whether to add a Management User or Application User.
For this procedure, type b to add an Application User.

3. Choose the realm the user will be added to.
By default, the only available realm is ApplicationRealm. If you have added a custom realm,
you can type its name instead.

4. Type the username, password, and roles, when prompted.
Type the desired username, password, and optional roles when prompted. Verify your choice by
typing yes, or type no to cancel the changes. The changes are written to each of the properties
files for the security realm.

Report a bug

14.4.4.8. About Remote EJB Access Using SSL Encryption

By default, the network traffic for Remote Method Invocation (RMI) of EJB2 and EJB3 Beans is not
encrypted. In instances where encryption is required, Secure Sockets Layer (SSL) can be utilized so that
the connection between the client and server is encrypted. Using SSL also has the added benefit of
allowing the network traffic to traverse firewalls that block the RMI port.

Report a bug

14.5. JAX-RS APPLICATION SECURITY

14.5.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

Summary

RESTEasy supports the @RolesAllowed, @PermitAll, and @DenyAll annotations on JAX-RS methods.
However, it does not recognize these annotations by default. Follow these steps to configure the
web.xml file and enable role-based security.

Development Guide

398

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8272-455581+%5BSpecified%5D&comment=Title%3A+Add+a+New+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8272-455581+29+May+2013+13%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+8271-450875+%5BSpecified%5D&comment=Title%3A+Add+a+User+to+a+Security+Realm%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8271-450875+21+May+2013+14%3A28+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4786-432898+%5BSpecified%5D&comment=Title%3A+About+Remote+EJB+Access+Using+SSL+Encryption%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4786-432898+11+Apr+2013+10%3A47+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

WARNING

Do not activate role-based security if the application uses EJBs. The EJB container
will provide the functionality, instead of RESTEasy.

Procedure 14.3. Enable Role-Based Security for a RESTEasy JAX-RS Web Service

1. Open the web.xml file for the application in a text editor.

2. Add the following <context-param> to the file, within the web-app tags:

<context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>
</context-param>

3. Declare all roles used within the RESTEasy JAX-RS WAR file, using the <security-role> tags:

<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>
<security-role>
 <role-name>ROLE_NAME</role-name>
</security-role>

4. Authorize access to all URLs handled by the JAX-RS runtime for all roles:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/PATH</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>ROLE_NAME</role-name>
 <role-name>ROLE_NAME</role-name>
 </auth-constraint>
</security-constraint>

Result

Role-based security has been enabled within the application, with a set of defined roles.

Example 14.14. Example Role-Based Security Configuration



<web-app>

 <context-param>
 <param-name>resteasy.role.based.security</param-name>
 <param-value>true</param-value>

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

399

Report a bug

14.5.2. Secure a JAX-RS Web Service using Annotations

Summary

This topic covers the steps to secure a JAX-RS web service using the supported security annotations

Procedure 14.4. Secure a JAX-RS Web Service using Supported Security Annotations

1. Enable role-based security. For more information, refer to: Section 14.5.1, “Enable Role-Based
Security for a RESTEasy JAX-RS Web Service”

2. Add security annotations to the JAX-RS web service. RESTEasy supports the following
annotations:

@RolesAllowed

Defines which roles can access the method. All roles should be defined in the web.xml file.

@PermitAll

Allows all roles defined in the web.xml file to access the method.

@DenyAll

Denies all access to the method.

 </context-param>

 <servlet-mapping>
 <servlet-name>Resteasy</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Resteasy</web-resource-name>
 <url-pattern>/security</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>

 <security-role>
 <role-name>admin</role-name>
 </security-role>
 <security-role>
 <role-name>user</role-name>
 </security-role>

</web-app>

Development Guide

400

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5945-431989+%5BSpecified%5D&comment=Title%3A+Enable+Role-Based+Security+for+a+RESTEasy+JAX-RS+Web+Service%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5945-431989+08+Apr+2013+16%3A03+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

14.6. SECURE REMOTE PASSWORD PROTOCOL

14.6.1. About Secure Remote Password Protocol (SRP)

The Secure Remote Password (SRP) protocol is an implementation of a public key exchange
handshake described in the Internet Standards Working Group Request For Comments 2945
(RFC2945). The RFC2945 abstract states:

This document describes a cryptographically strong network authentication mechanism
known as the Secure Remote Password (SRP) protocol. This mechanism is suitable for
negotiating secure connections using a user-supplied password, while eliminating the
security problems traditionally associated with reusable passwords. This system also
performs a secure key exchange in the process of authentication, allowing security
layers (privacy and/or integrity protection) to be enabled during the session. Trusted key
servers and certificate infrastructures are not required, and clients are not required to
store or manage any long-term keys. SRP offers both security and deployment
advantages over existing challenge-response techniques, making it an ideal drop-in
replacement where secure password authentication is needed.

The complete RFC2945 specification can be obtained from http://www.rfc-editor.org/rfc.html. Additional
information on the SRP algorithm and its history can be found at http://srp.stanford.edu/.

Algorithms like Diffie-Hellman and RSA are known as public key exchange algorithms. The concept of
public key algorithms is that you have two keys, one public that is available to everyone, and one that is
private and known only to you. When someone wants to send encrypted information to you, they encrypt
the information using your public key. Only you are able to decrypt the information using your private key.
Contrast this with the more traditional shared password based encryption schemes that require the
sender and receiver to know the shared password. Public key algorithms eliminate the need to share
passwords.

Report a bug

14.6.2. Configure Secure Remote Password (SRP) Protocol

To use Secure Remote Password (SRP) Protocol in your application, you first create an MBean which
implements the SRPVerifierStore interface. Information about the implementation is provided in The
SRPVerifierStore Implementation.

Procedure 14.5. Integrate the Existing Password Store

1. Create the hashed password information store.
If your passwords are already stored in an irreversible hashed form, you need to do this on a
per-user basis.

You can implement setUserVerifier(String, VerifierInfo) as a noOp method, or a
method that throws an exception stating that the store is read-only.

2. Create the SRPVerifierStore interface.
Create a custom SRPVerifierStore interface implementation that can obtain the
VerifierInfo from the store you created.

The verifyUserChallenge(String, Object) can be used to integrate existing hardware

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

401

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+6095-431984+%5BSpecified%5D&comment=Title%3A+Secure+a+JAX-RS+Web+Service+using+Annotations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6095-431984+08+Apr+2013+15%3A59+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4776-328676+%5BSpecified%5D&comment=Title%3A+About+Secure+Remote+Password+Protocol+%28SRP%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4776-328676+05+Nov+2012+15%3A17+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

token based schemes like SafeWord or Radius into the SRP algorithm. This interface method is
called only when the client SRPLoginModule configuration specifies the hasAuxChallenge
option.

3. Create the JNDI MBean.
Create a MBean that exposes the SRPVerifierStore interface available to JNDI, and
exposes any configurable parameters required.

The default org.jboss.security.srp.SRPVerifierStoreService allows you to
implement this. You can also implement the MBean using a Java properties file implementation
of SRPVerifierStore.

The SRPVerifierStore Implementation

The default implementation of the SRPVerifierStore interface is not recommended for production
systems, becauase it requires all password hash information to be available as a file of serialized
objects.

The SRPVerifierStore implementation provides access to the
SRPVerifierStore.VerifierInfo object for a given username. The getUserVerifier(String)
method is called by the SRPService at the start of a user SRP session to obtain the parameters needed
by the SRP algorithm.

Elements of a VerifierInfo Object

username

The username or user ID used to authenticate

verifier

A one-way hash of the password the user enters as proof of identity. The
org.jboss.security.Util class includes a calculateVerifier method which performs the
password hashing algorithm. The output password takes the form H(salt | H(username | ':'
| password)), where H is the SHA secure hash function as defined by RFC2945. The username is
converted from a string to a byte[] using UTF-8 encoding.

salt

A random number used to increase the difficulty of a brute force dictionary attack on the verifier
password database in the event that the database is compromised. The value should be generated
from a cryptographically strong random number algorithm when the user's existing clear-text
password is hashed.

g

The SRP algorithm primitive generator. This can be a well known fixed parameter rather than a per-
user setting. The org.jboss.security.srp.SRPConf utility class provides several settings for g,
including a suitable default obtained via SRPConf.getDefaultParams().g().

N

The SRP algorithm safe-prime modulus. This can be a well-known fixed parameter rather than a per-
user setting. The org.jboss.security.srp.SRPConf utility class provides several settings for N
including a good default obtained via SRPConf.getDefaultParams().N().

Example 14.15. The SRPVerifierStore Interface

Development Guide

402

Report a bug

14.7. PASSWORD VAULTS FOR SENSITIVE STRINGS

14.7.1. About Securing Sensitive Strings in Clear-Text Files

Web applications and other deployments often include clear-text files, such as XML deployment
descriptors, which include sensitive information such as passwords and other sensitive strings. JBoss
EAP 6 includes a password vault mechanism which enables you to encrypt sensitive strings and store
them in an encrypted keystore. The vault mechanism manages decrypting the strings for use with
security domains, security realms, or other verification systems. This provides an extra layer of security.
The mechanism relies upon tools that are included in all supported Java Development Kit (JDK)
implementations.

Report a bug

14.7.2. Create a Java Keystore to Store Sensitive Strings

Prerequisites

package org.jboss.security.srp;

import java.io.IOException;
import java.io.Serializable;
import java.security.KeyException;

public interface SRPVerifierStore
{
 public static class VerifierInfo implements Serializable
 {

 public String username;

 public byte[] salt;
 public byte[] g;
 public byte[] N;
 }

 public VerifierInfo getUserVerifier(String username)
 throws KeyException, IOException;

 public void setUserVerifier(String username, VerifierInfo info)
 throws IOException;

 public void verifyUserChallenge(String username, Object
auxChallenge)
 throws SecurityException;
}

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

403

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4777-455583+%5BSpecified%5D&comment=Title%3A+Configure+Secure+Remote+Password+%28SRP%29+Protocol%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4777-455583+29+May+2013+13%3A30+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+9001-458809+%5BSpecified%5D&comment=Title%3A+About+Securing+Sensitive+Strings+in+Clear-Text+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9001-458809+11+Jun+2013+15%3A35+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The keytool command must be available to use. It is provided by the Java Runtime
Environment (JRE). Locate the path for the file. In Red Hat Enterprise Linux, it is installed to
/usr/bin/keytool.

Procedure 14.6. Setup a Java Keystore

1. Create a directory to store your keystore and other encrypted information.
Create a directory to hold your keystore and other important information. The rest of this
procedure assumes that the directory is /home/USER/vault/.

2. Determine the parameters to use with keytool.
Determine the following parameters:

alias

The alias is a unique identifier for the vault or other data stored in the keystore. The alias in
the example command at the end of this procedure is vault. Aliases are case-insensitive.

keyalg

The algorithm to use for encryption. The default is DSA. The example in this procedure uses
RSA. Check the documentation for your JRE and operating system to see which other
choices may be available to you.

keysize

The size of an encryption key impacts how difficult it is to decrypt through brute force. The
default size of keys is 1024. It must be between 512 and 2048, and a multiple of 64. The
example in this procedure uses 2048.

keystore

The keystore is a database which holds encrypted information and the information about how
to decrypt it. If you do not specify a keystore, the default keystore to use is a file called
.keystore in your home directory. The first time you add data to a keystore, it is created.
The example in this procedure uses the vault.keystore keystore.

