
Red Hat OpenStack Platform 10

Red Hat Ceph Storage for the Overcloud

Configuring an Overcloud to Use Red Hat Ceph Storage

Last Updated: 2020-05-26

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

Configuring an Overcloud to Use Red Hat Ceph Storage

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information on using the Red Hat OpenStack Platform director to create an
Overcloud that uses Red Hat Ceph Storage. This includes recommendations for your Red Hat Ceph
Storage environment and instructions on how to implement an Overcloud with Ceph Storage
nodes.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. DEFINING CEPH STORAGE
1.2. USING CEPH STORAGE IN RED HAT OPENSTACK PLATFORM
1.3. SETTING REQUIREMENTS
1.4. DEFINING THE SCENARIOS

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES
2.1. INITIALIZING THE STACK USER
2.2. REGISTERING NODES
2.3. INSPECTING THE HARDWARE OF NODES
2.4. MANUALLY TAGGING THE NODES
2.5. DEFINING THE ROOT DISK FOR CEPH STORAGE NODES
2.6. ENABLING CEPH STORAGE IN THE OVERCLOUD
2.7. MAPPING THE CEPH STORAGE NODE DISK LAYOUT
2.8. DEPLOY THE CEPH OBJECT GATEWAY
2.9. CONFIGURING THE BACKUP SERVICE TO USE CEPH
2.10. FORMATTING CEPH STORAGE NODE DISKS TO GPT
2.11. CONFIGURING MULTIPLE BONDED INTERFACES PER CEPH NODE

2.11.1. Configuring Bonding Module Directives
2.12. CUSTOMIZING THE CEPH STORAGE CLUSTER

2.12.1. Assigning Custom Attributes to Different Ceph Pools
2.13. CREATING THE OVERCLOUD
2.14. ACCESSING THE OVERCLOUD
2.15. MONITORING CEPH STORAGE NODES
2.16. REBOOTING THE ENVIRONMENT
2.17. REPLACING CEPH STORAGE NODES
2.18. ADDING AND REMOVING OSD DISKS FROM CEPH STORAGE NODES

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD
3.1. CONFIGURING THE EXISTING CEPH STORAGE CLUSTER
3.2. INITIALIZING THE STACK USER
3.3. REGISTERING NODES
3.4. INSPECTING THE HARDWARE OF NODES
3.5. MANUALLY TAGGING THE NODES
3.6. ENABLING INTEGRATION WITH THE EXISTING CEPH STORAGE CLUSTER
3.7. BACKWARDS COMPATIBILITY WITH OLDER VERSIONS OF RED HAT CEPH STORAGE
3.8. CREATING THE OVERCLOUD
3.9. ACCESSING THE OVERCLOUD

CHAPTER 4. CONCLUSION

APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING A CEPH CLUSTER

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES

3
3
3
3
5

6
6
7
9
9

10
12
13
14
15
15
17

20
20
21
21
22
23
23
24
27

28
28
30
30
32
32
32
33
34
35

36

37

39

Table of Contents

1

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

2

CHAPTER 1. INTRODUCTION
Red Hat OpenStack Platform director creates a cloud environment called the Overcloud. The director
provides the ability to configure extra features for an Overcloud. One of these extra features includes
integration with Red Hat Ceph Storage. This includes both Ceph Storage clusters created with the
director or existing Ceph Storage clusters. This guide provides information for integrating Ceph Storage
into your Overcloud through the director and configuration examples.

1.1. DEFINING CEPH STORAGE

Red Hat Ceph Storage is a distributed data object store designed to provide excellent performance,
reliability, and scalability. Distributed object stores are the future of storage, because they
accommodate unstructured data, and because clients can use modern object interfaces and legacy
interfaces simultaneously. At the heart of every Ceph deployment is the Ceph Storage Cluster, which
consists of two types of daemons:

Ceph OSD (Object Storage Daemon)

Ceph OSDs store data on behalf of Ceph clients. Additionally, Ceph OSDs utilize the CPU and
memory of Ceph nodes to perform data replication, rebalancing, recovery, monitoring and reporting
functions.

Ceph Monitor

A Ceph monitor maintains a master copy of the Ceph storage cluster map with the current state of
the storage cluster.

For more information about Red Hat Ceph Storage, see the Red Hat Ceph Storage Architecture Guide .

IMPORTANT

This guide only integrates Ceph Block storage and the Ceph Object Gateway (RGW). It
does not include Ceph File (CephFS) storage.

1.2. USING CEPH STORAGE IN RED HAT OPENSTACK PLATFORM

Red Hat OpenStack Platform director provides two main methods for integrating Red Hat Ceph
Storage into an Overcloud.

Creating an Overcloud with its own Ceph Storage Cluster

The director has the ability to create a Ceph Storage Cluster during the creation on the Overcloud.
The director creates a set of Ceph Storage nodes that use the Ceph OSD to store the data. In
addition, the director installs the Ceph Monitor service on the Overcloud’s Controller nodes. This
means if an organization creates an Overcloud with three highly available controller nodes, the Ceph
Monitor also becomes a highly available service.

Integrating a Existing Ceph Storage into an Overcloud

If you already have an existing Ceph Storage Cluster, you can integrate this during an Overcloud
deployment. This means you manage and scale the cluster outside of the Overcloud configuration.

1.3. SETTING REQUIREMENTS

This guide acts as supplementary information for the Director Installation and Usage guide. This means
the Requirements section also applies to this guide. Implement these requirements as necessary.

If using the Red Hat OpenStack Platform director to create Ceph Storage nodes, note the following

CHAPTER 1. INTRODUCTION

3

https://access.redhat.com/documentation/en/red-hat-ceph-storage/1.3/architecture-guide/architecture-guide
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage#chap-Requirements

If using the Red Hat OpenStack Platform director to create Ceph Storage nodes, note the following
requirements for these nodes:

Processor

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

Memory

Memory requirements depend on the amount of storage space. Ideally, use at minimum 1 GB of
memory per 1 TB of hard disk space.

Disk Space

Storage requirements depends on the amount of memory. Ideally, use at minimum 1 GB of memory
per 1 TB of hard disk space.

Disk Layout

The recommended Red Hat Ceph Storage node configuration requires at least three or more disks in
a layout similar to the following:

/dev/sda - The root disk. The director copies the main Overcloud image to the disk.

/dev/sdb - The journal disk. This disk divides into partitions for Ceph OSD journals. For
example, /dev/sdb1, /dev/sdb2, /dev/sdb3, and onward. The journal disk is usually a solid
state drive (SSD) to aid with system performance.

/dev/sdc and onward - The OSD disks. Use as many disks as necessary for your storage
requirements.

IMPORTANT

Erase all existing partitions on the disks targeted for journaling and OSDs before
deploying the Overcloud. In addition, the Ceph Storage OSDs and journal disks require
GPT disk labels, which you can configure as a part of the deployment. See Section 2.10,
“Formatting Ceph Storage Node Disks to GPT” for more information.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic. It is recommended to use a 10 Gbps interface for storage node,
especially if creating an OpenStack Platform environment that serves a high volume of traffic.

Intelligent Platform Management Interface (IPMI)

Each Ceph node requires IPMI functionality on the server’s motherboard.

This guide also requires the following:

An Undercloud host with the Red Hat OpenStack Platform director installed. See Installing the
Undercloud.

Any additional hardware recommendation for Red Hat Ceph Storage. See the Red Hat Ceph
Storage Hardware Guide for these recommendations.

IMPORTANT

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

4

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage#chap-Installing_the_Undercloud
https://access.redhat.com/documentation/en/red-hat-ceph-storage/1.3/hardware-guide/hardware-guide

IMPORTANT

The Ceph Monitor service is installed on the Overcloud’s Controller nodes. This means
you must provide adequate resources to alleviate performance issues. Ensure the
Controller nodes in your environment use at least 16 GB of RAM for memory and solid-
state drive (SSD) storage for the Ceph monitor data.

1.4. DEFINING THE SCENARIOS

This guide uses two scenarios:

The first scenario creates an Overcloud with a Ceph Storage Cluster. This means the director
deploys the Ceph Storage Cluster.

The second scenario integrates an existing Ceph Storage Cluster with an Overcloud. This means
you manage the Ceph Storage Cluster separate from Overcloud management.

CHAPTER 1. INTRODUCTION

5

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH
STORAGE NODES

This chapter describes how to use the director to create an Overcloud that includes its own Ceph
Storage Cluster. For instructions on how to create an Overcloud and integrate it with an existing Ceph
Storage Cluster, see Chapter 3, Integrating an Existing Ceph Storage Cluster with an Overcloud instead.

