
Red Hat OpenStack Platform 16.1

Security and Hardening Guide

Good Practices, Compliance, and Security Hardening

Last Updated: 2023-10-12

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

Good Practices, Compliance, and Security Hardening

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides good practice advice and conceptual information about hardening the security
of a Red Hat OpenStack Platform environment.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO SECURITY
1.1. RED HAT OPENSTACK PLATFORM SECURITY
1.2. UNDERSTANDING THE RED HAT OPENSTACK PLATFORM ADMIN ROLE
1.3. IDENTIFYING SECURITY ZONES IN RED HAT OPENSTACK PLATFORM
1.4. LOCATING SECURITY ZONES IN RED HAT OPENSTACK PLATFORM
1.5. CONNECTING SECURITY ZONES
1.6. THREAT MITIGATION

CHAPTER 2. DOCUMENTING YOUR RHOSP ENVIRONMENT
2.1. DOCUMENTING THE SYSTEM ROLES
2.2. CREATING A HARDWARE INVENTORY
2.3. CREATING A SOFTWARE INVENTORY

CHAPTER 3. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI
3.1. COMPONENTS OF PUBLIC KEY INFRASTRUCTURE (PKI)
3.2. CERTIFICATE AUTHORITY REQUIREMENTS AND RECOMMENDATIONS
3.3. IDENTIFYING TLS VERSIONS IN YOUR ENVIRONMENT
3.4. IDENTITY MANAGEMENT (IDM) SERVER RECOMMENDATIONS FOR OPENSTACK
3.5. IMPLEMENTING TLS-E WITH ANSIBLE
3.6. PARAMETERS FOR TRIPLEO-IPA

CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT
4.1. RED HAT OPENSTACK PLATFORM FERNET TOKENS
4.2. OPENSTACK IDENTITY SERVICE ENTITIES
4.3. AUTHENTICATING WITH KEYSTONE

4.3.1. Using Identity service heat parameters to stop invalid login attempts
4.4. AUTHENTICATING WITH EXTERNAL IDENTITY PROVIDERS

4.4.1. How LDAP integration works

CHAPTER 5. POLICIES
5.1. REVIEWING EXISTING POLICIES
5.2. UNDERSTANDING SERVICE POLICIES
5.3. POLICY SYNTAX
5.4. USING POLICY FILES FOR ACCESS CONTROL
5.5. EXAMPLE: CREATING A POWER USER ROLE
5.6. EXAMPLE: LIMITING ACCESS BASED ON ATTRIBUTES
5.7. MODIFYING POLICIES WITH HEAT
5.8. AUDITING YOUR USERS AND ROLES
5.9. AUDITING API ACCESS

CHAPTER 6. ROTATING SERVICE ACCOUNT PASSWORDS
6.1. OVERVIEW OF OVERCLOUD PASSWORD MANAGEMENT
6.2. ROTATING THE PASSWORDS
6.3. OUTAGE REQUIREMENTS

CHAPTER 7. NETWORK TIME PROTOCOL
7.1. WHY CONSISTENT TIME IS IMPORTANT
7.2. NTP DESIGN

CHAPTER 8. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

6

7

8
8
8
9

10
10
11

12
12
13
14

16
16
17
17
19

20
22

24
24
24
24
26
26
26

28
28
28
29
29
29
31
32
33
33

35
35
35
37

38
38
38

39

Table of Contents

1

. .

. .

8.1. HYPERVISORS
8.1.1. Hypervisor versus bare metal
8.1.2. Hypervisor memory optimization

8.2. PCI PASSTHROUGH
8.3. SELINUX

8.3.1. Labels and Categories
8.3.2. SELinux users and roles

8.4. INVESTIGATING CONTAINERIZED SERVICES
8.5. MAKING TEMPORARY CHANGES TO CONTAINERIZED SERVICES
8.6. MAKING PERMANENT CHANGES TO CONTAINERIZED SERVICES
8.7. FIRMWARE UPDATES
8.8. USE SSH BANNER TEXT
8.9. AUDIT FOR SYSTEM EVENTS
8.10. MANAGE FIREWALL RULES
8.11. INTRUSION DETECTION WITH AIDE

8.11.1. Using complex AIDE rules
8.11.2. Additional AIDE values
8.11.3. Cron configuration for AIDE
8.11.4. Considering the effect of system upgrades

8.12. REVIEW SECURETTY
8.13. CADF AUDITING FOR IDENTITY SERVICE
8.14. REVIEW THE LOGIN.DEFS VALUES

CHAPTER 9. HARDENING THE DASHBOARD SERVICE
9.1. DEBUGGING THE DASHBOARD SERVICE
9.2. SELECTING A DOMAIN NAME
9.3. CONFIGURE ALLOWED_HOSTS
9.4. CROSS SITE SCRIPTING (XSS)
9.5. CROSS SITE REQUEST FORGERY (CSRF)
9.6. ALLOW IFRAME EMBEDDING
9.7. USING HTTPS ENCRYPTION FOR DASHBOARD TRAFFIC
9.8. HTTP STRICT TRANSPORT SECURITY (HSTS)
9.9. FRONT-END CACHING
9.10. SESSION BACKEND
9.11. REVIEWING THE SECRET KEY
9.12. CONFIGURING SESSION COOKIES
9.13. STATIC MEDIA
9.14. VALIDATING PASSWORD COMPLEXITY
9.15. ENFORCE THE ADMINISTRATOR PASSWORD CHECK
9.16. DISABLE PASSWORD REVEAL
9.17. DISPLAYING A LOGIN BANNER FOR THE DASHBOARD
9.18. CUSTOMIZING THE THEME
9.19. LIMITING THE SIZE OF FILE UPLOADS

CHAPTER 10. RED HAT OPENSTACK PLATFORM NETWORKING SERVICE
10.1. NETWORKING ARCHITECTURE
10.2. NEUTRON SERVICE PLACEMENT ON PHYSICAL SERVERS
10.3. SECURITY ZONES
10.4. NETWORKING SERVICES
10.5. L2 ISOLATION USING VLANS AND TUNNELING
10.6. ACCESS CONTROL LISTS
10.7. L3 ROUTING AND NAT
10.8. QUALITY OF SERVICE (QOS)

39
39
39
40
40
41
41
41

42
43
43
43
44
44
46
47
47
48
48
48
48
49

50
50
50
50
51
51
51
51
52
52
52
53
53
53
53
54
54
54
54
56

58
58
59
60
61

62
62
62
63

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

2

. .

. .

. .

. .

. .

10.9. LOAD BALANCING
10.10. HARDENING THE NETWORKING SERVICE

10.10.1. Restrict bind address of the API server: neutron-server
10.10.2. Project network services workflow
10.10.3. Networking resource policy engine
10.10.4. Security groups
10.10.5. Mitigate ARP spoofing
10.10.6. Use a Secure Protocol for Authentication

CHAPTER 11. HARDENING BLOCK STORAGE ON RED HAT OPENSTACK PLATFORM
11.1. SET THE MAX SIZE FOR THE BODY OF A REQUEST
11.2. ENABLE VOLUME ENCRYPTION
11.3. VOLUME WIPING

CHAPTER 12. HARDENING THE SHARED FILE SYSTEM (MANILA)
12.1. SECURITY CONSIDERATIONS FOR MANILA
12.2. NETWORK AND SECURITY MODELS FOR MANILA
12.3. SHARE BACKEND MODES
12.4. NETWORKING REQUIREMENTS FOR MANILA
12.5. SECURITY SERVICES WITH MANILA
12.6. INTRODUCTION TO SECURITY SERVICES
12.7. SECURITY SERVICES MANAGEMENT
12.8. SHARE ACCESS CONTROL
12.9. SHARE TYPE ACCESS CONTROL
12.10. POLICIES

CHAPTER 13. OBJECT STORAGE
13.1. NETWORK SECURITY
13.2. RUN SERVICES AS NON-ROOT USER
13.3. FILE PERMISSIONS
13.4. SECURING STORAGE SERVICES
13.5. OBJECT STORAGE ACCOUNT TERMINOLOGY
13.6. SECURING PROXY SERVICES
13.7. HTTP LISTENING PORT
13.8. LOAD BALANCER
13.9. OBJECT STORAGE AUTHENTICATION
13.10. ENCRYPT AT-REST SWIFT OBJECTS
13.11. ADDITIONAL ITEMS

CHAPTER 14. MONITORING AND LOGGING
14.1. HARDEN THE MONITORING INFRASTRUCTURE
14.2. EXAMPLE EVENTS TO MONITOR

CHAPTER 15. DATA PRIVACY FOR PROJECTS
15.1. DATA RESIDENCY
15.2. DATA DISPOSAL

15.2.1. Data not securely erased
15.2.2. Instance memory scrubbing

15.3. ENCRYPTING CINDER VOLUME DATA
15.4. IMAGE SERVICE DELAY DELETE FEATURES
15.5. COMPUTE SOFT DELETE FEATURES
15.6. SECURITY HARDENING FOR BARE METAL PROVISIONING
15.7. HARDWARE IDENTIFICATION
15.8. DATA ENCRYPTION

63
63
63
64
64
64
64
64

65
65
65
65

66
66
67
67
68
69
69
69
71
72
74

75
76
77
77
77
78
78
78
78
79
79
79

80
80
80

82
82
82
83
83
83
84
84
84
84
84

Table of Contents

3

. .

. .

. .

. .

15.8.1. Volume encryption
15.8.2. Object Storage objects
15.8.3. Block Storage performance and back ends
15.8.4. Network data

15.9. KEY MANAGEMENT

CHAPTER 16. MANAGING INSTANCE SECURITY
16.1. SUPPLYING ENTROPY TO INSTANCES
16.2. SCHEDULING INSTANCES TO NODES
16.3. USING TRUSTED IMAGES
16.4. CREATING IMAGES
16.5. VERIFYING IMAGE SIGNATURES
16.6. MIGRATING INSTANCES

16.6.1. Live migration risks
16.6.2. Disable live migration
16.6.3. Encrypted live migration

16.7. MONITORING, ALERTING, AND REPORTING
16.8. UPDATES AND PATCHES
16.9. FIREWALLS AND INSTANCE PROFILES
16.10. SECURITY GROUPS
16.11. ACCESSING THE INSTANCE CONSOLE
16.12. CERTIFICATE INJECTION

CHAPTER 17. MESSAGE QUEUING
17.1. MESSAGING TRANSPORT SECURITY

17.1.1. RabbitMQ server SSL configuration
17.2. QUEUE AUTHENTICATION AND ACCESS CONTROL
17.3. OPENSTACK SERVICE CONFIGURATION FOR RABBITMQ
17.4. OPENSTACK SERVICE CONFIGURATION FOR QPID
17.5. MESSAGE QUEUE PROCESS ISOLATION AND POLICY
17.6. NAMESPACES

CHAPTER 18. SECURING ENDPOINTS IN RED HAT OPENSTACK PLATFORM
18.1. INTERNAL API COMMUNICATIONS
18.2. CONFIGURE INTERNAL URLS IN THE IDENTITY SERVICE CATALOG
18.3. CONFIGURE APPLICATIONS FOR INTERNAL URLS
18.4. PASTE AND MIDDLEWARE
18.5. API ENDPOINT PROCESS ISOLATION AND POLICY

18.5.1. Secure metadef APIs
18.5.2. Configuring a policy to restrict metadef APIs
18.5.3. Enabling metadef APIs

18.6. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY
18.7. NETWORK POLICY
18.8. MANDATORY ACCESS CONTROLS
18.9. API ENDPOINT RATE-LIMITING

CHAPTER 19. IMPLEMENTING FEDERATION
19.1. FEDERATE WITH IDM USING RED HAT SINGLE SIGN-ON
19.2. THE FEDERATION WORKFLOW

85
85
86
86
86

87
87
87
88
89
90
90
91
91
91

92
92
92
93
93
93

94
94
94
95
95
95
96
96

97
97
97
97
97
98
98
98
99
101
101
101
102

103
103
103

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

4

Table of Contents

5

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

6

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Using the Direct Documentation Feedback (DDF) function

Use the Add Feedback DDF function for direct comments on specific sentences, paragraphs, or code
blocks.

1. View the documentation in the Multi-page HTML format.

2. Ensure that you see the Feedback button in the upper right corner of the document.

3. Highlight the part of text that you want to comment on.

4. Click Add Feedback.

5. Complete the Add Feedback field with your comments.

6. Optional: Add your email address so that the documentation team can contact you for
clarification on your issue.

7. Click Submit.

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

7

CHAPTER 1. INTRODUCTION TO SECURITY
Use the tools provided with Red Hat Openstack Platform (RHOSP) to prioritize security in planning, and
in operations, to meet users' expectations of privacy and the security of their data. Failure to implement
security standards can lead to downtime or data breaches. Your use case might be subject to laws that
require passing audits and compliance processes.

NOTE

Follow the instructions in this guide to harden the security of your environment. However,
these recommendations do not guarantee security or compliance. You must assess
security from the unique requirements of your environment.

For information about hardening Ceph, see Data security and hardening guide .

1.1. RED HAT OPENSTACK PLATFORM SECURITY

By default, Red Hat OpenStack Platform (RHOSP) director creates the overcloud with the following
tools and access controls for security:

SElinux

SELinux provides security enhancement for RHOSP by providing access controls that require each
process to have explicit permissions for every action.

Podman

Podman as a container tool is a secure option for RHOSP as it does not use a client/server model
that requires processes with root access to function.

System access restriction

You can only log into overcloud nodes using either the SSH key that director creates for heat-admin
during the overcloud deployment, or a SSH key that you have created on the overcloud. You cannot
use SSH with a password to log into overcloud nodes, or log into overcloud nodes using root.

You can configure director with the following additional security features based on the needs and trust
level of your organization:

Public TLS and TLS-everywhere

Hardware security module integration with OpenStack Key Manager (barbican)

Signed images and encrypted volumes

Password and fernet key rotation using workflow executions

1.2. UNDERSTANDING THE RED HAT OPENSTACK PLATFORM ADMIN
ROLE

When you assign a user the role of admin, this user has permissions to view, change, create, or delete
any resource on any project. This user can create shared resources that are accessible across projects,
such as publicly available glance images, or provider networks. Additionally, a user with the admin role
can create or delete users and manage roles.

The project to which you assign a user the admin role is the default project in which openstack

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

8

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/4/html-single/data_security_and_hardening_guide/index

The project to which you assign a user the admin role is the default project in which openstack
commands are executed. For example, if an admin user in a project named development runs the
following command, a network called internal-network is created in the development project:

openstack network create internal-network

The admin user can create an internal-network in any project by using the --project parameter:

openstack network create internal-network --project testing

1.3. IDENTIFYING SECURITY ZONES IN RED HAT OPENSTACK
PLATFORM

Security zones are common resources, applications, networks and servers that share common security
concerns. Security zones should share the same authentication and authorization requirements, and
users.

For example, a you can segment a default installation of Red Hat OpenStack Platform into the following
zones:

Table 1.1. Security zones

Zone Networks Details

Public external The public zone hosts the external
networks, public APIs, and
floating IP addresses for the
external connectivity of instances.
This zone allows access from
networks outside of your
administrative control and is an
untrusted area of the cloud
infrastructure.

Guest tenant The guest zone hosts project
networks. It is untrusted for public
and private cloud providers that
allow unrestricted access to
instances.

Storage access storage, storage_mgmt The storage access zone is for
storage management, monitoring
and clustering, and storage
traffic.

Control ctlplane, internal_api, ipmi The control zone also includes the
undercloud, host operating
system, server hardware, physical
networking, and the Red Hat
OpenStack Platform director
control plane.

CHAPTER 1. INTRODUCTION TO SECURITY

9

1.4. LOCATING SECURITY ZONES IN RED HAT OPENSTACK
PLATFORM

Run the following commands to collect information on the physical configuration of your Red Hat
OpenStack Platform deployment:

Procedure

1. Log on to the undercloud, and source stackrc:

$ source /home/stack/stackrc

2. Run openstack subnet list to match the assigned ip networks to their associated zones:

openstack subnet list -c Name -c Subnet
+---------------------+------------------+
| Name | Subnet |
+---------------------+------------------+
ctlplane-subnet	192.168.101.0/24
storage_mgmt_subnet	172.16.105.0/24
tenant_subnet	172.16.102.0/24
external_subnet	10.94.81.0/24
internal_api_subnet	172.16.103.0/24
storage_subnet	172.16.104.0/24
+---------------------+------------------+

3. Run openstack server list to list the physical servers in your infrastructure:

openstack server list -c Name -c Networks
+-------------------------+-------------------------+
| Name | Networks |
+-------------------------+-------------------------+
overcloud-controller-0	ctlplane=192.168.101.15
overcloud-controller-1	ctlplane=192.168.101.19
overcloud-controller-2	ctlplane=192.168.101.14
overcloud-novacompute-0	ctlplane=192.168.101.18
overcloud-novacompute-2	ctlplane=192.168.101.17
overcloud-novacompute-1	ctlplane=192.168.101.11
+-------------------------+-------------------------+

4. Use the ctlplane address from the openstack server list command to query the configuration
of a physical node:

ssh heat-admin@192.168.101.15 ip addr

1.5. CONNECTING SECURITY ZONES

You must carefully configure any component that spans multiple security zones with varying trust levels
or authentication requirements. These connections are often the weak points in network architecture.
Ensure that you configure these connections to meet the security requirements of the highest trust
level of any of the zones being connected. In many cases, the security controls of the connected zones

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

10

are a primary concern due to the likelihood of attack. The points where zones meet present an additional
potential point of attack and adds opportunities for attackers to migrate their attack to more sensitive
parts of the deployment.

In some cases, OpenStack operators might want to consider securing the integration point at a higher
standard than any of the zones in which it resides. Given the above example of an API endpoint, an
adversary could potentially target the Public API endpoint from the public zone, leveraging this foothold
in the hopes of compromising or gaining access to the internal or admin API within the management
zone if these zones were not completely isolated.

The design of OpenStack is such that separation of security zones is difficult. Because core services will
usually span at least two zones, special consideration must be given when applying security controls to
them.

1.6. THREAT MITIGATION

Most types of cloud deployment, public, private, or hybrid, are exposed to some form of security threat.
The following practices help mitigate security threats:

Apply the principle of least privilege.

Use encryption on internal and external interfaces.

Use centralized identity management.

Keep Red Hat OpenStack Platform updated.

Compute services can provide malicious actors with a tool for DDoS and brute force attacks. Methods
of prevention include egress security groups, traffic inspection, intrusion detection systems, and
customer education and awareness. For deployments accessible by public networks or with access to
public networks, such as the Internet, ensure that processes and infrastructure are in place to detect and
address outbound abuse.

Additional resources

Implementing TLS-e with Ansible

Integrating OpenStack Identity (keystone) with Red Hat Identity Manager (IdM)

Keeping Red Hat OpenStack Platform Updated

CHAPTER 1. INTRODUCTION TO SECURITY

11

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/integrate_openstack_identity_with_external_user_management_services/assembly-integrating-identity-with-idm_rhosp#sect-tripleo-ipa
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/integrate_openstack_identity_with_external_user_management_services/assembly-integrating-identity-with-idm_rhosp
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/keeping_red_hat_openstack_platform_updated/index

CHAPTER 2. DOCUMENTING YOUR RHOSP ENVIRONMENT
Documenting the system components, networks, services, and software is important in identifying
security concerns, attack vectors, and possible security zone bridging points. The documentation for
your Red Hat OpenStack Platform (RHOSP) deployment should include the following information:

A description of the system components, networks, services, and software in your RHOSP
production, development, and test environments.

An inventory of any ephemeral resources, such as virtual machines or virtual disk volumes.

2.1. DOCUMENTING THE SYSTEM ROLES

Each node in your Red Hat OpenStack Platform (RHOSP) deployment serves a specific role, either
contributing to the infrastructure of the cloud, or providing cloud resources.

Nodes that contribute to the infrastructure run the cloud-related services, such as the message queuing
service, storage management, monitoring, networking, and other services required to support the
operation and provisioning of the cloud. Examples of infrastructure roles include the following:

Controller

Networker

Database

Telemetry

Nodes that provide cloud resources offer compute or storage capacity for instances running on your
cloud. Examples of resource roles include the following:

CephStorage

Compute

ComputeOvsDpdk

ObjectStorage

Document the system roles that are used in your environment. These roles can be identified within the
templates used to deploy RHOSP. For example, there is a NIC configuration file for each role in use in
your environment.

Procedure

1. Check the existing templates for your deployment for files that specify the roles currently in use.
There is a NIC configuration file for each role in use in your environment. In the following
example, the RHOSP environment includes the ComputeHCI role, the Compute role, and the
Controller role:

$ cd ~/templates
$ tree
.
├── environments
│ └── network-environment.yaml
├── hci.yaml

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

12

├── network
│ └── config
│ └── multiple-nics
│ ├── computehci.yaml
│ ├── compute.yaml
│ └── controller.yaml
├── network_data.yaml
├── plan-environment.yaml
└── roles_data_hci.yaml

2. Each role for your RHOSP environment performs many interrelated services. You can document
the services used by each role by inspecting a roles file.

a. If a roles file was generated for your templates, you can find it in the ~/templates directory:

$ cd ~/templates
$ find . -name *role*
> ./templates/roles_data_hci.yaml

b. If a roles file was not generated for your templtes, you can generate one for the roles you
currently use to inspect for documentation purposes:

$ openstack overcloud roles generate \
> --roles-path /usr/share/openstack-tripleo-heat-templates/roles \
> -o roles_data.yaml Controller Compute

2.2. CREATING A HARDWARE INVENTORY

You can retrieve hardware information aobut your Red Hat OpenStack Platform deployment by viewing
data that is collected during introspection. Introspection gathers hardware information from the nodes
about the CPU, memory, disks, and so on.

Procedure

1. From the undercloud, source the stackrc file:

$ source ~/stackrc

2. List the nodes in your environment:

$ openstack baremetal node list -c Name
+--------------+
| Name |
+--------------+
| controller-0 |
| controller-1 |
| controller-2 |
| compute-0 |
| compute-1 |
| compute-2 |
+--------------+

3. For each baremetal node from which to gather information, and run the following command to
retrieve the introspection data:

CHAPTER 2. DOCUMENTING YOUR RHOSP ENVIRONMENT

13

$ openstack baremetal introspection data save <node> | jq

Replace <node> with the name of the node from the list you retrieved in step 1.

4. Optional: To limit the output to a specific type of hardware, you can retrieve a list of the
inventory keys and view introspection data for a specific key:

a. Run the following command to get a list of top level keys from introspection data:

$ openstack baremetal introspection data save controller-0 | jq '.inventory | keys'

[
 "bmc_address",
 "bmc_v6address",
 "boot",
 "cpu",
 "disks",
 "hostname",
 "interfaces",
 "memory",
 "system_vendor"
]

b. Select a key, for example disks, and run the following to get more information:

$ openstack baremetal introspection data save controller-1 | jq '.inventory.disks'
[
 {
 "name": "/dev/sda",
 "model": "QEMU HARDDISK",
 "size": 85899345920,
 "rotational": true,
 "wwn": null,
 "serial": "QM00001",
 "vendor": "ATA",
 "wwn_with_extension": null,
 "wwn_vendor_extension": null,
 "hctl": "0:0:0:0",
 "by_path": "/dev/disk/by-path/pci-0000:00:01.1-ata-1"
 }
]

2.3. CREATING A SOFTWARE INVENTORY

Document the software components in use on nodes deployed in your Red Hat OpenStack Platform
(RHOSP) infrastructure. System databases, RHOSP software services and supporting components such
as load balancers, DNS, or DHCP services, are critical when assessing the impact of a compromise or
vulnerability in a library, application, or class of software.

Procedure

1. Ensure that you know the entry points for systems and services that can be subject to malicious
activity. Run the following commands on the undercloud:

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

14

$ cat /etc/hosts
$ source stackrc ; openstack endpoint list
$ source overcloudrc ; openstack endpoint list

2. RHOSP is deployed in containerized services, therefore you can view the software components
on an overcloud node by checking the running containers on that node. Use ssh to connect to
an overcloud node and list the running containers. For example, to view the overcloud services
on compute-0, run a command similar to the following:

$ ssh heat-admin@compute-0 podman ps

CHAPTER 2. DOCUMENTING YOUR RHOSP ENVIRONMENT

15

CHAPTER 3. SECURING RED HAT OPENSTACK
DEPLOYMENTS WITH TLS AND PKI

Red Hat OpenStack Platform consists of many networks and endpoints that handle sensitive or
confidential data that you can secure. When you use Transport Layer Security (TLS), you secure traffic
with symmetric key encryption. The key and cipher are negotiated in the TLS handshake, which requires
validation of the server’s identity through a shared trust in an intermediary called a Certificate Authority
(CA).

Public Key Infrastructure (PKI) is a framework for validating an entity through a certificate authority.

3.1. COMPONENTS OF PUBLIC KEY INFRASTRUCTURE (PKI)

The core components of PKI are shown in the folling table:

Table 3.1. Key Terms

Term Definition

End entity The user, process, or system that validates itself
through the use of a digital certificate.

Certificate Authority (CA) The CA is an entity that is trusted by both the end
entity, and the relying party that validates the end
entity.

Relying party The relying party receives the digital certificate as
validation of the end entity, and has the capability of
verifying the digital certificate.

