
Red Hat JBoss Web Server 1.0

Hibernate Entity Manager Reference Guide

for Use with Red Hat JBoss Web Server

Edition 1.0.2

Last Updated: 2017-10-19

Red Hat JBoss Web Server 1.0 Hibernate Entity Manager Reference

Guide

for Use with Red Hat JBoss Web Server
Edition 1.0.2

Red Hat Documentation Group

Legal Notice

Copyright © 2010 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Hibernate Entity Manager Reference Guide for Red Hat JBoss Web Server.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCING JPA PERSISTENCE

CHAPTER 2. ARCHITECTURE
2.1. DEFINITIONS
2.2. EJB CONTAINER ENVIRONMENT

2.2.1. Container-managed entity manager
2.2.2. Application-managed entity manager
2.2.3. Persistence context scope
2.2.4. Persistence context propagation

2.3. JAVA SE ENVIRONMENTS

CHAPTER 3. SETUP AND CONFIGURATION
3.1. CONFIGURATION AND BOOTSTRAPPING

3.1.1. Packaging
3.1.2. Bootstrapping

3.2. EVENT LISTENERS
3.3. OBTAINING AN ENTITYMANAGER IN A JAVA SE ENVIRONMENT

CHAPTER 4. WORKING WITH OBJECTS
4.1. ENTITY STATES
4.2. MAKING OBJECTS PERSISTENT
4.3. LOADING AN OBJECT
4.4. QUERYING OBJECTS

4.4.1. Executing queries
4.4.1.1. Projection
4.4.1.2. Scalar results
4.4.1.3. Bind parameters
4.4.1.4. Pagination
4.4.1.5. Externalizing named queries
4.4.1.6. Native queries
4.4.1.7. Query hints

4.5. MODIFYING PERSISTENT OBJECTS
4.6. MODIFYING DETACHED OBJECTS
4.7. AUTOMATIC STATE DETECTION
4.8. DELETING MANAGED OBJECTS
4.9. FLUSH THE PERSISTENCE CONTEXT

4.9.1. In a transaction
4.9.2. Outside a transaction

4.10. TRANSITIVE PERSISTENCE
4.11. LOCKING

CHAPTER 5. TRANSACTIONS AND CONCURRENCY
5.1. ENTITY MANAGER AND TRANSACTION SCOPES

5.1.1. Unit of work
5.1.2. Long units of work
5.1.3. Considering object identity
5.1.4. Common concurrency control issues

5.2. DATABASE TRANSACTION DEMARCATION
5.2.1. Non-managed environment

5.2.1.1. EntityTransaction
5.2.2. Using JTA
5.2.3. Exception handling

4

5
5
5
5
6
6
6
7

8
8
8

10
13
14

15
15
15
15
16
16
16
17
17
17
18
18
19
19

20
20
21
21
21
23
23
24

25
25
25
26
27
28
28
29
30
30
31

Table of Contents

1

. .

. .

. .

. .

. .

5.3. EXTENDED PERSISTENCE CONTEXT
5.3.1. Container Managed Entity Manager
5.3.2. Application Managed Entity Manager

5.4. OPTIMISTIC CONCURRENCY CONTROL
5.4.1. Application version checking
5.4.2. Extended entity manager and automatic versioning
5.4.3. Detached objects and automatic versioning

CHAPTER 6. ENTITY LISTENERS AND CALLBACK METHODS
6.1. DEFINITION
6.2. CALLBACKS AND LISTENERS INHERITANCE
6.3. XML DEFINITION

CHAPTER 7. BATCH PROCESSING
7.1. BULK UPDATE/DELETE

CHAPTER 8. EJB-QL: THE OBJECT QUERY LANGUAGE
8.1. CASE SENSITIVITY
8.2. THE FROM CLAUSE
8.3. ASSOCIATIONS AND JOINS
8.4. THE SELECT CLAUSE
8.5. AGGREGATE FUNCTIONS
8.6. POLYMORPHIC QUERIES
8.7. THE WHERE CLAUSE
8.8. EXPRESSIONS
8.9. THE ORDER BY CLAUSE
8.10. THE GROUP BY CLAUSE
8.11. SUBQUERIES
8.12. EJB-QL EXAMPLES
8.13. BULK UPDATE & DELETE STATEMENTS
8.14. TIPS & TRICKS

CHAPTER 9. NATIVE QUERY
9.1. EXPRESSING THE RESULTSET
9.2. USING NATIVE SQL QUERIES
9.3. NAMED QUERIES

APPENDIX A. REVISION HISTORY

32
32
33
33
33
34
35

36
36
37
38

39
39

41
41
41
41
42
44
44
45
46
49
50
50
51
53
53

54
54
55
55

56

Hibernate Entity Manager Reference Guide

2

Table of Contents

3

CHAPTER 1. INTRODUCING JPA PERSISTENCE
The JPA specification recognizes the interest and the success of the transparent object/relational
mapping paradigm. The JPA specification standardizes the basic APIs and the metadata needed for
any object/relational persistence mechanism. Hibernate EntityManager implements the programming
interfaces and lifecycle rules as defined by the EJB3 persistence specification. Together with Hibernate
Annotations, this wrapper implements a complete (and standalone) JPA persistence solution on top of
the mature Hibernate core. You may use a combination of all three together, annotations without JPA
programming interfaces and lifecycle, or even pure native Hibernate, depending on the business and
technical needs of your project. You can at all times fall back to Hibernate native APIs, or if required,
even to native JDBC and SQL.

IMPORTANT

JBoss Enterprise Web Server does not include support for JTA.

Hibernate Entity Manager Reference Guide

4

CHAPTER 2. ARCHITECTURE

2.1. DEFINITIONS

EJB3 is part of the Java EE 5.0 platform. Persistence in EJB3 is available in EJB3 containers, as well
as for standalone J2SE applications that execute outside of a particular container. The following
programming interfaces and artifacts are available in both environments.

EntityManagerFactory

An entity manager factory provides entity manager instances, all instances are configured to
connect to the same database, to use the same default settings as defined by the particular
implementation, etc. You can prepare several entity manager factories to access several data
stores. This interface is similar to the SessionFactory in native Hibernate.

EntityManager

The EntityManager API is used to access a database in a particular unit of work. It is used to
create and remove persistent entity instances, to find entities by their primary key identity, and to
query over all entities. This interface is similar to the Session in Hibernate.

Persistence context

A persistence context is a set of entity instances in which for any persistent entity identity there is
a unique entity instance. Within the persistence context, the entity instances and their lifecycle is
managed by a particular entity manager. The scope of this context can either be the transaction, or
an extended unit of work.

Persistence unit

The set of entity types that can be managed by a given entity manager is defined by a persistence
unit. A persistence unit defines the set of all classes that are related or grouped by the application,
and which must be collocated in their mapping to a single data store.

Container-managed entity manager

An Entity Manager whose lifecycle is managed by the container

Application-managed entity manager

An Entity Manager whose lifecycle is managed by the application.

JTA entity manager

Entity manager involved in a JTA transaction

Resource-local entity manager

Entity manager using a resource transaction (not a JTA transaction).

2.2. EJB CONTAINER ENVIRONMENT

2.2.1. Container-managed entity manager

The most common and widely used entity manager in a Java EE environment is the container-managed
entity manager. In this mode, the container is responsible for the opening and closing of the entity

CHAPTER 2. ARCHITECTURE

5

manager (this is transparent to the application). It is also responsible for transaction boundaries. A
container-managed entity manager is obtained in an application through dependency injection or
through JNDI lookup. A container-managed entity manger requires the use of a JTA transaction.

2.2.2. Application-managed entity manager

An application-managed entity manager allows you to control the entity manager in application code.
This entity manager is retrieved through the EntityManagerFactory API. An application managed
entity manager can be either involved in the current JTA transaction (a JTA entity manager), or the
transaction may be controlled through the EntityTransaction API (a resource-local entity
manager). The resource-local entity manager transaction maps to a direct resource transaction (i. e. in
Hibernate's case a JDBC transaction). The entity manager type (JTA or resource-local) is defined at
configuration time, when setting up the entity manager factory.

2.2.3. Persistence context scope

An entity manager is the API to interact with the persistence context. Two common strategies can be
used: binding the persistence context to the transaction boundaries, or keeping the persistence
context available across several transactions.

The most common case is to bind the persistence context scope to the current transaction scope. This
is only doable when JTA transactions are used: the persistence context is associated with the JTA
transaction life cycle. When a entity manager is invoked, the persistence context is also opened, if
there is no persistence context associated with the current JTA transaction. Otherwise, the associated
persistence context is used. The persistence context ends when the JTA transaction completes. This
means that during the JTA transaction, an application will be able to work on managed entities of the
same persistence context. In other words, you don't have to pass the entity manager's persistence
context across your EJB method calls, but simply use dependency injection or lookup whenever you
need an entity manager.

You can also use an extended persistence context. This can be combined with stateful session beans, if
you use a container-managed entity manager: the persistence context is created when an entity
manager is retrieved from dependency injection or JNDI lookup, and is kept until the container closes
it after the completion of the Remove stateful session bean method. This is a perfect mechanism for
implementing a "long" unit of work pattern. For example, if you have to deal with multiple user
interaction cycles as a single unit of work (e.g. a wizard dialog that has to be fully completed), you
usually model this as a unit of work from the point of view of the application user, and implement it
using an extended persistence context. Please refer to the Hibernate reference manual or the book
Hibernate In Action for more information about this pattern. JBoss Seam is a framework that link
together JSF and EJB3 around the notion of conversation and unit of work. For an application-
managed entity manager the persistence context is created when the entity manager is created and
kept until the entity manager is closed. In an extended persistence context, all modification operations
(persist, merge, remove) executed outside a transaction are queued until the persistence context is
attached to a transaction. The transaction typically occurs at the user process end, allowing the whole
process to be commited or rollbacked. For application-managed entity manager only support the
extended persistence context.

A resource-local entity manager or an entity manager created with
EntityManagerFactory.createEntityManager() (application-managed) has a one-to-one
relationship with a persistence context. In other situations persistence context propagation occurs.

2.2.4. Persistence context propagation

Persistence context propagation occurs for container-managed entity managers.

Hibernate Entity Manager Reference Guide

6

In a transaction-scoped container managed entity manager (common case in a Java EE environment),
the JTA transaction propagation is the same as the persistence context resource propagation. In other
words, container-managed transaction-scoped entity managers retrieved within a given JTA
transaction all share the same persistence context. In Hibernate terms, this means all managers share
the same session.

Important: persistence context are never shared between different JTA transactions or between entity
manager that do not came from the same entity manager factory. There are some noteworthy
exceptions for context propagation when using extended persistence contexts:

If a stateless session bean, message-driven bean, or stateful session bean with a transaction-
scoped persistence context calls a stateful session bean with an extended persistence context
in the same JTA transaction, an IllegalStateException is thrown.

If a stateful session bean with an extended persistence context calls a stateless session bean
or a stateful session bean with a transaction-scoped persistence context in the same JTA
transaction, the persistence context is propagated.

If a stateful session bean with an extended persistence context calls a stateless or stateful
session bean in a different JTA transaction context, the persistence context is not propagated.

If a stateful session bean with an extended persistence context instantiates another stateful
session bean with an extended persistence context, the extended persistence context is
inherited by the second stateful session bean. If the second stateful session bean is called with
a different transaction context than the first, an IllegalStateException is thrown.

If a stateful session bean with an extended persistence context calls a stateful session bean
with a different extended persistence context in the same transaction, an
IllegalStateException is thrown.

2.3. JAVA SE ENVIRONMENTS

In a Java SE environment only extended context application-managed entity managers are available.
You can retrieve an entity manger using the EntityManagerFactory API. Only resource-local entity
managers are available. In other words, JTA transactions and persistence context propagation are not
supported in Java SE (you will have to propagate the persistence context yourself, e.g. using the
thread local session pattern popular in the Hibernate community).

Extended context means that a persistence context is created when the entity manager is retrieved
(using EntityManagerFactory.createEntityManager(...)) and closed when the entity
manager is closed. Many resource-local transaction share the same persistence context, in this case.

CHAPTER 2. ARCHITECTURE

7

CHAPTER 3. SETUP AND CONFIGURATION

3.1. CONFIGURATION AND BOOTSTRAPPING

3.1.1. Packaging

The configuration for entity managers both inside an application server and in a standalone application
reside in a persistence archive. A persistence archive is a JAR file which must define a
persistence.xml file that resides in the META-INF folder. All properly annotated classes included in
the archive (ie having an @Entity annotation), all annotated packages and all Hibernate hbm.xml files
included in the archive will be added to the persistence unit configuration, so by default, your
persistence.xml will be quite minimalist:

Here's a more complete example of a persistence.xml file

name

(attribute) Every entity manager must have a name.

