
OpenStack Team

Red Hat OpenStack Platform
8
Storage Guide

Understanding, using, and managing persistent storage in OpenStack

Red Hat OpenStack Platform 8 Storage Guide

Understanding, using, and managing persistent storage in OpenStack

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This guide details the different procedures for using and managing persistent storage in a Red Hat
OpenStack Platform environment. It also includes procedures for configuring and managing the
respective OpenStack service of each persistent storage type.

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INTRODUCTION TO PERSISTENT STORAGE IN OPENSTACK
1.1. SCALABILITY AND BACK END
1.2. ACCESSIBILITY AND ADMINISTRATION
1.3. SECURITY
1.4. REDUNDANCY AND DISASTER RECOVERY

CHAPTER 2. BLOCK STORAGE AND VOLUMES
2.1. BACK ENDS
2.2. BLOCK STORAGE SERVICE ADMINISTRATION

2.2.1. Group Volume Settings with Volume Types
2.2.1.1. List a Host Driver’s Capabilities
2.2.1.2. Create and Configure a Volume Type
2.2.1.3. Edit a Volume Type
2.2.1.4. Delete a Volume Type
2.2.1.5. Create and Configure Private Volume Types

2.2.2. Create and Configure an Internal Tenant for the Block Storage Service
2.2.3. Configure and Enable the Image-Volume Cache
2.2.4. Use Quality-of-Service Specifications

2.2.4.1. Create and Configure a QOS Spec
2.2.4.2. Associate a QOS Spec with a Volume Type
2.2.4.3. Disassociate a QOS Spec from a Volume Type

2.2.5. Encrypt Volumes with Static Keys
2.2.5.1. Configure a Static Key
2.2.5.2. Configure Volume Type Encryption

2.2.6. Configure How Volumes are Allocated to Multiple Back Ends
2.2.7. Backup Administration

2.2.7.1. View and Modify a Tenant’s Backup Quota
2.2.7.2. Enable Volume Backup Management Through the Dashboard
2.2.7.3. Set an NFS Share as a Backup Repository

2.2.7.3.1. Set a Different Backup File Size
2.3. BASIC VOLUME USAGE AND CONFIGURATION

2.3.1. Create a Volume
2.3.2. Specify Back End for Volume Creation
2.3.3. Edit a Volume’s Name or Description
2.3.4. Delete a Volume
2.3.5. Attach and Detach a Volume to an Instance

2.3.5.1. Attach a Volume to an Instance
2.3.5.2. Detach a Volume From an Instance

2.3.6. Set a Volume to Read-Only
2.3.7. Change a Volume’s Owner

2.3.7.1. Transfer a Volume from the Command Line
2.3.7.2. Transfer a Volume Using the Dashboard

2.3.8. Create, Use, or Delete Volume Snapshots
2.3.8.1. Protected and Unprotected Snapshots in a Red Hat Ceph Back End

2.3.9. Upload a Volume to the Image Service
2.3.10. Changing a Volume’s Type (Volume Re-typing)

2.4. ADVANCED VOLUME CONFIGURATION
2.4.1. Back Up and Restore a Volume

2.4.1.1. Create a Full Volume Backup
2.4.1.1.1. Create a Volume Backup as an Admin

4

5
6
6
7
7

9
9
9
9

10
11
12
12
12
13
14
15
15
16
16
16
17
18
18
19
19
20
20
21
21
22
23
23
24
24
24
24
24
25
25
26
26
27
27
28
28
28
29
30

Table of Contents

1

. .

. .

2.4.1.2. Create an Incremental Volume Backup
2.4.1.3. Restore a Volume After a Block Storage Database Loss
2.4.1.4. Restore a Volume from a Backup

2.4.2. Migrate a Volume
2.4.2.1. Migrating Between Back Ends

CHAPTER 3. OBJECT STORAGE AND CONTAINERS
3.1. OBJECT STORAGE SERVICE ADMINISTRATION

3.1.1. Erasure Coding for Object Storage Service
3.1.1.1. Configure Erasure Coding
3.1.1.2. Configure an Object Storage Ring

3.1.2. Set Object Storage as a Back End for the Image Service
3.2. BASIC CONTAINER MANAGEMENT

3.2.1. Create a Container
3.2.2. Create Pseudo Folder for Container
3.2.3. Delete a Container
3.2.4. Upload an Object
3.2.5. Copy an Object
3.2.6. Delete an Object

CHAPTER 4. FILE SHARES
4.1. CREATE AND MANAGE SHARES
4.2. CREATE A SHARE
4.3. LIST SHARES AND EXPORT INFORMATION
4.4. GRANT SHARE ACCESS
4.5. MOUNT A SHARE ON AN INSTANCE
4.6. REVOKE ACCESS TO A SHARE
4.7. DELETE A SHARE

31
31
32
32
33

34
34
34
34
35
36
37
37
38
38
38
39
39

40
40
40
41
42
43
43
43

Red Hat OpenStack Platform 8 Storage Guide

2

Table of Contents

3

PREFACE

Red Hat OpenStack Platform (Red Hat OpenStack Platform) provides the foundation to build a
private or public Infrastructure-as-a-Service (IaaS) cloud on top of Red Hat Enterprise Linux. It offers
a massively scalable, fault-tolerant platform for the development of cloud-enabled workloads.

This guide discusses procedures for creating and managing persistent storage. Within OpenStack,
this storage is provided by three main services:

Block Storage (openstack-cinder)

Object Storage (openstack-swift)

Shared File System Storage (openstack-manila), currently a Technology Preview

These services provide different types of persistent storage, each with its own set of advantages in
different use cases. This guide discusses the suitability of each for general enterprise storage
requirements.

You can manage cloud storage using either the OpenStack dashboard or the command-line clients.
Most procedures can be carried out using either method; some of the more advanced procedures
can only be executed on the command line. This guide provides procedures for the dashboard
where possible.

Note

For the complete suite of documentation for Red Hat OpenStack Platform, see Red Hat
OpenStack Platform Documentation.

Red Hat OpenStack Platform 8 Storage Guide

4

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform

CHAPTER 1. INTRODUCTION TO PERSISTENT STORAGE IN
OPENSTACK

OpenStack recognizes two types of storage: ephemeral and persistent. Ephemeral storage is
storage that is associated only to a specific Compute instance. Once that instance is terminated, so
is its ephemeral storage. This type of storage is useful for basic runtime requirements, such as
storing the instance’s operating system.

Persistent storage, on the other hand, is designed to survive ("persist") independent of any running
instance. This storage is used for any data that needs to be reused, either by different instances or
beyond the life of a specific instance. OpenStack uses the following types of persistent storage:

Volumes

The OpenStack Block Storage service (openstack-cinder) allows users to access block
storage devices through volumes. Users can attach volumes to instances in order to
augment their ephemeral storage with general-purpose persistent storage. Volumes can be
detached and re-attached to instances at will, and can only be accessed through the
instance they are attached to.

Volumes also provide inherent redundancy and disaster recovery through backups and
snapshots. In addition, you can also encrypt volumes for added security. For more
information about volumes, see Chapter 2, Block Storage and Volumes.

Note

Instances can also be configured to use absolutely no ephemeral storage. In such
cases, the Block Storage service can write images to a volume; in turn, the
volume can be used as a bootable root volume for an instance.

Containers

The OpenStack Object Storage service (openstack-swift) provides a fully-distributed
storage solution used to store any kind of static data or binary object, such as media files,
large datasets, and disk images. The Object Storage service organizes these objects
through containers.

While a volume’s contents can only be accessed through instances, the objects inside a
container can be accessed through the Object Storage REST API. As such, the Object
Storage service can be used as a repository by nearly every service within the cloud. For
example, the Data Processing service (openstack-sahara) can manage all of its binaries,
data input, data output, and templates directly through the Object Storage service.

Shares

The OpenStack Shared File System service (openstack-manila) provides the means to
easily provision remote, shareable file systems, or shares. Shares allow tenants within the
cloud to openly share storage, and can be consumed by multiple instances simultaneously.

CHAPTER 1. INTRODUCTION TO PERSISTENT STORAGE IN OPENSTACK

5

Important

The OpenStack Shared File System service is available in this release as a Technology
Preview, and therefore is not fully supported by Red Hat. It should only be used for testing,
and should not be deployed in a production environment. For more information about
Technology Preview features, see Scope of Coverage Details.

Each storage type is designed to address specific storage requirements. Containers are designed
for wide access, and as such feature the highest throughput, access, and fault tolerance among all
storage types. Container usage is geared more towards services.

On the other hand, volumes are used primarily for instance consumption. They do not enjoy the
same level of access and performance as containers, but they do have a larger feature set and have
more native security features than containers. Shares are similar to volumes in this regard, except
that they can be consumed by multiple instances.

The following sections discuss each storage type’s architecture and feature set in detail, within the
context of specific storage criteria.

1.1. SCALABILITY AND BACK END

In general, a clustered storage solution provides greater back end scalability. For example, when
using Red Hat Ceph as a Block Storage back end, you can scale storage capacity and redundancy
by adding more Ceph OSD (Object Storage Daemon) nodes. Both Block Storage and Object
Storage services support Red Hat Ceph as a back end.

The Block Storage service can use multiple storage solutions as discrete back ends. At the back
end level, you can scale capacity by adding more back ends and restarting the service. The Block
Storage service also features a large list of supported back end solutions, some of which feature
additional scalability features.

By default, the Object Storage service uses the file system on configured storage nodes, and can
use as much space as is available. The Object Storage service supports the XFS and ext4 file
systems, and both can be scaled up to consume as much available underlying block storage. You
can also scale capacity by adding more storage devices to the storage node.

The Shared File System service provisions shares backed by storage from a separate storage pool.
This pool (which is typically managed by a third-party back end service) provides the share with
storage at the file system level. The OpenStack Shared File System service supports NetApp, which
can be configured to use a storage pool of pre-created volumes which provisioned shares can use
for storage. In this deployment, scaling involves adding more volumes to the pool.

