
Red Hat OpenShift Service on AWS 4

Tutorials

Red Hat OpenShift Service on AWS tutorials

Last Updated: 2024-06-18

Red Hat OpenShift Service on AWS 4 Tutorials

Red Hat OpenShift Service on AWS tutorials

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Tutorials on creating your first Red Hat OpensShift Service on AWS (ROSA) cluster.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. TUTORIALS OVERVIEW

CHAPTER 2. TUTORIAL: ROSA WITH HCP ACTIVATION AND ACCOUNT LINKING
2.1. PREREQUISITES
2.2. SUBSCRIPTION ENABLEMENT AND AWS ACCOUNT SETUP
2.3. AWS AND RED HAT ACCOUNT AND SUBSCRIPTION LINKING
2.4. ROSA WITH HCP CLUSTER DEPLOYMENT USING THE CLI
2.5. ROSA WITH HCP CLUSTER DEPLOYMENT USING THE WEB CONSOLE

CHAPTER 3. TUTORIAL: VERIFYING PERMISSIONS FOR A ROSA STS DEPLOYMENT
3.1. PREREQUISITES
3.2. VERIFYING ROSA PERMISSIONS
3.3. USAGE INSTRUCTIONS

CHAPTER 4. CONFIGURING LOG FORWARDING FOR CLOUDWATCH LOGS AND STS
4.1. SETTING UP YOUR ENVIRONMENT
4.2. PREPARING YOUR AWS ACCOUNT
4.3. DEPLOYING OPERATORS
4.4. CONFIGURING CLUSTER LOGGING
4.5. CHECKING CLOUDWATCH FOR LOGS
4.6. CLEANING UP YOUR RESOURCES

CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON CLOUDFRONT TO PROTECT ROSA WORKLOADS

5.1. PREREQUISITES
5.1.1. Environment setup

5.2. CUSTOM DOMAIN SETUP
5.2.1. Configure the AWS WAF

5.3. CONFIGURE AMAZON CLOUDFRONT
5.4. DEPLOY A SAMPLE APPLICATION
5.5. TEST THE WAF
5.6. ADDITIONAL RESOURCES

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT ROSA WORKLOADS
6.1. PREREQUISITES

6.1.1. Environment setup
6.1.2. AWS VPC and subnets

6.2. DEPLOY THE AWS LOAD BALANCER OPERATOR
6.3. DEPLOY A SAMPLE APPLICATION

6.3.1. Configure the AWS WAF
6.4. ADDITIONAL RESOURCES

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A ROSA CLUSTER
7.1. PREPARE AWS ACCOUNT
7.2. DEPLOY OADP ON THE CLUSTER
7.3. PERFORM A BACKUP
7.4. CLEANUP

CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR ON ROSA
8.1. PREREQUISITES

8.1.1. Environment
8.1.2. AWS VPC and subnets

8.2. INSTALLATION

8

9
9
9

12
17
19

22
22
22
22

24
24
24
25
26
27
27

29
29
29
29
30
32
33
34
34

35
35
35
35
36
38
39
41

42
42
44
48
50

52
52
52
53
53

Table of Contents

1

. .

. .

. .

. .

. .

. .

8.3. VALIDATING THE DEPLOYMENT
8.4. CLEANING UP

CHAPTER 9. TUTORIAL: CONFIGURING ROSA/OSD TO USE CUSTOM TLS CIPHERS ON THE INGRESS
CONTROLLER

CHAPTER 10. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY)
AS AN IDENTITY PROVIDER

10.1. PREREQUISITES
10.2. REGISTERING A NEW APPLICATION IN ENTRA ID FOR AUTHENTICATION
10.3. CONFIGURING THE APPLICATION REGISTRATION IN ENTRA ID TO INCLUDE OPTIONAL AND GROUP
CLAIMS

Configuring optional claims
Configuring group claims (optional)

10.4. CONFIGURING THE RED HAT OPENSHIFT SERVICE ON AWS CLUSTER TO USE ENTRA ID AS THE
IDENTITY PROVIDER
10.5. GRANTING ADDITIONAL PERMISSIONS TO INDIVIDUAL USERS AND GROUPS

Granting additional permissions to individual users
Granting additional permissions to individual groups

10.6. ADDITIONAL RESOURCES

CHAPTER 11. TUTORIAL: USING AWS SECRETS MANAGER CSI ON ROSA WITH STS
11.1. PREREQUISITES

Additional environment requirements
11.2. DEPLOYING THE AWS SECRETS AND CONFIGURATION PROVIDER
11.3. CREATING A SECRET AND IAM ACCESS POLICIES
11.4. CREATE AN APPLICATION TO USE THIS SECRET
11.5. CLEAN UP

CHAPTER 12. TUTORIAL: USING AWS CONTROLLERS FOR KUBERNETES ON ROSA
12.1. PREREQUISITES
12.2. SETTING UP YOUR ENVIRONMENT
12.3. PREPARING YOUR AWS ACCOUNT
12.4. INSTALLING THE ACK S3 CONTROLLER
12.5. VALIDATING THE DEPLOYMENT
12.6. CLEANING UP

CHAPTER 13. TUTORIAL: DEPLOYING THE EXTERNAL DNS OPERATOR ON ROSA
13.1. PREREQUISITES
13.2. SETTING UP YOUR ENVIRONMENT
13.3. SETTING UP YOUR CUSTOM DOMAIN
13.4. PREPARING YOUR AWS ACCOUNT
13.5. INSTALLING THE EXTERNAL DNS OPERATOR
13.6. DEPLOYING A SAMPLE APPLICATION

CHAPTER 14. TUTORIAL: DYNAMICALLY ISSUING CERTIFICATES USING THE CERT-MANAGER OPERATOR
ON ROSA

14.1. PREREQUISITES
14.2. SETTING UP YOUR ENVIRONMENT
14.3. PREPARING YOUR AWS ACCOUNT
14.4. INSTALLING THE CERT-MANAGER OPERATOR
14.5. CREATING A CUSTOM DOMAIN INGRESS CONTROLLER
14.6. CONFIGURING DYNAMIC CERTIFICATES FOR CUSTOM DOMAIN ROUTES
14.7. DEPLOYING A SAMPLE APPLICATION
14.8. TROUBLESHOOTING DYNAMIC CERTIFICATE PROVISIONING

56
58

59

63
63
63

67
68
70

71
72
72
73
73

74
74
74
75
75
77
78

79
79
79
79
80
82
82

83
83
83
84
85
86
87

89
89
89
89
91

93
95
96
97

Red Hat OpenShift Service on AWS 4 Tutorials

2

. .

. .

CHAPTER 15. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC
15.1. SETTING YOUR ENVIRONMENT VARIABLES
15.2. ENSURING CAPACITY
15.3. CREATING THE EGRESS IP RULES
15.4. ASSIGNING AN EGRESS IP TO A NAMESPACE
15.5. ASSIGNING AN EGRESS IP TO A POD

15.5.1. Labeling the nodes
15.5.2. Reviewing the egress IPs

15.6. VERIFICATION
15.6.1. Deploying a sample application
15.6.2. Testing the namespace egress
15.6.3. Testing the pod egress
15.6.4. Optional: Testing blocked egress

15.7. CLEANING UP YOUR CLUSTER

CHAPTER 16. GETTING STARTED WITH ROSA
16.1. TUTORIAL: WHAT IS ROSA

16.1.1. Key features of ROSA
16.1.2. ROSA and Kubernetes
16.1.3. Basic responsibilities
16.1.4. Roadmap and feature requests
16.1.5. AWS region availability
16.1.6. Compliance certifications
16.1.7. Nodes

16.1.7.1. Worker nodes across multiple AWS regions
16.1.7.2. Minimum number of worker nodes
16.1.7.3. Underlying node operating system
16.1.7.4. Node hibernation or shut-down
16.1.7.5. Supported instances for worker nodes
16.1.7.6. Node autoscaling
16.1.7.7. Maximum number of worker nodes

16.1.8. Administrators
16.1.9. OpenShift versions and upgrades
16.1.10. Support

16.1.10.1. Limited support
16.1.11. Service-level agreement (SLA)
16.1.12. Notifications and communication
16.1.13. Open Service Broker for AWS (OBSA)
16.1.14. Offboarding
16.1.15. Authentication
16.1.16. SRE cluster access
16.1.17. Encryption

16.1.17.1. Encryption keys
16.1.17.2. KMS keys
16.1.17.3. Data encryption
16.1.17.4. etcd encryption
16.1.17.5. etcd encryption configuration
16.1.17.6. Multi-region KMS keys for EBS encryption

16.1.18. Infrastructure
16.1.19. Credential methods
16.1.20. Prerequisite permission or failure errors
16.1.21. Storage
16.1.22. Using a VPC

98
98
98
99
99

100
100
101
101
101
102
103
104
104

106
106
106
106
107
107
107
107
107
107
107
107
107
107
108
108
108
108
108
108
108
108
109
109
109
109
109
109
109
109
109
109
110
110
110
110
110
110

Table of Contents

3

16.1.23. Network plugin
16.1.24. Cross-namespace networking
16.1.25. Using Prometheus and Grafana
16.1.26. Audit logs output from the cluster control-plane
16.1.27. AWS Permissions Boundary
16.1.28. AMI
16.1.29. Cluster backups
16.1.30. Custom domain
16.1.31. ROSA domain certificates
16.1.32. Disconnected environments

16.2. TUTORIAL: ROSA WITH AWS STS EXPLAINED
16.2.1. Different credential methods to deploy ROSA

16.2.1.1. Rosa with IAM Users
16.2.1.2. ROSA with STS

16.2.2. ROSA with STS security
16.2.3. AWS STS explained
16.2.4. Components specific to ROSA with STS
16.2.5. Deploying a ROSA STS cluster
16.2.6. ROSA with STS workflow
16.2.7. ROSA with STS use cases

16.3. DEPLOYING A CLUSTER
16.3.1. Tutorial: Choosing a deployment method

16.3.1.1. Deployment options
16.3.2. Tutorial: Simple CLI guide

16.3.2.1. Prerequisites
16.3.2.2. Creating account roles
16.3.2.3. Deploying the cluster

16.3.3. Tutorial: Detailed CLI guide
16.3.3.1. CLI deployment modes
16.3.3.2. Deployment workflow
16.3.3.3. Automatic mode

16.3.3.3.1. Creating account roles
16.3.3.3.2. Creating a cluster

16.3.3.3.2.1. Default configuration
16.3.3.3.3. Checking the installation status

16.3.3.4. Manual Mode
16.3.3.4.1. Creating account roles
16.3.3.4.2. Creating a cluster
16.3.3.4.3. Creating Operator roles
16.3.3.4.4. Creating the OIDC provider
16.3.3.4.5. Checking the installation status

16.3.3.5. Obtaining the Red Hat Hybrid Cloud Console URL
16.3.4. Tutorial: Hosted Control Planes guide

16.3.4.1. Prerequisites
16.3.4.1.1. Creating a VPC
16.3.4.1.2. Creating your OIDC configuration
16.3.4.1.3. Creating additional environment variables

16.3.4.2. Creating the cluster
16.3.4.3. Checking the installation status

16.3.5. Tutorial: Simple UI guide
16.3.5.1. Prerequisites
16.3.5.2. Creating account roles
16.3.5.3. Creating Red Hat OpenShift Cluster Manager roles

110
110
111
111
111
111
111
111
111
111

112
112
113
113
113
113
113
115
115
118
118
118
118
119
119
119
119
119
119

120
120
120
121
122
123
123
123
124
126
127
127
127
128
128
128
131
131
131
132
132
132
132
132

Red Hat OpenShift Service on AWS 4 Tutorials

4

. .

16.3.6. Tutorial: Detailed UI guide
16.3.6.1. Deployment workflow
16.3.6.2. Creating account wide roles
16.3.6.3. Associating your AWS account with your Red Hat account
16.3.6.4. Creating and associating an OpenShift Cluster Manager role

16.3.6.4.1. Other OpenShift Cluster Manager role creation options
16.3.6.5. Creating an OpenShift Cluster Manager user role
16.3.6.6. Creating account roles
16.3.6.7. Confirming successful account association
16.3.6.8. Creating the cluster

16.3.6.8.1. Networking
16.3.6.8.2. Cluster roles and policies
16.3.6.8.3. Cluster updates
16.3.6.8.4. Reviewing and creating your cluster
16.3.6.8.5. Monitoring the installation progress

16.3.6.9. Basic OpenShift Cluster Manager Role
16.3.6.9.1. Creating Operator roles
16.3.6.9.2. Creating the OIDC provider

16.4. TUTORIAL: CREATING AN ADMIN USER
16.5. TUTORIAL: SETTING UP AN IDENTITY PROVIDER

16.5.1. Setting up an IDP with GitHub
16.5.2. Granting other users access to the cluster

16.6. TUTORIAL: GRANTING ADMIN PRIVILEGES
16.6.1. Using the ROSA CLI
16.6.2. Using the Red Hat OpenShift Cluster Manager UI

16.7. TUTORIAL: ACCESSING YOUR CLUSTER
16.7.1. Accessing your cluster using the CLI
16.7.2. Accessing the cluster via the Hybrid Cloud Console

16.8. TUTORIAL: MANAGING WORKER NODES
16.8.1. Creating a machine pool

16.8.1.1. Creating a machine pool with the CLI
16.8.1.2. Creating a machine pool with the UI

16.8.2. Scaling worker nodes
16.8.2.1. Scaling worker nodes using the CLI
16.8.2.2. Scaling worker nodes using the UI
16.8.2.3. Adding node labels

16.8.3. Mixing node types
16.9. TUTORIAL: AUTOSCALING

16.9.1. Enabling autoscaling for an existing machine pool using the CLI
16.9.2. Enabling autoscaling for an existing machine pool using the UI

16.10. TUTORIAL: UPGRADING YOUR CLUSTER
16.10.1. Manually upgrading your cluster using the CLI
16.10.2. Manually upgrading your cluster using the UI
16.10.3. Setting up automatic recurring upgrades

16.11. TUTORIAL: DELETING YOUR CLUSTER
16.11.1. Deleting a ROSA cluster using the CLI
16.11.2. Deleting a ROSA cluster using the UI

16.12. TUTORIAL: OBTAINING SUPPORT
16.12.1. Adding support contacts
16.12.2. Contacting Red Hat for support using the UI
16.12.3. Contacting Red Hat for support using the support page

CHAPTER 17. DEPLOYING AN APPLICATION

133
133
133
134
136
137
137
138
138
139
140
140
140
140
140
141
141

142
143
144
144
148
149
149
150
151
151

153
153
154
154
154
157
157
158
158
159
160
160
161
161
161

162
162
163
163
164
164
164
165
165

168

Table of Contents

5

17.1. TUTORIAL: DEPLOYING AN APPLICATION
17.1.1. Introduction

17.1.1.1. Lab overview
17.2. TUTORIAL: DEPLOYING AN APPLICATION

17.2.1. Prerequisites
17.3. TUTORIAL: DEPLOYING AN APPLICATION

17.3.1. Lab overview
17.3.1.1. Lab resources
17.3.1.2. About the OSToy application
17.3.1.3. OSToy Application Diagram
17.3.1.4. Understanding the OSToy UI

17.4. TUTORIAL: NETWORKING
17.4.1. Intra-cluster networking

168
168
168
168
168
168
169
169
173
173
173
174
175

Red Hat OpenShift Service on AWS 4 Tutorials

6

Table of Contents

7

CHAPTER 1. TUTORIALS OVERVIEW
Step-by-step tutorials from Red Hat experts to help you get the most out of your Managed OpenShift
cluster.

In an effort to make this Cloud Expert tutorial content available quickly, it may not yet be tested on every
supported configuration.

Red Hat OpenShift Service on AWS 4 Tutorials

8

CHAPTER 2. TUTORIAL: ROSA WITH HCP ACTIVATION AND
ACCOUNT LINKING

This tutorial describes the process for activating Red Hat OpenShift Service on AWS (ROSA) with
hosted control planes (HCP) and linking to an AWS account, before deploying the first cluster.

IMPORTANT

If you have received a private offer for the product, make sure to proceed according to
the instructions provided with the private offer before following this tutorial. The private
offer is designed either for a case when the product is already activated, which replaces
an active subscription, or for first time activations.

2.1. PREREQUISITES

Make sure to log in to the Red Hat account that you plan to associate with the AWS account
where you have activated ROSA with HCP in previous steps.

Only a single AWS account that will be used for service billing can be associated with a Red Hat
account. Typically an organizational AWS account that has other AWS accounts, such as
developer accounts, linked would be the one that is to be billed, rather than individual AWS end
user accounts.

Red Hat accounts belonging to the same Red Hat organization will be linked with the same AWS
account. Therefore, you can manage who has access to creating ROSA with HCP clusters on the
Red Hat organization account level.

2.2. SUBSCRIPTION ENABLEMENT AND AWS ACCOUNT SETUP

1. Activate the ROSA with HCP product at the AWS console page by clicking the Get started
button:

If you have activated ROSA before but did not complete the process, you can click the button
and complete the account linking as described in the following steps.

2. Confirm that you want your contact information to be shared with Red Hat and enable the
service:

CHAPTER 2. TUTORIAL: ROSA WITH HCP ACTIVATION AND ACCOUNT LINKING

9

You will not be charged by enabling the service in this step. The connection is made for
billing and metering that will take place only after you deploy your first cluster. This could
take a few minutes.

3. After the process is completed, you will see a confirmation:

4. Other sections on this verification page show the status of additional prerequisites. In case any
of these prerequisites are not met, a respective message is shown. Here is an example of
insufficient quotas in the selected region:

Red Hat OpenShift Service on AWS 4 Tutorials

10

a. Click the Increase service quotas button or use the Learn more link to get more
information about the about how to manage service quotas. In the case of insufficient
quotas, note that quotas are region-specific. You can use the region switcher in the upper
right corner of the web console to re-run the quota check for any region you are interested
in and then submit service quota increase requests as needed.

5. If all the prerequisites are met, the page will look like this:

CHAPTER 2. TUTORIAL: ROSA WITH HCP ACTIVATION AND ACCOUNT LINKING

11

The ELB service-linked role is created for you automatically. You can click any of the small Info
blue links to get contextual help and resources.

2.3. AWS AND RED HAT ACCOUNT AND SUBSCRIPTION LINKING

1. Click the orange Continue to Red Hat button to proceed with account linking:

Red Hat OpenShift Service on AWS 4 Tutorials

12

2. If you are not already logged in to your Red Hat account in your current browser’s session, you
will be asked to log in to your account:

You can also register for a new Red Hat account or reset your password on this page.

Make sure to log in to the Red Hat account that you plan to associate with the AWS account

CHAPTER 2. TUTORIAL: ROSA WITH HCP ACTIVATION AND ACCOUNT LINKING

13

Make sure to log in to the Red Hat account that you plan to associate with the AWS account
where you have activated ROSA with HCP in previous steps.

Only a single AWS account that will be used for service billing can be associated with a
Red Hat account. Typically an organizational AWS account that has other AWS accounts,
such as developer accounts, linked would be the one that is to be billed, rather than
individual AWS end user accounts.

Red Hat accounts belonging to the same Red Hat organization will be linked with the same
AWS account. Therefore, you can manage who has access to creating ROSA with HCP
clusters on the Red Hat organization account level.

3. Complete the Red Hat account linking after reviewing the terms and conditions:

NOTE

This step is available only if the logged-in Red Hat account, or the Red Hat
organization managing the Red Hat account, was not linked to an AWS account
before.

Both the Red Hat and AWS account numbers are shown on this screen.

4. Click the Connect accounts button if you agree with the service terms.
If this is the first time you are using the Red Hat Hybrid Cloud Console, you will be asked to
agree with the general managed services terms and conditions before being able to create the
first ROSA cluster:

Red Hat OpenShift Service on AWS 4 Tutorials

14

Additional terms that need to be reviewed and accepted will be shown after clicking the View
Terms and Conditions button:

Submit your agreement once you have reviewed any additional terms when prompted at this
time.

5. The Hybrid Cloud Console provides a confirmation that AWS prerequisites were completed and
lists the first steps needed for cluster deployment:

CHAPTER 2. TUTORIAL: ROSA WITH HCP ACTIVATION AND ACCOUNT LINKING

15

6. The following steps pertain to technical deployment of the cluster:

It is possible that these steps will be performed on a different machine than where the
service enablement and account linking were completed.

As mentioned previously, any Red Hat account belonging to the Red Hat organization that
was linked with the AWS account that activated the ROSA service will have access to
creating a cluster and will be able to select the billing AWS account that was linked under
this Red Hat organization previously.
The last section of this page shows cluster deployment options, either using the rosa CLI or
through the web console:

Red Hat OpenShift Service on AWS 4 Tutorials

16

The following steps describe cluster deployment using the rosa CLI.

If you are interested in deployment using the web console only, you can skip to the ROSA
with HCP cluster deployment using the web console section. However, note that the rosa
CLI is required for certain tasks, such as creating the account roles. If you are deploying
ROSA for the first time, follow this the CLI steps until running the rosa whoami command,
before skipping to the web console deployment steps.

2.4. ROSA WITH HCP CLUSTER DEPLOYMENT USING THE CLI

1. Click the Download the ROSA CLI button to download the ROSA command line interface (CLI)
for your operating system and set it up as described in the Help with ROSA CLI setup.

IMPORTANT

Make sure that you have the most recent AWS CLI installed. See Instructions to
install the AWS CLI for more information.

2. After the previous steps are completed, you can verify that both CLI are available by running the
rosa version. This command shows an update notification if you are using an older version and
aws –version commands in your terminal.

3. The prerequisite for creating a ROSA with HCP cluster is to log in using the rosa cli by the
personalized command with your unique token shown under step 2.1. To authenticate, run this
command on the web console. Use the copy button for easy copy and pasting of the command
with full token into your terminal:

Do not share your unique token.

4. The final prerequisite before your first cluster deployment is making sure the necessary
account-wide roles and policies are created. The rosa CLI can help with that by using the
command shown under step 2.2. To create the necessary account-wide roles and policies
quickly… on the web console. The alternative to that is manual creation of these roles and
policies.

5. After logging in, creating the account roles, and verifying your identity using the rosa whoami
command, your terminal will look similar to this:

CHAPTER 2. TUTORIAL: ROSA WITH HCP ACTIVATION AND ACCOUNT LINKING

17

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cli_tools/#rosa-get-started-cli
https://aws.amazon.com/cli/

6. Initiate the cluster deployment using the presented command. You can click the copy button
again and paste the command in your terminal:

7. To use a custom AWS profile, one of the non-default profiles specified in your
~/.aws/credentials, you can add the –profile <profile_name> selector to the rosa create
cluster command so that the command looks like rosa create cluster –profile stage. If no AWS
CLI profile is specified using this option, the default AWS CLI profile will determine the AWS
infrastructure profile into which the cluster is deployed. The billing AWS profile is selected in one
of the following steps.

8. After entering a cluster name, you will be asked whether to use the hosted control plane. Select
yes:

Red Hat OpenShift Service on AWS 4 Tutorials

18

9. When deploying a ROSA with HCP cluster, the billing AWS account needs to be specified:

Only AWS accounts that were linked to the Red Hat organization that is currently used will
be shown.

The specified AWS account will be charged for using the ROSA service, regardless of
whether the infrastructure AWS account is linked to it in the same AWS organization.

You can see an indicator of whether the ROSA contract is enabled for a given AWS billing
account or not.

To select an AWS account that does not have the contract enabled, refer to the first few
steps in this tutorial to enable the contract and allow the service charging, which is required
for a successful cluster deployment.

10. In the following steps, you will specify technical details of the cluster that is to be deployed:

These steps are beyond the scope of this tutorial. See Creating ROSA with HCP clusters
using the default options for more details about how to complete the ROSA with HCP
cluster deployment using the CLI.

2.5. ROSA WITH HCP CLUSTER DEPLOYMENT USING THE WEB
CONSOLE

1. A cluster can be created using the web console by selecting the second option in the bottom
section of the introductory Set up ROSA page:

CHAPTER 2. TUTORIAL: ROSA WITH HCP ACTIVATION AND ACCOUNT LINKING

19

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_with_hcp_clusters/#rosa-hcp-sts-creating-a-cluster-quickly

2. The first step when creating a ROSA cluster using the web console is the control plane selection.
Make sure the Hosted option is selected before clicking the Next button:

3. The next step Accounts and roles allows you specifying the infrastructure AWS account, into
which the the ROSA cluster will be deployed and where the resources will be consumed and
managed:

Click the How to associate a new AWS account, if you don not see the account into which
you want to deploy the ROSA cluster for detailed information on how to create or link
account roles for this association.

The rosa CLI is used for this.

Red Hat OpenShift Service on AWS 4 Tutorials

20

If you are using multiple AWS accounts and have their profiles configured for the AWS CLI,
you can use the --profile selector to specify the AWS profile when working with the rosa
CLI commands.

4. The billing AWS account is selected in the immediately following section:

Only AWS accounts that were linked to the Red Hat organization that is currently used will
be shown.

The specified AWS account will be charged for using the ROSA service, regardless of
whether the infrastructure AWS account is linked to it in the same AWS organization.

You can see an indicator whether the ROSA contract is enabled for a given AWS billing
account or not.

In case you would like to use an AWS account that does not have a contract enabled yet,
you can either use the Connect ROSA to a new AWS billing account to reach the ROSA AWS
console page, where you can activate it after logging in using the respective AWS account
by following steps described earlier in this tutorial, or ask the administrator of the AWS
account to do that for you.

The following steps past the billing AWS account selection are beyond the scope of this tutorial.

Additional resources

For information on using the CLI to create a cluster, see Creating a ROSA with HCP cluster
using the CLI.

See this learning path for more details on how to complete ROSA cluster deployment using the
web console.

CHAPTER 2. TUTORIAL: ROSA WITH HCP ACTIVATION AND ACCOUNT LINKING

21

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_with_hcp_clusters/#rosa-hcp-sts-creating-a-cluster-cli_rosa-hcp-sts-creating-a-cluster-quickly
https://cloud.redhat.com/learning/learn:getting-started-red-hat-openshift-service-aws-rosa/resource/resources:how-deploy-cluster-red-hat-openshift-service-aws-using-console-ui

CHAPTER 3. TUTORIAL: VERIFYING PERMISSIONS FOR A
ROSA STS DEPLOYMENT

To proceed with the deployment of a ROSA cluster, an account must support the required roles and
permissions. AWS Service Control Policies (SCPs) cannot block the API calls made by the installer or
operator roles.

Details about the IAM resources required for an STS-enabled installation of ROSA can be found here:
About IAM resources for ROSA clusters that use STS

This guide is validated for ROSA v4.11.X.

3.1. PREREQUISITES

AWS CLI

ROSA CLI v1.2.6

jq CLI

AWS role with required permissions

3.2. VERIFYING ROSA PERMISSIONS

To verify the permissions required for ROSA, we can run the script included in the following section
without ever creating any AWS resources.

The script uses the rosa, aws, and jq CLI commands to create files in the working directory that will be
used to verify permissions in the account connected to the current AWS configuration.

The AWS Policy Simulator is used to verify the permissions of each role policy against the API calls
extracted by jq; results are then stored in a text file appended with .results.

This script is designed to verify the permissions for the current account and region.

3.3. USAGE INSTRUCTIONS

1. To use the script, run the following commands in a bash terminal (the -p option defines a prefix
for the roles):

$ mkdir scratch
$ cd scratch
$ cat << 'EOF' > verify-permissions.sh
#!/bin/bash
while getopts 'p:' OPTION; do
 case "$OPTION" in
 p)
 PREFIX="$OPTARG"
 ;;
 ?)
 echo "script usage: $(basename \$0) [-p PREFIX]" >&2
 exit 1
 ;;
 esac

Red Hat OpenShift Service on AWS 4 Tutorials

22

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sts-about-iam-resources
https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cli_tools/#rosa-get-started-cli
https://stedolan.github.io/jq/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html

2. After the script completes, review each results file to ensure that none of the required API calls
are blocked:

The output will look similar to the following:

NOTE

If any actions are blocked, review the error provided by AWS and consult with
your Administrator to determine if SCPs are blocking the required API calls.

done
shift "$(($OPTIND -1))"
rosa create account-roles --mode manual --prefix $PREFIX
INSTALLER_POLICY=$(cat sts_installer_permission_policy.json | jq)
CONTROL_PLANE_POLICY=$(cat sts_instance_controlplane_permission_policy.json | jq)
WORKER_POLICY=$(cat sts_instance_worker_permission_policy.json | jq)
SUPPORT_POLICY=$(cat sts_support_permission_policy.json | jq)
simulatePolicy () {
 outputFile="${2}.results"
 echo $2
 aws iam simulate-custom-policy --policy-input-list "$1" --action-names $(jq '.Statement |
map(select(.Effect == "Allow"))[].Action | if type == "string" then . else .[] end' "$2" -r) --output
text > $outputFile
}
simulatePolicy "$INSTALLER_POLICY" "sts_installer_permission_policy.json"
simulatePolicy "$CONTROL_PLANE_POLICY"
"sts_instance_controlplane_permission_policy.json"
simulatePolicy "$WORKER_POLICY" "sts_instance_worker_permission_policy.json"
simulatePolicy "$SUPPORT_POLICY" "sts_support_permission_policy.json"
EOF
$ chmod +x verify-permissions.sh
$./verify-permissions.sh -p SimPolTest

$ for file in $(ls *.results); do echo $file; cat $file; done

sts_installer_permission_policy.json.results
EVALUATIONRESULTS autoscaling:DescribeAutoScalingGroups allowed *
MATCHEDSTATEMENTS PolicyInputList.1 IAM Policy
ENDPOSITION 6 195
STARTPOSITION 17 3
EVALUATIONRESULTS ec2:AllocateAddress allowed *
MATCHEDSTATEMENTS PolicyInputList.1 IAM Policy
ENDPOSITION 6 195
STARTPOSITION 17 3
EVALUATIONRESULTS ec2:AssociateAddress allowed *
MATCHEDSTATEMENTS PolicyInputList.1 IAM Policy
...

CHAPTER 3. TUTORIAL: VERIFYING PERMISSIONS FOR A ROSA STS DEPLOYMENT

23

CHAPTER 4. CONFIGURING LOG FORWARDING FOR
CLOUDWATCH LOGS AND STS

Use this tutorial to deploy the Red Hat OpenShift Logging Operator and configure it to use Security
Token Services (STS) authentication to forward logs to CloudWatch.

Prerequisites

A Red Hat OpenShift Service on AWS (ROSA) Classic cluster

The jq command-line interface (CLI)

The Amazon Web Services (AWS) CLI (aws)

4.1. SETTING UP YOUR ENVIRONMENT

1. Configure the following environment variables, changing the cluster name to suit your cluster:

NOTE

You must be logged in as an administrator.

2. Ensure all fields output correctly before moving to the next section:

4.2. PREPARING YOUR AWS ACCOUNT

1. Create an Identity Access Management (IAM) policy for logging:

$ export ROSA_CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export REGION=$(rosa describe cluster -c ${ROSA_CLUSTER_NAME} --output json | jq -r
.region.id)
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o json | jq -r
.spec.serviceAccountIssuer | sed 's|^https://||')
$ export AWS_ACCOUNT_ID=`aws sts get-caller-identity --query Account --output text`
$ export AWS_PAGER=""
$ export SCRATCH="/tmp/${ROSA_CLUSTER_NAME}/clf-cloudwatch-sts"
$ mkdir -p ${SCRATCH}

$ echo "Cluster: ${ROSA_CLUSTER_NAME}, Region: ${REGION}, OIDC Endpoint:
${OIDC_ENDPOINT}, AWS Account ID: ${AWS_ACCOUNT_ID}"

$ POLICY_ARN=$(aws iam list-policies --query "Policies[?PolicyName=='RosaCloudWatch'].
{ARN:Arn}" --output text)
$ if [[-z "${POLICY_ARN}"]]; then
cat << EOF > ${SCRATCH}/policy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

Red Hat OpenShift Service on AWS 4 Tutorials

24

2. Create an IAM role trust policy for the cluster:

3. Attach the IAM policy to the IAM role:

4.3. DEPLOYING OPERATORS

1. Deploy the Red Hat OpenShift Logging Operator:

 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "logs:PutRetentionPolicy"
],
 "Resource": "arn:aws:logs:*:*:*"
 }
]
}
EOF
POLICY_ARN=$(aws iam create-policy --policy-name "RosaCloudWatch" \
--policy-document file:///${SCRATCH}/policy.json --query Policy.Arn --output text)
fi
$ echo ${POLICY_ARN}

$ cat <<EOF > ${SCRATCH}/trust-policy.json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "${OIDC_ENDPOINT}:sub": "system:serviceaccount:openshift-logging:logcollector"
 }
 }
 }]
}
EOF
$ ROLE_ARN=$(aws iam create-role --role-name "${ROSA_CLUSTER_NAME}-
RosaCloudWatch" \
 --assume-role-policy-document file://${SCRATCH}/trust-policy.json \
 --query Role.Arn --output text)
$ echo ${ROLE_ARN}

$ aws iam attach-role-policy --role-name "${ROSA_CLUSTER_NAME}-RosaCloudWatch" \
 --policy-arn ${POLICY_ARN}

$ cat << EOF | oc apply -f -
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription

CHAPTER 4. CONFIGURING LOG FORWARDING FOR CLOUDWATCH LOGS AND STS

25

2. Create a secret:

4.4. CONFIGURING CLUSTER LOGGING

1. Create a ClusterLogForwarder custom resource (CR):

 metadata:
 labels:
 operators.coreos.com/cluster-logging.openshift-logging: ""
 name: cluster-logging
 namespace: openshift-logging
 spec:
 channel: stable
 installPlanApproval: Automatic
 name: cluster-logging
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ cat << EOF | oc apply -f -
 apiVersion: v1
 kind: Secret
 metadata:
 name: cloudwatch-credentials
 namespace: openshift-logging
 stringData:
 role_arn: $ROLE_ARN
EOF

$ cat << EOF | oc apply -f -
 apiVersion: "logging.openshift.io/v1"
 kind: ClusterLogForwarder
 metadata:
 name: instance
 namespace: openshift-logging
 spec:
 outputs:
 - name: cw
 type: cloudwatch
 cloudwatch:
 groupBy: namespaceName
 groupPrefix: rosa-${ROSA_CLUSTER_NAME}
 region: ${REGION}
 secret:
 name: cloudwatch-credentials
 pipelines:
 - name: to-cloudwatch
 inputRefs:
 - infrastructure
 - audit
 - application
 outputRefs:
 - cw
EOF

Red Hat OpenShift Service on AWS 4 Tutorials

26

2. Create a ClusterLogging CR:

4.5. CHECKING CLOUDWATCH FOR LOGS

Use either the AWS console or the AWS CLI to validate that there are log streams from the
cluster.

