& RedHat

Red Hat support for Spring Boot 2.3

Dekorate Guide for Spring Boot Developers

Use Dekorate to automatically configure your Spring Boot applications for
deployment to OpenShift and stand-alone RHEL

Last Updated: 2021-09-09

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot
Developers

Use Dekorate to automatically configure your Spring Boot applications for deployment to
OpenShift and stand-alone RHEL

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides details about using Dekorate to automatically generate resource files from your
code and prepare your Spring Boot application for deployment to multiple environments.

Table of Contents

Table of Contents

[4 o Y 3
PROVIDING FEEDBACK ON RED HAT DOCUMENT ATION oottt ettt ettt et et enenennn, 4
CHAPTER 1. CONFIGURING YOUR APPLICATION TOUSE SPRING BOOT ...iiiiiiiii it iiiiiiieiieennns 5
1.1. PREREQUISITES 5
1.2. USING THE SPRING BOOT BOM TO MANAGE DEPENDENCY VERSIONS 5
1.3. USING THE SPRING BOOT BOM TO AS A PARENT BOM OF YOUR APPLICATION 7
1.4. RELATED INFORMATION 8
CHAPTER 2. USING DEKORATE IN ASPRING BOOT APPLICATION ...ttt ittt it ciecie e 9
2.1. OVERVIEW OF DEKORATE 9
2.1.1. Additional resources 9

2.2. CONFIGURING YOUR APPLICATION PROJECT TO USE DEKORATE 9
2.3. CUSTOMIZING YOUR APPLICATION CONFIGURATION WITH DEKORATE 10
2.4. USING ANNOTATIONLESS CONFIGURATION IN A SPRING BOOT APPLICATION 12
2.5. AUTOMATICALLY EXECUTING OPENSHIFT SOURCE-TO-IMAGE BUILDS WITH DEKORATE 13
2.6. USING DEKORATE WITH SPRING BOOT ON OPENSHIFT 14
2.7. DEKORATE CONFIGURATION PROPERTIES FOR OPENSHIFT 16
2.8. DEKORATE CONFIGURATION PROPERTIES FOR SOURCE-TO-IMAGE 21
APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESScciiiiiiiiiiiieeiiiiiieneeennnnnnn, 23
APPENDIX B. ADDITIONAL SPRING BOOT RESOURCES ...ttt ittt ittt ittt tteneanennen, 24
APPENDIX C. APPLICATION DEVELOPMENT RESOURCES ... ittt ittt ittt et cieeieenennen, 25
APPENDIX D. PROFICIENCY LEVELS oottt i ittt ittt ittt ettt aeseeneeneeneanennes, 26
Foundational 26
Advanced 26
Expert 26
APPENDIX E. GLOS S ARY oottt i it ittt e e e ettt ettt ettt et et et e et e e e 27
E.1. PRODUCT AND PROJECT NAMES 27
E.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER 27

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

PREFACE

PREFACE

Process the code of your Spring Boot application with Dekorate to automatically generate application
manifest files and configure your application for deployment to OpenShift.

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. To provide feedback, you can highlight the textin a
document and add comments.

This section explains how to submit feedback.

Prerequisites

® You are logged in to the Red Hat Customer Portal.
® |nthe Red Hat Customer Portal, view the document in Multi-page HTML format.

Procedure

To provide your feedback, perform the following steps:

1. Click the Feedback button in the top-right corner of the document to see existing feedback.

NOTE

The feedback feature is enabled only in the Multi-page HTML format.

2. Highlight the section of the document where you want to provide feedback.

3. Click the Add Feedback pop-up that appears near the highlighted text.
A text box appears in the feedback section on the right side of the page.

4. Enter your feedback in the text box and click Submit.
A documentation issue is created.

5. To view the issue, click the issue tracker link in the feedback view.

CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT

CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE
SPRING BOOT

Configure your application to use dependencies provided with Red Hat build of Spring Boot. By using
the BOM to manage your dependencies, you ensure that your applications always uses the product
version of these dependencies that Red Hat provides support for. Reference the Spring Boot BOM (Bill
of Materials) artifact in the pom.xml file at the root directory of your application. You can use the BOM
in your application project in 2 different ways:

® Asadependency in the <dependencyManagements section of the pom.xml. When using the
BOM as a dependency, your project inherits the version settings for all Spring Boot
dependencies from the <dependencyManagements> section of the BOM.

