‘® redhat.

Red Hat OpenStack Platform 12

Advanced Overcloud Customization

Methods for configuring advanced features using Red Hat OpenStack Platform
director

Last Updated: 2019-04-05

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Methods for configuring advanced features using Red Hat OpenStack Platform director

OpenStack Team
rhos-docs@redhat.com

Legal Notice
Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explains how to configure certain advanced features for a Red Hat OpenStack Platform
enterprise environment using the Red Hat OpenStack Platform Director. This includes features such
as network isolation, storage configuration, SSL communication, and general configuration methods.

CHAPTER 1. INTRODUCTION

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

CHAPTER 3. PARAMETERS

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

CHAPTER 4. CONFIGURATION HOOKS

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

CHAPTER 5. OVERCLOUD REGISTRATION

5.1.
5.2.
5.3.
5.4.
5.5.

Table of Contents

HEAT TEMPLATES

ENVIRONMENT FILES

CORE OVERCLOUD HEAT TEMPLATES

PLAN ENVIRONMENT METADATA

CAPABILITIES MAP

INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
USING CUSTOMIZED CORE HEAT TEMPLATES

EXAMPLE 1: CONFIGURING THE TIMEZONE

EXAMPLE 2: DISABLING LAYER 3 HIGH AVAILABILITY (L3HA)
EXAMPLE 3: CONFIGURING THE TELEMETRY DISPATCHER
EXAMPLE 4: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT
EXAMPLE 5: ENABLING AND DISABLING PARAMETERS
IDENTIFYING PARAMETERS TO MODIFY

FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION
PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES
PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
PUPPET: CUSTOMIZING HIERADATA FOR ROLES

PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES
PUPPET: APPLYING CUSTOM MANIFESTS

REGISTERING THE OVERCLOUD WITH AN ENVIRONMENT FILE
EXAMPLE 1: REGISTERING TO THE CUSTOMER PORTAL
EXAMPLE 2: REGISTERING TO A RED HAT SATELLITE 6 SERVER
EXAMPLE 3: REGISTERING TO A RED HAT SATELLITE 5 SERVER
EXAMPLE 4: REGISTERING THROUGH A HTTP PROXY

5.6. ADVANCED REGISTRATION METHODS

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

6.1. SUPPORTED CUSTOM ROLE ARCHITECTURE
6.2. GUIDELINES AND LIMITATIONS

6.3.

ROLES

6.3.1. Examining the roles_data File
6.3.2. Creating a role_data File
6.3.3. Examining Role Parameters
6.3.4. Creating a New Role
6.4. COMPOSABLE SERVICES
6.4.1. Examining Composable Service Architecture
6.4.2. Adding and Removing Services from Roles
6.4.3. Enabling Disabled Services
6.4.4. Creating a Generic Node with No Services
6.5. ARCHITECTURES
6.5.1. Service Architecture: Monolithic Controller
6.5.2. Service Architecture: Split Controller
6.5.3. Service Architecture: Standalone Roles

Table of Contents

0 N O

11
12

................. 16

16
17
17
17
17
18

................. 20

20
21
23
25
27
28
28

................. 30

30
32
33
33
34
34

................. 36

36
36
37
37
38
39
41
42
43
44
45
45
46
46
48
51

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

6.6. COMPOSABLE SERVICE REFERENCE

CHAPTER 7. CONTAINERIZED SERVICESottt it ia s e ta et e n et ananananeanns
7.1. CONTAINERIZED SERVICE ARCHITECTURE
7.2. CONTAINERIZED SERVICE PARAMETERS
7.3. MODIFYING OPENSTACK PLATFORM CONTAINERS

CHAPTER 8. ISOLATING NETWORKSttt ittt et et et a et e s a e a s nasannanranns
8.1. CREATING CUSTOM INTERFACE TEMPLATES
8.2. CREATING A NETWORK ENVIRONMENT FILE
8.3. ASSIGNING OPENSTACK SERVICES TO ISOLATED NETWORKS
8.4. SELECTING NETWORKS TO DEPLOY

CHAPTER 9. USING COMPOSABLE NETWORKS ... ittt ie st i i inennsaannannnnns
9.1. DEFINING A COMPOSABLE NETWORK
9.1.1. Define Network Interface Configuration for Composable Networks
9.1.2. Assign Composable Networks to Services
9.1.3. Define the Routed Networks
9.2. NETWORKING WITH ROUTED SPINE-LEAF
9.3. HARDWARE PROVISIONING WITH ROUTED SPINE-LEAF
9.3.1. Example VLAN Provisioning Network
9.3.2. Example VXLAN Provisioning Network
9.3.3. Network Topology for Provisioning
9.3.4. Topology Diagram
9.3.5. Assign IP Addresses to the Custom Roles
9.3.6. Assign Routes for the Roles
9.3.7. Custom NIC definitions

CHAPTER 10. CONTROLLING NODE PLACEMENTttt et et eacne s nea e annnnnns
10.1. ASSIGNING SPECIFIC NODE IDS
10.2. ASSIGNING CUSTOM HOSTNAMES
10.3. ASSIGNING PREDICTABLE IPS
10.4. ASSIGNING PREDICTABLE VIRTUAL IPS

CHAPTER 11. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTScciviiuans,
11.1. INITIALIZING THE SIGNING HOST
11.2. CREATING A CERTIFICATE AUTHORITY
11.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
11.4. CREATING AN SSL/TLS KEY
11.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
11.6. CREATING THE SSL/TLS CERTIFICATE
11.7. ENABLING SSL/TLS
11.8. INJECTING A ROOT CERTIFICATE
11.9. CONFIGURING DNS ENDPOINTS
11.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION
11.11. UPDATING SSL/TLS CERTIFICATES

65

75
75
76

80
87
89
90

96
96
97
98
99
100
100
101
102
103
104
104
107

124
125
125
127

129
129
129
130
130
131
131
132
133
134
134

CHAPTER 12. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

12.1. ADD THE UNDERCLOUD TO THE CA

12.2. ADD THE UNDERCLOUD TO IDM

12.3. CONFIGURE OVERCLOUD DNS

12.4. CONFIGURE OVERCLOUD TO USE NOVAJOIN

CHAPTER 13. DEBUG MODES ittt a sttt it it et sa s aa s an s aansarnnnnns

135
135
135
136
136

CHAPTER 14. POLICIES ...ttt ittt et et a et st a et a s aa s a s a s annn s

CHAPTER 15. STORAGE CONFIGURATION ittt e e e sna e nncan e

15.1. CONFIGURING NFS STORAGE

15.2. CONFIGURING CEPH STORAGE

15.3. USING AN EXTERNAL OBJECT STORAGE CLUSTER
15.4. CONFIGURING THIRD PARTY STORAGE

CHAPTER 16. SECURITY ENHANCEMENTSottt et nacinan s

16.1. MANAGING THE OVERCLOUD FIREWALL

16.2. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) STRINGS
16.3. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

16.4. USING THE OPEN VSWITCH FIREWALL

16.5. USING SECURE ROOT USER ACCESS

CHAPTER 17. FENCING THE CONTROLLERNODESttt iii e

17.1. REVIEW THE PREREQUISITES
17.2. ENABLE FENCING
17.3. TEST FENCING

CHAPTER 18. CONFIGURING MONITORING TOOLScciiiiiiiiiii i

CHAPTER 19. CONFIGURING NETWORK PLUGINSot

19.1. FUJITSU CONVERGED FABRIC (C-FABRIC)
19.2. FUJITSU FOS SWITCH

CHAPTER 20. CONFIGURING IDENTITY ittt e e et a e a e an e

20.1. REGION NAME

CHAPTER 21. OTHER CONFIGURATIONSttt et et a e a e e

21.1. CONFIGURING EXTERNAL LOAD BALANCING
21.2. CONFIGURING IPV6 NETWORKING

APPENDIX A. NETWORK ENVIRONMENT OPTIONS ciiiiiii e i i iae s

APPENDIX B. NETWORK INTERFACE TEMPLATE EXAMPLESciiiiannt.

B.1. CONFIGURING INTERFACES

B.2. CONFIGURING ROUTES AND DEFAULT ROUTES

B.3. CONFIGURE INTERFACE MAPPING

B.4. USING THE NATIVE VLAN FOR FLOATING IPS

B.5. USING THE NATIVE VLAN ON A TRUNKED INTERFACE
B.6. CONFIGURING JUMBO FRAMES

CHAPTER 22. NETWORK INTERFACE PARAMETERSttt

22.1. INTERFACE OPTIONS
22.2. VLAN OPTIONS

22.3. OVS BOND OPTIONS
22.4. OVS BRIDGE OPTIONS
22.5. LINUX BOND OPTIONS
22.6. LINUX BRIDGE OPTIONS

APPENDIX C. OPEN VSWITCH BONDING OPTIONSt iie i i iae s

C.1. CHOOSING A BOND MODE
C.2. BONDING OPTIONS

Table of Contents

........... 145

145
146
147
148
148

........... 150

150
150
151

........... 153

........... 154

154
154

........... 156

156

........... 157

157
157

........... 158

........... 161

161
161
162
163
163
164

166
166
167
168
169
170

172
173

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

The Red Hat OpenStack Platform director provides a set of tools to provision and create a fully featured
OpenStack environment, also known as the Overcloud. The Director Installation and Usage Guide
covers the preparation and configuration of the Overcloud. However, a proper production-level Overcloud
might require additional configuration, including:

e Basic network configuration to integrate the Overcloud into your existing network infrastructure.

e Network traffic isolation on separate VLANSs for certain OpenStack network traffic types.

e SSL configuration to secure communication on public endpoints

e Storage options such as NFS, iSCSI, Red Hat Ceph Storage, and multiple third-party storage
devices.

e Registration of nodes to the Red Hat Content Delivery Network or your internal Red Hat Satellite
5 or 6 server.

e Various system level options.
e Various OpenStack service options.
This guide provides instructions for augmenting your Overcloud through the director. At this point, the

director has registered the nodes and configured the necessary services for Overcloud creation. Now
you can customize your Overcloud using the methods in this guide.

NOTE

The examples in this guide are optional steps for configuring the Overcloud. These steps
are only required to provide the Overcloud with additional functionality. Use only the steps
that apply to the needs of your environment.

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/director_installation_and_usage/

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

The custom configurations in this guide use Heat templates and environment files to define certain
aspects of the Overcloud. This chapter provides a basic introduction to Heat templates so that you can
understand the structure and format of these templates in the context of the Red Hat OpenStack Platform
director.

2.1. HEAT TEMPLATES

The director uses Heat Orchestration Templates (HOT) as a template format for its Overcloud
deployment plan. Templates in HOT format are mostly expressed in YAML format. The purpose of a
template is to define and create a stack, which is a collection of resources that heat creates, and the
configuration of the resources. Resources are objects in OpenStack and can include compute resources,
network configuration, security groups, scaling rules, and custom resources.

The structure of a Heat template has three main sections:

Parameters

These are settings passed to heat, which provides a way to customize a stack, and any default
values for parameters without passed values. These are defined in the parameters section of a
template.

Resources

These are the specific objects to create and configure as part of a stack. OpenStack contains a set of
core resources that span across all components. These are defined in the resources section of a
template.

Output

These are values passed from heat after the stack’s creation. You can access these values either
through the heat API or client tools. These are defined in the output section of a template.

Here is an example of a basic heat template:

heat_template_version: 2013-05-23
description: > A very basic Heat template.

parameters:
key_name:
type: string
default: lars
description: Name of an existing key pair to use for the instance
flavor:
type: string
description: Instance type for the instance to be created
default: mi.small
image:
type: string
default: cirros
description: ID or name of the image to use for the instance

resources:
my_instance:

type: 0S::Nova::Server
properties:

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

name: My Cirros Instance

image: { get_param: image }
flavor: { get_param: flavor }
key_name: { get_param: key_name }

output:
instance_name:
description: Get the instance's name
value: { get_attr: [my_instance, name] }

This template uses the resource type type: 0S: :Nova: :Server to create an instance called
my_instance with a particular flavor, image, and key. The stack can return the value of
instance_name, which is called My Cirros Instance.

When Heat processes a template it creates a stack for the template and a set of child stacks for resource
templates. This creates a hierarchy of stacks that descend from the main stack you define with your
template. You can view the stack hierarchy using this following command:

I $ heat stack-list --show-nested

2.2. ENVIRONMENT FILES

An environment file is a special type of template that provides customization for your Heat templates.
This includes three key parts:

Resource Registry

This section defines custom resource names, linked to other heat templates. This essentially provides
a method to create custom resources that do not exist within the core resource collection. These are
defined in the resource_registry section of an environment file.

Parameters

These are common settings you apply to the top-level template’s parameters. For example, if you
have a template that deploys nested stacks, such as resource registry mappings, the parameters only
apply to the top-level template and not templates for the nested resources. Parameters are defined in
the parameters section of an environment file.

Parameter Defaults

These parameters modify the default values for parameters in all templates. For example, if you
have a Heat template that deploys nested stacks, such as resource registry mappings,the parameter
defaults apply to all templates. In other words, the top-level template and those defining all nested
resources. The parameter defaults are defined in the parameter_defaults section of an
environment file.

IMPORTANT

It is recommended to use parameter_defaults instead of parameters When
creating custom environment files for your Overcloud. This is so the parameters apply to
all stack templates for the Overcloud.

An example of a basic environment file:

resource_registry:
0S::Nova: :Server::MyServer: myserver.yaml

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

parameter_defaults:
NetworkName: my_network

parameters:
MyIP: 192.168.0.1

For example, this environment file (my_env.yaml) might be included when creating a stack from a
certain Heat template (my_template.yaml). The my_env.yaml files creates a new resource type
called 0S: :Nova: :Server: :MyServer. The myserver .yaml file is a Heat template file that provides
an implementation for this resource type that overrides any built-in ones. You can include the

0S: :Nova: :Server: :MyServer resource in your my_template.yaml file.

The MyIP applies a parameter only to the main Heat template that deploys along with this environment
file. In this example, it only applies to the parameters in my_template.yaml.

The NetworkName applies to both the main Heat template (in this example, my_template.yaml) and
the templates associated with resources included the main template, such as the
0S::Nova: :Server: :MyServer resource and its myserver .yaml template in this example.

2.3. CORE OVERCLOUD HEAT TEMPLATES

The director contains a core heat template collection for the Overcloud. This collection is stored in
/usr/share/openstack-tripleo-heat-templates.

There are many heat templates and environment files in this collection. However, the main files and
directories to note in this template collection are:

overcloud.j2.yaml

This is the main template file used to create the Overcloud environment. This file uses Jinja2 syntax
to iterate over certain sections in the template to create custom roles. The Jinja2 formatting is
rendered into YAML during the overcloud deployment process.

overcloud-resource-registry-puppet.j2.yaml

This is the main environment file used to create the Overcloud environment. It provides a set of
configurations for Puppet modules stored on the Overcloud image. After the director writes the
Overcloud image to each node, Heat starts the Puppet configuration for each node using the
resources registered in this environment file. This file uses Jinja2 syntax to iterate over certain
sections in the template to create custom roles. The Jinja2 formatting is rendered into YAML during
the overcloud deployment process.

roles_data.yaml
A file that defines the roles in an overcloud and maps services to each role.
network_data.yaml

A file that defines the networks in an overcloud and their properties such as subnets, allocation pools,
and VIP status. The default network_data file only contains the default networks: External, Internal
Api, Storage, Storage Management, Tenant, and Management. You can create a custom
network_data file and add it to youropenstack overcloud deploy command with the -n
option.

plan-environment.yaml

A file that defines the metadata for your overcloud plan. This includes the plan name, main template
to use, and environment files to apply to the overcloud.

capabilities-map.yaml

A mapping of environment files for an overcloud plan. Use this file to describe and enable

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

environment files through the director’s web Ul. Custom environment files detected in the
environments directory in an overcloud plan but not defined in the capabilities-map.yaml are
listed in the Other subtab of 2 Specify Deployment Configuration > Overall Settings on the web
ul.

environments

Contains additional Heat environment files that you can use with your Overcloud creation. These
environment files enable extra functions for your resulting OpenStack environment. For example, the
directory contains an environment file for enabling Cinder NetApp backend storage (cinder -
netapp-config.yaml). Any environment files detected in this directory that are not defined in the
capabilities-map.yaml file are listed in the Other subtab of 2 Specify Deployment
Configuration > Overall Settings in the director’'s web UL.

network
A set of Heat templates to help create isolated networks and ports.
puppet
Templates mostly driven by configuration with puppet. The aforementioned overcloud-resource-

registry-puppet.j2.yaml environment file uses the files in this directory to drive the application
of the Puppet configuration on each node.

puppet/services
A directory containing heat templates for all services in the composable service architecture.
extraconfig

Templates used to enable extra functionality. For example, the extraconfig/pre_deploy/rhel-
registration director provides the ability to register your nodes' Red Hat Enterprise Linux
operating systems to the Red Hat Content Delivery network or your own Red Hat Satellite server.

firstboot

Provides example first_boot scripts that the director uses when initially creating the nodes.

2.4. PLAN ENVIRONMENT METADATA

A plan environment metadata file allows you to define metadata about your overcloud plan. This
information is used when importing and exporting your overcloud plan, plus used during the overcloud
creation from your plan.

A plan environment metadata file includes the following parameters:

version
The version of the template.
name

The name of the overcloud plan and the container in OpenStack Object Storage (swift) used to store
the plan files.

template

The core parent template to use for the overcloud deployment. This is most often overcloud.yaml,
which is the rendered version of the overcloud.yaml. j2 template.

environments

Defines a list of environment files to use. Specify the path of each environment file with the path sub-
parameter.

parameter_defaults

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

A set of parameters to use in your overcloud. This functions in the same way as the
parameter_defaults section in a standard environment file.

passwords

A set of parameters to use for overcloud passwords. This functions in the same way as the
parameter_defaults section in a standard environment file. Normally, the director automatically
populates this section with randomly generated passwords.

workflow_parameters

Allows you to provide a set of parameters to OpenStack Workflow (mistral) namespaces. You can
use this to calculate and automatically generate certain overcloud parameters.

The following is an example of the syntax of a plan environment file:

version: 1.0
name: myovercloud
description: 'My Overcloud Plan'
template: overcloud.yaml
environments:
- path: overcloud-resource-registry-puppet.yaml
- path: environments/docker.yaml
- path: environments/docker-ha.yaml
- path: environments/containers-default-parameters.yaml
- path: user-environment.yaml
parameter_defaults:
ControllerCount: 1
ComputeCount: 1
OvercloudComputeFlavor: compute
OvercloudControllerFlavor: control
workflow_parameters:
tripleo.derive_params.vl.derive_parameters:
num_phy_cores_per_numa_node_for_pmd: 2

You can include the plan environment metadata file with the openstack overcloud deploy
command using the -p option. For example:

(undercloud) $ openstack overcloud deploy --templates \
-p /my-plan-environment.yaml \
[OTHER OPTIONS]

You can also view plan metadata for an existing overcloud plan using the following command:

I (undercloud) $ openstack object save overcloud plan-environment.yaml --
file -

2.5. CAPABILITIES MAP

The capabilities map provides a mapping of environment files in your plan and their dependencies. Use
this file to describe and enable environment files through the director’'s web Ul. Custom environment files
detected in an overcloud plan but not listed in the capabilities-map.yaml are listed in the Other
subtab of 2 Specify Deployment Configuration > Overall Settings on the web Ul.

The default file is located at /usr/share/openstack-tripleo-heat-
templates/capabilities-map.yaml.

10

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

The following is an example of the syntax for a capabilities map:

topics: g

- title: My Parent Section
description: This contains a main section for different environment
files
environment_groups: g
- name: my-environment-group
title: My Environment Group
description: A list of environment files grouped together
environments: e
- file: environment_file_1.yaml
title: Environment File 1
description: Enables environment file 1
requires: Q
- dependent_environment_file.yaml
- file: environment_file_2.yaml
title: Environment File 2
description: Enables environment file 2
requires: 9
- dependent_environment_file.yaml
- file: dependent_environment_file.yaml
title: Dependent Environment File
description: Enables the dependent environment file

ﬂ The topics parameter contains a list of sections in the UI's deployment configuration. Each topic
is displayed as a single screen of environment options and contains multiple environment groups,
which you define with the environment_groups parameter. Each topic can have a plain text
title and description.

9 The environment_groups parameter lists groupings of environment files in the Ul's deployment
configuration. For example, on a storage topic, you might have an environment group for Ceph-
related environment files. Each environment group can have a plain text title and
description.

9 The environments parameter shows all environment files that belong to an environment group.
The file parameter is the location of the environment file. Each environment entry can have a
plain text title and description.

OO e requires parameter is a list of dependencies for an environment file. In this example, both
environment_file_1.yaml and environment_file_2.yaml require you to enable
dependent_environment_file.yaml too.

NOTE

Red Hat OpenStack Platform uses this file to add access to features to the director Ul. It is
recommended not to modify this file as newer versions of Red Hat OpenStack Platform
might override this file.

2.6. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION

The deployment command (openstack overcloud deploy) uses the -e option to include an

11

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

environment file to customize your Overcloud. You can include as many environment files as necessary.
However, the order of the environment files is important as the parameters and resources defined in
subsequent environment files take precedence. For example, you might have two environment files:

environment-file-1.yaml

resource_registry:
0S::TripleO::NodeExtraConfigPost: /home/stack/templates/template-1.yaml

parameter_defaults:

RabbitFDLimit: 65536
TimeZone: 'Japan'

environment-file-2.yaml

resource_registry:
0S::TripleO::NodeExtraConfigPost: /home/stack/templates/template-2.yaml

parameter_defaults:
TimeZone: 'Hongkong'

Then deploy with both environment files included:

$ openstack overcloud deploy --templates -e environment-file-1.yaml -e
environment-file-2.yaml

In this example, both environment files contain a common resource type
(0S::Triple0: :NodeExtraConfigPost) and a common parameter (TimeZone). The openstack
overcloud deploy command runs through the following process:

1. Loads the default configuration from the core Heat template collection as per the - -template
option.

2. Applies the configuration from environment-file-1.yaml, which overrides any common
settings from the default configuration.

3. Applies the configuration from environment-file-2.yaml, which overrides any common
settings from the default configuration and environment-file-1.yaml.

This results in the following changes to the default configuration of the Overcloud:

e 0S::TripleO::NodeExtraConfigPost resource is setto
/home/stack/templates/template-2.yaml as per environment-file-2.yaml.

e TimeZone parameter is set to Hongkong as per environment-file-2.yaml.

e RabbitFDLimit parameter is setto 65536 as per environment-file-1.yaml.
environment-file-2.yaml does not change this value.

This provides a method for defining custom configuration to the your Overcloud without values from
multiple environment files conflicting.

2.7. USING CUSTOMIZED CORE HEAT TEMPLATES

12

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

When creating the overcloud, the director uses a core set of Heat templates located in
/usr/share/openstack-tripleo-heat-templates. If you want to customize this core template
collection, use a Git workflow to track changes and merge updates. Use the following git processes to
help manage your custom template collection:

Initializing a Custom Template Collection

Use the following procedure to create an initial Git repository containing the Heat template collection:

1. Copy the template collection to the stack users directory. This example copies the collection to
the ~/templates directory:

$ cd ~/templates
$ cp -r /usr/share/openstack-tripleo-heat-templates

2. Change to the custom template directory and initialize a Git repository:

$ cd openstack-tripleo-heat-templates
$ git init
3. Stage all templates for the initial commit:
I $ git add *

4. Create an initial commit:

I $ git commit -m "Initial creation of custom core heat templates"

This creates an initial master branch containing the latest core template collection. Use this branch as
the basis for your custom branch and merge new template versions to this branch.

Creating a Custom Branch and Committing Changes

Use a custom branch to store your changes to the core template collection. Use the following procedure
to create a my-customizations branch and add customizations to it:

1. Create the my-customizations branch and switch to it:
I $ git checkout -b my-customizations

2. Edit the files in the custom branch.

3. Stage the changes in git:
I $ git add [edited files]

4. Commit the changes to the custom branch:

I $ git commit -m "[Commit message for custom changes]"

This adds your changes as commits to the my-customizations branch. When the master branch
updates, you can rebase my-customizations off master, which causes git to add these commits on

to the updated template collection. This helps track your customizations and replay them on future
template updates.

13

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Updating the Custom Template Collection:

When updating the undercloud, the openstack-tripleo-heat-templates package might also
update. When this occurs, use the following procedure to update your custom template collection:

1. Save the openstack-tripleo-heat-templates package version as an environment
variable:

I $ export PACKAGE=$(rpm -qv openstack-tripleo-heat-templates)

2. Change to your template collection directory and create a new branch for the updated templates:

$ cd ~/templates/openstack-tripleo-heat-templates
$ git checkout -b $PACKAGE

3. Remove all files in the branch and replace them with the new versions:

$ git rm -rf *
$ cp -r /usr/share/openstack-tripleo-heat-templates/*
4. Add all templates for the initial commit:
I $ git add *

5. Create a commit for the package update:

I $ git commit -m "Updates for $PACKAGE"

6. Merge the branch into master. If using a Git management system (such as GitLab) use the
management workflow. If using git locally, merge by switching to the master branch and run the
git merge command:

$ git checkout master
$ git merge $PACKAGE

The master branch now contains the latest version of the core template collection. You can now rebase
the my-customization branch from this updated collection.

Rebasing the Custom Branch

Use the following procedure to update the my-customization branch,:

1. Change to the my-customizations branch:

I $ git checkout my-customizations

2. Rebase the branch off master:

I $ git rebase master

This updates the my-customizations branch and replays the custom commits made to this branch.

If git reports any conflicts during the rebase, use this procedure:

14

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

1. Check which files contain the conflicts:

I $ git status
2. Resolve the conflicts of the template files identified.
3. Add the resolved files

I $ git add [resolved files]

4. Continue the rebase:
I $ git rebase --continue
Deploying Custom Templates
Use the following procedure to deploy the custom template collection:

1. Make sure you have switched to the my-customization branch:

I git checkout my-customizations

2. Run the openstack overcloud deploy command with the - -templates option to specify
your local template directory:

$ openstack overcloud deploy --templates
/home/stack/templates/openstack-tripleo-heat-templates [OTHER
OPTIONS]

NOTE

The director uses the default template directory (/usr/share/openstack-tripleo-
heat -templates) if you specify the - -templates option without a directory.

IMPORTANT

Red Hat recommends using the methods in Chapter 4, Configuration Hooks instead of
modifying the heat template collection.

15

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 3. PARAMETERS

Each Heat template in the director’s template collection contains a parameters section. This section
defines all parameters specific to a particular overcloud service. This includes the following:

e overcloud.j2.yaml - Default base parameters
e roles_data.yaml - Default parameters for composable roles
e puppet/services/*.yaml - Default parameters for specific services
You can modify the values for these parameters using the following method:
1. Create an environment file for your custom parameters.
2. Include your custom parameters in the parameter_defaults section of the environment file.
3. Include the environment file with the openstack overcloud deploy command.

The next few sections contain examples to demonstrate how to configure specific parameters for
services in the puppet/services directory.

3.1. EXAMPLE 1: CONFIGURING THE TIMEZONE

The Heat template for setting the timezone (puppet/services/time/timezone.yaml) contains a
TimeZone parameter. If you leave the TimeZone parameter blank, the overcloud sets the time to UTC
as a default. The director recognizes the standard timezone names defined in the timezone database
/usr/share/zoneinfo/. For example, if you wanted to set your time zone to Japan, you would
examine the contents of /usr/share/zoneinfo to locate a suitable entry:

$ 1ls /usr/share/zoneinfo/

Africa Asia Canada Cuba EST GB GMT-0 HST
is03166.tab Kwajalein MST NZ-CHAT posix right Turkey
uTcC Zulu

America Atlantic CET EET ESTS5EDT GB-Eire GMT+0

Iceland Israel Libya MST7MDT Pacific posixrules ROC

UCT WET

Antarctica Australia Chile Egypt Etc GMT Greenwich
Indian Jamaica MET Navajo Poland PRC ROK
Universal W-SU

Arctic Brazil CST6CDT Eire Europe GMTO Hongkong Iran
Japan Mexico NZ Portugal PST8PDT Singapore US
zone.tab

The output listed above includes time zone files, and directories containing additional time zone files.
For example, Japan is an individual time zone file in this result, but Africa is a directory containing
additional time zone files:

$ 1s /usr/share/zoneinfo/Africa/

Abidjan Algiers Bamako Bissau Bujumbura Ceuta
Dar_es_Salaam E1_Aaiun Harare Kampala Kinshasa Lome
Lusaka Maseru Monrovia Niamey Porto-Novo Tripoli

Accra Asmara Bangui Blantyre Cairo Conakry Djibouti
Freetown Johannesburg Khartoum Lagos Luanda Malabo Mbabane

16

CHAPTER 3. PARAMETERS

Nairobi Nouakchott Sao_Tome Tunis

Addis_Ababa Asmera Banjul Brazzaville Casablanca Dakar Douala
Gaborone Juba Kigali Libreville Lubumbashi Maputo
Mogadishu Ndjamena Ouagadougou Timbuktu windhoek

Add the entry in an environment file to set your timezone to Japan:

parameter_defaults:
TimeZone: 'Japan'

3.2. EXAMPLE 2: DISABLING LAYER 3 HIGH AVAILABILITY (L3HA)

The Heat template for the OpenStack Networking (neutron) API (puppet/services/neutron-
api.yaml) contains a parameter to enable and disable Layer 3 High Availability (L3HA). The default for
the parameter is false. However, you can enable it using the following in an environment file:

parameter_defaults:
NeutronL3HA: true

3.3. EXAMPLE 3: CONFIGURING THE TELEMETRY DISPATCHER

The OpenStack Telemetry (ceilometer) service includes a component for a time series data storage
(gnocchi). The puppet/services/ceilometer-base.yaml Heat Template allows you to switch
between gnocchi and the standard database. You accomplish this with the
CeilometerMeterDispatcher parameter, which you set to either:

e gnocchi - Use the new time series database for Ceilometer dispatcher. This is the default
option.

e database - Use the standard database for the Ceilometer dispatcher.

To switch to a standard database, add the following to an environment file:

parameter_defaults:
CeilometerMeterDispatcher: database

3.4. EXAMPLE 4: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT

For certain configurations, you might need to increase the file descriptor limit for the RabbitMQ server.
The puppet/services/rabbitmq.yaml Heat template allows you to set the RabbitFDLimit
parameter to the limit you require. Add the following to an environment file.

parameter_defaults:
RabbitFDLimit: 65536

3.5. EXAMPLE 5: ENABLING AND DISABLING PARAMETERS

In some case, you might need to initially set a parameters during a deployment, then disable the
parameter for a future deployment operation, such as updates or scaling operations. For example, to
include a custom RPM during the overcloud creation, you would include the following:

17

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

parameter_defaults:
DeployArtifactURLs: ["http://www.example.com/myfile.rpm"]

If you need to disable this parameter from a future deployment, it is not enough to remove the parameter.
Instead, you set the parameter to an empty value:

parameter_defaults:
DeployArtifactURLs: []

This ensures the parameter is no longer set for subsequent deployments operations.

3.6. IDENTIFYING PARAMETERS TO MODIFY

Red Hat OpenStack Platform director provides many parameters for configuration. In some cases, you
might experience difficulty identifying a certain option to configure and the corresponding director
parameter. If there is an option you want to configure through the director, use the following workflow to
identify and map the option to a specific overcloud parameter:

1. Identify the option you aim to configure. Make a note of the service that uses the option.

2. Check the corresponding Puppet module for this option. The Puppet modules for Red Hat
OpenStack Platform are located under /etc/puppet/modules on the director node. Each
module corresponds to a particular service. For example, the keystone module corresponds to
the OpenStack Identity (keystone).

e |[f the Puppet module contains a variable that controls the chosen option, move to the next
step.

e |[f the Puppet module does not contain a variable that controls the chosen option, then no
hieradata exists for this option. If possible, you can set the option manually after the
overcloud completes deployment.

3. Check the director’s core Heat template collection for the Puppet variable in the form of
hieradata. The templates in puppet/services/* usually correspond to the Puppet modules of
the same services. For example, the puppet/services/keystone.yaml template provides
hieradata to the keystone module.

e [f the Heat template sets hieradata for the Puppet variable, the template should also disclose
the director-based parameter to modify.

e If the Heat template does not set hieradata for the Puppet variable, use the configuration
hooks to pass the hieradata using an environment file. See Section 4.5, “Puppet:
Customizing Hieradata for Roles” for more information on customizing hieradata.

Workflow Example

You might aim to change the notification format for OpenStack Identity (keystone). Using the workflow,
you would:

1. Identify the OpenStack parameter to configure (notification_format).

2. Search the keystone Puppet module for the notification_format setting. For example:
I $ grep notification_format /etc/puppet/modules/keystone/manifests/*

In this case, the keystone module manages this option using the

18

CHAPTER 3. PARAMETERS

keystone: :notification_format variable.

3. Search the keystone service template for this variable. For example:

$ grep "keystone::notification_format" /usr/share/openstack-tripleo-
heat-templates/puppet/services/keystone.yaml

The output shows the director using the KeystoneNotificationFormat parameter to set the
keystone: :notification_format hieradata.

The following table shows the eventual mapping:

Director Parameter Puppet Hieradata OpenStack Identity (keystone)

option
KeystoneNotificationFor keystone::notification_ notification_format
mat format

This means setting the KeystoneNotificationFormat in an overcloud’s environment file would set
the notification_format option in the keystone. conf file during the overcloud’s configuration.

19

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 4. CONFIGURATION HOOKS

The configuration hooks provide a method to inject your own configuration functions into the Overcloud
deployment process. This includes hooks for injecting custom configuration before and after the main
Overcloud services configuration and hook for modifying and including Puppet-based configuration.

4.1. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION

The director provides a mechanism to perform configuration on all nodes upon the initial creation of the
Overcloud. The director achieves this through cloud-init, which you can call using the
0S::TripleO: :NodeUserData resource type.

In this example, you will update the nameserver with a custom IP address on all nodes. You must first
create a basic heat template (/home/stack/templates/nameserver.yaml) that runs a script to
append each node’s resolv. conf with a specific nameserver. You can use the
0S::TripleO: :MultipartMime resource type to send the configuration script.

heat_template_version: 2014-10-16

description: >
Extra hostname configuration

resources:
userdata:
type: 0S::Heat::MultipartMime
properties:
parts:
- config: {get_resource: nameserver_config}

nameserver_config:
type: 0S::Heat::SoftwareConfig
properties:
config: |
#!/bin/bash
echo "nameserver 192.168.1.1" >> /etc/resolv.conf

outputs:

0S::stack_id:
value: {get_resource: userdata}

Next, create an environment file (/home/stack/templates/firstboot .yaml) that registers your
heat template as the 0S: : TripleO: : NodeUserData resource type.

resource_registry:
0S::TripleO::NodeUserData: /home/stack/templates/nameserver.yaml

To add the first boot configuration, add the environment file to the stack along with your other
environment files when first creating the Overcloud. For example:

$ openstack overcloud deploy --templates \

-e /home/stack/templates/firstboot.yaml \

20

CHAPTER 4. CONFIGURATION HOOKS

The -e applies the environment file to the Overcloud stack.

This adds the configuration to all nodes when they are first created and boot for the first time.
Subsequent inclusions of these templates, such as updating the Overcloud stack, does not run these
scripts.

IMPORTANT

You can only register the 0S: : TripleO: :NodeUserData to one heat template.
Subsequent usage overrides the heat template to use.

4.2. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD
ROLES

IMPORTANT

Previous versions of this document used the 0S: : TripleO: : Tasks: : *PreConfig
resources to provide pre-configuration hooks on a per role basis. The director’s Heat
template collection requires dedicated use of these hooks, which means you should not
use them for custom use. Instead, use the 0S: : TripleO: : *ExtraConfigPre hooks
outlined below.