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">
 <persistence-unit name="sample">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.HSQLDialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 </properties>
 </persistence-unit>
</persistence>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">
 <persistence-unit name="manager1" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <mapping-file>ormap.xml</mapping-file>
 <jar-file>MyApp.jar</jar-file>
 <class>org.acme.Employee</class>
 <class>org.acme.Person</class>
 <class>org.acme.Address</class>
 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.HSQLDialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 </properties>
 </persistence-unit>
</persistence>

Hibernate Entity Manager Reference Guide

8

transaction-type

(attribute) Transaction type used. Either JTA or RESOURCE_LOCAL (default to JTA in a JavaEE
environment and to RESOURCE_LOCAL in a JavaSE environment). When a jta-datasource is used,
the default is JTA, if non-jta-datasource is used, RESOURCE_LOCAL is used.

provider

The provider is a fully-qualified class name of the JPA Persistence provider. You do not have to
define it if you don't work with several JPA implementations. This is needed when you are using
multiple vendor implementations of EJB Persistence.

jta-data-source, non-jta-data-source

This is the JNDI name of where the javax.sql.DataSource is located. When running without a JNDI
available Datasource, you must specify JDBC connections with Hibernate specific properties (see
below).

mapping-file

The class element specifies a JPA compliant XML mapping file that you will map. The file has to be
in the classpath. As per the JPA specification, Hibernate EntityManager will try to load the mapping
file located in the jar file at META_INF/orm.xml. Of course any explicit mapping file will be loaded
too. As a matter of fact, you can provide any XML file in the mapping file element ie. either hbm files
or JPA deployment descriptor.

jar-file

The jar-file elements specifies a jar to analyse. All properly annotated classes, annotated packages
and all hbm.xml files part of this jar file will be added to the persistence unit configuration. This
element is mainly used in Java EE environment. Use of this one in Java SE should be considered as
non portable, in this case a absolute url is needed. You can alternatively point to a directory (This is
especially useful when in your test environment, the persistence.xml file is not under the same root
directory or jar than your domain model).

exclude-unlisted-classes

Do not check the main jar file for annotated classes. Only explicit classes will be part of the
persistence unit.

class

The class element specifies a fully qualified class name that you will map. By default all properly
annotated classes and all hbm.xml files found inside the archive are added to the persistence unit
configuration. You can add some external entity through the class element though. As an extension
to the specification, you can add a package name in the <class> element (eg
<class>org.hibernate.eg</class>). Specifying a package in the <class> element will
include only the annotated classes.

properties

The properties element is used to specify vendor specific properties. This is where you will define
your Hibernate specific configurations. This is also where you will have to specify JDBC connection
information as well.

 <jar-file>file:/home/turin/work/local/lab8/build/classes</jar-
file>

CHAPTER 3. SETUP AND CONFIGURATION

9

Be sure to define the grammar definition in the persistence element since the JPA specification
requires the schema validation. If the systemId ends with persistence_1_0.xsd, Hibernate
entityManager will use the version embedded in the hibernate-entitymanager.jar. No internet access
will be performed.

3.1.2. Bootstrapping

The JPA specification defines a bootstrap procedure to access the EntityManagerFactory and the
EntityManager. The bootstrap class is javax.persistence.Persistence, e.g.

The first version is equivalent to the second with an empty map. The map version is a set of overrides
that will take precedence over any properties defined in your persistence.xml files. There are a couple
of JPA properties usable in the map:

javax.persistence.provider to define the provider class used

javax.persistence.transactionType to define the transaction type used (either JTA or
RESOURCE_LOCAL)

javax.persistence.jtaDataSource to define the JTA datasource name in JNDI

javax.persistence.nonJtaDataSource to define the non JTA datasource name in JNDI

When Persistence.createEntityManagerFactory() is called, the persistence implementation
will search your classpath for any META-INF/persistence.xml files using the
ClassLoader.getResource("META-INF/persistence.xml") method. Actually the
Persistence class will look at all the Persistence Providers available in the classpath and ask each of
them if they are responsible for the creation of the entity manager factory manager1. From the list of
resources available from each provider, the persistence implementation will search for an entity
manager that whose name in persistence.xml matches the name specified at the command line.
(The provider element must match the current persistence provider.) If no persistence.xml with the
correct name is found or if the expected persistence provider is not found, a
PersistenceException is raised.

Apart from Hibernate system-level settings, all the properties available in Hibernate can be set in
properties element of the persistence.xml file or as an override in the map you pass to
createEntityManagerFactory(). Please refer to the Hibernate reference documentation for a
complete listing. There are however a couple of properties available in the JPA provider only.

Table 3.1. Hibernate Entity Manager specific properties

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("manager1");
//or
Map configOverrides = new HashMap();
configOverrides.put("hibernate.hbm2ddl.auto", "create-drop");
EntityManagerFactory programmaticEmf =
 Persistence.createEntityManagerFactory("manager1", configOverrides);

Hibernate Entity Manager Reference Guide

10

Property name Description

hibernate.ejb.classcache.
<classname>

class cache strategy [comma cache region] of the class Default to no
cache, and default region cache to fully.qualified.classname (eg.
hibernate.ejb.classcache.com.acme.Cat read-write or
hibernate.ejb.classcache.com.acme.Cat read-write, MyRegion).

hibernate.ejb.collectioncache.
<collectionrole>

collection cache strategy [comma cache region] of the class Default to
no cache, and default region cache to fully.qualified.classname.role (eg.
hibernate.ejb.classcache.com.acme.Cat read-write or
hibernate.ejb.classcache.com.acme.Cat read-write, MyRegion).

hibernate.ejb.cfgfile XML configuration file to use to configure Hibernate (eg.
/hibernate.cfg.xml).

hibernate.archive. autodetection Determine which element is auto discovered by Hibernate Entity
Manager while parsing the .par archive. (default to class,hbm).

hibernate.ejb. interceptor An optional Hibernate interceptor. The interceptor instance is shared
by all Session instances. This interceptor has to implement
org.hibernate.Interceptor and have a no-arg constructor.
This property can not be combined with
hibernate.ejb.interceptor.session_scoped.

hibernate.ejb.interceptor.
session_scoped

An optional Hibernate interceptor. The interceptor instance is specific
to a given Session instance (and hence can be non thread-safe). This
interceptor has to implement org.hibernate.Interceptor and
have a no-arg constructor. This property can not be combined with
hibernate.ejb.interceptor.

hibernate.ejb.naming_strategy An optional naming strategy. The default naming strategy used is
EJB3NamingStrategy. You also might want to consider the
DefaultComponentSafeNamingStrategy.

hibernate.ejb.event. <eventtype> Event listener list for a given eventtype. The list of event listeners is a
comma separated fully qualified class name list (eg.
hibernate.ejb.event.pre-load com.acme.SecurityListener,
com.acme.AuditListener)

hibernate.ejb.
use_class_enhancer

Whether or not use Application server class enhancement at
deployment time (default to false)

hibernate.ejb.
discard_pc_on_close

If true, the persistence context will be discarded (think clear() when the
method is called. Otherwise the persistence context will stay alive till
the transaction completion: all objects will remain managed, and any
change will be synchronized with the database (default to false, ie wait
the transaction completion)

Note that you can mix XML <class> declaration and hibernate.ejb.cfgfile usage in the same
configuration. Be aware of the potential clashes. The properties set in persistence.xml will override
the one in the defined hibernate.cfg.xml.

CHAPTER 3. SETUP AND CONFIGURATION

11

NOTE

It is important that you do not override hibernate.transaction.factory_class,
Hibernate EntityManager automatically set the appropriate transaction factory
depending on the EntityManager type (ie JTA versus RESOURCE_LOCAL). If you are
working in a Java EE environment, you might want to set the
hibernate.transaction.manager_lookup_class though.

Here is a typical configuration in a J2SE environment

To ease the programmatic configuration, Hibernate Entity Manager provide a proprietary API. This API
is very similar to the Configuration API and share the same concepts: Ejb3Configuration. Refer
to the JavaDoc and the Hibernate Core Reference Guide for more detailed informations on how to use it.

<persistence>
 <persistence-unit name="manager1" transaction-type="RESOURCE_LOCAL">
 <class>org.hibernate.ejb.test.Cat</class>
 <class>org.hibernate.ejb.test.Distributor</class>
 <class>org.hibernate.ejb.test.Item</class>
 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.HSQLDialect"/>
 <property name="hibernate.connection.driver_class"
value="org.hsqldb.jdbcDriver"/>
 <property name="hibernate.connection.username" value="sa"/>
 <property name="hibernate.connection.password" value=""/>
 <property name="hibernate.connection.url" value="jdbc:hsqldb:."/>
 <property name="hibernate.max_fetch_depth" value="3"/>

 <!-- cache configuration -->
 <property
name="hibernate.ejb.classcache.org.hibernate.ejb.test.Item" value="read-
write"/>
 <property
name="hibernate.ejb.collectioncache.org.hibernate.ejb.test.Item.distributo
rs" value="read-write, RegionName"/>

 <!-- alternatively to <class> and <property> declarations, you
can use a regular hibernate.cfg.xml file -->
 <!-- property name="hibernate.ejb.cfgfile"
value="/org/hibernate/ejb/test/hibernate.cfg.xml"/ -->
 </properties>
 </persistence-unit>
</persistence>

Ejb3Configuration cfg = new Ejb3Configuration();
EntityManagerFactory emf =
 cfg.addProperties(properties) //add some properties
 .setInterceptor(myInterceptorImpl) // set an interceptor
 .addAnnotatedClass(MyAnnotatedClass.class) //add a class to be
mapped
 .addClass(NonAnnotatedClass.class) //add an hbm.xml file using the
Hibernate convention
 .addResource("mypath/MyOtherCLass.hbm.xml") //add an hbm.xml file
 .addResource("mypath/orm.xml") //add an EJB3 deployment descriptor

Hibernate Entity Manager Reference Guide

12

3.2. EVENT LISTENERS

Hibernate Entity Manager needs to enhance Hibernate core to implements all the JPA semantics. It
does that through the event listener system of Hibernate. Be careful when you use the event system
yourself, you might override some of the JPA semantics. A safe way is to add your event listeners to
the list given below.

Table 3.2. Hibernate Entity Manager default event listeners

Event Listeners

flush org.hibernate.ejb.event.EJB3FlushEventListener

auto-flush org.hibernate.ejb.event.EJB3AutoFlushEventListener

delete org.hibernate.ejb.event.EJB3DeleteEventListener

flush-entity org.hibernate.ejb.event.EJB3FlushEntityEventListener

merge org.hibernate.ejb.event.EJB3MergeEventListener

create org.hibernate.ejb.event.EJB3PersistEventListener

create-onflush org.hibernate.ejb.event.EJB3PersistOnFlushEventListener

save org.hibernate.ejb.event.EJB3SaveEventListener

save-update org.hibernate.ejb.event.EJB3SaveOrUpdateEventListener

pre-insert org.hibernate.secure.JACCPreInsertEventListener,
org.hibernate.valitator.event.ValidateEventListener

pre-insert org.hibernate.secure.JACCPreUpdateEventListener,
org.hibernate.valitator.event.ValidateEventListener

pre-delete org.hibernate.secure.JACCPreDeleteEventListener

pre-load org.hibernate.secure.JACCPreLoadEventListener

post-delete org.hibernate.ejb.event.EJB3PostDeleteEventListener

post-insert org.hibernate.ejb.event.EJB3PostInsertEventListener

post-load org.hibernate.ejb.event.EJB3PostLoadEventListener

 .configure("/mypath/hibernate.cfg.xml") //add a regular
hibernate.cfg.xml
 .buildEntityManagerFactory(); //Create the entity manager factory

CHAPTER 3. SETUP AND CONFIGURATION

13

post-update org.hibernate.ejb.event.EJB3PostUpdateEventListener

Event Listeners

Note that the JACC*EventListeners are removed if the security is not enabled.

You can configure the event listeners either through the properties (see Section 3.1, “Configuration
and bootstrapping”) or through the Ejb3Configuration.getEventListeners() API.

3.3. OBTAINING AN ENTITYMANAGER IN A JAVA SE ENVIRONMENT

An entity manager factory should be considered as an immutable configuration holder, it is defined to
point to a single datasource and to map a defined set of entities. This is the entry point to create and
manage EntityManagers. The Persistence class is bootstrap class to create an entity manager
factory.

An entity manager factory is typically created at application initialization time and closed at
application end. It's creation is an expensive process. For those who are familiar with Hibernate, an
entity manager factory is very much like a session factory. Actually, an entity manager factory is a
wrapper on top of a session factory. Calls to the entityManagerFactory are thread safe.

Thanks to the EntityManagerFactory, you can retrieve an extended entity manager. The extended
entity manager keep the same persistence context for the lifetime of the entity manager: in other
words, the entities are still managed between two transactions (unless you call entityManager.clear()
in between). You can see an entity manager as a small wrapper on top of an Hibernate session.

// Use persistence.xml configuration
EntityManagerFactory emf =
Persistence.createEntityManagerFactory("manager1");
EntityManager em = emf.createEntityManager(); // Retrieve an application
managed entity manager
// Work with the EM
em.close();
...
emf.close(); //close at application end

Hibernate Entity Manager Reference Guide

14

CHAPTER 4. WORKING WITH OBJECTS

4.1. ENTITY STATES

Like in Hibernate (comparable terms in parentheses), an entity instance is in one of the following
states:

New (transient): an entity is new if it has just been instantiated using the new operator, and it
is not associated with a persistence context. It has no persistent representation in the
database and no identifier value has been assigned.

Managed (persistent): a managed entity instance is an instance with a persistent identity that
is currently associated with a persistence context.

Detached: the entity instance is an instance with a persistent identity that is no longer
associated with a persistence context, usually because the persistence context was closed or
the instance was evicted from the context.