The keytool command has many other options. Refer to the documentation for your JRE or
your operating system for more details.

3. Determine the answers to questions the keystore command will ask.
The keystore needs the following information in order to populate the keystore entry:

Keystore password

When you create a keystore, you must set a password. In order to work with the keystore in
the future, you need to provide the password. Create a strong password that you will
remember. The keystore is only as secure as its password and the security of the file system
and operating system where it resides.

Key password (optional)

In addition to the keystore password, you can specify a password for each key it holds. In
order to use such a key, the password needs to be given each time it is used. Usually, this
facility is not used.

First name (given name) and last name (surname)

Development Guide

404

This, and the rest of the information in the list, helps to uniquely identify the key and place it
into a hierarchy of other keys. It does not necessarily need to be a name at all, but it should
be two words, and must be unique to the key. The example in this procedure uses
Accounting Administrator. In directory terms, this becomes the common name of the
certificate.

Organizational unit

This is a single word that identifies who uses the certificate. It may be the application or the
business unit. The example in this procedure uses AccountingServices. Typically, all
keystores used by a group or application use the same organizational unit.

Organization

This is usually a single-word representation of your organization's name. This typically
remains the same across all certificates used by an organization. This example uses
MyOrganization.

City or municipality

Your city.

State or province

Your state or province, or the equivalent for your locality.

Country

The two-letter code for your country.

All of this information together will create a hierarchy for your keystores and certificates, ensuring
that they use a consistent naming structure but are unique.

4. Run the keytool command, supplying the information that you gathered.

Example 14.16. Example input and output of keystore command

$ keytool -genkey -alias vault -keyalg RSA -keysize 2048 -keystore
/home/USER/vault/vault.keystore
Enter keystore password: vault22
Re-enter new password:vault22
What is your first and last name?
 [Unknown]: Accounting Administrator
What is the name of your organizational unit?
 [Unknown]: AccountingServices
What is the name of your organization?
 [Unknown]: MyOrganization
What is the name of your City or Locality?
 [Unknown]: Raleigh
What is the name of your State or Province?
 [Unknown]: NC
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=Accounting Administrator, OU=AccountingServices,
O=MyOrganization, L=Raleigh, ST=NC, C=US correct?
 [no]: yes

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

405

Enter key password for <vault>
 (RETURN if same as keystore password):

Result

A file named vault.keystore is created in the /home/USER/vault/ directory. It stores a single key,
called vault, which will be used to store encrypted strings, such as passwords, for JBoss EAP 6.

Report a bug

14.7.3. Mask the Keystore Password and Initialize the Password Vault

Prerequisites

Section 14.7.2, “Create a Java Keystore to Store Sensitive Strings”

The EAP_HOME/bin/vault.sh application needs to be accessible via a command-line
interface.

1. Run the vault.sh command.
Run EAP_HOME/bin/vault.sh. Start a new interactive session by typing 0.

2. Enter the directory where encrypted files will be stored.
This directory should be reasonably secure, but JBoss EAP 6 needs to be able to access it. If
you followed Section 14.7.2, “Create a Java Keystore to Store Sensitive Strings”, your keystore
is in a directory called vault/ in your home directory. This example uses the directory
/home/USER/vault/.

NOTE

Do not forget to include the trailing slash on the directory name. Either use / or \,
depending on your operating system.

3. Enter the path to the keystore.
Enter the full path to the keystore file. This example uses
/home/USER/vault/vault.keystore.

4. Encrypt the keystore password.
The following steps encrypt the keystore password, so that you can use it in configuration files
and applications securely.

a. Enter the keystore password.
When prompted, enter the keystore password.

b. Enter a salt value.
Enter an 8-character salt value. The salt value, together with the iteration count (below), are
used to create the hash value.

c. Enter the iteration count.
Enter a number for the iteration count.

d. Make a note of the masked password information.

Development Guide

406

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5353-473174+%5BSpecified%5D&comment=Title%3A+Create+a+Java+Keystore+to+Store+Sensitive+Strings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5353-473174+02+Jul+2013+13%3A26+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

The masked password, the salt, and the iteration count are printed to standard output. Make
a note of them in a secure location. An attacker could use them to decrypt the password.

e. Enter the alias of the vault.
When prompted, enter the alias of the vault. If you followed Section 14.7.2, “Create a Java
Keystore to Store Sensitive Strings” to create your vault, the alias is vault.

5. Exit the interactive console.
Type 2 to exit the interactive console.

Result

Your keystore password has been masked for use in configuration files and deployments. In addition,
your vault is fully configured and ready to use.

Report a bug

14.7.4. Configure JBoss EAP 6 to Use the Password Vault

Overview

Before you can mask passwords and other sensitive attributes in configuration files, you need to make
JBoss EAP 6 aware of the password vault which stores and decrypts them. Follow this procedure to
enable this functionality.

Prerequisites

Section 14.7.2, “Create a Java Keystore to Store Sensitive Strings”

Section 14.7.3, “Mask the Keystore Password and Initialize the Password Vault”

Procedure 14.7. Setup a Password Vault

1. Determine the correct values for the command.
Determine the values for the following parameters, which are determined by the commands
used to create the keystore itself. For information on creating a keystore, refer to the following
topics: Section 14.7.2, “Create a Java Keystore to Store Sensitive Strings” and Section 14.7.3,
“Mask the Keystore Password and Initialize the Password Vault”.

Parameter Description

KEYSTORE_URL The file system path or URI of the keystore file,
usually called something like
vault.keystore

KEYSTORE_PASSWORD The password used to access the keystore. This
value should be masked.

KEYSTORE_ALIAS The name of the keystore.

SALT The salt used to encrypt and decrypt keystore
values.

ITERATION_COUNT The number of times the encryption algorithm is
run.

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

407

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5357-458811+%5BSpecified%5D&comment=Title%3A+Mask+the+Keystore+Password+and+Initialize+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5357-458811+11+Jun+2013+15%3A38+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

ENC_FILE_DIR The path to the directory from which the keystore
commands are run. Typically the directory
containing the password vault.

host (managed domain only) The name of the host you are configuring

Parameter Description

2. Use the Management CLI to enable the password vault.
Run one of the following commands, depending on whether you use a managed domain or
standalone server configuration. Substitute the values in the command with the ones from the
first step of this procedure.

Managed Domain

/host=YOUR_HOST/core-service=vault:add(vault-options=
[("KEYSTORE_URL" => "PATH_TO_KEYSTORE"), ("KEYSTORE_PASSWORD" =>
"MASKED_PASSWORD"), ("KEYSTORE_ALIAS" => "ALIAS"), ("SALT" =>
"SALT"),("ITERATION_COUNT" => "ITERATION_COUNT"), ("ENC_FILE_DIR"
=> "ENC_FILE_DIR")])

Standalone Server

/core-service=vault:add(vault-options=[("KEYSTORE_URL" =>
"PATH_TO_KEYSTORE"), ("KEYSTORE_PASSWORD" => "MASKED_PASSWORD"),
("KEYSTORE_ALIAS" => "ALIAS"), ("SALT" => "SALT"),
("ITERATION_COUNT" => "ITERATION_COUNT"), ("ENC_FILE_DIR" =>
"ENC_FILE_DIR")])

The following is an example of the command with hypothetical values:

/core-service=vault:add(vault-options=[("KEYSTORE_URL" =>
"/home/user/vault/vault.keystore"), ("KEYSTORE_PASSWORD" => "MASK-
3y28rCZlcKR"), ("KEYSTORE_ALIAS" => "vault"), ("SALT" =>
"12438567"),("ITERATION_COUNT" => "50"), ("ENC_FILE_DIR" =>
"/home/user/vault/")])

Result

JBoss EAP 6 is configured to decrypt masked strings using the password vault. To add strings to the
vault and use them in your configuration, refer to the following topic: Section 14.7.5, “Store and Retrieve
Encrypted Sensitive Strings in the Java Keystore”.

Report a bug

14.7.5. Store and Retrieve Encrypted Sensitive Strings in the Java Keystore

Summary

Development Guide

408

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5358-458812+%5BSpecified%5D&comment=Title%3A+Configure+JBoss+EAP+6+to+Use+the+Password+Vault%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5358-458812+11+Jun+2013+15%3A40+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Including passwords and other sensitive strings in plain-text configuration files is insecure. JBoss EAP 6
includes the ability to store and mask these sensitive strings in an encrypted keystore, and use masked
values in configuration files.

Prerequisites

Section 14.7.2, “Create a Java Keystore to Store Sensitive Strings”

Section 14.7.3, “Mask the Keystore Password and Initialize the Password Vault”

Section 14.7.4, “Configure JBoss EAP 6 to Use the Password Vault”

The EAP_HOME/bin/vault.sh application needs to be accessible via a command-line
interface.

Procedure 14.8. Setup the Java Keystore

1. Run the vault.sh command.
Run EAP_HOME/bin/vault.sh. Start a new interactive session by typing 0.

2. Enter the directory where encrypted files will be stored.
If you followed Section 14.7.2, “Create a Java Keystore to Store Sensitive Strings”, your keystore
is in a directory called vault/ in your home directory. In most cases, it makes sense to store all
of your encrypted information in the same place as the key store. This example uses the
directory /home/USER/vault/.

NOTE

Do not forget to include the trailing slash on the directory name. Either use / or \,
depending on your operating system.

3. Enter the path to the keystore.
Enter the full path to the keystore file. This example uses
/home/USER/vault/vault.keystore.

4. Enter the keystore password, vault name, salt, and iteration count.
When prompted, enter the keystore password, vault name, salt, and iteration count. A
handshake is performed.

5. Select the option to store a password.
Select option 0 to store a password or other sensitive string.

6. Enter the value.
When prompted, enter the value twice. If the values do not match, you are prompted to try again.

7. Enter the vault block.
Enter the vault block, which is a container for attributes which pertain to the same resource. An
example of an attribute name would be ds_ExampleDS. This will form part of the reference to
the encrypted string, in your datasource or other service definition.

8. Enter the attribute name.
Enter the name of the attribute you are storing. An example attribute name would be password.

Result

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

409

A message such as the one below shows that the attribute has been saved.

Attribute Value for (ds_ExampleDS, password) saved

9. Make note of the information about the encrypted string.
A message prints to standard output, showing the vault block, attribute name, shared key, and
advice about using the string in your configuration. Make note of this information in a secure
location. Example output is shown below.

**
Vault Block:ds_ExampleDS
Attribute Name:password
Shared
Key:N2NhZDYzOTMtNWE0OS00ZGQ0LWE4MmEtMWNlMDMyNDdmNmI2TElORV9CUkVBS3Zh
dWx0
Configuration should be done as follows:
VAULT::ds_ExampleDS::password::N2NhZDYzOTMtNWE0OS00ZGQ0LWE4MmEtMWNlM
DMyNDdmNmI2TElORV9CUkVBS3ZhdWx0
**

10. Use the encrypted string in your configuration.
Use the string from the previous step in your configuration, in place of a plain-text string. A
datasource using the encrypted password above is shown below.