The Overcloud uses Puppet for the core configuration of OpenStack components. The director provides
a set of hooks to provide custom configuration for specific node roles after the first boot completes and
before the core configuration begins. These hooks include:

OS::TripleO::ControllerExtraConfigPre

Additional configuration applied to Controller nodes before the core Puppet configuration.
OS::TripleO::ComputeExtraConfigPre

Additional configuration applied to Compute nodes before the core Puppet configuration.
OS::TripleO::CephStorageExtraConfigPre

Additional configuration applied to Ceph Storage nodes before the core Puppet configuration.
OS::TripleO::ObjectStorageExtraConfigPre

Additional configuration applied to Object Storage nodes before the core Puppet configuration.
OS::TripleO::BlockStorageExtraConfigPre

Additional configuration applied to Block Storage nodes before the core Puppet configuration.
OS::TripleO::[ROLE]ExtraConfigPre

Additional configuration applied to custom nodes before the core Puppet configuration. Replace
[ROLE] with the composable role name.

In this example, you first create a basic heat template

(/home/stack/templates/nameserver .yaml) that runs a script to write to a node’sresolv.conf
with a variable nameserver.

heat_template_version: 2014-10-16

description: >
Extra hostname configuration

parameters:

21

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

server:
type: json

nameserver_ip:
type: string

DeployIdentifier:
type: string

resources:
CustomExtraConfigPre:
type: 0S::Heat::SoftwareConfig
properties:
group: script
config:
str_replace:
template: |
#!/bin/sh
echo "nameserver _NAMESERVER_IP_" > /etc/resolv.conf
params:
_NAMESERVER_IP_: {get_param: nameserver_ip}

CustomExtraDeploymentPre:

type: 0S::Heat::SoftwareDeployment

properties:
server: {get_param: server}
config: {get_resource: CustomExtraConfigPre}
actions: ['CREATE', 'UPDATE']
input_values:

deploy_identifier: {get_param: DeploylIdentifier}

outputs:
deploy_stdout:
description: Deployment reference, used to trigger pre-deploy on
changes
value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following:

CustomExtraConfigPre

This defines a software configuration. In this example, we define a Bash script and Heat replaces
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeploymentPre
This executes a software configuration, which is the software configuration from the
CustomExtraConfigPre resource. Note the following:

e The config parameter makes a reference to the CustomExtraConfigPre resource so
Heat knows what configuration to apply.

e The server parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

e The actions parameter defines when to apply the configuration. In this case, we only apply
the configuration when the Overcloud is created. Possible actions include CREATE, UPDATE,
DELETE, SUSPEND, and RESUME.

e input_values contains a parameter called deploy_identifier, which stores the

22

CHAPTER 4. CONFIGURATION HOOKS

DeployIdentifier from the parent template. This parameter provides a timestamp to the

resource for each deployment update. This ensures the resource reapplies on subsequent
overcloud updates.

Next, create an environment file (/home/stack/templates/pre_config.yaml) that registers your
heat template to the role-based resource type. For example, to apply only to Controller nodes, use the
ControllerExtraConfigPre hook:

resource_registry:
0S::TripleO::ControllerExtraConfigPre:
/home/stack/templates/nameserver.yaml

parameter_defaults:
nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \

-e /home/stack/templates/pre_config.yaml \

This applies the configuration to all Controller nodes before the core configuration begins on either the
initial Overcloud creation or subsequent updates.

IMPORTANT

You can only register each resource to only one Heat template per hook. Subsequent
usage overrides the Heat template to use.

4.3. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

The Overcloud uses Puppet for the core configuration of OpenStack components. The director provides

a hook to configure all node types after the first boot completes and before the core configuration begins:

OS::TripleO::NodeExtraConfig
Additional configuration applied to all nodes roles before the core Puppet configuration.

In this example, you first create a basic heat template
(/home/stack/templates/nameserver .yaml) that runs a script to append each node’s
resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
Extra hostname configuration

parameters:
server:
type: string
nameserver_ip:
type: string

23

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

DeployIdentifier:
type: string

resources:
CustomExtraConfigPre:
type: 0S::Heat::SoftwareConfig
properties:
group: script
config:
str_replace:
template: |
#!/bin/sh
echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
params:
_NAMESERVER_IP_: {get_param: nameserver_ip}

CustomExtraDeploymentPre:

type: 0S::Heat::SoftwareDeployment

properties:
server: {get_param: server}
config: {get_resource: CustomExtraConfigPre}
actions: ['CREATE', 'UPDATE']
input_values:

deploy_identifier: {get_param: DeployIdentifier}

outputs:
deploy_stdout:
description: Deployment reference, used to trigger pre-deploy on
changes
value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following:

CustomExtraConfigPre

This defines a software configuration. In this example, we define a Bash script and Heat replaces
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeploymentPre

This executes a software configuration, which is the software configuration from the
CustomExtraConfigPre resource. Note the following:

e The config parameter makes a reference to the CustomExtraConfigPre resource so
Heat knows what configuration to apply.

e The server parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

e The actions parameter defines when to apply the configuration. In this case, we only apply
the configuration when the Overcloud is created. Possible actions include CREATE, UPDATE,
DELETE, SUSPEND, and RESUME.

e The input_values parameter contains a sub-parameter called deploy_identifier,
which stores the DeployIdentifier from the parent template. This parameter provides a
timestamp to the resource for each deployment update. This ensures the resource reapplies
on subsequent overcloud updates.

24

CHAPTER 4. CONFIGURATION HOOKS

Next, create an environment file (/home/stack/templates/pre_config.yaml) that registers your
heat template as the 0S: : TripleO: :NodeExtraConfig resource type.

resource_registry:
0S::TripleO::NodeExtraConfig: /home/stack/templates/nameserver.yaml

parameter_defaults:
nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \

-e /home/stack/templates/pre_config.yaml \

This applies the configuration to all nodes before the core configuration begins on either the initial
Overcloud creation or subsequent updates.

IMPORTANT

You can only register the 0S: : TripleO: :NodeExtraConfig to only one Heat
template. Subsequent usage overrides the Heat template to use.

4.4. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

IMPORTANT

Previous versions of this document used the 0S: : TripleO: : Tasks: : *PostConfig
resources to provide post-configuration hooks on a per role basis. The director’s Heat
template collection requires dedicated use of these hooks, which means you should not
use them for custom use. Instead, use the 0S: : TripleO: :NodeExtraConfigPost
hook outlined below.

A situation might occur where you have completed the creation of your Overcloud but want to add
additional configuration to all roles, either on initial creation or on a subsequent update of the Overcloud.
In this case, you use the following post-configuration hook:

OS::TripleO::NodeExtraConfigPost
Additional configuration applied to all nodes roles after the core Puppet configuration.

In this example, you first create a basic heat template
(/home/stack/templates/nameserver .yaml) that runs a script to append each node’s
resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
Extra hostname configuration

parameters:
servers:

25

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

type: json
nameserver_ip:

type: string
DeployIdentifier:

type: string

resources:
CustomExtraConfig:
type: 0S::Heat::SoftwareConfig
properties:
group: script
config:
str_replace:
template: |
#!/bin/sh
echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
params:
_NAMESERVER_IP_: {get_param: nameserver_ip}

CustomExtraDeployments:
type: 0S::Heat::SoftwareDeploymentGroup
properties:
servers: {get_param: servers}
config: {get_resource: CustomExtraConfig}
actions: ['CREATE', 'UPDATE']
input_values:
deploy_identifier: {get_param: DeploylIdentifier}

In this example, the resources section contains the following:

CustomExtraConfig

This defines a software configuration. In this example, we define a Bash script and Heat replaces
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeployments

This executes a software configuration, which is the software configuration from the
CustomExtraConfig resource. Note the following:

e The config parameter makes a reference to the CustomExtraConfig resource so Heat
knows what configuration to apply.

e The servers parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

e The actions parameter defines when to apply the configuration. In this case, we only apply
the configuration when the Overcloud is created. Possible actions include CREATE, UPDATE,
DELETE, SUSPEND, and RESUME.

e input_values contains a parameter called deploy_identifier, which stores the
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update. This ensures the resource reapplies on subsequent
overcloud updates.

Next, create an environment file (/home/stack/templates/post_config.yaml) that registers your
heat template as the 0S: : TripleO: :NodeExtraConfigPost: resource type.

26

CHAPTER 4. CONFIGURATION HOOKS

resource_registry:
0S::TripleO::NodeExtraConfigPost: /home/stack/templates/nameserver.yaml

parameter_defaults:
nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \

-e /home/stack/templates/post_config.yaml \

This applies the configuration to all nodes after the core configuration completes on either initial
Overcloud creation or subsequent updates.

IMPORTANT

You can only register the 0S: : TripleO: :NodeExtraConfigPost to only one Heat
template. Subsequent usage overrides the Heat template to use.

4.5. PUPPET: CUSTOMIZING HIERADATA FOR ROLES

The Heat template collection contains a set of parameters to pass extra configuration to certain node
types. These parameters save the configuration as hieradata for the node’s Puppet configuration. These
parameters are:

ControllerExtraConfig

Configuration to add to all Controller nodes.
ComputeExtraConfig

Configuration to add to all Compute nodes.
BlockStorageExtraConfig

Configuration to add to all Block Storage nodes.
ObjectStorageExtraConfig

Configuration to add to all Object Storage nodes
CephStorageExtraConfig

Configuration to add to all Ceph Storage nodes
[ROLE]ExtraConfig

Configuration to add to a composable role. Replace [ROLE] with the composable role name.
ExtraConfig

Configuration to add to all nodes.

To add extra configuration to the post-deployment configuration process, create an environment file that

contains these parameters in the parameter_defaults section. For example, to increase the
reserved memory for Compute hosts to 1024 MB and set the VNC keymap to Japanese:

parameter_defaults:
ComputeExtraConfig:

27

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

nova: :compute: :reserved_host_memory: 1024
nova: :compute: :vnc_keymap: ja

Include this environment file when running openstack overcloud deploy.

IMPORTANT

You can only define each parameter once. Subsequent usage overrides previous values.

4.6. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES

You can set Puppet hieradata for individual nodes using the Heat template collection. To accomplish
this, you need to acquire the system UUID saved as part of the introspection data for a node:

$ openstack baremetal introspection data save 9dcc87ae-4c6d-4ede-8la5-
9b20d7dc4ald | jq .extra.system.product.uuid

This outputs a system UUID. For example:
I "F5055C6C-477F-47FB-AFE5-95C6928C407F"

Use this system UUID in an environment file that defines node-specific hieradata and registers the
per_node.yaml template to a pre-configuration hook. For example:

resource_registry:

0S::TripleO::ComputeExtraConfigPre: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/pre_deploy/per_node.yaml
parameter_defaults:

NodeDatalLookup: '{"F5055C6C-477F-47FB-AFE5-95C6928C407F":
{"nova::compute::vcpu_pin_set": ["2", "3"]}}'

Include this environment file when running openstack overcloud deploy.

The per_node.yaml template generates a set of heiradata files on nodes that correspond to each
system UUID and contains the hieradata you defined. If a UUID is not defined, the resulting hieradata file
is empty. In the previous example, the per_node.yaml template runs on all Compute nodes (as per the
0S::TripleO: :ComputeExtraConfigPre hook), but only the Compute node with system UUID
F5055C6C-477F-47FB-AFE5-95C6928C407F receives hieradata.

This provides a method of tailoring each node to specific requirements.

4.7. PUPPET: APPLYING CUSTOM MANIFESTS

In certain circumstances, you might need to install and configure some additional components to your
Overcloud nodes. You can achieve this with a custom Puppet manifest that applies to nodes on after the
main configuration completes. As a basic example, you might intend to install motd to each node. The
process for accomplishing is to first create a Heat template
(/home/stack/templates/custom_puppet_config.yaml) that launches Puppet configuration.

heat_template_version: 2014-10-16

description: >
Run Puppet extra configuration to set new MOTD

28

CHAPTER 4. CONFIGURATION HOOKS

parameters:
servers:
type: json

resources:
ExtraPuppetConfig:
type: 0S::Heat::SoftwareConfig
properties:
config: {get_file: motd.pp}
group: puppet
options:
enable_hiera: True
enable_facter: False

ExtraPuppetDeployments:
type: 0S::Heat::SoftwareDeploymentGroup
properties:

config: {get_resource: ExtraPuppetConfig}
servers: {get_param: servers}

This includes the /home/stack/templates/motd. pp within the template and passes it to nodes for
configuration. The motd. pp file itself contains the Puppet classes to install and configure motd.

Next, create an environment file (/home/stack/templates/puppet_post_config.yaml) that
registers your heat template as the 0S: : TripleO: :NodeExtraConfigPost : resource type.

resource_registry:
0S::TripleO: :NodeExtraConfigPost:
/home/stack/templates/custom_puppet_config.yaml

And finally include this environment file along with your other environment files when creating or updating
the Overcloud stack:

$ openstack overcloud deploy --templates \

-e /home/stack/templates/puppet_post_config.yaml \

This applies the configuration from motd. pp to all nodes in the Overcloud.

29

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 5. OVERCLOUD REGISTRATION

The Overcloud provides a method to register nodes to either the Red Hat Content Delivery Network, a
Red Hat Satellite 5 server, or a Red Hat Satellite 6 server.

5.1. REGISTERING THE OVERCLOUD WITH AN ENVIRONMENT FILE

Copy the registration files from the Heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-
templates/extraconfig/pre_deploy/rhel-registration ~/templates/.

Edit the ~/templates/rhel-registration/environment-rhel-registration.yaml and
modify the following values to suit your registration method and details.

General Parameters

rhel_reg_method

Choose the registration method. Either portal, satellite, or disable.
rhel_reg_type

The type of unit to register. Leave blank to register as a system
rhel_reg_auto_attach

Automatically attach compatible subscriptions to this system. Set to true to enable. To disable this
feature, remove this parameter from your environment file.

rhel_reg_service_level
The service level to use for auto attachment.
rhel_reg_release

Use this parameter to set a release version for auto attachment. Leave blank to use the default from
Red Hat Subscription Manager.

rhel_reg_pool_id

The subscription pool ID to use. Use this if not auto-attaching subscriptions. To locate this ID, run
sudo subscription-manager list --available --all --matches="*OpenStack*"
from the undercloud node, and use the resulting Pool ID value.

rhel_reg_sat_url

The base URL of the Satellite server to register Overcloud nodes. Use the Satellite’s HTTP URL and
not the HTTPS URL for this parameter. For example, use http://satellite.example.com and not
https:/satellite.example.com. The Overcloud creation process uses this URL to determine whether
the server is a Red Hat Satellite 5 or Red Hat Satellite 6 server. If a Red Hat Satellite 6 server, the
Overcloud obtains the katello-ca-consumer-latest.noarch. rpm file, registers with
subscription-manager, and installs katello-agent. If a Red Hat Satellite 5 server, the
Overcloud obtains the RHN-ORG - TRUSTED - SSL - CERT file and registers with rhnreg_ks.

rhel_reg_server_url

The hostname of the subscription service to use. The default is for Customer Portal Subscription
Management, subscription.rhn.redhat.com. If this option is not used, the system is registered with
Customer Portal Subscription Management. The subscription server URL uses the form of
https://hostname:port/prefix.

rhel_reg_base url

30

http://satellite.example.com
https://satellite.example.com

CHAPTER 5. OVERCLOUD REGISTRATION

Gives the hostname of the content delivery server to use to receive updates. The default is
https://cdn.redhat.com. Since Satellite 6 hosts its own content, the URL must be used for systems
registered with Satellite 6. The base URL for content uses the form of https://hostname:port/prefix.

rhel_reg_org

The organization to use for registration. To locate this ID, run sudo subscription-manager
orgs from the undercloud node. Enter your Red Hat credentials when prompted, and use the
resulting Key value.

rhel_reg_environment

The environment to use within the chosen organization.
rhel_reg_repos

A comma-separated list of repositories to enable.
rhel_reg_activation_key

The activation key to use for registration.
rhel_reg_user; rhel_reg_password

The username and password for registration. If possible, use activation keys for registration.
rhel_reg_machine_name

The machine name. Leave this as blank to use the hostname of the node.
rhel_reg_force

Set to true to force your registration options. For example, when re-registering nodes.
rhel_reg_sat_repo

The repository containing Red Hat Satellite 6’s management tools, such as katello-agent. Check
the correct repository name corresponds to your Red Hat Satellite version and check that the
repository is synchronized on the Satellite server. For example, rhel-7-server-satellite-
tools-6.2-rpms corresponds to Red Hat Satellite 6.2.

Upgrade Parameters

UpdateOnRHELRegistration

If set to True, this triggers an update of the overcloud packages after registration completes. Set to
False by default.

HTTP Proxy Parameters

rhel_reg_http_proxy_host

The hostname for the HTTP proxy. For example: proxy .example.com.
rhel_reg_http_proxy_port

The port for HTTP proxy communication. For example: 8080.
rhel_reg_http_proxy_username

The username to access the HTTP proxy.
rhel_reg_http_proxy_password

The password to access the HTTP proxy.

31

https://cdn.redhat.com

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

IMPORTANT

If using a proxy server, ensure all overcloud nodes have a route to the host defined in the
rhel_reg_http_proxy_host parameter. Without a route to this host,
subscription-manager will time out and cause deployment failure

The deployment command (openstack overcloud deploy) uses the -e option to add environment
files. Add both ~/templates/rhel-registration/environment-rhel-registration.yaml
and ~/templates/rhel-registration/rhel-registration-resource-registry.yaml. For
example:

$ openstack overcloud deploy --templates [...] -e
/home/stack/templates/rhel-registration/environment-rhel-registration.yaml
-e /home/stack/templates/rhel-registration/rhel-registration-resource-
registry.yaml

IMPORTANT

Registration is set as the 0S: : TripleO: :NodeExtraConfig Heat resource. This
means you can only use this resource for registration. See Section 4.2, “Pre-
Configuration: Customizing Specific Overcloud Roles” for more information.

5.2. EXAMPLE 1: REGISTERING TO THE CUSTOMER PORTAL

The following registers the overcloud nodes to the Red Hat Customer Portal using the my -openstack
activation key and subscribes to pool 1a85f9223e3d5e43013e3d6e8ff506fd.

parameter_defaults:

rhel_reg_auto_attach: ""

rhel_reg_activation_key: "my-openstack"

rhel_reg_org: "1234567"

rhel_reg_pool_id: "1a85f9223e3d5e43013e3d6e8ff506fd"

rhel_reg_repos: "rhel-7-server-rpms,rhel-7-server-extras-rpms,rhel-7-
server-rh-common-rpms, rhel-ha-for-rhel-7-server-rpms,rhel-7-server-
openstack-12-rpms, rhel-7-server-rhceph-2-osd-rpms, rhel-7-server-rhceph-2-
mon-rpms, rhel-7-server-rhceph-2-tools-rpms"

rhel_reg_method: "portal"

rhel_reg_sat_repo: ""

rhel_reg_base_url: ""

rhel_reg_environment: ""

rhel_reg_force: ""

rhel_reg_machine_name: ""

rhel_reg_password: ""

rhel_reg_release: ""

rhel_reg_sat_url: ""

rhel_reg_server_url: ""

rhel_reg_service_level: ""

rhel_reg_user: ""

rhel_reg_type: ""

rhel_reg_http_proxy_host: ""

rhel_reg_http_proxy_port: ""

rhel_reg_http_proxy_username: ""

rhel_reg_http_proxy_password: ""

32

CHAPTER 5. OVERCLOUD REGISTRATION

5.3. EXAMPLE 2: REGISTERING TO A RED HAT SATELLITE 6 SERVER

The following registers the overcloud nodes to a Red Hat Satellite 6 Server at sat6.example.com and
uses the my -openstack activation key to subscribe to pool 1a85f9223e3d5e43013e3d6e8ff506fd
In this situation, the activation key also provides the repositories to enable.

parameter_defaults:
rhel_reg_activation_key: "my-openstack"
rhel_reg_org: "1"
rhel_reg_pool_id: "1a85f9223e3d5e43013e3d6e8ff506fd"
rhel_reg_method: "satellite"
rhel_reg_sat_url: "http://sat6.example.com"
rhel_reg_sat_repo: "rhel-7-server-satellite-tools-6.2-rpms"
rhel_reg_repos: ""
rhel_reg_auto_attach: ""
rhel_reg_base_url: ""
rhel_reg_environment: ""
rhel_reg_force: ""
rhel_reg_machine_name: ""
rhel_reg_password: ""
rhel_reg_release: ""
rhel_reg_server_url: ""
rhel_reg_service_level: ""
rhel_reg_user: ""
rhel_reg_type: ""
rhel_reg_http_proxy_host: ""
rhel_reg_http_proxy_port: ""
rhel_reg_http_proxy_username: ""
rhel_reg_http_proxy_password: ""

5.4. EXAMPLE 3: REGISTERING TO A RED HAT SATELLITE 5 SERVER

The following registers the overcloud nodes to a Red Hat Satellite 5 Server at sat5.example.com, uses
the my-openstack activation key, and automatically attaches subscriptions. In this situation, the
activation key also provides the repositories to enable.

parameter_defaults:
rhel_reg_auto_attach: ""
rhel_reg_activation_key: "my-openstack"
rhel_reg_org: "1"
rhel_reg_method: "satellite"
rhel_reg_sat_url: "http://sat5.example.com"
rhel_reg_repos: ""
rhel_reg_base_url: ""
rhel_reg_environment: ""
rhel_reg_force: ""
rhel_reg_machine_name: ""
rhel_reg_password: ""
rhel_reg_pool_id: ""
rhel_reg_release: ""
rhel_reg_server_url: ""
rhel_reg_service_level: ""
rhel_reg_user: ""
rhel_reg_type: ""
rhel_reg_sat_repo: ""

33

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

rhel_reg_http_proxy_host: ""
rhel_reg_http_proxy_port: ""
rhel_reg_http_proxy_username: ""
rhel_reg_http_proxy_password: ""

5.5. EXAMPLE 4: REGISTERING THROUGH A HTTP PROXY

The following sample parameters set the HTTP proxy settings for your desired registration method:

parameter_defaults:

rhel_reg_http_proxy_host: "proxy.example.com"
rhel_reg_http_proxy_port: "8080"
rhel_reg_http_proxy_username: "proxyuser"
rhel_reg_http_proxy_password: "p@55wOrd!'"

5.6. ADVANCED REGISTRATION METHODS

In some situations, you might aim to register different roles to different subscription types. For example,
you might aim to only subscribe Controller nodes to an OpenStack Platform subscription and Ceph
Storage nodes to a Ceph Storage subscription. This section provides some advanced registration
methods to help with assigning separate subscriptions to different roles.

Configuration Hooks

One method is to write role-specific scripts and include them with a role-specific hook. For example, the
following snippet could be added to the 0S: : TripleO: :ControllerExtraConfigPre resource’s
template, which ensures only the Controller nodes receive these subscription detalils.

ControllerRegistrationConfig:
type: 0S::Heat::SoftwareConfig
properties:
group: script
config:
str_replace:
template: |
#!/bin/sh
sudo subscription-manager register --org 1234567 \
--activationkey "my-openstack"
sudo subscription-manager attach --pool
1a8519223e3d5e43013e3d6e8Ff506fd
sudo subscription-manager repos --enable rhel-7-server-rpms \
--enable rhel-7-server-extras-rpms \
--enable rhel-7-server-rh-common-rpms \
--enable rhel-ha-for-rhel-7-server-rpms \
--enable rhel-7-server-openstack-12-rpms \
--enable rhel-7-server-rhceph-2-mon-rpms \

ControllerRegistrationDeployment:
type: 0S::Heat::SoftwareDeployment
properties:
server: {get_param: server}
config: {get_resource: ControllerRegistrationConfig}

34

CHAPTER 5. OVERCLOUD REGISTRATION

actions: ['CREATE', '"UPDATE']
input_values:
deploy_identifier: {get_param: DeployIdentifier}

The script uses a set of subscription-manager commands to register the system, attach the
subscription, and enable the required repositories.

For more information about hooks, see Chapter 4, Configuration Hooks.

Ansible-Based Configuration

You can perform Ansible-based registration on specific roles using the director’'s dynamic inventory
script. For example, you might aim to register Controller nodes using the following play:

- name: Register Controller nodes
hosts: Controller
become: yes
vars:
repos:
- rhel-7-server-rpms
- rhel-7-server-extras-rpms
- rhel-7-server-rh-common-rpms
- rhel-ha-for-rhel-7-server-rpms
- rhel-7-server-openstack-12-rpms
- rhel-7-server-rhceph-2-mon-rpms
tasks:
- name: Register system
redhat_subscription:
activationkey: my-openstack
org_id: 1234567
pool_ids: 1a85f9223e3d5e43013e3d6e8ff506fd
- name: Disable all repos
command: "subscription-manager repos --disable *"
- name: Enable Controller node repos
command: "subscription-manager repos --enable {{ item }}"
with_items: "{{ repos }}"

This play contains three tasks: - Register the node using an activation key - Disable any auto-enabled
repositories - Enable only the repositories relevant to the Controller node. The repositories are listed with
the repos variable.

After deploying the overcloud, you can run the following command so that Ansible executes the playbook
(ansible-osp-registration.yml) against your overcloud:

$ ansible-playbook -i /usr/bin/tripleo-ansible-inventory ansible-osp-
registration.yml

This command does the following: - Runs the dynamic inventory script to get a list of host and their
groups - Applies the playbook tasks to the nodes in the group defined in the playbook’s hosts
parameter, which in this case is the Controller group.

For more information on the running Ansible automation on your overcloud, see "Running Ansible
Automation" in the Director Installation and Usage guide.

35

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/director_installation_and_usage/chap-performing_tasks_after_overcloud_creation#sect-Running_Ansible_Automation

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

The Overcloud usually consists of nodes in predefined roles such as Controller nodes, Compute nodes,
and different storage node types. Each of these default roles contains a set of services defined in the
core Heat template collection on the director node. However, the architecture of the core Heat templates
provide methods to:

e Create custom roles

e Add and remove services from each role

This allows the possibility to create different combinations of services on different roles. This chapter
explores the architecture of custom roles, composable services, and methods for using them.

6.1. SUPPORTED CUSTOM ROLE ARCHITECTURE

Only a limited number of composable service combinations have been tested and verified. Red Hat
supports the following architectures when using custom roles and composable services:

Architecture 1 - Monolithic Controller

All controller services are contained within one Controller role. This is the default. See Section 6.5.1,
“Service Architecture: Monolithic Controller” for more details.

Architecture 2 - Split Controller

The controller services are split into two roles:

e Controller PCMK - Core Pacemaker-managed services such as database and load balancing
e Controller Systemd - 'systemd -managed OpenStack Platform services

See Section 6.5.2, “Service Architecture: Split Controller” for more details.

Architecture 3 - Standalone roles

Use Architecture 1 or Architecture 2, except split the OpenStack Platform services into custom roles.
See Section 6.5.3, “Service Architecture: Standalone Roles” for more details.

6.2. GUIDELINES AND LIMITATIONS
Note the following guidelines and limitations for the composable node architecture.
For systemd services:
e You can assign systemd managed services to supported standalone custom roles.

e You can create additional custom roles after the initial deployment and deploy them to scale
existing systemd services.

For Pacemaker-managed services:
e You can assign Pacemaker managed services to supported standalone custom roles.

e Pacemaker has a 16 node limit. If you assign the Pacemaker service
(0S::Triple0::Services: :Pacemaker) to 16 nodes, any subsequent nodes must use the
Pacemaker Remote service (0S: : TripleO: :Services: :PacemakerRemote) instead. You
cannot have the Pacemaker service and Pacemaker Remote service on the same role.

36

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

e Do not include the Pacemaker service (0S: : TripleO: :Services: :Pacemaker) on roles
that do not contain Pacemaker managed services.

e You cannot scale up or scale down a custom roles that contains
0S::TripleO::Services: :Pacemaker or
0S::TripleO: :Services: :PacemakerRemote services.

General Limitations:

e You cannot change custom roles and composable services during the upgrade process from
Red Hat OpenStack Platform 11 to 12.

e You cannot modify the list of services for any role after deploying an Overcloud. Modifying the
service lists after Overcloud deployment can cause deployment errors and leave orphaned
services on nodes.

6.3. ROLES

6.3.1. Examining the roles_data File

The Overcloud creation process defines its roles using a roles_data file. The roles_data file
contains a YAML-formatted list of the roles. The following is a shortened example of the roles_data

syntax:

- name: Controller

description: |

Controller role that has all the controler services loaded and handles
Database, Messaging and

::Services:
::Services:
::Services:

ServicesDefault:
- 0S::TripleO
- 0S::TripleO
- 0S::TripleO

- name: Compute
description: |
Basic Compute

Node role

::Services:
::Services:

ServicesDefault:
- 0S::TripleO
- 0S::Triple0O
- 0S::TripleO

::Services:

Network functions.

:AuditD
:CACerts
:CephClient

:AuditD
:CACerts
:CephClient

The core Heat template collection contains a default roles_data file located at
/usr/share/openstack-tripleo-heat-templates/roles_data.yaml. The default file defines

the following role types:
e Controller
e Compute
e BlockStorage

e ObjectStorage

37

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

e CephStorage.

The openstack overcloud deploy command includes this file during deployment. You can override
this file with a custom roles_data file using the -r argument. For example:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-
custom.yaml

6.3.2. Creating a role_data File

Although you can manually create a custom roles_data file, you can also automatically generating the
file using individual role templates. The director provides a several commands to manage role templates
and automatically generate a custom roles_data file.

To list the default role templates, use the openstack overcloud role list command:

$ openstack overcloud role list
BlockStorage

CephStorage

Compute

ComputeHCI

ComputeOvsDpdk

Controller

To see the role’s YAML definition, use the openstack overcloud role showcommand:
I $ openstack overcloud role show Compute

To generate a custom roles_data file, use the openstack overcloud roles generate
command to join multiple predefined roles into a single file. For example, the following command joins
the Controller, Compute, and Networker roles into a single file:

$ openstack overcloud roles generate -o ~/roles_data.yaml Controller
Compute Networker

The -o defines the name of the file to create.

This creates a custom roles_data file. However, the previous example uses the Controller and
Networker roles, which both contain the same networking agents. This means the networking services
scale from Controller to the Networker role. The overcloud balance the load for networking services
between the Controller and Networker nodes.

To make this Networker role standalone, you can create your own custom Controller role, as well
as any other role needed. This allows you to easily generate a roles_data file from your own custom
roles.

Copy the directory from the core Heat template collection to the stack user’s home directory:

I $ cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

38

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Add or modify the custom role files in this directory. Use the - -roles-path option with any of the
aforementioned role sub-commands to use this directory as the source for your custom roles. For
example:

$ openstack overcloud roles generate -o my_roles_data.yaml \
--roles-path ~/roles \
Controller Compute Networker

This generates a single my_roles_data.yaml file from the individual roles in the ~/roles directory.

NOTE

The default roles collection also contains the ControllerOpenStack role, which does
not include services for Networker, Messaging, and Database roles. You can use the
ControllerOpenStack combined with with the standalone Networker, Messaging,
and Database roles.

6.3.3. Examining Role Parameters

Each role uses the following parameters:

name

(Mandatory) The name of the role, which is a plain text name with no spaces or special characters.
Check that the chosen name does not cause conflicts with other resources. For example, use
Networker as a name instead of Network. For recommendations on role names, see Section 6.5.2,
“Service Architecture: Split Controller” for examples.

description
(Optional) A plain text description for the role.
tags

(Optional) A YAML list of tags that o define role properties. Use this parameter to define the primary
role with both the controller and primary tags together:

- name: Controller
tags:
- primary
- controller

IMPORTANT

If you do not tag the primary role, the first role defined becomes the primary role. Ensure
this role is the Controller role.

networks

A list of networks to configure on the role. Default networks include External, InternalApi,
Storage, StorageMgmt, Tenant, and Management.

CountDefault
(Optional) Defines the default number of nodes to deploy for this role.

39

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

HostnameFormatDefault

(Optional) Defines the default hosthame format for the role. The default naming convention uses the
following format:

I [STACK NAME]-[ROLE NAME]-[NODE ID]
For example, the default Controller nodes are named:

overcloud-controller-0
overcloud-controller-1
overcloud-controller-2

disable_constraints

(Optional) Defines whether to disable OpenStack Compute (nova) and OpenStack Image Storage
(glance) constraints when deploying with the director. Used when deploying an overcloud with pre-
provisioned nodes. For more information, see "Configuring a Basic Overcloud using Pre-Provisioned
Nodes" in the Director Installation and Usage Guide

disable_upgrade_deployment

(Optional) Defines whether to disable upgrades for a specific role. This provides a method to
upgrade individual nodes in a role and ensure availability of services. For example, the Compute and
Swift Storage roles use this parameter.

upgrade_batch_size

(Optional) Defines the number of tasks to execute in a batch during the upgrade. A task counts as
one upgrade step per node. The default batch size is 1, which means the upgrade process executes
a single upgrade step on each node one at a time. Increasing the batch size increases the number of
tasks executed simultaneously on nodes

ServicesDefault

(Optional) Defines the default list of services to include on the node. SeeSection 6.4.1, “Examining
Composable Service Architecture” for more information.

These parameters provide a means to create new roles and also define which services to include.

The openstack overcloud deploy command integrates the parameters from the roles_data file
into some of the Jinja2-based templates. For example, at certain points, the overcloud. j2.yaml Heat
template iterates over the list of roles from roles_data.yaml and creates parameters and resources
specific to each respective role.

The resource definition for each role in the overcloud. j2.yaml Heat template appears as the
following snippet:

{{role.name}}:
type: 0S::Heat::ResourceGroup
depends_on: Networks
properties:
count: {get_param: {{role.name}}Count}
removal_policies: {get_param: {{role.name}}RemovalPolicies}
resource_def:
type: 0S::TripleO::{{role.name}}
properties:
CloudDomain: {get_param: CloudDomain}

40

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/director_installation_and_usage/chap-configuring_basic_overcloud_requirements_on_pre_provisioned_nodes

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

ServiceNetMap: {get_attr: [ServiceNetMap, service_net_map]}
EndpointMap: {get_attr: [EndpointMap, endpoint_map]}

This snippet shows how the Jinja2-based template incorporates the {{role.name}} variable to define
the name of each role as a 0S: :Heat : : ResourceGroup resource. This in turn uses each name
parameter from the roles_data file to name each respective 0S: : Heat : : ResourceGroup resource.

6.3.4. Creating a New Role

In this example, the aim is to create a new Horizon role to host the OpenStack Dashboard (horizon)
only. In this situation, you create a custom roles directory that includes the new role information.

Create a custom copy of the default roles directory:
I $ cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

Create a new file called ~/roles/Horizon.yaml and create a new Horizon role containing base and
core OpenStack Dashboard services. For example:

- name: Horizon
CountDefault: 1
HostnameFormatDefault: '%stackname%-horizon-%index%'

ServicesDefault:
- 0S::TripleO::Services: :CACerts
- 0S::Triple0::Services: :Kernel
- 0S::Triple0::Services: :Ntp
- 0S::Triple0::Services: :Snmp
- 0S::TripleO::Services: :Sshd
- 0S::Triple0::Services: :Timezone
- 0S::TripleO::Services::TripleoPackages
- 0S::Triple0::Services::TripleoFirewall
- 0S::TripleO::Services::SensuClient
- 0S::TripleO::Services::FluentdClient
- 0S::Triple0::Services: :AuditD
- 0S::TripleO::Services::Collectd
- 0S::Triple0::Services: :MySQLClient
- 0S::Triple0::Services: :Apache
- 0S::TripleO::Services: :Horizon

It is also a good idea to set the CountDefault to 1 so that a default Overcloud always includes the
Horizon node.