Digital certificates Signed public key certificates have a verifiable entity
and a public key, and are issued by a CA. When a CA
signs a certificate, it creates a message digest from
the certificate encrypted with its private key. You can
verify the signature using the public key associated
with CA. The X.509 standard is used to define the
certificates.

Registration Authority (RA) An RA is an optional dedicated authority that can
perform management functions such as
authenticating end entities before they are issued a
certificate by a CA. The CA authenticates end
entities if there is no RA.

Certificate Revocation List (CRL) A CRL is a list of certificate serial numbers that have
been revoked. End entities presenting certificates
with revoked serial numbers are not trusted in a PKI
model.

CRL issuer An optional system to which a CA delegates the
publication of certificate revocation lists.

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

16

Certificate Repository The location where the end entity certificates and
certificate revocation lists are stored and queried.

Term Definition

3.2. CERTIFICATE AUTHORITY REQUIREMENTS AND
RECOMMENDATIONS

You must get certificates signed by a widely recognized certificate authority (CA) for publicly available
Red Hat OpenStack Platform Dashboards or publicly accessible APIs.

You must give a DNS domain or subdomain to each endpoint that you secure with TLS. The domains
you provide are used to create the certificates issued by a CA. Customers access the dashboard or the
API using the DNS name so that the CA can validate the endpoint.

Red Hat recommends using a separate and internally managed CA to secure internal traffic. This allows
the cloud deployer to maintain control of their Private Key Infrastructure (PKI) implementation and
makes requesting, signing and deploying certificates for internal systems easier.

You can enable SSL/TLS on your overcloud endpoints. Due to the number of certificates required to
configure TLS everywhere (TLS-e), director integrates with a Red Hat Identity Management (IdM)
server to act as a certificate authority and manage the overcloud certificates. For more information on
configuring TLS-e, see Implementing TLS-e with Ansible .

To check the status of TLS support across the OpenStack components, refer to the TLS Enablement
status matrix.

If want to you use a SSL certificate with your own certificate authority, see Enabling SSL/TLS on
overcloud public endpoints.

NOTE

This will configure Red Hat OpenStack Platform with SSL/TLS on publicly accessible
endpoints only.

3.3. IDENTIFYING TLS VERSIONS IN YOUR ENVIRONMENT

IMPORTANT

TLS version 1.0 is is deprecated for Red Hat OpenStack platform. Additionally, you must
at minimum use TLS 1.2 for NIST-approval. For more information, see Guidelines for the
Selection, Configuration, and Use of Transport Layer Security (TLS) Implementations.

You can use cipherscan to determine the versions of TLS being presented by your deployment.
Cipherscan can be cloned from https://github.com/mozilla/cipherscan. This example output
demonstrates results received from horizon:

NOTE

Run cipherscan from a non-production system, as it might install additional
dependencies when you first run it.

CHAPTER 3. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI

17

https://access.redhat.com/articles/4039501
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/advanced_overcloud_customization/assembly_enabling-ssl-tls-on-overcloud-public-endpoints
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://github.com/mozilla/cipherscan

$./cipherscan https://openstack.lab.local
..............................
Target: openstack.lab.local:443

prio ciphersuite protocols pfs curves
1 ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 ECDH,P-256,256bits prime256v1
2 ECDHE-RSA-AES256-GCM-SHA384 TLSv1.2 ECDH,P-256,256bits prime256v1
3 DHE-RSA-AES128-GCM-SHA256 TLSv1.2 DH,1024bits None
4 DHE-RSA-AES256-GCM-SHA384 TLSv1.2 DH,1024bits None
5 ECDHE-RSA-AES128-SHA256 TLSv1.2 ECDH,P-256,256bits prime256v1
6 ECDHE-RSA-AES256-SHA384 TLSv1.2 ECDH,P-256,256bits prime256v1
7 ECDHE-RSA-AES128-SHA TLSv1.2 ECDH,P-256,256bits prime256v1
8 ECDHE-RSA-AES256-SHA TLSv1.2 ECDH,P-256,256bits prime256v1
9 DHE-RSA-AES128-SHA256 TLSv1.2 DH,1024bits None
10 DHE-RSA-AES128-SHA TLSv1.2 DH,1024bits None
11 DHE-RSA-AES256-SHA256 TLSv1.2 DH,1024bits None
12 DHE-RSA-AES256-SHA TLSv1.2 DH,1024bits None
13 ECDHE-RSA-DES-CBC3-SHA TLSv1.2 ECDH,P-256,256bits prime256v1
14 EDH-RSA-DES-CBC3-SHA TLSv1.2 DH,1024bits None
15 AES128-GCM-SHA256 TLSv1.2 None None
16 AES256-GCM-SHA384 TLSv1.2 None None
17 AES128-SHA256 TLSv1.2 None None
18 AES256-SHA256 TLSv1.2 None None
19 AES128-SHA TLSv1.2 None None
20 AES256-SHA TLSv1.2 None None
21 DES-CBC3-SHA TLSv1.2 None None

Certificate: trusted, 2048 bits, sha256WithRSAEncryption signature
TLS ticket lifetime hint: None
NPN protocols: None
OCSP stapling: not supported
Cipher ordering: server
Curves ordering: server - fallback: no
Server supports secure renegotiation
Server supported compression methods: NONE
TLS Tolerance: yes

Intolerance to:
 SSL 3.254 : absent
 TLS 1.0 : PRESENT
 TLS 1.1 : PRESENT
 TLS 1.2 : absent
 TLS 1.3 : absent
 TLS 1.4 : absent

When scanning a server, Cipherscan advertises support for a specific TLS version, which is the highest
TLS version it is willing to negotiate. If the target server correctly follows TLS protocol, it will respond
with the highest version that is mutually supported, which may be lower than what Cipherscan initially
advertised. If the server does proceed to establish a connection with the client using that specific
version, it is not considered to be intolerant to that protocol version. If it does not establish the
connection (with the specified version, or any lower version), then intolerance for that version of
protocol is considered to be present. For example:

Intolerance to:
 SSL 3.254 : absent

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

18

 TLS 1.0 : PRESENT
 TLS 1.1 : PRESENT
 TLS 1.2 : absent
 TLS 1.3 : absent
 TLS 1.4 : absent

In this output, intolerance of TLS 1.0 and TLS 1.1 is reported as PRESENT, meaning that the
connection could not be established, and that Cipherscan was unable to connect while advertising
support for those TLS versions. As a result, it is reasonable to conclude that those (and any lower)
versions of the protocol are not enabled on the scanned server.

3.4. IDENTITY MANAGEMENT (IDM) SERVER RECOMMENDATIONS
FOR OPENSTACK

Red Hat provides the following information to help you integrate your IdM server and OpenStack
environment.

For information on preparing Red Hat Enterprise Linux for an IdM installation, see Installing Identity
Management.

Run the ipa-server-install command to install and configure IdM. You can use command parameters to
skip interactive prompts. Use the following recommendations so that your IdM server can integrate with
your Red Hat OpenStack Platform environment:

Table 3.2. Parameter recommendations

Option Recommendation

--admin-password Note the value you provide. You will need this
password when configuring Red Hat OpenStack
Platform to work with IdM.

--ip-address Note the value you provide. The undercloud and
overcloud nodes require network access to this ip
address.

--setup-dns Use this option to install an integrated DNS service
on the IdM server. The undercloud and overcloud
nodes use the IdM server for domain name resolution.

--auto-forwarders Use this option to use the addresses in
/etc/resolv.conf as DNS forwarders.

--auto-reverse Use this option to resolve reverse records and zones
for the IdM server IP addresses. If neither reverse
records or zones are resolvable, IdM creates the
reverse zones. This simplifies the IdM deployment.

--ntp-server, --ntp-pool You can use both or either of these options to
configure your NTP source. Both the IdM server and
your OpenStack environment must have correct and
synchronized time.

CHAPTER 3. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI

19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/installing_identity_management/index#installing-idm

You must open the firewall ports required by IdM to enable communication with Red Hat OpenStack
Platform nodes. For more information, see Opening the ports required by IdM .

Additional resources

Configuring and Managing Identity Management

Red Hat Identity Management Documentation

3.5. IMPLEMENTING TLS-E WITH ANSIBLE

You can use the new tripleo-ipa method to enable SSL/TLS on overcloud endpoints, called TLS
everywhere (TLS-e). Due to the number of certificates required, Red Hat OpenStack Platform
integrates with Red Hat Identity management (IdM). When you use tripleo-ipa to configure TLS-e, IdM
is the certificate authority.

Prerequisites

Ensure that all configuration steps for the undercloud, such as the creation of the stack user, are
complete. For more details, see Director Installation and Usage for more details

Procedure

Use the following procedure to implement TLS-e on a new installation of Red Hat OpenStack Platform,
or an existing deployment that you want to configure with TLS-e. You must use this method if you
deploy Red Hat OpenStack Platform with TLS-e on pre-provisioned nodes.

NOTE

If you are implementing TLS-e for an existing environment, you are required to run
commands such as openstack undercloud install, and openstack overcloud deploy.
These procedures are idempotent and only adjust your existing deployment configuration
to match updated templates and configuration files.

1. Configure the /etc/resolv.conf file:
Set the appropriate search domains and the nameserver on the undercloud in /etc/resolv.conf.
For example, if the deployment domain is example.com, and the domain of the FreeIPA server
is bigcorp.com, then add the following lines to /etc/resolv.conf:

search example.com bigcorp.com
nameserver $IDM_SERVER_IP_ADDR

2. Install required software:

sudo dnf install -y python3-ipalib python3-ipaclient krb5-devel

3. Export environmental variables with values specific to your environment.:

export IPA_DOMAIN=bigcorp.com
export IPA_REALM=BIGCORP.COM
export IPA_ADMIN_USER=$IPA_USER
export IPA_ADMIN_PASSWORD=$IPA_PASSWORD
export IPA_SERVER_HOSTNAME=ipa.bigcorp.com

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

20

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/preparing-the-system-for-ipa-server-installation_installing-identity-management#opening-the-ports-required-by-idm_preparing-the-system-for-ipa-server-installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_identity_management/index
https://access.redhat.com/articles/1586893
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/director_installation_and_usage/index

export UNDERCLOUD_FQDN=undercloud.example.com
export USER=stack
export CLOUD_DOMAIN=example.com

NOTE

The IdM user credentials must be an administrative user that can add new hosts
and services.

4. Run the undercloud-ipa-install.yaml ansible playbook on the undercloud:

ansible-playbook \
--ssh-extra-args "-o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null" \
/usr/share/ansible/tripleo-playbooks/undercloud-ipa-install.yaml

5. Add the following parameters to undercloud.conf

undercloud_nameservers = $IDM_SERVER_IP_ADDR
overcloud_domain_name = example.com

6. Deploy the undercloud:

openstack undercloud install

Verification

Verify that the undercloud was enrolled correctly by completing the following steps:

1. List the hosts in IdM:

$ kinit admin
$ ipa host-find

2. Confirm that /etc/novajoin/krb5.keytab exists on the undercloud.

ls /etc/novajoin/krb5.keytab

NOTE

The novajoin directory name is for legacy naming purposes only.

Configuring TLS-e on the overcloud

When you deploy the overcloud with TLS everywhere (TLS-e), IP addresses from the Undercloud and
Overcloud will automatically be registered with IdM.

1. Before deploying the overcloud, create a YAML file tls-parameters.yaml with contents similar
to the following. The values you select will be specific for your environment:

parameter_defaults:
 DnsSearchDomains: ["example.com"]
 DnsServers: ["192.168.1.13"]
 CloudDomain: example.com

CHAPTER 3. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI

21

 CloudName: overcloud.example.com
 CloudNameInternal: overcloud.internalapi.example.com
 CloudNameStorage: overcloud.storage.example.com
 CloudNameStorageManagement: overcloud.storagemgmt.example.com
 CloudNameCtlplane: overcloud.ctlplane.example.com
 IdMServer: freeipa-0.redhat.local
 IdMDomain: redhat.local
 IdMInstallClientPackages: False

resource_registry:
 OS::TripleO::Services::IpaClient: /usr/share/openstack-tripleo-heat-
templates/deployment/ipa/ipaservices-baremetal-ansible.yaml

The shown value of the OS::TripleO::Services::IpaClient parameter overrides the default
setting in the enable-internal-tls.yaml file. You must ensure the tls-parameters.yaml file
follows enable-internal-tls.yaml in the openstack overcloud deploy command.

For more information about the parameters that you use to implement TLS-e, see
Parameters for tripleo-ipa.

2. Deploy the overcloud. You will need to include the tls-parameters.yaml in the deployment
command:

DEFAULT_TEMPLATES=/usr/share/openstack-tripleo-heat-templates/
CUSTOM_TEMPLATES=/home/stack/templates

openstack overcloud deploy \
-e ${DEFAULT_TEMPLATES}/environments/ssl/tls-everywhere-endpoints-dns.yaml \
-e ${DEFAULT_TEMPLATES}/environments/services/haproxy-public-tls-certmonger.yaml \
-e ${DEFAULT_TEMPLATES}/environments/ssl/enable-internal-tls.yaml \
-e ${CUSTOM_TEMPLATES}/tls-parameters.yaml \
...

3. Confirm each endpoint is using HTTPS by querying keystone for a list of endpoints:

openstack endpoint list

3.6. PARAMETERS FOR TRIPLEO-IPA

Use the fully qualified domain name (FQDN) of your cloud to define the cloud name and cloud domain
parameters required for tripleo-ipa. For example, with an FQDN of overcloud.example.com, use the
following values:

CloudDomain: example.com

CloudName: overcloud.example.com

CloudNameCtlplane: overcloud.ctlplane.example.com

CloudNameInternal: overcloud.internalapi.example.com

CloudNameStorage: overcloud.storage.example.com

CloudNameStorageManagement: overcloud.storagemgmt.example.com

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

22

Set the following additional parameters based on the requirements of your environment:

CertmongerKerberosRealm

Set CertmongerKerberosRealm parameter to the value of the IPA realm. This is required if the IPA
realm does not match the IPA domain.

DnsSearchDomains

The DnsSearchDomains parameter is a comma-separated list. If the domain of the IdM server is
different than the cloud domain, include the domain of the IdM server in the DnsSearchDomains
parameter.

DnsServers

Set the DnsServers parameter to a value that reflects the IP address of the IdM server.

EnableEtcdInternalTLS

If you deploy TLSe on a distributed compute node (DCN) architecture, you must add the
EnableEtcdInternalTLS parameter with the value of True.

IDMInstallClientPackages

If you have preprovisioned your compute nodes, set the IDMInstallClientPackages parameter to a
value of True. Otherwise, set the value to False.

IDMModifyDNS

Set the IDMModifyDNS parameter to false to disable automatic IP registration of the overcloud
nodes on Red Hat Identity Server.

IdmDomain

Set the IdmDomain parameter to the domain portion of the FQDN of your Red Hat Identity server.
The value that you specify is also used as the value of the IdM realm. If the IdM domain and IdM realm
differ, set the realm explicitly using the CertmongerKerberosRealm parameter.

IdmServer

Set the IdmServer parameter to the FQDN of your Red Hat Identity server. If you use a replicated
IdM environment, then set multiple values using a comma delimited list. For more information on IdM
replicas, see Installing an IdM replica .

CHAPTER 3. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/installing_identity_management/installing-an-ipa-replica_installing-identity-management

CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT
The Identity service (keystone) provides authentication and authorization for cloud users in a Red Hat
OpenStack Platform environment. You can use the Identity service for direct end-user authentication,
or configure it to use external authentication methods to meet your security requirements or to match
your current authentication infrastructure.

4.1. RED HAT OPENSTACK PLATFORM FERNET TOKENS

After you authenticate, the Identity service (keystone):

Issues an encrypted bearer token known as a fernet token. This token represents your identity.

Authorizes you you to perform operations based on your role.

Each fernet token remains valid for up to an hour, by default. This allows a user to perform a series of
tasks without needing to reauthenticate.

Fernet is the default token provider that replaces the UUID token provider.

Additional resources

Using Fernet keys for encryption in the overcloud

4.2. OPENSTACK IDENTITY SERVICE ENTITIES

The Red Hat OpenStack Identity service (keystone) recognizes the following entities:

Users

OpenStack Identity service (keystone) users are the atomic unit of authentication. A user must be
assigned a role on a project in order to authenticate.

Groups

OpenStack Identity service groups are a logical grouping of users. A group can be provided access to
projects under specific roles. Managing groups instead of users can simplify the management of
roles.

Roles

OpenStack Identity service roles define the OpenStack APIs that are accessible to users or groups
who are assigned those roles.

Projects

OpenStack Identity service projects are isolated groups of users who have common access to a
shared quota of physical resources and the virtual infrastructure built from those physical resources.

Domains

OpenStack Identity service domains are high-level security boundaries for projects, users, and
groups. You can use OpenStack Identity domains to centrally manage all keystone-based identity
components. Red Hat OpenStack Platform supports multiple domains. You can represent users of
different domains by using separate authentication backends.

4.3. AUTHENTICATING WITH KEYSTONE

You can adjust the authentication security requirements required by OpenStack Identity service
(keystone).

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

24

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/deploy_fernet_on_the_overcloud/assembly-using-fernet-keys-for-encryption-in-the-overcloud_osp

When you deploy Red Hat OpenStack Platform (RHOSP), it is possible to specify password
requirements that are more complex than the default passwords that are generated for services. When
this occurs, services cannot authenticate, and the deployment fails.

You must initially deploy RHOSP without password complexity requirements. After the deployment
completes, add the KeystonePasswordRegex parameter to your templates, and re-run the
deployment.

To harden your environment, implement password complexity requirements that meet the standards of
your organization. For information about NIST recommended password complexity requirements, see
publication 88-63B, Appendix A.

Parameter Description

KeystoneChangePasswordUponFirstUse Enabling this option requires users to change their
password when the user is created, or upon
administrative reset.

KeystoneDisableUserAccountDaysInactive The maximum number of days a user can go without
authenticating before being considered "inactive"
and automatically disabled (locked).

KeystoneLockoutDuration The number of seconds a user account is locked
when the maximum number of failed authentication
attempts (as specified by
KeystoneLockoutFailureAttempts) is exceeded.

KeystoneLockoutFailureAttempts The maximum number of times that a user can fail to
authenticate before the user account is locked for
the number of seconds specified by
KeystoneLockoutDuration.

KeystoneMinimumPasswordAge The number of days that a password must be used
before the user can change it. This prevents users
from changing their passwords immediately in order
to wipe out their password history and reuse an old
password.

KeystonePasswordExpiresDays The number of days for which a password is
considered valid before requiring users to change it.

KeystonePasswordRegex The regular expression that is used to validate
password strength requirements.

KeystonePasswordRegexDescription Describe your password regular expression here in
language for humans.

KeystoneUniqueLastPasswordCount This controls the number of previous user password
iterations to keep in history, in order to enforce that
newly created passwords are unique.

CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT

25

https://pages.nist.gov/800-63-3/sp800-63b.html#appA

Additional resources

Identity (keystone) parameters.

4.3.1. Using Identity service heat parameters to stop invalid login attempts

Repetitive failed login attempts can be a sign of an attempted brute-force attack. You can use the
Identity Service to limit access to accounts after repeated unsuccessful login attempts.

Procedure

1. To configure the maximum number of times that a user can fail to authenticate before the user
account is locked, set the value of the KeystoneLockoutFailureAttempts and
KeystoneLockoutDuration heat parameters in an environment file. In the following example,
the KeystoneLockoutDuration is set to one hour:

parameter_defaults
 KeystoneLockoutDuration: 3600
 KeystoneLockoutFailureAttempts: 3

2. Include the environment file in your deploy script. When you run your deploy script on a
previously deployed environment, it is updated with the additional parameters:

openstack overcloud deploy --templates \
...
-e keystone_config.yaml
...

4.4. AUTHENTICATING WITH EXTERNAL IDENTITY PROVIDERS

You can use an external identity provider (IdP) to authenticate to OpenStack service providers (SP).
SPs are the services provided by an OpenStack cloud.

When you use a separate IdP, external authentication credentials are separate from the databases used
by other OpenStack services. This separation reduces the risk of a compromise of stored credentials.

Each external IdP has a one-to-one mapping to an OpenStack Identity service (keystone) domain. You
can have multiple coexisting domains with Red Hat OpenStack Platform.

External authentication provides a way to use existing credentials to access resources in Red Hat
OpenStack Platform without creating additional identities. The credential is maintained by the user’s
IdP.

You can use IdPs such as Red Hat Identity Management (IdM), and Microsoft Active Directory Domain
Services (AD DS) for identity management. In this configuration, the OpenStack Identity service has
read-only access to the LDAP user database. The management of API access based on user or group
role is performed by keystone. Roles are assigned to the LDAP accounts by using the OpenStack
Identity service.

4.4.1. How LDAP integration works

In the diagram below, keystone uses an encrypted LDAPS connection to connect to an Active Directory
Domain Controller. When a user logs in to horizon, keystone receives the supplied user credentials and
passes them to Active Directory.

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

26

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/overcloud_parameters/identity-keystone-parameters

Additional resources

Integrating OpenStack Identity (keystone) with Active Directory

Integrating OpenStack Identity (keystone) with Red Hat Identity Manager (IdM)

Configuring director to use domain specific LDAP backends

CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT

27

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/integrate_openstack_identity_with_external_user_management_services/assembly-integrating-identity-with-active-directory_rhosp
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/integrate_openstack_identity_with_external_user_management_services/assembly-integrating-identity-with-idm_rhosp
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/integrate_openstack_identity_with_external_user_management_services/assembly-integrating-identity-with-active-directory_rhosp#proc-configuring-director-domain-specific-ldap-backend_identity-active-directory

CHAPTER 5. POLICIES
Each OpenStack service contains resources that are managed by access policies. For example, a
resource might include the following functions:

Permission to create and start instances

The ability to attach a volume to an instance

If you are a Red Hat OpenStack Platform (RHOSP) administrator, you can create custom policies to
introduce new roles with varying levels of access, or to change the default behavior of existing roles.

IMPORTANT

Red Hat does not support customized roles and policies. Syntax errors can lead to
downtime, and misapplied authorization can negatively impact security or usability. If you
need custom policies in your production environment, contact Red Hat support for a
support exception.

5.1. REVIEWING EXISTING POLICIES

Policy files for services traditionally existed in the /etc/$service directory. For example, the full path of
the policy.json file for Compute (nova) was /etc/nova/policy.json.

There are two important architectural changes that affect how you can find existing policies:

Red Hat OpenStack Platform is now containerized.

Policy files, if present, are in the traditional path if you view them from inside the service
container:
/etc/$service/policy.json

Policy files, if present, are in the following path if you view them from outside the service
container:
/var/lib/config-data/puppet-generated/$service/etc/$service/policy.json

Each service has default policies that are provided in code, with files that are available only if you
created them manually, or if they are generated with oslopolicy tooling. To generate a policy
file, use the oslopolicy-policy-generator from within a container, as in the following example:

podman exec -it keystone oslopolicy-policy-generator --namespace keystone

By default, generated policies are pushed to stdout by oslo.policy CLI tools.

5.2. UNDERSTANDING SERVICE POLICIES

Service policy file statements are either alias definitions or rules. Alias definitions exist at the top of the
file. The following list contains an explanation of the alias definitions from the generated policy.json file
for Compute (nova):

"context_is_admin": "role:admin"
When rule:context_is_admin appears after a target, the policy checks that the user is
operating with an administrative context before it allows that action.

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

28

"admin_or_owner": "is_admin:True or project_id:%(project_id)s"
When admin_or_owner appears after a target, the policy checks that the user is either an
admin, or that their project ID matches the owning project ID of the target object before it
allows that action.

"admin_api": "is_admin:True
When admin_api appears after a target, the policy checks that the user is an admin before it
allows that action.

5.3. POLICY SYNTAX

Policy.json files support certain operators so that you can control the target scope of these settings. For
example, the following keystone setting contains the rule that only admin users can create users:

"identity:create_user": "rule:admin_required"

The section to the left of the : character describes the privilege, and the section to the right defines who
can use the privilege. You can also use operators to the right side to further control the scope:

! - No user (including admin) can perform this action.

@ and "" - Any user can perform this action.

not, and, or - Standard operator functions are available.

For example, the following setting means that no users have permission to create new users:

"identity:create_user": "!"

5.4. USING POLICY FILES FOR ACCESS CONTROL

To override the default rules, edit the policy.json file for the appropriate OpenStack service. For
example, the Compute service has a policy.json in the nova directory, which is the correct location of
the file for containerized services when you view it from inside the container.

NOTE

You must thoroughly test changes to policy files in a staging environment before
implementing them in production.

You must check that any changes to the access control policies do not
unintentionally weaken the security of any resource. In addition, any changes to a
policy.json file are effective immediately and do not require a service restart.

5.5. EXAMPLE: CREATING A POWER USER ROLE

To customize the permissions of a keystone role, update the policy.json file of a service. This means
that you can more granularly define the permissions that you assign to a class of users. This example
creates a power user role for your deployment with the following privileges:

Start an instance.

Stop an instance.

CHAPTER 5. POLICIES

29

Manage the volumes that are attached to instances.

