
Red Hat Process Automation Manager
7.5

Decision engine in Red Hat Process
Automation Manager

Last Updated: 2020-05-22

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat
Process Automation Manager

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes basic concepts and functions of the decision engine in Red Hat Process
Automation Manager to consider as you create your business rule system and decision services in
Red Hat Process Automation Manager.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. DECISION ENGINE IN RED HAT PROCESS AUTOMATION MANAGER

CHAPTER 2. KIE SESSIONS
2.1. STATELESS KIE SESSIONS

2.1.1. Global variables in stateless KIE sessions
2.2. STATEFUL KIE SESSIONS
2.3. KIE SESSION POOLS

CHAPTER 3. INFERENCE AND TRUTH MAINTENANCE IN THE DECISION ENGINE
3.1. FACT EQUALITY MODES IN THE DECISION ENGINE

CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE
4.1. SALIENCE FOR RULES
4.2. AGENDA GROUPS FOR RULES
4.3. ACTIVATION GROUPS FOR RULES
4.4. RULE EXECUTION MODES AND THREAD SAFETY IN THE DECISION ENGINE
4.5. FACT PROPAGATION MODES IN THE DECISION ENGINE
4.6. AGENDA EVALUATION FILTERS
4.7. RULE UNITS IN DRL RULE SETS

4.7.1. Data sources for rule units
4.7.2. Rule unit execution control
4.7.3. Rule unit identity conflicts

CHAPTER 5. PHREAK RULE ALGORITHM IN THE DECISION ENGINE
5.1. RULE EVALUATION IN PHREAK

5.1.1. Rule evaluation with forward and backward chaining
5.2. RULE BASE CONFIGURATION
5.3. SEQUENTIAL MODE IN PHREAK

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)
6.1. EVENTS IN COMPLEX EVENT PROCESSING
6.2. DECLARING FACTS AS EVENTS
6.3. METADATA TAGS FOR EVENTS
6.4. EVENT PROCESSING MODES IN THE DECISION ENGINE

6.4.1. Negative patterns in decision engine stream mode
6.5. PROPERTY-CHANGE SETTINGS AND LISTENERS FOR FACT TYPES
6.6. TEMPORAL OPERATORS FOR EVENTS
6.7. SESSION CLOCK IMPLEMENTATIONS IN THE DECISION ENGINE
6.8. EVENT STREAMS AND ENTRY POINTS

6.8.1. Declaring entry points for rule data
6.9. SLIDING WINDOWS OF TIME OR LENGTH

6.9.1. Declaring sliding windows for rule data
6.10. MEMORY MANAGEMENT FOR EVENTS

CHAPTER 7. DECISION ENGINE QUERIES AND LIVE QUERIES

CHAPTER 8. DECISION ENGINE EVENT LISTENERS AND DEBUG LOGGING
8.1. CONFIGURING A LOGGING UTILITY IN THE DECISION ENGINE

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE
9.1. IMPORTING AND EXECUTING RED HAT PROCESS AUTOMATION MANAGER EXAMPLE DECISIONS IN AN
IDE

4

5

6
6
9

10
13

15
19

21
21
22
23
24
26
27
27
31
32
36

40
40
44
45
47

50
51
51
52
54
56
57
60
68
70
70
72
72
73

75

77
78

80

80

Table of Contents

1

. .

. .

9.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING)
9.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION)

State example using salience
State example using agenda groups
Dynamic facts in the State example

9.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION)
9.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)

Spreadsheet decision table setup
Base pricing rules
Promotional discount rules

9.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI
INTEGRATION)

Rule execution behavior in the Pet Store example
Pet Store rule file imports, global variables, and Java functions
Pet Store rules with agenda groups
Pet Store example execution

9.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE)
Politician and Hope classes
Rule definitions for politician honesty
Example execution and audit trail

9.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI
INTEGRATION)

Sudoku example execution and interaction
Sudoku example classes
Sudoku validation rules (validate.drl)
Sudoku solving rules (sudoku.drl)

9.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)
Conway example execution and interaction
Conway example rules with ruleflow groups

9.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION)
Recursive query and related rules
Transitive closure rule
Reactive query rule
Queries with unbound arguments in rules

CHAPTER 10. ADDITIONAL RESOURCES

APPENDIX A. VERSIONING INFORMATION

83
86
89
92
93
94

100
101

104
105

105
106
108
109
113
117
118
119

120

123
123
129
129
130
137
138
139
143
147
148
149
150

152

153

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

2

Table of Contents

3

PREFACE
As a business rules developer, your understanding of the decision engine in Red Hat Process
Automation Manager can help you design more effective business assets and a more scalable decision
management architecture. The decision engine is the Red Hat Process Automation Manager
component that stores, processes, and evaluates data to execute business rules and to reach the
decisions that you define. This document describes basic concepts and functions of the decision engine
to consider as you create your business rule system and decision services in Red Hat Process
Automation Manager.

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

4

CHAPTER 1. DECISION ENGINE IN RED HAT PROCESS
AUTOMATION MANAGER

The decision engine is the rules engine in Red Hat Process Automation Manager. The decision engine
stores, processes, and evaluates data to execute the business rules or decision models that you define.
The basic function of the decision engine is to match incoming data, or facts, to the conditions of rules
and determine whether and how to execute the rules.

The decision engine operates using the following basic components:

Rules: Business rules or DMN decisions that you define. All rules must contain at a minimum the
conditions that trigger the rule and the actions that the rule dictates.

Facts: Data that enters or changes in the decision engine that the decision engine matches to
rule conditions to execute applicable rules.

Production memory: Location where rules are stored in the decision engine.

Working memory: Location where facts are stored in the decision engine.

Agenda: Location where activated rules are registered and sorted (if applicable) in preparation
for execution.

When a business user or an automated system adds or updates rule-related information in Red Hat
Process Automation Manager, that information is inserted into the working memory of the decision
engine in the form of one or more facts. The decision engine matches those facts to the conditions of
the rules that are stored in the production memory to determine eligible rule executions. (This process of
matching facts to rules is often referred to as pattern matching .) When rule conditions are met, the
decision engine activates and registers rules in the agenda, where the decision engine then sorts
prioritized or conflicting rules in preparation for execution.

The following diagram illustrates these basic components of the decision engine:

Figure 1.1. Overview of basic decision engine components

For more details and examples of rule and fact behavior in the decision engine, see Chapter 3, Inference
and truth maintenance in the decision engine.

These core concepts can help you to better understand other more advanced components, processes,
and sub-processes of the decision engine, and as a result, to design more effective business assets in
Red Hat Process Automation Manager.

CHAPTER 1. DECISION ENGINE IN RED HAT PROCESS AUTOMATION MANAGER

5

CHAPTER 2. KIE SESSIONS
In Red Hat Process Automation Manager, a KIE session stores and executes runtime data. The KIE
session is created from a KIE base or directly from a KIE container if you have defined the KIE session in
the KIE module descriptor file (kmodule.xml) for your project.

Example KIE session configuration in a kmodule.xml file

A KIE base is a repository that you define in the KIE module descriptor file (kmodule.xml) for your
project and contains all rules, processes, and other business assets in Red Hat Process Automation
Manager, but does not contain any runtime data.

Example KIE base configuration in a kmodule.xml file

A KIE session can be stateless or stateful. In a stateless KIE session, data from a previous invocation of
the KIE session (the previous session state) is discarded between session invocations. In a stateful KIE
session, that data is retained. The type of KIE session you use depends on your project requirements
and how you want data from different asset invocations to be persisted.

2.1. STATELESS KIE SESSIONS

A stateless KIE session is a session that does not use inference to make iterative changes to facts over
time. In a stateless KIE session, data from a previous invocation of the KIE session (the previous session
state) is discarded between session invocations, whereas in a stateful KIE session, that data is retained.
A stateless KIE session behaves similarly to a function in that the results that it produces are determined
by the contents of the KIE base and by the data that is passed into the KIE session for execution at a
specific point in time. The KIE session has no memory of any data that was passed into the KIE session
previously.

Stateless KIE sessions are commonly used for the following use cases:

Validation, such as validating that a person is eligible for a mortgage

Calculation, such as computing a mortgage premium

Routing and filtering, such as sorting incoming emails into folders or sending incoming emails

<kmodule>
 ...
 <kbase>
 ...
 <ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
 ...
 </kbase>
 ...
</kmodule>

<kmodule>
 ...
 <kbase name="KBase2" default="false" eventProcessingMode="stream" equalsBehavior="equality"
declarativeAgenda="enabled" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

6

Routing and filtering, such as sorting incoming emails into folders or sending incoming emails
to a destination

For example, consider the following driver’s license data model and sample DRL rule:

Data model for driver’s license application

Sample DRL rule for driver’s license application

package com.company.license

rule "Is of valid age"
when
 $a : Applicant(age < 18)
then
 $a.setValid(false);
end

The Is of valid age rule disqualifies any applicant younger than 18 years old. When the Applicant object
is inserted into the decision engine, the decision engine evaluates the constraints for each rule and
searches for a match. The "objectType" constraint is always implied, after which any number of explicit
field constraints are evaluated. The variable $a is a binding variable that references the matched object
in the rule consequence.

NOTE

The dollar sign ($) is optional and helps to differentiate between variable names and field
names.

In this example, the sample rule and all other files in the ~/resources folder of the Red Hat Process
Automation Manager project are built with the following code:

Create the KIE container

This code compiles all the rule files found on the class path and adds the result of this compilation, a
KieModule object, in the KieContainer.

Finally, the StatelessKieSession object is instantiated from the KieContainer and is executed against
specified data:

Instantiate the stateless KIE session and enter data

public class Applicant {
 private String name;
 private int age;
 private boolean valid;
 // Getter and setter methods
}

KieServices kieServices = KieServices.Factory.get();

KieContainer kContainer = kieServices.getKieClasspathContainer();

CHAPTER 2. KIE SESSIONS

7

In a stateless KIE session configuration, the execute() call acts as a combination method that
instantiates the KieSession object, adds all the user data and executes user commands, calls
fireAllRules(), and then calls dispose(). Therefore, with a stateless KIE session, you do not need to call
fireAllRules() or call dispose() after session invocation as you do with a stateful KIE session.

In this case, the specified applicant is under the age of 18, so the application is declined.

For a more complex use case, see the following example. This example uses a stateless KIE session and
executes rules against an iterable list of objects, such as a collection.

Expanded data model for driver’s license application

Expanded DRL rule set for driver’s license application

package com.company.license

rule "Is of valid age"
when
 Applicant(age < 18)
 $a : Application()
then
 $a.setValid(false);
end

rule "Application was made this year"
when
 $a : Application(dateApplied > "01-jan-2009")
then
 $a.setValid(false);
end

Expanded Java source with iterable execution in a stateless KIE session

StatelessKieSession kSession = kContainer.newStatelessKieSession();

Applicant applicant = new Applicant("Mr John Smith", 16);

assertTrue(applicant.isValid());

ksession.execute(applicant);

assertFalse(applicant.isValid());

public class Applicant {
 private String name;
 private int age;
 // Getter and setter methods
}

public class Application {
 private Date dateApplied;
 private boolean valid;
 // Getter and setter methods
}

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

8

1

2

3

Method for executing rules against an iterable collection of objects produced by the
Arrays.asList() method. Every collection element is inserted before any matched rules are
executed. The execute(Object object) and execute(Iterable objects) methods are wrappers
around the execute(Command command) method that comes from the BatchExecutor
interface.

Execution of the iterable collection of objects using the CommandFactory interface.

BatchExecutor and CommandFactory configurations for working with many different commands
or result output identifiers. The CommandFactory interface supports other commands that you
can use in the BatchExecutor, such as StartProcess, Query, and SetGlobal.

2.1.1. Global variables in stateless KIE sessions

The StatelessKieSession object supports global variables (globals) that you can configure to be
resolved as session-scoped globals, delegate globals, or execution-scoped globals.

Session-scoped globals: For session-scoped globals, you can use the method getGlobals() to
return a Globals instance that provides access to the KIE session globals. These globals are
used for all execution calls. Use caution with mutable globals because execution calls can be
executing simultaneously in different threads.

Session-scoped global

Delegate globals: For delegate globals, you can assign a value to a global (with

StatelessKieSession ksession = kbase.newStatelessKnowledgeSession();
Applicant applicant = new Applicant("Mr John Smith", 16);
Application application = new Application();

assertTrue(application.isValid());
ksession.execute(Arrays.asList(new Object[] { application, applicant })); 1
assertFalse(application.isValid());

ksession.execute
 (CommandFactory.newInsertIterable(new Object[] { application, applicant })); 2

List<Command> cmds = new ArrayList<Command>(); 3
cmds.add(CommandFactory.newInsert(new Person("Mr John Smith"), "mrSmith"));
cmds.add(CommandFactory.newInsert(new Person("Mr John Doe"), "mrDoe"));

BatchExecutionResults results = ksession.execute(CommandFactory.newBatchExecution(cmds));
assertEquals(new Person("Mr John Smith"), results.getValue("mrSmith"));

import org.kie.api.runtime.StatelessKieSession;

StatelessKieSession ksession = kbase.newStatelessKieSession();

// Set a global `myGlobal` that can be used in the rules.
ksession.setGlobal("myGlobal", "I am a global");

// Execute while resolving the `myGlobal` identifier.
ksession.execute(collection);

CHAPTER 2. KIE SESSIONS

9

setGlobal(String, Object)) so that the value is stored in an internal collection that maps
identifiers to values. Identifiers in this internal collection have priority over any supplied
delegate. If an identifier cannot be found in this internal collection, the delegate global (if any) is
used.

Execution-scoped globals: For execution-scoped globals, you can use the Command object
to set a global that is passed to the CommandExecutor interface for execution-specific global
resolution.

The CommandExecutor interface also enables you to export data using out identifiers for globals,
inserted facts, and query results:

Out identifiers for globals, inserted facts, and query results

2.2. STATEFUL KIE SESSIONS

A stateful KIE session is a session that uses inference to make iterative changes to facts over time. In a
stateful KIE session, data from a previous invocation of the KIE session (the previous session state) is
retained between session invocations, whereas in a stateless KIE session, that data is discarded.

WARNING

Ensure that you call the dispose() method after running a stateful KIE session so
that no memory leaks occur between session invocations.

Stateful KIE sessions are commonly used for the following use cases:

Monitoring, such as monitoring a stock market and automating the buying process

Diagnostics, such as running fault-finding processes or medical diagnostic processes

Logistics, such as parcel tracking and delivery provisioning

import org.kie.api.runtime.ExecutionResults;

// Set up a list of commands.
List cmds = new ArrayList();
cmds.add(CommandFactory.newSetGlobal("list1", new ArrayList(), true));
cmds.add(CommandFactory.newInsert(new Person("jon", 102), "person"));
cmds.add(CommandFactory.newQuery("Get People" "getPeople"));

// Execute the list.
ExecutionResults results = ksession.execute(CommandFactory.newBatchExecution(cmds));

// Retrieve the `ArrayList`.
results.getValue("list1");
// Retrieve the inserted `Person` fact.
results.getValue("person");
// Retrieve the query as a `QueryResults` instance.
results.getValue("Get People");

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

10

Ensuring compliance, such as verifying the legality of market trades

For example, consider the following fire alarm data model and sample DRL rules:

Data model for sprinklers and fire alarm

Sample DRL rule set for activating sprinklers and alarm

rule "When there is a fire turn on the sprinkler"
when
 Fire($room : room)
 $sprinkler : Sprinkler(room == $room, on == false)
then
 modify($sprinkler) { setOn(true) };
 System.out.println("Turn on the sprinkler for room "+$room.getName());
end

rule "Raise the alarm when we have one or more fires"
when
 exists Fire()
then
 insert(new Alarm());
 System.out.println("Raise the alarm");
end

rule "Cancel the alarm when all the fires have gone"
when
 not Fire()
 $alarm : Alarm()
then
 delete($alarm);
 System.out.println("Cancel the alarm");
end

rule "Status output when things are ok"
when

public class Room {
 private String name;
 // Getter and setter methods
}

public class Sprinkler {
 private Room room;
 private boolean on;
 // Getter and setter methods
}

public class Fire {
 private Room room;
 // Getter and setter methods
}

public class Alarm { }

CHAPTER 2. KIE SESSIONS

11

 not Alarm()
 not Sprinkler(on == true)
then
 System.out.println("Everything is ok");
end

For the When there is a fire turn on the sprinkler rule, when a fire occurs, the instances of the Fire
class are created for that room and inserted into the KIE session. The rule adds a constraint for the
specific room matched in the Fire instance so that only the sprinkler for that room is checked. When this
rule is executed, the sprinkler activates. The other sample rules determine when the alarm is activated or
deactivated accordingly.

Whereas a stateless KIE session relies on standard Java syntax to modify a field, a stateful KIE session
relies on the modify statement in rules to notify the decision engine of changes. The decision engine
then reasons over the changes and assesses impact on subsequent rule executions. This process is part
of the decision engine ability to use inference and truth maintenance and is essential in stateful KIE
sessions.

In this example, the sample rules and all other files in the ~/resources folder of the Red Hat Process
Automation Manager project are built with the following code:

Create the KIE container

This code compiles all the rule files found on the class path and adds the result of this compilation, a
KieModule object, in the KieContainer.

Finally, the KieSession object is instantiated from the KieContainer and is executed against specified
data:

Instantiate the stateful KIE session and enter data

Console output

> Everything is ok

With the data added, the decision engine completes all pattern matching but no rules have been
executed, so the configured verification message appears. As new data triggers rule conditions, the

KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();

KieSession ksession = kContainer.newKieSession();

String[] names = new String[]{"kitchen", "bedroom", "office", "livingroom"};
Map<String,Room> name2room = new HashMap<String,Room>();
for(String name: names){
 Room room = new Room(name);
 name2room.put(name, room);
 ksession.insert(room);
 Sprinkler sprinkler = new Sprinkler(room);
 ksession.insert(sprinkler);
}

ksession.fireAllRules();

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

12

decision engine executes rules to activate the alarm and later to cancel the alarm that has been
activated:

Enter new data to trigger rules

Console output

> Raise the alarm
> Turn on the sprinkler for room kitchen
> Turn on the sprinkler for room office

Console output

> Cancel the alarm
> Turn off the sprinkler for room office
> Turn off the sprinkler for room kitchen
> Everything is ok

In this case, a reference is kept for the returned FactHandle object. A fact handle is an internal engine
reference to the inserted instance and enables instances to be retracted or modified later.

As this example illustrates, the data and results from previous stateful KIE sessions (the activated alarm)
affect the invocation of subsequent sessions (alarm cancellation).

2.3. KIE SESSION POOLS

In use cases with large amounts of KIE runtime data and high system activity, KIE sessions might be
created and disposed very frequently. A high turnover of KIE sessions is not always time consuming, but
when the turnover is repeated millions of times, the process can become a bottleneck and require
substantial clean-up effort.

For these high-volume cases, you can use KIE session pools instead of many individual KIE sessions. To
use a KIE session pool, you obtain a KIE session pool from a KIE container, define the initial number of KIE
sessions in the pool, and create the KIE sessions from that pool as usual:

Example KIE session pool

Fire kitchenFire = new Fire(name2room.get("kitchen"));
Fire officeFire = new Fire(name2room.get("office"));

FactHandle kitchenFireHandle = ksession.insert(kitchenFire);
FactHandle officeFireHandle = ksession.insert(officeFire);

ksession.fireAllRules();

ksession.delete(kitchenFireHandle);
ksession.delete(officeFireHandle);

ksession.fireAllRules();

// Obtain a KIE session pool from the KIE container
KieContainerSessionsPool pool = kContainer.newKieSessionsPool(10);

CHAPTER 2. KIE SESSIONS

13

In this example, the KIE session pool starts with 10 KIE sessions in it, but you can specify the number of
KIE sessions that you need. This integer value is the number of KIE sessions that are only initially created
in the pool. If required by the running application, the number of KIE sessions in the pool can dynamically
grow beyond that value.

After you define a KIE session pool, the next time you use the KIE session as usual and call dispose() on
it, the KIE session is reset and pushed back into the pool instead of being destroyed.

KIE session pools typically apply to stateful KIE sessions, but KIE session pools can also affect stateless
KIE sessions that you reuse with multiple execute() calls. When you create a stateless KIE session directly
from a KIE container, the KIE session continues to internally create a new KIE session for each execute()
invocation. Conversely, when you create a stateless KIE session from a KIE session pool, the KIE session
internally uses only the specific KIE sessions provided by the pool.

When you finish using a KIE session pool, you can call the shutdown() method on it to avoid memory
leaks. Alternatively, you can call dispose() on the KIE container to shut down all the pools created from
the KIE container.

// Create KIE sessions from the KIE session pool
KieSession kSession = pool.newKieSession();

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

14

CHAPTER 3. INFERENCE AND TRUTH MAINTENANCE IN THE
DECISION ENGINE

The basic function of the decision engine is to match data to business rules and determine whether and
how to execute rules. To ensure that relevant data is applied to the appropriate rules, the decision
engine makes inferences based on existing knowledge and performs the actions based on the inferred
information.

For example, the following DRL rule determines the age requirements for adults, such as in a bus pass
policy:

Rule to define age requirement

rule "Infer Adult"
when
 $p : Person(age >= 18)
then
 insert(new IsAdult($p))
end

Based on this rule, the decision engine infers whether a person is an adult or a child and performs the
specified action (the then consequence). Every person who is 18 years old or older has an instance of
IsAdult inserted for them in the working memory. This inferred relation of age and bus pass can then be
invoked in any rule, such as in the following rule segment:

$p : Person()
IsAdult(person == $p)

In many cases, new data in a rule system is the result of other rule executions, and this new data can
affect the execution of other rules. If the decision engine asserts data as a result of executing a rule, the
decision engine uses truth maintenance to justify the assertion and enforce truthfulness when applying
inferred information to other rules. Truth maintenance also helps to identify inconsistencies and to
handle contradictions. For example, if two rules are executed and result in a contradictory action, the
decision engine chooses the action based on assumptions from previously calculated conclusions.

The decision engine inserts facts using either stated or logical insertions:

Stated insertions: Defined with insert(). After stated insertions, facts are generally retracted
explicitly. (The term insertion, when used generically, refers to stated insertion .)

Logical insertions: Defined with insertLogical(). After logical insertions, the facts that were
inserted are automatically retracted when the conditions in the rules that inserted the facts are
no longer true. The facts are retracted when no condition supports the logical insertion. A fact
that is logically inserted is considered to be justified by the decision engine.

For example, the following sample DRL rules use stated fact insertion to determine the age
requirements for issuing a child bus pass or an adult bus pass:

Rules to issue bus pass, stated insertion

rule "Issue Child Bus Pass"
when
 $p : Person(age < 18)
then

CHAPTER 3. INFERENCE AND TRUTH MAINTENANCE IN THE DECISION ENGINE

15

 insert(new ChildBusPass($p));
end

rule "Issue Adult Bus Pass"
when
 $p : Person(age >= 18)
then
 insert(new AdultBusPass($p));
end

These rules are not easily maintained in the decision engine as bus riders increase in age and move from
child to adult bus pass. As an alternative, these rules can be separated into rules for bus rider age and
rules for bus pass type using logical fact insertion. The logical insertion of the fact makes the fact
dependent on the truth of the when clause.

The following DRL rules use logical insertion to determine the age requirements for children and adults:

Children and adult age requirements, logical insertion

rule "Infer Child"
when
 $p : Person(age < 18)
then
 insertLogical(new IsChild($p))
end

rule "Infer Adult"
when
 $p : Person(age >= 18)
then
 insertLogical(new IsAdult($p))
end

IMPORTANT

For logical insertions, your fact objects must override the equals and hashCode
methods from the java.lang.Object object according to the Java standard. Two objects
are equal if their equals methods return true for each other and if their hashCode
methods return the same values. For more information, see the Java API documentation
for your Java version.

When the condition in the rule is false, the fact is automatically retracted. This behavior is helpful in this
example because the two rules are mutually exclusive. In this example, if the person is younger than 18
years old, the rule logically inserts an IsChild fact. After the person is 18 years old or older, the IsChild
fact is automatically retracted and the IsAdult fact is inserted.

The following DRL rules then determine whether to issue a child bus pass or an adult bus pass and
logically insert the ChildBusPass and AdultBusPass facts. This rule configuration is possible because
the truth maintenance system in the decision engine supports chaining of logical insertions for a
cascading set of retracts.

Rules to issue bus pass, logical insertion

rule "Issue Child Bus Pass"

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

16

when
 $p : Person()
 IsChild(person == $p)
then
 insertLogical(new ChildBusPass($p));
end

rule "Issue Adult Bus Pass"
when
 $p : Person()
 IsAdult(person =$p)
then
 insertLogical(new AdultBusPass($p));
end

When a person turns 18 years old, the IsChild fact and the person’s ChildBusPass fact is retracted. To
these set of conditions, you can relate another rule that states that a person must return the child pass
after turning 18 years old. When the decision engine automatically retracts the ChildBusPass object,
the following rule is executed to send a request to the person:

Rule to notify bus pass holder of new pass

rule "Return ChildBusPass Request"
when
 $p : Person()
 not(ChildBusPass(person == $p))
then
 requestChildBusPass($p);
end

The following flowcharts illustrate the life cycle of stated and logical insertions:

Figure 3.1. Stated insertion

CHAPTER 3. INFERENCE AND TRUTH MAINTENANCE IN THE DECISION ENGINE

17

Figure 3.1. Stated insertion

Figure 3.2. Logical insertion

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

18

Figure 3.2. Logical insertion

When the decision engine logically inserts an object during a rule execution, the decision engine justifies
the object by executing the rule. For each logical insertion, only one equal object can exist, and each
subsequent equal logical insertion increases the justification counter for that logical insertion. A
justification is removed when the conditions of the rule become untrue. When no more justifications
exist, the logical object is automatically retracted.

3.1. FACT EQUALITY MODES IN THE DECISION ENGINE

The decision engine supports the following fact equality modes that determine how the decision engine
stores and compares inserted facts:

identity: (Default) The decision engine uses an IdentityHashMap to store all inserted facts. For
every new fact insertion, the decision engine returns a new FactHandle object. If a fact is
inserted again, the decision engine returns the original FactHandle object, ignoring repeated
insertions for the same fact. In this mode, two facts are the same for the decision engine only if
they are the very same object with the same identity.

equality: The decision engine uses a HashMap to store all inserted facts. The decision engine
returns a new FactHandle object only if the inserted fact is not equal to an existing fact,
according to the equals() method of the inserted fact. In this mode, two facts are the same for
the decision engine if they are composed the same way, regardless of identity. Use this mode
when you want objects to be assessed based on feature equality instead of explicit identity.

As an illustration of fact equality modes, consider the following example facts:

Example facts

Person p1 = new Person("John", 45);
Person p2 = new Person("John", 45);

CHAPTER 3. INFERENCE AND TRUTH MAINTENANCE IN THE DECISION ENGINE

19

In identity mode, facts p1 and p2 are different instances of a Person class and are treated as separate
objects because they have separate identities. In equality mode, facts p1 and p2 are treated as the
same object because they are composed the same way. This difference in behavior affects how you can
interact with fact handles.

For example, assume that you insert facts p1 and p2 into the decision engine and later you want to
retrieve the fact handle for p1. In identity mode, you must specify p1 to return the fact handle for that
exact object, whereas in equality mode, you can specify p1, p2, or new Person("John", 45) to return
the fact handle.

Example code to insert a fact and return the fact handle in identity mode

ksession.insert(p1);

ksession.getFactHandle(p1);

Example code to insert a fact and return the fact handle in equality mode

ksession.insert(p1);

ksession.getFactHandle(p1);

// Alternate option:
ksession.getFactHandle(new Person("John", 45));

To set the fact equality mode, use one of the following options:

Set the system property drools.equalityBehavior to identity (default) or equality.

Set the equality mode while creating the KIE base programatically:

Set the equality mode in the KIE module descriptor file (kmodule.xml) for a specific Red Hat
Process Automation Manager project:

KieServices ks = KieServices.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(EqualityBehaviorOption.EQUALITY);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

<kmodule>
 ...
 <kbase name="KBase2" default="false" equalsBehavior="equality"
packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

20

CHAPTER 4. EXECUTION CONTROL IN THE DECISION
ENGINE

When new rule data enters the working memory of the decision engine, rules may become fully matched
and eligible for execution. A single working memory action can result in multiple eligible rule executions.
When a rule is fully matched, the decision engine creates an activation instance, referencing the rule and
the matched facts, and adds the activation onto the decision engine agenda. The agenda controls the
execution order of these rule activations using a conflict resolution strategy.

After the first call of fireAllRules() in the Java application, the decision engine cycles repeatedly
through two phases:

Agenda evaluation. In this phase, the decision engine selects all rules that can be executed. If
no executable rules exist, the execution cycle ends. If an executable rule is found, the decision
engine registers the activation in the agenda and then moves on to the working memory actions
phase to perform rule consequence actions.

Working memory actions. In this phase, the decision engine performs the rule consequence
actions (the then portion of each rule) for all activated rules previously registered in the agenda.
After all the consequence actions are complete or the main Java application process calls
fireAllRules() again, the decision engine returns to the agenda evaluation phase to reassess
rules.

Figure 4.1. Two-phase execution process in the decision engine

When multiple rules exist on the agenda, the execution of one rule may cause another rule to be
removed from the agenda. To avoid this, you can define how and when rules are executed in the
decision engine. Some common methods for defining rule execution order are by using rule salience,
agenda groups, activation groups, or rule units for DRL rule sets.

4.1. SALIENCE FOR RULES

Each rule has an integer salience attribute that determines the order of execution. Rules with a higher
salience value are given higher priority when ordered in the activation queue. The default salience value
for rules is zero, but the salience can be negative or positive.

For example, the following sample DRL rules are listed in the decision engine stack in the order shown:

rule "RuleA"
salience 95
when

CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE

21

 $fact : MyFact(field1 == true)
then
 System.out.println("Rule2 : " + $fact);
 update($fact);
end

rule "RuleB"
salience 100
when
 $fact : MyFact(field1 == false)
then
 System.out.println("Rule1 : " + $fact);
 $fact.setField1(true);
 update($fact);
end

The RuleB rule is listed second, but it has a higher salience value than the RuleA rule and is therefore
executed first.

4.2. AGENDA GROUPS FOR RULES

An agenda group is a set of rules bound together by the same agenda-group rule attribute. Agenda
groups partition rules on the decision engine agenda. At any one time, only one group has a focus that
gives that group of rules priority for execution before rules in other agenda groups. You determine the
focus with a setFocus() call for the agenda group. You can also define rules with an auto-focus
attribute so that the next time the rule is activated, the focus is automatically given to the entire agenda
group to which the rule is assigned.

Each time the setFocus() call is made in a Java application, the decision engine adds the specified
agenda group to the top of the rule stack. The default agenda group "MAIN" contains all rules that do
not belong to a specified agenda group and is executed first in the stack unless another group has the
focus.

For example, the following sample DRL rules belong to specified agenda groups and are listed in the
decision engine stack in the order shown:

Sample DRL rules for banking application

rule "Increase balance for credits"
 agenda-group "calculation"
when
 ap : AccountPeriod()
 acc : Account($accountNo : accountNo)
 CashFlow(type == CREDIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $amount : amount)
then
 acc.balance += $amount;
end

rule "Print balance for AccountPeriod"
 agenda-group "report"
when
 ap : AccountPeriod()

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

22

 acc : Account()
then
 System.out.println(acc.accountNo +
 " : " + acc.balance);
end

For this example, the rules in the "report" agenda group must always be executed first and the rules in
the "calculation" agenda group must always be executed second. Any remaining rules in other agenda
groups can then be executed. Therefore, the "report" and "calculation" groups must receive the focus
to be executed in that order, before other rules can be executed:

Set the focus for the order of agenda group execution

You can also use the clear() method to cancel all the activations generated by the rules belonging to a
given agenda group before each has had a chance to be executed:

Cancel all other rule activations

4.3. ACTIVATION GROUPS FOR RULES

An activation group is a set of rules bound together by the same activation-group rule attribute. In this
group, only one rule can be executed. After conditions are met for a rule in that group to be executed, all
other pending rule executions from that activation group are removed from the agenda.

For example, the following sample DRL rules belong to the specified activation group and are listed in
the decision engine stack in the order shown:

Sample DRL rules for banking

rule "Print balance for AccountPeriod1"
 activation-group "report"
when
 ap : AccountPeriod1()
 acc : Account()
then
 System.out.println(acc.accountNo +
 " : " + acc.balance);
end

rule "Print balance for AccountPeriod2"
 activation-group "report"
when
 ap : AccountPeriod2()
 acc : Account()
then

Agenda agenda = ksession.getAgenda();
agenda.getAgendaGroup("report").setFocus();
agenda.getAgendaGroup("calculation").setFocus();
ksession.fireAllRules();

ksession.getAgenda().getAgendaGroup("Group A").clear();

CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE

23

 System.out.println(acc.accountNo +
 " : " + acc.balance);
end

For this example, if the first rule in the "report" activation group is executed, the second rule in the
group and all other executable rules on the agenda are removed from the agenda.

4.4. RULE EXECUTION MODES AND THREAD SAFETY IN THE
DECISION ENGINE

The decision engine supports the following rule execution modes that determine how and when the
decision engine executes rules:

Passive mode: (Default) The decision engine evaluates rules when a user or an application
explicitly calls fireAllRules(). Passive mode in the decision engine is best for applications that
require direct control over rule evaluation and execution, or for complex event processing (CEP)
applications that use the pseudo clock implementation in the decision engine.

Example CEP application code with the decision engine in passive mode

Active mode: If a user or application calls fireUntilHalt(), the decision engine starts in active
mode and evaluates rules continually until the user or application explicitly calls halt(). Active
mode in the decision engine is best for applications that delegate control of rule evaluation and
execution to the decision engine, or for complex event processing (CEP) applications that use
the real-time clock implementation in the decision engine. Active mode is also optimal for CEP
applications that use active queries.

Example CEP application code with the decision engine in active mode

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();
config.setOption(ClockTypeOption.get("pseudo"));
KieSession session = kbase.newKieSession(conf, null);
SessionPseudoClock clock = session.getSessionClock();

session.insert(tick1);
session.fireAllRules();

clock.advanceTime(1, TimeUnit.SECONDS);
session.insert(tick2);
session.fireAllRules();

clock.advanceTime(1, TimeUnit.SECONDS);
session.insert(tick3);
session.fireAllRules();

session.dispose();

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();
config.setOption(ClockTypeOption.get("realtime"));
KieSession session = kbase.newKieSession(conf, null);

new Thread(new Runnable() {
 @Override
 public void run() {

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

24

This example calls fireUntilHalt() from a dedicated execution thread to prevent the current
thread from being blocked indefinitely while the decision engine continues evaluating rules. The
dedicated thread also enables you to call halt() at a later stage in the application code.

Although you should avoid using both fireAllRules() and fireUntilHalt() calls, especially from different
threads, the decision engine can handle such situations safely using thread-safety logic and an internal
state machine. If a fireAllRules() call is in progress and you call fireUntilHalt(), the decision engine
continues to run in passive mode until the fireAllRules() operation is complete and then starts in active
mode in response to the fireUntilHalt() call. However, if the decision engine is running in active mode
following a fireUntilHalt() call and you call fireAllRules(), the fireAllRules() call is ignored and the
decision engine continues to run in active mode until you call halt().

For added thread safety in active mode, the decision engine supports a submit() method that you can
use to group and perform operations on a KIE session in a thread-safe, atomic action:

Example application code with submit() method to perform atomic operations in active
mode

 session.fireUntilHalt();
 }
}).start();

session.insert(tick1);

... Thread.sleep(1000L); ...

session.insert(tick2);

... Thread.sleep(1000L); ...

session.insert(tick3);

session.halt();
session.dispose();

KieSession session = ...;

new Thread(new Runnable() {
 @Override
 public void run() {
 session.fireUntilHalt();
 }
}).start();

final FactHandle fh = session.insert(fact_a);

... Thread.sleep(1000L); ...

session.submit(new KieSession.AtomicAction() {
 @Override
 public void execute(KieSession kieSession) {
 fact_a.setField("value");
 kieSession.update(fh, fact_a);
 kieSession.insert(fact_1);
 kieSession.insert(fact_2);
 kieSession.insert(fact_3);

CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE

25

Thread safety and atomic operations are also helpful from a client-side perspective. For example, you
might need to insert more than one fact at a given time, but require the decision engine to consider the
insertions as an atomic operation and to wait until all the insertions are complete before evaluating the
rules again.

4.5. FACT PROPAGATION MODES IN THE DECISION ENGINE

The decision engine supports the following fact propagation modes that determine how the decision
engine progresses inserted facts through the engine network in preparation for rule execution:

Lazy: (Default) Facts are propagated in batch collections at rule execution, not in real time as
the facts are individually inserted by a user or application. As a result, the order in which the facts
are ultimately propagated through the decision engine may be different from the order in which
the facts were individually inserted.

Immediate: Facts are propagated immediately in the order that they are inserted by a user or
application.

Eager: Facts are propagated lazily (in batch collections), but before rule execution. The decision
engine uses this propagation behavior for rules that have the no-loop or lock-on-active
attribute.

By default, the Phreak rule algorithm in the decision engine uses lazy fact propagation for improved rule
evaluation overall. However, in few cases, this lazy propagation behavior can alter the expected result of
certain rule executions that may require immediate or eager propagation.

For example, the following rule uses a specified query with a ? prefix to invoke the query in pull-only or
passive fashion:

Example rule with a passive query

query Q (Integer i)
 String(this == i.toString())
end

rule "Rule"
 when
 $i : Integer()
 ?Q($i;)
 then
 System.out.println($i);
end

For this example, the rule should be executed only when a String that satisfies the query is inserted
before the Integer, such as in the following example commands:

 }
});

... Thread.sleep(1000L); ...

session.insert(fact_z);

session.halt();
session.dispose();

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

26

Example commands that should trigger the rule execution

However, due to the default lazy propagation behavior in Phreak, the decision engine does not detect
the insertion sequence of the two facts in this case, so this rule is executed regardless of String and
Integer insertion order. For this example, immediate propagation is required for the expected rule
evaluation.

To alter the decision engine propagation mode to achieve the expected rule evaluation in this case, you
can add the @Propagation(<type>) tag to your rule and set <type> to LAZY, IMMEDIATE, or EAGER.

In the same example rule, the immediate propagation annotation enables the rule to be evaluated only
when a String that satisfies the query is inserted before the Integer, as expected:

Example rule with a passive query and specified propagation mode

query Q (Integer i)
 String(this == i.toString())
end

rule "Rule" @Propagation(IMMEDIATE)
 when
 $i : Integer()
 ?Q($i;)
 then
 System.out.println($i);
end

4.6. AGENDA EVALUATION FILTERS

The decision engine supports an AgendaFilter object in the filter interface that you can use to allow or
deny the evaluation of specified rules during agenda evaluation. You can specify an agenda filter as part
of a fireAllRules() call.

The following example code permits only rules ending with the string "Test" to be evaluated and
executed. All other rules are filtered out of the decision engine agenda.

Example agenda filter definition

4.7. RULE UNITS IN DRL RULE SETS

Rule units are groups of data sources, global variables, and DRL rules that function together for a
specific purpose. You can use rule units to partition a rule set into smaller units, bind different data
sources to those units, and then execute the individual unit. Rule units are an enhanced alternative to
rule-grouping DRL attributes such as rule agenda groups or activation groups for execution control.

Rule units are helpful when you want to coordinate rule execution so that the complete execution of one

KieSession ksession = ...
ksession.insert("1");
ksession.insert(1);
ksession.fireAllRules();

ksession.fireAllRules(new RuleNameEndsWithAgendaFilter("Test"));

CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE

27

rule unit triggers the start of another rule unit and so on. For example, assume that you have a set of
rules for data enrichment, another set of rules that processes that data, and another set of rules that
extract the output from the processed data. If you add these rule sets into three distinct rule units, you
can coordinate those rule units so that complete execution of the first unit triggers the start of the
second unit and the complete execution of the second unit triggers the start of third unit.

To define a rule unit, implement the RuleUnit interface as shown in the following example:

Example rule unit class

In this example, persons is a source of facts of type Person. A rule unit data source is a source of the
data processed by a given rule unit and represents the entry point that the decision engine uses to
evaluate the rule unit. The adultAge global variable is accessible from all the rules belonging to this rule
unit. The last two methods are part of the rule unit life cycle and are invoked by the decision engine.

The decision engine supports the following optional life-cycle methods for rule units:

Table 4.1. Rule unit life-cycle methods

package org.mypackage.myunit;

public static class AdultUnit implements RuleUnit {
 private int adultAge;
 private DataSource<Person> persons;

 public AdultUnit() { }

 public AdultUnit(DataSource<Person> persons, int age) {
 this.persons = persons;
 this.age = age;
 }

 // A data source of `Persons` in this rule unit:
 public DataSource<Person> getPersons() {
 return persons;
 }

 // A global variable in this rule unit:
 public int getAdultAge() {
 return adultAge;
 }

 // Life-cycle methods:
 @Override
 public void onStart() {
 System.out.println("AdultUnit started.");
 }

 @Override
 public void onEnd() {
 System.out.println("AdultUnit ended.");
 }
}

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

28

Method Invoked when

onStart() Rule unit execution starts

onEnd() Rule unit execution ends

onSuspend() Rule unit execution is suspended (used only with
runUntilHalt())

onResume() Rule unit execution is resumed (used only with
runUntilHalt())

onYield(RuleUnit other) The consequence of a rule in the rule unit triggers the
execution of a different rule unit

You can add one or more rules to a rule unit. By default, all the rules in a DRL file are automatically
associated with a rule unit that follows the naming convention of the DRL file name. If the DRL file is in
the same package and has the same name as a class that implements the RuleUnit interface, then all of
the rules in that DRL file implicitly belong to that rule unit. For example, all the rules in the AdultUnit.drl
file in the org.mypackage.myunit package are automatically part of the rule unit
org.mypackage.myunit.AdultUnit.

To override this naming convention and explicitly declare the rule unit that the rules in a DRL file belong
to, use the unit keyword in the DRL file. The unit declaration must immediately follow the package
declaration and contain the name of the class in that package that the rules in the DRL file are part of.

Example rule unit declaration in a DRL file

package org.mypackage.myunit
unit AdultUnit

rule Adult
 when
 $p : Person(age >= adultAge) from persons
 then
 System.out.println($p.getName() + " is adult and greater than " + adultAge);
end

WARNING

Do not mix rules with and without a rule unit in the same KIE base. Mixing two rule
paradigms in a KIE base results in a compilation error.

You can also rewrite the same pattern in a more convenient way using OOPath notation, as shown in the
following example:

Example rule unit declaration in a DRL file that uses OOPath notation

CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE

29

package org.mypackage.myunit
unit AdultUnit

rule Adult
 when
 $p : /persons[age >= adultAge]
 then
 System.out.println($p.getName() + " is adult and greater than " + adultAge);
end

NOTE

OOPath is an object-oriented syntax extension of XPath that is designed for browsing
graphs of objects in DRL rule condition constraints. OOPath uses the compact notation
from XPath for navigating through related elements while handling collections and
filtering constraints, and is specifically useful for graphs of objects.

In this example, any matching facts in the rule conditions are retrieved from the persons data source
defined in the DataSource definition in the rule unit class. The rule condition and action use the
adultAge variable in the same way that a global variable is defined at the DRL file level.

To execute one or more rule units defined in a KIE base, create a new RuleUnitExecutor class bound to
the KIE base, create the rule unit from the relevant data source, and run the rule unit executer:

Example rule unit execution

Rules are executed by the RuleUnitExecutor class. The RuleUnitExecutor class creates KIE sessions
and adds the required DataSource objects to those sessions, and then executes the rules based on the
RuleUnit that is passed as a parameter to the run() method.

The example execution code produces the following output when the relevant Person facts are inserted
in the persons data source:

Example rule unit execution output

org.mypackage.myunit.AdultUnit started.
Jane is adult and greater than 18
John is adult and greater than 18
org.mypackage.myunit.AdultUnit ended.

Instead of explicitly creating the rule unit instance, you can register the rule unit variables in the executor
and pass to the executor the rule unit class that you want to run, and then the executor creates an
instance of the rule unit. You can then set the DataSource definition and other variables as needed
before running the rule unit.

Alternate rule unit execution option with registered variables

// Create a `RuleUnitExecutor` class and bind it to the KIE base:
KieBase kbase = kieContainer.getKieBase();
RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);

// Create the `AdultUnit` rule unit using the `persons` data source and run the executor:
RuleUnit adultUnit = new AdultUnit(persons, 18);
executor.run(adultUnit);

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

30

The name that you pass to the RuleUnitExecutor.bindVariable() method is used at run time to bind
the variable to the field of the rule unit class with the same name. In the previous example, the
RuleUnitExecutor inserts into the new rule unit the data source bound to the "persons" name and
inserts the value 18 bound to the String "adultAge" into the fields with the corresponding names inside
the AdultUnit class.

To override this default variable-binding behavior, use the @UnitVar annotation to explicitly define a
logical binding name for each field of the rule unit class. For example, the field bindings in the following
class are redefined with alternative names:

Example code to modify variable binding names with @UnitVar

You can then bind the variables to the executor using those alternative names and run the rule unit:

Example rule unit execution with modified variable names

You can execute a rule unit in passive mode by using the run() method (equivalent to invoking
fireAllRules() on a KIE session) or in active mode using the runUntilHalt() method (equivalent to
invoking fireUntilHalt() on a KIE session). By default, the decision engine runs in passive mode and
evaluates rule units only when a user or an application explicitly calls run() (or fireAllRules() for standard
rules). If a user or application calls runUntilHalt() for rule units (or fireUntilHalt() for standard rules), the
decision engine starts in active mode and evaluates rule units continually until the user or application
explicitly calls halt().

If you use the runUntilHalt() method, invoke the method on a separate execution thread to avoid
blocking the main thread:

Example rule unit execution with runUntilHalt() on a separate thread

4.7.1. Data sources for rule units

A rule unit data source is a source of the data processed by a given rule unit and represents the entry
point that the decision engine uses to evaluate the rule unit. A rule unit can have zero or more data

executor.bindVariable("persons", persons);
 .bindVariable("adultAge", 18);
executor.run(AdultUnit.class);

package org.mypackage.myunit;

public static class AdultUnit implements RuleUnit {
 @UnitVar("minAge")
 private int adultAge = 18;

 @UnitVar("data")
 private DataSource<Person> persons;
}

executor.bindVariable("data", persons);
 .bindVariable("minAge", 18);
executor.run(AdultUnit.class);

new Thread(() -> executor.runUntilHalt(adultUnit)).start();

CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE

31

sources and each DataSource definition declared inside a rule unit can correspond to a different entry
point into the rule unit executor. Multiple rule units can share a single data source, but each rule unit
must use different entry points through which the same objects are inserted.

You can create a DataSource definition with a fixed set of data in a rule unit class, as shown in the
following example:

Example data source definition

Because a data source represents the entry point of the rule unit, you can insert, update, or delete facts
in a rule unit:

Example code to insert, modify, and delete a fact in a rule unit

4.7.2. Rule unit execution control

Rule units are helpful when you want to coordinate rule execution so that the execution of one rule unit
triggers the start of another rule unit and so on.

To facilitate rule unit execution control, the decision engine supports the following rule unit methods
that you can use in DRL rule actions to coordinate the execution of rule units:

drools.run(): Triggers the execution of a specified rule unit class. This method imperatively
interrupts the execution of the rule unit and activates the other specified rule unit.

drools.guard(): Prevents (guards) a specified rule unit class from being executed until the
associated rule condition is met. This method declaratively schedules the execution of the other
specified rule unit. When the decision engine produces at least one match for the condition in
the guarding rule, the guarded rule unit is considered active. A rule unit can contain multiple
guarding rules.

As an example of the drools.run() method, consider the following DRL rules that each belong to a
specified rule unit. The NotAdult rule uses the drools.run(AdultUnit.class) method to trigger the
execution of the AdultUnit rule unit:

Example DRL rules with controlled execution using drools.run()

package org.mypackage.myunit
unit AdultUnit

DataSource<Person> persons = DataSource.create(new Person("John", 42),
 new Person("Jane", 44),
 new Person("Sally", 4));

// Insert a fact:
Person john = new Person("John", 42);
FactHandle johnFh = persons.insert(john);

// Modify the fact and optionally specify modified properties (for property reactivity):
john.setAge(43);
persons.update(johnFh, john, "age");

// Delete the fact:
persons.delete(johnFh);

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

32

rule Adult
 when
 Person(age >= 18, $name : name) from persons
 then
 System.out.println($name + " is adult");
end

package org.mypackage.myunit
unit NotAdultUnit

rule NotAdult
 when
 $p : Person(age < 18, $name : name) from persons
 then
 System.out.println($name + " is NOT adult");
 modify($p) { setAge(18); }
 drools.run(AdultUnit.class);
end

The example also uses a RuleUnitExecutor class created from the KIE base that was built from these
rules and a DataSource definition of persons bound to it:

Example rule executor and data source definitions

In this case, the example creates the DataSource definition directly from the RuleUnitExecutor class
and binds it to the "persons" variable in a single statement.

The example execution code produces the following output when the relevant Person facts are inserted
in the persons data source:

Example rule unit execution output

Sally is NOT adult
John is adult
Jane is adult
Sally is adult

The NotAdult rule detects a match when evaluating the person "Sally", who is under 18 years old. The
rule then modifies her age to 18 and uses the drools.run(AdultUnit.class) method to trigger the
execution of the AdultUnit rule unit. The AdultUnit rule unit contains a rule that can now be executed
for all of the 3 persons in the DataSource definition.

As an example of the drools.guard() method, consider the following BoxOffice class and
BoxOfficeUnit rule unit class:

Example BoxOffice class

RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
DataSource<Person> persons = executor.newDataSource("persons",
 new Person("John", 42),
 new Person("Jane", 44),
 new Person("Sally", 4));

public class BoxOffice {

CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE

33

Example BoxOfficeUnit rule unit class

The example also uses the following TicketIssuerUnit rule unit class to keep selling box office tickets for
the event as long as at least one box office is open. This rule unit uses DataSource definitions of
persons and tickets:

Example TicketIssuerUnit rule unit class

 private boolean open;

 public BoxOffice(boolean open) {
 this.open = open;
 }

 public boolean isOpen() {
 return open;
 }

 public void setOpen(boolean open) {
 this.open = open;
 }
}

public class BoxOfficeUnit implements RuleUnit {
 private DataSource<BoxOffice> boxOffices;

 public DataSource<BoxOffice> getBoxOffices() {
 return boxOffices;
 }
}

public class TicketIssuerUnit implements RuleUnit {
 private DataSource<Person> persons;
 private DataSource<AdultTicket> tickets;

 private List<String> results;

 public TicketIssuerUnit() { }

 public TicketIssuerUnit(DataSource<Person> persons, DataSource<AdultTicket> tickets) {
 this.persons = persons;
 this.tickets = tickets;
 }

 public DataSource<Person> getPersons() {
 return persons;
 }

 public DataSource<AdultTicket> getTickets() {
 return tickets;
 }

 public List<String> getResults() {

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

34

The BoxOfficeUnit rule unit contains a BoxOfficeIsOpen DRL rule that uses the drools.guard(
TicketIssuerUnit.class) method to guard the execution of the TicketIssuerUnit rule unit that
distributes the event tickets, as shown in the following DRL rule examples:

Example DRL rules with controlled execution using drools.guard()

package org.mypackage.myunit;
unit TicketIssuerUnit;

rule IssueAdultTicket when
 $p: /persons[age >= 18]
then
 tickets.insert(new AdultTicket($p));
end
rule RegisterAdultTicket when
 $t: /tickets
then
 results.add($t.getPerson().getName());
end

package org.mypackage.myunit;
unit BoxOfficeUnit;

rule BoxOfficeIsOpen
 when
 $box: /boxOffices[open]
 then
 drools.guard(TicketIssuerUnit.class);
end

In this example, so long as at least one box office is open, the guarded TicketIssuerUnit rule unit is
active and distributes event tickets. When no more box offices are in open state, the guarded
TicketIssuerUnit rule unit is prevented from being executed.

The following example class illustrates a more complete box office scenario:

Example class for the box office scenario

 return results;
 }
}

DataSource<Person> persons = executor.newDataSource("persons");
DataSource<BoxOffice> boxOffices = executor.newDataSource("boxOffices");
DataSource<AdultTicket> tickets = executor.newDataSource("tickets");

List<String> list = new ArrayList<>();
executor.bindVariable("results", list);

// Two box offices are open:
BoxOffice office1 = new BoxOffice(true);
FactHandle officeFH1 = boxOffices.insert(office1);
BoxOffice office2 = new BoxOffice(true);
FactHandle officeFH2 = boxOffices.insert(office2);

CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE

35

4.7.3. Rule unit identity conflicts

In rule unit execution scenarios with guarded rule units, a rule can guard multiple rule units and at the
same time a rule unit can be guarded and then activated by multiple rules. For these two-way guarding
scenarios, rule units must have a clearly defined identity to avoid identity conflicts.