® Asaparent BOM in the <parents section of the pom.xml. When using the BOM as a parent, the
pom.xml of your project inherits the following configuration values from the parent BOM:

o versions of all Spring Boot dependencies in the <dependencyManagement> section
o versions plugins in the <pluginManagement> section
o the URLs and names of repositories in the <repositories> section

o the URLs and name of the repository that contains the Spring Boot plugin in the
<pluginRepositories> section

1.1. PREREQUISITES

® A Maven-based application project that you configure using a pom.xml file.

® Access to the Red Hat JBoss Middleware General Availability Maven Repository .

1.2. USING THE SPRING BOOT BOM TO MANAGE DEPENDENCY
VERSIONS

Manage versions of Spring Boot product dependencies in your application project using the product
BOM.

Procedure

1. Add the dev.snowdrop:snowdrop-dependencies artifact to the <dependencyManagement>

section of the pom.xml of your project, and specify the values of the <type> and <scope>
attributes:

<project>

<dependencyManagement>
<dependencies>
<dependency>
<groupld>dev.snowdrop</groupld>
<artifactld>snowdrop-dependencies</artifactld>
<version>2.3.10.Final-redhat-00004</version>
<type>pom</type>
<scope>import</scope>
</dependency>

https://maven.repository.redhat.com/ga/

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

</dependencies>
</dependencyManagement>

</project>

2. Include the following properties to track the version of the Spring Boot Maven Plugin that you
are using:

<project>

<properties>
<spring-boot-maven-plugin.version>2.3.10.RELEASE</spring-boot-maven-plugin.version>
</properties>

</project>

3. Specify the names and URLs of repositories containing the BOM and the supported Spring
Boot Starters and the Spring Boot Maven plugin:

<!I-- Specify the repositories containing Spring Boot artifacts. -->
<repositories>
<repository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</repository>
</repositories>

<!I-- Specify the repositories containing the plugins used to execute the build of your
application. -->
<pluginRepositories>
<pluginRepository>
<id>redhat-ga</id>
<name>Red Hat GA Repository</name>
<url>https://maven.repository.redhat.com/ga/</url>
</pluginRepository>
</pluginRepositories>

4. Add spring-boot-maven-plugin as the plugin that Maven uses to package your application.
<project>
;build>
<-b-|ugins>

<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactld>
<version>${spring-boot-maven-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>

CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT

</execution>
</executions>
<configuration>
<redeploy>true</redeploy>
</configuration>
</plugin>
</plugins>
</build>

</project>

1.3. USING THE SPRING BOOT BOM TO AS A PARENT BOM OF YOUR
APPLICATION

Automatically manage the:
® versions of product dependencies
® version of the Spring Boot Maven plugin
e configuration of Maven repositories containing the product artifacts and plugins

that you use in your application project by including the product Spring Boot BOM as a parent BOM of
your project. This method provides an alternative to using the BOM as a dependency of your application.

Procedure

1. Add the dev.snowdrop:snowdrop-dependencies artifact to the <parents section of the
pom.xml:

<project>
<parent>
<groupld>dev.snowdrop</groupld>
<artifactld>snowdrop-dependencies</artifactld>
<version>2.3.10.Final-redhat-00004</version>

</parent>

</project>

2. Add spring-boot-maven-plugin as the plugin that Maven uses to package your application to
the <build> section of the pom.xml. The plugin version is automatically managed by the parent
BOM.

<project>
<build>
<plugins>

<plugin>
<groupld>org.springframework.boot</groupld>

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

<artifactld>spring-boot-maven-plugin</artifactld>
<executions>
<execution>
<goals>
<goal>repackage</goal>
</goals>
</execution>
</executions>
<configuration>
<redeploy>true</redeploy>
</configuration>
</plugin>

</plugins>
</build>

</project>

1.4. RELATED INFORMATION

® For more information about packaging your Spring Boot application, see the Spring Boot
Maven Plugin documentation.

https://docs.spring.io/spring-boot/docs/current/maven-plugin/plugin-info.html

CHAPTER 2. USING DEKORATE IN A SPRING BOOT APPLICATION

CHAPTER 2. USING DEKORATE IN A SPRING BOOT
APPLICATION

Use Dekorate to automatically generate application manifest files and configure your application for
deployment to OpenShift.