The intention of this role is to grant additional permissions to certain users, without the need to then
grant admin access. To use these privileges, you must grant the following permissions to a custom role:

Start an instance: "os_compute_api:servers:start": "role:PowerUsers"

Stop an instance: "os_compute_api:servers:stop": "role:PowerUsers"

Configure an instance to use a particular volume:
"os_compute_api:servers:create:attach_volume": "role:PowerUsers"

List the volumes that are attached to an instance: "os_compute_api:os-volumes-
attachments:index": "role:PowerUsers"

Attach a volume: "os_compute_api:os-volumes-attachments:create": "role:PowerUsers"

View the details of an attached volume: "os_compute_api:os-volumes-attachments:show":
"role:PowerUsers"

Change the volume that is attached to an instance: "os_compute_api:os-volumes-
attachments:update": "role:PowerUsers"

Delete a volume that is attached to an instance: "os_compute_api:os-volumes-
attachments:delete": "role:PowerUsers"

NOTE

When you modify the policy.json file, you override the default policy. As a result,
members of PowerUsers are the only users that can perform these actions. To allow
admin users to retain these permissions, you can create rules for admin_or_power_user.
You can also use some basic conditional logic to define role:PowerUsers or role:Admin.

1. Create the custom keystone role:

$ openstack role create PowerUsers
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
domain_id	None
id	7061a395af43455e9057ab631ad49449
name	PowerUsers
+-----------+----------------------------------+

2. Add an existing user to the role, and assign the role to a project:

$ openstack role add --project [PROJECT_NAME] --user [USER_ID] [PowerUsers-ROLE_ID]

NOTE

A role assignment is paired exclusively with one project. This means that when
you assign a role to a user, you also define the target project at the same time. If
you want the user to receive the same role but for a different project, you must
assign the role to them again separately but target the different project.

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

30

3. View the default nova policy settings:

$ oslopolicy-policy-generator --namespace nova

4. Create custom permissions for the new PowerUsers role by adding the following entries to
/var/lib/config-data/puppet-generated/nova/etc/nova/policy.json:

NOTE

Test your policy changes before deployment to verify that they work as you
expect.

{
"os_compute_api:servers:start": "role:PowerUsers",
"os_compute_api:servers:stop": "role:PowerUsers",
"os_compute_api:servers:create:attach_volume": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:index": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:create": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:show": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:update": "role:PowerUsers",
"os_compute_api:os-volumes-attachments:delete": "role:PowerUsers"
}

You implement the changes when you save this file and restart the nova container. Users that
are added to the PowerUsers keystone role receive these privileges.

5.6. EXAMPLE: LIMITING ACCESS BASED ON ATTRIBUTES

You can create policies that will restrict access to API calls based on the attributes of the user making
that API call. For example, the following default rule states that keypair deletion is allowed if run from an
administrative context, or if the user ID of the token matches the user ID associated with the target.

"os_compute_api:os-keypairs:delete": "rule:admin_api or user_id:%(user_id)s"

NOTE: * Newly implemented features are not guaranteed to be in every service with each release.
Therefore, it is important to write rules using the conventions of the target service’s existing policies. For
details on viewing these policies, see Reviewing existing policies. * All policies should be rigorously tested
in a non-production environment for every version on which they will be deployed, as policies are not
guaranteed for compatibility across releases.

Based on the above example, you can craft API rules to expand or restrict access to users based on
whether or not they own a resource. Additionally, attributes can be combined with other restrictions to
form rules as seen in the example below:

"admin_or_owner": "is_admin:True or project_id:%(project_id)s"

Considering the examples above, you can create a unique rule limited to administrators and users, and
then use that rule to further restrict actions:

"admin_or_user": "is_admin:True or user_id:%(user_id)s"
"os_compute_api:os-instance-actions": "rule:admin_or_user"

For more information about the policy.json syntax options that are available, see Policy syntax .

CHAPTER 5. POLICIES

31

5.7. MODIFYING POLICIES WITH HEAT

You can use heat to configure access policies for certain services in the overcloud. Use the following
parameters to set policies on the respective services:

Table 5.1. Policy Parameters

Parameter Description

KeystonePolicies A hash of policies to configure for OpenStack
Identity (keystone).

IronicApiPolicies A hash of policies to configure for OpenStack Bare
Metal (ironic) API.

BarbicanPolicies A hash of policies to configure for OpenStack Key
Manager (barbican).

NeutronApiPolicies A hash of policies to configure for OpenStack
Networking (neutron) API.

SaharaApiPolicies A hash of policies to configure for OpenStack
Clustering (sahara) API.

NovaApiPolicies A hash of policies to configure for OpenStack
Compute (nova) API.

CinderApiPolicies A hash of policies to configure for OpenStack Block
Storage (cinder) API.

GlanceApiPolicies A hash of policies to configure for OpenStack Image
Storage (glance) API.

HeatApiPolicies A hash of policies to configure for OpenStack
Orchestration (heat) API.

To configure policies for a service, give the policy parameter a hash value that contains the service’s
policies For example:

OpenStack Identity (keystone) uses the KeystonePolicies parameter. Set this parameter in the
parameter_defaults section of an environment file:

parameter_defaults:
 KeystonePolicies: { keystone-context_is_admin: { key: context_is_admin, value: 'role:admin'
} }

OpenStack Compute (nova) uses the NovaApiPolicies parameter. Set this parameter in the
parameter_defaults section of an environment file:

parameter_defaults:
 NovaApiPolicies: { nova-context_is_admin: { key: 'compute:get_all', value: '@' } }

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

32

5.8. AUDITING YOUR USERS AND ROLES

You can use tools available in Red Hat OpenStack Platform to build a report of role assignments per
user and associated privileges.

1. Run the openstack role list command to see the roles currently in your environment:

openstack role list -c Name -f value

swiftoperator
ResellerAdmin
admin
member
heat_stack_user

2. Run the openstack role assignment list command to list all users that are members of a
particular role. For example, to see all users that have the admin role, run the following:

$ openstack role assignment list --names --role admin
+-------+------------------------------------+-------+-----------------+------------+--------+-----------+
| Role | User | Group | Project | Domain | System | Inherited |
+-------+------------------------------------+-------+-----------------+------------+--------+-----------+
admin	heat-cfn@Default		service@Default			False
admin	placement@Default		service@Default			False
admin	neutron@Default		service@Default			False
admin	zaqar@Default		service@Default			False
admin	swift@Default		service@Default			False
admin	admin@Default		admin@Default			False
admin	zaqar-websocket@Default		service@Default			False
admin	heat@Default		service@Default			False
admin	ironic-inspector@Default		service@Default			False
admin	nova@Default		service@Default			False
admin	ironic@Default		service@Default			False
admin	glance@Default		service@Default			False
admin	mistral@Default		service@Default			False
admin	heat_stack_domain_admin@heat_stack			heat_stack		False
admin	admin@Default				all	False
+-------+------------------------------------+-------+-----------------+------------+--------+-----------+

NOTE

You can use the -f {csv,json,table,value,yaml} parameter to export these
results.

5.9. AUDITING API ACCESS

You can audit the API calls a given role can access. Repeating this process for each role will result in a
comprehensive report on the accessible APIs for each role. For the following steps you need:

An authentication file to source as a user in the target role.

An access token in JSON format.

CHAPTER 5. POLICIES

33

A policy file for each service’s API you wish to audit.

Procedure

1. Start by sourcing an authentication file of a user in the desired role.

2. Capture a Keystone generated token and save it to a file. You can do this by running any
openstack-cli command and using the --debug option, which prints the provided token to
stdout. You can copy this token and save it to an access file. Use the following command to do
this as a single step:

openstack token issue --debug 2>&1 | egrep ^'{\"token\":' > access.file.json

3. Create a policy file. This can be done on an overcloud node that hosts the containerized service
of interest. The following example creates a policy file for the cinder service:

ssh heat-admin@CONTROLLER-1 sudo podman exec cinder_api \
oslopolicy-policy-generator \
--config-file /etc/cinder/cinder.conf \
--namespace cinder > cinderpolicy.json

4. Using these files, you can now audit the role in question for access to cinder’s APIs:

oslopolicy-checker --policy cinderpolicy.json --access access.file.json

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

34

CHAPTER 6. ROTATING SERVICE ACCOUNT PASSWORDS
You can periodically rotate service account passwords to improve your security posture.

6.1. OVERVIEW OF OVERCLOUD PASSWORD MANAGEMENT

OpenStack services that run on the overcloud are authenticated by their Identity service (keystone)
credentials. These passwords are generated during the initial deployment process and are defined as
heat parameters. For example:

 'MistralPassword',
 'BarbicanPassword',
 'AdminPassword',
 'CeilometerMeteringSecret',
 'ZaqarPassword',
 'NovaPassword',
 'MysqlRootPassword'

You can rotate the passwords used by the service accounts by using a Workflow service (mistral)
workflow. However, passwords are not rotated if they are listed in DO_NOT_ROTATE, such as Key
Encrypting Keys (KEK) and Fernet keys:

DO_NOT_ROTATE_LIST = (
 'BarbicanSimpleCryptoKek',
 'SnmpdReadonlyUserPassword',
 'KeystoneCredential0',
 'KeystoneCredential1',
 'KeystoneFernetKey0',
 'KeystoneFernetKey1',
 'KeystoneFernetKeys',
)

These passwords are on the DO_NOT_ROTATE list for the following reasons:

BarbicanSimpleCryptoKek - changing this password requires you to re-encrypt all the secrets.

KeystoneFernetKey and KeystoneCredential - separate workflows already exist to rotate
these. For more information, see Rotating the Fernet keys by using the Workflow service .

6.2. ROTATING THE PASSWORDS

Use the following procedure to rotate eligible passwords. The next time you complete a stack update by
running the openstack overcloud deploy command, your rotated password changes are applied. Any
passwords specified in environment files take precedence over password changes that use this method.
For information about outage requirements and service impact, see Outage requirements .

IMPORTANT

Do not use this procedure to rotate the swift password, because this is not currently
supported.

1. As the stack user, run the password rotation workflow. This rotates all passwords, except for
those on the DO_NOT_ROTATE list:

CHAPTER 6. ROTATING SERVICE ACCOUNT PASSWORDS

35

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/deploy_fernet_on_the_overcloud/assembly-using-fernet-keys-for-encryption-in-the-overcloud_osp#rotating-the-fernet-keys-using-mistral_assembly-using-fernet-keys-for-encryption-in-the-overcloud

$ openstack workflow execution create tripleo.plan_management.v1.rotate_passwords
'{"container": "overcloud"}'

If you want to rotate only specific passwords, you can use password_list. You can also use this
method to rotate passwords on the DO_NOT_ROTATE list. For example:

$ openstack workflow execution create tripleo.plan_management.v1.rotate_passwords
'{"container": "overcloud", "password_list": ["SaharaPassword", "ManilaPassword"]}'

The Workflow service Mistral workflow generates new passwords for the service accounts.

2. Run a stack update to apply the new passwords.

3. You can retrieve and view the new passwords, by creating a workflow to retrieve the passwords,
and then viewing the output:

a. Create a new workflow to retrieve the passwords. Note the ID of the workflow:

$ openstack workflow execution create tripleo.plan_management.v1.get_passwords
'{"container": "overcloud"}'
 +--------------------+---+
 | Field | Value |
 +--------------------+---+
ID	edcf9103-e1a8-42f9-85c1-e505c055e0ed
Workflow ID	8aa2ac9b-22ee-4e7d-8240-877237ef0d0a
Workflow name	tripleo.plan_management.v1.rotate_passwords
Workflow namespace	
Description	
Task Execution ID	<none>
Root Execution ID	<none>
State	RUNNING
State info	None
Created at	2020-01-22 15:47:57
Updated at	2020-01-22 15:47:57
 +--------------------+---+

b. Use the workflow ID to check the workflow status. You must wait until the workflow has a
state of SUCCESS before you continue:

$ openstack workflow execution show edcf9103-e1a8-42f9-85c1-e505c055e0ed
 +--------------------+---+
 | Field | Value |
 +--------------------+---+
 | ID | edcf9103-e1a8-42f9-85c1-e505c055e0ed |
 | Workflow ID | 8aa2ac9b-22ee-4e7d-8240-877237ef0d0a |
 | Workflow name | tripleo.plan_management.v1.rotate_passwords |
 | Workflow namespace | |
 | Description | |
 | Task Execution ID | <none> |
 | Root Execution ID | <none> |
 | State | SUCCESS |
 | State info | None |

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

36

 | Created at | 2020-01-22 15:47:57 |
 | Updated at | 2020-01-22 15:48:39 |
 +--------------------+---+

c. When the workflow is complete, retrieve the passwords by using the following command:

openstack workflow execution output show edcf9103-e1a8-42f9-85c1-e505c055e0ed
 {
 "status": "SUCCESS",
 "message": {
 "AdminPassword": "FSn0sS1aAHp8YK2fU5niM3rxu",
 "AdminToken": "dTP0Wdy7DtblG80M54r4a2yoC",
 "AodhPassword": "fB5NQdRe37BaBVEWDHVuj4etk",
 "BarbicanPassword": "rn7yk7KPafKw2PWN71MvXpnBt",
 "BarbicanSimpleCryptoKek": "lrC3sGlV7-D7-
V_PI4vbDfF1Ujm5OjnAVFcnihOpbCg=",
 "CeilometerMeteringSecret": "DQ69HdlJobhnGWoBC0jM3drPF",
 "CeilometerPassword": "qI6xOpofuiXZnG95iUe8Oxv5d",
 "CephAdminKey": "AQDGVPpdAAAAABAAZMP56/VY+zCVcDT81+TOjg==",
 "CephClientKey": "AQDGVPpdAAAAABAAanYtA0ggpcoCbS1nLeDN7w==",
 "CephClusterFSID": "141a5ede-21b4-11ea-8132-52540031f76b",
 "CephDashboardAdminPassword":
"AQDGVPpdAAAAABAAKhsx630YKDhQrocS4o4KzA==",
 "CephGrafanaAdminPassword":
"AQDGVPpdAAAAABAAKBojG+CO72B0TdBRR0paEg==",
 "CephManilaClientKey":
"AQDGVPpdAAAAABAAA1TVHrTVCC8xQ4skG4+d5A=="
 }
 }

6.3. OUTAGE REQUIREMENTS

Outage requirements and service impacts can occur when you change passwords for the overcloud
service accounts.

After a password has been rotated as part of the stack update, the old password becomes invalid. As a
result, services are unavailable with an HTTP 401 error for the duration that it takes for the new
password to be added to the service configuration settings.

In addition, you can expect to encounter brief outages when you change passwords for the supporting
services, including MySQL, RabbitMQ, and High Availability.

CHAPTER 6. ROTATING SERVICE ACCOUNT PASSWORDS

37

CHAPTER 7. NETWORK TIME PROTOCOL
You need to ensure that systems within your Red Hat OpenStack Platform cluster have accurate and
consistent timestamps between systems.

Red Hat OpenStack Platform on Red Hat Enterprise Linux 8 supports Chrony for time management.
For more information, see Using the Chrony suite to configure NTP .

7.1. WHY CONSISTENT TIME IS IMPORTANT

Consistent time throughout your organization is important for both operational and security needs:

Identifying a security event

Consistent timekeeping helps you correlate timestamps for events on affected systems so that you
can understand the sequence of events.

Authentication and security systems

Security systems can be sensitive to time skew, for example:

A kerberos-based authentication system might refuse to authenticate clients that are
affected by seconds of clock skew.

Transport layer security (TLS) certificates depend on a valid source of time. A client to
server TLS connection fails if the difference between client and server system times exceeds
the Valid From date range.

Red Hat OpenStack Platform services

Some core OpenStack services are especially dependent on accurate timekeeping, including High
Availability (HA) and Ceph.

7.2. NTP DESIGN

Network time protocol (NTP) is organized in a hierarchical design. Each layer is called a stratum. At the
top of the hierarchy are stratum 0 devices such as atomic clocks. In the NTP hierarchy, stratum 0
devices provide reference for publicly available stratum 1 and stratum 2 NTP time servers.

Do not connect your data center clients directly to publicly available NTP stratum 1 or 2 servers. The
number of direct connections would put unnecessary strain on the public NTP resources. Instead,
allocate a dedicated time server in your data center, and connect the clients to that dedicated server.

Configure instances to receive time from your dedicated time servers, not the host on which they reside.

NOTE

Service containers running within the Red Hat OpenStack Platform environment still
receive time from the host on which they reside.

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

38

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/using-chrony-to-configure-ntp_configuring-basic-system-settings

CHAPTER 8. HARDENING INFRASTRUCTURE AND
VIRTUALIZATION

Check with hardware and software vendors periodically to get available information about new
vulnerabilities and security updates. Red Hat Product Security maintains the following sites to inform
you of security updates:

RHSA-announce

Errata notifications

Security Advisories

Keep the following in mind as you regularly update your deployment of Red Hat OpenStack Platform.

Ensure all security updates are included.

Kernel updates require a reboot.

Update hosted Image service (glance) images to ensure that newly created instances have the
latest updates.

8.1. HYPERVISORS

When you evaluate a hypervisor platform, consider the supportability of the hardware on which the
hypervisor will run. Additionally, consider the additional features available in the hardware and how those
features are supported by the hypervisor you chose as part of the OpenStack deployment. To that end,
hypervisors each have their own hardware compatibility lists (HCLs). When selecting compatible
hardware it is important to know in advance which hardware-based virtualization technologies are
important from a security perspective.

8.1.1. Hypervisor versus bare metal

It is important to recognize the difference between using Linux containers or bare metal systems versus
using a hypervisor like KVM. Specifically, the focus of this security guide is largely based on having a
hypervisor and virtualization platform. However, should your implementation require the use of a bare
metal or containerized environment, you must pay attention to the particular differences in regard to
deployment of that environment.

For bare metal, make sure the node has been properly sanitized of data prior to re-provisioning and
decommissioning. In addition, before reusing a node, you must provide assurances that the hardware has
not been tampered or otherwise compromised. For more information see
https://docs.openstack.org/ironic/queens/admin/cleaning.html

8.1.2. Hypervisor memory optimization

Certain hypervisors use memory optimization techniques that overcommit memory to guest virtual
machines. This is a useful feature that allows you to deploy very dense compute clusters. One approach
to this technique is through deduplication or sharing of memory pages: When two virtual machines have
identical data in memory, there are advantages to having them reference the same memory. Typically
this is performed through Copy-On-Write (COW) mechanisms, such as kernel same-page merging
(KSM). These mechanisms are vulnerable to attack:

Memory deduplication systems are vulnerable to side-channel attacks. In academic studies,
attackers were able to identify software packages and versions running on neighboring virtual

CHAPTER 8. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

39

https://www.redhat.com/mailman/listinfo/rhsa-announce
https://www.redhat.com/wapps/ugc/protected/notif.html
https://access.redhat.com/security/security-updates/#/?q=openstack&p=1&sort=portal_publication_date desc&rows=10&portal_advisory_type=Security Advisory&documentKind=PortalProduct
https://docs.openstack.org/ironic/queens/admin/cleaning.html

machines as well as software downloads and other sensitive information through analyzing
memory access times on the attacker VM. Consequently, one VM can infer something about the
state of another, which might not be appropriate for multi-project environments where not all
projects are trusted or share the same levels of trust

More importantly, row-hammer type attacks have been demonstrated against KSM to enact
cross-VM modification of executable memory. This means that a hostile instance can gain
code-execution access to other instances on the same Compute host.

Deployers should disable KSM if they require strong project separation (as with public clouds and some
private clouds):

To disable KSM, refer to Deactivating KSM.

8.2. PCI PASSTHROUGH

PCI passthrough allows an instance to have direct access to a piece of hardware on the node. For
example, this could be used to allow instances to access video cards or GPUs offering the compute
unified device architecture (CUDA) for high performance computation. This feature carries two types of
security risks: direct memory access and hardware infection.

Direct memory access (DMA) is a feature that permits certain hardware devices to access arbitrary
physical memory addresses in the host computer. Often video cards have this capability. However, an
instance should not be given arbitrary physical memory access because this would give it full view of
both the host system and other instances running on the same node. Hardware vendors use an
input/output memory management unit (IOMMU) to manage DMA access in these situations. You
should confirm that the hypervisor is configured to use this hardware feature.

A hardware infection occurs when an instance makes a malicious modification to the firmware or some
other part of a device. As this device is used by other instances or the host OS, the malicious code can
spread into those systems. The end result is that one instance can run code outside of its security zone.
This is a significant breach as it is harder to reset the state of physical hardware than virtual hardware,
and can lead to additional exposure such as access to the management network.

Due to the risk and complexities associated with PCI passthrough, it should be disabled by default. If
enabled for a specific need, you will need to have appropriate processes in place to help ensure the
hardware is clean before reuse.

8.3. SELINUX

Mandatory access controls limit the impact an attempted attack, by restricting the privileges on QEMU
process to only what is needed. On Red Hat OpenStack Platform, SELinux is configured to run each
QEMU process under a separate security context. SELinux policies have been pre-configured for Red
Hat OpenStack Platform services.

OpenStack’s SELinux policies intend to help protect hypervisor hosts and virtual machines against two
primary threat vectors:

Hypervisor threats - A compromised application running within a virtual machine attacks the
hypervisor to access underlying resources. For example, when a virtual machine is able to access
the hypervisor OS, physical devices, or other applications. This threat vector represents
considerable risk as a compromise on a hypervisor can infect the physical hardware as well as
exposing other virtual machines and network segments.

Virtual Machine (multi-project) threats - A compromised application running within a VM attacks
the hypervisor to access or control another virtual machine and its resources. This is a threat

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

40

https://access.redhat.com/articles/1377393
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/virtualization_tuning_and_optimization_guide/#sect-KSM-Deactivating_KSM

vector unique to virtualization and represents considerable risk as a multitude of virtual machine
file images could be compromised due to vulnerability in a single application. This virtual
network attack is a major concern as the administrative techniques for protecting real networks
do not directly apply to the virtual environment. Each KVM-based virtual machine is a process
which is labeled by SELinux, effectively establishing a security boundary around each virtual
machine. This security boundary is monitored and enforced by the Linux kernel, restricting the
virtual machine’s access to resources outside of its boundary, such as host machine data files or
other VMs.

Red Hat’s SELinux-based isolation is provided regardless of the guest operating system running inside
the virtual machine. Linux or Windows VMs can be used.

8.3.1. Labels and Categories

KVM-based virtual machine instances are labelled with their own SELinux data type, known as
svirt_image_t. Kernel level protections prevent unauthorized system processes, such as malware, from
manipulating the virtual machine image files on disk. When virtual machines are powered off, images are
stored as svirt_image_t as shown below:

system_u:object_r:svirt_image_t:SystemLow image1
system_u:object_r:svirt_image_t:SystemLow image2
system_u:object_r:svirt_image_t:SystemLow image3
system_u:object_r:svirt_image_t:SystemLow image4

The svirt_image_t label uniquely identifies image files on disk, allowing for the SELinux policy to
restrict access. When a KVM-based compute image is powered on, SELinux appends a random
numerical identifier to the image. SELinux is capable of assigning numeric identifiers to a maximum of
524,288 virtual machines per hypervisor node, however most OpenStack deployments are highly unlikely
to encounter this limitation . This example shows the SELinux category identifier:

system_u:object_r:svirt_image_t:s0:c87,c520 image1
system_u:object_r:svirt_image_t:s0:419,c172 image2

8.3.2. SELinux users and roles

SELinux manages user roles. These can be viewed through the -Z flag, or with the semanage
command. On the hypervisor, only administrators should be able to access the system, and should have
an appropriate context around both the administrative users and any other users that are on the system.

8.4. INVESTIGATING CONTAINERIZED SERVICES

The OpenStack services that come with Red Hat OpenStack Platform run within containers.
Containerization allows for the development and upgrade of services without dependency related
conflicts. When a service runs within a container, potential vulnerabilities to that service are also
contained.

You can get information about the service that are running in your environment by using the following
steps:

Procedure

Use `podman inspect to get information, such as bind mounted host directories:
Example:

CHAPTER 8. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

41

$ sudo podman inspect <container_name> | less

Replace <container_name> with the name of your container. For example, nova compute.

Check the logs for the service located in /var/log/containers:
Example:

sudo less /var/log/containers/nova/nova-compute.log

Run an interactive CLI session within the container:
Example:

podman exec -it nova_compute /bin/bash

NOTE

You can make changes to the service for testing purposes directly within the
container. All changes are lost when the container is restarted.

8.5. MAKING TEMPORARY CHANGES TO CONTAINERIZED SERVICES

You can make changes to containerized services that persist when the container is restarted, but that do
not affect the permanent configuration of your Red Hat OpenStack Platform (RHOSP) cluster. This is
useful for testing configuration changes, or enabling debug-level logs when troubleshooting. You can
revert changes manually. Alternatively, running a redeploy on your RHOSP cluster resets all parameters
to their permanent configurations.

Use configuration files that are located in /var/lib/config-data/puppet-generated/[service] to make
temporary changes to a service. The following example enables debugging on the nova service:

Procedure

1. Edit the nova.conf configuration file that is bind mounted to the nova_compute container. Set
the value of the debug parameter to True:

$ sudo sed -i 's/^debug=.*/debug=True' \
/var/lib/config-data/puppet-generated/nova/etc/nova/nova.conf

WARNING

Configuration files for OpenStack files are ini files with multiple sections,
such as [DEFAULT] and [database]. Parameters that are unique to each
section might not be unique across the entire file. Use sed with caution. You
can check to see if a parameter appears more than once in a configuration
file by running egrep -v "^$|^#" [configuration_file] | grep [parameter].