To validate the logs in the AWS CLI, run the following command:

Example output

NOTE

If this is a new cluster, you might not see a log group for application logs as
applications are not yet running.

4.6. CLEANING UP YOUR RESOURCES

$ cat << EOF | oc apply -f -
 apiVersion: logging.openshift.io/v1
 kind: ClusterLogging
 metadata:
 name: instance
 namespace: openshift-logging
 spec:
 collection:
 logs:
 type: vector
 managementState: Managed
EOF

$ aws logs describe-log-groups --log-group-name-prefix rosa-
${ROSA_CLUSTER_NAME}

{
 "logGroups": [
 {
 "logGroupName": "rosa-xxxx.audit",
 "creationTime": 1661286368369,
 "metricFilterCount": 0,
 "arn": "arn:aws:logs:us-east-2:xxxx:log-group:rosa-xxxx.audit:*",
 "storedBytes": 0
 },
 {
 "logGroupName": "rosa-xxxx.infrastructure",
 "creationTime": 1661286369821,
 "metricFilterCount": 0,
 "arn": "arn:aws:logs:us-east-2:xxxx:log-group:rosa-xxxx.infrastructure:*",
 "storedBytes": 0
 }
]
}

CHAPTER 4. CONFIGURING LOG FORWARDING FOR CLOUDWATCH LOGS AND STS

27

1. Delete the ClusterLogForwarder CR:

2. Delete the ClusterLogging CR:

3. Detach the IAM policy to the IAM role:

4. Delete the IAM role:

5. Delete the IAM policy:

IMPORTANT

Only delete the IAM policy if there are no other resources using the policy.

6. Delete the CloudWatch log groups:

$ oc delete -n openshift-logging clusterlogforwarder instance

$ oc delete -n openshift-logging clusterlogging instance

$ aws iam detach-role-policy --role-name "${ROSA_CLUSTER_NAME}-RosaCloudWatch" \
 --policy-arn "${POLICY_ARN}"

$ aws iam delete-role --role-name "${ROSA_CLUSTER_NAME}-RosaCloudWatch"

$ aws iam delete-policy --policy-arn "${POLICY_ARN}"

$ aws logs delete-log-group --log-group-name "rosa-${ROSA_CLUSTER_NAME}.audit"
$ aws logs delete-log-group --log-group-name "rosa-
${ROSA_CLUSTER_NAME}.infrastructure"

Red Hat OpenShift Service on AWS 4 Tutorials

28

CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON
CLOUDFRONT TO PROTECT ROSA WORKLOADS

AWS WAF is a web application firewall that lets you monitor the HTTP and HTTPS requests that are
forwarded to your protected web application resources.

You can use an Amazon CloudFront to add a Web Application Firewall (WAF) to your Red Hat OpenShift
Service on AWS (ROSA) workloads. Using an external solution protects ROSA resources from
experiencing denial of service due to handling the WAF.

5.1. PREREQUISITES

A ROSA Classic cluster.

You have access to the OpenShift CLI (oc).

You have access to the AWS CLI (aws).

5.1.1. Environment setup

Prepare the environment variables:

5.2. CUSTOM DOMAIN SETUP

It is necessary to configure a secondary ingress controller to segment your external WAF-protected
traffic from your standard (and default) cluster ingress controller. In ROSA, we do this using the Custom
Domain Operator.

Prerequisites

A unique domain, such as *.apps.<company_name>.io

A custom SAN or wildcard certificate, such as CN=*.apps.<company_name>.io

Procedure

1. Create a new project

2. Create a new TLS secret from a private key and a public certificate, where fullchain.pem is your

$ export AWS_PAGER=""
$ export CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export REGION=$(oc get infrastructure cluster -o=jsonpath="
{.status.platformStatus.aws.region}")
$ export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
$ export SCRATCH="/tmp/${CLUSTER_NAME}/cloudfront-waf"
$ mkdir -p ${SCRATCH}
$ echo "Cluster: ${CLUSTER_NAME}, Region: ${REGION}, AWS Account ID:
${AWS_ACCOUNT_ID}"

$ oc new-project waf-demo

CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON CLOUDFRONT TO PROTECT ROSA WORKLOADS

29

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-sts-creating-a-cluster-quickly

1

2

2. Create a new TLS secret from a private key and a public certificate, where fullchain.pem is your
full wildcard certificate chain (including any intermediaries) and privkey.pem is your wildcard
certificate’s private key.

Example

3. Create a new CustomDomain custom resource (CR):

Example waf-custom-domain.yaml

The custom domain.

Filters the set of routes serviced by the CustomDomain ingress. In this tutorial, we will use
the waf route selector, but if no value was to be provided, no filtering would occur.

4. Apply the CR:

Example

5. Verify that your custom domain ingress controller has been deployed and is Ready:

Example output

5.2.1. Configure the AWS WAF

The AWS WAF service is a web application firewall that lets you monitor, protect, and control the HTTP
and HTTPS requests that are forwarded to your protected web application resources, like ROSA.

$ oc -n waf-demo create secret tls waf-tls --cert=fullchain.pem --key=privkey.pem

apiVersion: managed.openshift.io/v1alpha1
kind: CustomDomain
metadata:
 name: cloudfront-waf
spec:
 domain: apps.<company_name>.io 1
 scope: External
 loadBalancerType: NLB
 certificate:
 name: waf-tls
 namespace: waf-demo
 routeSelector: 2
 matchLabels:
 route: waf

$ oc apply -f waf-custom-domain.yaml

$ oc get customdomains

NAME ENDPOINT DOMAIN STATUS
cloudfront-waf xxrywp.<company_name>.cluster-01.opln.s1.openshiftapps.com *.apps.
<company_name>.io Ready

Red Hat OpenShift Service on AWS 4 Tutorials

30

https://aws.amazon.com/waf/

1. Create a AWS WAF rules file to apply to our web ACL:

This will enable the Core (Common) and SQL AWS Managed Rule Sets.

2. Create an AWS WAF Web ACL using the rules we specified above:

$ cat << EOF > ${SCRATCH}/waf-rules.json
[
 {
 "Name": "AWS-AWSManagedRulesCommonRuleSet",
 "Priority": 0,
 "Statement": {
 "ManagedRuleGroupStatement": {
 "VendorName": "AWS",
 "Name": "AWSManagedRulesCommonRuleSet"
 }
 },
 "OverrideAction": {
 "None": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,
 "CloudWatchMetricsEnabled": true,
 "MetricName": "AWS-AWSManagedRulesCommonRuleSet"
 }
 },
 {
 "Name": "AWS-AWSManagedRulesSQLiRuleSet",
 "Priority": 1,
 "Statement": {
 "ManagedRuleGroupStatement": {
 "VendorName": "AWS",
 "Name": "AWSManagedRulesSQLiRuleSet"
 }
 },
 "OverrideAction": {
 "None": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,
 "CloudWatchMetricsEnabled": true,
 "MetricName": "AWS-AWSManagedRulesSQLiRuleSet"
 }
 }
]
EOF

$ WAF_WACL=$(aws wafv2 create-web-acl \
 --name cloudfront-waf \
 --region ${REGION} \
 --default-action Allow={} \
 --scope CLOUDFRONT \
 --visibility-config
SampledRequestsEnabled=true,CloudWatchMetricsEnabled=true,MetricName=${CLUSTER_N
AME}-waf-metrics \

CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON CLOUDFRONT TO PROTECT ROSA WORKLOADS

31

5.3. CONFIGURE AMAZON CLOUDFRONT

1. Retrieve the newly created custom domain ingress controller’s NLB hostname:

2. Import your certificate into Amazon Certificate Manager, where cert.pem is your wildcard
certificate, fullchain.pem is your wildcard certificate’s chain and privkey.pem is your wildcard
certificate’s private key.

NOTE

Regardless of what region your cluster is deployed, you must import this
certificate to us-east-1 as Amazon CloudFront is a global AWS service.

Example

3. Log into the AWS console to create a CloudFront distribution.

4. Configure the CloudFront distribution by using the following information:

NOTE

If an option is not specified in the table below, leave them the default (which may
be blank).

Option Value

Origin domain Output from the command above [1]

Name rosa-waf-ingress [2]

Viewer protocol policy Redirect HTTP to HTTPS

Allowed HTTP methods GET, HEAD, OPTIONS, PUT, POST, PATCH,
DELETE

Cache policy CachingDisabled

 --rules file://${SCRATCH}/waf-rules.json \
 --query 'Summary.Name' \
 --output text)

$ NLB=$(oc -n openshift-ingress get service router-cloudfront-waf \
 -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ echo "Origin domain: ${NLB}"

$ aws acm import-certificate --certificate file://cert.pem \
 --certificate-chain file://fullchain.pem \
 --private-key file://privkey.pem \
 --region us-east-1

Red Hat OpenShift Service on AWS 4 Tutorials

32

https://us-east-1.console.aws.amazon.com/cloudfront/v3/home#/distributions/create

Origin request policy AllViewer

Web Application Firewall (WAF) Enable security protections

Use existing WAF configuration true

Choose a web ACL cloudfront-waf

Alternate domain name (CNAME) *.apps.<company_name>.io [3]

Custom SSL certificate Select the certificate you imported from the

step above [4]

Option Value

1. Run echo ${NLB} to get the origin domain.

2. If you have multiple clusters, ensure the origin name is unique.

3. This should match the wildcard domain you used to create the custom domain ingress
controller.

4. This should match the alternate domain name entered above.

5. Retrieve the Amazon CloudFront Distribution endpoint:

6. Update the DNS of your custom wildcard domain with a CNAME to the Amazon CloudFront
Distribution endpoint from the step above.

Example

5.4. DEPLOY A SAMPLE APPLICATION

1. Deploy a hello world application:

2. Create a route for the application specifying your custom domain name:

Example

$ aws cloudfront list-distributions --query "DistributionList.Items[?Origins.Items[?
DomainName=='${NLB}']].DomainName" --output text

*.apps.<company_name>.io CNAME d1b2c3d4e5f6g7.cloudfront.net

$ oc -n waf-demo new-app --image=docker.io/openshift/hello-openshift

$ oc -n waf-demo create route edge --service=hello-openshift hello-openshift-tls \
--hostname hello-openshift.apps.<company_name>.io

CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON CLOUDFRONT TO PROTECT ROSA WORKLOADS

33

3. Label the route to admit it to your custom domain ingress controller:

5.5. TEST THE WAF

1. Test that the app is accessible behind Amazon CloudFront:

Example

Example output

2. Test that the WAF denies a bad request:

Example

Example output

The expected result is a 403 Forbidden error, which means the AWS WAF is protecting your
application.

5.6. ADDITIONAL RESOURCES

Custom domains for applications in the Red Hat documentation

Adding Extra Security with AWS WAF, CloudFront and ROSA | Amazon Web Services on
YouTube

$ oc -n waf-demo label route.route.openshift.io/hello-openshift-tls route=waf

$ curl "https://hello-openshift.apps.<company_name>.io"

Hello OpenShift!

$ curl -X POST "https://hello-openshift.apps.<company_name>.io" \
 -F "user='<script><alert>Hello></alert></script>'"

<html>
<head><title>403 Forbidden</title></head>
<body>
<center><h1>403 Forbidden</h1></center>
</body>
</html

Red Hat OpenShift Service on AWS 4 Tutorials

34

https://docs.openshift.com/rosa/applications/deployments/rosa-config-custom-domains-applications.html
https://youtu.be/-HorEsl2ho4

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO
PROTECT ROSA WORKLOADS

AWS WAF is a web application firewall that lets you monitor the HTTP and HTTPS requests that are
forwarded to your protected web application resources.

You can use an AWS Application Load Balancer (ALB) to add a Web Application Firewall (WAF) to your
Red Hat OpenShift Service on AWS (ROSA) workloads. Using an external solution protects ROSA
resources from experiencing denial of service due to handling the WAF.

NOTE

It is recommended that you use the CloudFront method unless you absolutely must use
an ALB based solution.

6.1. PREREQUISITES

NOTE

AWS ALBs require a multi-AZ cluster, as well as three public subnets split across three
AZs in the same VPC as the cluster.

A multi-AZ ROSA Classic cluster.

You have access to the OpenShift CLI (oc).

You have access to the AWS CLI (aws).

6.1.1. Environment setup

Prepare the environment variables:

6.1.2. AWS VPC and subnets

NOTE

This section only applies to clusters that were deployed into existing VPCs. If you did not
deploy your cluster into an existing VPC, skip this section and proceed to the installation
section below.

$ export AWS_PAGER=""
$ export CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export REGION=$(oc get infrastructure cluster -o=jsonpath="
{.status.platformStatus.aws.region}")
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o
jsonpath='{.spec.serviceAccountIssuer}' | sed 's|^https://||')
$ export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
$ export SCRATCH="/tmp/${CLUSTER_NAME}/alb-waf"
$ mkdir -p ${SCRATCH}
$ echo "Cluster: ${CLUSTER_NAME}, Region: ${REGION}, OIDC Endpoint:
${OIDC_ENDPOINT}, AWS Account ID: ${AWS_ACCOUNT_ID}"

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT ROSA WORKLOADS

35

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-sts-creating-a-cluster-quickly

1. Set the below variables to the proper values for your ROSA deployment:

2. Add a tag to your cluster’s VPC with the cluster name:

3. Add a tag to your public subnets:

4. Add a tag to your private subnets:

6.2. DEPLOY THE AWS LOAD BALANCER OPERATOR

The AWS Load Balancer Operator is used to used to install, manage and configure an instance of aws-
load-balancer-controller in a ROSA cluster. To deploy ALBs in ROSA, we need to first deploy the AWS
Load Balancer Operator.

1. Create an AWS IAM policy for the AWS Load Balancer Controller:

NOTE

The policy is sourced from the upstream AWS Load Balancer Controller policy
plus permission to create tags on subnets. This is required by the operator to
function.

$ export VPC_ID=<vpc-id>
$ export PUBLIC_SUBNET_IDS=<public-subnets>
$ export PRIVATE_SUBNET_IDS=<private-subnets>

$ aws ec2 create-tags --resources ${VPC_ID} --tags
Key=kubernetes.io/cluster/${CLUSTER_NAME},Value=owned --region ${REGION}

$ aws ec2 create-tags \
 --resources ${PUBLIC_SUBNET_IDS} \
 --tags Key=kubernetes.io/role/elb,Value='' \
 --region ${REGION}

$ aws ec2 create-tags \
 --resources "${PRIVATE_SUBNET_IDS}" \
 --tags Key=kubernetes.io/role/internal-elb,Value='' \
 --region ${REGION}

$ oc new-project aws-load-balancer-operator
$ POLICY_ARN=$(aws iam list-policies --query \
 "Policies[?PolicyName=='aws-load-balancer-operator-policy'].{ARN:Arn}" \
 --output text)
$ if [[-z "${POLICY_ARN}"]]; then
 wget -O "${SCRATCH}/load-balancer-operator-policy.json" \
 https://raw.githubusercontent.com/rh-mobb/documentation/main/content/rosa/aws-load-
balancer-operator/load-balancer-operator-policy.json
 POLICY_ARN=$(aws --region "$REGION" --query Policy.Arn \
 --output text iam create-policy \
 --policy-name aws-load-balancer-operator-policy \
 --policy-document "file://${SCRATCH}/load-balancer-operator-policy.json")
fi
$ echo $POLICY_ARN

Red Hat OpenShift Service on AWS 4 Tutorials

36

https://github.com/openshift/aws-load-balancer-operator
https://raw.githubusercontent.com/kubernetes-sigs/aws-load-balancer-controller/v2.4.4/docs/install/iam_policy.json

2. Create an AWS IAM trust policy for AWS Load Balancer Operator:

3. Create an AWS IAM role for the AWS Load Balancer Operator:

4. Create a secret for the AWS Load Balancer Operator to assume our newly created AWS IAM
role:

5. Install the AWS Load Balancer Operator:

$ cat <<EOF > "${SCRATCH}/trust-policy.json"
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Condition": {
 "StringEquals" : {
 "${OIDC_ENDPOINT}:sub": ["system:serviceaccount:aws-load-balancer-operator:aws-
load-balancer-operator-controller-manager", "system:serviceaccount:aws-load-balancer-
operator:aws-load-balancer-controller-cluster"]
 }
 },
 "Principal": {
 "Federated": "arn:aws:iam::$AWS_ACCOUNT_ID:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity"
 }
]
}
EOF

$ ROLE_ARN=$(aws iam create-role --role-name "${CLUSTER_NAME}-alb-operator" \
 --assume-role-policy-document "file://${SCRATCH}/trust-policy.json" \
 --query Role.Arn --output text)
$ echo $ROLE_ARN

$ aws iam attach-role-policy --role-name "${CLUSTER_NAME}-alb-operator" \
 --policy-arn $POLICY_ARN

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Secret
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
stringData:
 credentials: |
 [default]
 role_arn = $ROLE_ARN
 web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT ROSA WORKLOADS

37

6. Deploy an instance of the AWS Load Balancer Controller using the operator:

NOTE

If you get an error here wait a minute and try again, it means the Operator has not
completed installing yet.

7. Check the that the operator and controller pods are both running:

You should see the following, if not wait a moment and retry:

6.3. DEPLOY A SAMPLE APPLICATION

kind: OperatorGroup
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 upgradeStrategy: Default

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 channel: stable-v1.0
 installPlanApproval: Automatic
 name: aws-load-balancer-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: aws-load-balancer-operator.v1.0.0
EOF

$ cat << EOF | oc apply -f -
apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:
 name: cluster
spec:
 credentials:
 name: aws-load-balancer-operator
 enabledAddons:
 - AWSWAFv2
EOF

$ oc -n aws-load-balancer-operator get pods

NAME READY STATUS RESTARTS AGE
aws-load-balancer-controller-cluster-6ddf658785-pdp5d 1/1 Running 0 99s
aws-load-balancer-operator-controller-manager-577d9ffcb9-w6zqn 2/2 Running 0
2m4s

Red Hat OpenShift Service on AWS 4 Tutorials

38

1. Create a new project for our sample application:

2. Deploy a hello world application:

3. Convert the pre-created service resource to a NodePort service type:

4. Deploy an AWS ALB using the AWS Load Balancer Operator:

5. Curl the AWS ALB Ingress endpoint to verify the hello world application is accessible:

NOTE

AWS ALB provisioning takes a few minutes. If you receive an error that says curl:
(6) Could not resolve host, please wait and try again.

Example output

6.3.1. Configure the AWS WAF

$ oc new-project hello-world

$ oc new-app -n hello-world --image=docker.io/openshift/hello-openshift

$ oc -n hello-world patch service hello-openshift -p '{"spec":{"type":"NodePort"}}'

$ cat << EOF | oc apply -f -
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: hello-openshift-alb
 namespace: hello-world
 annotations:
 alb.ingress.kubernetes.io/scheme: internet-facing
spec:
 ingressClassName: alb
 rules:
 - http:
 paths:
 - path: /
 pathType: Exact
 backend:
 service:
 name: hello-openshift
 port:
 number: 8080
EOF

$ INGRESS=$(oc -n hello-world get ingress hello-openshift-alb -o
jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ curl "http://${INGRESS}"

Hello OpenShift!

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT ROSA WORKLOADS

39

The AWS WAF service is a web application firewall that lets you monitor, protect, and control the HTTP
and HTTPS requests that are forwarded to your protected web application resources, like ROSA.

1. Create a AWS WAF rules file to apply to our web ACL:

This will enable the Core (Common) and SQL AWS Managed Rule Sets.

2. Create an AWS WAF Web ACL using the rules we specified above:

$ cat << EOF > ${SCRATCH}/waf-rules.json
[
 {
 "Name": "AWS-AWSManagedRulesCommonRuleSet",
 "Priority": 0,
 "Statement": {
 "ManagedRuleGroupStatement": {
 "VendorName": "AWS",
 "Name": "AWSManagedRulesCommonRuleSet"
 }
 },
 "OverrideAction": {
 "None": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,
 "CloudWatchMetricsEnabled": true,
 "MetricName": "AWS-AWSManagedRulesCommonRuleSet"
 }
 },
 {
 "Name": "AWS-AWSManagedRulesSQLiRuleSet",
 "Priority": 1,
 "Statement": {
 "ManagedRuleGroupStatement": {
 "VendorName": "AWS",
 "Name": "AWSManagedRulesSQLiRuleSet"
 }
 },
 "OverrideAction": {
 "None": {}
 },
 "VisibilityConfig": {
 "SampledRequestsEnabled": true,
 "CloudWatchMetricsEnabled": true,
 "MetricName": "AWS-AWSManagedRulesSQLiRuleSet"
 }
 }
]
EOF

$ WAF_ARN=$(aws wafv2 create-web-acl \
 --name ${CLUSTER_NAME}-waf \
 --region ${REGION} \
 --default-action Allow={} \
 --scope REGIONAL \
 --visibility-config

Red Hat OpenShift Service on AWS 4 Tutorials

40

https://aws.amazon.com/waf/

3. Annotate the Ingress resource with the AWS WAF Web ACL ARN:

4. Wait for 10 seconds for the rules to propagate and test that the app still works:

Example output

5. Test that the WAF denies a bad request:

Example output

The expected result is a 403 Forbidden error, which means the AWS WAF is protecting your
application.

6.4. ADDITIONAL RESOURCES

Custom domains for applications in the Red Hat documentation

Adding Extra Security with AWS WAF, CloudFront and ROSA | Amazon Web Services on
YouTube

SampledRequestsEnabled=true,CloudWatchMetricsEnabled=true,MetricName=${CLUSTER_N
AME}-waf-metrics \
 --rules file://${SCRATCH}/waf-rules.json \
 --query 'Summary.ARN' \
 --output text)

$ oc annotate -n hello-world ingress.networking.k8s.io/hello-openshift-alb \
 alb.ingress.kubernetes.io/wafv2-acl-arn=${WAF_ARN}

$ curl "http://${INGRESS}"

Hello OpenShift!

$ curl -X POST "http://${INGRESS}" \
 -F "user='<script><alert>Hello></alert></script>'"

<html>
<head><title>403 Forbidden</title></head>
<body>
<center><h1>403 Forbidden</h1></center>
</body>
</html

CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT ROSA WORKLOADS

41

https://docs.openshift.com/rosa/applications/deployments/osd-config-custom-domains-applications.html
https://youtu.be/-HorEsl2ho4

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR
DATA PROTECTION ON A ROSA CLUSTER

IMPORTANT

This content is authored by Red Hat experts, but has not yet been tested on every
supported configuration.

Prerequisites

A ROSA classic cluster

Environment

Prepare the environment variables:

NOTE

Change the cluster name to match your ROSA cluster and ensure you are logged
into the cluster as an Administrator. Ensure all fields are outputted correctly
before moving on.

7.1. PREPARE AWS ACCOUNT

1. Create an IAM Policy to allow for S3 Access:

$ export CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export ROSA_CLUSTER_ID=$(rosa describe cluster -c ${CLUSTER_NAME} --output json
| jq -r .id)
$ export REGION=$(rosa describe cluster -c ${CLUSTER_NAME} --output json | jq -r
.region.id)
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o
jsonpath='{.spec.serviceAccountIssuer}' | sed 's|^https://||')
$ export AWS_ACCOUNT_ID=`aws sts get-caller-identity --query Account --output text`
$ export CLUSTER_VERSION=`rosa describe cluster -c ${CLUSTER_NAME} -o json | jq -r
.version.raw_id | cut -f -2 -d '.'`
$ export ROLE_NAME="${CLUSTER_NAME}-openshift-oadp-aws-cloud-credentials"
$ export AWS_PAGER=""
$ export SCRATCH="/tmp/${CLUSTER_NAME}/oadp"
$ mkdir -p ${SCRATCH}
$ echo "Cluster ID: ${ROSA_CLUSTER_ID}, Region: ${REGION}, OIDC Endpoint:
${OIDC_ENDPOINT}, AWS Account ID: ${AWS_ACCOUNT_ID}"

$ POLICY_ARN=$(aws iam list-policies --query "Policies[?PolicyName=='RosaOadpVer1'].
{ARN:Arn}" --output text)
if [[-z "${POLICY_ARN}"]]; then
$ cat << EOF > ${SCRATCH}/policy.json
{
"Version": "2012-10-17",
"Statement": [
 {

Red Hat OpenShift Service on AWS 4 Tutorials

42

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-sts-creating-a-cluster-quickly

2. Create an IAM Role trust policy for the cluster:

 "Effect": "Allow",
 "Action": [
 "s3:CreateBucket",
 "s3:DeleteBucket",
 "s3:PutBucketTagging",
 "s3:GetBucketTagging",
 "s3:PutEncryptionConfiguration",
 "s3:GetEncryptionConfiguration",
 "s3:PutLifecycleConfiguration",
 "s3:GetLifecycleConfiguration",
 "s3:GetBucketLocation",
 "s3:ListBucket",
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject",
 "s3:ListBucketMultipartUploads",
 "s3:AbortMultipartUpload",
 "s3:ListMultipartUploadParts",
 "ec2:DescribeSnapshots",
 "ec2:DescribeVolumes",
 "ec2:DescribeVolumeAttribute",
 "ec2:DescribeVolumesModifications",
 "ec2:DescribeVolumeStatus",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:CreateSnapshot",
 "ec2:DeleteSnapshot"
],
 "Resource": "*"
 }
]}
EOF
$ POLICY_ARN=$(aws iam create-policy --policy-name "RosaOadpVer1" \
--policy-document file:///${SCRATCH}/policy.json --query Policy.Arn \
--tags Key=rosa_openshift_version,Value=${CLUSTER_VERSION}
Key=rosa_role_prefix,Value=ManagedOpenShift
Key=operator_namespace,Value=openshift-oadp Key=operator_name,Value=openshift-oadp
\
--output text)
fi
$ echo ${POLICY_ARN}

$ cat <<EOF > ${SCRATCH}/trust-policy.json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {
 "Federated": "arn:aws:iam::${AWS_ACCOUNT_ID}:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "${OIDC_ENDPOINT}:sub": [

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A ROSA CLUSTER

43

3. Attach the IAM Policy to the IAM Role:

7.2. DEPLOY OADP ON THE CLUSTER

1. Create a namespace for OADP:

2. Create a credentials secret:

3. Deploy the OADP Operator:

NOTE

There is currently an issue with version 1.1 of the Operator with backups that have
a PartiallyFailed status. This does not seem to affect the backup and restore
process, but it should be noted as there are issues with it.

 "system:serviceaccount:openshift-adp:openshift-adp-controller-manager",
 "system:serviceaccount:openshift-adp:velero"]
 }
 }
 }]
}
EOF
$ ROLE_ARN=$(aws iam create-role --role-name \
 "${ROLE_NAME}" \
 --assume-role-policy-document file://${SCRATCH}/trust-policy.json \
 --tags Key=rosa_cluster_id,Value=${ROSA_CLUSTER_ID}
Key=rosa_openshift_version,Value=${CLUSTER_VERSION}
Key=rosa_role_prefix,Value=ManagedOpenShift
Key=operator_namespace,Value=openshift-adp Key=operator_name,Value=openshift-oadp \
 --query Role.Arn --output text)

$ echo ${ROLE_ARN}

$ aws iam attach-role-policy --role-name "${ROLE_NAME}" \
 --policy-arn ${POLICY_ARN}

$ oc create namespace openshift-adp

$ cat <<EOF > ${SCRATCH}/credentials
[default]
role_arn = ${ROLE_ARN}
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
EOF
$ oc -n openshift-adp create secret generic cloud-credentials \
 --from-file=${SCRATCH}/credentials

$ cat << EOF | oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 generateName: openshift-adp-
 namespace: openshift-adp

Red Hat OpenShift Service on AWS 4 Tutorials

44

1

4. Wait for the Operator to be ready:

Example output

5. Create Cloud Storage:

6. Check your application’s storage default storage class:

Enter your application’s namespace.

Example output

 name: oadp
spec:
 targetNamespaces:
 - openshift-adp

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: redhat-oadp-operator
 namespace: openshift-adp
spec:
 channel: stable-1.2
 installPlanApproval: Automatic
 name: redhat-oadp-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ watch oc -n openshift-adp get pods

NAME READY STATUS RESTARTS AGE
openshift-adp-controller-manager-546684844f-qqjhn 1/1 Running 0 22s

$ cat << EOF | oc create -f -
apiVersion: oadp.openshift.io/v1alpha1
kind: CloudStorage
metadata:
 name: ${CLUSTER_NAME}-oadp
 namespace: openshift-adp
spec:
 creationSecret:
 key: credentials
 name: cloud-credentials
 enableSharedConfig: true
 name: ${CLUSTER_NAME}-oadp
 provider: aws
 region: $REGION
EOF

$ oc get pvc -n <namespace> 1

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A ROSA CLUSTER

45

Example output

Using either gp3-csi, gp2-csi, gp3 or gp2 will work. If the application(s) that are being backed up
are all using PV’s with CSI, include the CSI plugin in the OADP DPA configuration.

7. CSI only: Deploy a Data Protection Application:

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
applog Bound pvc-351791ae-b6ab-4e8b-88a4-30f73caf5ef8 1Gi RWO gp3-
csi 4d19h
mysql Bound pvc-16b8e009-a20a-4379-accc-bc81fedd0621 1Gi RWO gp3-
csi 4d19h

$ oc get storageclass

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE
ALLOWVOLUMEEXPANSION AGE
gp2 kubernetes.io/aws-ebs Delete WaitForFirstConsumer true
4d21h
gp2-csi ebs.csi.aws.com Delete WaitForFirstConsumer true
4d21h
gp3 ebs.csi.aws.com Delete WaitForFirstConsumer true
4d21h
gp3-csi (default) ebs.csi.aws.com Delete WaitForFirstConsumer true
4d21h

$ cat << EOF | oc create -f -
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: ${CLUSTER_NAME}-dpa
 namespace: openshift-adp
spec:
 backupImages: true
 features:
 dataMover:
 enable: false
 backupLocations:
 - bucket:
 cloudStorageRef:
 name: ${CLUSTER_NAME}-oadp
 credential:
 key: credentials
 name: cloud-credentials
 prefix: velero
 default: true
 config:
 region: ${REGION}
 configuration:
 velero:
 defaultPlugins:
 - openshift
 - aws

Red Hat OpenShift Service on AWS 4 Tutorials

46

NOTE

If you run this command for CSI volumes, you can skip the next step.

8. Non-CSI volumes: Deploy a Data Protection Application:

NOTE

 - csi
 restic:
 enable: false
EOF

$ cat << EOF | oc create -f -
apiVersion: oadp.openshift.io/v1alpha1
kind: DataProtectionApplication
metadata:
 name: ${CLUSTER_NAME}-dpa
 namespace: openshift-adp
spec:
 backupImages: true
 features:
 dataMover:
 enable: false
 backupLocations:
 - bucket:
 cloudStorageRef:
 name: ${CLUSTER_NAME}-oadp
 credential:
 key: credentials
 name: cloud-credentials
 prefix: velero
 default: true
 config:
 region: ${REGION}
 configuration:
 velero:
 defaultPlugins:
 - openshift
 - aws
 restic:
 enable: false
 snapshotLocations:
 - velero:
 config:
 credentialsFile: /tmp/credentials/openshift-adp/cloud-credentials-credentials
 enableSharedConfig: 'true'
 profile: default
 region: ${REGION}
 provider: aws
EOF

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A ROSA CLUSTER

47

NOTE

In OADP 1.1.x ROSA STS environments, the container image backup and restore
(spec.backupImages) value must be set to false as it is not supported.

The Restic feature (restic.enable=false) is disabled and not supported in ROSA
STS environments.

The DataMover feature (dataMover.enable=false) is disabled and not
supported in ROSA STS environments.

7.3. PERFORM A BACKUP

NOTE

The following sample hello-world application has no attached persistent volumes. Either
DPA configuration will work.

1. Create a workload to back up:

2. Expose the route:

3. Check that the application is working:

Example output

4. Back up the workload:

5. Wait until the backup is done:

$ oc create namespace hello-world
$ oc new-app -n hello-world --image=docker.io/openshift/hello-openshift

$ oc expose service/hello-openshift -n hello-world

$ curl `oc get route/hello-openshift -n hello-world -o jsonpath='{.spec.host}'`

Hello OpenShift!

$ cat << EOF | oc create -f -
apiVersion: velero.io/v1
kind: Backup
metadata:
 name: hello-world
 namespace: openshift-adp
spec:
 includedNamespaces:
 - hello-world
 storageLocation: ${CLUSTER_NAME}-dpa-1
 ttl: 720h0m0s
EOF

Red Hat OpenShift Service on AWS 4 Tutorials

48

Example output

6. Delete the demo workload:

7. Restore from the backup:

8. Wait for the Restore to finish:

Example output

9. Check that the workload is restored:

$ watch "oc -n openshift-adp get backup hello-world -o json | jq .status"

{
 "completionTimestamp": "2022-09-07T22:20:44Z",
 "expiration": "2022-10-07T22:20:22Z",
 "formatVersion": "1.1.0",
 "phase": "Completed",
 "progress": {
 "itemsBackedUp": 58,
 "totalItems": 58
 },
 "startTimestamp": "2022-09-07T22:20:22Z",
 "version": 1
}

$ oc delete ns hello-world

$ cat << EOF | oc create -f -
apiVersion: velero.io/v1
kind: Restore
metadata:
 name: hello-world
 namespace: openshift-adp
spec:
 backupName: hello-world
EOF

$ watch "oc -n openshift-adp get restore hello-world -o json | jq .status"

{
 "completionTimestamp": "2022-09-07T22:25:47Z",
 "phase": "Completed",
 "progress": {
 "itemsRestored": 38,
 "totalItems": 38
 },
 "startTimestamp": "2022-09-07T22:25:28Z",
 "warnings": 9
}

$ oc -n hello-world get pods

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A ROSA CLUSTER

49

Example output

Example output

10. For troubleshooting tips please refer to the OADP team’s troubleshooting documentation

11. Additional sample applications can be found in the OADP team’s sample applications directory

7.4. CLEANUP

1. Delete the workload:

2. Remove the backup and restore resources from the cluster if they are no longer required:

3. To delete the backup/restore and remote objects in s3:

4. Delete the Data Protection Application:

5. Delete the Cloud Storage:

WARNING

If this command hangs, you might need to delete the finalizer:

NAME READY STATUS RESTARTS AGE
hello-openshift-9f885f7c6-kdjpj 1/1 Running 0 90s

$ curl `oc get route/hello-openshift -n hello-world -o jsonpath='{.spec.host}'`

Hello OpenShift!

$ oc delete ns hello-world

$ oc delete backup hello-world
$ oc delete restore hello-world

$ velero backup delete hello-world
$ velero restore delete hello-world

$ oc -n openshift-adp delete dpa ${CLUSTER_NAME}-dpa

$ oc -n openshift-adp delete cloudstorage ${CLUSTER_NAME}-oadp

$ oc -n openshift-adp patch cloudstorage ${CLUSTER_NAME}-oadp -p
'{"metadata":{"finalizers":null}}' --type=merge

Red Hat OpenShift Service on AWS 4 Tutorials

50

https://github.com/openshift/oadp-operator/blob/master/docs/TROUBLESHOOTING.md
https://github.com/openshift/oadp-operator/tree/master/tests/e2e/sample-applications

6. Remove the Operator if it is no longer required:

7. Remove the namespace for the Operator:

8. Remove the Custom Resource Definitions from the cluster if you no longer wish to have them:

9. Delete the AWS S3 Bucket:

10. Detach the Policy from the role:

11. Delete the role:

$ oc -n openshift-adp delete subscription oadp-operator

$ oc delete ns redhat-openshift-adp

$ for CRD in `oc get crds | grep velero | awk '{print $1}'`; do oc delete crd $CRD; done
$ for CRD in `oc get crds | grep -i oadp | awk '{print $1}'`; do oc delete crd $CRD; done

$ aws s3 rm s3://${CLUSTER_NAME}-oadp --recursive
$ aws s3api delete-bucket --bucket ${CLUSTER_NAME}-oadp

$ aws iam detach-role-policy --role-name "${ROLE_NAME}" \
 --policy-arn "${POLICY_ARN}"

$ aws iam delete-role --role-name "${ROLE_NAME}"

CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A ROSA CLUSTER

51

CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR
ON ROSA

IMPORTANT

This content is authored by Red Hat experts, but has not yet been tested on every
supported configuration.

TIP

Load Balancers created by the AWS Load Balancer Operator cannot be used for OpenShift Routes, and
should only be used for individual services or ingress resources that do not need the full layer 7
capabilities of an OpenShift Route.

The AWS Load Balancer Controller manages AWS Elastic Load Balancers for a Red Hat OpenShift
Service on AWS (ROSA) cluster. The controller provisions AWS Application Load Balancers (ALB) when
you create Kubernetes Ingress resources and AWS Network Load Balancers (NLB) when implementing
Kubernetes Service resources with a type of LoadBalancer.

Compared with the default AWS in-tree load balancer provider, this controller is developed with
advanced annotations for both ALBs and NLBs. Some advanced use cases are:

Using native Kubernetes Ingress objects with ALBs

Integrate ALBs with the AWS Web Application Firewall (WAF) service

Specify custom NLB source IP ranges

Specify custom NLB internal IP addresses

The AWS Load Balancer Operator is used to used to install, manage and configure an instance of aws-
load-balancer-controller in a ROSA cluster.

8.1. PREREQUISITES

NOTE

AWS ALBs require a multi-AZ cluster, as well as three public subnets split across three
AZs in the same VPC as the cluster. This makes ALBs unsuitable for many PrivateLink
clusters. AWS NLBs do not have this restriction.

A multi-AZ ROSA classic cluster

BYO VPC cluster

AWS CLI

OC CLI

8.1.1. Environment

Prepare the environment variables:

Red Hat OpenShift Service on AWS 4 Tutorials

52

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/networking/#route-configuration
https://kubernetes-sigs.github.io/aws-load-balancer-controller/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html
https://github.com/openshift/aws-load-balancer-operator
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-sts-creating-a-cluster-quickly

8.1.2. AWS VPC and subnets

NOTE

This section only applies to clusters that were deployed into existing VPCs. If you did not
deploy your cluster into an existing VPC, skip this section and proceed to the installation
section below.

1. Set the below variables to the proper values for your ROSA deployment:

2. Add a tag to your cluster’s VPC with the cluster name:

3. Add a tag to your public subnets:

4. Add a tag to your private subnets:

8.2. INSTALLATION

1. Create an AWS IAM policy for the AWS Load Balancer Controller:

NOTE

$ export AWS_PAGER=""
$ export ROSA_CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export REGION=$(oc get infrastructure cluster -o=jsonpath="
{.status.platformStatus.aws.region}")
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o
jsonpath='{.spec.serviceAccountIssuer}' | sed 's|^https://||')
$ export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
$ export SCRATCH="/tmp/${ROSA_CLUSTER_NAME}/alb-operator"
$ mkdir -p ${SCRATCH}
$ echo "Cluster: ${ROSA_CLUSTER_NAME}, Region: ${REGION}, OIDC Endpoint:
${OIDC_ENDPOINT}, AWS Account ID: ${AWS_ACCOUNT_ID}"

$ export VPC_ID=<vpc-id>
$ export PUBLIC_SUBNET_IDS=<public-subnets>
$ export PRIVATE_SUBNET_IDS=<private-subnets>
$ export CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}")

$ aws ec2 create-tags --resources ${VPC_ID} --tags
Key=kubernetes.io/cluster/${CLUSTER_NAME},Value=owned --region ${REGION}

$ aws ec2 create-tags \
 --resources ${PUBLIC_SUBNET_IDS} \
 --tags Key=kubernetes.io/role/elb,Value='' \
 --region ${REGION}

$ aws ec2 create-tags \
 --resources "${PRIVATE_SUBNET_IDS}" \
 --tags Key=kubernetes.io/role/internal-elb,Value='' \
 --region ${REGION}

CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR ON ROSA

53

NOTE

The policy is sourced from the upstream AWS Load Balancer Controller policy
plus permission to create tags on subnets. This is required by the operator to
function.

2. Create an AWS IAM trust policy for AWS Load Balancer Operator:

3. Create an AWS IAM role for the AWS Load Balancer Operator:

$ oc new-project aws-load-balancer-operator
$ POLICY_ARN=$(aws iam list-policies --query \
 "Policies[?PolicyName=='aws-load-balancer-operator-policy'].{ARN:Arn}" \
 --output text)
$ if [[-z "${POLICY_ARN}"]]; then
 wget -O "${SCRATCH}/load-balancer-operator-policy.json" \
 https://raw.githubusercontent.com/rh-mobb/documentation/main/content/rosa/aws-load-
balancer-operator/load-balancer-operator-policy.json
 POLICY_ARN=$(aws --region "$REGION" --query Policy.Arn \
 --output text iam create-policy \
 --policy-name aws-load-balancer-operator-policy \
 --policy-document "file://${SCRATCH}/load-balancer-operator-policy.json")
fi
$ echo $POLICY_ARN

$ cat <<EOF > "${SCRATCH}/trust-policy.json"
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Condition": {
 "StringEquals" : {
 "${OIDC_ENDPOINT}:sub": ["system:serviceaccount:aws-load-balancer-operator:aws-
load-balancer-operator-controller-manager", "system:serviceaccount:aws-load-balancer-
operator:aws-load-balancer-controller-cluster"]
 }
 },
 "Principal": {
 "Federated": "arn:aws:iam::$AWS_ACCOUNT_ID:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity"
 }
]
}
EOF

$ ROLE_ARN=$(aws iam create-role --role-name "${ROSA_CLUSTER_NAME}-alb-operator"
\
 --assume-role-policy-document "file://${SCRATCH}/trust-policy.json" \
 --query Role.Arn --output text)
$ echo $ROLE_ARN

$ aws iam attach-role-policy --role-name "${ROSA_CLUSTER_NAME}-alb-operator" \
 --policy-arn $POLICY_ARN

Red Hat OpenShift Service on AWS 4 Tutorials

54

https://raw.githubusercontent.com/kubernetes-sigs/aws-load-balancer-controller/v2.4.4/docs/install/iam_policy.json

4. Create a secret for the AWS Load Balancer Operator to assume our newly created AWS IAM
role:

5. Install the AWS Load Balancer Operator:

6. Deploy an instance of the AWS Load Balancer Controller using the operator:

NOTE

If you get an error here wait a minute and try again, it means the Operator has not
completed installing yet.

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Secret
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
stringData:
 credentials: |
 [default]
 role_arn = $ROLE_ARN
 web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 upgradeStrategy: Default

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: aws-load-balancer-operator
 namespace: aws-load-balancer-operator
spec:
 channel: stable-v1.0
 installPlanApproval: Automatic
 name: aws-load-balancer-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
 startingCSV: aws-load-balancer-operator.v1.0.0
EOF

$ cat << EOF | oc apply -f -
apiVersion: networking.olm.openshift.io/v1
kind: AWSLoadBalancerController
metadata:
 name: cluster

CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR ON ROSA

55

7. Check the that the operator and controller pods are both running:

You should see the following, if not wait a moment and retry:

8.3. VALIDATING THE DEPLOYMENT

1. Create a new project:

2. Deploy a hello world application:

3. Configure a NodePort service for the AWS ALB to connect to:

4. Deploy an AWS ALB using the AWS Load Balancer Operator:

spec:
 credentials:
 name: aws-load-balancer-operator
EOF

$ oc -n aws-load-balancer-operator get pods

NAME READY STATUS RESTARTS AGE
aws-load-balancer-controller-cluster-6ddf658785-pdp5d 1/1 Running 0 99s
aws-load-balancer-operator-controller-manager-577d9ffcb9-w6zqn 2/2 Running 0
2m4s

$ oc new-project hello-world

$ oc new-app -n hello-world --image=docker.io/openshift/hello-openshift

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Service
metadata:
 name: hello-openshift-nodeport
 namespace: hello-world
spec:
 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP
 type: NodePort
 selector:
 deployment: hello-openshift
EOF

$ cat << EOF | oc apply -f -
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: hello-openshift-alb
 namespace: hello-world
 annotations:

Red Hat OpenShift Service on AWS 4 Tutorials

56

5. Curl the AWS ALB Ingress endpoint to verify the hello world application is accessible:

NOTE

AWS ALB provisioning takes a few minutes. If you receive an error that says curl:
(6) Could not resolve host, please wait and try again.

Example output

6. Deploy an AWS NLB for your hello world application:

7. Test the AWS NLB endpoint:

 alb.ingress.kubernetes.io/scheme: internet-facing
spec:
 ingressClassName: alb
 rules:
 - http:
 paths:
 - path: /
 pathType: Exact
 backend:
 service:
 name: hello-openshift-nodeport
 port:
 number: 80
EOF

$ INGRESS=$(oc -n hello-world get ingress hello-openshift-alb \
 -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ curl "http://${INGRESS}"

Hello OpenShift!

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Service
metadata:
 name: hello-openshift-nlb
 namespace: hello-world
 annotations:
 service.beta.kubernetes.io/aws-load-balancer-type: external
 service.beta.kubernetes.io/aws-load-balancer-nlb-target-type: instance
 service.beta.kubernetes.io/aws-load-balancer-scheme: internet-facing
spec:
 ports:
 - port: 80
 targetPort: 8080
 protocol: TCP
 type: LoadBalancer
 selector:
 deployment: hello-openshift
EOF

CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR ON ROSA

57

NOTE

NLB provisioning takes a few minutes. If you receive an error that says curl: (6)
Could not resolve host, please wait and try again.

Example output

8.4. CLEANING UP

1. Delete the hello world application namespace (and all the resources in the namespace):

2. Delete the AWS Load Balancer Operator and the AWS IAM roles:

3. Delete the AWS IAM policy:

$ NLB=$(oc -n hello-world get service hello-openshift-nlb \
 -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ curl "http://${NLB}"

Hello OpenShift!

$ oc delete project hello-world

$ oc delete subscription aws-load-balancer-operator -n aws-load-balancer-operator
$ aws iam detach-role-policy \
 --role-name "${ROSA_CLUSTER_NAME}-alb-operator" \
 --policy-arn $POLICY_ARN
$ aws iam delete-role \
 --role-name "${ROSA_CLUSTER_NAME}-alb-operator"

$ aws iam delete-policy --policy-arn $POLICY_ARN

Red Hat OpenShift Service on AWS 4 Tutorials

58

CHAPTER 9. TUTORIAL: CONFIGURING ROSA/OSD TO USE
CUSTOM TLS CIPHERS ON THE INGRESS CONTROLLER

IMPORTANT

This content is authored by Red Hat experts, but has not yet been tested on every
supported configuration.

This guide demonstrates how to properly patch the cluster Ingress Controllers, as well as Ingress
Controllers created by the Custom Domain Operator. This functionality allows customers to modify the
tlsSecurityProfile value on cluster Ingress Controllers. This guide demonstrates how to apply a custom
tlsSecurityProfile, a scoped service account with the associated role and role binding, and a CronJob
that the cipher changes are reapplied with 60 minutes in the event that an Ingress Controller is
recreated or modified.

Prerequisites

Review the OpenShift Documentation that explains the options for the tlsSecurityProfile. By
default, Ingress Controllers are configured to use the Intermediate profile, which corresponds
to the Intermediate Mozilla profile.

Procedure

1. Create a service account for the CronJob to use.
A service account allows our CronJob to directly access the cluster API, without using a regular
user’s credentials. To create a service account, run the following command:

2. Create a role and role binding that allows limited access to patch the Ingress Controllers.
Role-based access control (RBAC) is critical to ensuring security inside your cluster. Creating a
role allows us to provide scoped access to only the API resources needed within the cluster. To
create the role, run the following command:

Once the role has been created, you must bind the role to the service account using a role
binding. To create the role binding, run the following command:

3. Patch the Ingress Controllers.

IMPORTANT

The examples provided below add an additional cipher to the Ingress Controller’s
tlsSecurityProfile to allow IE 11 access from Windows Server 2008 R2. Modify
this command to meet your specific business requirements.

$ oc create sa cron-ingress-patch-sa -n openshift-ingress-operator

$ oc create role cron-ingress-patch-role --verb=get,patch,update --
resource=ingresscontroller.operator.openshift.io -n openshift-ingress-operator

$ oc create rolebinding cron-ingress-patch-rolebinding --role=cron-ingress-patch-role --
serviceaccount=openshift-ingress-operator:cron-ingress-patch-sa -n openshift-ingress-
operator

CHAPTER 9. TUTORIAL: CONFIGURING ROSA/OSD TO USE CUSTOM TLS CIPHERS ON THE INGRESS CONTROLLER

59

https://docs.openshift.com/container-platform/4.13/networking/ingress-operator.html#configuring-ingress-controller-tls
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29

Before creating the CronJob, apply the tlsSecurityProfile configuration to validate changes.
This process depends on if you are using the Custom Domain Operator.

a. Clusters not using the Custom Domain Operator:
If you are only using the default Ingress Controller, and not using the Custom Domain
Operator, run the following command to patch the Ingress Controller:

This patch adds the TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA cipher which allows
access from IE 11 on Windows Server 2008 R2 when using RSA certificates.

Once you run the command, you will receive a response that looks like this:

Example output

b. Clusters using the Custom Domain Operator:
Customers who are using the Custom Domain Operator need to loop through each of their
Ingress Controllers to patch each one. To patch all of your cluster’s Ingress Controllers, run
the following command:

Once you run the command, you will receive a response that looks like this:

Example output

4. Create the CronJob to ensure that the TLS configuration is not overwritten.
Occasionally, the cluster’s Ingress Controllers can get recreated. In these cases, the Ingress
Controller will likely not retain the tlsSecurityProfile changes that were applied. To ensure this
does not happen, create a CronJob that goes through and updates the cluster’s Ingress

$ oc patch ingresscontroller/default -n openshift-ingress-operator --type=merge -p
'{"spec":{"tlsSecurityProfile":{"type":"Custom","custom":{"ciphers":
["TLS_AES_128_GCM_SHA256","TLS_AES_256_GCM_SHA384","ECDHE-ECDSA-
AES128-GCM-SHA256","ECDHE-RSA-AES128-GCM-SHA256","ECDHE-ECDSA-
AES256-GCM-SHA384","ECDHE-RSA-AES256-GCM-SHA384","ECDHE-ECDSA-
CHACHA20-POLY1305","ECDHE-RSA-CHACHA20-POLY1305","DHE-RSA-AES128-
GCM-SHA256","DHE-RSA-AES256-GCM-
SHA384","TLS_CHACHA20_POLY1305_SHA256","TLS_ECDHE_RSA_WITH_AES_128
_CBC_SHA"],"minTLSVersion":"VersionTLS12"}}}}'

ingresscontroller.operator.openshift.io/default patched

$ for ic in $(oc get ingresscontroller -o name -n openshift-ingress-operator); do oc patch
${ic} -n openshift-ingress-operator --type=merge -p '{"spec":{"tlsSecurityProfile":
{"type":"Custom","custom":{"ciphers":
["TLS_AES_128_GCM_SHA256","TLS_AES_256_GCM_SHA384","ECDHE-ECDSA-
AES128-GCM-SHA256","ECDHE-RSA-AES128-GCM-SHA256","ECDHE-ECDSA-
AES256-GCM-SHA384","ECDHE-RSA-AES256-GCM-SHA384","ECDHE-ECDSA-
CHACHA20-POLY1305","ECDHE-RSA-CHACHA20-POLY1305","DHE-RSA-AES128-
GCM-SHA256","DHE-RSA-AES256-GCM-
SHA384","TLS_CHACHA20_POLY1305_SHA256","TLS_ECDHE_RSA_WITH_AES_128
_CBC_SHA"],"minTLSVersion":"VersionTLS12"}}}}'; done

ingresscontroller.operator.openshift.io/default patched
ingresscontroller.operator.openshift.io/custom1 patched
ingresscontroller.operator.openshift.io/custom2 patched

Red Hat OpenShift Service on AWS 4 Tutorials

60

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#rosa-config-custom-domains-applications
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#rosa-config-custom-domains-applications
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#rosa-config-custom-domains-applications
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#rosa-config-custom-domains-applications
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#rosa-config-custom-domains-applications

Controllers. This process depends on if you are using the Custom Domain Operator.

a. Clusters not using the Custom Domain Operator:
If you are not using the Custom Domain Operator, create the CronJob by running the
following command:

NOTE

This CronJob runs every hour and patches the Ingress Controllers, if
necessary. It is important that this CronJob does not run constantly, as it can
trigger reconciles that could overload the OpenShift Ingress Operator. Most
of the time, the logs of the CronJob pod looks like the following example, as
it will not be changing anything:

Example output

b. Clusters using the Custom Domain Operator:
If you are using the Custom Domain Operator, the CronJob needs to loop through and
patch each Ingress Controller. To create this CronJob, run the following command:

$ cat << EOF | oc apply -f -
apiVersion: batch/v1
kind: CronJob
metadata:
 name: tls-patch
 namespace: openshift-ingress-operator
spec:
 schedule: '@hourly'
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: tls-patch
 image: registry.redhat.io/openshift4/ose-tools-rhel8:latest
 args:
 - /bin/sh
 - '-c'
 - oc patch ingresscontroller/default -n openshift-ingress-operator --type=merge
-p '{"spec":{"tlsSecurityProfile":{"type":"Custom","custom":{"ciphers":
["TLS_AES_128_GCM_SHA256","TLS_AES_256_GCM_SHA384","ECDHE-ECDSA-
AES128-GCM-SHA256","ECDHE-RSA-AES128-GCM-SHA256","ECDHE-ECDSA-
AES256-GCM-SHA384","ECDHE-RSA-AES256-GCM-SHA384","ECDHE-ECDSA-
CHACHA20-POLY1305","ECDHE-RSA-CHACHA20-POLY1305","DHE-RSA-AES128-
GCM-SHA256","DHE-RSA-AES256-GCM-
SHA384","TLS_CHACHA20_POLY1305_SHA256","TLS_ECDHE_RSA_WITH_AES_128
_CBC_SHA"],"minTLSVersion":"VersionTLS12"}}}}'
 restartPolicy: Never
 serviceAccountName: cron-ingress-patch-sa
EOF

ingresscontroller.operator.openshift.io/default patched (no change)

$ cat << EOF | oc apply -f -

CHAPTER 9. TUTORIAL: CONFIGURING ROSA/OSD TO USE CUSTOM TLS CIPHERS ON THE INGRESS CONTROLLER

61

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#rosa-config-custom-domains-applications
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#rosa-config-custom-domains-applications
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#rosa-config-custom-domains-applications
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#rosa-config-custom-domains-applications
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#rosa-config-custom-domains-applications

NOTE

This CronJob runs every hour and patches the Ingress Controllers, if
necessary. It is important that this CronJob does not run constantly, as it can
trigger reconciles that could overload the OpenShift Ingress Operator. Most
of the time, the logs of the CronJob pod will look something like this, as it will
not be changing anything:

Example output

apiVersion: batch/v1
kind: CronJob
metadata:
 name: tls-patch
 namespace: openshift-ingress-operator
spec:
 schedule: '@hourly'
 jobTemplate:
 spec:
 template:
 spec:
 containers:
 - name: tls-patch
 image: registry.redhat.io/openshift4/ose-tools-rhel8:latest
 args:
 - /bin/sh
 - '-c'
 - for ic in $(oc get ingresscontroller -o name -n openshift-ingress-operator); do
oc patch ${ic} -n openshift-ingress-operator --type=merge -p '{"spec":{"tlsSecurityProfile":
{"type":"Custom","custom":{"ciphers":
["TLS_AES_128_GCM_SHA256","TLS_AES_256_GCM_SHA384","ECDHE-ECDSA-
AES128-GCM-SHA256","ECDHE-RSA-AES128-GCM-SHA256","ECDHE-ECDSA-
AES256-GCM-SHA384","ECDHE-RSA-AES256-GCM-SHA384","ECDHE-ECDSA-
CHACHA20-POLY1305","ECDHE-RSA-CHACHA20-POLY1305","DHE-RSA-AES128-
GCM-SHA256","DHE-RSA-AES256-GCM-
SHA384","TLS_CHACHA20_POLY1305_SHA256","TLS_ECDHE_RSA_WITH_AES_128
_CBC_SHA"],"minTLSVersion":"VersionTLS12"}}}}'; done
 restartPolicy: Never
 serviceAccountName: cron-ingress-patch-sa
EOF

ingresscontroller.operator.openshift.io/default patched (no change)
ingresscontroller.operator.openshift.io/custom1 patched (no change)
ingresscontroller.operator.openshift.io/custom2 patched (no change)

Red Hat OpenShift Service on AWS 4 Tutorials

62

CHAPTER 10. TUTORIAL: CONFIGURING MICROSOFT ENTRA
ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY

PROVIDER
You can configure Microsoft Entra ID (formerly Azure Active Directory) as the cluster identity provider
in Red Hat OpenShift Service on AWS (ROSA).

This tutorial guides you to complete the following tasks:

1. Register a new application in Entra ID for authentication.

2. Configure the application registration in Entra ID to include optional and group claims in tokens.

3. Configure the Red Hat OpenShift Service on AWS cluster to use Entra ID as the identity
provider.

4. Grant additional permissions to individual groups.

10.1. PREREQUISITES

You created a set of security groups and assigned users by following the Microsoft
documentation.

10.2. REGISTERING A NEW APPLICATION IN ENTRA ID FOR
AUTHENTICATION

To register your application in Entra ID, first create the OAuth callback URL, then register your
application.

Procedure

1. Create the cluster’s OAuth callback URL by changing the specified variables and running the
following command:

NOTE

Remember to save this callback URL; it will be required later in the process.

The "AAD" directory at the end of the OAuth callback URL must match the OAuth identity
provider name that you will set up later in this process.

2. Create the Entra ID application by logging in to the Azure portal, and select the App
registrations blade. Then, select New registration to create a new application.

$ domain=$(rosa describe cluster -c <cluster_name> | grep "DNS" | grep -oE
'\S+.openshiftapps.com')
$ echo "OAuth callback URL: https://oauth-openshift.apps.$domain/oauth2callback/AAD"

CHAPTER 10. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER

63

https://learn.microsoft.com/en-us/azure/active-directory/fundamentals/how-to-manage-groups
https://portal.azure.com/#blade/Microsoft_AAD_RegisteredApps/ApplicationsListBlade

3. Name the application, for example openshift-auth.

4. Select Web from the Redirect URI dropdown and enter the value of the OAuth callback URL you
retrieved in the previous step.

5. After providing the required information, click Register to create the application.

Red Hat OpenShift Service on AWS 4 Tutorials

64

6. Select the Certificates & secrets sub-blade and select New client secret.

CHAPTER 10. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER

65

7. Complete the requested details and store the generated client secret value. This secret is
required later in this process.

IMPORTANT

After initial setup, you cannot see the client secret. If you did not record the client
secret, you must generate a new one.

Red Hat OpenShift Service on AWS 4 Tutorials

66

8. Select the Overview sub-blade and note the Application (client) ID and Directory (tenant) ID.
You will need these values in a future step.

10.3. CONFIGURING THE APPLICATION REGISTRATION IN ENTRA ID
TO INCLUDE OPTIONAL AND GROUP CLAIMS

So that Red Hat OpenShift Service on AWS has enough information to create the user’s account, you
must configure Entra ID to give two optional claims: email and preferred_username. For more
information about optional claims in Entra ID, see the Microsoft documentation.

In addition to individual user authentication, Red Hat OpenShift Service on AWS provides group claim
functionality. This functionality allows an OpenID Connect (OIDC) identity provider, such as Entra ID, to
offer a user’s group membership for use within Red Hat OpenShift Service on AWS.

CHAPTER 10. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER

67

https://learn.microsoft.com/en-us/azure/active-directory/develop/optional-claims

Configuring optional claims
You can configure the optional claims in Entra ID.

1. Click the Token configuration sub-blade and select the Add optional claim button.

2. Select the ID radio button.

3. Select the email claim checkbox.

Red Hat OpenShift Service on AWS 4 Tutorials

68

4. Select the preferred_username claim checkbox. Then, click Add to configure the email and
preferred_username claims your Entra ID application.

5. A dialog box appears at the top of the page. Follow the prompt to enable the necessary
Microsoft Graph permissions.

CHAPTER 10. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER

69

Configuring group claims (optional)
Configure Entra ID to offer a groups claim.

Procedure

1. From the Token configuration sub-blade, click Add groups claim.

2. To configure group claims for your Entra ID application, select Security groups and then click
the Add.

NOTE

Red Hat OpenShift Service on AWS 4 Tutorials

70

1

2

NOTE

In this example, the group claim includes all of the security groups that a user is a
member of. In a real production environment, ensure that the groups that the
group claim only includes groups that apply to Red Hat OpenShift Service on
AWS.

10.4. CONFIGURING THE RED HAT OPENSHIFT SERVICE ON AWS
CLUSTER TO USE ENTRA ID AS THE IDENTITY PROVIDER

You must configure Red Hat OpenShift Service on AWS to use Entra ID as its identity provider.

Although ROSA offers the ability to configure identity providers by using OpenShift Cluster Manager,
use the ROSA CLI to configure the cluster’s OAuth provider to use Entra ID as its identity provider.
Before configuring the identity provider, set the necessary variables for the identity provider
configuration.

Procedure

1. Create the variables by running the following command:

Replace this with the name of your ROSA cluster.

Replace this value with the name you used in the OAuth callback URL that you generated
earlier in this process.

$ CLUSTER_NAME=example-cluster 1
$ IDP_NAME=AAD 2
$ APP_ID=yyyyyyyy-yyyy-yyyy-yyyy-yyyyyyyyyyyy 3
$ CLIENT_SECRET=xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx 4
$ TENANT_ID=zzzzzzzz-zzzz-zzzz-zzzz-zzzzzzzzzzzz 5

CHAPTER 10. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER

71

3

4

5

Replace this with the Application (client) ID.

Replace this with the Client Secret.

Replace this with the Directory (tenant) ID.

2. Configure the cluster’s OAuth provider by running the following command. If you enabled group
claims, ensure that you use the --group-claims groups argument.

If you enabled group claims, run the following command:

If you did not enable group claims, run the following command:

After a few minutes, the cluster authentication Operator reconciles your changes, and you can log in to
the cluster by using Entra ID.

10.5. GRANTING ADDITIONAL PERMISSIONS TO INDIVIDUAL USERS
AND GROUPS

When your first log in, you might notice that you have very limited permissions. By default, Red Hat
OpenShift Service on AWS only grants you the ability to create new projects, or namespaces, in the
cluster. Other projects are restricted from view.

You must grant these additional abilities to individual users and groups.

Granting additional permissions to individual users
Red Hat OpenShift Service on AWS includes a significant number of preconfigured roles, including the
cluster-admin role that grants full access and control over the cluster.

$ rosa create idp \
--cluster ${CLUSTER_NAME} \
--type openid \
--name ${IDP_NAME} \
--client-id ${APP_ID} \
--client-secret ${CLIENT_SECRET} \
--issuer-url https://login.microsoftonline.com/${TENANT_ID}/v2.0 \
--email-claims email \
--name-claims name \
--username-claims preferred_username \
--extra-scopes email,profile \
--groups-claims groups

$ rosa create idp \
--cluster ${CLUSTER_NAME} \
--type openid \
--name ${IDP_NAME} \
--client-id ${APP_ID} \
--client-secret ${CLIENT_SECRET} \
--issuer-url https://login.microsoftonline.com/${TENANT_ID}/v2.0 \
--email-claims email \
--name-claims name \
--username-claims preferred_username \
--extra-scopes email,profile

Red Hat OpenShift Service on AWS 4 Tutorials

72

1

1

Procedure

Grant a user access to the cluster-admin role by running the following command:

Provide the Entra ID username that you want to have cluster admin permissions.

Granting additional permissions to individual groups
If you opted to enable group claims, the cluster OAuth provider automatically creates or updates the
user’s group memberships by using the group ID. The cluster OAuth provider does not automatically
create RoleBindings and ClusterRoleBindings for the groups that are created; you are responsible
for creating those bindings by using your own processes.

To grant an automatically generated group access to the cluster-admin role, you must create a
ClusterRoleBinding to the group ID.

Procedure

Create the ClusterRoleBinding by running the following command:

Provide the Entra ID group ID that you want to have cluster admin permissions.

Now, any user in the specified group automatically receives cluster-admin access.

10.6. ADDITIONAL RESOURCES

For more information about how to use RBAC to define and apply permissions in Red Hat OpenShift
Service on AWS, see the Red Hat OpenShift Service on AWS documentation .

$ rosa grant user cluster-admin \
 --user=<USERNAME> 1
 --cluster=${CLUSTER_NAME}

$ oc create clusterrolebinding cluster-admin-group \
--clusterrole=cluster-admin \
--group=<GROUP_ID> 1

CHAPTER 10. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER

73

https://docs.openshift.com/container-platform/latest/authentication/using-rbac.html

CHAPTER 11. TUTORIAL: USING AWS SECRETS MANAGER CSI
ON ROSA WITH STS

The AWS Secrets and Configuration Provider (ASCP) provides a way to expose AWS Secrets as
Kubernetes storage volumes. With the ASCP, you can store and manage your secrets in Secrets
Manager and then retrieve them through your workloads running on Red Hat OpenShift Service on AWS
(ROSA).

11.1. PREREQUISITES

Ensure that you have the following resources and tools before starting this process:

A ROSA cluster deployed with STS

Helm 3

aws CLI

oc CLI

jq CLI

Additional environment requirements

1. Log in to your ROSA cluster by running the following command:

You can find your login token by accessing your cluster in pull secret from Red Hat OpenShift
Cluster Manager.

2. Validate that your cluster has STS by running the following command:

Example output

If your output is different, do not proceed. See Red Hat documentation on creating an STS
cluster before continuing this process.

3. Set the SecurityContextConstraints permission to allow the CSI driver to run by running the
following command:

4. Create environment variables to use later in this process by running the following command:

$ oc login --token=<your-token> --server=<your-server-url>

$ oc get authentication.config.openshift.io cluster -o json \
 | jq .spec.serviceAccountIssuer

"https://xxxxx.cloudfront.net/xxxxx"

$ oc new-project csi-secrets-store
$ oc adm policy add-scc-to-user privileged \
 system:serviceaccount:csi-secrets-store:secrets-store-csi-driver
$ oc adm policy add-scc-to-user privileged \
 system:serviceaccount:csi-secrets-store:csi-secrets-store-provider-aws

Red Hat OpenShift Service on AWS 4 Tutorials

74

https://console.redhat.com/openshift/install/pull-secret
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-sts-creating-a-cluster-quickly

11.2. DEPLOYING THE AWS SECRETS AND CONFIGURATION
PROVIDER

1. Use Helm to register the secrets store CSI driver by running the following command:

2. Update your Helm repositories by running the following command:

3. Install the secrets store CSI driver by running the following command:

4. Deploy the AWS provider by running the following command:

5. Check that both Daemonsets are running by running the following command:

6. Label the Secrets Store CSI Driver to allow use with the restricted pod security profile by
running the following command:

11.3. CREATING A SECRET AND IAM ACCESS POLICIES

1. Create a secret in Secrets Manager by running the following command:

$ export REGION=$(oc get infrastructure cluster -o=jsonpath="
{.status.platformStatus.aws.region}")
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster \
 -o jsonpath='{.spec.serviceAccountIssuer}' | sed 's|^https://||')
$ export AWS_ACCOUNT_ID=`aws sts get-caller-identity --query Account --output text`
$ export AWS_PAGER=""

$ helm repo add secrets-store-csi-driver \
 https://kubernetes-sigs.github.io/secrets-store-csi-driver/charts

$ helm repo update

$ helm upgrade --install -n csi-secrets-store \
 csi-secrets-store-driver secrets-store-csi-driver/secrets-store-csi-driver

$ oc -n csi-secrets-store apply -f \
 https://raw.githubusercontent.com/rh-mobb/documentation/main/content/misc/secrets-
store-csi/aws-provider-installer.yaml

$ oc -n csi-secrets-store get ds \
 csi-secrets-store-provider-aws \
 csi-secrets-store-driver-secrets-store-csi-driver

$ oc label csidriver.storage.k8s.io/secrets-store.csi.k8s.io security.openshift.io/csi-ephemeral-
volume-profile=restricted

$ SECRET_ARN=$(aws --region "$REGION" secretsmanager create-secret \
 --name MySecret --secret-string \
 '{"username":"shadowman", "password":"hunter2"}' \
 --query ARN --output text)
$ echo $SECRET_ARN

CHAPTER 11. TUTORIAL: USING AWS SECRETS MANAGER CSI ON ROSA WITH STS

75

2. Create an IAM Access Policy document by running the following command:

3. Create an IAM Access Policy by running the following command:

4. Create an IAM Role trust policy document by running the following command:

NOTE

The trust policy is locked down to the default service account of a namespace
you create later in this process.

5. Create an IAM role by running the following command:

$ cat << EOF > policy.json
{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"
],
 "Resource": ["$SECRET_ARN"]
 }]
}
EOF

$ POLICY_ARN=$(aws --region "$REGION" --query Policy.Arn \
--output text iam create-policy \
--policy-name openshift-access-to-mysecret-policy \
--policy-document file://policy.json)
$ echo $POLICY_ARN

$ cat <<EOF > trust-policy.json
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Condition": {
 "StringEquals" : {
 "${OIDC_ENDPOINT}:sub": ["system:serviceaccount:my-application:default"]
 }
 },
 "Principal": {
 "Federated": "arn:aws:iam::$AWS_ACCOUNT_ID:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity"
 }
]
}
EOF

$ ROLE_ARN=$(aws iam create-role --role-name openshift-access-to-mysecret \

Red Hat OpenShift Service on AWS 4 Tutorials

76

6. Attach the role to the policy by running the following command:

11.4. CREATE AN APPLICATION TO USE THIS SECRET

1. Create an OpenShift project by running the following command:

2. Annotate the default service account to use the STS Role by running the following command:

3. Create a secret provider class to access our secret by running the following command:

4. Create a Deployment by using our secret in the following command:

--assume-role-policy-document file://trust-policy.json \
--query Role.Arn --output text)
$ echo $ROLE_ARN

$ aws iam attach-role-policy --role-name openshift-access-to-mysecret \
 --policy-arn $POLICY_ARN

$ oc new-project my-application

$ oc annotate -n my-application serviceaccount default \
 eks.amazonaws.com/role-arn=$ROLE_ARN

$ cat << EOF | oc apply -f -
apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
 name: my-application-aws-secrets
spec:
 provider: aws
 parameters:
 objects: |
 - objectName: "MySecret"
 objectType: "secretsmanager"
EOF

$ cat << EOF | oc apply -f -
apiVersion: v1
kind: Pod
metadata:
 name: my-application
 labels:
 app: my-application
spec:
 volumes:
 - name: secrets-store-inline
 csi:
 driver: secrets-store.csi.k8s.io
 readOnly: true
 volumeAttributes:
 secretProviderClass: "my-application-aws-secrets"
 containers:

CHAPTER 11. TUTORIAL: USING AWS SECRETS MANAGER CSI ON ROSA WITH STS

77

5. Verify the Pod has the secret mounted by running the following commandv:

11.5. CLEAN UP

1. Delete the application by running the following command:

2. Delete the secrets store csi driver by running the following command:

3. Delete Security Context Constraints by running the following command:

4. Delete the AWS provider by running the following command:

5. Delete AWS Roles and Policies by running the following command:

6. Delete the Secrets Manager secret by running the following command:

 - name: my-application-deployment
 image: k8s.gcr.io/e2e-test-images/busybox:1.29
 command:
 - "/bin/sleep"
 - "10000"
 volumeMounts:
 - name: secrets-store-inline
 mountPath: "/mnt/secrets-store"
 readOnly: true
EOF

$ oc exec -it my-application -- cat /mnt/secrets-store/MySecret

$ oc delete project my-application

$ helm delete -n csi-secrets-store csi-secrets-store-driver

$ oc adm policy remove-scc-from-user privileged \
 system:serviceaccount:csi-secrets-store:secrets-store-csi-driver
$ oc adm policy remove-scc-from-user privileged \
 system:serviceaccount:csi-secrets-store:csi-secrets-store-provider-aws

$ oc -n csi-secrets-store delete -f \
https://raw.githubusercontent.com/rh-mobb/documentation/main/content/misc/secrets-store-
csi/aws-provider-installer.yaml

$ aws iam detach-role-policy --role-name openshift-access-to-mysecret \
 --policy-arn $POLICY_ARN
$ aws iam delete-role --role-name openshift-access-to-mysecret
$ aws iam delete-policy --policy-arn $POLICY_ARN

$ aws secretsmanager --region $REGION delete-secret --secret-id $SECRET_ARN

Red Hat OpenShift Service on AWS 4 Tutorials

78

CHAPTER 12. TUTORIAL: USING AWS CONTROLLERS FOR
KUBERNETES ON ROSA

AWS Controllers for Kubernetes (ACK) lets you define and use AWS service resources directly from Red
Hat OpenShift Service on AWS (ROSA). With ACK, you can take advantage of AWS-managed services
for your applications without needing to define resources outside of the cluster or run services that
provide supporting capabilities such as databases or message queues within the cluster.

You can install various ACK Operators directly from OperatorHub. This makes it easy to get started and
use the Operators with your applications. This controller is a component of the AWS Controller for
Kubernetes project, which is currently in developer preview.

Use this tutorial to deploy the ACK S3 Operator. You can also adapt it for any other ACK Operator in the
OperatorHub of your cluster.

12.1. PREREQUISITES

A ROSA cluster

A user account with cluster-admin privileges

The OpenShift CLI (oc)

The Amazon Web Services (AWS) CLI (aws)

12.2. SETTING UP YOUR ENVIRONMENT

1. Configure the following environment variables, changing the cluster name to suit your cluster:

2. Ensure all fields output correctly before moving to the next section:

12.3. PREPARING YOUR AWS ACCOUNT

1. Create an AWS Identity Access Management (IAM) trust policy for the ACK Operator:

$ export CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export REGION=$(rosa describe cluster -c ${ROSA_CLUSTER_NAME} --output json | jq -r
.region.id)
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o json | jq -r
.spec.serviceAccountIssuer | sed 's|^https://||')
$ export AWS_ACCOUNT_ID=`aws sts get-caller-identity --query Account --output text`
$ export ACK_SERVICE=s3
$ export ACK_SERVICE_ACCOUNT=ack-${ACK_SERVICE}-controller
$ export POLICY_ARN=arn:aws:iam::aws:policy/AmazonS3FullAccess
$ export AWS_PAGER=""
$ export SCRATCH="/tmp/${ROSA_CLUSTER_NAME}/ack"
$ mkdir -p ${SCRATCH}

$ echo "Cluster: ${ROSA_CLUSTER_NAME}, Region: ${REGION}, OIDC Endpoint:
${OIDC_ENDPOINT}, AWS Account ID: ${AWS_ACCOUNT_ID}"

$ cat <<EOF > "${SCRATCH}/trust-policy.json"

CHAPTER 12. TUTORIAL: USING AWS CONTROLLERS FOR KUBERNETES ON ROSA

79

https://aws-controllers-k8s.github.io/community/

2. Create an AWS IAM role for the ACK Operator to assume with the AmazonS3FullAccess
policy attached:

NOTE

You can find the recommended policy in each project’s GitHub repository, for
example https://github.com/aws-controllers-k8s/s3-
controller/blob/main/config/iam/recommended-policy-arn.

12.4. INSTALLING THE ACK S3 CONTROLLER

1. Create a project to install the ACK S3 Operator into:

2. Create a file with the ACK S3 Operator configuration:

NOTE

ACK_WATCH_NAMESPACE is purposefully left blank so the controller can
properly watch all namespaces in the cluster.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Condition": {
 "StringEquals" : {
 "${OIDC_ENDPOINT}:sub": "system:serviceaccount:ack-
system:${ACK_SERVICE_ACCOUNT}"
 }
 },
 "Principal": {
 "Federated": "arn:aws:iam::$AWS_ACCOUNT_ID:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity"
 }
]
}
EOF

$ ROLE_ARN=$(aws iam create-role --role-name "ack-${ACK_SERVICE}-controller" \
 --assume-role-policy-document "file://${SCRATCH}/trust-policy.json" \
 --query Role.Arn --output text)
$ echo $ROLE_ARN

$ aws iam attach-role-policy --role-name "ack-${ACK_SERVICE}-controller" \
 --policy-arn ${POLICY_ARN}

$ oc new-project ack-system

$ cat <<EOF > "${SCRATCH}/config.txt"
ACK_ENABLE_DEVELOPMENT_LOGGING=true

Red Hat OpenShift Service on AWS 4 Tutorials

80

https://github.com/aws-controllers-k8s/s3-controller/blob/main/config/iam/recommended-policy-arn

3. Use the file from the previous step to create a ConfigMap:

4. Install the ACK S3 Operator from OperatorHub:

5. Annotate the ACK S3 Operator service account with the AWS IAM role to assume and restart
the deployment:

6. Verify that the ACK S3 Operator is running:

Example output

ACK_LOG_LEVEL=debug
ACK_WATCH_NAMESPACE=
AWS_REGION=${REGION}
AWS_ENDPOINT_URL=
ACK_RESOURCE_TAGS=${CLUSTER_NAME}
ENABLE_LEADER_ELECTION=true
LEADER_ELECTION_NAMESPACE=
EOF

$ oc -n ack-system create configmap \
 --from-env-file=${SCRATCH}/config.txt ack-${ACK_SERVICE}-user-config

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ack-${ACK_SERVICE}-controller
 namespace: ack-system
spec:
 upgradeStrategy: Default

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ack-${ACK_SERVICE}-controller
 namespace: ack-system
spec:
 channel: alpha
 installPlanApproval: Automatic
 name: ack-${ACK_SERVICE}-controller
 source: community-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc -n ack-system annotate serviceaccount ${ACK_SERVICE_ACCOUNT} \
 eks.amazonaws.com/role-arn=${ROLE_ARN} && \
 oc -n ack-system rollout restart deployment ack-${ACK_SERVICE}-controller

$ oc -n ack-system get pods

NAME READY STATUS RESTARTS AGE
ack-s3-controller-585f6775db-s4lfz 1/1 Running 0 51s

CHAPTER 12. TUTORIAL: USING AWS CONTROLLERS FOR KUBERNETES ON ROSA

81

12.5. VALIDATING THE DEPLOYMENT

1. Deploy an S3 bucket resource:

2. Verify the S3 bucket was created in AWS:

Example output

12.6. CLEANING UP

1. Delete the S3 bucket resource:

2. Delete the ACK S3 Operator and the AWS IAM roles:

3. Delete the ack-system project:

$ cat << EOF | oc apply -f -
apiVersion: s3.services.k8s.aws/v1alpha1
kind: Bucket
metadata:
 name: ${CLUSTER-NAME}-bucket
 namespace: ack-system
spec:
 name: ${CLUSTER-NAME}-bucket
EOF

$ aws s3 ls | grep ${CLUSTER_NAME}-bucket

2023-10-04 14:51:45 mrmc-test-maz-bucket

$ oc -n ack-system delete bucket.s3.services.k8s.aws/${CLUSTER-NAME}-bucket

$ oc -n ack-system delete subscription ack-${ACK_SERVICE}-controller
$ aws iam detach-role-policy \
 --role-name "ack-${ACK_SERVICE}-controller" \
 --policy-arn ${POLICY_ARN}
$ aws iam delete-role \
 --role-name "ack-${ACK_SERVICE}-controller"

$ oc delete project ack-system

Red Hat OpenShift Service on AWS 4 Tutorials

82

CHAPTER 13. TUTORIAL: DEPLOYING THE EXTERNAL DNS
OPERATOR ON ROSA

WARNING

Starting with Red Hat OpenShift Service on AWS 4.14, the Custom Domain
Operator is deprecated. To manage Ingress in Red Hat OpenShift Service on AWS
4.14, use the Ingress Operator. The functionality is unchanged for Red Hat
OpenShift Service on AWS 4.13 and earlier versions.

Configuring the Custom Domain Operator requires a wildcard CNAME DNS record in your Amazon
Route 53 hosted zone. If you do not want to use a wildcard record, you can use the External DNS
Operator to create individual entries for routes.

Use this tutorial to deploy and configure the External DNS Operator with a custom domain in Red Hat
OpenShift Service on AWS (ROSA).

IMPORTANT

The External DNS Operator does not support STS using IAM Roles for Service Accounts
(IRSA) and uses long-lived Identity Access Management (IAM) credentials instead. This
tutorial will be updated when the Operator supports STS.

13.1. PREREQUISITES

A ROSA cluster

A user account with dedicated-admin privileges

The OpenShift CLI (oc)

The Amazon Web Services (AWS) CLI (aws)

A unique domain, such as *.apps.<company_name>.io

An Amazon Route 53 public hosted zone for the above domain

13.2. SETTING UP YOUR ENVIRONMENT

1. Configure the following environment variables, replacing CLUSTER_NAME with the name of
your cluster:

$ export DOMAIN=apps.<company_name>.io 1
$ export AWS_PAGER=""
$ export CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export REGION=$(oc get infrastructure cluster -o=jsonpath="
{.status.platformStatus.aws.region}")

CHAPTER 13. TUTORIAL: DEPLOYING THE EXTERNAL DNS OPERATOR ON ROSA

83

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#custom-domains-for-applications

1

1

The custom domain.

2. Ensure all fields output correctly before moving to the next section:

13.3. SETTING UP YOUR CUSTOM DOMAIN

ROSA manages secondary Ingress Controllers using the Custom Domain Operator. Use the following
procedure to deploy a secondary Ingress Controller using a custom domain.

Prerequisites

A unique domain, such as *.apps.<company_name>.io

A custom SAN or wildcard certificate, such as CN=*.apps.<company_name>.io

Procedure

1. Create a new project:

2. Create a new TLS secret from a private key and a public certificate, where fullchain.pem is your
full wildcard certificate chain (including any intermediaries) and privkey.pem is your wildcard
certificate’s private key:

3. Create a new CustomDomain custom resource (CR):

Example external-dns-custom-domain.yaml

The custom domain.

$ export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
$ export SCRATCH="/tmp/${CLUSTER_NAME}/external-dns"
$ mkdir -p ${SCRATCH}

$ echo "Cluster: ${CLUSTER_NAME}, Region: ${REGION}, AWS Account ID:
${AWS_ACCOUNT_ID}"

$ oc new-project external-dns-operator

$ oc -n external-dns-operator create secret tls external-dns-tls --cert=fullchain.pem --
key=privkey.pem

apiVersion: managed.openshift.io/v1alpha1
kind: CustomDomain
metadata:
 name: external-dns
spec:
 domain: apps.<company_name>.io 1
 scope: External
 loadBalancerType: NLB
 certificate:
 name: external-dns-tls
 namespace: external-dns-operator

Red Hat OpenShift Service on AWS 4 Tutorials

84

4. Apply the CR:

5. Verify that your custom domain Ingress Controller has been deployed and has a Ready status:

Example output

13.4. PREPARING YOUR AWS ACCOUNT

1. Retrieve the Amazon Route 53 public hosted zone ID:

2. Create an AWS IAM Policy document that allows the External DNS Operator to update only the
custom domain public hosted zone:

3. Create an AWS IAM policy:

$ oc apply -f external-dns-custom-domain.yaml

$ oc get customdomains

NAME ENDPOINT DOMAIN STATUS
external-dns xxrywp.<company_name>.cluster-01.opln.s1.openshiftapps.com *.apps.
<company_name>.io Ready

$ export ZONE_ID=$(aws route53 list-hosted-zones-by-name --output json \
 --dns-name "${DOMAIN}." --query 'HostedZones[0]'.Id --out text | sed 's/\/hostedzone\///')

$ cat << EOF > "${SCRATCH}/external-dns-policy.json"
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "route53:ChangeResourceRecordSets"
],
 "Resource": [
 "arn:aws:route53:::hostedzone/${ZONE_ID}"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "route53:ListHostedZones",
 "route53:ListResourceRecordSets"
],
 "Resource": [
 "*"
]
 }
]
}
EOF

CHAPTER 13. TUTORIAL: DEPLOYING THE EXTERNAL DNS OPERATOR ON ROSA

85

4. Create an AWS IAM user:

5. Attach the policy:

NOTE

This will be changed to STS using IRSA in the future.

6. Create AWS keys for the IAM user:

7. Create static credentials:

13.5. INSTALLING THE EXTERNAL DNS OPERATOR

1. Install the External DNS Operator from OperatorHub:

$ export POLICY_ARN=$(aws iam create-policy --policy-name "${CLUSTER_NAME}-
AllowExternalDNSUpdates" \
 --policy-document file://${SCRATCH}/external-dns-policy.json \
 --query 'Policy.Arn' --output text)

$ aws iam create-user --user-name "${CLUSTER_NAME}-external-dns-operator"

$ aws iam attach-user-policy --user-name "${CLUSTER_NAME}-external-dns-operator" --
policy-arn $POLICY_ARN

$ SECRET_ACCESS_KEY=$(aws iam create-access-key --user-name
"${CLUSTER_NAME}-external-dns-operator")

$ cat << EOF > "${SCRATCH}/credentials"
[default]
aws_access_key_id = $(echo $SECRET_ACCESS_KEY | jq -r '.AccessKey.AccessKeyId')
aws_secret_access_key = $(echo $SECRET_ACCESS_KEY | jq -r
'.AccessKey.SecretAccessKey')
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: external-dns-group
 namespace: external-dns-operator
spec:
 targetNamespaces:
 - external-dns-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: external-dns-operator
 namespace: external-dns-operator
spec:

Red Hat OpenShift Service on AWS 4 Tutorials

86

2. Wait until the External DNS Operator is running:

3. Create a secret from the AWS IAM user credentials:

4. Deploy the ExternalDNS controller:

5. Wait until the controller is running:

13.6. DEPLOYING A SAMPLE APPLICATION

Now that the ExternalDNS controller is running, you can deploy a sample application to confirm that the
custom domain is configured and trusted when you expose a new route.

1. Create a new project for your sample application:

 channel: stable-v1.1
 installPlanApproval: Automatic
 name: external-dns-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc rollout status deploy external-dns-operator --timeout=300s

$ oc -n external-dns-operator create secret generic external-dns \
 --from-file "${SCRATCH}/credentials"

$ cat << EOF | oc apply -f -
apiVersion: externaldns.olm.openshift.io/v1beta1
kind: ExternalDNS
metadata:
 name: ${DOMAIN}
spec:
 domains:
 - filterType: Include
 matchType: Exact
 name: ${DOMAIN}
 provider:
 aws:
 credentials:
 name: external-dns
 type: AWS
 source:
 openshiftRouteOptions:
 routerName: external-dns
 type: OpenShiftRoute
 zones:
 - ${ZONE_ID}
EOF

$ oc rollout status deploy external-dns-${DOMAIN} --timeout=300s

$ oc new-project hello-world

CHAPTER 13. TUTORIAL: DEPLOYING THE EXTERNAL DNS OPERATOR ON ROSA

87

2. Deploy a hello world application:

3. Create a route for the application specifying your custom domain name:

4. Check if the DNS record was created automatically by ExternalDNS:

NOTE

It can take a few minutes for the record to appear in Amazon Route 53.

5. Optional: You can also view the TXT records that indicate they were created by ExternalDNS:

6. Navigate to your custom console domain in the browser where you see the OpenShift login:

$ oc new-app -n hello-world --image=docker.io/openshift/hello-openshift

$ oc -n hello-world create route edge --service=hello-openshift hello-openshift-tls \
--hostname hello-openshift.${DOMAIN}

$ aws route53 list-resource-record-sets --hosted-zone-id ${ZONE_ID} \
 --query "ResourceRecordSets[?Type == 'CNAME']" | grep hello-openshift

$ aws route53 list-resource-record-sets --hosted-zone-id ${ZONE_ID} \
 --query "ResourceRecordSets[?Type == 'TXT']" | grep ${DOMAIN}

$ echo console.${DOMAIN}

Red Hat OpenShift Service on AWS 4 Tutorials

88

1

2

CHAPTER 14. TUTORIAL: DYNAMICALLY ISSUING
CERTIFICATES USING THE CERT-MANAGER OPERATOR ON

ROSA
While wildcard certificates provide simplicity by securing all first-level subdomains of a given domain
with a single certificate, other use cases can require the use of individual certificates per domain.

Learn how to use the cert-manager Operator for Red Hat OpenShift and Let’s Encrypt to dynamically
issue certificates for routes created using a custom domain.

14.1. PREREQUISITES

A ROSA cluster

A user account with cluster-admin privileges

The OpenShift CLI (oc)

The Amazon Web Services (AWS) CLI (aws)

A unique domain, such as *.apps.<company_name>.io

An Amazon Route 53 public hosted zone for the above domain

14.2. SETTING UP YOUR ENVIRONMENT

1. Configure the following environment variables:

The custom domain.

The e-mail Let’s Encrypt will use to send notifications about your certificates.

2. Ensure all fields output correctly before moving to the next section:

14.3. PREPARING YOUR AWS ACCOUNT

$ export DOMAIN=apps.<company_name>.io 1
$ export EMAIL=<youremail@company_name.io> 2
$ export AWS_PAGER=""
$ export CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export OIDC_ENDPOINT=$(oc get authentication.config.openshift.io cluster -o json | jq -r
.spec.serviceAccountIssuer | sed 's|^https://||')
$ export REGION=$(oc get infrastructure cluster -o=jsonpath="
{.status.platformStatus.aws.region}")
$ export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query Account --output text)
$ export SCRATCH="/tmp/${CLUSTER_NAME}/dynamic-certs"
$ mkdir -p ${SCRATCH}

$ echo "Cluster: ${CLUSTER_NAME}, Region: ${REGION}, OIDC Endpoint:
${OIDC_ENDPOINT}, AWS Account ID: ${AWS_ACCOUNT_ID}"

CHAPTER 14. TUTORIAL: DYNAMICALLY ISSUING CERTIFICATES USING THE CERT-MANAGER OPERATOR ON ROSA

89

https://docs.openshift.com/container-platform/latest/security/cert_manager_operator/index.html
https://letsencrypt.org/

When cert-manager requests a certificate from Let’s Encrypt (or another ACME certificate issuer), Let’s
Encrypt servers validate that you control the domain name in that certificate using challenges. For this
tutorial, you are using a DNS-01 challenge that proves that you control the DNS for your domain name
by putting a specific value in a TXT record under that domain name. This is all done automatically by
cert-manager. To allow cert-manager permission to modify the Amazon Route 53 public hosted zone
for your domain, you need to create an Identity Access Management (IAM) role with specific policy
permissions and a trust relationship to allow access to the pod.

The public hosted zone that is used in this tutorial is in the same AWS account as the ROSA cluster. If
your public hosted zone is in a different account, a few additional steps for Cross Account Access are
required.

1. Retrieve the Amazon Route 53 public hosted zone ID:

NOTE

This command looks for a public hosted zone that matches the custom domain
you specified earlier as the DOMAIN environment variable. You can manually
specify the Amazon Route 53 public hosted zone by running export ZONE_ID=
<zone_ID>, replacing <zone_ID> with your specific Amazon Route 53 public
hosted zone ID.

2. Create an AWS IAM policy document for the cert-manager Operator that provides the ability
to update only the specified public hosted zone:

$ export ZONE_ID=$(aws route53 list-hosted-zones-by-name --output json \
 --dns-name "${DOMAIN}." --query 'HostedZones[0]'.Id --out text | sed 's/\/hostedzone\///')

$ cat <<EOF > "${SCRATCH}/cert-manager-policy.json"
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "route53:GetChange",
 "Resource": "arn:aws:route53:::change/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "route53:ChangeResourceRecordSets",
 "route53:ListResourceRecordSets"
],
 "Resource": "arn:aws:route53:::hostedzone/${ZONE_ID}"
 },
 {
 "Effect": "Allow",
 "Action": "route53:ListHostedZonesByName",
 "Resource": "*"
 }
]
}
EOF

Red Hat OpenShift Service on AWS 4 Tutorials

90

https://letsencrypt.org/docs/challenge-types/#dns-01-challenge
https://cert-manager.io/docs/configuration/acme/dns01/route53/#cross-account-access

3. Create the IAM policy using the file you created in the previous step:

4. Create an AWS IAM trust policy for the cert-manager Operator:

5. Create an IAM role for the cert-manager Operator using the trust policy you created in the
previous step:

6. Attach the permissions policy to the role:

14.4. INSTALLING THE CERT-MANAGER OPERATOR

1. Create a project to install the cert-manager Operator into:

IMPORTANT

Do not attempt to use more than one cert-manager Operator in your cluster. If
you have a community cert-manager Operator installed in your cluster, you must
uninstall it before installing the cert-manager Operator for Red Hat OpenShift.

$ POLICY_ARN=$(aws iam create-policy --policy-name "${CLUSTER_NAME}-cert-manager-
policy" \
 --policy-document file://${SCRATCH}/cert-manager-policy.json \
 --query 'Policy.Arn' --output text)

$ cat <<EOF > "${SCRATCH}/trust-policy.json"
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Condition": {
 "StringEquals" : {
 "${OIDC_ENDPOINT}:sub": "system:serviceaccount:cert-manager:cert-manager"
 }
 },
 "Principal": {
 "Federated": "arn:aws:iam::$AWS_ACCOUNT_ID:oidc-provider/${OIDC_ENDPOINT}"
 },
 "Action": "sts:AssumeRoleWithWebIdentity"
 }
]
}
EOF

$ ROLE_ARN=$(aws iam create-role --role-name "${CLUSTER_NAME}-cert-manager-
operator" \
 --assume-role-policy-document "file://${SCRATCH}/trust-policy.json" \
 --query Role.Arn --output text)

$ aws iam attach-role-policy --role-name "${CLUSTER_NAME}-cert-manager-operator" \
 --policy-arn ${POLICY_ARN}

$ oc new-project cert-manager-operator

CHAPTER 14. TUTORIAL: DYNAMICALLY ISSUING CERTIFICATES USING THE CERT-MANAGER OPERATOR ON ROSA

91

2. Install the cert-manager Operator for Red Hat OpenShift:

NOTE

It takes a few minutes for this Operator to install and complete its set up.

3. Verify that the cert-manager Operator is running:

Example output

4. Annotate the service account used by the cert-manager pods with the AWS IAM role you
created earlier:

5. Restart the existing cert-manager controller pod by running the following command:

6. Patch the Operator’s configuration to use external nameservers to prevent DNS-01 challenge
resolution issues:

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-cert-manager-operator-group
 namespace: cert-manager-operator
spec:
 targetNamespaces:
 - cert-manager-operator

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-cert-manager-operator
 namespace: cert-manager-operator
spec:
 channel: stable-v1
 installPlanApproval: Automatic
 name: openshift-cert-manager-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc -n cert-manager-operator get pods

NAME READY STATUS RESTARTS AGE
cert-manager-operator-controller-manager-84b8799db5-gv8mx 2/2 Running 0 12s

$ oc -n cert-manager annotate serviceaccount cert-manager eks.amazonaws.com/role-
arn=${ROLE_ARN}

$ oc -n cert-manager delete pods -l app.kubernetes.io/name=cert-manager

Red Hat OpenShift Service on AWS 4 Tutorials

92

7. Create a ClusterIssuer resource to use Let’s Encrypt by running the following command:

8. Verify the ClusterIssuer resource is ready:

Example output

14.5. CREATING A CUSTOM DOMAIN INGRESS CONTROLLER

1. Create a new project:

2. Create and configure a certificate resource to provision a certificate for the custom domain
Ingress Controller:

NOTE

The following example uses a single domain certificate. SAN and wildcard
certificates are also supported.

$ oc patch certmanager.operator.openshift.io/cluster --type merge \
 -p '{"spec":{"controllerConfig":{"overrideArgs":["--dns01-recursive-nameservers-only","--
dns01-recursive-nameservers=1.1.1.1:53"]}}}'

$ cat << EOF | oc apply -f -
apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
 name: letsencrypt-production
spec:
 acme:
 server: https://acme-v02.api.letsencrypt.org/directory
 email: ${EMAIL}
 # This key doesn't exist, cert-manager creates it
 privateKeySecretRef:
 name: prod-letsencrypt-issuer-account-key
 solvers:
 - dns01:
 route53:
 hostedZoneID: ${ZONE_ID}
 region: ${REGION}
 secretAccessKeySecretRef:
 name: ''
EOF

$ oc get clusterissuer.cert-manager.io/letsencrypt-production

NAME READY AGE
letsencrypt-production True 47s

$ oc new-project custom-domain-ingress

$ cat << EOF | oc apply -f -
apiVersion: cert-manager.io/v1

CHAPTER 14. TUTORIAL: DYNAMICALLY ISSUING CERTIFICATES USING THE CERT-MANAGER OPERATOR ON ROSA

93

3. Verify the certificate has been issued:

NOTE

It takes a few minutes for this certificate to be issued by Let’s Encrypt. If it takes
longer than 5 minutes, run oc -n custom-domain-ingress describe
certificate.cert-manager.io/custom-domain-ingress-cert to see any issues
reported by cert-manager.