2.1. OVERVIEW OF DEKORATE

Dekorate is a collection of compile-time annotation processors and application resource generators that
are provided with Red Hat build of Spring Boot. It works by parsing annotations in your code when you
build your application, and extracting configuration properties. Dekorate then uses the extracted values
of properties to generate application configuration resources that you can use to deploy your
application to a Kubernetes or OpenShift cluster.

As a developer, you can annotate your code and then use Dekorate to automatically generate
application manifests when you build your application, which eliminates the need for you to manually
write resource files for deploying your application. When your application is based on a rich application
runtime framework, such as Spring Boot, Dekorate can integrate directly with the framework and extract
the configuration parameters from the API provided by the framework, thus eliminating the need for you
to annotate your code. Dekorate can automatically configure your application by:

® Parsing Dekorate-specific annotations in the application code to obtain value and metadata
that are used to populate the manifest files

® Extracting information from configuration resources, such as application.properties or
application.yaml

e Obtaining the necessary metadata from a rich application framework and extracting the
configuration values from the application.properties or application.yml file.

In addition to generating resource definitions for your applications, Dekorate provides hooks allowing
you to build and deploy your applications on an OpenShift cluster Dekorate works independently of the
language in which you write your applications, and can be used with a wide range of build systems.

Dekorate consists of a set of libraries distributed as a Maven BOM. You can add the libraries as
dependencies of your application project to use Dekorate with your application.

Red Hat provides support for using Dekorate to generate resource files and hooks that you can use to
deploy Java applications based on Spring Boot to OpenShift Container Platform.

2.1.1. Additional resources

e Reference for Dekorate configuration properties for OpenShift.
e Reference for Dekorate configuration properties for Source-to-Image..

e Reference for all Dekorate Configuration properties in the community documentation.

2.2. CONFIGURING YOUR APPLICATION PROJECT TO USE DEKORATE

Add the Dekorate BOM and the OpenShift Annotations Starter to the pom.xml file of your application
project. Include basic annotations in your source files and package your application with Maven to
generate the application manifests.

Prerequisites

https://github.com/dekorateio/dekorate/blob/master/assets/config.md#configuration-options

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

® A Maven-based Java application project configured to use Spring Boot
® Java JDK 8 or JDK 1linstalled

® Maven installed

Procedure

1. Add the Dekorate OpenShift Spring Starter to the pom.xml file of your application to enable
Dekorate to porcess your application source code and resource files:

<project>
<dependencies>
<dependency>
<!I-- The OpenShift Spring Starter automatically imports the "io.dekorate:openshift-
annotations" dependency. -->
<groupld>io.dekorate</groupld>
<artifactld>openshift-spring-starter</artifactid>
</dependency>
</dependencies>
<project>

2. Add the @SpringBootApplication annotation to the main class file of your application project:

package org.acme;
@SpringBootApplication

public class Application {

}

3. Package your application to process you application code and resource files with Dekorate

I mvn clean package

4. Navigate to the target/classes/META-INF/dekorate directory that contains the generated
OpenShift manifests.

2.3. CUSTOMIZING YOUR APPLICATION CONFIGURATION WITH
DEKORATE

Use Dekorate to customize the configuration of your application for deployment on OpenShift by
e specifying configuration parameters in annotations in the source your application
® setting a property in the application.properties file

The following example shows how you can set your application to start with 2 replicas when deployed to
OpenShift.

Prerequisites

10

CHAPTER 2. USING DEKORATE IN A SPRING BOOT APPLICATION

® A Maven-based Java application project configured to use Spring Boot and Dekorate
® Java JDK 8 or JDK 1linstalled

® Maven installed

Procedure

1. Add the Dekorate OpenShift Annotations module as a dependency in the pom.xml file of your
application:

<project>
<dependencies>
<dependency>
<groupld>io.dekorate</groupld>
<artifactld>openshift-spring-starter</artifactid>
</dependency>
</dependencies>

<project>

2. Configure the default number of replicas that your application starts with when deployed to
OpenShift:

a. Add the @OpenshiftApplication annotation to the main source file of your application and
set number of replicas to 2. When you build and deploy your application, it automatically
starts with 2 replicas of the main application container running:

package org.acme;

import io.dekorate.openshift.annotation.OpenshiftApplication;
// include the parameter for the number of replicas to
@OpenshiftApplication(replicas=2)

@SpringBootApplication

public class Application {

}

b. Alternatively, set the dekorate.openshift.replicas=2 property in the
application.properties file of your application.