2. Restart the nova container:



Red Hat OpenStack Platform 16.1 Security and Hardening Guide

42

sudo podman restart nova_compute

8.6. MAKING PERMANENT CHANGES TO CONTAINERIZED SERVICES

You can make permanent changes to containerized services in Red Hat OpenStack Platform (RHOSP)
services with heat. Use an existing template that you used when you first deployed RHOSP, or create a
new template to add to your deployment script. In the following example, the private key size for libvirt is
increased to 4096.

Procedure

1. Create a new yaml template called libvirt-keysize.yaml, and use the LibvirtCertificateKeySize
parameter to increase the default value from 2048 to 4096.

cat > /home/stack/templates/libvirt-keysize.yaml
parameter_defaults:
 LibvirtCertificateKeySize: 4096
EOF

2. Add the libvirt-keysize.yaml configuration file to your deployment script:

openstack overcloud deploy --templates \
...
-e /home/stack/templates/libvirt-keysize.yaml
...

3. Rerun the deployment script:

./deploy.sh

8.7. FIRMWARE UPDATES

Physical servers use complex firmware to enable and operate server hardware and lights-out
management cards, which can have their own security vulnerabilities, potentially allowing system access
and interruption. To address these, hardware vendors will issue firmware updates, which are installed
separately from operating system updates. You will need an operational security process that retrieves,
tests, and implements these updates on a regular schedule, noting that firmware updates often require a
reboot of physical hosts to become effective.

8.8. USE SSH BANNER TEXT

You can set a banner that displays a console message to all users that connect over SSH. You can add
banner text to /etc/issue using the following parameters in an environment file. Consider customizing
this sample text to suit your requirements.

resource_registry:
 OS::TripleO::Services::Sshd:
 /usr/share/openstack-tripleo-heat-templates/deployment/sshd/sshd-baremetal-puppet.yaml

parameter_defaults:
 BannerText: |
 **

CHAPTER 8. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

43

 * This system is for the use of authorized users only. Usage of *
 * this system may be monitored and recorded by system personnel. *
 * Anyone using this system expressly consents to such monitoring *
 * and is advised that if such monitoring reveals possible *
 * evidence of criminal activity, system personnel may provide *
 * the evidence from such monitoring to law enforcement officials.*
 **

To apply this change to your deployment, save the settings as a file called ssh_banner.yaml, and then
pass it to the overcloud deploy command as follows. The <full environment> indicates that you must
still include all of your original deployment parameters. For example:

 openstack overcloud deploy --templates \
 -e <full environment> -e ssh_banner.yaml

8.9. AUDIT FOR SYSTEM EVENTS

Maintaining a record of all audit events helps you establish a system baseline, perform troubleshooting,
or analyze the sequence of events that led to a certain outcome. The audit system is capable of logging
many types of events, such as changes to the system time, changes to Mandatory/Discretionary Access
Control, and creating/deleting users or groups.

Rules can be created using an environment file, which are then injected by director into
/etc/audit/audit.rules. For example:

 resource_registry:
 OS::TripleO::Services::AuditD: /usr/share/openstack-tripleo-heat-
templates/deployment/auditd/auditd-baremetal-puppet.yaml
 parameter_defaults:
 AuditdRules:
 'Record Events that Modify User/Group Information':
 content: '-w /etc/group -p wa -k audit_rules_usergroup_modification'
 order : 1
 'Collects System Administrator Actions':
 content: '-w /etc/sudoers -p wa -k actions'
 order : 2
 'Record Events that Modify the Systems Mandatory Access Controls':
 content: '-w /etc/selinux/ -p wa -k MAC-policy'
 order : 3

8.10. MANAGE FIREWALL RULES

Firewall rules are automatically applied on overcloud nodes during deployment, and are intended to only
expose the ports required to get OpenStack working. You can specify additional firewall rules as needed.
For example, to add rules for a Zabbix monitoring system:

 parameter_defaults:
 ControllerExtraConfig:
 tripleo::firewall::firewall_rules:
 '301 allow zabbix':
 dport: 10050

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

44

 proto: tcp
 source: 10.0.0.8
 action: accept

You can also add rules that restrict access. The number used during rule definition will determine the
rule’s precedence. For example, RabbitMQ’s rule number is 109 by default. If you want to restrain it, you
switch it to use a lower value:

 parameter_defaults:
 ControllerExtraConfig:
 tripleo::firewall::firewall_rules:
 '098 allow rabbit from internalapi network':
 dport: [4369,5672,25672]
 proto: tcp
 source: 10.0.0.0/24
 action: accept
 '099 drop other rabbit access':
 dport: [4369,5672,25672]
 proto: tcp
 action: drop

In this example, 098 and 099 are arbitrarily chosen numbers that are lower than RabbitMQ’s rule number
109. To determine a rule’s number, you can inspect the iptables rule on the appropriate node; for
RabbitMQ, you would check the controller:

iptables-save
[...]
-A INPUT -p tcp -m multiport --dports 4369,5672,25672 -m comment --comment "109 rabbitmq" -m
state --state NEW -j ACCEPT

Alternatively, you can extract the port requirements from the puppet definition. For example,
RabbitMQ’s rules are stored in puppet/services/rabbitmq.yaml:

 tripleo.rabbitmq.firewall_rules:
 '109 rabbitmq':
 dport:
 - 4369
 - 5672
 - 25672

The following parameters can be set for a rule:

port: The port associated to the rule. Deprecated by puppetlabs-firewall.

dport: The destination port associated to the rule.

sport: The source port associated to the rule.

proto: The protocol associated to the rule. Defaults to tcp

action: The action policy associated to the rule. Defaults to accept

jump: The chain to jump to.

state: Array of states associated to the rule. Default to [NEW]

CHAPTER 8. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

45

source: The source IP address associated to the rule.

iniface: The network interface associated to the rule.

chain: The chain associated to the rule. Default to INPUT

destination: The destination cidr associated to the rule.

extras: Hash of any additional parameters supported by the puppetlabs-firewall module.

8.11. INTRUSION DETECTION WITH AIDE

AIDE (Advanced Intrusion Detection Environment) is a file and directory integrity checker. It is used to
detect incidents of unauthorized file tampering or changes. For example, AIDE can alert you if system
password files are changed.

AIDE works by analyzing system files and then compiling an integrity database of file hashes. The
database then serves as a comparison point to verify the integrity of the files and directories and detect
changes.

The director includes the AIDE service, allowing you to add entries into an AIDE configuration, which is
then used by the AIDE service to create an integrity database. For example:

 resource_registry:
 OS::TripleO::Services::Aide:
 /usr/share/openstack-tripleo-heat-templates/deployment/aide/aide-baremetal-ansible.yaml

 parameter_defaults:
 AideRules:
 'TripleORules':
 content: 'TripleORules = p+sha256'
 order: 1
 'etc':
 content: '/etc/ TripleORules'
 order: 2
 'boot':
 content: '/boot/ TripleORules'
 order: 3
 'sbin':
 content: '/sbin/ TripleORules'
 order: 4
 'var':
 content: '/var/ TripleORules'
 order: 5
 'not var/log':
 content: '!/var/log.*'
 order: 6
 'not var/spool':
 content: '!/var/spool.*'
 order: 7
 'not nova instances':
 content: '!/var/lib/nova/instances.*'
 order: 8

NOTE

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

46

NOTE

The above example is not actively maintained or benchmarked, so you should select the
AIDE values that suit your requirements.

1. An alias named TripleORules is declared to avoid having to repeatedly out the same attributes
each time.

2. The alias receives the attributes of p+sha256. In AIDE terms, this reads as the following
instruction: monitor all file permissions p with an integrity checksum of sha256.

For a complete list of attributes available for AIDE’s config files, see the AIDE MAN page at
https://aide.github.io/.

Complete the following to apply changes to your deployment:

1. Save the settings as a file called aide.yaml in the /home/stack/templates/ directory.

2. Edit the aide.yaml environment file to have the parameters and values suitable for your
environment.

3. Include the /home/stack/templates/aide.yaml environment file in the openstack overcloud
deploy command, along with all other necessary heat templates and environment files specific
to your environment:

openstack overcloud deploy --templates
...
-e /home/stack/templates/aide.yaml

8.11.1. Using complex AIDE rules

Complex rules can be created using the format described previously. For example:

 MyAlias = p+i+n+u+g+s+b+m+c+sha512

The above would translate as the following instruction: monitor permissions, inodes, number of links,
user, group, size, block count, mtime, ctime, using sha256 for checksum generation.

Note, the alias should always have an order position of 1, which means that it is positioned at the top of
the AIDE rules and is applied recursively to all values below.

Following after the alias are the directories to monitor. Note that regular expressions can be used. For
example we set monitoring for the var directory, but overwrite with a not clause using ! with '!/var/log.*'
and '!/var/spool.*'.

8.11.2. Additional AIDE values

The following AIDE values are also available:

AideConfPath: The full POSIX path to the aide configuration file, this defaults to /etc/aide.conf. If no
requirement is in place to change the file location, it is recommended to stick with the default path.

AideDBPath: The full POSIX path to the AIDE integrity database. This value is configurable to allow
operators to declare their own full path, as often AIDE database files are stored off node perhaps on a
read only file mount.

CHAPTER 8. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

47

https://aide.github.io/

AideDBTempPath: The full POSIX path to the AIDE integrity temporary database. This temporary files
is created when AIDE initializes a new database.

AideHour: This value is to set the hour attribute as part of AIDE cron configuration.

AideMinute: This value is to set the minute attribute as part of AIDE cron configuration.

AideCronUser: This value is to set the linux user as part of AIDE cron configuration.

AideEmail: This value sets the email address that receives AIDE reports each time a cron run is made.

AideMuaPath: This value sets the path to the Mail User Agent that is used to send AIDE reports to the
email address set within AideEmail.

8.11.3. Cron configuration for AIDE

The AIDE director service allows you to configure a cron job. By default, it will send reports to
/var/log/audit/; if you want to use email alerts, then enable the AideEmail parameter to send the alerts
to the configured email address. Note that a reliance on email for critical alerts can be vulnerable to
system outages and unintentional message filtering.

8.11.4. Considering the effect of system upgrades

When an upgrade is performed, the AIDE service will automatically regenerate a new integrity database
to ensure all upgraded files are correctly recomputed to possess an updated checksum.

If openstack overcloud deploy is called as a subsequent run to an initial deployment, and the AIDE
configuration rules are changed, the director AIDE service will rebuild the database to ensure the new
config attributes are encapsulated in the integrity database.

8.12. REVIEW SECURETTY

SecureTTY allows you to disable root access for any console device (tty). This behavior is managed by
entries in the /etc/securetty file. For example:

 resource_registry:
 OS::TripleO::Services::Securetty: ../puppet/services/securetty.yaml

 parameter_defaults:
 TtyValues:
 - console
 - tty1
 - tty2
 - tty3
 - tty4
 - tty5
 - tty6

8.13. CADF AUDITING FOR IDENTITY SERVICE

A thorough auditing process can help you review the ongoing security posture of your OpenStack
deployment. This is especially important for keystone, due to its role in the security model.

Red Hat OpenStack Platform has adopted Cloud Auditing Data Federation (CADF) as the data format

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

48

Red Hat OpenStack Platform has adopted Cloud Auditing Data Federation (CADF) as the data format
for audit events, with the keystone service generating CADF events for Identity and Token operations.
You can enable CADF auditing for keystone using KeystoneNotificationFormat:

 parameter_defaults:
 KeystoneNotificationFormat: cadf

8.14. REVIEW THE LOGIN.DEFS VALUES

To enforce password requirements for new system users (non-keystone), director can add entries to
/etc/login.defs by following these example parameters:

 resource_registry:
 OS::TripleO::Services::LoginDefs: ../puppet/services/login-defs.yaml

 parameter_defaults:
 PasswordMaxDays: 60
 PasswordMinDays: 1
 PasswordMinLen: 5
 PasswordWarnAge: 7
 FailDelay: 4

CHAPTER 8. HARDENING INFRASTRUCTURE AND VIRTUALIZATION

49

CHAPTER 9. HARDENING THE DASHBOARD SERVICE
The Dashboard service (horizon) gives users a self-service portal for provisioning their own resources
within the limits set by administrators. Manage the security of the Dashboard service with the same
sensitivity as the OpenStack APIs.

9.1. DEBUGGING THE DASHBOARD SERVICE

The default value for the DEBUG parameter is false. Keep the default value in your production
environment. Change this setting only during investigation. When you change the value of the DEBUG
parameter to True, Django can output stack straces to browser users that contain sensitive web server
state information.

When the value of the DEBUG parameter is True, the ALLOWED_HOSTS settings are also disabled.
For more information on configuring ALLOWED_HOSTS, see Configure ALLOWED_HOSTS.

9.2. SELECTING A DOMAIN NAME

It is a best practice to deploy the Dashboard service (horizon) to a second level domain, as opposed to a
shared domain on any level. Examples of each are provided below:

Second level domain: https://example.com

Shared subdomain: https://example.public-url.com

Deploying the Dashboard service to a dedicated second level domain isolates cookies and security
tokens from other domains, based on browsers' same-origin policy. When deployed on a subdomain,
the security of the Dashboard service is equivalent to the least secure application deployed on the same
second-level domain.

You can further mitigate this risk by avoiding a cookie-backed session store, and configuring HTTP Strict
Transport Security (HSTS) (described in this guide).

NOTE

Deploying the Dashboard service on a bare domain, like https://example/, is unsupported.

9.3. CONFIGURE ALLOWED_HOSTS

Horizon is built on the python Django web framework, which requires protection against security threats
associated with misleading HTTP Host headers. To apply this protection, configure the
ALLOWED_HOSTS setting to use the FQDN that is served by the OpenStack dashboard.

When you configure the ALLOWED_HOSTS setting, any HTTP request with a Host header that does
not match the values in this list is denied, and an error is raised.

Procedure

1. Under parameter_defaults in your templates, set the value of the HorizonAllowedHosts
parameter:

parameter_defaults:
 HorizonAllowedHosts: <value>

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

50

Replace <value> with the FQDN that is served by the OpenStack dashboard.

2. Deploy the overcloud with the modified template, and all other templates required for your
environment.

9.4. CROSS SITE SCRIPTING (XSS)

The OpenStack Dashboard accepts the entire Unicode character set in most fields. Malicious actors can
attempt to use this extensibility to test for cross-site scripting (XSS) vulnerabilities. The OpenStack
Dashboard service (horizon) has tools that harden against XSS vulnerabilites. It is important to ensure
the correct use of these tools in custom dashboards. When you perform an audit against custom
dashboards, pay attention to the following:

The mark_safe function.

is_safe - when used with custom template tags.

The safe template tag.

Anywhere auto escape is turned off, and any JavaScript which might evaluate improperly
escaped data.

9.5. CROSS SITE REQUEST FORGERY (CSRF)

Dashboards that use multiple JavaScript instances should be audited for vulnerabilities such as
inappropriate use of the @csrf_exempt decorator. Evaluate any dashboard that does not follow
recommended security settings before lowering CORS (Cross Origin Resource Sharing) restrictions.
Configure your web server to send a restrictive CORS header with each response. Allow only the
dashboard domain and protocol, for example:Access-Control-Allow-Origin: https://example.com/.
You should never allow the wild card origin.

9.6. ALLOW IFRAME EMBEDDING

The DISALLOW_IFRAME_EMBED setting disallows Dashboard from being embedded within an iframe.
Legacy browsers can still be vulnerable to Cross-Frame Scripting (XFS) vulnerabilities, so this option
adds extra security hardening for deployments that do not require iframes. The setting is set to True by
default, however it can be disabled using an environment file, if needed.

Procedure

You can allow iframe embedding using the following parameter:

 parameter_defaults:
 ControllerExtraConfig:
 horizon::disallow_iframe_embed: false

NOTE

These settings should only be set to False once the potential security impacts are fully
understood.

9.7. USING HTTPS ENCRYPTION FOR DASHBOARD TRAFFIC

CHAPTER 9. HARDENING THE DASHBOARD SERVICE

51

It is recommended you use HTTPS to encrypt Dashboard traffic. You can do this by configuring it to use
a valid, trusted certificate from a recognized certificate authority (CA). Private organization-issued
certificates are only appropriate when the root of trust is pre-installed in all user browsers.

Configure HTTP requests to the dashboard domain to redirect to the fully qualified HTTPS URL.

For more information, see Implementing TLS-e with Ansible

9.8. HTTP STRICT TRANSPORT SECURITY (HSTS)

HTTP Strict Transport Security (HSTS) prevents browsers from making subsequent insecure
connections after they have initially made a secure connection. If you have deployed your HTTP services
on a public or an untrusted zone, HSTS is especially important.

For director-based deployments, this setting is enabled by default in the /usr/share/openstack-tripleo-
heat-templates/deployment/horizon/horizon-container-puppet.yaml file:

horizon::enable_secure_proxy_ssl_header: true

Verification

After the overcloud is deployed, check the local_settings file for Red Hat OpenStack Dashboard
(horizon) for verification.

1. Use ssh to connect to a controller:

$ ssh heat-admin@controller-0

2. Check that the SECURE_PROXY_SSL_HEADER parameter has a value of
('HTTP_X_FORWARDED_PROTO', 'https'):

sudo egrep ^SECURE_PROXY_SSL_HEADER /var/lib/config-data/puppet-
generated/horizon/etc/openstack-dashboard/local_settings
SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https')

9.9. FRONT-END CACHING

It is not recommended to use front-end caching tools with the Dashboard, as it renders dynamic content
resulting directly from OpenStack API requests. As a result, front-end caching layers such as varnish
can prevent the correct content from being displayed. The Dashboard uses Django, which serves static
media directly served from the web service and already benefits from web host caching.

9.10. SESSION BACKEND

For director-based deployments, the default session backend for horizon is
django.contrib.sessions.backends.cache, which is combined with memcached. This approach is
preferred to local-memory cache for performance reasons, is safer for highly-available and load
balanced installs, and has the ability to share cache over multiple servers, while still treating it as a single
cache.

You can review these settings in director’s horizon.yaml file:

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

52

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/advanced_overcloud_customization/assembly_enabling-ssl-tls-on-internal-and-public-endpoints-with-identity-management#proc_implementing-tls-e-with-ansible_enabling-ssl-tls-on-internal-and-public-endpoints-with-identity-management

 horizon::cache_backend: django.core.cache.backends.memcached.MemcachedCache
 horizon::django_session_engine: 'django.contrib.sessions.backends.cache'

9.11. REVIEWING THE SECRET KEY

The Dashboard depends on a shared SECRET_KEY setting for some security functions. The secret key
should be a randomly generated string at least 64 characters long, which must be shared across all active
dashboard instances. Compromise of this key might allow a remote attacker to execute arbitrary code.
Rotating this key invalidates existing user sessions and caching. Do not commit this key to public
repositories.

For director deployments, this setting is managed as the HorizonSecret value.

9.12. CONFIGURING SESSION COOKIES

The Dashboard session cookies can be open to interaction by browser technologies, such as JavaScript.
For director deployments with TLS everywhere, you can harden this behavior using the
HorizonSecureCookies setting.

NOTE

Never configure CSRF or session cookies to use a wildcard domain with a leading dot.

9.13. STATIC MEDIA

The dashboard’s static media should be deployed to a subdomain of the dashboard domain and served
by the web server. The use of an external content delivery network (CDN) is also acceptable. This
subdomain should not set cookies or serve user-provided content. The media should also be served
with HTTPS.

Dashboard’s default configuration uses django_compressor to compress and minify CSS and
JavaScript content before serving it. This process should be statically done before deploying the
dashboard, rather than using the default in-request dynamic compression and copying the resulting files
along with deployed code or to the CDN server. Compression should be done in a non-production build
environment. If this is not practical, consider disabling resource compression entirely. Online
compression dependencies (less, Node.js) should not be installed on production machines.

9.14. VALIDATING PASSWORD COMPLEXITY

The OpenStack Dashboard (horizon) can use a password validation check to enforce password
complexity.

You can specify a regular expression for password validation, as well as help text to be displayed for
failed tests. The following example requires users to create a password of between 8 to 18 characters in
length:

 parameter_defaults:
 HorizonPasswordValidator: '^.{8,18}$'
 HorizonPasswordValidatorHelp: 'Password must be between 8 and 18 characters.'

To apply this change to your deployment, save the settings as a file called horizon_password.yaml, and
then pass it to the overcloud deploy command as follows. The <full environment> indicates that you
must still include all of your original deployment parameters. For example:

CHAPTER 9. HARDENING THE DASHBOARD SERVICE

53

 openstack overcloud deploy --templates \
 -e <full environment> -e horizon_password.yaml

9.15. ENFORCE THE ADMINISTRATOR PASSWORD CHECK

The following setting is set to True by default, however it can be disabled using an environment file, if
needed.

NOTE

These settings should only be set to False once the potential security impacts are fully
understood.

The ENFORCE_PASSWORD_CHECK setting in Dashboard’s local_settings.py file displays an Admin
Password field on the Change Password form, which helps verify that an administrator is initiating the
password change.

You can disable ENFORCE_PASSWORD_CHECK using an environment file:

 parameter_defaults:
 ControllerExtraConfig:
 horizon::enforce_password_check: false

9.16. DISABLE PASSWORD REVEAL

The following setting is set to True by default, however it can be disabled using an environment file, if
needed.

NOTE

These settings should only be set to False once the potential security impacts are fully
understood.

The password reveal button allows a user at the Dashboard to view the password they are about to
enter. This option can be toggled using the DISABLE_PASSWORD_REVEAL parameter:

 parameter_defaults:
 ControllerExtraConfig:
 horizon::disable_password_reveal: false

9.17. DISPLAYING A LOGIN BANNER FOR THE DASHBOARD

Regulated industries such as HIPAA, PCI-DSS, and the U.S. Government, require you to display a user
logon banner. The Red Hat OpenStack Platform (RHOSP) dashboard (horizon) uses a default theme
(RCUE), which is stored inside the horizon container. For information on customizing the Dashboard
container, see Customizing the dashboard.

9.18. CUSTOMIZING THE THEME

Within the custom Dashboard container, you can create a logon banner by manually editing the

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

54

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/introduction_to_the_openstack_dashboard/customizing-the-dashboard_osp

Within the custom Dashboard container, you can create a logon banner by manually editing the
/usr/share/openstack-dashboard/openstack_dashboard/themes/rcue/templates/auth/login.html
file:

1. Enter the required logon banner immediately before the {% include 'auth/_login.html' %}
section. Note that HTML tags are allowed. For example:

<snip>
<div class="container">
 <div class="row-fluid">
 <div class="span12">
 <div id="brand">

 </div><!--/#brand-->
 </div><!--/.span*-->

 <!-- Start of Logon Banner -->
 <p>Authentication to this information system reflects acceptance of user monitoring
agreement.</p>
 <!-- End of Logon Banner -->

 {% include 'auth/_login.html' %}
 </div><!--/.row-fluid→
</div><!--/.container-->

{% block js %}
 {% include "horizon/_scripts.html" %}
{% endblock %}

 </body>
</html>

The updated dashboard will look similar to the following:

CHAPTER 9. HARDENING THE DASHBOARD SERVICE

55

9.19. LIMITING THE SIZE OF FILE UPLOADS

You can optionally configure the dashboard to limit the size of file uploads; this setting might be a
requirement for various security hardening policies.

LimitRequestBody - This value (in bytes) limits the maximum size of a file that you can transfer using
the Dashboard, such as images and other large files.

IMPORTANT

This setting has not been formally tested by Red Hat. It is recommended that you
thoroughly test the effect of this setting before deploying it to your production
environment.

NOTE

File uploads will fail if the value is too small.

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

56

For example, this setting limits each file upload to a maximum size of 10 GB (10737418240). You will
need to adjust this value to suit your deployment.

/var/lib/config-data/puppet-generated/horizon/etc/httpd/conf/httpd.conf

<Directory />
 LimitRequestBody 10737418240
</Directory>

/var/lib/config-data/puppet-generated/horizon/etc/httpd/conf.d/10-horizon_vhost.conf

<Directory "/var/www">
 LimitRequestBody 10737418240
</Directory>

/var/lib/config-data/puppet-generated/horizon/etc/httpd/conf.d/15-horizon_ssl_vhost.conf

<Directory "/var/www">
 LimitRequestBody 10737418240
</Directory>

NOTE

These configuration files are managed by Puppet, so any unmanaged changes are
overwritten whenever you run the openstack overcloud deploy process.

CHAPTER 9. HARDENING THE DASHBOARD SERVICE

57

CHAPTER 10. RED HAT OPENSTACK PLATFORM
NETWORKING SERVICE

The OpenStack Networking service (neutron) enables the end-user or project to define and consume
networking resources. OpenStack Networking provides a project-facing API for defining network
connectivity and IP addressing for instances in the cloud, in addition to orchestrating the network
configuration. With the transition to an API-centric networking service, cloud architects and
administrators should take into consideration good practices to secure physical and virtual network
infrastructure and services.

OpenStack Networking was designed with a plug-in architecture that provides extensibility of the API
through open source community or third-party services. As you evaluate your architectural design
requirements, it is important to determine what features are available in OpenStack Networking core
services, any additional services that are provided by third-party products, and what supplemental
services are required to be implemented in the physical infrastructure.

This section is a high-level overview of what processes and good practices should be considered when
implementing OpenStack Networking.

10.1. NETWORKING ARCHITECTURE

OpenStack Networking is a standalone service that deploys multiple processes across a number of
nodes. These processes interact with each other and other OpenStack services. The main process of
the OpenStack Networking service is neutron-server, a Python daemon that exposes the OpenStack
Networking API and passes project requests to a suite of plug-ins for additional processing.

The OpenStack Networking components are:

Neutron server (neutron-server and neutron-*-plugin) - The neutron-server service runs on
the Controller node to service the Networking API and its extensions (or plugins). It also
enforces the network model and IP addressing of each port. The neutron-server requires direct
access to a persistent database. Agents have indirect access to the database through neutron-
server, with which they communicate using AMQP (Advanced Message Queuing Protocol).

Neutron database - The database is the centralized source of neutron information, with the
API recording all transactions in the database. This allows multiple Neutron servers to share the
same database cluster, which keeps them all in sync, and allows persistence of network
configuration topology.

Plugin agent (neutron-*-agent) - Runs on each compute node and networking node (together
with the L3 and DHCP agents) to manage local virtual switch (vswitch) configuration. The
enabled plug-in determines which agents are enabled. These services require message queue
access and depending on the plug-in being used, access to external network controllers or SDN
implementations. Some plug-ins, like OpenDaylight(ODL) and Open Virtual Network (OVN), do
not require any python agents on compute nodes, requiring only an enabled Neutron plug-in for
integration.

DHCP agent (neutron-dhcp-agent) - Provides DHCP services to project networks. This agent
is the same across all plug-ins and is responsible for maintaining DHCP configuration. The
neutron-dhcp-agent requires message queue access. Optional depending on plug-in.

Metadata agent (neutron-metadata-agent, neutron-ns-metadata-proxy) - Provides
metadata services used to apply instance operating system configuration and user-supplied
initialisation scripts (‘userdata’). The implementation requires the neutron-ns-metadata-proxy

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

58

running in the L3 or DHCP agent namespace to intercept metadata API requests sent by cloud-
init to be proxied to the metadata agent.

L3 agent (neutron-l3-agent) - Provides L3/NAT forwarding for external network access of
VMs on project networks. Requires message queue access. Optional depending on plug-in.

Network provider services (SDN server/services) - Provides additional networking services to
project networks. These SDN services might interact with neutron-server, neutron-plugin, and
plugin-agents through communication channels such as REST APIs.

The following diagram shows an architectural and networking flow diagram of the OpenStack
Networking components:

Note that this approach changes significantly when Distributed Virtual Routing (DVR) and Layer-3 High
Availability (L3HA) are used. These modes change the security landscape of neutron, since L3HA
implements VRRP between routers. The deployment needs to be correctly sized and hardened to help
mitigate DoS attacks against routers, and local-network traffic between routers must be treated as
sensitive, to help address the threat of VRRP spoofing. DVR moves networking components (such as
routing) to the Compute nodes, while still requiring network nodes. As a result, the Compute nodes
require access to and from public networks, increasing their exposure and requiring additional security
consideration for customers, as they will need to make sure firewall rules and security model support this
approach.

10.2. NEUTRON SERVICE PLACEMENT ON PHYSICAL SERVERS

This section describes a standard architecture that includes a controller node, a network node, and a set

CHAPTER 10. RED HAT OPENSTACK PLATFORM NETWORKING SERVICE

59

This section describes a standard architecture that includes a controller node, a network node, and a set
of compute nodes for running instances. To establish network connectivity for physical servers, a typical
neutron deployment has up to four distinct physical data center networks:

Management network - Used for internal communication between OpenStack Components.
The IP addresses on this network should be reachable only within the data center and is
considered the Management Security zone. By default, the Management network role is
performed by the Internal API network.

Guest network(s) - Used for VM data communication within the cloud deployment. The IP
addressing requirements of this network depend on the OpenStack Networking plug-in in use
and the network configuration choices of the virtual networks made by the project. This network
is considered the Guest Security zone.

External network - Used to provide VMs with Internet access in some deployment scenarios.
The IP addresses on this network should be reachable by anyone on the Internet. This network is
considered to be in the Public Security zone. This network is provided by the neutron External
network(s). These neutron VLANs are hosted on the external bridge. They are not created by
Red Hat OpenStack Platform director, but are created by neutron in post-deployment.

Public API network - Exposes all OpenStack APIs, including the OpenStack Networking API, to
projects. The IP addresses on this network should be reachable by anyone on the Internet. This
might be the same network as the external network, as it is possible to create a subnet for the
external network that uses IP allocation ranges smaller than the full range of IP addresses in an
IP block. This network is considered to be in the Public Security zone.

It is recommended you segment this traffic into separate zones. See the next section for more
information.

10.3. SECURITY ZONES

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

60

It is recommended that you use the concept of security zones to keep critical systems separate from
each other. In a practical sense, this means isolating network traffic using VLANs and firewall rules. This
sho uld be done with granular detail, and the result should be that only the services that need to connect
to neutron are able to do so.

In the following diagram, you can see that zones have been created to separate certain components:

Dashboard: Accessible to public network and management network.

Keystone: Accessible to management network.

Compute node: Accessible to management network and Compute instances.

Network node: Accessible to management network, Compute instances, and possibly public
network depending upon neutron-plugin in use.

SDN service node: Management services, Compute instances, and possibly public depending
upon product used and configuration.

10.4. NETWORKING SERVICES

In the initial architectural phases of designing your OpenStack Network infrastructure it is important to
ensure appropriate expertise is available to assist with the design of th e physical networking
infrastructure, to identify proper security controls and auditing mechanisms.

OpenStack Networking adds a layer of virtualized network services which gives projects the capability to
architect their own virtual networks. Currently, these virtualized service s are not as mature as their
traditional networking counterparts. Consider the current state of these virtualized services before
adopting them as it dictates what controls you mi ght have to implement at the virtualized and traditional
network boundaries.

CHAPTER 10. RED HAT OPENSTACK PLATFORM NETWORKING SERVICE

61

10.5. L2 ISOLATION USING VLANS AND TUNNELING

OpenStack Networking can employ two different mechanisms for traffic segregation on a per
project/network combination: VLANs (IEEE 802.1Q tagging) or L2 tunnels using VXLAN or GRE
encapsulation. The scope and scale of your OpenStack deployment determines which method you
should use for traffic segregation or isolation.

VLANs

VLANs are realized as packets on a specific physical network containing IEEE 802.1Q headers with a
specific VLAN ID (VID) field value. VLAN networks sharing the same physical netw ork are isolated
from each other at L2, and can even have overlapping IP address spaces. Each distinct physical
network supporting VLAN networks is treated as a separate VLAN trunk k, with a distinct space of
VID values. Valid VID values are 1 through 4094.
VLAN configuration complexity depends on your OpenStack design requirements. To allow
OpenStack Networking to more efficiently use VLANs, you must allocate a VLAN range (one for
each project) and turn each Compute node physical switch port into a VLAN trunk port.

Tunneling

Network tunneling encapsulates each project/network combination with a unique tunnel-id that is
used to identify the network traffic belonging to that combination. The project’s L2 network
connectivity is independent of physical locality or underlying network design. By encapsulating traffic
inside IP packets, that traffic can cross Layer-3 boundaries, removing the need for pre-configured
VLANs and VLAN trunking. Tunneling adds a layer of obfuscation to network data traffic, reducing
the visibility of individual project traffic from a monitoring point of view.
OpenStack Networking currently supports both GRE and VXLAN encapsulation. The choice of
technology to provide L2 isolation is dependent upon the scope and size of project networks that will
be created in your deployment.

10.6. ACCESS CONTROL LISTS

Compute supports project network traffic access controls through use of the OpenStack Networking
service. Security groups allow administrators and projects the ability to specify the type of traffic, and
direction (ingress/egress) that is allowed to pass through a virtual interface port. Security groups rules
are stateful L2-L4 traffic filters.

10.7. L3 ROUTING AND NAT

OpenStack Networking routers can connect multiple L2 networks, and can also provide a gateway that
connects one or more private L2 networks to a shared external network, such as a public network for
access to the Internet.

The L3 router provides basic Network Address Translation (SNAT and DNAT) capabilities on gateway
ports that uplink the router to external networks. This router SNATs (Source NAT) all egress traffic by
default, and supports floating IPs, which creates a static one-to-one bidirectional mapping from a public
IP on the external network to a private IP on one o f the other subnets attached to the router. Floating
IPs (through DNAT) provide external inbound connectivity to instances, and can be moved from one
instances to another.

Consider using per-project L3 routing and Floating IPs for more granular connectivity of project
instances. Special consideration should be given to instances connected to public networks or using
Floating IPs. Usage of carefully considered security groups is recommended to filter access to only
services which need to be exposed externally.

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

62

10.8. QUALITY OF SERVICE (QOS)

By default, Quality of Service (QoS) policies and rules are managed by the cloud administrator, which
results in projects being unable to create specific QoS rules, or to attach s pecific policies to ports. In
some use cases, such as some telecommunications applications, the administrator might trust the
projects and therefore let them create and attach the ir own policies to ports. This can be done by
modifying the policy.json file.

From Red Hat OpenStack Platform 12, neutron supports bandwidth-limiting QoS rules for both ingress
and egress traffic. This QoS rule is named QosBandwidthLimitRule and it accept s two non-negative
integers measured in kilobits per second:

max-kbps: bandwidth

max-burst-kbps: burst buffer

The QoSBandwidthLimitRule has been implemented in the neutron Open vSwitch, Linux bridge and
SR-IOV drivers. However, for SR-IOV drivers, the max-burst-kbps value is not used, and is ignored if
set.

The QoS rule QosDscpMarkingRule sets the Differentiated Service Code Point (DSCP) value in the
type of service header on IPv4 (RFC 2474) and traffic class header on IPv6 on all traffic leaving a virtual
machine, where the rule is applied. This is a 6-bit header with 21 valid values that denote the drop priority
of a packet as it crosses networks should it meet congestion. It can also be used by firewalls to match
valid or invalid traffic against its access control list.

10.9. LOAD BALANCING

The OpenStack Load-balancing service (octavia) provides a load balancing-as-a-service (LBaaS)
implementation for Red Hat OpenStack platform director installations. To achieve load balancing,
octavia supports enabling multiple provider drivers. The reference provider driver (Amphora provider
driver) is an open-source, scalable, and highly available load bal ancing provider. It accomplishes its
delivery of load balancing services by managing a fleet of virtual machines—​collectively known as
amphorae—​which it spins up on demand.

For more information about the Load-balancing service, see the Using Octavia for Load Balancing-as-
a-Service guide.

10.10. HARDENING THE NETWORKING SERVICE

This section discusses OpenStack Networking configuration good practices as they apply to project
network security within your OpenStack deployment.

10.10.1. Restrict bind address of the API server: neutron-server

To restrict the interface or IP address on which the OpenStack Networking API service binds a network
socket for incoming client connections, specify the bind_host and bind_por t in the /var/lib/config-
data/puppet-generated/neutron/etc/neutron/neutron.conf file:

Address to bind the API server
bind_host = IP ADDRESS OF SERVER

Port the bind the API server to
bind_port = 9696

CHAPTER 10. RED HAT OPENSTACK PLATFORM NETWORKING SERVICE

63

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/using_octavia_for_load_balancing-as-a-service/index

10.10.2. Project network services workflow

OpenStack Networking provides users self-service configuration of network resources. It is important
that cloud architects and operators evaluate their design use cases in providing users the ability to
create, update, and destroy available network resources.

10.10.3. Networking resource policy engine

A policy engine and its configuration file (policy.json) within OpenStack Networking provides a method
to provide finer grained authorization of users on project networking methods and objects. The
OpenStack N etworking policy definitions affect network availability, network security and overall
OpenStack security. Cloud architects and operators should carefully evaluate their policy towards user
and project access to administration of network resources.

NOTE

It is important to review the default networking resource policy, as this policy can be
modified to suit your security posture.

If your deployment of OpenStack provides multiple external access points into different security zones
it is important that you limit the project’s ability to attach multiple vNICs to multiple external access po
ints — this would bridge these security zones and could lead to unforeseen security compromise. You can
help mitigate this risk by using the host aggregates functionality provided by Compute, or by splitting th
e project instances into multiple projects with different virtual network configurations. For more
information on host aggregates, see Creating and managing host aggregates .

10.10.4. Security groups

A security group is a collection of security group rules. Security groups and their rules allow
administrators and projects the ability to specify the type of traffic and direction (ingress/egress) that
is allow ed to pass through a virtual interface port. When a virtual interface port is created in OpenStack
Networking it is associated with a security group. Rules can be added to the default security group in
order to change the behavior on a per-deployment basis.

When using the Compute API to modify security groups, the updated security group applies to all virtual
interface ports on an instance. This is due to the Compute security group APIs being instance-based
rather than port-based, as found in neutron.

10.10.5. Mitigate ARP spoofing

OpenStack Networking has a built-in feature to help mitigate the threat of ARP spoofing for instances.
This should not be disabled unless careful consideration is given to the resulting risks.

10.10.6. Use a Secure Protocol for Authentication

In /var/lib/config-data/puppet-generated/neutron/etc/neutron/neutron.conf check that the value of
auth_uri under the [keystone_authtoken] section is set to an Identity API endpoint that starts with
`https:

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

64

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/configuring_the_compute_service_for_instance_creation/assembly_creating-and-managing-host-aggregates_host-aggregates

CHAPTER 11. HARDENING BLOCK STORAGE ON RED HAT
OPENSTACK PLATFORM

OpenStack Block Storage (cinder) is a service that provides software (services and libraries) to self-
service manage persistent block-level storage devices. This creates on-demand access to Block
Storage resources for use with Compute (nova) instances. This creates software-defined storage
through abstraction by virtualizing pools of block storage to a variety of back-end storage devices which
can be either software implementations or traditional hardware storage products. The primary functions
of this is to manage the creation, attachment, and detachment of the block devices. The consumer
requires no knowledge of the type of back-end storage equipment or where it is located.

Compute instances store and retrieve block storage using industry-standard storage protocols such as
iSCSI, ATA over Ethernet, or Fibre-Channel. These resources are managed and configured using
OpenStack native standard HTTP RESTful API.

11.1. SET THE MAX SIZE FOR THE BODY OF A REQUEST

If the maximum body size per request is not defined, the attacker can craft an arbitrary OSAPI request
of large size, causing the service to crash and finally resulting in a Denial Of Service attack. Assigning t
he maximum value ensures that any malicious oversized request gets blocked ensuring continued
availability of the service.

Review whether max_request_body_size under the [oslo_middleware] section in cinder.conf is set to
114688.

11.2. ENABLE VOLUME ENCRYPTION

Unencrypted volume data makes volume-hosting platforms especially high-value targets for attackers,
as it allows the attacker to read the data for many different VMs. In addition, the physical storage
medium could be stolen, remounted, and accessed from a different machine. Encrypting volume data
and volume backups can help mitgate these risks and provides defense-in-depth to volume-hosting
platforms. Block Storage (cinder) is able to encrypt volume data before it is written to disk, so consider
enabling volume encryption, and using Barbican for private key storage.

11.3. VOLUME WIPING

There are multiple ways to wipe a block storage device. The traditional approach is to set the lvm_type
to thin, and then use the volume_clear parameter. Alternatively, if the volume encryption feature is us
ed, then volume wiping is not necessary if the volume encryption key is deleted.

NOTE

Previously, lvm_type=default was used to signify a wipe. While this method still works,
lvm_type=default is not recommended for setting secure delete.

The volume_clear parameter can accept either zero or shred as arguments. zero will write a single
pass of zeroes to the device. The shred operation will write three passes of predetermined bit patterns.

CHAPTER 11. HARDENING BLOCK STORAGE ON RED HAT OPENSTACK PLATFORM

65

CHAPTER 12. HARDENING THE SHARED FILE SYSTEM
(MANILA)

The Shared File Systems service (manila) provides a set of services for managing shared file systems in
a multi-project cloud environment. With manila, you can create a shared file system and manage its
properties, such as visibility, accessibility, and quotas.

For more information on manila, see the Storage Guide: https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/16.1/html-single/storage_guide/

12.1. SECURITY CONSIDERATIONS FOR MANILA

Manila is registered with keystone, allowing you to the locate the API using the manila endpoints
command. For example:

 $ manila endpoints
 +-------------+---+
 | manila | Value |
 +-------------+---+
adminURL	http://172.18.198.55:8786/v1/20787a7b...
region	RegionOne
publicURL	http://172.18.198.55:8786/v1/20787a7b...
internalURL	http://172.18.198.55:8786/v1/20787a7b...
id	82cc5535aa444632b64585f138cb9b61
 +-------------+---+

 +-------------+---+
 | manilav2 | Value |
 +-------------+---+
adminURL	http://172.18.198.55:8786/v2/20787a7b...
region	RegionOne
publicURL	http://172.18.198.55:8786/v2/20787a7b...
internalURL	http://172.18.198.55:8786/v2/20787a7b...
id	2e8591bfcac4405fa7e5dc3fd61a2b85
 +-------------+---+

By default, the manila API service only listens on port 8786 with tcp6, which supports both IPv4 and
IPv6.

Manila uses multiple configurations files; these are stored in /var/lib/config-data/puppet-
generated/manila/:

 api-paste.ini
 manila.conf
 policy.json
 rootwrap.conf
 rootwrap.d

 ./rootwrap.d:
 share.filters

It is recommended that you configure manila to run under a non-root service account, and change file
permissions so that only the system administrator can modify them. Manila expects that only
administrators can write to configuration files, and services can only read them through their group

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

66

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/storage_guide/

membership in the manila group. Other users must not be able to read these files, as they contain
service account passwords.

NOTE

Only the root user should own be able to write to the configuration for manila-rootwrap
in rootwrap.conf, and the manila-rootwrap command filters for share nodes in
rootwrap.d/share.filters.

12.2. NETWORK AND SECURITY MODELS FOR MANILA

A share driver in manila is a Python class that can be set for the back end to manage share operations,
some of which are vendor-specific. The back end is an instance of the manila-share service. Manila has
share drivers for many different storage systems, supporting both commercial vendors and open source
solutions. Each share driver supports one or more back end modes: share servers and no share
servers. An administrator selects a mode by specifying it in manila.conf, using
driver_handles_share_servers.

A share server is a logical Network Attached Storage (NAS) server that exports shared file systems.
Back-end storage systems today are sophisticated and can isolate data paths and network paths
between different OpenStack projects.

A share server provisioned by a manila share driver would be created on an isolated network that belongs
to the project user creating it. The share servers mode can be configured with either a flat network, or
a segmented network, depending on the network provider.

It is possible to have separate drivers for different modes use the same hardware. Depending on the
chosen mode, you might need to provide more configuration details through the configuration file.

12.3. SHARE BACKEND MODES

Each share driver supports at least one of the available driver modes:

Share servers - driver_handles_share_servers = True - The share driver creates share servers
and manages the share server life cycle.

No share servers - driver_handles_share_servers = False - An administrator (rather than a
share driver) manages the bare metal storage with a network interface, instead of relying on the
presence of the share servers.

No share servers mode - In this mode, drivers will not set up share servers, and consequently will not
need to set up any new network interfaces. It is assumed that storage controller being managed by the
driver has all of the network interfaces it is going to need. Drivers create shares directly without
previously creating a share server. To create shares using drivers operating in this mode, manila does not
require users to create any private share networks either.

NOTE

In no share servers mode, manila will assume that the network interfaces through which
any shares are exported are already reachable by all projects.

In the no share servers mode a share driver does not handle share server life cycle. An administrator is
expected to handle the storage, networking, and other host-side configuration that might be necessary
to provide project isolation. In this mode an administrator can set storage as a host which exports shares.

CHAPTER 12. HARDENING THE SHARED FILE SYSTEM (MANILA)

67

All projects within the OpenStack cloud share a common network pipe. Lack of isolation can impact
security and quality of service. When using share drivers that do not handle share servers, cloud users
cannot be sure that their shares cannot be accessed by untrusted users by a tree walk over the top
directory of their file systems. In public clouds it is possible that all network bandwidth is used by one
client, so an administrator should care for this not to happen. Network balancing can be done by any
means, and not necessarily just with OpenStack tools.

Share servers mode - In this mode, a driver is able to create share servers and plug them to existing
OpenStack networks. Manila determines if a new share server is required, and provides all the
networking information necessary for the share drivers to create the requisite share server.

When creating shares in the driver mode that handles share servers, users must provide a share network
that they expect their shares to be exported upon. Manila uses this network to create network ports for
the share server on this network.

Users can configure security services in both share servers and no share servers back end modes.
But with the no share servers back end mode, an administrator must set the required authentication
services manually on the host. And in share servers mode manila can configure security services
identified by the users on the share servers it spawns.

12.4. NETWORKING REQUIREMENTS FOR MANILA

Manila can integrate with different network types: flat, GRE, VLAN, VXLAN.

NOTE

Manila is only storing the network information in the database, with the real networks
being supplied by the network provider. Manila supports using the OpenStack Networking
service (neutron) and also "standalone" pre-configured networking.

In the share servers back end mode, a share driver creates and manages a share server for each share
network. This mode can be divided in two variations:

Flat network in share servers backend mode

Segmented network in share servers backend mode

Users can use a network and subnet from the OpenStack Networking (neutron) service to create share
networks. If the administrator decides to use the StandAloneNetworkPlugin, users need not provide
any networking information since the administrator pre-configures this in the configuration file.

NOTE

Share servers spawned by some share drivers are Compute servers created with the
Compute service. A few of these drivers do not support network plugins.

After a share network is created, manila retrieves network information determined by a network provider:
network type, segmentation identifier (if the network uses segmentation) and the IP block in CIDR
notation from which to allocate the network.

Users can create security services that specify security requirements such as AD or LDAP domains or a
Kerberos realm. Manila assumes that any hosts referred to in security service are reachable from a
subnet where a share server is created, which limits the number of cases where this mode could be used.

NOTE

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

68

NOTE

Some share drivers might not support all types of segmentation, for more details see the
specification for the driver you are using.

12.5. SECURITY SERVICES WITH MANILA

Manila can restrict access to file shares by integrating with network authentication protocols. Each
project can have its own authentication domain that functions separately from the cloud’s keystone
authentication domain. This project domain can be used to provide authorization (AuthZ) services to
applications that run within the OpenStack cloud, including manila. Available authentication protocols
include LDAP, Kerberos, and Microsoft Active Directory authentication service.

12.6. INTRODUCTION TO SECURITY SERVICES

After creating a share and getting its export location, users have no permissions to mount it and operate
with files. Users need to explicitly grant access to the new share.

The client authentication and authorization (authN/authZ) can be performed in conjunction with
security services. Manila can use LDAP, Kerberos, or Microsoft Active directory if they are supported by
the share drivers and back ends.

NOTE

In some cases, it is required to explicitly specify one of the security services, for example,
NetApp, EMC and Windows drivers require Active Directory for the creation of shares
with the CIFS protocol.

12.7. SECURITY SERVICES MANAGEMENT

A security service is a manila entity that abstracts a set of options that define a security zone for a
particular shared file system protocol, such as an Active Directory domain or a Kerberos domain. The
security service contains all of the information necessary for manila to create a server that joins a given
domain.

Using the API, users can create, update, view, and delete a security service. Security Services are
designed on the following assumptions:

Projects provide details for the security service.

Administrators care about security services: they configure the server side of such security
services.

Inside the manila API, a security_service is associated with the share_networks.

Share drivers use data in the security service to configure newly created share servers.

When creating a security service, you can select one of these authentication services:

LDAP - The Lightweight Directory Access Protocol. An application protocol for accessing and
maintaining distributed directory information services over an IP network.

Kerberos - The network authentication protocol which works on the basis of tickets to allow
nodes communicating over a non-secure network to prove their identity to one another in a
secure manner.

CHAPTER 12. HARDENING THE SHARED FILE SYSTEM (MANILA)

69

Active Directory - A directory service that Microsoft developed for Windows domain networks.
Uses LDAP, Microsoft’s version of Kerberos, and DNS.

Manila allows you to configure a security service with these options:

A DNS IP address that is used inside the project network.

An IP address or hostname of a security service.

A domain of a security service.

A user or group name that is used by a project.

A password for a user, if you specify a username.

An existing security service entity can be associated with share network entities that inform manila about
security and network configuration for a group of shares. You can also see the list of all security services
for a specified share network and disassociate them from a share network.

An administrator and users as share owners can manage access to the shares by creating access rules
with authentication through an IP address, user, group, or TLS certificates. Authentication methods
depend on which share driver and security service you configure and use. You can then configure a back
end to use a specific authentication service, which can operate with clients without manila and keystone.

NOTE

Different authentication services are supported by different share drivers. For details of
supporting of features by different drivers, see
https://docs.openstack.org/manila/latest/admin/share_back_ends_feature_support_mapping.html

Support for a specific authentication service by a driver does not mean that it can be configured with
any shared file system protocol. Supported shared file systems protocols are NFS, CEPHFS, CIFS,
GlusterFS, and HDFS. See the driver vendor’s documentation for information on a specific driver and its
configuration for security services.

Some drivers support security services and other drivers do not support any of the security services
mentioned above. For example, Generic Driver with the NFS or the CIFS shared file system protocol
supports only authentication method through the IP address.

NOTE

In most cases, drivers that support the CIFS shared file system protocol can be
configured to use Active Directory and manage access through the user authentication.

Drivers that support the GlusterFS protocol can be used with authentication using TLS
certificates.

With drivers that support NFS protocol authentication using an IP address is the only supported
option.

Since the HDFS shared file system protocol uses NFS access it also can be configured to
authenticate using an IP address.

The recommended configuration for production manila deployments is to create a share with the CIFS

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

70

https://docs.openstack.org/manila/latest/admin/share_back_ends_feature_support_mapping.html

The recommended configuration for production manila deployments is to create a share with the CIFS
share protocol and add to it the Microsoft Active Directory directory service. With this configuration you
will get the centralized database and the service that integrates the Kerberos and LDAP approaches.

12.8. SHARE ACCESS CONTROL

Users can specify which specific clients have access to the shares they create. Due to the keystone
service, shares created by individual users are only visible to themselves and other users within the same
project. Manila allows users to create shares that are "publicly" visible. These shares are visible in
dashboards of users that belong to other OpenStack projects if the owners grant them access, they
might even be able to mount these shares if they are made accessible on the network.

While creating a share, use key --public to make your share public for other projects to see it in a list of
shares and see its detailed information.

According to the policy.json file, an administrator and the users as share owners can manage access to
shares by means of creating access rules. Using the manila access-allow, manila access-deny, and
manila access-list commands, you can grant, deny and list access to a specified share correspondingly.

NOTE

Manila does not provide end-to-end management of the storage system. You will still
need to separately protect the backend system from unauthorized access. As a result,
the protection offered by the manila API can still be circumvented if someone
compromises the backend storage device, thereby gaining out of band access.

When a share is just created there are no default access rules associated with it and permission to
mount it. This could be seen in mounting config for export protocol in use. For example, there is an NFS
command exportfs or /etc/exports file on the storage which controls each remote share and defines
hosts that can access it. It is empty if nobody can mount a share. For a remote CIFS server there is net
conf list command which shows the configuration. The hosts deny parameter should be set by the
share driver to 0.0.0.0/0 which means that any host is denied to mount the share.

Using manila, you can grant or deny access to a share by specifying one of these supported share access
levels:

rw - Read and write (RW) access. This is the default value.

ro- Read-only (RO) access.

NOTE

The RO access level can be helpful in public shares when the administrator gives read and
write (RW) access for some certain editors or contributors and gives read-only (RO)
access for the rest of users (viewers).

You must also specify one of these supported authentication methods:

ip - Uses an IP address to authenticate an instance. IP access can be provided to clients
addressable by well-formed IPv4 or IPv6 addresses or subnets denoted in CIDR notation.

cert - Uses a TLS certificate to authenticate an instance. Specify the TLS identity as the
IDENTKEY. A valid value is any string up to 64 characters long in the common name (CN) of the
certificate.

CHAPTER 12. HARDENING THE SHARED FILE SYSTEM (MANILA)

71

user - Authenticates by a specified user or group name. A valid value is an alphanumeric string
that can contain some special characters and is from 4 to 32 characters long.

NOTE

Supported authentication methods depend on which share driver, security service and
shared file system protocol you use. Supported shared file system protocols are MapRFS,
CEPHFS, NFS, CIFS, GlusterFS, and HDFS. Supported security services are LDAP,
Kerberos protocols, or Microsoft Active Directory service.

To verify that access rules (ACL) were configured correctly for a share, you can list its permissions.

NOTE

When selecting a security service for your share, you will need to consider whether the
share driver is able to create access rules using the available authentication methods.
Supported security services are LDAP, Kerberos, and Microsoft Active Directory.

12.9. SHARE TYPE ACCESS CONTROL

A share type is an administrator-defined type of service , comprised of a project visible description, and a
list of non-project-visible key-value pairs called extra specifications. The manila-scheduler uses extra
specifications to make scheduling decisions, and drivers control the share creation.

An administrator can create and delete share types, and can also manage extra specifications that give
them meaning inside manila. Projects can list the share types and can use them to create new shares.
Share types can be created as public and private. This is the level of visibility for the share type that
defines whether other projects can or cannot see it in a share types list and use it to create a new share.

By default, share types are created as public. While creating a share type, use --is_public parameter set
to False to make your share type private which will prevent other projects from seeing it in a list of share
types and creating new shares with it. On the other hand, public share types are available to every
project in a cloud.

Manila allows an administrator to grant or deny access to the private share types for projects. You can
also get information about the access for a specified private share type.

NOTE

Since share types due to their extra specifications help to filter or choose back ends
before users create a share, using access to the share types you can limit clients in choice
of specific back ends.

For example, an administrator user in the admin project can create a private share type named my_type
and see it in the list. In the console examples below, the logging in and out is omitted, and environment
variables are provided to show the currently logged in user.

 $ env | grep OS_
 ...
 OS_USERNAME=admin
 OS_TENANT_NAME=admin
 ...
 $ manila type-list --all
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

72

 | ID | Name | Visibility| is_default| required_extra_specs | optional_extra_specs |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+
 | 4..| my_type| private | - | driver_handles_share_servers:False| snapshot_support:True |
 | 5..| default| public | YES | driver_handles_share_servers:True | snapshot_support:True |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+

The demo user in the demo project can list the types and the private share type named my_type is not
visible for him.

 $ env | grep OS_
 ...
 OS_USERNAME=demo
 OS_TENANT_NAME=demo
 ...
 $ manila type-list --all
 +----+--------+-----------+-----------+----------------------------------+----------------------+
 | ID | Name | Visibility| is_default| required_extra_specs | optional_extra_specs |
 +----+--------+-----------+-----------+----------------------------------+----------------------+
 | 5..| default| public | YES | driver_handles_share_servers:True| snapshot_support:True|
 +----+--------+-----------+-----------+----------------------------------+----------------------+

The administrator can grant access to the private share type for the demo project with the project ID
equal to df29a37db5ae48d19b349fe947fada46:

 $ env | grep OS_
 ...
 OS_USERNAME=admin
 OS_TENANT_NAME=admin
 ...
 $ openstack project list
 +----------------------------------+--------------------+
 | ID | Name |
 +----------------------------------+--------------------+
 | ... | ... |
 | df29a37db5ae48d19b349fe947fada46 | demo |
 +----------------------------------+--------------------+
 $ manila type-access-add my_type df29a37db5ae48d19b349fe947fada46

As a result, users in the demo project can see the private share type and use it in the share creation:

 $ env | grep OS_
 ...
 OS_USERNAME=demo
 OS_TENANT_NAME=demo
 ...
 $ manila type-list --all
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+
 | ID | Name | Visibility| is_default| required_extra_specs | optional_extra_specs |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+
 | 4..| my_type| private | - | driver_handles_share_servers:False| snapshot_support:True |
 | 5..| default| public | YES | driver_handles_share_servers:True | snapshot_support:True |
 +----+--------+-----------+-----------+-----------------------------------+-----------------------+

To deny access for a specified project, use manila type-access-remove <share_type> <project_id>.

CHAPTER 12. HARDENING THE SHARED FILE SYSTEM (MANILA)

73

NOTE

For an example that demonstrates the purpose of the share types, consider a situation
where you have two back ends: LVM as a public storage and Ceph as a private storage. In
this case you can grant access to certain projects and control access with user/group
authentication method.

12.10. POLICIES

The Shared File Systems service API is gated with role-based access control policies. These policies
determine which user can access certain APIs in a certain way, and are defined in the service’s
policy.json file.

NOTE

The configuration file policy.json may be placed anywhere. The path /var/lib/config-
data/puppet-generated/manila/etc/manila/policy.json is expected by default.

Whenever an API call is made to manila, the policy engine uses the appropriate policy definitions to
determine if the call can be accepted. A policy rule determines under which circumstances the API call is
permitted. The /var/lib/config-data/puppet-generated/manila/etc/manila/policy.json file has rules
where an action is always permitted, when the rule is an empty string: ""; the rules based on the user role
or rules; rules with boolean expressions. Below is a snippet of the policy.json file for manila. It can be
expected to change between OpenStack releases.

 {
 "context_is_admin": "role:admin",
 "admin_or_owner": "is_admin:True or project_id:%(project_id)s",
 "default": "rule:admin_or_owner",
 "share_extension:quotas:show": "",
 "share_extension:quotas:update": "rule:admin_api",
 "share_extension:quotas:delete": "rule:admin_api",
 "share_extension:quota_classes": "",
 }

Users must be assigned to groups and roles that you refer to in your policies. This is done automatically
by the service when user management commands are used.

NOTE

Any changes to /var/lib/config-data/puppet-generated/manila/etc/manila/policy.json
are effective immediately, which allows new policies to be implemented while manila is
running. Manual modification of the policy can have unexpected side effects and is not
encouraged. Manila does not provide a default policy file; all the default policies are within
the code base. You can generate the default policies from the manila code by executing:
oslopolicy-sample-generator --config-file=var/lib/config-data/puppet-
generated/manila/etc/manila/manila-policy-generator.conf

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

74

CHAPTER 13. OBJECT STORAGE
The Object Storage (swift) service stores and retrieves data over HTTP. Objects (blobs of data) are
stored in an organizational hierarchy that can be configured to offer anonymous read-only access, ACL
defined access, or even temporary access. Swift supports multiple token-based authentication
mechanisms implemented through middleware.

Applications store and retrieve data in Object Storage using an industry-standard HTTP RESTful API.
The back end swift components follow the same RESTful model, although some APIs (such as those
managing durability) are kept private to the cluster.

The components of swift fall into the following primary groups:

Proxy services

Auth services

Storage services

Account service

Container service

Object service

NOTE

An Object Storage installation does not have to be internet-facing and could also be a
private cloud with the public switch a part of the organization’s internal network
infrastructure.

CHAPTER 13. OBJECT STORAGE

75

13.1. NETWORK SECURITY

Security hardening for swift begins with securing the networking component. See the networking
chapter for more information.

For high availability, the rsync protocol is used to replicate data between storage service nodes. In
addition, the proxy service communicates with the storage service when relaying data between the client
end-point and the cloud environment.

NOTE

Swift does not use encryption or authentication with inter-node communications. This is
because swift uses the native rsync protocol for performance reasons, and does not use
SSH for rsync communications.This is why you see a private switch or private network
([V]LAN) in the architecture diagrams. This data zone should be separate from other
OpenStack data networks as well.

NOTE

Use a private (V)LAN network segment for your storage nodes in the data zone.

This requires that the proxy nodes have dual interfaces (physical or virtual):

One interface as a public interface for consumers to reach.

Another interface as a private interface with access to the storage nodes.

The following figure demonstrates one possible network architecture, using the Object Storage network
architecture with a management node (OSAM):

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

76

13.2. RUN SERVICES AS NON-ROOT USER

It is recommend that you configure swift to run under a non-root (UID 0) service account. One
recommendation is the username swift with the primary group swift, as deployed by director. Object
Storage services include, for example, proxy-server, container-server, account-server.

13.3. FILE PERMISSIONS

The /var/lib/config-data/puppet-generated/swift/etc/swift/ directory contains information about the
ring topology and environment configuration. The following permissions are recommended:

chown -R root:swift /var/lib/config-data/puppet-generated/swift/etc/swift/*
find /var/lib/config-data/puppet-generated/swift/etc/swift/ -type f -exec chmod 640 {} \;
find /var/lib/config-data/puppet-generated/swift/etc/swift/ -type d -exec chmod 750 {} \;

This restriction only allows root to modify configuration files, while still allowing the services to read
them, due to their membership in the swift group.

13.4. SECURING STORAGE SERVICES

The following are the default listening ports for the various storage services:

Account service - TCP/6002

Container service - TCP/6001

Object Service - TCP/6000

CHAPTER 13. OBJECT STORAGE

77

Rsync - TCP/873

NOTE

If ssync is used instead of rsync, the object service port is used for maintaining durability.

NOTE

Authentication does not occur at the storage nodes. If you are able to connect to a
storage node on one of these ports, you can access or modify data without
authentication. To help mitigate this issue, you should follow the recommendations given
previously about using a private storage network.

13.5. OBJECT STORAGE ACCOUNT TERMINOLOGY

A swift account is not a user account or credential. The following distinctions exist:

Swift account - A collection of containers (not user accounts or authentication). The
authentication system you use will determine which users are associated with the account and
how they might access it.

Swift containers - A collection of objects. Metadata on the container is available for ACLs. The
usage of ACLs is dependent on the authentication system used.

Swift objects - The actual data objects. ACLs at the object level are also available with
metadata, and are dependent on the authentication system used.

At each level, you have ACLs that control user access; ACLs are interpreted based on the authentication
system in use. The most common type of authentication provider is the Identity Service (keystone);
custom authentication providers are also available.

13.6. SECURING PROXY SERVICES

A proxy node should have at least two interfaces (physical or virtual): one public and one private. You
can use firewalls or service binding to help protect the public interface. The public-facing service is an
HTTP web server that processes end-point client requests, authenticates them, and performs the
appropriate action. The private interface does not require any listening services, but is instead used to
establish outgoing connections to storage nodes on the private storage network.

13.7. HTTP LISTENING PORT

Director configures the web services to run under a non-root (no UID 0) user. Using port numbers higher
than 1024 help avoid running any part of the web container as root. Normally, clients that use the HTTP
REST API (and perform automatic authentication) will retrieve the full REST API URL they require from
the authentication response. The OpenStack REST API allows a client to authenticate to one URL and
then be redirected to use a completely different URL for the actual service. For example, a client can
authenticate to https://identity.cloud.example.org:55443/v1/auth and get a response with their
authentication key and storage URL (the URL of the proxy nodes or load balancer) of
https://swift.cloud.example.org:44443/v1/AUTH_8980.

13.8. LOAD BALANCER

If the option of using Apache is not feasible, or for performance you wish to offload your TLS work, you

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

78

If the option of using Apache is not feasible, or for performance you wish to offload your TLS work, you
might employ a dedicated network device load balancer. This is a common way to provide redundancy
and load balancing when using multiple proxy nodes.

If you choose to offload your TLS, ensure that the network link between the load balancer and your
proxy nodes are on a private (V)LAN segment such that other nodes on the network (possibly
compromised) cannot wiretap (sniff) the unencrypted traffic. If such a breach was to occur, the attacker
could gain access to endpoint client or cloud administrator credentials and access the cloud data.

The authentication service you use will determine how you configure a different URL in the responses to
endpoint clients, allowing them to use your load balancer instead of an individual proxy node.

13.9. OBJECT STORAGE AUTHENTICATION

Object Storage (swift) uses a WSGI model to provide for a middleware capability that not only provides
general extensibility, but is also used for authentication of endpoint clients. The authentication provider
defines what roles and user types exist. Some use traditional username and password credentials, while
others might leverage API key tokens or even client-side x.509 certificates. Custom providers can be
integrated using custom middleware.

Object Storage comes with two authentication middleware modules by default, either of which can be
used as sample code for developing a custom authentication middleware.

13.10. ENCRYPT AT-REST SWIFT OBJECTS

Swift can integrate with Barbican to transparently encrypt and decrypt your stored (at-rest) objects. At-
rest encryption is distinct from in-transit encryption, and refers to the objects being encrypted while
being stored on disk.

Swift performs these encryption tasks transparently, with the objects being automatically encrypted
when uploaded to swift, then automatically decrypted when served to a user. This encryption and
decryption is done using the same (symmetric) key, which is stored in Barbican.

For more information, see the Barbican integration guide:
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-
single/manage_secrets_with_openstack_key_manager/

13.11. ADDITIONAL ITEMS

In /var/lib/config-data/puppet-generated/swift/etc/swift/swift.conf on every node, there is a
swift_hash_path_prefix setting and a swift_hash_path_suffix setting. These are provided to reduce
the chance of hash collisions for objects being stored and avert one user overwriting the data of another
user.

This value should be initially set with a cryptographically secure random number generator and
consistent across all nodes. Ensure that it is protected with proper ACLs and that you have a backup
copy to avoid data loss.

CHAPTER 13. OBJECT STORAGE

79

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/manage_secrets_with_openstack_key_manager/

CHAPTER 14. MONITORING AND LOGGING
Log management is an important component of monitoring the security status of your OpenStack
deployment. Logs provide insight into the BAU actions of administrators, projects, and instances, in
addition to the component activities that comprise your OpenStack deployment.

Logs are not only valuable for proactive security and continuous compliance activities, but they are also
a valuable information source for investigation and incident response. For example, analyzing the
keystone access logs could alert you to failed logins, their frequency, origin IP, and whether the events
are restricted to select accounts, among other pertinent information.

The director includes intrusion detection capabilities using AIDE, and CADF auditing for keystone. For
more information, see Hardening infrastructure and virtualization .

14.1. HARDEN THE MONITORING INFRASTRUCTURE

Centralized logging systems are a high value target for intruders, as a successful breach could allow them
to erase or tamper with the record of events. It is recommended you harden the monitoring platform
with this in mind. In addition, consider making regular backups of these systems, with failover planning in
the event of an outage or DoS.

14.2. EXAMPLE EVENTS TO MONITOR

Event monitoring is a more proactive approach to securing an environment, providing real-time
detection and response. Multiple tools exist which can aid in monitoring. For an OpenStack deployment,
you will need to monitor the hardware, the OpenStack services, and the cloud resource usage.

This section describes some example events you might need to be aware of.

IMPORTANT

This list is not exhaustive. You will need to consider additional use cases that might apply
to your specific network, and that you might consider anomalous behavior.

Detecting the absence of log generation is an event of high value. Such a gap might indicate a
service failure, or even an intruder who has temporarily switched off logging or modified the log
level to hide their tracks.

Application events, such as start or stop events, that were unscheduled might have possible
security implications.

Operating system events on the OpenStack nodes, such as user logins or restarts. These can
provide valuable insight into distinguishing between proper and improper usage of systems.

Networking bridges going down. This would be an actionable event due to the risk of service
outage.

IPtables flushing events on Compute nodes, and the resulting loss of access to instances.

To reduce security risks from orphaned instances on a user, project, or domain deletion in the Identity
service there is discussion to generate notifications in the system and have OpenStack components
respond to these events as appropriate such as terminating instances, disconnecting attached volumes,
reclaiming CPU and storage resources and so on.

Security monitoring controls such as intrusion detection software, antivirus software, and spyware

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

80

Security monitoring controls such as intrusion detection software, antivirus software, and spyware
detection and removal utilities can generate logs that show when and how an attack or intrusion took
place. These tools can provide a layer of protection when deployed on the OpenStack nodes. Project
users might also want to run such tools on their instances.

CHAPTER 14. MONITORING AND LOGGING

81

CHAPTER 15. DATA PRIVACY FOR PROJECTS
OpenStack is designed to support multi-tenancy between projects with different data requirements. A
cloud operator will need to consider their applicable data privacy concerns and regulations. This chapter
addresses aspects of data residency and disposal for OpenStack deployments.

15.1. DATA RESIDENCY

The privacy and isolation of data has consistently been cited as the primary barrier to cloud adoption
over the past few years. Concerns over who owns data in the cloud and whether the cloud operator can
be ultimately trusted as a custodian of this data have been significant issues in the past.

Certain OpenStack services have access to data and metadata belonging to projects or reference
project information. For example, project data stored in an OpenStack cloud might include the following
items:

Object Storage objects.

Compute instance ephemeral filesystem storage.

Compute instance memory.

Block Storage volume data.

Public keys for Compute access.

Virtual machine images in the Image service.

Instance snapshots.

Data passed to Compute’s configuration-drive extension.

Metadata stored by an OpenStack cloud includes the following items (this list is non-exhaustive):

Organization name.

User’s “Real Name”.

Number or size of running instances, buckets, objects, volumes, and other quota-related items.

Number of hours running instances or storing data.

IP addresses of users.

Internally generated private keys for compute image bundling.

15.2. DATA DISPOSAL

Good practices suggest that the operator must sanitize cloud system media (digital and non-digital)
prior to disposal, prior to release out of organization control, or prior to release for reuse. Sanitization
methods should implement an appropriate level of strength and integrity given the specific security
domain and sensitivity of the information.

NOTE

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

82

NOTE

The NIST Special Publication 800-53 Revision 4 takes a particular view on this topic:

The sanitization process removes information from the media such that the information cannot be
retrieved or reconstructed. Sanitization techniques, including clearing, purging, cryptographic erase,
and destruction, prevent the disclosure of information to unauthorized individuals when such media is
reused or released for disposal.

Cloud operators should consider the following when developing general data disposal and sanitization
guidelines (as per the NIST recommended security controls):

Track, document and verify media sanitization and disposal actions.

Test sanitation equipment and procedures to verify proper performance.

Sanitize portable, removable storage devices prior to connecting such devices to the cloud
infrastructure.

Destroy cloud system media that cannot be sanitized.

As a result, an OpenStack deployment will need to address the following practices (among others):

Secure data erasure

Instance memory scrubbing

Block Storage volume data

Compute instance ephemeral storage

Bare metal server sanitization

15.2.1. Data not securely erased

Within OpenStack some data might be deleted, but not securely erased in the context of the NIST
standards outlined above. This is generally applicable to most or all of the above-defined metadata and
information stored in the database. This might be remediated with database and/or system
configuration for auto vacuuming and periodic free-space wiping.

15.2.2. Instance memory scrubbing

Specific to various hypervisors is the treatment of instance memory. This behavior is not defined in
Compute, although it is generally expected of hypervisors that they will make a best effort to scrub
memory either upon deletion of an instance, upon creation of an instance, or both.

15.3. ENCRYPTING CINDER VOLUME DATA

Use of the OpenStack volume encryption feature is highly encouraged. This is discussed below in the
Data Encryption section under Volume Encryption. When this feature is used, destruction of data is
accomplished by securely deleting the encryption key. The end user can select this feature while
creating a volume, but note that an admin must perform a one-time set up of the volume encryption
feature first.

If the OpenStack volume encryption feature is not used, then other approaches generally would be

CHAPTER 15. DATA PRIVACY FOR PROJECTS

83

more difficult to enable. If a back-end plug-in is being used, there might be independent ways of doing
encryption or non-standard overwrite solutions. Plug-ins to OpenStack Block Storage will store data in a
variety of ways. Many plug-ins are specific to a vendor or technology, whereas others are more DIY
solutions around filesystems (such as LVM or ZFS). Methods for securely destroying data will vary
between plug-ins, vendors, and filesystems.

Some back ends (such as ZFS) will support copy-on-write to prevent data exposure. In these cases,
reads from unwritten blocks will always return zero. Other back ends (such as LVM) might not natively
support this, so the cinder plug-in takes the responsibility to override previously written blocks before
handing them to users. It is important to review what assurances your chosen volume back-end provides
and to see what remediation might be available for those assurances not provided.

15.4. IMAGE SERVICE DELAY DELETE FEATURES

Image Service has a delayed delete feature, which will pend the deletion of an image for a defined time
period. Consider disabling this feature if this behavior is a security concern; you can do this by editing
glance-api.conf file and setting the delayed_delete option to False.

15.5. COMPUTE SOFT DELETE FEATURES

Compute has a soft-delete feature, which enables an instance that is deleted to be in a soft-delete state
for a defined time period. The instance can be restored during this time period. To disable the soft-
delete feature, edit the /var/lib/config-data/puppet-generated/nova_libvirt/etc/nova/nova.conf file
and leave the reclaim_instance_interval option empty.

15.6. SECURITY HARDENING FOR BARE METAL PROVISIONING

For your bare metal provisioning infrastructure, you should consider security hardening the baseboard
management controllers (BMC) in general, and IPMI in particular. For example, you might isolate these
systems within a provisioning network, configure non-default and strong passwords, and disable
unwanted management functions. For more information, you can refer to the vendor’s guidance on
security hardening these components.

NOTE

If possible, consider evaluating Redfish-based BMCs over legacy ones.

15.7. HARDWARE IDENTIFICATION

When deploying a server, there might not always have a reliable way to distinguish it from an attacker’s
server. This capability might be dependent on the hardware/BMC to some extent, but generally it seems
that there is no verifiable means of identification built into servers.

15.8. DATA ENCRYPTION

The option exists for implementers to encrypt project data wherever it is stored on disk or transported
over a network, such as the OpenStack volume encryption feature described below. This is above and
beyond the general recommendation that users encrypt their own data before sending it to their
provider.

The importance of encrypting data on behalf of projects is largely related to the risk assumed by a
provider that an attacker could access project data. There might be requirements here in government,
as well as requirements per-policy, in private contract, or even in case law in regard to private contracts

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

84

for public cloud providers. Consider getting a risk assessment and legal advice before choosing project
encryption policies.

Per-instance or per-object encryption is preferable over, in descending order, per-project, per-host, and
per-cloud aggregations. This recommendation is inverse to the complexity and difficulty of
implementation. Presently, in some projects it is difficult or impossible to implement encryption as
loosely granular as even per-project. Implementers should give serious consideration to encrypting
project data.

Often, data encryption relates positively to the ability to reliably destroy project and per-instance data,
simply by throwing away the keys. It should be noted that in doing so, it becomes of great importance to
destroy those keys in a reliable and secure manner.