The scenario described in this chapter consists of nine nodes in the Overcloud:

Three Controller nodes with high availability. This includes the Ceph Monitor service on each
node.

Three Red Hat Ceph Storage nodes in a cluster. These nodes contain the Ceph OSD service
and act as the actual storage.

Three Compute nodes.

All machines in this scenario are bare metal systems using IPMI for power management. These nodes do
not require an operating system because the director copies a Red Hat Enterprise Linux 7 image to each
node.

The director communicates to each node through the Provisioning network during the introspection and
provisioning processes. All nodes connect to this network through the native VLAN. For this example, we
use 192.0.2.0/24 as the Provisioning subnet with the following IP address assignments:

Node Name IP Address MAC Address IPMI IP Address

Director 192.0.2.1 aa:aa:aa:aa:aa:aa

Controller 1 DHCP defined b1:b1:b1:b1:b1:b1 192.0.2.205

Controller 2 DHCP defined b2:b2:b2:b2:b2:b2 192.0.2.206

Controller 3 DHCP defined b3:b3:b3:b3:b3:b3 192.0.2.207

Compute 1 DHCP defined c1:c1:c1:c1:c1:c1 192.0.2.208

Compute 2 DHCP defined c2:c2:c2:c2:c2:c2 192.0.2.209

Compute 3 DHCP defined c3:c3:c3:c3:c3:c3 192.0.2.210

Ceph 1 DHCP defined d1:d1:d1:d1:d1:d1 192.0.2.211

Ceph 2 DHCP defined d2:d2:d2:d2:d2:d2 192.0.2.212

Ceph 3 DHCP defined d3:d3:d3:d3:d3:d3 192.0.2.213

2.1. INITIALIZING THE STACK USER

Log into the director host as the stack user and run the following command to initialize your director

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

6

Log into the director host as the stack user and run the following command to initialize your director
configuration:

$ source ~/stackrc

This sets up environment variables containing authentication details to access the director’s CLI tools.

2.2. REGISTERING NODES

A node definition template (instackenv.json) is a JSON format file and contains the hardware and
power management details for registering nodes. For example:

{
 "nodes":[
 {
 "mac":[
 "b1:b1:b1:b1:b1:b1"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.205"
 },
 {
 "mac":[
 "b2:b2:b2:b2:b2:b2"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.206"
 },
 {
 "mac":[
 "b3:b3:b3:b3:b3:b3"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.207"
 },
 {
 "mac":[

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

7

 "c1:c1:c1:c1:c1:c1"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.208"
 },
 {
 "mac":[
 "c2:c2:c2:c2:c2:c2"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.209"
 },
 {
 "mac":[
 "c3:c3:c3:c3:c3:c3"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.210"
 },
 {
 "mac":[
 "d1:d1:d1:d1:d1:d1"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.211"
 },
 {
 "mac":[
 "d2:d2:d2:d2:d2:d2"
],
 "cpu":"4",
 "memory":"6144",

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

8

 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.212"
 },
 {
 "mac":[
 "d3:d3:d3:d3:d3:d3"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.213"
 }
]
}

After creating the template, save the file to the stack user’s home directory
(/home/stack/instackenv.json), then import it into the director. Use the following command to
accomplish this:

$ openstack baremetal import --json ~/instackenv.json

This imports the template and registers each node from the template into the director.

Assign the kernel and ramdisk images to all nodes:

$ openstack baremetal configure boot

The nodes are now registered and configured in the director.

2.3. INSPECTING THE HARDWARE OF NODES

After registering the nodes, inspect the hardware attribute of each node. Run the following command to
inspect the hardware attributes of each node:

$ openstack baremetal introspection bulk start

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes for bare
metal nodes.

2.4. MANUALLY TAGGING THE NODES

After registering and inspecting the hardware of each node, tag them into specific profiles. These profile
tags match your nodes to flavors, and in turn the flavors are assigned to a deployment role.

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

9

Retrieve a list of your nodes to identify their UUIDs:

$ ironic node-list

To manually tag a node to a specific profile, add a profile option to the properties/capabilities
parameter for each node. For example, to tag three nodes to use a controller profile and one node to
use a compute profile, use the following commands:

$ ironic node-update 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0 add
properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 6faba1a9-e2d8-4b7c-95a2-c7fbdc12129a add
properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 5e3b2f50-fcd9-4404-b0a2-59d79924b38e add
properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 484587b2-b3b3-40d5-925b-a26a2fa3036f add
properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update d010460b-38f2-4800-9cc4-d69f0d067efe add
properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update d930e613-3e14-44b9-8240-4f3559801ea6 add
properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update da0cc61b-4882-45e0-9f43-fab65cf4e52b add
properties/capabilities='profile:ceph-storage,boot_option:local'
$ ironic node-update b9f70722-e124-4650-a9b1-aade8121b5ed add
properties/capabilities='profile:ceph-storage,boot_option:local'
$ ironic node-update 68bf8f29-7731-4148-ba16-efb31ab8d34f add
properties/capabilities='profile:ceph-storage,boot_option:local'

The addition of the profile option tags the nodes into each respective profiles.

NOTE

As an alternative to manual tagging, use the Automated Health Check (AHC) Tools to
automatically tag larger numbers of nodes based on benchmarking data.

2.5. DEFINING THE ROOT DISK FOR CEPH STORAGE NODES

Most Ceph Storage nodes use multiple disks. This means the director needs to identify the disk to use
for the root disk when provisioning a Ceph Storage node. There are several properties you can use to
help identify the root disk:

model (String): Device identifier.

vendor (String): Device vendor.

serial (String): Disk serial number.

wwn (String): Unique storage identifier.

size (Integer): Size of the device in GB.

In this example, we specify the drive to deploy the Overcloud image using the serial number of the disk
to determine the root device.

First, collect a copy of each node’s hardware information that the director obtained from the

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

10

First, collect a copy of each node’s hardware information that the director obtained from the
introspection. This information is stored in the OpenStack Object Storage server (swift). Download this
information to a new directory:

$ mkdir swift-data
$ cd swift-data
$ export SWIFT_PASSWORD=`sudo crudini --get /etc/ironic-inspector/inspector.conf swift password`
$ for node in $(ironic node-list | grep -v UUID| awk '{print $2}'); do swift -U service:ironic -K
$SWIFT_PASSWORD download ironic-inspector inspector_data-$node; done

NOTE

This example uses the crudini command, which is available in the crudini package.

This downloads the data from each inspector_data object from introspection. All objects use the node
UUID as part of the object name:

$ ls -1
inspector_data-15fc0edc-eb8d-4c7f-8dc0-a2a25d5e09e3
inspector_data-46b90a4d-769b-4b26-bb93-50eaefcdb3f4
inspector_data-662376ed-faa8-409c-b8ef-212f9754c9c7
inspector_data-6fc70fe4-92ea-457b-9713-eed499eda206
inspector_data-9238a73a-ec8b-4976-9409-3fcff9a8dca3
inspector_data-9cbfe693-8d55-47c2-a9d5-10e059a14e07
inspector_data-ad31b32d-e607-4495-815c-2b55ee04cdb1
inspector_data-d376f613-bc3e-4c4b-ad21-847c4ec850f8

Check the disk information for each node. The following command displays each node ID and the disk
information:

$ for node in $(ironic node-list | grep -v UUID| awk '{print $2}'); do echo "NODE: $node" ; cat
inspector_data-$node | jq '.inventory.disks' ; echo "-----" ; done

For example, the data for one node might show three disk:

NODE: 15fc0edc-eb8d-4c7f-8dc0-a2a25d5e09e3
[
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sda",
 "wwn_vendor_extension": "0x1ea4dcc412a9632b",
 "wwn_with_extension": "0x61866da04f3807001ea4dcc412a9632b",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380700",
 "serial": "61866da04f3807001ea4dcc412a9632b"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdb",
 "wwn_vendor_extension": "0x1ea4e13c12e36ad6",

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

11

 "wwn_with_extension": "0x61866da04f380d001ea4e13c12e36ad6",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f380d00",
 "serial": "61866da04f380d001ea4e13c12e36ad6"
 }
 {
 "size": 299439751168,
 "rotational": true,
 "vendor": "DELL",
 "name": "/dev/sdc",
 "wwn_vendor_extension": "0x1ea4e31e121cfb45",
 "wwn_with_extension": "0x61866da04f37fc001ea4e31e121cfb45",
 "model": "PERC H330 Mini",
 "wwn": "0x61866da04f37fc00",
 "serial": "61866da04f37fc001ea4e31e121cfb45"
 }
]

For this example, set the root device to disk 2, which has 61866da04f37fc001ea4e31e121cfb45 as the
serial number. This requires a change to the root_device parameter for the node definition:

$ ironic node-update 15fc0edc-eb8d-4c7f-8dc0-a2a25d5e09e3 add properties/root_device='{"serial":
"61866da04f37fc001ea4e31e121cfb45"}'

This helps the director identify the specific disk to use as the root disk. When we initiate our Overcloud
creation, the director provisions this node and writes the Overcloud image to this disk. The other disks
are used for mapping our Ceph Storage nodes.