Example output

4. Create a new CustomDomain custom resource (CR):

5. Verify that your custom domain Ingress Controller has been deployed and has a Ready status:

Example output

kind: Certificate
metadata:
 name: custom-domain-ingress-cert
 namespace: custom-domain-ingress
spec:
 secretName: custom-domain-ingress-cert-tls
 issuerRef:
 name: letsencrypt-production
 kind: ClusterIssuer
 commonName: "${DOMAIN}"
 dnsNames:
 - "${DOMAIN}"
EOF

$ oc -n custom-domain-ingress get certificate.cert-manager.io/custom-domain-ingress-cert

NAME READY SECRET AGE
custom-domain-ingress-cert True custom-domain-ingress-cert-tls 9m53s

$ cat << EOF | oc apply -f -
apiVersion: managed.openshift.io/v1alpha1
kind: CustomDomain
metadata:
 name: custom-domain-ingress
spec:
 domain: ${DOMAIN}
 scope: External
 loadBalancerType: NLB
 certificate:
 name: custom-domain-ingress-cert-tls
 namespace: custom-domain-ingress
EOF

$ oc get customdomains

NAME ENDPOINT DOMAIN

Red Hat OpenShift Service on AWS 4 Tutorials

94

6. Prepare a document with the necessary DNS changes to enable DNS resolution for your
custom domain Ingress Controller:

7. Submit your changes to Amazon Route 53 for propagation:

NOTE

While the wildcard CNAME record avoids the need to create a new record for
every new application you deploy using the custom domain Ingress Controller,
the certificate that each of these applications use is not a wildcard certificate.

14.6. CONFIGURING DYNAMIC CERTIFICATES FOR CUSTOM DOMAIN
ROUTES

Now you can expose cluster applications on any first-level subdomains of the specified domain, but the
connection will not be secured with a TLS certificate that matches the domain of the application. To
ensure these cluster applications have valid certificates for each domain name, configure cert-manager
to dynamically issue a certificate to every new route created under this domain.

1. Create the necessary OpenShift resources cert-manager requires to manage certificates for
OpenShift routes.
This step creates a new deployment (and therefore a pod) that specifically monitors annotated
routes in the cluster. If the issuer-kind and issuer-name annotations are found in a new route,
it requests the Issuer (ClusterIssuer in this case) for a new certificate that is unique to this route
and which will honor the hostname that was specified while creating the route.

NOTE

STATUS
custom-domain-ingress tfoxdx.custom-domain-ingress.cluster.1234.p1.openshiftapps.com
example.com Ready

$ INGRESS=$(oc get customdomain.managed.openshift.io/custom-domain-ingress --
template={{.status.endpoint}})
$ cat << EOF > "${SCRATCH}/create-cname.json"
{
 "Comment":"Add CNAME to custom domain endpoint",
 "Changes":[{
 "Action":"CREATE",
 "ResourceRecordSet":{
 "Name": "*.${DOMAIN}",
 "Type":"CNAME",
 "TTL":30,
 "ResourceRecords":[{
 "Value": "${INGRESS}"
 }]
 }
 }]
}
EOF

$ aws route53 change-resource-record-sets \
 --hosted-zone-id ${ZONE_ID} \
 --change-batch file://${SCRATCH}/create-cname.json

CHAPTER 14. TUTORIAL: DYNAMICALLY ISSUING CERTIFICATES USING THE CERT-MANAGER OPERATOR ON ROSA

95

NOTE

If the cluster does not have access to GitHub, you can save the raw contents
locally and run oc apply -f localfilename.yaml -n cert-manager.

The following additional OpenShift resources are also created in this step:

ClusterRole - grants permissions to watch and update the routes across the cluster

ServiceAccount - uses permissions to run the newly created pod

ClusterRoleBinding - binds these two resources

2. Ensure that the new cert-manager-openshift-routes pod is running successfully:

Example result

14.7. DEPLOYING A SAMPLE APPLICATION

Now that dynamic certificates are configured, you can deploy a sample application to confirm that
certificates are provisioned and trusted when you expose a new route.

1. Create a new project for your sample application:

2. Deploy a hello world application:

3. Create a route to expose the application from outside the cluster:

4. Verify the certificate for the route is untrusted:

Example output

$ oc -n cert-manager apply -f https://github.com/cert-manager/openshift-
routes/releases/latest/download/cert-manager-openshift-routes.yaml

$ oc -n cert-manager get pods

NAME READY STATUS RESTARTS AGE
cert-manager-866d8f788c-9kspc 1/1 Running 0 4h21m
cert-manager-cainjector-6885c585bd-znws8 1/1 Running 0 4h41m
cert-manager-openshift-routes-75b6bb44cd-f8kd5 1/1 Running 0 6s
cert-manager-webhook-8498785dd9-bvfdf 1/1 Running 0 4h41m

$ oc new-project hello-world

$ oc -n hello-world new-app --image=docker.io/openshift/hello-openshift

$ oc -n hello-world create route edge --service=hello-openshift hello-openshift-tls --hostname
hello.${DOMAIN}

$ curl -I https://hello.${DOMAIN}

Red Hat OpenShift Service on AWS 4 Tutorials

96

5. Annotate the route to trigger cert-manager to provision a certificate for the custom domain:

NOTE

It takes 2-3 minutes for the certificate to be created. The renewal of the
certificate will automatically be managed by the cert-manager Operator as it
approaches expiration.

6. Verify the certificate for the route is now trusted:

Example output

14.8. TROUBLESHOOTING DYNAMIC CERTIFICATE PROVISIONING

NOTE

The validation process usually takes 2-3 minutes to complete while creating certificates.

If annotating your route does not trigger certificate creation during the certificate create step, run oc
describe against each of the certificate,certificaterequest,order, and challenge resources to view the
events or reasons that can help identify the cause of the issue.

For troubleshooting, you can refer to this helpful guide in debugging certificates .

You can also use the cmctl CLI tool for various certificate management activities, such as checking the
status of certificates and testing renewals.

curl: (60) SSL: no alternative certificate subject name matches target host name
'hello.example.com'
More details here: https://curl.se/docs/sslcerts.html

curl failed to verify the legitimacy of the server and therefore could not
establish a secure connection to it. To learn more about this situation and
how to fix it, please visit the web page mentioned above.

$ oc -n hello-world annotate route hello-openshift-tls cert-manager.io/issuer-
kind=ClusterIssuer cert-manager.io/issuer-name=letsencrypt-production

$ curl -I https://hello.${DOMAIN}

HTTP/2 200
date: Thu, 05 Oct 2023 23:45:33 GMT
content-length: 17
content-type: text/plain; charset=utf-8
set-cookie: 52e4465485b6fb4f8a1b1bed128d0f3b=68676068bb32d24f0f558f094ed8e4d7;
path=/; HttpOnly; Secure; SameSite=None
cache-control: private

$ oc get certificate,certificaterequest,order,challenge

CHAPTER 14. TUTORIAL: DYNAMICALLY ISSUING CERTIFICATES USING THE CERT-MANAGER OPERATOR ON ROSA

97

https://cert-manager.io/docs/faq/acme/
https://cert-manager.io/docs/reference/cmctl/

CHAPTER 15. TUTORIAL: ASSIGNING A CONSISTENT EGRESS
IP FOR EXTERNAL TRAFFIC

You can assign a consistent IP address for traffic that leaves your cluster such as security groups which
require an IP-based configuration to meet security standards.

By default, Red Hat OpenShift Service on AWS (ROSA) uses the OVN-Kubernetes container network
interface (CNI) to assign random IP addresses from a pool. This can make configuring security
lockdowns unpredictable or open.

See Configuring an egress IP address for more information.

Objectives

Learn how to configure a set of predictable IP addresses for egress cluster traffic.

Prerequisites

A ROSA cluster deployed with OVN-Kubernetes

The OpenShift CLI (oc)

The ROSA CLI (rosa)

jq

15.1. SETTING YOUR ENVIRONMENT VARIABLES

Set your environment variables by running the following command:

NOTE

Replace the value of the ROSA_MACHINE_POOL_NAME variable to target a
different machine pool.

15.2. ENSURING CAPACITY

The number of IP addresses assigned to each node is limited for each public cloud provider.

Verify sufficient capacity by running the following command:

$ export ROSA_CLUSTER_NAME=$(oc get infrastructure cluster -o=jsonpath="
{.status.infrastructureName}" | sed 's/-[a-z0-9]\{5\}$//')
$ export ROSA_MACHINE_POOL_NAME=worker

$ oc get node -o json | \
 jq '.items[] |
 {
 "name": .metadata.name,
 "ips": (.status.addresses | map(select(.type == "InternalIP") | .address)),

Red Hat OpenShift Service on AWS 4 Tutorials

98

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/networking/#configuring-egress-ips-ovn
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cli_tools/#cli-getting-started
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cli_tools/#rosa-get-started-cli
https://stedolan.github.io/jq/

Example output

15.3. CREATING THE EGRESS IP RULES

1. Before creating the egress IP rules, identify which egress IPs you will use.

NOTE

The egress IPs that you select should exist as a part of the subnets in which the
worker nodes are provisioned.

2. Optional: Reserve the egress IPs that you requested to avoid conflicts with the AWS Virtual
Private Cloud (VPC) Dynamic Host Configuration Protocol (DHCP) service.
Request explicit IP reservations on the AWS documentation for CIDR reservations page.

15.4. ASSIGNING AN EGRESS IP TO A NAMESPACE

1. Create a new project by running the following command:

2. Create the egress rule for all pods within the namespace by running the following command:

 "capacity": (.metadata.annotations."cloud.network.openshift.io/egress-ipconfig" |
fromjson[] | .capacity.ipv4)
 }'

{
 "name": "ip-10-10-145-88.ec2.internal",
 "ips": [
 "10.10.145.88"
],
 "capacity": 14
}
{
 "name": "ip-10-10-154-175.ec2.internal",
 "ips": [
 "10.10.154.175"
],
 "capacity": 14
}

$ oc new-project demo-egress-ns

$ cat <<EOF | oc apply -f -
apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: demo-egress-ns
spec:
 # NOTE: these egress IPs are within the subnet range(s) in which my worker nodes
 # are deployed.
 egressIPs:

CHAPTER 15. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC

99

https://docs.aws.amazon.com/vpc/latest/userguide/subnet-cidr-reservation.html

15.5. ASSIGNING AN EGRESS IP TO A POD

1. Create a new project by running the following command:

2. Create the egress rule for the pod by running the following command:

NOTE

spec.namespaceSelector is a mandatory field.

15.5.1. Labeling the nodes

1. Obtain your pending egress IP assignments by running the following command:

Example output

The egress IP rule that you created only applies to nodes with the k8s.ovn.org/egress-

 - 10.10.100.253
 - 10.10.150.253
 - 10.10.200.253
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: demo-egress-ns
EOF

$ oc new-project demo-egress-pod

$ cat <<EOF | oc apply -f -
apiVersion: k8s.ovn.org/v1
kind: EgressIP
metadata:
 name: demo-egress-pod
spec:
 # NOTE: these egress IPs are within the subnet range(s) in which my worker nodes
 # are deployed.
 egressIPs:
 - 10.10.100.254
 - 10.10.150.254
 - 10.10.200.254
 namespaceSelector:
 matchLabels:
 kubernetes.io/metadata.name: demo-egress-pod
 podSelector:
 matchLabels:
 run: demo-egress-pod
EOF

$ oc get egressips

NAME EGRESSIPS ASSIGNED NODE ASSIGNED EGRESSIPS
demo-egress-ns 10.10.100.253
demo-egress-pod 10.10.100.254

Red Hat OpenShift Service on AWS 4 Tutorials

100

The egress IP rule that you created only applies to nodes with the k8s.ovn.org/egress-
assignable label. Make sure that the label is only on a specific machine pool.

2. Assign the label to your machine pool using the following command:

WARNING

If you rely on node labels for your machine pool, this command will replace
those labels. Be sure to input your desired labels into the --labels field to
ensure your node labels remain.

15.5.2. Reviewing the egress IPs

Review the egress IP assignments by running the following command:

Example output

15.6. VERIFICATION

15.6.1. Deploying a sample application

To test the egress IP rule, create a service that is restricted to the egress IP addresses which we have
specified. This simulates an external service that is expecting a small subset of IP addresses.

1. Run the echoserver command to replicate a request:

2. Expose the pod as a service and limit the ingress to the egress IP addresses you specified by
running the following command:

$ rosa update machinepool ${ROSA_MACHINE_POOL_NAME} \
 --cluster="${ROSA_CLUSTER_NAME}" \
 --labels "k8s.ovn.org/egress-assignable="

$ oc get egressips

NAME EGRESSIPS ASSIGNED NODE ASSIGNED EGRESSIPS
demo-egress-ns 10.10.100.253 ip-10-10-156-122.ec2.internal 10.10.150.253
demo-egress-pod 10.10.100.254 ip-10-10-156-122.ec2.internal 10.10.150.254

$ oc -n default run demo-service --image=gcr.io/google_containers/echoserver:1.4

$ cat <<EOF | oc apply -f -
apiVersion: v1
kind: Service
metadata:
 name: demo-service
 namespace: default

CHAPTER 15. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC

101

3. Retrieve the load balancer hostname and save it as an environment variable by running the
following command:

15.6.2. Testing the namespace egress

1. Start an interactive shell to test the namespace egress rule:

2. Send a request to the load balancer and ensure that you can successfully connect:

3. Check the output for a successful connection:

NOTE

The client_address is the internal IP address of the load balancer not your
egress IP. You can verify that you have configured the client address correctly by
connecting with your service limited to .spec.loadBalancerSourceRanges.

 annotations:
 service.beta.kubernetes.io/aws-load-balancer-scheme: "internal"
 service.beta.kubernetes.io/aws-load-balancer-internal: "true"
spec:
 selector:
 run: demo-service
 ports:
 - port: 80
 targetPort: 8080
 type: LoadBalancer
 externalTrafficPolicy: Local
 # NOTE: this limits the source IPs that are allowed to connect to our service. It
 # is being used as part of this demo, restricting connectivity to our egress
 # IP addresses only.
 # NOTE: these egress IPs are within the subnet range(s) in which my worker nodes
 # are deployed.
 loadBalancerSourceRanges:
 - 10.10.100.254/32
 - 10.10.150.254/32
 - 10.10.200.254/32
 - 10.10.100.253/32
 - 10.10.150.253/32
 - 10.10.200.253/32
EOF

$ export LOAD_BALANCER_HOSTNAME=$(oc get svc -n default demo-service -o json | jq -
r '.status.loadBalancer.ingress[].hostname')

$ oc run \
 demo-egress-ns \
 -it \
 --namespace=demo-egress-ns \
 --env=LOAD_BALANCER_HOSTNAME=$LOAD_BALANCER_HOSTNAME \
 --image=registry.access.redhat.com/ubi9/ubi -- \
 bash

$ curl -s http://$LOAD_BALANCER_HOSTNAME

Red Hat OpenShift Service on AWS 4 Tutorials

102

Example output

4. Exit the pod by running the following command:

15.6.3. Testing the pod egress

1. Start an interactive shell to test the pod egress rule:

2. Send a request to the load balancer by running the following command:

3. Check the output for a successful connection:

NOTE

The client_address is the internal IP address of the load balancer not your
egress IP. You can verify that you have configured the client address correctly by
connecting with your service limited to .spec.loadBalancerSourceRanges.

Example output

CLIENT VALUES:
client_address=10.10.207.247
command=GET
real path=/
query=nil
request_version=1.1
request_uri=http://internal-a3e61de18bfca4a53a94a208752b7263-148284314.us-east-
1.elb.amazonaws.com:8080/

SERVER VALUES:
server_version=nginx: 1.10.0 - lua: 10001

HEADERS RECEIVED:
accept=*/*
host=internal-a3e61de18bfca4a53a94a208752b7263-148284314.us-east-
1.elb.amazonaws.com
user-agent=curl/7.76.1
BODY:
-no body in request-

$ exit

$ oc run \
 demo-egress-pod \
 -it \
 --namespace=demo-egress-pod \
 --env=LOAD_BALANCER_HOSTNAME=$LOAD_BALANCER_HOSTNAME \
 --image=registry.access.redhat.com/ubi9/ubi -- \
 bash

$ curl -s http://$LOAD_BALANCER_HOSTNAME

CLIENT VALUES:

CHAPTER 15. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC

103

4. Exit the pod by running the following command:

15.6.4. Optional: Testing blocked egress

1. Optional: Test that the traffic is successfully blocked when the egress rules do not apply by
running the following command:

2. Send a request to the load balancer by running the following command:

3. If the command is unsuccessful, egress is successfully blocked.

4. Exit the pod by running the following command:

15.7. CLEANING UP YOUR CLUSTER

1. Clean up your cluster by running the following commands:

client_address=10.10.207.247
command=GET
real path=/
query=nil
request_version=1.1
request_uri=http://internal-a3e61de18bfca4a53a94a208752b7263-148284314.us-east-
1.elb.amazonaws.com:8080/

SERVER VALUES:
server_version=nginx: 1.10.0 - lua: 10001

HEADERS RECEIVED:
accept=*/*
host=internal-a3e61de18bfca4a53a94a208752b7263-148284314.us-east-
1.elb.amazonaws.com
user-agent=curl/7.76.1
BODY:
-no body in request-

$ exit

$ oc run \
 demo-egress-pod-fail \
 -it \
 --namespace=demo-egress-pod \
 --env=LOAD_BALANCER_HOSTNAME=$LOAD_BALANCER_HOSTNAME \
 --image=registry.access.redhat.com/ubi9/ubi -- \
 bash

$ curl -s http://$LOAD_BALANCER_HOSTNAME

$ exit

$ oc delete svc demo-service -n default; \
$ oc delete pod demo-service -n default; \
$ oc delete project demo-egress-ns; \

Red Hat OpenShift Service on AWS 4 Tutorials

104

2. Clean up the assigned node labels by running the following command:

WARNING

If you rely on node labels for your machine pool, this command replaces
those labels. Input your desired labels into the --labels field to ensure your
node labels remain.

$ oc delete project demo-egress-pod; \
$ oc delete egressip demo-egress-ns; \
$ oc delete egressip demo-egress-pod

$ rosa update machinepool ${ROSA_MACHINE_POOL_NAME} \
 --cluster="${ROSA_CLUSTER_NAME}" \
 --labels ""

CHAPTER 15. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC

105

CHAPTER 16. GETTING STARTED WITH ROSA

16.1. TUTORIAL: WHAT IS ROSA

Red Hat OpenShift Service on AWS (ROSA) is a fully-managed turnkey application platform that allows
you to focus on what matters most, delivering value to your customers by building and deploying
applications. Red Hat and AWS SRE experts manage the underlying platform so you do not have to
worry about infrastructure management. ROSA provides seamless integration with a wide range of AWS
compute, database, analytics, machine learning, networking, mobile, and other services to further
accelerate the building and delivering of differentiating experiences to your customers.

ROSA makes use of AWS Security Token Service (STS) to obtain credentials to manage infrastructure
in your AWS account. AWS STS is a global web service that creates temporary credentials for IAM users
or federated users. ROSA uses this to assign short-term, limited-privilege, security credentials. These
credentials are associated with IAM roles that are specific to each component that makes AWS API calls.
This method aligns with the principals of least privilege and secure practices in cloud service resource
management. The ROSA command line interface (CLI) tool manages the STS credentials that are
assigned for unique tasks and takes action on AWS resources as part of OpenShift functionality.

16.1.1. Key features of ROSA

Native AWS service: Access and use Red Hat OpenShift on-demand with a self-service
onboarding experience through the AWS management console.

Flexible, consumption-based pricing: Scale to your business needs and pay as you go with
flexible pricing and an on-demand hourly or annual billing model.

Single bill for Red Hat OpenShift and AWS usage: Customers will receive a single bill from
AWS for both Red Hat OpenShift and AWS consumption.

Fully integrated support experience: Installation, management, maintenance, and upgrades
are performed by Red Hat site reliability engineers (SREs) with joint Red Hat and Amazon
support and a 99.95% service-level agreement (SLA).

AWS service integration: AWS has a robust portfolio of cloud services, such as compute,
storage, networking, database, analytics, and machine learning. All of these services are directly
accessible through ROSA. This makes it easier to build, operate, and scale globally and on-
demand through a familiar management interface.

Maximum Availability: Deploy clusters across multiple availability zones in supported regions to
maximize availability and maintain high availability for your most demanding mission-critical
applications and data.

Cluster node scaling: Easily add or remove compute nodes to match resource demand.

Optimized clusters: Choose from memory-optimized, compute-optimized, or general purpose
EC2 instance types with clusters sized to meet your needs.

Global availability: Refer to the product regional availability page to see where ROSA is
available globally.

16.1.2. ROSA and Kubernetes

In ROSA, everything you need to deploy and manage containers is bundled, including container
management, Operators, networking, load balancing, service mesh, CI/CD, firewall, monitoring, registry,

Red Hat OpenShift Service on AWS 4 Tutorials

106

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sdpolicy-regions-az_rosa-service-definition

authentication, and authorization capabilities. These components are tested together for unified
operations as a complete platform. Automated cluster operations, including over-the-air platform
upgrades, further enhance your Kubernetes experience.

16.1.3. Basic responsibilities

In general, cluster deployment and upkeep is Red Hat’s or AWS’s responsibility, while applications, users,
and data is the customer’s responsibility. For a more detailed breakdown of responsibilities, see the
responsibility matrix .

16.1.4. Roadmap and feature requests

Visit the ROSA roadmap to stay up-to-date with the status of features currently in development. Open
a new issue if you have any suggestions for the product team.

16.1.5. AWS region availability

Refer to the product regional availability page for an up-to-date view of where ROSA is available.

16.1.6. Compliance certifications

ROSA is currently compliant with SOC-2 type 2, SOC 3, ISO-27001, ISO 27017, ISO 27018, HIPAA,
GDPR, and PCI-DSS. We are also currently working towards FedRAMP High.

16.1.7. Nodes

16.1.7.1. Worker nodes across multiple AWS regions

All nodes in a ROSA cluster must be located in the same AWS region. For clusters configured for
multiple availability zones, control plane nodes and worker nodes will be distributed across the
availability zones.

16.1.7.2. Minimum number of worker nodes

For a ROSA cluster, the minimum is 2 worker nodes for single availability zone and 3 worker nodes for
multiple availability zones.

16.1.7.3. Underlying node operating system

As with all OpenShift v4.x offerings, the control plane, infra and worker nodes run Red Hat Enterprise
Linux CoreOS (RHCOS).

16.1.7.4. Node hibernation or shut-down

At this time, ROSA does not have a hibernation or shut-down feature for nodes. The shutdown and
hibernation feature is an OpenShift platform feature that is not yet mature enough for widespread
cloud services use.

16.1.7.5. Supported instances for worker nodes

For a complete list of supported instances for worker nodes see AWS instance types. Spot instances are
also supported.

CHAPTER 16. GETTING STARTED WITH ROSA

107

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-policy-responsibility-matrix
https://github.com/openshift-cs/managed-openshift/projects/2
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sdpolicy-regions-az_rosa-service-definition
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sdpolicy-aws-instance-types_rosa-service-definition

16.1.7.6. Node autoscaling

Autoscaling allows you to automatically adjust the size of the cluster based on the current workload. See
About autoscaling nodes on a cluster for more details.

16.1.7.7. Maximum number of worker nodes

The maximum number of worker nodes is 180 worker nodes for each ROSA cluster. See limits and
scalability for more details on node counts.

A list of the account-wide and per-cluster roles is provided in the ROSA documentation.

16.1.8. Administrators

A ROSA customer’s administrator can manage users and quotas in addition to accessing all user-created
projects.

16.1.9. OpenShift versions and upgrades

ROSA is a managed service which is based on OpenShift Container Platform. You can view the current
version and life cycle dates in the ROSA documentation.

Customers can upgrade to the newest version of OpenShift and use the features from that version of
OpenShift. For more information, see life cycle dates. Not all OpenShift features are be available on
ROSA. Review the Service Definition for more information.

16.1.10. Support

You can open a ticket directly from the OpenShift Cluster Manager. See the ROSA support
documentation for more details about obtaining support.

You can also visit the Red Hat Customer Portal to search or browse through the Red Hat knowledge
base of articles and solutions relating to Red Hat products or submit a support case to Red Hat Support.

16.1.10.1. Limited support

If a ROSA cluster is not upgraded before the "end of life" date, the cluster continues to operate in a
limited support status. The SLA for that cluster will no longer be applicable, but you can still get support
for that cluster. See the limited support status documentation for more details.

Additional support resources

Red Hat Support

AWS Support
AWS support customers must have a valid AWS support contract

16.1.11. Service-level agreement (SLA)

Refer to the ROSA SLA page for details.

16.1.12. Notifications and communication

Red Hat will provide notifications regarding new Red Hat and AWS features, updates, and scheduled

Red Hat OpenShift Service on AWS 4 Tutorials

108

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cluster_administration/#rosa-nodes-about-autoscaling-nodes
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/prepare_your_environment/#rosa-limits-scalability
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sts-account-wide-roles-and-policies-creation-methods_rosa-sts-about-iam-resources
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-life-cycle-dates_rosa-life-cycle
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-life-cycle-dates_rosa-life-cycle
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-service-definition
https://console.redhat.com/openshift
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/support/#getting-support
http://access.redhat.com/
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-life-cycle
https://access.redhat.com/
https://aws.amazon.com/premiumsupport/
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sdpolicy-sla_rosa-service-definition

Red Hat will provide notifications regarding new Red Hat and AWS features, updates, and scheduled
maintenance through email and the Hybrid Cloud Console service log.

16.1.13. Open Service Broker for AWS (OBSA)

You can use OSBA with ROSA. However, the preferred method is the more recent AWS Controller for
Kubernetes. See Open Service Broker for AWS for more information on OSBA.

16.1.14. Offboarding

Customers can stop using ROSA at any time and move their applications to on-premise, a private cloud,
or other cloud providers. Standard reserved instances (RI) policy applies for unused RI.

16.1.15. Authentication

ROSA supports the following authentication mechanisms: OpenID Connect (a profile of OAuth2),
Google OAuth, GitHub OAuth, GitLab, and LDAP.

16.1.16. SRE cluster access

All SRE cluster access is secured by MFA. See SRE access for more details.

16.1.17. Encryption

16.1.17.1. Encryption keys

ROSA uses a key stored in KMS to encrypt EBS volumes. Customers also have the option to provide
their own KMS keys at cluster creation.

16.1.17.2. KMS keys

If you specify a KMS key, the control plane, infrastructure and worker node root volumes and the
persistent volumes are encrypted with the key.

16.1.17.3. Data encryption

By default, there is encryption at rest. The AWS Storage platform automatically encrypts your data
before persisting it and decrypts the data before retrieval. See AWS EBS Encryption for more details.

You can also encrypt etcd in the cluster, combining it with AWS storage encryption. This results in
double the encryption which adds up to a 20% performance hit. For more details see the etcd
encryption documentation.

16.1.17.4. etcd encryption

etcd encryption can only be enabled at cluster creation.

NOTE

etcd encryption incurs additional overhead with negligible security risk mitigation.

16.1.17.5. etcd encryption configuration

CHAPTER 16. GETTING STARTED WITH ROSA

109

https://github.com/aws-controllers-k8s/community
https://aws.amazon.com/partners/servicebroker/
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sre-access
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-service-definition

etcd encryption is configured the same as in OpenShift Container Platform. The aescbc cypher is used
and the setting is patched during cluster deployment. For more details, see the Kubernetes
documentation.

16.1.17.6. Multi-region KMS keys for EBS encryption

Currently, the ROSA CLI does not accept multi-region KMS keys for EBS encryption. This feature is in
our backlog for product updates. The ROSA CLI accepts single region KMS keys for EBS encryption if it
is defined at cluster creation.

16.1.18. Infrastructure

ROSA uses several different cloud services such as virtual machines, storage, and load balancers. You
can see a defined list in the AWS prerequisites.

16.1.19. Credential methods

There are two credential methods to grant Red Hat the permissions needed to perform the required
actions in your AWS account: AWS with STS or an IAM user with admin permissions. AWS with STS is the
preferred method, and the IAM user method will eventually be deprecated. AWS with STS better aligns
with the principles of least privilege and secure practices in cloud service resource management.

16.1.20. Prerequisite permission or failure errors

Check for a newer version of the ROSA CLI. Every release of the ROSA CLI is located in two places:
Github and the Red Hat signed binary releases.

16.1.21. Storage

Refer to the storage section of the service definition.

OpenShift includes the CSI driver for AWS EFS. For more information, see Setting up AWS EFS for
Red Hat OpenShift Service on AWS.

16.1.22. Using a VPC

At installation you can select to deploy to an existing VPC or bring your own VPC. You can then select
the required subnets and provide a valid CIDR range that encompasses the subnets for the installation
program when using those subnets.

ROSA allows multiple clusters to share the same VPC. The number of clusters on one VPC is limited by
the remaining AWS resource quota and CIDR ranges that cannot overlap. See CIDR Range Definitions
for more information.

16.1.23. Network plugin

ROSA uses the OpenShift OVN-Kubernetes default CNI network provider.

16.1.24. Cross-namespace networking

Cluster admins can customize, and deny, cross-namespace on a project basis using NetworkPolicy
objects. Refer to Configuring multitenant isolation with network policy for more information.

Red Hat OpenShift Service on AWS 4 Tutorials

110

https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/prepare_your_environment/#rosa-aws-policy-provisioned_rosa-sts-aws-prereqs
https://github.com/openshift/rosa/releases
https://www.openshift.com/products/rosa/download
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sdpolicy-storage_rosa-service-definition
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/storage/#osd-persistent-storage-aws-efs-csi
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/networking/#cidr-range-definitions
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/networking/#configuring-multitenant-isolation-with-network-policy

16.1.25. Using Prometheus and Grafana

You can use Prometheus and Grafana to monitor containers and manage capacity using OpenShift User
Workload Monitoring. This is a check-box option in the OpenShift Cluster Manager.

16.1.26. Audit logs output from the cluster control-plane

If the Cluster Logging Operator Add-on has been added to the cluster then audit logs are available
through CloudWatch. If it has not, then a support request would allow you to request some audit logs.
Small targeted and time-boxed logs can be requested for export and sent to a customer. The selection
of audit logs available are at the discretion of SRE in the category of platform security and compliance.
Requests for exports of a cluster’s entirety of logs will be rejected.

16.1.27. AWS Permissions Boundary

You can use an AWS Permissions Boundary around the policies for your cluster.

16.1.28. AMI

ROSA worker nodes use a different AMI from OSD and OpenShift Container Platform. Control Plane
and Infra node AMIs are common across products in the same version.

16.1.29. Cluster backups

ROSA STS clusters do not have backups. Users must have their own backup policies for applications and
data. See our backup policy for more information.

16.1.30. Custom domain

You can define a custom domain for your applications. See Configuring custom domains for applications
for more information.

16.1.31. ROSA domain certificates

Red Hat infrastructure (Hive) manages certificate rotation for default application ingress.

16.1.32. Disconnected environments

ROSA does not support an air-gapped, disconnected environment. The ROSA cluster must have egress
to the internet to access our registry, S3, and send metrics. The service requires a number of egress
endpoints. Ingress can be limited to a PrivateLink for Red Hat SREs and a VPN for customer access.

Additional Resources

ROSA product pages:

Red Hat product page

AWS product page

Red Hat Customer Portal

ROSA specific resources

CHAPTER 16. GETTING STARTED WITH ROSA

111

https://console.redhat.com/openshift
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sdpolicy-backup-policy_rosa-service-definition
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/building_applications/#rosa-config-custom-domains-applications
https://www.openshift.com/products/amazon-openshift
https://aws.amazon.com/rosa/
https://access.redhat.com/products/red-hat-openshift-service-aws

AWS ROSA getting started guide

ROSA documentation

ROSA service definition

ROSA responsibility assignment matrix

Understanding Process and Security

About Availability

Updates Lifecycle

Limits and Scalability

ROSA roadmap

Learn about OpenShift

OpenShift Cluster Manager

Red Hat Support

16.2. TUTORIAL: ROSA WITH AWS STS EXPLAINED

This tutorial outlines the two options for allowing Red Hat OpenShift Service on AWS (ROSA) to
interact with resources in a user’s Amazon Web Service (AWS) account. It details the components and
processes that ROSA with Security Token Service (STS) uses to obtain the necessary credentials. It also
reviews why ROSA with STS is the more secure, preferred method.

NOTE

This content currently covers ROSA Classic with AWS STS. For ROSA with hosted control
planes (HCP) with AWS STS, see AWS STS and ROSA with HCP explained .

This tutorial will:

Enumerate two of the deployment options:

ROSA with IAM Users

ROSA with STS

Explain the differences between the two options

Explain why ROSA with STS is more secure and the preferred option

Explain how ROSA with STS works

16.2.1. Different credential methods to deploy ROSA

As part of ROSA, Red Hat manages infrastructure resources in your AWS account and must be granted
the necessary permissions. There are currently two supported methods for granting those permissions:

Using static IAM user credentials with an AdministratorAccess policy

This is referred to as "ROSA with IAM Users" in this tutorial. It is not the preferred credential

Red Hat OpenShift Service on AWS 4 Tutorials

112

https://docs.aws.amazon.com/ROSA/latest/userguide/getting-started.html
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/about/#welcome-index
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-service-definition
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-policy-responsibility-matrix
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-policy-process-security
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-policy-understand-availability
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-life-cycle
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/prepare_your_environment/#rosa-limits-scalability
https://red.ht/rosa-roadmap
https://learn.openshift.com
https://console.redhat.com/openshift
https://support.redhat.com
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/about/#cloud-experts-rosa-hcp-sts-explained

This is referred to as "ROSA with IAM Users" in this tutorial. It is not the preferred credential
method.

Using AWS STS with short-lived, dynamic tokens
This is referred to as “ROSA with STS” in this tutorial. It is the preferred credential method.

16.2.1.1. Rosa with IAM Users

When ROSA was first released, the only credential method was ROSA with IAM Users. This method
grants IAM users with an AdministratorAccess policy full access to create the necessary resources in
the AWS account that uses ROSA. The cluster can then create and expand its credentials as needed.

16.2.1.2. ROSA with STS

ROSA with STS grants users limited, short-term access to resources in your AWS account. The STS
method uses predefined roles and policies to grant temporary, least-privilege permissions to IAM users
or authenticated federated users. The credentials typically expire an hour after being requested. Once
expired, they are no longer recognized by AWS and no longer have account access from API requests
made with them. For more information, see the AWS documentation. While both ROSA with IAM Users
and ROSA with STS are currently enabled, ROSA with STS is the preferred and recommended option.

16.2.2. ROSA with STS security

Several crucial components make ROSA with STS more secure than ROSA with IAM Users:

An explicit and limited set of roles and policies that the user creates ahead of time. The user
knows every requested permission and every role used.

The service cannot do anything outside of those permissions.

Whenever the service needs to perform an action, it obtains credentials that expire in one hour
or less. This means that there is no need to rotate or revoke credentials. Additionally, credential
expiration reduces the risks of credentials leaking and being reused.

16.2.3. AWS STS explained

ROSA uses AWS STS to grant least-privilege permissions with short-term security credentials to
specific and segregated IAM roles. The credentials are associated with IAM roles specific to each
component and cluster that makes AWS API calls. This method aligns with principles of least-privilege
and secure practices in cloud service resource management. The ROSA command line interface (CLI)
tool manages the STS roles and policies that are assigned for unique tasks and takes action upon AWS
resources as part of OpenShift functionality.

STS roles and policies must be created for each ROSA cluster. To make this easier, the installation tools
provide all the commands and files needed to create the roles as policies and an option to allow the CLI
to automatically create the roles and policies. See Creating a ROSA cluster with STS using
customizations for more information about the different --mode options.

16.2.4. Components specific to ROSA with STS

AWS infrastructure - This provides the infrastructure required for the cluster. It contains the
actual EC2 instances, storage, and networking components. See AWS compute types to see
supported instance types for compute nodes and provisioned AWS infrastructure for control
plane and infrastructure node configuration.

CHAPTER 16. GETTING STARTED WITH ROSA

113

https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-sts-creating-cluster-customizations_rosa-sts-creating-a-cluster-with-customizations
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sdpolicy-aws-compute-types_rosa-service-definition
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/prepare_your_environment/#rosa-ec2-instances_rosa-sts-aws-prereqs

AWS STS - See the credential method section above.

OpenID Connect (OIDC) - This provides a mechanism for cluster Operators to authenticate
with AWS, assume the cluster roles through a trust policy, and obtain temporary credentials
from STS to make the required API calls.

Roles and policies - The roles and policies are one of the main differences between ROSA with
STS and ROSA with IAM Users. For ROSA with STS, the roles and policies used by ROSA are
broken into account-wide roles and policies and Operator roles and policies.
The policies determine the allowed actions for each of the roles. See About IAM resources for
ROSA clusters that use STS for more details about the individual roles and policies.

The account-wide roles are:

ManagedOpenShift-Installer-Role

ManagedOpenShift-ControlPlane-Role

ManagedOpenShift-Worker-Role

ManagedOpenShift-Support-Role

The account-wide policies are:

ManagedOpenShift-Installer-Role-Policy

ManagedOpenShift-ControlPlane-Role-Policy

ManagedOpenShift-Worker-Role-Policy

ManagedOpenShift-Support-Role-Policy

ManagedOpenShift-openshift-ingress-operator-cloud-credentials [1]

ManagedOpenShift-openshift-cluster-csi-drivers-ebs-cloud-credent [1]

ManagedOpenShift-openshift-cloud-network-config-controller-cloud [1]

ManagedOpenShift-openshift-machine-api-aws-cloud-credentials [1]

ManagedOpenShift-openshift-cloud-credential-operator-cloud-crede [1]

ManagedOpenShift-openshift-image-registry-installer-cloud-creden [1]

1. This policy is used by the cluster Operator roles, listed below. The Operator roles
are created in a second step because they are dependent on an existing cluster
name and cannot be created at the same time as the account-wide roles.

The Operator roles are:

<cluster-name\>-xxxx-openshift-cluster-csi-drivers-ebs-cloud-credent

<cluster-name\>-xxxx-openshift-cloud-network-config-controller-cloud

<cluster-name\>-xxxx-openshift-machine-api-aws-cloud-credentials

<cluster-name\>-xxxx-openshift-cloud-credential-operator-cloud-crede

Red Hat OpenShift Service on AWS 4 Tutorials

114

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sts-about-iam-resources

<cluster-name\>-xxxx-openshift-image-registry-installer-cloud-creden

<cluster-name\>-xxxx-openshift-ingress-operator-cloud-credentials

Trust policies are created for each account-wide and Operator role.

16.2.5. Deploying a ROSA STS cluster

You are not expected to create the resources listed in the below steps from scratch. The ROSA CLI
creates the required JSON files for you and outputs the commands you need. The ROSA CLI can also
take this a step further and run the commands for you, if desired.

Steps to deploy a ROSA with STS cluster

1. Create the account-wide roles and policies.

2. Assign the permissions policy to the corresponding account-wide role.

3. Create the cluster.

4. Create the Operator roles and policies.

5. Assign the permission policy to the corresponding Operator role.

6. Create the OIDC provider.

The roles and policies can be created automatically by the ROSA CLI, or they can be manually created
by utilizing the --mode manual or --mode auto flags in the ROSA CLI. For further details about
deployment, see Creating a cluster with customizations or the Deploying the cluster tutorial.

16.2.6. ROSA with STS workflow

The user creates the required account-wide roles and account-wide policies. For more information, see
the components section in this tutorial. During role creation, a trust policy, known as a cross-account
trust policy, is created which allows a Red Hat-owned role to assume the roles. Trust policies are also
created for the EC2 service, which allows workloads on EC2 instances to assume roles and obtain
credentials. The user can then assign a corresponding permissions policy to each role.

After the account-wide roles and policies are created, the user can create a cluster. Once cluster
creation is initiated, the Operator roles are created so that cluster Operators can make AWS API calls.
These roles are then assigned to the corresponding permission policies that were created earlier and a
trust policy with an OIDC provider. The Operator roles differ from the account-wide roles in that they
ultimately represent the pods that need access to AWS resources. Because a user cannot attach IAM
roles to pods, they must create a trust policy with an OIDC provider so that the Operator, and therefore
the pods, can access the roles they need.

Once the user assigns the roles to the corresponding policy permissions, the final step is creating the
OIDC provider.

CHAPTER 16. GETTING STARTED WITH ROSA

115

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-sts-creating-cluster-customizations_rosa-sts-creating-a-cluster-with-customizations
https://www.rosaworkshop.io/rosa/2-deploy/

When a new role is needed, the workload currently using the Red Hat role will assume the role in the AWS
account, obtain temporary credentials from AWS STS, and begin performing the actions using API calls
within the customer’s AWS account as permitted by the assumed role’s permissions policy. The
credentials are temporary and have a maximum duration of one hour.

The entire workflow is depicted in the following graphic:

Red Hat OpenShift Service on AWS 4 Tutorials

116

Operators use the following process to obtain the requisite credentials to perform their tasks. Each
Operator is assigned an Operator role, a permissions policy, and a trust policy with an OIDC provider.
The Operator will assume the role by passing a JSON web token that contains the role and a token file
(web_identity_token_file) to the OIDC provider, which then authenticates the signed key with a public
key. The public key is created during cluster creation and stored in an S3 bucket. The Operator then
confirms that the subject in the signed token file matches the role in the role trust policy which ensures
that the OIDC provider can only obtain the allowed role. The OIDC provider then returns the temporary
credentials to the Operator so that the Operator can make AWS API calls. For a visual representation,
see below:

CHAPTER 16. GETTING STARTED WITH ROSA

117

16.2.7. ROSA with STS use cases

Creating nodes at cluster install

The Red Hat installation program uses the RH-Managed-OpenShift-Installer role and a trust policy to
assume the Managed-OpenShift-Installer-Role role in the customer’s account. This process returns
temporary credentials from AWS STS. The installation program begins making the required API calls
with the temporary credentials just received from STS. The installation program creates the required
infrastructure in AWS. The credentials expire within an hour and the installation program no longer has
access to the customer’s account.

The same process also applies for support cases. In support cases, a Red Hat site reliability engineer
(SRE) replaces the installation program.

Scaling the cluster

The machine-api-operator uses AssumeRoleWithWebIdentity to assume the machine-api-aws-cloud-
credentials role. This launches the sequence for the cluster Operators to receive the credentials. The
machine-api-operator role can now make the relevant API calls to add more EC2 instances to the
cluster.

16.3. DEPLOYING A CLUSTER

16.3.1. Tutorial: Choosing a deployment method

This tutorial outlines the different ways to deploy a cluster. Choose the deployment method that best
fits your preferences and needs.

16.3.1.1. Deployment options

If you want:

Only the necessary CLI commands - Simple CLI guide

A user interface - Simple UI guide

Red Hat OpenShift Service on AWS 4 Tutorials

118

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

The CLI commands with details - Detailed CLI guide

A user interface with details - Detailed UI guide

To experiment with the newest ROSA technologies - ROSA with HCP

All of the above deployment options work well for this tutorial. If you are doing this tutorial for the first
time, the Simple CLI guide is the simplest and recommended method.

16.3.2. Tutorial: Simple CLI guide

This page outlines the minimum list of commands to deploy a Red Hat OpenShift Service on AWS
(ROSA) cluster using the command line interface (CLI).

NOTE

While this simple deployment works well for a tutorial setting, clusters used in production
should be deployed with a more detailed method.

16.3.2.1. Prerequisites

You have completed the prerequisites in the Setup tutorial.

16.3.2.2. Creating account roles

Run the following command once for each AWS account and y-stream OpenShift version:

16.3.2.3. Deploying the cluster

1. Create the cluster with the default configuration by running the following command substituting
your own cluster name:

2. Check the status of your cluster by running the following command:

16.3.3. Tutorial: Detailed CLI guide

This tutorial outlines the detailed steps to deploy a ROSA cluster using the ROSA CLI.

16.3.3.1. CLI deployment modes

There are two modes with which to deploy a ROSA cluster. One is automatic, which is quicker and
performs the manual work for you. The other is manual, requires you to run extra commands, and allows
you to inspect the roles and policies being created. This tutorial documents both options.

If you want to create a cluster quickly, use the automatic option. If you prefer exploring the roles and
policies being created, use the manual option.

rosa create account-roles --mode auto --yes

rosa create cluster --cluster-name <cluster-name> --sts --mode auto --yes

rosa list clusters

CHAPTER 16. GETTING STARTED WITH ROSA

119

Choose the deployment mode by using the --mode flag in the relevant commands.

Valid options for --mode are:

manual: Role and policies are created and saved in the current directory. You must manually run
the provided commands as the next step. This option allows you to review the policy and roles
before creating them.

auto: Roles and policies are created and applied automatically using the current AWS account.

TIP

You can use either deployment method for this tutorial. The auto mode is faster and has less steps.

16.3.3.2. Deployment workflow

The overall deployment workflow follows these steps:

1. rosa create account-roles - This is executed only once for each account. Once created, the
account roles do not need to be created again for more clusters of the same y-stream version.

2. rosa create cluster

3. rosa create operator-roles - For manual mode only.

4. rosa create oidc-provider - For manual mode only.

For each additional cluster in the same account for the same y-stream version, only step 2 is needed for
automatic mode. Steps 2 through 4 are needed for manual mode.

16.3.3.3. Automatic mode

Use this method if you want the ROSA CLI to automate the creation of the roles and policies to create
your cluster quickly.

16.3.3.3.1. Creating account roles

If this is the first time you are deploying ROSA in this account and you have not yet created the account
roles, then create the account-wide roles and policies, including Operator policies.

Run the following command to create the account-wide roles:

Example output

rosa create account-roles --mode auto --yes

I: Creating roles using 'arn:aws:iam::000000000000:user/rosa-user'
I: Created role 'ManagedOpenShift-ControlPlane-Role' with ARN
'arn:aws:iam::000000000000:role/ManagedOpenShift-ControlPlane-Role'
I: Created role 'ManagedOpenShift-Worker-Role' with ARN
'arn:aws:iam::000000000000:role/ManagedOpenShift-Worker-Role'
I: Created role 'ManagedOpenShift-Support-Role' with ARN
'arn:aws:iam::000000000000:role/ManagedOpenShift-Support-Role'
I: Created role 'ManagedOpenShift-Installer-Role' with ARN
'arn:aws:iam::000000000000:role/ManagedOpenShift-Installer-Role'

Red Hat OpenShift Service on AWS 4 Tutorials

120

16.3.3.3.2. Creating a cluster

Run the following command to create a cluster with all the default options:

NOTE

This will also create the required Operator roles and OIDC provider. If you want to see all
available options for your cluster use the --help flag or --interactive for interactive mode.

Example input

Example output

I: Created policy with ARN 'arn:aws:iam::000000000000:policy/ManagedOpenShift-openshift-
machine-api-aws-cloud-credentials'
I: Created policy with ARN 'arn:aws:iam::000000000000:policy/ManagedOpenShift-openshift-cloud-
credential-operator-cloud-crede'
I: Created policy with ARN 'arn:aws:iam::000000000000:policy/ManagedOpenShift-openshift-image-
registry-installer-cloud-creden'
I: Created policy with ARN 'arn:aws:iam::000000000000:policy/ManagedOpenShift-openshift-ingress-
operator-cloud-credentials'
I: Created policy with ARN 'arn:aws:iam::000000000000:policy/ManagedOpenShift-openshift-cluster-
csi-drivers-ebs-cloud-credent'
I: To create a cluster with these roles, run the following command:
 rosa create cluster --sts

rosa create cluster --cluster-name <cluster-name> --sts --mode auto --yes

$ rosa create cluster --cluster-name my-rosa-cluster --sts --mode auto --yes

I: Creating cluster 'my-rosa-cluster'
I: To view a list of clusters and their status, run 'rosa list clusters'
I: Cluster 'my-rosa-cluster' has been created.
I: Once the cluster is installed you will need to add an Identity Provider before you can login into the
cluster. See 'rosa create idp --help' for more information.
I: To determine when your cluster is Ready, run 'rosa describe cluster -c my-rosa-cluster'.
I: To watch your cluster installation logs, run 'rosa logs install -c my-rosa-cluster --watch'.
Name: my-rosa-cluster
ID: 1mlhulb3bo0l54ojd0ji000000000000
External ID:
OpenShift Version:
Channel Group: stable
DNS: my-rosa-cluster.ibhp.p1.openshiftapps.com
AWS Account: 000000000000
API URL:
Console URL:
Region: us-west-2
Multi-AZ: false
Nodes:
- Master: 3
- Infra: 2
- Compute: 2
Network:

CHAPTER 16. GETTING STARTED WITH ROSA

121

16.3.3.3.2.1. Default configuration

The default settings are as follows:

Nodes:

3 control plane nodes

2 infrastructure nodes

2 worker nodes

No autoscaling

See the documentation on ec2 instances for more details.

Region: As configured for the aws CLI

Networking IP ranges:

Machine CIDR: 10.0.0.0/16

Service CIDR: 172.30.0.0/16

Pod CIDR: 10.128.0.0/14

New VPC

Default AWS KMS key for encryption

The most recent version of OpenShift available to rosa

- Service CIDR: 172.30.0.0/16
- Machine CIDR: 10.0.0.0/16
- Pod CIDR: 10.128.0.0/14
- Host Prefix: /23
STS Role ARN: arn:aws:iam::000000000000:role/ManagedOpenShift-Installer-Role
Support Role ARN: arn:aws:iam::000000000000:role/ManagedOpenShift-Support-Role
Instance IAM Roles:
- Master: arn:aws:iam::000000000000:role/ManagedOpenShift-ControlPlane-Role
- Worker: arn:aws:iam::000000000000:role/ManagedOpenShift-Worker-Role
Operator IAM Roles:
- arn:aws:iam::000000000000:role/my-rosa-cluster-openshift-image-registry-installer-cloud-
credentials
- arn:aws:iam::000000000000:role/my-rosa-cluster-openshift-ingress-operator-cloud-credentials
- arn:aws:iam::000000000000:role/my-rosa-cluster-openshift-cluster-csi-drivers-ebs-cloud-credentials
- arn:aws:iam::000000000000:role/my-rosa-cluster-openshift-machine-api-aws-cloud-credentials
- arn:aws:iam::000000000000:role/my-rosa-cluster-openshift-cloud-credential-operator-cloud-
credential-oper
State: waiting (Waiting for OIDC configuration)
Private: No
Created: Oct 28 2021 20:28:09 UTC
Details Page:
https://console.redhat.com/openshift/details/s/1wupmiQy45xr1nN000000000000
OIDC Endpoint URL: https://rh-oidc.s3.us-east-
1.amazonaws.com/1mlhulb3bo0l54ojd0ji000000000000

Red Hat OpenShift Service on AWS 4 Tutorials

122

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/prepare_your_environment/#rosa-ec2-instances_rosa-sts-aws-prereqs

A single availability zone

Public cluster

16.3.3.3.3. Checking the installation status

1. Run one of the following commands to check the status of your cluster:

For a detailed view of the status, run:

For an abridged view of the status, run:

2. The cluster state will change from “waiting” to “installing” to "ready". This will take about 40
minutes.

3. Once the state changes to “ready” your cluster is installed.

16.3.3.4. Manual Mode

If you want to review the roles and policies before applying them to a cluster, use the manual method.
This method requires running a few extra commands to create the roles and policies.

This section uses the --interactive mode. See the documentation on interactive mode for a description
of the fields in this section.

16.3.3.4.1. Creating account roles

1. If this is the first time you are deploying ROSA in this account and you have not yet created the
account roles, create the account-wide roles and policies, including the Operator policies. The
command creates the needed JSON files for the required roles and policies for your account in
the current directory. It also outputs the aws CLI commands that you need to run to create
these objects.
Run the following command to create the needed files and output the additional commands:

Example output

2. Check the contents of your current directory to see the new files. Use the aws CLI to create

rosa describe cluster --cluster <cluster-name>

rosa list clusters

rosa create account-roles --mode manual

I: All policy files saved to the current directory
I: Run the following commands to create the account roles and policies:
aws iam create-role \
--role-name ManagedOpenShift-Worker-Role \
--assume-role-policy-document file://sts_instance_worker_trust_policy.json \
--tags Key=rosa_openshift_version,Value=4.8
Key=rosa_role_prefix,Value=ManagedOpenShift
Key=rosa_role_type,Value=instance_worker
aws iam put-role-policy \
--role-name ManagedOpenShift-Worker-Role \
--policy-name ManagedOpenShift-Worker-Role-Policy \
--policy-document file://sts_instance_worker_permission_policy.json

CHAPTER 16. GETTING STARTED WITH ROSA

123

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-sts-interactive-mode-reference

2. Check the contents of your current directory to see the new files. Use the aws CLI to create
each of these objects.

Example output

3. Optional: Open the files to review what you will create. For example, opening the
sts_installer_permission_policy.json shows:

Example output

You can also see the contents in the About IAM resources for ROSA clusters documentation.

4. Run the aws commands listed in step 1. You can copy and paste if you are in the same directory
as the JSON files you created.

16.3.3.4.2. Creating a cluster

1. After the aws commands are executed successfully, run the following command to begin ROSA
cluster creation in interactive mode:

See the ROSA documentation for a description of the fields.

$ ls
openshift_cloud_credential_operator_cloud_credential_operator_iam_ro_creds_policy.json
sts_instance_controlplane_permission_policy.json
openshift_cluster_csi_drivers_ebs_cloud_credentials_policy.json
sts_instance_controlplane_trust_policy.json
openshift_image_registry_installer_cloud_credentials_policy.json
sts_instance_worker_permission_policy.json
openshift_ingress_operator_cloud_credentials_policy.json
sts_instance_worker_trust_policy.json
openshift_machine_api_aws_cloud_credentials_policy.json
sts_support_permission_policy.json
sts_installer_permission_policy.json sts_support_trust_policy.json
sts_installer_trust_policy.json

$ cat sts_installer_permission_policy.json
 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "autoscaling:DescribeAutoScalingGroups",
 "ec2:AllocateAddress",
 "ec2:AssociateAddress",
 "ec2:AssociateDhcpOptions",
 "ec2:AssociateRouteTable",
 "ec2:AttachInternetGateway",
 "ec2:AttachNetworkInterface",
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:AuthorizeSecurityGroupIngress",
 [...]

rosa create cluster --interactive --sts

Red Hat OpenShift Service on AWS 4 Tutorials

124

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sts-account-wide-roles-and-policies-creation-methods_rosa-sts-about-iam-resources
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-sts-interactive-mode-reference

2. For the purpose of this tutorial, copy and then input the following values:

Example output

Cluster name: my-rosa-cluster
OpenShift version: <choose version>
External ID (optional): <leave blank>
Operator roles prefix: <accept default>
Multiple availability zones: No
AWS region: <choose region>
PrivateLink cluster: No
Install into an existing VPC: No
Enable Customer Managed key: No
Compute nodes instance type: m5.xlarge
Enable autoscaling: No
Compute nodes: 2
Machine CIDR: <accept default>
Service CIDR: <accept default>
Pod CIDR: <accept default>
Host prefix: <accept default>
Encrypt etcd data (optional): No
Disable Workload monitoring: No

I: Creating cluster 'my-rosa-cluster'
I: To create this cluster again in the future, you can run:
rosa create cluster --cluster-name my-rosa-cluster --role-arn
arn:aws:iam::000000000000:role/ManagedOpenShift-Installer-Role --support-role-arn
arn:aws:iam::000000000000:role/ManagedOpenShift-Support-Role --master-iam-role
arn:aws:iam::000000000000:role/ManagedOpenShift-ControlPlane-Role --worker-iam-role
arn:aws:iam::000000000000:role/ManagedOpenShift-Worker-Role --operator-roles-prefix
my-rosa-cluster --region us-west-2 --version 4.8.13 --compute-nodes 2 --machine-cidr
10.0.0.0/16 --service-cidr 172.30.0.0/16 --pod-cidr 10.128.0.0/14 --host-prefix 23
I: To view a list of clusters and their status, run 'rosa list clusters'
I: Cluster 'my-rosa-cluster' has been created.
I: Once the cluster is installed you will need to add an Identity Provider before you can login
into the cluster. See 'rosa create idp --help' for more information.
Name: my-rosa-cluster
ID: 1t6i760dbum4mqltqh6o000000000000
External ID:
OpenShift Version:
Channel Group: stable
DNS: my-rosa-cluster.abcd.p1.openshiftapps.com
AWS Account: 000000000000
API URL:
Console URL:
Region: us-west-2
Multi-AZ: false
Nodes:
- Control plane: 3
- Infra: 2
- Compute: 2
Network:
- Service CIDR: 172.30.0.0/16
- Machine CIDR: 10.0.0.0/16
- Pod CIDR: 10.128.0.0/14

CHAPTER 16. GETTING STARTED WITH ROSA

125

NOTE

The cluster state will remain as “waiting” until the next two steps are completed.

16.3.3.4.3. Creating Operator roles

1. The above step outputs the next commands to run. These roles need to be created once for
each cluster. To create the roles run the following command:

Example output

- Host Prefix: /23
STS Role ARN: arn:aws:iam::000000000000:role/ManagedOpenShift-Installer-Role
Support Role ARN: arn:aws:iam::000000000000:role/ManagedOpenShift-Support-Role
Instance IAM Roles:
- Control plane: arn:aws:iam::000000000000:role/ManagedOpenShift-ControlPlane-
Role
- Worker: arn:aws:iam::000000000000:role/ManagedOpenShift-Worker-Role
Operator IAM Roles:
- arn:aws:iam::000000000000:role/my-rosa-cluster-w7i6-openshift-ingress-operator-cloud-
credentials
- arn:aws:iam::000000000000:role/my-rosa-cluster-w7i6-openshift-cluster-csi-drivers-ebs-
cloud-credentials
- arn:aws:iam::000000000000:role/my-rosa-cluster-w7i6-openshift-cloud-network-config-
controller-cloud-cre
- arn:aws:iam::000000000000:role/my-rosa-cluster-openshift-machine-api-aws-cloud-
credentials
- arn:aws:iam::000000000000:role/my-rosa-cluster-openshift-cloud-credential-operator-cloud-
credentia
- arn:aws:iam::000000000000:role/my-rosa-cluster-openshift-image-registry-installer-cloud-
credential
State: waiting (Waiting for OIDC configuration)
Private: No
Created: Jul 1 2022 22:13:50 UTC
Details Page:
https://console.redhat.com/openshift/details/s/2BMQm8xz8Hq5yEN000000000000
OIDC Endpoint URL: https://rh-oidc.s3.us-east-
1.amazonaws.com/1t6i760dbum4mqltqh6o000000000000
I: Run the following commands to continue the cluster creation:
rosa create operator-roles --cluster my-rosa-cluster
rosa create oidc-provider --cluster my-rosa-cluster
I: To determine when your cluster is Ready, run 'rosa describe cluster -c my-rosa-cluster'.
I: To watch your cluster installation logs, run 'rosa logs install -c my-rosa-cluster --watch'.

rosa create operator-roles --mode manual --cluster <cluster-name>

I: Run the following commands to create the operator roles:
 aws iam create-role \
 --role-name my-rosa-cluster-openshift-image-registry-installer-cloud-credentials \
 --assume-role-policy-document
file://operator_image_registry_installer_cloud_credentials_policy.json \
 --tags Key=rosa_cluster_id,Value=1mkesci269png3tck000000000000000
Key=rosa_openshift_version,Value=4.8 Key=rosa_role_prefix,Value=
Key=operator_namespace,Value=openshift-image-registry

Red Hat OpenShift Service on AWS 4 Tutorials

126

2. Run each of the aws commands.

16.3.3.4.4. Creating the OIDC provider

1. Run the following command to create the OIDC provider:

2. This displays the aws commands that you need to run.

Example output

3. Your cluster will now continue the installation process.

16.3.3.4.5. Checking the installation status

1. Run one of the following commands to check the status of your cluster:

For a detailed view of the status, run:

For an abridged view of the status, run:

2. The cluster state will change from “waiting” to “installing” to "ready". This will take about 40
minutes.

3. Once the state changes to “ready” your cluster is installed.

16.3.3.5. Obtaining the Red Hat Hybrid Cloud Console URL

To obtain the Hybrid Cloud Console URL, run the following command:

Key=operator_name,Value=installer-cloud-credentials

 aws iam attach-role-policy \
 --role-name my-rosa-cluster-openshift-image-registry-installer-cloud-credentials \
 --policy-arn arn:aws:iam::000000000000:policy/ManagedOpenShift-openshift-image-
registry-installer-cloud-creden
 [...]

rosa create oidc-provider --mode manual --cluster <cluster-name>

I: Run the following commands to create the OIDC provider:
$ aws iam create-open-id-connect-provider \
--url https://rh-oidc.s3.us-east-1.amazonaws.com/1mkesci269png3tckknhh0rfs2da5fj9 \
--client-id-list openshift sts.amazonaws.com \
--thumbprint-list a9d53002e97e00e043244f3d170d000000000000

$ aws iam create-open-id-connect-provider \
--url https://rh-oidc.s3.us-east-1.amazonaws.com/1mkesci269png3tckknhh0rfs2da5fj9 \
--client-id-list openshift sts.amazonaws.com \
--thumbprint-list a9d53002e97e00e043244f3d170d000000000000

rosa describe cluster --cluster <cluster-name>

rosa list clusters

CHAPTER 16. GETTING STARTED WITH ROSA

127

The cluster has now been successfully deployed. The next tutorial shows how to create an admin user to
be able to use the cluster immediately.

16.3.4. Tutorial: Hosted Control Planes guide

This tutorial outlines deploying a Red Hat OpenShift Service on AWS (ROSA) with hosted control planes
(HCP) cluster.

With ROSA with HCP, you can decouple the control plane from the data plane. This is a new deployment
model for ROSA in which the control plane is hosted in a Red Hat-owned AWS account. The control
plane is no longer hosted in your AWS account, reducing your AWS infrastructure expenses. The control
plane is dedicated to a single cluster and is highly available. For more information, see the ROSA with
HCP documentation.

16.3.4.1. Prerequisites

Before deploying a ROSA with HCP cluster, you must have the following resources:

VPC - This is a bring-your-own VPC model, also referred to as BYO-VPC.

OIDC - OIDC configuration and an OIDC provider with that specific configuration.

ROSA version 1.2.31 or higher

In this tutorial, we will create these resources first. We will also set up some environment variables so
that it is easier to run the command to create the ROSA with HCP cluster.

16.3.4.1.1. Creating a VPC

1. First, ensure that your AWS CLI (aws) is configured to use a region where ROSA with HCP is
available. To find out which regions are supported run the following command:

2. Create the VPC. For this tutorial, the following script creates the VPC and its required
components for you. It uses the region configured for the aws CLI.

rosa describe cluster -c <cluster-name> | grep Console

rosa list regions --hosted-cp

#!/bin/bash

set -e
##########
This script will create the network requirements for a ROSA cluster. This will be
a public cluster. This creates:
- VPC
- Public and private subnets
- Internet Gateway
- Relevant route tables
- NAT Gateway
#
This will automatically use the region configured for the aws cli
#
##########

Red Hat OpenShift Service on AWS 4 Tutorials

128

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_with_hcp_clusters/#rosa-hcp-sts-creating-a-cluster-quickly
https://github.com/openshift-cs/rosaworkshop/blob/master/rosa-workshop/rosa/resources/setup-vpc.sh

VPC_CIDR=10.0.0.0/16
PUBLIC_CIDR_SUBNET=10.0.1.0/24
PRIVATE_CIDR_SUBNET=10.0.0.0/24

Create VPC
echo -n "Creating VPC..."
VPC_ID=$(aws ec2 create-vpc --cidr-block $VPC_CIDR --query Vpc.VpcId --output text)

Create tag name
aws ec2 create-tags --resources $VPC_ID --tags Key=Name,Value=$CLUSTER_NAME

Enable dns hostname
aws ec2 modify-vpc-attribute --vpc-id $VPC_ID --enable-dns-hostnames
echo "done."

Create Public Subnet
echo -n "Creating public subnet..."
PUBLIC_SUBNET_ID=$(aws ec2 create-subnet --vpc-id $VPC_ID --cidr-block
$PUBLIC_CIDR_SUBNET --query Subnet.SubnetId --output text)

aws ec2 create-tags --resources $PUBLIC_SUBNET_ID --tags
Key=Name,Value=$CLUSTER_NAME-public
echo "done."

Create private subnet
echo -n "Creating private subnet..."
PRIVATE_SUBNET_ID=$(aws ec2 create-subnet --vpc-id $VPC_ID --cidr-block
$PRIVATE_CIDR_SUBNET --query Subnet.SubnetId --output text)

aws ec2 create-tags --resources $PRIVATE_SUBNET_ID --tags
Key=Name,Value=$CLUSTER_NAME-private
echo "done."

Create an internet gateway for outbound traffic and attach it to the VPC.
echo -n "Creating internet gateway..."
IGW_ID=$(aws ec2 create-internet-gateway --query InternetGateway.InternetGatewayId --
output text)
echo "done."

aws ec2 create-tags --resources $IGW_ID --tags Key=Name,Value=$CLUSTER_NAME

aws ec2 attach-internet-gateway --vpc-id $VPC_ID --internet-gateway-id $IGW_ID >
/dev/null 2>&1
echo "Attached IGW to VPC."

Create a route table for outbound traffic and associate it to the public subnet.
echo -n "Creating route table for public subnet..."
PUBLIC_ROUTE_TABLE_ID=$(aws ec2 create-route-table --vpc-id $VPC_ID --query
RouteTable.RouteTableId --output text)

aws ec2 create-tags --resources $PUBLIC_ROUTE_TABLE_ID --tags
Key=Name,Value=$CLUSTER_NAME
echo "done."

aws ec2 create-route --route-table-id $PUBLIC_ROUTE_TABLE_ID --destination-cidr-block
0.0.0.0/0 --gateway-id $IGW_ID > /dev/null 2>&1

CHAPTER 16. GETTING STARTED WITH ROSA

129

For more about VPC requirements, see the VPC documentation.

3. The above script outputs two commands. Set the commands as environment variables to make

echo "Created default public route."

aws ec2 associate-route-table --subnet-id $PUBLIC_SUBNET_ID --route-table-id
$PUBLIC_ROUTE_TABLE_ID > /dev/null 2>&1
echo "Public route table associated"

Create a NAT gateway in the public subnet for outgoing traffic from the private network.
echo -n "Creating NAT Gateway..."
NAT_IP_ADDRESS=$(aws ec2 allocate-address --domain vpc --query AllocationId --output
text)

NAT_GATEWAY_ID=$(aws ec2 create-nat-gateway --subnet-id $PUBLIC_SUBNET_ID --
allocation-id $NAT_IP_ADDRESS --query NatGateway.NatGatewayId --output text)

aws ec2 create-tags --resources $NAT_IP_ADDRESS --resources $NAT_GATEWAY_ID --
tags Key=Name,Value=$CLUSTER_NAME
sleep 10
echo "done."

Create a route table for the private subnet to the NAT gateway.
echo -n "Creating a route table for the private subnet to the NAT gateway..."
PRIVATE_ROUTE_TABLE_ID=$(aws ec2 create-route-table --vpc-id $VPC_ID --query
RouteTable.RouteTableId --output text)

aws ec2 create-tags --resources $PRIVATE_ROUTE_TABLE_ID $NAT_IP_ADDRESS --
tags Key=Name,Value=$CLUSTER_NAME-private

aws ec2 create-route --route-table-id $PRIVATE_ROUTE_TABLE_ID --destination-cidr-block
0.0.0.0/0 --gateway-id $NAT_GATEWAY_ID > /dev/null 2>&1

aws ec2 associate-route-table --subnet-id $PRIVATE_SUBNET_ID --route-table-id
$PRIVATE_ROUTE_TABLE_ID > /dev/null 2>&1

echo "done."

echo "***********VARIABLE VALUES*********"
echo "VPC_ID="$VPC_ID
echo "PUBLIC_SUBNET_ID="$PUBLIC_SUBNET_ID
echo "PRIVATE_SUBNET_ID="$PRIVATE_SUBNET_ID
echo "PUBLIC_ROUTE_TABLE_ID="$PUBLIC_ROUTE_TABLE_ID
echo "PRIVATE_ROUTE_TABLE_ID="$PRIVATE_ROUTE_TABLE_ID
echo "NAT_GATEWAY_ID="$NAT_GATEWAY_ID
echo "IGW_ID="$IGW_ID
echo "NAT_IP_ADDRESS="$NAT_IP_ADDRESS

echo "Setup complete."
echo ""
echo "To make the cluster create commands easier, please run the following commands to
set the environment variables:"
echo "export PUBLIC_SUBNET_ID=$PUBLIC_SUBNET_ID"
echo "export PRIVATE_SUBNET_ID=$PRIVATE_SUBNET_ID"

Red Hat OpenShift Service on AWS 4 Tutorials

130

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/prepare_your_environment/#rosa-vpc_rosa-sts-aws-prereqs

3. The above script outputs two commands. Set the commands as environment variables to make
running the create cluster command easier. Copy them from the output and run them as
shown:

4. Confirm that the environment variables are set by running the following command:

Example output

16.3.4.1.2. Creating your OIDC configuration

In this tutorial, we will use the automatic mode when creating the OIDC configuration. We will also store
the OIDC ID as an environment variable for later use. The command uses the ROSA CLI to create your
cluster’s unique OIDC configuration.

To create the OIDC configuration for this tutorial, run the following command:

16.3.4.1.3. Creating additional environment variables

Run the following command to set up some environment variables so that it is easier to run the
command to create the ROSA with HCP cluster:

TIP

Run rosa whoami to find the VPC region.

16.3.4.2. Creating the cluster

If this is the first time you are deploying ROSA in this account and you have not yet created the account
roles, create the account-wide roles and policies, including the Operator policies. Since ROSA uses AWS
Security Token Service (STS), this step creates the AWS IAM roles and policies that are needed for
ROSA to interact with your account.

1. Run the following command to create the account-wide roles:

2. Run the following command to create the cluster:

export PUBLIC_SUBNET_ID=<public subnet id here>
export PRIVATE_SUBNET_ID=<private subnet id here>

echo "Public Subnet: $PUBLIC_SUBNET_ID"; echo "Private Subnet:
$PRIVATE_SUBNET_ID"

Public Subnet: subnet-0faeeeb0000000000
Private Subnet: subnet-011fe340000000000

export OIDC_ID=$(rosa create oidc-config --mode auto --managed --yes -o json | jq -r '.id')

export CLUSTER_NAME=<enter cluster name>
export REGION=<region VPC was created in>

rosa create account-roles --mode auto --yes

CHAPTER 16. GETTING STARTED WITH ROSA

131

The cluster is ready and completely usable after about 10 minutes. The cluster will have a control plane
across three AWS availability zones in your selected region and create two worker nodes in your AWS
account.

16.3.4.3. Checking the installation status

1. Run one of the following commands to check the status of the cluster:

For a detailed view of the cluster status, run:

For an abridged view of the cluster status, run:

To watch the log as it progresses, run:

2. Once the state changes to “ready” your cluster is installed. It might take a few more minutes for
the worker nodes to come online.

16.3.5. Tutorial: Simple UI guide

This page outlines the minimum list of commands to deploy a ROSA cluster using the user interface (UI).

NOTE

While this simple deployment works well for a tutorial setting, clusters used in production
should be deployed with a more detailed method.

16.3.5.1. Prerequisites

You have completed the prerequisites in the Setup tutorial.

16.3.5.2. Creating account roles

Run the following command once for each AWS account and y-stream OpenShift version:

16.3.5.3. Creating Red Hat OpenShift Cluster Manager roles

1. Create one OpenShift Cluster Manager role for each AWS account by running the following

rosa create cluster --cluster-name $CLUSTER_NAME \
 --subnet-ids ${PUBLIC_SUBNET_ID},${PRIVATE_SUBNET_ID} \
 --hosted-cp \
 --region $REGION \
 --oidc-config-id $OIDC_ID \
 --sts --mode auto --yes

rosa describe cluster --cluster $CLUSTER_NAME

rosa list clusters

rosa logs install --cluster $CLUSTER_NAME --watch

rosa create account-roles --mode auto --yes

Red Hat OpenShift Service on AWS 4 Tutorials

132

1. Create one OpenShift Cluster Manager role for each AWS account by running the following
command:

2. Create one OpenShift Cluster Manager user role for each AWS account by running the
following command:

3. Use the OpenShift Cluster Manager to select your AWS account, cluster options, and begin
deployment.

4. OpenShift Cluster Manager UI displays cluster status.

16.3.6. Tutorial: Detailed UI guide

This tutorial outlines the detailed steps to deploy a Red Hat OpenShift Service on AWS (ROSA) cluster
using the Red Hat OpenShift Cluster Manager user interface (UI).

16.3.6.1. Deployment workflow

The overall deployment workflow follows these steps:

1. Create the account wide roles and policies.

2. Associate your AWS account with your Red Hat account.

a. Create and link the Red Hat OpenShift Cluster Manager role.

b. Create and link the user role.

3. Create the cluster.

Step 1 only needs to be performed the first time you are deploying into an AWS account. Step 2 only
needs to be performed the first time you are using the UI. For successive clusters of the same y-stream
version, you only need to create the cluster.

16.3.6.2. Creating account wide roles

rosa create ocm-role --mode auto --admin --yes

rosa create user-role --mode auto --yes

CHAPTER 16. GETTING STARTED WITH ROSA

133

https://console.redhat.com/openshift

NOTE

If you already have account roles from an earlier deployment, skip this step. The UI will
detect your existing roles after you select an associated AWS account.

If this is the first time you are deploying ROSA in this account and you have not yet created the account
roles, create the account-wide roles and policies, including the Operator policies.

In your terminal, run the following command to create the account-wide roles:

Example output

16.3.6.3. Associating your AWS account with your Red Hat account

This step tells the OpenShift Cluster Manager what AWS account you want to use when deploying
ROSA.

NOTE

If you have already associated your AWS accounts, skip this step.

1. Open the Red Hat Hybrid Cloud Console by visiting the OpenShift Cluster Manager and logging
in to your Red Hat account.

2. Click Create Cluster.

3. Scroll down to the Red Hat OpenShift Service on AWS (ROSA) row and click Create Cluster.

$ rosa create account-roles --mode auto --yes

I: Creating roles using 'arn:aws:iam::000000000000:user/rosa-user'
I: Created role 'ManagedOpenShift-ControlPlane-Role' with ARN
'arn:aws:iam::000000000000:role/ManagedOpenShift-ControlPlane-Role'
I: Created role 'ManagedOpenShift-Worker-Role' with ARN
'arn:aws:iam::000000000000:role/ManagedOpenShift-Worker-Role'
I: Created role 'ManagedOpenShift-Support-Role' with ARN
'arn:aws:iam::000000000000:role/ManagedOpenShift-Support-Role'
I: Created role 'ManagedOpenShift-Installer-Role' with ARN
'arn:aws:iam::000000000000:role/ManagedOpenShift-Installer-Role'
I: Created policy with ARN 'arn:aws:iam::000000000000:policy/ManagedOpenShift-openshift-
machine-api-aws-cloud-credentials'
I: Created policy with ARN 'arn:aws:iam::000000000000:policy/ManagedOpenShift-openshift-
cloud-credential-operator-cloud-crede'
I: Created policy with ARN 'arn:aws:iam::000000000000:policy/ManagedOpenShift-openshift-
image-registry-installer-cloud-creden'
I: Created policy with ARN 'arn:aws:iam::000000000000:policy/ManagedOpenShift-openshift-
ingress-operator-cloud-credentials'
I: Created policy with ARN 'arn:aws:iam::000000000000:policy/ManagedOpenShift-openshift-
cluster-csi-drivers-ebs-cloud-credent'
I: To create a cluster with these roles, run the following command:
rosa create cluster --sts

Red Hat OpenShift Service on AWS 4 Tutorials

134

https://console.redhat.com/openshift

4. A dropdown menu appears. Click With web interface.

5. Under "Select an AWS control plane type," choose Classic. Then click Next.

6. Click the dropbox under Associated AWS infrastructure account. If you have not yet
associated any AWS accounts, the dropbox may be empty.

7. Click How to associate a new AWS account.

CHAPTER 16. GETTING STARTED WITH ROSA

135

8. A sidebar appears with instructions for associating a new AWS account.

16.3.6.4. Creating and associating an OpenShift Cluster Manager role

1. Run the following command to see if an OpenShift Cluster Manager role exists:

2. The UI displays the commands to create an OpenShift Cluster Manager role with two different
levels of permissions:

Basic OpenShift Cluster Manager role: Allows the OpenShift Cluster Manager to have
read-only access to the account to check if the roles and policies that are required by ROSA
are present before creating a cluster. You will need to manually create the required roles,
policies, and OIDC provider using the CLI.

Admin OpenShift Cluster Manager role: Grants the OpenShift Cluster Manager additional

$ rosa list ocm-role

Red Hat OpenShift Service on AWS 4 Tutorials

136

Admin OpenShift Cluster Manager role: Grants the OpenShift Cluster Manager additional
permissions to create the required roles, policies, and OIDC provider for ROSA. Using this
makes the deployment of a ROSA cluster quicker since the OpenShift Cluster Manager will
be able to create the required resources for you.
To read more about these roles, see the OpenShift Cluster Manager roles and permissions
section of the documentation.

For the purposes of this tutorial, use the Admin OpenShift Cluster Manager role for the
simplest and quickest approach.

3. Copy the command to create the Admin OpenShift Cluster Manager role from the sidebar or
switch to your terminal and enter the following command:

This command creates the OpenShift Cluster Manager role and associates it with your Red Hat
account.

Example output

4. Click Step 2: User role.

16.3.6.4.1. Other OpenShift Cluster Manager role creation options

Manual mode: If you prefer to run the AWS CLI commands yourself, you can define the mode as
manual rather than auto. The CLI will output the AWS commands and the relevant JSON files
are created in the current directory.
Use the following command to create the OpenShift Cluster Manager role in manual mode:

Basic OpenShift Cluster Manager role: If you prefer that the OpenShift Cluster Manager has
read only access to the account, create a basic OpenShift Cluster Manager role. You will then
need to manually create the required roles, policies, and OIDC provider using the CLI.
Use the following command to create a Basic OpenShift Cluster Manager role:

16.3.6.5. Creating an OpenShift Cluster Manager user role

As defined in the user role documentation , the user role needs to be created so that ROSA can verify
your AWS identity. This role has no permissions, and it is only used to create a trust relationship between
the installation program account and your OpenShift Cluster Manager role resources.

1. Check if a user role already exists by running the following command:

$ rosa create ocm-role --mode auto --admin --yes

I: Creating ocm role
I: Creating role using 'arn:aws:iam::000000000000:user/rosa-user'
I: Created role 'ManagedOpenShift-OCM-Role-12561000' with ARN
'arn:aws:iam::000000000000:role/ManagedOpenShift-OCM-Role-12561000'
I: Linking OCM role
I: Successfully linked role-arn 'arn:aws:iam::000000000000:role/ManagedOpenShift-OCM-
Role-12561000' with organization account '1MpZfntsZeUdjWHg7XRgP000000'

$ rosa create ocm-role --mode manual --admin --yes

$ rosa create ocm-role --mode auto --yes

CHAPTER 16. GETTING STARTED WITH ROSA

137

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sts-ocm-roles-and-permissions_rosa-sts-about-iam-resources
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sts-understanding-user-role_rosa-sts-about-iam-resources

2. Run the following command to create the user role and to link it to your Red Hat account:

Example output

NOTE

As before, you can define --mode manual if you’d prefer to run the AWS CLI
commands yourself. The CLI outputs the AWS commands and the relevant
JSON files are created in the current directory. Make sure to link the role.

3. Click Step 3: Account roles.

16.3.6.6. Creating account roles

1. Create your account roles by running the following command:

2. Click OK to close the sidebar.

16.3.6.7. Confirming successful account association

1. You should now see your AWS account in the Associated AWS infrastructure account
dropdown menu. If you see your account, account association was successful.

2. Select the account.

3. You will see the account role ARNs populated below.

$ rosa list user-role

$ rosa create user-role --mode auto --yes

I: Creating User role
I: Creating ocm user role using 'arn:aws:iam::000000000000:user/rosa-user'
I: Created role 'ManagedOpenShift-User-rosa-user-Role' with ARN
'arn:aws:iam::000000000000:role/ManagedOpenShift-User-rosa-user-Role'
I: Linking User role
I: Successfully linked role ARN 'arn:aws:iam::000000000000:role/ManagedOpenShift-User-
rosa-user-Role' with account '1rbOQez0z5j1YolInhcXY000000'

$ rosa create account-roles --mode auto

Red Hat OpenShift Service on AWS 4 Tutorials

138

4. Click Next.

16.3.6.8. Creating the cluster

1. For the purposes of this tutorial make the following selections:

Cluster settings

Cluster name: <pick a name\>

Version: <select latest version\>

Region: <select region\>

Availability: Single zone

Enable user workload monitoring: leave checked

Enable additional etcd encryption: leave unchecked

Encrypt persistent volumes with customer keys: leave unchecked

2. Click Next.

CHAPTER 16. GETTING STARTED WITH ROSA

139

3. Leave the default settings on for the machine pool:

Default machine pool settings

Compute node instance type: m5.xlarge - 4 vCPU 16 GiB RAM

Enable autoscaling: unchecked

Compute node count: 2

Leave node labels blank

4. Click Next.

16.3.6.8.1. Networking

1. Leave all the default values for configuration.

2. Click Next.

3. Leave all the default values for CIDR ranges.

4. Click Next.

16.3.6.8.2. Cluster roles and policies

For this tutorial, leave Auto selected. It will make the cluster deployment process simpler and quicker.

NOTE

If you selected a Basic OpenShift Cluster Manager role earlier, you can only use manual
mode. You must manually create the operator roles and OIDC provider. See the "Basic
OpenShift Cluster Manager role" section below after you have completed the "Cluster
updates" section and started cluster creation.

16.3.6.8.3. Cluster updates

Leave all the options at default in this section.

16.3.6.8.4. Reviewing and creating your cluster

1. Review the content for the cluster configuration.

2. Click Create cluster.

16.3.6.8.5. Monitoring the installation progress

Stay on the current page to monitor the installation progress. It should take about 40 minutes.

Red Hat OpenShift Service on AWS 4 Tutorials

140

16.3.6.9. Basic OpenShift Cluster Manager Role

NOTE

If you created an Admin OpenShift Cluster Manager role as directed above ignore this
entire section. The OpenShift Cluster Manager will create the resources for you.

If you created a Basic OpenShift Cluster Manager role earlier, you will need to manually create two
more elements before cluster installation can continue:

Operator roles

OIDC provider

16.3.6.9.1. Creating Operator roles

1. A pop up window will show you the commands to run.

CHAPTER 16. GETTING STARTED WITH ROSA

141

2. Run the commands from the window in your terminal to launch interactive mode. Or, for
simplicity, run the following command to create the Operator roles:

Example output

16.3.6.9.2. Creating the OIDC provider

In your terminal, run the following command to create the OIDC provider:

Example output

$ rosa create operator-roles --mode auto --cluster <cluster-name> --yes

I: Creating roles using 'arn:aws:iam::000000000000:user/rosauser'
I: Created role 'rosacluster-b736-openshift-ingress-operator-cloud-credentials' with ARN
'arn:aws:iam::000000000000:role/rosacluster-b736-openshift-ingress-operator-cloud-
credentials'
I: Created role 'rosacluster-b736-openshift-cluster-csi-drivers-ebs-cloud-credent' with ARN
'arn:aws:iam::000000000000:role/rosacluster-b736-openshift-cluster-csi-drivers-ebs-cloud-
credent'
I: Created role 'rosacluster-b736-openshift-cloud-network-config-controller-cloud' with ARN
'arn:aws:iam::000000000000:role/rosacluster-b736-openshift-cloud-network-config-controller-
cloud'
I: Created role 'rosacluster-b736-openshift-machine-api-aws-cloud-credentials' with ARN
'arn:aws:iam::000000000000:role/rosacluster-b736-openshift-machine-api-aws-cloud-
credentials'
I: Created role 'rosacluster-b736-openshift-cloud-credential-operator-cloud-crede' with ARN
'arn:aws:iam::000000000000:role/rosacluster-b736-openshift-cloud-credential-operator-
cloud-crede'
I: Created role 'rosacluster-b736-openshift-image-registry-installer-cloud-creden' with ARN
'arn:aws:iam::000000000000:role/rosacluster-b736-openshift-image-registry-installer-cloud-
creden'

$ rosa create oidc-provider --mode auto --cluster <cluster-name> --yes

Red Hat OpenShift Service on AWS 4 Tutorials

142

16.4. TUTORIAL: CREATING AN ADMIN USER

Creating an administration (admin) user allows you to access your cluster quickly. Follow these steps to
create an admin user.

NOTE

An admin user works well in this tutorial setting. For actual deployment, use a formal
identity provider to access the cluster and grant the user admin privileges.

1. Run the following command to create the admin user:

Example output

2. Copy the log in command returned to you in the previous step and paste it into your terminal.
This will log you in to the cluster using the CLI so you can start using the cluster.

Example output

3. To check that you are logged in as the admin user, run one of the following commands:

Option 1:

Example output

I: Creating OIDC provider using 'arn:aws:iam::000000000000:user/rosauser'
I: Created OIDC provider with ARN 'arn:aws:iam::000000000000:oidc-provider/rh-oidc.s3.us-
east-1.amazonaws.com/1tt4kvrr2kha2rgs8gjfvf0000000000'

rosa create admin --cluster=<cluster-name>

W: It is recommended to add an identity provider to login to this cluster. See 'rosa create idp -
-help' for more information.
I: Admin account has been added to cluster 'my-rosa-cluster'. It may take up to a minute for
the account to become active.
I: To login, run the following command:
oc login https://api.my-rosa-cluster.abcd.p1.openshiftapps.com:6443 \
--username cluster-admin \
--password FWGYL-2mkJI-00000-00000

$ oc login https://api.my-rosa-cluster.abcd.p1.openshiftapps.com:6443 \
> --username cluster-admin \
> --password FWGYL-2mkJI-00000-00000

Login successful.

You have access to 79 projects, the list has been suppressed. You can list all projects with '
projects'

Using project "default".

$ oc whoami

CHAPTER 16. GETTING STARTED WITH ROSA

143

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/authentication_and_authorization/#sd-configuring-identity-providers

Option 2:

Only an admin user can run this command without errors.

4. You can now use the cluster as an admin user, which will suffice for this tutorial. For actual
deployment, it is highly recommended to set up an identity provider, which is explained in the
next tutorial.

16.5. TUTORIAL: SETTING UP AN IDENTITY PROVIDER

To log in to your cluster, set up an identity provider (IDP). This tutorial uses GitHub as an example IDP.
See the full list of IDPs supported by ROSA .

To view all IDP options, run the following command:

16.5.1. Setting up an IDP with GitHub

1. Log in to your GitHub account.

2. Create a new GitHub organization where you are an administrator.

TIP

If you are already an administrator in an existing organization and you want to use that
organization, skip to step 9.

Click the + icon, then click New Organization.

3. Choose the most applicable plan for your situation or click Join for free.

4. Enter an organization account name, an email, and whether it is a personal or business account.

cluster-admin

oc get all -n openshift-apiserver

rosa create idp --help

Red Hat OpenShift Service on AWS 4 Tutorials

144

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#understanding-idp-supported_rosa-sts-config-identity-providers

4. Enter an organization account name, an email, and whether it is a personal or business account.
Then, click Next.

5. Optional: Add the GitHub IDs of other users to grant additional access to your ROSA cluster.
You can also add them later.

6. Click Complete Setup.

7. Optional: Enter the requested information on the following page.

8. Click Submit.

9. Go back to the terminal and enter the following command to set up the GitHub IDP:

10. Enter the following values:

rosa create idp --cluster=<cluster name> --interactive

Type of identity provider: github
Identity Provider Name: <IDP-name>
Restrict to members of: organizations

CHAPTER 16. GETTING STARTED WITH ROSA

145

11. The CLI will provide you with a link. Copy and paste the link into a browser and press Enter. This
will fill the required information to register this application for OAuth. You do not need to modify
any of the information.

12. Click Register application.

13. The next page displays a Client ID. Copy the ID and paste it in the terminal where it asks for
Client ID.

NOTE

Do not close the tab.

14. The CLI will ask for a Client Secret. Go back in your browser and click Generate a new client
secret.

GitHub organizations: <organization-account-name>

Red Hat OpenShift Service on AWS 4 Tutorials

146

15. A secret is generated for you. Copy your secret because it will never be visible again.

16. Paste your secret into the terminal and press Enter.

17. Leave GitHub Enterprise Hostname blank.

18. Select claim.

19. Wait approximately 1 minute for the IDP to be created and the configuration to land on your
cluster.

20. Copy the returned link and paste it into your browser. The new IDP should be available under
your chosen name. Click your IDP and use your GitHub credentials to access the cluster.

CHAPTER 16. GETTING STARTED WITH ROSA

147

16.5.2. Granting other users access to the cluster

To grant access to other cluster user you will need to add their GitHub user ID to the GitHub
organization used for this cluster.

1. In GitHub, go to the Your organizations page.

2. Click your profile icon, then Your organizations. Then click <your-organization-name>. In our
example, it is my-rosa-cluster.

3. Click Invite someone.

Red Hat OpenShift Service on AWS 4 Tutorials

148

4. Enter the GitHub ID of the new user, select the correct user, and click Invite.

5. Once the new user accepts the invitation, they will be able to log in to the ROSA cluster using
the Hybrid Cloud Console link and their GitHub credentials.

16.6. TUTORIAL: GRANTING ADMIN PRIVILEGES

Administration (admin) privileges are not automatically granted to users that you add to your cluster. If
you want to grant admin-level privileges to certain users, you will need to manually grant them to each
user. You can grant admin privileges from either the ROSA command line interface (CLI) or the Red Hat
OpenShift Cluster Manager web user interface (UI).

Red Hat offers two types of admin privileges:

cluster-admin: cluster-admin privileges give the admin user full privileges within the cluster.

dedicated-admin: dedicated-admin privileges allow the admin user to complete most
administrative tasks with certain limitations to prevent cluster damage. It is best practice to use
dedicated-admin when elevated privileges are needed.

For more information on admin privileges, see the administering a cluster documentation.

16.6.1. Using the ROSA CLI

1. Assuming you are the user who created the cluster, run one of the following commands to grant
admin privileges:

For cluster-admin:

For dedicated-admin:

2. Verify that the admin privileges were added by running the following command:

Example output

$ rosa grant user cluster-admin --user <idp_user_name> --cluster=<cluster-name>

$ rosa grant user dedicated-admin --user <idp_user_name> --cluster=<cluster-name>

$ rosa list users --cluster=<cluster-name>

CHAPTER 16. GETTING STARTED WITH ROSA

149

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/install_rosa_classic_clusters/#rosa-create-cluster-admins_rosa-sts-accessing-cluster

3. If you are currently logged into the Red Hat Hybrid Cloud Console, log out of the console and
log back in to the cluster to see a new perspective with the "Administrator Panel". You might
need an incognito or private window.

4. You can also test that admin privileges were added to your account by running the following
command. Only a cluster-admin users can run this command without errors.

16.6.2. Using the Red Hat OpenShift Cluster Manager UI

1. Log in to the OpenShift Cluster Manager.

2. Select your cluster.

3. Click the Access Control tab.

4. Click the Cluster roles and Access tab in the sidebar.

5. Click Add user.

6. On the pop-up screen, enter the user ID.

$ rosa list users --cluster=my-rosa-cluster
ID GROUPS
<idp_user_name> cluster-admins

$ oc get all -n openshift-apiserver

Red Hat OpenShift Service on AWS 4 Tutorials

150

https://console.redhat.com/openshift

7. Select whether you want to grant the user cluster-admins or dedicated-admins privileges.

16.7. TUTORIAL: ACCESSING YOUR CLUSTER

You can connect to your cluster using the command line interface (CLI) or the Red Hat Hybrid Cloud
Console user interface (UI).

16.7.1. Accessing your cluster using the CLI

To access the cluster using the CLI, you must have the oc CLI installed. If you are following the tutorials,
you already installed the oc CLI.

1. Log in to the OpenShift Cluster Manager.

2. Click your username in the top right corner.

3. Click Copy Login Command.

CHAPTER 16. GETTING STARTED WITH ROSA

151

https://console.redhat.com/openshift

4. This opens a new tab with a choice of identity providers (IDPs). Click the IDP you want to use.
For example, "rosa-github".

5. A new tab opens. Click Display token.

6. Run the following command in your terminal:

Example output

7. Confirm that you are logged in by running the following command:

Example output

$ oc login --token=sha256~GBAfS4JQ0t1UTKYHbWAK6OUWGUkdMGz000000000000 --
server=https://api.my-rosa-cluster.abcd.p1.openshiftapps.com:6443

Logged into "https://api.my-rosa-cluster.abcd.p1.openshiftapps.com:6443" as "rosa-user"
using the token provided.

You have access to 79 projects, the list has been suppressed. You can list all projects with '
projects'

Using project "default".

$ oc whoami

Red Hat OpenShift Service on AWS 4 Tutorials

152

8. You can now access your cluster.

16.7.2. Accessing the cluster via the Hybrid Cloud Console

1. Log in to the OpenShift Cluster Manager.

a. To retrieve the Hybrid Cloud Console URL run:

2. Click your IDP. For example, "rosa-github".

3. Enter your user credentials.

4. You should be logged in. If you are following the tutorials, you will be a cluster-admin and should
see the Hybrid Cloud Console webpage with the Administrator panel visible.

16.8. TUTORIAL: MANAGING WORKER NODES

In Red Hat OpenShift Service on AWS (ROSA), changing aspects of your worker nodes is performed
through the use of machine pools. A machine pool allows users to manage many machines as a single
entity. Every ROSA cluster has a default machine pool that is created when the cluster is created. For
more information, see the machine pool documentation.

rosa-user

rosa describe cluster -c <cluster-name> | grep Console

CHAPTER 16. GETTING STARTED WITH ROSA

153

https://console.redhat.com/openshift
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cluster_administration/#rosa-nodes-machinepools-about

16.8.1. Creating a machine pool

You can create a machine pool with either the command line interface (CLI) or the user interface (UI).

16.8.1.1. Creating a machine pool with the CLI

1. Run the following command:

Example input

Example output

2. Optional: Add node labels or taints to specific nodes in a new machine pool by running the
following command:

Example input

Example output

This creates an additional 2 nodes that can be managed as a unit and also assigns them the
labels shown.

3. Run the following command to confirm machine pool creation and the assigned labels:

Example output

16.8.1.2. Creating a machine pool with the UI

rosa create machinepool --cluster=<cluster-name> --name=<machinepool-name> --replicas=
<number-nodes>

 $ rosa create machinepool --cluster=my-rosa-cluster --name=new-mp
 --replicas=2

I: Machine pool 'new-mp' created successfully on cluster 'my-rosa-cluster'
I: To view all machine pools, run 'rosa list machinepools -c my-rosa-cluster'

rosa create machinepool --cluster=<cluster-name> --name=<machinepool-name> --replicas=
<number-nodes> --labels=`<key=pair>`

$ rosa create machinepool --cluster=my-rosa-cluster --name=db-nodes-mp --replicas=2 --
labels='app=db','tier=backend'

I: Machine pool 'db-nodes-mp' created successfully on cluster 'my-rosa-cluster'

rosa list machinepools --cluster=<cluster-name>

ID AUTOSCALING REPLICAS INSTANCE TYPE LABELS TAINTS
AVAILABILITY ZONES
Default No 2 m5.xlarge us-east-1a

Red Hat OpenShift Service on AWS 4 Tutorials

154

1. Log in to the OpenShift Cluster Manager and click your cluster.

2. Click Machine pools.

3. Click Add machine pool.

4. Enter the desired configuration.

TIP

You can also and expand the Edit node labels and taints section to add node labels and taints
to the nodes in the machine pool.

CHAPTER 16. GETTING STARTED WITH ROSA

155

https://console.redhat.com/openshift

5. You will see the new machine pool you created.

Red Hat OpenShift Service on AWS 4 Tutorials

156

16.8.2. Scaling worker nodes

Edit a machine pool to scale the number of worker nodes in that specific machine pool. You can use
either the CLI or the UI to scale worker nodes.

16.8.2.1. Scaling worker nodes using the CLI

1. Run the following command to see the default machine pool that is created with each cluster:

Example output

2. To scale the default machine pool out to a different number of nodes, run the following
command:

Example input

3. Run the following command to confirm that the machine pool has scaled:

Example input

rosa list machinepools --cluster=<cluster-name>

ID AUTOSCALING REPLICAS INSTANCE TYPE LABELS TAINTS
AVAILABILITY ZONES
Default No 2 m5.xlarge us-east-1a

rosa edit machinepool --cluster=<cluster-name> --replicas=<number-nodes> <machinepool-
name>

rosa edit machinepool --cluster=my-rosa-cluster --replicas 3 Default

rosa describe cluster --cluster=<cluster-name> | grep Compute

CHAPTER 16. GETTING STARTED WITH ROSA

157

Example output

16.8.2.2. Scaling worker nodes using the UI

1. Click the three dots to the right of the machine pool you want to edit.

2. Click Edit.

3. Enter the desired number of nodes, and click Save.

4. Confirm that the cluster has scaled by selecting the cluster, clicking the Overview tab, and
scrolling to Compute listing. The compute listing should equal the scaled nodes. For example,
3/3.

16.8.2.3. Adding node labels

1. Use the following command to add node labels:

Example input

$ rosa describe cluster --cluster=my-rosa-cluster | grep Compute

- Compute: 3 (m5.xlarge)

rosa edit machinepool --cluster=<cluster-name> --replicas=<number-nodes> --
labels='key=value' <machinepool-name>

rosa edit machinepool --cluster=my-rosa-cluster --replicas=2 --labels 'foo=bar','baz=one'
new-mp

Red Hat OpenShift Service on AWS 4 Tutorials

158

This adds 2 labels to the new machine pool.

IMPORTANT

This command replaces all machine pool configurations with the newly defined
configuration. If you want to add another label and keep the old label, you must state
both the new and preexisting the label. Otherwise the command will replace all
preexisting labels with the one you wanted to add. Similarly, if you want to delete a label,
run the command and state the ones you want, excluding the one you want to delete.

16.8.3. Mixing node types

You can also mix different worker node machine types in the same cluster by using new machine pools.
You cannot change the node type of a machine pool once it is created, but you can create a new
machine pool with different nodes by adding the --instance-type flag.

1. For example, to change the database nodes to a different node type, run the following
command:

Example input

2. To see all the instance types available, run the following command:

3. To make step-by-step changes, use the --interactive flag:

4. Run the following command to list the machine pools and see the new, larger instance type:

rosa create machinepool --cluster=<cluster-name> --name=<mp-name> --replicas=<number-
nodes> --labels='<key=pair>' --instance-type=<type>

rosa create machinepool --cluster=my-rosa-cluster --name=db-nodes-large-mp --replicas=2 -
-labels='app=db','tier=backend' --instance-type=m5.2xlarge

rosa list instance-types

rosa create machinepool -c <cluster-name> --interactive

rosa list machinepools -c <cluster-name>

CHAPTER 16. GETTING STARTED WITH ROSA

159

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/introduction_to_rosa/#rosa-sdpolicy-aws-instance-types_rosa-service-definition

16.9. TUTORIAL: AUTOSCALING

The cluster autoscaler adds or removes worker nodes from a cluster based on pod resources.

The cluster autoscaler increases the size of the cluster when:

Pods fail to schedule on the current nodes due to insufficient resources.

Another node is necessary to meet deployment needs.

The cluster autoscaler does not increase the cluster resources beyond the limits that you specify.

The cluster autoscaler decreases the size of the cluster when:

Some nodes are consistently not needed for a significant period. For example, when a node has
low resource use and all of its important pods can fit on other nodes.

16.9.1. Enabling autoscaling for an existing machine pool using the CLI

NOTE

Cluster autoscaling can be enabled at cluster creation and when creating a new machine
pool by using the --enable-autoscaling option.

1. Autoscaling is set based on machine pool availability. To find out which machine pools are
available for autoscaling, run the following command:

Example output

2. Run the following command to add autoscaling to an available machine pool:

Example input

The above command creates an autoscaler for the worker nodes that scales between 2 and 4
nodes depending on the resources.

$ rosa list machinepools -c <cluster-name>

ID AUTOSCALING REPLICAS INSTANCE TYPE LABELS TAINTS
AVAILABILITY ZONES
Default No 2 m5.xlarge us-east-1a

$ rosa edit machinepool -c <cluster-name> --enable-autoscaling <machinepool-name> --min-
replicas=<num> --max-replicas=<num>

$ rosa edit machinepool -c my-rosa-cluster --enable-autoscaling Default --min-replicas=2 --
max-replicas=4

Red Hat OpenShift Service on AWS 4 Tutorials

160

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cluster_administration/#rosa-nodes-about-autoscaling-nodes

16.9.2. Enabling autoscaling for an existing machine pool using the UI

NOTE

Cluster autoscaling can be enabled at cluster creation by checking the Enable
autoscaling checkbox when creating machine pools.

1. Go to the Machine pools tab and click the three dots in the right..

2. Click Scale, then Enable autoscaling.

3. Run the following command to confirm that autoscaling was added:

Example output

16.10. TUTORIAL: UPGRADING YOUR CLUSTER

Red Hat OpenShift Service on AWS (ROSA) executes all cluster upgrades as part of the managed
service. You do not need to run any commands or make changes to the cluster. You can schedule the
upgrades at a convenient time.

Ways to schedule a cluster upgrade include:

Manually using the command line interface (CLI): Start a one-time immediate upgrade or
schedule a one-time upgrade for a future date and time.

Manually using the Red Hat OpenShift Cluster Manager user interface (UI): Start a one-time
immediate upgrade or schedule a one-time upgrade for a future date and time.

Automated upgrades: Set an upgrade window for recurring y-stream upgrades whenever a new
version is available without needing to manually schedule it. Minor versions have to be manually
scheduled.

For more details about cluster upgrades, run the following command:

16.10.1. Manually upgrading your cluster using the CLI

1. Check if there is an upgrade available by running the following command:

Example output

$ rosa list machinepools -c <cluster-name>

ID AUTOSCALING REPLICAS INSTANCE TYPE LABELS TAINTS
AVAILABILITY ZONES
Default Yes 2-4 m5.xlarge us-east-1a

$ rosa upgrade cluster --help

$ rosa list upgrade -c <cluster-name>

$ rosa list upgrade -c <cluster-name>

CHAPTER 16. GETTING STARTED WITH ROSA

161

In the above example, versions 4.14.7 and 4.14.6 are both available.

2. Schedule the cluster to upgrade within the hour by running the following command:

3. Optional: Schedule the cluster to upgrade at a later date and time by running the following
command:

16.10.2. Manually upgrading your cluster using the UI

1. Log in to the OpenShift Cluster Manager, and select the cluster you want to upgrade.

2. Click Settings.

3. If an upgrade is available, click Update.

4. Select the version to which you want to upgrade in the new window.

5. Schedule a time for the upgrade or begin it immediately.

16.10.3. Setting up automatic recurring upgrades

1. Log in to the OpenShift Cluster Manager, and select the cluster you want to upgrade.

2. Click Settings.

1. Under Update Strategy, click Recurring updates.

VERSION NOTES
4.14.7 recommended
4.14.6
...

$ rosa upgrade cluster -c <cluster-name> --version <desired-version>

$ rosa upgrade cluster -c <cluster-name> --version <desired-version> --schedule-date
<future-date-for-update> --schedule-time <future-time-for-update>

Red Hat OpenShift Service on AWS 4 Tutorials

162

3. Set the day and time for the upgrade to occur.

4. Under Node draining, select a grace period to allow the nodes to drain before pod eviction.

5. Click Save.

16.11. TUTORIAL: DELETING YOUR CLUSTER

You can delete your Red Hat OpenShift Service on AWS (ROSA) cluster using either the command line
interface (CLI) or the user interface (UI).

16.11.1. Deleting a ROSA cluster using the CLI

1. Optional: List your clusters to make sure you are deleting the correct one by running the
following command:

2. Delete a cluster by running the following command:

WARNING

This command is non-recoverable.

3. The CLI prompts you to confirm that you want to delete the cluster. Press y and then Enter.
The cluster and all its associated infrastructure will be deleted.

NOTE

All AWS STS and IAM roles and policies will remain and must be deleted manually
once the cluster deletion is complete by following the steps below.

4. The CLI outputs the commands to delete the OpenID Connect (OIDC) provider and Operator
IAM roles resources that were created. Wait until the cluster finishes deleting before deleting
these resources. Perform a quick status check by running the following command:

5. Once the cluster is deleted, delete the OIDC provider by running the following command:

6. Delete the Operator IAM roles by running the following command:

NOTE

$ rosa list clusters

$ rosa delete cluster --cluster <cluster-name>

$ rosa list clusters

$ rosa delete oidc-provider -c <clusterID> --mode auto --yes

$ rosa delete operator-roles -c <clusterID> --mode auto --yes

CHAPTER 16. GETTING STARTED WITH ROSA

163

NOTE

This command requires the cluster ID and not the cluster name.

7. Only remove the remaining account roles if they are no longer needed by other clusters in the
same account. If you want to create other ROSA clusters in this account, do not perform this
step.
To delete the account roles, you need to know the prefix used when creating them. The default
is "ManagedOpenShift" unless you specified otherwise.

Delete the account roles by running the following command:

16.11.2. Deleting a ROSA cluster using the UI

1. Log in to the OpenShift Cluster Manager, and locate the cluster you want to delete.

2. Click the three dots to the right of the cluster.

3. In the dropdown menu, click Delete cluster.

4. Enter the name of the cluster to confirm deletion, and click Delete.

16.12. TUTORIAL: OBTAINING SUPPORT

Finding the right help when you need it is important. These are some of the resources at your disposal
when you need assistance.

16.12.1. Adding support contacts

You can add additional email addresses for communications about your cluster.

1. On the Red Hat OpenShift Cluster Manager user interface (UI), click select cluster.

$ rosa delete account-roles --prefix <prefix> --mode auto --yes

Red Hat OpenShift Service on AWS 4 Tutorials

164

https://console.redhat.com/openshift

2. Click the Support tab.

3. Click Add notification contact, and enter the additional email addresses.

16.12.2. Contacting Red Hat for support using the UI

1. On the OpenShift Cluster Manager UI, click the Support tab.

2. Click Open support case.

16.12.3. Contacting Red Hat for support using the support page

1. Go to the Red Hat support page.

2. Click Open a new Case.

3. Log in to your Red Hat account.

4. Select the reason for contacting support.

CHAPTER 16. GETTING STARTED WITH ROSA

165

https://support.redhat.com

5. Select Red Hat OpenShift Service on AWS.

1. Click continue.

2. Enter a summary of the issue and the details of your request. Upload any files, logs, and
screenshots. The more details you provide, the better Red Hat support can help your case.

NOTE

Relevant suggestions that might help with your issue will appear at the bottom of
this page.

3. Click Continue.

4. Answer the questions in the new fields.

5. Click Continue.

6. Enter the following information about your case:

a. Support level: Premium

b. Severity: Review the Red Hat Support Severity Level Definitions to choose the correct one.

Red Hat OpenShift Service on AWS 4 Tutorials

166

c. Group: If this is related to a few other cases you can select the corresponding group.

d. Language

e. Send notifications: Add any additional email addresses to keep notified of activity.

f. Red Hat associates: If you are working with anyone from Red Hat and want to keep them in
the loop you can enter their email address here.

g. Alternate Case ID: If you want to attach your own ID to it you can enter it here.

7. Click Continue.

8. On the review screen make sure you select the correct cluster ID that you are contacting
support about.

9. Click Submit.

10. You will be contacted based on the response time committed to for the indicated severity level .

CHAPTER 16. GETTING STARTED WITH ROSA

167

https://access.redhat.com/support/offerings/openshift/sla

CHAPTER 17. DEPLOYING AN APPLICATION

17.1. TUTORIAL: DEPLOYING AN APPLICATION

17.1.1. Introduction

After successfully provisioning your cluster, you can deploy an application on it. This application allows
you to become more familiar with some of the features of Red Hat OpenShift Service on AWS (ROSA)
and Kubernetes.

17.1.1.1. Lab overview

In this lab, you will complete the following set of tasks designed to help you understand the concepts of
deploying and operating container-based applications:

Deploy a Node.js based app by using S2I and Kubernetes Deployment objects.

Set up a continuous delivery (CD) pipeline to automatically push source code changes.

Explore logging.

Experience self healing of applications.

Explore configuration management through configmaps, secrets, and environment variables.

Use persistent storage to share data across pod restarts.

Explore networking within Kubernetes and applications.

Familiarize yourself with ROSA and Kubernetes functionality.

Automatically scale pods based on loads from the Horizontal Pod Autoscaler.

Use AWS Controllers for Kubernetes (ACK) to deploy and use an S3 bucket.

This lab uses either the ROSA CLI or ROSA web user interface (UI).

17.2. TUTORIAL: DEPLOYING AN APPLICATION

17.2.1. Prerequisites

1. A Provisioned ROSA cluster
This lab assumes you have access to a successfully provisioned a ROSA cluster. If you have not
yet created a ROSA cluster, see Red Hat OpenShift Service on AWS quick start guide for more
information.

2. The OpenShift Command Line Interface (CLI)
For more information, see Getting started with the OpenShift CLI.

3. A GitHub Account
Use your existing GitHub account or register at https://github.com/signup.

17.3. TUTORIAL: DEPLOYING AN APPLICATION

Red Hat OpenShift Service on AWS 4 Tutorials

168

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/getting_started/#rosa-getting-started-prerequisites_rosa-quickstart-guide-ui
https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/cli_tools/#cli-getting-started
https://github.com/signup

17.3.1. Lab overview

17.3.1.1. Lab resources

Source code for the OSToy application

OSToy front-end container image

OSToy microservice container image

Deployment Definition YAML files:

ostoy-frontend-deployment.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: ostoy-pvc
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ostoy-frontend
 labels:
 app: ostoy
spec:
 selector:
 matchLabels:
 app: ostoy-frontend
 strategy:
 type: Recreate
 replicas: 1
 template:
 metadata:
 labels:
 app: ostoy-frontend
 spec:
 # Uncomment to use with ACK portion of the workshop
 # If you chose a different service account name please replace it.
 # serviceAccount: ostoy-sa
 containers:
 - name: ostoy-frontend
 securityContext:
 allowPrivilegeEscalation: false
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 capabilities:
 drop:
 - ALL

CHAPTER 17. DEPLOYING AN APPLICATION

169

https://github.com/openshift-cs/ostoy
https://quay.io/ostoylab/ostoy-frontend
https://quay.io/ostoylab/ostoy-microservice

 image: quay.io/ostoylab/ostoy-frontend:1.6.0
 imagePullPolicy: IfNotPresent
 ports:
 - name: ostoy-port
 containerPort: 8080
 resources:
 requests:
 memory: "256Mi"
 cpu: "100m"
 limits:
 memory: "512Mi"
 cpu: "200m"
 volumeMounts:
 - name: configvol
 mountPath: /var/config
 - name: secretvol
 mountPath: /var/secret
 - name: datavol
 mountPath: /var/demo_files
 livenessProbe:
 httpGet:
 path: /health
 port: 8080
 initialDelaySeconds: 10
 periodSeconds: 5
 env:
 - name: ENV_TOY_SECRET
 valueFrom:
 secretKeyRef:
 name: ostoy-secret-env
 key: ENV_TOY_SECRET
 - name: MICROSERVICE_NAME
 value: OSTOY_MICROSERVICE_SVC
 - name: NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 volumes:
 - name: configvol
 configMap:
 name: ostoy-configmap-files
 - name: secretvol
 secret:
 defaultMode: 420
 secretName: ostoy-secret
 - name: datavol
 persistentVolumeClaim:
 claimName: ostoy-pvc

apiVersion: v1
kind: Service
metadata:
 name: ostoy-frontend-svc
 labels:
 app: ostoy-frontend
spec:

Red Hat OpenShift Service on AWS 4 Tutorials

170

ostoy-microservice-deployment.yaml

 type: ClusterIP
 ports:
 - port: 8080
 targetPort: ostoy-port
 protocol: TCP
 name: ostoy
 selector:
 app: ostoy-frontend

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: ostoy-route
spec:
 to:
 kind: Service
 name: ostoy-frontend-svc

apiVersion: v1
kind: Secret
metadata:
 name: ostoy-secret-env
type: Opaque
data:
 ENV_TOY_SECRET: VGhpcyBpcyBhIHRlc3Q=

kind: ConfigMap
apiVersion: v1
metadata:
 name: ostoy-configmap-files
data:
 config.json: '{ "default": "123" }'

apiVersion: v1
kind: Secret
metadata:
 name: ostoy-secret
data:
 secret.txt:
VVNFUk5BTUU9bXlfdXNlcgpQQVNTV09SRD1AT3RCbCVYQXAhIzYzMlk1RndDQE1UUWsK
U01UUD1sb2NhbGhvc3QKU01UUF9QT1JUPTI1
type: Opaque

apiVersion: apps/v1
kind: Deployment
metadata:
 name: ostoy-microservice
 labels:
 app: ostoy
spec:
 selector:
 matchLabels:
 app: ostoy-microservice

CHAPTER 17. DEPLOYING AN APPLICATION

171

S3 bucket manifest for ACK S3

s3-bucket.yaml

 replicas: 1
 template:
 metadata:
 labels:
 app: ostoy-microservice
 spec:
 containers:
 - name: ostoy-microservice
 securityContext:
 allowPrivilegeEscalation: false
 runAsNonRoot: true
 seccompProfile:
 type: RuntimeDefault
 capabilities:
 drop:
 - ALL
 image: quay.io/ostoylab/ostoy-microservice:1.5.0
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 8080
 protocol: TCP
 resources:
 requests:
 memory: "128Mi"
 cpu: "50m"
 limits:
 memory: "256Mi"
 cpu: "100m"

apiVersion: v1
kind: Service
metadata:
 name: ostoy-microservice-svc
 labels:
 app: ostoy-microservice
spec:
 type: ClusterIP
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 selector:
 app: ostoy-microservice

apiVersion: s3.services.k8s.aws/v1alpha1
kind: Bucket
metadata:
 name: ostoy-bucket
 namespace: ostoy
spec:
 name: ostoy-bucket

Red Hat OpenShift Service on AWS 4 Tutorials

172

NOTE

To simplify deployment of the OSToy application, all of the objects required in the above
deployment manifests are grouped together. For a typical enterprise deployment, a
separate manifest file for each Kubernetes object is recommended.

17.3.1.2. About the OSToy application

OSToy is a simple Node.js application that you will deploy to a ROSA cluster to help explore the
functionality of Kubernetes. This application has a user interface where you can:

Write messages to the log (stdout / stderr).

Intentionally crash the application to view self-healing.

Toggle a liveness probe and monitor OpenShift behavior.

Read config maps, secrets, and env variables.

If connected to shared storage, read and write files.

Check network connectivity, intra-cluster DNS, and intra-communication with the included
microservice.

Increase the load to view automatic scaling of the pods to handle the load using the Horizontal
Pod Autoscaler.

Optional: Connect to an AWS S3 bucket to read and write objects.

17.3.1.3. OSToy Application Diagram

17.3.1.4. Understanding the OSToy UI

CHAPTER 17. DEPLOYING AN APPLICATION

173

1. Shows the pod name that served your browser the page.

2. Home: The main page of the application where you can perform some of the functions listed
which we will explore.

3. Persistent Storage: Allows you to write data to the persistent volume bound to this application.

4. Config Maps: Shows the contents of configmaps available to the application and the key:value
pairs.

5. Secrets: Shows the contents of secrets available to the application and the key:value pairs.

6. ENV Variables: Shows the environment variables available to the application.

7. Networking: Tools to illustrate networking within the application.

8. Pod Auto Scaling: Tool to increase the load of the pods and test the HPA.

9. ACK S3: Optional: Integrate with AWS S3 to read and write objects to a bucket.

NOTE

In order see the "ACK S3" section of OSToy, you must complete the ACK section
of this workshop. If you decide not to complete that section, the OSToy
application will still function.

10. About: Displays more information about the application.

17.4. TUTORIAL: NETWORKING

This tutorial shows how the OSToy app uses intra-cluster networking to separate functions by using
microservices and visualize the scaling of pods.

Red Hat OpenShift Service on AWS 4 Tutorials

174

The diagram shows there are at least two separate pods, each with its own service.

One pod functions as the front end web application with a service and a publicly accessible route. The
other pod functions as the backend microservice with a service object so that the front end pod can
communicate with the microservice. This communication occurs across the pods if more than one.
Because of these communication limits, this microservice is not accessible from outside this cluster or
from other namespaces or projects if these are configured. The sole purpose of this microservice is to
serve internal web requests and return a JSON object containing the current hostname, which is the
pod’s name, and a randomly generated color string. This color string is used to display a box with that
color displayed in the tile titled "Intra-cluster Communication".

For more information about the networking limitations, see About network policy .

17.4.1. Intra-cluster networking

You can view your networking configurations in your OSToy application.

Procedure

1. In the OSToy application, click Networking in the left menu.

2. Review the networking configuration. The right tile titled "Hostname Lookup" illustrates how the
service name created for a pod can be used to translate into an internal ClusterIP address.

3. Enter the name of the microservice created in the right tile ("Hostname Lookup") following the
format of <service_name>.<namespace>.svc.cluster.local. You can find this service name in
the service definition of ostoy-microservice.yaml by running the following command:

$ oc get service <name_of_service> -o yaml

CHAPTER 17. DEPLOYING AN APPLICATION

175

https://access.redhat.com/documentation/en-us/red_hat_openshift_service_on_aws/4/html-single/networking/#about-network-policy-1

Example output

In this example, the full hostname is ostoy-microservice-svc.ostoy.svc.cluster.local.

4. You see an IP address returned. In this example it is 172.30.165.246. This is the intra-cluster IP
address, which is only accessible from within the cluster.

apiVersion: v1
kind: Service
metadata:
 name: ostoy-microservice-svc
 labels:
 app: ostoy-microservice
spec:
 type: ClusterIP
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 selector:
 app: ostoy-microservice

Red Hat OpenShift Service on AWS 4 Tutorials

176

	Table of Contents
	CHAPTER 1. TUTORIALS OVERVIEW
	CHAPTER 2. TUTORIAL: ROSA WITH HCP ACTIVATION AND ACCOUNT LINKING
	2.1. PREREQUISITES
	2.2. SUBSCRIPTION ENABLEMENT AND AWS ACCOUNT SETUP
	2.3. AWS AND RED HAT ACCOUNT AND SUBSCRIPTION LINKING
	2.4. ROSA WITH HCP CLUSTER DEPLOYMENT USING THE CLI
	2.5. ROSA WITH HCP CLUSTER DEPLOYMENT USING THE WEB CONSOLE

	CHAPTER 3. TUTORIAL: VERIFYING PERMISSIONS FOR A ROSA STS DEPLOYMENT
	3.1. PREREQUISITES
	3.2. VERIFYING ROSA PERMISSIONS
	3.3. USAGE INSTRUCTIONS

	CHAPTER 4. CONFIGURING LOG FORWARDING FOR CLOUDWATCH LOGS AND STS
	4.1. SETTING UP YOUR ENVIRONMENT
	4.2. PREPARING YOUR AWS ACCOUNT
	4.3. DEPLOYING OPERATORS
	4.4. CONFIGURING CLUSTER LOGGING
	4.5. CHECKING CLOUDWATCH FOR LOGS
	4.6. CLEANING UP YOUR RESOURCES

	CHAPTER 5. TUTORIAL: USING AWS WAF AND AMAZON CLOUDFRONT TO PROTECT ROSA WORKLOADS
	5.1. PREREQUISITES
	5.1.1. Environment setup

	5.2. CUSTOM DOMAIN SETUP
	5.2.1. Configure the AWS WAF

	5.3. CONFIGURE AMAZON CLOUDFRONT
	5.4. DEPLOY A SAMPLE APPLICATION
	5.5. TEST THE WAF
	5.6. ADDITIONAL RESOURCES

	CHAPTER 6. TUTORIAL: USING AWS WAF AND AWS ALBS TO PROTECT ROSA WORKLOADS
	6.1. PREREQUISITES
	6.1.1. Environment setup
	6.1.2. AWS VPC and subnets

	6.2. DEPLOY THE AWS LOAD BALANCER OPERATOR
	6.3. DEPLOY A SAMPLE APPLICATION
	6.3.1. Configure the AWS WAF

	6.4. ADDITIONAL RESOURCES

	CHAPTER 7. TUTORIAL: DEPLOYING OPENSHIFT API FOR DATA PROTECTION ON A ROSA CLUSTER
	7.1. PREPARE AWS ACCOUNT
	7.2. DEPLOY OADP ON THE CLUSTER
	7.3. PERFORM A BACKUP
	7.4. CLEANUP

	CHAPTER 8. TUTORIAL: AWS LOAD BALANCER OPERATOR ON ROSA
	8.1. PREREQUISITES
	8.1.1. Environment
	8.1.2. AWS VPC and subnets

	8.2. INSTALLATION
	8.3. VALIDATING THE DEPLOYMENT
	8.4. CLEANING UP

	CHAPTER 9. TUTORIAL: CONFIGURING ROSA/OSD TO USE CUSTOM TLS CIPHERS ON THE INGRESS CONTROLLER
	CHAPTER 10. TUTORIAL: CONFIGURING MICROSOFT ENTRA ID (FORMERLY AZURE ACTIVE DIRECTORY) AS AN IDENTITY PROVIDER
	10.1. PREREQUISITES
	10.2. REGISTERING A NEW APPLICATION IN ENTRA ID FOR AUTHENTICATION
	10.3. CONFIGURING THE APPLICATION REGISTRATION IN ENTRA ID TO INCLUDE OPTIONAL AND GROUP CLAIMS
	Configuring optional claims
	Configuring group claims (optional)

	10.4. CONFIGURING THE RED HAT OPENSHIFT SERVICE ON AWS CLUSTER TO USE ENTRA ID AS THE IDENTITY PROVIDER
	10.5. GRANTING ADDITIONAL PERMISSIONS TO INDIVIDUAL USERS AND GROUPS
	Granting additional permissions to individual users
	Granting additional permissions to individual groups

	10.6. ADDITIONAL RESOURCES

	CHAPTER 11. TUTORIAL: USING AWS SECRETS MANAGER CSI ON ROSA WITH STS
	11.1. PREREQUISITES
	Additional environment requirements

	11.2. DEPLOYING THE AWS SECRETS AND CONFIGURATION PROVIDER
	11.3. CREATING A SECRET AND IAM ACCESS POLICIES
	11.4. CREATE AN APPLICATION TO USE THIS SECRET
	11.5. CLEAN UP

	CHAPTER 12. TUTORIAL: USING AWS CONTROLLERS FOR KUBERNETES ON ROSA
	12.1. PREREQUISITES
	12.2. SETTING UP YOUR ENVIRONMENT
	12.3. PREPARING YOUR AWS ACCOUNT
	12.4. INSTALLING THE ACK S3 CONTROLLER
	12.5. VALIDATING THE DEPLOYMENT
	12.6. CLEANING UP

	CHAPTER 13. TUTORIAL: DEPLOYING THE EXTERNAL DNS OPERATOR ON ROSA
	13.1. PREREQUISITES
	13.2. SETTING UP YOUR ENVIRONMENT
	13.3. SETTING UP YOUR CUSTOM DOMAIN
	13.4. PREPARING YOUR AWS ACCOUNT
	13.5. INSTALLING THE EXTERNAL DNS OPERATOR
	13.6. DEPLOYING A SAMPLE APPLICATION

	CHAPTER 14. TUTORIAL: DYNAMICALLY ISSUING CERTIFICATES USING THE CERT-MANAGER OPERATOR ON ROSA
	14.1. PREREQUISITES
	14.2. SETTING UP YOUR ENVIRONMENT
	14.3. PREPARING YOUR AWS ACCOUNT
	14.4. INSTALLING THE CERT-MANAGER OPERATOR
	14.5. CREATING A CUSTOM DOMAIN INGRESS CONTROLLER
	14.6. CONFIGURING DYNAMIC CERTIFICATES FOR CUSTOM DOMAIN ROUTES
	14.7. DEPLOYING A SAMPLE APPLICATION
	14.8. TROUBLESHOOTING DYNAMIC CERTIFICATE PROVISIONING

	CHAPTER 15. TUTORIAL: ASSIGNING A CONSISTENT EGRESS IP FOR EXTERNAL TRAFFIC
	15.1. SETTING YOUR ENVIRONMENT VARIABLES
	15.2. ENSURING CAPACITY
	15.3. CREATING THE EGRESS IP RULES
	15.4. ASSIGNING AN EGRESS IP TO A NAMESPACE
	15.5. ASSIGNING AN EGRESS IP TO A POD
	15.5.1. Labeling the nodes
	15.5.2. Reviewing the egress IPs

	15.6. VERIFICATION
	15.6.1. Deploying a sample application
	15.6.2. Testing the namespace egress
	15.6.3. Testing the pod egress
	15.6.4. Optional: Testing blocked egress

	15.7. CLEANING UP YOUR CLUSTER

	CHAPTER 16. GETTING STARTED WITH ROSA
	16.1. TUTORIAL: WHAT IS ROSA
	16.1.1. Key features of ROSA
	16.1.2. ROSA and Kubernetes
	16.1.3. Basic responsibilities
	16.1.4. Roadmap and feature requests
	16.1.5. AWS region availability
	16.1.6. Compliance certifications
	16.1.7. Nodes
	16.1.7.1. Worker nodes across multiple AWS regions
	16.1.7.2. Minimum number of worker nodes
	16.1.7.3. Underlying node operating system
	16.1.7.4. Node hibernation or shut-down
	16.1.7.5. Supported instances for worker nodes
	16.1.7.6. Node autoscaling
	16.1.7.7. Maximum number of worker nodes

	16.1.8. Administrators
	16.1.9. OpenShift versions and upgrades
	16.1.10. Support
	16.1.10.1. Limited support

	16.1.11. Service-level agreement (SLA)
	16.1.12. Notifications and communication
	16.1.13. Open Service Broker for AWS (OBSA)
	16.1.14. Offboarding
	16.1.15. Authentication
	16.1.16. SRE cluster access
	16.1.17. Encryption
	16.1.17.1. Encryption keys
	16.1.17.2. KMS keys
	16.1.17.3. Data encryption
	16.1.17.4. etcd encryption
	16.1.17.5. etcd encryption configuration
	16.1.17.6. Multi-region KMS keys for EBS encryption

	16.1.18. Infrastructure
	16.1.19. Credential methods
	16.1.20. Prerequisite permission or failure errors
	16.1.21. Storage
	16.1.22. Using a VPC
	16.1.23. Network plugin
	16.1.24. Cross-namespace networking
	16.1.25. Using Prometheus and Grafana
	16.1.26. Audit logs output from the cluster control-plane
	16.1.27. AWS Permissions Boundary
	16.1.28. AMI
	16.1.29. Cluster backups
	16.1.30. Custom domain
	16.1.31. ROSA domain certificates
	16.1.32. Disconnected environments

	16.2. TUTORIAL: ROSA WITH AWS STS EXPLAINED
	16.2.1. Different credential methods to deploy ROSA
	16.2.1.1. Rosa with IAM Users
	16.2.1.2. ROSA with STS

	16.2.2. ROSA with STS security
	16.2.3. AWS STS explained
	16.2.4. Components specific to ROSA with STS
	16.2.5. Deploying a ROSA STS cluster
	16.2.6. ROSA with STS workflow
	16.2.7. ROSA with STS use cases

	16.3. DEPLOYING A CLUSTER
	16.3.1. Tutorial: Choosing a deployment method
	16.3.1.1. Deployment options

	16.3.2. Tutorial: Simple CLI guide
	16.3.2.1. Prerequisites
	16.3.2.2. Creating account roles
	16.3.2.3. Deploying the cluster

	16.3.3. Tutorial: Detailed CLI guide
	16.3.3.1. CLI deployment modes
	16.3.3.2. Deployment workflow
	16.3.3.3. Automatic mode
	16.3.3.4. Manual Mode
	16.3.3.5. Obtaining the Red Hat Hybrid Cloud Console URL

	16.3.4. Tutorial: Hosted Control Planes guide
	16.3.4.1. Prerequisites
	16.3.4.2. Creating the cluster
	16.3.4.3. Checking the installation status

	16.3.5. Tutorial: Simple UI guide
	16.3.5.1. Prerequisites
	16.3.5.2. Creating account roles
	16.3.5.3. Creating Red Hat OpenShift Cluster Manager roles

	16.3.6. Tutorial: Detailed UI guide
	16.3.6.1. Deployment workflow
	16.3.6.2. Creating account wide roles
	16.3.6.3. Associating your AWS account with your Red Hat account
	16.3.6.4. Creating and associating an OpenShift Cluster Manager role
	16.3.6.5. Creating an OpenShift Cluster Manager user role
	16.3.6.6. Creating account roles
	16.3.6.7. Confirming successful account association
	16.3.6.8. Creating the cluster
	16.3.6.9. Basic OpenShift Cluster Manager Role

	16.4. TUTORIAL: CREATING AN ADMIN USER
	16.5. TUTORIAL: SETTING UP AN IDENTITY PROVIDER
	16.5.1. Setting up an IDP with GitHub
	16.5.2. Granting other users access to the cluster

	16.6. TUTORIAL: GRANTING ADMIN PRIVILEGES
	16.6.1. Using the ROSA CLI
	16.6.2. Using the Red Hat OpenShift Cluster Manager UI

	16.7. TUTORIAL: ACCESSING YOUR CLUSTER
	16.7.1. Accessing your cluster using the CLI
	16.7.2. Accessing the cluster via the Hybrid Cloud Console

	16.8. TUTORIAL: MANAGING WORKER NODES
	16.8.1. Creating a machine pool
	16.8.1.1. Creating a machine pool with the CLI
	16.8.1.2. Creating a machine pool with the UI

	16.8.2. Scaling worker nodes
	16.8.2.1. Scaling worker nodes using the CLI
	16.8.2.2. Scaling worker nodes using the UI
	16.8.2.3. Adding node labels

	16.8.3. Mixing node types

	16.9. TUTORIAL: AUTOSCALING
	16.9.1. Enabling autoscaling for an existing machine pool using the CLI
	16.9.2. Enabling autoscaling for an existing machine pool using the UI

	16.10. TUTORIAL: UPGRADING YOUR CLUSTER
	16.10.1. Manually upgrading your cluster using the CLI
	16.10.2. Manually upgrading your cluster using the UI
	16.10.3. Setting up automatic recurring upgrades

	16.11. TUTORIAL: DELETING YOUR CLUSTER
	16.11.1. Deleting a ROSA cluster using the CLI
	16.11.2. Deleting a ROSA cluster using the UI

	16.12. TUTORIAL: OBTAINING SUPPORT
	16.12.1. Adding support contacts
	16.12.2. Contacting Red Hat for support using the UI
	16.12.3. Contacting Red Hat for support using the support page

	CHAPTER 17. DEPLOYING AN APPLICATION
	17.1. TUTORIAL: DEPLOYING AN APPLICATION
	17.1.1. Introduction
	17.1.1.1. Lab overview

	17.2. TUTORIAL: DEPLOYING AN APPLICATION
	17.2.1. Prerequisites

	17.3. TUTORIAL: DEPLOYING AN APPLICATION
	17.3.1. Lab overview
	17.3.1.1. Lab resources
	17.3.1.2. About the OSToy application
	17.3.1.3. OSToy Application Diagram
	17.3.1.4. Understanding the OSToy UI

	17.4. TUTORIAL: NETWORKING
	17.4.1. Intra-cluster networking