If scaling the services in an existing overcloud, keep the existing services on the Controller role. If
creating a new overcloud and you want the OpenStack Dashboard to remain on the standalone role,
remove the OpenStack Dashboard components from the Controller role definition:

- name: Controller
CountDefault: 1
ServicesDefault:

- 0S::TripleO::Services: :GnocchiMetricd

- 0S::TripleO::Services: :GnocchiStatsd
- 0S::Triple0::Services: :HAproxy

41

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

- 0S::Triple0::Services: :HeatApi

- 0S::Triple0::Services: :HeatApiCfn

- 0S::Triple0::Services: :HeatApiCloudwatch

- 0S::Triple0::Services: :HeatEngine

- 0S::Triple0::Services: :Horizon # Remove this
service

- 0S::Triple0::Services::IronicApi

- 0S::TripleO::Services::IronicConductor

- 0S::TripleO::Services::Iscsid

- 0S::Triple0::Services: :Keepalived

Generate the new roles_data file using the roles directory as the source:

$ openstack overcloud roles generate -o roles_data-horizon.yaml \
--roles-path ~/roles \
Controller Compute Horizon

You might need to define a new flavor for this role so that you can tag specific nodes. For this example,
use the following commands to create a horizon flavor:

$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 horizon
$ openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property
"capabilities:profile"="horizon" horizon

Tag nodes into the new flavor using the following command:

$ openstack baremetal node set --property
capabilities='profile:horizon,boot_option:local' 58c3d07e-24f2-48a7-bbb6-
6843f0e8eel3

Define the Horizon node count and flavor using the following environment file snippet:

parameter_defaults:
OvercloudHorizonFlavor: horizon
HorizonCount: 1

Include the new roles_data file and environment file when running the openstack overcloud

deploy command. For example:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-
horizon.yaml -e ~/templates/node-count-flavor.yaml

When the deployment completes, this creates a three-node Overcloud consisting of one Controller node,
one Compute node, and one Networker node. To view the Overcloud’s list of nodes, run the following
command:

I $ openstack server list

6.4. COMPOSABLE SERVICES

42

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

6.4.1. Examining Composable Service Architecture

The core Heat template collection contains a collection of composable service templates in the
puppet/services subdirectory. You can view these services with the following command:

I $ 1ls /usr/share/openstack-tripleo-heat-templates/puppet/services

Each service template contains a description that identifies its purpose. For example, the
keystone.yaml service template contains the following description:

description: >
I OpenStack Identity (keystone') service configured with Puppet
These service templates are registered as resources specific to a Red Hat OpenStack Platform
deployment. This means you can call each resource using a unique Heat resource namespace defined
in the overcloud-resource-registry-puppet.j2.yaml file. All services use the
0S: :TripleO: :Services namespace for their resource type. For example, the keystone.yaml
service template is registered to the 0S: : TripleO: :Services: :Keystone resource type:

grep "0S::TripleO::Services: :Keystone" /usr/share/openstack-tripleo-heat-
templates/overcloud-resource-registry-puppet.j2.yaml
0S::Triple0::Services: :Keystone: puppet/services/keystone.yaml

The overcloud. j2.yaml Heat template includes a section of Jinja2-based code to define a service list

for each custom role in the roles_data.yaml file:

{{role.name}}Services:
description: A list of service resources (configured in the Heat
resource_registry) which represent nested stacks
for each service that should get installed on the
{{role.name}} role.
type: comma_delimited_list
default: {{role.ServicesDefault|default([])}}

For the default roles, this creates the following service list parameters: ControllerServices,
ComputeServices, BlockStorageServices, ObjectStorageServices, and
CephStorageServices.

You define the default services for each custom role in the roles_data.yaml file. For example, the
default Controller role contains the following content:

- name: Controller

CountDefault: 1

ServicesDefault:
- 0S::TripleO::Services: :CACerts
- 0S::Triple0::Services: :CephMon
- 0S::Triple0::Services: :CephExternal
- 0S::Triple0::Services: :CephRgw
- 0S::Triple0::Services::CinderApi
- 0S::Triple0::Services: :CinderBackup
- 0S::TripleO::Services::CinderScheduler
- 0S::TripleO::Services: :CinderVolume
- 0S::Triple0::Services: ::Core
- 0S::Triple0::Services: :Kernel

43

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

- 0S::Triple0::Services: :Keystone
- 0S::Triple0::Services::GlanceApi
- 0S::Triple0::Services::GlanceRegistry

These services are then defined as the default list for the ControllerServices parameter.

You can also use an environment file to override the default list for the service parameters. For example,
you can define ControllerServices as a parameter_default in an environment file to override
the services list from the roles_data.yaml file.

6.4.2. Adding and Removing Services from Roles

The basic method of adding or removing services involves creating a copy of the default service list for a
node role and then adding or removing services. For example, you might aim to remove OpenStack
Orchestration (heat) from the Controller nodes. In this situation, create a custom copy of the default
roles directory:

I $ cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

Edit the ~/roles/Controller.yaml file and modify the service list for the ServicesDefault
parameter. Scroll to the OpenStack Orchestration services and remove them:

- 0S::Triple0::Services::GlanceApi

- 0S::TripleO::Services::GlanceRegistry

- 0S::Triple0::Services: :HeatApi # Remove this service
- 0S::Triple0::Services: :HeatApiCfn # Remove this service
- 0S::TripleO::Services: :HeatApiCloudwatch # Remove this service
- 0S::Triple0::Services: :HeatEngine # Remove this service
- 0S::Triple0::Services: :MySQL

- 0S::Triple0::Services: :NeutronDhcpAgent

Generate the new roles_data file. For example:

$ openstack overcloud roles generate -o roles_data-no_heat.yaml \
--roles-path ~/roles \
Controller Compute Networker

Include this new roles_data file when running the openstack overcloud deploy command. For

example:

no_heat.yaml

I $ openstack overcloud deploy --templates -r ~/templates/roles_data-

This deploys an Overcloud without OpenStack Orchestration services installed on the Controller nodes.

44

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

NOTE

You can also disable services in the roles_data file using a custom environment file.
Redirect the services to disable to the 0S: :Heat : : None resource. For example:

resource_registry:
0S::TripleO::Services::HeatApi: 0S::Heat::None
0S::TripleO::Services: :HeatApiCfn: 0S::Heat::None
0S::TripleO: :Services::HeatApiCloudwatch: 0S::Heat: :None
0S::TripleO::Services::HeatEngine: 0S::Heat::None

6.4.3. Enabling Disabled Services

Some services are disabled by default. These services are registered as null operations
(0S: :Heat: :None) in the overcloud-resource-registry-puppet.j2.yaml file. For example,
the Block Storage backup service (cinder -backup) is disabled:

I 0S::TripleO::Services::CinderBackup: 0S::Heat::None

To enable this service, include an environment file that links the resource to its respective Heat templates
in the puppet/services directory. Some services have predefined environment files in the
environments directory. For example, the Block Storage backup service uses the
environments/cinder -backup.yaml file, which contains the following:

resource_registry:
0S::TripleO: :Services: :CinderBackup:
../puppet/services/pacemaker/cinder-backup.yaml

This overrides the default null operation resource and enables the service. Include this environment file
when running the openstack overcloud deploy command.

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-
heat-templates/environments/cinder-backup.yaml

TIP

For another example of how to enable disabled services, see the Installation section of the OpenStack
Data Processing guide. This section contains instructions on how to enable the OpenStack Data
Processing service (sahara) on the overcloud.

6.4.4. Creating a Generic Node with No Services

Red Hat OpenStack Platform provides the ability to create generic Red Hat Enterprise Linux 7 nodes
without any OpenStack services configured. This is useful in situations where you need to host software
outside of the core Red Hat OpenStack Platform environment. For example, OpenStack Platform
provides integration with monitoring tools such as Kibana and Sensu (see Monitoring Tools Configuration
Guide). While Red Hat does not provide support for the monitoring tools themselves, the director can
create a generic Red Hat Enterprise Linux 7 node to host these tools.

45

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/openstack_data_processing/#install
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/openstack_data_processing
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/monitoring_tools_configuration_guide

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

NOTE

The generic node still uses the base overcloud-full image rather than a base Red
Hat Enterprise Linux 7 image. This means the node has some Red Hat OpenStack
Platform software installed but not enabled or configured.

Creating a generic node requires a new role without a ServicesDefault list:
I - name: Generic

Include the role in your custom roles_data file (roles_data_with_generic.yaml). Make sure to
keep the existing Controller and Compute roles.

You can also include an environment file (generic-node-params.yaml) to specify how many generic
Red Hat Enterprise Linux 7 nodes you require and the flavor when selecting nodes to provision. For
example:

parameter_defaults:
OvercloudGenericFlavor: baremetal
GenericCount: 1

Include both the roles file and the environment file when running the openstack overcloud deploy
command. For example:

$ openstack overcloud deploy --templates -r
~/templates/roles_data_with_generic.yaml -e ~/templates/generic-node-
params.yaml

This deploys a three-node environment with one Controller node, one Compute node, and one generic
Red Hat Enterprise Linux 7 node.

6.5. ARCHITECTURES

6.5.1. Service Architecture: Monolithic Controller

The default architecture for composable services uses a monolithic Controller that contains the core Red
Hat OpenStack Platform Services. These default services are defined in the roles file included with the
director’s Heat template collection (/usr/share/openstack-tripleo-heat-
templates/roles_data.yaml).

IMPORTANT

Some services are disabled by default. See Section 6.4.3, “Enabling Disabled Services”
for information on how to enable these services.

- name: Controller # the 'primary' role goes first
CountDefault: 1
ServicesDefault:
- 0S::TripleO::Services::CACerts
- 0S::TripleO::Services: :CephMds
- 0S::Triple0::Services: :CephMon
- 0S::Triple0::Services: :CephExternal

46

0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

:CephRbdMirror
:CephRgw

:CinderApi
:CinderBackup
:CinderScheduler
:CinderVolume
:CinderBackendDellPs
:CinderBackendDellSc
:CinderBackendNetApp
:CinderBackendScalelIO
:Congress

:Kernel

:Keystone

:GlanceApi

:HeatApi

:HeatApiCfn
:HeatApiCloudwatch
:HeatEngine

:MySQL

:MySQLClient
:NeutronDhcpAgent
:NeutronL3Agent
:NeutronMetadataAgent
:NeutronApi
:NeutronCorePlugin
:NeutronOvsAgent
:RabbitMQ

‘HAproxy

:Keepalived
:Memcached
:Pacemaker

:Redis
:NovaConductor
:MongoDb

:NovaApi
:NovaPlacement
:NovaMetadata
:NovaScheduler
:NovaConsoleauth
:NovaVncProxy
:Ec2Api

:Ntp

:SwiftProxy
:SwiftStorage
:SwiftRingBuilder
:Snmp

:Sshd

:Timezone
:CeilometerApi
:CeilometerCollector
:CeilometerExpirer
:CeilometerAgentCentral
:CeilometerAgentNotification
:Horizon

:GnocchiApi
:GnocchiMetricd

47

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

- 0S::TripleO::Services: :GnocchiStatsd

- 0S::Triple0::Services::ManilaApi

- 0S::TripleO::Services: :ManilaScheduler

- 0S::TripleO::Services: :ManilaBackendGeneric
- 0S::Triple0::Services: :ManilaBackendNetapp
- 0S::Triple0::Services: :ManilaBackendCephFs
- 0S::TripleO::Services: :ManilaShare

- 0S::Triple0::Services: :AodhApi

- 0S::TripleO::Services: :AodhEvaluator

- 0S::TripleO::Services: :AodhNotifier

- 0S::TripleO::Services: :AodhListener

- 0S::Triple0::Services: :SaharaApi

- 0S::Triple0::Services: :SaharaEngine

- 0S::Triple0::Services::IronicApi

- 0S::TripleO::Services::IronicConductor

- 0S::Triple0::Services: :Novalronic

- 0S::TripleO::Services::TripleoPackages

- 0S::Triple0::Services::TripleoFirewall

- 0S::Triple0::Services: :0OpenDaylightApi

- 0S::Triple0::Services: :0penDaylightOvs

- 0S::TripleO::Services::SensuClient

- 0S::TripleO::Services::FluentdClient

- 0S::TripleO::Services::Collectd

- 0S::Triple0::Services: :BarbicanApi

- 0S::Triple0::Services: :PankoApi

- 0S::TripleO::Services: :Tacker

- 0S::Triple0::Services::Zaqgar

- 0S::Triple0::Services: :0VNDBs

- 0S::Triple0::Services: :NeutronML2FujitsuCfab
- 0S::Triple0::Services: :NeutronML2FujitsuFossw
- 0S::TripleO::Services::CinderHPELeftHandISCSI
- 0S::TripleO::Services: ::Etcd

- 0S::Triple0::Services: :AuditD

- 0S::Triple0::Services::0ctaviaApi

- 0S::Triple0::Services::0ctaviaHealthManager
- 0S::Triple0::Services::0ctaviaHousekeeping
- 0S::TripleO::Services::0ctaviaWorker

6.5.2. Service Architecture: Split Controller

You can split the services on the Controller nodes into two separate roles:

e Controller PCMK - Contains only the core services that Pacemaker manages including
database and load balancing

e Controller systemd - Contains all OpenStack services

The remaining default roles (Compute, Ceph Storage, Object Storage, Block Storage) remain
unaffected.

Use the following tables as a guide to creating a split controller architecture.

48

Controller PCMK

The following services are the minimum services required for the Controller PCMK role.

- name: Controller

ServicesDefault:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:

Controller systemd

The following table represents the services available on the Controller systemd role:

IMPORTANT

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

- name: ControllerSystemd

ServicesDefault:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Some services are disabled by default. See Section 6.4.3, “Enabling Disabled Services”
for information on how to enable these services.

:CACerts

:Kernel

:Ntp

:Snmp

:Sshd

:Timezone
:TripleoPackages
:TripleoFirewall
:SensuClient
:FluentdClient
:AuditD

:Collectd
:MySQLClient
:CephClient
:CephExternal
:CinderBackup
:CinderVolume
‘HAproxy

:Keepalived
:ManilaBackendGeneric
:ManilaBackendNetapp
:ManilaBackendCephFs
:ManilaShare
:Memcached

*MySQL

:Pacemaker

:RabbitMQ

:Redis

:CACerts

:Kernel

:Ntp

:Snmp

:Sshd

:Timezone
:TripleoPackages
:TripleoFirewall
:SensuClient
:FluentdClient

49

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

50

0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

:AuditD

:Collectd

:MySQLClient

:Apache

:AodhApi

:AodhEvaluator
:AodhListener
:AodhNotifier
:CeilometerAgentCentral
:CeilometerAgentNotification
:CeilometerApi
:CeilometerCollector
:CeilometerExpirer
:CephClient
:CephExternal

:CephMon

:CephRgw

:CinderApi
:CinderScheduler
:GlanceApi

:GnocchiApi
:GnocchiMetricd
:GnocchiStatsd

:HeatApi

:HeatApiCfn
:HeatApiCloudwatch
:HeatEngine

:Horizon

:IronicApi
:IronicConductor
:Keystone

:ManilaApi
:ManilaScheduler
:MongoDb

:MySQLClient
:NeutronApi
:NeutronCorePlugin
:NeutronCorePluginML20VN
:NeutronCorePluginMidonet
:NeutronCorePluginNuage
:NeutronCorePluginOpencontrail
:NeutronCorePluginPlumgrid
:NeutronDhcpAgent
:NeutronL3Agent
:NeutronMetadataAgent
:NeutronOvsAgent
:NovaApi

:NovaConductor
:NovaConsoleauth
:NovaIronic
:NovaPlacement
:NovaScheduler
:NovavncProxy
:0OpenDaylightApi
:0OpenDaylightOvs
:PankoApi

0S:
0S:
0S:
0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services:
:Services:
:Services:
:Services:

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

:SaharaApi
:SaharaEngine
:SwiftProxy
:SwiftRingBuilder

6.5.3. Service Architecture: Standalone Roles

The following tables list the supported custom role collection you can create and scale with the
composable service architecture in Red Hat OpenStack Platform. Group these collections together as
individual roles and use them to isolate and split services in combination with the previous architectures:

e Section 6.5.1, “Service Architecture: Monolithic Controller”

e Section 6.5.2, “Service Architecture: Split Controller”

IMPORTANT

Some services are disabled by default. See Section 6.4.3, “Enabling Disabled Services”
for information on how to enable these services.

Note that all roles use a set of common services, which include:

e O0S:

e O0S:

e O0S:

e O0S:

e O0S:

e O0S:

e O0S:

e O0S:

e O0S:

e O0S:

e O0S:

e O0S:

e O0S:

e O0S:

e O0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:TripleO:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:TripleO: :Services: :AuditD

:CACerts
:CertmongeruUser
:Collectd
:ContainersLogrotateCrond
:Docker
:FluentdClient
:Kernel

:Ntp
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages

:TripleO: :Services: : Tuned

Once you have chosen the roles to include in your overcloud, remove the associated services (except for
the common services) from the main Controller roles. For example, if creating a standalone Keystone
role, remove the 0S: : TripleO: :Services: :Apache and 0S: :TripleO: :Services: :Keystone

51

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

services from the Controller nodes. The only exceptions are the services with limited custom role support
(see Table 6.1, “Custom Roles Support”).

Click on a role in the following table to view the services associated with it.

Table 6.1. Custom Roles Support

Role Support Status

Ceph Storage Monitor Supported
Ceph Storage OSD Supported
Ceph Storage RadosGW Limited. If spliting, this service needs to be part of a

Controller systemd role.

Cinder API Supported
Controller PCMK Supported
Database Supported
Glance Supported
Heat Supported
Horizon Supported
Ironic Supported
Keystone Supported
Load Balancer Supported
Manila Limited. If spliting, this service needs to be part of a

Controller systemd role.

Message Bus Supported
Networker Supported
Neutron API Supported
Nova Supported
Nova Compute Supported
OpenDaylight Technical Preview

52

Redis

Sahara

Swift API

Swift Storage

Telemetry

Ceph Storage Monitor

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Role Support Status

Supported

Limited. If spliting, this service needs to be part of a
Controller systemd role.

Supported

Supported

Supported

The following services configure Ceph Storage Monitor.

- name: CephMon

ServicesDefault:

Common Services

- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:

Role-Specific Services
0S::TripleO::Services::

Ceph Storage OSD

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

CephMon

The following services configure Ceph Storage OSDs.

- name: CephStorage

ServicesDefault:

Common Services

- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:

:AuditD
:CACerts
:CertmongerUser
:Collectd
:Docker
:FluentdClient
:Kernel

53

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

- 0S::Triple0::Services: :Ntp

- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient

- 0S::Triple0::Services: :Snmp

- 0S::Triple0::Services::Timezone

- 0S::Triple0::Services::TripleoFirewall

- 0S::TripleO::Services::TripleoPackages

- 0S::TripleO::Services: :Tuned

Role-Specific Services
- 0S::Triple0::Services: :Ceph0OSD

Ceph Storage RadosGW

The following services configure Ceph Storage RadosGW. If separating these services, they need to be

part of a Controller systemd role.

Common Services

- 0S::Triple0::Services: :AuditDh

- 0S::TripleO::Services: :CACerts

- 0S::TripleO::Services: ::CertmongerUser
- 0S::TripleO::Services::Collectd

- 0S::TripleO::Services: :Docker

- 0S::TripleO::Services::FluentdClient

- 0S::Triple0::Services: :Kernel

- 0S::Triple0::Services: :Ntp

- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient

- 0S::Triple0::Services: :Snmp

- 0S::Triple0::Services::Timezone

- 0S::Triple0::Services::TripleoFirewall
- 0S::TripleO::Services::TripleoPackages
- 0S::TripleO::Services: :Tuned

Role-Specific Services
- 0S::Triple0::Services: :CephRgw

Cinder API

The following services configure the OpenStack Block Storage API.

- name: CinderApi

54

ServicesDefault:
Common Services
- 0S::TripleO::Services: :AuditD
- 0S::TripleO::Services: :CACerts
- 0S::Triple0::Services: :CertmongerUser
- 0S::TripleO::Services::Collectd
- 0S::TripleO::Services: :Docker
- 0S::TripleO::Services::FluentdClient
- 0S::Triple0::Services: :Kernel
- 0S::Triple0::Services: :Ntp
- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient
- 0S::Triple0::Services: :Snmp
- 0S::Triple0::Services: :Timezone
- 0S::Triple0::Services::TripleoFirewall
- 0S::TripleO::Services::TripleoPackages

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

0S::TripleO::Services: :Tuned
Role-Specific Services
0S::TripleO::Services: :CinderApi
0S::Triple0: :Services: :CinderScheduler

F*

Controller PCMK

The following services are the minimum services required for the Controller PCMK as a standalone role.

- name: Controller
ServicesDefault:

Common Services
- 0S::Triple0::Services: :AuditD
- 0S::TripleO::Services: :CACerts
- 0S::Triple0::Services: :CertmongerUser
- 0S::TripleO::Services::Collectd
- 0S::TripleO::Services: :Docker
- 0S::TripleO::Services::FluentdClient
- 0S::Triple0::Services: :Kernel
- 0S::Triple0::Services: :Ntp
- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient
- 0S::Triple0::Services: :Snmp
- 0S::TripleO::Services: :Timezone
- 0S::Triple0::Services::TripleoFirewall
- 0S::TripleO::Services::TripleoPackages
- 0S::TripleO::Services: :Tuned
Role-Specific Services
- 0S::Triple0::Services::CephClient
- 0S::Triple0::Services: :CephExternal
- 0S::Triple0::Services: :CinderBackup
- 0S::TripleO::Services: :CinderVolume
- 0S::Triple0::Services: :Keepalived
- 0S::TripleO::Services: :ManilaBackendGeneric
- 0S::Triple0::Services: :ManilaBackendNetapp
- 0S::Triple0::Services: :ManilaBackendCephFs
- 0S::TripleO::Services: :ManilaShare
- 0S::TripleO::Services: :Memcached
- 0S::TripleO::Services: :Pacemaker

This is the same as the Controller PCMK role in the Split Controller Architecture. The difference is you
can split the following highly available services to standalone roles:

e Database

e Load Balancer

e Message Bus

o Redis

If not, creating standalone roles for these services, merge the services from these roles into the
Controller PCMK standalone role.

Database

55

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

The following services configure the main database. The database is MariaDB managed as a Galera

cluster using Pacemaker.

- name: Database
ServicesDefault:

Common Services
- 0S::Triple0::Services: :AuditD
- 0S::TripleO::Services: :CACerts
- 0S::TripleO::Services: ::CertmongerUser
- 0S::TripleO::Services::Collectd
- 0S::TripleO::Services: :Docker
- 0S::TripleO::Services::FluentdClient
- 0S::Triple0::Services: :Kernel
- 0S::Triple0::Services: :Ntp
- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient
- 0S::Triple0::Services: :Snmp
- 0S::Triple0::Services::Timezone
- 0S::Triple0::Services::TripleoFirewall
- 0S::TripleO::Services::TripleoPackages
- 0S::TripleO::Services: :Tuned

Role-Specific Services
- 0S::TripleO::Services: :Pacemaker
- 0S::Triple0::Services: :MySQL

Glance

The following services configure the OpenStack Image service.

- name: Glance
ServicesDefault:

Common Services
- 0S::Triple0::Services: :AuditD
- 0S::TripleO::Services: :CACerts
- 0S::TripleO::Services: :CertmongeruUser
- 0S::TripleO::Services::Collectd
- 0S::TripleO::Services: ::Docker
- 0S::TripleO::Services::FluentdClient
- 0S::Triple0::Services: :Kernel
- 0S::Triple0::Services: :Ntp
- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient
- 0S::Triple0::Services: :Snmp
- 0S::Triple0::Services::Timezone
- 0S::TripleO::Services::TripleoFirewall
- 0S::TripleO::Services::TripleoPackages
- 0S::TripleO::Services: :Tuned

Role-Specific Services

- 0S::Triple0::Services::CephClient

- 0S::Triple0::Services: :CephExternal
- 0S::Triple0::Services::GlanceApi

Heat
The following services configure the OpenStack Orchestration service.

56

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

- name: Heat
ServicesDefault:

Common Services
- 0S::Triple0::Services: :AuditD
- 0S::TripleO::Services: :CACerts
- 0S::Triple0::Services: :CertmongerUser
- 0S::TripleO::Services::Collectd
- 0S::TripleO::Services: :Docker
- 0S::TripleO::Services::FluentdClient
- 0S::TripleO::Services: :Kernel
- 0S::Triple0::Services: :Ntp
- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient
- 0S::Triple0::Services: :Snmp
- 0S::Triple0::Services: :Timezone
- 0S::TripleO::Services::TripleoFirewall
- 0S::TripleO::Services::TripleoPackages
- 0S::TripleO::Services: :Tuned
Role-Specific Services
- 0S::Triple0::Services: :HeatApi
- 0S::Triple0::Services: :HeatApiCfn
- 0S::Triple0::Services: :HeatApiCloudwatch
- 0S::Triple0::Services: :HeatEngine

Horizon

The following services configure the OpenStack Dashboard.

- name: Horizon
ServicesDefault:

Common Services
- 0S::Triple0::Services: :AuditDh
- 0S::TripleO::Services: :CACerts
- 0S::TripleO::Services: ::CertmongerUser
- 0S::TripleO::Services::Collectd
- 0S::TripleO::Services: :Docker
- 0S::TripleO::Services::FluentdClient
- 0S::Triple0::Services: :Kernel
- 0S::Triple0::Services: :Ntp
- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient
- 0S::Triple0::Services: :Snmp
- 0S::Triple0::Services::Timezone
- 0S::TripleO::Services::TripleoFirewall
- 0S::TripleO::Services::TripleoPackages
- 0S::TripleO::Services: :Tuned

Role-Specific Services
- 0S::Triple0::Services: :Apache
- 0S::TripleO::Services: :Horizon

Ironic

The following services configure the OpenStack Bare Metal Provisioning service.

- name: Ironic
ServicesDefault:

57

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Common Services

- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:
- 0S:

Note the following:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
Role-Specific Services
- 0S::Triple0::Services::
- 0S::TripleO::Services::
- 0S::TripleO::Services::

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

IronicApi
IronicConductor
IronicPxe

e Requires access to the Storage network.

e The 0S::Triple0::Services: :IronicApi service can exist on either the Ironic role or

the Controller role depending on your requirements.

e Requiresthe 0S: :TripleO: :Services: :NovaIronic service on the Controller role.

Keystone

The following services configure the OpenStack Identity service. When performing minor updates, make

sure to update this role before updating other services.

58

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

- name: Keystone

ServicesDefault:
Common Services
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:

:Services:
Role-Specific Services
- 0S::Triple0::Services::
- 0S::Triple0::Services::

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

Apache
Keystone

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Load Balancer

The following services configure the overcloud’s load balancer. The load balancer is HAProxy managed
with Pacemaker.

- name: LoadBalancer
ServicesDefault:

Common Services
- 0S::Triple0::Services: :AuditDh
- 0S::TripleO::Services: :CACerts
- 0S::TripleO::Services: ::CertmongerUser
- 0S::TripleO::Services::Collectd
- 0S::TripleO::Services: ::Docker
- 0S::TripleO::Services::FluentdClient
- 0S::Triple0::Services: :Kernel
- 0S::Triple0::Services: :Ntp
- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient
- 0S::Triple0::Services: :Snmp
- 0S::Triple0::Services::Timezone
- 0S::Triple0::Services::TripleoFirewall
- 0S::TripleO::Services::TripleoPackages
- 0S::TripleO::Services: :Tuned

Role-Specific Services
- 0S::TripleO::Services: :Pacemaker
- 0S::Triple0::Services: :HAproxy

Manila

The following services configure the OpenStack Shared File Systems service. If separating these
services, they need to be part of a Controller systemd role.

Common Services

- 0S::Triple0::Services: :AuditD

- 0S::TripleO::Services: :CACerts

- 0S::TripleO::Services: :CertmongerUser
- 0S::TripleO::Services::Collectd

- 0S::TripleO::Services: ::Docker

- 0S::TripleO::Services::FluentdClient

- 0S::Triple0::Services: :Kernel

- 0S::Triple0::Services: :Ntp

- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient

- 0S::Triple0::Services: :Snmp

- 0S::Triple0::Services::Timezone

- 0S::Triple0::Services::TripleoFirewall
- 0S::TripleO::Services::TripleoPackages
- 0S::TripleO::Services: :Tuned

Role-Specific Services

- 0S::Triple0::Services::ManilaApi

- 0S::TripleO::Services: :ManilaScheduler
Message Bus

The following services configure the messaging queue. The messaging queue is RabbitMQ managed
with Pacemaker.

59

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

- name: MessageBus

ServicesDefault:
Common Services

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

- 0S::TripleO:

Role-Specific Services
- 0S::Triple0::Services::
- 0S::TripleO::Services::

Networker

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

Pacemaker
RabbitMQ

The following services configure the OpenStack Networking agents.

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

- name: Networker

ServicesDefault:
Common Services
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:

:Services:
Role-Specific Services

- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:

Neutron API

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

:NeutronDhcpAgent
:NeutronL3Agent
:NeutronMetadataAgent
:NeutronOvsAgent

The following services configure the OpenStack Networking API.

- name: NeutronApi
ServicesDefault:

60

Common Services

- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
Role-Specific Services
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:

Nova

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

:NeutronApi

:NeutronCorePlugin
:NeutronCorePluginML20VN
:NeutronCorePluginMidonet
:NeutronCorePluginNuage
:NeutronCorePluginOpencontrail
:NeutronCorePluginPlumgrid

The following services configure the OpenStack Compute services.

- name: Nova
ServicesDefault:

Common Services

- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
Role-Specific Services
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:

Nova Compute

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

:NovaApi
:NovaConductor
:NovaConsoleauth
:NovaScheduler
:NovaPlacement
:NovaVncProxy

61

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

The following services configure an OpenStack Compute node.

- name: Compute
ServicesDefault:

Common Services

- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
Role-Specific Services
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:

OpenDaylight

The following services configure OpenDayLight. These services are technology preview for Red Hat

OpenStack Platform 11.

62

- name: Opendaylight

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

ServicesDefault:
Common Services
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

:CephClient

:CephExternal
:ComputeCeilometerAgent
:ComputeNeutronCorePlugin
:ComputeNeutronL3Agent
:ComputeNeutronMetadataAgent
:ComputeNeutronOvsAgent
:NeutronOvsAgent
:NeutronSriovAgent
:NovaCompute
:NovalLibvirt
:0OpenDaylightOvs

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

0S::TripleO::Services: :Tuned
Role-Specific Services
0S::Triple0::Services: :0penDaylightApi
0S::TripleO: :Services: :0penDaylightOvs

I+

Redis

The following services configure Redis managed with Pacemaker.

- name: Redis
ServicesDefault:

Common Services
- 0S::Triple0::Services: :Audith
- 0S::TripleO::Services: :CACerts
- 0S::TripleO::Services: ::CertmongerUser
- 0S::TripleO::Services::Collectd
- 0S::TripleO::Services: ::Docker
- 0S::TripleO::Services::FluentdClient
- 0S::Triple0::Services: :Kernel
- 0S::Triple0::Services: :Ntp
- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient
- 0S::Triple0::Services: :Snmp
- 0S::Triple0::Services::Timezone
- 0S::Triple0::Services::TripleoFirewall
- 0S::TripleO::Services::TripleoPackages
- 0S::TripleO::Services: :Tuned

Role-Specific Services

- 0S::TripleO::Services: :Pacemaker

- 0S::TripleO::Services: :Redis
Sahara

The following services configure the OpenStack Clustering service. If separating these services, they

need to be part of a Controller systemd role.

Common Services

- 0S::Triple0::Services: :AuditD

- 0S::TripleO::Services: :CACerts

- 0S::TripleO::Services: :CertmongeruUser
- 0S::TripleO::Services::Collectd

- 0S::TripleO::Services: ::Docker

- 0S::TripleO::Services::FluentdClient

- 0S::Triple0::Services: :Kernel

- 0S::Triple0::Services: :Ntp

- 0S::TripleO::Services::ContainersLogrotateCrond
- 0S::TripleO::Services::SensuClient

- 0S::Triple0::Services: :Snmp

- 0S::Triple0::Services::Timezone

- 0S::TripleO::Services::TripleoFirewall
- 0S::TripleO::Services::TripleoPackages
- 0S::TripleO::Services: :Tuned

Role-Specific Services
- 0S::Triple0::Services::SaharaApi
- 0S::Triple0::Services: :SaharaEngine

63

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Swift API

The following services configure the OpenStack Object Storage API.

- name: SwiftApi

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

ServicesDefault:
Common Services
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:

Role-Specific Services
- 0S::Triple0::Services::
- 0S::TripleO::Services::

Swift Storage

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

SwiftProxy
SwiftRingBuilder

The following services configure the OpenStack Object Storage service.

- name: ObjectStorage

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

ServicesDefault:
Common Services
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:

Telemetry

:Services:
Role-Specific Services
- 0S::TripleO::Services::
- 0S::Triple0::Services::

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

SwiftRingBuilder
SwiftStorage

The following services configure the OpenStack Telemetry services.

64

- name: Telemetry

ServicesDefault:

Common Services

- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
Role-Specific Services
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:
- 0S::TripleO::Services:

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

:AuditD

:CACerts
:Certmongeruser
:Collectd
:Docker
:FluentdClient
:Kernel

:Ntp
:ContainersLogrotateCrond
:SensuClient
:Snmp

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

:Apache

:AodhApi

:AodhEvaluator
:AodhListener
:AodhNotifier
:CeilometerAgentCentral
:CeilometerAgentNotification
:CeilometerApi
:CeilometerCollector
:CeilometerExpirer
:GnocchiApi
:GnocchiMetricd
:GnocchiStatsd

:MongoDb

:PankoApi

6.6. COMPOSABLE SERVICE REFERENCE

The following tables contain all composable service available for Red Hat OpenStack Platform 12:

e Table 6.2, “Services Retained from Previous Versions”

e Table 6.3, “New Services for Red Hat OpenStack Platform 12”

IMPORTANT

Some services are disabled by default. See Section 6.4.3, “Enabling Disabled Services”

for information on how to enable these services.

Table 6.2. Services Retained from Previous Versions

Service Description

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Service Description

66

0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
ntCentral
0S::TripleO::Services:
ntNotification
0S::TripleO::Services:
0S::TripleO::Services:
lector
0S::TripleO::Services:
irer
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:

AodhApi

:AodhEvaluator

:AodhListener

:AodhNotifier

:Apache

:CACerts

:CeilometerAge

:CeilometerAge

:CeilometerApi

:Ceilometercol

:CeilometerExp

:CephClient

:CephExternal

:CephMon

:CephOSD

:CinderApi

:CinderBackup

OpenStack Telemetry Alarming (aodh) API service
configured with Puppet

OpenStack Telemetry Alarming (aodh) Evaluator
service configured with Puppet

OpenStack Telemetry Alarming (aodh) Listener
service configured with Puppet

OpenStack Telemetry Alarming (aodh) Notifier
service configured with Puppet

Apache service configured with Puppet. Note this is
typically included automatically with other services
which run through Apache.