By default, the identity of a rule unit is the rule unit class name and is treated as a singleton class by the
RuleUnitExecutor. This identification behavior is encoded in the getUnitIdentity() default method of
the RuleUnit interface:

Default identity method in the RuleUnit interface

In some cases, you may need to override this default identification behavior to avoid conflicting
identities between rule units.

persons.insert(new Person("John", 40));

// Execute `BoxOfficeIsOpen` rule, run `TicketIssuerUnit` rule unit, and execute `RegisterAdultTicket`
rule:
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("John", list.get(0));
list.clear();

persons.insert(new Person("Matteo", 30));

// Execute `RegisterAdultTicket` rule:
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("Matteo", list.get(0));
list.clear();

// One box office is closed, the other is open:
office1.setOpen(false);
boxOffices.update(officeFH1, office1);
persons.insert(new Person("Mark", 35));
executor.run(BoxOfficeUnit.class);

assertEquals(1, list.size());
assertEquals("Mark", list.get(0));
list.clear();

// All box offices are closed:
office2.setOpen(false);
boxOffices.update(officeFH2, office2); // Guarding rule is no longer true.
persons.insert(new Person("Edson", 35));
executor.run(BoxOfficeUnit.class); // No execution

assertEquals(0, list.size());

default Identity getUnitIdentity() {
 return new Identity(getClass());
}

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

36

For example, the following RuleUnit class contains a DataSource definition that accepts any kind of
object:

Example Unit0 rule unit class

This rule unit contains the following DRL rule that guards another rule unit based on two conditions (in
OOPath notation):

Example GuardAgeCheck DRL rule in the rule unit

package org.mypackage.myunit
unit Unit0

rule GuardAgeCheck
 when
 $i: /input#Integer
 $s: /input#String
 then
 drools.guard(new AgeCheckUnit($i));
 drools.guard(new AgeCheckUnit($s.length()));
end

The guarded AgeCheckUnit rule unit verifies the age of a set of persons. The AgeCheckUnit contains
a DataSource definition of the persons to check, a minAge variable that it verifies against, and a List
for gathering the results:

Example AgeCheckUnit rule unit

public class Unit0 implements RuleUnit {
 private DataSource<Object> input;

 public DataSource<Object> getInput() {
 return input;
 }
}

public class AgeCheckUnit implements RuleUnit {
 private final int minAge;
 private DataSource<Person> persons;
 private List<String> results;

 public AgeCheckUnit(int minAge) {
 this.minAge = minAge;
 }

 public DataSource<Person> getPersons() {
 return persons;
 }

 public int getMinAge() {
 return minAge;
 }

 public List<String> getResults() {

CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE

37

The AgeCheckUnit rule unit contains the following DRL rule that performs the verification of the
persons in the data source:

Example CheckAge DRL rule in the rule unit

package org.mypackage.myunit
unit AgeCheckUnit

rule CheckAge
 when
 $p : /persons{ age > minAge }
 then
 results.add($p.getName() + ">" + minAge);
end

This example creates a RuleUnitExecutor class, binds the class to the KIE base that contains these two
rule units, and creates the two DataSource definitions for the same rule units:

Example executor and data source definitions

You can now insert some objects into the input data source and execute the Unit0 rule unit:

Example rule unit execution with inserted objects

Example results list from the execution

In this example, the rule unit named AgeCheckUnit is considered a singleton class and then executed
only once, with the minAge variable set to 3. Both the String "test" and the Integer 4 inserted into the
input data source can also trigger a second execution with the minAge variable set to 4. However, the
second execution does not occur because another rule unit with the same identity has already been
evaluated.

To resolve this rule unit identity conflict, override the getUnitIdentity() method in the AgeCheckUnit

 return results;
 }
}

RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);

DataSource<Object> input = executor.newDataSource("input");
DataSource<Person> persons = executor.newDataSource("persons",
 new Person("John", 42),
 new Person("Sally", 4));

List<String> results = new ArrayList<>();
executor.bindVariable("results", results);

ds.insert("test");
ds.insert(3);
ds.insert(4);
executor.run(Unit0.class);

[Sally>3, John>3]

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

38

To resolve this rule unit identity conflict, override the getUnitIdentity() method in the AgeCheckUnit
class to include also the minAge variable in the rule unit identity:

Modified AgeCheckUnit rule unit to override the getUnitIdentity() method

With this override in place, the previous example rule unit execution produces the following output:

Example results list from executing the modified rule unit

The rule units with minAge set to 3 and 4 are now considered two different rule units and both are
executed.

public class AgeCheckUnit implements RuleUnit {

 ...

 @Override
 public Identity getUnitIdentity() {
 return new Identity(getClass(), minAge);
 }
}

[John>4, Sally>3, John>3]

CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE

39

CHAPTER 5. PHREAK RULE ALGORITHM IN THE DECISION
ENGINE

The decision engine in Red Hat Process Automation Manager uses the Phreak algorithm for rule
evaluation. Phreak evolved from the Rete algorithm, including the enhanced Rete algorithm ReteOO
that was introduced in previous versions of Red Hat Process Automation Manager for object-oriented
systems. Overall, Phreak is more scalable than Rete and ReteOO, and is faster in large systems.

While Rete is considered eager (immediate rule evaluation) and data oriented, Phreak is considered lazy
(delayed rule evaluation) and goal oriented. The Rete algorithm performs many actions during the
insert, update, and delete actions in order to find partial matches for all rules. This eagerness of the Rete
algorithm during rule matching requires a lot of time before eventually executing rules, especially in
large systems. With Phreak, this partial matching of rules is delayed deliberately to handle large amounts
of data more efficiently.

The Phreak algorithm adds the following set of enhancements to previous Rete algorithms:

Three layers of contextual memory: Node, segment, and rule memory types

Rule-based, segment-based, and node-based linking

Lazy (delayed) rule evaluation

Stack-based evaluations with pause and resume

Isolated rule evaluation

Set-oriented propagations

5.1. RULE EVALUATION IN PHREAK

When the decision engine starts, all rules are considered to be unlinked from pattern-matching data that
can trigger the rules. At this stage, the Phreak algorithm in the decision engine does not evaluate the
rules. The insert, update, and delete actions are queued, and Phreak uses a heuristic, based on the rule
most likely to result in execution, to calculate and select the next rule for evaluation. When all the
required input values are populated for a rule, the rule is considered to be linked to the relevant pattern-
matching data. Phreak then creates a goal that represents this rule and places the goal into a priority
queue that is ordered by rule salience. Only the rule for which the goal was created is evaluated, and
other potential rule evaluations are delayed. While individual rules are evaluated, node sharing is still
achieved through the process of segmentation.

Unlike the tuple-oriented Rete, the Phreak propagation is collection oriented. For the rule that is being
evaluated, the decision engine accesses the first node and processes all queued insert, update, and
delete actions. The results are added to a set, and the set is propagated to the child node. In the child
node, all queued insert, update, and delete actions are processed, adding the results to the same set.
The set is then propagated to the next child node and the same process repeats until it reaches the
terminal node. This cycle creates a batch process effect that can provide performance advantages for
certain rule constructs.

The linking and unlinking of rules happens through a layered bit-mask system, based on network
segmentation. When the rule network is built, segments are created for rule network nodes that are
shared by the same set of rules. A rule is composed of a path of segments. In case a rule does not share
any node with any other rule, it becomes a single segment.

A bit-mask offset is assigned to each node in the segment. Another bit mask is assigned to each

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

40

A bit-mask offset is assigned to each node in the segment. Another bit mask is assigned to each
segment in the path of the rule according to these requirements:

If at least one input for a node exists, the node bit is set to the on state.

If each node in a segment has the bit set to the on state, the segment bit is also set to the on
state.

If any node bit is set to the off state, the segment is also set to the off state.

If each segment in the path of the rule is set to the on state, the rule is considered linked, and a
goal is created to schedule the rule for evaluation.

The same bit-mask technique is used to track modified nodes, segments, and rules. This tracking ability
enables an already linked rule to be unscheduled from evaluation if it has been modified since the
evaluation goal for it was created. As a result, no rules can ever evaluate partial matches.

This process of rule evaluation is possible in Phreak because, as opposed to a single unit of memory in
Rete, Phreak has three layers of contextual memory with node, segment, and rule memory types. This
layering enables much more contextual understanding during the evaluation of a rule.

Figure 5.1. Phreak three-layered memory system

The following examples illustrate how rules are organized and evaluated in this three-layered memory
system in Phreak.

Example 1: A single rule (R1) with three patterns: A, B and C. The rule forms a single segment, with bits 1,
2, and 4 for the nodes. The single segment has a bit offset of 1.

Figure 5.2. Example 1: Single rule

CHAPTER 5. PHREAK RULE ALGORITHM IN THE DECISION ENGINE

41

Figure 5.2. Example 1: Single rule

Example 2: Rule R2 is added and shares pattern A.

Figure 5.3. Example 2: Two rules with pattern sharing

Pattern A is placed in its own segment, resulting in two segments for each rule. Those two segments
form a path for their respective rules. The first segment is shared by both paths. When pattern A is
linked, the segment becomes linked. The segment then iterates over each path that the segment is
shared by, setting the bit 1 to on. If patterns B and C are later turned on, the second segment for path R1
is linked, and this causes bit 2 to be turned on for R1. With bit 1 and bit 2 turned on for R1, the rule is now
linked and a goal is created to schedule the rule for later evaluation and execution.

When a rule is evaluated, the segments enable the results of the matching to be shared. Each segment
has a staging memory to queue all inserts, updates, and deletes for that segment. When R1 is evaluated,
the rule processes pattern A, and this results in a set of tuples. The algorithm detects a segmentation
split, creates peered tuples for each insert, update, and delete in the set, and adds them to the R2
staging memory. Those tuples are then merged with any existing staged tuples and are executed when
R2 is eventually evaluated.

Example 3: Rules R3 and R4 are added and share patterns A and B.

Figure 5.4. Example 3: Three rules with pattern sharing

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

42

Figure 5.4. Example 3: Three rules with pattern sharing

Rules R3 and R4 have three segments and R1 has two segments. Patterns A and B are shared by R1, R3,
and R4, while pattern D is shared by R3 and R4.

Example 4: A single rule (R1) with a subnetwork and no pattern sharing.

Figure 5.5. Example 4: Single rule with a subnetwork and no pattern sharing

Subnetworks are formed when a Not, Exists, or Accumulate node contains more than one element. In
this example, the element B not(C) forms the subnetwork. The element not(C) is a single element
that does not require a subnetwork and is therefore merged inside of the Not node. The subnetwork
uses a dedicated segment. Rule R1 still has a path of two segments and the subnetwork forms another
inner path. When the subnetwork is linked, it is also linked in the outer segment.

Example 5: Rule R1 with a subnetwork that is shared by rule R2.

CHAPTER 5. PHREAK RULE ALGORITHM IN THE DECISION ENGINE

43

Figure 5.6. Example 5: Two rules, one with a subnetwork and pattern sharing

The subnetwork nodes in a rule can be shared by another rule that does not have a subnetwork. This
sharing causes the subnetwork segment to be split into two segments.

Constrained Not nodes and Accumulate nodes can never unlink a segment, and are always considered
to have their bits turned on.

The Phreak evaluation algorithm is stack based instead of method-recursion based. Rule evaluation can
be paused and resumed at any time when a StackEntry is used to represent the node currently being
evaluated.

When a rule evaluation reaches a subnetwork, a StackEntry object is created for the outer path
segment and the subnetwork segment. The subnetwork segment is evaluated first, and when the set
reaches the end of the subnetwork path, the segment is merged into a staging list for the outer node
that the segment feeds into. The previous StackEntry object is then resumed and can now process the
results of the subnetwork. This process has the added benefit, especially for Accumulate nodes, that all
work is completed in a batch, before propagating to the child node.

The same stack system is used for efficient backward chaining. When a rule evaluation reaches a query
node, the evaluation is paused and the query is added to the stack. The query is then evaluated to
produce a result set, which is saved in a memory location for the resumed StackEntry object to pick up
and propagate to the child node. If the query itself called other queries, the process repeats, while the
current query is paused and a new evaluation is set up for the current query node.

5.1.1. Rule evaluation with forward and backward chaining

The decision engine in Red Hat Process Automation Manager is a hybrid reasoning system that uses
both forward chaining and backward chaining to evaluate rules. A forward-chaining rule system is a
data-driven system that starts with a fact in the working memory of the decision engine and reacts to
changes to that fact. When objects are inserted into working memory, any rule conditions that become
true as a result of the change are scheduled for execution by the agenda.

In contrast, a backward-chaining rule system is a goal-driven system that starts with a conclusion that
the decision engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion
or goal, it searches for subgoals, which are conclusions that complete part of the current goal. The
system continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

44

Figure 5.7. Rule evaluation logic using forward and backward chaining

5.2. RULE BASE CONFIGURATION

Red Hat Process Automation Manager contains a RuleBaseConfiguration.java object that you can use
to configure exception handler settings, multithreaded execution, and sequential mode in the decision
engine.

For the rule base configuration options, download the Red Hat Process Automation Manager 7.5.1
Source Distribution ZIP file from the Red Hat Customer Portal and navigate to ~/rhpam-7.5.1-
sources/src/drools-$VERSION/drools-
core/src/main/java/org/drools/core/RuleBaseConfiguration.java.

CHAPTER 5. PHREAK RULE ALGORITHM IN THE DECISION ENGINE

45

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

The following rule base configuration options are available for the decision engine:

drools.consequenceExceptionHandler

When configured, this system property defines the class that manages the exceptions thrown by rule
consequences. You can use this property to specify a custom exception handler for rule evaluation in
the decision engine.
Default value: org.drools.core.runtime.rule.impl.DefaultConsequenceExceptionHandler

You can specify the custom exception handler using one of the following options:

Specify the exception handler in a system property:

drools.consequenceExceptionHandler=org.drools.core.runtime.rule.impl.MyCustomConsequ
enceExceptionHandler

Specify the exception handler while creating the KIE base programatically:

drools.multithreadEvaluation

When enabled, this system property enables the decision engine to evaluate rules in parallel by
dividing the Phreak rule network into independent partitions. You can use this property to increase
the speed of rule evaluation for specific rule bases.
Default value: false

You can enable multithreaded evaluation using one of the following options:

Enable the multithreaded evaluation system property:

drools.multithreadEvaluation=true

Enable multithreaded evaluation while creating the KIE base programatically:

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(ConsequenceExceptionHandlerOption.get(MyCustomConsequence
ExceptionHandler.class));
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(MultithreadEvaluationOption.YES);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

46

WARNING

Rules that use queries, salience, or agenda groups are currently not supported
by the parallel decision engine. If these rule elements are present in the KIE base,
the compiler emits a warning and automatically switches back to single-threaded
evaluation. However, in some cases, the decision engine might not detect the
unsupported rule elements and rules might be evaluated incorrectly. For
example, the decision engine might not detect when rules rely on implicit
salience given by rule ordering inside the DRL file, resulting in incorrect
evaluation due to the unsupported salience attribute.

drools.sequential

When enabled, this system property enables sequential mode in the decision engine. In sequential
mode, the decision engine evaluates rules one time in the order that they are listed in the decision
engine agenda without regard to changes in the working memory. This means that the decision
engine ignores any insert, modify, or update statements in rules and executes rules in a single
sequence. As a result, rule execution may be faster in sequential mode, but important updates may
not be applied to your rules. You can use this property if you use stateless KIE sessions and you do
not want the execution of rules to influence subsequent rules in the agenda. Sequential mode
applies to stateless KIE sessions only.
Default value: false

You can enable sequential mode using one of the following options:

Enable the sequential mode system property:

drools.sequential=true

Enable sequential mode while creating the KIE base programatically:

Enable sequential mode in the KIE module descriptor file (kmodule.xml) for a specific Red
Hat Process Automation Manager project:

5.3. SEQUENTIAL MODE IN PHREAK

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(SequentialOption.YES);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

<kmodule>
 ...
 <kbase name="KBase2" default="false" sequential="true" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

CHAPTER 5. PHREAK RULE ALGORITHM IN THE DECISION ENGINE

47

Sequential mode is an advanced rule base configuration in the decision engine, supported by Phreak,
that enables the decision engine to evaluate rules one time in the order that they are listed in the
decision engine agenda without regard to changes in the working memory. In sequential mode, the
decision engine ignores any insert, modify, or update statements in rules and executes rules in a single
sequence. As a result, rule execution may be faster in sequential mode, but important updates may not
be applied to your rules.

Sequential mode applies to only stateless KIE sessions because stateful KIE sessions inherently use data
from previously invoked KIE sessions. If you use a stateless KIE session and you want the execution of
rules to influence subsequent rules in the agenda, then do not enable sequential mode. Sequential mode
is disabled by default in the decision engine.

To enable sequential mode, use one of the following options:

Set the system property drools.sequential to true.

Enable sequential mode while creating the KIE base programatically:

Enable sequential mode in the KIE module descriptor file (kmodule.xml) for a specific Red Hat
Process Automation Manager project:

To configure sequential mode to use a dynamic agenda, use one of the following options:

Set the system property drools.sequential.agenda to dynamic.

Set the sequential agenda option while creating the KIE base programatically:

When you enable sequential mode, the decision engine evaluates rules in the following way:

1. Rules are ordered by salience and position in the rule set.

2. An element for each possible rule match is created. The element position indicates the
execution order.

3. Node memory is disabled, with the exception of the right-input object memory.

4. The left-input adapter node propagation is disconnected and the object with the node is

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(SequentialOption.YES);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

<kmodule>
 ...
 <kbase name="KBase2" default="false" sequential="true" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

KieServices ks = KieServices.Factory.get();
KieBaseConfiguration kieBaseConf = ks.newKieBaseConfiguration();
kieBaseConf.setOption(SequentialAgendaOption.DYNAMIC);
KieBase kieBase = kieContainer.newKieBase(kieBaseConf);

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

48

4. The left-input adapter node propagation is disconnected and the object with the node is
referenced in a Command object. The Command object is added to a list in the working
memory for later execution.

5. All objects are asserted, and then the list of Command objects is checked and executed.

6. All matches that result from executing the list are added to elements based on the sequence
number of the rule.

7. The elements that contain matches are executed in a sequence. If you set a maximum number of
rule executions, the decision engine activates no more than that number of rules in the agenda
for execution.

In sequential mode, the LeftInputAdapterNode node creates a Command object and adds it to a list in
the working memory of the decision engine. This Command object contains references to the
LeftInputAdapterNode node and the propagated object. These references stop any left-input
propagations at insertion time so that the right-input propagation never needs to attempt to join the
left inputs. The references also avoid the need for the left-input memory.

All nodes have their memory turned off, including the left-input tuple memory, but excluding the right-
input object memory. After all the assertions are finished and the right-input memory of all the objects is
populated, the decision engine iterates over the list of LeftInputAdatperNode Command objects. The
objects propagate down the network, attempting to join the right-input objects, but they are not
retained in the left input.

The agenda with a priority queue to schedule the tuples is replaced by an element for each rule. The
sequence number of the RuleTerminalNode node indicates the element where to place the match.
After all Command objects have finished, the elements are checked and existing matches are executed.
To improve performance, the first and the last populated cell in the elements are retained.

When the network is constructed, each RuleTerminalNode node receives a sequence number based on
its salience number and the order in which it was added to the network.

The right-input node memories are typically hash maps for fast object deletion. Because object
deletions are not supported, Phreak uses an object list when the values of the object are not indexed.
For a large number of objects, indexed hash maps provide a performance increase. If an object has only a
few instances, Phreak uses an object list instead of an index.

CHAPTER 5. PHREAK RULE ALGORITHM IN THE DECISION ENGINE

49

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)
In Red Hat Process Automation Manager, an event is a record of a significant change of state in the
application domain at a point in time. Depending on how the domain is modeled, the change of state
may be represented by a single event, multiple atomic events, or hierarchies of correlated events. From
a complex event processing (CEP) perspective, an event is a type of fact or object that occurs at a
specific point in time, and a business rule is a definition of how to react to the data from that fact or
object. For example, in a stock broker application, a change in security prices, a change in ownership
from seller to buyer, or a change in an account holder’s balance are all considered to be events because
a change has occurred in the state of the application domain at a given time.

The decision engine in Red Hat Process Automation Manager uses complex event processing (CEP) to
detect and process multiple events within a collection of events, to uncover relationships that exist
between events, and to infer new data from the events and their relationships.

CEP use cases share several requirements and goals with business rule use cases.

From a business perspective, business rule definitions are often defined based on the occurrence of
scenarios triggered by events. In the following examples, events form the basis of business rules:

In an algorithmic trading application, a rule performs an action if the security price increases by X
percent above the day opening price. The price increases are denoted by events on a stock
trading application.

In a monitoring application, a rule performs an action if the temperature in the server room
increases X degrees in Y minutes. The sensor readings are denoted by events.

From a technical perspective, business rule evaluation and CEP have the following key similarities:

Both business rule evaluation and CEP require seamless integration with the enterprise
infrastructure and applications. This is particularly important with life-cycle management,
auditing, and security.

Both business rule evaluation and CEP have functional requirements such as pattern matching,
and non-functional requirements such as response time limits and query-rule explanations.

CEP scenarios have the following key characteristics:

Scenarios usually process large numbers of events, but only a small percentage of the events
are relevant.

Events are usually immutable and represent a record of change in state.

Rules and queries run against events and must react to detected event patterns.

Related events usually have a strong temporal relationship.

Individual events are not prioritized. The CEP system prioritizes patterns of related events and
the relationships between them.

Events usually need to be composed and aggregated.

Given these common CEP scenario characteristics, the CEP system in Red Hat Process Automation
Manager supports the following features and functions to optimize event processing:

Event processing with proper semantics

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

50

Event detection, correlation, aggregation, and composition

Event stream processing

Temporal constraints to model the temporal relationships between events

Sliding windows of significant events

Session-scoped unified clock

Required volumes of events for CEP use cases

Reactive rules

Adapters for event input into the decision engine (pipeline)

6.1. EVENTS IN COMPLEX EVENT PROCESSING

In Red Hat Process Automation Manager, an event is a record of a significant change of state in the
application domain at a point in time. Depending on how the domain is modeled, the change of state
may be represented by a single event, multiple atomic events, or hierarchies of correlated events. From
a complex event processing (CEP) perspective, an event is a type of fact or object that occurs at a
specific point in time, and a business rule is a definition of how to react to the data from that fact or
object. For example, in a stock broker application, a change in security prices, a change in ownership
from seller to buyer, or a change in an account holder’s balance are all considered to be events because
a change has occurred in the state of the application domain at a given time.

Events have the following key characteristics:

Are immutable: An event is a record of change that has occurred at some time in the past and
cannot be changed.

NOTE

The decision engine does not enforce immutability on the Java objects that
represent events. This behavior makes event data enrichment possible. Your
application should be able to populate unpopulated event attributes, and these
attributes are used by the decision engine to enrich the event with inferred data.
However, you should not change event attributes that have already been
populated.

Have strong temporal constraints: Rules involving events usually require the correlation of
multiple events that occur at different points in time relative to each other.

Have managed life cycles: Because events are immutable and have temporal constraints, they
are usually only relevant for a specified period of time. This means that the decision engine can
automatically manage the life cycle of events.

Can use sliding windows: You can define sliding windows of time or length with events. A sliding
time window is a specified period of time during which events can be processed. A sliding length
window is a specified number of events that can be processed.

6.2. DECLARING FACTS AS EVENTS

You can declare facts as events in your Java class or DRL rule file so that the decision engine handles

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

51

the facts as events during complex event processing. You can declare the facts as interval-based events
or point-in-time events. Interval-based events have a duration time and persist in the working memory
of the decision engine until their duration time has lapsed. Point-in-time events have no duration and
are essentially interval-based events with a duration of zero.

Procedure

For the relevant fact type in your Java class or DRL rule file, enter the @role(event) metadata tag and
parameter. The @role metadata tag accepts the following two values:

fact: (Default) Declares the type as a regular fact

event: Declares the type as an event

For example, the following snippet declares that the StockPoint fact type in a stock broker application
must be handled as an event:

Declare fact type as an event

import some.package.StockPoint

declare StockPoint
 @role(event)
end

If StockPoint is a fact type declared in the DRL rule file instead of in a pre-existing class, you can
declare the event in-line in your application code:

Declare fact type in-line and assign it to event role

declare StockPoint
 @role(event)

 datetime : java.util.Date
 symbol : String
 price : double
end

6.3. METADATA TAGS FOR EVENTS

The decision engine uses the following metadata tags for events that are inserted into the working
memory of the decision engine. You can change the default metadata tag values in your Java class or
DRL rule file as needed.

NOTE

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

52

NOTE

The examples in this section that refer to the VoiceCall class assume that the sample
application domain model includes the following class details:

VoiceCall fact class in an example Telecom domain model

@role

This tag determines whether a given fact type is handled as a regular fact or an event in the decision
engine during complex event processing.
Default parameter: fact

Supported parameters: fact, event

@role(fact | event)

Example: Declare VoiceCall as event type

declare VoiceCall
 @role(event)
end

@timestamp

This tag is automatically assigned to every event in the decision engine. By default, the time is
provided by the session clock and assigned to the event when it is inserted into the working memory
of the decision engine. You can specify a custom time stamp attribute instead of the default time
stamp added by the session clock.
Default parameter: The time added by the decision engine session clock

Supported parameters: Session clock time or custom time stamp attribute

@timestamp(<attributeName>)

Example: Declare VoiceCall timestamp attribute

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
end

@duration

This tag determines the duration time for events in the decision engine. Events can be interval-

public class VoiceCall {
 private String originNumber;
 private String destinationNumber;
 private Date callDateTime;
 private long callDuration; // in milliseconds

 // Constructors, getters, and setters
}

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

53

based events or point-in-time events. Interval-based events have a duration time and persist in the
working memory of the decision engine until their duration time has lapsed. Point-in-time events
have no duration and are essentially interval-based events with a duration of zero. By default, every
event in the decision engine has a duration of zero. You can specify a custom duration attribute
instead of the default.
Default parameter: Null (zero)

Supported parameters: Custom duration attribute

@duration(<attributeName>)

Example: Declare VoiceCall duration attribute

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
end

@expires

This tag determines the time duration before an event expires in the working memory of the decision
engine. By default, an event expires when the event can no longer match and activate any of the
current rules. You can define an amount of time after which an event should expire. This tag
definition also overrides the implicit expiration offset calculated from temporal constraints and
sliding windows in the KIE base. This tag is available only when the decision engine is running in
stream mode.
Default parameter: Null (event expires after event can no longer match and activate rules)

Supported parameters: Custom timeOffset attribute in the format [#d][#h][#m][#s][[ms]]

@expires(<timeOffset>)

Example: Declare expiration offset for VoiceCall events

declare VoiceCall
 @role(event)
 @timestamp(callDateTime)
 @duration(callDuration)
 @expires(1h35m)
end

6.4. EVENT PROCESSING MODES IN THE DECISION ENGINE

The decision engine runs in either cloud mode or stream mode. In cloud mode, the decision engine
processes facts as facts with no temporal constraints, independent of time, and in no particular order. In
stream mode, the decision engine processes facts as events with strong temporal constraints, in real
time or near real time. Stream mode uses synchronization to make event processing possible in Red Hat
Process Automation Manager.

Cloud mode

Cloud mode is the default operating mode of the decision engine. In cloud mode, the decision engine

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

54

treats events as an unordered cloud. Events still have time stamps, but the decision engine running in
cloud mode cannot draw relevance from the time stamp because cloud mode ignores the present
time. This mode uses the rule constraints to find the matching tuples to activate and execute rules.
Cloud mode does not impose any kind of additional requirements on facts. However, because the
decision engine in this mode has no concept of time, it cannot use temporal features such as sliding
windows or automatic life-cycle management. In cloud mode, events must be explicitly retracted
when they are no longer needed.