Removed: a removed entity instance is an instance with a persistent identity, associated with a
persistence context, but scheduled for removal from the database.

The EntityManager API allows you to change the state of an entity, or in other words, to load and
store objects. You will find persistence with JPA easier to understand if you think about object state
management, not managing of SQL statements.

4.2. MAKING OBJECTS PERSISTENT

Once you've created a new entity instance (using the common new operator) it is in the new state. You
can make it persistent by associating it to an entity manager:

If the DomesticCat entity type has a generated identifier, the value is associated to the instance
when persist() is called. If the identifier is not automatically generated, the application-assigned
(usually natural) key value has to be set on the instance before persist() is called.

4.3. LOADING AN OBJECT

Load an entity instance by its identifier value with the entity manager's find() method:

In some cases, you don't really want to load the object state, but just having a reference to it (ie a
proxy). You can get this reference using the getReference() method. This is especially useful to link
a child to its parent without having to load the parent.

DomesticCat fritz = new DomesticCat();
fritz.setColor(Color.GINGER);
fritz.setSex('M');
fritz.setName("Fritz");
em.persist(fritz);

cat = em.find(Cat.class, catId);

// You may need to wrap the primitive identifiers
long catId = 1234;
em.find(Cat.class, new Long(catId));

CHAPTER 4. WORKING WITH OBJECTS

15

You can reload an entity instance and its collections at any time using the em.refresh() operation.
This is useful when database triggers are used to initialize some of the properties of the entity. Note
that only the entity instance and its collections are refreshed unless you specify REFRESH as a
cascade style of any associations:

4.4. QUERYING OBJECTS

If you don't know the identifier values of the objects you are looking for, you need a query. The
Hibernate EntityManager implementation supports an easy-to-use but powerful object-oriented query
language (EJB3-QL) which has been inspired by HQL (and vice-versa). Both query languages are
portable across databases, they use entity and property names as identifiers (instead of table and
column names). You may also express your query in the native SQL of your database, with optional
support from JPA for result set conversion into Java business objects.

4.4.1. Executing queries

EJB3QL and SQL queries are represented by an instance of javax.persistence.Query. This
interface offers methods for parameter binding, result set handling, and for execution of the query.
Queries are always created using the current entity manager.

A query is usually executed by invoking getResultList(). This method loads the resulting
instances of the query completly into memory. Entity instances retrieved by a query are in persistent
state. The getSingleResult() method offers a shortcut if you know your query will only return a
single object.

4.4.1.1. Projection

An EJB3QL query queries can return tuples of objects if projection is used. Each result tuple is
returned as an object array:

child = new Child();
child.SetName("Henry");
Parent parent = em.getReference(Parent.class, parentId); //no query to the
DB
child.setParent(parent);
em.persist(child);

em.persist(cat);
em.flush(); // force the SQL insert and triggers to run
em.refresh(cat); //re-read the state (after the trigger executes)

Iterator<Cat[]> kittensAndMothers =
 em.createQuery("select kitten, mother from Cat kitten join kitten.mother
mother").getResultList().iterator();
 while (kittensAndMothers.hasNext()) {
 Cat[] tuple = kittensAndMothers.next();
 Cat kitten = tuple[0];
 Cat mother = tuple[1];
 }

}

Hibernate Entity Manager Reference Guide

16

4.4.1.2. Scalar results

Queries may specify a particular property of an entity in the select clause, instead of an entity alias.
You may call SQL aggregate functions as well. Returned non-transactional objects or aggregation
results are considered "scalar" results and are not entities in persistent state (in other words, they are
considered "read only"):

4.4.1.3. Bind parameters

Both named and positional query parameters are supported, the Query API offers several methods to
bind arguments. The JPA specification numbers positional parameters from one. Named parameters
are identifiers of the form :paramname in the query string. Named parameters should be preferred,
they are more robust and easier to read and understand:

4.4.1.4. Pagination

If you need to specify bounds upon your result set (the maximum number of rows you want to retrieve
and/or the first row you want to retrieve), use the following methods:

Iterator<Object[]> results = em.createQuery(
 "select cat.color, min(cat.birthdate), count(cat) from Cat cat " +
 "group by cat.color")
 .getResultList()
 .iterator();

while (results.hasNext()) {
 Object[] row = results.next();
 Color type = (Color) row[0];
 Date oldest = (Date) row[1];
 Integer count = (Integer) row[2];

}

// Named parameter (preferred)
Query q = em.createQuery("select cat from DomesticCat cat where cat.name =
:name");
q.setParameter("name", "Fritz");
List cats = q.getResultList();

// Positional parameter
Query q = em.createQuery("select cat from DomesticCat cat where cat.name =
?1");
q.setParameter(1, "Izi");
List cats = q.getResultList();

// Named parameter list
List names = new ArrayList();
names.add("Izi");
names.add("Fritz");
Query q = em.createQuery("select cat from DomesticCat cat where cat.name
in (:namesList)");
q.setParameter("namesList", names);
List cats = q.getResultList();

CHAPTER 4. WORKING WITH OBJECTS

17

Hibernate knows how to translate this limit query into the native SQL of your DBMS.

4.4.1.5. Externalizing named queries

You may also define named queries through annotations:

Parameters are bound programatically to the named query, before it is executed:

Note that the actual program code is independent of the query language that is used, you may also
define native SQL queries in metadata, or use Hibernate's native facilities by placing them in XML
mapping files.

4.4.1.6. Native queries

You may express a query in SQL, using createNativeQuery() and let Hibernate take care mapping
from JDBC result sets to business objects. Use the @SqlResultSetMapping (please see the
Hibernate Annotations reference documentation on how to map a SQL resultset mapping) or the entity
mapping (if the column names of the query result are the same as the names declared in the entity
mapping; remember that all entity columns have to be returned for this mechanism to work):

Query q = em.createQuery("select cat from DomesticCat cat");
q.setFirstResult(20);
q.setMaxResults(10);
List cats = q.getResultList(); //return cats from the 20th position to 29th

@javax.persistence.NamedQuery(name="eg.DomesticCat.by.name.and.minimum.wei
ght",
 query="select cat from eg.DomesticCat as cat where cat.name = ?1 and
cat.weight > ?2")

Query q =
em.createNamedQuery("eg.DomesticCat.by.name.and.minimum.weight");
q.setParameter(1, name);
q.setParameter(2, minWeight);
List cats = q.getResultList();

@SqlResultSetMapping(name="getItem", entities =
 @EntityResult(entityClass=org.hibernate.ejb.test.Item.class,
fields= {
 @FieldResult(name="name", column="itemname"),
 @FieldResult(name="descr", column="itemdescription")
 })
)

Query q = em.createNativeQuery("select name as itemname, descr as
itemdescription from Item", "getItem");
item = (Item) q.getSingleResult(); //from a resultset

Query q = em.createNativeQuery("select * from Item", Item.class);
item = (Item) q.getSingleResult(); //from a class columns names match the
mapping

Hibernate Entity Manager Reference Guide

18

NOTE

For more information about scalar support in named queries, please refers to the
Hibernate Annotations documentation

4.4.1.7. Query hints

Query hints (for performance optimization, usually) are implementation specific. Hints are declared
using the query.setHint(String name, Object value) method, or through the
@Named(Native)Query(hints) annotation Note that these are not SQL query hints! The Hibernate
JPA implementation offers the following query hints:

Table 4.1. Hibernate query hints

Hint Description

org.hibernate.timeout Query timeout in seconds (eg. new Integer(10))

org.hibernate.fetchSize Number of rows fetched by the JDBC driver per
roundtrip (eg. new Integer(50))

org.hibernate.comment Add a comment to the SQL query, useful for the
DBA (e.g. new String("fetch all orders in 1
statement"))

org.hibernate.cacheable Whether or not a query is cacheable (eg. new
Boolean(true)), defaults to false

org.hibernate.cacheMode Override the cache mode for this query (eg.
CacheMode.REFRESH)

org.hibernate.cacheRegion Cache region of this query (eg. new
String("regionName"))

org.hibernate.readOnly Entities retrieved by this query will be loaded in a
read-only mode where Hibernate will never dirty-
check them or make changes persistent (eg. new
Boolean(true)), default to false

org.hibernate.flushMode Flush mode used for this query

org.hibernate.cacheMode Cache mode used for this query

The value object accept both the native type or its string equivalent (eg. CaheMode.REFRESH or
“REFRESH”). Please refer to the Hibernate reference documentation for more information.

4.5. MODIFYING PERSISTENT OBJECTS

Transactional managed instances (ie. objects loaded, saved, created or queried by the entity manager)
may be manipulated by the application and any changes to persistent state will be persisted when the
Entity manager is flushed (discussed later in this chapter). There is no need to call a particular method

CHAPTER 4. WORKING WITH OBJECTS

19

to make your modifications persistent. A straightforward way to update the state of an entity instance
is to find() it, and then manipulate it directly, while the persistence context is open:

Sometimes this programming model is inefficient since it would require both an SQL SELECT (to load
an object) and an SQL UPDATE (to persist its updated state) in the same session. Therefore Hibernate
offers an alternate approach, using detached instances.

4.6. MODIFYING DETACHED OBJECTS

Many applications need to retrieve an object in one transaction, send it to the presentation layer for
manipulation, and later save the changes in a new transaction. There can be significant user think and
waiting time between both transactions. Applications that use this kind of approach in a high-
concurrency environment usually use versioned data to ensure isolation for the "long" unit of work.

The JPA specifications supports this development model by providing for persistence of modifications
made to detached instances using the EntityManager.merge() method:

The merge() method merges modifications made to the detached instance into the corresponding
managed instance, if any, without consideration of the state of the persistence context. In other words,
the merged objects state overrides the persistent entity state in the persistence context, if one is
already present. The application should individually merge() detached instances reachable from the
given detached instance if and only if it wants their state also to be persistent. This can be cascaded to
associated entities and collections, using transitive persistence, see Section 4.10, “Transitive
persistence”.

4.7. AUTOMATIC STATE DETECTION

The merge operation is clever enough to automatically detect whether the merging of the detached
instance has to result in an insert or update. In other words, you don't have to worry about passing a
new instance (and not a detached instance) to merge(), the entity manager will figure this out for you:

Cat cat = em.find(Cat.class, new Long(69));
cat.setName("PK");
em.flush(); // changes to cat are automatically detected and persisted

// in the first entity manager
Cat cat = firstEntityManager.find(Cat.class, catId);
Cat potentialMate = new Cat();
firstEntityManager.persist(potentialMate);

// in a higher layer of the application
cat.setMate(potentialMate);

// later, in a new entity manager
secondEntityManager.merge(cat); // update cat
secondEntityManager.merge(mate); // update mate

// In the first entity manager
Cat cat = firstEntityManager.find(Cat.class, catID);

// In a higher layer of the application, detached
Cat mate = new Cat();
cat.setMate(mate);

Hibernate Entity Manager Reference Guide

20

The usage and semantics of merge() seems to be confusing for new users. Firstly, as long as you are
not trying to use object state loaded in one entity manager in another new entity manager, you should
not need to use merge() at all. Some whole applications will never use this method.

Usually merge() is used in the following scenario:

the application loads an object in the first entity manager

the object is passed up to the presentation layer

some modifications are made to the object

the object is passed back down to the business logic layer

the application persists these modifications by calling merge() in a second entity manager

Here is the exact semantic of merge():

if there is a managed instance with the same identifier currently associated with the
persistence context, copy the state of the given object onto the managed instance

if there is no managed instance currently associated with the persistence context, try to load it
from the database, or create a new managed instance

the managed instance is returned

the given instance does not become associated with the persistence context, it remains
detached and is usually discarded

NOTE

Merging in JPA is similar to the saveOrUpdateCopy() method in native Hibernate.
However, it is not the same as the saveOrUpdate() method, the given instance is not
reattached with the persistence context, but a managed instance is returned by the
merge() method.

4.8. DELETING MANAGED OBJECTS

EntityManager.remove() will remove an objects state from the database. Of course, your
application might still hold a reference to a deleted object. You can think of remove() as making a
persistent instance new (aka transient) again. It is not detached, and a merge would result in an
insertion.

4.9. FLUSH THE PERSISTENCE CONTEXT

4.9.1. In a transaction

From time to time the entity manager will execute the SQL DML statements needed to synchronize the
data store with the state of objects held in memory. This process, flush, occurs by default (this is
Hibernate specific and not defined by the specification) at the following points:

// Later, in a new entity manager
secondEntityManager.merge(cat); // update existing state
secondEntityManager.merge(mate); // save the new instance

CHAPTER 4. WORKING WITH OBJECTS

21

before query execution*

from javax.persistence.EntityTransaction.commit()*

when EntityManager.flush() is called*

(*) if a transaction is active

The SQL statements are issued in the following order

all entity insertions, in the same order the corresponding objects were saved using
EntityManager.persist()

all entity updates

all collection deletions

all collection element deletions, updates and insertions

all collection insertions

all entity deletions, in the same order the corresponding objects were deleted using
EntityManager.remove()

(Exception: entity instances using application-assigned identifiers are inserted when they are saved.)

Except when you explicity flush(), there are absolutely no guarantees about when the entity
manager executes the JDBC calls, only the order in which they are executed. However, Hibernate does
guarantee that the Query.getResultList()/Query.getSingleResult() will never return stale
data; nor will they return wrong data if executed in an active transaction.