HAProxy service configured with Puppet

OpenStack Telemetry (ceilometer) Central Agent
service configured with Puppet

OpenStack Telemetry (ceilometer) Notification
Agent service configured with Puppet

OpenStack Telemetry (ceilometer) API service
configured with Puppet

OpenStack Telemetry (ceilometer) Collector
service configured with Puppet

OpenStack Telemetry (ceilometer) Expirer
service configured with Puppet

(Disabled by default) Ceph Client service

(Disabled by default) Ceph External service

(Disabled by default) Ceph Monitor service

(Disabled by default) Ceph OSD service

OpenStack Block Storage (cinder) API service
configured with Puppet

(Disabled by default) OpenStack Block Storage
(cinder) Backup service configured with Puppet

0S::TripleO::Services:
er
0S::TripleO::Services:
0S::TripleO::Services:
eterAgent
0S::TripleO::Services:
nCorePlugin
0S::TripleO::Services:
nL3Agent
0S::TripleO::Services:
nMetadataAgent
0S::TripleO::Services:
novsAgent
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
d
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Service Description

CinderSchedul

:CinderVolume

:ComputeCeilom

:ComputeNeutro

:ComputeNeutro

:ComputeNeutro

:ComputeNeutro

:FluentdClient

:GlanceApi

:6nocchiApi

:GnocchiMetric

:GnocchiStatsd

:HAproxy

:HeatApi

:HeatApiCfn

OpenStack Block Storage (cinder) Scheduler
service configured with Puppet

OpenStack Block Storage (cinder) Volume service
(Pacemaker-managed) configured with Puppet

OpenStack Telemetry (ceilometer) Compute
Agent service configured with Puppet

OpenStack Networking (neutron) ML2 Plugin
configured with Puppet

(Disabled by default) OpenStack Networking
(neutron) L3 agent for DVR enabled Compute
nodes configured with Puppet

(Disabled by default) OpenStack Networking
(neutron) Metadata agent configured with Puppet

OpenStack Networking (neutron) OVS agent
configured with Puppet

(Disabled by default) Fluentd client configured with
Puppet

OpenStack Image (glance) API service configured
with Puppet

OpenStack Telemetry Metrics (gnocchi) service
configured with Puppet

OpenStack Telemetry Metrics (gnocchi) service
configured with Puppet

OpenStack Telemetry Metrics (gnocchi) service
configured with Puppet

HAProxy service (Pacemaker-managed) configured
with Puppet

OpenStack Orchestration (heat) API service
configured with Puppet

OpenStack Orchestration (heat) CloudFormation
API service configured with Puppet

67

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Service Description

68

0S::TripleO::
atch
0S::TripleO:
0S::TripleO:
0S::TripleO:
0S::TripleO:
or
0S::TripleO:
0S::TripleO:
0S::TripleO:
0S::TripleO:
0S::TripleO:
er
0S::TripleO:
0S::TripleO:
0S::TripleO:
0S::TripleO:
0S::TripleO:

Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

HeatApiCloudw

:HeatEngine

:Horizon

:IronicApi

:IronicConduct

:Keepalived

:Kernel

:Keystone

:ManilaApi

:ManilaSchedul

:ManilaShare

:Memcached

:MongoDb

:MySQL

:NeutronApi

OpenStack Orchestration (heat) CloudWatch API
service configured with Puppet

OpenStack Orchestration (heat) Engine service
configured with Puppet

OpenStack Dashboard (horizon) service
configured with Puppet

(Disabled by default) OpenStack Bare Metal
Provisioning (ironic) API configured with Puppet

(Disabled by default) OpenStack Bare Metal
Provisioning (ironic) conductor configured with
Puppet

Keepalived service configured with Puppet

Load kernel modules with kmod and configure kernel
options with sysctl

OpenStack Identity (keystone) service configured
with Puppet

(Disabled by default) OpenStack Shared File
Systems (manila) API service configured with
Puppet

(Disabled by default) OpenStack Shared File
Systems (manila) Scheduler service configured
with Puppet

(Disabled by default) OpenStack Shared File
Systems (manila) Share service configured with
Puppet

Memcached service configured with Puppet

MongoDB service deployment using puppet

MySQL (Pacemaker-managed) service deployment
using puppet

OpenStack Networking (neutron) Server
configured with Puppet

0S::TripleO::Services:
ugin
0S::TripleO::Services:
uginML20VN
0S::TripleO::Services:
uginMidonet
0S::TripleO::Services:
uginNuage
0S::TripleO::Services:
uginOpencontrail
0S::TripleO::Services:
uginPlumgrid
0S::TripleO::Services:
ent
0S::TripleO::Services:
t
0S::TripleO::Services:
taAgent
0S::TripleO::Services:
nt
0S::TripleO::Services:
0S::TripleO::Services:
gent
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
0S::TripleO::Services:
th

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Service Description

NeutronCorePl

:NeutronCorePl

:NeutronCorePl

:NeutronCorePl

:NeutronCorePl

:NeutronCorePl

:NeutronDhcpAg

:NeutronL3Agen

:NeutronMetada

:NeutronOvsAge

:NeutronServer

:NeutronSriovA

:NovaApi

:NovaCompute

:NovaConductor

:NovaConsoleau

OpenStack Networking (neutron) ML2 Plugin
configured with Puppet

OpenStack Networking (neutron) ML2/OVN plugin
configured with Puppet

OpenStack Networking (neutron) Midonet plugin
and services

OpenStack Networking (neutron) Nuage plugin

OpenStack Networking (neutron) Opencontrail
plugin

OpenStack Networking (neutron) Plumgrid plugin

OpenStack Networking (neutron) DHCP agent

configured with Puppet

OpenStack Networking (neutron) L3 agent
configured with Puppet

OpenStack Networking (neutron) Metadata agent
configured with Puppet

OpenStack Networking (neutron) OVS agent
configured with Puppet

OpenStack Networking (neutron) Server
configured with Puppet

(Disabled by default) OpenStack Neutron SR-IOV
nic agent configured with Puppet

OpenStack Compute (nova) APl service configured
with Puppet

OpenStack Compute (nova) Compute service
configured with Puppet

OpenStack Compute (nova) Conductor service
configured with Puppet

OpenStack Compute (nova) Consoleauth service
configured with Puppet

69

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Service Description

0S::TripleO::Services: :NovaIronic (Disabled by default) OpenStack Compute (nova)

70

service configured with Puppet and using Ironic

0S::TripleO::Services: :NovaLibvirt Libvirt service configured with Puppet

0S::TripleO::Services: :NovaScheduler OpenStack Compute (nova) Scheduler service
configured with Puppet

0S::TripleO: :Services: :NovavVncProxy OpenStack Compute (nova) Vncproxy service
configured with Puppet

0S::TripleO::Services: :Ntp NTP service deployment using Puppet.

0S::TripleO: :Services: :0penDaylightA (Disabled by default) OpenDaylight SDN controller

pi

0S::TripleO: :Services: :0penDaylightO0 (Disabled by default) OpenDaylight OVS

Vs configuration

0S::TripleO::Services: :Pacemaker Pacemaker service configured with Puppet

0S::TripleO: :Services: :RabbitMQ RabbitMQ service (Pacemaker-managed) configured
with Puppet

0S::TripleO::Services: :Redis OpenStack Redis service configured with Puppet

0S::TripleO::Services: :SaharaApi (Disabled by default) OpenStack Clustering
(sahara) API service configured with Puppet

0S::TripleO: :Services: :SaharaEngine (Disabled by default) OpenStack Clustering
(sahara) Engine service configured with Puppet

0S::TripleO::Services: :SensuClient (Disabled by default) Sensu client configured with
Puppet

0S::TripleO::Services: :Snmp SNMP client configured with Puppet, to facilitate
Ceilometer hardware monitoring in the undercloud.
This service is required to enable hardware
monitoring.

0S::TripleO::Services: :SwiftProxy OpenStack Object Storage (swift) Proxy service
configured with Puppet

0S::TripleO: :Services::SwiftRingBuil OpenStack Object Storage (swift) Ringbuilder

der

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Service Description

0S::TripleO: :Services: :SwiftStorage OpenStack Object Storage (swift) service
configured with Puppet

0S::TripleO: :Services::Timezone Composable Timezone service

0S::TripleO::Services::TripleoFirewa Firewall settings
11

0S::TripleO: :Services::TripleoPackag Package installation settings
es

Table 6.3. New Services for Red Hat OpenStack Platform 12

Service Description

0S::TripleO: :Services: :ApacheTLS (Disabled by default) Apache service with TLS/SSL
enabled. This service is enabled when including
Certmonger-based TLS/SSL configuration
(environments/enable-internal-
tls.yaml).

0S::TripleO: :Services: :AuditD (Disabled by default) Implements the auditing
service. Enabled when including the auditing service
environment file
(environments/auditd.yaml).

0S::TripleO::Services: :CephMds (Disabled by default) Ceph Metadata Server (MDS).
Enabled when including the Ceph MDS environment
file (environments/services/ceph-
mds .yaml).

0S::TripleO: :Services: :CephRbdMirror (Disabled by default) Ceph Storage RBD Mirroring
service. Enabled when including the RBD Mirroring
environment file
(environments/services/ceph-
rbdmirror.yaml).

0S::TripleO: :Services: :CephRgw (Disabled by default) Ceph Storage Object Gateway
(radosgw). Enabled when including the RadosGW
environment file (environments/ceph-
radosgw.yaml), which also disables OpenStack
Object Storage (swift) services.

0S::TripleO::Services::CinderHPELeft (Disabled by default) Cinder HPE LeftHand iSCSI

HandISCSI backend. Enabled when including the LeftHand iSCSI
environment file (environments/cinder -
hpelefthand-config.yaml).

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Service Description

0S::TripleO::Services::Collectd (Disabled by default) The statistics collection

72

0S::TripleO:

0S::TripleO:

0S::TripleO:

alTLS

0S::TripleO:

TLS

0S::TripleO:

CephFs

0S::TripleO:

Generic

0S::TripleO:

Netapp

0S::TripleO:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Congress

:Etcd

:HAProxyIntern

:HAProxyPublic

:ManilaBackend

:ManilaBackend

:ManilaBackend

:MistralApi

daemon. Enabled when including the Collectd
environment file (environments/collectd-
environment.yaml).

(Disabled by default) OpenStack Policy-as-a-
Service (Congress). Enabled when including the
Congress environment file
(environments/enable_congress.yaml).

(Disabled by default) Etcd key-value storage.
Enabled when including the etcd environment file
(environments/services/etcd.yaml).

(Disabled by default) Internal network for HAProxy
service with TLS/SSL enabled. This service is
enabled when including Certmonger-based TLS/SSL
configuration (environments/enable-
internal-tls.yaml).

(Disabled by default) External network for HAProxy
service with TLS/SSL enabled. This service is
enabled when including Certmonger-based TLS/SSL
configuration
(environments/services/haproxy -
public-tls-certmonger.yaml)

(Disabled by default) Manila backend for Ceph
Storage. Enabled when including the respective
backend environment file
(environments/manila-cephfsnative-
config.yaml).

(Disabled by default) Generic Manila backend.
Enabled when including the respective backend
environment file (environments/manila-

generic-config.yaml).

(Disabled by default) Manila backend for NetApp.
Enabled when including the respective backend
environment file (environments/manila-
netapp-config.yaml).

(Disabled by default) OpenStack Workflow Service
(mistral) API. Enabled when including the mistral
environment file
(environments/services/mistral.yaml).

0S::TripleO::
0S::TripleO:
or
0S::TripleO:
0S::TripleO:
0S::TripleO:
itsucfab
0S::TripleO:
itsuFossw
0S::TripleO:
0S::TripleO:
0S::TripleO:
0S::TripleO:
Manager
0S::TripleO:
eeping

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

:Services:

Services::

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

Service Description

MistralEngine

:MistralExecut

:MySQLClient

:MySQLTLS

:NeutronML2Fuj

:NeutronML2Fuj

:NovaMetadata

:NovaPlacement

:0ctaviaApi

:0ctaviaHealth

:0ctaviaHousek

(Disabled by default) OpenStack Workflow Service
(mistral) Engine. Enabled when including the mistral
environment file

(environments/services/mistral.yaml).

(Disabled by default) OpenStack Workflow Service
(mistral) Execution server. Enabled when including
the mistral environment file
(environments/services/mistral.yaml).

Database client.

(Disabled by default) Database service with
TLS/SSL enabled. This service is enabled when
including Certmonger-based TLS/SSL configuration
(environments/enable-internal-
tls.yaml).

(Disabled by default) Fujitsu C-Fabric plugin for
OpenStack network (neutron). Enabled when
including the C-Fabric environment file
(environments/neutron-ml2-fujitsu-
cfab.yaml).

(Disabled by default) Fujitsu fossw plugin for
OpenStack network (neutron). Enabled when
including the fossw environment file
(environments/neutron-ml2-fujitsu-
fossw.yaml).

OpenStack Compute (nova) metadata service.

OpenStack Compute (nova) placement service.

(Disabled by default) OpenStack Load Balancing-
as-a-Service (octavia) APl. Enabled when including
the octavia environment file
(environments/services/octavia.yaml).

(Disabled by default) OpenStack Load Balancing-
as-a-Service (octavia) Health Manager. Enabled
when including the octavia environment file
(environments/services/octavia.yaml).

(Disabled by default) OpenStack Load Balancing-
as-a-Service (octavia) Housekeeping service.
Enabled when including the octavia environment file
(environments/services/octavia.yaml).

73

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Service Description

0S::TripleO: :Services::0ctaviaWorker (Disabled by default) OpenStack Load Balancing-
as-a-Service (octavia) Worker service. Enabled when
including the octavia environment file
(environments/services/octavia.yaml).

0S::TripleO::Services: :0VNDBs (Disabled by default) OVN databases. Enabled
when including the OVN extensions
(environments/neutron-ml2-ovn.yaml).

0S::TripleO: :Services: :PankoApi OpenStack Telemetry Event Storage (panko).

0S::TripleO::Services: :Sshd (Disabled by default) SSH daemon configuration.
Included as a default service.

0S::TripleO::Services: :Tacker (Disabled by default) OpenStack NFV Orchestration
(tacker). Enabled when including the tacker
environment file
(environments/enable_tacker.yaml).

0S::TripleO: :Services: :TLSProxyBase (Disabled by default) Base service for configuring
TLS/SSL. This service is enabled when including
Certmonger-based TLS/SSL configuration
(environments/enable-internal-
tls.yaml).

0S::TripleO: :Services::Zaqar (Disabled by default) OpenStack Messaging
(zagar). Enabled when including the zagar
environment file
(environments/services/zaqar.yaml).

74

CHAPTER 7. CONTAINERIZED SERVICES

CHAPTER 7. CONTAINERIZED SERVICES

The director installs the core OpenStack Platform services as containers on the overcloud. This section
provides some background information on how containerized services work.

7.1. CONTAINERIZED SERVICE ARCHITECTURE

The director installs the core OpenStack Platform services as containers on the overcloud. The
templates for the containerized services are located in the /usr/share/openstack-tripleo-heat-
templates/docker/services/. These templates reference their respective composable service
templates. For example, the OpenStack Identity (keystone) containerized service template
(docker/services/keystone.yaml) includes the following resource:

KeystoneBase:

type: ../../puppet/services/keystone.yaml

properties:
EndpointMap: {get_param: EndpointMap}
ServiceData: {get_param: ServiceData}
ServiceNetMap: {get_param: ServiceNetMap}
DefaultPasswords: {get_param: DefaultPasswords}
RoleName: {get_param: RoleName}
RoleParameters: {get_param: RoleParameters}

The type refers to the respective OpenStack Identity (keystone) composable service and pulls the
outputs data from that template. The containerized service merges this data with its own container-
specific data.

All nodes using containerized services must enable the 0S: : TripleO: :Services: :Docker service.
When creating a roles_data.yaml file for your custom roles configuration, include the the
0S::TripleO: :Services: :Docker service with the base composable services, as the containerized
services. For example, the Keystone role uses the following role definition:

- name: Keystone
ServicesDefault:

- 0S::TripleO::Services: :CACerts
- 0S::Triple0::Services: :Kernel
- 0S::Triple0::Services: :Ntp
- 0S::Triple0::Services: :Snmp
- 0S::TripleO::Services: :Sshd
- 0S::Triple0::Services: :Timezone
- 0S::TripleO::Services::TripleoPackages
- 0S::TripleO::Services::TripleoFirewall
- 0S::TripleO::Services::SensuClient
- 0S::TripleO::Services::FluentdClient
- 0S::Triple0::Services: :AuditD
- 0S::TripleO::Services::Collectd
- 0S::Triple0::Services: :MySQLClient
- 0S::TripleO::Services: :Docker
- 0S::Triple0::Services: :Keystone

7.2. CONTAINERIZED SERVICE PARAMETERS

Each containerized service template contains an outputs section that defines a data set passed to the

75

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

director’s OpenStack Orchestration (heat) service. In addition to the standard composable service
parameters (see Section 6.3.3, “Examining Role Parameters”), the template contain a set of parameters
specific to the container configuration.

puppet_config

Data to pass to Puppet when configuring the service. In the initial overcloud deployment steps, the
director creates a set of containers used to configure the service before the actual containerized
service runs. This parameter includes the following sub-parameters: +

e config_volume - The mounted docker volume that stores the configuration.

e puppet_tags - Tags to pass to Puppet during configuration. These tags are used in
OpenStack Platform to restrict the Puppet run to a particular service’s configuration resource.
For example, the OpenStack Identity (keystone) containerized service uses the
keystone_config tag to ensure all required only the keystone_config Puppet resource
run on the configuration container.

e step_config - The configuration data passed to Puppet. This is usually inherited from the
referenced composable service.

e config_image - The container image used to configure the service.

kolla_config

A set of container-specific data that defines configuration file locations, directory permissions, and the
command to run on the container to launch the service.

docker_config

Tasks to run on the service’s configuration container. All tasks are grouped into steps to help the
director perform a staged deployment. The steps are: +

e Step 1 - Load balancer configuration

e Step 2 - Core services (Database, Redis)

e Step 3 - Initial configuration of OpenStack Platform service
e Step 4 - General OpenStack Platform services configuration

e Step 5 - Service activation

host_prep_tasks

Preparation tasks for the bare metal node to accommodate the containerized service.

7.3. MODIFYING OPENSTACK PLATFORM CONTAINERS

Red Hat provides a set of pre-built container images through the Red Hat Container Catalog
(registry.access.redhat.com). It is possible to modify these images and add additional layers to
them. This is useful for adding RPMs for certified 3rd party drivers to the containers.

NOTE

To ensure continued support for modified OpenStack Platform container images, ensure
that the resulting images comply with the "Red Hat Container Support Policy".

76

https://access.redhat.com/articles/2726611

CHAPTER 7. CONTAINERIZED SERVICES

This example shows how to customize the latest openstack-keystone image. However, these
instructions can also apply to other images:

1. Pull the image you aim to modify. For example, for the openstack-keystone image:

$ sudo docker pull registry.access.redhat.com/rhospl2/openstack-
keystone:latest

2. Check the default user on the original image. For example, for the openstack-keystone
image:

$ sudo docker run -it registry.access.redhat.com/rhospl2/openstack-
keystone:latest whoami
root

NOTE

The openstack-keystone image uses root as the default user. Other images
use specific users. For example, openstack-glance-api uses glance for the
default user.

3. Create a Dockerfile to build an additional layer on an existing container image. The following
is an example that pulls the latest OpenStack Identity (keystone) image from the Container
Catalog and installs a custom RPM file to the image:

FROM registry.access.redhat.com/rhospl2/openstack-keystone
MAINTAINER Acme

LABEL name="rhospl2/openstack-keystone-acme" vendor="Acme"
version="2.1" release="1"

switch to root and install a custom RPM, etc.
USER root

COPY custom.rpm /tmp

RUN rpm -ivh /tmp/custom.rpm

switch the container back to the default user
USER root

4. Build and tag the new image. For example, to build with a local Dockerfile stored in the
/home/stack/keystone directory and tag it to your undercloud’s local registry:

$ docker build /home/stack/keystone -t
"192.168.24.1:8787/rhospl2/openstack-keystone-acme:revl"

5. Push the resulting image to the undercloud’s local registry:

I $ docker push 192.168.24.1:8787/rhospl2/openstack-keystone-acme:revil

6. Edit your overcloud container images environment file (usually overcloud_images.yaml) and
change the appropriate parameter to use the custom container image.

77

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

WARNING

The Container Catalog publishes container images with a complete software stack
built into it. When the Container Catalog releases a container image with updates
and security fixes, your existing custom container will not include these updates and
will require rebuilding using the new image version from the Catalog.

78

CHAPTER 8. ISOLATING NETWORKS

CHAPTER 8. ISOLATING NETWORKS

The director provides methods to configure isolated Overcloud networks. This means the Overcloud
environment separates network traffic types into different networks, which in turn assigns network traffic
to specific network interfaces or bonds. After configuring isolated networks, the director configures the
OpenStack services to use the isolated networks. If no isolated networks are configured, all services run
on the Provisioning network.

This example uses separate networks for all services:

e NIC1 (Provisioning):

o Provisioning (also known as Control Plane)

e NIC2 (Control Group)

o Internal API
o Storage Management
o External (Public API)

e NICS3 (Data Group)

o Tenant Network (VXLAN tunneling)

o Tenant VLANs / Provider VLANs

o

Storage

o External VLANs (Floating IP/SNAT)
e NIC4 (Management)

o Management

In this example, each Overcloud node uses two network interfaces in a bond to serve networks in tagged
VLANSs. The following network assignments apply to this bond:

Table 8.1. Network Subnet and VLAN Assignments

Network Type Subnet VLAN NIC/Group

Internal API 172.16.0.0/24 201 NIC2 (control)
Tenant 172.17.0.0/24 202 NIC3 (data)

Storage 172.18.0.0/24 203 NIC3 (data)

Storage Management 172.19.0.0/24 204 NIC2 (control)
Management 172.20.0.0/24 205 NIC4 (management)

79

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Network Type Subnet VLAN NIC/Group
External / Floating IP 10.1.1.0/24 100 NIC2 (control)
NIC3 (data)

8.1. CREATING CUSTOM INTERFACE TEMPLATES

The Overcloud network configuration requires a set of the network interface templates. You customize
these templates to configure the node interfaces on a per role basis. These templates are standard Heat
templates in YAML format (see Section 2.1, “Heat Templates”). The director contains a set of example
templates to get you started:

e /usr/share/openstack-tripleo-heat-templates/network/config/single-nic-
vlans - Directory containing templates for single NIC with VLANSs configuration on a per role
basis.

e /usr/share/openstack-tripleo-heat-templates/network/config/bond-with-
vlans - Directory containing templates for bonded NIC configuration on a per role basis.

e /usr/share/openstack-tripleo-heat-templates/network/config/multiple-
nics - Directory containing templates for multiple NIC configuration using one NIC per role.

e /usr/share/openstack-tripleo-heat-templates/network/config/single-nic-
linux-bridge-vlans - Directory containing templates for single NIC with VLANs
configuration on a per role basis and using a Linux bridge instead of an Open vSwitch bridge.

NOTE

These examples only contain templates for the default roles. To define the network
interface configuration for a custom role, use these templates as a basis.

For this example, use the default multiple NICs example configuration as a basis. Copy the version
located at /usr/share/openstack-tripleo-heat-templates/network/config/multiple-
nics.

$ cp -r /usr/share/openstack-tripleo-heat-
templates/network/config/multiple-nics ~/templates/nic-configs
The command will create a local set of Heat templates that define a network interface configuration with
multiple NICs for each role. Each template contains the standard parameters, resources, and
output sections.

Parameters

The parameters section contains all network configuration parameters for network interfaces. This
includes information such as subnet ranges and VLAN IDs. This section should remain unchanged as
the Heat template inherits values from its parent template. However, you can modify the values for some
parameters using environment files.

80

Parameter

ControlPlaneIp

ExternalIpSubnet

InternalApiIpSubnet

StorageIpSubnet

StorageMgmtIpSubnet

TenantIpSubnet

ManagementIpSubnet

ExternalNetworkVlanID

InternalApiNetworkVvlanI
D

StorageNetworkVvlanID
StorageMgmtNetworkVlanI
D

TenantNetworkVlanID

ManagementNetworkVlanID

Description

The node’s IP address and subnet
on the Control Plane/Provisioning
network

The node’s IP address and subnet
on the External network

The node’s IP address and subnet
on the Internal API network

The node’s IP address and subnet
on the Storage network

The node’s IP address and subnet
on the Storage Management
network

The node’s IP address and subnet
on the Tenant network

The node’s IP address and subnet
on the Management network. Only
populated when including
environments/network-
management .yaml.

The node’s VLAN ID for External
network traffic.

The node’s VLAN ID for Internal
API network traffic.

The node’s VLAN ID for Storage
network traffic.

The node’s VLAN ID for Storage
Management network traffic.

The node’s VLAN ID for Tenant
network traffic.

The node’s VLAN ID for
Management network traffic.

Type

string

string

string

string

string

string

string

number

number

number

number

number

number

CHAPTER 8. ISOLATING NETWORKS

81

Parameter

ControlPlaneDefaultRout
e

ExternalInterfaceDefaul
tRoute

ManagementInterfaceDefa
ultRoute

ControlPlaneSubnetCidr

DnsServers

EC2Metadatalp

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Description

The default route of the Control
Plane/Provisioning network.
Override this in the
parameter_defaults
section of an environment file.

The default route for the External
network.

The default route of the
Management network.

The subnet CIDR of the Control
Plane/Provisioning network.
Override this in the
parameter_defaults
section of an environment file.

A list of DNS servers added to
resolv.conf. Usually allows a
maximum of 2 servers. Override
this in the
parameter_defaults
section of an environment file.

The IP address of the EC2
metadata server. Override this in
the parameter_defaults
section of an environment file.

Type

string

string

string

string

comma delimited list

string

Resources

The resources section is where the main network interface configuration occurs. In most cases, the
resources section is the only one that requires editing. Each resources section begins with the
following header:

resources:
OsNetConfigImpl:
type: 0S::Heat::SoftwareConfig
properties:
group: script
config:
str_replace:
template:
get_file:
params:
$network_config:
network_config:

../../scripts/run-os-net-config.sh

82

CHAPTER 8. ISOLATING NETWORKS

This runs a script (run-os-net-config. sh) that creates a configuration file for os-net-config to
use for configuring network properties on a node. The network_config section contains the custom
network interface data sent to the run-os-net-config. sh script. You arrange this custom interface
data in a sequence based on the type of device, which includes the following:

interface

Defines a single network interface. The configuration defines each interface using either the actual
interface name ("eth0", "eth1", "enp0s25") or a set of numbered interfaces ("nic1", "nic2", "nic3").

- type: interface
name: nic?2

vlan

Defines a VLAN. Use the VLAN ID and subnet passed from the parameters section.

- type: vlan
vlan_id: {get_param: ExternalNetworkVvlanID}
addresses:
- ip_netmask: {get_param: ExternalIpSubnet}

ovs_bond

Defines a bond in Open vSwitch to join two or more interfaces together. This helps with
redundancy and increases bandwidth.

- type: ovs_bond
name: bondl
members:

- type: interface
name: nic2

- type: interface
name: nic3

ovs_bridge

Defines a bridge in Open vSwitch, which connects multiple interface, ovs_bond, and vlan
objects together. The external bridge also uses two special values for parameters:

e bridge_name, which is replaced with the external bridge name.

e interface_name, which is replaced with the external interface.

- type: ovs_bridge
name: bridge_name
addresses:
- ip_netmask:
list_join:
-/
- - {get_param: ControlPlanelp}
- {get_param: ControlPlaneSubnetCidr}
members:
- type: interface
name: interface_name
- type: vlan
device: bridge_name

83

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

vlan_id:
{get_param: ExternalNetworkVlanID}
addresses:
- ip_netmask:
{get_param: ExternalIpSubnet}

NOTE

The OVS bridge connects to the Neutron server in order to get configuration data. If the
OpenStack control traffic (typically the Control Plane and Internal API networks) is placed
on an OVS bridge, then connectivity to the Neutron server gets lost whenever OVS is
upgraded or the OVS bridge is restarted by the admin user or process. This will cause
some downtime. If downtime is not acceptable under these circumstances, then the
Control group networks should be placed on a separate interface or bond rather than on
an OVS bridge:

e A minimal setting can be achieved, when you put the Internal API network on a
VLAN on the provisioning interface and the OVS bridge on a second interface.

e If you want bonding, you need at least two bonds (four network interfaces). The
control group should be placed on a Linux bond (Linux bridge). If the switch does
not support LACP fallback to a single interface for PXE boot, then this solution
requires at least five NICs.

linux_bond

Defines a Linux bond that joins two or more interfaces together. This helps with redundancy and
increases bandwidth. Make sure to include the kernel-based bonding options in the
bonding_options parameter. For more information on Linux bonding options, see4.5.1. Bonding
Module Directives in the Red Hat Enterprise Linux 7 Networking Guide.

- type: linux_bond
name: bond1l
members:
- type: interface
name: nic2
- type: interface
name: nic3
bonding_options: "mode=802.3ad"

linux_bridge

Defines a Linux bridge, which connects multiple interface, 1inux_bond, and vlan objects
together. The external bridge also uses two special values for parameters:

e bridge_name, which is replaced with the external bridge name.

e interface_name, which is replaced with the external interface.

- type: linux_bridge
name: bridge_name
addresses:

- ip_netmask:
list_join:
-/

84

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Using_Channel_Bonding.html#s3-modules-bonding-directives

CHAPTER 8. ISOLATING NETWORKS

- - {get_param: ControlPlanelIp}
- {get_param: ControlPlaneSubnetCidr}
members:
- type: interface
name: interface_name

- type: vlan
device: bridge_name
vlan_id:
{get_param: ExternalNetworkVlanID}
addresses:

- ip_netmask:
{get_param: ExternalIpSubnet}

See Chapter 22, Network Interface Parameters for a full list of parameters for each of these items.

The following settings are based on default controller template from the
/home/stack/templates/nic-configs/controller.yaml file. The networks (network-
config) were configured according to the previous recommendations to keep the control group apart
from the OVS bridge:

resources:
OsNetConfigImpl:
type: 0S::Heat::SoftwareConfig
properties:
group: script
config:
str_replace:
template:
get_file: ../../scripts/run-os-net-config.sh
params:
$network_config:
network_config:

NIC 1 - Provisioning
- type: interface
name: nicl
use_dhcp: false
addresses:
- ip_netmask:
list_join:
-/
- - get_param: ControlPlanelp
- get_param: ControlPlaneSubnetCidr
routes:
- ip_netmask: 169.254.169.254/32
next_hop:
get_param: EC2Metadatalp

NIC 2 - Control Group
- type: interface

name: nic2

use_dhcp: false
- type: vlan

device: nic2

vlan_id:

85

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

86

get_param: InternalApiNetworkVlanID
addresses:
- ip_netmask:
get_param: InternalApiIpSubnet
type: vlan
device: nic2
vlan_id:
get_param: StorageMgmtNetworkVlanID
addresses:
- ip_netmask:
get_param: StorageMgmtIpSubnet
type: vlan
device: nic2
vlan_id:
get_param: ExternalNetworkVlanID
addresses:
- ip_netmask:
get_param: ExternalIpSubnet
routes:
- default: true
next_hop:
get_param: ExternalInterfaceDefaultRoute

NIC 3 - Data Group
type: ovs_bridge
name: bridge_name
dns_servers:

get_param: DnsServers
members:
- type: interface

name: nic3

primary: true
- type: vlan

device: nic3

vlan_id:

get_param: StorageNetworkVlanID
addresses:
- ip_netmask:
get_param: StorageIpSubnet

- type: vlan

device: nic3

vlan_id:

get_param: TenantNetworkVlanID
addresses:
- ip_netmask:
get_param: TenantIpSubnet

NIC 4 - Management
- type: interface
name: nic4
use_dhcp: false
addresses:
- ip_netmask: {get_param: ManagementIpSubnet}
routes:

CHAPTER 8. ISOLATING NETWORKS

- default: true
next_hop: {get_param:
ManagementInterfaceDefaultRoute}

NOTE

The Management network section is commented in the network interface Heat templates.
Uncomment this section to enable the Management network.

This template uses four network interfaces and assigns a number of tagged VLAN devices to the
numbered interfaces, nic1 to nic4. On nic3 it creates the OVS bridge that hosts the Storage and
Tenant networks.

For more examples of network interface templates, see Appendix B, Network Interface Template
Examples.

IMPORTANT

Unused interfaces can cause unwanted default routes and network loops. For example,
your template might contain a network interface (nic4) that does not use any IP
assignments for OpenStack services but still uses DHCP and/or a default route. To avoid
network conflicts, remove any unused interfaces from ovs_bridge devices and disable
the DHCP and default route settings:

- type: interface
name: nic4
use_dhcp: false
defroute: false

8.2. CREATING A NETWORK ENVIRONMENT FILE

The network environment file is a Heat environment file that describes the Overcloud’s network
environment and points to the network interface configuration templates from the previous section. You
can define the subnets and VLANS for your network along with IP address ranges. You can then
customize these values for the local environment.

The director contains a set of example environment files to get you started. Each environment file
corresponds to the example network interface files in /usr/share/openstack-tripleo-heat-
templates/network/config/:

e /usr/share/openstack-tripleo-heat-templates/environments/net-single-
nic-with-vlans.yaml - Example environment file for single NIC with VLANSs configuration in
the single-nic-vlans) network interface directory. Environment files for disabling the
External network (net-single-nic-with-vlans-no-external.yaml) or enabling IPv6
(net-single-nic-with-vlans-v6.yaml) are also available.

e /usr/share/openstack-tripleo-heat-templates/environments/net-bond-with-
vlans.yaml - Example environment file for bonded NIC configuration in the bond-with-
vlans network interface directory. Environment files for disabling the External network (net -
bond-with-vlans-no-external.yaml) or enabling IPv6 (net-bond-with-vlans-
v6.yaml) are also available.

e /usr/share/openstack-tripleo-heat-templates/environments/net-multiple-

87

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

nics.yaml - Example environment file for a multiple NIC configuration in the multiple-nics
network interface directory. An environment file for enabling IPv6 (net-multiple-nics-
v6.yaml) is also available.

e /usr/share/openstack-tripleo-heat-templates/environments/net-single-
nic-linux-bridge-with-vlans.yaml - Example environment file for single NIC with
VLANSs configuration using a Linux bridge instead of an Open vSwitch bridge, which uses the the
single-nic-1linux-bridge-vlans network interface directory.

This scenario uses a modified version of the /usr/share/openstack-tripleo-heat-
templates/environments/net-multiple-nics.yaml file. Copy this file to the stack user’s
templates directory.

$ cp /usr/share/openstack-tripleo-heat-templates/environments/net-
multiple-nics.yaml /home/stack/templates/network-environment.yaml

The environment file contains the following modified sections:

88

resource_registry:

0S::Triple0::BlockStorage: :Net::SoftwareConfig:
/home/stack/templates/nic-configs/cinder-storage.yaml

0S::TripleO: :Compute: :Net::SoftwareConfig: /home/stack/templates/nic-
configs/compute.yaml

0S::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/nic-
configs/controller.yaml

0S::TripleO::0ObjectStorage: :Net::SoftwareConfig:
/home/stack/templates/nic-configs/swift-storage.yaml

0S::TripleO::CephStorage: :Net::SoftwareConfig:
/home/stack/templates/nic-configs/ceph-storage.yaml

parameter_defaults:

InternalApiNetCidr: 172.16.0.0/24

TenantNetCidr: 172.17.0.0/24

StorageNetCidr: 172.18.0.0/24

StorageMgmtNetCidr: 172.19.0.0/24

ManagementNetCidr: 172.20.0.0/24

ExternalNetCidr: 10.1.1.0/24

InternalApiAllocationPools: [{'start': '172.16.0.10', 'end':
'172.16.0.200'}]

TenantAllocationPools: [{'start': '172.17.0.10', 'end': '172.17.0.200'}]

StorageAllocationPools: [{'start': '172.18.0.10', 'end':
'172.18.0.200'}]

StorageMgmtAllocationPools: [{'start': '172.19.0.10', 'end':
'172.19.0.200'}]

ManagementAllocationPools: [{'start': '172.20.0.10', 'end':
'172.20.0.200'}]

Leave room for floating IPs in the External allocation pool

ExternalAllocationPools: [{'start': '10.1.1.10', 'end': '10.1.1.50'}]

Set to the router gateway on the external network

ExternalInterfaceDefaultRoute: 10.1.1.1

Gateway router for the provisioning network (or Undercloud IP)

ControlPlaneDefaultRoute: 192.0.2.254

The IP address of the EC2 metadata server. Generally the IP of the
Undercloud

EC2MetadataIp: 192.0.2.1

CHAPTER 8. ISOLATING NETWORKS

Define the DNS servers (maximum 2) for the overcloud nodes
DnsServers: ["8.8.8.8","8.8.4.4"]

InternalApiNetworkVlanID: 201

StorageNetworkVvlanID: 202

StorageMgmtNetworkVlanID: 203

TenantNetworkVlanID: 204

ManagementNetworkVlanID: 205

ExternalNetworkVlanID: 100

NeutronExternalNetworkBridge: "''"

The resource_registry section contains modified links to the custom network interface templates for

each node role. Also include links to network interface template for custom roles in this section using the
following format:

e 0S::TripleO::[ROLE]: :Net::SoftwareConfig: [FILE]
Replace [ROLE] with the role name and [FILE] with the network interface template location.