The following requirements are not imposed in cloud mode:

No clock synchronization because the decision engine has no notion of time

No ordering of events because the decision engine processes events as an unordered cloud,
against which the decision engine match rules

You can specify cloud mode either by setting the system property in the relevant configuration files
or by using the Java client API:

Set cloud mode using system property

drools.eventProcessingMode=cloud

Set cloud mode using Java client API

You can also specify cloud mode using the eventProcessingMode="<mode>" KIE base attribute in
the KIE module descriptor file (kmodule.xml) for a specific Red Hat Process Automation Manager
project:

Set cloud mode using project kmodule.xml file

Stream mode

Stream mode enables the decision engine to process events chronologically and in real time as they
are inserted into the decision engine. In stream mode, the decision engine synchronizes streams of
events (so that events in different streams can be processed in chronological order), implements
sliding windows of time or length, and enables automatic life-cycle management.
The following requirements apply to stream mode:

import org.kie.api.conf.EventProcessingOption;
import org.kie.api.KieBaseConfiguration;
import org.kie.api.KieServices.Factory;

KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration();

config.setOption(EventProcessingOption.CLOUD);

<kmodule>
 ...
 <kbase name="KBase2" default="false" eventProcessingMode="cloud"
packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

55

Events in each stream must be ordered chronologically.

A session clock must be present to synchronize event streams.

NOTE

Your application does not need to enforce ordering events between streams, but using
event streams that have not been synchronized may cause unexpected results.

You can specify stream mode either by setting the system property in the relevant configuration
files or by using the Java client API:

Set stream mode using system property

drools.eventProcessingMode=stream

Set stream mode using Java client API

You can also specify stream mode using the eventProcessingMode="<mode>" KIE base attribute
in the KIE module descriptor file (kmodule.xml) for a specific Red Hat Process Automation Manager
project:

Set stream mode using project kmodule.xml file

6.4.1. Negative patterns in decision engine stream mode

A negative pattern is a pattern for conditions that are not met. For example, the following DRL rule
activates a fire alarm if a fire is detected and the sprinkler is not activated:

Fire alarm rule with a negative pattern

rule "Sound the alarm"
when
 $f : FireDetected()
 not(SprinklerActivated())

import org.kie.api.conf.EventProcessingOption;
import org.kie.api.KieBaseConfiguration;
import org.kie.api.KieServices.Factory;

KieBaseConfiguration config = KieServices.Factory.get().newKieBaseConfiguration();

config.setOption(EventProcessingOption.STREAM);

<kmodule>
 ...
 <kbase name="KBase2" default="false" eventProcessingMode="stream"
packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

56

then
 // Sound the alarm.
end

In cloud mode, the decision engine assumes all facts (regular facts and events) are known in advance
and evaluates negative patterns immediately. In stream mode, the decision engine can support temporal
constraints on facts to wait for a set time before activating a rule.

The same example rule in stream mode activates the fire alarm as usual, but applies a 10-second delay.

Fire alarm rule with a negative pattern and time delay (stream mode only)

rule "Sound the alarm"
when
 $f : FireDetected()
 not(SprinklerActivated(this after[0s,10s] $f))
then
 // Sound the alarm.
end

The following modified fire alarm rule expects one Heartbeat event to occur every 10 seconds. If the
expected event does not occur, the rule is executed. This rule uses the same type of object in both the
first pattern and in the negative pattern. The negative pattern has the temporal constraint to wait 0 to
10 seconds before executing and excludes the Heartbeat event bound to $h so that the rule can be
executed. The bound event $h must be explicitly excluded in order for the rule to be executed because
the temporal constraint [0s, …] does not inherently exclude that event from being matched again.

Fire alarm rule excluding a bound event in a negative pattern (stream mode only)

rule "Sound the alarm"
when
 $h: Heartbeat() from entry-point "MonitoringStream"
 not(Heartbeat(this != $h, this after[0s,10s] $h) from entry-point "MonitoringStream")
then
 // Sound the alarm.
end

6.5. PROPERTY-CHANGE SETTINGS AND LISTENERS FOR FACT
TYPES

By default, the decision engine does not re-evaluate all fact patterns for fact types each time a rule is
triggered, but instead reacts only to modified properties that are constrained or bound inside a given
pattern. For example, if a rule calls modify() as part of the rule actions but the action does not generate
new data in the KIE base, the decision engine does not automatically re-evaluate all fact patterns
because no data was modified. This property reactivity behavior prevents unwanted recursions in the
KIE base and results in more efficient rule evaluation. This behavior also means that you do not always
need to use the no-loop rule attribute to avoid infinite recursion.

You can modify or disable this property reactivity behavior with the following
KnowledgeBuilderConfiguration options, and then use a property-change setting in your Java class or
DRL files to fine-tune property reactivity as needed:

ALWAYS: (Default) All types are property reactive, but you can disable property reactivity for a
specific type by using the @classReactive property-change setting.

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

57

ALLOWED: No types are property reactive, but you can enable property reactivity for a specific
type by using the @propertyReactive property-change setting.

DISABLED: No types are property reactive. All property-change listeners are ignored.

Example property reactivity setting in KnowledgeBuilderConfiguration

KnowledgeBuilderConfiguration config =
KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
config.setOption(PropertySpecificOption.ALLOWED);
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder(config);

Alternatively, you can update the drools.propertySpecific system property in the standalone.xml file
of your Red Hat Process Automation Manager distribution:

Example property reactivity setting in system properties

The decision engine supports the following property-change settings and listeners for fact classes or
declared DRL fact types:

@classReactive

If property reactivity is set to ALWAYS in the decision engine (all types are property reactive), this
tag disables the default property reactivity behavior for a specific Java class or a declared DRL fact
type. You can use this tag if you want the decision engine to re-evaluate all fact patterns for the
specified fact type each time the rule is triggered, instead of reacting only to modified properties
that are constrained or bound inside a given pattern.

Example: Disable default property reactivity in a DRL type declaration

declare Person
 @classReactive
 firstName : String
 lastName : String
end

Example: Disable default property reactivity in a Java class

@propertyReactive

If property reactivity is set to ALLOWED in the decision engine (no types are property reactive
unless specified), this tag enables property reactivity for a specific Java class or a declared DRL fact
type. You can use this tag if you want the decision engine to react only to modified properties that

<system-properties>
 ...
 <property name="drools.propertySpecific" value="ALLOWED"/>
 ...
</system-properties>

@classReactive
public static class Person {
 private String firstName;
 private String lastName;
}

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

58

are constrained or bound inside a given pattern for the specified fact type, instead of re-evaluating
all fact patterns for the fact each time the rule is triggered.

Example: Enable property reactivity in a DRL type declaration (when reactivity is
disabled globally)

declare Person
 @propertyReactive
 firstName : String
 lastName : String
end

Example: Enable property reactivity in a Java class (when reactivity is disabled globally)

@watch

This tag enables property reactivity for additional properties that you specify in-line in fact patterns
in DRL rules. This tag is supported only if property reactivity is set to ALWAYS in the decision
engine, or if property reactivity is set to ALLOWED and the relevant fact type uses the
@propertyReactive tag. You can use this tag in DRL rules to add or exclude specific properties in
fact property reactivity logic.
Default parameter: None

Supported parameters: Property name, * (all), ! (not), !* (no properties)

<factPattern> @watch (<property>)

Example: Enable or disable property reactivity in fact patterns

// Listens for changes in both `firstName` (inferred) and `lastName`:
Person(firstName == $expectedFirstName) @watch(lastName)

// Listens for changes in all properties of the `Person` fact:
Person(firstName == $expectedFirstName) @watch(*)

// Listens for changes in `lastName` and explicitly excludes changes in `firstName`:
Person(firstName == $expectedFirstName) @watch(lastName, !firstName)

// Listens for changes in all properties of the `Person` fact except `age`:
Person(firstName == $expectedFirstName) @watch(*, !age)

// Excludes changes in all properties of the `Person` fact (equivalent to using `@classReactivity`
tag):
Person(firstName == $expectedFirstName) @watch(!*)

The decision engine generates a compilation error if you use the @watch tag for properties in a fact
type that uses the @classReactive tag (disables property reactivity) or when property reactivity is
set to ALLOWED in the decision engine and the relevant fact type does not use the

@propertyReactive
public static class Person {
 private String firstName;
 private String lastName;
}

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

59

@propertyReactive tag. Compilation errors also arise if you duplicate properties in listener
annotations, such as @watch(firstName, ! firstName).

@propertyChangeSupport

For facts that implement support for property changes as defined in the JavaBeans Specification,
this tag enables the decision engine to monitor changes in the fact properties.

Example: Declare property change support in JavaBeans object

declare Person
 @propertyChangeSupport
end

6.6. TEMPORAL OPERATORS FOR EVENTS

In stream mode, the decision engine supports the following temporal operators for events that are
inserted into the working memory of the decision engine. You can use these operators to define the
temporal reasoning behavior of the events that you declare in your Java class or DRL rule file. Temporal
operators are not supported when the decision engine is running in cloud mode.

after

before

coincides

during

includes

finishes

finished by

meets

met by

overlaps

overlapped by

starts

started by

after

This operator specifies if the current event occurs after the correlated event. This operator
can also define an amount of time after which the current event can follow the correlated
event, or a delimiting time range during which the current event can follow the correlated
event.
For example, the following pattern matches if $eventA starts between 3 minutes and 30
seconds and 4 minutes after $eventB finishes. If $eventA starts earlier than 3 minutes and
30 seconds after $eventB finishes, or later than 4 minutes after $eventB finishes, then the

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

60

https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

pattern is not matched.

$eventA : EventA(this after[3m30s, 4m] $eventB)

You can also express this operator in the following way:

3m30s <= $eventA.startTimestamp - $eventB.endTimeStamp <= 4m

The after operator supports up to two parameter values:

If two values are defined, the interval starts on the first value (3 minutes and 30 seconds
in the example) and ends on the second value (4 minutes in the example).

If only one value is defined, the interval starts on the provided value and runs indefinitely
with no end time.

If no value is defined, the interval starts at 1 millisecond and runs indefinitely with no end
time.

The after operator also supports negative time ranges:

$eventA : EventA(this after[-3m30s, -2m] $eventB)

If the first value is greater than the second value, the decision engine automatically reverses
them. For example, the following two patterns are interpreted by the decision engine in the
same way:

$eventA : EventA(this after[-3m30s, -2m] $eventB)
$eventA : EventA(this after[-2m, -3m30s] $eventB)

before

This operator specifies if the current event occurs before the correlated event. This
operator can also define an amount of time before which the current event can precede the
correlated event, or a delimiting time range during which the current event can precede the
correlated event.
For example, the following pattern matches if $eventA finishes between 3 minutes and 30
seconds and 4 minutes before $eventB starts. If $eventA finishes earlier than 3 minutes and
30 seconds before $eventB starts, or later than 4 minutes before $eventB starts, then the
pattern is not matched.

$eventA : EventA(this before[3m30s, 4m] $eventB)

You can also express this operator in the following way:

3m30s <= $eventB.startTimestamp - $eventA.endTimeStamp <= 4m

The before operator supports up to two parameter values:

If two values are defined, the interval starts on the first value (3 minutes and 30 seconds
in the example) and ends on the second value (4 minutes in the example).

If only one value is defined, the interval starts on the provided value and runs indefinitely
with no end time.

If no value is defined, the interval starts at 1 millisecond and runs indefinitely with no end

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

61

If no value is defined, the interval starts at 1 millisecond and runs indefinitely with no end
time.

The before operator also supports negative time ranges:

$eventA : EventA(this before[-3m30s, -2m] $eventB)

If the first value is greater than the second value, the decision engine automatically reverses
them. For example, the following two patterns are interpreted by the decision engine in the
same way:

$eventA : EventA(this before[-3m30s, -2m] $eventB)
$eventA : EventA(this before[-2m, -3m30s] $eventB)

coincides

This operator specifies if the two events occur at the same time, with the same start and end
times.
For example, the following pattern matches if both the start and end time stamps of
$eventA and $eventB are identical:

$eventA : EventA(this coincides $eventB)

The coincides operator supports up to two parameter values for the distance between the
event start and end times, if they are not identical:

If only one parameter is given, the parameter is used to set the threshold for both the
start and end times of both events.

If two parameters are given, the first is used as a threshold for the start time and the
second is used as a threshold for the end time.

The following pattern uses start and end time thresholds:

$eventA : EventA(this coincides[15s, 10s] $eventB)

The pattern matches if the following conditions are met:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 15s
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 10s

WARNING

The decision engine does not support negative intervals for the
coincides operator. If you use negative intervals, the decision engine
generates an error.

during

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

62

This operator specifies if the current event occurs within the time frame of when the
correlated event starts and ends. The current event must start after the correlated event
starts and must end before the correlated event ends. (With the coincides operator, the
start and end times are the same or nearly the same.)
For example, the following pattern matches if $eventA starts after $eventB starts and ends
before $eventB ends:

$eventA : EventA(this during $eventB)

You can also express this operator in the following way:

$eventB.startTimestamp < $eventA.startTimestamp <= $eventA.endTimestamp <
$eventB.endTimestamp

The during operator supports one, two, or four optional parameters:

If one value is defined, this value is the maximum distance between the start times of the
two events and the maximum distance between the end times of the two events.

If two values are defined, these values are a threshold between which the current event
start time and end time must occur in relation to the correlated event start and end
times.
For example, if the values are 5s and 10s, the current event must start between 5 and 10
seconds after the correlated event starts and must end between 5 and 10 seconds
before the correlated event ends.

If four values are defined, the first and second values are the minimum and maximum
distances between the start times of the events, and the third and fourth values are the
minimum and maximum distances between the end times of the two events.

includes

This operator specifies if the correlated event occurs within the time frame of when the
current event occurs. The correlated event must start after the current event starts and
must end before the current event ends. (The behavior of this operator is the reverse of the
during operator behavior.)
For example, the following pattern matches if $eventB starts after $eventA starts and ends
before $eventA ends:

$eventA : EventA(this includes $eventB)

You can also express this operator in the following way:

$eventA.startTimestamp < $eventB.startTimestamp <= $eventB.endTimestamp <
$eventA.endTimestamp

The includes operator supports one, two, or four optional parameters:

If one value is defined, this value is the maximum distance between the start times of the
two events and the maximum distance between the end times of the two events.

If two values are defined, these values are a threshold between which the correlated
event start time and end time must occur in relation to the current event start and end
times.

For example, if the values are 5s and 10s, the correlated event must start between 5 and

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

63

For example, if the values are 5s and 10s, the correlated event must start between 5 and
10 seconds after the current event starts and must end between 5 and 10 seconds
before the current event ends.

If four values are defined, the first and second values are the minimum and maximum
distances between the start times of the events, and the third and fourth values are the
minimum and maximum distances between the end times of the two events.

finishes

This operator specifies if the current event starts after the correlated event but both events
end at the same time.
For example, the following pattern matches if $eventA starts after $eventB starts and ends
at the same time when $eventB ends:

$eventA : EventA(this finishes $eventB)

You can also express this operator in the following way:

$eventB.startTimestamp < $eventA.startTimestamp
&&
$eventA.endTimestamp == $eventB.endTimestamp

The finishes operator supports one optional parameter that sets the maximum time
allowed between the end times of the two events:

$eventA : EventA(this finishes[5s] $eventB)

This pattern matches if these conditions are met:

$eventB.startTimestamp < $eventA.startTimestamp
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s

WARNING

The decision engine does not support negative intervals for the finishes
operator. If you use negative intervals, the decision engine generates an
error.

finished by

This operator specifies if the correlated event starts after the current event but both events
end at the same time. (The behavior of this operator is the reverse of the finishes operator
behavior.)
For example, the following pattern matches if $eventB starts after $eventA starts and ends
at the same time when $eventA ends:

$eventA : EventA(this finishedby $eventB)

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

64

You can also express this operator in the following way:

$eventA.startTimestamp < $eventB.startTimestamp
&&
$eventA.endTimestamp == $eventB.endTimestamp

The finished by operator supports one optional parameter that sets the maximum time
allowed between the end times of the two events:

$eventA : EventA(this finishedby[5s] $eventB)

This pattern matches if these conditions are met:

$eventA.startTimestamp < $eventB.startTimestamp
&&
abs($eventA.endTimestamp - $eventB.endTimestamp) <= 5s

WARNING

The decision engine does not support negative intervals for the finished
by operator. If you use negative intervals, the decision engine generates
an error.

meets

This operator specifies if the current event ends at the same time when the correlated event
starts.
For example, the following pattern matches if $eventA ends at the same time when
$eventB starts:

$eventA : EventA(this meets $eventB)

You can also express this operator in the following way:

abs($eventB.startTimestamp - $eventA.endTimestamp) == 0

The meets operator supports one optional parameter that sets the maximum time allowed
between the end time of the current event and the start time of the correlated event:

$eventA : EventA(this meets[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventB.startTimestamp - $eventA.endTimestamp) <= 5s

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

65

WARNING

The decision engine does not support negative intervals for the meets
operator. If you use negative intervals, the decision engine generates an
error.

met by

This operator specifies if the correlated event ends at the same time when the current event
starts. (The behavior of this operator is the reverse of the meets operator behavior.)
For example, the following pattern matches if $eventB ends at the same time when
$eventA starts:

$eventA : EventA(this metby $eventB)

You can also express this operator in the following way:

abs($eventA.startTimestamp - $eventB.endTimestamp) == 0

The met by operator supports one optional parameter that sets the maximum distance
between the end time of the correlated event and the start time of the current event:

$eventA : EventA(this metby[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventA.startTimestamp - $eventB.endTimestamp) <= 5s

WARNING

The decision engine does not support negative intervals for the met by
operator. If you use negative intervals, the decision engine generates an
error.

overlaps

This operator specifies if the current event starts before the correlated event starts and it
ends during the time frame that the correlated event occurs. The current event must end
between the start and end times of the correlated event.
For example, the following pattern matches if $eventA starts before $eventB starts and
then ends while $eventB occurs, before $eventB ends:

$eventA : EventA(this overlaps $eventB)

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

66

The overlaps operator supports up to two parameters:

If one parameter is defined, the value is the maximum distance between the start time of
the correlated event and the end time of the current event.

If two parameters are defined, the values are the minimum distance (first value) and the
maximum distance (second value) between the start time of the correlated event and
the end time of the current event.

overlapped by

This operator specifies if the correlated event starts before the current event starts and it
ends during the time frame that the current event occurs. The correlated event must end
between the start and end times of the current event. (The behavior of this operator is the
reverse of the overlaps operator behavior.)
For example, the following pattern matches if $eventB starts before $eventA starts and
then ends while $eventA occurs, before $eventA ends:

$eventA : EventA(this overlappedby $eventB)

The overlapped by operator supports up to two parameters:

If one parameter is defined, the value is the maximum distance between the start time of
the current event and the end time of the correlated event.

If two parameters are defined, the values are the minimum distance (first value) and the
maximum distance (second value) between the start time of the current event and the
end time of the correlated event.

starts

This operator specifies if the two events start at the same time but the current event ends
before the correlated event ends.
For example, the following pattern matches if $eventA and $eventB start at the same time,
and $eventA ends before $eventB ends:

$eventA : EventA(this starts $eventB)

You can also express this operator in the following way:

$eventA.startTimestamp == $eventB.startTimestamp
&&
$eventA.endTimestamp < $eventB.endTimestamp

The starts operator supports one optional parameter that sets the maximum distance
between the start times of the two events:

$eventA : EventA(this starts[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 5s
&&
$eventA.endTimestamp < $eventB.endTimestamp

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

67

WARNING

The decision engine does not support negative intervals for the starts
operator. If you use negative intervals, the decision engine generates an
error.

started by

This operator specifies if the two events start at the same time but the correlated event
ends before the current event ends. (The behavior of this operator is the reverse of the
starts operator behavior.)
For example, the following pattern matches if $eventA and $eventB start at the same time,
and $eventB ends before $eventA ends:

$eventA : EventA(this startedby $eventB)

You can also express this operator in the following way:

$eventA.startTimestamp == $eventB.startTimestamp
&&
$eventA.endTimestamp > $eventB.endTimestamp

The started by operator supports one optional parameter that sets the maximum distance
between the start times of the two events:

$eventA : EventA(this starts[5s] $eventB)

This pattern matches if these conditions are met:

abs($eventA.startTimestamp - $eventB.startTimestamp) <= 5s
&&
$eventA.endTimestamp > $eventB.endTimestamp

WARNING

The decision engine does not support negative intervals for the started
by operator. If you use negative intervals, the decision engine generates
an error.

6.7. SESSION CLOCK IMPLEMENTATIONS IN THE DECISION ENGINE

During complex event processing, events in the decision engine may have temporal constraints and
therefore require a session clock that provides the current time. For example, if a rule needs to

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

68

determine the average price of a given stock over the last 60 minutes, the decision engine must be able
to compare the stock price event time stamp with the current time in the session clock.

The decision engine supports a real-time clock and a pseudo clock. You can use one or both clock types
depending on the scenario:

Rules testing: Testing requires a controlled environment, and when the tests include rules with
temporal constraints, you must be able to control the input rules and facts and the flow of time.

Regular execution: The decision engine reacts to events in real time and therefore requires a
real-time clock.

Special environments: Specific environments may have specific time control requirements. For
example, clustered environments may require clock synchronization or Java Enterprise Edition
(JEE) environments may require a clock provided by the application server.

Rules replay or simulation: In order to replay or simulate scenarios, the application must be able
to control the flow of time.

Consider your environment requirements as you decide whether to use a real-time clock or pseudo
clock in the decision engine.

Real-time clock

The real-time clock is the default clock implementation in the decision engine and uses the system
clock to determine the current time for time stamps. To configure the decision engine to use the
real-time clock, set the KIE session configuration parameter to realtime:

Configure real-time clock in KIE session

Pseudo clock

The pseudo clock implementation in the decision engine is helpful for testing temporal rules and it
can be controlled by the application. To configure the decision engine to use the pseudo clock, set
the KIE session configuration parameter to pseudo:

Configure pseduo clock in KIE session

You can also use additional configurations and fact handlers to control the pseudo clock:

import org.kie.api.KieServices.Factory;
import org.kie.api.runtime.conf.ClockTypeOption;
import org.kie.api.runtime.KieSessionConfiguration;

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();

config.setOption(ClockTypeOption.get("realtime"));

import org.kie.api.runtime.conf.ClockTypeOption;
import org.kie.api.runtime.KieSessionConfiguration;
import org.kie.api.KieServices.Factory;

KieSessionConfiguration config = KieServices.Factory.get().newKieSessionConfiguration();

config.setOption(ClockTypeOption.get("pseudo"));

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

69

Control pseudo clock behavior in KIE session

6.8. EVENT STREAMS AND ENTRY POINTS

The decision engine can process high volumes of events in the form of event streams. In DRL rule
declarations, a stream is also known as an entry point. When you declare an entry point in a DRL rule or
Java application, the decision engine, at compile time, identifies and creates the proper internal
structures to use data from only that entry point to evaluate that rule.

Facts from one entry point, or stream, can join facts from any other entry point in addition to facts
already in the working memory of the decision engine. Facts always remain associated with the entry
point through which they entered the decision engine. Facts of the same type can enter the decision
engine through several entry points, but facts that enter the decision engine through entry point A can
never match a pattern from entry point B.

Event streams have the following characteristics:

Events in the stream are ordered by time stamp. The time stamps may have different semantics
for different streams, but they are always ordered internally.

Event streams usually have a high volume of events.

Atomic events in streams are usually not useful individually, only collectively in a stream.

Event streams can be homogeneous and contain a single type of event, or heterogeneous and
contain events of different types.

6.8.1. Declaring entry points for rule data

You can declare an entry point (event stream) for events so that the decision engine uses data from

import java.util.concurrent.TimeUnit;

import org.kie.api.runtime.KieSessionConfiguration;
import org.kie.api.KieServices.Factory;
import org.kie.api.runtime.KieSession;
import org.drools.core.time.SessionPseudoClock;
import org.kie.api.runtime.rule.FactHandle;
import org.kie.api.runtime.conf.ClockTypeOption;

KieSessionConfiguration conf = KieServices.Factory.get().newKieSessionConfiguration();

conf.setOption(ClockTypeOption.get("pseudo"));
KieSession session = kbase.newKieSession(conf, null);

SessionPseudoClock clock = session.getSessionClock();

// While inserting facts, advance the clock as necessary.
FactHandle handle1 = session.insert(tick1);
clock.advanceTime(10, TimeUnit.SECONDS);

FactHandle handle2 = session.insert(tick2);
clock.advanceTime(30, TimeUnit.SECONDS);

FactHandle handle3 = session.insert(tick3);

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

70

You can declare an entry point (event stream) for events so that the decision engine uses data from
only that entry point to evaluate the rules. You can declare an entry point either implicitly by referencing
it in DRL rules or explicitly in your Java application.

Procedure

Use one of the following methods to declare the entry point:

In the DRL rule file, specify from entry-point "<name>" for the inserted fact:

Authorize withdrawal rule with "ATM Stream" entry point

rule "Authorize withdrawal"
when
 WithdrawRequest($ai : accountId, $am : amount) from entry-point "ATM Stream"
 CheckingAccount(accountId == $ai, balance > $am)
then
 // Authorize withdrawal.
end

Apply fee rule with "Branch Stream" entry point

rule "Apply fee on withdraws on branches"
when
 WithdrawRequest($ai : accountId, processed == true) from entry-point "Branch Stream"
 CheckingAccount(accountId == $ai)
then
 // Apply a $2 fee on the account.
end

Both example DRL rules from a banking application insert the event WithdrawalRequest with
the fact CheckingAccount, but from different entry points. At run time, the decision engine
evaluates the Authorize withdrawal rule using data from only the "ATM Stream" entry point,
and evaluates the Apply fee rule using data from only the "Branch Stream" entry point. Any
events inserted into the "ATM Stream" can never match patterns for the "Apply fee" rule, and
any events inserted into the "Branch Stream" can never match patterns for the "Authorize
withdrawal rule".

In the Java application code, use the getEntryPoint() method to specify and obtain an
EntryPoint object and insert facts into that entry point accordingly:

Java application code with EntryPoint object and inserted facts

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.rule.EntryPoint;

// Create your KIE base and KIE session as usual.
KieSession session = ...

// Create a reference to the entry point.
EntryPoint atmStream = session.getEntryPoint("ATM Stream");

// Start inserting your facts into the entry point.
atmStream.insert(aWithdrawRequest);

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

71

Any DRL rules that specify from entry-point "ATM Stream" are then evaluated based on the
data in this entry point only.

6.9. SLIDING WINDOWS OF TIME OR LENGTH

In stream mode, the decision engine can process events from a specified sliding window of time or
length. A sliding time window is a specified period of time during which events can be processed. A
sliding length window is a specified number of events that can be processed. When you declare a sliding
window in a DRL rule or Java application, the decision engine, at compile time, identifies and creates the
proper internal structures to use data from only that sliding window to evaluate that rule.

For example, the following DRL rule snippets instruct the decision engine to process only the stock
points from the last 2 minutes (sliding time window) or to process only the last 10 stock points (sliding
length window):

Process stock points from the last 2 minutes (sliding time window)

StockPoint() over window:time(2m)

Process the last 10 stock points (sliding length window)

StockPoint() over window:length(10)

6.9.1. Declaring sliding windows for rule data

You can declare a sliding window of time (flow of time) or length (number of occurrences) for events so
that the decision engine uses data from only that window to evaluate the rules.

Procedure

In the DRL rule file, specify over window:<time_or_length>(<value>) for the inserted fact.

For example, the following two DRL rules activate a fire alarm based on an average temperature.
However, the first rule uses a sliding time window to calculate the average over the last 10 minutes while
the second rule uses a sliding length window to calculate the average over the last one hundred
temperature readings.

Average temperature over sliding time window

rule "Sound the alarm if temperature rises above threshold"
when
 TemperatureThreshold($max : max)
 Number(doubleValue > $max) from accumulate(
 SensorReading($temp : temperature) over window:time(10m),
 average($temp))
then
 // Sound the alarm.
end

Average temperature over sliding length window

rule "Sound the alarm if temperature rises above threshold"
when
 TemperatureThreshold($max : max)

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

72

 Number(doubleValue > $max) from accumulate(
 SensorReading($temp : temperature) over window:length(100),
 average($temp))
then
 // Sound the alarm.
end

The decision engine discards any SensorReading events that are more than 10 minutes old or that are
not part of the last one hundred readings, and continues recalculating the average as the minutes or
readings "slide" forward in real time.

The decision engine does not automatically remove outdated events from the KIE session because
other rules without sliding window declarations might depend on those events. The decision engine
stores events in the KIE session until the events expire either by explicit rule declarations or by implicit
reasoning within the decision engine based on inferred data in the KIE base.

6.10. MEMORY MANAGEMENT FOR EVENTS

In stream mode, the decision engine uses automatic memory management to maintain events that are
stored in KIE sessions. The decision engine can retract from a KIE session any events that no longer
match any rule due to their temporal constraints and release any resources held by the retracted events.

The decision engine uses either explicit or inferred expiration to retract outdated events:

Explicit expiration: The decision engine removes events that are explicitly set to expire in rules
that declare the @expires tag:

DRL rule snippet with explicit expiration

declare StockPoint
 @expires(30m)
end

This example rule sets any StockPoint events to expire after 30 minutes and to be removed
from the KIE session if no other rules use the events.

Inferred expiration: The decision engine can calculate the expiration offset for a given event
implicitly by analyzing the temporal constraints in the rules:

DRL rule with temporal constraints

rule "Correlate orders"
when
 $bo : BuyOrder($id : id)
 $ae : AckOrder(id == $id, this after[0,10s] $bo)
then
 // Perform an action.
end

For this example rule, the decision engine automatically calculates that whenever a BuyOrder
event occurs, the decision engine needs to store the event for up to 10 seconds and wait for the
matching AckOrder event. After 10 seconds, the decision engine infers the expiration and

CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)

73

removes the event from the KIE session. An AckOrder event can only match an existing
BuyOrder event, so the decision engine infers the expiration if no match occurs and removes
the event immediately.

The decision engine analyzes the entire KIE base to find the offset for every event type and to
ensure that no other rules use the events that are pending removal. Whenever an implicit
expiration clashes with an explicit expiration value, the decision engine uses the greater time
frame of the two to store the event longer.

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

74

CHAPTER 7. DECISION ENGINE QUERIES AND LIVE QUERIES
You can use queries with the decision engine to retrieve fact sets based on fact patterns as they are
used in rules. The patterns might also use optional parameters.

To use queries with the decision engine, you add the query definitions in DRL files and then obtain the
matching results in your application code. While a query iterates over a result collection, you can use any
identifier that is bound to the query to access the corresponding fact or fact field by calling the get()
method with the binding variable name as the argument. If the binding refers to a fact object, you can
retrieve the fact handle by calling getFactHandle() with the variable name as the parameter.

Example query definition in a DRL file

query "people under the age of 21"
 $person : Person(age < 21)
end

Example application code to obtain and iterate over query results

Invoking queries and processing the results by iterating over the returned set can be difficult when you
are monitoring changes over time. To alleviate this difficulty with ongoing queries, Red Hat Process
Automation Manager provides live queries, which use an attached listener for change events instead of
returning an iterable result set. Live queries remain open by creating a view and publishing change
events for the contents of this view.

To activate a live query, start your query with parameters and monitor changes in the resulting view. You
can use the dispose() method to terminate the query and discontinue this reactive scenario.

Example query definition in a DRL file

query colors(String $color1, String $color2)
 TShirt(mainColor = $color1, secondColor = $color2, $price: manufactureCost)
end

Example application code with an event listener and a live query

QueryResults results = ksession.getQueryResults("people under the age of 21");
System.out.println("we have " + results.size() + " people under the age of 21");

System.out.println("These people are under the age of 21:");

for (QueryResultsRow row : results) {
 Person person = (Person) row.get("person");
 System.out.println(person.getName() + "\n");
}

final List updated = new ArrayList();
final List removed = new ArrayList();
final List added = new ArrayList();

ViewChangedEventListener listener = new ViewChangedEventListener() {
 public void rowUpdated(Row row) {
 updated.add(row.get("$price"));
 }

CHAPTER 7. DECISION ENGINE QUERIES AND LIVE QUERIES

75

 public void rowRemoved(Row row) {
 removed.add(row.get("$price"));
 }

 public void rowAdded(Row row) {
 added.add(row.get("$price"));
 }
};

// Open the live query:
LiveQuery query = ksession.openLiveQuery("colors",
 new Object[] { "red", "blue" },
 listener);
...
...

// Terminate the live query:
query.dispose()

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

76

CHAPTER 8. DECISION ENGINE EVENT LISTENERS AND
DEBUG LOGGING

In Red Hat Process Automation Manager, you can add or remove listeners for decision engine events,
such as fact insertions and rule executions. With decision engine event listeners, you can be notified of
decision engine activity and separate your logging and auditing work from the core of your application.

The decision engine supports the following default event listeners for the agenda and working memory:

AgendaEventListener

WorkingMemoryEventListener

For each event listener, the decision engine also supports the following specific events that you can
specify to be monitored:

MatchCreatedEvent

MatchCancelledEvent

BeforeMatchFiredEvent

AfterMatchFiredEvent

AgendaGroupPushedEvent

AgendaGroupPoppedEvent

ObjectInsertEvent

ObjectDeletedEvent

ObjectUpdatedEvent

ProcessCompletedEvent

ProcessNodeLeftEvent

ProcessNodeTriggeredEvent

ProcessStartEvent

For example, the following code uses a DefaultAgendaEventListener listener attached to a KIE session
and specifies the AfterMatchFiredEvent event to be monitored. The code prints pattern matches after
the rules are executed (fired):

Example code to monitor and print AfterMatchFiredEvent events in the agenda

The decision engine also supports the following agenda and working memory event listeners for debug

ksession.addEventListener(new DefaultAgendaEventListener() {
 public void afterMatchFired(AfterMatchFiredEvent event) {
 super.afterMatchFired(event);
 System.out.println(event);
 }
});

CHAPTER 8. DECISION ENGINE EVENT LISTENERS AND DEBUG LOGGING

77

The decision engine also supports the following agenda and working memory event listeners for debug
logging:

DebugAgendaEventListener

DebugRuleRuntimeEventListener

These event listeners implement the same supported event-listener methods and include a debug print
statement by default. You can add a specific supported event to be monitored and documented, or
monitor all agenda or working memory activity.

For example, the following code uses the DebugRuleRuntimeEventListener event listener to monitor
and print all working memory events:

Example code to monitor and print all working memory events

8.1. CONFIGURING A LOGGING UTILITY IN THE DECISION ENGINE

The decision engine uses the Java logging API SLF4J for system logging. You can use one of the
following logging utilities with the decision engine to investigate decision engine activity, such as for
troubleshooting or data gathering:

Logback

Apache Commons Logging

Apache Log4j

java.util.logging package

Procedure

For the logging utility that you want to use, add the relevant dependency to your Maven project or save
the relevant XML configuration file in the org.drools package of your Red Hat Process Automation
Manager distribution:

Example Maven dependency for Logback

Example logback.xml configuration file in org.drools package

Example log4j.xml configuration file in org.drools package

ksession.addEventListener(new DebugRuleRuntimeEventListener());

<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
</dependency>

<configuration>
 <logger name="org.drools" level="debug"/>
 ...
<configuration>

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

78

NOTE

If you are developing for an ultra light environment, use the slf4j-nop or slf4j-simple
logger.

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">
 <category name="org.drools">
 <priority value="debug" />
 </category>
 ...
</log4j:configuration>

CHAPTER 8. DECISION ENGINE EVENT LISTENERS AND DEBUG LOGGING

79

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS
AUTOMATION MANAGER FOR AN IDE

Red Hat Process Automation Manager provides example decisions distributed as Java classes that you
can import into your integrated development environment (IDE). You can use these examples to better
understand decision engine capabilities or use them as a reference for the decisions that you define in
your own Red Hat Process Automation Manager projects.

The following example decision sets are some of the examples available in Red Hat Process Automation
Manager:

Hello World example: Demonstrates basic rule execution and use of debug output

State example: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

Fibonacci example: Demonstrates recursion and conflict resolution through rule salience

Banking example: Demonstrates pattern matching, basic sorting, and calculation

Pet Store example: Demonstrates rule agenda groups, global variables, callbacks, and GUI
integration

Sudoku example: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

House of Doom example: Demonstrates backward chaining and recursion

NOTE

For optimization examples provided with Red Hat Business Optimizer, see Getting
started with Red Hat Business Optimizer.

9.1. IMPORTING AND EXECUTING RED HAT PROCESS AUTOMATION
MANAGER EXAMPLE DECISIONS IN AN IDE

You can import Red Hat Process Automation Manager example decisions into your integrated
development environment (IDE) and execute them to explore how the rules and code function. You can
use these examples to better understand decision engine capabilities or use them as a reference for the
decisions that you define in your own Red Hat Process Automation Manager projects.

Prerequisites

Java 8 or later is installed.

Maven 3.5.x or later is installed.

An IDE is installed, such as Red Hat CodeReady Studio.

Procedure

1. Download and unzip the Red Hat Process Automation Manager 7.5.1 Source Distribution
from the Red Hat Customer Portal to a temporary directory, such as /rhpam-7.5.1-sources.

2. Open your IDE and select File → Import → Maven → Existing Maven Projects, or the

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

80

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/getting_started_with_red_hat_business_optimizer#examples-con
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

2. Open your IDE and select File → Import → Maven → Existing Maven Projects, or the
equivalent option for importing a Maven project.

3. Click Browse, navigate to ~/rhpam-7.5.1-sources/src/drools-$VERSION/drools-examples
(or, for the Conway’s Game of Life example, ~/rhpam-7.5.1-sources/src/droolsjbpm-
integration-$VERSION/droolsjbpm-integration-examples), and import the project.

4. Navigate to the example package that you want to run and find the Java class with the main
method.

5. Right-click the Java class and select Run As → Java Application to run the example.
To run all examples through a basic user interface, run the DroolsExamplesApp.java class (or,
for Conway’s Game of Life, the DroolsJbpmIntegrationExamplesApp.java class) in the
org.drools.examples main class.

Figure 9.1. Interface for all examples in drools-examples (DroolsExamplesApp.java)

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

81

Figure 9.1. Interface for all examples in drools-examples (DroolsExamplesApp.java)

Figure 9.2. Interface for all examples in droolsjbpm-integration-examples

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

82

1

2

3

Figure 9.2. Interface for all examples in droolsjbpm-integration-examples
(DroolsJbpmIntegrationExamplesApp.java)

9.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND
DEBUGGING)

The Hello World example decision set demonstrates how to insert objects into the decision engine
working memory, how to match the objects using rules, and how to configure logging to trace the
internal activity of the decision engine.

The following is an overview of the Hello World example:

Name: helloworld

Main class: org.drools.examples.helloworld.HelloWorldExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.helloworld.HelloWorld.drl (in src/main/resources)

Objective: Demonstrates basic rule execution and use of debug output

In the Hello World example, a KIE session is generated to enable rule execution. All rules require a KIE
session for execution.

KIE session for rule execution

Obtains the KieServices factory. This is the main interface that applications use to interact with
the decision engine.

Creates a KieContainer from the project class path. This detects a /META-INF/kmodule.xml file
from which it configures and instantiates a KieContainer with a KieModule.

Creates a KieSession based on the "HelloWorldKS" KIE session configuration defined in the
/META-INF/kmodule.xml file.

KieServices ks = KieServices.Factory.get(); 1
KieContainer kc = ks.getKieClasspathContainer(); 2
KieSession ksession = kc.newKieSession("HelloWorldKS"); 3

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

83

NOTE

For more information about Red Hat Process Automation Manager project packaging,
see Packaging and deploying a Red Hat Process Automation Manager project .

Red Hat Process Automation Manager has an event model that exposes internal engine activity. Two
default debug listeners, DebugAgendaEventListener and DebugRuleRuntimeEventListener, print
debug event information to the System.err output. The KieRuntimeLogger provides execution
auditing, the result of which you can view in a graphical viewer.

Debug listeners and audit loggers

The logger is a specialized implementation built on the Agenda and RuleRuntime listeners. When the
decision engine has finished executing, logger.close() is called.

The example creates a single Message object with the message "Hello World", inserts the status
HELLO into the KieSession, executes rules with fireAllRules().

Data insertion and execution

Rule execution uses a data model to pass data as inputs and outputs to the KieSession. The data
model in this example has two fields: the message, which is a String, and the status, which can be
HELLO or GOODBYE.

Data model class

// Set up listeners.
ksession.addEventListener(new DebugAgendaEventListener());
ksession.addEventListener(new DebugRuleRuntimeEventListener());

// Set up a file-based audit logger.
KieRuntimeLogger logger = KieServices.get().getLoggers().newFileLogger(ksession,
"./target/helloworld");

// Set up a ThreadedFileLogger so that the audit view reflects events while debugging.
KieRuntimeLogger logger = ks.getLoggers().newThreadedFileLogger(ksession, "./target/helloworld",
1000);

// Insert facts into the KIE session.
final Message message = new Message();
message.setMessage("Hello World");
message.setStatus(Message.HELLO);
ksession.insert(message);

// Fire the rules.
ksession.fireAllRules();

public static class Message {
 public static final int HELLO = 0;
 public static final int GOODBYE = 1;

 private String message;

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

84

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project

The two rules are located in the file
src/main/resources/org/drools/examples/helloworld/HelloWorld.drl.

The when condition of the "Hello World" rule states that the rule is activated for each Message object
inserted into the KIE session that has the status Message.HELLO. Additionally, two variable bindings
are created: the variable message is bound to the message attribute and the variable m is bound to
the matched Message object itself.

The then action of the rule specifies to print the content of the bound variable message to System.out,
and then changes the values of the message and status attributes of the Message object bound to m.
The rule uses the modify statement to apply a block of assignments in one statement and to notify the
decision engine of the changes at the end of the block.

"Hello World" rule

rule "Hello World"
 when
 m : Message(status == Message.HELLO, message : message)
 then
 System.out.println(message);
 modify (m) { message = "Goodbye cruel world",
 status = Message.GOODBYE };
end

The "Good Bye" rule is similar to the "Hello World" rule except that it matches Message objects that
have the status Message.GOODBYE.

"Good Bye" rule

rule "Good Bye"
 when
 Message(status == Message.GOODBYE, message : message)
 then
 System.out.println(message);
end

To execute the example, run the org.drools.examples.helloworld.HelloWorldExample class as a Java
application in your IDE. The rule writes to System.out, the debug listener writes to System.err, and the
audit logger creates a log file in target/helloworld.log.

System.out output in the IDE console

Hello World
Goodbye cruel world

System.err output in the IDE console

==>[ActivationCreated(0): rule=Hello World;
 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[ObjectInserted: handle=

 private int status;
 ...
}

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

85

[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
 object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[BeforeActivationFired: rule=Hello World;
 tuple=[fid:1:1:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
==>[ActivationCreated(4): rule=Good Bye;
 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[ObjectUpdated: handle=
[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96];
 old_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96;
 new_object=org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]
[AfterActivationFired(0): rule=Hello World]
[BeforeActivationFired: rule=Good Bye;
 tuple=[fid:1:2:org.drools.examples.helloworld.HelloWorldExample$Message@17cec96]]
[AfterActivationFired(4): rule=Good Bye]

To better understand the execution flow of this example, you can load the audit log file from
target/helloworld.log into your IDE debug view or Audit View, if available (for example, in Window →
Show View in some IDEs).

In this example, the Audit view shows that the object is inserted, which creates an activation for the
"Hello World" rule. The activation is then executed, which updates the Message object and causes the
"Good Bye" rule to activate. Finally, the "Good Bye" rule is executed. When you select an event in the
Audit View, the origin event, which is the "Activation created" event in this example, is highlighted in
green.

Figure 9.3. Hello World example Audit View

9.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND
CONFLICT RESOLUTION)

The State example decision set demonstrates how the decision engine uses forward chaining and any
changes to facts in the working memory to resolve execution conflicts for rules in a sequence. The
example focuses on resolving conflicts through salience values or through agenda groups that you can
define in rules.

The following is an overview of the State example:

Name: state

Main classes: org.drools.examples.state.StateExampleUsingSalience,
org.drools.examples.state.StateExampleUsingAgendaGroup (in src/main/java)

Module: drools-examples

Type: Java application

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

86

Rule files: org.drools.examples.state.*.drl (in src/main/resources)

Objective: Demonstrates forward chaining and conflict resolution through rule salience and
agenda groups

A forward-chaining rule system is a data-driven system that starts with a fact in the working memory of
the decision engine and reacts to changes to that fact. When objects are inserted into working memory,
any rule conditions that become true as a result of the change are scheduled for execution by the
agenda.

In contrast, a backward-chaining rule system is a goal-driven system that starts with a conclusion that
the decision engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion
or goal, it searches for subgoals, which are conclusions that complete part of the current goal. The
system continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

The decision engine in Red Hat Process Automation Manager uses both forward and backward chaining
to evaluate rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

Figure 9.4. Rule evaluation logic using forward and backward chaining

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

87

Figure 9.4. Rule evaluation logic using forward and backward chaining

In the State example, each State class has fields for its name and its current state (see the class
org.drools.examples.state.State). The following states are the two possible states for each object:

NOTRUN

FINISHED

State class

public class State {
 public static final int NOTRUN = 0;

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

88

The State example contains two versions of the same example to resolve rule execution conflicts:

A StateExampleUsingSalience version that resolves conflicts by using rule salience

A StateExampleUsingAgendaGroups version that resolves conflicts by using rule agenda
groups

Both versions of the state example involve four State objects: A, B, C, and D. Initially, their states are set
to NOTRUN, which is the default value for the constructor that the example uses.

State example using salience
The StateExampleUsingSalience version of the State example uses salience values in rules to resolve
rule execution conflicts. Rules with a higher salience value are given higher priority when ordered in the
activation queue.

The example inserts each State instance into the KIE session and then calls fireAllRules().

Salience State example execution

To execute the example, run the org.drools.examples.state.StateExampleUsingSalience class as a
Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Salience State example output in the IDE console

A finished
B finished
C finished

 public static final int FINISHED = 1;

 private final PropertyChangeSupport changes =
 new PropertyChangeSupport(this);

 private String name;
 private int state;

 ... setters and getters go here...
}

final State a = new State("A");
final State b = new State("B");
final State c = new State("C");
final State d = new State("D");

ksession.insert(a);
ksession.insert(b);
ksession.insert(c);
ksession.insert(d);

ksession.fireAllRules();

// Dispose KIE session if stateful (not required if stateless).
ksession.dispose();

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

89

D finished

Four rules are present.

First, the "Bootstrap" rule fires, setting A to state FINISHED, which then causes B to change its state
to FINISHED. Objects C and D are both dependent on B, causing a conflict that is resolved by the
salience values.

To better understand the execution flow of this example, you can load the audit log file from
target/state.log into your IDE debug view or Audit View, if available (for example, in Window → Show
View in some IDEs).

In this example, the Audit View shows that the assertion of the object A in the state NOTRUN activates
the "Bootstrap" rule, while the assertions of the other objects have no immediate effect.

Figure 9.5. Salience State example Audit View

Rule "Bootstrap" in salience State example

rule "Bootstrap"
 when
 a : State(name == "A", state == State.NOTRUN)
 then
 System.out.println(a.getName() + " finished");
 a.setState(State.FINISHED);
end

The execution of the "Bootstrap" rule changes the state of A to FINISHED, which activates rule "A to
B".

Rule "A to B" in salience State example

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

90

rule "A to B"
 when
 State(name == "A", state == State.FINISHED)
 b : State(name == "B", state == State.NOTRUN)
 then
 System.out.println(b.getName() + " finished");
 b.setState(State.FINISHED);
end

The execution of rule "A to B" changes the state of B to FINISHED, which activates both rules "B to C"
and "B to D", placing their activations onto the decision engine agenda.

Rules "B to C" and "B to D" in salience State example

rule "B to C"
 salience 10
 when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
 then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
end

rule "B to D"
 when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
 then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

From this point on, both rules may fire and, therefore, the rules are in conflict. The conflict resolution
strategy enables the decision engine agenda to decide which rule to fire. Rule "B to C" has the higher
salience value (10 versus the default salience value of 0), so it fires first, modifying object C to state
FINISHED.

The Audit View in your IDE shows the modification of the State object in the rule "A to B", which results
in two activations being in conflict.

You can also use the Agenda View in your IDE to investigate the state of the decision engine agenda. In
this example, the Agenda View shows the breakpoint in the rule "A to B" and the state of the agenda
with the two conflicting rules. Rule "B to D" fires last, modifying object D to state FINISHED.

Figure 9.6. Salience State example Agenda View

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

91

Figure 9.6. Salience State example Agenda View

State example using agenda groups
The StateExampleUsingAgendaGroups version of the State example uses agenda groups in rules to
resolve rule execution conflicts. Agenda groups enable you to partition the decision engine agenda to
provide more execution control over groups of rules. By default, all rules are in the agenda group MAIN.
You can use the agenda-group attribute to specify a different agenda group for the rule.

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

92

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

In this example, the auto-focus attribute enables rule "B to C" to fire before "B to D".

Rule "B to C" in agenda group State example

rule "B to C"
 agenda-group "B to C"
 auto-focus true
 when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
 then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("B to D").setFocus();
end

The rule "B to C" calls setFocus() on the agenda group "B to D", enabling its active rules to fire, which
then enables the rule "B to D" to fire.

Rule "B to D" in agenda group State example

rule "B to D"
 agenda-group "B to D"
 when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
 then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

To execute the example, run the org.drools.examples.state.StateExampleUsingAgendaGroups class
as a Java application in your IDE.

After the execution, the following output appears in the IDE console window (same as the salience
version of the State example):

Agenda group State example output in the IDE console

A finished
B finished
C finished
D finished

Dynamic facts in the State example
Another notable concept in this State example is the use of dynamic facts, based on objects that
implement a PropertyChangeListener object. In order for the decision engine to see and react to
changes of fact properties, the application must notify the decision engine that changes occurred. You

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

93

can configure this communication explicitly in the rules by using the modify statement, or implicitly by
specifying that the facts implement the PropertyChangeSupport interface as defined by the
JavaBeans specification.

This example demonstrates how to use the PropertyChangeSupport interface to avoid the need for
explicit modify statements in the rules. To make use of this interface, ensure that your facts implement
PropertyChangeSupport in the same way that the class org.drools.example.State implements it, and
then use the following code in the DRL rule file to configure the decision engine to listen for property
changes on those facts:

Declaring a dynamic fact

declare type State
 @propertyChangeSupport
end

When you use PropertyChangeListener objects, each setter must implement additional code for the
notification. For example, the following setter for state is in the class org.drools.examples:

Setter example with PropertyChangeSupport

9.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT
RESOLUTION)

The Fibonacci example decision set demonstrates how the decision engine uses recursion to resolve
execution conflicts for rules in a sequence. The example focuses on resolving conflicts through salience
values that you can define in rules.

The following is an overview of the Fibonacci example:

Name: fibonacci

Main class: org.drools.examples.fibonacci.FibonacciExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.fibonacci.Fibonacci.drl (in src/main/resources)

Objective: Demonstrates recursion and conflict resolution through rule salience

The Fibonacci Numbers form a sequence starting with 0 and 1. The next Fibonacci number is obtained by
adding the two preceding Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946, and so on.

The Fibonacci example uses the single fact class Fibonacci with the following two fields:

public void setState(final int newState) {
 int oldState = this.state;
 this.state = newState;
 this.changes.firePropertyChange("state",
 oldState,
 newState);
}

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

94

sequence

value

The sequence field indicates the position of the object in the Fibonacci number sequence. The value
field shows the value of that Fibonacci object for that sequence position, where -1 indicates a value that
still needs to be computed.

Fibonacci class

To execute the example, run the org.drools.examples.fibonacci.FibonacciExample class as a Java
application in your IDE.

After the execution, the following output appears in the IDE console window:

Fibonacci example output in the IDE console

recurse for 50
recurse for 49
recurse for 48
recurse for 47
...
recurse for 5
recurse for 4
recurse for 3
recurse for 2
1 == 1
2 == 1
3 == 2
4 == 3
5 == 5
6 == 8
...
47 == 2971215073
48 == 4807526976
49 == 7778742049
50 == 12586269025

To achieve this behavior in Java, the example inserts a single Fibonacci object with a sequence field of
50. The example then uses a recursive rule to insert the other 49 Fibonacci objects.

Instead of implementing the PropertyChangeSupport interface to use dynamic facts, this example

public static class Fibonacci {
 private int sequence;
 private long value;

 public Fibonacci(final int sequence) {
 this.sequence = sequence;
 this.value = -1;
 }

 ... setters and getters go here...
}

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

95

Instead of implementing the PropertyChangeSupport interface to use dynamic facts, this example
uses the MVEL dialect modify keyword to enable a block setter action and notify the decision engine of
changes.

Fibonacci example execution

This example uses the following three rules:

"Recurse"

"Bootstrap"

"Calculate"

The rule "Recurse" matches each asserted Fibonacci object with a value of -1, creating and asserting a
new Fibonacci object with a sequence of one less than the currently matched object. Each time a
Fibonacci object is added while the one with a sequence field equal to 1 does not exist, the rule re-
matches and fires again. The not conditional element is used to stop the rule matching once you have all
50 Fibonacci objects in memory. The rule also has a salience value because you need to have all 50
Fibonacci objects asserted before you execute the "Bootstrap" rule.

Rule "Recurse"

rule "Recurse"
 salience 10
 when
 f : Fibonacci (value == -1)
 not (Fibonacci (sequence == 1))
 then
 insert(new Fibonacci(f.sequence - 1));
 System.out.println("recurse for " + f.sequence);
end

To better understand the execution flow of this example, you can load the audit log file from
target/fibonacci.log into your IDE debug view or Audit View, if available (for example, in Window →
Show View in some IDEs).

In this example, the Audit View shows the original assertion of the Fibonacci object with a sequence
field of 50, done from Java code. From there on, the Audit View shows the continual recursion of the
rule, where each asserted Fibonacci object causes the "Recurse" rule to become activated and to fire
again.

Figure 9.7. Rule "Recurse" in Audit View

ksession.insert(new Fibonacci(50));
ksession.fireAllRules();

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

96

Figure 9.7. Rule "Recurse" in Audit View

When a Fibonacci object with a sequence field of 2 is asserted, the "Bootstrap" rule is matched and
activated along with the "Recurse" rule. Notice the multiple restrictions on field sequence that test for
equality with 1 or 2:

Rule "Bootstrap"

rule "Bootstrap"
 when
 f : Fibonacci(sequence == 1 || == 2, value == -1) // multi-restriction
 then
 modify (f){ value = 1 };
 System.out.println(f.sequence + " == " + f.value);
end

You can also use the Agenda View in your IDE to investigate the state of the decision engine agenda.
The "Bootstrap" rule does not fire yet because the "Recurse" rule has a higher salience value.

Figure 9.8. Rules "Recurse" and "Bootstrap" in Agenda View 1

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

97

Figure 9.8. Rules "Recurse" and "Bootstrap" in Agenda View 1

When a Fibonacci object with a sequence of 1 is asserted, the "Bootstrap" rule is matched again,
causing two activations for this rule. The "Recurse" rule does not match and activate because the not
conditional element stops the rule matching as soon as a Fibonacci object with a sequence of 1 exists.

Figure 9.9. Rules "Recurse" and "Bootstrap" in Agenda View 2

The "Bootstrap" rule sets the objects with a sequence of 1 and 2 to a value of 1. Now that you have

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

98

The "Bootstrap" rule sets the objects with a sequence of 1 and 2 to a value of 1. Now that you have
two Fibonacci objects with values not equal to -1, the "Calculate" rule is able to match.

At this point in the example, nearly 50 Fibonacci objects exist in the working memory. You need to
select a suitable triple to calculate each of their values in turn. If you use three Fibonacci patterns in a
rule without field constraints to confine the possible cross products, the result would be 50x49x48
possible combinations, leading to about 125,000 possible rule firings, most of them incorrect.

The "Calculate" rule uses field constraints to evaluate the three Fibonacci patterns in the correct order.
This technique is called cross-product matching.

The first pattern finds any Fibonacci object with a value != -1 and binds both the pattern and the field.
The second Fibonacci object does the same thing, but adds an additional field constraint to ensure that
its sequence is greater by one than the Fibonacci object bound to f1. When this rule fires for the first
time, you know that only sequences 1 and 2 have values of 1, and the two constraints ensure that f1
references sequence 1 and that f2 references sequence 2.

The final pattern finds the Fibonacci object with a value equal to -1 and with a sequence one greater
than f2.

At this point in the example, three Fibonacci objects are correctly selected from the available cross
products, and you can calculate the value for the third Fibonacci object that is bound to f3.

Rule "Calculate"

rule "Calculate"
 when
 // Bind f1 and s1.
 f1 : Fibonacci(s1 : sequence, value != -1)
 // Bind f2 and v2, refer to bound variable s1.
 f2 : Fibonacci(sequence == (s1 + 1), v2 : value != -1)
 // Bind f3 and s3, alternative reference of f2.sequence.
 f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)
 then
 // Note the various referencing techniques.
 modify (f3) { value = f1.value + v2 };
 System.out.println(s3 + " == " + f3.value);
end

The modify statement updates the value of the Fibonacci object bound to f3. This means that you now
have another new Fibonacci object with a value not equal to -1, which allows the "Calculate" rule to re-
match and calculate the next Fibonacci number.

The debug view or Audit View of your IDE shows how the firing of the last "Bootstrap" rule modifies
the Fibonacci object, enabling the "Calculate" rule to match, which then modifies another Fibonacci
object that enables the "Calculate" rule to match again. This process continues until the value is set for
all Fibonacci objects.

Figure 9.10. Rules in Audit View

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

99

Figure 9.10. Rules in Audit View

9.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)

The Pricing example decision set demonstrates how to use a spreadsheet decision table for calculating
the retail cost of an insurance policy in tabular format instead of directly in a DRL file.

The following is an overview of the Pricing example:

Name: decisiontable

Main class: org.drools.examples.decisiontable.PricingRuleDTExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.decisiontable.ExamplePolicyPricing.xls (in
src/main/resources)

Objective: Demonstrates use of spreadsheet decision tables to define rules

Spreadsheet decision tables are XLS or XLSX spreadsheets that contain business rules defined in a
tabular format. You can include spreadsheet decision tables with standalone Red Hat Process
Automation Manager projects or upload them to projects in Business Central. Each row in a decision
table is a rule, and each column is a condition, an action, or another rule attribute. After you create and
upload your decision tables into your Red Hat Process Automation Manager project, the rules you
defined are compiled into Drools Rule Language (DRL) rules as with all other rule assets.

The purpose of the Pricing example is to provide a set of business rules to calculate the base price and a

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

100

The purpose of the Pricing example is to provide a set of business rules to calculate the base price and a
discount for a car driver applying for a specific type of insurance policy. The driver’s age and history and
the policy type all contribute to calculate the basic premium, and additional rules calculate potential
discounts for which the driver might be eligible.

To execute the example, run the org.drools.examples.decisiontable.PricingRuleDTExample class as
a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Cheapest possible
BASE PRICE IS: 120
DISCOUNT IS: 20

The code to execute the example follows the typical execution pattern: the rules are loaded, the facts
are inserted, and a stateless KIE session is created. The difference in this example is that the rules are
defined in an ExamplePolicyPricing.xls file instead of a DRL file or other source. The spreadsheet file
is loaded into the decision engine using templates and DRL rules.

Spreadsheet decision table setup
The ExamplePolicyPricing.xls spreadsheet contains two decision tables in the first tab:

Base pricing rules

Promotional discount rules

As the example spreadsheet demonstrates, you can use only the first tab of a spreadsheet to create
decision tables, but multiple tables can be within a single tab. Decision tables do not necessarily follow
top-down logic, but are more of a means to capture data resulting in rules. The evaluation of the rules is
not necessarily in the given order, because all of the normal mechanics of the decision engine still apply.
This is why you can have multiple decision tables in the same tab of a spreadsheet.

The decision tables are executed through the corresponding rule template files BasePricing.drt and
PromotionalPricing.drt. These template files reference the decision tables through their template
parameter and directly reference the various headers for the conditions and actions in the decision
tables.

BasePricing.drt rule template file

template header
age[]
profile
priorClaims
policyType
base
reason

package org.drools.examples.decisiontable;

template "Pricing bracket"
age
policyType
base

rule "Pricing bracket_@{row.rowNumber}"
 when

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

101

 Driver(age >= @{age0}, age <= @{age1}
 , priorClaims == "@{priorClaims}"
 , locationRiskProfile == "@{profile}"
)
 policy: Policy(type == "@{policyType}")
 then
 policy.setBasePrice(@{base});
 System.out.println("@{reason}");
end
end template

PromotionalPricing.drt rule template file

template header
age[]
priorClaims
policyType
discount

package org.drools.examples.decisiontable;

template "discounts"
age
priorClaims
policyType
discount

rule "Discounts_@{row.rowNumber}"
 when
 Driver(age >= @{age0}, age <= @{age1}, priorClaims == "@{priorClaims}")
 policy: Policy(type == "@{policyType}")
 then
 policy.applyDiscount(@{discount});
end
end template

The rules are executed through the kmodule.xml reference of the KIE Session
DTableWithTemplateKB, which specifically mentions the ExamplePolicyPricing.xls spreadsheet and
is required for successful execution of the rules. This execution method enables you to execute the rules
as a standalone unit (as in this example) or to include the rules in a packaged knowledge JAR (KJAR)
file, so that the spreadsheet is packaged along with the rules for execution.

The following section of the kmodule.xml file is required for the execution of the rules and spreadsheet
to work successfully:

 <kbase name="DecisionTableKB" packages="org.drools.examples.decisiontable">
 <ksession name="DecisionTableKS" type="stateless"/>
 </kbase>

 <kbase name="DTableWithTemplateKB" packages="org.drools.examples.decisiontable-template">
 <ruleTemplate dtable="org/drools/examples/decisiontable-
template/ExamplePolicyPricingTemplateData.xls"
 template="org/drools/examples/decisiontable-template/BasePricing.drt"
 row="3" col="3"/>
 <ruleTemplate dtable="org/drools/examples/decisiontable-

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

102

As an alternative to executing the decision tables using rule template files, you can use the
DecisionTableConfiguration object and specify an input spreadsheet as the input type, such as
DecisionTableInputType.xls:

The Pricing example uses two fact types:

Driver

Policy.

The example sets the default values for both facts in their respective Java classes Driver.java and
Policy.java. The Driver is 30 years old, has had no prior claims, and currently has a risk profile of LOW.
The Policy that the driver is applying for is COMPREHENSIVE.

In any decision table, each row is considered a different rule and each column is a condition or an action.
Each row is evaluated in a decision table unless the agenda is cleared upon execution.

Decision table spreadsheets (XLS or XLSX) require two key areas that define rule data:

A RuleSet area

A RuleTable area

The RuleSet area of the spreadsheet defines elements that you want to apply globally to all rules in the
same package (not only the spreadsheet), such as a rule set name or universal rule attributes. The
RuleTable area defines the actual rules (rows) and the conditions, actions, and other rule attributes
(columns) that constitute that rule table within the specified rule set. A decision table spreadsheet can
contain multiple RuleTable areas, but only one RuleSet area.

Figure 9.11. Decision table configuration

template/ExamplePolicyPricingTemplateData.xls"
 template="org/drools/examples/decisiontable-template/PromotionalPricing.drt"
 row="18" col="3"/>
 <ksession name="DTableWithTemplateKS"/>
 </kbase>

DecisionTableConfiguration dtableconfiguration =
 KnowledgeBuilderFactory.newDecisionTableConfiguration();
 dtableconfiguration.setInputType(DecisionTableInputType.XLS);

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 Resource xlsRes = ResourceFactory.newClassPathResource("ExamplePolicyPricing.xls",
 getClass());
 kbuilder.add(xlsRes,
 ResourceType.DTABLE,
 dtableconfiguration);

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

103

Figure 9.11. Decision table configuration

The RuleTable area also defines the objects to which the rule attributes apply, in this case Driver and
Policy, followed by constraints on the objects. For example, the Driver object constraint that defines
the Age Bracket column is age >= $1, age <= $2, where the comma-separated range is defined in the
table column values, such as 18,24.

Base pricing rules
The Base pricing rules decision table in the Pricing example evaluates the age, risk profile, number of
claims, and policy type of the driver and produces the base price of the policy based on these
conditions.

Figure 9.12. Base price calculation

The Driver attributes are defined in the following table columns:

Age Bracket: The age bracket has a definition for the condition age >=$1, age <=$2, which
defines the condition boundaries for the driver’s age. This condition column highlights the use of
$1 and $2, which is comma delimited in the spreadsheet. You can write these values as 18,24 or
18, 24 and both formats work in the execution of the business rules.

Location risk profile: The risk profile is a string that the example program passes always as

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

104

Location risk profile: The risk profile is a string that the example program passes always as
LOW but can be changed to reflect MED or HIGH.

Number of prior claims: The number of claims is defined as an integer that the condition
column must exactly equal to trigger the action. The value is not a range, only exact matches.

The Policy of the decision table is used in both the conditions and the actions of the rule and has
attributes defined in the following table columns:

Policy type applying for: The policy type is a condition that is passed as a string that defines
the type of coverage: COMPREHENSIVE, FIRE_THEFT, or THIRD_PARTY.

Base $ AUD: The basePrice is defined as an ACTION that sets the price through the constraint
policy.setBasePrice($param); based on the spreadsheet cells corresponding to this value.
When you execute the corresponding DRL rule for this decision table, the then portion of the
rule executes this action statement on the true conditions matching the facts and sets the base
price to the corresponding value.

Record Reason: When the rule successfully executes, this action generates an output message
to the System.out console reflecting which rule fired. This is later captured in the application
and printed.

The example also uses the first column on the left to categorize rules. This column is for annotation only
and has no affect on rule execution.

Promotional discount rules
The Promotional discount rules decision table in the Pricing example evaluates the age, number of
prior claims, and policy type of the driver to generate a potential discount on the price of the insurance
policy.

Figure 9.13. Discount calculation

This decision table contains the conditions for the discount for which the driver might be eligible. Similar
to the base price calculation, this table evaluates the Age, Number of prior claims of the driver, and
the Policy type applying for to determine a Discount % rate to be applied. For example, if the driver is
30 years old, has no prior claims, and is applying for a COMPREHENSIVE policy, the driver is given a
discount of 20 percent.

9.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL
VARIABLES, CALLBACKS, AND GUI INTEGRATION)

The Pet Store example decision set demonstrates how to use agenda groups and global variables in
rules and how to integrate Red Hat Process Automation Manager rules with a graphical user interface
(GUI), in this case a Swing-based desktop application. The example also demonstrates how to use
callbacks to interact with a running decision engine to update the GUI based on changes in the working
memory at run time.

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

105

The following is an overview of the Pet Store example:

Name: petstore

Main class: org.drools.examples.petstore.PetStoreExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.petstore.PetStore.drl (in src/main/resources)

Objective: Demonstrates rule agenda groups, global variables, callbacks, and GUI integration

In the Pet Store example, the sample PetStoreExample.java class defines the following principal
classes (in addition to several classes to handle Swing events):

Petstore contains the main() method.

PetStoreUI is responsible for creating and displaying the Swing-based GUI. This class contains
several smaller classes, mainly for responding to various GUI events, such as user mouse clicks.

TableModel holds the table data. This class is essentially a JavaBean that extends the Swing
class AbstractTableModel.

CheckoutCallback enables the GUI to interact with the rules.

Ordershow keeps the items that you want to buy.

Purchase stores details of the order and the products that you are buying.

Product is a JavaBean containing details of the product available for purchase and its price.

Much of the Java code in this example is either plain JavaBean or Swing based. For more information
about Swing components, see the Java tutorial on Creating a GUI with JFC/Swing .

Rule execution behavior in the Pet Store example
Unlike other example decision sets where the facts are asserted and fired immediately, the Pet Store
example does not execute the rules until more facts are gathered based on user interaction. The
example executes rules through a PetStoreUI object, created by a constructor, that accepts the Vector
object stock for collecting the products. The example then uses an instance of the CheckoutCallback
class containing the rule base that was previously loaded.

Pet Store KIE container and fact execution setup

// KieServices is the factory for all KIE services.
KieServices ks = KieServices.Factory.get();

// Create a KIE container on the class path.
KieContainer kc = ks.getKieClasspathContainer();

// Create the stock.
Vector<Product> stock = new Vector<Product>();
stock.add(new Product("Gold Fish", 5));
stock.add(new Product("Fish Tank", 25));
stock.add(new Product("Fish Food", 2));

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

106

https://docs.oracle.com/javase/tutorial/uiswing/

The Java code that fires the rules is in the CheckoutCallBack.checkout() method. This method is
triggered when the user clicks Checkout in the UI.

Rule execution from CheckoutCallBack.checkout()

The example code passes two elements into the CheckoutCallBack.checkout() method. One element
is the handle for the JFrame Swing component surrounding the output text frame, found at the bottom
of the GUI. The second element is a list of order items, which comes from the TableModel that stores
the information from the Table area at the upper-right section of the GUI.

The for loop transforms the list of order items coming from the GUI into the Order JavaBean, also
contained in the file PetStoreExample.java.

In this case, the rule is firing in a stateless KIE session because all of the data is stored in Swing
components and is not executed until the user clicks Checkout in the UI. Each time the user clicks
Checkout, the content of the list is moved from the Swing TableModel into the KIE session working
memory and is then executed with the ksession.fireAllRules() method.

Within this code, there are nine calls to KieSession. The first of these creates a new KieSession from

// A callback is responsible for populating the working memory and for firing all rules.
PetStoreUI ui = new PetStoreUI(stock,
 new CheckoutCallback(kc));
ui.createAndShowGUI();

public String checkout(JFrame frame, List<Product> items) {
 Order order = new Order();

 // Iterate through list and add to cart.
 for (Product p: items) {
 order.addItem(new Purchase(order, p));
 }

 // Add the JFrame to the ApplicationData to allow for user interaction.

 // From the KIE container, a KIE session is created based on
 // its definition and configuration in the META-INF/kmodule.xml file.
 KieSession ksession = kcontainer.newKieSession("PetStoreKS");

 ksession.setGlobal("frame", frame);
 ksession.setGlobal("textArea", this.output);

 ksession.insert(new Product("Gold Fish", 5));
 ksession.insert(new Product("Fish Tank", 25));
 ksession.insert(new Product("Fish Food", 2));

 ksession.insert(new Product("Fish Food Sample", 0));

 ksession.insert(order);

 // Execute rules.
 ksession.fireAllRules();

 // Return the state of the cart
 return order.toString();
}

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

107

Within this code, there are nine calls to KieSession. The first of these creates a new KieSession from
the KieContainer (the example passed in this KieContainer from the CheckoutCallBack class in the
main() method). The next two calls pass in the two objects that hold the global variables in the rules: the
Swing text area and the Swing frame used for writing messages. More inserts put information on
products into the KieSession, as well as the order list. The final call is the standard fireAllRules().

Pet Store rule file imports, global variables, and Java functions
The PetStore.drl file contains the standard package and import statements to make various Java
classes available to the rules. The rule file also includes global variables to be used within the rules,
defined as frame and textArea. The global variables hold references to the Swing components JFrame
and JTextArea components that were previously passed on by the Java code that called the
setGlobal() method. Unlike standard variables in rules, which expire as soon as the rule has fired, global
variables retain their value for the lifetime of the KIE session. This means the contents of these global
variables are available for evaluation on all subsequent rules.

PetStore.drl package, imports, and global variables

The PetStore.drl file also contains two functions that the rules in the file use:

PetStore.drl Java functions

package org.drools.examples;

import org.kie.api.runtime.KieRuntime;
import org.drools.examples.petstore.PetStoreExample.Order;
import org.drools.examples.petstore.PetStoreExample.Purchase;
import org.drools.examples.petstore.PetStoreExample.Product;
import java.util.ArrayList;
import javax.swing.JOptionPane;

import javax.swing.JFrame;

global JFrame frame
global javax.swing.JTextArea textArea

function void doCheckout(JFrame frame, KieRuntime krt) {
 Object[] options = {"Yes",
 "No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to checkout?",
 "",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,
 options,
 options[0]);

 if (n == 0) {
 krt.getAgenda().getAgendaGroup("checkout").setFocus();
 }
}

function boolean requireTank(JFrame frame, KieRuntime krt, Order order, Product fishTank, int total)
{

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

108

The two functions perform the following actions:

doCheckout() displays a dialog that asks the user if she or he wants to check out. If the user
does, the focus is set to the checkout agenda group, enabling rules in that group to
(potentially) fire.

requireTank() displays a dialog that asks the user if she or he wants to buy a fish tank. If the user
does, a new fish tank Product is added to the order list in the working memory.

NOTE

For this example, all rules and functions are within the same rule file for efficiency. In a
production environment, you typically separate the rules and functions in different files or
build a static Java method and import the files using the import function, such as import
function my.package.name.hello.

Pet Store rules with agenda groups
Most of the rules in the Pet Store example use agenda groups to control rule execution. Agenda groups
allow you to partition the decision engine agenda to provide more execution control over groups of
rules. By default, all rules are in the agenda group MAIN. You can use the agenda-group attribute to
specify a different agenda group for the rule.

Initially, a working memory has its focus on the agenda group MAIN. Rules in an agenda group only fire
when the group receives the focus. You can set the focus either by using the method setFocus() or the
rule attribute auto-focus. The auto-focus attribute enables the rule to be given a focus automatically
for its agenda group when the rule is matched and activated.

The Pet Store example uses the following agenda groups for rules:

 Object[] options = {"Yes",
 "No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to buy a tank for your " + total + " fish?",
 "Purchase Suggestion",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,
 options,
 options[0]);

 System.out.print("SUGGESTION: Would you like to buy a tank for your "
 + total + " fish? - ");

 if (n == 0) {
 Purchase purchase = new Purchase(order, fishTank);
 krt.insert(purchase);
 order.addItem(purchase);
 System.out.println("Yes");
 } else {
 System.out.println("No");
 }
 return true;
}

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

109

"init"

"evaluate"

"show items"

"checkout"

For example, the sample rule "Explode Cart" uses the "init" agenda group to ensure that it has the
option to fire and insert shopping cart items into the KIE session working memory:

Rule "Explode Cart"

// Insert each item in the shopping cart into the working memory.
rule "Explode Cart"
 agenda-group "init"
 auto-focus true
 salience 10
 when
 $order : Order(grossTotal == -1)
 $item : Purchase() from $order.items
 then
 insert($item);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("show items").setFocus();
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("evaluate").setFocus();
end

This rule matches against all orders that do not yet have their grossTotal calculated. The execution
loops for each purchase item in that order.

The rule uses the following features related to its agenda group:

agenda-group "init" defines the name of the agenda group. In this case, only one rule is in the
group. However, neither the Java code nor a rule consequence sets the focus to this group, and
therefore it relies on the auto-focus attribute for its chance to fire.

auto-focus true ensures that this rule, while being the only rule in the agenda group, gets a
chance to fire when fireAllRules() is called from the Java code.

kcontext… .setFocus() sets the focus to the "show items" and "evaluate" agenda groups,
enabling their rules to fire. In practice, you loop through all items in the order, insert them into
memory, and then fire the other rules after each insertion.

The "show items" agenda group contains only one rule, "Show Items". For each purchase in the order
currently in the KIE session working memory, the rule logs details to the text area at the bottom of the
GUI, based on the textArea variable defined in the rule file.

Rule "Show Items"

rule "Show Items"
 agenda-group "show items"
 when
 $order : Order()
 $p : Purchase(order == $order)

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

110

1

2

3

4

 then
 textArea.append($p.product + "\n");
end

The "evaluate" agenda group also gains focus from the "Explode Cart" rule. This agenda group
contains two rules, "Free Fish Food Sample" and "Suggest Tank", which are executed in that order.

Rule "Free Fish Food Sample"

// Free fish food sample when users buy a goldfish if they did not already buy
// fish food and do not already have a fish food sample.
rule "Free Fish Food Sample"
 agenda-group "evaluate" 1
 when
 $order : Order()
 not ($p : Product(name == "Fish Food") && Purchase(product == $p)) 2
 not ($p : Product(name == "Fish Food Sample") && Purchase(product == $p)) 3
 exists ($p : Product(name == "Gold Fish") && Purchase(product == $p)) 4
 $fishFoodSample : Product(name == "Fish Food Sample");
 then
 System.out.println("Adding free Fish Food Sample to cart");
 purchase = new Purchase($order, $fishFoodSample);
 insert(purchase);
 $order.addItem(purchase);
end

The rule "Free Fish Food Sample" fires only if all of the following conditions are true:

The agenda group "evaluate" is being evaluated in the rules execution.

User does not already have fish food.

User does not already have a free fish food sample.

User has a goldfish in the order.

If the order facts meet all of these requirements, then a new product is created (Fish Food Sample) and
is added to the order in working memory.

Rule "Suggest Tank"

// Suggest a fish tank if users buy more than five goldfish and
// do not already have a tank.
rule "Suggest Tank"
 agenda-group "evaluate"
 when
 $order : Order()
 not ($p : Product(name == "Fish Tank") && Purchase(product == $p)) 1
 ArrayList($total : size > 5) from collect(Purchase(product.name == "Gold Fish")) 2
 $fishTank : Product(name == "Fish Tank")
 then
 requireTank(frame, kcontext.getKieRuntime(), $order, $fishTank, $total);
end

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

111

1

2

The rule "Suggest Tank" fires only if the following conditions are true:

User does not have a fish tank in the order.

User has more than five fish in the order.

When the rule fires, it calls the requireTank() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to buy a fish tank. If the user does, a new fish tank Product is
added to the order list in the working memory. When the rule calls the requireTank() function, the rule
passes the frame global variable so that the function has a handle for the Swing GUI.

The "do checkout" rule in the Pet Store example has no agenda group and no when conditions, so the
rule is always executed and considered part of the default MAIN agenda group.

Rule "do checkout"

rule "do checkout"
 when
 then
 doCheckout(frame, kcontext.getKieRuntime());
end

When the rule fires, it calls the doCheckout() function defined in the rule file. This function displays a
dialog that asks the user if she or he wants to check out. If the user does, the focus is set to the
checkout agenda group, enabling rules in that group to (potentially) fire. When the rule calls the
doCheckout() function, the rule passes the frame global variable so that the function has a handle for
the Swing GUI.

NOTE

This example also demonstrates a troubleshooting technique if results are not executing
as you expect: You can remove the conditions from the when statement of a rule and
test the action in the then statement to verify that the action is performed correctly.

The "checkout" agenda group contains three rules for processing the order checkout and applying any
discounts: "Gross Total", "Apply 5% Discount", and "Apply 10% Discount".

Rules "Gross Total", "Apply 5% Discount", and "Apply 10% Discount"

rule "Gross Total"
 agenda-group "checkout"
 when
 $order : Order(grossTotal == -1)
 Number(total : doubleValue) from accumulate(Purchase($price : product.price),
 sum($price))
 then
 modify($order) { grossTotal = total }
 textArea.append("\ngross total=" + total + "\n");
end

rule "Apply 5% Discount"
 agenda-group "checkout"
 when
 $order : Order(grossTotal >= 10 && < 20)

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

112

 then
 $order.discountedTotal = $order.grossTotal * 0.95;
 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

rule "Apply 10% Discount"
 agenda-group "checkout"
 when
 $order : Order(grossTotal >= 20)
 then
 $order.discountedTotal = $order.grossTotal * 0.90;
 textArea.append("discountedTotal total=" + $order.discountedTotal + "\n");
end

If the user has not already calculated the gross total, the Gross Total accumulates the product prices
into a total, puts this total into the KIE session, and displays it through the Swing JTextArea using the
textArea global variable.

If the gross total is between 10 and 20 (currency units), the "Apply 5% Discount" rule calculates the
discounted total, adds it to the KIE session, and displays it in the text area.

If the gross total is not less than 20, the "Apply 10% Discount" rule calculates the discounted total,
adds it to the KIE session, and displays it in the text area.

Pet Store example execution
Similar to other Red Hat Process Automation Manager decision examples, you execute the Pet Store
example by running the org.drools.examples.petstore.PetStoreExample class as a Java application in
your IDE.

When you execute the Pet Store example, the Pet Store Demo GUI window appears. This window
displays a list of available products (upper left), an empty list of selected products (upper right),
Checkout and Reset buttons (middle), and an empty system messages area (bottom).

Figure 9.14. Pet Store example GUI after launch

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

113

Figure 9.14. Pet Store example GUI after launch

The following events occurred in this example to establish this execution behavior:

1. The main() method has run and loaded the rule base but has not yet fired the rules. So far, this is
the only code in connection with rules that has been run.

2. A new PetStoreUI object has been created and given a handle for the rule base, for later use.

3. Various Swing components have performed their functions, and the initial UI screen is displayed
and waits for user input.

You can click various products from the list to explore the UI setup:

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

114

Figure 9.15. Explore the Pet Store example GUI

No rules code has been fired yet. The UI uses Swing code to detect user mouse clicks and add selected
products to the TableModel object for display in the upper-right corner of the UI. This example
illustrates the Model-View-Controller design pattern.

When you click Checkout, the rules are then fired in the following way:

1. Method CheckOutCallBack.checkout() is called (eventually) by the Swing class waiting for a
user to click Checkout. This inserts the data from the TableModel object (upper-right corner of
the UI) into the KIE session working memory. The method then fires the rules.

2. The "Explode Cart" rule is the first to fire, with the auto-focus attribute set to true. The rule

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

115

2. The "Explode Cart" rule is the first to fire, with the auto-focus attribute set to true. The rule
loops through all of the products in the cart, ensures that the products are in the working
memory, and then gives the "show Items" and "evaluate" agenda groups the option to fire.
The rules in these groups add the contents of the cart to the text area (bottom of the UI),
evaluate if you are eligible for free fish food, and determine whether to ask if you want to buy a
fish tank.

Figure 9.16. Fish tank qualification

3. The "do checkout" rule is the next to fire because no other agenda group currently has focus
and because it is part of the default MAIN agenda group. This rule always calls the
doCheckout() function, which asks you if you want to check out.

4. The doCheckout() function sets the focus to the "checkout" agenda group, giving the rules in
that group the option to fire.

5. The rules in the "checkout" agenda group display the contents of the cart and apply the
appropriate discount.

6. Swing then waits for user input to either select more products (and cause the rules to fire again)
or to close the UI.

Figure 9.17. Pet Store example GUI after all rules have fired

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

116

Figure 9.17. Pet Store example GUI after all rules have fired

You can add more System.out calls to demonstrate this flow of events in your IDE console:

System.out output in the IDE console

Adding free Fish Food Sample to cart
SUGGESTION: Would you like to buy a tank for your 6 fish? - Yes

9.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH
MAINTENANCE AND SALIENCE)

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

117

The Honest Politician example decision set demonstrates the concept of truth maintenance with logical
insertions and the use of salience in rules.

The following is an overview of the Honest Politician example:

Name: honestpolitician

Main class: org.drools.examples.honestpolitician.HonestPoliticianExample (in
src/main/java)

Module: drools-examples

Type: Java application

Rule file: org.drools.examples.honestpolitician.HonestPolitician.drl (in
src/main/resources)

Objective: Demonstrates the concept of truth maintenance based on the logical insertion of
facts and the use of salience in rules

The basic premise of the Honest Politician example is that an object can only exist while a statement is
true. A rule consequence can logically insert an object with the insertLogical() method. This means the
object remains in the KIE session working memory as long as the rule that logically inserted it remains
true. When the rule is no longer true, the object is automatically retracted.

In this example, rule execution causes a group of politicians to change from being honest to being
dishonest as a result of a corrupt corporation. As each politician is evaluated, they start out with their
honesty attribute being set to true, but a rule fires that makes the politicians no longer honest. As they
switch their state from being honest to dishonest, they are then removed from the working memory. The
rule salience notifies the decision engine how to prioritize any rules that have a salience defined for
them, otherwise utilizing the default salience value of 0. Rules with a higher salience value are given
higher priority when ordered in the activation queue.

Politician and Hope classes
The sample class Politician in the example is configured for an honest politician. The Politician class is
made up of a String item name and a Boolean item honest:

Politician class

The Hope class determines if a Hope object exists. This class has no meaningful members, but is present
in the working memory as long as society has hope.

Hope class

public class Politician {
 private String name;
 private boolean honest;
 ...
}

public class Hope {

 public Hope() {

 }
 }

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

118

Rule definitions for politician honesty
In the Honest Politician example, when at least one honest politician exists in the working memory, the
"We have an honest Politician" rule logically inserts a new Hope object. As soon as all politicians
become dishonest, the Hope object is automatically retracted. This rule has a salience attribute with a
value of 10 to ensure that it fires before any other rule, because at that stage the "Hope is Dead" rule
is true.

Rule "We have an honest politician"

rule "We have an honest Politician"
 salience 10
 when
 exists(Politician(honest == true))
 then
 insertLogical(new Hope());
end

As soon as a Hope object exists, the "Hope Lives" rule matches and fires. This rule also has a salience
value of 10 so that it takes priority over the "Corrupt the Honest" rule.

Rule "Hope Lives"

rule "Hope Lives"
 salience 10
 when
 exists(Hope())
 then
 System.out.println("Hurrah!!! Democracy Lives");
end

Initially, four honest politicians exist so this rule has four activations, all in conflict. Each rule fires in turn,
corrupting each politician so that they are no longer honest. When all four politicians have been
corrupted, no politicians have the property honest == true. The rule "We have an honest Politician" is
no longer true and the object it logically inserted (due to the last execution of new Hope()) is
automatically retracted.

Rule "Corrupt the Honest"

rule "Corrupt the Honest"
 when
 politician : Politician(honest == true)
 exists(Hope())
 then
 System.out.println("I'm an evil corporation and I have corrupted " + politician.getName());
 modify (politician) { honest = false };
end

With the Hope object automatically retracted through the truth maintenance system, the conditional
element not applied to Hope is no longer true so that the "Hope is Dead" rule matches and fires.

Rule "Hope is Dead"

rule "Hope is Dead"
 when

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

119

 not(Hope())
 then
 System.out.println("We are all Doomed!!! Democracy is Dead");
end

Example execution and audit trail
In the HonestPoliticianExample.java class, the four politicians with the honest state set to true are
inserted for evaluation against the defined business rules:

HonestPoliticianExample.java class execution

To execute the example, run the org.drools.examples.honestpolitician.HonestPoliticianExample
class as a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Execution output in the IDE console

Hurrah!!! Democracy Lives
I'm an evil corporation and I have corrupted President of Umpa Lumpa
I'm an evil corporation and I have corrupted Prime Minster of Cheeseland
I'm an evil corporation and I have corrupted Tsar of Pringapopaloo
I'm an evil corporation and I have corrupted Omnipotence Om
We are all Doomed!!! Democracy is Dead

The output shows that, while there is at least one honest politician, democracy lives. However, as each
politician is corrupted by some corporation, all politicians become dishonest, and democracy is dead.

To better understand the execution flow of this example, you can modify the
HonestPoliticianExample.java class to include a DebugRuleRuntimeEventListener listener and an
audit logger to view execution details:

HonestPoliticianExample.java class with an audit logger

public static void execute(KieContainer kc) {
 KieSession ksession = kc.newKieSession("HonestPoliticianKS");

 final Politician p1 = new Politician("President of Umpa Lumpa", true);
 final Politician p2 = new Politician("Prime Minster of Cheeseland", true);
 final Politician p3 = new Politician("Tsar of Pringapopaloo", true);
 final Politician p4 = new Politician("Omnipotence Om", true);

 ksession.insert(p1);
 ksession.insert(p2);
 ksession.insert(p3);
 ksession.insert(p4);

 ksession.fireAllRules();

 ksession.dispose();
 }

package org.drools.examples.honestpolitician;

import org.kie.api.KieServices;

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

120

1

2

3

4

Adds to your imports the packages that handle the DebugAgendaEventListener and
DebugRuleRuntimeEventListener

Creates a KieServices Factory and a ks element to produce the logs because this audit log is not
available at the KieContainer level

Modifies the execute method to use both KieServices and KieContainer

Modifies the execute method to pass in KieServices in addition to the KieContainer

import org.kie.api.event.rule.DebugAgendaEventListener; 1
import org.kie.api.event.rule.DebugRuleRuntimeEventListener;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public class HonestPoliticianExample {

 /**
 * @param args
 */
 public static void main(final String[] args) {
 KieServices ks = KieServices.Factory.get(); 2
 //ks = KieServices.Factory.get();
 KieContainer kc = KieServices.Factory.get().getKieClasspathContainer();
 System.out.println(kc.verify().getMessages().toString());
 //execute(kc);
 execute(ks, kc); 3
 }

 public static void execute(KieServices ks, KieContainer kc) { 4
 KieSession ksession = kc.newKieSession("HonestPoliticianKS");

 final Politician p1 = new Politician("President of Umpa Lumpa", true);
 final Politician p2 = new Politician("Prime Minster of Cheeseland", true);
 final Politician p3 = new Politician("Tsar of Pringapopaloo", true);
 final Politician p4 = new Politician("Omnipotence Om", true);

 ksession.insert(p1);
 ksession.insert(p2);
 ksession.insert(p3);
 ksession.insert(p4);

 // The application can also setup listeners 5
 ksession.addEventListener(new DebugAgendaEventListener());
 ksession.addEventListener(new DebugRuleRuntimeEventListener());

 // Set up a file-based audit logger.
 ks.getLoggers().newFileLogger(ksession, "./target/honestpolitician"); 6

 ksession.fireAllRules();

 ksession.dispose();
 }

}

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

121

5

6

Creates the listeners

Builds the log that can be passed into the debug view or Audit View or your IDE after executing of
the rules

When you run the Honest Politician with this modified logging capability, you can load the audit log file
from target/honestpolitician.log into your IDE debug view or Audit View, if available (for example, in
Window → Show View in some IDEs).

In this example, the Audit View shows the flow of executions, insertions, and retractions as defined in
the example classes and rules:

Figure 9.18. Honest Politician example Audit View

When the first politician is inserted, two activations occur. The rule "We have an honest Politician" is
activated only one time for the first inserted politician because it uses an exists conditional element,
which matches when at least one politician is inserted. The rule "Hope is Dead" is also activated at this
stage because the Hope object is not yet inserted. The rule "We have an honest Politician" fires first
because it has a higher salience value than the rule "Hope is Dead", and inserts the Hope object
(highlighted in green). The insertion of the Hope object activates the rule "Hope Lives" and
deactivates the rule "Hope is Dead". The insertion also activates the rule "Corrupt the Honest" for
each inserted honest politician. The rule "Hope Lives" is executed and prints "Hurrah!!! Democracy
Lives".

Next, for each politician, the rule "Corrupt the Honest" fires, printing "I’m an evil corporation and I
have corrupted X", where X is the name of the politician, and modifies the politician honesty value to
false. When the last honest politician is corrupted, Hope is automatically retracted by the truth
maintenance system (highlighted in blue). The green highlighted area shows the origin of the currently
selected blue highlighted area. After the Hope fact is retracted, the rule "Hope is dead" fires, printing
"We are all Doomed!!! Democracy is Dead".

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

122

9.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING,
CALLBACKS, AND GUI INTEGRATION)

The Sudoku example decision set, based on the popular number puzzle Sudoku, demonstrates how to
use rules in Red Hat Process Automation Manager to find a solution in a large potential solution space
based on various constraints. This example also shows how to integrate Red Hat Process Automation
Manager rules into a graphical user interface (GUI), in this case a Swing-based desktop application, and
how to use callbacks to interact with a running decision engine to update the GUI based on changes in
the working memory at run time.

The following is an overview of the Sudoku example:

Name: sudoku

Main class: org.drools.examples.sudoku.SudokuExample (in src/main/java)

Module: drools-examples

Type: Java application

Rule files: org.drools.examples.sudoku.*.drl (in src/main/resources)

Objective: Demonstrates complex pattern matching, problem solving, callbacks, and GUI
integration

Sudoku is a logic-based number placement puzzle. The objective is to fill a 9x9 grid so that each
column, each row, and each of the nine 3x3 zones contains the digits from 1 to 9 only one time. The
puzzle setter provides a partially completed grid and the puzzle solver’s task is to complete the grid with
these constraints.

The general strategy to solve the problem is to ensure that when you insert a new number, it must be
unique in its particular 3x3 zone, row, and column. This Sudoku example decision set uses Red Hat
Process Automation Manager rules to solve Sudoku puzzles from a range of difficulty levels, and to
attempt to resolve flawed puzzles that contain invalid entries.

Sudoku example execution and interaction
Similar to other Red Hat Process Automation Manager decision examples, you execute the Sudoku
example by running the org.drools.examples.sudoku.SudokuExample class as a Java application in
your IDE.

When you execute the Sudoku example, the Drools Sudoku Example GUI window appears. This
window contains an empty grid, but the program comes with various grids stored internally that you can
load and solve.

Click File → Samples → Simple to load one of the examples. Notice that all buttons are disabled until a
grid is loaded.

Figure 9.19. Sudoku example GUI after launch

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

123

Figure 9.19. Sudoku example GUI after launch

When you load the Simple example, the grid is filled according to the puzzle’s initial state.

Figure 9.20. Sudoku example GUI after loading Simple sample

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

124

Figure 9.20. Sudoku example GUI after loading Simple sample

Choose from the following options:

Click Solve to fire the rules defined in the Sudoku example that fill out the remaining values and
that make the buttons inactive again.

Figure 9.21. Simple sample solved

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

125

Figure 9.21. Simple sample solved

Click Step to see the next digit found by the rule set. The console window in your IDE displays
detailed information about the rules that are executing to solve the step.

Step execution output in the IDE console

single 8 at [0,1]
column elimination due to [1,2]: remove 9 from [4,2]
hidden single 9 at [1,2]
row elimination due to [2,8]: remove 7 from [2,4]
remove 6 from [3,8] due to naked pair at [3,2] and [3,7]
hidden pair in row at [4,6] and [4,4]

Click Dump to see the state of the grid, with cells showing either the established value or the
remaining possibilities.

Dump execution output in the IDE console

 Col: 0 Col: 1 Col: 2 Col: 3 Col: 4 Col: 5 Col: 6 Col: 7 Col: 8
Row 0: 123456789 --- 5 --- --- 6 --- --- 8 --- 123456789 --- 1 --- --- 9 --- --- 4 ---
123456789
Row 1: --- 9 --- 123456789 123456789 --- 6 --- 123456789 --- 5 --- 123456789
123456789 --- 3 ---
Row 2: --- 7 --- 123456789 123456789 --- 4 --- --- 9 --- --- 3 --- 123456789 123456789
--- 8 ---

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

126

Row 3: --- 8 --- --- 9 --- --- 7 --- 123456789 --- 4 --- 123456789 --- 6 --- --- 3 --- --- 5 ---
Row 4: 123456789 123456789 --- 3 --- --- 9 --- 123456789 --- 6 --- --- 8 --- 123456789
123456789
Row 5: --- 4 --- --- 6 --- --- 5 --- 123456789 --- 8 --- 123456789 --- 2 --- --- 9 --- --- 1 ---
Row 6: --- 5 --- 123456789 123456789 --- 2 --- --- 6 --- --- 9 --- 123456789 123456789
--- 7 ---
Row 7: --- 6 --- 123456789 123456789 --- 5 --- 123456789 --- 4 --- 123456789
123456789 --- 9 ---
Row 8: 123456789 --- 4 --- --- 9 --- --- 7 --- 123456789 --- 8 --- --- 3 --- --- 5 ---
123456789

The Sudoku example includes a deliberately broken sample file that the rules defined in the example can
resolve.

Click File → Samples → !DELIBERATELY BROKEN! to load the broken sample. The grid starts with
some issues, for example, the value 5 appears two times in the first row, which is not allowed.

Figure 9.22. Broken Sudoku example initial state

Click Solve to apply the solving rules to this invalid grid. The associated solving rules in the Sudoku
example detect the issues in the sample and attempts to solve the puzzle as far as possible. This
process does not complete and leaves some cells empty.

The solving rule activity is displayed in the IDE console window:

Detected issues in the broken sample

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

127

cell [0,8]: 5 has a duplicate in row 0
cell [0,0]: 5 has a duplicate in row 0
cell [6,0]: 8 has a duplicate in col 0
cell [4,0]: 8 has a duplicate in col 0
Validation complete.

Figure 9.23. Broken sample solution attempt

The sample Sudoku files labeled Hard are more complex and the solving rules might not be able to solve
them. The unsuccessful solution attempt is displayed in the IDE console window:

Hard sample unresolved

Validation complete.
...
Sorry - can't solve this grid.

The rules that work to solve the broken sample implement standard solving techniques based on the
sets of values that are still candidates for a cell. For example, if a set contains a single value, then this is
the value for the cell. For a single occurrence of a value in one of the groups of nine cells, the rules insert
a fact of type Setting with the solution value for some specific cell. This fact causes the elimination of
this value from all other cells in any of the groups the cell belongs to and the value is retracted.

Other rules in the example reduce the permissible values for some cells. The rules "naked pair",
"hidden pair in row", "hidden pair in column", and "hidden pair in square" eliminate possibilities but
do not establish solutions. The rules "X-wings in rows", "`X-wings in columns"`, "intersection removal

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

128

row", and "intersection removal column" perform more sophisticated eliminations.

Sudoku example classes
The package org.drools.examples.sudoku.swing contains the following core set of classes that
implement a framework for Sudoku puzzles:

The SudokuGridModel class defines an interface that is implemented to store a Sudoku puzzle
as a 9x9 grid of Cell objects.

The SudokuGridView class is a Swing component that can visualize any implementation of the
SudokuGridModel class.

The SudokuGridEvent and SudokuGridListener classes communicate state changes between
the model and the view. Events are fired when a cell value is resolved or changed.

The SudokuGridSamples class provides partially filled Sudoku puzzles for demonstration
purposes.

NOTE

This package does not have any dependencies on Red Hat Process Automation Manager
libraries.

The package org.drools.examples.sudoku contains the following core set of classes that implement
the elementary Cell object and its various aggregations:

The CellFile class, with subtypes CellRow, CellCol, and CellSqr, all of which are subtypes of the
CellGroup class.

The Cell and CellGroup subclasses of SetOfNine, which provides a property free with the type
Set<Integer>. For a Cell class, the set represents the individual candidate set. For a CellGroup
class, the set is the union of all candidate sets of its cells (the set of digits that still need to be
allocated).
In the Sudoku example are 81 Cell and 27 CellGroup objects and a linkage provided by the Cell
properties cellRow, cellCol, and cellSqr, and by the CellGroup property cells (a list of Cell
objects). With these components, you can write rules that detect the specific situations that
permit the allocation of a value to a cell or the elimination of a value from some candidate set.

The Setting class is used to trigger the operations that accompany the allocation of a value. The
presence of a Setting fact is used in all rules that detect a new situation in order to avoid
reactions to inconsistent intermediary states.

The Stepping class is used in a low priority rule to execute an emergency halt when a "Step"
does not terminate regularly. This behavior indicates that the program cannot solve the puzzle.

The main class org.drools.examples.sudoku.SudokuExample implements a Java application
combining all of these components.

Sudoku validation rules (validate.drl)
The validate.drl file in the Sudoku example contains validation rules that detect duplicate numbers in
cell groups. They are combined in a "validate" agenda group that enables the rules to be explicitly
activated after a user loads the puzzle.

The when conditions of the three rules "duplicate in cell … " all function in the following ways:

The first condition in the rule locates a cell with an allocated value.

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

129

The second condition in the rule pulls in any of the three cell groups to which the cell belongs.

The final condition finds a cell (other than the first one) with the same value as the first cell and
in the same row, column, or square, depending on the rule.

Rules "duplicate in cell …"

rule "duplicate in cell row"
 when
 $c: Cell($v: value != null)
 $cr: CellRow(cells contains $c)
 exists Cell(this != $c, value == $v, cellRow == $cr)
 then
 System.out.println("cell " + $c.toString() + " has a duplicate in row " + $cr.getNumber());
end

rule "duplicate in cell col"
 when
 $c: Cell($v: value != null)
 $cc: CellCol(cells contains $c)
 exists Cell(this != $c, value == $v, cellCol == $cc)
 then
 System.out.println("cell " + $c.toString() + " has a duplicate in col " + $cc.getNumber());
end

rule "duplicate in cell sqr"
 when
 $c: Cell($v: value != null)
 $cs: CellSqr(cells contains $c)
 exists Cell(this != $c, value == $v, cellSqr == $cs)
 then
 System.out.println("cell " + $c.toString() + " has duplicate in its square of nine.");
end

The rule "terminate group" is the last to fire. This rule prints a message and stops the sequence.

Rule "terminate group"

rule "terminate group"
 salience -100
 when
 then
 System.out.println("Validation complete.");
 drools.halt();
end

Sudoku solving rules (sudoku.drl)
The sudoku.drl file in the Sudoku example contains three types of rules: one group handles the
allocation of a number to a cell, another group detects feasible allocations, and the third group
eliminates values from candidate sets.

The rules "set a value", "eliminate a value from Cell", and "retract setting" depend on the presence
of a Setting object. The first rule handles the assignment to the cell and the operations for removing the
value from the free sets of the three groups of the cell. This group also reduces a counter that, when
zero, returns control to the Java application that has called fireUntilHalt().

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

130

The purpose of the rule "eliminate a value from Cell" is to reduce the candidate lists of all cells that are
related to the newly assigned cell. Finally, when all eliminations have been made, the rule "retract
setting" retracts the triggering Setting fact.

Rules "set a value", "eliminate a value from a Cell", and "retract setting"

// A Setting object is inserted to define the value of a Cell.
// Rule for updating the cell and all cell groups that contain it
rule "set a value"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // A matching Cell, with no value set
 $c: Cell(rowNo == $rn, colNo == $cn, value == null,
 $cr: cellRow, $cc: cellCol, $cs: cellSqr)

 // Count down
 $ctr: Counter($count: count)
 then
 // Modify the Cell by setting its value.
 modify($c){ setValue($v) }
 // System.out.println("set cell " + $c.toString());
 modify($cr){ blockValue($v) }
 modify($cc){ blockValue($v) }
 modify($cs){ blockValue($v) }
 modify($ctr){ setCount($count - 1) }
end

// Rule for removing a value from all cells that are siblings
// in one of the three cell groups
rule "eliminate a value from Cell"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // The matching Cell, with the value already set
 Cell(rowNo == $rn, colNo == $cn, value == $v, $exCells: exCells)

 // For all Cells that are associated with the updated cell
 $c: Cell(free contains $v) from $exCells
 then
 // System.out.println("clear " + $v + " from cell " + $c.posAsString());
 // Modify a related Cell by blocking the assigned value.
 modify($c){ blockValue($v) }
end

// Rule for eliminating the Setting fact
rule "retract setting"
 when
 // A Setting with row and column number, and a value
 $s: Setting($rn: rowNo, $cn: colNo, $v: value)

 // The matching Cell, with the value already set
 $c: Cell(rowNo == $rn, colNo == $cn, value == $v)

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

131

 // This is the negation of the last pattern in the previous rule.
 // Now the Setting fact can be safely retracted.
 not($x: Cell(free contains $v)
 and
 Cell(this == $c, exCells contains $x))
 then
 // System.out.println("done setting cell " + $c.toString());
 // Discard the Setter fact.
 delete($s);
 // Sudoku.sudoku.consistencyCheck();
end

Two solving rules detect a situation where an allocation of a number to a cell is possible. The rule
"single" fires for a Cell with a candidate set containing a single number. The rule "hidden single" fires
when no cell exists with a single candidate, but when a cell exists containing a candidate, this candidate is
absent from all other cells in one of the three groups to which the cell belongs. Both rules create and
insert a Setting fact.

Rules "single" and "hidden single"

// Detect a set of candidate values with cardinality 1 for some Cell.
// This is the value to be set.
rule "single"
 when
 // Currently no setting underway
 not Setting()

 // One element in the "free" set
 $c: Cell($rn: rowNo, $cn: colNo, freeCount == 1)
 then
 Integer i = $c.getFreeValue();
 if (explain) System.out.println("single " + i + " at " + $c.posAsString());
 // Insert another Setter fact.
 insert(new Setting($rn, $cn, i));
end

// Detect a set of candidate values with a value that is the only one
// in one of its groups. This is the value to be set.
rule "hidden single"
 when
 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // Some integer
 $i: Integer()

 // The "free" set contains this number
 $c: Cell($rn: rowNo, $cn: colNo, freeCount > 1, free contains $i)

 // A cell group contains this cell $c.
 $cg: CellGroup(cells contains $c)
 // No other cell from that group contains $i.
 not (Cell(this != $c, free contains $i) from $cg.getCells())
 then
 if (explain) System.out.println("hidden single " + $i + " at " + $c.posAsString());

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

132

 // Insert another Setter fact.
 insert(new Setting($rn, $cn, $i));
end

Rules from the largest group, either individually or in groups of two or three, implement various solving
techniques used for solving Sudoku puzzles manually.

The rule "naked pair" detects identical candidate sets of size 2 in two cells of a group. These two values
may be removed from all other candidate sets of that group.

Rule "naked pair"

// A "naked pair" is two cells in some cell group with their sets of
// permissible values being equal with cardinality 2. These two values
// can be removed from all other candidate lists in the group.
rule "naked pair"
 when
 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // One cell with two candidates
 $c1: Cell(freeCount == 2, $f1: free, $r1: cellRow, $rn1: rowNo, $cn1: colNo, $b1: cellSqr)

 // The containing cell group
 $cg: CellGroup(freeCount > 2, cells contains $c1)

 // Another cell with two candidates, not the one we already have
 $c2: Cell(this != $c1, free == $f1 /*** , rowNo >= $rn1, colNo >= $cn1 ***/) from $cg.cells

 // Get one of the "naked pair".
 Integer($v: intValue) from $c1.getFree()

 // Get some other cell with a candidate equal to one from the pair.
 $c3: Cell(this != $c1 && != $c2, freeCount > 1, free contains $v) from $cg.cells
 then
 if (explain) System.out.println("remove " + $v + " from " + $c3.posAsString() + " due to naked pair
at " + $c1.posAsString() + " and " + $c2.posAsString());
 // Remove the value.
 modify($c3){ blockValue($v) }
end

The three rules "hidden pair in … " functions similarly to the rule "naked pair". These rules detect a
subset of two numbers in exactly two cells of a group, with neither value occurring in any of the other
cells of the group. This means that all other candidates can be eliminated from the two cells harboring
the hidden pair.

Rules "hidden pair in …"

// If two cells within the same cell group contain candidate sets with more than
// two values, with two values being in both of them but in none of the other
// cells, then we have a "hidden pair". We can remove all other candidates from
// these two cells.
rule "hidden pair in row"
 when

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

133

 // Currently no setting underway
 not Setting()
 not Cell(freeCount == 1)

 // Establish a pair of Integer facts.
 $i1: Integer()
 $i2: Integer(this > $i1)

 // Look for a Cell with these two among its candidates. (The upper bound on
 // the number of candidates avoids a lot of useless work during startup.)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellRow: cellRow)

 // Get another one from the same row, with the same pair among its candidates.
 $c2: Cell(this != $c1, cellRow == $cellRow, freeCount > 2, free contains $i1 && contains $i2)

 // Ascertain that no other cell in the group has one of these two values.
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellRow.getCells())
 then
 if(explain) System.out.println("hidden pair in row at " + $c1.posAsString() + " and " +
$c2.posAsString());
 // Set the candidate lists of these two Cells to the "hidden pair".
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in column"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i1: Integer()
 $i2: Integer(this > $i1)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
$cellCol: cellCol)
 $c2: Cell(this != $c1, cellCol == $cellCol, freeCount > 2, free contains $i1 && contains $i2)
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellCol.getCells())
 then
 if (explain) System.out.println("hidden pair in column at " + $c1.posAsString() + " and " +
$c2.posAsString());
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

rule "hidden pair in square"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i1: Integer()
 $i2: Integer(this > $i1)
 $c1: Cell($rn1: rowNo, $cn1: colNo, freeCount > 2 && < 9, free contains $i1 && contains $i2,
 $cellSqr: cellSqr)
 $c2: Cell(this != $c1, cellSqr == $cellSqr, freeCount > 2, free contains $i1 && contains $i2)
 not(Cell(this != $c1 && != $c2, free contains $i1 || contains $i2) from $cellSqr.getCells())
 then

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

134

 if (explain) System.out.println("hidden pair in square " + $c1.posAsString() + " and " +
$c2.posAsString());
 modify($c1){ blockExcept($i1, $i2) }
 modify($c2){ blockExcept($i1, $i2) }
end

Two rules deal with "X-wings" in rows and columns. When only two possible cells for a value exist in each
of two different rows (or columns) and these candidates lie also in the same columns (or rows), then all
other candidates for this value in the columns (or rows) can be eliminated. When you follow the pattern
sequence in one of these rules, notice how the conditions that are conveniently expressed by words such
as same or only result in patterns with suitable constraints or that are prefixed with not.

Rules "X-wings in …"

rule "X-wings in rows"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 $ca1: Cell(freeCount > 1, free contains $i,
 $ra: cellRow, $rano: rowNo, $c1: cellCol, $c1no: colNo)
 $cb1: Cell(freeCount > 1, free contains $i,
 $rb: cellRow, $rbno: rowNo > $rano, cellCol == $c1)
 not(Cell(this != $ca1 && != $cb1, free contains $i) from $c1.getCells())

 $ca2: Cell(freeCount > 1, free contains $i,
 cellRow == $ra, $c2: cellCol, $c2no: colNo > $c1no)
 $cb2: Cell(freeCount > 1, free contains $i,
 cellRow == $rb, cellCol == $c2)
 not(Cell(this != $ca2 && != $cb2, free contains $i) from $c2.getCells())

 $cx: Cell(rowNo == $rano || == $rbno, colNo != $c1no && != $c2no,
 freeCount > 1, free contains $i)
 then
 if (explain) {
 System.out.println("X-wing with " + $i + " in rows " +
 $ca1.posAsString() + " - " + $cb1.posAsString() +
 $ca2.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

rule "X-wings in columns"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 $ca1: Cell(freeCount > 1, free contains $i,
 $c1: cellCol, $c1no: colNo, $ra: cellRow, $rano: rowNo)
 $ca2: Cell(freeCount > 1, free contains $i,
 $c2: cellCol, $c2no: colNo > $c1no, cellRow == $ra)
 not(Cell(this != $ca1 && != $ca2, free contains $i) from $ra.getCells())

 $cb1: Cell(freeCount > 1, free contains $i,

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

135

 cellCol == $c1, $rb: cellRow, $rbno: rowNo > $rano)
 $cb2: Cell(freeCount > 1, free contains $i,
 cellCol == $c2, cellRow == $rb)
 not(Cell(this != $cb1 && != $cb2, free contains $i) from $rb.getCells())

 $cx: Cell(colNo == $c1no || == $c2no, rowNo != $rano && != $rbno,
 freeCount > 1, free contains $i)
 then
 if (explain) {
 System.out.println("X-wing with " + $i + " in columns " +
 $ca1.posAsString() + " - " + $ca2.posAsString() +
 $cb1.posAsString() + " - " + $cb2.posAsString() + ", remove from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

The two rules "intersection removal … " are based on the restricted occurrence of some number within
one square, either in a single row or in a single column. This means that this number must be in one of
those two or three cells of the row or column and can be removed from the candidate sets of all other
cells of the group. The pattern establishes the restricted occurrence and then fires for each cell outside
of the square and within the same cell file.

Rules "intersection removal …"

rule "intersection removal column"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 // Occurs in a Cell
 $c: Cell(free contains $i, $cs: cellSqr, $cc: cellCol)
 // Does not occur in another cell of the same square and a different column
 not Cell(this != $c, free contains $i, cellSqr == $cs, cellCol != $cc)

 // A cell exists in the same column and another square containing this value.
 $cx: Cell(freeCount > 1, free contains $i, cellCol == $cc, cellSqr != $cs)
 then
 // Remove the value from that other cell.
 if (explain) {
 System.out.println("column elimination due to " + $c.posAsString() +
 ": remove " + $i + " from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

rule "intersection removal row"
 when
 not Setting()
 not Cell(freeCount == 1)

 $i: Integer()
 // Occurs in a Cell
 $c: Cell(free contains $i, $cs: cellSqr, $cr: cellRow)
 // Does not occur in another cell of the same square and a different row.
 not Cell(this != $c, free contains $i, cellSqr == $cs, cellRow != $cr)

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

136

 // A cell exists in the same row and another square containing this value.
 $cx: Cell(freeCount > 1, free contains $i, cellRow == $cr, cellSqr != $cs)
 then
 // Remove the value from that other cell.
 if (explain) {
 System.out.println("row elimination due to " + $c.posAsString() +
 ": remove " + $i + " from " + $cx.posAsString());
 }
 modify($cx){ blockValue($i) }
end

These rules are sufficient for many but not all Sudoku puzzles. To solve very difficult grids, the rule set
requires more complex rules. (Ultimately, some puzzles can be solved only by trial and error.)

9.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW
GROUPS AND GUI INTEGRATION)

The Conway’s Game of Life example decision set, based on the famous cellular automaton by John
Conway, demonstrates how to use ruleflow groups in rules to control rule execution. The example also
demonstrates how to integrate Red Hat Process Automation Manager rules with a graphical user
interface (GUI), in this case a Swing-based implementation of Conway’s Game of Life.

The following is an overview of the Conway’s Game of Life (Conway) example:

Name: conway

Main classes: org.drools.examples.conway.ConwayRuleFlowGroupRun,
org.drools.examples.conway.ConwayAgendaGroupRun (in src/main/java)

Module: droolsjbpm-integration-examples

Type: Java application

Rule files: org.drools.examples.conway.*.drl (in src/main/resources)

Objective: Demonstrates ruleflow groups and GUI integration

NOTE

The Conway’s Game of Life example is separate from most of the other example decision
sets in Red Hat Process Automation Manager and is located in ~/rhpam-7.5.1-
sources/src/droolsjbpm-integration-$VERSION/droolsjbpm-integration-examples of
the Red Hat Process Automation Manager 7.5.1 Source Distribution from the Red Hat
Customer Portal.

In Conway’s Game of Life, a user interacts with the game by creating an initial configuration or an
advanced pattern with defined properties and then observing how the initial state evolves. The
objective of the game is to show the development of a population, generation by generation. Each
generation results from the preceding one, based on the simultaneous evaluation of all cells.

The following basic rules govern what the next generation looks like:

If a live cell has fewer than two live neighbors, it dies of loneliness.

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

137

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

If a live cell has more than three live neighbors, it dies from overcrowding.

If a dead cell has exactly three live neighbors, it comes to life.

Any cell that does not meet any of those criteria is left as is for the next generation.

The Conway’s Game of Life example uses Red Hat Process Automation Manager rules with ruleflow-
group attributes to define the pattern implemented in the game. The example also contains a version of
the decision set that achieves the same behavior using agenda groups. Agenda groups enable you to
partition the decision engine agenda to provide execution control over groups of rules. By default, all
rules are in the agenda group MAIN. You can use the agenda-group attribute to specify a different
agenda group for the rule.

This overview does not explore the version of the Conway example using agenda groups. For more
information about agenda groups, see the Red Hat Process Automation Manager example decision sets
that specifically address agenda groups.

Conway example execution and interaction
Similar to other Red Hat Process Automation Manager decision examples, you execute the Conway
ruleflow example by running the org.drools.examples.conway.ConwayRuleFlowGroupRun class as a
Java application in your IDE.

When you execute the Conway example, the Conway’s Game of Life GUI window appears. This window
contains an empty grid, or "arena" where the life simulation takes place. Initially the grid is empty
because no live cells are in the system yet.

Figure 9.24. Conway example GUI after launch

Select a predefined pattern from the Pattern drop-down menu and click Next Generation to click
through each population generation. Each cell is either alive or dead, where live cells contain a green ball.
As the population evolves from the initial pattern, cells live or die relative to neighboring cells, according
to the rules of the game.

Figure 9.25. Generation evolution in Conway example

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

138

Figure 9.25. Generation evolution in Conway example

Neighbors include not only cells to the left, right, top, and bottom but also cells that are connected
diagonally, so that each cell has a total of eight neighbors. Exceptions are the corner cells, which have
only three neighbors, and the cells along the four borders, with five neighbors each.

You can manually intervene to create or kill cells by clicking the cell.

To run through an evolution automatically from the initial pattern, click Start.

Conway example rules with ruleflow groups
The rules in the ConwayRuleFlowGroupRun example use ruleflow groups to control rule execution. A
ruleflow group is a group of rules associated by the ruleflow-group rule attribute. These rules can only
fire when the group is activated. The group itself can only become active when the elaboration of the
ruleflow diagram reaches the node representing the group.

The Conway example uses the following ruleflow groups for rules:

"register neighbor"

"evaluate"

"calculate"

"reset calculate"

"birth"

"kill"

"kill all"

All of the Cell objects are inserted into the KIE session and the "register … " rules in the ruleflow group
"register neighbor" are allowed to execute by the ruleflow process. This group of four rules creates
Neighbor relations between some cell and its northeastern, northern, northwestern, and western
neighbors.

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

139

This relation is bidirectional and handles the other four directions. Border cells do not require any special
treatment. These cells are not paired with neighboring cells where there is not any.

By the time all activations have fired for these rules, all cells are related to all their neighboring cells.

Rules "register …"

rule "register north east"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $northEast : Cell(row == ($row - 1), col == ($col + 1))
 then
 insert(new Neighbor($cell, $northEast));
 insert(new Neighbor($northEast, $cell));
end

rule "register north"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $north : Cell(row == ($row - 1), col == $col)
 then
 insert(new Neighbor($cell, $north));
 insert(new Neighbor($north, $cell));
end

rule "register north west"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $northWest : Cell(row == ($row - 1), col == ($col - 1))
 then
 insert(new Neighbor($cell, $northWest));
 insert(new Neighbor($northWest, $cell));
end

rule "register west"
 ruleflow-group "register neighbor"
 when
 $cell: Cell($row : row, $col : col)
 $west : Cell(row == $row, col == ($col - 1))
 then
 insert(new Neighbor($cell, $west));
 insert(new Neighbor($west, $cell));
end

After all the cells are inserted, some Java code applies the pattern to the grid, setting certain cells to
Live. Then, when the user clicks Start or Next Generation, the example executes the Generation
ruleflow. This ruleflow manages all changes of cells in each generation cycle.

Figure 9.26. Generation ruleflow

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

140

Figure 9.26. Generation ruleflow

The ruleflow process enters the "evaluate" ruleflow group and any active rules in the group can fire.
The rules "Kill the … " and "Give Birth" in this group apply the game rules to birth or kill cells. The
example uses the phase attribute to drive the reasoning of the Cell object by specific groups of rules.
Typically, the phase is tied to a ruleflow group in the ruleflow process definition.

Notice that the example does not change the state of any Cell objects at this point because it must
complete the full evaluation before those changes can be applied. The example sets the cell to a phase
that is either Phase.KILL or Phase.BIRTH, which is used later to control actions applied to the Cell
object.

Rules "Kill the …" and "Give Birth"

rule "Kill The Lonely"
 ruleflow-group "evaluate"
 no-loop
 when
 // A live cell has fewer than 2 live neighbors.
 theCell: Cell(liveNeighbors < 2, cellState == CellState.LIVE,
 phase == Phase.EVALUATE)
 then
 modify(theCell){
 setPhase(Phase.KILL);
 }
end

rule "Kill The Overcrowded"
 ruleflow-group "evaluate"
 no-loop
 when
 // A live cell has more than 3 live neighbors.
 theCell: Cell(liveNeighbors > 3, cellState == CellState.LIVE,
 phase == Phase.EVALUATE)
 then

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

141

 modify(theCell){
 setPhase(Phase.KILL);
 }
end

rule "Give Birth"
 ruleflow-group "evaluate"
 no-loop
 when
 // A dead cell has 3 live neighbors.
 theCell: Cell(liveNeighbors == 3, cellState == CellState.DEAD,
 phase == Phase.EVALUATE)
 then
 modify(theCell){
 theCell.setPhase(Phase.BIRTH);
 }
end

After all Cell objects in the grid have been evaluated, the example uses the "reset calculate" rule to
clear any activations in the "calculate" ruleflow group. The example then enters a split in the ruleflow
that enables the rules "kill" and "birth" to fire, if the ruleflow group is activated. These rules apply the
state change.

Rules "reset calculate", "kill", and "birth"

rule "reset calculate"
 ruleflow-group "reset calculate"
 when
 then
 WorkingMemory wm = drools.getWorkingMemory();
 wm.clearRuleFlowGroup("calculate");
end

rule "kill"
 ruleflow-group "kill"
 no-loop
 when
 theCell: Cell(phase == Phase.KILL)
 then
 modify(theCell){
 setCellState(CellState.DEAD),
 setPhase(Phase.DONE);
 }
end

rule "birth"
 ruleflow-group "birth"
 no-loop
 when
 theCell: Cell(phase == Phase.BIRTH)
 then
 modify(theCell){
 setCellState(CellState.LIVE),
 setPhase(Phase.DONE);
 }
end

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

142

At this stage, several Cell objects have been modified with the state changed to either LIVE or DEAD.
When a cell becomes live or dead, the example uses the Neighbor relation in the rules "Calculate … " to
iterate over all surrounding cells, increasing or decreasing the liveNeighbor count. Any cell that has its
count changed is also set to to the EVALUATE phase to make sure it is included in the reasoning during
the evaluation stage of the ruleflow process.

After the live count has been determined and set for all cells, the ruleflow process ends. If the user
initially clicked Start, the decision engine restarts the ruleflow at that point. If the user initially clicked
Next Generation, the user can request another generation.

Rules "Calculate …"

rule "Calculate Live"
 ruleflow-group "calculate"
 lock-on-active
 when
 theCell: Cell(cellState == CellState.LIVE)
 Neighbor(cell == theCell, $neighbor : neighbor)
 then
 modify($neighbor){
 setLiveNeighbors($neighbor.getLiveNeighbors() + 1),
 setPhase(Phase.EVALUATE);
 }
end

rule "Calculate Dead"
 ruleflow-group "calculate"
 lock-on-active
 when
 theCell: Cell(cellState == CellState.DEAD)
 Neighbor(cell == theCell, $neighbor : neighbor)
 then
 modify($neighbor){
 setLiveNeighbors($neighbor.getLiveNeighbors() - 1),
 setPhase(Phase.EVALUATE);
 }
end

9.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING
AND RECURSION)

The House of Doom example decision set demonstrates how the decision engine uses backward
chaining and recursion to reach defined goals or subgoals in a hierarchical system.

The following is an overview of the House of Doom example:

Name: backwardchaining

Main class: org.drools.examples.backwardchaining.HouseOfDoomMain (in src/main/java)

Module: drools-examples

Type: Java application

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

143

Rule file: org.drools.examples.backwardchaining.BC-Example.drl (in src/main/resources)

Objective: Demonstrates backward chaining and recursion

A backward-chaining rule system is a goal-driven system that starts with a conclusion that the decision
engine attempts to satisfy, often using recursion. If the system cannot reach the conclusion or goal, it
searches for subgoals, which are conclusions that complete part of the current goal. The system
continues this process until either the initial conclusion is satisfied or all subgoals are satisfied.

In contrast, a forward-chaining rule system is a data-driven system that starts with a fact in the working
memory of the decision engine and reacts to changes to that fact. When objects are inserted into
working memory, any rule conditions that become true as a result of the change are scheduled for
execution by the agenda.

The decision engine in Red Hat Process Automation Manager uses both forward and backward chaining
to evaluate rules.

The following diagram illustrates how the decision engine evaluates rules using forward chaining overall
with a backward-chaining segment in the logic flow:

Figure 9.27. Rule evaluation logic using forward and backward chaining

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

144

Figure 9.27. Rule evaluation logic using forward and backward chaining

The House of Doom example uses rules with various types of queries to find the location of rooms and
items within the house. The sample class Location.java contains the item and location elements used
in the example. The sample class HouseOfDoomMain.java inserts the items or rooms in their respective
locations in the house and executes the rules.

Items and locations in HouseOfDoomMain.java class

ksession.insert(new Location("Office", "House"));
ksession.insert(new Location("Kitchen", "House"));
ksession.insert(new Location("Knife", "Kitchen"));
ksession.insert(new Location("Cheese", "Kitchen"));

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

145

The example rules rely on backward chaining and recursion to determine the location of all items and
rooms in the house structure.

The following diagram illustrates the structure of the House of Doom and the items and rooms within it:

Figure 9.28. House of Doom structure

To execute the example, run the org.drools.examples.backwardchaining.HouseOfDoomMain class
as a Java application in your IDE.

After the execution, the following output appears in the IDE console window:

Execution output in the IDE console

go1
Office is in the House

go2
Drawer is in the House

go3

Key is in the Office

go4
Chair is in the Office
Desk is in the Office
Key is in the Office
Computer is in the Office
Drawer is in the Office

go5
Chair is in Office
Desk is in Office
Drawer is in Desk
Key is in Drawer

ksession.insert(new Location("Desk", "Office"));
ksession.insert(new Location("Chair", "Office"));
ksession.insert(new Location("Computer", "Desk"));
ksession.insert(new Location("Drawer", "Desk"));

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

146

Kitchen is in House
Cheese is in Kitchen
Knife is in Kitchen
Computer is in Desk
Office is in House
Key is in Office
Drawer is in House
Computer is in House
Key is in House
Desk is in House
Chair is in House
Knife is in House
Cheese is in House
Computer is in Office
Drawer is in Office
Key is in Desk

All rules in the example have fired to detect the location of all items in the house and to print the
location of each in the output.

Recursive query and related rules
A recursive query repeatedly searches through the hierarchy of a data structure for relationships
between elements.

In the House of Doom example, the BC-Example.drl file contains an isContainedIn query that most of
the rules in the example use to recursively evaluate the house data structure for data inserted into the
decision engine:

Recursive query in BC-Example.drl

query isContainedIn(String x, String y)
 Location(x, y;)
 or
 (Location(z, y;) and isContainedIn(x, z;))
end

The rule "go" prints every string inserted into the system to determine how items are implemented, and
the rule "go1" calls the query isContainedIn:

Rules "go" and "go1"

rule "go" salience 10
 when
 $s : String()
 then
 System.out.println($s);
end

rule "go1"
 when
 String(this == "go1")
 isContainedIn("Office", "House";)
 then
 System.out.println("Office is in the House");
end

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

147

The example inserts the "go1" string into the decision engine and activates the "go1" rule to detect
that item Office is in the location House:

Insert string and fire rules

ksession.insert("go1");
ksession.fireAllRules();

Rule "go1" output in the IDE console

go1
Office is in the House

Transitive closure rule
Transitive closure is a relationship between an element contained in a parent element that is multiple
levels higher in a hierarchical structure.

The rule "go2" identifies the transitive closure relationship of the Drawer and the House: The Drawer is
in the Desk in the Office in the House.

rule "go2"
 when
 String(this == "go2")
 isContainedIn("Drawer", "House";)
 then
 System.out.println("Drawer is in the House");
end

The example inserts the "go2" string into the decision engine and activates the "go2" rule to detect
that item Drawer is ultimately within the location House:

Insert string and fire rules

ksession.insert("go2");
ksession.fireAllRules();

Rule "go2" output in the IDE console

go2
Drawer is in the House

The decision engine determines this outcome based on the following logic:

1. The query recursively searches through several levels in the house to detect the transitive
closure between Drawer and House.

2. Instead of using Location(x, y;), the query uses the value of (z, y;) because Drawer is not
directly in House.

3. The z argument is currently unbound, which means it has no value and returns everything that is
in the argument.

4. The y argument is currently bound to House, so z returns Office and Kitchen.

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

148

5. The query gathers information from the Office and checks recursively if the Drawer is in the
Office. The query line isContainedIn(x, z;) is called for these parameters.

6. No instance of Drawer exists directly in Office, so no match is found.

7. With z unbound, the query returns data within the Office and determines that z == Desk.

isContainedIn(x==drawer, z==desk)

8. The isContainedIn query recursively searches three times, and on the third time, the query
detects an instance of Drawer in Desk.

Location(x==drawer, y==desk)

9. After this match on the first location, the query recursively searches back up the structure to
determine that the Drawer is in the Desk, the Desk is in the Office, and the Office is in the
House. Therefore, the Drawer is in the House and the rule is satisfied.

Reactive query rule
A reactive query searches through the hierarchy of a data structure for relationships between elements
and is dynamically updated when elements in the structure are modified.

The rule "go3" functions as a reactive query that detects if a new item Key ever becomes present in the
Office by transitive closure: A Key in the Drawer in the Office.

Rule "go3"

rule "go3"
 when
 String(this == "go3")
 isContainedIn("Key", "Office";)
 then
 System.out.println("Key is in the Office");
end

The example inserts the "go3" string into the decision engine and activates the "go3" rule. Initially, this
rule is not satisfied because no item Key exists in the house structure, so the rule produces no output.

Insert string and fire rules

ksession.insert("go3");
ksession.fireAllRules();

Rule "go3" output in the IDE console (unsatisfied)

go3

The example then inserts a new item Key in the location Drawer, which is in Office. This change satisfies
the transitive closure in the "go3" rule and the output is populated accordingly.

Insert new item location and fire rules

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

149

ksession.insert(new Location("Key", "Drawer"));
ksession.fireAllRules();

Rule "go3" output in the IDE console (satisfied)

Key is in the Office

This change also adds another level in the structure that the query includes in subsequent recursive
searches.

Queries with unbound arguments in rules
A query with one or more unbound arguments returns all undefined (unbound) items within a defined
(bound) argument of the query. If all arguments in a query are unbound, then the query returns all items
within the scope of the query.

The rule "go4" uses an unbound argument thing to search for all items within the bound argument
Office, instead of using a bound argument to search for a specific item in the Office:

Rule "go4"

rule "go4"
 when
 String(this == "go4")
 isContainedIn(thing, "Office";)
 then
 System.out.println(thing + "is in the Office");
end

The example inserts the "go4" string into the decision engine and activates the "go4" rule to return all
items in the Office:

Insert string and fire rules

ksession.insert("go4");
ksession.fireAllRules();

Rule "go4" output in the IDE console

go4
Chair is in the Office
Desk is in the Office
Key is in the Office
Computer is in the Office
Drawer is in the Office

The rule "go5" uses both unbound arguments thing and location to search for all items and their
locations in the entire House data structure:

Rule "go5"

rule "go5"
 when
 String(this == "go5")

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

150

 isContainedIn(thing, location;)
 then
 System.out.println(thing + " is in " + location);
end

The example inserts the "go5" string into the decision engine and activates the "go5" rule to return all
items and their locations in the House data structure:

Insert string and fire rules

ksession.insert("go5");
ksession.fireAllRules();

Rule "go5" output in the IDE console

go5
Chair is in Office
Desk is in Office
Drawer is in Desk
Key is in Drawer
Kitchen is in House
Cheese is in Kitchen
Knife is in Kitchen
Computer is in Desk
Office is in House
Key is in Office
Drawer is in House
Computer is in House
Key is in House
Desk is in House
Chair is in House
Knife is in House
Cheese is in House
Computer is in Office
Drawer is in Office
Key is in Desk

CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE

151

CHAPTER 10. ADDITIONAL RESOURCES
Designing your decision management architecture for Red Hat Process Automation Manager

Getting started with decision services

Designing a decision service using DRL rules

Packaging and deploying a Red Hat Process Automation Manager project

Red Hat Process Automation Manager 7.5 Decision engine in Red Hat Process Automation Manager

152

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_your_decision_management_architecture_for_red_hat_process_automation_manager
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/getting_started_with_decision_services
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/designing_a_decision_service_using_drl_rules
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.5/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Thursday, October 31, 2019.

APPENDIX A. VERSIONING INFORMATION

153

	Table of Contents
	PREFACE
	CHAPTER 1. DECISION ENGINE IN RED HAT PROCESS AUTOMATION MANAGER
	CHAPTER 2. KIE SESSIONS
	2.1. STATELESS KIE SESSIONS
	2.1.1. Global variables in stateless KIE sessions

	2.2. STATEFUL KIE SESSIONS
	2.3. KIE SESSION POOLS

	CHAPTER 3. INFERENCE AND TRUTH MAINTENANCE IN THE DECISION ENGINE
	3.1. FACT EQUALITY MODES IN THE DECISION ENGINE

	CHAPTER 4. EXECUTION CONTROL IN THE DECISION ENGINE
	4.1. SALIENCE FOR RULES
	4.2. AGENDA GROUPS FOR RULES
	4.3. ACTIVATION GROUPS FOR RULES
	4.4. RULE EXECUTION MODES AND THREAD SAFETY IN THE DECISION ENGINE
	4.5. FACT PROPAGATION MODES IN THE DECISION ENGINE
	4.6. AGENDA EVALUATION FILTERS
	4.7. RULE UNITS IN DRL RULE SETS
	4.7.1. Data sources for rule units
	4.7.2. Rule unit execution control
	4.7.3. Rule unit identity conflicts

	CHAPTER 5. PHREAK RULE ALGORITHM IN THE DECISION ENGINE
	5.1. RULE EVALUATION IN PHREAK
	5.1.1. Rule evaluation with forward and backward chaining

	5.2. RULE BASE CONFIGURATION
	5.3. SEQUENTIAL MODE IN PHREAK

	CHAPTER 6. COMPLEX EVENT PROCESSING (CEP)
	6.1. EVENTS IN COMPLEX EVENT PROCESSING
	6.2. DECLARING FACTS AS EVENTS
	6.3. METADATA TAGS FOR EVENTS
	6.4. EVENT PROCESSING MODES IN THE DECISION ENGINE
	6.4.1. Negative patterns in decision engine stream mode

	6.5. PROPERTY-CHANGE SETTINGS AND LISTENERS FOR FACT TYPES
	6.6. TEMPORAL OPERATORS FOR EVENTS
	6.7. SESSION CLOCK IMPLEMENTATIONS IN THE DECISION ENGINE
	6.8. EVENT STREAMS AND ENTRY POINTS
	6.8.1. Declaring entry points for rule data

	6.9. SLIDING WINDOWS OF TIME OR LENGTH
	6.9.1. Declaring sliding windows for rule data

	6.10. MEMORY MANAGEMENT FOR EVENTS

	CHAPTER 7. DECISION ENGINE QUERIES AND LIVE QUERIES
	CHAPTER 8. DECISION ENGINE EVENT LISTENERS AND DEBUG LOGGING
	8.1. CONFIGURING A LOGGING UTILITY IN THE DECISION ENGINE

	CHAPTER 9. EXAMPLE DECISIONS IN RED HAT PROCESS AUTOMATION MANAGER FOR AN IDE
	9.1. IMPORTING AND EXECUTING RED HAT PROCESS AUTOMATION MANAGER EXAMPLE DECISIONS IN AN IDE
	9.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING)
	9.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION)
	State example using salience
	State example using agenda groups
	Dynamic facts in the State example

	9.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION)
	9.5. PRICING EXAMPLE DECISIONS (DECISION TABLES)
	Spreadsheet decision table setup
	Base pricing rules
	Promotional discount rules

	9.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI INTEGRATION)
	Rule execution behavior in the Pet Store example
	Pet Store rule file imports, global variables, and Java functions
	Pet Store rules with agenda groups
	Pet Store example execution

	9.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE)
	Politician and Hope classes
	Rule definitions for politician honesty
	Example execution and audit trail

	9.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI INTEGRATION)
	Sudoku example execution and interaction
	Sudoku example classes
	Sudoku validation rules (validate.drl)
	Sudoku solving rules (sudoku.drl)

	9.9. CONWAY’S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)
	Conway example execution and interaction
	Conway example rules with ruleflow groups

	9.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION)
	Recursive query and related rules
	Transitive closure rule
	Reactive query rule
	Queries with unbound arguments in rules

	CHAPTER 10. ADDITIONAL RESOURCES
	APPENDIX A. VERSIONING INFORMATION