/src/main/resources/application.properties
I dekorate.openshift.replicas=2
3. Package your application:
I mvn clean package

4. Navigate to the target/classes/META-INF/dekorate view the manifests generated by Dekorate.
The number of replicas in the deployment configuration YAML template is set to 2:

1

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

spec:
replicas: 2
selector:
matchLabels:
app: acme

Additional resources

® Overview of Dekorate configuration properties for OpenShift.

2.4. USING ANNOTATIONLESS CONFIGURATION IN A SPRING BOOT
APPLICATION

Use Dekorate to generate OpenShift resource configuration files for your Spring Boot application
project by extracting dekorate configuration properties from application.properties and
application.yml files. This method does not require that you annotate your application source, because
Dekorate can obtain the required metadata from Spring Boot and the configuration parameters from
the property files. Annontationless configuration is a feature of rich framework integration between
Spring Boot and Dekorate.

Prerequisites

® A Maven-based application project configured to use Spring Boot and Dekorate

® Atleast1classin your application project annotated with the @SpringBootApplication
annotation.

e Java JDK 8 or JDK 1linstalled

® Maven installed

Procedure
1. Add the following dependencies in the pom.xml file of your application:
<project>
<dependencies>
<!I-- The OpenShift Spring Starter automatically adds "io.dekorate:openshift-annotations”
as a transitive dependency -->
<dependency>
<groupld>io.dekorate</groupld>
<artifactld>openshfit-spring-starter</artifactid>
</dependency>
</dependencies>

<project>

2. Add Dekorate configuration properties to the application.properties or application.yml file in
your project. You do not have to add any Dekorate property annotations to your source files.

12

CHAPTER 2. USING DEKORATE IN A SPRING BOOT APPLICATION

Note, that you can still use annotations in your source files, but if you do so, Dekorate overwrites
parameters provided in annotations with the parameters provided in the application.properties
or application.yml files.

Package your application:
I mvn clean package

When you build your application Dekorate parses the configuration in the following resources
within your application project. The configuration resources are parsed in an increasing order of
priority. This means that if 2 different resources of different type present different values for
the same configuration parameter, Dekorate uses the value obtained from a resource that is
higher on the list of priorities. For example, if an annotation in your source specifies a parameter
value, but a different value is specified for the same parameter in your application.yml,
Dekorate uses the value it obtains from application.yml. Dekorate parses your project
resources in the following order of priority:

1. Annotations
2. application.properties
3. application.yaml

4. application.yml

4. Navigate to the target/classes/META-INF/dekorate directory that contains the generated

openshift.json and openshift.yml manifest files.

2.5. AUTOMATICALLY EXECUTING OPENSHIFT SOURCE-TO-IMAGE
BUILDS WITH DEKORATE

You can use Dekorate to automatically execute an OpenShift container image build after you compile
your application with Maven.

Note, that the functionality of automatically triggering Source-to-image builds using Dekorate is
available as a Technology Preview. Red Hat does not provide support for using this functionality in a
production environment.

Prerequisites

A Maven-based application project configured to use Spring Boot and Dekorate
The @SpringBootApplication annotation added to the source files in your project
Java JDK 8 or JDK 1l installed

Maven installed

oc command-line tool installed

You are logged in to an OpenShift cluster using o¢ command-line tool

Procedure

13

https://access.redhat.com/support/offerings/techpreview

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

1.

Add the Dekorate OpenShift Spring Starter as a dependency to the pom.xml file of your
application. Note, that this module is included as a transitive dependency in all Dekorate
OpenShift Starters:

<project>
<dependencies>
<dependency>
<groupld>io.dekorate</groupld>
<artifactld>openshift-spring-starter</artifactid>
</dependency>
</dependencies>
<project>
Build and Deploy your application. Include the -Ddekorate.build=true property to execute the

container image build after Maven compiles your application. Note that the functionality that
automatically executes the Source-to-image build is provided as Technology Preview.

I $ mvn clean install -Ddekorate.build=true

You can also execute the Source-to-image build manually from the command line after you
compile your application with Maven:

Process your application YAML template that is generated by Dekorate:

$ oc apply -f target/classes/META-INF/dekorate/openshift.yml

Execute the Source-to-image build and deploy your application to the OpenShift cluster:
$ oc start-build example --from-dir=./target --follow

2.6. USING DEKORATE WITH SPRING BOOT ON OPENSHIFT

The following example shows you how:

1.

2.

14

You can use the openshift-spring-stater in an application.

Dekorate can automaticaly identify the type of the application and configure OpenShift service
routes and probes accordingly.

You can set up your application to trigger a source-to-image build after Maven compiles your
application.

Prerequisites

® A Maven-based application project configured to use Spring Boot and Dekorate

e The @SpringBootApplication annotation added to the source files in your project
® Java JDK 8 or JDK 1linstalled

® Maven installed

® oc command-line tool installed

https://access.redhat.com/support/offerings/techpreview

CHAPTER 2. USING DEKORATE IN A SPRING BOOT APPLICATION

® You are logged in to an OpenShift cluster using oc command-line tool

Procedure

1. Add the Dekorate Spring Starter as a dependency in the pom.xml file of your application
project.

pom.xml

<project>
<dependencies>
<dependency>
<groupld>io.dekorate</groupld>
<artifactld>openshift-spring-starter</artifactid>
</dependency>
</dependencies>

<project>

2. Add the @SpringBootApplication annotation to your Main.java class. This enables the source-
to-image build to start when the application is compiled:

/src/main/java/io/dekorate/example/sbonopenshift/Main.java

package io.dekorate.example.sbonopenshift;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Main {

public static void main(String[] args) {

SpringApplication.run(Main.class, args);

}

3. Add a Rest controller to your application:

/src/main/java/io/dekorate/example/sbonopenshift/Controller.java

package io.dekorate.example.sbonopenshift;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class Controller {

@RequestMapping("/")

15

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

public String hello() {
return "Hello world";
}
}

The Spring application processor provided by the the Dekorate Spring starter automatically
detects the Rest controller and identifies the application type as a web application. For a web
application, Dekorate automatically generate the OpenShift application template and
configures:

® the OpenShift Service route for your application
® exposes a service on the route of your application
® configures liveness and readiness probe settings

4. Build and deploy your application. Include the -Ddekorate.deploy=true property to
automatically execute the source-to-image build after Maven compiles your application.

I mvn clean install -Ddekorate.deploy=true

2.7. DEKORATE CONFIGURATION PROPERTIES FOR OPENSHIFT

The properties listed in the table below set the values that Dekorate uses to configure your application
for deployment to OpenShift. Dekorate uses the values specified in these properties to populate the
Deployment Configuration and application resource files generated for your application project. Each
property accepts values of the data type that is listed in the table for the particular property. Some of
the properties have a default value that Dekorate uses if you do not specify a value for these attributes.
You can set these properties in the application.properties file of your application project.

Table 2.1. Dekorate application properties for OpenShift

Property Data Type Description Default Value (if
applicable)

dekorate.openshift.p String The name of the If you do not specify a

art-of collection of value for this property,
components that your Dekorate uses the name
application belongs to. of the groupld that you
The value of this use in the Maven project
property is used in the of your application as
name for other the default value.

Kubernetes resources
that your application
contains, such as
Deployment
Configurations and
Services.

16

Property

Data Type

CHAPTER 2. USING DEKORATE IN A SPRING BOOT APPLICATION

Description

Default Value (if

applicable)

dekorate.openshift.n
ame

dekorate.openshift.v
ersion

dekorate.openshift.i
nit-containers

dekorate.openshift.l
abels

dekorate.openshift.a
nnotations

dekorate.openshift.e
nv-vars

dekorate.openshift.w
orking-dir

String

String

Container[]

Label[]

Annotation[]

Env]

String

The name of the
application. The value of
this property is used in
the name for other
Kubernetes resources
that your application
contains, such as
Deployment
Configurations and
Services.