The parameter_defaults section contains a list of parameters that define the network options for
each network type. For a full reference of these options, see Appendix A, Network Environment Options.

This scenario defines options for each network. All network types use an individual VLAN and subnet
used for assigning IP addresses to hosts and virtual IPs. In the example above, the allocation pool for the
Internal API network starts at 172.16.0.10 and continues to 172.16.0.200 using VLAN 201. This results in
static and virtual IPs assigned starting at 172.16.0.10 and upwards to 172.16.0.200 while using VLAN
201 in your environment.

The External network hosts the Horizon dashboard and Public API. If using the External network for both
cloud administration and floating IPs, make sure there is room for a pool of IPs to use as floating IPs for
VM instances. In this example, you only have IPs from 10.1.1.10 to 10.1.1.50 assigned to the External
network, which leaves IP addresses from 10.1.1.51 and above free to use for Floating IP addresses.
Alternately, place the Floating IP network on a separate VLAN and configure the Overcloud after creation
to use it.

If using bonded OVS interfaces, you can configure additional options with
BondInterfaceOvsOptions. See Appendix C, Open vSwitch Bonding Options for more information.

IMPORTANT

Changing the network configuration after creating the Overcloud can cause configuration
problems due to the availability of resources. For example, if a user changes a subnet
range for a network in the network isolation templates, the reconfiguration might fail due
to the subnet already being in use.

8.3. ASSIGNING OPENSTACK SERVICES TO ISOLATED NETWORKS

Each OpenStack service is assigned to a default network type in the resource registry. These services
are then bound to IP addresses within the network type’s assigned network. Although the OpenStack
services are divided among these networks, the number of actual physical networks might differ as
defined in the network environment file. You can reassign OpenStack services to different network types
by defining a new network map in your network environment file
(/home/stack/templates/network-environment.yaml). The ServiceNetMap parameter
determines the network types used for each service.

89

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

For example, you can reassign the Storage Management network services to the Storage Network by
modifying the highlighted sections:

parameter_defaults:
ServiceNetMap:
SwiftMgmtNetwork: storage # Changed from storage_mgmt
CephClusterNetwork: storage # Changed from storage_mgmt

Changing these parameters to storage places these services on the Storage network instead of the
Storage Management network. This means you only need to define a set of parameter_defaults for
the Storage network and not the Storage Management network.

The director merges your custom ServiceNetMap parameter definitions into a pre-defined list of
defaults taken from ServiceNetMapDefaults and overrides the defaults. The director then returns the
full list including customizations back to ServiceNetMap, which is used to configure network
assignments for various services.

NOTE

A full list of default services can be found in the ServiceNetMapDefaults parameter
within /usr/share/openstack-tripleo-heat-
templates/network/service_net_map.j2.yaml.

8.4. SELECTING NETWORKS TO DEPLOY

The settings in the resource_registry section of the environment file for networks and ports do not
ordinarily need to be changed. The list of networks can be changed if only a subset of the networks are
desired.

NOTE

When specifying custom networks and ports, do not include the
environments/network-isolation.yaml on the deployment command line.

Instead, specify all the networks and ports in the network environment file.

In order to use isolated networks, the servers must have |P addresses on each network. You can use
neutron in the Undercloud to manage IP addresses on the isolated networks, so you will need to enable
neutron port creation for each network. You can override the resource registry in your environment file.

First, this is the complete set of the default networks and ports per role that can be deployed:

resource_registry:

This section is usually not modified, if in doubt stick to the
defaults

TripleO overcloud networks

0S::TripleO::Network::External: /usr/share/openstack-tripleo-heat-
templates/network/external.yaml

0S::TripleO: :Network::InternalApi: /usr/share/openstack-tripleo-heat-
templates/network/internal_api.yaml

0S::TripleO::Network::StorageMgmt: /usr/share/openstack-tripleo-heat-
templates/network/storage_mgmt.yaml

0S::TripleO::Network::Storage: /usr/share/openstack-tripleo-heat-
templates/network/storage.yaml

90

CHAPTER 8. ISOLATING NETWORKS

0S::TripleO::Network::Tenant: /usr/share/openstack-tripleo-heat-
templates/network/tenant.yaml

0S::TripleO: :Network: :Management: /usr/share/openstack-tripleo-heat-
templates/network/management.yaml

Port assignments for the VIPs

0S::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml

0S::TripleO: :Network: :Ports::InternalApiVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml

0S::TripleO::Network::Ports::StorageVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml

0S::TripleO::Network::Ports::StorageMgmtVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml

0S::TripleO::Network::Ports::TenantVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/tenant.yaml

0S::TripleO::Network: :Ports::ManagementVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

0S::TripleO: :Network: :Ports::RedisVipPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/vip.yaml

Port assignments for the controller role
0S::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml
0S::TripleO::Controller::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
0S::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
0S::TripleO::Controller::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml
0S::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/tenant.yaml
0S::TripleO::Controller: :Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

Port assignments for the compute role
0S::TripleO::Compute::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
0S::TripleO::Compute::Ports::StoragePort: /usr/share/openstack-tripleo-
heat-templates/network/ports/storage.yaml
0S::TripleO: :Compute: :Ports::TenantPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/tenant.yaml
0S::TripleO: :Compute: :Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

Port assignments for the ceph storage role
0S::Triple0::CephStorage::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
0S::TripleO::CephStorage::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml
0S::Triple0::CephStorage: :Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

Port assignments for the swift storage role

0S::Triple0::SwiftStorage::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml

91

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

0S::Triple0O::SwiftStorage: :Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml

0S::Triple0::SwiftStorage: :Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml

0S::TripleO::SwiftStorage: :Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

Port assignments for the block storage role

0S::Triple0::BlockStorage: :Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml

0S::Triple0O::BlockStorage: :Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml

0S::Triple0::BlockStorage: :Ports: :StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml

0S::TripleO: :BlockStorage: :Ports: :ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

The first section of this file has the resource registry declaration for the 0S: : TripleO: :Network: : *
resources. By default these resources use the 0S: : Heat : : None resource type, which does not create
any networks. By redirecting these resources to the YAML files for each network, you enable the
creation of these networks.

The next several sections create the IP addresses for the nodes in each role. The controller nodes have
IPs on each network. The compute and storage nodes each have IPs on a subset of the networks.

The default file only contains the port assignments for the default roles. To configure port assignments
for a custom role, use the same convention as the other resource definitions and link to the appropriate
Heat templates in the network/ports directory:

e 0S::TripleO::[ROLE]: :Ports::ExternalPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/external.yaml

e 0S::TripleO::[ROLE]: :Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml

e 0S::TripleO::[ROLE]::Ports::StoragePort: /usr/share/openstack-tripleo-
heat-templates/network/ports/storage.yaml

e 0S::TripleO::[ROLE]::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml

e 0S::TripleO::[ROLE]: :Ports::TenantPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/tenant.yaml

e 0S::TripleO::[ROLE]: :Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

Replace [ROLE] with the name of your role.
To deploy without one of the pre-configured networks, disable the network definition and the

corresponding port definition for the role. For example, all references to storage_mgmt . yaml could be
replaced with 0S: :Heat : :None:

resource_registry:
This section is usually not modified, if in doubt stick to the

92

CHAPTER 8. ISOLATING NETWORKS

defaults

TripleO overcloud networks

0S::TripleO::Network::External: /usr/share/openstack-tripleo-heat-
templates/network/external.yaml

0S::TripleO: :Network::InternalApi: /usr/share/openstack-tripleo-heat-
templates/network/internal_api.yaml

0S::TripleO: :Network: :StorageMgmt: 0S::Heat::None

0S::TripleO: :Network: :Storage: /usr/share/openstack-tripleo-heat-
templates/network/storage.yaml

0S::TripleO::Network::Tenant: /usr/share/openstack-tripleo-heat-
templates/network/tenant.yaml

Port assignments for the VIPs

0S::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml

0S::TripleO: :Network: :Ports::InternalApiVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml

0S::TripleO::Network::Ports::StorageVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml

0S::TripleO: :Network: :Ports::StorageMgmtVipPort: 0S::Heat::None

0S::TripleO::Network::Ports::TenantVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/tenant.yaml

0S::TripleO: :Network: :Ports::RedisVipPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/vip.yaml

Port assignments for the controller role
0S::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml
0S::TripleO::Controller::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
0S::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
0S::TripleO::Controller::Ports::StorageMgmtPort: 0S::Heat::None
0S::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/tenant.yaml

Port assignments for the compute role

0S::TripleO::Compute::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml

0S::TripleO::Compute::Ports::StoragePort: /usr/share/openstack-tripleo-
heat-templates/network/ports/storage.yaml

0S::TripleO::Compute: :Ports::TenantPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/tenant.yaml

Port assignments for the ceph storage role

0S::Triple0::CephStorage::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml

0S::Triple0::CephStorage::Ports::StorageMgmtPort: 0S::Heat::None

Port assignments for the swift storage role
0S::TripleO::SwiftStorage::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
0S::TripleO::SwiftStorage: :Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml
0S::Triple0::SwiftStorage: :Ports::StorageMgmtPort: 0S::Heat::None

93

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

94

Port assignments for the block storage role

0S::Triple0O::BlockStorage: :Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml

0S::Triple0O::BlockStorage: :Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage.yaml

0S::Triple0::BlockStorage: :Ports::StorageMgmtPort: 0S::Heat::None

parameter_defaults:
ServiceNetMap:

ApacheNetwork: internal_api
NeutronTenantNetwork: tenant
CeilometerApiNetwork: internal_api
ContrailAnalyticsNetwork: internal_api
ContrailAnalyticsDatabaseNetwork: internal_api
ContrailConfigNetwork: internal_api
ContrailControlNetwork: internal_api
ContrailDatabaseNetwork: internal_api
ContrailwWebuiNetwork: internal_api
ContrailTsnNetwork: internal_api
AodhApiNetwork: internal_api
PankoApiNetwork: internal_api
BarbicanApiNetwork: internal_api
GnocchiApiNetwork: internal_api
MongodbNetwork: internal_api
CinderApiNetwork: internal_api
CinderIscsiNetwork: storage
CongressApiNetwork: internal_api
GlanceApiNetwork: internal_api
IronicApiNetwork: ctlplane
IronicNetwork: ctlplane
IronicInspectorNetwork: ctlplane
KeystoneAdminApiNetwork: ctlplane # allows undercloud to config

endpoints
KeystonePublicApiNetwork: internal_api
ManilaApiNetwork: internal_api
NeutronApiNetwork: internal_api
OctaviaApiNetwork: internal_api
HeatApiNetwork: internal_api
HeatApiCfnNetwork: internal_api
HeatApiCloudwatchNetwork: internal_api
NovaApiNetwork: internal_api
NovaColdMigrationNetwork: ctlplane
NovaPlacementNetwork: internal_api
NovaMetadataNetwork: internal_api
NovaVncProxyNetwork: internal_api
NovaLibvirtNetwork: internal_api
Ec2ApiNetwork: internal_api
Ec2ApiMetadataNetwork: internal_api
TackerApiNetwork: internal_api
SwiftStorageNetwork: storage # Changed from storage_mgmt
SwiftProxyNetwork: storage
SaharaApiNetwork: internal_api
HorizonNetwork: internal_api
MemcachedNetwork: internal_api
RabbitmgNetwork: internal_api
QdrNetwork: internal_api

CHAPTER 8. ISOLATING NETWORKS

RedisNetwork: internal_api

MysglNetwork: internal_api

CephClusterNetwork: storage # Changed from storage_mgmt
CephMonNetwork: storage

CephRgwNetwork: storage

PublicNetwork: external

OpendaylightApiNetwork: internal_api
ovnDbsNetwork: internal_api

MistralApiNetwork: internal_api

ZagarApiNetwork: internal_api
PacemakerRemoteNetwork: internal_api

EtcdNetwork: internal_api
CephStorageHostnameResolveNetwork: storage
ControllerHostnameResolveNetwork: internal_api
ComputeHostnameResolveNetwork: internal_api
ObjectStorageHostnameResolveNetwork: internal_api
BlockStorageHostnameResolveNetwork: internal_api

By using 0S: :Heat : : None, no network or ports are created, so the services on the Storage
Management network would default to the Provisioning network. This can be changed in the
ServiceNetMap in order to move the Storage Management services to another network, such as the
Storage network.

95

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 9. USING COMPOSABLE NETWORKS

With composable networks, you are no longer constrained by the pre-defined network segments
(Internal, Storage, Storage Management, Tenant, External, Control Plane), and instead you can now
create your own networks and assign them to any role: default or custom. For example, if you have a
network dedicated to NFS traffic, you can now present it to multiple different roles.

Director supports the creation of custom networks during the deployment and update phases. These
additional networks can be used for ironic bare metal nodes, system management, or to create separate
networks for different roles. They can also be used to create multiple sets of networks for split
deployments, where traffic is routed between networks.

A single data file (network_data.yaml) manages the list of networks that will be deployed; the role
definition process then assigns the networks to the required roles through network isolation (see
Chapter 8, Isolating Networks for more information).

9.1. DEFINING A COMPOSABLE NETWORK

To create composable networks, edit a local copy of the /usr/share/openstack-tripleo-heat-
templates/network_data.yaml Heat template. For example:

- name: StorageBackup

vip: true

name_lower: storage_backup

ip_subnet: '172.21.1.0/24'

allocation_pools: [{'start': '171.21.1.4', 'end': '172.21.1.250'}]

gateway_ip: '172.21.1.1'

ipv6_subnet: 'fdeO:fdoo:fdo0:7000::/64"

ipv6_allocation_pools: [{'start': 'fd0O:fdo0:fde0:7000::10', 'end':
'fd00:fdoe:fdee:7000: ffff:ffff.ffff.fffe'}]

gateway_ipv6: 'fdoO:fdeO:fdeO:7000::1"'

e name - is the only mandatory value, however you can also use name_lower to normalize
names for readability. For example, changing InternalApi to internal_api.

e vip:frue will create a virtual IP address (VIP) on the new network, with the remaining parameters
setting the defaults for the new network.

e ip subnet and allocation_pools will set the default IPv4 subnet and IP range for the network.

e ipv6_subnetand ipv6_allocation_pools will set the default IPv6 subnets for the network.

NOTE

You can override these defaults using an environment file (usually named network-
environment.yaml). The sample network-environment.yaml file can be created after
modifying the network_data.yaml file by running this command from the root of the
director’s core Heat templates you are using (local copy of /usr/share/openstack-tripleo-
heat-templates/):

I [stack@undercloud ~/templates] $./tools/process-templates.py

9.1.1. Define Network Interface Configuration for Composable Networks

96

CHAPTER 9. USING COMPOSABLE NETWORKS

When using composable networks, the parameter definition for the network IP address must be added to
the NIC configuration template used for each role, even if the network is not used on the role. See the
directories in /usr/share/openstack-tripleo-heat-templates/network/config for
examples of these NIC configurations. For instance, if a StorageBackup network is added to only the
Ceph nodes, the following would need to be added to the resource definitions in the NIC configuration
templates for all roles:

StorageBackupIpSubnet:
default: "'
description: IP address/subnet on the external network
type: string

You may also create resource definitions for VLAN IDs and/or gateway IP, if needed:

StorageBackupNetworkVlanID: # Override this via parameter_defaults in
network_environment.yaml
default: 60
description: Vlan ID for the management network traffic.
type: number
StorageBackupDefaultRoute: # Override this via parameter_defaults in
network_environment.yaml
description: The default route of the storage backup network.
type: string

The IpSubnet parameter for the custom network appears in the parameter definitions for each role.
However, since the Ceph role is the only role that makes use of the StorageBackup network in our
example, only the NIC configuration template for the Ceph role would make use of the StorageBackup
parameters in the network_config section of the template.

$network_config:
network_config:
- type: interface
name: nicl
use_dhcp: false
addresses:
- ip_netmask:
Get_param: StorageBackupIpSubnet

9.1.2. Assigh Composable Networks to Services

If vip: true is specified in the custom network definition, then it is possible to assign services to the
network using the ServiceNetMap parameters. The custom network chosen for the service must exist
on the role hosting the service. You can override the default networks by overriding the ServiceNetMap
that is defined in /usr/share/openstack-tripleo-heat-
templates/network/service_net_map.j2.yaml in your network_environment.yaml (orin a
different environment file):

parameter_defaults:
ServiceNetMap:
NeutronTenantNetwork: tenant
CeilometerApiNetwork: internal_api
AodhApiNetwork: internal_api
GnocchiApiNetwork: internal_api

97

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

MongoDbNetwork: internal_api

CinderApiNetwork: internal_api

CinderIscsiNetwork: storage

GlanceApiNetwork: storage

GlanceRegistryNetwork: internal_api

KeystoneAdminApiNetwork: ctlplane # Admin connection for Undercloud
KeystonePublicApiNetwork: internal_api

NeutronApiNetwork: internal_api

HeatApiNetwork: internal_api

NovaApiNetwork: internal_api

NovaMetadataNetwork: internal_api

NovaVncProxyNetwork: internal_api

SwiftMgmtNetwork: storage_backup # Changed from storage_mgmt
SwiftProxyNetwork: storage

SaharaApiNetwork: internal_api

HorizonNetwork: internal_api

MemcachedNetwork: internal_api

RabbitMgNetwork: internal_api

RedisNetwork: internal_api

MysglNetwork: internal_api

CephClusterNetwork: storage_backup # Changed from storage_mgmt
CephPublicNetwork: storage

ControllerHostnameResolveNetwork: internal_api
ComputeHostnameResolveNetwork: internal_api
BlockStorageHostnameResolveNetwork: internal_api
ObjectStorageHostnameResolveNetwork: internal_api
CephStorageHostnameResolveNetwork: storage

9.1.3. Define the Routed Networks

When using composable networks to deploy routed networks, you define routes and router gateways for
use in the network configuration. You can create network routes and supernet routes to define which
interface to use when routing traffic between subnets. For example, in a deployment where traffic is
routed between the Compute and Controller roles, you may want to define supernets for sets of isolated
networks. For instance, 172.17.0.0/16 is a supernet that contains all networks beginning with
172.17, so the Internal API network used on the controllers might use 172.17.1.0/24 and the
Internal API network used on the Compute nodes might use 172.17.2.0/24. On both roles, you would
define a route to the 172.17.0.0/16 supernet through the router gateway that is specific to the
network used on the role.

The available parameters in network-environment.yaml:

InternalApiSupernet:
default: '172.17.0.0/16'
description: Supernet that contains Internal API subnets for all

roles.
type: string
InternalApiGateway:

default: '172.17.1.1'
description: Router gateway on Internal API network
type: string

InternalApi2Gateway:
default: '172.17.2.1'
description: Router gateway on Internal API 2 network
Type: string

98

CHAPTER 9. USING COMPOSABLE NETWORKS

These parameters can be used in the NIC configuration templates for the roles.

The controller uses the parameters for the InternalApi network in controller.yaml:

- type: interface
name: nic3
use_dhcp: false
addresses:
- ip_netmask:
get_param: InternalApiIpSubnet
- routes:
ip_netmask:
get_param: InternalApiSupernet
next_hop:
Get_param: InternalApiGateway

The compute role uses the parameters for the InternalApi2 network in compute.yaml:

- type: interface
name: nic3
use_dhcp: false
addresses:
- ip_netmask:
get_param: InternalApi2IpSubnet
- routes:
ip_netmask:
get_param: InternalApiSupernet
next_hop:
Get_param: InternalApi2Gateway

NOTE

If specific network routes are not applied on isolated networks, all traffic to non-local
networks use the default gateway. This is generally undesirable from both a security and
performance standpoint since it mixes different kinds of traffic and puts all outbound
traffic on the same interface. In addition, if the routing is asymmetric (traffic is sent
through a different interface than received), it might cause unreachable services. Using a
route to the supernet on both the client and server directs traffic to use the correct
interface on both sides.

9.2. NETWORKING WITH ROUTED SPINE-LEAF

Composable networks allow you to adapt your OpenStack Networking deployment to the popular routed
spine-leaf data center topology. In a practical application of routed spine-leaf, a leaf is represented as a
composable Compute or Storage role usually in a datacenter rack, as shown in Figure 9.1, “Routed
spine-leaf example”. The leaf 0 rack has an undercloud node, controllers, and compute nodes. The
composable networks are presented to the nodes, which have been assigned to composable roles. In
this diagram, the StorageLeaf networks are presented to the Ceph storage and Compute nodes; the
NetworkLeaf represents an example of any network you may want to compose.

99

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Figure 9.1. Routed spine-leaf example

Spine Switch

ToR Leaf Switch

Leaf O

Spine Switch

Spine Switch

ToR Leaf Switch

Leaf

Composable Roles

Undercloud

Controllerd

Contrallerl

Controller2

ComputeOLeafd \

Composable Networks

i

foms |/

MetworkLeafd

ToR Leaf Switch

Leaf 2

Composable Roles

ComputedLeaf!

Computelleaf

Compute2Leafl

CephStorageOLeaf

NN S S

Ceph5toragelleaf!

Composable Metworks

Storageleafl

MetworkLeafl

Composable Roles

ComputeQLeaf2

ComputellLeaf2

Compute2leaf2

CephStorageOLeaf2

CephS5taragelleaf2

= |/

Composable Networks

Storageleaf2

MetworkLeaf2

9.3. HARDWARE PROVISIONING WITH ROUTED SPINE-LEAF

This section describes an example hardware provisioning use case and explains how to deploy an
evaluation environment to demonstrate the functionality of routed spine-leaf with composable networks.
The resulting deployment has multiple sets of networks with routing available.

To use a provisioning network in a routed spine-leaf network, there are two options available: a VXLAN
tunnel configured in the switch fabric, or an extended VLAN trunked to each ToR switch:

NOTE

In a future release, it is expected that DHCP relays can be used to make DHCPOFFER

broadcasts traverse across the routed layer 3 domains.

9.3.1. Example VLAN Provisioning Network

In this example, new overcloud nodes are deployed through the provisioning network. The provisioning
network cannot be composed, and there cannot be more than one. Instead, a VLAN tunnel is used to

100

CHAPTER 9. USING COMPOSABLE NETWORKS

Figure 9.2. VLAN provisioning network topology

Spine Switch

Spine Switch

ToR Leaf Switch

Leaf O

ToR Leaf Switch

Leaf1

Composable Roles

Undercloud

ControllerQ

Controllerl

Controller2

ComputeOLeafd \

span across the layer 3 topology (see Figure 9.2, “VLAN provisioning network topology”). This allows
DHCPOFFER broadcasts to be sent to any leaf. This tunnel is established by trunking a VLAN between
the Top-of-Rack (ToR) leaf switches. In this diagram, the StorageLeaf networks are presented to the
Ceph storage and Compute nodes; the NetworkLeaf represents an example of any network you may
want to compose.

Spine Switch

ToR Leaf Switch

8353 o
Leaf 2

Composable Roles

ComputedLeaf!

Computelleaf

ComputeZleafl

CephStorageOLeaf

NN NS

Ceph5toragelleaf!

Composable Roles

ComputeQLeaf2

ComputellLeaf2

ComputeZleaf?

CephStorageOLeaf2

NONCNSS

CephS5taragelleaf2

Composable Networks

G |
Storageleafd
L

MetworkLeafd

Composable Metworks

Storageleafl

9.3.2. Example VXLAN Provisioning Network

Composable Networks

MetworkLeaf2

= |/

I Frovisioning VLAN

In this example, new overcloud nodes are deployed through the provisioning network. The provisioning
network cannot be composed, and there cannot be more than one. Instead, VXLAN tunnel is used to

span across the layer 3 topology (see Figure 9.3, “VXLAN provisioning network topology”). This allows
DHCPOFFER broadcasts to be sent to any leaf. This tunnel is established using VXLAN endpoints
configured on the Top-of-Rack (ToR) leaf switches.

101

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Figure 9.3. VXLAN provisioning network topology

Spine Switch

ToR Leaf Switch

Composable Roles

Spine Switch

ToR Leaf Switch

BES o
Leaf O Leaf1 Leaf 2

Spine Switch

ToR Leaf Switch

Composable Roles

Undercloud Compute0Leafl ComputeQLeaf2
Cantrollerd / ComputellLeaf Computelleaf2
Controller ; Compute?2Leafl Compute2leaf2
Cantroller2 / CephStorageOLeaf CephStorageOLeaf2
Compute0Leafd \ 1 CephStoragellLeaf! CephStoragellLeaf2

Composable Networks Composable Networks Composable Networks
/ =1
Storageleafl Storageleaf2
= | = | = |/
MetworkLeafd MetworkLeafl MetworkLeaf?

Composable Roles

I Provisioning VXLAN

9.3.3. Network Topology for Provisioning

The routed spine-leaf bare metal environment has one or more layer 3 capable switches, which route
traffic between the isolated VLANSs in the separate layer 2 broadcast domains.

The intention of this design is to isolate the traffic according to function. For example, if the controller
nodes host an APl on the Internal API network, when a compute node accesses the API it should use its
own version of the Internal API network. For this routing to work, you need routes that force traffic
destined for the Infernal API network to use the required interface. This can be configured using
supernet routes. For example, if you use 172.18.0.0/24 as the Internal API network for the controller
nodes, you can use 172.18.1.0/24 for the second Internal API network, and 172.18.2.0/24 for the
third, and so on. As a result, you can have a route pointing to the larger 172.18.0.0/16 supernet that
uses the gateway IP on the local Internal API network for each role in each layer 2 domain.

The following networks could be used in an environment that was deployed using director:

102

CHAPTER 9. USING COMPOSABLE NETWORKS

Network Roles attached Interface Bridge Subnet
Provisioning All UC - nic2 and UC: br-ctlplane
Other - nic1

External Controller nic7, OC: nic6 br-ex 192.168.24.0/24
Storage Controller nic3, OC: nic2 172.16.0.0/24
Storage Mgmt Controller nic4, OC: nic3 172.17.0.0/24
Internal API Controller nic5, OC: nic4 172.18.0.0/24
Tenant Controller nic6, OC: nic5 172.19.0.0/24
Storage1 Computet, Ceph1 nic8, OC: nic7 172.16.1.0/24
Storage Mgmt1 Ceph1 nic9, OC: nic8 172.17.1.0/24
Internal API1 Compute1 nic10, OC: nic9 172.18.1.0/24
Tenanti Compute1 nic11, OC: nic10 172.19.1.0/24
Storage2 Compute2, Ceph2 nic12, OC: nic11 172.16.2.0/24
Storage Mgmt2 Ceph2 nic13, OC: nic12 172.17.2.0/24
Internal API2 Compute2 nic14, OC: nic13 172.18.2.0/24
Tenant2 Compute2 nic15, OC:nic14 172.19.2.0/24

NOTE

The undercloud must also be attached to an uplink for external/Internet connectivity.
Typically, the undercloud would be the only node attached to the uplink network. This is
likely to be an infrastructure VLAN, separate from the OpenStack deployment.

9.3.4. Topology Diagram

103

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Figure 9.4. Composable Network Topology

Undercloud controller-0 | | | compute1-0 | {——] compute2-0
controller-1 | | ceph1-0 i ceph2-0
external '
internal_api controller-2 — internal_api1 E internal_api2
| — tenant1 1oL
tenant compute-0 5 i tenant2
storage . storage1 storageZ2 —
ceph-0 :
storage_mgmt | storage_mgmt1 . storage_mgmt2 —
. i

Provisioning Network |

9.3.5. Assign IP Addresses to the Custom Roles

The roles require routes for each of the isolated networks. Each role has its own NIC configs and you
have to customize the TCP/IP settings to support the custom networks. You can also parameterize or
hard-code the gateway IP addresses and routes into the role NIC configs.

For example, using the existing NIC configs as a basic template, you must add the network-specific
parameters to all NIC configs:

StorageMgmtIpSubnet:
default: ''
description: IP address/subnet on the storage_mgmt network
type: string
StorageMgmt2IpSubnet:
default: "'
description: IP address/subnet on the storage_mgmt2 network
type: string
TenantIpSubnet:
default: "'
description: IP address/subnet on the tenant network
type: string
TenantIp2Subnet:
default: ''
description: IP address/subnet on the tenant2 network
type: string

Perform this for each of the custom networks, for each role used in the deployment.

9.3.6. Assign Routes for the Roles

104

CHAPTER 9. USING COMPOSABLE NETWORKS

Each isolated network should have a supernet route applied. Using the suggestion above of
172.18.0.0/16 as the supernet route, you would apply the same route to each interface, but using the

local gateway.

e network-environment.yaml:

parameter_defaults:
InternalApiSupernet: 172.18.0.0/16
InternalApiInterfaceDefaultRoute: 172.18.0.1
InternalApilInterfaceDefaultRoute: 172.18.1.1
InternalApi2InterfaceDefaultRoute: 172.18.2.1
InternalApi3InterfaceDefaultRoute: 172.18.3.1

Each role requires routes on each isolated network, pointing to the other subnets used for the same
function. So when a Compute1 node contacts a controller on the InternalApi VIP, the traffic should
target the InternalApil interface through the InternalApil gateway. As a result, the return traffic
from the controller to the InternalApil network should go through the InternalApi network

gateway.

e Controller configuration:

- type: interface
name: nic4
use_dhcp: false
addresses:
- ip_netmask:
get_param: InternalApiIpSubnet
routes:
- ip_netmask:
get_param: InternalApiSupernet
next_hop:
get_param: InternalApiDefaultRoute

e Computel configuration:

- type: interface
name: nic4
use_dhcp: false
addresses:
- ip_netmask:
get_param: InternalApilIpSubnet
routes:
- ip_netmask:
get_param: InternalApiSupernet
next_hop:
get_param: InternalApilDefaultRoute

The supernet routes apply to all isolated networks on each role to avoid sending traffic through the
default gateway, which by default is the Control Plane network on non-controllers, and the External
network on the controllers.

You need to configure these routes on the isolated networks because Red Hat Enterprise Linux by
default implements strict reverse path filtering on inbound traffic. If an API is listening on the Internal AP/
interface and a request comes in to that API, it only accepts the request if the return path route is on the

105

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Internal APl interface. If the server is listening on the Internal API network but the return path to the client
is through the Control Plane, then the server drops the requests due to the reverse path filter.

For example, this diagram shows an attempt to route traffic through the control plane, which will not
succeed. The return route from the router to the controller node does not match the interface where the
VIP is listening, so the packet is dropped. 192.168.24.0/24 is directly connected to the controller, so
it is considered local to the Control Plane network.

Figure 9.5. Routed traffic through Control Plane

Internal API1 (172.18.1.0/24) Internal APl (172.18.0.0/24)

() X B .

Compute Node Physical Router Controller Node

N

Control Plane (192.168.24.0/24)

For comparison, this diagram shows routing running through the Internal API networks:

Figure 9.6. Routed traffic through Internal API

Route: 172.18.0.0/16 Route: 172.18.0.0/16
via Internal API1 gateway via Internal APl gateway
Internal API1 (172.18.1.0/24) Internal API (172.18.0.0/24)
\/ —.
38888 o N =
Compute Node Physical Router Controller Node

Control Plane (192.168.24.0/24)

In this diagram, the return route to 172.18.1.0 matches the interface where the virtual IP address (VIP)
is listening. As a result, packets are not dropped and the API connectivity works as expected.

The following ExtraConfig settings address the issue described above. Note that the InternalApil
value is ultimately represented by the internal_apil value and is case-sensitive.

parameter_defaults:
ComputelExtraConfig:
nova: :vncproxy::host: "%{hiera('internal_apil')}"
neutron::agents::ml2::ovs::local_ip: "%{hiera('tenant1')}"

106

CHAPTER 9. USING COMPOSABLE NETWORKS

Compute2ExtraConfig:
nova: :vncproxy::host: "%{hiera('internal_api2')}"
neutron::agents::ml2::ovs::local_ip: "%{hiera('tenant2')}"
Compute3ExtraConfig:
nova: :vncproxy::host: "%{hiera('internal_api3')}"
neutron::agents::ml2::ovs::local_ip: "%{hiera('tenant3')}"
CephAnsibleExtraConfig:
public_network:
'172.120.3.0/24,172.117.3.0/24,172.118.3.0/24,172.119.3.0/24"
cluster_network:
'172.120.4.0/24,172.117.4.0/24,172.118.4.0/24,172.119.4.0/24"

e CephAnsibleExtraConfig - The public_network setting lists all the storage network
leaves. The cluster_network entries lists the storage management networks (one per leaf).