IMPORTANT

Do not use name to set the root disk as this value can change when the node boots.

2.6. ENABLING CEPH STORAGE IN THE OVERCLOUD

The Overcloud image already contains the Ceph services and the necessary Puppet modules to
automatically configure both the Ceph OSD nodes and the Ceph Monitor on Controller clusters. The
Overcloud’s Heat template collection also contains the necessary procedures to enable your Ceph
Storage configuration. However, the director requires some details to enable Ceph Storage and pass on
the intended configuration. To pass this information, copy the storage-environment.yaml environment
file to your stack user’s templates directory.

$ cp /usr/share/openstack-tripleo-heat-templates/environments/storage-environment.yaml
~/templates/.

Modify the following options in the copy of storage-environment.yaml:

CinderEnableIscsiBackend

Enables the iSCSI backend. Set to false.

CinderEnableRbdBackend

Enables the Ceph Storage backend. Set to true.

CinderEnableNfsBackend

Enables the NFS backend. Set to false.

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

12

NovaEnableRbdBackend

Enables Ceph Storage for Nova ephemeral storage. Set to true.

GlanceBackend

Defines the backend to use for Glance. Set to rbd to use Ceph Storage for images.

Next, modify each entry in the resource_registry to point to the absolute path of each resource:

resource_registry:
 OS::TripleO::Services::CephMon: /usr/share/openstack-tripleo-heat-
templates/puppet/services/ceph-mon.yaml
 OS::TripleO::Services::CephOSD: /usr/share/openstack-tripleo-heat-
templates/puppet/services/ceph-osd.yaml
 OS::TripleO::Services::CephClient: /usr/share/openstack-tripleo-heat-
templates/puppet/services/ceph-client.yaml

NOTE

The storage-environment.yaml also contains some options to configure Ceph Storage
directly through Heat. However, these options are not necessary in this scenario since the
director creates these nodes and automatically defines the configuration values.

2.7. MAPPING THE CEPH STORAGE NODE DISK LAYOUT

The default mapping uses the root disk for Ceph Storage. However, most production environments use
multiple separate disks for storage and partitions for journaling. In this situation, you define a storage
map as part of the storage-environment.yaml file copied previously.

Edit the storage-environment.yaml file and the following snippet to the parameter_defaults:

 ExtraConfig:
 ceph::profile::params::osds:

This adds extra Hiera data to the Overcloud, which Puppet uses as custom parameters during
configuration. Use the ceph::profile::params::osds parameter to map the relevant disks and journal
partitions. For example, a Ceph node with four disks might have the following assignments:

/dev/sda - The root disk containing the Overcloud image

/dev/sdb - The disk containing the journal partitions. This is usually a solid state disk (SSD) to
aid with system performance.

/dev/sdc and /dev/sdd - The OSD disks

For this example, the mapping might contain the following:

 ceph::profile::params::osds:
 '/dev/sdc':
 journal: '/dev/sdb'
 '/dev/sdd':
 journal: '/dev/sdb'

If you do not want a separate disk for journals, use co-located journals on the OSD disks. Pass a blank
value to the journal parameters:

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

13

 ceph::profile::params::osds:
 '/dev/sdb': {}
 '/dev/sdc': {}
 '/dev/sdd': {}

NOTE

In some nodes, disk paths (for example, /dev/sdb, /dev/sdc) may not point to the exact
same block device during reboots. If this is the case with your CephStorage nodes,
specify each disk through its /dev/disk/by-path/ symlink. For example:

 ceph::profile::params::osds:
 '/dev/disk/by-path/pci-0000:00:17.0-ata-2-part1':
 journal: '/dev/nvme0n1'
 '/dev/disk/by-path/pci-0000:00:17.0-ata-2-part2':
 journal: '/dev/nvme0n1'

This will ensure that the block device mapping is consistent throughout deployments.

For more information about naming conventions for storage devices, see Persistent
Naming.

You can also deploy Ceph nodes with different types of disks (for example, SSD and SATA disks on the
same physical host). In a typical Ceph deployment, this is configured through CRUSH maps, as described
in Placing Different Pools on Different OSDS . If you are mapping such a deployment, add the following
line to the ExtraConfig section of the storage-environment.yaml:

ceph::osd_crush_update_on_start: false

Afterwards, save the ~/templates/storage-environment.yaml file so that when we deploy the
Overcloud, the Ceph Storage nodes use our disk mapping. We include this file in our deployment to
initiate our storage requirements.

2.8. DEPLOY THE CEPH OBJECT GATEWAY

The Ceph Object Gateway provides applications with an interface to object storage capabilities within a
Ceph storage cluster. Upon deploying the Ceph Object Gateway, you can then replace the default
Object Storage service (swift) with Ceph. For more information, see Object Gateway Guide for Red Hat
Enterprise Linux.

To enable a Ceph Object Gateway in your deployment, add the following snippet to the
resource_registry of your environment file (namely, ~/templates/storage-environment.yaml):

 OS::TripleO::Services::CephRgw: /usr/share/openstack-tripleo-heat-
templates/puppet/services/ceph-rgw.yaml
 OS::TripleO::Services::SwiftProxy: OS::Heat::None
 OS::TripleO::Services::SwiftStorage: OS::Heat::None
 OS::TripleO::Services::SwiftRingBuilder: OS::Heat::None

In addition to deploying the Ceph Object Gateway, this snippet also disables the default Object Storage
service. (swift).

NOTE

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

14

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/persistent_naming.html
http://docs.ceph.com/docs/master/rados/operations/crush-map/#placing-different-pools-on-different-osds
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux#overview

NOTE

These resources are also found in /usr/share/openstack-tripleo-heat-
templates/environments/ceph-radosgw.yaml; you can also invoke this environment file
directly during deployment. In this document, the resources are defined directly in
/home/stack/templates/storage-environment.yaml, as doing so centralizes all resources
and parameters to one environment file (shown in Appendix A, Sample Environment File:
Creating a Ceph Cluster).

The Ceph Object Gateway acts as a drop-in replacement for the default Object Storage service. As
such, all other services that normally use swift can seamlessly start using the Ceph Object Gateway
instead without further configuration. For example, when configuring the Block Storage Backup service
(cinder-backup) to use the Ceph Object Gateway, set swift as the target back end (see Section 2.9,
“Configuring the Backup Service to Use Ceph”).

2.9. CONFIGURING THE BACKUP SERVICE TO USE CEPH

The Block Storage Backup service (cinder-backup) is disabled by default. You can enable it by adding
the following line to the resource_registry of your environment file (namely, ~/templates/storage-
environment.yaml):

 OS::TripleO::Services::CinderBackup: /usr/share/openstack-tripleo-heat-
templates/puppet/services/pacemaker/cinder-backup.yaml

NOTE

This resource is also defined in /usr/share/openstack-tripleo-heat-
templates/environments/cinder-backup.yaml, which you can also invoke directly during
deployment. In this document, the resource is defined directly in
/home/stack/templates/storage-environment.yaml instead, as doing so centralizes all
resources and parameters to one environment file (shown in Appendix A, Sample
Environment File: Creating a Ceph Cluster).

Next, configure the cinder-backup service to store backups in Ceph. This involves configuring the
service to use Ceph Object Storage (assuming you are also deploying the Ceph Object Gateway, as in
Section 2.8, “Deploy the Ceph Object Gateway”). To do so, add the following line to the
parameter_defaults of your environment file:

CinderBackupBackend: swift

NOTE

If you are not deploying the Ceph Object Gateway and wish to use the Ceph Block Device
as your backup target instead, use:

CinderBackupBackend: ceph

2.10. FORMATTING CEPH STORAGE NODE DISKS TO GPT

The Ceph Storage OSDs and journal partitions require GPT disk labels. This means the additional disks
on Ceph Storage require conversion to GPT labels before installing the Ceph OSD. To accomplish this,
the node must execute a script to perform this operation on first boot. You include this script as part of a

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

15

Heat template in your Overcloud creation. For example, the following heat template (wipe-disks.yaml)
runs a script that checks all disks on Ceph Storage node and converts all of them (except the disk
containing the root file system) to GPT.

heat_template_version: 2014-10-16

description: >
 Wipe and convert all disks to GPT (except the disk containing the root file system)

resources:
 userdata:
 type: OS::Heat::MultipartMime
 properties:
 parts:
 - config: {get_resource: wipe_disk}

 wipe_disk:
 type: OS::Heat::SoftwareConfig
 properties:
 config: {get_file: wipe-disk.sh}

outputs:
 OS::stack_id:
 value: {get_resource: userdata}

This Heat template makes reference to a Bash script called wipe-disk.sh. This script contains your
procedure to wipe the non-root disks. The following script is an example of wipe-disk.sh that wipes all
disks except for the root disk:

#!/bin/bash
if [[`hostname` = *"ceph"*]]
then
 echo "Number of disks detected: $(lsblk -no NAME,TYPE,MOUNTPOINT | grep "disk" | awk '{print
$1}' | wc -l)"
 for DEVICE in `lsblk -no NAME,TYPE,MOUNTPOINT | grep "disk" | awk '{print $1}'`
 do
 ROOTFOUND=0
 echo "Checking /dev/$DEVICE..."
 echo "Number of partitions on /dev/$DEVICE: $(expr $(lsblk -n /dev/$DEVICE | awk '{print $7}' | wc
-l) - 1)"
 for MOUNTS in `lsblk -n /dev/$DEVICE | awk '{print $7}'`
 do
 if ["$MOUNTS" = "/"]
 then
 ROOTFOUND=1
 fi
 done
 if [$ROOTFOUND = 0]
 then
 echo "Root not found in /dev/${DEVICE}"
 echo "Wiping disk /dev/${DEVICE}"
 sgdisk -Z /dev/${DEVICE}
 sgdisk -g /dev/${DEVICE}
 else
 echo "Root found in /dev/${DEVICE}"

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

16

 fi
 done
fi

To include the Heat template in your environment, register it as the NodeUserData resource in your
storage-environment.yaml file:

resource_registry:
 OS::TripleO::NodeUserData: /home/stack/templates/firstboot/wipe-disks.yaml

2.11. CONFIGURING MULTIPLE BONDED INTERFACES PER CEPH
NODE

Using a bonded interface allows you to combine multiple NICs to add redundancy to a network
connection. If you have enough NICs on your Ceph nodes, you can take this a step further by creating
multiple bonded interfaces per node.

With this, you can then use a bonded interface for each network connection required by the node. This
provides both redundancy and a dedicated connection for each network.

The simplest implementation of this involves the use of two bonds, one for each storage network used
by the Ceph nodes. These networks are the following:

Front-end storage network (StorageNet)

The Ceph client uses this network to interact with its Ceph cluster.

Back-end storage network (StorageMgmtNet)

The Ceph cluster uses this network to balance data in accordance with the placement group policy of
the cluster. For more information, see Placement Groups (PG) (from the Red Hat Ceph Architecture
Guide).

Configuring this involves customizing a network interface template, as the director does not provide any
sample templates that deploy multiple bonded NICs. However, the director does provide a template
that deploys a single bonded interface — namely, /usr/share/openstack-tripleo-heat-
templates/network/config/bond-with-vlans/ceph-storage.yaml. You can add a bonded interface for
your additional NICs by defining it there.

NOTE

For more detailed instructions on how to do this, see Creating Custom Interface
Templates (from the Advanced Overcloud Customization guide). That section also
explains the different components of a bridge and bonding definition.

The following snippet contains the default definition for the single bonded interface defined by
/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vlans/ceph-storage.yaml:

 type: ovs_bridge // 1
 name: br-bond
 members:
 -
 type: ovs_bond // 2
 name: bond1 // 3
 ovs_options: {get_param: BondInterfaceOvsOptions} 4

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

17

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/architecture-guide#placement_groups_pgs
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/architecture-guide
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization/#sect-Creating_Custom_Interface_Templates
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization/

1

2

3

4

5

6

7

 members: // 5
 -
 type: interface
 name: nic2
 primary: true
 -
 type: interface
 name: nic3
 -
 type: vlan // 6
 device: bond1 // 7
 vlan_id: {get_param: StorageNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}

A single bridge named br-bond holds the bond defined by this template. This line defines the
bridge type, namely OVS.

The first member of the br-bond bridge is the bonded interface itself, named bond1. This line
defines the bond type of bond1, which is also OVS.

The default bond is named bond1, as defined in this line.

The ovs_options entry instructs director to use a specific set of bonding module directives . Those
directives are passed through the BondInterfaceOvsOptions, which you can also configure in this
same file. For instructions on how to configure this, see Section 2.11.1, “Configuring Bonding
Module Directives”.

The members section of the bond defines which network interfaces are bonded by bond1. In this
case, the bonded interface uses nic2 (set as the primary interface) and nic3.

The br-bond bridge has two other members: namely, a VLAN for both front-end
(StorageNetwork) and back-end (StorageMgmtNetwork) storage networks.

The device parameter defines what device a VLAN should use. In this case, both VLANs will use
the bonded interface bond1.

With at least two more NICs, you can define an additional bridge and bonded interface. Then, you can
move one of the VLANs to the new bonded interface. This results in added throughput and reliability for
both storage network connections.

When customizing /usr/share/openstack-tripleo-heat-templates/network/config/bond-with-
vlans/ceph-storage.yaml for this purpose, it is advisable to also use Linux bonds (type: linux_bond)
instead of the default OVS (type: ovs_bond). This bond type is more suitable for enterprise production
deployments.

The following edited snippet defines an additional OVS bridge (br-bond2) which houses a new Linux

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

18

1

The following edited snippet defines an additional OVS bridge (br-bond2) which houses a new Linux
bond named bond2. The bond2 interface uses two additional NICs (namely, nic4 and nic5) and will be
used solely for back-end storage network traffic:

 type: ovs_bridge
 name: br-bond
 members:
 -
 type: linux_bond
 name: bond1
 bonding_options: {get_param: BondInterfaceOvsOptions} // 1
 members:
 -
 type: interface
 name: nic2
 primary: true
 -
 type: interface
 name: nic3
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: StorageNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
-
 type: ovs_bridge
 name: br-bond2
 members:
 -
 type: linux_bond
 name: bond2
 bonding_options: {get_param: BondInterfaceOvsOptions}
 members:
 -
 type: interface
 name: nic4
 primary: true
 -
 type: interface
 name: nic5
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}

As bond1 and bond2 are both Linux bonds (instead of OVS), they use bonding_options instead
of ovs_options to set bonding directives. For related information, see Section 2.11.1, “Configuring
Bonding Module Directives”.

For the full contents of this customized template, see Appendix B, Sample Custom Interface Template:

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

19

For the full contents of this customized template, see Appendix B, Sample Custom Interface Template:
Multiple Bonded Interfaces.

2.11.1. Configuring Bonding Module Directives

After adding and configuring the bonded interfaces, use the BondInterfaceOvsOptions parameter to
set what directives each should use. You can find this in the parameters: section of
/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vlans/ceph-storage.yaml.
The following snippet shows the default definition of this parameter (namely, empty):

BondInterfaceOvsOptions:
 default: ''
 description: The ovs_options string for the bond interface. Set
 things like lacp=active and/or bond_mode=balance-slb
 using this option.
 type: string

Define the options you need in the default: line. For example, to use 802.3ad (mode 4) and a LACP rate
of 1 (fast), use 'mode=4 lacp_rate=1', as in:

BondInterfaceOvsOptions:
 default: 'mode=4 lacp_rate=1'
 description: The bonding_options string for the bond interface. Set
 things like lacp=active and/or bond_mode=balance-slb
 using this option.
 type: string

See Appendix C. Open vSwitch Bonding Options (from the Advanced Overcloud Optimization guide)
for other supported bonding options. For the full contents of the customized /usr/share/openstack-
tripleo-heat-templates/network/config/bond-with-vlans/ceph-storage.yaml template, see
Appendix B, Sample Custom Interface Template: Multiple Bonded Interfaces .