The version of the
application. The value of
this property is used in
the name of all
Kubernetes resources
that your application
contains, such as
Deployment
Configurations and
Services.

Specifies init containers
that you want to use in
your application

Specifies custom labels
to be added to all
resources in your
application

Specifies custom
annotations that you
want to add to all
resources in your
application

Specifies environment
variables that you want
to define for all
containers created for
your application

Specifies the working
directory of your
application container

If you do not specify a
value for this property,
Dekorate uses the name
of the artifactld that
you use for the Maven
project of your
application as the
default value.

If you do not specify a
value for this property,
Dekorate uses the
version that you
specify in the Maven
project containing your
application as the
default value.

17

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

Property Data Type Description Default Value (if

applicable)

18

dekorate.openshift.c
ommand

dekorate.openshift.a
rguments

dekorate.openshift.r
eplicas

dekorate.openshift.s
ervice-account

dekorate.openshift.h
ost

dekorate.openshift.p
orts

dekorate.openshift.s
ervice-type

dekorate.openshift.p
vc-volumes

dekorate.openshift.s
ecret-volumes

dekorate.openshift.c
onfig-map-volumes

String[]

String[]

int

String

String

Port[]

ServiceType

PersistentVolumeClaim
Volume[]

SecretVolume[]

ConfigMapVolume[]

Specifies commands
that you want to use in
your container

Specifies custom
command-line
arguments that you
want to use in your
container

Specifies how many
replicas of application
containers you want to
create when you deploy
your application

Specifies the name of
the Service account
used by your application

The name of the host
node on which your
application is running

Network ports that the
services provided by
your are exposed on

The type of service that
is generated for your
application

Persistent Volume
Claims that you want to
attach to all containers
of your application

Secret volumes that you
want to attach to all
containers of your
application

ConfigMap volumes that
you want to attach to all
containers of your
application

ClusterlP

Property

CHAPTER 2. USING DEKORATE IN A SPRING BOOT APPLICATION

Data Type

Description

applicable)

Default Value (if

dekorate.openshift.g
it-repo-volumes

dekorate.openshift.a
ws-elastic-block-
store-volumes

dekorate.openshift.a
zure-disk-volumes

dekorate.openshift.a
zure-file-volumes

dekorate.openshift.
mounts

dekorate.openshift.i
mage-pull-policy

dekorate.openshift.i
mage-pull-secrets

dekorate.openshift.li
veness-probe

GitRepoVolume[]

AwsElasticBlockStoreVo
lume[]

AzureDiskVolume[]

AzureFileVolume[]

Mount[]

ImagePullPolicy

String[]

Probe

Git repository volumes

that you want to attach
to all containers of your
application

AWS Elastic Block Store
volumes that you want
to attach to all
containers of your
application

Microsoft Azure disk
volumes that you want
to attach to all
containers of your
application

Azure file volumes
volumes that you want
to attach to all
containers of your
application

Mounts that you want to
attach to all containers
of your application

Specify the image pull IfNotPresent
policy that you want to
when deploying your

application

Specify the image pull
secret policy that you
want to use when
deploying your
application

Set up a Liveness probe
for your application
container

19

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

Property Data Type Description Default Value (if

applicable)

20

dekorate.openshift.r
eadiness-probe

dekorate.openshift.r
equest-resources

dekorate.openshift.li
mit-resources

dekorate.openshift.s
idecars

dekorate.openshift.e
Xpose

dekorate.openshift.h
eadless

dekorate.openshift.a
uto-deploy-enabled

Probe

ResourceRequirements

ResourceRequirements

Container[]

boolean

boolean

boolean

Set up a Readiness
probe for your
application container

Specify the amount of
resources that your
application container
requires

Set a resource limit for
your application
container

Specify containers that
you want to deploy as
sidecars

Set whether you want to
expose a Route for your
application after you
deploy it

Set whether you want
the service that you
generate to execute
headless

Set whether your
application is
automatically deployed
when you generate a
deploy hook. Setting this
property on your
application requires that
you hard-code its value
in your
application.propertie
s file. Do not set this
property if you want to
avoid hard-coding its
value. Instead, use the -
Ddekorate.deploy=tr
ue option when
deploying your
application with Maven

false

false

false

CHAPTER 2. USING DEKORATE IN A SPRING BOOT APPLICATION

2.8. DEKORATE CONFIGURATION PROPERTIES FOR SOURCE-TO-
IMAGE
The properties listed in the table below set the values that Dekorate uses to configure Source-to-Image

(s2i) to build for your applications. You can set these properties in the application.properties file of
your application project.