9.3.7. Custom NIC definitions

The following custom definitions were applied in the nic-config template for nodes. Change the

following example to suit your deployment:

1. Review the network_data.yaml values. They should be similar to the following example:

[stack@undercloud-0 ~]$ cat /home/stack/network_data.yaml
- name: External

vip: true

name_lower: external

ip_subnet: '10.0.0.0/24'

allocation_pools: [{'start': '10.0.0.4', 'end': '10.0.0.

gateway_ip: '10.0.0.1'
ipv6_subnet: '2001:db8:fdGO:1000::/64"'

250'1}]

ipv6_allocation_pools: [{'start': '2001:db8:fd00:1000::10', 'end':

'2001:db8:fdO0O:1000: ffff . ffff.ffff:fffe'}]
gateway_ipv6: '2001:db8:fd00:16000::1'
- name: InternalApi
name_lower: internal_api
vip: true
ip_subnet: '172.16.2.0/24'

allocation_pools: [{'start': '172.16.2.4', 'end': '172.16.2.250'}]

ipv6_subnet: 'fdeO:fdoo:fdo0:2000::/64"
ipv6_allocation_pools: [{'start': 'fdeO:fd0O:fd00O:2000:
'end': 'fd0O:fdOO:fdEO:2000:ffff:ffff:ffff:fffe'}]
- hame: Storage
vip: true
name_lower: storage
ip_subnet: '172.16.1.0/24'

:10',

allocation_pools: [{'start': '172.16.1.4', 'end': '172.16.1.250'}]

ipv6_subnet: 'fdeO:fdoo:fdo0:3000::/64"
ipv6_allocation_pools: [{'start': 'fdoO:fd0eO:fdO0O:3000:
'end': 'fd0O:fd0O:fdEO:3000:ffff:ffff:ffff:fffe'}]
- name: StorageMgmt
name_lower: storage_mgmt
vip: true
ip_subnet: '172.16.3.0/24'

:10',

allocation_pools: [{'start': '172.16.3.4', 'end': '172.16.3.250'}]

ipv6_subnet: 'fdeO:fdoo:fdo0:4000::/64"
ipv6_allocation_pools: [{'start': 'fdeO:fd0eO:fd00:4000:

:10',

107

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

'end': 'fd0O:fdOO:fdEO:4000:ffff:ffff:ffff:fffe'}]
- name: Tenant

vip: false # Tenant network does not use VIPs

name_lower: tenant

ip_subnet: '172.16.0.0/24'

allocation_pools: [{'start': '172.16.0.4', 'end': '172.16.0.250'}]

ipv6_subnet: 'fdeO:fdoo:fdo0:5000::/64"

ipv6_allocation_pools: [{'start': 'fdeO:fd0e0O:fd00:5000::10"',
'end': 'fd0O:fd0O:fdEO:5000: ffff:ffff:ffff:fffe'}]
- name: Management

Management network is enabled by default for backwards-
compatibility, but

is not included in any roles by default. Add to role definitions
to use.

enabled: true

vip: false # Management network does not use VIPs

name_lower: management

ip_subnet: '10.0.1.0/24'

allocation_pools: [{'start': '10.0.1.4', 'end': '10.0.1.250'}]

ipv6_subnet: 'fdeO:fdoo:fdo0:6000::/64"

ipv6_allocation_pools: [{'start': 'fdeO:fdeO:fd00:6000::10"',
'end': 'fd0O:fd0O:fdEO:6000:ffff:ffff:ffff:fffe'}]
- name: Tenantl

vip: false # Tenant network does not use VIPs

name_lower: tenantl

ip_subnet: '172.16.11.0/24'

allocation_pools: [{'start': '172.16.11.4', 'end':
'172.16.11.250'}]

ipv6_subnet: 'fdeO:fdoo:fdoo:5001::/64"

ipv6_allocation_pools: [{'start': 'fdeo:fde0:fd00:5001::10"',
'end': 'fd0O:fdOO:fdEO:5001:ffff:ffff:ffff:fffe'}]
- name: Tenant2

vip: false # Tenant network does not use VIPs

name_lower: tenant2

ip_subnet: '172.16.12.0/24'

allocation_pools: [{'start': '172.16.12.4', 'end':
'172.16.12.250'}]

ipv6_subnet: 'fdeO:fdoo:fdo0:5002::/64"

ipv6_allocation_pools: [{'start': 'fdeo:fde0:fd00:5002::10"',
'end': 'fd0O:fd0O:fdeO:5002:ffff:ffff:ffff:fffe'}]
- name: Tenant3

vip: false # Tenant network does not use VIPs

name_lower: tenant3

ip_subnet: '172.16.13.0/24'

allocation_pools: [{'start': '172.16.13.4', 'end':
'172.16.13.250'}]

ipv6_subnet: 'fdeO:fdoo:fdo0:5003::/64"

ipv6_allocation_pools: [{'start': 'fdeo:fde0:fd00:5003::10"',
'end': 'fd0O:fd0O:fdEO:5003:ffff:ffff:ffff:fffe'}]
- nhame: StorageMgmtl

name_lower: storage_mgmtil

vip: true

ip_subnet: '172.16.21.0/24'

allocation_pools: [{'start': '172.16.21.4', 'end':
'172.16.21.250'}]

ipv6_subnet: 'fdeO:fdoo:fdo0:4001::/64"

108

ipv6_allocation_pools: [{'start': 'fdeO:fdeO:fd00:4001:

'end':

name :

CHAPTER 9. USING COMPOSABLE NETWORKS

'fdeO:fdOe: fdee: 4001 ffff . ffff:.ffff:fffe'}]
StorageMgmt2

name_lower: storage_mgmt2

vip:

true

ip_subnet: '172.16.22.0/24'

allocation_pools: [{'start': '172.16.22.4', 'end':
'172.16.22.250'}]

ipv6_subnet: 'fdeO:fdoo:fdo0:4002::/64"

ipv6_allocation_pools: [{'start': 'fdeO:fd0eO:fd00:4002:

'end':

name :

name_

vip:

'fdeO:fdOe:fdee:4002: ffff . ffff:ffff:fffe'}]
StorageMgmt3

lower: storage_mgmt3

true

ip_subnet: '172.16.23.0/24'
allocation_pools: [{'start': '172.16.23.4', 'end':
'172.16.23.250'}]

ipv6_
ipv6_

'end':

name:
vip:

name_

subnet: 'fdOO:fdOO:fdOO:4003::/64'

allocation_pools: [{'start': 'fd00:fdoo:fd00:4003:

'fdeO:fdOe:fdee:4003: ffff . ffff.ffff:fffe'}]
Storagel

true

lower: storagel

ip_subnet: '172.16.31.0/24'
allocation_pools: [{'start': '172.16.31.4', 'end':
'172.16.31.250'}]

ipv6_
ipv6_

'end':

name:
vip:

name_

subnet: 'fdeO:fdeO:fdOO:3001::/64"'

allocation_pools: [{'start': 'fd00:fdeo:fdeO:3001:
'fdOO:fde0:fde0:3001: ffff . ffff:ffff:fffe'}]
Storage2

true

lower: storage2

ip_subnet: '172.16.32.0/24'
allocation_pools: [{'start': '172.16.32.4', 'end':
'172.16.32.250'}]

ipv6_
ipv6_

'end':

name:
vip:

name_

subnet: 'fdOO:fdOO:fdOO:3002::/64'

allocation_pools: [{'start': 'fdo0:fdoo:fde0:3002:

'fdeO:fdOe:fdee:3002: ffff.ffff:.ffff:fffe'}]
Storages3

true

lower: storage3

ip_subnet: '172.16.33.0/24'
allocation_pools: [{'start': '172.16.33.4', 'end':
'172.16.33.250'}]

ipv6_
ipv6_

'end':

name :

name_

vip:

subnet: 'fdOO:fdOO:fdOO:3003::/64"'

allocation_pools: [{'start': 'fd00:fdeo:fde0:3003:

'fdoo: fdeo:fdee:3003: ffff:ffff:ffff:fffe'}]
InternalApil

lower: internal_apil

true

ip_subnet: '172.16.41.0/24'
allocation_pools: [{'start': '172.16.41.4', 'end':
'172.16.41.250'}]

ipv6_
ipv6_

'end':

subnet: 'fdoO:fdeO:fdOO:2001::/64'

allocation_pools: [{'start': 'fd00:fdeo:fde0:2001:

'fd00:fde0:fdee:2001: Ffff:ffff:ffff:fffe'}]

:10',

:10',

:10',

:10',

:10',

:10',

:10',

109

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

- name: InternalApi2

name_lower: internal_api2

vip: true

ip_subnet: '172.16.42.0/24'

allocation_pools: [{'start': '172.16.42.4', 'end':
'172.16.42.250'}]

ipv6_subnet: 'fdeO:fdoo:fdo0:2002::/64"

ipv6_allocation_pools: [{'start': 'fdeo:fde0:fd00:2002::10"',

'end': 'fd0O:fdEO:fdeO:2002:ffff:ffff:ffff:fffe'}]
- name: InternalApi3

name_lower: internal_api3

vip: true

ip_subnet: '172.16.43.0/24'

allocation_pools: [{'start': '172.16.43.4', 'end':
'172.16.43.250'}]

ipv6_subnet: 'fdeO:fdoo:fdo0:2003::/64"

ipv6_allocation_pools: [{'start': 'fdeo:fde0:fd00:2003::10"',

'end': 'fdo0:fdeO:fde0:2003:ffff:ffff:ffff:fffe'}]

NOTE

There is currently no validation performed for the network subnet and

allocation_pools values. Be certain you have defined these consistently and

there is no conflict with existing networks.

2. Review the /home/stack/roles_data.yaml values. They should be similar to the following

example:

HURBHHHRAHHH BB HH R R B HHHR A HH R AR
Role: Controller
HURAHHHHAHHH BB HH R R HHR A HH R AR
- name: Controller

description: |

Controller role that has all the controler services loaded and

handles
Database, Messaging and Network functions.
CountDefault: 1
tags:
- primary
- controller
networks:
- External
- InternalApi
- Storage
- StorageMgmt
- Tenant
HostnameFormatDefault: '%stackname%-controller-%index%'
ServicesDefault:
- 0S::Triple0::Services: :AodhApi
- 0S::TripleO::Services: :AodhEvaluator
- 0S::TripleO::Services: :AodhListener
- 0S::Triple0::Services: :AodhNotifier
- 0S::TripleO::Services: :AuditD
- 0S::Triple0::Services: :BarbicanApi
- 0S::TripleO::Services: ::CACerts

110

0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

CHAPTER 9. USING COMPOSABLE NETWORKS

:CeilometerAgentCentral
:CeilometerAgentNotification
:CeilometerApi
:CeilometerCollector
:CeilometerExpirer
:CephExternal

:CephMds

:CephMon

:CephRbdMirror

:CephRgw
:CertmongerUser
:CinderApi
:CinderBackendDellPs
:CinderBackendDellSc
:CinderBackendDellEMCUNity
:CinderBackendDellEMCVMAXISCSI
:CinderBackendNetApp
:CinderBackendScaleIO
:CinderBackendVRTSHyperScale
:CinderBackup
:CinderHPELeftHandISCSI
:CinderScheduler
:CinderVolume
:Clustercheck

:Collectd

:Congress

:Docker

:Ec2Api

:Etcd
:ExternalSwiftProxy
:FluentdClient
:GlanceApi

:GnocchiApi
:GnocchiMetricd
:GnocchiStatsd

:HAproxy

:HeatApi

:HeatApiCfn
:HeatApiCloudwatch
:HeatEngine

:Horizon

:IronicApi
:IronicConductor
:Iscsid

:Keepalived

:Kernel

:Keystone

:ManilaApi
:ManilaBackendCephFs
:ManilaBackendGeneric
:ManilaBackendIsilon
:ManilaBackendNetapp
:ManilaBackendUnity
:ManilaBackendVNX
:ManilaBackendVMAX
:ManilaScheduler

111

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

112

0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:
0S:

:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:
:TripleO:

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

:ManilaShare
:Memcached

:MongoDb

:MySQL

:MySQLClient
:NeutronApi
:NeutronBgpVpnApi
:NeutronCorePlugin
:NeutronDhcpAgent
:NeutronL2gwAgent
:NeutronL2gwApi
:NeutronL3Agent
:NeutronLbaasv2Agent
:NeutronLinuxbridgeAgent
:NeutronMetadataAgent
:NeutronML2FujitsuCfab
:NeutronML2FujitsuFossw
:NeutronOvsAgent
:NeutronVppAgent
:NovaApi
:NovaConductor
:NovaConsoleauth
:Novalronic
:NovaMetadata
:NovaPlacement
:NovaScheduler
:NovaVncProxy

:Ntp
:ContainersLogrotateCrond
:0OctaviaApi
:0ctaviaHealthManager
:0ctaviaHousekeeping
:0ctaviaWorker
:0OpenDaylightApi
:0penDaylightOvs
:OVNDBs
:0VNController
:Pacemaker

:PankoApi

:RabbitMQ

:Redis

:SaharaApi
:SaharaEngine
:Securetty
:SensuClient

:Snmp

:Sshd

:SwiftProxy
:SwiftRingBuilder
:SwiftStorage

:Tacker

:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

:Vpp

CHAPTER 9. USING COMPOSABLE NETWORKS

- 0S::Triple0::Services::Zaqar

HHHHHHHHH BB HHHHH R HHHH R HHH R
Role:
HHHHHHHHH BB HHHHH R HHHH R HHH A

name:

Compute

Computel

description: |
Basic Compute Node role
CountDefault:
networks:

- InternalApil
- Tenantl

- Storagel
HostnameFormatDefault:
disable_upgrade_deployment: True

1

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

ServicesDefault:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:

:Services:

#

'%stackname%-novacomputel-%index%'

:AuditD
:CACerts
:CephClient
:CephExternal
:CertmongerUser
:Collectd
:ComputeCeilometerAgent
:ComputeNeutronCorePlugin
:ComputeNeutronL3Agent
:ComputeNeutronMetadataAgent
:ComputeNeutronOvsAgent
:Docker
:FluentdClient
:Iscsid
:Kernel
:MySQLClient
:NeutronLinuxbridgeAgent
:NeutronSriovAgent
:NeutronSriovHostConfig
:NeutronVppAgent
:NovaCompute
:NovalLibvirt
:NovaMigrationTarget
:Ntp
:ContainersLogrotateCrond
:0penDaylightOvs
:Securetty
:SensuClient
:Snmp
:Sshd
:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned
:Vpp
:0OVNController

HHHHHHHHHHHH BB R BB BB B BB BB
Role: CephStorage
HHHHHHHHHHHH BB R BB BB B BB BB
- name: CephStoragel
description: |

#

113

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

114

Ceph 0SD Storage node role

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

networks:

- Storagel

- StorageMgmtl
ServicesDefault:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:

:Services:

:AuditD
:CACerts
:Ceph0OSD
:CertmongerUser
:Collectd
:Docker
:FluentdClient
:Kernel
:MySQLClient
:Ntp
:ContainersLogrotateCrond
:Securetty
:SensuClient
:Snmp
:Sshd
:Timezone
:TripleoFirewall
:TripleoPackages
:Tuned

HHHHHHHHHHHHH B R R R R PR H R R R R TR
Role:
HHHHHHHHHHHH AR HR R R R H R R R R HHH

name :

Compute

Compute2

description: |
Basic Compute Node role
CountDefault:
networks:

- InternalApi2
- Tenant2

- Storage2
HostnameFormatDefault:
disable_upgrade_deployment: True

1

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

ServicesDefault:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:

#

'%stackname%-novacompute2-%index%"'

:AuditD
:CACerts
:CephClient
:CephExternal
:CertmongeruUser
:Collectd
:ComputeCeilometerAgent
:ComputeNeutronCorePlugin
:ComputeNeutronL3Agent
:ComputeNeutronMetadataAgent
:ComputeNeutronOvsAgent
:Docker
:FluentdClient
:Iscsid
:Kernel
:MySQLClient
:NeutronLinuxbridgeAgent
:NeutronSriovAgent

CHAPTER 9. USING COMPOSABLE NETWORKS

- 0S::Triple0::Services: :NeutronSriovHostConfig
- 0S::TripleO::Services: :NeutronVppAgent

- 0S::TripleO::Services: :NovaCompute

- 0S::Triple0::Services: :NovalLibvirt

- 0S::TripleO::Services: :NovaMigrationTarget

- 0S::Triple0::Services: :Ntp

- 0S::TripleO::Services: :ContainersLogrotateCrond
- 0S::TripleO::Services: :0OpenDaylightOvs

- 0S::TripleO::Services: :Securetty

- 0S::TripleO::Services: :SensuClient

- 0S::Triple0::Services: :Snmp

- 0S::TripleO::Services: :Sshd

- 0S::TripleO::Services::Timezone

- 0S::Triple0::Services::TripleoFirewall

- 0S::TripleO::Services: :TripleoPackages

- 0S::TripleO::Services: :Tuned

- 0S::Triple0::Services: :Vpp

- 0S::TripleO::Services: :0VNController

HHHHHHHHHHHH BB B R BB BB BB BB
Role: CephStorage
HHHHHHHHHHHH BB R BB BB BB BB
- name: CephStorage2

#

description:

Ceph 0SD Storage node role

networks:

- Storage2

- StorageMgmt2

ServicesDefault:

- 0S::TripleO::Services: :AuditD

- 0S::Triple0::Services: :CACerts

- 0S::Triple0::Services: :Ceph0OSD

- 0S::Triple0::Services: :CertmongerUser
- 0S::TripleO::Services::Collectd

- 0S::TripleO::Services: :Docker

- 0S::TripleO::Services: :FluentdClient

- 0S::TripleO::Services: :Kernel

- 0S::Triple0::Services: :MySQLClient

- 0S::Triple0::Services: :Ntp

- 0S::TripleO::Services: :ContainersLogrotateCrond
- 0S::Triple0::Services::Securetty

- 0S::TripleO::Services: :SensuClient

- 0S::Triple0::Services: :Snmp

- 0S::TripleO::Services: :Sshd

- 0S::TripleO::Services::Timezone

- 0S::Triple0::Services::TripleoFirewall
- 0S::Triple0::Services: :TripleoPackages
- 0S::TripleO::Services: :Tuned

HAAHHAHF AR B AAH B AR B AH B AR A AHFHAHEHH

Role: Compute
HHHHHHHHHHHH BB R BB BR BB BB BB

name: Compute3
description: |

Basic Compute Node role
CountDefault: 1
networks:

- InternalApi3

115

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

- Tenant3

- Storage3

HostnameFormatDefault: '%stackname%-novacompute3-%index%'
disable_upgrade_deployment: True

116

ServicesDefault:

- 0S::TripleO::Services: :AuditD

- 0S::Triple0::Services: :CACerts

- 0S::Triple0::Services: :CephClient

- 0S::Triple0::Services: :CephExternal

- 0S::Triple0::Services: :CertmongerUser

- 0S::TripleO0::Services::Collectd

- 0S::TripleO::Services: :ComputeCeilometerAgent
- 0S::TripleO::Services: :ComputeNeutronCorePlugin
- 0S::TripleO::Services: ::ComputeNeutronL3Agent

- 0S::TripleO::Services: :ComputeNeutronMetadataAgent
- 0S::TripleO::Services: ::ComputeNeutronOvsAgent
- 0S::TripleO::Services: :Docker

- 0S::TripleO::Services: :FluentdClient

- 0S::TripleO::Services: :Iscsid

- 0S::Triple0::Services: :Kernel

- 0S::Triple0::Services: :MySQLClient

- 0S::Triple0::Services: :NeutronLinuxbridgeAgent
- 0S::Triple0::Services: :NeutronSriovAgent

- 0S::Triple0::Services: :NeutronSriovHostConfig
- 0S::Triple0::Services: :NeutronVppAgent

- 0S::Triple0::Services: :NovaCompute

- 0S::TripleO::Services: :NovalLibvirt

- 0S::Triple0::Services: :NovaMigrationTarget

- 0S::Triple0::Services: :Ntp

- 0S::Triple0::Services: :ContainersLogrotateCrond
- 0S::Triple0::Services: :0penDaylightOvs

- 0S::TripleO::Services::Securetty

- 0S::Triple0::Services: :SensuClient

- 0S::Triple0::Services: :Snmp

- 0S::Triple0::Services: :Sshd

- 0S::Triple0::Services: :Timezone

- 0S::Triple0::Services::TripleoFirewall

- 0S::Triple0::Services: :TripleoPackages

- 0S::TripleO::Services: :Tuned

- 0S::Triple0::Services: :Vpp

- 0S::TripleO::Services: :0VNController

HHHHHHHHHHHH BB R BB BB B BB BB
Role: CephStorage
HHHHHHHHHHHHHBR BB BB BB BB B
name: CephStorage3

description: |

Ceph 0SD Storage node role
networks:

- Storage3

- StorageMgmt3

ServicesDefault:

- 0S::TripleO::Services: :AuditD

- 0S::TripleO::Services: ::CACerts
- 0S::Triple0::Services: :Ceph0OSD
- 0S::Triple0::Services: :CertmongerUser
- 0S::TripleO::Services::Collectd

#

CHAPTER 9. USING COMPOSABLE NETWORKS

- 0S::TripleO::Services: :Docker

- 0S::TripleO::Services: :FluentdClient

- 0S::TripleO::Services: :Kernel

- 0S::Triple0::Services: :MySQLClient

- 0S::Triple0::Services: :Ntp

- 0S::TripleO::Services: :ContainersLogrotateCrond
- 0S::TripleO::Services::Securetty

- 0S::TripleO::Services: :SensuClient

- 0S::Triple0::Services: :Snmp

- 0S::TripleO::Services: :Sshd

- 0S::TripleO::Services::Timezone

- 0S::Triple0::Services::TripleoFirewall
- 0S::TripleO::Services: :TripleoPackages
- 0S::TripleO::Services: :Tuned

3. Review the nic-config template for the Compute node:

[stack@undercloud-0 ~]$ cat virt/network/three-nics-
vlans/computel.yaml
heat_template_version: 2015-04-30

description: >

Software Config to drive os-net-config to configure multiple
interfaces

for the compute role.

parameters:

InternalApilInterfaceDefaultRoute: # Override this via
parameter_defaults

description: Default route for the specific network.

type: string

InternalApi2InterfaceDefaultRoute: # Override this via
parameter_defaults

description: Default route for the specific network.

type: string

InternalApi3InterfaceDefaultRoute: # Override this via
parameter_defaults

description: Default route for the specific network.

type: string

TenantlInterfaceDefaultRoute: # Override this via
parameter_defaults

description: Default route for the specific network.

type: string

Tenant2InterfaceDefaultRoute: # Override this via
parameter_defaults

description: Default route for the specific network.

type: string

Tenant3InterfaceDefaultRoute: # Override this via
parameter_defaults

description: Default route for the specific network.

type: string

StoragelInterfaceDefaultRoute: # Override this via
parameter_defaults

description: Default route for the specific network.

type: string

Storage2InterfaceDefaultRoute: # Override this via

117

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

parameter_defaults

description: Default route for the specific network.

type: string

Storage3InterfaceDefaultRoute: # Override this via
parameter_defaults

description: Default route for the specific network.

type: string

InternalApilNetworkVlanID:

default: 21

description: Vlan ID for the internal_api network traffic.

type: number

InternalApi2NetworkVlanID:

default: 22

description: Vlan ID for the internal_api network traffic.

type: number

InternalApi3NetworkVlanID:

default: 23

description: Vlan ID for the internal_api network traffic.

type: number

StoragelNetworkVvlanID:

default: 31

description: Vlan ID for the storage network traffic.

type: number

Storage2NetworkVvlanID:

default: 32

description: Vlan ID for the storage network traffic.

type: number

Storage3NetworkVvlanID:

default: 33

description: Vlan ID for the storage network traffic.

type: number

StorageMgmti1NetworkvlanID:

default: 41

description: Vlan ID for the storage mgmt network traffic.

type: number

StorageMgmt2NetworkvlanID:

default: 42

description: Vlan ID for the storage mgmt network traffic.

type: number

StorageMgmt3NetworkvlanID:

default: 43

description: Vlan ID for the storage mgmt network traffic.

type: number

TenantlNetworkVlanID:

default: 51

description: Vlan ID for the tenant network traffic.

type: number

Tenant2NetworkVlanID:

default: 52

description: Vlan ID for the tenant network traffic.

type: number

Tenant3NetworkVvlanID:

default: 53

description: Vlan ID for the tenant network traffic.

type: number

ControlPlanelIp:

118

default: ''

description: IP address/subnet
type: string

ExternalIpSubnet:

default: ''

description: IP address/subnet
type: string
InternalApiIpSubnet:

default: ''

description: IP address/subnet
type: string
InternalApilIpSubnet:

default: ''

description: IP address/subnet
type: string
InternalApi2IpSubnet:

default: ''

description: IP address/subnet
type: string
InternalApi3IpSubnet:

default: ''

description: IP address/subnet
type: string

StoragelIpSubnet:

default: ''

description: IP address/subnet
type: string

Storage2IpSubnet:

default: ''

description: IP address/subnet
type: string

Storage3IpSubnet:

default: ''

description: IP address/subnet
type: string
StorageMgmt1IpSubnet:

default: ''

description: IP address/subnet
type: string
StorageMgmt2IpSubnet:

default: ''

description: IP address/subnet
type: string
StorageMgmt3IpSubnet:

default: ''

description: IP address/subnet
type: string

TenantlIpSubnet:

default: ''

description: IP address/subnet
type: string

Tenant2IpSubnet:

default: ''

description: IP address/subnet
type: string

Tenant3IpSubnet:

on

on

on

on

on

on

on

on

on

on

on

on

on

on

CHAPTER 9. USING COMPOSABLE NETWORKS

the

the

the

the

the

the

the

the

the

the

the

the

the

the

ctlplane network

external network

internal API network

internal API network

internal API network

internal API network

storage network
storage network
storage network
storage mgmt network
storage mgmt network
storage mgmt network

tenant network

tenant network

119

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

120

default: ''

description: IP address/subnet on the tenant network
type: string

StorageIpSubnet:

default: ''

description: IP address/subnet on the storage network
type: string

StorageMgmtIpSubnet:

default: ''

description: IP address/subnet on the storage mgmt network
type: string

TenantIpSubnet:

default: ''

description: IP address/subnet on the tenant network
type: string

ManagementIpSubnet: # Only populated when including

environments/network-management.yaml

default: "'

description: IP address/subnet on the management network
type: string

InternalApiNetworkVlanID:

default: 20

description: Vlan ID for the internal_api network traffic.
type: number

StorageNetworkVvlanID:

default: 30

description: Vlan ID for the storage network traffic.
type: number

TenantNetworkVvlanID:

default: 50

description: Vlan ID for the tenant network traffic.

type: number

ControlPlaneSubnetCidr: # Override this via parameter_defaults
default: '24'

description: The subnet CIDR of the control plane network.
type: string

ControlPlaneDefaultRoute: # Override this via parameter_defaults
description: The subnet CIDR of the control plane network.
type: string

DnsServers: # Override this via parameter_defaults
default: []

description: A list of DNS servers (2 max for some

implementations) that will be added to resolv.conf.

type: json

EC2MetadataIp: # Override this via parameter_defaults
description: The IP address of the EC2 metadata server.
type: string

resources:

OsNetConfigImpl:
type: 0S::Heat::StructuredConfig
properties:
group: os-apply-config
config:
os_net_config:
network_config:

CHAPTER 9. USING COMPOSABLE NETWORKS

type: interface
name: nicl
use_dhcp: false
dns_servers: {get_param: DnsServers}
addresses:
ip_netmask:
list_join:
_ l/l
- - {get_param: ControlPlanelIp}
- {get_param: ControlPlaneSubnetCidr}
routes:
ip_netmask: 0.0.0.0/0
next_hop: {get_param: ControlPlaneDefaultRoute}
Optionally have this interface as default route
default: true

ip_netmask: 169.254.169.254/32
next_hop: {get_param: EC2Metadatalp}

type: ovs_bridge
name: br-isolated
use_dhcp: false
members:
type: interface
name: nic2
force the MAC address of the bridge to this
interface
primary: true

type: vlan
vlan_id: {get_param: InternalApilNetworkVlanID}
addresses:
ip_netmask: {get_param: InternalApilIpSubnet}
routes:
ip_netmask: 172.120.1.0/24
next_hop: {get_param:
InternalApilInterfaceDefaultRoute}
ip_netmask: 172.118.1.0/24
next_hop: {get_param:
InternalApilInterfaceDefaultRoute}
ip_netmask: 172.119.1.0/24
next_hop: {get_param:
InternalApilInterfaceDefaultRoute}
type: vlan
vlan_id: {get_param: StoragelNetworkVlanID}
addresses:

121

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

ip_netmask: {get_param: StoragelIpSubnet}
routes:
ip_netmask: 172.120.3.0/24
next_hop: {get_param:
StoragelInterfaceDefaultRoute}
ip_netmask: 172.118.3.0/24
next_hop: {get_param:
StoragelInterfaceDefaultRoute}
ip_netmask: 172.119.3.0/24
next_hop: {get_param:
StoragelInterfaceDefaultRoute}
type: vlan
vlan_id: {get_param: TenantlNetworkVlanID}
addresses:
ip_netmask: {get_param: TenantlIpSubnet}
routes:
ip_netmask: 172.120.2.0/24
next_hop: {get_param:
TenantlInterfaceDefaultRoute}
ip_netmask: 172.118.2.0/24
next_hop: {get_param:
TenantlInterfaceDefaultRoute}
ip_netmask: 172.119.2.0/24
next_hop: {get_param:
TenantlInterfaceDefaultRoute}
type: interface
name: nic3
use_dhcp: false

outputs:
0S::stack_id:
description: The OsNetConfigImpl resource.
value: {get_resource: OsNetConfigImpl}

4. Run the openstack overcloud deploy command to apply the changes. For example:

openstack overcloud deploy --templates \

--libvirt-type kvm \

-n /home/stack/network_data.yaml \

-r /home/stack/roles_data.yaml \

-e /home/stack/templates/nodes_data.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-
ansible/ceph-ansible.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.yaml \

-e /home/stack/virt/network/network-environment.yaml \

-e /usr/share/openstack-tripleo-heat-

122

CHAPTER 9. USING COMPOSABLE NETWORKS

templates/environments/ssl/enable-tls.yaml \
-e /home/stack/virt/public_vip.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-
endpoints-public-ip.yaml \

-e /home/stack/inject-trust-anchor-hiera.yaml \
-e /home/stack/rhos12.yaml

123

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 10. CONTROLLING NODE PLACEMENT

The default behavior for the director is to randomly select nodes for each role, usually based on their
profile tag. However, the director provides the ability to define specific node placement. This is a useful
method to:

e Assign specific node IDs e.g. controller-0, controller-1, efc

e Assign custom hostnames

e Assign specific IP addresses

e Assign specific Virtual IP addresses

NOTE

Manually setting predictable IP addresses, virtual IP addresses, and ports for a network
alleviates the need for allocation pools. However, it is recommended to retain allocation
pools for each network to ease with scaling new nodes. Make sure that any statically
defined IP addresses fall outside the allocation pools. For more information on setting
allocation pools, see Section 8.2, “Creating a Network Environment File”.

10.1. ASSIGNING SPECIFIC NODE IDS

This procedure assigns node ID to specific nodes. Examples of node IDs include controller -0,
controller-1, compute-0, compute-1, and so forth.

The first step is to assign the ID as a per-node capability that the Nova scheduler matches on
deployment. For example:

openstack baremetal node set --property capabilities='node:controller-
0, boot_option:local' <id>

This assigns the capability node: controller -0 to the node. Repeat this pattern using a unique
continuous index, starting from 0, for all nodes. Make sure all nodes for a given role (Controller,
Compute, or each of the storage roles) are tagged in the same way or else the Nova scheduler will not
match the capabilities correctly.

The next step is to create a Heat environment file (for example, scheduler_hints_env.yaml) that
uses scheduler hints to match the capabilities for each node. For example:

parameter_defaults:
ControllerSchedulerHints:
'capabilities:node': 'controller-%index%'

To use these scheduler hints, include the * scheduler_hints_env.yaml’ environment file with the
overcloud deploy command during Overcloud creation.

The same approach is possible for each role via these parameters:
e ControllerSchedulerHints for Controller nodes.

e NovaComputeSchedulerHints for Compute nodes.

124

CHAPTER 10. CONTROLLING NODE PLACEMENT

BlockStorageSchedulerHints for Block Storage nodes.

ObjectStorageSchedulerHints for Object Storage nodes.

CephStorageSchedulerHints for Ceph Storage nodes.

[ROLE]SchedulerHints for custom roles. Replace [ROLE] with the role name.

NOTE

Node placement takes priority over profile matching. To avoid scheduling failures, use the
default baremetal flavor for deployment and not the flavors designed for profile
matching (compute, control, etc). For example:

$ openstack overcloud deploy ... --control-flavor baremetal --
compute-flavor baremetal

10.2. ASSIGNING CUSTOM HOSTNAMES

In combination with the node ID configuration in Section 10.1, “Assigning Specific Node IDs”, the director
can also assign a specific custom hostname to each node. This is useful when you need to define where
a system is located (e.g. rack2-row12), match an inventory identifier, or other situations where a
custom hostname is desired.

To customize node hostnames, use the HostnameMap parameter in an environment file, such as the °
scheduler_hints_env.yaml file from Section 10.1, “Assigning Specific Node IDs”. For example:

parameter_defaults:
ControllerSchedulerHints:

'capabilities:node': 'controller-%index%'
NovaComputeSchedulerHints:

'capabilities:node': 'compute-%index%'
HostnameMap:

overcloud-controller-0: overcloud-controller-prod-123-0
overcloud-controller-1: overcloud-controller-prod-456-0
overcloud-controller-2: overcloud-controller-prod-789-0
overcloud-compute-0: overcloud-compute-prod-abc-0

Define the HostnameMap in the parameter_defaults section, and set each mapping as the original
hostname that Heat defines using HosthameFormat parameters (e.g. overcloud-controller-0)
and the second value is the desired custom hostname for that node (e.g. overcloud-controller -
prod-123-0).

Using this method in combination with the node ID placement ensures each node has a custom
hostname.

10.3. ASSIGNING PREDICTABLE IPS

For further control over the resulting environment, the director can assign Overcloud nodes with specific
IPs on each network as well. Use the environments/ips-from-pool-all.yaml environment file in
the core Heat template collection. Copy this file to the stack user's templates directory.

125

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

$ cp /usr/share/openstack-tripleo-heat-templates/environments/ips-from-
pool-all.yaml ~/templates/.

There are two major sections in the ips-from-pool-all.yaml file.

The first is a set of resource_registry references that override the defaults. These tell the director to
use a specific IP for a given port on a node type. Modify each resource to use the absolute path of its
respective template. For example:

0S::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external_from_pool.yaml
0S::TripleO::Controller::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api_from_pool.yaml
0S::TripleO::Controller: :Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_from_pool.yaml
0S::TripleO::Controller: :Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt_from_pool.yaml
0S::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/tenant_from_pool.yaml

The default configuration sets all networks on all node types to use pre-assigned IPs. To allow a
particular network or node type to use default IP assignment instead, simply remove the
resource_registry entries related to that node type or network from the environment file.

The second section is parameter_defaults, where the actual IP addresses are assigned. Each node type
has an associated parameter:

e ControllerIPs for Controller nodes.

e NovaComputeIPs for Compute nodes.

e CephStorageIPs for Ceph Storage nodes.

e BlockStorageIPs for Block Storage nodes.

e SwiftStorageIPs for Object Storage nodes.

e [ROLE]IPs for custom roles. Replace [ROLE] with the role name.
Each parameter is a map of network names to a list of addresses. Each network type must have at least
as many addresses as there will be nodes on that network. The director assigns addresses in order. The
first node of each type receives the first address on each respective list, the second node receives the

second address on each respective lists, and so forth.

For example, if an Overcloud will contain three Ceph Storage nodes, the CephStoragelPs parameter
might look like:

CephStoragelIPs:
storage:
- 172.16.1.100
- 172.16.1.101
- 172.16.1.102
storage_mgmt:

126

CHAPTER 10. CONTROLLING NODE PLACEMENT

- 172.16.3.100
- 172.16.3.101
- 172.16.3.102

The first Ceph Storage node receives two addresses: 172.16.1.100 and 172.16.3.100. The second
receives 172.16.1.101 and 172.16.3.101, and the third receives 172.16.1.102 and 172.16.3.102. The
same pattern applies to the other node types.

Make sure the chosen IP addresses fall outside the allocation pools for each network defined in your
network environment file (see Section 8.2, “Creating a Network Environment File”). For example, make
sure the internal_api assignments fall outside of the InternalApiAllocationPools range. This
avoids conflicts with any IPs chosen automatically. Likewise, make sure the IP assignments do not
conflict with the VIP configuration, either for standard predictable VIP placement (see Section 10.4,
“Assigning Predictable Virtual IPs”) or external load balancing (see Section 21.1, “Configuring External
Load Balancing”).

IMPORTANT

If an overcloud node is deleted, do not remove its entries in the IP lists. The IP list is
based on the underlying Heat indices, which do not change even if you delete nodes. To
indicate a given entry in the list is no longer used, replace the IP value with a value such
as DELETED or UNUSED. Entries should never be removed from the IP lists, only changed
or added.

To apply this configuration during a deployment, include the ips-from-pool-all.yaml environment
file with the openstack overcloud deploy command.

IMPORTANT

If using network isolation (see Chapter 8, Isolating Networks), include the ips-from-
pool-all.yaml file after the network-isolation.yaml file.

For example:

$ openstack overcloud deploy --templates \

-e /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.yaml \

-e ~/templates/ips-from-pool-all.yaml \

[OTHER OPTIONS]

10.4. ASSIGNING PREDICTABLE VIRTUAL IPS

In addition to defining predictable IP addresses for each node, the director also provides a similar ability
to define predictable Virtual IPs (VIPs) for clustered services. To accomplish this, edit the network
environment file from Section 8.2, “Creating a Network Environment File” and add the VIP parameters in
the parameter_defaults section:

parameter_defaults:

Predictable VIPs

ControlFixedIPs: [{'ip_address':'192.168.201.101"'}]
InternalApiVirtualFixedIPs: [{'ip_address':'172.16.0.9'}]
PublicVirtualFixedIPs: [{'ip_address':'10.1.1.9'}]

127

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

StorageVirtualFixedIPs: [{'ip_address':'172.18.0.9'}]
StorageMgmtVirtualFixedIPs: [{'ip_address':'172.19.0.9'}]
RedisVirtualFixedIPs: [{'ip_address':'172.16.0.8'}]

Select these IPs from outside of their respective allocation pool ranges. For example, select an IP
address for InternalApiVirtualFixedIPs that is not within the InternalApiAllocationPools
range.

This step is only for overclouds using the default internal load balancing configuration. If assigning VIPs

with an external load balancer, use the procedure in the dedicated External Load Balancing for the
Overcloud guide.

128

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/external_load_balancing_for_the_overcloud

CHAPTER 11. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

CHAPTER 11. ENABLING SSL/TLS ON OVERCLOUD PUBLIC
ENDPOINTS

By default, the overcloud uses unencrypted endpoints for its services. This means that the overcloud
configuration requires an additional environment file to enable SSL/TLS for its Public APl endpoints. The
following chapter shows how to configure your SSL/TLS certificate and include it as a part of your
overcloud creation.

NOTE

This process only enables SSL/TLS for Public APl endpoints. The Internal and Admin
APIs remain unencrypted.

This process requires network isolation to define the endpoints for the Public API. See Chapter 8,
Isolating Networks for instruction on network isolation.

11.1. INITIALIZING THE SIGNING HOST

The signing host is the host that generates new certificates and signs them with a certificate authority. If
you have never created SSL certificates on the chosen signing host, you might need to initialize the host
so that it can sign new certificates.

The /etc/pki/CA/index. txt file stores records of all signed certificates. Check if this file exists. If it
does not exist, create an empty file:

I $ sudo touch /etc/pki/CA/index.txt

The /etc/pki/CA/serial file identifies the next serial number to use for the next certificate to sign.
Check if this file exists. If it does not exist, create a new file with a new starting value:

I $ echo '1000' | sudo tee /etc/pki/CA/serial

11.2. CREATING A CERTIFICATE AUTHORITY

Normally you sign your SSL/TLS certificates with an external certificate authority. In some situations, you
might aim to use your own certificate authority. For example, you might aim to have an internal-only
certificate authority.

For example, generate a key and certificate pair to act as the certificate authority:

$ openssl genrsa -out ca.key.pem 4096
$ openssl req -key ca.key.pem -new -x509 -days 7300 -extensions v3_ca -
out ca.crt.pem

The openssl req command asks for certain details about your authority. Enter these details.

This creates a certificate authority file called ca.crt.pem.

11.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS

129

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

For any external clients aiming to communicate using SSL/TLS, copy the certificate authority file to each
client that requires access your Red Hat OpenStack Platform environment. Once copied to the client, run
the following command on the client to add it to the certificate authority trust bundle:

$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/
$ sudo update-ca-trust extract

For example, the undercloud requires a copy of the certificate authority file so that it can communicate
with the overcloud endpoints during creation.

11.4. CREATING AN SSL/TLS KEY

Run the following commands to generate the SSL/TLS key (server .key.pem), which we use at
different points to generate our undercloud or overcloud certificates:

I $ openssl genrsa -out server.key.pem 2048

11.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST

This next procedure creates a certificate signing request for the overcloud. Copy the default OpenSSL
configuration file for customization.

I $ cp /etc/pki/tls/openssl.cnf

Edit the custom openssl.cnf file and set SSL parameters to use for the overcloud. An example of the
types of parameters to modify include:

[req]
distinguished_name = reqg_distinguished_name
reg_extensions = v3_req

[reg_distinguished_name]

countryName = Country Name (2 letter code)
countryName_default = AU

stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Queensland

localityName = Locality Name (eg, city)
localityName_default = Brisbane

organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Red Hat

commonName = Common Name

commonName_default = 10.0.0.1

commonName_max = 64

[v3_req]

Extensions to add to a certificate request
basicConstraints = CA:FALSE

keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]

130

CHAPTER 11. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

IP.1 = 10.0.0.1
DNS.1 10.0.0.1
DNS.2 = myovercloud.example.com

Set the commonName_default to one of the following:

e If using an IP to access over SSL/TLS, use the Virtual IP for the Public API. Set this VIP using
the PublicVirtualFixedIPs parameter in an environment file. For more information, see
Section 10.4, “Assigning Predictable Virtual IPs”. If you are not using predictable VIPs, the
director assigns the first IP address from the range defined in the ExternalAllocationPools
parameter.

e |[f using a fully qualified domain name to access over SSL/TLS, use the domain name instead.

Include the same Public API IP address as an IP entry and a DNS entry in the alt_names section. If
also using DNS, include the hostname for the server as DNS entries in the same section. For more
information about openssl.cnf, run man openssl.cnf.

Run the following command to generate certificate signing request (server.csr.pem):

$ openssl req -config openssl.cnf -key server.key.pem -new -out
server.csr.pem

Make sure to include the SSL/TLS key you created in Section 11.4, “Creating an SSL/TLS Key” for the -
key option.

Use the server.csr.pem file to create the SSL/TLS certificate in the next section.

11.6. CREATING THE SSL/TLS CERTIFICATE

The following command creates a certificate for your undercloud or overcloud:

$ sudo openssl ca -config openssl.cnf -extensions v3_req -days 3650 -in
server.csr.pem -out server.crt.pem -cert ca.crt.pem -keyfile ca.key.pem

This command uses:
e The configuration file specifying the v3 extensions. Include this as the -config option.
e The certificate signing request from Section 11.5, “Creating an SSL/TLS Certificate Signing
Request” to generate the certificate and sign it throught a certificate authority. Include this as the

-in option.

e The certificate authority you created in Section 11.2, “Creating a Certificate Authority”, which
signs the certificate. Include this as the -cert option.

e The certificate authority private key you created in Section 11.2, “Creating a Certificate
Authority”. Include this as the -keyfile option.

This results in a certificate named server.crt.pem. Use this certificate in conjunction with the
SSL/TLS key from Section 11.4, “Creating an SSL/TLS Key” to enable SSL/TLS.

11.7. ENABLING SSL/TLS

131

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Copy the enable-tls.yaml environment file from the Heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/enable-
tls.yaml ~/templates/.

Edit this file and make the following changes for these parameters:

SSL Certificate

Copy the contents of the certificate file (server.crt.pem) into the SSLCertificate parameter.
For example:

parameter_defaults:
SSLCertificate: |
————— BEGIN CERTIFICATE-----
MIIDgzCCAmugAwIBAgIJAKk46qwencJaMAOGCSqGSIb3DQEBCWUAMFgXxCzAJBgNV
SFW3S2roS4X0Af/kSSD8M1BBTFTCMBA]j6rtLBKLaQbIXEpIZrgvp
————— END CERTIFICATE-----

IMPORTANT

The certificate contents require the same indentation level for all new lines.

SSLKey
Copy the contents of the private key (server .key.pem) into the SSLKey parameter. For example:

parameter_defaults:
SSLKey: |
————— BEGIN RSA PRIVATE KEY-----
MIIEowIBAAKCAQEAQVwW81NnQ9RbeI1EdLN5PJIPO1VO9hkJIZnGP6gb6wtYUoylbVP7
ct1Kn3rAAdyumi4JDjESAXHIKFjINOLrBmpQyES4XpZUC7yhqPau
————— END RSA PRIVATE KEY-----

IMPORTANT

The private key contents require the same indentation level for all new lines.

OS::TripleO::NodeTLSData
Change the resource path for 0S: : TripleO: :NodeTLSData: to an absolute path:

resource_registry:
0S::TripleO::NodeTLSData: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/tls/tls-cert-inject.yaml

11.8. INJECTING A ROOT CERTIFICATE

132

CHAPTER 11. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

If the certificate signer is not in the default trust store on the overcloud image, you must inject the
certificate authority into the overcloud image. Copy the inject-trust-anchor.yaml environment file
from the heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/inject-
trust-anchor.yaml ~/templates/.

Edit this file and make the following changes for these parameters:

SSLRootCertificate

Copy the contents of the root certificate authority file (ca.crt.pem) into the SSLRootCertificate
parameter. For example:

parameter_defaults:
SSLRootCertificate: |
————— BEGIN CERTIFICATE-----
MIIDgzCCAMugAwIBAQIJAKk46qwencJaMAOGCSqGSIb3DQEBCWUAMFgXCzAJBgNV

SFW3S2ro0S4X0Af/kSSD8M1BBTFTCMBA] 61t LBKLaQbIXEpIZrgvp
----- END CERTIFICATE-----

IMPORTANT

The certificate authority contents require the same indentation level for all new lines.

OS::TripleO::NodeTLSCAData
Change the resource path for 0S: : TripleO: :NodeTLSCAData: to an absolute path:

resource_registry:
0S::TripleO::NodeTLSCAData: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/tls/ca-inject.yaml

11.9. CONFIGURING DNS ENDPOINTS

If using a DNS hostname to access the overcloud through SSL/TLS, create a new environment file
(~/templates/cloudname.yaml) to define the hostname of the overcloud’s endpoints. Use the

following parameters:

CloudName
The DNS hostname of the overcloud endpoints.
DnsServers

A list of DNS servers to use. The configured DNS servers must contain an entry for the configured
CloudName that matches the IP address of the Public API.

An example of the contents for this file:

parameter_defaults:
CloudName: overcloud.example.com
DnsServers: ["10.0.0.254"]

133

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

11.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD
CREATION

The deployment command (openstack overcloud deploy) uses the -e option to add environment
files. Add the environment files from this section in the following order:

e The environment file to enable SSL/TLS (enable-tls.yaml)
e The environment file to set the DNS hostname (cloudname.yaml)
e The environment file to inject the root certificate authority (inject-trust-anchor.yaml)

e The environment file to set the public endpoint mapping:

o If using a DNS name for accessing the public endpoints, use /usr/share/openstack-
tripleo-heat-templates/environments/tls-endpoints-public-dns.yaml

o If using a IP address for accessing the public endpoints, use /usr/share/openstack-
tripleo-heat-templates/environments/tls-endpoints-public-ip.yaml

For example:

$ openstack overcloud deploy --templates [...] -e
/home/stack/templates/enable-tls.yaml -e ~/templates/cloudname.yaml -e
~/templates/inject-trust-anchor.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/tls-endpoints-public-dns.yaml

11.11. UPDATING SSL/TLS CERTIFICATES

If you need to update certificates in the future:

e Editthe enable-tls.yaml file and update the SSLCertificate, SSLKey, and
SSLIntermediateCertificate parameters.

e If your certificate authority has changed, edit the inject-trust-anchor .yaml file and
update the SSLRootCertificate parameter.

Once the new certificate content is in place, rerun your deployment command. For example:

$ openstack overcloud deploy --templates [...] -e
/home/stack/templates/enable-tls.yaml -e ~/templates/cloudname.yaml -e
~/templates/inject-trust-anchor.yaml -e /usr/share/openstack-tripleo-heat-
templates/environments/tls-endpoints-public-dns.yaml

134

CHAPTER 12. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

CHAPTER 12. ENABLING SSL/TLS ON INTERNAL AND
PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

You can enable SSL/TLS on certain overcloud endpoints. Due to the number of certificates required, the
director integrates with a Red Hat Identity Management (IdM) server to act as a certificate authority and
manage the overcloud certificates. This process involves using hovajoin to enroll overcloud nodes to
the IdM server.

12.1. ADD THE UNDERCLOUD TO THE CA
Before deploying the overcloud, you must add the undercloud to the Certificate Authority (CA):

1. On the undercloud node, install the python-novajoin package:

I $ sudo yum install python-novajoin

2. On the undercloud node, run the novajoin-ipa-setup script, adjusting the values to suit your
deployment:

$ sudo /usr/libexec/novajoin-ipa-setup \
--principal admin \
--password <IdM admin password> \
--server <IdM server hostname> \
--realm <overcloud cloud domain (in upper case)> \
--domain <overcloud cloud domain> \

--hostname <undercloud hostname> \
--precreate

In the following section, you will use the resulting One-Time Password (OTP) to enroll the
undercloud.

12.2. ADD THE UNDERCLOUD TO IDM
This procedure registers the undercloud with [dM and configures novajoin.

1. The novajoin service is disabled by default. To enable it, add an entry to undercloud. conf:

I enable_novajoin = true

2. You need set a One-Time Password (OTP) to register the undercloud node with IdM:

I ipa_otp = <otp>

3. Ensure the overcloud’s domain name served by neutron’s DHCP server matches the IdM
domain (your kerberos realm in lowercase):

I overcloud_domain_name = <domain>

4. Set the appropriate hostname for the undercloud:

I undercloud_hostname = <undercloud FQDN>

135

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

5. Set IdM as the nameserver for the undercloud:

I undercloud_nameservers = <IdM IP>

6. For larger environments, you will need to review the novajoin connection timeout values. In
undercloud. conf, add a reference to a new file calledundercloud-timeout.yaml:

I hieradata_override = /home/stack/undercloud-timeout.yaml

Add the following options to undercloud-timeout.yaml. You can specify the timeout value
in seconds, for example, 5:

nova: :api::vendordata_dynamic_connect_timeout: <timeout value>
nova: :api::vendordata_dynamic_read_timeout: <timeout value>

7. Save the undercloud. conf file.
8. Run the undercloud deployment command to apply the changes to your existing undercloud:

I $ openstack undercloud install

12.3. CONFIGURE OVERCLOUD DNS

For automatic detection of your IdM environment, and easier enrollment, consider using |[dM as your
DNS server:

1. Connect to your undercloud:

I $ source ~/stackrc

2. Configure the control plane subnet to use |IdM as the DNS name server:

$ openstack subnet set ctlplane-subnet --dns-nameserver
<idm_server_address>

3. Set the DnsServers parameter in an environment file to use your IdM server:

parameter_defaults:
DnsServers: ["<idm_server_address>"]

This parameter is usually defined in a custom network-environment.yaml file.

12.4. CONFIGURE OVERCLOUD TO USE NOVAJOIN

1. To enable IdM integration, create a copy of the /usr/share/openstack-tripleo-heat-
templates/environments/predictable-placement/custom-domain.yaml
environment file:

$ cp /usr/share/openstack-tripleo-heat-

templates/environments/predictable-placement/custom-domain.yaml \
/home/stack/templates/custom-domain.yaml

136

CHAPTER 12. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

2. Editthe /home/stack/templates/custom-domain.yaml environment file and set the
CloudbDomain and CloudName* values to suit your deployment. For example:

parameter_defaults:
CloudDomain: lab.local
CloudName: overcloud.lab.local
CloudNameInternal: overcloud.internalapi.lab.local
CloudNameStorage: overcloud.storage.lab.local
CloudNameStorageManagement: overcloud.storagemgmt.lab.local
CloudNameCtlplane: overcloud.ctlplane.lab.local

3. Include the following environment files in the overcloud deployment process:

e /usr/share/openstack-tripleo-heat-templates/environments/enable-
internal-tls.yaml

e /usr/share/openstack-tripleo-heat-templates/environments/tls-
everywhere-endpoints-dns.yaml

e /home/stack/templates/custom-domain.yaml
For example:

openstack overcloud deploy \
--templates \
-e /usr/share/openstack-tripleo-heat-
templates/environments/enable-internal-tls.yaml \
-e /usr/share/openstack-tripleo-heat-
templates/environments/tls-everywhere-endpoints-dns.yaml \
-e /home/stack/templates/custom-domain.yaml \

As a result, the deployed overcloud nodes will be automatically enrolled with |dM.

4. This only sets TLS for the internal endpoints. For the external endpoints you can use the normal
means of adding TLS with the . /tripleo-heat-templates/environments/enable-
tls.yaml environment file (which must be modified to add your custom certificate and key).
Consequently, your openstack deploy command would be similar to this:

openstack overcloud deploy \

--templates \

-e /usr/share/openstack-tripleo-heat-
templates/environments/enable-internal-tls.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/tls-
everywhere-endpoints-dns.yaml \

-e /home/stack/templates/custom-domain.yaml \

-e /home/stack/templates/enable-tls.yaml

5. Alternatively, you can also use IdM to issue your public certificates. In that case, you need to use
the ./tripleo-heat-templates/environments/services/haproxy-public-tls-
certmonger .yaml environment file. For example:

openstack overcloud deploy \
--templates \
-e ./tripleo-heat-templates/environments/enable-internal-tls.yaml

137

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

-e /usr/share/openstack-tripleo-heat-templates/environments/tls-
everywhere-endpoints-dns.yaml \

-e /home/stack/templates/custom-domain.yaml \

-e ./tripleo-heat-templates/environments/services/haproxy-public-
tls-certmonger.yaml

138

CHAPTER 13. DEBUG MODES

CHAPTER 13. DEBUG MODES

You can enable and disable the DEBUG level logging mode for certain services in the overcloud. To

configure debug mode for a service, set the respective debug parameter. For example, OpenStack
Identity (keystone) uses the KeystoneDebug parameter. Set this parameter in the
parameter_defaults section of an environment file:

parameter_defaults:
KeystoneDebug: True

For a full list of debug parameters, see "Debug Parameters" in the Overcloud Parameters guide.

139

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/overcloud_parameters/debug_parameters

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 14. POLICIES

You can configure access policies for certain services in the overcloud. To configure policies for a
service, set the respective policy parameter with a hash value containing the service’s policies. For
example, OpenStack Identity (keystone) uses the KeystonePolicies parameter. Set this parameter in
the parameter_defaults section of an environment file:

parameter_defaults:

KeystonePolicies: { keystone-context_is_admin: { key: context_is_admin,
value: 'role:admin' } }

For a full list of policy parameters, see "Policy Parameters" in the Overcloud Parameters guide.

140

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/overcloud_parameters/policy_parameters

CHAPTER 15. STORAGE CONFIGURATION

CHAPTER 15. STORAGE CONFIGURATION

This chapter outlines several methods of configuring storage options for your Overcloud.

IMPORTANT

The Overcloud uses local and LVM storage for the default storage options. However,
these options are not supported for enterprise-level Overclouds. It is recommended to use
one of the storage options in this chapter.

15.1. CONFIGURING NFS STORAGE

This section describes configuring the Overcloud to use an NFS share. The installation and configuration
process is based on the modification of an existing environment file in the core Heat template collection.

The core heat template collection contains a set of environment files in /usr/share/openstack-
tripleo-heat-templates/environments/. These environment templates help with custom
configuration of some of the supported features in a director-created Overcloud. This includes an
environment file to help configure storage. This file is located at /usr/share/openstack-tripleo-
heat-templates/environments/storage-environment.yaml. Copy this file to the stack
user’s template directory.

$ cp /usr/share/openstack-tripleo-heat-templates/environments/storage-
environment.yaml ~/templates/.

The environment file contains some parameters to help configure different storage options for
OpenStack’s block and image storage components, cinder and glance. In this example, you will
configure the Overcloud to use an NFS share. Modify the following parameters:

CinderEnablelscsiBackend

Enables the iISCSI backend. Set to false.
CinderEnableRbdBackend

Enables the Ceph Storage backend. Set to false.
CinderEnableNfsBackend

Enables the NFS backend. Set to true.
NovaEnableRbdBackend

Enables Ceph Storage for Nova ephemeral storage. Set to false.
GlanceBackend

Define the back end to use for Glance. Set to file to use file-based storage for images. The
Overcloud will save these files in a mounted NFS share for Glance.

CinderNfsMountOptions

The NFS mount options for the volume storage.
CinderNfsServers

The NFS share to mount for volume storage. For example, 192.168.122.1:/export/cinder.
GlanceNfsEnabled

Enables Pacemaker to manage the share for image storage. If disabled, the Overcloud stores images
in the Controller node’s file system. Set to true.

GlanceNfsShare

141

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

The NFS share to mount for image storage. For example, 192.168.122.1:/export/glance.
GlanceNfsOptions
The NFS mount options for the image storage.

The environment file’s options should look similar to the following:

parameter_defaults:
CinderEnableIscsiBackend: false
CinderEnableRbdBackend: false
CinderEnableNfsBackend: true
NovaEnableRbdBackend: false
GlanceBackend: 'file'

CinderNfsMountOptions: 'rw,sync'
CinderNfsServers: '192.0.2.230:/cinder’

GlanceNfsEnabled: true
GlanceNfsShare: '192.0.2.230:/glance'
GlanceNfsOptions:

'rw, sync, context=system_u:object_r:glance_var_lib_t:s0'

IMPORTANT

Include the context=system_u:object_r:glance_var_lib_t:s0 in the
GlanceNfsOptions parameter to allow glance access to the /var/1ib directory.
Without this SELinux content, glance will fail to write to the mount point.

These parameters are integrated as part of the heat template collection. Setting them as such creates
two NFS mount points for cinder and glance to use.

Save this file for inclusion in the Overcloud creation.

15.2. CONFIGURING CEPH STORAGE
The director provides two main methods for integrating Red Hat Ceph Storage into an Overcloud.

Creating an Overcloud with its own Ceph Storage Cluster

The director has the ability to create a Ceph Storage Cluster during the creation on the Overcloud.
The director creates a set of Ceph Storage nodes that use the Ceph OSD to store the data. In
addition, the director install the Ceph Monitor service on the Overcloud’s Controller nodes. This
means if an organization creates an Overcloud with three highly available controller nodes, the Ceph
Monitor also becomes a highly available service. For more information, see the Deploying an
Overcloud with Containerized Red Hat Ceph guide.

Integrating a Existing Ceph Storage into an Overcloud

If you already have an existing Ceph Storage Cluster, you can integrate this during an Overcloud
deployment. This means you manage and scale the cluster outside of the Overcloud configuration.
For more information, see the Integrating an Overcloud with an Existing Red Hat Ceph Cluster guide.

15.3. USING AN EXTERNAL OBJECT STORAGE CLUSTER

142

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/integrating_an_overcloud_with_an_existing_red_hat_ceph_cluster/

CHAPTER 15. STORAGE CONFIGURATION

You can reuse an external Object Storage (swift) cluster by disabling the default Object Storage service
deployment on the controller nodes. Doing so disables both the proxy and storage services for Object
Storage and configures haproxy and keystone to use the given external Swift endpoint.

NOTE

User accounts on the external Object Storage (swift) cluster have to be managed by
hand.

You need the endpoint IP address of the external Object Storage cluster as well as the authtoken
password from the external Object Storage proxy-server . conf file. You can find this information by
using the openstack endpoint list command.

To deploy director with an external Swift cluster:

1. Create a new file named swift-external-params.yaml with the following content:

e Replace EXTERNAL . IP:PORT with the IP address and port of the external proxy and

e Replace AUTHTOKEN with the authtoken password for the external proxy on the
SwiftPassword line.

parameter_defaults:

ExternalPublicUrl: 'https://EXTERNAL.IP:PORT/v1/AUTH_%
(tenant_id)s'

ExternalInternalUrl: 'http://192.168.24.9:8080/v1/AUTH_%
(tenant_id)s'

ExternalAdminUrl: 'http://192.168.24.9:8080'

ExternalSwiftUserTenant: 'service'

SwiftPassword: AUTHTOKEN

2. Save this file as swift-external-params.yaml.
3. Deploy the overcloud using these additional environment files.

openstack overcloud deploy --templates \

-e [your environment files]

-e /usr/share/openstack-tripleo-heat-templates/environments/swift-
external.yaml

-e swift-external-params.yaml

15.4. CONFIGURING THIRD PARTY STORAGE

The director include a couple of environment files to help configure third-party storage providers. This
includes:

Dell EMC Storage Center

Deploys a single Dell EMC Storage Center back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-dellsc-config.yaml.

See the Dell Storage Center Back End Guide for full configuration information.

143

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/dell_storage_center_back_end_guide

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Dell EMC PS Series

Deploys a single Dell EMC PS Series back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-dellps-config.yaml.

See the Dell EMC PS Series Back End Guide for full configuration information.

NetApp Block Storage

Deploys a NetApp storage appliance as a back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-netapp-config.yaml.

See the NetApp Block Storage Back End Guide for full configuration information.

144

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/dell_emc_ps_series_back_end_guide
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/netapp_block_storage_back_end_guide

CHAPTER 16. SECURITY ENHANCEMENTS

CHAPTER 16. SECURITY ENHANCEMENTS

The following sections provide some suggestions to harden the security of your overcloud.

16.1. MANAGING THE OVERCLOUD FIREWALL

Each of the core OpenStack Platform services contains firewall rules in their respective composable
service templates. This automatically creates a default set of firewall rules for each overcloud node.

The overcloud Heat templates contain a set of parameters to help with additional firewall management:

ManageFirewall

Defines whether to automatically manage the firewall rules. Set to true to allow Puppet to
automatically configure the firewall on each node. Set to false if you want to manually manage the
firewall. The default is true.

PurgeFirewallRules

Defines whether to purge the default Linux firewall rules before configuring new ones. The default is
false.

If ManageFirewall is set to true, you can create additional firewall rules on deployment. Set the
tripleo::firewall::firewall_rules hieradata using a configuration hook (see Section 4.5,
“Puppet: Customizing Hieradata for Roles”) in an environment file for your overcloud. This hieradata is a
hash containing the firewall rule names and their respective parameters as keys, all of which are
optional:

port
The port associated to the rule.
dport
The destination port associated to the rule.
sport
The source port associated to the rule.
proto
The protocol associated to the rule. Defaults to tcp.
action
The action policy associated to the rule. Defaults to accept.
jump
The chain to jump to. If present, it overrides action.
state
An Array of states associated to the rule. Defaults to ['NEW'].
source
The source IP address associated to the rule.
iniface
The network interface associated to the rule.
chain
The chain associated to the rule. Defaults to INPUT.

destination

145

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

The destination CIDR associated to the rule.

The following example demonstrates the syntax of the firewall rule format:

ExtraConfig:
tripleo::firewall::firewall rules:

'300 allow custom application 1':
port: 999
proto: udp
action: accept

'301 allow custom application 2':
port: 8081
proto: tcp
action: accept

This applies two additional firewall rules to all nodes through ExtraConfig.

NOTE

Each rule name becomes the comment for the respective iptables rule. Note also each
rule name starts with a three-digit prefix to help Puppet order all defined rules in the final
iptables file. The default OpenStack Platform rules use prefixes in the 000 to 200
range.

16.2. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL
(SNMP) STRINGS

The director provides a default read-only SNMP configuration for your overcloud. It is advisable to
change the SNMP strings to mitigate the risk of unauthorized users learning about your network devices.

Set the following hieradata using the ExtraConfig hook in an environment file for your overcloud:

shmp::ro_community

IPv4 read-only SNMP community string. The default value is public.
snmp::ro_community6

IPv6 read-only SNMP community string. The default value is public.
snmp::ro_network

Network that is allowed to RO query the daemon. This value can be a string or an array. Default
value is 127.0.0.1.

snmp::ro_network6

Network that is allowed to RO query the daemon with IPv6. This value can be a string or an array.
The default value is : :1/128.

snmp::snmpd_config
Array of lines to add to the snmpd.conffile as a safety valve. The default value is []. See the SNMP
Configuration File web page for all available options.

For example:

parameter_defaults:
ExtraConfig:
snmp: :ro_community: mysecurestring

146

http://www.net-snmp.org/docs/man/snmpd.conf.html

CHAPTER 16. SECURITY ENHANCEMENTS

I snmp: :ro_community6: myv6securestring

This changes the read-only SNMP community string on all nodes.

16.3. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

If you enabled SSL/TLS in the overcloud (see Chapter 11, Enabling SSL/TLS on Overcloud Public
Endpoints), you might want to harden the SSL/TLS ciphers and rules used with the HAProxy
configuration. This helps avoid SSL/TLS vulnerabilities, such as the POODLE vulnerability.

Set the following hieradata using the ExtraConfig hook in an environment file for your overcloud:

tripleo::haproxy::ssl_cipher_suite

The cipher suite to use in HAProxy.
tripleo::haproxy::ssl_options

The SSL/TLS rules to use in HAProxy.

For example, you might aim to use the following cipher and rules:

e Cipher: ECDHE-ECDSA-CHACHA20-POLY1305: ECDHE -RSA-CHACHA20-POLY1305 : ECDHE -
ECDSA-AES128-GCM-SHA256: ECDHE -RSA-AES128-GCM-SHA256 : ECDHE -ECDSA-AES256 -
GCM-SHA384 :ECDHE-RSA-AES256 -GCM-SHA384 : DHE-RSA-AES128-GCM-SHA256 : DHE -
RSA-AES256-GCM-SHA384 :ECDHE-ECDSA-AES128-SHA256 : ECDHE-RSA-AES128 -
SHA256 : ECDHE-ECDSA-AES128-SHA: ECDHE -RSA-AES256 -SHA384 : ECDHE-RSA-AES128 -
SHA:ECDHE-ECDSA-AES256-SHA384 : ECDHE -ECDSA-AES256 -SHA : ECDHE -RSA-AES256 -
SHA:DHE-RSA-AES128-SHA256 : DHE-RSA-AES128-SHA: DHE-RSA-AES256 - SHA256 : DHE -
RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-
DES-CBC3-SHA:AES128-GCM-SHA256 : AES256 -GCM-SHA384 : AES128 -SHA256 : AES256 -
SHA256 : AES128 -SHA: AES256-SHA :DES-CBC3-SHA: ! DSS

e Rules:no-sslv3 no-tls-tickets

Create an environment file with the following content:

parameter_defaults:
ExtraConfig:

tripleo: :haproxy::ssl_cipher_suite: ECDHE-ECDSA-CHACHA20-
POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256 : ECDHE -
RSA-AES128-GCM-SHA256: ECDHE-ECDSA-AES256-GCM-SHA384 : ECDHE-RSA-AES256-GCM-
SHA384 :DHE-RSA-AES128-GCM-SHA256 : DHE-RSA-AES256-GCM-SHA384 : ECDHE-ECDSA -
AES128-SHA256: ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-
AES256-SHA384 : ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384 :ECDHE-ECDSA -
AES256-SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256 : DHE-RSA-AES128-
SHA:DHE-RSA-AES256-SHA256 : DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-
SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256: AES256 -
GCM-SHA384 :AES128-SHA256 : AES256-SHA256 : AES128-SHA: AES256-SHA:DES-CBC3-
SHA: IDSS

tripleo: :haproxy::ssl_options: no-sslv3 no-tls-tickets

NOTE

The cipher collection is one continuous line.

147

https://access.redhat.com/solutions/1291123

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Include this environment file with your overcloud creation.

16.4. USING THE OPEN VSWITCH FIREWALL

You can configure security groups to use the Open vSwitch (OVS) firewall driver in Red Hat OpenStack
Platform director. The NeutronOVSFirewallDriver parameter allows you to specify which firewall
driver to use:

e iptables_hybrid - Configures neutron to use the iptables/hybrid based implementation.
e openvswitch - Configures neutron to use the OVS firewall flow-based driver.

The openvswitch firewall driver includes higher performance and reduces the number of interfaces
and bridges used to connect guests to the project network.

NOTE

The iptables_hybrid option is not compatible with OVS-DPDK.

Configure the NeutronOVSFirewallDriver parameter in the network-environment.yaml file:
I NeutronOVSFirewallDriver: openvswitch

e NeutronOVSFirewallDriver : Configures the name of the firewall driver to use when
implementing security groups. Possible values depend on your system configuration; some
examples are: noop, openvswitch, iptables_hybrid. The default value of an empty string
results in a supported configuration.

16.5. USING SECURE ROOT USER ACCESS

The overcloud image automatically contains hardened security for the root user. For example, each
deployed overcloud node automatically disables direct SSH access to the root user. You can still
access the root user on overcloud nodes through the following method:

1. Log into the undercloud node’s stack user.

2. Each overcloud node has a heat -admin user account. This user account contains the
undercloud’s public SSH key, which provides SSH access without a password from the
undercloud to the overcloud node. On the undercloud node, log into the chosen overcloud node
through SSH using the heat -admin user.

3. Switch to the root user with sudo -1i.

Reducing Root User Security

Some situations might require direct SSH access to the root user. In this case, you can reduce the SSH
restrictions on the root user for each overcloud node.

148

CHAPTER 16. SECURITY ENHANCEMENTS

WARNING
A This method is intended for debugging purposes only. It is not recommended for use

in a production environment.

The method uses the first boot configuration hook (see Section 4.1, “First Boot: Customizing First Boot
Configuration”). Place the following content in an environment file:

resource_registry:
0S::TripleO::NodeUserData: /usr/share/openstack-tripleo-heat-
templates/firstboot/userdata_root_password.yaml

parameter_defaults:
NodeRootPassword: "p@55wOrd!"

Note the following:

e The 0S::TripleO: :NodeUserData resource refers to the a template that configures the
root user during the first boot cloud-init stage.

e The NodeRootPassword parameter sets the password for the root user. Change the value of
this parameter to your desired password. Note the environment file contains the password as a
plain text string, which is considered a security risk.

Include this environment file with the openstack overcloud deploy command when creating your
overcloud.

149

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 17. FENCING THE CONTROLLER NODES

Fencing is the process of isolating a failed node to protect a cluster and its resources. Without fencing, a
failed node can result in data corruption in a cluster.

The director uses Pacemaker to provide a highly available cluster of Controller nodes. Pacemaker uses
a process called STONITH to fence failed nodes. STONITH is disabled by default and requires manual
configuration so that Pacemaker can control the power management of each node in the cluster.

17.1. REVIEW THE PREREQUISITES

To configure fencing in the overcloud, your overcloud must already have been deployed and be in a
working state. The following steps review the state of Pacemaker and STONITH in your deployment:

1. Log in to each node as the heat -admin user from the stack user on the director. The
overcloud creation automatically copies the stack user's SSH key to each node’s heat -
admin.

2. Verify you have a running cluster:

$ sudo pcs status

Cluster name: openstackHA

Last updated: Wed Jun 24 12:40:27 2015

Last change: Wed Jun 24 11:36:18 2015

Stack: corosync

Current DC: 1lb-cla2 (2) - partition with quorum
Version: 1.1.12-al4efad

3 Nodes configured

141 Resources configured

3. Verify STONITH is disabled:

$ sudo pcs property show

Cluster Properties:
cluster-infrastructure: corosync
cluster-name: openstackHA
dc-version: 1.1.12-al4efad
have-watchdog: false
stonith-enabled: false

17.2. ENABLE FENCING
Having confirmed your overcloud is deployed and working, you can then configure fencing:

1. Generate the fencing.yaml file:

$ openstack overcloud generate fencing --ipmi-lanplus --ipmi-level
administrator --output fencing.yaml instackenv.json

e Sample fencing.yaml file:

parameter_defaults:
EnableFencing: true

150

CHAPTER 17. FENCING THE CONTROLLER NODES

FencingConfig:

devices:

- agent: fence_ipmilan
host_mac: 11:11:11:11:11:11
params:

ipaddr: 10.0.0.101

lanplus: true

login: admin

passwd: InsertComplexPasswordHere
pcmk_host_list: hosto4

privlvl: administrator

2. Pass the resulting fencing. yaml file to the deploy command you previously used to deploy
the overcloud. This will re-run the deployment procedure and configure fencing on the hosts:

openstack overcloud deploy --templates -e /usr/share/openstack-
tripleo-heat-templates/environments/network-isolation.yaml -e
~/templates/network-environment.yaml -e ~/templates/storage-
environment.yaml --control-scale 3 --compute-scale 3 --ceph-storage-
scale 3 --control-flavor control --compute-flavor compute --ceph-
storage-flavor ceph-storage --ntp-server pool.ntp.org --neutron-
network-type vxlan --neutron-tunnel-types vxlan -e fencing.yaml

The deployment command should complete without any error or exceptions.

3. Log in to the overcloud and verify fencing was configured for each of the controllers:

a. Check the fencing resources are managed by Pacemaker:

source stackrc

nova list | grep controller

ssh heat-admin@<controller-x_ip>

sudo pcs status |grep fence

stonith-overcloud-controller-x (stonith:fence_ipmilan): Started
overcloud-controller-y

&P BH BB

You should see Pacemaker is configured to use a STONITH resource for each of the
controllers specified in fencing.yaml. The fence-resource process should not be
configured on the same host it controls.

b. Use pcs to verify the fence resource attributes:
I $ sudo pcs stonith show <stonith-resource-controller-x>
The values used by STONITH should match those defined in the fencing.yaml.
17.3. TEST FENCING

This procedure tests whether fencing is working as expected.