Opportunities to encrypt data for users are present:

Object Storage objects

Network data

15.8.1. Volume encryption

A volume encryption feature in OpenStack supports privacy on a per-project basis. The following
features are supported:

Creation and usage of encrypted volume types, initiated through the dashboard or a command
line interface

Enable encryption and select parameters such as encryption algorithm and key size

Volume data contained within iSCSI packets is encrypted

Supports encrypted backups if the original volume is encrypted

Dashboard indication of volume encryption status. Includes indication that a volume is
encrypted, and includes the encryption parameters such as algorithm and key size

Interface with the Key management service

15.8.2. Object Storage objects

Object Storage (swift) supports the optional encryption of object data at rest on storage nodes. The
encryption of object data is intended to mitigate the risk of user’s` data being read if an unauthorized
party were to gain physical access to a disk.

Encryption of data at rest is implemented by middleware that may be included in the proxy server WSGI
pipeline. The feature is internal to a swift cluster and not exposed through the API. Clients are unaware
that data is encrypted by this feature internally to the swift service; internally encrypted data should
never be returned to clients through the swift API.

The following data are encrypted while at rest in swift:

Object content, for example, the content of an object PUT request’s body.

The entity tag (ETag) of objects that have non-zero content.

All custom user object metadata values. For example, metadata sent using X-Object-Meta-
prefixed headers with PUT or POST requests.

CHAPTER 15. DATA PRIVACY FOR PROJECTS

85

Any data or metadata not included in the list above is not encrypted, including:

Account, container, and object names

Account and container custom user metadata values

All custom user metadata names

Object Content-Type values

Object size

System metadata

15.8.3. Block Storage performance and back ends

When enabling the operating system, you can enhance the OpenStack Volume Encryption performance
by using the hardware acceleration features available in both Intel and AMD processors.

The OpenStack volume encryption feature uses either dm-crypt on the host or native QEMU
encryption support to secure volume data. Red Hat recommends that you use the LUKS volume
encryption type when creating encrypted volumes.

15.8.4. Network data

Project data for Compute nodes could be encrypted over IPsec or other tunnels. This practice is not
common or standard in OpenStack, but is an option available to motivated and interested implementers.
Likewise, encrypted data remains encrypted as it is transferred over the network.

15.9. KEY MANAGEMENT

To address the often mentioned concern of project data privacy, there is significant interest within the
OpenStack community to make data encryption more ubiquitous. It is relatively easy for an end-user to
encrypt their data prior to saving it to the cloud, and this is a viable path for project objects such as
media files, database archives among others. In some instances, client-side encryption is used to encrypt
data held by the virtualization technologies which requires client interaction, such as presenting keys, to
decrypt data for future use.

Barbican can help projects more seamlessly encrypt the data and have it accessible without burdening
the user with key management. Providing encryption and key management services as part of
OpenStack eases data-at-rest security adoption and can help address customer concerns about privacy
or misuse of data.

The volume encryption feature relies on a key management service, such as the Key Manager service
(barbican), for the creation and security-hardened storage of keys.

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

86

CHAPTER 16. MANAGING INSTANCE SECURITY
One of the benefits of running instances in a virtualized environment is the new opportunities for
security controls that are not typically available when deploying onto bare metal. Certain technologies
can be applied to the virtualization stack that bring improved information assurance for OpenStack
deployments. Operators with strong security requirements might want to consider deploying these
technologies, however, not all are applicable in every situation. In some cases, technologies might be
ruled out for use in a cloud because of prescriptive business requirements. Similarly some technologies
inspect instance data such as run state which might be undesirable to the users of the system.

This chapter describes these technologies and the situations where they can be used to help improve
security for instances or the underlying nodes. Possible privacy concerns are also highlighted, which can
include data passthrough, introspection, or entropy sources.

16.1. SUPPLYING ENTROPY TO INSTANCES

This chapter uses the term entropy to refer to the quality and source of random data that is available to
an instance. Cryptographic technologies typically rely heavily on randomness, which requires drawing
from a high quality pool of entropy. It is typically difficult for an instance to get enough entropy to
support these operations; this is referred to as entropy starvation. This condition can manifest in
instances as something seemingly unrelated. For example, slow boot time might be caused by the
instance waiting for SSH key generation. This condition can also risk motivating users to use poor quality
entropy sources from within the instance, making applications running in the cloud less secure overall.

Fortunately, you can help address these issues by providing a high quality source of entropy to the
instances. This can be done by having enough hardware random number generators (HRNG) in the
cloud to support the instances. In this case, enough is somewhat domain-specific. For everyday
operations, a modern HRNG is likely to produce enough entropy to support 50-100 compute nodes.
High bandwidth HRNGs, such as the RdRand instruction available with Intel Ivy Bridge and newer
processors could potentially handle more nodes. For a given cloud, an architect needs to understand the
application requirements to ensure that sufficient entropy is available.

The Virtio RNG is a random number generator that uses /dev/random as the source of entropy by
default. It can also can be configured to use a hardware RNG, or a tool such as the entropy gathering
daemon (EGD) to provide a way to fairly distribute entropy through a deployment. You can enable Virtio
RNG at instance creation time using the hw_rng metadata property.

16.2. SCHEDULING INSTANCES TO NODES

Before an instance is created, a host for the image instantiation must be selected. This selection is
performed by the nova-scheduler which determines how to dispatch compute and volume requests.

The FilterScheduler is the default scheduler for Compute, although other schedulers exist. This
capability works in collaboration with filter hints to determine where an instance should be started. This
process of host selection allows administrators to fulfill many different security and compliance
requirements. If data isolation is a primary concern, you could choose to have project instances reside on
the same hosts whenever possible. Conversely, you could attempt to have instances reside on as many
different hosts as possible for availability or fault tolerance reasons.

Filter schedulers fall under the following main categories:

Resource based filters - Determines the placement of an instance, based on the system
resource usage of the hypervisor host sets, and can trigger on free or used properties such as
RAM, IO, or CPU utilization.

Image based filters - Delegates instance creation based on the image metadata used, such as

CHAPTER 16. MANAGING INSTANCE SECURITY

87

Image based filters - Delegates instance creation based on the image metadata used, such as
the operating system of the VM or type of image used.

Environment based filters - Determines the placement of an instance based on external details,
such as within a specific IP range, across availability zones, or on the same host as another
instance.

Custom criteria - Delegates instance creation based on user or administrator-provided criteria
such as trusts or metadata parsing.

Multiple filters can be applied at once. For example, the ServerGroupAffinity filter checks that an
instance is created on a member of a specific set of hosts, and the ServerGroupAntiAffinity filter
checks that same instance is not created on another specific set of hosts. Note that these two filters
would usually be both enabled at the same time, and can never conflict with each other as they each
check for the value of a given property, and cannot both be true at the same time.

IMPORTANT

Consider disabling filters that parse objects that are provided by users, or could be
manipulated (such as metadata).

16.3. USING TRUSTED IMAGES

In a cloud environment, users work with either pre-installed images or images they upload themselves. In
both cases, users should be able to ensure the image they are using has not been tampered with. The
ability to verify images is a fundamental imperative for security. A chain of trust is needed from the
source of the image to the destination where it is used. This can be accomplished by signing images

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

88

obtained from trusted sources and by verifying the signature prior to use. Various ways to obtain and
create verified images will be discussed below, followed by a description of the image signature
verification feature.

16.4. CREATING IMAGES

The OpenStack documentation provides guidance on how to create and upload an image to the Image
service. In addition, it is assumed that you have a process for installing and hardening the guest
operating systems. The following items will provide additional guidance on how transferring your images
into OpenStack. There are a variety of options for obtaining images. Each has specific steps that help
validate the image’s provenance.

Option 1: Obtain boot media from a trusted source. For example, you can download images from
official Red Hat sources and then perform additional checksum validation.

Option 2: Use the OpenStack Virtual Machine Image Guide. In this case, you will want to follow
your organizations OS hardening guidelines.

Option 3: Use an automated image builder. The following example uses the Oz image builder.
The OpenStack community has recently created a newer tool called disk-image-builder, which
has not yet undergone a security evaluation.

In this example, RHEL 6 CCE-26976-1 helps implement NIST 800-53 Section AC-19(d) within Oz.

<template>
<name>centos64</name>
<os>
 <name>RHEL-6</name>
 <version>4</version>
 <arch>x86_64</arch>
 <install type='iso'>
 <iso>http://trusted_local_iso_mirror/isos/x86_64/RHEL-6.4-x86_64-bin-DVD1.iso</iso>
 </install>
 <rootpw>CHANGE THIS TO YOUR ROOT PASSWORD</rootpw>
</os>
<description>RHEL 6.4 x86_64</description>
<repositories>
 <repository name='epel-6'>
 <url>http://download.fedoraproject.org/pub/epel/6/$basearch</url>
 <signed>no</signed>
 </repository>
</repositories>
<packages>
 <package name='epel-release'/>
 <package name='cloud-utils'/>
 <package name='cloud-init'/>
</packages>
<commands>
 <command name='update'>
 yum update
 yum clean all
 sed -i '/^HWADDR/d' /etc/sysconfig/network-scripts/ifcfg-eth0
 echo -n > /etc/udev/rules.d/70-persistent-net.rules
 echo -n > /lib/udev/rules.d/75-persistent-net-generator.rules
 chkconfig --level 0123456 autofs off
 service autofs stop

CHAPTER 16. MANAGING INSTANCE SECURITY

89

 </command>
</commands>
</template>

Consider avoiding the manual image building process as it is complex and prone to error. In addition,
using an automated system like Oz for image building, or a configuration management utility (like Chef
or Puppet) for post-boot image hardening, gives you the ability to produce a consistent image as well as
track compliance of your base image to its respective hardening guidelines over time.

If subscribing to a public cloud service, you should check with the cloud provider for an outline of the
process used to produce their default images. If the provider allows you to upload your own images, you
will want to ensure that you are able to verify that your image was not modified before using it to create
an instance. To do this, refer to the following section on _ Verifying image signatures_, or the following
paragraph if signatures cannot be used.

The Image Service (glance) is used to upload the image to the Compute service on a node. This transfer
should be further hardened over TLS. Once the image is on the node, it is checked with a basic
checksum and then its disk is expanded based on the size of the instance being launched. If, at a later
time, the same image is launched with the same instance size on this node, it is launched from the same
expanded image. Since this expanded image is not re-verified by default before launching, there is a risk
that it has undergone tampering. The user would not be aware of tampering, unless a manual inspection
of the files is performed in the resulting image. To help mitigate this, see the following section on the
topic of verifying image signatures.

16.5. VERIFYING IMAGE SIGNATURES

You can enable image signature verification to ensure that your Image service (glance) images do not
contain unauthorized changes before the Compute service (nova) starts the instance. With this feature
enabled, you prevent a new instance from starting that may include malware or security vulnerabilities.

Procedure

1. In your heat templates, enable instance signature verfication by setting the value of True to the
VerifyGlanceSignatures parameter:

parameter_defaults:
 VerifyGlanceSignatures: True

2. Ensure that the template that you use to modify the VerifyGlanceSignatures parameter is
included in your openstack overcloud deploy script, and rerun the deploy script.

NOTE

If you create an instance with an image that you have not signed, the image fails
verification and the instance does not start. For more information on signing your images,
see Signing Image service images .

16.6. MIGRATING INSTANCES

OpenStack and the underlying virtualization layers provide for the live migration of images between
OpenStack nodes, allowing you to seamlessly perform rolling upgrades of your Compute nodes without
instance downtime. However, live migrations also carry significant risk. To understand the risks involved,
the following are the high-level steps performed during a live migration:

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

90

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/manage_secrets_with_openstack_key_manager/index#proc-validating-image-service-images_key-manager-services

1. Start instance on destination host

2. Transfer memory

3. Stop the guest and sync disks

4. Transfer the state

5. Start the guest

NOTE

Certain operations, such as cold migration, resize, and shelve can all result in some
amount of transferring the instance’s data to other services, across the network, among
others.

16.6.1. Live migration risks

At various stages of the live migration process, the contents of an instance’s run time memory and disk
are transmitted over the network in plain text. Consequently there are multiple risks that need to be
addressed when using live migration. The following non-exhaustive list details some of these risks:

Denial of Service (DoS): If something fails during the migration process, the instance could be
lost.

Data exposure: Memory or disk transfers must be handled securely.

Data manipulation: If memory or disk transfers are not handled securely, then an attacker could
manipulate user data during the migration.

Code injection: If memory or disk transfers are not handled securely, then an attacker could
manipulate executables, either on disk or in memory, during the migration.

16.6.2. Disable live migration

Currently, live migration is enabled in OpenStack by default. Live migrations are admin-only tasks by
default, so a user cannot initiate this operation, only administrators (which are presumably trusted). Live
migrations can be disabled by adding the following lines to the nova policy.json file:

"compute_extension:admin_actions:migrate": "!",
"compute_extension:admin_actions:migrateLive": "!",

Alternatively, live migration can be expected to fail when blocking TCP ports 49152 through 49261, or
ensuring that the nova user does not have passwordless SSH access between compute hosts.

Note that SSH configuration for live migration is significantly locked down: A new user is created
(nova_migration) and the SSH keys are restricted to that user, and only for use on the allowed networks.
A wrapper script then restricts the commands that can be run (for example, netcat on the libvirt socket).

16.6.3. Encrypted live migration

Live migration traffic transfers the contents of disk and memory of a running instance in plain text, and
is currently hosted on the Internal API network by default.

If there is a sufficient requirement (such as upgrades) for keeping live migration enabled, then libvirtd

CHAPTER 16. MANAGING INSTANCE SECURITY

91

can provide encrypted tunnels for the live migrations. However, this feature is not exposed in either the
OpenStack Dashboard or nova-client commands, and can only be accessed through manual
configuration of libvirtd. The live migration process then changes to the following high-level steps:

1. Instance data is copied from the hypervisor to libvirtd.

2. An encrypted tunnel is created between libvirtd processes on both source and destination
hosts.

3. The destination libvirtd host copies the instances back to an underlying hypervisor.

NOTE

For Red Hat OpenStack Platform 13, the recommended approach is to use tunnelled
migration, which is enabled by default when using Ceph as the back end. For more
information, see
https://docs.openstack.org/nova/queens/configuration/config.html#libvirt.live_migration_tunnelled

16.7. MONITORING, ALERTING, AND REPORTING

Instances are a server image capable of being replicated across hosts. Consequently, it would be a good
practice to apply logging similarly between physical and virtual hosts. Operating system and application
events should be logged, including access events to hosts and data, user additions and removals,
privilege changes, and others as dictated by your requirements. Consider exporting the results to a log
aggregator that collects log events, correlates them for analysis, and stores them for reference or
further action. One common tool to do this is an ELK stack, or Elasticsearch, Logstash, and Kibana.

NOTE

These logs should be reviewed regularly, or even monitored within a live view performed
by a network operations center (NOC).

You will need to further determine which events will trigger an alert that is subsequently sent to a
responder for action.

For more information, see the Monitoring Tools Configuration Guide

16.8. UPDATES AND PATCHES

A hypervisor runs independent virtual machines. This hypervisor can run in an operating system or
directly on the hardware (called bare metal). Updates to the hypervisor are not propagated down to the
virtual machines. For example, if a deployment is using KVM and has a set of CentOS virtual machines, an
update to KVM will not update anything running on the CentOS virtual machines.

Consider assigning clear ownership of virtual machines to owners, who are then responsible for the
hardening, deployment, and continued functionality of the virtual machines. You should also have a plan
to regularly deploy updates, while first testing them in an environment that resembles production.

16.9. FIREWALLS AND INSTANCE PROFILES

Most common operating systems include host-based firewalls for an additional layer of security. While
instances should run as few applications as possible (to the point of being single-purpose instances, if
possible), all applications running on an instance should be profiled to determine which system
resources the application needs access to, the lowest level of privilege required for it to run, and what

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

92

https://docs.openstack.org/nova/queens/configuration/config.html#libvirt.live_migration_tunnelled
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/monitoring_tools_configuration_guide/index

the expected network traffic is that will be going into and coming from the virtual machine. This
expected traffic should be added to the host-based firewall as allowed traffic, along with any necessary
logging and management communication such as SSH or RDP. All other traffic should be explicitly
denied in the firewall configuration.

On Linux instances, the application profile above can be used in conjunction with a tool like audit2allow
to build an SELinux policy that will further protect sensitive system information on most Linux
distributions. SELinux uses a combination of users, policies and security contexts to compartmentalize
the resources needed for an application to run, and segmenting it from other system resources that are
not needed.

NOTE

Red Hat OpenStack Platform has SELinux enabled by default, with policies that are
customized for OpenStack services. Consider reviewing these polices regularly, as
required.

16.10. SECURITY GROUPS

OpenStack provides security groups for both hosts and the network to add defense-in-depth to the
instances in a given project. These are similar to host-based firewalls as they allow or deny incoming
traffic based on port, protocol, and address. However, security group rules are applied to incoming
traffic only, while host-based firewall rules can be applied to both incoming and outgoing traffic. It is also
possible for host and network security group rules to conflict and deny legitimate traffic. Consider
checking that security groups are configured correctly for the networking being used. See Security
groups in this guide for more detail.

NOTE

You should keep security groups and port security enabled unless you specifically need
them to be disabled. To build on the defense-in-depth approach, it is recommended that
you apply granular rules to instances.

16.11. ACCESSING THE INSTANCE CONSOLE

By default, an instance’s console is remotely accessible through a virtual console. This can be useful for
troubleshooting purposes. Red Hat OpenStack Platform uses VNC for remote console access.

Consider locking down the VNC port using firewall rules. By default, nova_vnc_proxy uses 6080
and 13080.

Confirm that the VNC traffic is encrypted by TLS. For director-based deployments, start with
UseTLSTransportForVnc.

16.12. CERTIFICATE INJECTION

If you need to SSH into your instances, you can configure Compute to automatically inject the required
SSH key into the instance upon creation.

For more information, see Creating an image in the Creating and Managing Images guide.

CHAPTER 16. MANAGING INSTANCE SECURITY

93

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html/creating_and_managing_images/ch-image-service#section-create-images

CHAPTER 17. MESSAGE QUEUING
Message queuing services facilitate inter-process communication in OpenStack. This is done using
these message queuing service back ends:

RabbitMQ - Red Hat OpenStack Platform uses RabbitMQ by default.

Qpid

Both RabbitMQ and Qpid are Advanced Message Queuing Protocol (AMQP) frameworks, which provide
message queues for peer-to-peer communication. Queue implementations are typically deployed as a
centralized or decentralized pool of queue servers.

Message queues effectively facilitate command and control functions across OpenStack deployments.
Once access to the queue is permitted, no further authorization checks are performed. Services
accessible through the queue do validate the contexts and tokens within the actual message payload.
However, you must note the expiration date of the token because tokens are potentially re-playable and
can authorize other services in the infrastructure.

OpenStack does not support message-level confidence, such as message signing. Consequently, you
must secure and authenticate the message transport itself. For high-availability (HA) configurations,
you must perform queue-to-queue authentication and encryption.

17.1. MESSAGING TRANSPORT SECURITY

AMQP based solutions (Qpid and RabbitMQ) support transport-level security using TLS.

Consider enabling transport-level cryptography for your message queue. Using TLS for the messaging
client connections provides protection of the communications from tampering and eavesdropping in-
transit to the messaging server. Guidance is included below on how TLS is typically configured for the
two popular messaging servers: Qpid and RabbitMQ. When configuring the trusted certificate authority
(CA) bundle that your messaging server uses to verify client connections, it is recommended that this be
limited to only the CA used for your nodes, preferably an internally managed CA. The bundle of trusted
CAs will determine which client certificates will be authorized and pass the client-server verification step
of the setting up the TLS connection.

NOTE

When installing the certificate and key files, ensure that the file permissions are
restricted, for example using chmod 0600, and the ownership is restricted to the
messaging server daemon user to prevent unauthorized access by other processes and
users on the messaging server.

17.1.1. RabbitMQ server SSL configuration

The following lines should be added to the system-wide RabbitMQ configuration file, typically
/etc/rabbitmq/rabbitmq.config:

[
 {rabbit, [
 {tcp_listeners, [] },
 {ssl_listeners, [{"<IP address or hostname of management network interface>", 5671}] },
 {ssl_options, [{cacertfile,"/etc/ssl/cacert.pem"},
 {certfile,"/etc/ssl/rabbit-server-cert.pem"},
 {keyfile,"/etc/ssl/rabbit-server-key.pem"},

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

94

 {verify,verify_peer},
 {fail_if_no_peer_cert,true}]}
]}
].

NOTE

The tcp_listeners option is set to [] to prevent it from listening on a non-SSL port. The
ssl_listeners option should be restricted to only listen on the management network for
the services.

17.2. QUEUE AUTHENTICATION AND ACCESS CONTROL

RabbitMQ and Qpid offer authentication and access control mechanisms for controlling access to
queues.

Simple Authentication and Security Layer (SASL) is a framework for authentication and data security in
Internet protocols. Both RabbitMQ and Qpid offer SASL and other pluggable authentication
mechanisms beyond simple usernames and passwords that allow for increased authentication security.
While RabbitMQ supports SASL, support in OpenStack does not currently allow for requesting a specific
SASL authentication mechanism. RabbitMQ support in OpenStack allows for either username and
password authentication over an unencrypted connection or user name and password in conjunction
with X.509 client certificates to establish the secure TLS connection.

Consider configuring X.509 client certificates on all the OpenStack service nodes for client connections
to the messaging queue and where possible (currently only Qpid) perform authentication with X.509
client certificates. When using usernames and passwords, accounts should be created per-service and
node for finer grained auditability of access to the queue.

Before deployment, consider the TLS libraries that the queuing servers use. Qpid uses Mozilla’s NSS
library, whereas RabbitMQ uses Erlang’s TLS module which uses OpenSSL.

17.3. OPENSTACK SERVICE CONFIGURATION FOR RABBITMQ

This section describes the typical RabbitMQ configuration for OpenStack services:

[DEFAULT]
rpc_backend = nova.openstack.common.rpc.impl_kombu
rabbit_use_ssl = True
rabbit_host = RABBIT_HOST
rabbit_port = 5671
rabbit_user = compute01
rabbit_password = RABBIT_PASS
kombu_ssl_keyfile = /etc/ssl/node-key.pem
kombu_ssl_certfile = /etc/ssl/node-cert.pem
kombu_ssl_ca_certs = /etc/ssl/cacert.pem

NOTE

Replace RABBIT_PASS with a suitable password.

17.4. OPENSTACK SERVICE CONFIGURATION FOR QPID

CHAPTER 17. MESSAGE QUEUING

95

This section describes the typical Qpid configuration for OpenStack services:

[DEFAULT]
rpc_backend = nova.openstack.common.rpc.impl_qpid
qpid_protocol = ssl
qpid_hostname = <IP or hostname of management network interface of messaging server>
qpid_port = 5671
qpid_username = compute01
qpid_password = QPID_PASS

NOTE

Replace QPID_PASS with a suitable password.

Optionally, if using SASL with Qpid specify the SASL mechanisms in use by adding:

qpid_sasl_mechanisms = <space separated list of SASL mechanisms to use for auth>

17.5. MESSAGE QUEUE PROCESS ISOLATION AND POLICY

Each project provides a number of services which send and consume messages. Each binary which sends
a message is expected to consume messages, if only replies, from the queue.

Message queue service processes should be isolated from each other and other processes on a machine.

17.6. NAMESPACES

Linux uses namespaces to assign processes into independent domains. Other parts of this guide cover
system compartmentalization in more detail.

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

96

CHAPTER 18. SECURING ENDPOINTS IN RED HAT
OPENSTACK PLATFORM

The process of engaging with an OpenStack cloud begins by querying an API endpoint. While there are
different challenges for public and private endpoints, these are high value assets that can pose a
significant risk if compromised.

This chapter recommends security enhancements for both public and private-facing API endpoints.

18.1. INTERNAL API COMMUNICATIONS

OpenStack provides both public-facing, internal admin, and private API endpoints. By default,
OpenStack components use the publicly defined endpoints. The recommendation is to configure these
components to use the API endpoint within the proper security domain. The internal admin endpoint
allows further elevated access to keystone, so it might be desirable to further isolate this.

Services select their respective API endpoints based on the OpenStack service catalog. These services
might not obey the listed public or internal API endpoint values. This can lead to internal management
traffic being routed to external API endpoints.

18.2. CONFIGURE INTERNAL URLS IN THE IDENTITY SERVICE
CATALOG

The Identity service catalog should be aware of your internal URLs. While this feature is not used by
default, it may be available through configuration. In addition, it should be forward-compatible with
expectant changes once this behavior becomes the default.

Consider isolating the configured endpoints from a network level, given that they have different levels
of access. The Admin endpoint is intended for access by cloud administrators, as it provides elevated
access to keystone operations not available on the internal or public endpoints. The internal endpoints
are intended for uses internal to the cloud (for example, by OpenStack services), and usually would not
be accessible outside of the deployment network. The public endpoints should be TLS-enabled, and the
only API endpoints accessible outside of the deployment for cloud users to operate on.

Registration of an internal URL for an endpoint is automated by director. For more information, see
https://github.com/openstack/tripleo-heat-
templates/blob/a7857d6dfcc875eb2bc611dd9334104c18fe8ac6/network/endpoints/build_endpoint_map.py

18.3. CONFIGURE APPLICATIONS FOR INTERNAL URLS

You can force some services to use specific API endpoints. As a result, it is recommended that any
OpenStack service that contacts the API of another service must be explicitly configured to access the
proper internal API endpoint.

Each project might present an inconsistent way of defining target API endpoints. Future releases of
OpenStack seek to resolve these inconsistencies through consistent use of the Identity service catalog.

18.4. PASTE AND MIDDLEWARE

Most API endpoints and other HTTP services in OpenStack use the Python Paste Deploy library. From a
security perspective, this library enables manipulation of the request filter pipeline through the
application’s configuration. Each element in this chain is referred to as middleware. Changing the order
of filters in the pipeline or adding additional middleware might have unpredictable security impact.

CHAPTER 18. SECURING ENDPOINTS IN RED HAT OPENSTACK PLATFORM

97

https://github.com/openstack/tripleo-heat-templates/blob/a7857d6dfcc875eb2bc611dd9334104c18fe8ac6/network/endpoints/build_endpoint_map.py

Commonly, implementers add middleware to extend OpenStack’s base functionality. Consider giving
careful consideration to the potential exposure introduced by the addition of non-standard software
components to the HTTP request pipeline.

18.5. API ENDPOINT PROCESS ISOLATION AND POLICY

Isolate API endpoint processes, especially those that reside within the public security domain must be
isolated as much as possible. Where deployments allow, API endpoints must be deployed on separate
hosts for increased isolation.

18.5.1. Secure metadef APIs

In Red Hat OpenStack Platform (RHOSP), users can define key value pairs and tag metadata with
metadata definition (metadef) APIs. Currently, there is no limit on the number of metadef namespaces,
objects, properties, resources, or tags that users can create.

Metadef APIs can leak information to unauthorized users. A malicious user can exploit the lack of
restrictions and fill the Image service (glance) database with unlimited resources, which can create a
Denial of Service (DoS) style attack.

Image service policies control metadef APIs. However, the default policy setting for metadef APIs allows
all users to create or read the metadef information. Because metadef resources are not isolated to the
owner, metadef resources with potentially sensitive names, such as internal infrastructure details or
customer names, can expose that information to malicious users.

18.5.2. Configuring a policy to restrict metadef APIs

To make the Image service (glance) more secure, restrict metadef modification APIs to admin-only
access by default in your Red Hat OpenStack Platform (RHOSP) deployments.

Procedure

1. As a cloud administrator, create a separate heat template environment file, such as lock-down-
glance-metadef-api.yaml, to contain policy overrides for the Image service metadef API:

...
parameter_defaults:
 GlanceApiPolicies: {
 glance-metadef_default: { key: 'metadef_default', value: '' },
 glance-metadef_admin: { key: 'metadef_admin', value: 'role:admin' },
 glance-get_metadef_namespace: { key: 'get_metadef_namespace', value:
'rule:metadef_default' },
 glance-get_metadef_namespaces: { key: 'get_metadef_namespaces', value:
'rule:metadef_default' },
 glance-modify_metadef_namespace: { key: 'modify_metadef_namespace', value:
'rule:metadef_admin' },
 glance-add_metadef_namespace: { key: 'add_metadef_namespace', value:
'rule:metadef_admin' },
 glance-delete_metadef_namespace: { key: 'delete_metadef_namespace', value:
'rule:metadef_admin' },
 glance-get_metadef_object: { key: 'get_metadef_object', value: 'rule:metadef_default' },
 glance-get_metadef_objects: { key: 'get_metadef_objects', value: 'rule:metadef_default' },
 glance-modify_metadef_object: { key: 'modify_metadef_object', value: 'rule:metadef_admin'
},
 glance-add_metadef_object: { key: 'add_metadef_object', value: 'rule:metadef_admin' },

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

98

 glance-delete_metadef_object: { key: 'delete_metadef_object', value: 'rule:metadef_admin' },
 glance-list_metadef_resource_types: { key: 'list_metadef_resource_types', value:
'rule:metadef_default' },
 glance-get_metadef_resource_type: { key: 'get_metadef_resource_type', value:
'rule:metadef_default' },
 glance-add_metadef_resource_type_association: { key:
'add_metadef_resource_type_association', value: 'rule:metadef_admin' },
 glance-remove_metadef_resource_type_association: { key:
'remove_metadef_resource_type_association', value: 'rule:metadef_admin' },
 glance-get_metadef_property: { key: 'get_metadef_property', value: 'rule:metadef_default' },
 glance-get_metadef_properties: { key: 'get_metadef_properties', value: 'rule:metadef_default'
},
 glance-modify_metadef_property: { key: 'modify_metadef_property', value:
'rule:metadef_admin' },
 glance-add_metadef_property: { key: 'add_metadef_property', value: 'rule:metadef_admin' },
 glance-remove_metadef_property: { key: 'remove_metadef_property', value:
'rule:metadef_admin' },
 glance-get_metadef_tag: { key: 'get_metadef_tag', value: 'rule:metadef_default' },
 glance-get_metadef_tags: { key: 'get_metadef_tags', value: 'rule:metadef_default' },
 glance-modify_metadef_tag: { key: 'modify_metadef_tag', value: 'rule:metadef_admin' },
 glance-add_metadef_tag: { key: 'add_metadef_tag', value: 'rule:metadef_admin' },
 glance-add_metadef_tags: { key: 'add_metadef_tags', value: 'rule:metadef_admin' },
 glance-delete_metadef_tag: { key: 'delete_metadef_tag', value: 'rule:metadef_admin' },
 glance-delete_metadef_tags: { key: 'delete_metadef_tags', value: 'rule:metadef_admin' }
 }

…

2. Include the environment file that contains the policy overrides in the deployment command with
the -e option when you deploy the overcloud:

$ openstack overcloud deploy -e lock-down-glance-metadef-api.yaml

18.5.3. Enabling metadef APIs

If you previously restricted metadata definition (metadef) APIs or want to relax the new defaults, you
can override metadef modification policies to allow users to update their respective resources.

IMPORTANT

Cloud administrators with users who depend on write access to the metadef APIs can
make those APIs accessible to all users. In this type of configuration, however, there is the
potential to unintentionally leak sensitive resource names, such as customer names and
internal projects. Administrators must audit their systems to identify previously created
resources that might be vulnerable even if only read access is enabled for all users.

Procedure

1. As a cloud administrator, log in to the undercloud and create a file for policy overrides. For
example:

$ cat open-up-glance-api-metadef.yaml

2. Configure the policy override file to allow metadef API read-write access to all users:

CHAPTER 18. SECURING ENDPOINTS IN RED HAT OPENSTACK PLATFORM

99

GlanceApiPolicies: {
 glance-metadef_default: { key: 'metadef_default', value: '' },
 glance-get_metadef_namespace: { key: 'get_metadef_namespace', value:
'rule:metadef_default' },
 glance-get_metadef_namespaces: { key: 'get_metadef_namespaces', value:
'rule:metadef_default' },
 glance-modify_metadef_namespace: { key: 'modify_metadef_namespace', value:
'rule:metadef_default' },
 glance-add_metadef_namespace: { key: 'add_metadef_namespace', value:
'rule:metadef_default' },
 glance-delete_metadef_namespace: { key: 'delete_metadef_namespace', value:
'rule:metadef_default' },
 glance-get_metadef_object: { key: 'get_metadef_object', value: 'rule:metadef_default' },
 glance-get_metadef_objects: { key: 'get_metadef_objects', value: 'rule:metadef_default' },
 glance-modify_metadef_object: { key: 'modify_metadef_object', value:
'rule:metadef_default' },
 glance-add_metadef_object: { key: 'add_metadef_object', value: 'rule:metadef_default' },
 glance-delete_metadef_object: { key: 'delete_metadef_object', value: 'rule:metadef_default'
},
 glance-list_metadef_resource_types: { key: 'list_metadef_resource_types', value:
'rule:metadef_default' },
 glance-get_metadef_resource_type: { key: 'get_metadef_resource_type', value:
'rule:metadef_default' },
 glance-add_metadef_resource_type_association: { key:
'add_metadef_resource_type_association', value: 'rule:metadef_default' },
 glance-remove_metadef_resource_type_association: { key:
'remove_metadef_resource_type_association', value: 'rule:metadef_default' },
 glance-get_metadef_property: { key: 'get_metadef_property', value: 'rule:metadef_default'
},
 glance-get_metadef_properties: { key: 'get_metadef_properties', value:
'rule:metadef_default' },
 glance-modify_metadef_property: { key: 'modify_metadef_property', value:
'rule:metadef_default' },
 glance-add_metadef_property: { key: 'add_metadef_property', value: 'rule:metadef_default'
},
 glance-remove_metadef_property: { key: 'remove_metadef_property', value:
'rule:metadef_default' },
 glance-get_metadef_tag: { key: 'get_metadef_tag', value: 'rule:metadef_default' },
 glance-get_metadef_tags: { key: 'get_metadef_tags', value: 'rule:metadef_default' },
 glance-modify_metadef_tag: { key: 'modify_metadef_tag', value: 'rule:metadef_default' },
 glance-add_metadef_tag: { key: 'add_metadef_tag', value: 'rule:metadef_default' },
 glance-add_metadef_tags: { key: 'add_metadef_tags', value: 'rule:metadef_default' },
 glance-delete_metadef_tag: { key: 'delete_metadef_tag', value: 'rule:metadef_default' },
 glance-delete_metadef_tags: { key: 'delete_metadef_tags', value: 'rule:metadef_default' }
 }

NOTE

You must configure all metadef policies to use rule:metadeta_default.

3. Include the new policy file in the deployment command with the -e option when you deploy the
overcloud:

$ openstack overcloud deploy -e open-up-glance-api-metadef.yaml

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

100

18.6. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

If you enabled SSL/TLS in the overcloud, consider hardening the SSL/TLS ciphers and rules that are
used with the HAProxy configuration. By hardening the SSL/TLS ciphers, you help avoid SSL/TLS
vulnerabilities, such as the POODLE vulnerability.

1. Create a heat template environment file called tls-ciphers.yaml:

touch ~/templates/tls-ciphers.yaml

2. Use the ExtraConfig hook in the environment file to apply values to the
tripleo::haproxy::ssl_cipher_suite and tripleo::haproxy::ssl_options hieradata:

parameter_defaults:
 ExtraConfig:
 tripleo::haproxy::ssl_cipher_suite: 'DHE-RSA-AES128-CCM:DHE-RSA-AES256-
CCM:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-
AES128-CCM:ECDHE-ECDSA-AES256-CCM:ECDHE-ECDSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-
POLY1305:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-CHACHA20-POLY1305'

 tripleo::haproxy::ssl_options: 'no-sslv3 no-tls-tickets'

NOTE

The cipher collection is one continuous line.

3. Include the tls-ciphers.yaml environment file with the overcloud deploy command when
deploying the overcloud:

openstack overcloud deploy --templates \
...
-e /home/stack/templates/tls-ciphers.yaml
...

18.7. NETWORK POLICY

API endpoints will typically span multiple security zones, so you must pay particular attention to the
separation of the API processes. For example, at the network design level, you can consider restricting
access to specified systems only. See the guidance on security zones for more information.

With careful modeling, you can use network ACLs and IDS technologies to enforce explicit point-to-
point communication between network services. As a critical cross domain service, this type of explicit
enforcement works well for OpenStack’s message queue service.

To enforce policies, you can configure services, host-based firewalls (such as iptables), local policy
(SELinux), and optionally global network policy.

18.8. MANDATORY ACCESS CONTROLS

You should isolate API endpoint processes from each other and other processes on a machine. The
configuration for those processes should be restricted to those processes by Discretionary Access

CHAPTER 18. SECURING ENDPOINTS IN RED HAT OPENSTACK PLATFORM

101

https://access.redhat.com/solutions/1291123

Controls (DAC) and Mandatory Access Controls (MAC). The goal of these enhanced access controls is
to aid in the containment of API endpoint security breaches.

18.9. API ENDPOINT RATE-LIMITING

Rate Limiting is a means to control the frequency of events received by a network based application.
When robust rate limiting is not present, it can result in an application being susceptible to various denial
of service attacks. This is especially true for APIs, which by their nature are designed to accept a high
frequency of similar request types and operations.

It is recommended that all endpoints (especially public) are give an extra layer of protection, for
example, using physical network design, a rate-limiting proxy, or web application firewall.

It is key that the operator carefully plans and considers the individual performance needs of users and
services within their OpenStack cloud when configuring and implementing any rate limiting functionality.

NOTE For Red Hat OpenStack Platform deployments, all services are placed behind load balancing
proxies.

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

102

CHAPTER 19. IMPLEMENTING FEDERATION

WARNING

Red Hat does not support federation at this time. This feature should only be used
for testing, and should not be deployed in a production environment.

19.1. FEDERATE WITH IDM USING RED HAT SINGLE SIGN-ON

You can use Red Hat Single Sign-On (RH-SSO) to federate your IdM users for OpenStack
authentication (authN). Federation allows your IdM users to login to the OpenStack Dashboard without
revealing their credentials to any OpenStack services. Instead, when Dashboard needs a user’s
credentials, it will forward the user to Red Hat Single Sign-On (RH-SSO) and allow them to enter their
IdM credentials there. As a result, RH-SSO asserts back to Dashboard that the user has successfully
authenticated, and Dashboard then allows the user to access the project.

19.2. THE FEDERATION WORKFLOW

This section describes how the Identity service (keystone), RH-SSO and IdM interact with each other.
Federation in OpenStack uses the concept of Identity Providers and Service Providers:

Identity Provider (IdP) - the service that stores the user accounts. In this case, the user accounts held
in IdM, are presented to Keystone using RH-SSO.

Service Provider (SP) - the service that requires authentication from the users in the IdP. In this case,
keystone is the service provider that grants Dashboard access to IdM users.

In the diagram below, keystone (the SP) communicates with RH-SSO (the IdP), which is also able to
serve as a universal adapter for other IdPs. In this configuration, you can point keystone at RH-SSO, and
RH-SSO will forward requests on to the Identity Providers that it supports (known as authentication
modules), these currently include IdM and Active Directory. This is done by having the Service Provider
(SP) and Identity Provider (IdP) exchange metadata, which each sysadmin then makes a decision to
trust. The result is that the IdP can confidently make assertions, and the SP can then receive these
assertions.



CHAPTER 19. IMPLEMENTING FEDERATION

103

For more information, see the federation guide: https://access.redhat.com/documentation/en-
us/red_hat_openstack_platform/16.1/html-single/federate_with_identity_service/

Red Hat OpenStack Platform 16.1 Security and Hardening Guide

104

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.1/html-single/federate_with_identity_service/

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO SECURITY
	1.1. RED HAT OPENSTACK PLATFORM SECURITY
	1.2. UNDERSTANDING THE RED HAT OPENSTACK PLATFORM ADMIN ROLE
	1.3. IDENTIFYING SECURITY ZONES IN RED HAT OPENSTACK PLATFORM
	1.4. LOCATING SECURITY ZONES IN RED HAT OPENSTACK PLATFORM
	1.5. CONNECTING SECURITY ZONES
	1.6. THREAT MITIGATION

	CHAPTER 2. DOCUMENTING YOUR RHOSP ENVIRONMENT
	2.1. DOCUMENTING THE SYSTEM ROLES
	2.2. CREATING A HARDWARE INVENTORY
	2.3. CREATING A SOFTWARE INVENTORY

	CHAPTER 3. SECURING RED HAT OPENSTACK DEPLOYMENTS WITH TLS AND PKI
	3.1. COMPONENTS OF PUBLIC KEY INFRASTRUCTURE (PKI)
	3.2. CERTIFICATE AUTHORITY REQUIREMENTS AND RECOMMENDATIONS
	3.3. IDENTIFYING TLS VERSIONS IN YOUR ENVIRONMENT
	3.4. IDENTITY MANAGEMENT (IDM) SERVER RECOMMENDATIONS FOR OPENSTACK
	3.5. IMPLEMENTING TLS-E WITH ANSIBLE
	3.6. PARAMETERS FOR TRIPLEO-IPA

	CHAPTER 4. IDENTITY AND ACCESS MANAGEMENT
	4.1. RED HAT OPENSTACK PLATFORM FERNET TOKENS
	4.2. OPENSTACK IDENTITY SERVICE ENTITIES
	4.3. AUTHENTICATING WITH KEYSTONE
	4.3.1. Using Identity service heat parameters to stop invalid login attempts

	4.4. AUTHENTICATING WITH EXTERNAL IDENTITY PROVIDERS
	4.4.1. How LDAP integration works

	CHAPTER 5. POLICIES
	5.1. REVIEWING EXISTING POLICIES
	5.2. UNDERSTANDING SERVICE POLICIES
	5.3. POLICY SYNTAX
	5.4. USING POLICY FILES FOR ACCESS CONTROL
	5.5. EXAMPLE: CREATING A POWER USER ROLE
	5.6. EXAMPLE: LIMITING ACCESS BASED ON ATTRIBUTES
	5.7. MODIFYING POLICIES WITH HEAT
	5.8. AUDITING YOUR USERS AND ROLES
	5.9. AUDITING API ACCESS

	CHAPTER 6. ROTATING SERVICE ACCOUNT PASSWORDS
	6.1. OVERVIEW OF OVERCLOUD PASSWORD MANAGEMENT
	6.2. ROTATING THE PASSWORDS
	6.3. OUTAGE REQUIREMENTS

	CHAPTER 7. NETWORK TIME PROTOCOL
	7.1. WHY CONSISTENT TIME IS IMPORTANT
	7.2. NTP DESIGN

	CHAPTER 8. HARDENING INFRASTRUCTURE AND VIRTUALIZATION
	8.1. HYPERVISORS
	8.1.1. Hypervisor versus bare metal
	8.1.2. Hypervisor memory optimization

	8.2. PCI PASSTHROUGH
	8.3. SELINUX
	8.3.1. Labels and Categories
	8.3.2. SELinux users and roles

	8.4. INVESTIGATING CONTAINERIZED SERVICES
	8.5. MAKING TEMPORARY CHANGES TO CONTAINERIZED SERVICES
	8.6. MAKING PERMANENT CHANGES TO CONTAINERIZED SERVICES
	8.7. FIRMWARE UPDATES
	8.8. USE SSH BANNER TEXT
	8.9. AUDIT FOR SYSTEM EVENTS
	8.10. MANAGE FIREWALL RULES
	8.11. INTRUSION DETECTION WITH AIDE
	8.11.1. Using complex AIDE rules
	8.11.2. Additional AIDE values
	8.11.3. Cron configuration for AIDE
	8.11.4. Considering the effect of system upgrades

	8.12. REVIEW SECURETTY
	8.13. CADF AUDITING FOR IDENTITY SERVICE
	8.14. REVIEW THE LOGIN.DEFS VALUES

	CHAPTER 9. HARDENING THE DASHBOARD SERVICE
	9.1. DEBUGGING THE DASHBOARD SERVICE
	9.2. SELECTING A DOMAIN NAME
	9.3. CONFIGURE ALLOWED_HOSTS
	9.4. CROSS SITE SCRIPTING (XSS)
	9.5. CROSS SITE REQUEST FORGERY (CSRF)
	9.6. ALLOW IFRAME EMBEDDING
	9.7. USING HTTPS ENCRYPTION FOR DASHBOARD TRAFFIC
	9.8. HTTP STRICT TRANSPORT SECURITY (HSTS)
	9.9. FRONT-END CACHING
	9.10. SESSION BACKEND
	9.11. REVIEWING THE SECRET KEY
	9.12. CONFIGURING SESSION COOKIES
	9.13. STATIC MEDIA
	9.14. VALIDATING PASSWORD COMPLEXITY
	9.15. ENFORCE THE ADMINISTRATOR PASSWORD CHECK
	9.16. DISABLE PASSWORD REVEAL
	9.17. DISPLAYING A LOGIN BANNER FOR THE DASHBOARD
	9.18. CUSTOMIZING THE THEME
	9.19. LIMITING THE SIZE OF FILE UPLOADS

	CHAPTER 10. RED HAT OPENSTACK PLATFORM NETWORKING SERVICE
	10.1. NETWORKING ARCHITECTURE
	10.2. NEUTRON SERVICE PLACEMENT ON PHYSICAL SERVERS
	10.3. SECURITY ZONES
	10.4. NETWORKING SERVICES
	10.5. L2 ISOLATION USING VLANS AND TUNNELING
	10.6. ACCESS CONTROL LISTS
	10.7. L3 ROUTING AND NAT
	10.8. QUALITY OF SERVICE (QOS)
	10.9. LOAD BALANCING
	10.10. HARDENING THE NETWORKING SERVICE
	10.10.1. Restrict bind address of the API server: neutron-server
	10.10.2. Project network services workflow
	10.10.3. Networking resource policy engine
	10.10.4. Security groups
	10.10.5. Mitigate ARP spoofing
	10.10.6. Use a Secure Protocol for Authentication

	CHAPTER 11. HARDENING BLOCK STORAGE ON RED HAT OPENSTACK PLATFORM
	11.1. SET THE MAX SIZE FOR THE BODY OF A REQUEST
	11.2. ENABLE VOLUME ENCRYPTION
	11.3. VOLUME WIPING

	CHAPTER 12. HARDENING THE SHARED FILE SYSTEM (MANILA)
	12.1. SECURITY CONSIDERATIONS FOR MANILA
	12.2. NETWORK AND SECURITY MODELS FOR MANILA
	12.3. SHARE BACKEND MODES
	12.4. NETWORKING REQUIREMENTS FOR MANILA
	12.5. SECURITY SERVICES WITH MANILA
	12.6. INTRODUCTION TO SECURITY SERVICES
	12.7. SECURITY SERVICES MANAGEMENT
	12.8. SHARE ACCESS CONTROL
	12.9. SHARE TYPE ACCESS CONTROL
	12.10. POLICIES

	CHAPTER 13. OBJECT STORAGE
	13.1. NETWORK SECURITY
	13.2. RUN SERVICES AS NON-ROOT USER
	13.3. FILE PERMISSIONS
	13.4. SECURING STORAGE SERVICES
	13.5. OBJECT STORAGE ACCOUNT TERMINOLOGY
	13.6. SECURING PROXY SERVICES
	13.7. HTTP LISTENING PORT
	13.8. LOAD BALANCER
	13.9. OBJECT STORAGE AUTHENTICATION
	13.10. ENCRYPT AT-REST SWIFT OBJECTS
	13.11. ADDITIONAL ITEMS

	CHAPTER 14. MONITORING AND LOGGING
	14.1. HARDEN THE MONITORING INFRASTRUCTURE
	14.2. EXAMPLE EVENTS TO MONITOR

	CHAPTER 15. DATA PRIVACY FOR PROJECTS
	15.1. DATA RESIDENCY
	15.2. DATA DISPOSAL
	15.2.1. Data not securely erased
	15.2.2. Instance memory scrubbing

	15.3. ENCRYPTING CINDER VOLUME DATA
	15.4. IMAGE SERVICE DELAY DELETE FEATURES
	15.5. COMPUTE SOFT DELETE FEATURES
	15.6. SECURITY HARDENING FOR BARE METAL PROVISIONING
	15.7. HARDWARE IDENTIFICATION
	15.8. DATA ENCRYPTION
	15.8.1. Volume encryption
	15.8.2. Object Storage objects
	15.8.3. Block Storage performance and back ends
	15.8.4. Network data

	15.9. KEY MANAGEMENT

	CHAPTER 16. MANAGING INSTANCE SECURITY
	16.1. SUPPLYING ENTROPY TO INSTANCES
	16.2. SCHEDULING INSTANCES TO NODES
	16.3. USING TRUSTED IMAGES
	16.4. CREATING IMAGES
	16.5. VERIFYING IMAGE SIGNATURES
	16.6. MIGRATING INSTANCES
	16.6.1. Live migration risks
	16.6.2. Disable live migration
	16.6.3. Encrypted live migration

	16.7. MONITORING, ALERTING, AND REPORTING
	16.8. UPDATES AND PATCHES
	16.9. FIREWALLS AND INSTANCE PROFILES
	16.10. SECURITY GROUPS
	16.11. ACCESSING THE INSTANCE CONSOLE
	16.12. CERTIFICATE INJECTION

	CHAPTER 17. MESSAGE QUEUING
	17.1. MESSAGING TRANSPORT SECURITY
	17.1.1. RabbitMQ server SSL configuration

	17.2. QUEUE AUTHENTICATION AND ACCESS CONTROL
	17.3. OPENSTACK SERVICE CONFIGURATION FOR RABBITMQ
	17.4. OPENSTACK SERVICE CONFIGURATION FOR QPID
	17.5. MESSAGE QUEUE PROCESS ISOLATION AND POLICY
	17.6. NAMESPACES

	CHAPTER 18. SECURING ENDPOINTS IN RED HAT OPENSTACK PLATFORM
	18.1. INTERNAL API COMMUNICATIONS
	18.2. CONFIGURE INTERNAL URLS IN THE IDENTITY SERVICE CATALOG
	18.3. CONFIGURE APPLICATIONS FOR INTERNAL URLS
	18.4. PASTE AND MIDDLEWARE
	18.5. API ENDPOINT PROCESS ISOLATION AND POLICY
	18.5.1. Secure metadef APIs
	18.5.2. Configuring a policy to restrict metadef APIs
	18.5.3. Enabling metadef APIs

	18.6. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY
	18.7. NETWORK POLICY
	18.8. MANDATORY ACCESS CONTROLS
	18.9. API ENDPOINT RATE-LIMITING

	CHAPTER 19. IMPLEMENTING FEDERATION
	19.1. FEDERATE WITH IDM USING RED HAT SINGLE SIGN-ON
	19.2. THE FEDERATION WORKFLOW