1.2. ACCESSIBILITY AND ADMINISTRATION

Volumes are consumed only through instances, and can only be attached to and mounted within
one instance at a time. Users can create snapshots of volumes, which can be used for cloning or
restoring a volume to a previous state (see Section 1.4, “Redundancy and Disaster Recovery”). The
Block Storage service also allows you to create volume types, which aggregate volume settings (for
example, size and back end) that can be easily invoked by users when creating new volumes.
These types can be further associated with Quality-of-Service specifications, which allow you to
create different storage tiers for users.

Like volumes, shares are consumed through instances. However, shares can be directly mounted
within an instance, and do not need to be attached through the dashboard or CLI. Shares can also

Red Hat OpenStack Platform 8 Storage Guide

6

https://access.redhat.com/support/offerings/production/scope_moredetail

be mounted by multiple instances simultaneously. The Shared File System service also supports
share snapshots and cloning; you can also create share types to aggregate settings (similar to
volume types).

Objects in a container are accessible via API, and can be made accessible to instances and services
within the cloud. This makes them ideal as object repositories for services; for example, the Image
service (openstack-glance) can store its images in containers managed by the Object Storage
service.

1.3. SECURITY

The Block Storage service provides basic data security through volume encryption. With this, you
can configure a volume type to be encrypted through a static key; the key will then be used for
encrypting all volumes created from the configured volume type. See Section 2.2.5, “Encrypt
Volumes with Static Keys” for more details.

Object and container security, on the other hand, is configured at the service and node level. The
Object Storage service provides no native encryption for containers and objects. Rather, the Object
Storage service prioritizes accessibility within the cloud, and as such relies solely on the cloud’s
network security in order to protect object data.

The Shared File System service can secure shares through access restriction, whether by instance
IP, user/group, or TLS certificate. In addition, some Shared File System service deployments can
feature a separate share servers to manage the relationship between share networks and shares;
some share servers support (or even require) additional network security. For example, a CIFS
share server requires the deployment of an LDAP, Active Directory, or Kerberos authentication
service.

1.4. REDUNDANCY AND DISASTER RECOVERY

The Block Storage service features volume backup and restoration, providing basic disaster
recovery for user storage. Backups allow you to protect volume contents. On top of this, the service
also supports snapshots; aside from cloning, snapshots are also useful in restoring a volume to a
previous state.

In a multi-backend environment, you can also migrate volumes between back ends. This is useful if
you need to take a back end offline for maintenance. Backups are typically stored in a storage back
end separate from their source volumes to help protect the data. This is not possible, however, with
snapshots, as snapshots are dependent on their source volumes.

Finally, the Block Storage service also features volume replication. This allows you to configure
volumes to replicate content between each other, thereby providing basic redundancy.

Note

Volume replication is only available through specific third-party back ends and their
respective drivers.

The Object Storage service provides no built-in backup features. As such, all backups must be
performed at the file system or node level. The service, however, features more robust redundancy
and fault tolerance; even the most basic deployment of the Object Storage service replicates objects
multiple times. You can use failover features like dm-multipath to enhance redundancy.

CHAPTER 1. INTRODUCTION TO PERSISTENT STORAGE IN OPENSTACK

7

The Shared File System service provides no built-in backup features for shares, but it does allow
you to create snapshots for cloning and restoration.

Red Hat OpenStack Platform 8 Storage Guide

8

CHAPTER 2. BLOCK STORAGE AND VOLUMES

The Block Storage service (openstack-cinder) manages the administration, security, scheduling,
and overall management of all volumes. Volumes are used as the primary form of persistent storage
for Compute instances.

2.1. BACK ENDS

By default, the Block Storage service uses an LVM back end as a repository for volumes. While this
back end is suitable for test environments, we advise that you deploy a more robust back end for an
Enterprise environment.

When deploying Red Hat OpenStack Platform for the environment, we recommand using the
director. Doing so helps ensure the proper configuration of each service, including the Block
Storage service (and, by extension, its back end). The director also has several integrated back end
configurations.

Red Hat OpenStack Platform supports Red Hat Ceph and NFS as Block Storage back ends. For
instructions on how to deploy either, see Director Installation and Usage. In particular:

Ceph Storage (overview), Ceph Storage Node Requirements (requirements), and Red Hat Ceph
Storage for the Overcloud (deployment instructions)

Configuring NFS Storage

Third-Party Storage Providers

You can also configure the Block Storage service to use supported third-party storage appliances.
The director includes the necessary components for easily deploying the following:

Dell EqualLogic

Dell Storage Center

NetApp (for supported appliances)

Fujitsu ETERNUS is also supported as a back end, but is not yet integrated into the Director. For
instructions on how to deploy a custom (non-integrated) back end, see Custom Block Storage Back
End Deployment Guide.

For a complete list of supported back end appliances and drivers, see Component, Plug-In, and
Driver Support in RHEL OpenStack Platform.

2.2. BLOCK STORAGE SERVICE ADMINISTRATION

The following procedures explain how to configure the Block Storage service to suit your needs. All
of these procedures require administrator privileges.

2.2.1. Group Volume Settings with Volume Types

OpenStack allows you to create volume types, which allows you apply the type’s associated
settings. You can apply these settings during volume creation (Section 2.3.1, “Create a Volume”) or
even afterwards (Section 2.3.10, “Changing a Volume’s Type (Volume Re-typing)”). For example,
you can associate:

CHAPTER 2. BLOCK STORAGE AND VOLUMES

9

https://access.redhat.com/documentation/en/red-hat-ceph-storage/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/single/director-installation-and-usage/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/paged/director-installation-and-usage/14-ceph-storage
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/paged/director-installation-and-usage/24-overcloud-requirements#sect-Ceph_Storage_Node_Requirements
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/paged/red-hat-ceph-storage-for-the-overcloud/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/paged/director-installation-and-usage/67-configuring-nfs-storage
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/single/dell-equallogic-back-end-guide
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/single/dell-storage-center-back-end-guide
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/single/netapp-block-storage-back-end-guide
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/single/fujitsu-eternus-back-end-guide/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/single/custom-block-storage-back-end-deployment-guide/
https://access.redhat.com/articles/1535373#Cinder

Whether or not a volume is encrypted (Section 2.2.5.2, “Configure Volume Type Encryption”)

Which back end a volume should use (Section 2.3.2, “Specify Back End for Volume Creation”
and Section 2.4.2.1, “Migrating Between Back Ends”)

Quality-of-Service (QoS) Specs

Settings are associated with volume types using key-value pairs called Extra Specs. When you
specify a volume type during volume creation, the Block Storage scheduler applies these key/value
pairs as settings. You can associate multiple key/value pairs to the same volume type.

Volume types provide the capability to provide different users with storage tiers. By associating
specific performance, resilience, and other settings as key/value pairs to a volume type, you can
map tier-specific settings to different volume types. You can then apply tier settings when creating a
volume by specifying the corresponding volume type.

Note

Available and supported Extra Specs vary per volume driver. Consult your volume driver’s
documentation for a list of valid Extra Specs.

2.2.1.1. List a Host Driver’s Capabilities

Available and supported Extra Specs vary per back end driver. Consult the driver’s documentation
for a list of valid Extra Specs.

Alternatively, you can query the Block Storage host directly to determine which well-defined
standard Extra Specs are supported by its driver. Start by logging in (through the command line) to
the node hosting the Block Storage service. Then:

cinder service-list

This command will return a list containing the host of each Block Storage service (cinder-backup,
cinder-scheduler, and cinder-volume). For example:

+------------------+---------------------------+------+---------
| Binary | Host | Zone | Status ...
+------------------+---------------------------+------+---------
| cinder-backup | localhost.localdomain | nova | enabled ...
| cinder-scheduler | localhost.localdomain | nova | enabled ...
| cinder-volume | localhost.localdomain@lvm | nova | enabled ...
+------------------+---------------------------+------+---------

To display the driver capabilities (and, in turn, determine the supported Extra Specs) of a Block
Storage service, run:

cinder get-capabilities VOLSVCHOST

Where VOLSVCHOST is the complete name of the cinder-volume's host. For example:

cinder get-capabilities localhost.localdomain@lvm
 +---------------------+--
-+
 | Volume stats | Value

Red Hat OpenStack Platform 8 Storage Guide

10

|
 +---------------------+--
-+
 | description | None
|
 | display_name | None
|
 | driver_version | 3.0.0
|
 | namespace |
OS::Storage::Capabilities::localhost.loc...
 | pool_name | None
|
 | storage_protocol | iSCSI |
 | vendor_name | Open Source |
 | visibility | None
|
 | volume_backend_name | lvm |
 +---------------------+--
-+
 +--------------------+---
-+
 | Backend properties | Value |
 +--------------------+---
-+
 | compression | {u'type': u'boolean',
u'description'...
 | qos | {u'type': u'boolean', u'des
...
 | replication | {u'type': u'boolean',
u'description'...
 | thin_provisioning | {u'type': u'boolean', u'description': u'S...
 +--------------------+---
-+

The Backend properties column shows a list of Extra Spec Keys that you can set, while the Value
column provides information on valid corresponding values.

2.2.1.2. Create and Configure a Volume Type

1. As an admin user in the dashboard, select Admin > Volumes > Volume Types.

2. Click Create Volume Type.

3. Enter the volume type name in the Name field.

4. Click Create Volume Type. The new type appears in the Volume Types table.

5. Select the volume type’s View Extra Specs action.

6. Click Create, and specify the Key and Value. The key/value pair must be valid; otherwise,
specifying the volume type during volume creation will result in an error.

7. Click Create. The associated setting (key/value pair) now appears in the Extra Specs table.

By default, all volume types are accessible to all OpenStack tenants. If you need to create volume
types with restricted access, you will need to do so through the CLI. For instructions, see

CHAPTER 2. BLOCK STORAGE AND VOLUMES

11

Section 2.2.1.5, “Create and Configure Private Volume Types”.

Note

You can also associate a QOS Spec to the volume type. For details, refer to
Section 2.2.4.2, “Associate a QOS Spec with a Volume Type”.

2.2.1.3. Edit a Volume Type

1. As an admin user in the dashboard, select Admin > Volumes > Volume Types.

2. In the Volume Types table, select the volume type’s View Extra Specs action.

3. On the Extra Specs table of this page, you can:

Add a new setting to the volume type. To do this, click Create, and specify the key/value
pair of the new setting you want to associate to the volume type.

Edit an existing setting associated with the volume type. To do this, select the setting’s
Edit action.

Delete existing settings associated with the volume type. To do this, select the extra
specs' check box and click Delete Extra Specs in this and the next dialog screen.

2.2.1.4. Delete a Volume Type

To delete a volume type, select its corresponding check boxes from the Volume Types table and
click Delete Volume Types.

2.2.1.5. Create and Configure Private Volume Types

By default, all volume types are visible to all tenants. You can override this during volume type
creation and set it to private. To do so, you will need to set the type’s Is_Public flag to False.

Private volume types are useful for restricting access to certain volume settings. Typically, these are
settings that should only be usable by specific tenants; examples include new back ends or ultra-
high performance configurations that are being tested.

To create a private volume type, run:

cinder --os-volume-api-version 2 type-create --is-public false VTYPE

+ Replace VTYPE with the name of the private volume type.

By default, private volume types are only accessible to their creators. However, admin users can find
and view private volume types using the following command:

cinder --os-volume-api-version 2 type-list --all

This command will list both public and private volume types, and will also include the name and ID of
each one. You will need the volume type’s ID to provide access to it.

Access to a private volume type is granted at the tenant level. To grant a tenant access to a private
volume type, run:

Red Hat OpenStack Platform 8 Storage Guide

12

cinder --os-volume-api-version 2 type-access-add --volume-type
VTYPEID --project-id TENANTID

Where:

VTYPEID is the ID of the private volume type.

TENANTID is the ID of the project/tenant you are granting access to VTYPEID.

To view which tenants have access to a private volume type, run:

cinder --os-volume-api-version 2 type-access-list --volume-type VTYPE

To remove a tenant from the access list of a private volume type, run:

cinder --os-volume-api-version 2 type-access-remove --volume-type
VTYPE --project-id TENANTID

Note

By default, only users with administrative privileges can create, view, or configure access
for private volume types.

2.2.2. Create and Configure an Internal Tenant for the Block Storage Service

Some Block Storage features (for example, the Image-Volume cache) require the configuration of
an internal tenant. The Block Storage service uses this tenant to manage block storage items that
do not necessarily need to be exposed to normal users. Examples of such items are images cached
for frequent volume cloning or temporary copies of volumes being migrated.

To configure an internal tenant, first create a generic tenant and user, both named cinder-internal.
To do so, log in to the Controller node and run:

keystone tenant-create --name cinder-internal --enabled true --
description "Block Storage Internal Tenant"
 +-------------+----------------------------------+
 | Property | Value |
 +-------------+----------------------------------+
 | description | Block Storage Internal Tenant |
 | enabled | True |
 | id | cb91e1fe446a45628bb2b139d7dccaef |
 | name | cinder-internal |
 +-------------+----------------------------------+
keystone user-create --name cinder-internal
 +----------+----------------------------------+
 | Property | Value |
 +----------+----------------------------------+
 | email | |
 | enabled | True |
 | id | 84e9672c64f041d6bfa7a930f558d946 |
 | name | cinder-internal |
 | username | cinder-internal |
 +----------+----------------------------------+

CHAPTER 2. BLOCK STORAGE AND VOLUMES

13

Note that creating the tenant and user will display their respective IDs. Configure the Block Storage
service to use both tenant and user as the internal tenant through their IDs. To do so, run the
following on each Block Storage node:

openstack-config --set /etc/cinder/cinder.conf DEFAULT
cinder_internal_tenant_project_id TENANTID
openstack-config --set /etc/cinder/cinder.conf DEFAULT
cinder_internal_tenant_user_id USERID

Replace TENANTID and USERID with the respective IDs of the tenant and user created through
keystone. For example, using the IDs supplied above:

openstack-config --set /etc/cinder/cinder.conf DEFAULT
cinder_internal_tenant_project_id cb91e1fe446a45628bb2b139d7dccaef
openstack-config --set /etc/cinder/cinder.conf DEFAULT
cinder_internal_tenant_user_id 84e9672c64f041d6bfa7a930f558d946

2.2.3. Configure and Enable the Image-Volume Cache

The Block Storage service features an optional Image-Volume cache which can be used when
creating volumes from images. This cache is designed to improve the speed of volume creation from
frequently-used images. For information on how to create volumes from images, see Section 2.3.1,
“Create a Volume”.

When enabled, the Image-Volume cache stores a copy of an image the first time a volume is created
from it. This stored image is cached locally to the Block Storage back end to help improve
performance the next time the image is used to create a volume. The Image-Volume cache’s limit
can be set to a size (in GB), number of images, or both.

The Image-Volume cache is supported by several back ends. If you are using a third-party back end,
refer to its documentation for information on Image-Volume cache support.

Note

The Image-Volume cache requires that an internal tenant be configured for the Block
Storage service. For instructions, see Section 2.2.2, “Create and Configure an Internal
Tenant for the Block Storage Service”.

To enable and configure the Image-Volume cache on a Block Storage node, run the following
commands:

openstack-config --set /etc/cinder/cinder.conf BACKEND
image_volume_cache_enabled True

Replace BACKEND with the name of the target back end (specifically, its volume_backend_name
value).

By default, the Image-Volume cache size is only limited by the back end. To configure a maximum
size (MAXSIZE, in GB):

openstack-config --set /etc/cinder/cinder.conf BACKEND
image_volume_cache_max_size_gb MAXSIZE

Red Hat OpenStack Platform 8 Storage Guide

14

Alternatively, you can also set a maximum number of images (MAXNUMBER). To do so:

openstack-config --set /etc/cinder/cinder.conf BACKEND
image_volume_cache_max_count MAXNUMBER

The Block Storage service database uses a time stamp to track when each cached image was last
used to create an image. If either or both MAXSIZE and MAXNUMBER are set, the Block Storage
service will delete cached images as needed to make way for new ones. Cached images with the
oldest time stamp are deleted first whenever the Image-Volume cache limits are met.

After configuring the Image-Volume cache, restart the Block Storage service:

openstack-service restart cinder

2.2.4. Use Quality-of-Service Specifications

You can map multiple performance settings to a single Quality-of-Service specification (QOS
Specs). Doing so allows you to provide performance tiers for different user types.

Performance settings are mapped as key/value pairs to QOS Specs, similar to the way volume
settings are associated to a volume type. However, QOS Specs are different from volume types in
the following respects:

QOS Specs are used to apply performance settings, which include limiting read/write operations
to disks. Available and supported performance settings vary per storage driver.

To determine which QOS Specs are supported by your back end, consult the documentation of
your back end device’s volume driver.

Volume types are directly applied to volumes, whereas QOS Specs are not. Rather, QOS Specs
are associated to volume types. During volume creation, specifying a volume type also applies
the performance settings mapped to the volume type’s associated QOS Specs.

2.2.4.1. Create and Configure a QOS Spec

As an administrator, you can create and configure a QOS Spec through the QOS Specs table. You
can associate more than one key/value pair to the same QOS Spec.

1. As an admin user in the dashboard, select Admin > Volumes > Volume Types.

2. On the QOS Specs table, click Create QOS Spec.

3. Enter a name for the QOS Spec.

4. In the Consumer field, specify where the QOS policy should be enforced:

Table 2.1. Consumer Types

Type Description

back-end QOS policy will be applied to the Block Storage back end.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

15

front-end QOS policy will be applied to Compute.

both QOS policy will be applied to both Block Storage and Compute.

Type Description

5. Click Create. The new QOS Spec should now appear in the QOS Specs table.

6. In the QOS Specs table, select the new spec’s Manage Specs action.

7. Click Create, and specify the Key and Value. The key/value pair must be valid; otherwise,
specifying a volume type associated with this QOS Spec during volume creation will fail.

8. Click Create. The associated setting (key/value pair) now appears in the Key-Value Pairs
table.

2.2.4.2. Associate a QOS Spec with a Volume Type

As an administrator, you can associate a QOS Spec to an existing volume type using the Volume
Types table.

1. As an administrator in the dashboard, select Admin > Volumes > Volume Types.

2. In the Volume Types table, select the type’s Manage QOS Spec Association action.

3. Select a QOS Spec from the QOS Spec to be associated list.

4. Click Associate. The selected QOS Spec now appears in the Associated QOS Spec
column of the edited volume type.

2.2.4.3. Disassociate a QOS Spec from a Volume Type

1. As an administrator in the dashboard, select Admin > Volumes > Volume Types.

2. In the Volume Types table, select the type’s Manage QOS Spec Association action.

3. Select None from the QOS Spec to be associated list.

4. Click Associate. The selected QOS Spec is no longer in the Associated QOS Spec
column of the edited volume type.

2.2.5. Encrypt Volumes with Static Keys

Volume encryption helps provide basic data protection in case the volume back-end is either
compromised or outright stolen. The contents of an encrypted volume can only be read with the use
of a specific key; both Compute and Block Storage services must be configured to use the same key
in order for instances to use encrypted volumes. You can also create a specific volume type that
uses encryption and all volumes created using this volume type are encrypted.

This section describes how to configure an OpenStack deployment to use a single key for
encrypting volumes.

Red Hat OpenStack Platform 8 Storage Guide

16

Important

At present, volume encryption is only supported on volumes backed by block devices.
Encryption of network-attached volumes (such as RBD) or file-based volumes (such as
NFS) is still unsupported.

2.2.5.1. Configure a Static Key

The first step in implementing basic volume encryption is to set a static key. This key must be a
hexadecimal string, which will be used by the Block Storage volume service (namely, openstack-
cinder-volume) and all Compute services (openstack-nova-compute). To configure both
services to use this key, set the key as the fixed_key value in the [keymgr] section of both
service’s respective configuration files.

1. From the command line, log in as root to the node hosting openstack-cinder-volume.

2. Set the static key:

openstack-config --set /etc/cinder/cinder.conf keymgr fixed_key
HEX_KEY

Replace HEX_KEY with a 16-digit alphanumeric hexadecimal key (for example,
04d6b077d60e323711b37813b3a68a71).