1. Trigger a fencing action for each controller in the deployment:

a. Loginto a controller:

151

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

$ source stackrc
$ nova list |grep controller
$ ssh heat-admin@<controller-x_ip>

b. As root, trigger fencing by using iptables to close all ports:

$ sudo -i

iptables -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
&&

iptables -A INPUT -p tcp -m state --state NEW -m tcp --dport 22 -
j ACCEPT &&

iptables -A INPUT -p tcp -m state --state NEW -m tcp --dport 5016
-j ACCEPT &&

iptables -A INPUT -p udp -m state --state NEW -m udp --dport 5016
-j ACCEPT &&

iptables -A INPUT ! -i lo -j REJECT --reject-with icmp-host-
prohibited &&

iptables -A OUTPUT -p tcp --sport 22 -j ACCEPT &&

iptables -A OUTPUT -p tcp --sport 5016 -j ACCEPT &&

iptables -A OUTPUT -p udp --sport 5016 -j ACCEPT &&

iptables -A OUTPUT ! -0 lo -j REJECT --reject-with icmp-host-
prohibited

As a result, the connections should drop, and the server should be rebooted.

c. From another controller, locate the fencing event in the Pacemaker log file:

$ ssh heat-admin@<controller-x_ip>
$ less /var/log/cluster/corosync.log
(less): /fenc*

You should see that STONITH has issued a fence action against the controller, and that
Pacemaker has raised an event in the log.

d. Verify the rebooted controller has returned to the cluster:

i. From the second controller, wait a few minutes and run pcs status to see if the
fenced controller has returned to the cluster. The duration can vary depending on your
configuration.

152

CHAPTER 18. CONFIGURING MONITORING TOOLS

CHAPTER 18. CONFIGURING MONITORING TOOLS

Monitoring tools are an optional suite of tools that can be used for availability monitoring and centralized
logging. The availability monitoring allows you to monitor the functionality of all components, while the
centralized logging allows you to view all of the logs across your OpenStack environment in one central
place.

For more information about configuring monitoring tools, see the dedicated Monitoring Tools
Configuration Guide for full instructions.

153

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/monitoring_tools_configuration_guide

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 19. CONFIGURING NETWORK PLUGINS

The director includes environment files to help configure third-party network plugins:

19.1. FUJITSU CONVERGED FABRIC (C-FABRIC)

You can enable the Fujitsu Converged Fabric (C-Fabric) plugin using the environment file located at
/usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-fujitsu-
cfab.yaml.

1. Copy the environment file to your templates subdirectory:

$ cp /usr/share/openstack-tripleo-heat-
templates/environments/neutron-ml2-fujitsu-cfab.yaml
/home/stack/templates/

2. Editthe resource_registry to use an absolute path:

resource_registry:

0S::TripleO: :Services: :NeutronML2FujitsuCfab:
/usr/share/openstack-tripleo-heat-templates/puppet/services/neutron-
plugin-ml2-fujitsu-cfab.yaml

3. Review the parameter_defaults in /home/stack/templates/neutron-ml2-fujitsu-
cfab.yaml:

e NeutronFujitsuCfabAddress - The telnet IP address of the C-Fabric. (string)
e NeutronFujitsuCfabUserName - The C-Fabric username to use. (string)
e NeutronFujitsuCfabPassword - The password of the C-Fabric user account. (string)

e NeutronFujitsuCfabPhysicalNetworks - List of <physical_network>:
<vfab_id> tuples that specify physical_network names and their corresponding vfab
IDs. (comma_delimited_list)

e NeutronFujitsuCfabSharePprofile - Determines whether to share a C-Fabric pprofile
among neutron ports that use the same VLAN ID. (boolean)

e NeutronFujitsuCfabPprofilePrefix - The prefix string for pprofile name. (string)

e NeutronFujitsuCfabSaveConfig - Determines whether to save the configuration.
(boolean)

4. To apply the template to your deployment, include the environment file in the openstack
overcloud deploy command. For example:

$ openstack overcloud deploy --templates -e
/home/stack/templates/neutron-ml2-fujitsu-cfab.yaml [OTHER OPTIONS]

19.2. FUJITSU FOS SWITCH

154

CHAPTER 19. CONFIGURING NETWORK PLUGINS

You can enable the Fujitsu FOS Switch plugin using the environment file located at
/usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-fujitsu-

fossw.yaml.

1. Copy the environment file to your templates subdirectory:

$ cp /usr/share/openstack-tripleo-heat-
templates/environments/neutron-ml2-fujitsu-fossw.yaml
/home/stack/templates/

2. Editthe resource_registry to use an absolute path:

resource_registry:

0S::TripleO::Services: :NeutronML2FujitsuFossw:
/usr/share/openstack-tripleo-heat-templates/puppet/services/neutron-
plugin-ml2-fujitsu-fossw.yaml

3. Review the parameter_defaults in /home/stack/templates/neutron-ml2-fujitsu-
fossw.yaml:

e NeutronFujitsuFosswIps - The IP addresses of all FOS switches.
(comma_delimited_list)

e NeutronFujitsuFosswUserName - The FOS username to use. (string)

e NeutronFujitsuFosswPassword - The password of the FOS user account. (string)

e NeutronFujitsuFosswPort - The port number to use for the SSH connection. (number)
e NeutronFujitsuFosswTimeout - The timeout period of the SSH connection. (number)

e NeutronFujitsuFosswUdpDestPort - The port number of the VXLAN UDP destination
on the FOS switches. (number)

e NeutronFujitsuFosswOvsdbVlanidRangeMin - The minimum VLAN ID in the range
that is used for binding VNI and physical port. (humber)

e NeutronFujitsuFosswOvsdbPort - The port number for the OVSDB server on the FOS
switches. (number)

4. To apply the template to your deployment, include the environment file in the openstack
overcloud deploy command. For example:

$ openstack overcloud deploy --templates -e
/home/stack/templates/neutron-ml2-fujitsu-fossw.yaml [OTHER OPTIONS]

155

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 20. CONFIGURING IDENTITY

The director includes parameters to help configure Identity Service (keystone) settings:

20.1. REGION NAME

By default, your overcloud’s region will be named regionOne. You can change this by adding a
KeystoneRegion entry your environment file. This setting cannot be changed post-deployment:

parameter_defaults:
KeystoneRegion: 'SampleRegion'

156

CHAPTER 21. OTHER CONFIGURATIONS

CHAPTER 21. OTHER CONFIGURATIONS

21.1. CONFIGURING EXTERNAL LOAD BALANCING

An Overcloud uses multiple Controllers together as a high availability cluster, which ensures maximum
operational performance for your OpenStack services. In addition, the cluster provides load balancing for
access to the OpenStack services, which evenly distributes traffic to the Controller nodes and reduces
server overload for each node. It is also possible to use an external load balancer to perform this
distribution. For example, an organization might use their own hardware-based load balancer to handle
traffic distribution to the Controller nodes.

For more information about configuring external load balancing, see the dedicated External Load
Balancing for the Overcloud guide for full instructions.

21.2. CONFIGURING IPV6 NETWORKING

As a default, the Overcloud uses Internet Protocol version 4 (IPv4) to configure the service endpoints.
However, the Overcloud also supports Internet Protocol version 6 (IPv6) endpoints, which is useful for
organizations that support IPv6 infrastructure. The director includes a set of environment files to help
with creating IPv6-based Overclouds.

For more information about configuring IPv6 in the Overcloud, see the dedicated IPv6 Networking for the
Overcloud guide for full instructions.

157

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html/external_load_balancing_for_the_overcloud
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/ipv6_networking_for_the_overcloud

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

APPENDIX A. NETWORK ENVIRONMENT OPTIONS

Table A.1. Network Environment Options

Parameter

InternalApiNetCidr

StorageNetCidr

StorageMgmtNetCidr

TenantNetCidr

ExternalNetCidr

InternalApiAllocationPools

StorageAllocationPools

StorageMgmtAllocationPools

TenantAllocationPools

ExternalAllocationPools

InternalApiNetworkVlanID

StorageNetworkVlanID

StorageMgmtNetworkVlanID

TenantNetworkVlanID

158

Description

The network and subnet for the
Internal API network

The network and subnet for the
Storage network

The network and subnet for the
Storage Management network

The network and subnet for the
Tenant network

The network and subnet for the
External network

The allocation pool for the Internal
API network in a tuple format

The allocation pool for the
Storage network in a tuple format

The allocation pool for the
Storage Management network in
a tuple format

The allocation pool for the Tenant
network in a tuple format

The allocation pool for the
External network in a tuple format

The VLAN ID for the Internal API
network

The VLAN ID for the Storage
network

The VLAN ID for the Storage
Management network

The VLAN ID for the Tenant
network

Example

172.17.0.0/24

[{start 172.17.0.10, end:
172.17.0.200)]

200

Parameter

ExternalNetworkVlanID

ExternallnterfaceDefaultRoute

ControlPlaneDefaultRoute

ControlPlaneSubnetCidr

EC2Metadatalp

DnsServers

BondInterfaceOvsOptions

NeutronFlatNetworks

NeutronExternalNetworkBridge

NeutronBridgeMappings

NeutronPublicinterface

NeutronNetworkType

APPENDIX A. NETWORK ENVIRONMENT OPTIONS

Description

The VLAN ID for the External
network

The gateway IP address for the
External network

Gateway router for the
Provisioning network (or
Undercloud IP)

CIDR subnet mask length for
provisioning network

The IP address of the EC2
metadata server. Generally the IP
of the Undercloud.

Define the DNS servers for the
Overcloud nodes. Include a
maximum of two.

The options for bonding interfaces

Defines the flat networks to
configure in neutron plugins.
Defaults to "datacentre" to permit
external network creation

An Open vSwitch bridge to create
on each hypervisor. Typically, this
should not need to be changed.

The logical to physical bridge
mappings to use. Defaults to
mapping the external bridge on
hosts (br-ex) to a physical name
(datacentre). You would use this
for the default floating network

Defines the interface to bridge
onto br-ex for network nodes

The tenant network type for
Neutron

Example

10.1.2.1

ControlPlaneDefaultRoute:
192.0.2.254

ControlPlaneSubnetCidr: 24

EC2Metadatalp: 192.0.2.1

DnsServers: ["8.8.8.8","8.8.4.4"

BondInterfaceOvsOptions:"bond_
mode=balance-slb"

NeutronFlatNetworks:
"datacentre”

NeutronExternalNetworkBridge:

NeutronBridgeMappings:
"datacentre:br-ex"

NeutronPubliclnterface: "eth0"

NeutronNetworkType: "vxlan"

159

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Parameter

NeutronTunnelTypes

NeutronTunnelldRanges

NeutronVniRanges

NeutronEnableTunnelling

NeutronNetworkVLANRanges

NeutronMechanismDrivers

160

Description

The tunnel types for the neutron
tenant network. To specify
multiple values, use a comma
separated string.

Ranges of GRE tunnel IDs to
make available for tenant network
allocation

Ranges of VXLAN VNI IDs to
make available for tenant network
allocation

Defines whether to enable or
disable tunneling in case you aim
to use a VLAN segmented
network or flat network with
Neutron. Defaults to enabled

The neutron ML2 and Open
vSwitch VLAN mapping range to
support. Defaults to permitting any
VLAN on the datacentre physical
network.

The mechanism drivers for the
neutron tenant network. Defaults
to "openvswitch". To specify
multiple values, use a comma-
separated string

Example

NeutronTunnelTypes: gre,vxlan

NeutronTunnelldRanges "1:1000"

NeutronVniRanges: "1:1000"

NeutronNetworkVLANRanges:
"datacentre:1:1000"

NeutronMechanismDrivers:
openvswitch,I2population

APPENDIX B. NETWORK INTERFACE TEMPLATE EXAMPLES

APPENDIX B. NETWORK INTERFACE TEMPLATE EXAMPLES

This appendix provides a few example Heat templates to demonstrate network interface configuration.

B.1. CONFIGURING INTERFACES

Individual interfaces might require modification. The example below shows modifications required to use
the second NIC to connect to an infrastructure network with DHCP addresses, and to use the third and
fourth NICs for the bond:

network_config:
Add a DHCP infrastructure network to nic2
- type: interface
name: nic?2
use_dhcp: true
- type: ovs_bridge
name: br-bond
members:
- type: ovs_bond
name: bond1l
ovs_options:
get_param: BondInterfaceOvsOptions
members:
Modify bond NICs to use nic3 and nic4
- type: interface
name: nic3
primary: true
- type: interface
name: nic4

The network interface template uses either the actual interface name ("ethQ", "eth1", "enp0s25") or a set
of numbered interfaces ("nic1", "nic2", "nic3"). The network interfaces of hosts within a role do not have

to be exactly the same when using numbered interfaces (nici, nic2, etc.) instead of named interfaces
(etho, eno2, etc.). For example, one host might have interfaces em1 and em2, while another has eno1l

and eno2, but you can refer to both hosts' NICs as nic1 and nic2.

The order of numbered interfaces corresponds to the order of named network interface types:
e ethXinterfaces, such as etho, ethi, etc. These are usually onboard interfaces.
e enoXinterfaces, such as eno0, enol, etc. These are usually onboard interfaces.

e enX interfaces, sorted alpha numerically, such as enp3s0, enp3s1, ens3, etc. These are
usually add-on interfaces.

The numbered NIC scheme only takes into account the interfaces that are live, for example, if they have
a cable attached to the switch. If you have some hosts with four interfaces and some with six interfaces,
you should use nic1 to nic4 and only plug four cables on each host.

B.2. CONFIGURING ROUTES AND DEFAULT ROUTES

There are two ways a host has default routes set. If the interface is using DHCP and the DHCP server
offers a gateway address, the system uses a default route for that gateway. Otherwise, you can set a
default route on an interface with a static IP.

161

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

Although the Linux kernel supports multiple default gateways, it only uses the one with the lowest metric.
If there are multiple DHCP interfaces, this can result in an unpredictable default gateway. In this case, it
is recommended to set defroute=no for interfaces other than the one using the default route.

For example, you might want a DHCP interface (nic3) to be the default route. Use the following YAML
to disable the default route on another DHCP interface (nic2):

No default route on this DHCP interface
- type: interface
name: nic2
use_dhcp: true
defroute: false
Instead use this DHCP interface as the default route
- type: interface
name: nic3
use_dhcp: true

NOTE

The defroute parameter only applies to routes obtained through DHCP.

To set a static route on an interface with a static IP, specify a route to the subnet. For example, you can
set a route to the 10.1.2.0/24 subnet through the gateway at 172.17.0.1 on the Internal API network:

- type: vlan

device: bondil
vlan_id:

get_param: InternalApiNetworkVlanID
addresses:
- ip_netmask:

get_param: InternalApiIpSubnet

routes:
- ip_netmask: 10.1.2.0/24

next_hop: 172.17.0.1

B.3. CONFIGURE INTERFACE MAPPING

Director uses aliases such as nic1 or nic2 when referring to physical network interfaces. You can use
interface_mapping to hardcode physical interfaces to specific aliases. This allows you to be pre-
determine which physical NIC will be mapped as nic1 or nic2 and so on. You can also map a MAC
address to a specified alias.

NOTE

Normally, os-net -config will only register interfaces that are already connected in an
UP state. However, if you do hardcode interfaces using a custom mapping file, then the
interface is registered even if it is in a DOWN state.

Interfaces are mapped to aliases using an environment file. In this example, each node has predefined
entries for nic1 and nic2:

I parameter_defaults:

162

APPENDIX B. NETWORK INTERFACE TEMPLATE EXAMPLES

NetConfigDatalLookup:
nodel:
nicli: "emi"
nic2: "em2"
node2:
nicl: "00:50:56:2F:9F:2E"
nic2: "em2"

The resulting configuration is then applied by os-net-config. On each node, you can see the applied
configuration under interface_mappingin /etc/os-net-config/mapping.yaml

B.4. USING THE NATIVE VLAN FOR FLOATING IPS

Neutron uses a default empty string for its external bridge mapping. This maps the physical interface to
the br-int instead of using br -ex directly. This model allows multiple Floating IP networks using either
VLANSs or multiple physical connections.

Use the NeutronExternalNetworkBridge parameter in the parameter_defaults section of your
network isolation environment file:

parameter_defaults:
Set to "br-ex" when using floating IPs on the native VLAN
NeutronExternalNetworkBridge: "''"

Using only one Floating IP network on the native VLAN of a bridge means you can optionally set the
neutron external bridge. This results in the packets only having to traverse one bridge instead of two,
which might result in slightly lower CPU usage when passing traffic over the Floating IP network.

B.5. USING THE NATIVE VLAN ON A TRUNKED INTERFACE

If a trunked interface or bond has a network on the native VLAN, the IP addresses are assigned directly
to the bridge and there will be no VLAN interface.

For example, if the External network is on the native VLAN, a bonded configuration looks like this:

network_config:
- type: ovs_bridge
name: bridge_name
dns_servers:
get_param: DnsServers
addresses:
- ip_netmask:
get_param: ExternalIpSubnet

routes:
- ip_netmask: 0.0.0.0/0
next_hop:
get_param: ExternalInterfaceDefaultRoute
members:

- type: ovs_bond
name: bond1l
ovs_options:
get_param: BondInterfaceOvsOptions
members:
- type: interface

163

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

name: nic3
primary: true

- type: interface
name: nic4

NOTE

When moving the address (and possibly route) statements onto the bridge, remove the
corresponding VLAN interface from the bridge. Make the changes to all applicable roles.
The External network is only on the controllers, so only the controller template requires a
change. The Storage network on the other hand is attached to all roles, so if the Storage
network is on the default VLAN, all roles require modifications.

B.6. CONFIGURING JUMBO FRAMES

The Maximum Transmission Unit (MTU) setting determines the maximum amount of data transmitted
with a single Ethernet frame. Using a larger value results in less overhead since each frame adds data in
the form of a header. The default value is 1500 and using a higher value requires the configuration of the
switch port to support jumbo frames. Most switches support an MTU of at least 9000, but many are
configured for 1500 by default.

The MTU of a VLAN cannot exceed the MTU of the physical interface. Make sure to include the MTU
value on the bond and/or interface.

The Storage, Storage Management, Internal API, and Tenant networking all benefit from jumbo frames.
In testing, Tenant networking throughput was over 300% greater when using jumbo frames in
conjunction with VXLAN tunnels.

! NOTE
It is recommended that the Provisioning interface, External interface, and any floating IP
' interfaces be left at the default MTU of 1500. Connectivity problems are likely to occur
otherwise. This is because routers typically cannot forward jumbo frames across Layer 3
boundaries.
- type: ovs_bond
name: bondl
mtu: 9000
ovs_options: {get_param: BondInterfaceOvsOptions}
members:
- type: interface
name: nic3
mtu: 9000
primary: true
- type: interface
name: nic4
mtu: 9000

The external interface should stay at default
- type: vlan
device: bond1l
vlan_id:
get_param: ExternalNetworkVlanID
addresses:

164

APPENDIX B. NETWORK INTERFACE TEMPLATE EXAMPLES

- ip_netmask:
get_param: ExternalIpSubnet
routes:
- ip_netmask: 0.0.0.0/0
next_hop:

get_param: ExternalInterfaceDefaultRoute

MTU 9000 for Internal API, Storage, and Storage Management
type: vlan
device: bond1l
mtu: 9000
vlan_id:

get_param: InternalApiNetworkVlanID
addresses:
- ip_netmask:

get_param: InternalApiIpSubnet

165

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

CHAPTER 22. NETWORK INTERFACE PARAMETERS

The following tables define the Heat template parameters for network interface types.

22.1. INTERFACE OPTIONS

Option
name
use_dhcp
use_dhcpv6

addresses

routes

mtu

primary

defroute

persist_mapping

dhclient_args

dns_servers

22.2. VLAN OPTIONS

Option

vlan_id

166

Default

False

False

1500

False

True

False

None

None

Default

Description

Name of the Interface

Use DHCP to get an IP address

Use DHCP to get a v6 IP address

A sequence of IP addresses
assigned to the interface

A sequence of routes assigned to
the interface

The maximum transmission unit
(MTU) of the connection

Defines the interface as the
primary interface

Use this interface as the default
route

Write the device alias
configuration instead of the
system names

Arguments to pass to the DHCP
client

List of DNS servers to use for the
interface

Description

The VLAN ID

device

use_dhcp

use_dhcpv6

addresses

routes

mtu

primary

defroute

persist_mapping

dhclient_args

dns_servers

False

False

1500

False

True

False

None

None

22.3. OVS BOND OPTIONS

Option

name

use_dhcp

use_dhcpv6

addresses

Default

False

False

CHAPTER 22. NETWORK INTERFACE PARAMETERS

The VLAN'’s parent device to
attach the VLAN. For example,
use this parameter to attach the
VLAN to a bonded interface
device.

Use DHCP to get an IP address

Use DHCP to get a v6 IP address

A sequence of IP addresses
assigned to the VLAN

A sequence of routes assigned to
the VLAN

The maximum transmission unit
(MTU) of the connection

Defines the VLAN as the primary
interface

Use this interface as the default
route

Write the device alias
configuration instead of the
system names

Arguments to pass to the DHCP
client

List of DNS servers to use for the
VLAN

Description

Name of the bond

Use DHCP to get an IP address

Use DHCP to get a v6 IP address

A sequence of IP addresses
assigned to the bond

167

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

routes A sequence of routes assigned to
the bond
mtu 1500 The maximum transmission unit

(MTU) of the connection

primary False Defines the interface as the
primary interface

members A sequence of interface objects to
use in the bond

ovs_options A set of options to pass to OVS
when creating the bond

ovs_extra A set of options to to set as the
OVS_EXTRA parameter in the
bond’s network configuration file

defroute True Use this interface as the default
route
persist_mapping False Write the device alias

configuration instead of the
system names

dhclient_args None Arguments to pass to the DHCP
client

dns_servers None List of DNS servers to use for the
bond

22.4. OVS BRIDGE OPTIONS

Option Default Description

name Name of the bridge

use_dhcp False Use DHCP to get an IP address
use_dhcpv6 False Use DHCP to get a v6 IP address
addresses A sequence of IP addresses

assigned to the bridge

routes A sequence of routes assigned to
the bridge

168

mtu

members

ovs_options

ovs_extra

defroute

persist_mapping

dhclient_args

dns_servers

1500

True

False

None

None

22.5. LINUX BOND OPTIONS

Option

name

use_dhcp

use_dhcpv6

addresses

routes

mtu

Default

False

False

1500

CHAPTER 22. NETWORK INTERFACE PARAMETERS

The maximum transmission unit
(MTU) of the connection

A sequence of interface, VLAN,
and bond objects to use in the
bridge

A set of options to pass to OVS
when creating the bridge

A set of options to to set as the
OVS_EXTRA parameter in the
bridge’s network configuration file

Use this interface as the default
route

Write the device alias
configuration instead of the
system names

Arguments to pass to the DHCP
client

List of DNS servers to use for the
bridge

Description

Name of the bond

Use DHCP to get an IP address

Use DHCP to get a v6 IP address

A sequence of IP addresses
assigned to the bond

A sequence of routes assigned to
the bond

The maximum transmission unit
(MTU) of the connection

169

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

primary False Defines the interface as the
primary interface

members A sequence of interface objects to
use in the bond

bonding_options A set of options when creating the
bond. For more information on
Linux bonding options, see 4.5.1.
Bonding Module Directives in the
Red Hat Enterprise Linux 7
Networking Guide.

defroute True Use this interface as the default
route
persist_mapping False Write the device alias

configuration instead of the
system names

dhclient_args None Arguments to pass to the DHCP
client

dns_servers None List of DNS servers to use for the
bond

22.6. LINUX BRIDGE OPTIONS

Option Default Description

name Name of the bridge

use_dhcp False Use DHCP to get an IP address
use_dhcpv6 False Use DHCP to get a v6 IP address
addresses A sequence of IP addresses

assigned to the bridge

routes A sequence of routes assigned to
the bridge
mtu 1500 The maximum transmission unit

(MTU) of the connection

members A sequence of interface, VLAN,
and bond objects to use in the
bridge

170

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Using_Channel_Bonding.html#s3-modules-bonding-directives

defroute

persist_mapping

dhclient_args

dns_servers

True

False

None

None

CHAPTER 22. NETWORK INTERFACE PARAMETERS

Use this interface as the default
route

Write the device alias
configuration instead of the
system names

Arguments to pass to the DHCP
client

List of DNS servers to use for the
bridge

171

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

APPENDIX C. OPEN VSWITCH BONDING OPTIONS

The Overcloud provides networking through Open vSwitch (OVS), which provides several options for
bonded interfaces. In Section 8.2, “Creating a Network Environment File”, you can configure a bonded
interface in the network environment file using the following parameter:

BondInterfaceOvsOptions:
"bond_mode=balance-slb"

C.1. CHOOSING A BOND MODE

By default, you cannot use LACP with OVS-based bonds. This configuration is not supported due to a
known issue with some versions of Open vSwitch. Instead, consider using bond_mode=balance-sib as a
replacement for this functionality. In addition, you can still use LACP with Linux bonding in your network
interface templates. For example:

- type: linux_bond
name: bond1l
members:
- type: interface
name: nic2
- type: interface
name: nic3
bonding_options: "mode=802.3ad lacp_rate=[fast|slow] updelay=1000
miimon=100"

e mode - enables LACP.

e lacp_rate - defines whether LACP packets are sent every 1 second, or every 30 seconds.

e updelay - defines the minimum amount of time that an interface must be active before it is used
for traffic (this helps mitigate port flapping outages).

e miimon - the interval in milliseconds that is used for monitoring the port state using the driver’s
MIIMON functionality.

If you still want to use LACP with OVS-base bonds, you can manually delete the following lines from
each network interface configuration (NIC) file before deployment:

constraints:
- allowed_pattern: "A((?!balance.tcp).)*s$"
description: |
The balance-tcp bond mode is known to cause packet loss and
should not be used in BondInterfaceOvsOptions.

After you delete the constraint from each NIC file, you can set the bond mode option in the bond

interface parameter:

BondInterfaceOvsOptions:
"bond_mode=balance-tcp"

For the technical details behind this constraint, see BZ#1267291.

172

https://bugzilla.redhat.com/show_bug.cgi?id=1267291

APPENDIX C. OPEN VSWITCH BONDING OPTI

For more information on Linux bonding options, see 4.5.1. Bonding Module Directives in the Red Hat

Enterprise Linux 7 Networking Guide.

C.2. BONDING OPTIONS

ONS

The following table provides some explanation of these options and some alternatives depending on your

hardware.

Table C.1. Bonding Options

bond_mode=balance-slb

bond_mode=active-backup

lacp=[active|passive]|off]

other-config:lacp-fallback-ab=true

other_config:lacp-time=[fast|slow]

other_config:bond-detect-mode=
[miimon|carrier]

other_config:bond-miimon-
interval=100

Balances flows based on source MAC address and
output VLAN, with periodic rebalancing as traffic
patterns change. Bonding with balance-slb
allows a limited form of load balancing without the
remote switch’s knowledge or cooperation. SLB
assigns each source MAC and VLAN pair to a link
and transmits all packets from that MAC and VLAN
through that link. This mode uses a simple hashing
algorithm based on source MAC address and VLAN
number, with periodic rebalancing as traffic patterns
change. This mode is similar to mode 2 bonds used
by the Linux bonding driver. This mode is used when
the switch is configured with bonding but is not
configured to use LACP (static instead of dynamic
bonds).

This mode offers active/standby failover where the
standby NIC resumes network operations when the
active connection fails. Only one MAC address is
presented to the physical switch. This mode does not
require any special switch support or configuration,
and works when the links are connected to separate
switches. This mode does not provide load
balancing.

Controls the Link Aggregation Control Protocol
(LACP) behavior. Only certain switches support
LACP. If your switch does not support LACP, use
bond_mode=balance-slbor
bond_mode=active-backup.

Sets the LACP behavior to switch to
bond_mode=active-backup as a fallback.

Set the LACP heartbeat to 1 second (fast) or 30
seconds (slow). The default is slow.

Set the link detection to use miimon heartbeats
(miimon) or monitor carrier (carrier). The default is
carrier.

If using miimon, set the heartbeat interval in
milliseconds.

173

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Using_Channel_Bonding.html#s3-modules-bonding-directives

Red Hat OpenStack Platform 12 Advanced Overcloud Customization

bond_updelay=1000 Number of milliseconds a link must be up to be

activated to prevent flapping.

other_config:bond-rebalance- Milliseconds between rebalancing flows between
interval=10000 bond members. Set to zero to disable.

174

IMPORTANT

If you experience packet drops or performance issues using Linux bonds with Provider
networks, consider disabling Large Receive Offload (LRO) on the standby interfaces.
Avoid adding a Linux bond to an OVS bond, as port-flapping and loss of connectivity can
occur. This is a result of a packet-loop through the standby interface.

	Table of Contents
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. UNDERSTANDING HEAT TEMPLATES
	2.1. HEAT TEMPLATES
	2.2. ENVIRONMENT FILES
	2.3. CORE OVERCLOUD HEAT TEMPLATES
	2.4. PLAN ENVIRONMENT METADATA
	2.5. CAPABILITIES MAP
	2.6. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
	2.7. USING CUSTOMIZED CORE HEAT TEMPLATES

	CHAPTER 3. PARAMETERS
	3.1. EXAMPLE 1: CONFIGURING THE TIMEZONE
	3.2. EXAMPLE 2: DISABLING LAYER 3 HIGH AVAILABILITY (L3HA)
	3.3. EXAMPLE 3: CONFIGURING THE TELEMETRY DISPATCHER
	3.4. EXAMPLE 4: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT
	3.5. EXAMPLE 5: ENABLING AND DISABLING PARAMETERS
	3.6. IDENTIFYING PARAMETERS TO MODIFY

	CHAPTER 4. CONFIGURATION HOOKS
	4.1. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION
	4.2. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES
	4.3. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	4.4. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	4.5. PUPPET: CUSTOMIZING HIERADATA FOR ROLES
	4.6. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES
	4.7. PUPPET: APPLYING CUSTOM MANIFESTS

	CHAPTER 5. OVERCLOUD REGISTRATION
	5.1. REGISTERING THE OVERCLOUD WITH AN ENVIRONMENT FILE
	5.2. EXAMPLE 1: REGISTERING TO THE CUSTOMER PORTAL
	5.3. EXAMPLE 2: REGISTERING TO A RED HAT SATELLITE 6 SERVER
	5.4. EXAMPLE 3: REGISTERING TO A RED HAT SATELLITE 5 SERVER
	5.5. EXAMPLE 4: REGISTERING THROUGH A HTTP PROXY
	5.6. ADVANCED REGISTRATION METHODS

	CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES
	6.1. SUPPORTED CUSTOM ROLE ARCHITECTURE
	6.2. GUIDELINES AND LIMITATIONS
	6.3. ROLES
	6.3.1. Examining the roles_data File
	6.3.2. Creating a role_data File
	6.3.3. Examining Role Parameters
	6.3.4. Creating a New Role

	6.4. COMPOSABLE SERVICES
	6.4.1. Examining Composable Service Architecture
	6.4.2. Adding and Removing Services from Roles
	6.4.3. Enabling Disabled Services
	6.4.4. Creating a Generic Node with No Services

	6.5. ARCHITECTURES
	6.5.1. Service Architecture: Monolithic Controller
	6.5.2. Service Architecture: Split Controller
	6.5.3. Service Architecture: Standalone Roles

	6.6. COMPOSABLE SERVICE REFERENCE

	CHAPTER 7. CONTAINERIZED SERVICES
	7.1. CONTAINERIZED SERVICE ARCHITECTURE
	7.2. CONTAINERIZED SERVICE PARAMETERS
	7.3. MODIFYING OPENSTACK PLATFORM CONTAINERS

	CHAPTER 8. ISOLATING NETWORKS
	8.1. CREATING CUSTOM INTERFACE TEMPLATES
	8.2. CREATING A NETWORK ENVIRONMENT FILE
	8.3. ASSIGNING OPENSTACK SERVICES TO ISOLATED NETWORKS
	8.4. SELECTING NETWORKS TO DEPLOY

	CHAPTER 9. USING COMPOSABLE NETWORKS
	9.1. DEFINING A COMPOSABLE NETWORK
	9.1.1. Define Network Interface Configuration for Composable Networks
	9.1.2. Assign Composable Networks to Services
	9.1.3. Define the Routed Networks

	9.2. NETWORKING WITH ROUTED SPINE-LEAF
	9.3. HARDWARE PROVISIONING WITH ROUTED SPINE-LEAF
	9.3.1. Example VLAN Provisioning Network
	9.3.2. Example VXLAN Provisioning Network
	9.3.3. Network Topology for Provisioning
	9.3.4. Topology Diagram
	9.3.5. Assign IP Addresses to the Custom Roles
	9.3.6. Assign Routes for the Roles
	9.3.7. Custom NIC definitions

	CHAPTER 10. CONTROLLING NODE PLACEMENT
	10.1. ASSIGNING SPECIFIC NODE IDS
	10.2. ASSIGNING CUSTOM HOSTNAMES
	10.3. ASSIGNING PREDICTABLE IPS
	10.4. ASSIGNING PREDICTABLE VIRTUAL IPS

	CHAPTER 11. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS
	11.1. INITIALIZING THE SIGNING HOST
	11.2. CREATING A CERTIFICATE AUTHORITY
	11.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
	11.4. CREATING AN SSL/TLS KEY
	11.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
	11.6. CREATING THE SSL/TLS CERTIFICATE
	11.7. ENABLING SSL/TLS
	11.8. INJECTING A ROOT CERTIFICATE
	11.9. CONFIGURING DNS ENDPOINTS
	11.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION
	11.11. UPDATING SSL/TLS CERTIFICATES

	CHAPTER 12. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT
	12.1. ADD THE UNDERCLOUD TO THE CA
	12.2. ADD THE UNDERCLOUD TO IDM
	12.3. CONFIGURE OVERCLOUD DNS
	12.4. CONFIGURE OVERCLOUD TO USE NOVAJOIN

	CHAPTER 13. DEBUG MODES
	CHAPTER 14. POLICIES
	CHAPTER 15. STORAGE CONFIGURATION
	15.1. CONFIGURING NFS STORAGE
	15.2. CONFIGURING CEPH STORAGE
	15.3. USING AN EXTERNAL OBJECT STORAGE CLUSTER
	15.4. CONFIGURING THIRD PARTY STORAGE

	CHAPTER 16. SECURITY ENHANCEMENTS
	16.1. MANAGING THE OVERCLOUD FIREWALL
	16.2. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) STRINGS
	16.3. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY
	16.4. USING THE OPEN VSWITCH FIREWALL
	16.5. USING SECURE ROOT USER ACCESS

	CHAPTER 17. FENCING THE CONTROLLER NODES
	17.1. REVIEW THE PREREQUISITES
	17.2. ENABLE FENCING
	17.3. TEST FENCING

	CHAPTER 18. CONFIGURING MONITORING TOOLS
	CHAPTER 19. CONFIGURING NETWORK PLUGINS
	19.1. FUJITSU CONVERGED FABRIC (C-FABRIC)
	19.2. FUJITSU FOS SWITCH

	CHAPTER 20. CONFIGURING IDENTITY
	20.1. REGION NAME

	CHAPTER 21. OTHER CONFIGURATIONS
	21.1. CONFIGURING EXTERNAL LOAD BALANCING
	21.2. CONFIGURING IPV6 NETWORKING

	APPENDIX A. NETWORK ENVIRONMENT OPTIONS
	APPENDIX B. NETWORK INTERFACE TEMPLATE EXAMPLES
	B.1. CONFIGURING INTERFACES
	B.2. CONFIGURING ROUTES AND DEFAULT ROUTES
	B.3. CONFIGURE INTERFACE MAPPING
	B.4. USING THE NATIVE VLAN FOR FLOATING IPS
	B.5. USING THE NATIVE VLAN ON A TRUNKED INTERFACE
	B.6. CONFIGURING JUMBO FRAMES

	CHAPTER 22. NETWORK INTERFACE PARAMETERS
	22.1. INTERFACE OPTIONS
	22.2. VLAN OPTIONS
	22.3. OVS BOND OPTIONS
	22.4. OVS BRIDGE OPTIONS
	22.5. LINUX BOND OPTIONS
	22.6. LINUX BRIDGE OPTIONS

	APPENDIX C. OPEN VSWITCH BONDING OPTIONS
	C.1. CHOOSING A BOND MODE
	C.2. BONDING OPTIONS