...
 <subsystem xmlns="urn:jboss:domain:datasources:1.0">
 <datasources>
 <datasource jndi-name="java:jboss/datasources/ExampleDS"
enabled="true" use-java-context="true" pool-name="H2DS">
 <connection-url>jdbc:h2:mem:test;DB_CLOSE_DELAY=-
1</connection-url>
 <driver>h2</driver>
 <pool></pool>
 <security>
 <user-name>sa</user-name>

<password>${VAULT::ds_ExampleDS::password::N2NhZDYzOTMtNWE0OS00ZGQ0L
WE4MmEtMWNlMDMyNDdmNmI2TElORV9CUkVBS3ZhdWx0}</password>
 </security>
 </datasource>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-
datasource-class>
 </driver>
 </drivers>
 </datasources>
 </subsystem>
...

You can use an encrypted string anywhere in your domain or standalone configuration file
where expressions are allowed.

Development Guide

410

NOTE

To check if expressions are allowed within a particular subsystem, run the
following CLI command against that subsystem:

From the output of running this command, look for the value for the
expressions-allowed parameter. If this is true, then you can use expressions
within the configuration of this particular subsystem.

After you store your string in the keystore, use the following syntax to replace any clear-text
string with an encrypted one.

${VAULT::<replaceable>VAULT_BLOCK</replaceable>::
<replaceable>ATTRIBUTE_NAME</replaceable>::
<replaceable>ENCRYPTED_VALUE</replaceable>}

Here is a sample real-world value, where the vault block is ds_ExampleDS and the attribute is
password.

<password>${VAULT::ds_ExampleDS::password::N2NhZDYzOTMtNWE0OS00ZGQ0L
WE4MmEtMWNlMDMyNDdmNmI2TElORV9CUkVBS3ZhdWx0}</password>

Report a bug

14.7.6. Store and Resolve Sensitive Strings In Your Applications

Overview

Configuration elements of JBoss EAP 6 support the ability to resolve encrypted strings against values
stored in a Java Keystore, via the Security Vault mechanism. You can add support for this feature to your
own applications.

First, add the password to the vault. Second, replace the clear-text password with the one stored in the
vault. You can use this method to obscure any sensitive string in your application.

Prerequisites

Before performing this procedure, make sure that the directory for storing your vault files exists. It does
not matter where you place them, as long as the user who executes JBoss EAP 6 has permission to
read and write the files. This example places the vault/ directory into the /home/USER/vault/
directory. The vault itself is a file called vault.keystore inside the vault/ directory.

Example 14.17. Adding the Password String to the Vault

Add the string to the vault using the EAP_HOME/bin/vault.sh command. The full series of
commands and responses is included in the following screen output. Values entered by the user are
emphasized. Some output is removed for formatting. In Microsoft Windows, the name of the
command is vault.bat. Note that in Microsoft Windows, file paths use the \ character as a
directory separator, rather than the / character.

[user@host bin]$./vault.sh

/host=master/core-service=management/security-
realm=TestRealm:read-resource-description(recursive=true)

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

411

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5359-458813+%5BSpecified%5D&comment=Title%3A+Store+and+Retrieve+Encrypted+Sensitive+Strings+in+the+Java+Keystore%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5359-458813+11+Jun+2013+15%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

**** JBoss Vault ********

Please enter a Digit:: 0: Start Interactive Session 1: Remove
Interactive Session 2: Exit
0
Starting an interactive session
Enter directory to store encrypted files:/home/user/vault/
Enter Keystore URL:/home/user/vault/vault.keystore
Enter Keystore password: ...
Enter Keystore password again: ...
Values match
Enter 8 character salt:12345678
Enter iteration count as a number (Eg: 44):25

Enter Keystore Alias:vault
Vault is initialized and ready for use
Handshake with Vault complete
Please enter a Digit:: 0: Store a password 1: Check whether password
exists 2: Exit
0
Task: Store a password
Please enter attribute value: sa
Please enter attribute value again: sa
Values match
Enter Vault Block:DS
Enter Attribute Name:thePass
Attribute Value for (DS, thePass) saved

Please make note of the following:
**
Vault Block:DS
Attribute Name:thePass
Shared
Key:OWY5M2I5NzctYzdkOS00MmZhLWExZGYtNjczM2U5ZGUyOWIxTElORV9CUkVBS3ZhdWx0
Configuration should be done as follows:
VAULT::DS::thePass::OWY5M2I5NzctYzdkOS00MmZhLWExZGYtNjczM2U5ZGUyOWIxTElO
RV9CUkVBS3ZhdWx0
**

Please enter a Digit:: 0: Store a password 1: Check whether password
exists 2: Exit
2

The string that will be added to the Java code is the last value of the output, the line beginning with
VAULT.

The following servlet uses the vaulted string instead of a clear-text password. The clear-text version is
commented out so that you can see the difference.

Example 14.18. Servlet Using a Vaulted Password

package vaulterror.web;

import java.io.IOException;

Development Guide

412

Your servlet is now able to resolve the vaulted string.

Report a bug

14.8. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)

14.8.1. About Java Authorization Contract for Containers (JACC)

import java.io.Writer;

import javax.annotation.Resource;
import javax.annotation.sql.DataSourceDefinition;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sql.DataSource;

/*@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password = "sa",
 className = "org.h2.jdbcx.JdbcDataSource",
 url = "jdbc:h2:tcp://localhost/mem:test"
)*/
@DataSourceDefinition(
 name = "java:jboss/datasources/LoginDS",
 user = "sa",
 password =
"VAULT::DS::thePass::OWY5M2I5NzctYzdkOS00MmZhLWExZGYtNjczM2U5ZGUyOWIxTEl
ORV9CUkVBS3ZhdWx0",
 className = "org.h2.jdbcx.JdbcDataSource",
 url = "jdbc:h2:tcp://localhost/mem:test"
)
@WebServlet(name = "MyTestServlet", urlPatterns = { "/my/" },
loadOnStartup = 1)
public class MyTestServlet extends HttpServlet {

 private static final long serialVersionUID = 1L;

 @Resource(lookup = "java:jboss/datasources/LoginDS")
 private DataSource ds;

 @Override
 protected void doGet(HttpServletRequest req, HttpServletResponse
resp) throws ServletException, IOException {
 Writer writer = resp.getWriter();
 writer.write((ds != null) + "");
 }
}

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

413

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4930-458814+%5BSpecified%5D&comment=Title%3A+Store+and+Resolve+Sensitive+Strings+In+Your+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4930-458814+11+Jun+2013+15%3A44+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Java Authorization Contract for Containers (JACC) is a standard which defines a contract between
containers and authorization service providers, which results in the implementation of providers for use
by containers. It was defined in JSR-115, which can be found on the Java Community Process website
at http://jcp.org/en/jsr/detail?id=115. It has been part of the core Java Enterprise Edition (Java EE)
specification since Java EE version 1.3.

JBoss EAP 6 implements support for JACC within the security functionality of the security subsystem.

Report a bug

14.8.2. Configure Java Authorization Contract for Containers (JACC) Security

To configure Java Authorization Contract for Containers (JACC), you need to configure your security
domain with the correct module, and then modify your jboss-web.xml to include the correct
parameters.

Add JACC Support to the Security Domain

To add JACC support to the security domain, add the JACC authorization policy to the authorization stack
of the security domain, with the required flag set. The following is an example of a security domain
with JACC support. However, the security domain is configured in the Management Console or
Management CLI, rather than directly in the XML.

Configure a Web Application to use JACC

The jboss-web.xml is located in the META-INF/ or WEB-INF/ directory of your deployment, and
contains overrides and additional JBoss-specific configuration for the web container. To use your JACC-
enabled security domain, you need to include the <security-domain> element, and also set the
<use-jboss-authorization> element to true. The following application is properly configured to
use the JACC security domain above.

Configure an EJB Application to Use JACC

Configuring EJBs to use a security domain and to use JACC differs from Web Applications. For an EJB,
you can declare method permissions on a method or group of methods, in the ejb-jar.xml descriptor.
Within the <ejb-jar> element, any child <method-permission> elements contain information about
JACC roles. Refer to the example configuration for more details. The EJBMethodPermission class is
part of the Java Enterprise Edition 6 API, and is documented at
http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html.

<security-domain name="jacc" cache-type="default">
 <authentication>
 <login-module code="UsersRoles" flag="required">
 </login-module>
 </authentication>
 <authorization>
 <policy-module code="JACC" flag="required"/>
 </authorization>
</security-domain>

<jboss-web>
 <security-domain>jacc</security-domain>
 <use-jboss-authorization>true</use-jboss-authorization>
</jboss-web>

Development Guide

414

http://jcp.org/en/jsr/detail?id=115
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7687-458762+%5BSpecified%5D&comment=Title%3A+About+Java+Authorization+Contract+for+Containers+%28JACC%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7687-458762+11+Jun+2013+14%3A32+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://docs.oracle.com/javaee/6/api/javax/security/jacc/EJBMethodPermission.html

Example 14.19. Example JACC Method Permissions in an EJB

You can also constrain the authentication and authorization mechanisms for an EJB by using a security
domain, just as you can do for a web application. Security domains are declared in the jboss-
ejb3.xml descriptor, in the <security> child element. In addition to the security domain, you can also
specify the run-as principal , which changes the principal the EJB runs as.

Example 14.20. Example Security Domain Declaration in an EJB

Report a bug

14.9. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)

14.9.1. About Java Authentication SPI for Containers (JASPI) Security

Java Application SPI for Containers (JASPI or JASPIC) is a pluggable interface for Java applications. It
is defined in JSR-196 of the Java Community Process. Refer to http://www.jcp.org/en/jsr/detail?id=196
for details about the specification.

Report a bug

14.9.2. Configure Java Authentication SPI for Containers (JASPI) Security

To authenticate against a JASPI provider, add a <authentication-jaspi> element to your security
domain. The configuration is similar to a standard authentication module, but login module elements are
enclosed in a <login-module-stack> element. The structure of the configuration is:

<ejb-jar>
 <method-permission>
 <description>The employee and temp-employee roles may access any
method of the EmployeeService bean </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
</ejb-jar>

<security>
 <ejb-name>*</ejb-name>
 <security-domain>myDomain</security-domain>
 <run-as-principal>myPrincipal</run-as-principal>
</security>

CHAPTER 14. IDENTITY WITHIN APPLICATIONS

415

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4933-455587+%5BSpecified%5D&comment=Title%3A+Configure+Java+Authorization+Contract+for+Containers+%28JACC%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4933-455587+29+May+2013+13%3A39+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
http://www.jcp.org/en/jsr/detail?id=196
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7199-328604+%5BSpecified%5D&comment=Title%3A+About+Java+Authentication+SPI+for+Containers+%28JASPI%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7199-328604+05+Nov+2012+14%3A55+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Example 14.21. Structure of the authentication-jaspi element

The login module itself is configured in exactly the same way as a standard authentication module.