You can use the openssl command to generate the key as follows:

openssl rand -hex 16
04d6b077d60e323711b37813b3a68a71

Note

This value should be secure.

3. Restart the Block Storage volume service:

openstack-service restart cinder-volume

4. Log in to the node hosting openstack-nova-compute, and set the same static key:

openstack-config --set /etc/nova/nova.conf keymgr fixed_key
HEX_KEY

Note

If you have multiple Compute nodes (multiple nodes hosting openstack-nova-
compute), then you need to set the same static key in /etc/nova/nova.conf
of each node.

5. Restart the Compute service:

CHAPTER 2. BLOCK STORAGE AND VOLUMES

17

openstack-service restart nova-compute

Note

Likewise, if you set the static key on multiple Compute nodes, you need to restart
the openstack-nova-compute service on each node as well.

At this point, both Compute and Block Storage volume services can now use the same static key to
encrypt/decrypt volumes. That is, new instances will be able to use volumes encrypted with the
static key (HEX_KEY).

2.2.5.2. Configure Volume Type Encryption

To create volumes encrypted with the static key from Section 2.2.5.1, “Configure a Static Key”, you
need an encrypted volume type. Configuring a volume type as encrypted involves setting what
provider class, cipher, and key size it should use. To do so, run:

cinder encryption-type-create --cipher aes-xts-plain64 --key_size
BITSIZE --control_location front-end VOLTYPE
nova.volume.encryptors.luks.LuksEncryptor

Where:

BITSIZE is the key size (for example, 512 for a 512-bit key).

VOLTYPE is the name of the volume type you want to encrypt.

This command sets the nova.volume.encryptors.luks.LuksEncryptor provider class and
aes-xts-plain64 cipher. As of this release, this is the only supported class/cipher configuration
for volume encryption.

Once you have an encrypted volume type, you can invoke it to automatically create encrypted
volumes. For more information on creating a volume type, see Section 2.2.1.2, “Create and
Configure a Volume Type”. Specifically, select the encrypted volume type from the Type drop-down
list in the Create Volume window (see to Section 2.3, “Basic Volume Usage and Configuration”).

You can view the metadata about the encryption by clicking on Yes in the Encrypted volume of a
volume under Project > Compute > Volumes.

2.2.6. Configure How Volumes are Allocated to Multiple Back Ends

If the Block Storage service is configured to use multiple back ends, you can use configured volume
types to specify where a volume should be created. For details, see Section 2.3.2, “Specify Back
End for Volume Creation”.

The Block Storage service will automatically choose a back end if you do not specify one during
volume creation. Block Storage sets the first defined back end as a default; this back end will be
used until it runs out of space. At that point, Block Storage will set the second defined back end as a
default, and so on.

If this is not suitable for your needs, you can use the filter scheduler to control how Block Storage
should select back ends. This scheduler can use different filters to triage suitable back ends, such
as:

Red Hat OpenStack Platform 8 Storage Guide

18

AvailabilityZoneFilter

Filters out all back ends that do not meet the availability zone requirements of the requested
volume

CapacityFilter

Selects only back ends with enough space to accommodate the volume

CapabilitiesFilter

Selects only back ends that can support any specified settings in the volume

To configure the filter scheduler:

1. Enable the FilterScheduler.

openstack-config --set /etc/cinder/cinder.conf DEFAULT
scheduler_driver
cinder.scheduler.filter_scheduler.FilterScheduler

2. Set which filters should be active:

openstack-config --set /etc/cinder/cinder.conf DEFAULT
scheduler_default_filters
AvailabilityZoneFilter,CapacityFilter,CapabilitiesFilter

3. Configure how the scheduler should select a suitable back end. If you want the scheduler:

To always choose the back end with the most available free space, run:

openstack-config --set /etc/cinder/cinder.conf DEFAULT
scheduler_default_weighers AllocatedCapacityWeigher
openstack-config --set /etc/cinder/cinder.conf DEFAULT
allocated_capacity_weight_multiplier -1.0

To choose randomly among all suitable back ends, run:

openstack-config --set /etc/cinder/cinder.conf DEFAULT
scheduler_default_weighers ChanceWeigher

4. Restart the Block Storage scheduler to apply your settings:

openstack-service restart openstack-cinder-scheduler

2.2.7. Backup Administration

The following sections discuss how to customize the Block Storage service’s volume backup
settings.

2.2.7.1. View and Modify a Tenant’s Backup Quota

Unlike most tenant storage quotas (number of volumes, volume storage, snapshots, etc.), backup
quotas cannot be modified through the dashboard yet.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

19

Backup quotas can only be modified through the command-line interface; namely, through the
cinder quota-update command.

To view the storage quotas of a specific tenant (TENANTNAME), run:

cinder quota-show TENANTNAME

To update the maximum number of backups (MAXNUM) that can be created in a specific tenant,
run:

cinder quota-update --backups MAXNUM TENANTNAME

To update the maximum total size of all backups (MAXGB) within a specific tenant, run:

cinder quota-update --backup-gigabytes MAXGB TENANTNAME

To view the storage quota usage of a specific tenant, run:

cinder quota-usage TENANTNAME

2.2.7.2. Enable Volume Backup Management Through the Dashboard

You can now create, view, delete, and restore volume backups through the dashboard. To perform
any of these functions, go to the Project > Compute > Volumes > Volume Backups tab.

However, the Volume Backups tab is not enabled by default. To enable it, configure the dashboard
accordingly:

1. Open /etc/openstack-dashboard/local_settings.

2. Search for the following setting:

OPENSTACK_CINDER_FEATURES = {
 'enable_backup': False,
}

Change this setting to:

OPENSTACK_CINDER_FEATURES = {
 'enable_backup': True,
}

3. Restart the dashboard by restarting the httpd service:

systemctl restart httpd.service

2.2.7.3. Set an NFS Share as a Backup Repository

By default, the Block Storage service uses the Object Storage service as a repository for backups.
You can configure the Block Storage service to use an existing NFS share as a backup repository
instead. To do so:

Red Hat OpenStack Platform 8 Storage Guide

20

1. Log in to the node hosting the backup service (openstack-cinder-backup) as a user with
administrative privileges.

2. Configure the Block Storage service to use the NFS backup driver
(cinder.backup.drivers.nfs):

openstack-config --set /etc/cinder/cinder.conf DEFAULT
backup_driver cinder.backup.drivers.nfs

3. Set the details of the NFS share that you want to use as a backup repository:

openstack-config --set /etc/cinder/cinder.conf DEFAULT
backup_share NFSHOST:PATH

Where:

NFSHOST is the IP address or hostname of the NFS server.

PATH is the absolute path of the NFS share on NFSHOST.

4. If you want to set any optional mount settings for the NFS share, run:

openstack-config --set /etc/cinder/cinder.conf DEFAULT
backup_mount_options NFSMOUNTOPTS

Where NFSMOUNTOPTS is a comma-separated list of NFS mount options (for example,
rw,sync). For more information on supported mount options, see the man pages for nfs and
mount.

5. Restart the Block Storage backup service to apply your changes:

systemctl restart openstack-cinder-backup.service

2.2.7.3.1. Set a Different Backup File Size

The backup service limits backup files sizes to a maximum backup file size. If you are backing up a
volume that exceeds this size, the resulting backup will be split into multiple chunks. The default
backup file size is 1.8GB.

To set a different backup file size, run:

openstack-config --set /etc/cinder/cinder.conf DEFAULT
backup_file_size SIZE

Replace SIZE with the file size you want, in bytes. Restart the Block Storage backup service to apply
your changes:

systemctl restart openstack-cinder-backup.service

2.3. BASIC VOLUME USAGE AND CONFIGURATION

The following procedures describe how to perform basic end-user volume management. These
procedures do not require administrative privileges.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

21

2.3.1. Create a Volume

1. In the dashboard, select Project > Compute > Volumes.

2. Click Create Volume, and edit the following fields:

Field Description

Volume name Name of the volume.

Description Optional, short description of the volume.

Type Optional volume type (see Section 2.2.1, “Group Volume Settings
with Volume Types”).

If you have multiple Block Storage back ends, you can use this to
select a specific back end. See Section 2.3.2, “Specify Back End for
Volume Creation” for details.

Size (GB) Volume size (in gigabytes).

Availability Zone Availability zones (logical server groups), along with host
aggregates, are a common method for segregating resources within
OpenStack. Availability zones are defined during installation. For
more information on availability zones and host aggregates, see
Manage Host Aggregates in the Instances and Images Guide
available at Red Hat OpenStack Platform.

3. Specify a Volume Source:

Source Description

No source, empty volume The volume will be empty, and will not contain
a file system or partition table.

Snapshot Use an existing snapshot as a volume source.
If you select this option, a new Use snapshot
as a source list appears; you can then choose
a snapshot from the list. For more information
about volume snapshots, refer to
Section 2.3.8, “Create, Use, or Delete Volume
Snapshots”.

Red Hat OpenStack Platform 8 Storage Guide

22

https://access.redhat.com/documentation/en/red-hat-openstack-platform/

Image Use an existing image as a volume source. If
you select this option, a new Use image as a
source lists appears; you can then choose an
image from the list.

Volume Use an existing volume as a volume source. If
you select this option, a new Use volume as a
source list appears; you can then choose a
volume from the list.

Source Description

4. Click Create Volume. After the volume is created, its name appears in the Volumes table.

You can also change the volume’s type later on. For details, see Section 2.3.10, “Changing a
Volume’s Type (Volume Re-typing)”.

2.3.2. Specify Back End for Volume Creation

Whenever multiple Block Storage back ends are configured, you will also need to create a volume
type for each back end. You can then use the type to specify which back end should be used for a
created volume. For more information about volume types, see Section 2.2.1, “Group Volume
Settings with Volume Types”.

To specify a back end when creating a volume, select its corresponding volume type from the Type
drop-down list (see Section 2.3.1, “Create a Volume”).

If you do not specify a back end during volume creation, the Block Storage service will automatically
choose one for you. By default, the service will choose the back end with the most available free
space. You can also configure the Block Storage service to choose randomly among all available
back ends instead; for more information, see Section 2.2.6, “Configure How Volumes are Allocated
to Multiple Back Ends”.

2.3.3. Edit a Volume’s Name or Description

1. In the dashboard, select Project > Compute > Volumes.

2. Select the volume’s Edit Volume button.

3. Edit the volume name or description as required.

4. Click Edit Volume to save your changes.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

23

Note

To create an encrypted volume, you must first have a volume type configured specifically
for volume encryption. In addition, both Compute and Block Storage services must be
configured to use the same static key. For information on how to set up the requirements
for volume encryption, refer to Section 2.2.5, “Encrypt Volumes with Static Keys”.

2.3.4. Delete a Volume

1. In the dashboard, select Project > Compute > Volumes.

2. In the Volumes table, select the volume to delete.

3. Click Delete Volumes.

Note

A volume cannot be deleted if it has existing snapshots. For instructions on how to delete
snapshots, see Section 2.3.8, “Create, Use, or Delete Volume Snapshots”.

2.3.5. Attach and Detach a Volume to an Instance

Instances can use a volume for persistent storage. A volume can only be attached to one instance at
a time. For more information on instances, see Manage Instances in the Instances and Images
Guide available at Red Hat OpenStack Platform.

2.3.5.1. Attach a Volume to an Instance

1. In the dashboard, select Project > Compute > Volumes.

2. Select the volume’s Edit Attachments action. If the volume is not attached to an instance,
the Attach To Instance drop-down list is visible.

3. From the Attach To Instance list, select the instance to which you wish to attach the
volume.

4. Click Attach Volume.

2.3.5.2. Detach a Volume From an Instance

1. In the dashboard, select Project > Compute > Volumes.

2. Select the volume’s Manage Attachments action. If the volume is attached to an instance,
the instance’s name is displayed in the Attachments table.

3. Click Detach Volume in this and the next dialog screen.

2.3.6. Set a Volume to Read-Only

Red Hat OpenStack Platform 8 Storage Guide

24

https://access.redhat.com/documentation/en/red-hat-openstack-platform/

You can give multiple users shared access to a single volume without allowing them to edit its
contents. To do so, set the volume to read-only using the following command:

cinder readonly-mode-update VOLUME true

Replace VOLUME with the ID of the target volume.

To set a read-only volume back to read-write, run:

cinder readonly-mode-update VOLUME false

2.3.7. Change a Volume’s Owner

To change a volume’s owner, you will have to perform a volume transfer. A volume transfer is
initiated by the volume’s owner, and the volume’s change in ownership is complete after the transfer
is accepted by the volume’s new owner.

2.3.7.1. Transfer a Volume from the Command Line

1. Log in as the volume’s current owner.

2. List the available volumes:

cinder list

3. Initiate the volume transfer:

cinder transfer-create VOLUME

Where VOLUME is the name or ID of the volume you wish to transfer. For example,

 +------------+--------------------------------------+
 | Property | Value |
 +------------+--------------------------------------+
auth_key	f03bf51ce7ead189
created_at	2014-12-08T03:46:31.884066
id	3f5dc551-c675-4205-a13a-d30f88527490
name	None
volume_id	bcf7d015-4843-464c-880d-7376851ca728
 +------------+--------------------------------------+

The cinder transfer-create command clears the ownership of the volume and
creates an id and auth_key for the transfer. These values can be given to, and used by,
another user to accept the transfer and become the new owner of the volume.

4. The new user can now claim ownership of the volume. To do so, the user should first log in
from the command line and run:

cinder transfer-accept TRANSFERID TRANSFERKEY

Where TRANSFERID and TRANSFERKEY are the id and auth_key values returned by the
cinder transfer-create command, respectively. For example,

CHAPTER 2. BLOCK STORAGE AND VOLUMES

25

cinder transfer-accept 3f5dc551-c675-4205-a13a-d30f88527490
f03bf51ce7ead189

Note

You can view all available volume transfers using:

cinder transfer-list

2.3.7.2. Transfer a Volume Using the Dashboard

Create a volume transfer from the dashboard

1. As the volume owner in the dashboard, select Projects > Volumes.

2. In the Actions column of the volume to transfer, select Create Transfer.

3. In the Create Transfer dialog box, enter a name for the transfer and click Create Volume
Transfer.

The volume transfer is created and in the Volume Transfer screen you can capture the
transfer ID and the authorization key to send to the recipient project.

Note

The authorization key is available only in the Volume Transfer screen. If you lose
the authorization key, you must cancel the transfer and create another transfer to
generate a new authorization key.

4. Close the Volume Transfer screen to return to the volume list.

The volume status changes to awaiting-transfer until the recipient project accepts the
transfer

Accept a volume transfer from the dashboard

1. As the recipient project owner in the dashboard, select Projects > Volumes.

2. Click Accept Transfer.

3. In the Accept Volume Transfer dialog box, enter the transfer ID and the
authorization key that you received from the volume owner and click Accept Volume
Transfer.

The volume now appears in the volume list for the active project.

2.3.8. Create, Use, or Delete Volume Snapshots

You can preserve a volume’s state at a specific point in time by creating a volume snapshot. You
can then use the snapshot to clone new volumes.

Red Hat OpenStack Platform 8 Storage Guide

26

Note

Volume backups are different from snapshots. Backups preserve the data contained in the
volume, whereas snapshots preserve the state of a volume at a specific point in time. In
addition, you cannot delete a volume if it has existing snapshots. Volume backups are
used to prevent data loss, whereas snapshots are used to facilitate cloning.

For this reason, snapshot back ends are typically co-located with volume back ends in
order to minimize latency during cloning. By contrast, a backup repository is usually
located in a different location (eg. different node, physical storage, or even geographical
location) in a typical enterprise deployment. This is to protect the backup repository from
any damage that might occur to the volume back end.

For more information about volume backups, refer to Section 2.4.1, “Back Up and Restore
a Volume”

To create a volume snapshot:

1. In the dashboard, select Project > Compute > Volumes.

2. Select the target volume’s Create Snapshot action.

3. Provide a Snapshot Name for the snapshot and click Create a Volume Snapshot. The
Volume Snapshots tab displays all snapshots.

You can clone new volumes from a snapshot once it appears in the Volume Snapshots table. To
do so, select the snapshot’s Create Volume action. For more information about volume creation,
see Section 2.3.1, “Create a Volume”.

To delete a snapshot, select its Delete Volume Snapshot action.

If your OpenStack deployment uses a Red Hat Ceph back end, see Section 2.3.8.1, “Protected and
Unprotected Snapshots in a Red Hat Ceph Back End” for more information on snapshot security and
troubleshooting.

2.3.8.1. Protected and Unprotected Snapshots in a Red Hat Ceph Back End

When using Red Hat Ceph as a back end for your OpenStack deployment, you can set a snapshot
to protected in the back end. Attempting to delete protected snapshots through OpenStack (as in,
through the dashboard or the cinder snapshot-delete command) will fail.

When this occurs, set the snapshot to unprotected in the Red Hat Ceph back end first. Afterwards,
you should be able to delete the snapshot through OpenStack as normal.

For related instructions, see Protecting a Snapshot and Unprotecting a Snapshot.

2.3.9. Upload a Volume to the Image Service

You can upload an existing volume as an image to the Image service directly. To do so:

1. In the dashboard, select Project > Compute > Volumes.

2. Select the target volume’s Upload to Image action.

3. Provide an Image Name for the volume and select a Disk Format from the list.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

27

https://access.redhat.com/documentation/en/red-hat-ceph-storage/1.2.3/single/ceph-block-device/#protecting_a_snapshot
https://access.redhat.com/documentation/en/red-hat-ceph-storage/1.2.3/single/ceph-block-device/#unprotecting_a_snapshot

4. Click Upload. The QEMU disk image utility uploads a new image of the chosen format using
the name you provided.

To view the uploaded image, select Project > Compute > Images. The new image appears in the
Images table. For information on how to use and configure images, see Manage Images in the
Instances and Images Guide available at Red Hat OpenStack Platform.

2.3.10. Changing a Volume’s Type (Volume Re-typing)

Volume re-typing is the process of applying a volume type (and, in turn, its settings) to an already
existing volume. For more information about volume types, see Section 2.2.1, “Group Volume
Settings with Volume Types”.

A volume can be re-typed whether or not it has an existing volume type. In either case, a re-type will
only be successful if the Extra Specs of the volume type can be applied to the volume. Volume re-
typing is useful for applying pre-defined settings or storage attributes to an existing volume, such as
when you want to:

Migrate the volume to a different back end (Section 2.4.2.1, “Migrating Between Back Ends”).

Change the volume’s storage class/tier.

Users with no administrative privileges can only re-type volumes they own. To perform a volume re-
type:

1. In the dashboard, select Project > Compute > Volumes.

2. In the Actions column of the volume to be migrated, select Change Volume Type.

3. In the Change Volume Type dialog, select the target volume type defining the new back
end from the Type drop-down list.

Note

If you are migrating the volume to another back end, select On Demand from the
Migration Policy drop-down list. For more information, see Section 2.4.2.1,
“Migrating Between Back Ends”.

4. Click Change Volume Type to start the migration.

2.4. ADVANCED VOLUME CONFIGURATION

The following procedures describe how to perform advanced volume management procedures.

2.4.1. Back Up and Restore a Volume

A volume backup is a persistent copy of a volume’s contents. Volume backups are typically created
as object stores, and are managed through the Object Storage service by default. You can,
however, set up a different repository for your backups; OpenStack supports Red Hat Ceph and
NFS as alternative back ends for backups.

When creating a volume backup, all of the backup’s metadata is stored in the Block Storage
service’s database. The cinder utility uses this metadata when restoring a volume from the

Red Hat OpenStack Platform 8 Storage Guide

28

https://access.redhat.com/documentation/en/red-hat-openstack-platform/

backup. As such, when recovering from a catastrophic database loss, you must restore the Block
Storage service’s database first before restoring any volumes from backups. This also presumes
that the Block Storage service database is being restored with all the original volume backup
metadata intact.

If you wish to configure only a subset of volume backups to survive a catastrophic database loss,
you can also export the backup’s metadata. In doing so, you can then re-import the metadata to the
Block Storage database later on, and restore the volume backup as normal.

Note

Volume backups are different from snapshots. Backups preserve the data contained in the
volume, whereas snapshots preserve the state of a volume at a specific point in time. In
addition, you cannot delete a volume if it has existing snapshots. Volume backups are
used to prevent data loss, whereas snapshots are used to facilitate cloning.

For this reason, snapshot back ends are typically co-located with volume back ends in
order to minimize latency during cloning. By contrast, a backup repository is usually
located in a different location (eg. different node, physical storage, or even geographical
location) in a typical enterprise deployment. This is to protect the backup repository from
any damage that might occur to the volume back end.

For more information about volume snapshots, refer to Section 2.3.8, “Create, Use, or
Delete Volume Snapshots”.

2.4.1.1. Create a Full Volume Backup

To back up a volume, use the cinder backup-create command. By default, this command will
create a full backup of the volume. If the volume has existing backups, you can choose to create an
incremental backup instead (see Section 2.4.1.2, “Create an Incremental Volume Backup” for
details.)

You can create backups of volumes you have access to. This means that users with administrative
privileges can back up any volume, regardless of owner. For more information, see
Section 2.4.1.1.1, “Create a Volume Backup as an Admin”.

1. View the ID or Display Name of the volume you wish to back up:

cinder list

2. Back up the volume:

cinder backup-create VOLUME

Replace VOLUME with the ID or Display Name of the volume you want to back up. For
example:

 +-----------+--------------------------------------+
 | Property | Value |
 +-----------+--------------------------------------+
id	e9d15fc7-eeae-4ca4-aa72-d52536dc551d
name	None
volume_id	5f75430a-abff-4cc7-b74e-f808234fa6c5
 +-----------+--------------------------------------+

CHAPTER 2. BLOCK STORAGE AND VOLUMES

29

Note

The volume_id of the resulting backup is identical to the ID of the source
volume.

3. Verify that the volume backup creation is complete:

cinder backup-list

The volume backup creation is complete when the Status of the backup entry is
available.

At this point, you can also export and store the volume backup’s metadata. This allows you to
restore the volume backup, even if the Block Storage database suffers a catastrophic loss. To do
so, run:

cinder --os-volume-api-version 2 backup-export BACKUPID

Where BACKUPID is the ID or name of the volume backup. For example,

+----------------+--+
| Property | Value |
+----------------+--+
backup_service	cinder.backup.drivers.swift
backup_url	eyJzdGF0dXMiOiAiYXZhaWxhYmxlIiwgIm9iam...
	...4NS02ZmY4MzBhZWYwNWUiLCAic2l6ZSI6IDF9
+----------------+--+

The volume backup metadata consists of the backup_service and backup_url values.

2.4.1.1.1. Create a Volume Backup as an Admin

Users with administrative privileges (such as the default admin account) can back up any volume
managed by OpenStack. When an admin backs up a volume owned by a non-admin user, the
backup is hidden from the volume owner by default.

As an admin, you can still back up a volume and make the backup available to a specific tenant. To
do so, run:

cinder --os-auth-url KEYSTONEURL --os-tenant-name TENANTNAME --os-
username USERNAME --os-password PASSWD backup-create VOLUME

Where:

TENANTNAME is the name of the tenant where you want to make the backup available.

USERNAME and PASSWD are the username/password credentials of a user within
TENANTNAME.

VOLUME is the name or ID of the volume you want to back up.

KEYSTONEURL is the URL endpoint of the Identity service (typically http://IP:5000/v2, where IP
is the IP address of the Identity service host).

Red Hat OpenStack Platform 8 Storage Guide

30

When performing this operation, the resulting backup’s size will count against the quota of
TENANTNAME rather than the admin’s tenant.

2.4.1.2. Create an Incremental Volume Backup

By default, the cinder backup-create command will create a full backup of a volume. However,
if the volume has existing backups, you can choose to create an incremental backup.

An incremental backup captures any changes to the volume since the last backup (full or
incremental). Performing numerous, regular, full back ups of a volume can become resource-
intensive as the volume’s size increases over time. In this regard, incremental backups allow you to
capture periodic changes to volumes while minimizing resource usage.

To create an incremental volume backup, use the --incremental option. As in:

cinder backup-create VOLUME --incremental

Replace VOLUME with the ID or Display Name of the volume you want to back up. Incremental
backups are fully supported on NFS and Object Storage backup repositories.

Note

You cannot delete a full backup if it already has an incremental backup. In addition, if a
full backup has multiple incremental backups, you can only delete the latest one.

2.4.1.3. Restore a Volume After a Block Storage Database Loss

Typically, a Block Storage database loss prevents you from restoring a volume backup. This is
because the Block Storage database contains metadata required by the volume backup service
(openstack-cinder-backup). This metadata consists of backup_service and backup_url values,
which you can export after creating the volume backup (as shown in Section 2.4.1.1, “Create a Full
Volume Backup”).

If you exported and stored this metadata, then you can import it to a new Block Storage database
(thereby allowing you to restore the volume backup).

1. As a user with administrative privileges, run:

cinder --os-volume-api-version 2 backup-import backup_service
backup_url

Where backup_service and backup_url are from the metadata you exported. For example,
using the exported metadata from Section 2.4.1.1, “Create a Full Volume Backup”:

Warning

When using Red Hat Ceph Storage as a back end for both Block Storage (cinder)
volumes and backups, any attempt to perform an incremental backup will result in a full
backup instead, without any warning. This is a known issue (BZ#1463061).

CHAPTER 2. BLOCK STORAGE AND VOLUMES

31

https://bugzilla.redhat.com/show_bug.cgi?id=1463061

cinder --os-volume-api-version 2 backup-import
cinder.backup.drivers.swift eyJzdGF0dXMi...c2l6ZSI6IDF9
+----------+--------------------------------------+
| Property | Value |
+----------+--------------------------------------+
| id | 77951e2f-4aff-4365-8c64-f833802eaa43 |
| name | None |
+----------+--------------------------------------+

2. After the metadata is imported into the Block Storage service database, you can restore the
volume as normal (see Section 2.4.1.4, “Restore a Volume from a Backup”).

2.4.1.4. Restore a Volume from a Backup

1. Find the ID of the volume backup you wish to use:

cinder backup-list

The Volume ID should match the ID of the volume you wish to restore.

2. Restore the volume backup:

cinder backup-restore BACKUP_ID

Where BACKUP_ID is the ID of the volume backup you wish to use.

3. If you no longer need the backup, delete it:

cinder backup-delete BACKUP_ID

2.4.2. Migrate a Volume

The Block Storage service allows you to migrate volumes between hosts or back ends. You can
migrate a volume currently in-use (attached to an instance), but not volumes that have snapshots.

When migrating a volume between hosts, both hosts must reside on the same back end. To do so:

1. In the dashboard, select Admin > Volumes.

2. In the Actions column of the volume to be migrated, select Migrate Volume.

3. In the Migrate Volume dialog, select the target host from the Destination Host drop-down
list.

Note

If you wish to bypass any driver optimizations for the host migration, select the
Force Host Copy checkbox.

4. Click Migrate to start the migration.

Red Hat OpenStack Platform 8 Storage Guide

32

2.4.2.1. Migrating Between Back Ends

Migrating a volume between back ends, on the other hand, involves volume re-typing. This means
that in order to migrate to a new back end:

1. The new back end must be specified as an Extra Spec in a separate target volume type.

2. All other Extra Specs defined in the target volume type must be compatible with the
volume’s original volume type.

See Section 2.2.1, “Group Volume Settings with Volume Types” and Section 2.3.2, “Specify Back
End for Volume Creation” for more details.

When defining the back end as an Extra Spec, use volume_backend_name as the Key. Its
corresponding value will be the back end’s name, as defined in the Block Storage configuration file
(/etc/cinder/cinder.conf). In this file, each back end is defined in its own section, and its
corresponding name is set in the volume_backend_name parameter.

Once you have a back end defined in a target volume type, you can migrate a volume to that back
end through re-typing. This involves re-applying the target volume type to a volume, thereby
applying the new back end settings. See Section 2.3.10, “Changing a Volume’s Type (Volume Re-
typing)” for instructions.

To do so:

1. In the dashboard, select Project > Compute > Volumes.

2. In the Actions column of the volume to be migrated, select Change Volume Type.

3. In the Change Volume Type dialog, select the target volume type defining the new back
end from the Type drop-down list.

4. Select On Demand from the Migration Policy drop-down list.

5. Click Change Volume Type to start the migration.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

33

CHAPTER 3. OBJECT STORAGE AND CONTAINERS

OpenStack Object Storage (openstack-swift) stores its objects (data) in containers, which are
similar to directories in a file system although they cannot be nested. Containers provide an easy
way for users to store any kind of unstructured data; for example, objects might include photos, text
files, or images. Stored objects are neither encrypted nor compressed.

3.1. OBJECT STORAGE SERVICE ADMINISTRATION

The following procedures explain how to further customize the Object Storage service to suit your
needs.

3.1.1. Erasure Coding for Object Storage Service

Erasure coding (EC) is a method of data protection in which the data is broken into fragments,
expanded and encoded with redundant data pieces and stored across a set of different locations or
storage media. It uses a smaller volume of storage to attain the required durability than traditional
replication. When compared to replication factor of 3, savings of 50% may be attained with careful
deployment. However, depending on the workload, erasure coding may incur a performance
penalty.

With the Red Hat OpenStack Platform 8 release, erasure coding support is available as a technology
preview for Object Storage service. For more information on the support scope for features marked
as technology previews, refer to https://access.redhat.com/support/offerings/techpreview/.

Erasure coding is supported for Object Storage service as a Storage Policy. A Storage Policy allows
segmenting the cluster for various purposes through the creation of multiple object rings. Red Hat
recommends you split off devices used by erasure coding and replication Storage Policies. This way
behavior of the cluster is easier to analyze.