Table 2.2. Dekorate configuration properties for S2i

Property Data Type Description Default Value (if
applicable)
dekorate.s2i.enabled boolean Enable s2i build hook true
generation for your
application
dekorate.s2i.registry String Specify the registry

name for the image that
you want to build

dekorate.s2i.group String Specify the group ID of
the application. This
value will be used as the
username in the docker
image that you build

dekorate.s2i.name String Specify the name of
your application. This
value is be used as the
name of the image that
you build.

dekorate.s2i.version String The version of the
application. This value is
be used as the tag of the
image that you build.

dekorate.s2i.image String Specifies the full
reference to the image
that you want to build.
When set, this property
overrides the values of
the group, name and
version properties.

dekorate.s2i.docker- String Specifies the relative Dockerfile
file path to the Dockerfile

from the root directory

of your application

project

21

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

Property Data Type Description Default Value (if

applicable)
dekorate.s2i.builder- String Specifies the name of fabric8/s2i-java:2.3
image the S2i builder image

that you want to use

dekorate.s2i.build- Env[] Set environment

env-vars variables for the s2i build
dekorate.s2i.auto- boolean When true, s2i false
push-enabled automatically pushes

the image to the
specified registry when
the image is built.

dekorate.s2i.auto- boolean When true, s2i false
build-enabled automatically registers a

build hook when the

application is compiled

dekorate.s2i.auto- boolean When true, your false

deploy-enabled application is
automatically deployed
when you generate a
deploy hook. Setting this
property on your
application requires that
you hard-code its value
in your
application.propertie
s file. Do not set this
property if you want to
avoid hard-coding its
value. Instead, use the -
Ddekorate.deploy=tr
ue option when
deploying your
application with Maven

22

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

Source-to-Image (S2I) is a build tool for generating reproducible Docker-formatted container images
from online SCM repositories with application sources. With S2I builds, you can easily deliver the latest
version of your application into production with shorter build times, decreased resource and network
usage, improved security, and a number of other advantages. OpenShift supports multiple build
strategies and input sources.

For more information, see the Source-to-Image (S2I) Build chapter of the OpenShift Container
Platform documentation.

You must provide three elements to the S2I process to assemble the final container image:
® The application sources hosted in an online SCM repository, such as GitHub.

® The S2| Builder image, which serves as the foundation for the assembled image and provides
the ecosystem in which your application is running.

® Optionally, you can also provide environment variables and parameters that are used by S2|
scripts.

The process injects your application source and dependencies into the Builder image according to
instructions specified in the S2I script, and generates a Docker-formatted container image that runs the
assembled application. For more information, check the S2I build requirements, build options and how
builds work sections of the OpenShift Container Platform documentation.

23

https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/builds/build-strategies.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

24

APPENDIX B. ADDITIONAL SPRING BOOT RESOURCES

OpenShift Architecture Overview

Spring Boot Microservices On Red Hat OpenShift Container Platform 3
Spring Cloud Kubernetes

Spring Boot Project

Spring Framework Project

OpenShift Spring Boot Lab Microservices

Creating Spring Boot Applications using Fabric8

Fabric8 Maven Plugin

https://docs.openshift.com/container-platform/latest/architecture/architecture.html
https://access.redhat.com/documentation/en-us/reference_architectures/2017/html/spring_boot_microservices_on_red_hat_openshift_container_platform_3/
https://github.com/spring-cloud/spring-cloud-kubernetes/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-framework/
https://github.com/redhat-microservices/lab_springboot-openshift/
https://spring.fabric8.io/
https://github.com/fabric8io/fabric8-maven-plugin/

APPENDIX C. APPLICATION DEVELOPMENT RESOURCES

APPENDIX C. APPLICATION DEVELOPMENT RESOURCES

For additional information about application development with OpenShift, see:
® OpenShift Interactive Learning Portal

To reduce network load and shorten the build time of your application, set up a Nexus mirror for Maven
on your Minishift or CDK:

® Setting Up a Nexus Mirror for Maven

25

https://learn.openshift.com/
https://docs.openshift.com/container-platform/3.11/dev_guide/dev_tutorials/maven_tutorial.html

Red Hat support for Spring Boot 2.3 Dekorate Guide for Spring Boot Developers

APPENDIX D. PROFICIENCY LEVELS

Each available example teaches concepts that require certain minimum knowledge. This requirement
varies by example. The minimum requirements and concepts are organized in several levels of
proficiency. In addition to the levels described here, you might need additional information specific to
each example.

Foundational

The examples rated at Foundational proficiency generally require no prior knowledge of the subject
matter; they provide general awareness and demonstration of key elements, concepts, and terminology.
There are no special requirements except those directly mentioned in the description of the example.

Advanced

When using Advanced examples, the assumption is that you are familiar with the common concepts and
terminology of the subject area of the example in addition to Kubernetes and OpenShift. You must also
be able to perform basic tasks on your own, for example, configuring services and applications, or
administering networks. If a service is needed by the example, but configuring it is not in the scope of the
example, the assumption is that you have the knowledge to properly configure it, and only the resulting
state of the service is described in the documentation.

Expert

Expert examples require the highest level of knowledge of the subject matter. You are expected to
perform many tasks based on feature-based documentation and manuals, and the documentation is
aimed at most complex scenarios.

26

APPENDIX E. GLOSSARY

APPENDIX E. GLOSSARY

E.1. PRODUCT AND PROJECT NAMES

Developer Launcher (developers.redhat.com/launch)

developers.redhat.com/launch called Developer Launcher is a stand-alone getting started
experience provided by Red Hat. It helps you get started with cloud-native development on
OpenShift. It contains functional example applications that you can download, build, and deploy on
OpenShift.

Minishift or CDK

An OpenShift cluster running on your machine using Minishift.

E.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER

Example

An application specification, for example a web service with a REST API.
Examples generally do not specify which language or platform they should run on; the description
only contains the intended functionality.

Example application

A language-specific implementation of a particular example on a particular runtime. Example
applications are listed in an examples catalog.

For example, an example application is a web service with a REST APl implemented using the
Thorntail runtime.

Examples Catalog

A Git repository that contains information about example applications.

Runtime

A platform that executes an example application. For example, Thorntail or Eclipse Vert.x.

27

https://developers.redhat.com/launch

	Table of Contents
	PREFACE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. CONFIGURING YOUR APPLICATION TO USE SPRING BOOT
	1.1. PREREQUISITES
	1.2. USING THE SPRING BOOT BOM TO MANAGE DEPENDENCY VERSIONS
	1.3. USING THE SPRING BOOT BOM TO AS A PARENT BOM OF YOUR APPLICATION
	1.4. RELATED INFORMATION

	CHAPTER 2. USING DEKORATE IN A SPRING BOOT APPLICATION
	2.1. OVERVIEW OF DEKORATE
	2.1.1. Additional resources

	2.2. CONFIGURING YOUR APPLICATION PROJECT TO USE DEKORATE
	2.3. CUSTOMIZING YOUR APPLICATION CONFIGURATION WITH DEKORATE
	2.4. USING ANNOTATIONLESS CONFIGURATION IN A SPRING BOOT APPLICATION
	2.5. AUTOMATICALLY EXECUTING OPENSHIFT SOURCE-TO-IMAGE BUILDS WITH DEKORATE
	2.6. USING DEKORATE WITH SPRING BOOT ON OPENSHIFT
	2.7. DEKORATE CONFIGURATION PROPERTIES FOR OPENSHIFT
	2.8. DEKORATE CONFIGURATION PROPERTIES FOR SOURCE-TO-IMAGE

	APPENDIX A. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
	APPENDIX B. ADDITIONAL SPRING BOOT RESOURCES
	APPENDIX C. APPLICATION DEVELOPMENT RESOURCES
	APPENDIX D. PROFICIENCY LEVELS
	Foundational
	Advanced
	Expert

	APPENDIX E. GLOSSARY
	E.1. PRODUCT AND PROJECT NAMES
	E.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER

