
Red Hat Satellite 6.11

Performance Tuning Guide

A guide to optimize performance for Red Hat Satellite

Last Updated: 2024-01-31

Red Hat Satellite 6.11 Performance Tuning Guide

A guide to optimize performance for Red Hat Satellite

Red Hat Satellite Documentation Team
satellite-doc-list@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The performance tuning guide aims to cover the set of tunings and tips that can be used as a
reference to scale up your Red Hat Satellite 6.10 environment.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO PERFORMANCE TUNING

CHAPTER 2. PERFORMANCE TUNING QUICKSTART

CHAPTER 3. TOP PERFORMANCE CONSIDERATIONS

CHAPTER 4. PERFORMANCE TUNING SYSTEM REQUIREMENTS

CHAPTER 5. CONFIGURING SATELLITE ENVIRONMENT FOR PERFORMANCE
5.1. BENCHMARKING DISK PERFORMANCE
5.2. ENABLING TUNED PROFILES

CHAPTER 6. CONFIGURING SATELLITE FOR PERFORMANCE
6.1. APPLYING CONFIGURATIONS
6.2. PUMA TUNINGS

6.2.1. Puma Threads
6.2.2. Puma Workers and Threads Auto-Tuning
6.2.3. Manually tuning Puma workers and threads count
6.2.4. Puma Workers and Threads Recommendations
6.2.5. Configuring Puma Workers
6.2.6. Configuring Puma Threads
6.2.7. Configuring Puma DB Pool
6.2.8. Manually tuning db_pool

6.3. APACHE HTTPD PERFORMANCE TUNING
6.3.1. Configuring how many processes can be launched by Apache httpd
6.3.2. Configuring the Open Files Limit for Apache HTTPD

6.4. QDROUTERD AND QPID TUNING
6.4.1. Calculating the maximum open files limit for qdrouterd
6.4.2. Calculating the maximum open files limit for qpidd
6.4.3. Configuring the Maximum Asynchronous Input-Output Requests
6.4.4. Storage Considerations
6.4.5. Configuring the QPID mgmt-pub-interval Parameter

6.5. DYNFLOW TUNING
6.6. POSTGRESQL TUNING

6.6.1. Benchmarking raw DB performance
6.7. CAPSULE CONFIGURATION TUNING

6.7.1. Capsule Performance Tests

3

4

5

6

7

8
8
9

11
11
11

12
12
13
13
14
15
15
16
16
16
16
17
17
17
18
18
18
19
19

20
21
21

Table of Contents

1

Red Hat Satellite 6.11 Performance Tuning Guide

2

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Please let us know how we could make it better.

You can submit feedback by filing a ticket in Bugzilla:

1. Navigate to the Bugzilla website.

2. In the Component field, use Documentation.

3. In the Description field, enter your suggestion for improvement. Include a link to the relevant
parts of the documentation.

4. Click Submit Bug.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

3

https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Satellite

CHAPTER 1. INTRODUCTION TO PERFORMANCE TUNING
This document provides guidelines for tuning Red Hat Satellite for performance and scalability.
Although a lot of care has been given to make the content applicable to cover a wide set of use cases, if
there is some use case which has not been covered, please feel free to reach out to Red Hat for support
for the undocumented use case.

Red Hat Satellite 6.11 Performance Tuning Guide

4

CHAPTER 2. PERFORMANCE TUNING QUICKSTART
You can tune your Satellite Server based on expected managed host counts and hardware allocation
using built in tuning profiles included in Satellite that are available using the installation routine’s tuning
flag. For more information, see Tuning Satellite Server with Predefined Profiles in Installing
Satellite Server in a Connected Network Environment.

There are four sizes provided based on estimates of the number of managed hosts your Satellite
manages. You can find the specific tuning settings for each profile in the configuration files contained in
/usr/share/foreman-installer/config/foreman.hiera/tuning/sizes.

Name Number of managed
hosts

Recommend RAM Recommend Cores

default 0 – 5000 20 GiB 4

medium 5000 – 10000 32 GiB 8

large 10000 – 20000 64 GiB 16

extra-large 20000 – 60000 128 GiB 32

extra-extra-large 60000+ 256 GiB+ 48+

Procedure

1. Select an installation size: default, medium, large, extra-large, or extra-extra-large. The default
value is default.

2. Run satellite-installer:

satellite-installer --tuning "My_Installation_Size"

3. Optional: Run a health check. For more information, see Section 6.1, “Applying configurations”.

4. Optional: Tune the Ruby app server directly using the Puma Tuning section. For more
information, see Section 6.2, “Puma Tunings”.