The direction you choose depends on why the erasure coding policy is being deployed. Some of the
main considerations are:

Layout of existing infrastructure.

Cost of adding dedicated erasure coding nodes (or just dedicated erasure coding devices).

Intended usage model(s).

3.1.1.1. Configure Erasure Coding

To use an erasure coding policy, define an erasure coding policy in swift.conf file and create,
configure the associated object ring. An example of how an erasure coding policy can be setup is
shown below:

[storage-policy:2]
name = ec104
policy_type = erasure_coding
ec_type = jerasure_rs_vand
ec_num_data_fragments = 10
ec_num_parity_fragments = 4
ec_object_segment_size = 1048576

The following table describes the terms in the storage policy:

Red Hat OpenStack Platform 8 Storage Guide

34

https://access.redhat.com/support/offerings/techpreview/

Term Description

name This is a standard storage policy parameter.

policy_type Set this to erasure_coding to indicate that this is an erasure
coding policy.

ec_type Set this value according to the available options in the
selected PyECLib back-end. This specifies the erasure coding
scheme that is to be used. For example, the option shown
here selects Vandermonde Reed-Solomon encoding while an
option of flat_xor_hd_3 would select Flat-XOR based HD
combination codes. See the PyECLib page for full details.

ec_num_data_fragments The total number of fragments that will be comprised of data.

ec_num_parity_fragments The total number of fragments that will be comprised of parity.

ec_object_segment_size The amount of data that will be buffered up before feeding a
segment into the encoder/decoder. The default value is
1048576.

When PyECLib encodes an object, it breaks it into N fragments. It is important during configuration
to know how many of those fragments are data and how many are parity. So in the example above,
PyECLib will break an object in 14 different fragments, 10 of them will be made up of actual object
data and 4 of them will be made of parity data (calculations depending on ec_type). With such a
configuration, the system can sustain 4 disk failures before the data is lost. Other commonly used
configurations are 4+2 (with 4 data fragments and 2 partiy fragments) or 8+3 (with 8 data fragments
and 3 parity fragments).

Note

It is important to note that once you have deployed a policy and have created objects with
that policy, these configurations options cannot be changed. In case a change in the
configuration is desired, you must create a new policy and migrate the data to a new
container. However, once defined, policy indices cannot be discarded. If policies are to be
retired, they may be disabled, but not be removed. There is essentially no performance
penalty for having old policies around, but a minor administrative overhead.

3.1.1.2. Configure an Object Storage Ring

Object Storage uses a data structure called the Ring to distribute a partition space across the
cluster. This partition space is core to the replication system in Object Storage service. It allows the
Object Storage service to quickly and easily synchronize each partition across the cluster. When

CHAPTER 3. OBJECT STORAGE AND CONTAINERS

35

https://bitbucket.org/kmgreen2/pyeclib

any component in Swift needs to interact with data, a quick lookup is done locally in the Ring to
determine the possible partitions for each replica.

Object Storage service already has three rings to store different types of data. There is one for
account information, another for containers (so that it’s convenient to organize objects under an
account) and another for the object replicas. To support erasure codes, there will be an additional
ring that is created to store erasure code chunks.

To create a typical replication ring, for example, you can use the following command:

swift-ring-builder object-1.builder create 10 3 1

where 3 is the number of replicas.

In order to create an erasure coding object ring, you need to use the number of fragments in place of
the number of replicas, for example:

swift-ring-builder object-1.builder create 10 14 1

where 14 is for a 10+4 configuration with 10 data fragments and 4 parity fragments.

Consider the performance impacts when deciding which devices to use in the erasure coding
policy’s object ring. We recommend that you run some performance benchmarking in a test
environment for the configuration before deployment. After you have configured your erasure coding
policy in the swift.conf and created your object ring, your application is ready to start using erasure
coding by creating a container with the specified policy name and interacting as usual.

3.1.2. Set Object Storage as a Back End for the Image Service

The OpenStack Image service, by default, saves images and instance snapshots to the local
filesystem in /var/lib/glance/images/. Alternatively, you can configure the Image service to
save images and snapshots to the Object Storage service (when available).

To do so, perform the following procedure:

1. Log into the node running the Image service (the controller node also running Identity) as
root and source your OpenStack credentials (this is typically a file named openrc).

source ~/openrc

2. Verify that the Image service is part of the tenant service with role admin.

keystone user-role-list --user glance --tenant service

One of the roles returned should be admin.

3. Open the /etc/glance/glance.conf file and comment out the following lines:

DEFAULT OPTIONS
#default_store = file
#filesystem_store_datadir = /var/lib/glance/images/

4. In the same file, add the following lines to the DEFAULT OPTIONS section.

Red Hat OpenStack Platform 8 Storage Guide

36

default_store = swift
swift_store_auth_address = http://KEYSTONEIP:35357/v2.0/
swift_store_user = service:glance
swift_store_key = ADMINPW
swift_store_create_container_on_put = True

Where:

KEYSTONEIP is the IP address of the Identity service, and

ADMINPW is the value of admin password attribute in the /etc/glance/glance-
api.conf file.

5. Apply the changes by restarting the Image service:

systemctl restart openstack-glance-api
systemctl restart openstack-glance-registry

From this point onwards, images uploaded to the Image service (whether through the Dashboard or
glance) should now be saved to an Object Storage container named glance. This container exists
in the service account.

To verify whether newly-created images are saved to the Image service, run:

ls /var/lib/glance/images

Once the Dashboard or the glance image-list reports the image is active, you can verify
whether it is in Object Storage by running the following command:

swift --os-auth-url http://KEYSTONEIP:5000/v2.0 --os-tenant-name
service --os-username glance --os-password ADMINPW list glance

3.2. BASIC CONTAINER MANAGEMENT

To help with organization, pseudo-folders are logical devices that can contain objects (and can be
nested). For example, you might create an Images folder in which to store pictures and a Media
folder in which to store videos.

You can create one or more containers in each project, and one or more objects or pseudo-folders
in each container.

3.2.1. Create a Container

1. In the dashboard, select Project > Object Store > Containers.

2. Click Create Container.

3. Specify the Container Name, and select one of the following in the Container Access field.

CHAPTER 3. OBJECT STORAGE AND CONTAINERS

37

Type Description

Private Limits access to a user in the current project.

Public Permits API access to anyone with the public
URL. However, in the dashboard, project
users cannot see public containers and data
from other projects.

4. Click Create Container.

3.2.2. Create Pseudo Folder for Container

1. In the dashboard, select Project > Object Store > Containers.

2. Click the name of the container to which you want to add the pseudo-folder.

3. Click Create Pseudo-folder.

4. Specify the name in the Pseudo-folder Name field, and click Create.

3.2.3. Delete a Container

1. In the dashboard, select Project > Object Store > Containers.

2. Browse for the container in the Containers section, and ensure all objects have been
deleted (see Section 3.2.6, “Delete an Object”).

3. Select Delete Container in the container’s arrow menu.

4. Click Delete Container to confirm the container’s removal.

3.2.4. Upload an Object

If you do not upload an actual file, the object is still created (as placeholder) and can later be used to
upload the file.

1. In the dashboard, select Project > Object Store > Containers.

2. Click the name of the container in which the uploaded object will be placed; if a pseudo-
folder already exists in the container, you can click its name.

3. Browse for your file, and click Upload Object.

4. Specify a name in the Object Name field:

Pseudo-folders can be specified in the name using a / character (for example,
Images/myImage.jpg). If the specified folder does not already exist, it is created when
the object is uploaded.

Red Hat OpenStack Platform 8 Storage Guide

38

A name that is not unique to the location (that is, the object already exists) overwrites the
object’s contents.

5. Click Upload Object.

3.2.5. Copy an Object

1. In the dashboard, select Project > Object Store > Containers.

2. Click the name of the object’s container or folder (to display the object).

3. Click Upload Object.

4. Browse for the file to be copied, and select Copy in its arrow menu.

5. Specify the following:

Field Description

Destination container Target container for the new object.

Path Pseudo-folder in the destination container; if
the folder does not already exist, it is created.

Destination object name New object’s name. If you use a name that is
not unique to the location (that is, the object
already exists), it overwrites the object’s
previous contents.

6. Click Copy Object.

3.2.6. Delete an Object

1. In the dashboard, select Project > Object Store > Containers.

2. Browse for the object, and select Delete Object in its arrow menu.

3. Click Delete Object to confirm the object’s removal.

CHAPTER 3. OBJECT STORAGE AND CONTAINERS

39

CHAPTER 4. FILE SHARES

Important

The OpenStack Shared File System service is available in this release as a Technology
Preview, and therefore is not fully supported by Red Hat. It should only be used for testing,
and should not be deployed in a production environment. For more information about
Technology Preview features, see Scope of Coverage Details.

OpenStack’s Shared File System service (openstack-manila) provides the means to easily
provision shared file systems that can be consumed by multiple instances. In the past, OpenStack
users needed to manually deploy shared file systems before mounting them on instances. The
Shared File System service, on the other hand, allows users to easily provision shares from a pre-
configured storage pool, ready to be mounted securely. This pool, in turn, can be independently
managed and scaled to meet demand.

The OpenStack Shared File System service also allows administrators to define settings for different
types of shares (namely, share type), in the same way that the OpenStack Block Storage service
uses volume types. In addition, the Shared File System service also provides the means to manage
access, security, and snapshots for provisioned shares.

At present, the Shared File System service can only be deployed manually. For instructions on how
to do so, see Install the Shared File System Service (Technology Preview).

4.1. CREATE AND MANAGE SHARES

This section assumes that you manually deployed the Shared File System service as described in
Install the Shared File System Service (Technology Preview) and OpenStack Shared File System
Service (Manila). As such, at this point you should be using the NetApp driver
(manila.share.drivers.netapp.common.NetAppDriver) for shares.

With this driver, you should be able to perform the following operations:

Create and delete a share.

Allow (read/write) or deny access to a share.

Before creating a share, you must first create a share type. Typically, this step is part of the Shared
File System service deployment, as described in Create a Share Type for the Defined Back End.

The following procedures assume that your NetApp back end:

Can be invoked through a share type named netapp, and

Supports the NFS share protocol.

4.2. CREATE A SHARE

To create a share, log in to the Shared File System service host and run:

manila create --share-type SHARETYPE --name SHARENAME PROTO GB

Where:

Red Hat OpenStack Platform 8 Storage Guide

40

https://access.redhat.com/support/offerings/production/scope_moredetail
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/paged/installation-reference/chapter-14-install-the-shared-file-system-service-technology-preview
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/paged/installation-reference/chapter-14-install-the-shared-file-system-service-technology-preview
http://netapp.github.io/openstack-deploy-ops-guide/liberty/content/ch_manila.html
https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/paged/installation-reference/148-create-a-share-type-for-the-defined-back-end

SHARETYPE applies settings associated with the specified share type.

SHARENAME is the name of the share.

PROTO is the share protocol you want to use.

GB is the size of the share, in GB.

For example, to create a 1 GB NFS share named share-00 using the netapp back end, run:

manila create --share-type netapp --name share-00 nfs 10
 +-------------------+--------------------------------------+
 | Property | Value |
 +-------------------+--------------------------------------+
status	creating
description	None
availability_zone	nova
share_network_id	None
export_locations	[]
share_server_id	None
host	None
snapshot_id	None
is_public	False
id	d760eee8-1d91-48c4-8f9a-ad07072e17a2
size	10
name	share-01
share_type	8245657b-ab9e-4db1-8224-451c32d6b5ea
created_at	2015-09-29T16:27:54.092272
export_location	None
share_proto	NFS
project_id	a19dc7ec562c4ed48cea58d22eb0d3c7
metadata	{}
 +-------------------+--------------------------------------+

4.3. LIST SHARES AND EXPORT INFORMATION

To verify that the shares were created successfully:

manila list
 +--------------------------------------+----------+-----+---------
--+
 | ID | Name | ... | Status
...
 +--------------------------------------+----------+-----+---------
--+
 | d760eee8-1d91-48c4-8f9a-ad07072e17a2 | share-01 | ... | available
...
 +--------------------------------------+----------+-----+---------
--+

The manila list command will also display the export location of the share:

 +---+
 | Export location ...
 +---+

CHAPTER 4. FILE SHARES

41

 | 10.70.37.46:/manila-nfs-volume-01/share-d760eee8-1d91-...
 +---+

This information will be used later when mounting the share (Section 4.5, “Mount a Share on an
Instance”).

4.4. GRANT SHARE ACCESS

Before you can mount a share on an instance, grant the instance access to the share first:

manila access-allow SHAREID IDENT IDENTKEY

Where:

SHAREID is the ID of the share created in Section 4.2, “Create a Share”.

IDENT is the method that the File Share Service should use to authenticate a share user or
instance.

The IDENTKEY varies depending on what identifying method you choose as IDENT:

cert: this method is used for authenticating an instance through TLS certificates.

user: use this to authenticate by user or group name.

ip: use this to authenticate an instance through its IP address.

For example, to grant read-write access to an instance (identified by the IP 10.70.36.85), run:

manila access-allow d760eee8-1d91-48c4-8f9a-ad07072e17a2 ip
10.70.36.85
 +--------------+--------------------------------------+
 | Property | Value |
 +--------------+--------------------------------------+
share_id	d760eee8-1d91-48c4-8f9a-ad07072e17a2
deleted	False
created_at	2015-09-29T16:35:33.862114
updated_at	None
access_type	ip
access_to	10.70.36.85
access_level	rw
state	new
deleted_at	None
id	b4e990d7-e9d1-4801-bcbe-a860fc1401d1
 +--------------+--------------------------------------+

Note that access to the share has its own ID (ACCESSID), b4e990d7-e9d1-4801-bcbe-
a860fc1401d1.

To verify that the access configuration was successful:

manila access-list d760eee8-1d91-48c4-8f9a-ad07072e17a2
 +---------------------------+-----------+-----------+-------------
-+
 | id |access type|access to | access level
...

Red Hat OpenStack Platform 8 Storage Guide

42

 +---------------------------+-----------+-----------+-------------
-+
 |b4e990d7-e9d1-4801-bcbe-...|ip |10.70.36.85| rw
...
 +---------------------------+-----------+-----------+-------------
-+

4.5. MOUNT A SHARE ON AN INSTANCE

After configuring the share to authenticate an instance, you can then mount the share. For example,
to mount the share from Section 4.2, “Create a Share” to /mnt on the instance from Section 4.4,
“Grant Share Access”, log in to the instance and mount as normal:

ssh root@10.70.36.85
mount -t nfs -o vers=3 10.70.37.46:/manila-nfs-volume-01/share-
d760eee8-1d91-48c4-8f9a-ad07072e17a2 /mnt

See Section 4.3, “List Shares and Export Information” to learn how to view a share’s export
information.

Upon mounting the volume from inside the instance, check if you can write to the share at its mount
point.

4.6. REVOKE ACCESS TO A SHARE

To revoke previously-granted access to a share, you need to delete the access to the share:

manila access-deny SHAREID ACCESSID

For example, to revoke the access granted earlier in Section 4.4, “Grant Share Access”:

manila access-list d760eee8-1d91-48c4-8f9a-ad07072e17a2
 +---------------------------+-----------+-----------+-------------
-+
 | id |access type|access to | access level
...
 +---------------------------+-----------+-----------+-------------
-+
 |b4e990d7-e9d1-4801-bcbe-...|ip |10.70.36.85| rw
...
 +---------------------------+-----------+-----------+-------------
-+
manila access-deny d760eee8-1d91-48c4-8f9a-ad07072e17a2 b4e990d7-
e9d1-4801-bcbe-a860fc1401d1

At this point, the instance will no longer be able to use the mounted share.

4.7. DELETE A SHARE

To delete a share:

manila delete SHAREID

CHAPTER 4. FILE SHARES

43

For example:

manila delete d760eee8-1d91-48c4-8f9a-ad07072e17a2

Red Hat OpenStack Platform 8 Storage Guide

44

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION TO PERSISTENT STORAGE IN OPENSTACK
	1.1. SCALABILITY AND BACK END
	1.2. ACCESSIBILITY AND ADMINISTRATION
	1.3. SECURITY
	1.4. REDUNDANCY AND DISASTER RECOVERY

	CHAPTER 2. BLOCK STORAGE AND VOLUMES
	2.1. BACK ENDS
	2.2. BLOCK STORAGE SERVICE ADMINISTRATION
	2.2.1. Group Volume Settings with Volume Types
	2.2.1.1. List a Host Driver’s Capabilities
	2.2.1.2. Create and Configure a Volume Type
	2.2.1.3. Edit a Volume Type
	2.2.1.4. Delete a Volume Type
	2.2.1.5. Create and Configure Private Volume Types

	2.2.2. Create and Configure an Internal Tenant for the Block Storage Service
	2.2.3. Configure and Enable the Image-Volume Cache
	2.2.4. Use Quality-of-Service Specifications
	2.2.4.1. Create and Configure a QOS Spec
	2.2.4.2. Associate a QOS Spec with a Volume Type
	2.2.4.3. Disassociate a QOS Spec from a Volume Type

	2.2.5. Encrypt Volumes with Static Keys
	2.2.5.1. Configure a Static Key
	2.2.5.2. Configure Volume Type Encryption

	2.2.6. Configure How Volumes are Allocated to Multiple Back Ends
	2.2.7. Backup Administration
	2.2.7.1. View and Modify a Tenant’s Backup Quota
	2.2.7.2. Enable Volume Backup Management Through the Dashboard
	2.2.7.3. Set an NFS Share as a Backup Repository

	2.3. BASIC VOLUME USAGE AND CONFIGURATION
	2.3.1. Create a Volume
	2.3.2. Specify Back End for Volume Creation
	2.3.3. Edit a Volume’s Name or Description
	2.3.4. Delete a Volume
	2.3.5. Attach and Detach a Volume to an Instance
	2.3.5.1. Attach a Volume to an Instance
	2.3.5.2. Detach a Volume From an Instance

	2.3.6. Set a Volume to Read-Only
	2.3.7. Change a Volume’s Owner
	2.3.7.1. Transfer a Volume from the Command Line
	2.3.7.2. Transfer a Volume Using the Dashboard

	2.3.8. Create, Use, or Delete Volume Snapshots
	2.3.8.1. Protected and Unprotected Snapshots in a Red Hat Ceph Back End

	2.3.9. Upload a Volume to the Image Service
	2.3.10. Changing a Volume’s Type (Volume Re-typing)

	2.4. ADVANCED VOLUME CONFIGURATION
	2.4.1. Back Up and Restore a Volume
	2.4.1.1. Create a Full Volume Backup
	2.4.1.2. Create an Incremental Volume Backup
	2.4.1.3. Restore a Volume After a Block Storage Database Loss
	2.4.1.4. Restore a Volume from a Backup

	2.4.2. Migrate a Volume
	2.4.2.1. Migrating Between Back Ends

	CHAPTER 3. OBJECT STORAGE AND CONTAINERS
	3.1. OBJECT STORAGE SERVICE ADMINISTRATION
	3.1.1. Erasure Coding for Object Storage Service
	3.1.1.1. Configure Erasure Coding
	3.1.1.2. Configure an Object Storage Ring

	3.1.2. Set Object Storage as a Back End for the Image Service

	3.2. BASIC CONTAINER MANAGEMENT
	3.2.1. Create a Container
	3.2.2. Create Pseudo Folder for Container
	3.2.3. Delete a Container
	3.2.4. Upload an Object
	3.2.5. Copy an Object
	3.2.6. Delete an Object

	CHAPTER 4. FILE SHARES
	4.1. CREATE AND MANAGE SHARES
	4.2. CREATE A SHARE
	4.3. LIST SHARES AND EXPORT INFORMATION
	4.4. GRANT SHARE ACCESS
	4.5. MOUNT A SHARE ON AN INSTANCE
	4.6. REVOKE ACCESS TO A SHARE
	4.7. DELETE A SHARE