It is possible to change the default behavior so that flush occurs less frequently. The FlushModeType
for an entity manager defines two different modes: only flush at commit time or flush automatically
using the explained routine unless flush() is called explicitly.

During flush, an exception might happen (e.g. if a DML operation violates a constraint).

Hibernate provides more flush modes than the one described in the JPA specification. Please refer to
the Hibernate core reference documentation for more informations.

em = emf.createEntityManager();
em.getTransaction().begin();
em.setFlushMode(FlushModeType.COMMIT); // allow queries to return stale
state

Cat izi = em.find(Cat.class, id);
izi.setName(iznizi);

// might return stale data
em.createQuery("from Cat as cat left outer join cat.kittens
kitten").getResultList();

// change to izi is not flushed!
...
em.getTransaction().commit(); // flush occurs

Hibernate Entity Manager Reference Guide

22

4.9.2. Outside a transaction

In an EXTENDED persistence context, all read only operations of the entity manager can be executed
outside a transaction (find(), getReference(), refresh(), and read queries). Some modifications
operations can be executed outside a transaction, but they are queued until the persistence context
join a transaction. This is the case of persist(), merge(), remove(). Some operations cannot be
called outside a transaction: flush(), lock(), and update/delete queries.

4.10. TRANSITIVE PERSISTENCE

It is quite cumbersome to save, delete, or reattach individual objects, especially if you deal with a graph
of associated objects. A common case is a parent/child relationship. Consider the following example:

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses or
strings), their lifecycle would depend on the parent and no further action would be required for
convenient "cascading" of state changes. When the parent is persisted, the value-typed child objects
are persisted as well, when the parent is removed, the children will be removed, etc. This even works
for operations such as the removal of a child from the collection; Hibernate will detect this and, since
value-typed objects can't have shared references, remove the child from the database.

Now consider the same scenario with parent and child objects being entities, not value-types (e.g.
categories and items, or parent and child cats). Entities have their own lifecycle, support shared
references (so removing an entity from the collection does not mean it can be deleted), and there is by
default no cascading of state from one entity to any other associated entities. The JPA specification
does not require persistence by reachability. It supports a more flexible model of transitive
persistence, as first seen in Hibernate.

For each basic operation of the entity manager - including persist(), merge(), remove(),
refresh() - there is a corresponding cascade style. Respectively, the cascade styles are named
PERSIST, MERGE, REMOVE, REFRESH. If you want an operation to be cascaded to associated entity
(or collection of entities), you must indicate that in the association annotation:

Cascading options can be combined:

You may even use CascadeType.ALL to specify that all operations should be cascaded for a particular
association. Remember that by default, no operation is cascaded.

Hibernate offers more native cascading options, please refer to the Hibernate Annotations manual and
the Hibernate reference guide for more informations.

Recommendations:

It doesn't usually make sense to enable cascade on a @ManyToOne or @ManyToMany
association. Cascade is often useful for @OneToOne and @OneToMany associations.

If the child object's lifespan is bounded by the lifespan of the parent object, make the parent a
full lifecycle object by specifying CascadeType.ALL and
org.hibernate.annotations.CascadeType.DELETE_ORPHAN (please refer to the
Hibernate reference guide for the semantics of orphan delete)

@OneToOne(cascade=CascadeType.PERSIST)

@OneToOne(cascade= { CascadeType.PERSIST, CascadeType.REMOVE,
CascadeType.REFRESH })

CHAPTER 4. WORKING WITH OBJECTS

23

Otherwise, you might not need cascade at all. But if you think that you will often be working
with the parent and children together in the same transaction, and you want to save yourself
some typing, consider using cascade={PERSIST, MERGE}. These options can even make
sense for a many-to-many association.

4.11. LOCKING

The default locking system in JPA is mostly based on optimistic locking (ie using a version column to
check any concurrency issues). JPA has defined an additional mechanism to increase the concurrency
guaranties. You can apply a lock on a given entity (and it's associated entities if LOCK is cascaded)
through the lock(Object entity) method. Depending on the concurrency guaranties you requires,
you choose a lock mode:

LockMode.READ prevents dirty-reads and non repeatable read on a given entity.

LockMode.WRITE prevents dirty-reads and non repeatable read on a given entity and force an
increase of the version number if any.

Hibernate Entity Manager Reference Guide

24

CHAPTER 5. TRANSACTIONS AND CONCURRENCY
The most important point about Hibernate Entity Manager and concurrency control is that it is very
easy to understand. Hibernate Entity Manager directly uses JDBC connections and JTA resources
without adding any additional locking behavior. We highly recommend you spend some time with the
JDBC, ANSI, and transaction isolation specification of your database management system. Hibernate
Entity Manager only adds automatic versioning but does not lock objects in memory or change the
isolation level of your database transactions. Basically, use Hibernate Entity Manager like you would
use direct JDBC (or JTA/CMT) with your database resources.

We start the discussion of concurrency control in Hibernate with the granularity of
EntityManagerFactory, and EntityManager, as well as database transactions and long units of
work.

In this chapter, and unless explicitly expressed, we will mix and match the concept of entity manager
and persistence context. One is an API and programming object, the other a definition of scope.
However, keep in mind the essential difference. A persistence context is usually bound to a JTA
transaction in Java EE, and a persistence context starts and ends at transaction boundaries
(transaction-scoped) unless you use an extended entity manager. Please refer to Section 2.2.3,
“Persistence context scope” for more information.

5.1. ENTITY MANAGER AND TRANSACTION SCOPES

A EntityManagerFactory is an expensive-to-create, threadsafe object intended to be shared by all
application threads. It is created once, usually on application startup.

An EntityManager is an inexpensive, non-threadsafe object that should be used once, for a single
business process, a single unit of work, and then discarded. An EntityManager will not obtain a JDBC
Connection (or a Datasource) unless it is needed, so you may safely open and close an
EntityManager even if you are not sure that data access will be needed to serve a particular request.
(This becomes important as soon as you are implementing some of the following patterns using
request interception.)

To complete this picture you also have to think about database transactions. A database transaction
has to be as short as possible, to reduce lock contention in the database. Long database transactions
will prevent your application from scaling to highly concurrent load.

What is the scope of a unit of work? Can a single Hibernate EntityManager span several database
transactions or is this a one-to-one relationship of scopes? When should you open and close a
Session and how do you demarcate the database transaction boundaries?

5.1.1. Unit of work

First, don't use the entitymanager-per-operation antipattern, that is, don't open and close an
EntityManager for every simple database call in a single thread! Of course, the same is true for
database transactions. Database calls in an application are made using a planned sequence, they are
grouped into atomic units of work. (Note that this also means that auto-commit after every single SQL
statement is useless in an application, this mode is intended for ad-hoc SQL console work.)

The most common pattern in a multi-user client/server application is entitymanager-per-request. In this
model, a request from the client is send to the server (where the JPA persistence layer runs), a new
EntityManager is opened, and all database operations are executed in this unit of work. Once the
work has been completed (and the response for the client has been prepared), the persistence context

CHAPTER 5. TRANSACTIONS AND CONCURRENCY

25

is flushed and closed, as well as the entity manager object. You would also use a single database
transaction to serve the clients request. The relationship between the two is one-to-one and this
model is a perfect fit for many applications.

This is the default JPA persistence model in a Java EE environment (JTA bounded, transaction-scoped
persistence context); injected (or looked up) entity managers share the same persistence context for a
particular JTA transaction. The beauty of JPA is that you don't have to care about that anymore and
just see data access through entity manager and demaraction of transaction scope on session beans as
completely orthogonal.

The challenge is the implementation of this (and other) behavior outside an JPA container: not only
has the EntityManager and resource-local transaction to be started and ended correctly, but they
also have to be accessible for data access operations. The demarcation of a unit of work is ideally
implemented using an interceptor that runs when a request hits the non-JPA container server and
before the response will be send (i.e. a ServletFilter if you are using a standalone servlet
container). We recommend to bind the EntityManager to the thread that serves the request, using a
ThreadLocal variable. This allows easy access (like accessing a static variable) in all code that runs in
this thread. Depending on the database transaction demarcation mechanism you chose, you might also
keep the transaction context in a ThreadLocal variable. The implementation patterns for this are
known as ThreadLocal Session and Open Session in View in the Hibernate community. You can easily
extend the HibernateUtil shown in the Hibernate reference documentation to implement this
pattern, you don't need any external software (it's in fact very trivial). Of course, you'd have to find a
way to implement an interceptor and set it up in your environment. See the Hibernate website for tips
and examples. Once again, remember that your first choice is naturally an JPA container - preferably a
light and modular one such as JBoss application server.

5.1.2. Long units of work

The entitymanager-per-request pattern is not the only useful concept you can use to design units of
work. Many business processes require a whole series of interactions with the user interleaved with
database accesses. In web and enterprise applications it is not acceptable for a database transaction to
span a user interaction with possibly long waiting time between requests. Consider the following
example:

The first screen of a dialog opens, the data seen by the user has been loaded in a particular
EntityManager and resource-local transaction. The user is free to modify the detached
objects.

The user clicks "Save" after 5 minutes and expects his modifications to be made persistent; he
also expects that he was the only person editing this information and that no conflicting
modification can occur.

We call this unit of work, from the point of view of the user, a long running application transaction. There
are many ways how you can implement this in your application.

A first naive implementation might keep the EntityManager and database transaction open during
user think time, with locks held in the database to prevent concurrent modification, and to guarantee
isolation and atomicity. This is of course an anti-pattern, a pessimistic approach, since lock contention
would not allow the application to scale with the number of concurrent users.

Clearly, we have to use several database transactions to implement the application transaction. In this
case, maintaining isolation of business processes becomes the partial responsibility of the application
tier. A single application transaction usually spans several database transactions. It will be atomic if
only one of these database transactions (the last one) stores the updated data, all others simply read

Hibernate Entity Manager Reference Guide

26

data (e.g. in a wizard-style dialog spanning several request/response cycles). This is easier to
implement than it might sound, especially if you use JPA entity manager and persistence context
features:

Automatic Versioning - An entity manager can do automatic optimistic concurrency control for
you, it can automatically detect if a concurrent modification occured during user think time
(usually by comparing version numbers or timestamps when updating the data in the final
resource-local transaction).

Detached Entities - If you decide to use the already discussed entity-per-request pattern, all
loaded instances will be in detached state during user think time. The entity manager allows
you to merge the detached (modified) state and persist the modifications, the pattern is called
entitymanager-per-request-with-detached-entities. Automatic versioning is used to isolate
concurrent modifications.

Extended Entity Manager - The Hibernate Entity Manager may be disconnected from the
underlying JDBC connection between two client calls and reconnected when a new client
request occurs. This pattern is known as entitymanager-per-application-transaction and makes
even merging unnecessary. An extend persistence context is responsible to collect and retain
any modification (persist, merge, remove) made outside a transaction. The next client call
made inside an active transaction (typically the last operation of a user conversation) will
execute all queued modifications. Automatic versioning is used to isolate concurrent
modifications.

Both entitymanager-per-request-with-detached-objects and entitymanager-per-application-transaction
have advantages and disadvantages, we discuss them later in this chapter in the context of optimistic
concurrency control.

5.1.3. Considering object identity

An application may concurrently access the same persistent state in two different persistence
contexts. However, an instance of a managed class is never shared between two persistence contexts.
Hence there are two different notions of identity:

Database Identity

foo.getId().equals(bar.getId())

JVM Identity

foo==bar

Then for objects attached to a particular persistence context (i.e. in the scope of an EntityManager)
the two notions are equivalent, and JVM identity for database identity is guaranteed by the Hibernate
Entity Manager. However, while the application might concurrently access the "same" (persistent
identity) business object in two different persistence contexts, the two instances will actually be
"different" (JVM identity). Conflicts are resolved using (automatic versioning) at flush/commit time,
using an optimistic approach.

This approach leaves Hibernate and the database to worry about concurrency; it also provides the best
scalability, since guaranteeing identity in single-threaded units of work only doesn't need expensive
locking or other means of synchronization. The application never needs to synchronize on any business
object, as long as it sticks to a single thread per EntityManager. Within a persistence context, the
application may safely use == to compare entities.

However, an application that uses == outside of a persistence context might see unexpected results.

CHAPTER 5. TRANSACTIONS AND CONCURRENCY

27

This might occur even in some unexpected places, for example, if you put two detached instances into
the same Set. Both might have the same database identity (i.e. they represent the same row), but JVM
identity is by definition not guaranteed for instances in detached state. The developer has to override
the equals() and hashCode() methods in persistent classes and implement his own notion of object
equality. There is one caveat: Never use the database identifier to implement equality, use a business
key, a combination of unique, usually immutable, attributes. The database identifier will change if a
transient entity is made persistent (see the contract of the persist() operation). If the transient
instance (usually together with detached instances) is held in a Set, changing the hashcode breaks the
contract of the Set. Attributes for good business keys don't have to be as stable as database primary
keys, you only have to guarantee stability as long as the objects are in the same Set. See the
Hibernate website for a more thorough discussion of this issue. Also note that this is not a Hibernate
issue, but simply how Java object identity and equality has to be implemented.

5.1.4. Common concurrency control issues

Never use the anti-patterns entitymanager-per-user-session or entitymanager-per-application (of course,
there are rare exceptions to this rule, e.g. entitymanager-per-application might be acceptable in a
desktop application, with manual flushing of the persistence context). Note that some of the following
issues might also appear with the recommended patterns, make sure you understand the implications
before making a design decision:

An entity manager is not thread-safe. Things which are supposed to work concurrently, like
HTTP requests, session beans, or Swing workers, will cause race conditions if an
EntityManager instance would be shared. If you keep your Hibernate EntityManager in
your HttpSession (discussed later), you should consider synchronizing access to your Http
session. Otherwise, a user that clicks reload fast enough may use the same EntityManager in
two concurrently running threads. You will very likely have provisions for this case already in
place, for other non-threadsafe but session-scoped objects.

An exception thrown by the Entity Manager means you have to rollback your database
transaction and close the EntityManager immediately (discussed later in more detail). If
your EntityManager is bound to the application, you have to stop the application. Rolling
back the database transaction doesn't put your business objects back into the state they were
at the start of the transaction. This means the database state and the business objects do get
out of sync. Usually this is not a problem, because exceptions are not recoverable and you
have to start over your unit of work after rollback anyway.

The persistence context caches every object that is in managed state (watched and checked
for dirty state by Hibernate). This means it grows endlessly until you get an
OutOfMemoryException, if you keep it open for a long time or simply load too much data.
One solution for this is some kind batch processing with regular flushing of the persistence
context, but you should consider using a database stored procedure if you need mass data
operations. Some solutions for this problem are shown in Chapter 7, Batch processing. Keeping
a persistence context open for the duration of a user session also means a high probability of
stale data, which you have to know about and control appropriately.

5.2. DATABASE TRANSACTION DEMARCATION

Datatabase (or system) transaction boundaries are always necessary. No communication with the
database can occur outside of a database transaction (this seems to confuse many developers who are
used to the auto-commit mode). Always use clear transaction boundaries, even for read-only
operations. Depending on your isolation level and database capabilities this might not be required but
there is no downside if you always demarcate transactions explicitly. You'll have to do operations
outside a transaction, though, when you'll need to retain modifications in an EXTENDED persistence
context.

Hibernate Entity Manager Reference Guide

28

An JPA application can run in non-managed (i.e. standalone, simple Web- or Swing applications) and
managed J2EE environments. In a non-managed environment, an EntityManagerFactory is usually
responsible for its own database connection pool. The application developer has to manually set
transaction boundaries, in other words, begin, commit, or rollback database transactions itself. A
managed environment usually provides container-managed transactions, with the transaction
assembly defined declaratively through annotations of EJB session beans, for example. Programmatic
transaction demarcation is then no longer necessary, even flushing the EntityManager is done
automatically.

Usually, ending a unit of work involves four distinct phases:

commit the (resource-local or JTA) transaction (this automatically flushes the entity manager
and persistence context)

close the entity manager (if using an application-managed entity manager)

handle exceptions

We'll now have a closer look at transaction demarcation and exception handling in both managed- and
non-managed environments.

5.2.1. Non-managed environment

If an JPA persistence layer runs in a non-managed environment, database connections are usually
handled by Hibernate's pooling mechanism behind the scenes. The common entity manager and
transaction handling idiom looks like this:

You don't have to flush() the EntityManager explicitly - the call to commit() automatically
triggers the synchronization.

A call to close() marks the end of an EntityManager. The main implication of close() is the
release of resources - make sure you always close and never outside of guaranteed finally block.

You will very likely never see this idiom in business code in a normal application; fatal (system)
exceptions should always be caught at the "top". In other words, the code that executes entity
manager calls (in the persistence layer) and the code that handles RuntimeException (and usually

// Non-managed environment idiom
EntityManager em = emf.createEntityManager();
EntityTransaction tx = null;
try {
 tx = em.getTransaction();
 tx.begin();

 // do some work
 ...

 tx.commit();
}
catch (RuntimeException e) {
 if (tx != null && tx.isActive()) tx.rollback();
 throw e; // or display error message
}
finally {
 em.close();
}

CHAPTER 5. TRANSACTIONS AND CONCURRENCY

29

can only clean up and exit) are in different layers. This can be a challenge to design yourself and you
should use J2EE/EJB container services whenever they are available. Exception handling is discussed
later in this chapter.

5.2.1.1. EntityTransaction

In a JTA environment, you don't need any extra API to interact with the transaction in your
environment. Simply use transaction declaration or the JTA APIs.

If you are using a RESOURCE_LOCAL entity manager, you need to demarcate your transaction
boundaries through the EntityTransaction API. You can get an EntityTransaction through
entityManager.getTransaction(). This EntityTransaction API provides the regular
begin(), commit(), rollback() and isActive() methods. It also provide a way to mark a
transaction as rollback only, ie force the transaction to rollback. This is very similar to the JTA
operation setRollbackOnly(). When a commit() operation fail and/or if the transaction is marked
as setRollbackOnly(), the commit() method will try to rollback the transaction and raise a
javax.transaction.RollbackException.

In a JTA entity manager, entityManager.getTransaction() calls are not permitted.

5.2.2. Using JTA

If your persistence layer runs in an application server (e.g. behind JPA session beans), every
datasource connection obtained internally by the entity manager will automatically be part of the
global JTA transaction. Hibernate offers two strategies for this integration.

If you use bean-managed transactions (BMT), the code will look like this:

With Container Managed Transactions (CMT) in an JPA container, transaction demarcation is done in
session bean annotations or deployment descriptors, not programatically. The EntityManager will
automatically be flushed on transaction completion (and if you have injected or lookup the
EntityManager, it will be also closed automatically). If an exception occurs during the

// BMT idiom
@Resource public UserTransaction utx;
@Resource public EntityManagerFactory factory;

public void doBusiness() {
 EntityManager em = factory.createEntityManager();
 try {

 // do some work
 ...

 utx.commit();
}
catch (RuntimeException e) {
 if (utx != null) utx.rollback();
 throw e; // or display error message
}
finally {
 em.close();
}

Hibernate Entity Manager Reference Guide

30

EntityManager use, transaction rollback occurs automatically if you don't catch the exception. Since
EntityManager exceptions are RuntimeExceptions they will rollback the transaction as per the
EJB specification (system exception vs. application exception).

It is important to let Hibernate EntityManager define the
hibernate.transaction.factory_class (ie not overriding this value). Remember to also set
org.hibernate.transaction.manager_lookup_class.

If you work in a CMT environment, you might also want to use the same entity manager in different
parts of your code. Typically, in a non-managed environment you would use a ThreadLocal variable
to hold the entity manager, but a single EJB request might execute in different threads (e.g. session
bean calling another session bean). The JPA container takes care of the persistence context
propagation for you. Either using injection or lookup, the JPA container will return an entity manager
with the same persistence context bound to the JTA context if any, or create a new one and bind it
(see Section 2.2.4, “Persistence context propagation” .)

Our entity manager/transaction management idiom for CMT and JPA container-use is reduced to this:

In other words, all you have to do in a managed environment is to inject the EntityManager, do your
data access work, and leave the rest to the container. Transaction boundaries are set declaratively in
the annotations or deployment descriptors of your session beans. The lifecycle of the entity manager
and persistence context is completely managed by the container.

When using particular Hibernate native APIs, one caveat has to be remembered: after_statement
connection release mode. Due to a silly limitation of the JTA spec, it is not possible for Hibernate to
automatically clean up any unclosed ScrollableResults or Iterator instances returned by
scroll() or iterate(). You must release the underlying database cursor by calling
ScrollableResults.close() or Hibernate.close(Iterator) explicity from a finally block.
(Of course, most applications can easily avoid using scroll() or iterate() at all from the CMT
code.)

5.2.3. Exception handling

If the EntityManager throws an exception (including any SQLException), you should immediately
rollback the database transaction, call EntityManager.close() (if createEntityManager() has
been called) and discard the EntityManager instance. Certain methods of EntityManager will not
leave the persistence context in a consistent state. No exception thrown by an entity manager can be
treated as recoverable. Ensure that the EntityManager will be closed by calling close() in a
finally block. Note that a container managed entity manager will do that for you. You just have to let
the RuntimeException propagate up to the container.

The Hibernate entity manager generally raises exceptions which encapsulate the Hibernate core
exception. Common exceptions raised by the EntityManager API are

IllegalArgumentException: an argument is not permitted, not recognized, or in an incorrect
format (or similar).

EntityNotFoundException: an entity was expected but none match the requirement

TransactionRequiredException: this operation has to be in a transaction

IllegalStateException: the entity manager is used in a wrong way

//CMT idiom through injection
@PersistenceContext(name="sample") EntityManager em;

CHAPTER 5. TRANSACTIONS AND CONCURRENCY

31

The HibernateException, which wraps most of the errors that can occur in a Hibernate persistence
layer, is an unchecked exception. Note that Hibernate might also throw other unchecked exceptions
which are not a HibernateException. These are, again, not recoverable and appropriate action
should be taken.

Hibernate wraps SQLExceptions thrown while interacting with the database in a JDBCException. In
fact, Hibernate will attempt to convert the exception into a more meningful subclass of
JDBCException. The underlying SQLException is always available via
JDBCException.getCause(). Hibernate converts the SQLException into an appropriate
JDBCException subclass using the SQLExceptionConverter attached to the SessionFactory.
By default, the SQLExceptionConverter is defined by the configured dialect; however, it is also
possible to plug in a custom implementation (see the javadocs for the
SQLExceptionConverterFactory class for details). The standard JDBCException subtypes are:

JDBCConnectionException - indicates an error with the underlying JDBC communication.

SQLGrammarException - indicates a grammar or syntax problem with the issued SQL.

ConstraintViolationException - indicates some form of integrity constraint violation.

LockAcquisitionException - indicates an error acquiring a lock level necessary to
perform the requested operation.

GenericJDBCException - a generic exception which did not fall into any of the other
categories.

5.3. EXTENDED PERSISTENCE CONTEXT

All application managed entity manager and container managed persistence contexts defined as such
are EXTENDED. This means that the persistence context type goes beyond the transaction life cycle.
We should then understand what happens to operations made outside the scope of a transaction.

In an EXTENDED persistence context, all read only operations of the entity manager can be executed
outside a transaction (find(), getReference(), refresh(), and read queries). Some modifications
operations can be executed outside a transaction, but they are queued until the persistence context
join a transaction: this is the case of persist(), merge(), remove(). Some operations cannot be
called outside a transaction: flush(), lock(), and update/delete queries.

5.3.1. Container Managed Entity Manager

When using an EXTENDED persistence context with a container managed entity manager, the lifecycle
of the persistence context is binded to the lifecycle of the Stateful Session Bean. Plus if the entity
manager is created outside a transaction, modifications operations (persist, merge, remove) are
queued in the persistence context and not executed to the database.

When a method of the stateful session bean involved or starting a transaction is later called, the entity
manager join the transaction. All queued operation will then be executed to synchronize the
persistence context.

This is perfect to implement the entitymanager-per-conversation pattern. A stateful session
bean represents the conversation implementation. All intermediate conversation work will be
processed in methods not involving transaction. The end of the conversation will be processed inside a
JTA transaction. Hence all queued operations will be executed to the database and commited. If you

Hibernate Entity Manager Reference Guide

32

are interested in the notion of conversation inside your application, have a look at JBoss Seam. Jboss
Seam emphasizes the concept of conversation and entity manager lifecycle and bind JPA and JSF
together.

5.3.2. Application Managed Entity Manager

Application-managed entity manager are always EXTENDED. When you create an entity manager inside
a transaction, the entity manager automatically join the current transaction. If the entity manager is
created outside a transaction, the entity manager will queue the modification operations. When

entityManager.joinTransaction() is called when a JTA transaction is active for a JTA
entity manager

entityManager.getTransaction().begin() is called for a RESOURCE_LOCAL entity
manager

the entity manager join the transaction and all the queued operations will then be executed to
synchronize the persistence context.

It is not legal to call entityManager.joinTransaction() if no JTA transaction is involved.

5.4. OPTIMISTIC CONCURRENCY CONTROL

The only approach that is consistent with high concurrency and high scalability is optimistic
concurrency control with versioning. Version checking uses version numbers, or timestamps, to detect
conflicting updates (and to prevent lost updates). Hibernate provides for three possible approaches to
writing application code that uses optimistic concurrency. The use cases we show are in the context of
long application transactions but version checking also has the benefit of preventing lost updates in
single database transactions.

5.4.1. Application version checking

In an implementation without much help from the persistence mechanism, each interaction with the
database occurs in a new EntityManager and the developer is responsible for reloading all persistent
instances from the database before manipulating them. This approach forces the application to carry
out its own version checking to ensure application transaction isolation. This approach is the least
efficient in terms of database access. It is the approach most similar to EJB2 entities:

The version property is mapped using @Version, and the entity manager will automatically
increment it during flush if the entity is dirty.

// foo is an instance loaded by a previous entity manager
em = factory.createEntityManager();
EntityTransaction t = em.getTransaction();
t.begin();
int oldVersion = foo.getVersion();
Foo dbFoo = em.find(foo.getClass(), foo.getKey()); // load the current
state
if (dbFoo.getVersion()!=foo.getVersion())
 throw new StaleObjectStateException("Message", oldVersion);
dbFoo.setProperty("bar");
t.commit();
em.close();

CHAPTER 5. TRANSACTIONS AND CONCURRENCY

33

Of course, if you are operating in a low-data-concurrency environment and don't require version
checking, you may use this approach and just skip the version check. In that case, last commit wins will
be the default strategy for your long application transactions. Keep in mind that this might confuse the
users of the application, as they might experience lost updates without error messages or a chance to
merge conflicting changes.

Clearly, manual version checking is only feasible in very trivial circumstances and not practical for
most applications. Often not only single instances, but complete graphs of modified ojects have to be
checked. Hibernate offers automatic version checking with either detached instances or an extended
entity manager and persistence context as the design paradigm.

5.4.2. Extended entity manager and automatic versioning

A single persistence context is used for the whole application transaction. The entity manager checks
instance versions at flush time, throwing an exception if concurrent modification is detected. It's up to
the developer to catch and handle this exception (common options are the opportunity for the user to
merge his changes or to restart the business process with non-stale data).

In an EXTENDED persistence context, all operations made outside an active transaction are queued.
The EXTENDED persistence context is flushed when executed in an active transaction (at worse at
commit time).

The Entity Manager is disconnected from any underlying JDBC connection when waiting for user
interaction. In an application-managed extended entity manager, this occurs automatically at
transaction completion. In a stateful session bean holding a container-managed extended entity
manager (i.e. a SFSB annotated with @PersistenceContext(EXTENDED)), this occurs transparently
as well. This approach is the most efficient in terms of database access. The application need not
concern itself with version checking or with merging detached instances, nor does it have to reload
instances in every database transaction. For those who might be concerned by the number of
connections opened and closed, remember that the connection provider should be a connection pool,
so there is no performance impact. The following examples show the idiom in a non-managed
environment:

The foo object still knows which persistence context it was loaded in. With
getTransaction.begin(); the entity manager obtains a new connection and resumes the
persistence context. The method getTransaction().commit() will not only flush and check
versions, but also disconnects the entity manager from the JDBC connection and return the
connection to the pool.

This pattern is problematic if the persistence context is too big to be stored during user think time, and
if you don't know where to store it. E.g. the HttpSession should be kept as small as possible. As the
persistence context is also the (mandatory) first-level cache and contains all loaded objects, we can
probably use this strategy only for a few request/response cycles. This is indeed recommended, as the
persistence context will soon also have stale data.

It is up to you where you store the extended entity manager during requests, inside an JPA container
you simply use a stateful session bean as described above. Don't transfer it to the web layer (or even
serialize it to a separate tier) to store it in the HttpSession. In a non-managed, two-tiered

// foo is an instance loaded earlier by the extended entity manager
em.getTransaction().begin(); // new connection to data store is obtained
and tx started
foo.setProperty("bar");
em.getTransaction().commit(); // End tx, flush and check version,
disconnect

Hibernate Entity Manager Reference Guide

34

environment the HttpSession might indeed be the right place to store it.

5.4.3. Detached objects and automatic versioning

With this paradigm, each interaction with the data store occurs in a new persistence context. However,
the same persistent instances are reused for each interaction with the database. The application
manipulates the state of detached instances originally loaded in another persistence context and then
merges the changes using EntityManager.merge():

Again, the entity manager will check instance versions during flush, throwing an exception if
conflicting updates occured.

// foo is an instance loaded by a non-extended entity manager
foo.setProperty("bar");
entityManager = factory.createEntityManager();
entityManager.getTransaction().begin();
managedFoo = entityManager.merge(foo); // discard foo and from now on use
managedFoo
entityManager.getTransaction().commit();
entityManager.close();

CHAPTER 5. TRANSACTIONS AND CONCURRENCY

35

CHAPTER 6. ENTITY LISTENERS AND CALLBACK METHODS

6.1. DEFINITION

It is often useful for the application to react to certain events that occur inside the persistence
mechanism. This allows the implementation of certain kinds of generic functionality, and extension of
built-in functionality. The JPA specification provides two related mechanisms for this purpose.

A method of the entity may be designated as a callback method to receive notification of a particular
entity life cycle event. Callbacks methods are annotated by a callback annotation. You can also define
an entity listener class to be used instead of the callback methods defined directly inside the entity
class. An entity listener is a stateless class with a no-arg constructor. An entity listener is defined by
annotating the entity class with the @EntityListeners annotation:

@Entity
@EntityListeners(class=Audit.value)
public class Cat {
 @Id private Integer id;
 private String name;
 private Date dateOfBirth;
 @Transient private int age;
 private Date lastUpdate;
 //getters and setters

 /**
 * Set my transient property at load time based on a calculation,
 * note that a native Hibernate formula mapping is better for this
purpose.
 */
 @PostLoad
 public void calculateAge() {
 Calendar birth = new GregorianCalendar();
 birth.setTime(dateOfBirth);
 Calendar now = new GregorianCalendar();
 now.setTime(new Date());
 int adjust = 0;
 if (now.get(Calendar.DAY_OF_YEAR) -
birth.get(Calendar.DAY_OF_YEAR) < 0) {
 adjust = -1;
 }
 age = now.get(Calendar.YEAR) - birth.get(Calendar.YEAR) + adjust;
 }
}

public class LastUpdateListener {
 /**
 * automatic property set before any database persistence
 */
 @PreUpdate
 @PrePersist
 public void setLastUpdate(Cat o) {
 o.setLastUpdate(new Date());
 }
}

Hibernate Entity Manager Reference Guide

36

The same callback method or entity listener method can be annotated with more than one callback
annotation. For a given entity, you cannot have two methods being annotated by the same callback
annotation whether it is a callback method or an entity listener method. A callback method is a no-arg
method with no return type and any arbitrary name. An entity listener has the signature void
<METHOD>(Object) where Object is of the actual entity type (note that Hibernate Entity Manager
relaxed this constraint and allows Object of java.lang.Object type (allowing sharing of listeners
accross several entities.)

A callback method can raise a RuntimeException. The current transaction, if any, must be rolled
back. The following callbacks are defined:

Table 6.1. Callbacks

Type Description

@PrePersist Executed before the entity manager persist
operation is actually executed or cascaded. This call
is synchronous with the persist operation.

@PreRemove Executed before the entity manager remove
operation is actually executed or cascaded. This call
is synchronous with the remove operation.

@PostPersist Executed after the entity manager persist operation
is actually executed or cascaded. This call is invoked
after the database INSERT is executed.

@PostRemove Executed after the entity manager remove operation
is actually executed or cascaded. This call is
synchronous with the remove operation.

@PreUpdate Executed before the database UPDATE operation.

@PostUpdate Executed after the database UPDATE operation.

@PostLoad Eexecuted after an entity has been loaded into the
current persistence context or an entity has been
refreshed.

A callback method must not invoke EntityManager or Query methods!

6.2. CALLBACKS AND LISTENERS INHERITANCE

You can define several entity listeners per entity at different level of the hierarchy.You can also define
several callbacks at different level of the hierarchy. But you cannot define two listeners for the same
event in the same entity or the same entity listener.

When an event is raised, the listeners are executed in this order:

@EntityListeners for a given entity or superclass in the array order

Entity listeners for the superclasses (highest first)

CHAPTER 6. ENTITY LISTENERS AND CALLBACK METHODS

37

Entity Listeners for the entity

Callbacks of the superclasses (highest first)

Callbacks of the entity

You can stop the entity listeners inheritance by using the @ExcludeSuperclassListeners, all
superclasses @EntityListeners will then be ignored.

6.3. XML DEFINITION

The JPA specification allows annotation overriding through JPA deployment descriptor. There is also
an additional feature that can be useful: default event listeners.

You can override entity listeners on a given entity. An entity listener correspond to a given class and
one or several event fire a given method call. You can also define event on the entity itself to describe
the callbacks.

Last but not least, you can define some default entity listeners that will apply first on the entity listener
stack of all the mapped entities of a given persistence unit. If you don't want an entity to inherit the
default listeners, you can use @ExcludeDefaultListeners (or <exclude-default-listeners/>).

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
orm_1_0.xsd"
 version="1.0"
 >
 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <entity-listeners>
 <entity-listener
class="org.hibernate.ejb.test.pack.defaultpar.IncrementListener">
 <pre-persist method-name="increment"/>
 </entity-listener>
 </entity-listeners>
 </persistence-unit-defaults>
 </persistence-unit-metadata>
 <package>org.hibernate.ejb.test.pack.defaultpar</package>
 <entity class="ApplicationServer">
 <entity-listeners>
 <entity-listener class="OtherIncrementListener">
 <pre-persist method-name="increment"/>
 </entity-listener>
 </entity-listeners>

 <pre-persist method-name="calculate"/>
 </entity>
</entity-mappings>

Hibernate Entity Manager Reference Guide

38

CHAPTER 7. BATCH PROCESSING
Batch processing has traditionally been difficult in full object/relational mapping. ORM is all about
object state management, which implies that object state is available in memory. However, Hibernate
has some features to optimize batch processing which are discussed in the Hibernate reference guide,
however, JPA persistence differs slightly.

7.1. BULK UPDATE/DELETE

As already discussed, automatic and transparent object/relational mapping is concerned with the
management of object state. This implies that the object state is available in memory, hence updating
or deleting (using SQL UPDATE and DELETE) data directly in the database will not affect in-memory
state. However, Hibernate provides methods for bulk SQL-style UPDATE and DELETE statement
execution which are performed through EJB-QL (Chapter 8, EJB-QL: The Object Query Language).

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROM?
ClassName (WHERE WHERE_CONDITIONS)?. Note that:

In the from-clause, the FROM keyword is optional.

There can only be a single class named in the from-clause, and it cannot have an alias (this is a
current Hibernate limitation and will be removed soon).

No joins (either implicit or explicit) can be specified in a bulk EJB-QL query. Sub-queries may
be used in the where-clause.

The where-clause is also optional.

As an example, to execute an EJB-QL UPDATE, use the Query.executeUpdate() method:

To execute an EJB-QL DELETE, use the same Query.executeUpdate() method (the method is
named for those familiar with JDBC's PreparedStatement.executeUpdate()):

EntityManager entityManager = entityManagerFactory.createEntityManager();
entityManager.getTransaction().begin();

String ejbqlUpdate = "update Customer set name = :newName where name =
:oldName";
int updatedEntities = entityManager.createQuery(ejbqlUpdate)
 .setParameter("newName", newName)
 .setParameter("oldName", oldName)
 .executeUpdate();
entityManager.getTransaction().commit();
entityManager.close();

EntityManager entityManager = entityManagerFactory.createEntityManager();
entityManager.getTransaction().begin();

String hqlDelete = "delete Customer where name = :oldName";
int deletedEntities = entityManager.createQuery(hqlDelete)
 .setParameter("oldName", oldName)
 .executeUpdate();
entityManager.getTransaction().commit();
entityManager.close();

CHAPTER 7. BATCH PROCESSING

39

The int value returned by the Query.executeUpdate() method indicate the number of entities
affected by the operation. This may or may not correlate with the number of rows affected in the
database. An EJB-QL bulk operation might result in multiple actual SQL statements being executed,
for joined-subclass, for example. The returned number indicates the number of actual entities affected
by the statement. Going back to the example of joined-subclass, a delete against one of the subclasses
may actually result in deletes against not just the table to which that subclass is mapped, but also the
"root" table and potentially joined-subclass tables further down the inheritence hierarchy.

Hibernate Entity Manager Reference Guide

40

CHAPTER 8. EJB-QL: THE OBJECT QUERY LANGUAGE
EJB3-QL has been heavily inspired by HQL, the native Hibernate Query Language. Both are therefore
very close to SQL, but portable and independent of the database schema. People familiar with HQL
shouldn't have any problem using EJB-QL. Actually, you use the same query API for EJB-QL and HQL
queries. For an JPA application to remain portable, it should use EJB-QL without vendor-specific
extensions.

8.1. CASE SENSITIVITY

Queries are case-insensitive, except for names of Java classes and properties. So SeLeCT is the same
as sELEct is the same as SELECT but org.hibernate.eg.FOO is not org.hibernate.eg.Foo
and foo.barSet is not foo.BARSET.

This manual uses lowercase EJBQL keywords. Some users find queries with uppercase keywords more
readable, but we find this convention ugly when embedded in Java code.

8.2. THE FROM CLAUSE

The simplest possible EJB-QL query is of the form:

which simply returns all instances of the class eg.Cat. Unlike HQL, the select clause is not optional in
EJB-QL. We don't usually need to qualify the class name, since the entity name defaults to the
unqualified class name (@Entity). So we almost always just write:

As you may have noticed you can assign aliases to classes, the as keywork is optional. An alias allows
you to refer to Cat in other parts of the query.

Multiple classes may appear, resulting in a cartesian product or "cross" join.

It is considered good practice to name query aliases using an initial lowercase, consistent with Java
naming standards for local variables (eg. domesticCat).

8.3. ASSOCIATIONS AND JOINS

You may also assign aliases to associated entities, or even to elements of a collection of values, using a
join.

select c from eg.Cat c

select c from Cat c

select cat from Cat as cat

select form, param from Formula as form, Parameter as param

select cat, mate, kitten from Cat as cat
 inner join cat.mate as mate
 left outer join cat.kittens as kitten

select cat from Cat as cat left join cat.mate.kittens as kittens

CHAPTER 8. EJB-QL: THE OBJECT QUERY LANGUAGE

41

The supported join types are borrowed from ANSI SQL

inner join

left outer join

The inner join, left outer join constructs may be abbreviated.

In addition, a "fetch" join allows associations or collections of values to be initialized along with their
parent objects, using a single select. This is particularly useful in the case of a collection. It effectively
overrides the fetching options in the associations and collection mapping metadata. See the
Performance chapter of the Hibernate reference guide for more information.

A fetch join does not usually need to assign an alias, because the associated objects should not be
used in the where clause (or any other clause). Also, the associated objects are not returned directly
in the query results. Instead, they may be accessed via the parent object. The only reason we might
need an alias is if we are recursively join fetching a further collection:

Note that the fetch construct may not be used in queries called using scroll() or iterate(). Nor
should fetch be used together with setMaxResults() or setFirstResult(). It is possible to
create a cartesian product by join fetching more than one collection in a query (as in the example
above), be careful the result of this product isn't bigger than you expect. Join fetching multiple
collection roles also sometimes gives unexpected results for bag mappings, so be careful about how
you formulate your queries in this case.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to force
Hibernate to fetch the lazy properties immediately (in the first query) using fetch all properties.
This is Hibernate specific option:

8.4. THE SELECT CLAUSE

The select clause picks which objects and properties to return in the query result set. Consider:

select cat, mate, kitten from Cat as cat
 join cat.mate as mate
 left join cat.kittens as kitten

select cat from Cat as cat
 inner join fetch cat.mate
 left join fetch cat.kittens

select cat from Cat as cat
 inner join fetch cat.mate
 left join fetch cat.kittens child
 left join fetch child.kittens

select doc from Document doc fetch all properties order by doc.name

select doc from Document doc fetch all properties where lower(doc.name)
like '%cats%'

Hibernate Entity Manager Reference Guide

42

The query will select mates of other Cats. Actually, you may express this query more compactly as:

Queries may return properties of any value type including properties of component type:

Queries may return multiple objects and/or properties as an array of type Object[],

or as a List (HQL specific feature)

or as an actual typesafe Java object,

assuming that the class Family has an appropriate constructor.

You may assign aliases to selected expressions using as:

This is most useful when used together with select new map (HQL specific feature):

This query returns a Map from aliases to selected values.

select mate
from Cat as cat
 inner join cat.mate as mate

select cat.mate from Cat cat

select cat.name from DomesticCat cat
where cat.name like 'fri%'

select cust.name.firstName from Customer as cust

select mother, offspr, mate.name
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

select new list(mother, offspr, mate.name)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

select new Family(mother, mate, offspr)
from DomesticCat as mother
 join mother.mate as mate
 left join mother.kittens as offspr

select max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n
from Cat cat

select new map(max(bodyWeight) as max, min(bodyWeight) as min, count(*)
as n)
from Cat cat

CHAPTER 8. EJB-QL: THE OBJECT QUERY LANGUAGE

43

8.5. AGGREGATE FUNCTIONS

HQL queries may even return the results of aggregate functions on properties:

The supported aggregate functions are

avg(...), avg(distinct ...), sum(...), sum(distinct ...), min(...),
max(...)

count(*)

count(...), count(distinct ...), count(all...)

You may use arithmetic operators, concatenation, and recognized SQL functions in the select clause
(depending on configured dialect, HQL specific feature):

The distinct and all keywords may be used and have the same semantics as in SQL.

8.6. POLYMORPHIC QUERIES

A query like:

returns instances not only of Cat, but also of subclasses like DomesticCat. Hibernate queries may
name any Java class or interface in the from clause (portable EJB-QL queries should only name
mapped entities). The query will return instances of all persistent classes that extend that class or
implement the interface. The following query would return all persistent objects:

The interface Named might be implemented by various persistent classes:

Note that these last two queries will require more than one SQL SELECT. This means that the order
by clause does not correctly order the whole result set. (It also means you can't call these queries
using Query.scroll().)

select avg(cat.weight), sum(cat.weight), max(cat.weight), count(cat)
from Cat cat

select cat.weight + sum(kitten.weight)
from Cat cat
 join cat.kittens kitten
group by cat.id, cat.weight

select firstName||' '||initial||' '||upper(lastName) from Person

select distinct cat.name from Cat cat

select count(distinct cat.name), count(cat) from Cat cat

select cat from Cat as cat

from java.lang.Object o // HQL only

from Named n, Named m where n.name = m.name // HQL only

Hibernate Entity Manager Reference Guide

44

8.7. THE WHERE CLAUSE

The where clause allows you to narrow the list of instances returned. If no alias exists, you may refer
to properties by name:

returns instances of Cat named 'Fritz'.

will return all instances of Foo for which there exists an instance of bar with a date property equal to
the startDate property of the Foo. Compound path expressions make the where clause extremely
powerful. Consider:

This query translates to an SQL query with a table (inner) join. If you were to write something like

you would end up with a query that would require four table joins in SQL.

The = operator may be used to compare not only properties, but also instances:

The special property (lowercase) id may be used to reference the unique identifier of an object. (You
may also use its mapped identifer property name.). Note that this keyword is specific to HQL.

The second query is efficient. No table join is required!

Properties of composite identifiers may also be used. Suppose Person has a composite identifier
consisting of country and medicareNumber.

select cat from Cat cat where cat.name='Fritz'

select foo
from Foo foo, Bar bar
where foo.startDate = bar.date

select cat from Cat cat where cat.mate.name is not null

select foo from Foo foo
where foo.bar.baz.customer.address.city is not null

select cat, rival from Cat cat, Cat rival where cat.mate = rival.mate

select cat, mate
from Cat cat, Cat mate
where cat.mate = mate

select cat from Cat as cat where cat.id = 123

select cat from Cat as cat where cat.mate.id = 69

select person from bank.Person person
where person.id.country = 'AU'
 and person.id.medicareNumber = 123456

CHAPTER 8. EJB-QL: THE OBJECT QUERY LANGUAGE

45

Once again, the second query requires no table join.

Likewise, the special property class accesses the discriminator value of an instance in the case of
polymorphic persistence. A Java class name embedded in the where clause will be translated to its
discriminator value. Once again, this is specific to HQL.

You may also specify properties of components or composite user types (and of components of
components, etc). Never try to use a path-expression that ends in a property of component type (as
opposed to a property of a component). For example, if store.owner is an entity with a component
address

An "any" type has the special properties id and class, allowing us to express a join in the following
way (where AuditLog.item is a property mapped with <any>). Any is specific to Hibernate

Notice that log.item.class and payment.class would refer to the values of completely different
database columns in the above query.

8.8. EXPRESSIONS

Expressions allowed in the where clause include most of the kind of things you could write in SQL:

mathematical operators +, -, *, /

binary comparison operators =, >=, <=, <>, !=, like

logical operations and, or, not

Parentheses (), indicating grouping

in, not in, between, is null, is not null, is empty, is not empty, member of and
not member of

"Simple" case, case ... when ... then ... else ... end, and "searched" case, case
when ... then ... else ... end (specific to HQL)

string concatenation ...||... or concat(...,...) (use concat() for portable
EJB-QL queries)

current_date(), current_time(), current_timestamp()

select account from bank.Account account
where account.owner.id.country = 'AU'
 and account.owner.id.medicareNumber = 123456

select cat from Cat cat where cat.class = DomesticCat

store.owner.address.city // okay
store.owner.address // error!

from AuditLog log, Payment payment
where log.item.class = 'Payment' and log.item.id = payment.id

Hibernate Entity Manager Reference Guide

46

second(...), minute(...), hour(...), day(...), month(...), year(...), (specific to
HQL)

Any function or operator defined by EJB-QL 3.0: substring(), trim(), lower(),
upper(), length(), locate(), abs(), sqrt(), bit_length()

coalesce() and nullif()

cast(... as ...), where the second argument is the name of a Hibernate type, and
extract(... from ...) if ANSI cast() and extract() is supported by the underlying
database

Any database-supported SQL scalar function like sign(), trunc(), rtrim(), sin()

JDBC IN parameters ?

named parameters :name, :start_date, :x1

SQL literals 'foo', 69, '1970-01-01 10:00:01.0'

Java public static final constants eg.Color.TABBY

in and between may be used as follows:

and the negated forms may be written

Likewise, is null and is not null may be used to test for null values.

Booleans may be easily used in expressions by declaring HQL query substitutions in Hibernate
configuration:

This will replace the keywords true and false with the literals 1 and 0 in the translated SQL from
this HQL:

You may test the size of a collection with the special property size, or the special size() function
(HQL specific feature).

select cat from DomesticCat cat where cat.name between 'A' and 'B'

select cat from DomesticCat cat where cat.name in ('Foo', 'Bar', 'Baz')

select cat from DomesticCat cat where cat.name not between 'A' and 'B'

select cat from DomesticCat cat where cat.name not in ('Foo', 'Bar',
'Baz')

hibernate.query.substitutions true 1, false 0

select cat from Cat cat where cat.alive = true

select cat from Cat cat where cat.kittens.size > 0

CHAPTER 8. EJB-QL: THE OBJECT QUERY LANGUAGE

47

For indexed collections, you may refer to the minimum and maximum indices using minindex and
maxindex functions. Similarly, you may refer to the minimum and maximum elements of a collection of
basic type using the minelement and maxelement functions. These are HQL specific features.

The SQL functions any, some, all, exists, in are supported when passed the element or
index set of a collection (elements and indices functions) or the result of a subquery (see below).
While subqueries are supported by EJB-QL, elements and indices are specific HQL features.

Note that these constructs - size, elements, indices, minindex, maxindex, minelement,
maxelement - may only be used in the where clause in Hibernate.

In HQL, elements of indexed collections (arrays, lists, maps) may be referred to by index (in a where
clause only):

The expression inside [] may even be an arithmetic expression.

select cat from Cat cat where size(cat.kittens) > 0

select cal from Calendar cal where maxelement(cal.holidays) > current date

select order from Order order where maxindex(order.items) > 100

select order from Order order where minelement(order.items) > 10000

select mother from Cat as mother, Cat as kit
where kit in elements(foo.kittens)

select p from NameList list, Person p
where p.name = some elements(list.names)

select cat from Cat cat where exists elements(cat.kittens)

select cat from Player p where 3 > all elements(p.scores)

select cat from Show show where 'fizard' in indices(show.acts)

select order from Order order where order.items[0].id = 1234

select person from Person person, Calendar calendar
where calendar.holidays['national day'] = person.birthDay
 and person.nationality.calendar = calendar

select item from Item item, Order order
where order.items[order.deliveredItemIndices[0]] = item and order.id =
11

select item from Item item, Order order
where order.items[maxindex(order.items)] = item and order.id = 11

Hibernate Entity Manager Reference Guide

48

HQL also provides the built-in index() function, for elements of a one-to-many association or
collection of values.

Scalar SQL functions supported by the underlying database may be used

If you are not yet convinced by all this, think how much longer and less readable the following query
would be in SQL:

Hint: something like

8.9. THE ORDER BY CLAUSE

The list returned by a query may be ordered by any property of a returned class or components:

The optional asc or desc indicate ascending or descending order respectively.

select item from Item item, Order order
where order.items[size(order.items) - 1] = item

select item, index(item) from Order order
 join order.items item
where index(item) < 5

select cat from DomesticCat cat where upper(cat.name) like 'FRI%'

select cust
from Product prod,
 Store store
 inner join store.customers cust
where prod.name = 'widget'
 and store.location.name in ('Melbourne', 'Sydney')
 and prod = all elements(cust.currentOrder.lineItems)

SELECT cust.name, cust.address, cust.phone, cust.id, cust.current_order
FROM customers cust,
 stores store,
 locations loc,
 store_customers sc,
 product prod
WHERE prod.name = 'widget'
 AND store.loc_id = loc.id
 AND loc.name IN ('Melbourne', 'Sydney')
 AND sc.store_id = store.id
 AND sc.cust_id = cust.id
 AND prod.id = ALL(
 SELECT item.prod_id
 FROM line_items item, orders o
 WHERE item.order_id = o.id
 AND cust.current_order = o.id
)

select cat from DomesticCat cat
order by cat.name asc, cat.weight desc, cat.birthdate

CHAPTER 8. EJB-QL: THE OBJECT QUERY LANGUAGE

49

8.10. THE GROUP BY CLAUSE

A query that returns aggregate values may be grouped by any property of a returned class or
components:

A having clause is also allowed.

SQL functions and aggregate functions are allowed in the having and order by clauses, if supported
by the underlying database (eg. not in MySQL).

Note that neither the group by clause nor the order by clause may contain arithmetic expressions.

8.11. SUBQUERIES

For databases that support subselects, EJB-QL supports subqueries within queries. A subquery must
be surrounded by parentheses (often by an SQL aggregate function call). Even correlated subqueries
(subqueries that refer to an alias in the outer query) are allowed.

select cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat.color

select foo.id, avg(name), max(name)
from Foo foo join foo.names name
group by foo.id

select cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat.color
having cat.color in (eg.Color.TABBY, eg.Color.BLACK)

select cat
from Cat cat
 join cat.kittens kitten
group by cat
having avg(kitten.weight) > 100
order by count(kitten) asc, sum(kitten.weight) desc

select fatcat from Cat as fatcat
where fatcat.weight > (
 select avg(cat.weight) from DomesticCat cat
)

select cat from DomesticCat as cat
where cat.name = some (
 select name.nickName from Name as name
)

select cat from Cat as cat
where not exists (
 from Cat as mate where mate.mate = cat
)

Hibernate Entity Manager Reference Guide

50

For subqueries with more than one expression in the select list, you can use a tuple constructor:

Note that on some databases (but not Oracle or HSQLDB), you can use tuple constructors in other
contexts, for example when querying components or composite user types:

Which is equivalent to the more verbose:

There are two good reasons you might not want to do this kind of thing: first, it is not completely
portable between database platforms; second, the query is now dependent upon the ordering of
properties in the mapping document.

8.12. EJB-QL EXAMPLES

Hibernate queries can be quite powerful and complex. In fact, the power of the query language is one of
Hibernate's main selling points (and now EJB-QL). This section includes examples of queries in
Hibernate.

The following query returns the order id, number of items and total value of the order for all unpaid
orders for a particular customer and given minimum total value, ordering the results by total value. In
determining the prices, it uses the current catalog. The resulting SQL query, against the ORDER,
ORDER_LINE, PRODUCT, CATALOG and PRICE tables has four inner joins and an (uncorrelated)
subselect.

select cat from DomesticCat as cat
where cat.name not in (
 select name.nickName from Name as name
)

select cat from Cat as cat
where not (cat.name, cat.color) in (
 select cat.name, cat.color from DomesticCat cat
)

select cat from Person where name = ('Gavin', 'A', 'King')

select cat from Person where name.first = 'Gavin' and name.initial = 'A'
and name.last = 'King')

select order.id, sum(price.amount), count(item)
from Order as order
 join order.lineItems as item
 join item.product as product,
 Catalog as catalog
 join catalog.prices as price
where order.paid = false
 and order.customer = :customer
 and price.product = product
 and catalog.effectiveDate < current_date()
 and catalog.effectiveDate >= all (
 select cat.effectiveDate
 from Catalog as cat
 where cat.effectiveDate < current_date()
)
group by order

CHAPTER 8. EJB-QL: THE OBJECT QUERY LANGUAGE

51

To avoid using subqueries, you could write something like this:

The next query counts the number of payments in each status, excluding all payments in the
AWAITING_APPROVAL status where the most recent status change was made by the current user. It
translates to an SQL query with two inner joins and a correlated subselect against the PAYMENT,
PAYMENT_STATUS and PAYMENT_STATUS_CHANGE tables.

If the statusChanges collection were mapped as a list instead of a set, the query would be far simpler.

However the query would have been HQL specific.

The next query uses the MS SQL Server isNull() function to return all the accounts and unpaid
payments for the organization to which the current user belongs. It translates to an SQL query with

having sum(price.amount) > :minAmount
order by sum(price.amount) desc

select order.id, sum(price.amount), count(item)
from Order as order
 join order.lineItems as item
 join item.product as product,
 Catalog as catalog
 join catalog.prices as price
where order.paid = false
 and order.customer = :customer
 and price.product = product
 and catalog = :currentCatalog
group by order
having sum(price.amount) > :minAmount
order by sum(price.amount) desc

select count(payment), status.name
from Payment as payment
 join payment.currentStatus as status
 join payment.statusChanges as statusChange
where payment.status.name <> PaymentStatus.AWAITING_APPROVAL
 or (
 statusChange.timeStamp = (
 select max(change.timeStamp)
 from PaymentStatusChange change
 where change.payment = payment
)
 and statusChange.user <> :currentUser
)
group by status.name, status.sortOrder
order by status.sortOrder

select count(payment), status.name
from Payment as payment
 join payment.currentStatus as status
where payment.status.name <> PaymentStatus.AWAITING_APPROVAL
 or payment.statusChanges[maxIndex(payment.statusChanges)].user <>
:currentUser
group by status.name, status.sortOrder
order by status.sortOrder

Hibernate Entity Manager Reference Guide

52

three inner joins, an outer join and a subselect against the ACCOUNT, PAYMENT, PAYMENT_STATUS,
ACCOUNT_TYPE, ORGANIZATION and ORG_USER tables.

8.13. BULK UPDATE & DELETE STATEMENTS

Hibernate now supports UPDATE and DELETE statements in HQL/EJB-QL. See Section 7.1, “Bulk
update/delete” for details.

8.14. TIPS & TRICKS

To order a result by the size of a collection, use the following query:

If your database supports subselects, you can place a condition upon selection size in the where clause
of your query:

If your database doesn't support subselects, use the following query:

As this solution can't return a User with zero messages because of the inner join, the following form is
also useful:

select account, payment
from Account as account
 join account.holder.users as user
 left outer join account.payments as payment
where :currentUser = user
 and PaymentStatus.UNPAID = isNull(payment.currentStatus.name,
PaymentStatus.UNPAID)
order by account.type.sortOrder, account.accountNumber, payment.dueDate

select usr.id, usr.name
from User as usr
 left join usr.messages as msg
group by usr.id, usr.name
order by count(msg)

from User usr where size(usr.messages) >= 1

select usr.id, usr.name
from User usr.name
 join usr.messages msg
group by usr.id, usr.name
having count(msg) >= 1

select usr.id, usr.name
from User as usr
 left join usr.messages as msg
group by usr.id, usr.name
having count(msg) = 0

CHAPTER 8. EJB-QL: THE OBJECT QUERY LANGUAGE

53

CHAPTER 9. NATIVE QUERY
You may also express queries in the native SQL dialect of your database. This is useful if you want to
utilize database specific features such as query hints or the CONNECT BY option in Oracle. It also
provides a clean migration path from a direct SQL/JDBC based application to Hibernate. Note that
Hibernate allows you to specify handwritten SQL (including stored procedures) for all create, update,
delete, and load operations (please refer to the reference guide for more information.)

9.1. EXPRESSING THE RESULTSET

To use a SQL query, you need to describe the SQL resultset. This description will help the
EntityManager to map your columns onto entity properties. This is done using the
@SqlResultSetMapping annotation. Each @SqlResultSetMapping has a name wich is used when
creating a SQL query on EntityManager.

You can also define scalar results and even mix entity results and scalar results

@SqlResultSetMapping(name="GetNightAndArea",
 entities={

@EntityResult(entityClass=org.hibernate.test.annotations.query.Night.class
, fields
 = {
 @FieldResult(name="id", column="nid"),
 @FieldResult(name="duration", column="night_duration"),
 @FieldResult(name="date", column="night_date"),
 @FieldResult(name="area", column="area_id")
 }),

@EntityResult(entityClass=org.hibernate.test.annotations.query.Area.class,
fields
 = {
 @FieldResult(name="id", column="aid"),
 @FieldResult(name="name", column="name")
 })
 }
)

@SqlResultSetMapping(name="defaultSpaceShip",
entities=@EntityResult(entityClass=org.hibernate.test.annotations.query.Sp
aceShip.class))

@SqlResultSetMapping(name="ScalarAndEntities",
 entities={

@EntityResult(entityClass=org.hibernate.test.annotations.query.Night.class
,
 fields = {
 @FieldResult(name="id", column="nid"),
 @FieldResult(name="duration", column="night_duration"),
 @FieldResult(name="date", column="night_date"),
 @FieldResult(name="area", column="area_id")
 }),

Hibernate Entity Manager Reference Guide

54

The SQL query will then have to return a column alias durationInSec.

Please refer to the Hibernate Annotations reference guide for more information about
@SqlResultSetMapping.

9.2. USING NATIVE SQL QUERIES

Now that the result set is described, we are capable of executing the native SQL query.
EntityManager provides all the needed APIs. The first method is to use a SQL resultset name to do
the binding, the second one uses the entity default mapping (the column returned has to have the same
names as the one used in the mapping). A third one (not yet supported by Hibernate entity manager),
returns pure scalar results.

This native query returns nights and area based on the GetNightAndArea result set.

The second version is useful when your SQL query returns one entity reusing the same columns as the
ones mapped in metadata.

9.3. NAMED QUERIES

Native named queries share the same calling API than EJB-QL named queries. Your code doesn't need
to know the difference between the two. This is very useful for migration from SQL to EJB-QL:

@EntityResult(entityClass=org.hibernate.test.annotations.query.Area.class,
 fields = {
 @FieldResult(name="id", column="aid"),
 @FieldResult(name="name", column="name")
 })
 },
 columns={
 @ColumnResult(name="durationInSec")
 }
)

String sqlQuery = "select night.id nid, night.night_duration,
night.night_date, area.id aid, "
 + "night.area_id, area.name from Night night, Area area where
night.area_id = area.id "
 + "and night.night_duration >= ?";
Query q = entityManager.createNativeQuery(sqlQuery, "GetNightAndArea");
q.setParameter(1, expectedDuration);
q.getResultList();

String sqlQuery = "select * from tbl_spaceship where owner = ?";
Query q = entityManager.createNativeQuery(sqlQuery, SpaceShip.class);
q.setParameter(1, "Han");
q.getResultList();

Query q = entityManager.createNamedQuery("getSeasonByNativeQuery");
q.setParameter(1, name);
Season season = (Season) q.getSingleResult();

CHAPTER 9. NATIVE QUERY

55

APPENDIX A. REVISION HISTORY

Revision 1.0.2-4.1 Wed Feb 11 2015 Lucas Costi
Updated the Product Name to reflect the new name grouping for the product. No update was made to details in the guide.

Revision 1.0.2-4 Tue Jun 21 2011 Rebecca Newton
Final build for EWS 1.0.2.GA

Hibernate Entity Manager Reference Guide

56

	Table of Contents
	CHAPTER 1. INTRODUCING JPA PERSISTENCE
	CHAPTER 2. ARCHITECTURE
	2.1. DEFINITIONS
	2.2. EJB CONTAINER ENVIRONMENT
	2.2.1. Container-managed entity manager
	2.2.2. Application-managed entity manager
	2.2.3. Persistence context scope
	2.2.4. Persistence context propagation

	2.3. JAVA SE ENVIRONMENTS

	CHAPTER 3. SETUP AND CONFIGURATION
	3.1. CONFIGURATION AND BOOTSTRAPPING
	3.1.1. Packaging
	3.1.2. Bootstrapping

	3.2. EVENT LISTENERS
	3.3. OBTAINING AN ENTITYMANAGER IN A JAVA SE ENVIRONMENT

	CHAPTER 4. WORKING WITH OBJECTS
	4.1. ENTITY STATES
	4.2. MAKING OBJECTS PERSISTENT
	4.3. LOADING AN OBJECT
	4.4. QUERYING OBJECTS
	4.4.1. Executing queries
	4.4.1.1. Projection
	4.4.1.2. Scalar results
	4.4.1.3. Bind parameters
	4.4.1.4. Pagination
	4.4.1.5. Externalizing named queries
	4.4.1.6. Native queries
	4.4.1.7. Query hints

	4.5. MODIFYING PERSISTENT OBJECTS
	4.6. MODIFYING DETACHED OBJECTS
	4.7. AUTOMATIC STATE DETECTION
	4.8. DELETING MANAGED OBJECTS
	4.9. FLUSH THE PERSISTENCE CONTEXT
	4.9.1. In a transaction
	4.9.2. Outside a transaction

	4.10. TRANSITIVE PERSISTENCE
	4.11. LOCKING

	CHAPTER 5. TRANSACTIONS AND CONCURRENCY
	5.1. ENTITY MANAGER AND TRANSACTION SCOPES
	5.1.1. Unit of work
	5.1.2. Long units of work
	5.1.3. Considering object identity
	5.1.4. Common concurrency control issues

	5.2. DATABASE TRANSACTION DEMARCATION
	5.2.1. Non-managed environment
	5.2.1.1. EntityTransaction

	5.2.2. Using JTA
	5.2.3. Exception handling

	5.3. EXTENDED PERSISTENCE CONTEXT
	5.3.1. Container Managed Entity Manager
	5.3.2. Application Managed Entity Manager

	5.4. OPTIMISTIC CONCURRENCY CONTROL
	5.4.1. Application version checking
	5.4.2. Extended entity manager and automatic versioning
	5.4.3. Detached objects and automatic versioning

	CHAPTER 6. ENTITY LISTENERS AND CALLBACK METHODS
	6.1. DEFINITION
	6.2. CALLBACKS AND LISTENERS INHERITANCE
	6.3. XML DEFINITION

	CHAPTER 7. BATCH PROCESSING
	7.1. BULK UPDATE/DELETE

	CHAPTER 8. EJB-QL: THE OBJECT QUERY LANGUAGE
	8.1. CASE SENSITIVITY
	8.2. THE FROM CLAUSE
	8.3. ASSOCIATIONS AND JOINS
	8.4. THE SELECT CLAUSE
	8.5. AGGREGATE FUNCTIONS
	8.6. POLYMORPHIC QUERIES
	8.7. THE WHERE CLAUSE
	8.8. EXPRESSIONS
	8.9. THE ORDER BY CLAUSE
	8.10. THE GROUP BY CLAUSE
	8.11. SUBQUERIES
	8.12. EJB-QL EXAMPLES
	8.13. BULK UPDATE & DELETE STATEMENTS
	8.14. TIPS & TRICKS

	CHAPTER 9. NATIVE QUERY
	9.1. EXPRESSING THE RESULTSET
	9.2. USING NATIVE SQL QUERIES
	9.3. NAMED QUERIES

	APPENDIX A. REVISION HISTORY