CHAPTER 2. PERFORMANCE TUNING QUICKSTART

5

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.11/html-single/installing_satellite_server_in_a_connected_network_environment/index#tuning-with-predefined-profiles_satellite

CHAPTER 3. TOP PERFORMANCE CONSIDERATIONS
You can improve the performance and scalability of Red Hat Satellite:

1. Configure httpd

2. Configure Puma to increase concurrency

3. Configure Candlepin

4. Configure Pulp

5. Configure Foreman’s performance and scalability

6. Configure Dynflow

7. Deploy external Capsules instead of relying on internal Capsules

8. Configure katello-agent for scalability

9. Configure Hammer to reduce API timeouts

10. Configure qpid and qdrouterd

11. Improve PostgreSQL to handle more concurrent loads

12. Configure the storage for DB workloads

13. Ensure the storage requirements for Content Views are met

14. Ensure the system requirements are met

15. Improve the environment for remote execution

Red Hat Satellite 6.11 Performance Tuning Guide

6

CHAPTER 4. PERFORMANCE TUNING SYSTEM
REQUIREMENTS

You can find the hardware and software requirements in Preparing your Environment for Installation in
the Installing Satellite guide.

CHAPTER 4. PERFORMANCE TUNING SYSTEM REQUIREMENTS

7

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.11/html-single/installing_satellite_server_in_a_connected_network_environment/index#Preparing_your_Environment_for_Installation_satellite

CHAPTER 5. CONFIGURING SATELLITE ENVIRONMENT FOR
PERFORMANCE

CPU

The more physical cores that are available to Satellite, the higher throughput can be achieved for the
tasks. Some of the Satellite components such as Puppet and PostgreSQL are CPU intensive
applications and can really benefit from the higher number of available CPU cores.

Memory

The higher amount of memory available in the system running Satellite, the better will be the
response times for the Satellite operations. Since Satellite uses PostgreSQL as the database
solutions, any additional memory coupled with the tunings will provide a boost to the response times
of the applications due to increased data retention in the memory.

Disk

With Satellite doing heavy IOPS due to repository synchronizations, package data retrieval, high
frequency database updates for the subscription records of the content hosts, it is advised that
Satellite be installed on a high speed SSD so as to avoid performance bottlenecks which may happen
due to increased disk reads or writes. Satellite requires disk IO to be at or above 60 – 80 megabytes
per second of average throughput for read operations. Anything below this value can have severe
implications for the operation of the Satellite. Satellite components such as PostgreSQL benefit
from using SSDs due to their lower latency compared to HDDs.

Network

The communication between the Satellite Server and Capsules is impacted by the network
performance. A decent network with a minimum jitter and low latency is required to enable hassle
free operations such as Satellite Server and Capsules synchronization (at least ensure it is not
causing connection resets, etc).

Server Power Management

Your server by default is likely to be configured to conserve power. While this is a good approach to
keep the max power consumption in check, it also has a side effect of lowering the performance that
Satellite may be able to achieve. For a server running Satellite, it is recommended to set the BIOS to
enable the system to be run in performance mode to boost the maximum performance levels that
Satellite can achieve.

5.1. BENCHMARKING DISK PERFORMANCE

We are working to update satellite-maintain to only warn the users when its internal quick storage
benchmark results in numbers below our recommended throughput.

Also working on an updated benchmark script you can run (which will likely be integrated into satellite-
maintain in the future) to get a more accurate real-world storage information.

NOTE

Red Hat Satellite 6.11 Performance Tuning Guide

8

NOTE

You may have to temporarily reduce the RAM in order to run the I/O benchmark.
For example, if your Satellite Server has 256 GiB RAM, tests would require 512
GiB of storage to run. As a workaround, you can add mem=20G kernel option in
grub during system boot to temporary reduce the size of the RAM. The
benchmark creates a file twice the size of the RAM in the specified directory and
executes a series of storage I/O tests against it. The size of the file ensures that
the test is not just testing the filesystem caching. If you benchmark other
filesystems, for example smaller volumes such as PostgreSQL storage, you might
have to reduce the RAM size as described above.

If you are using different storage solutions such as SAN or iSCSI, you can expect a
different performance.

Red Hat recommends you to stop all services before executing this script and you
will be prompted to do so.

This test does not use direct I/O and will utilize file caching as normal operations would.

You can find our first version of the script storage-benchmark. To execute it, just download the script to
your Satellite, make it executable, and run:

./storage-benchmark /var/lib/pulp

As noted in the README block in the script, generally you wish to see on average 100MB/sec or higher
in the tests below:

Local SSD based storage should give values of 600MB/sec or higher.

Spinning disks should give values in the range of 100 – 200MB/sec or higher.

If you see values below this, please open a support ticket for assistance.

For more information, see Impact of Disk Speed on Satellite Operations .

5.2. ENABLING TUNED PROFILES

Red Hat Enterprise Linux 7 enables the tuned daemon by default during installation. On bare-metal,
Red Hat recommends to run the throughput-performance tuned profile on Satellite Server and
Capsules. On virtual machines, Red Hat recommends to run the virtual-guest profile.

Procedure

1. Check if tuned is running:

systemctl status tuned

2. If tuned is not running, enable it:

systemctl enable --now tuned

3. Optional: View a list of available tuned profiles:

CHAPTER 5. CONFIGURING SATELLITE ENVIRONMENT FOR PERFORMANCE

9

https://github.com/RedHatSatellite/satellite-support/blob/master/storage-benchmark
https://access.redhat.com/solutions/3397771

tuned-adm list

4. Enable a tuned profile depending on your scenario:

tuned-adm profile "My_Tuned_Profile"

Transparent Huge Pages is a memory management technique used by the Linux kernel which reduces
the overhead of using Translation Lookaside Buffer (TLB) by using larger sized memory pages. Due to
databases having Sparse Memory Access patterns instead of Contiguous Memory access patterns,
database workloads often perform poorly when Transparent Huge Pages is enabled. To improve
performance of PostgreSQL, disable Transparent Huge Pages. In deployments where the PostgreSQL
database is running on a separate server, there may be a small benefit to using Transparent Huge Pages
on the Satellite Server only.

For more information to disable Transparent Huge Pages, see How to disable transparent hugepages
(THP) on Red Hat Enterprise Linux 7, 8.

Red Hat Satellite 6.11 Performance Tuning Guide

10

https://access.redhat.com/solutions/1320153

CHAPTER 6. CONFIGURING SATELLITE FOR PERFORMANCE
Satellite comes with a number of components that communicate with each other. You can tune these
components independently of each other to achieve the maximum possible performance for your
scenario.

You will see no significant performance difference between Satellite installed on Red Hat Enterprise
Linux 7 and Red Hat Enterprise Linux 8.

6.1. APPLYING CONFIGURATIONS

In following sections we suggest various tunables and how to apply them. Please always test changing
these in non production environment first, with valid backup and with proper outage window as in most
of the cases Satellite restart is required.

It is also a good practice to setup a monitoring before applying any change as it will allow you to evaluate
effect of the change. Our testing environment might be too far from what you will see although we are
trying hard to mimic real world environment.

Changing systemd service files

If you have changed some systemd service file, you need to notify systemd daemon to reload the
configuration:

systemctl daemon-reload

Restart Satellite services:

satellite-maintain service restart

Changing configuration files

If you have changed a configuration file such as /etc/foreman-installer/custom-hiera.yaml, rerun
installer to apply your changes:

satellite-installer

Running installer with additional options

If you need to rerun installer with some new options added:

satellite-installer new options

Checking basic sanity of the setup

Optional: After any change, run this quick Satellite health-check:

satellite-maintain health check

6.2. PUMA TUNINGS

Puma is a ruby application server which is used for serving the Foreman related requests to the clients.

CHAPTER 6. CONFIGURING SATELLITE FOR PERFORMANCE

11

Puma is a ruby application server which is used for serving the Foreman related requests to the clients.
For any Satellite configuration that is supposed to handle a large number of clients or frequent
operations, it is important for the Puma to be tuned appropriately.

6.2.1. Puma Threads

Number of Puma threads (per Puma worker) is configured using two values: threads_min and
threads_max.

Value of threads_min determines how many threads each worker spawns at a worker start. Then, as
concurrent requests are coming and more threads is needed, worker will be spawning more and more
workers up to threads_max limit.

We recommend setting threads_min to same value as threads_max as having fewer Puma threads lead
to higher memory usage on your Satellite Server.

For example, we have compared these two setups using concurrent registrations test:

Satellite VM with 8 CPUs, 40 GiB RAM Satellite VM with 8 CPUs, 40 GiB RAM

--foreman-foreman-service-puma-threads-
min=0

--foreman-foreman-service-puma-threads-
min=16

--foreman-foreman-service-puma-threads-
max=16

--foreman-foreman-service-puma-threads-
max=16

--foreman-foreman-service-puma-workers=2 --foreman-foreman-service-puma-workers=2

Setting the minimum Puma threads to 16 results in about 12% less memory usage as compared to
threads_min=0.

6.2.2. Puma Workers and Threads Auto-Tuning

If you do not provide any Puma workers and thread values with satellite-installer or they are not present
in your Satellite configuration, the satellite-installer configures a balanced number of workers. It follows
this formula:

min(CPU_COUNT * 1.5, RAM_IN_GB - 1.5)

This should be fine for most cases, but with some usage patterns tuning is needed to either limit the
amount of resources dedicated to Puma (so other Satellite components can use these) or for any other
reason. Each Puma worker consumes around 1 GiB of RAM.

View your current Satellite Server settings

cat /etc/systemd/system/foreman.service.d/installer.conf

View the currently active Puma workers

systemctl status foreman.service

Red Hat Satellite 6.11 Performance Tuning Guide

12

6.2.3. Manually tuning Puma workers and threads count

If you decide not to rely on Section 6.2.2, “Puma Workers and Threads Auto-Tuning”, you can apply
custom numbers for these tunables. In the example below we are using 2 workers, 5 and 5 threads:

satellite-installer \
--foreman-foreman-service-puma-workers=2 \
--foreman-foreman-service-puma-threads-min=5 \
--foreman-foreman-service-puma-threads-max=5

Apply your changes to Satellite Server. For more information, see Section 6.1, “Applying configurations”.

6.2.4. Puma Workers and Threads Recommendations

In order to recommend thread and worker configurations for the different tuning profiles, we conducted
Puma tuning testing on Satellite with different tuning profiles. The main test used in this testing was
concurrent registration with the following combinations along with different number of workers and
threads. Our recommendation is based purely on concurrent registration performance, so it might not
reflect your exact use-case. For example, if your setup is very content oriented with lots of publishes
and promotes, you might want to limit resources consumed by Puma in favor of Pulp and PostgreSQL.

Name Number of
managed hosts

RA
M

Cor
es

Recommended Puma Threads
for both min & max

Recommended
Puma Workers

default 0 – 5000 20
GiB

4 16 4 – 6

medium 5000 – 10000 32
GiB

8 16 8 – 12

large 10000 – 20000 64
GiB

16 16 12 – 18

extra-large 20000 – 60000 128
GiB

32 16 16 – 24

extra-extra-
large

60000+ 256
GiB
+

48+ 16 20 – 26

Tuning number of workers is the more important aspect here and in some case we have seen up to 52%
performance increase. Although installer uses 5 min/max threads by default, we recommend 16 threads
with all the tuning profiles in the table above. That is because we have seen up to 23% performance
increase with 16 threads (14% for 8 and 10% for 32) when compared to setup with 4 threads.

To figure out these recommendations we used concurrent registrations test case which is a very specific
use-case. It can be different on your Satellite which might have more balanced use-case (not only
registrations). Keeping default 5 min/max threads is a good choice as well.

These are some of our measurements that lead us to these recommendations:

CHAPTER 6. CONFIGURING SATELLITE FOR PERFORMANCE

13

 4 workers, 4
threads

4 workers, 8
threads

4 workers, 16
threads

4 workers, 32
threads

Improvement 0% 14% 23% 10%

Use 4 – 6 workers on a default setup (4 CPUs) – we have seen about 25% higher performance with 5
workers when compared to 2 workers, but 8% lower performance with 8 workers when compared to 2
workers – see table below:

 2 workers, 16
threads

4 workers, 16
threads

6 workers, 16
threads

8 workers, 16
threads

Improvement 0% 26% 22% -8%

Use 8 – 12 workers on a medium setup (8 CPUs) – see table below:

 2 workers, 16
threads

4 workers, 16
threads

8 workers, 16
threads

12 workers, 16
threads

16 workers, 16
threads

Improvement 0% 51% 52% 52% 42%

Use 16 – 24 workers on a 32 CPUs setup (this was tested on a 90 GiB RAM machine and memory turned
out to be a factor here as system started swapping – proper extra-large should have 128 GiB), higher
number of workers was problematic for higher registration concurrency levels we tested, so we cannot
recommend it.

 4 workers,
16 threads

8 workers,
16 threads

16 workers,
16 threads

24 workers,
16 threads

32 workers,
16 threads

48 workers,
16 threads

Improvem
ent

0% 37% 44% 52% too many
failures

too many
failures

6.2.5. Configuring Puma Workers

If you have enough CPUs, adding more workers adds more performance. For example, we have
compared Satellite setups with 8 and 16 CPUs:

Table 6.1. satellite-installer options used to test effect of workers count

Satellite VM with 8 CPUs, 40 GiB RAM Satellite VM with 16 CPUs, 40 GiB RAM

--foreman-foreman-service-puma-threads-
min=16

--foreman-foreman-service-puma-threads-
min=16

--foreman-foreman-service-puma-threads-
max=16

--foreman-foreman-service-puma-threads-
max=16

Red Hat Satellite 6.11 Performance Tuning Guide

14

--foreman-foreman-service-puma-workers=
{2|4|8|16}

--foreman-foreman-service-puma-workers=
{2|4|8|16}

Satellite VM with 8 CPUs, 40 GiB RAM Satellite VM with 16 CPUs, 40 GiB RAM

In 8 CPUs setup, changing the number of workers from 2 to 16, improved concurrent registration time by
36%. In 16 CPUs setup, the same change caused 55% improvement.

Adding more workers can also help with total registration concurrency Satellite can handle. In our
measurements, setup with 2 workers were able to handle up to 480 concurrent registrations, but adding
more workers improved the situation.

Manual tuning

You can set the number of workers to two and the number of threads to five:

satellite-installer \
--foreman-foreman-service-puma-threads-max=5
--foreman-foreman-service-puma-threads-min=5 \
--foreman-foreman-service-puma-workers=2 \

6.2.6. Configuring Puma Threads

More threads allow for lower time to register hosts in parallel. For example, we have compared these two
setups:

Satellite VM with 8 CPUs, 40 GiB RAM Satellite VM with 8 CPUs, 40 GiB RAM

--foreman-foreman-service-puma-threads-
min=16

--foreman-foreman-service-puma-threads-
min=8

--foreman-foreman-service-puma-threads-
max=16

--foreman-foreman-service-puma-threads-
max=8

--foreman-foreman-service-puma-workers=2 --foreman-foreman-service-puma-workers=4

Using more workers and the same total number of threads results in about 11% of speedup in highly
concurrent registrations scenario. Moreover, adding more workers did not consume more CPU and RAM
but gets more performance.

6.2.7. Configuring Puma DB Pool

The effective value of $db_pool is automatically set to equal
$foreman::foreman_service_puma_threads_max. It is the maximum of $foreman::db_pool and
$foreman::foreman_service_puma_threads_max but both have default value 5, so any increase to
the max threads above 5 automatically increases the database connection pool by the same amount.

If you encounter ActiveRecord::ConnectionTimeoutError: could not obtain a connection from the
pool within 5.000 seconds (waited 5.006 seconds); all pooled connections were in use error in
/var/log/foreman/production.log, you might want to increase this value.

CHAPTER 6. CONFIGURING SATELLITE FOR PERFORMANCE

15

View current db_pool setting

grep pool /etc/foreman/database.yml
 pool: 5

6.2.8. Manually tuning db_pool

If you decide not to rely on automatically configured value, you can apply custom number like this:

satellite-installer --foreman-db-pool 10

Apply your changes to Satellite Server. For more information, see Section 6.1, “Applying configurations”.

6.3. APACHE HTTPD PERFORMANCE TUNING

Apache httpd forms a core part of the Satellite and acts as a web server for handling the requests that
are being made through the Satellite web UI or exposed APIs. To increase the concurrency of the
operations, httpd forms the first point where tuning can help to boost the performance of your Satellite.

6.3.1. Configuring how many processes can be launched by Apache httpd

By default, HTTPD uses prefork request handling mechanism. With the prefork model of handling the
requests, httpd launches a new process to handle the incoming connection by the client.

When the number of requests to the apache exceed the maximum number of child processes that can
be launched to handle the incoming connections, an HTTP 503 Service Unavailable Error is raised by
httpd. Amidst httpd running out of processes to handle, the incoming connections can also result in
multiple component failure on your Satellite side due to the dependency of components like Pulp on the
availability of httpd processes.

You can adapt the configuration of HTTPD prefork to handle more concurrent requests based on your
expected peak load.

An example modification to the prefork configuration for a server which may desire to handle 150
concurrent content host registrations to Satellite may look like the configuration file example that
follows (see how to use custom-hiera.yaml file; this will modify config file
/etc/httpd/conf.modules.d/prefork.conf):

You can modify /etc/foreman-installer/custom-hiera.yaml:

apache::mod::prefork::serverlimit: 582
apache::mod::prefork::maxclients: 582
apache::mod::prefork::startservers: 10

Set the ServerLimit parameter to raise MaxClients value.
For more information, see ServerLimit Directive in the httpd documentation.

Set the MaxClients parameter to limit the the maximum number of child processes that httpd
can launch to handle the incoming requests.
For more information, see MaxRequestWorkers Directive in the httpd documentation.

6.3.2. Configuring the Open Files Limit for Apache HTTPD

Red Hat Satellite 6.11 Performance Tuning Guide

16

https://httpd.apache.org/docs/2.4/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/mod/mpm_common.html#maxrequestworkers

With the tuning in place, Apache httpd can easily open a lot of file descriptors on the server which may
exceed the default limit of most of the Linux systems in place. To avoid any kind of issues that may arise
as a result of exceeding max open files limit on the system, please create the following file and directory
and set the contents of the file as specified in the below given example:

Procedure

1. Set the maximum open files limit in /etc/systemd/system/httpd.service.d/limits.conf:

[Service]
LimitNOFILE=640000

2. Apply your changes to Satellite Server. For more information, see Section 6.1, “Applying
configurations”.

6.4. QDROUTERD AND QPID TUNING

6.4.1. Calculating the maximum open files limit for qdrouterd

In deployments using katello-agent infrastructure with a large number of content hosts, it may be
necessary to increase the maximum open files for qdrouterd.

Calculate the limit for open files in qdrouterd using this formula: (N x 3) + 100, where N is the number of
content hosts. Each content host may consume up to three file descriptors in the router and 100 file
descriptors are required to run the router itself.

The following settings permit Satellite to scale up to 10.000 content hosts.

Procedure

1. Set the maximum open files limit in /etc/foreman-installer/custom-hiera.yaml:

qpid::router::open_file_limit: "My_Value"

The default value is 150100.

2. Apply your changes to Satellite Server. For more information, see Section 6.1, “Applying
configurations”.

6.4.2. Calculating the maximum open files limit for qpidd

In deployments using katello-agent infrastructure with a large number of content hosts, it may be
necessary to increase the maximum open files for qpidd.

Calculate the limit for open files in qpidd using this formula: (N x 4) + 500, where N is the number of
content hosts. A single content host can consume up to four file descriptors and 500 file descriptors are
required for the operations of Broker (a component of qpidd).

Procedure

1. Set the maximum open files limit in /etc/foreman-installer/custom-hiera.yaml:

qpid::open_file_limit: "My_Value"

CHAPTER 6. CONFIGURING SATELLITE FOR PERFORMANCE

17

The default value is 65536.

2. Apply your changes to Satellite Server. For more information, see Section 6.1, “Applying
configurations”.

6.4.3. Configuring the Maximum Asynchronous Input-Output Requests

In deployments using katello-agent infrastructure with a large number of content hosts, it may be
necessary to increase the maximum allowable concurrent AIO requests. You can increase the maximum
number of allowed concurrent AIO requests by increasing the kernel parameter fs.aio-max-nr.

Procedure

1. Set the value of fs.aio-max-nr to the desired maximum in a file in /etc/sysctl.d:

fs.aio-max-nr=My_Maximum_Concurrent_AIO_Requests

Ensure this number is bigger than 33 multiplied by the maximum number of content hosts you
plan to register to Satellite.

2. Apply the changes:

sysctl -p

3. Optional: Reboot your Satellite Server to ensure that this change is applied.

6.4.4. Storage Considerations

Ensure you provide enough storage space for /var/lib/qpidd in advance when you are planning an
installation that will use katello-agent extensively. On Satellite Server, /var/lib/qpidd requires 2MiB disk
space per content host.

6.4.5. Configuring the QPID mgmt-pub-interval Parameter

You might see the following error in journal (use journalctl command to access it) in Red Hat Enterprise
Linux 7:

satellite.example.com qpidd[92464]: [Broker] error Channel exception: not-attached: Channel 2 is not
attached(/builddir/build/BUILD/qpid-cpp-0.30/src/qpid/amqp_0_10/SessionHandler.cpp: 39
satellite.example.com qpidd[92464]: [Protocol] error Connectionqpid.10.1.10.1:5671-10.1.10.1:53790
timed out: closing

This error message appears because qpid maintains management objects for queues, sessions, and
connections and recycles them every ten seconds by default. The same object with the same ID is
created, deleted, and created again. The old management object is not yet purged, which is why qpid
throws this error.

Procedure

1. Set the mgmt-pub-interval parameter in /etc/foreman-installer/custom-hiera.yaml:

qpid::mgmt_pub_interval: 5

2. Apply your changes to Satellite Server. For more information, see Section 6.1, “Applying

Red Hat Satellite 6.11 Performance Tuning Guide

18

2. Apply your changes to Satellite Server. For more information, see Section 6.1, “Applying
configurations”.
For more information, see BZ 1335694.

6.5. DYNFLOW TUNING

Dynflow is the workflow management system and task orchestrator which is a Satellite plugin and is used
to execute the different tasks of Satellite in an out-of-order execution manner. Under the conditions
when there are a lot of clients checking in on Satellite and running a number of tasks, Dynflow can take
some help from an added tuning specifying how many executors can it launch.

For more information about the tunings involved related to Dynflow, see
https://satellite.example.com/foreman_tasks/sidekiq.

Increase number of Sidekiq workers

Satellite contains a Dynflow service called dynflow-sidekiq that performs tasks scheduled by Dynflow.
Sidekiq workers can be grouped into various queues to ensure lots of tasks of one type will not block
execution of tasks of other type.

Red Hat recommends to increase the number of sidekiq workers to scale the Foreman tasking system
for bulk concurrent tasks, for example for multiple Content View publications and promotions, content
synchronizations, and synchronizations to Capsule Servers. There are two options available:

You can increase the number of threads used by a worker (worker’s concurrency). This has
limited impact for values larger than five due to Ruby implementation of the concurrency of
threads.

You can increase the number of workers, which is recommended.

Procedure

1. Increase the number of workers from one worker to three while remaining five
threads/concurrency of each:

satellite-installer --foreman-dynflow-worker-instances 3 # optionally, add --foreman-
dynflow-worker-concurrency 5

2. Optional: Check if there are three worker services:

systemctl -a | grep dynflow-sidekiq@worker-[0-9]
dynflow-sidekiq@worker-1.service loaded active running Foreman jobs daemon -
worker-1 on sidekiq
dynflow-sidekiq@worker-2.service loaded active running Foreman jobs daemon -
worker-2 on sidekiq
dynflow-sidekiq@worker-3.service loaded active running Foreman jobs daemon -
worker-3 on sidekiq

For more information, see How to add sidekiq workers in Satellite6? .

6.6. POSTGRESQL TUNING

PostgreSQL is the primary SQL based database that is used by Satellite for the storage of persistent
context across a wide variety of tasks that Satellite does. The database sees an extensive usage is
usually working on to provide the Satellite with the data which it needs for its smooth functioning. This

CHAPTER 6. CONFIGURING SATELLITE FOR PERFORMANCE

19

https://bugzilla.redhat.com/show_bug.cgi?id=1335694#c7
https://access.redhat.com/solutions/6293741

makes PostgreSQL a heavily used process which if tuned can have a number of benefits on the overall
operational response of Satellite.

You can apply a set of tunings to PostgreSQL to improve its response times, which will modify the
postgresql.conf file.

Procedure

1. Append /etc/foreman-installer/custom-hiera.yaml to tune PostgreSQL:

You can use this to effectively tune down your Satellite instance irrespective of a tuning profile.

2. Apply your changes to Satellite Server. For more information, see Section 6.1, “Applying
configurations”.

In the above tuning configuration, there are a certain set of keys which we have altered:

max_connections: The key defines the maximum number of connections that can be accepted
by the PostgreSQL processes that are running.

shared_buffers: The shared buffers define the memory used by all the active connections
inside PostgreSQL to store the data for the different database operations. An optimal value for
this will vary between 2 GiB to a maximum of 25% of your total system memory depending upon
the frequency of the operations being conducted on Satellite.

work_mem: The work_mem is the memory that is allocated on per process basis for
PostgreSQL and is used to store the intermediate results of the operations that are being
performed by the process. Setting this value to 8 MB should be more than enough for most of
the intensive operations on Satellite.

autovacuum_vacuum_cost_limit: The key defines the cost limit value for the vacuuming
operation inside the autovacuum process to clean up the dead tuples inside the database
relations. The cost limit defines the number of tuples that can be processed in a single run by
the process. Red Hat recommends setting the value to 2000 as it is for the medium, large, extra-
large, and extra-extra-large profiles, based on the general load that Satellite pushes on the
PostgreSQL server process.

For more information, see BZ1867311: Upgrade fails when checkpoint_segments postgres parameter
configured.

6.6.1. Benchmarking raw DB performance

To get a list of the top table sizes in disk space for both Candlepin, Foreman, and Pulp check postgres-
size-report script in satellite-support git repository.

PGbench utility (note you may need to resize PostgreSQL data directory /var/opt/rh/rh-
postgresql12/lib/pgsql/ directory to 100 GiB or what does benchmark take to run) might be used to
measure PostgreSQL performance on your system. Use yum install postgresql-contrib to install it. For
more information, see github.com/RedHatSatellite/satellite-support.

postgresql::server::config_entries:
 max_connections: 1000
 shared_buffers: 2GB
 work_mem: 8MB
 autovacuum_vacuum_cost_limit: 2000

Red Hat Satellite 6.11 Performance Tuning Guide

20

https://bugzilla.redhat.com/show_bug.cgi?id=1867311#c12
https://github.com/RedHatSatellite/satellite-support/blob/master/postgres-size-report
https://github.com/RedHatSatellite/satellite-support
https://github.com/RedHatSatellite/satellite-support

Choice of filesystem for PostgreSQL data directory might matter as well.

WARNING

Never do any testing on production system and without valid backup.

Before you start testing, see how big the database files are. Testing with a
really small database would not produce any meaningful results. For
example, if the DB is only 20 GiB and the buffer pool is 32 GiB, it won’t
show problems with large number of connections because the data will be
completely buffered.

6.7. CAPSULE CONFIGURATION TUNING

Capsules are meant to offload part of Satellite load and provide access to different networks related to
distributing content to clients but they can also be used to execute remote execution jobs. What they
cannot help with is anything which extensively uses Satellite API as host registration or package profile
update.

6.7.1. Capsule Performance Tests

We have measured multiple test cases on multiple Capsule configurations:

Capsule HW configuration CPUs RAM

minimal 4 12 GiB

large 8 24 GiB

extra large 16 46 GiB

Content delivery use case

In a download test where we concurrently downloaded a 40MB repo of 2000 packages on 100, 200, ..
1000 hosts, we saw roughly 50% improvement in average download duration every time when we
doubled Capsule Server resources. For more precise numbers, see the table below.

Concurrent
downloading hosts

Minimal (4 CPU and 12
GiB RAM) → Large (8
CPU and 24 GiB RAM)

Large (8 CPU and 24
GiB RAM) → Extra
Large (16 CPU and 46
GiB RAM)

Minimal (4 CPU and 12
GiB RAM) → Extra
Large (16 CPU and 46
GiB RAM)

Average Improvement ~ 50% (e.g. for 700
concurrent downloads in
average 9 seconds vs.
4.4 seconds per
package)

~ 40% (e.g. for 700
concurrent downloads in
average 4.4 seconds vs.
2.5 seconds per
package)

~ 70% (e.g. for 700
concurrent downloads in
average 9 seconds vs.
2.5 seconds per
package)

CHAPTER 6. CONFIGURING SATELLITE FOR PERFORMANCE

21

Concurrent
downloading hosts

Minimal (4 CPU and 12
GiB RAM) → Large (8
CPU and 24 GiB RAM)

Large (8 CPU and 24
GiB RAM) → Extra
Large (16 CPU and 46
GiB RAM)

Minimal (4 CPU and 12
GiB RAM) → Extra
Large (16 CPU and 46
GiB RAM)

When we compared download performance from Satellite Server vs. from Capsule Server, we have seen
only about 5% speedup, but that is expected as Capsule Server’s main benefit is in getting content
closer to geographically distributed clients (or clients in different networks) and in handling part of the
load Satellite Server would have to handle itself. In some smaller hardware configurations (8 CPUs and
24 GiB), Satellite Server was not able to handle downloads from more than 500 concurrent clients, while
a Capsule Server with the same hardware configuration was able to service more than 1000 and possibly
even more.

Frequent registrations use case

For concurrent registrations a bottleneck is CPU speed, but all configs were able to handle even high
concurrency without swapping. Hardware resources used for Capsule have only minimal impact on
registration performance. For example, Capsule Server with 16 CPUs and 46 GiB RAM have at most a
9% registration speed improvement when compared to a Capsule Server with 4 CPUs and 12 GiB RAM.

Remote execution use case

We have tested executing Remote Execution jobs via both SSH and Ansible backend on 500, 2000 and
4000 hosts. All configurations were able to handle all of the tests without errors, except for the smallest
configuration (4 CPUs and 12 GiB memory) which failed to finish on all 4000 hosts.

Content sync use case

In a sync test where we synced Red Hat Enterprise Linux 6, 7, 8 BaseOS and 8 AppStream we have not
seen significant differences among Capsule configurations. This will be different for syncing a higher
number of content views in parallel.

Red Hat Satellite 6.11 Performance Tuning Guide

22

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO PERFORMANCE TUNING
	CHAPTER 2. PERFORMANCE TUNING QUICKSTART
	CHAPTER 3. TOP PERFORMANCE CONSIDERATIONS
	CHAPTER 4. PERFORMANCE TUNING SYSTEM REQUIREMENTS
	CHAPTER 5. CONFIGURING SATELLITE ENVIRONMENT FOR PERFORMANCE
	5.1. BENCHMARKING DISK PERFORMANCE
	5.2. ENABLING TUNED PROFILES

	CHAPTER 6. CONFIGURING SATELLITE FOR PERFORMANCE
	6.1. APPLYING CONFIGURATIONS
	6.2. PUMA TUNINGS
	6.2.1. Puma Threads
	6.2.2. Puma Workers and Threads Auto-Tuning
	6.2.3. Manually tuning Puma workers and threads count
	6.2.4. Puma Workers and Threads Recommendations
	6.2.5. Configuring Puma Workers
	6.2.6. Configuring Puma Threads
	6.2.7. Configuring Puma DB Pool
	6.2.8. Manually tuning db_pool

	6.3. APACHE HTTPD PERFORMANCE TUNING
	6.3.1. Configuring how many processes can be launched by Apache httpd
	6.3.2. Configuring the Open Files Limit for Apache HTTPD

	6.4. QDROUTERD AND QPID TUNING
	6.4.1. Calculating the maximum open files limit for qdrouterd
	6.4.2. Calculating the maximum open files limit for qpidd
	6.4.3. Configuring the Maximum Asynchronous Input-Output Requests
	6.4.4. Storage Considerations
	6.4.5. Configuring the QPID mgmt-pub-interval Parameter

	6.5. DYNFLOW TUNING
	6.6. POSTGRESQL TUNING
	6.6.1. Benchmarking raw DB performance

	6.7. CAPSULE CONFIGURATION TUNING
	6.7.1. Capsule Performance Tests