Because the web-based management console does not expose the configuration of JASPI
authentication modules, you need to stop JBoss EAP 6 completely before adding the configuration
directly to EAP_HOME/domain/configuration/domain.xml or
EAP_HOME/standalone/configuration/standalone.xml.

Report a bug

<authentication-jaspi>
 <login-module-stack name="...">
 <login-module code="..." flag="...">
 <module-option name="..." value="..."/>
 </login-module>
 </login-module-stack>
 <auth-module code="..." login-module-stack-ref="...">
 <module-option name="..." value="..."/>
 </auth-module>
</authentication-jaspi>

Development Guide

416

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4934-458763+%5BSpecified%5D&comment=Title%3A+Configure+Java+Authentication+SPI+for+Containers+%28JASPI%29+Security%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4934-458763+11+Jun+2013+14%3A34+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 15. SINGLE SIGN ON (SSO)

15.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS

Overview

Single Sign On (SSO) allows authentication to one resource to implicitly authorize access to other
resources.

Clustered and Non-Clustered SSO

Non-clustered SSO limits the sharing of authorization information to applications on the same virtual
host. In addition, there is no resiliency in the event of a host failure. Clustered SSO data can be shared
between applications in multiple virtual hosts, and is resilient to failover. In addition, clustered SSO is
able to receive requests from a load balancer.

How SSO Works

If a resource is unprotected, a user is not challenged to authenticate at all. If a user accesses a protected
resource, the user is required to authenticate.

Upon successful authentication, the roles associated with the user are stored and used for authorization
of all other associated resources.

If the user logs out of an application, or an application invalidates the session programmatically, all
persisted authorization data is removed, and the process starts over.

A session timeout does not invalidate the SSO session if other sessions are still valid.

Limitations of SSO

No propagation across third-party boundaries.

SSO can only be used between applications deployed within JBoss EAP 6 containers.

Container-managed authentication only.

You must use container-managed authentication elements such as <login-config> in your
application's web.xml.

Requires cookies.

SSO is maintained via browser cookies and URL rewriting is not supported.

Realm and security-domain limitations

Unless the requireReauthentication parameter is set to true, all web applications configured
for the same SSO valve must share the same Realm configuration in web.xml and the same
security domain.

You can nest the Realm element inside the Host element or the surrounding Engine element, but not
inside a context.xml element for one of the involved web applications.

The <security-domain> configured in the jboss-web.xml must be consistent across all web
applications.

All security integrations must accept the same credentials (for instance, username and password).

CHAPTER 15. SINGLE SIGN ON (SSO)

417

Report a bug

15.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB
APPLICATIONS

Single Sign On (SSO) is the ability for users to authenticate to a single web application, and by means of
a successful authentication, to be granted authorization to multiple other applications. Clustered SSO
stores the authentication and authorization information in a clustered cache. This allows for applications
on multiple different servers to share the information, and also makes the information resilient to a failure
of one of the hosts.

A SSO configuration is called a valve. A valve is connected to a security domain, which is configured at
the level of the server or server group. Each application which should share the same cached
authentication information is configured to use the same valve. This configuration is done in the
application's jboss-web.xml.

Some common SSO valves supported by the web subsystem of JBoss EAP 6 include:

Apache Tomcat ClusteredSingleSignOn

Apache Tomcat IDPWebBrowserSSOValve

SPNEGO-based SSO provided by PicketLink

Depending on the specific type of valve, you may need to do some additional configuration in your
security domain, in order for your valve to work properly.

Report a bug

15.3. CHOOSE THE RIGHT SSO IMPLEMENTATION

JBoss EAP 6 runs Java Enterprise Edition (EE) applications, which may be web applications, EJB
applications, web services, or other types. Single Sign On (SSO) allows you to propagate security
context and identity information between these applications. Depending on your organization's needs, a
few different SSO solutions are available. The solution you use depends on whether you use web
applications, EJB applications, or web services; whether your applications run on the same server,
multiple non-clustered servers, or multiple clustered servers; and whether you need to integrate into a
desktop-based authentication system or you only need authentication between your applications
themselves.

Kerberos-Based Desktop SSO

If your organization already uses a Kerberos-based authentication and authorization system, such as
Microsoft Active Directory, you can use the same systems to transparently authenticate to your
enterprise applications running in JBoss EAP 6.

Non-Clustered and Web Application SSO

If you need to propagate security information among applications which run within the same server group
or instance, you can use non-clustered SSO. This only involves configuring the valve in your
application's jboss-web.xml descriptor.

Clustered Web Application SSO

If you need to propagate security information among applications running in a clustered environment
across multiple JBoss EAP 6 instances, you can use the clustered SSO valve. This is configured in your
application's jboss-web.xml.

Development Guide

418

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4694-460020+%5BSpecified%5D&comment=Title%3A+About+Single+Sign+On+%28SSO%29+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4694-460020+14+Jun+2013+14%3A38+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4696-460022+%5BSpecified%5D&comment=Title%3A+About+Clustered+Single+Sign+On+%28SSO%29+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4696-460022+14+Jun+2013+14%3A39+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Report a bug

15.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION

Overview

Single Sign On (SSO) capabilities are provided by the web and Infinispan subsystems. Use this
procedure to configure SSO in web applications.

Prerequisites

You need to have a configured security domain which handles authentication and authorization.

The infinispan subsystem needs to be present. It is present in the full-ha profile for a
managed domain, or by using the standalone-full-ha.xml configuration in a standalone
server.

The web cache-container and SSO cache-container must each be present. The initial
configuration files already contain the web cache-container, and some of the configurations
already contain the SSO cache-container as well. Use the following commands to check for and
enable the SSO cache container. Note that these commands modify the ha profile of a managed
domain. You can change the commands to use a different profile, or remove the
/profile=full portion of the command, for a standalone server.

Example 15.1. Check for the web cache-container

The profiles and configurations mentioned above include the web cache-container by default.
Use the following command to verify its presence. If you use a different profile, substitute its
name instead of ha.

/profile=ha/subsystem=infinispan/cache-container=web/:read-
resource(recursive=false,proxies=false,include-
runtime=false,include-defaults=true)

If the result is success the subsystem is present. Otherwise, you need to add it.

Example 15.2. Add the web cache-container

Use the following three commands to enable the web cache-container to your configuration.
Modify the name of the profile as appropriate, as well as the other parameters. The
parameters here are the ones used in a default configuration.

/profile=ha/subsystem=infinispan/cache-container=web:add(aliases=
["standard-session-cache"],default-
cache="repl",module="org.jboss.as.clustering.web.infinispan")

/profile=ha/subsystem=infinispan/cache-
container=web/transport=TRANSPORT:add(lock-timeout=60000)

/profile=ha/subsystem=infinispan/cache-container=web/replicated-
cache=repl:add(mode="ASYNC",batching=true)

CHAPTER 15. SINGLE SIGN ON (SSO)

419

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7502-460023+%5BSpecified%5D&comment=Title%3A+Choose+the+Right+SSO+Implementation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7502-460023+14+Jun+2013+14%3A41+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

Example 15.3. Check for the SSO cache-container

Run the following Management CLI command:

/profile=ha/subsystem=infinispan/cache-container=web/:read-
resource(recursive=true,proxies=false,include-
runtime=false,include-defaults=true)

Look for output like the following: "sso" => {

If you do not find it, the SSO cache-container is not present in your configuration.

Example 15.4. Add the SSO cache-container

/profile=ha/subsystem=infinispan/cache-container=web/replicated-
cache=sso:add(mode="SYNC", batching=true)

The web subsystem needs to be configured to use SSO. The following command enables SSO
on the virtual server called default-host, and the cookie domain domain.com. The cache
name is sso, and reauthentication is disabled.

/profile=ha/subsystem=web/virtual-server=default-
host/sso=configuration:add(cache-container="web",cache-
name="sso",reauthenticate="false",domain="domain.com")

Each application which will share the SSO information needs to be configured to use the same
<security-domain> in its jboss-web.xml deployment descriptor and the same Realm in its
web.xml configuration file.

Differences Between Clustered and Non-Clustered SSO Valves

Clustered SSO allows sharing of authentication between separate hosts, while non-clustered SSO does
not. The clustered and non-clustered SSO valves are configured the same way, but the clustered SSO
includes the cacheConfig, processExpiresInterval and maxEmptyLife parameters, which
control the clustering replication of the persisted data.

Example 15.5. Example Clustered SSO Configuration

Because clustered and non-clustered SSO configurations are so similar, only a clustered
configuration is shown. This example uses a security domain called tomcat.

<jboss-web>
 <security-domain>tomcat</security-domain>
 <valve>
 <class-
name>org.jboss.web.tomcat.service.sso.ClusteredSingleSignOn</class-name>
 <param>
 <param-name>maxEmptyLife</param-name>
 <param-value>900</param-value>
 </param>

Development Guide

420

Table 15.1. SSO Configuration Options

Option Description

cookieDomain The host domain to be used for SSO cookies. The
default is /. To allow app1.xyz.com and
app2.xyz.com to share SSO cookies, you could
set the cookieDomain to xyz.com.

maxEmptyLife Clustered SSO only. The maximum number of
seconds an SSO valve with no active sessions will
be usable by a request, before expiring. A positive
value allows proper handling of shutdown of a node if
it is the only one with active sessions attached to the
valve. If maxEmptyLife is set to 0, the valve
terminates at the same time as the local session
copies, but backup copies of the sessions, from
clustered applications, are available to other cluster
nodes. Allowing the valve to live beyond the life of its
managed sessions gives the user time to make
another request which can then fail over to a different
node, where it activates the backup copy of the
session. Defaults to 1800 seconds (30 minutes).

processExpiresInterval Clustered SSO only. The minimum number of
seconds between efforts by the valve to find and
invalidate SSO instances which have expired the
MaxEmptyLife timeout. Defaults to 60 (1 minute).

requiresReauthentication If true, each request uses cached credentials to
reauthenticate to the security realm. If false (the
default), a valid SSO cookie is sufficient for the valve
to authenticate each new request.

Invalidate a Session

An application can programmatically invalidate a session by invoking method
javax.servlet.http.HttpSession.invalidate().

Report a bug

15.5. ABOUT KERBEROS

Kerberos is a network authentication protocol for client/server applications. It allows authentication
across a non-secure network in a secure way, using secret-key symmetric cryptography.

Kerberos uses security tokens called tickets. To use a secured service, you need to obtain a ticket from
the Ticket Granting Service (TGS), which is a service running on a server on your network. After
obtaining the ticket, you request a Service Ticket (ST) from an Authentication Service (AS), which is

 </valve>
</jboss-web>

CHAPTER 15. SINGLE SIGN ON (SSO)

421

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4695-455585+%5BSpecified%5D&comment=Title%3A+Use+Single+Sign+On+%28SSO%29+In+A+Web+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4695-455585+29+May+2013+13%3A33+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

another service running on your network. You then use the ST to authenticate to the service you want to
use. The TGS and the AS both run inside an enclosing service called the Key Distribution Center (KDC).

Kerberos is designed to be used in a client-server environment, and is rarely used in Web applications
or thin client environments. However, many organizations already use a Kerberos system for desktop
authentication, and prefer to reuse their existing system rather than create a second one for their Web
Applications. Kerberos is an integral part of Microsoft Active Directory, and is also used in many Red Hat
Enterprise Linux environments.

Report a bug

15.6. ABOUT SPNEGO

Simple and Protected GSS_API Negotiation Mechanism (SPNEGO) provides a mechanism for
extending a Kerberos-based Single Sign On (SSO) environment for use in Web applications.

When an application on a client computer, such as a web browser, attempts to access a protect page on
the web server, the server responds that authorization is required. The application then requests a
service ticket from the Kerberos Key Distribution Center (KDC). After the ticket is obtained, the
application wraps it in a request formatted for SPNEGO, and sends it back to the Web application, via
the browser. The web container running the deployed Web application unpacks the request and
authenticates the ticket. Upon successful authentication, access is granted.

SPNEGO works with all types of Kerberos providers, including the Kerberos service included in Red Hat
Enterprise Linux and the Kerberos server which is an integral part of Microsoft Active Directory.

Report a bug

15.7. ABOUT MICROSOFT ACTIVE DIRECTORY

Microsoft Active Directory is a directory service developed by Microsoft to authenticate users and
computers in a Microsoft Windows domain. It is included as part of Microsoft Windows Server. The
computer in the Microsoft Windows Server is referred to as the domain controller. Red Hat Enterprise
Linux servers running the Samba service can also act as the domain controller in this type of network.

Active Directory relies on three core technologies which work together:

Lightweight Directory Access Protocol (LDAP), for storing information about users, computers,
passwords, and other resources.

Kerberos, for providing secure authentication over the network.

Domain Name Service (DNS) for providing mappings between IP addresses and host names of
computers and other devices on the network.

Report a bug

15.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY
DESKTOP SSO FOR WEB APPLICATIONS

Introduction

To authenticate your web or EJB applications using your organization's existing Kerberos-based
authentication and authorization infrastructure, such as Microsoft Active Directory, you can use the
JBoss Negotation capabilities built into JBoss EAP 6. If you configure your web application properly, a

Development Guide

422

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7816-328401+%5BSpecified%5D&comment=Title%3A+About+Kerberos%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7816-328401+05+Nov+2012+14%3A02+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7817-328449+%5BSpecified%5D&comment=Title%3A+About+SPNEGO%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7817-328449+05+Nov+2012+14%3A14+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+7818-328400+%5BSpecified%5D&comment=Title%3A+About+Microsoft+Active+Directory%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7818-328400+05+Nov+2012+14%3A02+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

successful desktop or network login is sufficient to transparently authenticate against your web
application, so no additional login prompt is required.

Difference from Previous Versions of the Platform

There are a few noticeable differences between JBoss EAP 6 and earlier versions:

Security domains are configured centrally, for each profile of a managed domain, or for each
standalone server. They are not part of the deployment itself. The security domain a deployment
should use is named in the deployment's jboss-web.xml or jboss-ejb3.xml file.

Security properties are configured as part of the security domain, as part of its central
configuration. They are not part of the deployment.

You can no longer override the authenticators as part of your deployment. However, you can
add a NegotiationAuthenticator valve to your jboss-web.xml descriptor to achieve the same
effect. The valve still requires the <security-constraint> and <login-config> elements
to be defined in the web.xml. These are used to decide which resources are secured. However,
the chosen auth-method will be overridden by the NegotiationAuthenticator valve in the jboss-
web.xml.

The CODE attributes in security domains now use a simple name instead of a fully-qualified class
name. The following table shows the mappings between the classes used for JBoss
Negotiation, and their classes.

Table 15.2. Login Module Codes and Class Names

Simple Name Class Name Purpose

Kerberos com.sun.security.auth.module.Krb
5LoginModule

Kerberos login module

SPNEGO org.jboss.security.negotiation.spn
ego.SPNEGOLoginModule

The mechanism which enables
your Web applications to
authenticate to your Kerberos
authentication server.

AdvancedLdap org.jboss.security.negotiation.Adv
ancedLdapLoginModule

Used with LDAP servers other
than Microsoft Active Directory.

AdvancedAdLdap org.jboss.security.negotiation.Adv
ancedADLoginModule

Used with Microsoft Active
Directory LDAP servers.

Jboss Negotiation Toolkit

The JBoss Negotiation Toolkit is a debugging tool which is available for download from
https://community.jboss.org/servlet/JiveServlet/download/16876-2-34629/jboss-negotiation-toolkit.war. It
is provided as an extra tool to help you to debug and test the authentication mechanisms before
introducing your application into production. It is an unsupported tool, but is considered to be very
helpful, as SPNEGO can be difficult to configure for web applications.

Procedure 15.1. Setup SSO Authentication for your Web or EJB Applications

CHAPTER 15. SINGLE SIGN ON (SSO)

423

https://community.jboss.org/servlet/JiveServlet/download/16876-2-34629/jboss-negotiation-toolkit.war

1. Configure one security domain to represent the identity of the server. Set system
properties if necessary.
The first security domain authenticates the container itself to the directory service. It needs to
use a login module which accepts some type of static login mechanism, because a real user is
not involved. This example uses a static principal and references a keytab file which contains the
credential.

The XML code is given here for clarity, but you should use the Management Console or
Management CLI to configure your security domains.

2. Configure a second security domain to secure the web application or applications. Set
system properties if necessary.
The second security domain is used to authenticate the individual user to the Kerberos or
SPNEGO authentication server. You need at least one login module to authenticate the user,
and another to search for the roles to apply to the user. The following XML code shows an
example SPNEGO security domain. It includes an authorization module to map roles to
individual users. You can also use a module which searches for the roles on the authentication
server itself.

<security-domain name="host" cache-type="default">
 <authentication>
 <login-module code="Kerberos" flag="required">
 <module-option name="storeKey" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="principal"
value="host/testserver@MY_REALM"/>
 <module-option name="keyTab"
value="/home/username/service.keytab"/>
 <module-option name="doNotPrompt" value="true"/>
 <module-option name="debug" value="false"/>
 </login-module>
 </authentication>
</security-domain>

<security-domain name="SPNEGO" cache-type="default">
 <authentication>
 <!-- Check the username and password -->
 <login-module code="SPNEGO" flag="requisite">
 <module-option name="password-stacking"
value="useFirstPass"/>
 <module-option name="serverSecurityDomain" value="host"/>
 </login-module>
 <!-- Search for roles -->
 <login-module code="UserRoles" flag="required">
 <module-option name="password-stacking"
value="useFirstPass" />
 <module-option name="usersProperties" value="spnego-
users.properties" />
 <module-option name="rolesProperties" value="spnego-
roles.properties" />
 </login-module>
 </authentication>

Development Guide

424

3. Specify the security-constraint and login-config in the web.xml
The web.xml descriptor contain information about security constraints and login configuration.
The following are example values for each.

4. Specify the security domain and other settings in the jboss-web.xml descriptor.
Specify the name of the client-side security domain (the second one in this example) in the
jboss-web.xml descriptor of your deployment, to direct your application to use this security
domain.

You can no longer override authenticators directly. Instead, you can add the
NegotiationAuthenticator as a valve to your jboss-web.xml descriptor, if you need to. The
<jacc-star-role-allow> allows you to use the asterisk (*) character to match multiple role
names, and is optional.

</security-domain>

<security-constraint>
 <display-name>Security Constraint on Conversation</display-name>
 <web-resource-collection>
 <web-resource-name>examplesWebApp</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>RequiredRole</role-name>
 </auth-constraint>
</security-constraint>

<login-config>
 <auth-method>SPNEGO</auth-method>
 <realm-name>SPNEGO</realm-name>
</login-config>

<security-role>
 <description> role required to log in to the
Application</description>
 <role-name>RequiredRole</role-name>
</security-role>

<jboss-web>
 <security-domain>java:/jaas/SPNEGO</security-domain>
 <valve>
 <class-
name>org.jboss.security.negotiation.NegotiationAuthenticator</class-
name>
 </valve>
 <jacc-star-role-allow>true</jacc-star-role-allow>
</jboss-web>

CHAPTER 15. SINGLE SIGN ON (SSO)

425

5. Add a dependency to your application's MANIFEST.MF, to locate the Negotiation classes.
The web application needs a dependency on class org.jboss.security.negotiation to
be added to the deployment's META-INF/MANIFEST.MF manifest, in order to locate the JBoss
Negotiation classes. The following shows a properly-formatted entry.

Result

Your web application accepts and authenticates credentials against your Kerberos, Microsoft Active
Directory, or other SPNEGO-compatible directory service. If the user runs the application from a system
which is already logged into the directory service, and where the required roles are already applied to the
user, the web application does not prompt for authentication, and SSO capabilities are achieved.

Report a bug

Manifest-Version: 1.0
Build-Jdk: 1.6.0_24
Dependencies: org.jboss.security.negotiation

Development Guide

426

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4937-460025+%5BSpecified%5D&comment=Title%3A+Configure+Kerberos+or+Microsoft+Active+Directory+Desktop+SSO+for+Web+Applications%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4937-460025+14+Jun+2013+14%3A42+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 16. DEVELOPMENT SECURITY REFERENCES

16.1. JBOSS-WEB.XML CONFIGURATION REFERENCE

Introduction

The jboss-web.xml is a file within your deployment's WEB-INF or META-INF directory. It contains
configuration information about features the JBoss Web container adds to the Servlet 3.0 specification.
Settings specific to the Servlet 3.0 specification are placed into web.xml in the same directory.

The top-level element in the jboss-web.xml file is the <jboss-web> element.

Mapping Global Resources to WAR Requirements

Many of the available settings map requirements set in the application's web.xml to local resources. The
explanations of the web.xml settings can be found at
http://docs.oracle.com/cd/E13222_01/wls/docs81/webapp/web_xml.html.

For instance, if the web.xml requires jdbc/MyDataSource, the jboss-web.xml may map the global
datasource java:/DefaultDS to fulfill this need. The WAR uses the global datasource to fill its need
for jdbc/MyDataSource.

Table 16.1. Common Top-Level Attributes

Attribute Description

env-entry A mapping to an env-entry required by the
web.xml.

ejb-ref A mapping to an ejb-ref required by the
web.xml.

ejb-local-ref A mapping to an ejb-local-ref required by the
web.xml.

service-ref A mapping to a service-ref required by the
web.xml.

resource-ref A mapping to a resource-ref required by the
web.xml.

resource-env-ref A mapping to a resource-env-ref required by
the web.xml.

message-destination-ref A mapping to a message-destination-ref
required by the web.xml.

persistence-context-ref A mapping to a persistence-context-ref
required by the web.xml.

persistence-unit-ref A mapping to a persistence-unit-ref
required by the web.xml.

CHAPTER 16. DEVELOPMENT SECURITY REFERENCES

427

http://docs.oracle.com/cd/E13222_01/wls/docs81/webapp/web_xml.html

post-construct A mapping to a post-context required by the
web.xml.

pre-destroy A mapping to a pre-destroy required by the
web.xml.

data-source A mapping to a data-source required by the
web.xml.

context-root The root context of the application. The default value
is the name of the deployment without the .war
suffix.

virtual-host The name of the HTTP virtual-host the application
accepts requests from. It refers to the contents of the
HTTP Host header.

annotation Describes an annotation used by the application.
Refer to <annotation> for more information.

listener Describes a listener used by the application. Refer to
<listener> for more information.

session-config This element fills the same function as the
<session-config> element of the web.xml
and is included for compatibility only.

valve Describes a valve used by the application. Refer to
<valve> for more information.

overlay The name of an overlay to add to the application.

security-domain The name of the security domain used by the
application. The security domain itself is configured in
the web-based management console or the
management CLI.

security-role This element fills the same function as the
<security-role> element of the web.xml and
is included for compatibility only.

Attribute Description

Development Guide

428

use-jboss-authorization If this element is present and contains the case
insensitive value "true", the JBoss web authorization
stack is used. If it is not present or contains any value
that is not "true", then only the authorization
mechanisms specified in the Java Enterprise Edition
specifications are used. This element is new to JBoss
EAP 6.

disable-audit If this empty element is present, web security auditing
is disabled. Otherwise, it is enabled. Web security
auditing is not part of the Java EE specification. This
element is new to JBoss EAP 6.

disable-cross-context If false, the application is able to call another
application context. Defaults to true.

Attribute Description

The following elements each have child elements.

<annotation>

Describes an annotation used by the application. The following table lists the child elements of an
<annotation>.

Table 16.2. Annotation Configuration Elements

Attribute Description

class-name Name of the class of the annotation

servlet-security The element, such as @ServletSecurity, which
represents servlet security.

run-as The element, such as @RunAs, which represents the
run-as information.

multi-part The element, such as @MultiPart, which
represents the multi-part information.

<listener>

Describes a listener. The following table lists the child eleents of a <listener>.

Table 16.3. Listener Configuration Elements

Attribute Description

class-name Name of the class of the listener

CHAPTER 16. DEVELOPMENT SECURITY REFERENCES

429

listener-type List of condition elements, which indicate what
kind of listener to add to the Context of the
application. Valid choices are:

CONTAINER

Adds a ContainerListener to the Context.

LIFECYCLE

Adds a LifecycleListener to the Context.

SERVLET_INSTANCE

Adds an InstanceListener to the Context.

SERVLET_CONTAINER

Adds a WrapperListener to the Context.

SERVLET_LIFECYCLE

Adds a WrapperLifecycle to the Context.

module The name of the module containing the listener class.

param A parameter. Contains two child elements, <param-
name> and <param-value>.

Attribute Description

<valve>

Describes a valve of the application. It contains the same configuration elements as <listener>.

Report a bug

16.2. EJB SECURITY PARAMETER REFERENCE

Table 16.4. EJB security parameter elements

Element Description

<security-identity> Contains child elements pertaining to the security
identity of an EJB.

<use-caller-identity /> Indicates that the EJB uses the same security identity
as the caller.

<run-as> Contains a <role-name> element.

<run-as-principal> If present, indicates the principal assigned to
outgoing calls. If not present, outgoing calls are
assigned to a principal named anonymous.

Development Guide

430

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4928-460029+%5BSpecified%5D&comment=Title%3A+jboss-web.xml+Configuration+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4928-460029+14+Jun+2013+14%3A45+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

<role-name> Specifies the role the EJB should run as.

<description> Describes the role named in <role-name>
.

Element Description

Example 16.1. Security identity examples

This example shows each tag described in Table 16.4, “EJB security parameter elements”. They can
also be used inside a <session>.

Report a bug

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as>
 <description>A private internal role</description>
 <role-name>InternalRole</role-name>
 </run-as>
 </security-identity>
 </session>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 <security-identity>
 <run-as-principal>internal</run-as-principal>
 </security-identity>
 </session>
 </enterprise-beans>
</ejb-jar>

CHAPTER 16. DEVELOPMENT SECURITY REFERENCES

431

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+5053-490505+%5BSpecified%5D&comment=Title%3A+EJB+Security+Parameter+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5053-490505+02+Aug+2013+16%3A02+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

CHAPTER 17. SUPPLEMENTAL REFERENCES

17.1. TYPES OF JAVA ARCHIVES

JBoss EAP 6 recognizes several different types of archive files. Archive files are used to package
deployable services and applications.

In general, archive files are Zip archives, with specific file extensions and specific directory structures. If
the Zip archive is extracted before being deployed on the application server, it is referred to as an
exploded archive. In that case, the directory name still contains the file extension, and the directory
structure requirements still apply.

Table 17.1.

Archive Type Extension Purpose Directory structure
requirements

Java Archive .jar Contains Java class libraries. META-INF/MANIFEST.MF file
(optional), which specifies
information such as which class is
the main class.

Web Archive .war Contains Java Server Pages
(JSP) files, servlets, and XML
files, in addition to Java classes
and libraries. The Web Archive's
contents are also referred to as a
Web Application.

WEB-INF/web.xml file, which
contains information about the
structure of the web application.
Other files may also be present in
WEB-INF/.

Resource
Adapter
Archive

.rar The directory structure is
specified by the JCA
specification.

Contains a Java Connector
Architecture (JCA) resource
adapter. Also called a connector.

Enterprise
Archive

.ear Used by Java Enterprise Edition
(EE) to package one or more
modules into a single archive, so
that the modules can be
deployed onto the application
server simultaneously. Maven
and Ant are the most common
tools used to build EAR archives.

META-INF/ directory, which
contains one or more XML
deployment descriptor files.

Development Guide

432

Any of the following types of
modules.

A Web Archive (WAR).

One or more Java
Archives (JARs)
containing Plain Old
Java Objects (POJOs).

One or more Enterprise
JavaBean (EJB)
modules, containing its
own META-INF/
directory. This directory
includes descriptors for
the persistent classes
which are deployed.

One or more Resource
Archives (RARs).

Service Archive .sar Similar to an Enterprise Archive,
but specific to the JBoss EAP.

META-INF/ directory containing
jboss-service.xml or
jboss-beans.xml file.

Archive Type Extension Purpose Directory structure
requirements

Report a bug

CHAPTER 17. SUPPLEMENTAL REFERENCES

433

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+19234%2C+Development+Guide-6.1-1%0ABuild+Date%3A+10-04-2014+11%3A51%3A53%0ATopic+ID%3A+4577-460031+%5BSpecified%5D&comment=Title%3A+Types+of+Java+Archives%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4577-460031+14+Jun+2013+14%3A46+en-US+%5BSpecified%5D&product=JBoss+Enterprise+Application+Platform+6&component=doc-Development_Guide&version=6.1.1

APPENDIX A. REVISION HISTORY

Revision 1.1-6 Thu Apr 10 2014 Russell Dickenson , Lucas Costi
JBoss Enterprise Application Platform 6.1.1 GA Release.

Development Guide

434

	Table of Contents
	CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS
	1.1. INTRODUCTION
	1.1.1. About Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6)
	1.1.2. About the Use of EAP_HOME in this Document

	1.2. PREREQUISITES
	1.2.1. Become Familiar with Java Enterprise Edition 6
	1.2.1.1. Overview of EE 6 Profiles
	1.2.1.2. Java Enterprise Edition 6 Web Profile
	1.2.1.3. Java Enterprise Edition 6 Full Profile

	1.2.2. About Modules and the New Modular Class Loading System used in JBoss EAP 6
	1.2.2.1. Modules
	1.2.2.2. Overview of Class Loading and Modules

	1.3. SET UP THE DEVELOPMENT ENVIRONMENT
	1.3.1. Download and Install JBoss Developer Studio
	1.3.1.1. Setup the JBoss Developer Studio
	1.3.1.2. Download JBoss Developer Studio 5
	1.3.1.3. Install JBoss Developer Studio 5
	1.3.1.4. Start JBoss Developer Studio
	1.3.1.5. Add the JBoss EAP 6 Server to JBoss Developer Studio

	1.4. RUN YOUR FIRST APPLICATION
	1.4.1. Replace the Default Welcome Web Application
	1.4.2. Download the Quickstart Code Examples
	1.4.2.1. Access the Quickstarts

	1.4.3. Run the Quickstarts
	1.4.3.1. Run the Quickstarts in JBoss Developer Studio
	1.4.3.2. Run the Quickstarts Using a Command Line

	1.4.4. Review the Quickstart Tutorials
	1.4.4.1. Explore the helloworld Quickstart
	1.4.4.2. Explore the numberguess Quickstart

	CHAPTER 2. MAVEN GUIDE
	2.1. LEARN ABOUT MAVEN
	2.1.1. About the Maven Repository
	2.1.2. About the Maven POM File
	2.1.3. Minimum Requirements of a Maven POM File
	2.1.4. About the Maven Settings File

	2.2. INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY
	2.2.1. Download and Install Maven
	2.2.2. Install the JBoss EAP 6 Maven Repository
	2.2.3. Install the JBoss EAP 6 Maven Repository Locally
	2.2.4. Install the JBoss EAP 6 Maven Repository for Use with Apache httpd
	2.2.5. Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository Manager
	2.2.6. About Maven Repository Managers

	2.3. USE THE MAVEN REPOSITORY
	2.3.1. Configure the JBoss EAP Maven Repository
	2.3.2. Configure the JBoss EAP 6 Maven Repository Using the Maven Settings
	2.3.3. Configure the JBoss EAP 6 Maven Repository Using the Project POM
	2.3.4. Manage Project Dependencies
	JBoss JavaEE Specs Bom
	JBoss BOM and Quickstarts
	JBoss Client BOMs

	CHAPTER 3. CLASS LOADING AND MODULES
	3.1. INTRODUCTION
	3.1.1. Overview of Class Loading and Modules
	3.1.2. Class Loading
	3.1.3. Modules
	3.1.4. Module Dependencies
	3.1.5. Class Loading in Deployments
	3.1.6. Class Loading Precedence
	3.1.7. Dynamic Module Naming
	3.1.8. jboss-deployment-structure.xml

	3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT
	3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN
	3.4. PREVENT A MODULE BEING IMPLICITLY LOADED
	3.5. EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT
	3.6. CLASS LOADING AND SUBDEPLOYMENTS
	3.6.1. Modules and Class Loading in Enterprise Archives
	3.6.2. Subdeployment Class Loader Isolation
	3.6.3. Disable Subdeployment Class Loader Isolation Within a EAR

	3.7. REFERENCE
	3.7.1. Implicit Module Dependencies
	3.7.2. Included Modules
	3.7.3. JBoss Deployment Structure Deployment Descriptor Reference

	CHAPTER 4. GLOBAL VALVES
	4.1. ABOUT VALVES
	4.2. ABOUT GLOBAL VALVES
	4.3. ABOUT AUTHENTICATOR VALVES
	4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE
	4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR VALVE
	4.6. CREATE A CUSTOM VALVE

	CHAPTER 5. LOGGING FOR DEVELOPERS
	5.1. INTRODUCTION
	5.1.1. About Logging
	5.1.2. Application Logging Frameworks Supported By JBoss LogManager
	5.1.3. About Log Levels
	5.1.4. Supported Log Levels
	5.1.5. Default Log File Locations

	5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK
	5.2.1. About JBoss Logging
	5.2.2. Features of JBoss Logging
	5.2.3. Add Logging to an Application with JBoss Logging

	5.3. LOGGING PROFILES
	5.3.1. About Logging Profiles
	5.3.2. Specify a Logging Profile in an Application

	CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION
	6.1. INTRODUCTION
	6.1.1. About Internationalization
	6.1.2. About Localization

	6.2. JBOSS LOGGING TOOLS
	6.2.1. Overview
	6.2.1.1. JBoss Logging Tools Internationalization and Localization
	6.2.1.2. JBoss Logging Tools Quickstart
	6.2.1.3. Message Logger
	6.2.1.4. Message Bundle
	6.2.1.5. Internationalized Log Messages
	6.2.1.6. Internationalized Exceptions
	6.2.1.7. Internationalized Messages
	6.2.1.8. Translation Properties Files
	6.2.1.9. JBoss Logging Tools Project Codes
	6.2.1.10. JBoss Logging Tools Message Ids

	6.2.2. Creating Internationalized Loggers, Messages and Exceptions
	6.2.2.1. Create Internationalized Log Messages
	6.2.2.2. Create and Use Internationalized Messages
	6.2.2.3. Create Internationalized Exceptions

	6.2.3. Localizing Internationalized Loggers, Messages and Exceptions
	6.2.3.1. Generate New Translation Properties Files with Maven
	6.2.3.2. Translate an Internationalized Logger, Exception or Message

	6.2.4. Customizing Internationalized Log Messages
	6.2.4.1. Add Message Ids and Project Codes to Log Messages
	6.2.4.2. Specify the Log Level for a Message
	6.2.4.3. Customize Log Messages with Parameters
	6.2.4.4. Specify an Exception as the Cause of a Log Message

	6.2.5. Customizing Internationalized Exceptions
	6.2.5.1. Add Message Ids and Project Codes to Exception Messages
	6.2.5.2. Customize Exception Messages with Parameters
	6.2.5.3. Specify One Exception as the Cause of Another Exception

	6.2.6. Reference
	6.2.6.1. JBoss Logging Tools Maven Configuration
	6.2.6.2. Translation Property File Format
	6.2.6.3. JBoss Logging Tools Annotations Reference

	CHAPTER 7. ENTERPRISE JAVABEANS
	7.1. INTRODUCTION
	7.1.1. Overview of Enterprise JavaBeans
	7.1.2. EJB 3.1 Feature Set
	7.1.3. EJB 3.1 Lite
	7.1.4. EJB 3.1 Lite Features
	7.1.5. Enterprise Beans
	7.1.6. Overview of Writing Enterprise Beans
	7.1.7. Session Bean Business Interfaces
	7.1.7.1. Enterprise Bean Business Interfaces
	7.1.7.2. EJB Local Business Interfaces
	7.1.7.3. EJB Remote Business Interfaces
	7.1.7.4. EJB No-interface Beans

	7.2. CREATING ENTERPRISE BEAN PROJECTS
	7.2.1. Create an EJB Archive Project Using JBoss Developer Studio
	7.2.2. Create an EJB Archive Project in Maven
	7.2.3. Create an EAR Project containing an EJB Project
	7.2.4. Add a Deployment Descriptor to an EJB Project

	7.3. SESSION BEANS
	7.3.1. Session Beans
	7.3.2. Stateless Session Beans
	7.3.3. Stateful Session Beans
	7.3.4. Singleton Session Beans
	7.3.5. Add Session Beans to a Project in JBoss Developer Studio

	7.4. MESSAGE-DRIVEN BEANS
	7.4.1. Message-Driven Beans
	7.4.2. Resource Adapters
	7.4.3. Create a JMS-based Message-Driven Bean in JBoss Developer Studio

	7.5. INVOKING SESSION BEANS
	7.5.1. Invoke a Session Bean Remotely using JNDI
	7.5.2. About EJB Client Contexts
	7.5.3. Considerations When Using a Single EJB Context
	7.5.4. Using Scoped EJB Client Contexts
	7.5.5. Configure EJBs Using a Scoped EJB Client Context
	7.5.6. EJB Client Properties

	7.6. CONTAINER INTERCEPTORS
	7.6.1. About Container Interceptors
	7.6.2. Create a Container Interceptor Class
	7.6.3. Configure a Container Interceptor
	7.6.4. Change the Security Context Identity
	7.6.5. Pass Additional Security For EJB Authentication
	7.6.6. Use a Client Side Interceptor in an Application

	7.7. CLUSTERED ENTERPRISE JAVABEANS
	7.7.1. About Clustered Enterprise JavaBeans (EJBs)

	7.8. REFERENCE
	7.8.1. EJB JNDI Naming Reference
	7.8.2. EJB Reference Resolution
	7.8.3. Project dependencies for Remote EJB Clients
	7.8.4. jboss-ejb3.xml Deployment Descriptor Reference

	CHAPTER 8. CLUSTERING IN WEB APPLICATIONS
	8.1. SESSION REPLICATION
	8.1.1. About HTTP Session Replication
	8.1.2. About the Web Session Cache
	8.1.3. Configure the Web Session Cache
	8.1.4. Enable Session Replication in Your Application

	8.2. HTTPSESSION PASSIVATION AND ACTIVATION
	8.2.1. About HTTP Session Passivation and Activation
	8.2.2. Configure HttpSession Passivation in Your Application

	8.3. COOKIE DOMAIN
	8.3.1. About the Cookie Domain
	8.3.2. Configure the Cookie Domain

	8.4. IMPLEMENT AN HA SINGLETON

	CHAPTER 9. CDI
	9.1. OVERVIEW OF CDI
	9.1.1. Overview of CDI
	9.1.2. About Contexts and Dependency Injection (CDI)
	9.1.3. Benefits of CDI
	9.1.4. About Type-safe Dependency Injection
	9.1.5. Relationship Between Weld, Seam 2, and JavaServer Faces

	9.2. USE CDI
	9.2.1. First Steps
	9.2.1.1. Enable CDI

	9.2.2. Use CDI to Develop an Application
	9.2.2.1. Use CDI to Develop an Application
	9.2.2.2. Use CDI with Existing Code
	9.2.2.3. Exclude Beans From the Scanning Process
	9.2.2.4. Use an Injection to Extend an Implementation

	9.2.3. Ambiguous or Unsatisfied Dependencies
	9.2.3.1. About Ambiguous or Unsatisfied Dependencies
	9.2.3.2. About Qualifiers
	9.2.3.3. Use a Qualifier to Resolve an Ambiguous Injection

	9.2.4. Managed Beans
	9.2.4.1. About Managed Beans
	9.2.4.2. Types of Classes That are Beans
	9.2.4.3. Use CDI to Inject an Object Into a Bean

	9.2.5. Contexts, Scopes, and Dependencies
	9.2.5.1. Contexts and Scopes
	9.2.5.2. Available Contexts

	9.2.6. Bean Lifecycle
	9.2.6.1. Manage the Lifecycle of a Bean
	9.2.6.2. Use a Producer Method

	9.2.7. Named Beans and Alternative Beans
	9.2.7.1. About Named Beans
	9.2.7.2. Use Named Beans
	9.2.7.3. About Alternative Beans
	9.2.7.4. Override an Injection with an Alternative

	9.2.8. Stereotypes
	9.2.8.1. About Stereotypes
	9.2.8.2. Use Stereotypes

	9.2.9. Observer Methods
	9.2.9.1. About Observer Methods
	9.2.9.2. Fire and Observe Events

	9.2.10. Interceptors
	9.2.10.1. About Interceptors
	9.2.10.2. Use Interceptors with CDI

	9.2.11. About Decorators
	9.2.12. About Portable Extensions
	9.2.13. Bean Proxies
	9.2.13.1. About Bean Proxies
	9.2.13.2. Use a Proxy in an Injection

	CHAPTER 10. JAVA TRANSACTION API (JTA)
	10.1. OVERVIEW
	10.1.1. Overview of Java Transactions API (JTA)

	10.2. TRANSACTION CONCEPTS
	10.2.1. About Transactions
	10.2.2. About ACID Properties for Transactions
	10.2.3. About the Transaction Coordinator or Transaction Manager
	10.2.4. About Transaction Participants
	10.2.5. About Java Transactions API (JTA)
	10.2.6. About Java Transaction Service (JTS)
	10.2.7. About XA Datasources and XA Transactions
	10.2.8. About XA Recovery
	10.2.9. About the 2-Phase Commit Protocol
	10.2.10. About Transaction Timeouts
	10.2.11. About Distributed Transactions
	10.2.12. About the ORB Portability API
	10.2.13. About Nested Transactions

	10.3. TRANSACTION OPTIMIZATIONS
	10.3.1. Overview of Transaction Optimizations
	10.3.2. About the LRCO Optimization for Single-phase Commit (1PC)
	10.3.3. About the Presumed-Abort Optimization
	10.3.4. About the Read-Only Optimization

	10.4. TRANSACTION OUTCOMES
	10.4.1. About Transaction Outcomes
	10.4.2. About Transaction Commit
	10.4.3. About Transaction Roll-Back
	10.4.4. About Heuristic Outcomes
	10.4.5. JBoss Transactions Errors and Exceptions

	10.5. OVERVIEW OF JTA TRANSACTIONS
	10.5.1. About Java Transactions API (JTA)
	10.5.2. Lifecycle of a JTA Transaction

	10.6. TRANSACTION SUBSYSTEM CONFIGURATION
	10.6.1. Transactions Configuration Overview
	10.6.2. Transactional Datasource Configuration
	10.6.2.1. Configure Your Datasource to Use JTA Transactions
	10.6.2.2. Configure an XA Datasource
	10.6.2.3. Log in to the Management Console
	10.6.2.4. Create a Non-XA Datasource with the Management Interfaces
	10.6.2.5. Datasource Parameters

	10.6.3. Transaction Logging
	10.6.3.1. About Transaction Log Messages
	10.6.3.2. Configure Logging for the Transaction Subsystem
	10.6.3.3. Browse and Manage Transactions

	10.7. USE JTA TRANSACTIONS
	10.7.1. Transactions JTA Task Overview
	10.7.2. Control Transactions
	10.7.3. Begin a Transaction
	10.7.4. Nest Transactions
	10.7.5. Commit a Transaction
	10.7.6. Roll Back a Transaction
	10.7.7. Handle a Heuristic Outcome in a Transaction
	10.7.8. Transaction Timeouts
	10.7.8.1. About Transaction Timeouts
	10.7.8.2. Configure the Transaction Manager

	10.7.9. JTA Transaction Error Handling
	10.7.9.1. Handle Transaction Errors

	10.8. ORB CONFIGURATION
	10.8.1. About Common Object Request Broker Architecture (CORBA)
	10.8.2. Configure the ORB for JTS Transactions

	10.9. TRANSACTION REFERENCES
	10.9.1. JBoss Transactions Errors and Exceptions
	10.9.2. JTA Clustering Limitations
	10.9.3. JTA Transaction Example
	10.9.4. API Documentation for JBoss Transactions JTA

	CHAPTER 11. HIBERNATE
	11.1. ABOUT HIBERNATE CORE
	11.2. JAVA PERSISTENCE API (JPA)
	11.2.1. About JPA
	11.2.2. Hibernate EntityManager
	11.2.3. Getting Started
	11.2.3.1. Create a JPA project in JBoss Developer Studio
	11.2.3.2. Create the Persistence Settings File in JBoss Developer Studio
	11.2.3.3. Example Persistence Settings File
	11.2.3.4. Create the Hibernate Configuration File in JBoss Developer Studio
	11.2.3.5. Example Hibernate Configuration File

	11.2.4. Configuration
	11.2.4.1. Hibernate Configuration Properties
	11.2.4.2. Hibernate JDBC and Connection Properties
	11.2.4.3. Hibernate Cache Properties
	11.2.4.4. Hibernate Transaction Properties
	11.2.4.5. Miscellaneous Hibernate Properties
	11.2.4.6. Hibernate SQL Dialects

	11.2.5. Second-Level Caches
	11.2.5.1. About Second-Level Caches
	11.2.5.2. Configure a Second Level Cache for Hibernate

	11.3. HIBERNATE ANNOTATIONS
	11.3.1. Hibernate Annotations

	11.4. HIBERNATE QUERY LANGUAGE
	11.4.1. About Hibernate Query Language
	11.4.2. HQL Statements
	11.4.3. About the INSERT Statement
	11.4.4. About the FROM Clause
	11.4.5. About the WITH Clause
	11.4.6. About Bulk Update, Insert and Delete
	11.4.7. About Collection Member References
	11.4.8. About Qualified Path Expressions
	11.4.9. About Scalar Functions
	11.4.10. HQL Standardized Functions
	11.4.11. About the Concatenation Operation
	11.4.12. About Dynamic Instantiation
	11.4.13. About HQL Predicates
	11.4.14. About Relational Comparisons
	11.4.15. About the IN Predicate
	11.4.16. About HQL Ordering

	11.5. HIBERNATE SERVICES
	11.5.1. About Hibernate Services
	11.5.2. About Service Contracts
	11.5.3. Types of Service Dependencies
	11.5.4. The ServiceRegistry
	11.5.4.1. About the ServiceRegistry

	11.5.5. Custom Services
	11.5.5.1. About Custom Services

	11.5.6. The Bootstrap Registry
	11.5.6.1. About the Boot-strap Registry
	11.5.6.2. Using BootstrapServiceRegistryBuilder
	11.5.6.3. BootstrapRegistry Services

	11.5.7. The SessionFactory Registry
	11.5.7.1. SessionFactory Registry
	11.5.7.2. SessionFactory Services

	11.5.8. Integrators
	11.5.8.1. Integrators
	11.5.8.2. Integrator use-cases

	11.6. BEAN VALIDATION
	11.6.1. About Bean Validation
	11.6.2. Hibernate Validator
	11.6.3. Validation Constraints
	11.6.3.1. About Validation Constraints
	11.6.3.2. Create a Constraint Annotation in the JBoss Developer Studio
	11.6.3.3. Create a New Java Class in the JBoss Developer Studio
	11.6.3.4. Hibernate Validator Constraints

	11.6.4. Configuration
	11.6.4.1. Example Validation Configuration File

	11.7. ENVERS
	11.7.1. About Hibernate Envers
	11.7.2. About Auditing Persistent Classes
	11.7.3. Auditing Strategies
	11.7.3.1. About Auditing Strategies
	11.7.3.2. Set the Auditing Strategy

	11.7.4. Getting Started with Entity Auditing
	11.7.4.1. Add Auditing Support to a JPA Entity

	11.7.5. Configuration
	11.7.5.1. Configure Envers Parameters
	11.7.5.2. Enable or Disable Auditing at Runtime
	11.7.5.3. Configure Conditional Auditing
	11.7.5.4. Envers Configuration Properties

	11.7.6. Queries
	11.7.6.1. Retrieve Auditing Information

	CHAPTER 12. JAX-RS WEB SERVICES
	12.1. ABOUT JAX-RS
	12.2. ABOUT RESTEASY
	12.3. ABOUT RESTFUL WEB SERVICES
	12.4. RESTEASY DEFINED ANNOTATIONS
	12.5. RESTEASY CONFIGURATION
	12.5.1. RESTEasy Configuration Parameters

	12.6. JAX-RS WEB SERVICE SECURITY
	12.6.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
	12.6.2. Secure a JAX-RS Web Service using Annotations

	12.7. RESTEASY LOGGING
	12.7.1. About JAX-RS Web Service Logging
	12.7.2. Configure a Log Category in the Management Console
	12.7.3. Logging Categories Defined in RESTEasy

	12.8. EXCEPTION HANDLING
	12.8.1. Create an Exception Mapper
	12.8.2. RESTEasy Internally Thrown Exceptions

	12.9. RESTEASY INTERCEPTORS
	12.9.1. Intercept JAX-RS Invocations
	12.9.2. Bind an Interceptor to a JAX-RS Method
	12.9.3. Register an Interceptor
	12.9.4. Interceptor Precedence Families
	12.9.4.1. About Interceptor Precedence Families
	12.9.4.2. Define a Custom Interceptor Precedence Family

	12.10. STRING BASED ANNOTATIONS
	12.10.1. Convert String Based @*Param Annotations to Objects

	12.11. CONFIGURE FILE EXTENSIONS
	12.11.1. Map File Extensions to Media Types in the web.xml File
	12.11.2. Map File Extensions to Languages in the web.xml File
	12.11.3. RESTEasy Supported Media Types

	12.12. RESTEASY JAVASCRIPT API
	12.12.1. About the RESTEasy JavaScript API
	12.12.2. Enable the RESTEasy JavaScript API Servlet
	12.12.3. RESTEasy Javascript API Parameters
	12.12.4. Build AJAX Queries with the JavaScript API
	12.12.5. REST.Request Class Members

	12.13. RESTEASY ASYNCHRONOUS JOB SERVICE
	12.13.1. About the RESTEasy Asynchronous Job Service
	12.13.2. Enable the Asynchronous Job Service
	12.13.3. Configure Asynchronous Jobs for RESTEasy
	12.13.4. Asynchronous Job Service Configuration Parameters

	12.14. RESTEASY JAXB
	12.14.1. Create a JAXB Decorator

	12.15. RESTEASY ATOM SUPPORT
	12.15.1. About the Atom API and Provider

	CHAPTER 13. JAX-WS WEB SERVICES
	13.1. ABOUT JAX-WS WEB SERVICES
	13.2. CONFIGURE THE WEBSERVICES SUBSYSTEM
	13.3. JAX-WS WEB SERVICE ENDPOINTS
	13.3.1. About JAX-WS Web Service Endpoints
	13.3.2. Write and Deploy a JAX-WS Web Service Endpoint

	13.4. JAX-WS WEB SERVICE CLIENTS
	13.4.1. Consume and Access a JAX-WS Web Service
	13.4.2. Develop a JAX-WS Client Application

	13.5. JAX-WS DEVELOPMENT REFERENCE
	13.5.1. Enable Web Services Addressing (WS-Addressing)
	13.5.2. JAX-WS Common API Reference

	CHAPTER 14. IDENTITY WITHIN APPLICATIONS
	14.1. FOUNDATIONAL CONCEPTS
	14.1.1. About Encryption
	14.1.2. About Security Domains
	14.1.3. About SSL Encryption
	14.1.4. About Declarative Security

	14.2. ROLE-BASED SECURITY IN APPLICATIONS
	14.2.1. About Application Security
	14.2.2. About Authentication
	14.2.3. About Authorization
	14.2.4. About Security Auditing
	14.2.5. About Security Mapping
	14.2.6. About the Security Extension Architecture
	14.2.7. Java Authentication and Authorization Service (JAAS)
	14.2.8. About Java Authentication and Authorization Service (JAAS)
	14.2.9. Use a Security Domain in Your Application
	14.2.10. Use Role-Based Security In Servlets
	14.2.11. Use A Third-Party Authentication System In Your Application

	14.3. SECURITY REALMS
	14.3.1. About Security Realms
	14.3.2. Add a New Security Realm
	14.3.3. Add a User to a Security Realm

	14.4. EJB APPLICATION SECURITY
	14.4.1. Security Identity
	14.4.1.1. About EJB Security Identity
	14.4.1.2. Set the Security Identity of an EJB

	14.4.2. EJB Method Permissions
	14.4.2.1. About EJB Method Permissions
	14.4.2.2. Use EJB Method Permissions

	14.4.3. EJB Security Annotations
	14.4.3.1. About EJB Security Annotations
	14.4.3.2. Use EJB Security Annotations

	14.4.4. Remote Access to EJBs
	14.4.4.1. About Remote Method Access
	14.4.4.2. About Remoting Callbacks
	14.4.4.3. About Remoting Server Detection
	14.4.4.4. Configure the Remoting Subsystem
	14.4.4.5. Use Security Realms with Remote EJB Clients
	14.4.4.6. Add a New Security Realm
	14.4.4.7. Add a User to a Security Realm
	14.4.4.8. About Remote EJB Access Using SSL Encryption

	14.5. JAX-RS APPLICATION SECURITY
	14.5.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
	14.5.2. Secure a JAX-RS Web Service using Annotations

	14.6. SECURE REMOTE PASSWORD PROTOCOL
	14.6.1. About Secure Remote Password Protocol (SRP)
	14.6.2. Configure Secure Remote Password (SRP) Protocol

	14.7. PASSWORD VAULTS FOR SENSITIVE STRINGS
	14.7.1. About Securing Sensitive Strings in Clear-Text Files
	14.7.2. Create a Java Keystore to Store Sensitive Strings
	14.7.3. Mask the Keystore Password and Initialize the Password Vault
	14.7.4. Configure JBoss EAP 6 to Use the Password Vault
	14.7.5. Store and Retrieve Encrypted Sensitive Strings in the Java Keystore
	14.7.6. Store and Resolve Sensitive Strings In Your Applications

	14.8. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
	14.8.1. About Java Authorization Contract for Containers (JACC)
	14.8.2. Configure Java Authorization Contract for Containers (JACC) Security

	14.9. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
	14.9.1. About Java Authentication SPI for Containers (JASPI) Security
	14.9.2. Configure Java Authentication SPI for Containers (JASPI) Security

	CHAPTER 15. SINGLE SIGN ON (SSO)
	15.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
	15.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
	15.3. CHOOSE THE RIGHT SSO IMPLEMENTATION
	15.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION
	15.5. ABOUT KERBEROS
	15.6. ABOUT SPNEGO
	15.7. ABOUT MICROSOFT ACTIVE DIRECTORY
	15.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB APPLICATIONS

	CHAPTER 16. DEVELOPMENT SECURITY REFERENCES
	16.1. JBOSS-WEB.XML CONFIGURATION REFERENCE
	16.2. EJB SECURITY PARAMETER REFERENCE

	CHAPTER 17. SUPPLEMENTAL REFERENCES
	17.1. TYPES OF JAVA ARCHIVES

	APPENDIX A. REVISION HISTORY