2.12. CUSTOMIZING THE CEPH STORAGE CLUSTER

It is possible to override the default configuration parameters for Ceph Storage nodes using the
ExtraConfig hook to define data to pass to the Puppet configuration. There are two methods to pass
this data:

Method 1: Modifying Puppet Defaults

You customize parameters provided to the ceph Puppet module during the overcloud configuration.
These parameters are a part of the ceph::profile::params Puppet class defined in
/etc/puppet/modules/ceph/manifests/profile/params.conf. For example, following environment file
snippet customizes the default osd_journal_size parameter from the ceph::profile::params class and
overrides any default:

parameter_defaults:
 ExtraConfig:
 ceph::profile::params::osd_journal_size: 2048

Add this content to an environment file (for example, ceph-settings.yaml) and include it when you run
the openstack overcloud deploy command in Section 2.13, “Creating the Overcloud”. For example:

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

20

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization/#appe-Bonding_Options
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization

$ openstack overcloud deploy --templates --ceph-storage-scale <number of nodes> -e
/home/stack/templates/storage-environment.yaml -e /home/stack/templates/ceph-settings.yaml

Method 2: Arbitrary Configuration Defaults

If Method 1 does not include a specific parameter you need to configure, it is possible to provide
arbitrary Ceph Storage parameters using the ceph::conf::args Puppet class. This class accepts
parameter names using a stanza/key format and value to define the parameter’s value. These settings
configure the ceph.conf file on each node. For example, to change the max_open_files parameter in
the global section of the ceph.conf file, use the following structure in an environment file:

parameter_defaults:
 ExtraConfig:
 ceph::conf::args:
 global/max_open_files:
 value: 131072

Add this content to an environment file (for example, ceph-settings.yaml) and include it when you run
the openstack overcloud deploy command in Section 2.13, “Creating the Overcloud”. For example:

$ openstack overcloud deploy --templates --ceph-storage-scale <number of nodes> -e
/home/stack/templates/storage-environment.yaml -e /home/stack/templates/ceph-settings.yaml

The resulting ceph.conf file should be populated with the following:

[global]
max_open_files = 131072

2.12.1. Assigning Custom Attributes to Different Ceph Pools

By default, Ceph pools created through the director have the same placement group (pg_num and
pgp_num) and sizes. You can use either method in Section 2.12, “Customizing the Ceph Storage
Cluster” to override these settings globally; that is, doing so will apply the same values for all pools.

You can also apply different attributes to each Ceph pool. To do so, use the CephPools resource, as in:

parameter_defaults:
 CephPools:
 POOL:
 size: 5
 pg_num: 128
 pgp_num: 128

Replace POOL with the name of the pool you want to configure with the size, pg_num, and pgp_num
settings that follow.

2.13. CREATING THE OVERCLOUD

The creation of the Overcloud requires additional arguments for the openstack overcloud deploy
command. For example:

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

21

$ openstack overcloud deploy --templates -e /home/stack/templates/storage-environment.yaml --
control-scale 3 --compute-scale 3 --ceph-storage-scale 3 --control-flavor control --compute-flavor
compute --ceph-storage-flavor ceph-storage --ntp-server pool.ntp.org

The above command uses the following options:

--templates - Creates the Overcloud from the default Heat template collection.

-e /home/stack/templates/storage-environment.yaml - Adds an additional environment file to
the Overcloud deployment. In this case, it is the storage environment file containing our Ceph
Storage configuration.

--control-scale 3 - Scale the Controller nodes to three.

--compute-scale 3 - Scale the Compute nodes to three.

--ceph-storage-scale 3 - Scale the Ceph Storage nodes to three.

--control-flavor control - Use a specific flavor for the Controller nodes.

--compute-flavor compute - Use a specific flavor for the Compute nodes.

--ceph-storage-flavor ceph-storage - Use a specific flavor for the Compute nodes.

--ntp-server pool.ntp.org - Sets our NTP server.

See Appendix A, Sample Environment File: Creating a Ceph Cluster for an overview of all the settings
used in /home/stack/templates/storage-environment.yaml.

NOTE

For a full list of options, run:

$ openstack help overcloud deploy

For more information, see Setting Overcloud Parameters in the Director Installation and
Usage guide.

The Overcloud creation process begins and the director provisions your nodes. This process takes some
time to complete. To view the status of the Overcloud creation, open a separate terminal as the stack
user and run:

$ source ~/stackrc
$ heat stack-list --show-nested

2.14. ACCESSING THE OVERCLOUD

The director generates a script to configure and help authenticate interactions with your Overcloud
from the director host. The director saves this file (overcloudrc) in your stack user’s home directory.
Run the following command to use this file:

$ source ~/overcloudrc

This loads the necessary environment variables to interact with your Overcloud from the director host’s

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

22

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage#sect-Setting_Overcloud_Parameters
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage

This loads the necessary environment variables to interact with your Overcloud from the director host’s
CLI. To return to interacting with the director’s host, run the following command:

$ source ~/stackrc

2.15. MONITORING CEPH STORAGE NODES

After completing the Overcloud creation, it is recommended to check the status of the Ceph Storage
Cluster to make sure it is working properly. To accomplish this, log into a Controller node as the heat-
admin user from the director.

$ nova list
$ ssh heat-admin@192.168.0.25

Check the health of the cluster:

$ sudo ceph health

If the cluster has no issues, the command reports back HEALTH_OK. This means the cluster is safe to
use.

Check the status of the Ceph Monitor quorum:

$ sudo ceph quorum_status

This shows the monitors participating in the quorum and which one is the leader.

Check if all Ceph OSDs are running:

$ ceph osd stat

For more information on monitoring Ceph Storage clusters, see Monitoring in the Red Hat Ceph Storage
Administration Guide.

2.16. REBOOTING THE ENVIRONMENT

A situation might occur where you need to reboot the environment. For example, when you might need
to modify the physical servers, or you might need to recover from a power outage. In this situation, it is
important to make sure your Ceph Storage nodes boot correctly.

Make sure to boot the nodes in the following order:

Boot all Ceph Monitor nodes first - This ensures the Ceph Monitor service is active in your high
availability cluster. By default, the Ceph Monitor service is installed on the Controller node. If the
Ceph Monitor is separate from the Controller in a custom role, make sure this custom Ceph
Monitor role is active.

Boot all Ceph Storage nodes - This ensures the Ceph OSD cluster can connect to the active
Ceph Monitor cluster on the Controller nodes.

Use the following process to reboot the Ceph Storage nodes:

1. Log into a Ceph MON or Controller node and disable Ceph Storage cluster rebalancing

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

23

https://access.redhat.com/documentation/en/red-hat-ceph-storage/1.3/administration-guide/chapter-3-monitoring

1. Log into a Ceph MON or Controller node and disable Ceph Storage cluster rebalancing
temporarily:

$ sudo ceph osd set noout
$ sudo ceph osd set norebalance

2. Select the first Ceph Storage node to reboot and log into it.

3. Reboot the node:

$ sudo reboot

4. Wait until the node boots.

5. Log into the node and check the cluster status:

$ sudo ceph -s

Check that the pgmap reports all pgs as normal (active+clean).

6. Log out of the node, reboot the next node, and check its status. Repeat this process until you
have rebooted all Ceph storage nodes.

7. When complete, log into a Ceph MON or Controller node and enable cluster rebalancing again:

$ sudo ceph osd unset noout
$ sudo ceph osd unset norebalance

8. Perform a final status check to verify the cluster reports HEALTH_OK:

$ sudo ceph status

If a situation occurs where all Overcloud nodes boot at the same time, the Ceph OSD services might not
start correctly on the Ceph Storage nodes. In this situation, reboot the Ceph Storage OSDs so they can
connect to the Ceph Monitor service. Run the following command on each Ceph Storage node:

$ sudo systemctl restart 'ceph*'

Verify a HEALTH_OK status of the Ceph Storage node cluster with the following command:

$ sudo ceph status

2.17. REPLACING CEPH STORAGE NODES

If a Ceph Storage node fails, you must disable and rebalance the faulty node before removing it from
the overcloud to prevent data loss. This procedure explains the process for replacing a Ceph Storage
node.

NOTE

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

24

NOTE

This procedure uses steps from the Red Hat Ceph Storage Administration Guide to
manually remove Ceph Storage nodes. For more in-depth information about manual
removal of Ceph Storage nodes, see Adding and Removing OSD Nodes from the Red Hat
Ceph Storage Administration Guide.

Log in to either a Controller node or a Ceph Storage node as the heat-admin user. The director’s stack
user has an SSH key to access the heat-admin user.

List the OSD tree and find the OSDs for your node. For example, the node to remove might contain the
following OSDs:

-2 0.09998 host overcloud-cephstorage-0
0 0.04999 osd.0 up 1.00000 1.00000
1 0.04999 osd.1 up 1.00000 1.00000

NOTE

In the example, host overcloud-cephstorage-0 hosts two OSDs: osd.0 and osd.1. Adapt
this procedure to suit your environment.

Disable the OSDs on the Ceph Storage node. In this case, the OSD IDs are 0 and 1.

[heat-admin@overcloud-controller-0 ~]$ sudo ceph osd out 0
[heat-admin@overcloud-controller-0 ~]$ sudo ceph osd out 1

The Ceph Storage cluster begins rebalancing. Wait for this process to complete. You can monitor the
status using the following command:

[heat-admin@overcloud-controller-0 ~]$ sudo ceph -w

After the Ceph cluster finishes rebalancing, log in to the faulty Ceph Storage node as the heat-admin
user and stop the node.

[heat-admin@overcloud-cephstorage-0 ~]$ systemctl stop ceph-osd@0.service
[heat-admin@overcloud-cephstorage-0 ~]$ systemctl stop ceph-osd@1.service

Prevent the OSDs from starting during the next reboot.

[heat-admin@overcloud-cephstorage-0 ~]$ systemctl disable ceph-osd@0.service

[heat-admin@overcloud-cephstorage-0 ~]$ systemctl disable ceph-osd@1.service

Remove the Ceph Storage node from the CRUSH map so that it no longer receives data.

[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd crush remove osd.0
[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd crush remove osd.1

Remove the OSD authentication key.

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

25

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/2/html-single/administration_guide/#adding_and_removing_osd_nodes

[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph auth del osd.0
[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph auth del osd.1

Remove the OSD from the cluster.

[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd rm 0
[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd rm 1

Leave the node and return to the director host as the stack user.

[heat-admin@overcloud-cephstorage-0 ~]$ exit
[stack@director ~]$

Disable the Ceph Storage node so the director does not reprovision it.

[stack@director ~]$ ironic node-list
[stack@director ~]$ ironic node-set-maintenance [UUID] true

Removing a Ceph Storage node requires an update to the overcloud stack in the director using the local
template files. First, identify the UUID of the Overcloud stack.

$ heat stack-list

Identify the UUIDs of the Ceph Storage node to delete.

$ nova list

Run the following command to delete the node from the stack and update the plan accordingly.

$ openstack overcloud node delete --stack [STACK_UUID] --templates -e [ENVIRONMENT_FILE]
[NODE_UUID]

IMPORTANT

If you passed any extra environment files when you created the overcloud, pass them
again here using the -e or --environment-file option to avoid making undesired changes
to the overcloud.

Wait until the stack completes its update. Monitor the stack update using the heat stack-list --show-
nested command.

Add new nodes to the director’s node pool and deploy them as Ceph Storage nodes. Use the --ceph-
storage-scale option to define the total number of Ceph Storage nodes in the overcloud. For example,
if you removed a faulty node from a three-node cluster and you want to replace it, use --ceph-storage-
scale 3 to return the number of Ceph Storage nodes to its original value.

$ openstack overcloud deploy --templates --ceph-storage-scale 3 -e [ENVIRONMENT_FILES]

IMPORTANT

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

26

IMPORTANT

If you passed any extra environment files when you created the overcloud, pass them
again here using the -e or --environment-file option to avoid making undesired changes
to the overcloud.

The director provisions the new node and updates the entire stack with the new node’s details.

Log in to a Controller node as the heat-admin user and check the status of the Ceph Storage node.

[heat-admin@overcloud-controller-0 ~]$ sudo ceph status

Confirm that the value in the osdmap section matches the number of desired nodes in your cluster.

The failed Ceph Storage node has now been replaced with a new node.

2.18. ADDING AND REMOVING OSD DISKS FROM CEPH STORAGE
NODES

In situations when an OSD disk fails and requires a replacement, use the standard instructions from the
Red Hat Ceph Storage Administration Guide :

"Adding an OSD"

"Removing an OSD"

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

27

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/administration-guide/#adding_an_osd
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/administration-guide/#removing_an_osd

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE
CLUSTER WITH AN OVERCLOUD

This chapter describes how to create an Overcloud and integrate it with an existing Ceph Storage
Cluster. For instructions on how to create both Overcloud and Ceph Storage Cluster, see Chapter 2,
Creating an Overcloud with Ceph Storage Nodes instead.

The scenario described in this chapter consists of six nodes in the Overcloud:

Three Controller nodes with high availability.

Three Compute nodes.

The director will integrate a separate Ceph Storage Cluster with its own nodes into the Overcloud. You
manage this cluster independently from the Overcloud. For example, you scale the Ceph Storage cluster
using the Ceph management tools and not through the OpenStack Platform director.

All OpenStack machines are bare metal systems using IPMI for power management. These nodes do not
require an operating system because the director copies a Red Hat Enterprise Linux 7 image to each
node.

The director communicates to the Controller and Compute nodes through the Provisioning network
during the introspection and provisioning processes. All nodes connect to this network through the
native VLAN. For this example, we use 192.0.2.0/24 as the Provisioning subnet with the following IP
address assignments:

Node Name IP Address MAC Address IPMI IP Address

Director 192.0.2.1 aa:aa:aa:aa:aa:aa

Controller 1 DHCP defined b1:b1:b1:b1:b1:b1 192.0.2.205

Controller 2 DHCP defined b2:b2:b2:b2:b2:b2 192.0.2.206

Controller 3 DHCP defined b3:b3:b3:b3:b3:b3 192.0.2.207

Compute 1 DHCP defined c1:c1:c1:c1:c1:c1 192.0.2.208

Compute 2 DHCP defined c2:c2:c2:c2:c2:c2 192.0.2.209

Compute 3 DHCP defined c3:c3:c3:c3:c3:c3 192.0.2.210

3.1. CONFIGURING THE EXISTING CEPH STORAGE CLUSTER

1. Create the following pools in your Ceph cluster relevant to your environment:

volumes: Storage for OpenStack Block Storage (cinder)

images: Storage for OpenStack Image Storage (glance)

vms: Storage for instances

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

28

backups: Storage for OpenStack Block Storage Backup (cinder-backup)

metrics: Storage for OpenStack Telemetry Metrics (gnocchi)
Use the following commands as a guide:

[root@ceph ~]# ceph osd pool create volumes PGNUM
[root@ceph ~]# ceph osd pool create images PGNUM
[root@ceph ~]# ceph osd pool create vms PGNUM
[root@ceph ~]# ceph osd pool create backups PGNUM
[root@ceph ~]# ceph osd pool create metrics PGNUM

Replace PGNUM with the number of placement groups. We recommend approximately 100
per OSD. For example, the total number of OSDs multiplied by 100 divided by the number of
replicas (osd pool default size). You can also use the Ceph Placement Groups (PGs) per
Pool Calculator to determine a suitable value.

2. Create a client.openstack user in your Ceph cluster with the following capabilities:

cap_mon: allow r

cap_osd: allow class-read object_prefix rbd_children, allow rwx pool=volumes, allow
rwx pool=vms, allow rwx pool=images, allow rwx pool=backups, allow rwx
pool=metrics
Use the following command as a guide:

[root@ceph ~]# ceph auth add client.openstack mon 'allow r' osd 'allow class-read
object_prefix rbd_children, allow rwx pool=volumes, allow rwx pool=vms, allow rwx
pool=images, allow rwx pool=backups, allow rwx pool=metrics'

3. Next, note the Ceph client key created for the client.openstack user:

[root@ceph ~]# ceph auth list
...
client.openstack
 key: AQDLOh1VgEp6FRAAFzT7Zw+Y9V6JJExQAsRnRQ==
 caps: [mon] allow r
 caps: [osd] allow class-read object_prefix rbd_children, allow rwx pool=volumes, allow rwx
pool=vms, allow rwx pool=images, allow rwx pool=backups, allow rwx pool=metrics
...

The key value here (AQDLOh1VgEp6FRAAFzT7Zw+Y9V6JJExQAsRnRQ==) is your Ceph
client key.

4. Finally, note the file system ID of your Ceph Storage cluster. This value is specified with the fsid
setting in the configuration file of your cluster (under the [global] section):

[global]
fsid = 4b5c8c0a-ff60-454b-a1b4-9747aa737d19
...

NOTE

For more information about the Ceph Storage cluster configuration file, see
Configuration Reference (from the Red Hat Ceph Storage Configuration Guide).

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD

29

https://access.redhat.com/labs/cephpgc/
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/configuration-guide#configuration_reference
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/configuration-guide

The Ceph client key and file system ID will both be used later in Section 3.6, “Enabling Integration with
the Existing Ceph Storage Cluster”.

3.2. INITIALIZING THE STACK USER

Log into the director host as the stack user and run the following command to initialize your director
configuration:

$ source ~/stackrc

This sets up environment variables containing authentication details to access the director’s CLI tools.

3.3. REGISTERING NODES

A node definition template (instackenv.json) is a JSON format file and contains the hardware and
power management details for registering nodes. For example:

{
 "nodes":[
 {
 "mac":[
 "bb:bb:bb:bb:bb:bb"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.205"
 },
 {
 "mac":[
 "cc:cc:cc:cc:cc:cc"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.206"
 },
 {
 "mac":[
 "dd:dd:dd:dd:dd:dd"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

30

 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.207"
 },
 {
 "mac":[
 "ee:ee:ee:ee:ee:ee"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.208"
 }
 {
 "mac":[
 "ff:ff:ff:ff:ff:ff"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.209"
 }
 {
 "mac":[
 "gg:gg:gg:gg:gg:gg"
],
 "cpu":"4",
 "memory":"6144",
 "disk":"40",
 "arch":"x86_64",
 "pm_type":"pxe_ipmitool",
 "pm_user":"admin",
 "pm_password":"p@55w0rd!",
 "pm_addr":"192.0.2.210"
 }
]
}

After creating the template, save the file to the stack user’s home directory
(/home/stack/instackenv.json), then import it into the director. Use the following command to
accomplish this:

$ openstack baremetal import --json ~/instackenv.json

This imports the template and registers each node from the template into the director.

Assign the kernel and ramdisk images to all nodes:

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD

31

$ openstack baremetal configure boot

The nodes are now registered and configured in the director.

3.4. INSPECTING THE HARDWARE OF NODES

After registering the nodes, inspect the hardware attribute of each node. Run the following command to
inspect the hardware attributes of each node:

$ openstack baremetal introspection bulk start

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes for bare
metal nodes.

3.5. MANUALLY TAGGING THE NODES

After registering and inspecting the hardware of each node, tag them into specific profiles. These profile
tags match your nodes to flavors, and in turn the flavors are assigned to a deployment role.

Retrieve a list of your nodes to identify their UUIDs:

$ ironic node-list

To manually tag a node to a specific profile, add a profile option to the properties/capabilities
parameter for each node. For example, to tag three nodes to use a controller profile and one node to
use a compute profile, use the following commands:

$ ironic node-update 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0 add
properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 6faba1a9-e2d8-4b7c-95a2-c7fbdc12129a add
properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 5e3b2f50-fcd9-4404-b0a2-59d79924b38e add
properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 484587b2-b3b3-40d5-925b-a26a2fa3036f add
properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update d010460b-38f2-4800-9cc4-d69f0d067efe add
properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update d930e613-3e14-44b9-8240-4f3559801ea6 add
properties/capabilities='profile:compute,boot_option:local'

The addition of the profile option tags the nodes into each respective profiles.

NOTE

As an alternative to manual tagging, use the Automated Health Check (AHC) Tools to
automatically tag larger numbers of nodes based on benchmarking data.

3.6. ENABLING INTEGRATION WITH THE EXISTING CEPH STORAGE
CLUSTER

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

32

Create a copy of /usr/share/openstack-tripleo-heat-templates/environments/puppet-ceph-
external.yaml to a directory in your stack user’s home directory:

[stack@director ~]# mkdir templates
[stack@director ~]# cp /usr/share/openstack-tripleo-heat-templates/environments/puppet-ceph-
external.yaml ~/templates/.

Edit the file and set the following parameters:

Set the CephExternal resource definition to an absolute path:

OS::TripleO::Services::CephExternal: /usr/share/openstack-tripleo-heat-
templates/puppet/services/ceph-external.yaml

Set the following three parameters using your Ceph Storage environment details:

CephClientKey: the Ceph client key of your Ceph Storage cluster. This is the value of key
you retrieved earlier in Section 3.1, “Configuring the Existing Ceph Storage Cluster” (for
example, AQDLOh1VgEp6FRAAFzT7Zw+Y9V6JJExQAsRnRQ==).

CephExternalMonHost: a comma-delimited list of the IPs of all MON hosts in your Ceph
Storage cluster.

CephClusterFSID: the file system ID of your Ceph Storage cluster. This is the value of fsid
in your Ceph Storage cluster configuration file, which you retrieved earlier in Section 3.1,
“Configuring the Existing Ceph Storage Cluster” (for example, 4b5c8c0a-ff60-454b-a1b4-
9747aa737d19).

If necessary, also set the name of the OpenStack pools and the client user using the following
parameters and values:

CephClientUserName: openstack

NovaRbdPoolName: vms

CinderRbdPoolName: volumes

GlanceRbdPoolName: images

CinderBackupRbdPoolName: backups

GnocchiRbdPoolName: metrics

3.7. BACKWARDS COMPATIBILITY WITH OLDER VERSIONS OF RED
HAT CEPH STORAGE

If you are integrating Red Hat OpenStack Platform with an external Ceph Storage Cluster from an earlier
version (that is, Red Hat Ceph Storage 1.3), you need to enable backwards compatibility. To do so, first
create an environment file in /home/stack/templates/ containing the following:

parameter_defaults:
 ExtraConfig:
 ceph::conf::args:
 client/rbd_default_features:
 value: "1"

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD

33

Include this file in your overcloud deployment, described in Section 3.8, “Creating the Overcloud”.

3.8. CREATING THE OVERCLOUD

The creation of the Overcloud requires additional arguments for the openstack overcloud deploy
command. For example:

$ openstack overcloud deploy --templates -e /home/stack/templates/puppet-ceph-external.yaml --
control-scale 3 --compute-scale 3 --ceph-storage-scale 0 --control-flavor control --compute-flavor
compute --neutron-network-type vxlan --ntp-server pool.ntp.org

The above command uses the following options:

--templates - Creates the Overcloud from the default Heat template collection.

-e /home/stack/templates/puppet-ceph-external.yaml - Adds an additional environment file
to the Overcloud deployment. In this case, it is the storage environment file containing the
configuration for the existing Ceph Storage Cluster.

--control-scale 3 - Scale the Controller nodes to three.

--compute-scale 3 - Scale the Compute nodes to three.

--ceph-storage-scale 0 - Scale the Ceph Storage nodes to zero. This ensures the director does
not create any Ceph Storage nodes.

--control-flavor control - Use a specific flavor for the Controller nodes.

--compute-flavor compute - Use a specific flavor for the Compute nodes.

--neutron-network-type vxlan - Sets the neutron networking type.

--ntp-server pool.ntp.org - Sets our NTP server.

NOTE

For a full list of options, run:

$ openstack help overcloud deploy

For more information, see Setting Overcloud Parameters in the Director Installation and
Usage guide.

The Overcloud creation process begins and the director provisions your nodes. This process takes some
time to complete. To view the status of the Overcloud creation, open a separate terminal as the stack
user and run:

$ source ~/stackrc
$ heat stack-list --show-nested

This configures the Overcloud to use your external Ceph Storage cluster. Note that you manage this
cluster independently from the Overcloud. For example, you scale the Ceph Storage cluster using the
Ceph management tools and not through the OpenStack Platform director.

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

34

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage#sect-Setting_Overcloud_Parameters
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage

3.9. ACCESSING THE OVERCLOUD

The director generates a script to configure and help authenticate interactions with your Overcloud
from the director host. The director saves this file (overcloudrc) in your stack user’s home directory.
Run the following command to use this file:

$ source ~/overcloudrc

This loads the necessary environment variables to interact with your Overcloud from the director host’s
CLI. To return to interacting with the director’s host, run the following command:

$ source ~/stackrc

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD

35

CHAPTER 4. CONCLUSION
This concludes the creation and configuration of Overcloud with Red Hat Ceph Storage. For general
Overcloud post-creation functions, see Performing Tasks after Overcloud Creation in the Director
Installation and Usage guide.

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

36

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage#chap-Performing_Tasks_after_Overcloud_Creation
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage

1

2

APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING A
CEPH CLUSTER

The following custom environment file uses many of the options described throughout Chapter 2,
Creating an Overcloud with Ceph Storage Nodes . This sample does not include any commented-out
options. For an overview on environment files, see Environment Files (from the Advanced Overcloud
Customization guide).

/home/stack/templates/storage-environment.yaml

resource_registry: // 1
 OS::TripleO::Services::CephMon: /usr/share/openstack-tripleo-heat-
templates/puppet/services/ceph-mon.yaml
 OS::TripleO::Services::CephOSD: /usr/share/openstack-tripleo-heat-
templates/puppet/services/ceph-osd.yaml
 OS::TripleO::Services::CephClient: /usr/share/openstack-tripleo-heat-
templates/puppet/services/ceph-client.yaml
 OS::TripleO::Services::CinderBackup: /usr/share/openstack-tripleo-heat-
templates/puppet/services/pacemaker/cinder-backup.yaml // 2
 OS::TripleO::Services::CephRgw: /usr/share/openstack-tripleo-heat-
templates/puppet/services/ceph-rgw.yaml // 3
 OS::TripleO::Services::SwiftProxy: OS::Heat::None
 OS::TripleO::Services::SwiftStorage: OS::Heat::None
 OS::TripleO::Services::SwiftRingBuilder: OS::Heat::None
 OS::TripleO::NodeUserData: /home/stack/templates/firstboot/wipe-disks.yaml // 4

parameter_defaults: // 5
 CinderEnableIscsiBackend: false
 CinderEnableRbdBackend: true
 CinderEnableNfsBackend: false
 NovaEnableRbdBackend: true
 GlanceBackend: rbd
 CinderBackupBackend: swift // 6
 ExtraConfig:
 ceph::profile::params::osds: // 7
 '/dev/sdc':
 journal: '/dev/sdb'
 '/dev/sdd':
 journal: '/dev/sdb'
 CephPools: // 8
 volumes:
 size: 5
 pg_num: 128
 pgp_num: 128

The resource_registry section defines resources linked to heat templates. The first three entries
(CephMon, CephOSD, and CephClient) link the heat templates used to define the different
components of the Ceph cluster (MON, OSD, and client).

The OS::TripleO::Services::CinderBackup entry calls the heat template required to deploy the
Block Storage Backup service. You can set the backup target later on in the parameter_defaults
section.

APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING A CEPH CLUSTER

37

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization#sect-Environment_Files
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization

3

4

5

6

7

8

The OS::TripleO::Services::CephRgw entry calls the heat template required to deploy the Ceph
Object Gateway, which in turn provides the means for OpenStack to use Ceph Object Storage.

The OS::TripleO::NodeUserData: entry uses a template (/home/stack/templates/firstboot/wipe-
disks.yaml) that checks all disks on Ceph Storage node and converts all of them (except the disk
containing the root file system) to GPT using a custom script. For more details, see Section 2.10,
“Formatting Ceph Storage Node Disks to GPT”.

The parameter_defaults section modifies the default values for parameters in all templates. Most
of the entries listed here are described in Section 2.6, “Enabling Ceph Storage in the Overcloud” .

As you are deploying the Ceph Object Gateway, you can then use Ceph Object Storage as a
backup target. To configure this, set CinderBackupBackend to swift. See Section 2.8, “Deploy
the Ceph Object Gateway” for details.

The ceph::profile::params::osds:: section defines a custom disk layout, as described in
Section 2.7, “Mapping the Ceph Storage Node Disk Layout” .

The CephPools section sets custom attributes for any Ceph pool. This example sets custom size,
pg_num, and pgp_num attributes for the volumes pool. See Section 2.12.1, “Assigning Custom
Attributes to Different Ceph Pools” for more details.

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

38

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE:
MULTIPLE BONDED INTERFACES

The following template is a customized version of /usr/share/openstack-tripleo-heat-
templates/network/config/bond-with-vlans/ceph-storage.yaml. It features multiple bonded interfaces
to isolate back-end and front-end storage network traffic, along with redundancy for both connections
(as described in]). It also uses custom bonding options (namely, 'mode=4 lacp_rate=1', as described in
xref:multibonded-nics-ovs-opts[).

/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vlans/ceph-
storage.yaml (custom)

heat_template_version: 2015-04-30

description: >
 Software Config to drive os-net-config with 2 bonded nics on a bridge
 with VLANs attached for the ceph storage role.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal API network
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 BondInterfaceOvsOptions:
 default: 'mode=4 lacp_rate=1'
 description: The bonding_options string for the bond interface. Set
 things like lacp=active and/or bond_mode=balance-slb
 using this option.
 type: string
 constraints:
 - allowed_pattern: "^((?!balance.tcp).)*$"

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES

39

 description: |
 The balance-tcp bond mode is known to cause packet loss and
 should not be used in BondInterfaceOvsOptions.
 ExternalNetworkVlanID:
 default: 10
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: 20
 description: Vlan ID for the internal_api network traffic.
 type: number
 StorageNetworkVlanID:
 default: 30
 description: Vlan ID for the storage network traffic.
 type: number
 StorageMgmtNetworkVlanID:
 default: 40
 description: Vlan ID for the storage mgmt network traffic.
 type: number
 TenantNetworkVlanID:
 default: 50
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 60
 description: Vlan ID for the management network traffic.
 type: number
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 ExternalInterfaceDefaultRoute: # Not used by default in this template
 default: '10.0.0.1'
 description: The default route of the external network.
 type: string
 ManagementInterfaceDefaultRoute: # Commented out by default in this template
 default: unset
 description: The default route of the management network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations) that will be added to
resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

40

 config:
 os_net_config:
 network_config:
 -
 type: interface
 name: nic1
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}
 -
 default: true
 next_hop: {get_param: ControlPlaneDefaultRoute}
 -
 type: ovs_bridge
 name: br-bond
 members:
 -
 type: linux_bond
 name: bond1
 bonding_options: {get_param: BondInterfaceOvsOptions}
 members:
 -
 type: interface
 name: nic2
 primary: true
 -
 type: interface
 name: nic3
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: StorageNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageIpSubnet}
 -
 type: ovs_bridge
 name: br-bond2
 members:
 -
 type: linux_bond
 name: bond2
 bonding_options: {get_param: BondInterfaceOvsOptions}
 members:
 -
 type: interface

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES

41

 name: nic4
 primary: true
 -
 type: interface
 name: nic5
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: StorageMgmtNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: StorageMgmtIpSubnet}
outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value: {get_resource: OsNetConfigImpl}

Red Hat OpenStack Platform 10 Red Hat Ceph Storage for the Overcloud

42

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. DEFINING CEPH STORAGE
	1.2. USING CEPH STORAGE IN RED HAT OPENSTACK PLATFORM
	1.3. SETTING REQUIREMENTS
	1.4. DEFINING THE SCENARIOS

	CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES
	2.1. INITIALIZING THE STACK USER
	2.2. REGISTERING NODES
	2.3. INSPECTING THE HARDWARE OF NODES
	2.4. MANUALLY TAGGING THE NODES
	2.5. DEFINING THE ROOT DISK FOR CEPH STORAGE NODES
	2.6. ENABLING CEPH STORAGE IN THE OVERCLOUD
	2.7. MAPPING THE CEPH STORAGE NODE DISK LAYOUT
	2.8. DEPLOY THE CEPH OBJECT GATEWAY
	2.9. CONFIGURING THE BACKUP SERVICE TO USE CEPH
	2.10. FORMATTING CEPH STORAGE NODE DISKS TO GPT
	2.11. CONFIGURING MULTIPLE BONDED INTERFACES PER CEPH NODE
	2.11.1. Configuring Bonding Module Directives

	2.12. CUSTOMIZING THE CEPH STORAGE CLUSTER
	2.12.1. Assigning Custom Attributes to Different Ceph Pools

	2.13. CREATING THE OVERCLOUD
	2.14. ACCESSING THE OVERCLOUD
	2.15. MONITORING CEPH STORAGE NODES
	2.16. REBOOTING THE ENVIRONMENT
	2.17. REPLACING CEPH STORAGE NODES
	2.18. ADDING AND REMOVING OSD DISKS FROM CEPH STORAGE NODES

	CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD
	3.1. CONFIGURING THE EXISTING CEPH STORAGE CLUSTER
	3.2. INITIALIZING THE STACK USER
	3.3. REGISTERING NODES
	3.4. INSPECTING THE HARDWARE OF NODES
	3.5. MANUALLY TAGGING THE NODES
	3.6. ENABLING INTEGRATION WITH THE EXISTING CEPH STORAGE CLUSTER
	3.7. BACKWARDS COMPATIBILITY WITH OLDER VERSIONS OF RED HAT CEPH STORAGE
	3.8. CREATING THE OVERCLOUD
	3.9. ACCESSING THE OVERCLOUD

	CHAPTER 4. CONCLUSION
	APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING A CEPH CLUSTER
	APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES

