
Red Hat JBoss Fuse 6.2

Fabric Guide

A system for provisioning containers deployed across a network

Last Updated: 2017-09-26

Red Hat JBoss Fuse 6.2 Fabric Guide

A system for provisioning containers deployed across a network

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Fabric enables you to install, start up, and provision remote containers across a network with
support for centralized, highly available container configuration, based on Apache Zookeeper.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. BASIC FABRIC DEPLOYMENT

CHAPTER 1. GETTING STARTED WITH FUSE FABRIC
1.1. CREATE A FABRIC
1.2. DEPLOY A PROFILE
1.3. UPDATE A PROFILE
1.4. SHUTTING DOWN THE CONTAINERS

CHAPTER 2. CREATING A NEW FABRIC
STATIC IP ADDRESS REQUIRED FOR FABRIC SERVER
PROCEDURE
FABRIC CREATION PROCESS
EXPANDING A FABRIC

CHAPTER 3. FABRIC CONTAINERS
3.1. CHILD CONTAINERS
3.2. SSH CONTAINERS
3.3. FABRIC CONTAINERS ON WINDOWS
3.4. CLOUD CONTAINERS

CHAPTER 4. FABRIC PROFILES
4.1. INTRODUCTION TO PROFILES
4.2. WORKING WITH PROFILES
4.3. PROFILE VERSIONS

CHAPTER 5. FABRIC8 MAVEN PLUG-IN
5.1. PREPARING TO USE THE PLUG-IN
5.2. USING THE PLUG-IN TO DEPLOY A MAVEN PROJECT
5.3. CONFIGURING THE PLUG-IN
5.4. CONFIGURATION PROPERTIES

CHAPTER 6. ACTIVEMQ BROKERS AND CLUSTERS
6.1. CREATING A STANDALONE BROKER INSTANCE
6.2. CONNECTING TO A BROKER
6.3. TOPOLOGIES
6.4. BROKER CONFIGURATION

PART II. FABRIC IN PRODUCTION

CHAPTER 7. FABRIC ENSEMBLE AND REGISTRY
7.1. FABRIC REGISTRY
7.2. ADMINISTERING A FABRIC ENSEMBLE

CHAPTER 8. FABRIC AGENTS
8.1. INTRODUCTION
8.2. THE CONFIGURATION ADMIN BRIDGE
8.3. THE DEPLOYMENT AGENT

CHAPTER 9. ALLOCATING PORTS
9.1. THE PORT SERVICE
9.2. USING THE PORT SERVICE

CHAPTER 10. GATEWAY
10.1. GATEWAY ARCHITECTURE
10.2. RUNNING THE GATEWAY

4

5
5
6
7
9

10
10
10
12
12

14
14
15
17
19

25
25
26
32

34
34
34
35
38

40
40
42
43
49

57

58
58
59

61
61
61
62

65
65
67

70
70
70

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

10.3. CONFIGURING THE GATEWAY
10.4. VERSIONING
10.5. URI TEMPLATE EXPRESSIONS

CHAPTER 11. SECURING FABRIC CONTAINERS
DEFAULT AUTHENTICATION SYSTEM
MANAGING USERS
OBFUSCATING STORED PASSWORDS
ENABLING LDAP AUTHENTICATION

CHAPTER 12. CONFIGURING A FABRIC'S MAVEN PROXY
OVERVIEW
DEFAULT REPOSITORIES
CHANGING THE REPOSITORIES
USING AN HTTP PROXY WITH THE MAVEN PROXY

CHAPTER 13. OFFLINE REPOSITORIES
13.1. OFFLINE REPOSITORY FOR A PROFILE
13.2. OFFLINE REPOSITORY FOR A VERSION
13.3. OFFLINE REPOSITORY FOR A MAVEN PROJECT

CHAPTER 14. CONFIGURING WITH GIT
14.1. HOW GIT WORKS INSIDE FABRIC
14.2. USING A GIT CLUSTER
14.3. USING A GIT HTTP PROXY
14.4. USING AN EXTERNAL GIT REPOSITORY
14.5. USING AN HTTP PROXY WITH A GIT CLUSTER

CHAPTER 15. PATCHING
15.1. PATCHING A CONTAINER IN A FABRIC

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR
A.1. EDITING AGENT PROPERTIES
A.2. EDITING OSGI CONFIG ADMIN PROPERTIES
A.3. EDITING OTHER RESOURCES
A.4. PROFILE ATTRIBUTES

APPENDIX B. FABRIC URL HANDLERS
B.1. PROFILE URL HANDLER
B.2. ZK URL HANDLER
B.3. BLUEPRINT URL HANDLER
B.4. SPRING URL HANDLER

APPENDIX C. PROFILE PROPERTY RESOLVERS
C.1. SUBSTITUTING SYSTEM PROPERTIES
C.2. SUBSTITUTING ENVIRONMENT VARIABLES
C.3. SUBSTITUTING CONTAINER ATTRIBUTES
C.4. SUBSTITUTING PID PROPERTIES
C.5. SUBSTITUTING ZOOKEEPER NODE CONTENTS
C.6. CHECKSUM PROPERTY RESOLVER
C.7. PORT PROPERTY RESOLVER

70
72
73

74
74
74
74
75

76
76
76
76
78

80
80
80
80

82
82
84
90
90
94

96
96

99
99

102
103
105

107
107
107
107
108

109
109
109
110
111
112
113
113

Red Hat JBoss Fuse 6.2 Fabric Guide

2

Table of Contents

3

PART I. BASIC FABRIC DEPLOYMENT

Abstract

Get started with Fuse Fabric and learn how to perform basic administration tasks.

Red Hat JBoss Fuse 6.2 Fabric Guide

4

CHAPTER 1. GETTING STARTED WITH FUSE FABRIC

Abstract

This tutorial provides basic information and explains how to set up the simplest Fabric system, by
creating some containers that run on your local machine and then deploying an example profile to a child
container.

Additional information on setting up a Fabric is covered in more detail in both Chapter 2, Creating a New
Fabric and Section 3.1, “Child Containers”.

1.1. CREATE A FABRIC

Overview

Figure 1.1 shows an overview of a sample fabric that you will create. The Fabric Ensemble consists of
just one Fabric Server (making this fabric suitable only for experimental use) and two managed child
containers.

Figure 1.1. A Sample Fabric with Child Containers

Steps to create the fabric

To create the simple fabric shown in Figure 1.1, “A Sample Fabric with Child Containers” , follow these
steps:

1. To create the first fabric container, which acts as the seed for the new fabric, enter this console
command:

JBossFuse:karaf@root> fabric:create --new-user AdminUser --new-user-
password AdminPass --new-user-role Administrator --zookeeper-

CHAPTER 1. GETTING STARTED WITH FUSE FABRIC

5

The current container, named root by default, becomes a Fabric Server with a registry service
installed. Initially, this is the only container in the fabric. The --new-user, --new-user-
password, and --new-user-role options specify the credentials for a new Administrator
user. The Zookeeper password is used to protect sensitive data in the Fabric registry service (all
of the nodes under /fabric). The --manual-ip option specifies the loopback address,
127.0.0.1, as the Fabric Server's IP address.

NOTE

A Fabric Server requires a static IP address. For simple trials and tests, you can
use the loopback address, 127.0.0.1, to work around this requirement. But if
you are deploying a fabric in production or if you want to create a distributed
ensemble, you must assign a static IP address to the each of the Fabric Server
hosts.

NOTE

Most of the time, you are not prompted to enter the Zookeeper password when
accessing the registry service, because it is cached in the current session. When
you join a container to a fabric, however, you must provide the fabric's Zookeeper
password.

2. Create a child container. Assuming that your root container is named root, enter this console
command:

3. Invoke the following command to monitor the status of the child container, as it is being
provisioned:

After the deployment of the child has completed, you should see a listing something like this:

Type the Return key to get back to the JBoss Fuse console prompt.

1.2. DEPLOY A PROFILE

password ZooPass --resolver manualip --manual-ip 127.0.0.1 --wait-
for-provisioning

JBossFuse:karaf@root> fabric:container-create-child root child
The following containers have been created successfully:
 Container: child.

JBossFuse:karaf@root> shell:watch container-list

JBossFuse:karaf@root> shell:watch container-list
[id] [version] [alive] [profiles]
[provision status]
root 1.0 true fabric, fabric-
ensemble-0000-1, fuse-esb-full success
 child 1.0 true default
success

Red Hat JBoss Fuse 6.2 Fabric Guide

6

Deploy a profile to the child container

Having created the child container, as described in Section 1.1, “Create a Fabric”, you can now deploy
the a profile to it. To do so, follow these steps:

1. Deploy the quickstarts-beginner-camel.log profile into the child container by entering
this console command:

2. Verify that the quickstarts-beginner-camel.log profile deploys successfully to the child
container, using the fabric:container-list command. Enter the following command to
monitor the container status:

And wait until the child container status changes to success.

View the sample output

When it is running, the quickstarts-beginner-camel.log profile writes a message to the
container's log every five seconds. To verify that the profile is running properly, you can look for these
messages in the child container's log, as follows:

1. Connect to the child container, by entering the following console command:

2. After logging on to the child container, view the child container's log using the log:tail
command, as follows:

You should see some output like the following:

3. Type Ctrl-C to exit the log view and get back to the child container's console prompt.

4. Type Ctrl-D to exit the child container's console, which brings you back to the root container
console.

1.3. UPDATE A PROFILE

Atomic container upgrades

JBossFuse:karaf@root> fabric:container-change-profile child
quickstarts-beginner-camel.log

JBossFuse:karaf@root> shell:watch container-list

JBossFuse:karaf@root> container-connect child

JBossFuse:karaf@root> log:tail

2015-06-16 11:47:51,012 | INFO | #2 - timer://foo | log-route
 | ? ? | 153 - org.apache.camel.camel-core - 2.15.1.redhat-620123
 | >>> Hello from Fabric based Camel route! : child
2015-06-16 11:47:56,011 | INFO | #2 - timer://foo | log-route
 | ? ? | 153 - org.apache.camel.camel-core - 2.15.1.redhat-620123
 | >>> Hello from Fabric based Camel route! : child

CHAPTER 1. GETTING STARTED WITH FUSE FABRIC

7

Normally, when you edit a profile that is already deployed in a container, the modification takes effect
immediately. This is because the Fabric Agent in the affected container (or containers) actively monitors
the fabric registry in real time.

In practice, however, immediate propagation of profile modifications is often undesirable. In a production
system, you typically want to roll out changes incrementally: for example, initially trying out the change
on just one container to check for problems, before you make changes globally to all containers.
Moreover, sometimes several edits must be made together to reconfigure an application in a consistent
way.

Profile versioning

For quality assurance and consistency, it is typically best to modify profiles atomically, where several
modifications are applied simultaneously. To support atomic updates, fabric implements profile
versioning. Initially, the container points at version 1.0 of a profile. When you create a new profile version
(for example, version 1.1), the changes are invisible to the container until you upgrade it. After you are
finished editing the new profile, you can apply all of the modifications simultaneously by upgrading the
container to use the new version 1.1 of the profile.

Upgrade to a new profile

For example, to modify the quickstarts-beginner-camel.log profile, when it is deployed and
running in a container, follow the recommended procedure:

1. Create a new version, 1.1, to hold the pending changes by entering this console command:

The new version is initialised with a copy of all of the profiles from version 1.0.

2. Use the fabric:profile-edit command to change the message that is written to the
container log by the Camel route. Enter the following profile-edit command to edit the
camel.xml resource:

This opens the built-in text editor for editing profile resources (see Appendix A, Editing Profiles
with the Built-In Text Editor).

Remember to specify version 1.1 to the fabric:profile-edit command, so that the
modifications are applied to version 1.1 of the quickstarts-beginner-camel.log profile.

When you are finished editing, type Ctrl-S to save your changes and then type Ctrl-X to quit the
text editor and get back to the console prompt.

3. Upgrade the child container to version 1.1 by entering this console command:

Roll back to an old profile

You can easily roll back to the old version of the quickstarts-beginner-camel.log profile, using

JBossFuse:karaf@root> fabric:version-create
Created version: 1.1 as copy of: 1.0

JBossFuse:karaf@root> fabric:profile-edit --resource camel.xml
quickstarts-beginner-camel.log 1.1

JBossFuse:karaf@root> fabric:container-upgrade 1.1 child

Red Hat JBoss Fuse 6.2 Fabric Guide

8

the fabric:container-rollback command like this:

1.4. SHUTTING DOWN THE CONTAINERS

Shutting down the containers

Because the child containers run in their own JVMs, they do not automatically stop when you shut down
the root container. To shut down a container and its children, first stop its children using the
fabric:container-stop command. For example, to shut down the current fabric completely, enter
these console commands:

After you restart the root container, you must explicitly restart the children using the
fabric:container-start console command.

JBossFuse:karaf@root> fabric:container-rollback 1.0 child

JBossFuse:karaf@root> fabric:container-stop child
JBossFuse:karaf@root> shutdown -f

CHAPTER 1. GETTING STARTED WITH FUSE FABRIC

9

CHAPTER 2. CREATING A NEW FABRIC

Abstract

When there are no existing fabric's to join, or you want to start a new fabric, you can create a new one
from a standalone container.

STATIC IP ADDRESS REQUIRED FOR FABRIC SERVER

The IP address and hostname associated with the Fabric Servers in the Fabric ensemble are of critical
importance to the fabric. Because these IP addresses and hostnames are used for configuration and
service discovery (through the Zookeeper registry), they must not change during the lifetime of the fabric.

You can take either of the following approaches to specifying the IP address:

For simple examples and tests (with a single Fabric Server) you can work around the static IP
requirement by using the loopback address, 127.0.0.1.

For distributed tests (multiple Fabric Servers) and production deployments, you must assign a
static IP address to each of the Fabric Server hosts.

WARNING

Beware of volatile IP addresses resulting from VPN connections, WiFi connections,
and even LAN connections. If a Fabric Server binds to one of these volatile IP
addresses, it will cease to function after the IP address has gone away. It is
recommended that you always use the --resolver manualip --manual-ip
StaticIPAddress options to specify the static IP address explicitly, when creating
a new Fabric Server.

PROCEDURE

To create a new fabric:

1. (Optional) Customise the name of the root container by editing the
InstallDir/etc/system.properties file and specifying a different name for this property:

NOTE

For the first container in your fabric, this step is optional. But at some later stage,
if you want to join a root container to the fabric, you might need to customise the
container's name to prevent it from clashing with any existing root containers in
the fabric.



karaf.name=root

Red Hat JBoss Fuse 6.2 Fabric Guide

10

2. Any existing users in the InstallDir/etc/users.properties file are automatically used to
initialize the fabric's user data, when you create the fabric. You can populate the
users.properties file, by adding one or more lines of the following form:

But there must not be any users in this file that have administrator privileges (Administrator,
SuperUser, or admin roles). If the InstallDir/etc/users.properties already contains
users with administrator privileges, you should delete those users before creating the fabric.

WARNING

If you leave some administrator credentials in the users.properties file,
this represents a security risk because the file could potentially be accessed
by other containers in the fabric.

NOTE

The initialization of user data from users.properties happens only once, at
the time the fabric is created. After the fabric has been created, any changes you
make to users.properties will have no effect on the fabric's user data.

3. If you use a VPN (virtual private network) on your local machine, it is advisable to log off VPN
before you create the fabric and to stay logged off while you are using the local container.

NOTE

A local Fabric Server is permanently associated with a fixed IP address or
hostname. If VPN is enabled when you create the fabric, the underlying Java
runtime is liable to detect and use the VPN hostname instead of your permanent
local hostname. This can also be an issue with multi-homed machines.

4. Start up your local container.

In JBoss Fuse, start the local container as follows:

5. Create a new fabric by entering the following command:

The current container, named root by default, becomes a Fabric Server with a registry service
installed. Initially, this is the only container in the fabric. The --new-user, --new-user-

Username=Password[,RoleA][,RoleB]...



cd InstallDir/bin
./fuse

JBossFuse:karaf@root> fabric:create --new-user AdminUser --new-user-
password AdminPass --new-user-role Administrator --zookeeper-
password ZooPass --resolver manualip --manual-ip StaticIPAddress --
wait-for-provisioning

CHAPTER 2. CREATING A NEW FABRIC

11

password, and --new-user-role options specify the credentials for a new Administrator
user. The Zookeeper password is used to protect sensitive data in the Fabric registry service (all
of the nodes under /fabric). The --manual-ip option specifies the Fabric Server's static IP
address StaticIPAddress (see the section called “Static IP address required for Fabric
Server”).

For more details on fabric:create see section "fabric:create" in "Console Reference".

For more details about resolver policies, see section "fabric:container-resolver-list" in "Console
Reference" and section "fabric:container-resolver-set" in "Console Reference" .

FABRIC CREATION PROCESS

Several things happen when a fabric is created from a standalone container:

1. The container installs the requisite OSGi bundles to become a Fabric Server.

2. The Fabric Server starts a registry service, which listens on TCP port 2181 (which makes fabric
configuration data available to all of the containers in the fabric).

NOTE

You can customize the value of the registry service port by specifying the --
zookeeper-server-port option.

3. The Fabric Server installs a new JAAS realm (based on the ZooKeeper login module), which
overrides the default JAAS realm and stores its user data in the ZooKeeper registry.

4. The new Fabric Ensemble consists of a single Fabric Server (the current container).

5. A default set of profiles is imported from InstallDir/fabric/import (can optionally be
overridden).

6. After the standalone container is converted into a Fabric Server, the previously installed OSGi
bundles and Karaf features are completely cleared away and replaced by the default Fabric
Server configuration. For example, some of the shell command sets that were available in the
standalone container are no longer available in the Fabric Server.

EXPANDING A FABRIC

You can expand a fabric by creating new managed containers. Fabric supports the container provider
plug-in mechanism, which makes it possible to define how to create new containers in different contexts.
Currently, Fabric makes container providers available for the following kinds of container:

Child container, created on the local machine as a child process in its own JVM.

Instructions on creating a child container are found in Child Containers.

SSH container, created on any remote machine for which you have ssh access.

Instructions on creating a SSH container are found in SSH Containers.

Cloud container, created on compute instance in the cloud.

Instructions on creating a cloud container are found in Cloud Containers.

Red Hat JBoss Fuse 6.2 Fabric Guide

12

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Console_Reference/ConsoleFabricCreate.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Console_Reference/ConsoleFabricContainerResolverList.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Console_Reference/ConsoleFabricContainerResolverSet.html

Fabric provides container creation commands that make it easy to create new containers. Using these
commands, Fabric can automatically install JBoss Fuse on a remote host (uploading whatever
dependencies are needed), start up the remote container process, and join the container to the existing
fabric, so that it becomes a fully-fledged managed container in the fabric.

CHAPTER 2. CREATING A NEW FABRIC

13

CHAPTER 3. FABRIC CONTAINERS

3.1. CHILD CONTAINERS

Abstract

Child containers are the easiest kind of container to create. They are created on the same host as an
existing container and are piggybacked on the same JBoss Fuse installation.

Overview

If you want to run multiple JBoss Fuse containers on a single physical host, typically the best approach is
to create child containers. A child container is a relatively lightweight way to create a new container,
because it re-uses most of the files in a JBoss Fuse installation. It is also convenient for administration,
because the children are defined to have a parent container, so that the containers form an orderly
hierarchy.

One container or many?

In principle, a single OSGi container can host multiple applications (even applications with different
dependencies). So, why might you need to define extra child containers on the same host? One reason
for using child containers is simply to provide a degree of isolation between applications or between
components of an application. A child container runs in its own JVM process, so it is well insulated from
other containers running on the same host. Using child containers also gives your application a coarse-
grained structure that can be useful for managing the system (for example, each child container can be
independently stopped and started).

Creating a child container

To create a new child container, invoke the fabric:container-create-child command, specifying
the parent container name and the name of the new child container. For example, to create the new child
container, onlychild, with root as its parent, enter the following command:

If you want to create multiple child containers, an easy way to do this is to add an extra parameter, which
specifies the number of new children. For example, to create three new child containers, enter a
command like the following:

The preceding command would create the following new child containers:

Stopping and starting a child container

Because each child container runs as a separate process, its lifecycle is independent of the parent
container. That is, when you shut down a parent container, it does not automatically shut down the

fabric:container-create-child root onlychild

fabric:container-create-child root child 3

child1
child2
child3

Red Hat JBoss Fuse 6.2 Fabric Guide

14

children. To shut down a child container, you must explicitly invoke the fabric:container-stop
command. For example, to shut down the child1 container:

To restart a stopped child container, invoke the fabric:container-start command, as follows:

NOTE

You can also stop a child container using the standard UNIX process management
utilities, ps and kill.

Deleting a child container

To delete a child container (that is, permanently removing all trace of the container from the fabric,
including Fabric registry entries, and data stored in the local filesystem), invoke the
fabric:container-delete command, as follows:

3.2. SSH CONTAINERS

Abstract

Fabric allows you to install containers in a local network using SSH. Fabric installs the container from
scratch and configures the container to join the Fabric cluster automatically.

Overview

An SSH container is just a Fabric container that is running on a remote host on your local network, where
that host is accessible through the SSH protocol. This section describes some basic administration tasks
for these SSH containers.

Prerequisites

The requirements for creating an SSH container on a remote host are:

Linux or UNIX operating system,

SSHD running on the target host and:

A valid account credentials, or

Configured public key authentication

Java 1.7 installed.

Curl installed.

fabric:container-stop child1

fabric:container-start child1

fabric:container-delete child1

CHAPTER 3. FABRIC CONTAINERS

15

GNU tar installed.

Telnet installed.

Creating an SSH container

Fabric provides the fabric:container-create-ssh console command, for creating SSH
containers.

Given the host, myhost (accessible from the local network) with the SSH user account, myuser, and
the password, mypassword, your could create an SSH container on myhost, using the following
console command:

If the myuser user on myhost has configured public key authentication for SSH, you can skip the
password option:

Where the preceding command uses the key located in ~/.ssh/id_rsa for authentication. If you need
to use a different key, you can specify the key location explicitly with the --private-key option:

The last command also supports the --pass-phrase option, in case your key requires a pass phrase.

Creating a Fabric server using SSH

Sometimes you do not have an existing fabric and you want to create one on a remote host. The starting
point for any fabric is a Fabric server instance, which can act as a seed for the rest of the fabric. So, to
enable you to create a new fabric on a remote host, the fabric:container-create-ssh supports
the --ensemble-server option, which can be invoked to create a container which is a Fabric server.
For example, the following container-create-ssh command creates a new fabric consisting of one
Fabric server on the myhost host:

The fabric:join command joins the current container to the new fabric. This has the advantage that it
is much easier to administer the new fabric using a container that is joined to the fabric, because the
local container then gains access to the connection data stored in the Fabric registry.

NOTE

The argument to fabric:join is the ZooKeeper server port, Host:Port. The port
number in this example, 2181, is the standard ZooKeeper port number in Fabric.

fabric:container-create-ssh --host myhost --user myuser --password
mypassword myremotecontainername

fabric:container-create-ssh --host myhost --user myuser
myremotecontainername

fabric:container-create-ssh --host myhost --user myuser --private-key
~/.ssh/fabric_pk myremotecontainername

fabric:container-create-ssh --host myhost --user myuser --ensemble-server
myremotecontainername
fabric:join myhost:2181

Red Hat JBoss Fuse 6.2 Fabric Guide

16

NOTE

After you enter the fabric:join command, you will be prompted to enter the
ZooKeeper password for the fabric.

Managing remote SSH containers

Using JBoss Fuse console commands, you can stop, restart or delete (that is, uninstall) a remote
container, as follows:

To stop an SSH container:

To restart an SSH container:

To uninstall an SSH container:

Note that these commands are available only for containers created directly using the current fabric.
They are not available for containers that were joined to the cluster manually.

References

For more details about the SSH container console commands, see the JBoss Fuse Console Reference.

3.3. FABRIC CONTAINERS ON WINDOWS

Abstract

Fabric supports the deployment of containers on Windows platforms. In this case, however, it is
necessary to install the container manually on the target host.

Overview

Because Windows does not support the Secure Shell (SSH) protocol, it is not possible to install the
container software remotely on to a Windows machine. The installation must be performed manually. But
the remote deployment of applications (by assigning profiles to the container) is fully supported.

Creating a Fabric container on Windows

Perform the following steps to create a Fabric container on Windows (assuming the container is to join
an existing fabric):

1. Following the instructions in the JBoss Fuse Installation Guide, manually install the JBoss Fuse
product on the Windows target host.

2. Open a new command prompt and enter the following commands to start the container on the
target host:

fabric:container-stop myremotecontainername

fabric:container-start myremotecontainername

fabric:container-delete myremotecontainername

CHAPTER 3. FABRIC CONTAINERS

17

3. If the Fabric servers from the Fabric ensemble are not already running, start them now.

4. Join the container to the existing fabric, by entering the following console command:

Where ZooPass is the ZooKeeper password for the Fabric ensemble (as specified when you
originally created the fabric with fabric:create); and RegistryHost is the hostname or IP
address of one of the hosts where a Fabric server is running.

NOTE

By default, Fabric uses the default IP port number, 2181, to connect to the Fabric
server on the RegistryHost host. If, for some reason, the ZooKeeper service is
listening on a different IP port, you can specify the IP port number explicitly using
the syntax, RegistryHost:RegistryIPPort.

After joining the fabric, the container becomes a managed Fabric container and initially has the default
profile deployed on it.

Creating a Fabric server on Windows

If you don't have an existing fabric, you can create a new fabric on the Windows host. The starting point
for any fabric is a Fabric server instance, which can act as a seed for the rest of the fabric. Perform the
following steps to create a Fabric server on Windows:

1. Following the instructions in the JBoss Fuse Installation Guide, manually install the JBoss Fuse
product on the Windows target host.

2. To start the container on the target host, open a new command prompt and enter the following
commands:

3. To create a new fabric (thereby turning the current host into a Fabric server), enter the following
console command:

The current container, named root by default, becomes a Fabric Server with a registry service
installed. Initially, this is the only container in the fabric. The --new-user, --new-user-
password, and --new-user-role options specify the credentials for a new Administrator
user. The Zookeeper password is used to protect sensitive data in the Fabric registry service (all

cd InstallDir\bin
fuse.bat

JBossFuse:karaf@root> fabric:join --zookeeper-password ZooPass
RegistryHost

cd InstallDir\bin
fuse.bat

JBossFuse:karaf@root> fabric:create --new-user AdminUser --new-user-
password AdminPass
 --new-user-role Administrator --zookeeper-password ZooPass
 --resolver manualip --manual-ip StaticIPAddress --wait-for-
provisioning

Red Hat JBoss Fuse 6.2 Fabric Guide

18

of the nodes under /fabric). The --manual-ip option specifies the Fabric Server's static IP
address StaticIPAddress (see the section called “Static IP address required for Fabric
Server”).

Managing remote containers on Windows

Because a Fabric container on Windows is added to the fabric by joining (that is, using fabric:join),
there are certain restrictions on which commands you can use to manage it. In particular, the following
commands are not supported:

To stop and start a Fabric container running on Windows, you must log on to the Windows host and use
the regular Windows system commands to manage the container process (in particular, you could
potentially install the container as a Windows service and use the Windows service commands to
manage the container lifecycle).

3.4. CLOUD CONTAINERS

Abstract

Fabric has the capability to create and manage containers running in the cloud. With just a few
commands, you can create a complete Fabric, consisting of multiple containers, running in a public or
private cloud.

3.4.1. Preparing to use Fabric in the Cloud

Overview

Fabric leverages JClouds to enable Fabric to create new containers in public or private clouds. The
Fabric cloud container provider enables you to create new compute instances in the cloud provider of
your choice, perform firewall configuration, install prerequisites, install the JBoss Fuse container, and
automatically register the new container.

Prerequisites

The prerequisites for creating a cloud container are as follows:

A valid account with one of the cloud providers implemented by JClouds. The list of cloud
providers can be found at JClouds supported providers.

NOTE

In the context of JClouds, the term supported provider does not imply commercial
support for the listed cloud providers. It just indicates that there is an available
implementation.

Hybrid clusters

fabric:container-stop
fabric:container-start
fabric:container-delete

CHAPTER 3. FABRIC CONTAINERS

19

http://jclouds.apache.org/
http://jclouds.apache.org/reference/providers/

A hybrid cluster is a cluster composed of containers running both on the premises and on a public cloud
provider. This special type of cluster has the additional requirement that all containers must be able to
connect to the Fabric registry.

In order to satisfy this requirement, you need to make sure that one of the following conditions are met:

Fabric registry is running inside the public cloud.

In this case, local containers will have no problem accessing the registry, as long as they are
able to connect to the Internet.

Cloud and local containers are part of a Virtual Private Network (VPN).

If the Fabric registry is running on the premises, the cloud containers will not be able to access
the registry, unless you set up a VPN (or make the registry accessible from the Internet, which is
not recommended).

Fabric registry is accessible from the Internet (not recommended).

The easiest approach is to host the registry in the cloud and then configure the cloud's firewall, so that it
only allows access from the containers on your premises. By default, Fabric will configure the firewall for
you.

Preparation

Before you can start working with cloud containers, you must convert your local container into a Fabric
container, by invoking the fabric:create command. You cannot access the requisite cloud console
commands until you create a Fabric locally.

To create the Fabric container, enter the following console command:

The --new-user and --new-user-password options specify the credentials for a new administrator
user. The ZooPass password specifies the password that is used to protect the Zookeeper registry.

NOTE

If you use a VPN (virtual private network) on your local machine, it is advisable to log off
VPN before you create the fabric and to stay logged off while you are using the local
container. A local Fabric Server is permanently associated with a fixed IP address or
hostname. If VPN is enabled when you create the fabric, the underlying Java runtime is
liable to detect and use the VPN hostname instead of your permanent local hostname.
This can also be an issue with multi-homed machines. To be absolutely sure about the
hostname, you could specify the IP address explicitly—see Chapter 2, Creating a New
Fabric.

The next step is to install the console commands that will enable you to administer the cloud. You can do
this by adding one of the cloud profiles to your local container. The following cloud profiles are available:

JBossFuse:karaf@root> fabric:create --new-user AdminUser --new-user-
password AdminPass
 --zookeeper-password ZooPass --wait-for-provisioning

JBossFuse:karaf@root> profile-list
[id] [# containers] [parents]
...

Red Hat JBoss Fuse 6.2 Fabric Guide

20

For example, to install the requisite JClouds commands for interacting with the Amazon EC2 cloud,
deploy the cloud-aws.ec2 profile, as follows:

Where we have assumed that root is the name of your local container.

Feature naming convention

The most important ingredient of the cloud-aws.ec2 profile is the jclouds-aws-ec2 feature, which
provides the necessary bundles for interacting with Amazon EC2:

Some commonly used cloud providers can be accessed using the following Karaf features:

jclouds-aws-ec2

Feature for the Amazon EC2 cloud provider.

jclouds-cloudservers-us

Feature for the Rackspace cloud provider.

In general, the naming convention for cloud provider features is: jclouds-ProviderID, where
ProviderID is one of the provider IDs listed in the JClouds supported providers page. Or you can list
the available JClouds features using the features:list command:

If you want to add another JClouds feature to your container, add it to a Fabric profile and then deploy the
profile to your container (or add the feature to a profile that is already deployed). For example:

Registering a cloud provider

cloud-aws.ec2 0 cloud-base
...
cloud-openstack 0 cloud-base
cloud-servers.uk 0 cloud-base
cloud-servers.us 0 cloud-base
...

fabric:container-add-profile root cloud-aws.ec2

JBossFuse:karaf@root> profile-display cloud-aws.ec2
Profile id: cloud-aws.ec2
Version : 1.0
...
Container settings

Features :
 jclouds-aws-ec2
...

features:list | grep jclouds

fabric:profile-edit --features jclouds-ProviderID MyProfile
fabric:container-add-profile root MyProfile

CHAPTER 3. FABRIC CONTAINERS

21

http://www.jclouds.org/documentation/reference/supported-providers

After installing the required cloud features, you need to register the cloud provider with Fabric, using the
fabric:cloud-service-add console command (the registration process will store the provider
credentials in the Fabric registry, so that they are available from any Fabric container).

You need to obtain a valid identity and credential from your cloud provider, which are not necessarily the
same thing as the username and password you obtained upon registration with the provider. Usually,
they refer to the credentials you get for using the cloud service from an external API. For example, on
Amazon EC2 the requisite credentials can be found on the security credentials page (to access ths page,
you must have an AWS account).

For example, to register the Amazon EC2 provider:

NOTE

The identifier supplied to the --name option is an alias that you use to refer to this
registered cloud provider instance. It is possible to register the same cloud provider more
than once, with different user accounts. The cloud provider alias thus enables you
distinguish between multiple accounts with the same cloud provider.

3.4.2. Administering Cloud Containers

Creating a new fabric in the cloud

To create a fabric in the cloud, invoke the fabric:container-create-cloud with the --
ensemble-server option, which creates a new Fabric server. For example, to create a Fabric server
on Amazon EC2:

Basic security

When creating a new fabric in the cloud, it is necessary to supply some basic security information to the
fabric:container-create-cloud command, to ensure that the new fabric is adequately protected.
You need to specify the following security data:

JAAS credentials—the --new-user and --new-user-password options define JAAS
credentials for a new user with administrative privileges on the fabric. These credentials can
subsequently be used to log on to the JMX port or the SSH port of the newly created Fabric
server.

ZooKeeper password—is used to protect the data stored in the ZooKeeper registry in the Fabric
server. The only time you will be prompted to enter the ZooKeeper password is when you try to
join a container to the fabric using the fabric:join command.

Joining a standalone container to the fabric

fabric:cloud-service-add --name aws-ec2 --provider aws-ec2
--identity AccessKeyID --credential SecretAccessKey

fabric:container-create-cloud --ensemble-server --name aws-ec2
--new-user AdminUser --new-user-password AdminPass --zookeeper-password
ZooPass mycontainer

Red Hat JBoss Fuse 6.2 Fabric Guide

22

https://console.aws.amazon.com/iam/home?#security-credential

If you have been using a standalone container (not part of a fabric) to create the fabric in the cloud, it is a
good idea to join this container to the newly created fabric, so that you can easily administer the fabric
from your local container. To join your local container to the fabric, enter a command like the following:

Where PublicIPAddress is the public host name or the public IP address of the compute instance that
hosts the Fabric server (you can get this address either from the JBoss Fuse console output or from the
Amazon EC2 console).

Alternatively, instead of joining your local container to the fabric, you could use the JBoss Fuse client
utility to log into the remote Fabric server directly (using the JAAS credentials).

Creating a cloud container

After creating the initial Fabric server (which constitutes the Fabric ensemble), you can use the
fabric:container-create-cloud command to create new Fabric containers in the cloud. For
example to create a container on Amazon EC2:

Specifying an image is optional. By default, Fabric tries to find an Ubuntu image for you. You can
provide options for the operating system and the O/S version. For example, to choose Centos instead of
Ubuntu, you could invoke the fabric:container-create-cloud command with the --os-family
option as follows:

Or to be even more specific, you can specify the O/S version as well, using the --os-version option:

If you need to specify the exact image, use the --image option.

After creating the new cloud container, the command displays the creation status and some useful
information:

fabric:join -n --zookeeper-password ZooPass PublicIPAddress

fabric:container-create-cloud --name aws-ec2 mycontainer

fabric:container-create-cloud --name aws-ec2 --os-family centos
mycontainer

fabric:container-create-cloud --name aws-ec2 --os-family centos --os-
version 5 mycontainer

fabric:container-create-cloud --name aws-ec2 --image myimageid mycontainer

Looking up for compute service.
Creating 1 nodes in the cloud. Using operating system: ubuntu. It may take
a while ...
Node fabric-f674a68f has been created.
Configuring firewall.
Installing fabric agent on container cloud. It may take a while...
Overriding resolver to publichostname.
 [id] [container] [public addresses]
[status]
 us-east-1/i-f674a68f cloud [23.20.114.82]
success

CHAPTER 3. FABRIC CONTAINERS

23

Images

Regardless of the way that you specify the image (directly or indirectly), the image needs to have some
of the following characteristics:

Linux O/S

RedHat or Debian packaging style

Either no Java installed or Java 1.7+ installed. If there is no Java installed on the image, Fabric
will install Java for you. If the wrong Java version is installed, however, the container installation
will fail.

If you prefer, you can create your own custom image and use that instead. But this typically requires
some additional configuration when you register the cloud provider. For example, on Amazon EC2 you
would need to specify the owner ID of the private image when registering the provider:

Locations and hardware

Most cloud providers will give you the option to create containers on different locations or using different
hardware profiles. You may wonder which are the proper values to use for your provider. Even though
Fabric provides completion for all configuration options, you still may want to get a list of them.

To list all of the available locations:

To list all the available hardware profiles:

To exploit this information for creating a cloud container, you can specify them as options to the
fabric:container-create-cloud command. For example:

fabric:cloud-service-add --name aws-ec2 --provider aws-ec2
--identity AccessKeyID --credential SecretAccessKey --owner myownerid

jclouds:location-list

jclouds:hardware-list

fabric:container-create-cloud --name aws-ec2 --location eu-west-1 --
hardware m2.4xlarge mycontainer

Red Hat JBoss Fuse 6.2 Fabric Guide

24

CHAPTER 4. FABRIC PROFILES

Abstract

A profile is the basic unit of deployment in a fabric. This chapter describes how to create, edit, and
deploy profiles into containers. You can also create different versions of a profile, which makes it
possible to support rolling upgrades across the containers in your fabric.

4.1. INTRODUCTION TO PROFILES

Overview

A profile is a description of how to provision a logical group of containers. Each profile can have none,
one, or more parents, which allows you to have profile hierarchies. A container can be assigned one or
more profiles. Profiles are also versioned, which enables you to maintain different versions of each
profile, and then upgrade or roll back containers, by changing the version of the profiles they use.

What is in a profile?

A profile can contain one or more of the following resources:

OSGi bundle URLs

Web ARchive (WAR) URLs

Fuse Application Bundle (FAB) URLs

OSGi Configuration Admin PIDs

Apache Karaf feature repository URLs

Apache Karaf features

Maven artifact repository URLs

Blueprint XML files or Spring XML files (for example, for defining broker configurations or Camel
routes)

Any kind of resource that might be needed by an application (for example, Java properties file,
JSON file, XML file, YML file)

System properties that affect the Apache Karaf container (analogous to editing
etc/config.properties)

System properties that affect installed bundles (analogous to editing
etc/system.properties)

Profile hierarchies

Frequently, multiple profiles share a lot of configuration details: such as common frameworks, libraries,
and so on. Defining these details separately for each profile would create a considerable maintenance
headache. To avoid duplication across profiles, therefore, Fabric uses a hierarchical model for profiles.

CHAPTER 4. FABRIC PROFILES

25

You can define a generic profile (base profile) containing the common configuration details, and then
define child profiles that inherit these generic configuration details.

Some basic profiles

Fabric provides a rich set of predefined profiles, which can be used as the basic building blocks for
defining your own profiles. Some of the more interesting predefined profiles are:

[default]

The default profile defines all of the basic requirements for a Fabric container. For example it
specifies the fabric-agent feature, the Fabric registry URL, and the list of Maven repositories from
which artifacts can be downloaded.

[karaf]

Inherits from the default profile and defines the Karaf feature repositories, which makes the Apache
Karaf features accessible.

[feature-camel]

Inherits from karaf, defines the Camel feature repositories, and installs some core Camel features:
such as camel-core and camel-blueprint. If you are deploying a Camel application, it is
recommended that you inherit from this profile.

[feature-cxf]

Inherits from karaf, defines the CXF feature repositories, and installs some core CXF features. If
you are deploying a CXF application, it is recommended that you inherit from this profile.

[mq-base]

Inherits from the karaf profile and installs the mq-fabric feature

[mq-default]

Inherits from the mq-base profile and provides the configuration for an A-MQ broker. Use this profile,
if you want to deploy a minimal installation of an ActiveMQ broker.

[jboss-fuse-full]

Includes all of the features and bundles required for the JBoss Fuse full container.

4.2. WORKING WITH PROFILES

Changing the profiles in a container

To change the profiles assigned to a Fabric container, invoke the fabric:container-change-
profile command as follows:

Where the preceding command deploys the myprofile profile to the mycontainer container. All
profiles previously assigned to the container are removed. You can also deploy multiple profiles to the
container, with the following command:

fabric:container-change-profile mycontainer myprofile

Red Hat JBoss Fuse 6.2 Fabric Guide

26

Adding a profile to a container

The fabric:container-add-profile command gives you a simple way to add profiles to a
container, without having to list all of the profiles that were already assigned. For example, to add the
example-camel profile to the mycontainer container:

Listing available profiles

To see the list of available profiles, invoke the fabric:profile-list console command:

The command displays all available profiles, showing their parents and the number of containers each
profile is deployed into.

Inspecting profiles

To see exactly what a profile defines, enter the fabric:profile-display command. For example, to
display what is defined in the feature-camel profile, enter the following command:

Which outputs something like the following to the console window:

fabric:container-change-profile mycontainer myprofile myotherprofile

fabric:container-add-profile mycontainer example-camel

fabric:profile-list

fabric:profile-display feature-camel

Profile id: feature-camel
Version : 1.0
Attributes:
 parents: karaf

Containers:

Container settings

Repositories :
 mvn:org.apache.camel.karaf/apache-camel/${version:camel}/xml/features

Features :
 camel-core
 camel-blueprint
 fabric-camel

Configuration details

Other resources

Resource: org.fusesource.insight.metrics.json

CHAPTER 4. FABRIC PROFILES

27

The preceding output does not take into account the definitions inherited from any parent profiles,
however. To see the effective definitions for the feature-camel profile, taking into account all of its
ancestors, you must specify the --overlay switch, as follows:

Resource files stored in the profile are listed under the heading Other resources. If you want to display
the contents of these resource files as well, add the --display-resources switch (or -r for short) to
the profile-display command, as follows:

Creating a new profile

To create a new profile for an application, invoke the fabric:profile-create command, as follows:

To specify one ore more parents for the profile when it is being created, add the --parents option to
the command:

After the profile is created, you can start to modify the profile, providing details of what should be
deployed in the profile.

Adding or removing features

To edit one of the existing profiles, you can use the fabric:profile-edit command. For example, to
add the camel-jclouds feature to the feature-camel profile.

Now invoke the fabric:profile-display command to see what the camel profile looks like now.
You should see that the camel-jclouds feature appears in the list of features for the feature-camel
profile.

If you want to remove a feature from the profile, use the --delete option. For example, if you need to
remove the camel-jclouds feature, you could use the following command:

Editing PID properties

fabric:profile-display --overlay feature-camel

fabric:profile-display -r feature-camel

fabric:profile-create myprofile

fabric:profile-create --parents feature-camel myprofile

fabric:profile-edit --feature camel-jclouds feature-camel

Features :
 camel-jclouds
 camel-blueprint/2.9.0.fuse-7-061
 camel-core/2.9.0.fuse-7-061
 fabric-camel/99-master-SNAPSHOT

fabric:profile-edit --delete --feature camel-jclouds feature-camel

Red Hat JBoss Fuse 6.2 Fabric Guide

28

An OSGi Config Admin Persistent ID (PID) consists essentially of a list of key-value pairs. You can edit
PID properties using either of the following approaches:

Edit the PID using the built-in text editor—the Karaf console has a built-in text editor which you
can use to edit profile resources such as PID properties. To start editing a PID using the text
editor, enter the following console command:

For more details about the built-in text editor, see Appendix A, Editing Profiles with the Built-In
Text Editor.

Edit the PID inline, using console commands—alternatively, you can edit PIDs directly from the
console, using the appropriate form of the fabric:profile-edit command. This approach is
particularly useful for scripting. For example, to set a specific key-value pair, Key=Value, in a
PID, enter the following console command:

Editing a PID inline

To edit a PID inline, use the following variants of the fabric:profile-edit command:

Assign a value to a PID property, as follows:

Append a value to a delimited list (that is, where the property value is a comma-separated list),
as follows:

Remove a value from a delimited list, as follows:

Delete a specific property key, as follows:

Delete a complete PID, as follows:

Example of editing a PID inline

In the following example, we modify the io.fabric8.agent PID, changing the Maven repository list
setting. The default profile contains a section like this:

fabric:profile-edit --pid PID ProfileName

fabric:profile-edit --pid PID/Key=Value ProfileName

fabric:profile-edit --pid PID/Key=Value ProfileName

fabric:profile-edit --append --pid PID/Key=ListItem ProfileName

fabric:profile-edit --remove --pid PID/Key=ListItem ProfileName

fabric:profile-edit --delete --pid PID/Key ProfileName

fabric:profile-edit --delete --pid PID ProfileName

Agent Properties :
 org.ops4j.pax.url.mvn.repositories =

CHAPTER 4. FABRIC PROFILES

29

The agent properties section is represented by the io.fabric8.agent PID. So, by modifying the
io.fabric8.agent PID, we effectively change the agent properties. You can modify the list of Maven
repositories in the agent properties PID as follows:

Now when you invoke fabric:profile-display on the default profile, you should see agent
properties similar to the following:

Setting encrypted PID property values

In some cases, you might prefer to store PID property values in encrypted format instead of plain text.
For example, passwords and other sensitive data should usually be stored in encrypted form. To store a
property value in encrypted form, perform the following steps:

1. Use the fabric:encrypt-message command to encrypt the property value, as follows:

This command returns the encrypted property value, EncryptedValue.

NOTE

The default encryption algorithm used by Fabric is PBEWithMD5AndDES.

2. You can now set the property to the encrypted value, EncryptedValue, using the following
syntax:

For example, using the fabric:profile-edit command, you can set an encrypted value as
follows:

http://repo1.maven.org/maven2,

http://repo.fusesource.com/nexus/content/repositories/releases,
 http://repo.fusesource.com/nexus/content/groups/ea,
 http://repository.springsource.com/maven/bundles/release,
 http://repository.springsource.com/maven/bundles/external,
 http://scala-tools.org/repo-releases

fabric:profile-edit --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories=http://repositorymanag
er.mylocalnetwork.net default

Agent Properties :
 org.ops4j.pax.url.mvn.repositories =
http://repositorymanager.mylocalnetwork.net

fabric:encrypt-message PropValue

my.sensitive.property = ${crypt:EncryptedValue}

fabric:profile-edit --pid
com.example.my.pid/my.sensitive.property=${crypt:EncryptedValue}
Profile

Red Hat JBoss Fuse 6.2 Fabric Guide

30

WARNING

These encrypted values are protected by the master password, which is accessible
to anyone who can log on to a Fabric container. To keep these encrypted values
safe, you must restrict access to the containers in the fabric.

Alternative method for encrypting PID property values

The underlying encryption mechanism for PID properties is based on the Jasypt encryption toolkit.
Consequently, it is also possible to encrypt PID properties directly, using the Jasypt toolkit, as follows:

1. Download and install Jasypt, to gain access to the Jasypt encrypt and decrypt command-line
tools.

2. Use the Jasypt encrypt command-line tool to encrypt the property value, as follows:

This command returns the encrypted property value, EncryptedValue.

NOTE

The default encryption algorithm used by Fabric is PBEWithMD5AndDES. You
must ensure that the encrypt.sh utility is using the same algorithm as Fabric.

Customizing the PID property encryption mechanism

You can customize the PID property encryption mechanism, as follows:

Customize the master password for encryption—using the following console command:

You can retrieve the current master password by entering the fabric:crypt-password-get
command. The default value is the ensemble password (as returned by fabric:ensemble-
password).

Customize the encryption algorithm—using the following console command:

Where the encryption algorithm must be one of the algorithms supported by the underlying
Jasypt encryption toolkit. You can retrieve the current encryption algorithm by entering the
fabric:crypt-algorithm-get command. The default is PBEWithMD5AndDES.

Profile editor



./encrypt.sh input="Property value to be encrypted" password=ZooPass
verbose=false

fabric:crypt-password-set MasterPassword

fabric:crypt-algorithm-set Algorithm

CHAPTER 4. FABRIC PROFILES

31

http://jasypt.org/
http://jasypt.org/download.html
http://jasypt.org/

If you want to make extensive edits to a profile, it is not very convenient to make changes one setting at a
time. There is a more convenient approach for making extensive profile edits, and that is to use the
console's built-in profile editor, which is a simple screen-based text editor.

For example, to open the agent properties resource for editing, simply invoke the fabric:profile-
edit command without any options, as follows:

A simple text editor opens, enabling to edit the configuration settings in the agent properties.

For full details of how to edit profiles using the built-in text editor, see Appendix A, Editing Profiles with
the Built-In Text Editor.

Editing resources with the profile editor

A practical way to edit a general profile resource (such as an XML configuration resourct) is to use the
build-in text editor. For example, to start editing the broker.xml file in the mq-amq profile, enter the
following console command:

4.3. PROFILE VERSIONS

Overview

Every profile has at least one version. When assigning a profile to a container, you actually assign both
the profile and the version. The fabric-agent, will choose the defined version and retrieve all the
information provided by the specific version of the profile.

Any change to a profile takes immediate effect. This means that any container using a profile that was
just modified will pick up the change immediately. It is recommended that you create a new version of a
profile whenever you need to make changes. You can then upgrade containers to use the new version.
This enables you to perform atomic updates, test updates on specific containers, and possibly roll back
to the previous version, if you encounter any problems.

Creating a new version

You can create a new version using the fabric:version-create command (analogous to creating a
new branch in the underlying Git repository). The default version is 1.0. To create version 1.1, enter the
following command:

NOTE

To note what is changing in the new version, include the --description argument and
enclose the text within double quotes; for example, fabric:version-create --
description "expanding all camel routes" 1.1.

fabric:profile-edit Profile [Version]

fabric:profile-edit --resource broker.xml mq-amq

fabric:version-create 1.1

Red Hat JBoss Fuse 6.2 Fabric Guide

32

After the 1.1 version is created, a new instance of every profile is created for the new version (copied
from the previous latest version, which was 1.0). Now you can display or modify the 1.1 version of each
profile. For example, enter the following command to display the details of the feature-camel profile:

Initially, the output is identical to the 1.0 version of the profile, because we have not yet modified the new
version of the profile. But how do you modify a specific version of a profile? All you need to do is to
invoke the fabric:profile-edit command, specifying the version right after the profile argument.
For example, to add the camel-jclouds feature to version 1.1 of the feature-camel profile, enter
the following command:

IMPORTANT

The changes made to version 1.1 of the profile do not (yet) affect any of your existing
containers. The changes do not take effect until you upgrade your containers to use the
1.1 version.

Rolling upgrades and rollbacks

Fabric provides commands for upgrading (incrementing the effective version) and rolling back
(decrementing the effective version) the profiles assigned to a container. For example, to upgrade the
mycontainer container to the 1.1 version, invoke the fabric:container-upgrade command as
follows:

The preceding command makes mycontainer to use version 1.1 of all the profiles currently assigned to
it.

If for any reason you want to roll back to the previous version, you can invoke the fabric:container-
rollback command, as follows:

It is strongly recommended that you test any profile changes on a single container, before applying the
changes to the whole cluster. Applying an upgrade to all containers can be achieved by specifying the -
-all option, as follows:

fabric:profile-display --version 1.1 feature-camel

fabric:profile-edit --feature camel-jclouds feature-camel 1.1

fabric:container-upgrade 1.1 mycontainer

fabric:container-rollback 1.0 mycontainer

fabric:container-upgrade --all 1.1 mycontainer

CHAPTER 4. FABRIC PROFILES

33

CHAPTER 5. FABRIC8 MAVEN PLUG-IN

Abstract

This maven plug-in makes it easy to create or update a fabric profile from your Maven project.

5.1. PREPARING TO USE THE PLUG-IN

Edit your Maven settings

First you will need to edit your ~/.m2/settings.xml file to add the fabric server's user and password
so that the maven plugin can log in to the fabric. For example, you could add the following server
element to your settings.xml file:

Where Username and Password are the credentials of a Fabric user with administrative privileges (for
example, the credentials you would use to log on to the Management Console).

Customising the repository ID

The default Fabric Maven repository ID is fabric8.upload.repo. You can specify additional server
elements in your settings.xml file for each of the fabrics you need to work with. To select the relevant
credentials, you can set the serverId property in the Fabric8 Maven plug-in configuration section
(see Section 5.4, “Configuration Properties”) or set the fabric8.serverId Maven property.

5.2. USING THE PLUG-IN TO DEPLOY A MAVEN PROJECT

Prerequisites

You must ensure the following prerequisites are satisfied before attempting to run the Fabric8 Maven
plug-in:

1. Your Maven ~/.m2/settings.xml file is configured as described in Section 5.1, “Preparing to
Use the Plug-In”.

2. A JBoss Fuse container instance is running on your local machine (alternatively, if the container
instance is running on a remote host, you must configure the plug-in's jolokiaUrl property
appropriately).

Running the plug-in on any Maven project

<settings>
 <servers>
 <server>
 <id>fabric8.upload.repo</id>
 <username>Username</username>
 <password>Password</password>
 </server>
 ...
 </servers>
</settings>

Red Hat JBoss Fuse 6.2 Fabric Guide

34

To use the Fabric8 plug-in to deploy any maven project into a fabric profile, enter the following Maven
command:

Adding the plug-in to a Maven POM

If you add the Fabric8 plug-in to your pom.xml file as follows:

Where the plugin/configuration/version element specifies the Fabric8 version of the target
system (which is not necessarily the same as the version of the Fabric8 Maven plug-in).

You can now use the following more concise Maven goal:

What does the plug-in do?

When you deploy your project to a Fabric profile with this plug-in, the plug-in does the following:

Uploads any artifacts into the fabric's maven repository,

Lazily creates the Fabric profile or version you specify,

Adds/updates the maven project artifact into the profile configuration,

Adds any additional parent profile, bundles or features to the profile.

Example

You can try out the plug-in with one of the JBoss Fuse quickstart examples, as follows:

You should see a new profile created at the my-rest/rest profile page, which should have a bundle and
some features (click on the Bundle tab and the Feature tab).

5.3. CONFIGURING THE PLUG-IN

mvn io.fabric8:fabric8-maven-plugin:1.0.0.redhat-355:deploy

<plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>1.2.0.redhat-133</version>
 <configuration>
 <profile>testprofile</profile>
 <version>1.2</version>
 </configuration>
 </plugin>
</plugins>

mvn fabric8:deploy

cd InstallDir/quickstarts/rest
mvn io.fabric8:fabric8-maven-plugin:1.0.0.redhat-355:deploy

CHAPTER 5. FABRIC8 MAVEN PLUG-IN

35

http://localhost:8181/hawtio/index.html#/wiki/branch/1.0/view/fabric/profiles/my/rest.profile

Specifying profile information

You can explicitly configure the name of the profile to create, by adding a configuration element to
the plug-in configuration in your pom.xml file, as follows:

Multi-module Maven projects

For multi-module Maven projects, a more flexible way to configure the plug-in is to use Maven properties.
For example if you have a multi-module maven project such as this:

You could define the plug-in once in the root pom.xml file, as follows:

While in the foo/pom.xml file you need only define the fabric8.profile property, as follows:

<plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <configuration>
 <profile>my-thing</profile>
 </configuration>
 </plugin>
</plugins>

pom.xml
foo/
 pom.xml
 a/pom.xml
 b/pom.xml
 ...
bar/
 pom.xml
 c/pom.xml
 d/pom.xml
 ...

<plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 </plugin>
</plugins>

<project>
 ...
 <properties>
 <fabric8.profile>my-foo</fabric8.profile>
 ...
 </properties>
 ...
</project>

Red Hat JBoss Fuse 6.2 Fabric Guide

36

All of the projects within the foo folder, such as foo/a and foo/b, will deploy to the same profile (in this
case the profile, my-foo). You can use the same approach to put all of the projects under the bar folder
into a different profile too.

At any point in your tree of maven projects you can define a maven fabric8.profile property to
specify exactly where it gets deployed; along with any other property on the plug-in (see the Property
Reference below).

Specifying features, additional bundles, repositories and parent profiles

You can specify additional configuration in the maven plug-in, as follows:

Note that the features element allows you to specify a space-separated list of features to include in the
profile.

This example specifies space-separated lists for the parent profile IDs, features, repositories and
bundles so that it is easy to reuse Maven properties for these values (for example, to add some extra
features to a child maven project while inheriting from the parent project).

Configuring with Maven properties

You can also use maven property values (or command line arguments) to specify the configuration
values by prefixing the property name with fabric8.. For example, to deploy a maven project to the
cheese profile name, enter the command:

By default, the project artifacts are uploaded to the Maven repository inside the fabric. If you want to
disable this beahvior and just update the profile configuration (for example, if you are already pointing
your fabric's Maven repository to your local Maven repository), you can set fabric8.upload=false—
for example:

Specifying profile resources

If you create the directory, src/main/fabric8, in your Maven project and add any resource files or a
ReadMe.md file to your project, they will automatically be uploaded into the profile as well. For example,
if you run the following commands from your Maven project directory:

<plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <configuration>
 <profile>my-rest</profile>
 <features>fabric-cxf-registry fabric-cxf cxf war swagger</features>
 <featureRepos>mvn:org.apache.cxf.karaf/apache-
cxf/${version:cxf}/xml/features</featureRepos>
 </configuration>
 </plugin>
</plugins>

mvn fabric8:deploy -Dfabric8.profile=cheese

mvn fabric8:deploy -Dfabric8.upload=false

CHAPTER 5. FABRIC8 MAVEN PLUG-IN

37

The newly deployed profile will include a ReadMe.md wiki page.

5.4. CONFIGURATION PROPERTIES

Specifying properties

Properties can be specified either as elements inside the configuration element of the plug-in in your
project's pom.xml file. For example, the profile property can be set as follows:

Or you can specify the properties on the command line or as Maven build properties (where the property
names must be prefixed with fabric8.. For example, to set the profile name, you could add the
following property to your pom.xml file:

Or you can specify properties on the command line:

Property reference

The Fabric8 Maven plug-in supports the following properties (which can be set either as elements inside
the configuration element in the pom.xml file or as Maven properties, when prefixed by
fabric8.):

Parameter Description

profile The name of the Fabric profile to deploy your project
to. Defaults to the groupId-artifactId of your
Maven project.

mkdir -p src/main/fabric8
echo "## Hello World" >> src/main/fabric8/ReadMe.md
mvn fabric8:deploy

<plugins>
 <plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <configuration>
 <profile>${fabric8.profile}</profile>
 </configuration>
 </plugin>
</plugins>

<project>
 ...
 <properties>
 <fabric8.profile>my-foo</fabric8.profile>
 ...
 </properties>
 ...

mvn fabric8:deploy -Dfabric8.profile=my-foo

Red Hat JBoss Fuse 6.2 Fabric Guide

38

serverId The server ID used to lookup in
~/.m2/settings/xml for the server element
to find the username and password to log in to the
fabric. Defaults to fabric8.upload.repo.

jolokiaUrl The Jolokia URL of the JBoss Fuse Management
Console. Defaults to
http://localhost:8181/jolokia.

version The Fabric version in which to update the profile.
Defaults to the current version of the fabric.

baseVersion If the version does not exist, the baseVersion
provides the initial values for the newly created
version. This is like creating a branch from the
baseVersion for a new version branch in git.

parentProfiles Space-separated list of parent profile IDs to be added
to the newly created profile. Defaults to karaf.

features Space-separated list of features to add to the profile.
For example, the following setting would include both
the camel feature and the cxf feature:
<features>camel cxf</features>

featureRepos Space-separated list of feature repository URLs to
add to the profile. The URL has the general form
mvn:groupId/artifactId/version/xml/
features.

bundles Space-separated list of additional bundle URLs (of
the form
mvn:groupId/artifactId/version) to add
to the newly created profile. Note you do not have to
include the current Maven project artifact; this
configuration is intended as a way to list dependent
required bundles.

upload Whether or not the deploy goal should upload the
local builds to the fabric's Maven repository. You can
disable this step if you have configured your fabric's
Maven repository to reuse your local maven
repository. Defaults to true.

profileConfigDir The folder in your maven project containing resource
files to be deployed into the profile, along with the
artifact configuration. Defaults to
src/main/fabric8. You should create the
directory and add any configuration files or
documentation you wish to add to your profile.

CHAPTER 5. FABRIC8 MAVEN PLUG-IN

39

CHAPTER 6. ACTIVEMQ BROKERS AND CLUSTERS

Abstract

Fabric provides predefined profiles for deploying a simple standalone broker and, in addition, you can
use the powerful fabric:mq-create command to create and deploy clusters of brokers.

6.1. CREATING A STANDALONE BROKER INSTANCE

MQ profiles

The following profiles are important for creating broker instances:

mq-base

An abstract profile, which defines some important properties and resources for the broker, but should
never be used directly to instantiate a broker.

mq-default

A basic standalone broker, which inherits most of its properties from the mq-base profile.

To examine the properties defined in these profiles, you can invoke the fabric:profile-display
command, as follows:

Creating a new broker instance

A Fuse MQ broker is a Karaf container instance running a message broker profile. The profile defines the
broker dependencies (through features) and the configuration for the broker. The simplest approach to
creating a new broker is to use the provided mq-default profile.

For example, to create a new mq-default broker instance called broker1, enter the following console
command:

This command creates a new container called broker1 with a broker of the same name running on it.

fabric:mq-create command

The fabric:mq-create command provides a short cut to creating a broker, but with more flexibility,
because it also creates a new profile. To create a new broker instance called brokerx using
fabric:mq-create, enter the following console command:

JBossFuse:karaf@root> fabric:profile-display mq-default
...
JBossFuse:karaf@root> fabric:profile-display mq-base
...

JBossFuse:karaf@root>fabric:container-create-child --profile mq-default
root broker1
The following containers have been created successfully:
 broker1

Red Hat JBoss Fuse 6.2 Fabric Guide

40

Just like the basic fabric:container-create-child command, fabric:mq-create creates a
container called broker1 and runs a broker instance on it. There are some differences, however:

The new broker1 container is implicitly created as a child of the current container,

The new broker has its own profile, mq-broker-default.brokerx, which is based on the
mq-base profile template,

It is possible to edit the mq-broker-default.brokerx profile, to customize the configuration
of this new broker.

The --replicas option lets you specify the number of master/slave broker replicas (for more
details, see Section 6.3.2, “Master-Slave Cluster”). In this example, we specify one replica (the
default is two).

NOTE

The new profile gets the name mq-broker-Group.BrokerName by default. If you want
the profile to have the same name as the broker (which was the default in JBoss Fuse
version 6.0), you can specify the profile name explicitly using the --profile option.

Starting a broker on an existing container

The fabric:mq-create command can be used to deploy brokers on existing containers. Consider the
following example, which creates a new Fuse MQ broker in two steps:

The preceding example firstly creates a default child container, and then creates and deploys the new
mq-broker-default.brokerx profile to the container, by invoking fabric:mq-create with the --
assign-container option. Of course, instead of deploying to a local child container (as in this
example), we could assign the broker to an SSH container or a cloud container.

Broker groups

Brokers created using the fabric:mq-create command are always registered with a specific broker
group. If you do not specify the group name explicitly at the time you create the broker, the broker gets
registered with the default group by default.

If you like, you can specify the group name explicitly using the --group option of the fabric:mq-
create command. For example, to create a new broker that registers with the west-coast group,
enter the following console command:

JBossFuse:karaf@root> fabric:mq-create --create-container broker --
replicas 1 brokerx
MQ profile mq-broker-default.brokerx ready

JBossFuse:karaf@root> fabric:container-create-child root broker1
The following containers have been created successfully:
 broker1

JBossFuse:karaf@root> fabric:mq-create --assign-container broker1 brokerx
MQ profile mq-broker-default.brokerx ready

CHAPTER 6. ACTIVEMQ BROKERS AND CLUSTERS

41

If the west-coast group does not exist prior to running this command, it is automatically created by
Fabric. Broker groups are important for defining clusters of brokers, providing the underlying mechanism
for creating load-balancing clusters and master-slave clusters. For details, see Section 6.3, “Topologies”.

6.2. CONNECTING TO A BROKER

Overview

This section describes how to connect a client to a broker. In order to connect to a JBoss MQ broker,
you need to know its group name. Every MQ broker is associated with a group when it is created: if none
is specified explicitly, it automatically gets associated with the default group.

Client URL

To connect to an MQ broker, the client must specify a discovery URL, in the following format:

For example, to connect to a broker associated with the default group, the client would use the
following URL:

The connection factory then looks for available brokers in the group and connects the client to one of
them.

Example client profiles

You can test broker by deploying the example-mq profile into a container. The example-mq profile
instantiates a pair of messaging clients: a producer client, that sends messages continuously to the
FABRIC.DEMO queue on the broker; and a consumer client, that consumes messages from the
FABRIC.DEMO queue.

Create a new container with the example-mq profile, by entering the following command:

You can check whether the example container is successfully provisioned, using the following console
command:

After the example container is successfully provisioned, you can connect to it and check its log to verify
the flow of messages, using the following console commands:

JBossFuse:karaf@root> fabric:mq-create --create-container broker --
replicas 1 --group west-coast brokery
MQ profile mq-broker-default.brokery ready

discovery:(fabric:GroupName)

discovery:(fabric:default)

JBossFuse:karaf@root> fabric:container-create-child --profile example-mq
root example

JBossFuse:karaf@root> watch container-list

Red Hat JBoss Fuse 6.2 Fabric Guide

42

6.3. TOPOLOGIES

6.3.1. Load-Balancing Cluster

Overview

Fabric exploits the concept of broker groups to implement cluster functionality. To set up a load-
balancing cluster, all of the brokers in the cluster should register with the same group name, but using
unique broker names.

For example, Figure 6.1, “Load-Balancing Cluster” shows a load-balancing cluster with the group name,
loadbal, and with three brokers registered in the group: brokerx, brokery, and brokerz. This type
of topology is ideal for load balancing non-persistent messages across brokers and for providing high-
availability.

Figure 6.1. Load-Balancing Cluster

brokerx

Broker Name URL

.

brokery

brokerz

Group: l oadbal

Create brokers in a load-balancing cluster

The basic rules for creating a load-balancing cluster of brokers are as follows:

Choose a group name for the load-balancing cluster.

Each broker in the cluster registers with the chosen group.

Each broker must be identified by a unique broker name.

Normally, each broker is deployed in a separate container.

For example, consider the cluster shown in Figure 6.1, “Load-Balancing Cluster”. The group name is
loadbal and the cluster consists of three broker instances with broker names: brokerx, brokery, and
brokerz.

To create this cluster, perform the following steps:

1. First of all create some containers:

JBossFuse:karaf@root> container-connect example
JBossFuse:karaf@example> log:display

JBossFuse:karaf@root> container-create-child root broker 3
The following containers have been created successfully:

CHAPTER 6. ACTIVEMQ BROKERS AND CLUSTERS

43

2. Wait until the containers are successfully provisioned. You can conveniently monitor them using
the watch command, as follows:

3. You can then assign broker profiles to each of the containers, using the fabric:mq-create
command, as follows:

4. You can use the fabric:profile-list command to see the new profiles created for these
brokers:

5. You can use the fabric:cluster-list command to view the cluster configuration for this
load balancing cluster:

Configure clients of a load-balancing cluster

 Container: broker1.
 Container: broker2.
 Container: broker3.

JBossFuse:karaf@root> watch container-list

JBossFuse:karaf@root> mq-create --group loadbal --assign-container
broker1 brokerx
MQ profile mq-broker-loadbal.brokerx ready

JBossFuse:karaf@root> mq-create --group loadbal --assign-container
broker2 brokery
MQ profile mq-broker-loadbal.brokery ready

JBossFuse:karaf@root> mq-create --group loadbal --assign-container
broker3 brokerz
MQ profile mq-broker-loadbal.brokerz ready

JBossFuse:karaf@root> profile-list --hidden
[id] [# containers] [parents]
...
mq-broker-loadbal.brokerx 1 mq-base
mq-broker-loadbal.brokery 1 mq-base
mq-client-loadbal
...

JBossFuse:karaf@root> cluster-list
[cluster] [masters]
[slaves] [services]
...
fusemq/loadbal
 brokerx broker1 -
tcp://MyLocalHost:50394
 brokery broker2 -
tcp://MyLocalHost:50604
 brokerz broker3 -
tcp://MyLocalHost:50395

Red Hat JBoss Fuse 6.2 Fabric Guide

44

To connect a client to a load-balancing cluster, use a URL of the form, discovery:
(fabric:GroupName), which automatically load balances the client across the available brokers in the
cluster. For example, to connect a client to the loadbal cluster, you would use a URL like the following:

For convenience, the mq-create command automatically generates a profile named mq-
client-GroupName, which you can combine either with the example-mq-consumer profile or with
the example-mq-producer profile to create a client of the load-balancing cluster.

For example, to create a consumer client of the loadbal group, you can deploy the mq-client-
loadbal profile and the example-mq-consumer profile together in a child container, by entering the
following command:

To create a producer client of the loadbal group, you can deploy the mq-client-loadbal profile and
the example-mq-producer profile together in a child container, by entering the following command:

To verify that the clients are functioning correctly, you can connect to one of them and check the log. For
example, to check the log of the consumer client:

6.3.2. Master-Slave Cluster

Overview

In the master-slave pattern, multiple peer brokers provide the same service and all compete to be the
master. Only one master can exist at a given time, while the rest remain on standby as slaves. If the
master stops, the remaining brokers (slaves) compete to become the new master. If the broker
containers are deployed across different machines or data centres, the result is a highly available broker.

For example, Figure 6.2, “Master-Slave Cluster” shows a master-slave cluster with the group name,
masterslave, and three brokers that compete with each other to register as the broker, hq-broker. A
broker becomes the master by acquiring a lock (where the lock implementation is provided by the

discovery:(fabric:loadbal)

JBossFuse:karaf@root> container-create-child --profile mq-client-loadbal -
-profile example-mq-consumer root consumer
The following containers have been created successfully:
 Container: consumer.

JBossFuse:karaf@root> container-create-child --profile mq-client-loadbal -
-profile example-mq-producer root producer
The following containers have been created successfully:
 Container: producer.

JBossFuse:karaf@root> container-connect consumer

JBossFuse:admin@consumer> log:display
2014-01-16 14:31:41,776 | INFO | Thread-42 | ConsumerThread
| io.fabric8.mq.ConsumerThread 54 | 110 - org.jboss.amq.mq-client -
6.1.0.redhat-312 | Received test message: 982
2014-01-16 14:31:41,777 | INFO | Thread-42 | ConsumerThread
| io.fabric8.mq.ConsumerThread 54 | 110 - org.jboss.amq.mq-client -
6.1.0.redhat-312 | Received test message: 983

CHAPTER 6. ACTIVEMQ BROKERS AND CLUSTERS

45

underlying ZooKeeper registry). The other two brokers that fail to acquire the lock remain as slaves (but
they continue trying to acquire the lock, at regular time intervals).

Figure 6.2. Master-Slave Cluster

broker1

hq- br oker

Broker Name URL

.

Group: maste rsla ve

Create brokers in a master-slave cluster

The basic rules for creating a master-slave cluster of brokers are as follows:

Choose a group name for the master-slave cluster.

Each broker in the cluster registers with the chosen group.

Each broker must be identified by the same virtual broker name.

Normally, each broker is deployed in a separate container.

For example, consider the cluster shown in Figure 6.2, “Master-Slave Cluster”. The group name is
masterslave and the cluster consists of three broker instances, each with the same broker name: hq-
broker. You can create this cluster by entering a single fabric:mq-create command, as follows:

Alternatively, if you have already created three containers, broker1, broker2 and broker3 (possibly
running on separate machines), you can deploy a cluster of three brokers to the containers by entering
the following command:

The first broker that starts becomes the master, while the others are slaves. When you stop the master,
one of the slaves will take over and clients will reconnect. If brokers are persistent, you need to ensure
that they all use the same store—for details of how to configure this, see the section called “Configuring
persistent data”.

Configure clients of a master-slave cluster

To connect a client to a master-slave cluster, use a URL of the form, discovery:
(fabric:GroupName), which automatically connects the client to the current master server. For
example, to connect a client to the masterslave cluster, you would use a URL like the following:

JBossFuse:karaf@root> mq-create --create-container broker --replicas 3 --
group masterslave hq-broker

JBossFuse:karaf@root> mq-create --assign-container broker1,broker2,broker3
--group masterslave hq-broker

discovery:(fabric:masterslave)

Red Hat JBoss Fuse 6.2 Fabric Guide

46

You can use the automatically generated client profile, mq-client-masterslave, to create sample
clients. For example, to create an example consumer client in its own container, enter the following
console command:

And to create an example producer client in its own container, enter the following console command:

Locking mechanism

One benefit of this kind of master-slave architecture is that it does not depend on shared storage for
locking, so it can be used even with non-persistent brokers. The broker group uses ZooKeeper to
manage a shared distributed lock that controls ownership of the master status.

Re-using containers for multiple clusters

Fabric supports re-using the same containers for multiple master-slave clusters, which is a convenient
way to economize on hardware resources. For example, given the three containers, broker1,
broker2, and broker3, already running the hq-broker cluster, it is possible to reuse the same
containers for another highly available broker cluster, web-broker. You can assign the web-broker
profile to the existing containers with the following command:

This command assigns the new web-broker profile to the same containers already running hq-
broker. Fabric automatically prevents two masters from running on the same container, so the master
for hq-broker will run on a different container from the master for web-broker. This arrangement
makes optimal use of the available resources.

Configuring persistent data

When you run a master-slave configuration with persistent brokers, it is important to specify where your
store is located, because you need to be able to access it from multiple hosts. To support this scenario,
the fabric:mq-create command enables you to specify the location of the data directory, as follows:

The preceding command creates the hq-broker virtual broker, which uses the /var/activemq/hq-
broker directory for the data (and store) location. You can then mount some shared storage to this path
and share the storage amongst the brokers in the master-slave cluster.

6.3.3. Broker Networks

JBossFuse:karaf@root> container-create-child --profile mq-client-
masterslave --profile example-mq-consumer root consumer
The following containers have been created successfully:
 Container: consumer.

JBossFuse:karaf@root> container-create-child --profile mq-client-
masterslave --profile example-mq-producer root producer
The following containers have been created successfully:
 Container: producer.

mq-create --assign-container broker1,broker2,broker3 web-broker

mq-create --assign-container broker1 --data /var/activemq/hq-broker hq-
broker

CHAPTER 6. ACTIVEMQ BROKERS AND CLUSTERS

47

Overview

It is possible to combine broker clusters with broker networks, giving you a hybrid broker network that
combines the benefits of broker clusters (for example, high availability) with the benefits of broker
networks (managing the flow of messages between different geographical sites).

Broker networks

A broker network in JBoss Fuse is a form of federation where brokers are linked together using network
connectors. This can be used as a way of forwarding messages between different geographical
locations. Messages can be forwarded either statically (where specified categories of messages are
always forwarded to a specific broker), or dynamically (where messages are forwarded only in response
to a client that connects to a broker and subscribes to particular queues or topics).

Creating network connectors

In the context of Fabric, network connectors can be created by passing the --network option to the
fabric:mq-create command.

Example broker network

Consider the scenario shown in Figure 6.3, “Broker Network with Master-Slave Clusters”.

Figure 6.3. Broker Network with Master-Slave Clusters

us-west2

us-west1

B

Master

us-w est network connectors

The figure shows two master-slave clusters:

The first cluster has the group name, us-west, and provides high-availability with a master-
slave cluster of two brokers, us-west1 and us-west2.

The second cluster has the group name, us-east, and provides high-availability with a master-
slave cluster of two brokers, us-east1 and us-east2.

Network connectors link the master brokers between each of the geographical locations (there are, in
fact, two network connectors in this topology: from west to east and from east to west).

To create the pair of master-slave brokers for the us-east group (consisting of the two containers us-
east1 and us-east2), you would log on to a root container running in the US East location and enter a
command like the following:

mq-create --group us-east --network us-west --networks-username User --
networks-password Pass --create-container us-east us-east

Red Hat JBoss Fuse 6.2 Fabric Guide

48

Where the --network option specifies the name of the broker group you want to connect to, and the
User and Pass are the credentials required to log on to the us-west broker cluster. By default, the
fabric:mq-create command creates a master/slave pair of brokers.

And to create the pair of master-slave brokers for the us-west group (consisting of the two containers
us-west1 and us-west2), you would log on to a root container running in the US West location and
enter a command like the following:

Where User and Pass are the credentials required to log on to the us-east broker cluster.

NOTE

In a real scenario, you would probably first create the containers on separate machines
and then assign brokers to the containers, using the --assign-container option in
place of --create-container.

Connecting to the example broker network

At the US East location, any clients that need to connect to the broker network should use the following
client URL:

And at the US West location, any clients that need to connect to the broker network should use the
following client URL:

Any messages that need to be propagated between locations, from US East to US West (or from US
West to US East), are transmitted over the broker network through one of the network connectors.

6.4. BROKER CONFIGURATION

Overview

The examples presented so far have demonstrated how to create brokers with default configuration
settings. In practice, you will usually need to customize the broker configurations and this can be done by
editing the properties of the corresponding Fabric profiles.

Setting OSGi Config Admin properties

Many of the broker configuration settings can be altered by editing OSGi Config Admin properties (which
are organized into collections identified by a persistent ID or PID). For example, consider the broker1
profile created by entering the following fabric:mq-create command:

mq-create --group us-west --network us-east --networks-username User --
networks-password Pass --create-container us-west us-west

discovery:(fabric:us-east)

discovery:(fabric:us-west)

fabric:mq-create --create-container broker --replicas 1 --network us-west
brokerx

CHAPTER 6. ACTIVEMQ BROKERS AND CLUSTERS

49

The preceding command creates the new profile, mq-broker-default.brokerx, and assigns this
profile to the newly created broker1 container.

NOTE

The new profile gets the name mq-broker-Group.BrokerName by default. If you want
the profile to have the same name as the broker (which was the default in JBoss Fuse
version 6.0), you can specify the profile name explicitly using the --profile option.

You can inspect the details of the mq-broker-default.brokerx profile using the
fabric:profile-display command, as follows:

Associated with the io.fabric8.mq.fabric.server-brokerx PID are a variety of property
settings, such as network and group. You can now add more properties to this PID to customize the
broker configuration.

Setting network connector properties

You can specify additional configuration for network connectors, where the property names have the
form network.NetworkPropName. For example, to add the setting,
network.bridgeTempDestinations=false, to the PID for brokerx, enter the following console
command:

The deployed broker dynamically detects the change to this property and updates the network connector
on the fly.

Network connector properties by reflection

Fabric uses reflection to set network connector properties. That is, any PID property of the form
network.OptionName can be used to set the corresponding OptionName property on the

JBossFuse:karaf@root> profile-display mq-broker-default.brokerx
 Profile id: broker1
 Version : 1.0
 Parents : mq-base
 Associated Containers :

 Container settings

 Configuration details

 PID: io.fabric8.mq.fabric.server-brokerx
 standby.pool default
 connectors openwire
 broker-name broker1
 data /opt/fuse-fabric/data/broker1
 config profile:broker.xml
 group default
 network us-west

profile-edit --pid io.fabric8.mq.fabric.server-
brokerx/network.bridgeTempDestinations=false brokerx

Red Hat JBoss Fuse 6.2 Fabric Guide

50

org.apache.activemq.network.NetworkBridgeConfiguration class. In particular, this implies
you can set any of the following network.OptionName properties:

Property Default Description

name bridge Name of the network - for more
than one network connector
between the same two brokers,
use different names

userName None Username for logging on to the
remote broker port, if
authentication is enabled.

password None Password for logging on to the
remote broker port, if
authentication is enabled.

dynamicOnly false If true, only activate a
networked durable subscription
when a corresponding durable
subscription reactivates, by
default they are activated on start-
up.

dispatchAsync true Determines how the network
bridge sends messages to the
local broker. If true, the network
bridge sends messages
asynchronously.

decreaseNetworkConsumer
Priority

false If true, starting at priority -5,
decrease the priority for
dispatching to a network Queue
consumer the further away it is (in
network hops) from the producer.
If false, all network consumers
use same default priority (that is,
0) as local consumers.

consumerPriorityBase -5 Sets the starting priority for
consumers. This base value will
be decremented by the length of
the broker path when
decreaseNetworkConsumer
Priority is set.

networkTTL 1 The number of brokers in the
network that messages and
subscriptions can pass through
(sets both messageTTL and
consumerTTL)

CHAPTER 6. ACTIVEMQ BROKERS AND CLUSTERS

51

messageTTL 1 The number of brokers in the
network that messages can pass
through.

consumerTTL 1 The number of brokers in the
network that subscriptions can
pass through (keep to 1 in a
mesh).

conduitSubscriptions true Multiple consumers subscribing to
the same destination are treated
as one consumer by the network.

duplex false If true, a network connection is
used both to produce and to
consume messages. This is
useful for hub and spoke
scenarios, when the hub is behind
a firewall, and so on.

prefetchSize 1000 Sets the prefetch size on the
network connector's consumer. It
must be greater than 0, because
network consumers do not poll for
messages

suppressDuplicateQueueS
ubscriptions

false If true, duplicate subscriptions
in the network that arise from
network intermediaries are
suppressed. For example,
consider brokers A, B, and C,
networked using multicast
discovery. A consumer on A gives
rise to a networked consumer on
B and C. In addition, C networks
to B (based on the network
consumer from A) and B networks
to C. When true, the network
bridges between C and B (being
duplicates of their existing
network subscriptions to A) will be
suppressed. Reducing the routing
choices in this way provides
determinism when producers or
consumers migrate across the
network as the potential for dead
routes (stuck messages) are
eliminated. The networkTTL
value needs to match or exceed
the broker count to require this
intervention.

Property Default Description

Red Hat JBoss Fuse 6.2 Fabric Guide

52

suppressDuplicateTopicS
ubscriptions

true If true, duplicate network topic
subscriptions (in a cyclic network)
are suppressed.

bridgeTempDestinations true Whether to broadcast advisory
messages for temporary
destinations created in the
network of brokers. Temporary
destinations are typically created
for request-reply messages.
Broadcasting the information
about temp destinations is turned
on by default, so that consumers
of a request-reply message can
be connected to another broker in
the network and still send back
the reply on the temporary
destination specified in the
JMSReplyTo header. In an
application scenario where most
or all of the messages use the
request-reply pattern, this
generates additional traffic on the
broker network, because every
message typically sets a unique
JMSReplyTo address (which
causes a new temp destination to
be created and broadcasted with
an advisory message in the
network of brokers).

If you disable this feature, this
network traffic can be reduced,
but in this case the producers and
consumers of a request-reply
message need to be connected to
the same broker. Remote
consumers (that is, connected
through another broker in your
network) will not be able to send
the reply message, but instead
will raise a temp
destination does not
exist exception.

alwaysSyncSend false If true, non-persistent messages
are sent to the remote broker
using request/reply semantics
instead of oneway message
semantics. This setting affects
both persistent and non-persistent
messages the same way.

Property Default Description

CHAPTER 6. ACTIVEMQ BROKERS AND CLUSTERS

53

staticBridge false If true, the broker does not
respond dynamically to new
consumers. It uses only
staticallyIncludedDesti
nations to create demand
subscriptions.

useCompression false Compresses the message body
when sending it over the network.

advisoryForFailedForwar
d

false If true, send an advisory
message when the broker fails to
forward the message to the
temporary destination across the
bridge.

useBrokerNamesAsIdSeed true Add the broker name as a prefix
to connections and consumers
created by the network bridge. It
helps with visibility.

gcDestinationViews true If true, remove any MBeans for
destinations that have not been
used for a while.

gcSweepTime 60000 The period of inactivity in
milliseconds, after which we
remove MBeans.

checkDuplicateMessagesO
nDuplex

false If true, check for duplicates on
the duplex connection.

Property Default Description

Broker configuration file

Another important aspect of broker configuration is the ActiveMQ broker configuration file, which is
specified as a Spring XML file. In the context of Fabric, this file is stored as a resource in the ZooKeeper
registry in the mq-base profile. That is, in the ZooKeeper registry, the broker.xml file is stored in the
following location:

This file has the following default contents:

/fabric/configs/versions/1.0/profiles/mq-base/broker.xml

 <beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:amq="http://activemq.apache.org/schema/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd

Red Hat JBoss Fuse 6.2 Fabric Guide

54

Note that some of the PID properties from the profile are substituted into this template (for example,
broker-name and data) and it's important that you reuse them properly. The easiest way to edit this
configuration is to use the Fuse Management Console (see "Management Console User Guide") or the
built-in profile text editor (see Appendix A, Editing Profiles with the Built-In Text Editor).

Additional broker configuration files

 http://activemq.apache.org/schema/core
http://activemq.apache.org/schema/core/activemq-core.xsd">

 <!-- Allows us to use system properties and fabric as variables in
this configuration file -->
 <bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigu
rer">
 <property name="properties">
 <bean
class="io.fabric8.mq.fabric.ConfigurationProperties"/>
 </property>
 </bean>

 <broker xmlns="http://activemq.apache.org/schema/core"
brokerName="${broker-name}" dataDirectory="${data}" start="false">

 <destinationPolicy>
 <policyMap>
 <policyEntries>
 <policyEntry topic=">" producerFlowControl="true"
memoryLimit="1mb">
 <pendingSubscriberPolicy>
 <vmCursor />
 </pendingSubscriberPolicy>
 </policyEntry>
 <policyEntry queue=">" producerFlowControl="true"
memoryLimit="1mb">
 </policyEntry>
 </policyEntries>
 </policyMap>
 </destinationPolicy>

 <managementContext>
 <managementContext createConnector="false"/>
 </managementContext>

 <persistenceAdapter>
 <kahaDB directory="${data}/kahadb"/>
 </persistenceAdapter>

 <transportConnectors>
 <transportConnector name="openwire"
uri="tcp://0.0.0.0:0"/>
 </transportConnectors>
 </broker>

 </beans>

CHAPTER 6. ACTIVEMQ BROKERS AND CLUSTERS

55

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Management_Console_User_Guide/

If you like, you can create additional broker configuration files in the mq-base profile, for example:

You can then use this custom mybroker.xml configuration by invoking the fabric:mq-create
command with the --config option, as follows:

The --config option assumes that the configuration file is stored in the current version of the mq-base
profile, so you need to specify only the file name (that is, the full ZooKeeper path is not required).

/fabric/configs/versions/1.0/profiles/mq-base/mybroker.xml

fabric:mq-create --config mybroker.xml brokerx

Red Hat JBoss Fuse 6.2 Fabric Guide

56

PART II. FABRIC IN PRODUCTION

Abstract

Deepen your understanding and understand the principles of running Fabric in a production environment.

PART II. FABRIC IN PRODUCTION

57

CHAPTER 7. FABRIC ENSEMBLE AND REGISTRY

Abstract

The Fabric ensemble and registry is a critical part of the Fabric infrastructure. In a production
environment, it is particularly important to understand the correct approach to creating and maintaining a
Fabric ensemble.

7.1. FABRIC REGISTRY

Overview

Fuse Fabric uses Apache ZooKeeper (a highly reliable distributed coordination service) as its registry for
storing cluster configuration and node registration.

ZooKeeper is designed with consistency and high availability in mind, while protecting against network
splits, using the concept of a server quorum. For example, you might run five ZooKeeper servers and, so
long as you have a quorum (three or more servers available), the ZooKeeper cluster is reliable and not in
a network split.

Registry structure

The structure of the registry is a tree-like structure, similar to a filesystem. Each node of the tree (a
znode) can hold data and can have children.

For example, the following shows an outline of the registry structure:

Parts of the registry

Conceptually, the Fabric registry consists of two main parts:

 fabric
 |
 +----registry (runtime registry)
 | |
 | +----containers
 | |
 | +----root
 |
 +----configs (configuration registry)
 |
 +----versions
 | |
 | +----1.0
 | |
 | +----profiles
 | |
 | +----default
 |
 +----containers

Red Hat JBoss Fuse 6.2 Fabric Guide

58

http://zookeeper.apache.org/

Configuration Registry—the logical configuration of your fabric, which typically contains no
physical machine information. It contains details of the applications to be deployed and their
dependencies.

Runtime Registry—contains details of how many machines are actually running, their physical
location, and what services they are implementing.

Making the registry highly available

With a single container hosting the registry, high availability is not supported. In order to have a highly
available Fabric registry, you need to replicate the registry on multiple containers (on different physical
hosts). The common term used to describe a group of servers that replicate the Fabric registry is an
ensemble.

7.2. ADMINISTERING A FABRIC ENSEMBLE

Recommendations for an ensemble in production

To assure high availability of the Fabric registry in a production environment, it is recommended that you
observe the following guidelines for a Fabric ensemble:

Deploy a minimum of five Fabric servers in production (if one server is taken down for
maintenance, one other server can fail, and the Fabric registry will still be available).

Fabric servers should be deployed on separate host machines.

Each Fabric server should only have a Fabric registry agent deployed inside it. No other profiles
should be deployed in it.

The size of the ensemble should be fixed at the outset, and not changed later (if you
subsequently add or remove containers from the ensemble, the ZooKeeper IP ports would be re-
assigned).

Creating an ensemble

A Fabric ensemble is created in two stages, as follows:

1. Create an initial ensemble, consisting of one Fabric server.

2. Expand the ensemble, by adding an even number of containers.

Creating an initial ensemble

An initial ensemble is usually created by invoking the fabric:create console command (which
converts the current container into a Fabric server, which is a sole member of the newly created
ensemble). Alternatively, when creating a new container with the fabric:container-create-ssh or
fabric:container-create-cloud commands, you can pass the --ensemble-server option.

For details of how to create an initial ensemble using the fabric:create command, see Chapter 2,
Creating a New Fabric.

Expanding the ensemble

CHAPTER 7. FABRIC ENSEMBLE AND REGISTRY

59

Once you have an initial ensemble, consisting of one Fabric server, you can expand the ensemble by
invoking the fabric:ensemble-add command. To expand the ensemble, perform the following steps:

1. Create some new managed containers in the current fabric, which you can then add to the
ensemble. Use the default profile for these new containers. For a production environment, it is
recommended that you create at least four new managed containers (must be an even number),
each running on their own host.

2. While logged on to a container in the fabric, use the fabric:ensemble-add command to add
the managed containers to the ensemble. For example, given the four managed containers,
container1, container2, container3, and container4, you would enter the following
command:

NOTE

You must specify an even number of containers to the fabric:ensemble-add
command.

3. To check that the ensemble has been successfully created, invoke the fabric:container-
list command.

IMPORTANT

Do not attempt to expand (or shrink) a Fabric ensemble in a production environment.
When you add containers to (or remove containers from) an ensemble, the ZooKeeper IP
ports are all re-assigned, which typically causes the containers in the fabric to lose
connectivity with the ensemble.

Taking a Fabric server down for maintenance

If you need to perform any maintenance on the host where a Fabric server is running, you can do this
while maintaining availability of the Fabric registry, so long as a quorum (more than half) of the Fabric
servers are still running. To stop a Fabric server, simply invoke the fabric:container-stop
command, specifying the name of the Fabric server.

In general, it is recommended to have at least five Fabric servers in the ensemble. Three is not an
adequate number. For example, with three servers in the ensemble consider what happens when you
take a Fabric server down for maintenance. The two remaining Fabric servers form a quorum, but there
is now no tolerance for failure. If one of the remaining Fabric servers fails, the whole fabric fails. In order
to maintain high availability during maintenance, it is therefore essential to have at least five Fabric
servers in the ensemble.

fabric:ensemble-add container1 container2 container3 container4

Red Hat JBoss Fuse 6.2 Fabric Guide

60

CHAPTER 8. FABRIC AGENTS

Abstract

The Fabric agent, which is responsible for provisioning on each container instance, is a key component
of the Fabric infrastructure. When it comes to troubleshooting the behavior of a Fabric container, it is
valuable to have an understanding of what the Fabric agent does and how it works.

8.1. INTRODUCTION

Fabric agent

The Fabric agent is the part of Fabric that is responsible for applying profiles to containers. The agent
can run in any container and its role is to retrieve profile information from the registry and apply them to
the container.

To be specific, the Fabric agent performs the following actions:

1. Retrieves the profiles and versions assigned to the container on which it is running.

2. Reconfigures the container.

3. Calculates what needs to be installed, removed or updated on the container.

4. Performs the requisite install, remove, and update actions.

Agent modules

In reality, the Fabric agent is composed of the following two modules:

[fabric-configadmin]

The Fabric configuration admin bridge. Translates the registry information into configuration
information.

[fabric-agent]

The deployment agent. Reads the translated configuration and provisions the container accordingly.

Often, the term, agent, refers just to the deployment agent ([fabric-agent] module), but here we discuss
both of the agent modules and describe the role of each in some detail.

8.2. THE CONFIGURATION ADMIN BRIDGE

Overview

The configuration admin bridge is responsible for bridging between the ZooKeeper registry and the OSGi
Configuration Admin service. After the bridge connects to the ZooKeeper registry, it discovers what
version is assigned to the container, retrieves the appropriate versions of the profiles assigned to the
container, translates the profiles into configuration data, and applies the profile data to the container.

Information in a profile

CHAPTER 8. FABRIC AGENTS

61

Profiles can contain two distinct kinds of information:

Configuration information—which includes:

System configuration

OSGi configuration

Provisioning information—which includes lists of:

Bundles

Karaf features

Actions performed

The configuration admin bridge reads all of the relevant profiles and creates an OSGi configuration to
represent them. The provisioning and system information are then stored under the
io.fabric8.agent PID (in the context of the OSGi Configuration Admin service, a PID is a named
collection of property settings).

If an assigned profile belongs to a hierarchy (profile inheritance) or if multiple profiles are assigned to the
container, the configuration admin bridge takes this into account, resolving any overlapping configuration
settings to produce an overlay view of the profiles. There is only one io.fabric8.agent PID, even
when there are multiple assigned profiles.

The output from the configuration admin bridge is just a set of key-value pairs stored under the
io.fabric8.agent PID.

Configuration updates

The configuration admin bridge watches the Fabric registry for changes, so that any updates to the
container's assigned profiles are tracked and immediately applied to the local container's OSGi
configuration.

8.3. THE DEPLOYMENT AGENT

Actions performed

The deployment agent listens for local configuration changes on the io.fabric8.agent PID. Any
change in that configuration will trigger the deployment agent.

When the deployment agent is triggered, it performs the following actions:

1. The deployment agent reads the whole io.fabric8.agent PID and calculates what bundles
are to be installed in the container.

2. If the profiles assigned to the container specify any Karaf features, the deployment agent
translates them into a list of bundles, so that the agent obtains a complete list of bundles to
install.

3. The deployment agent compares the list of bundles to install with the list of bundles currently
installed, in order to identify:

Bundles to uninstall,

Red Hat JBoss Fuse 6.2 Fabric Guide

62

Bundles to install,

Bundles to update.

4. The deployment agent then performs the bundle uninstalling, installing, and updating in the
container.

Downloading artifacts

The deployment agent is capable of downloading artifacts from two different types of maven repository:

Registered Fabric Maven proxies

Configured Maven repositories (any Maven repository configured in the profile overlay).

Priority is always given to the Fabric Maven proxies. If more than one Maven proxy is registered in the
fabric, the proxies are used in order, from the oldest to the newest.

If the target artifact is not found in the Maven proxies, the configured Maven repositories are used
instead. The list of repositories is determined by the org.ops4j.pax.url.mvn.repositories
property of the io.fabric8.agent PID.

To change the list of repositories for a specific profile, you can simply change the
org.ops4j.pax.url.mvn.repositories property using the fabric:profile-edit command:

It is recommended that you specify this configuration in one profile only, and have the rest of profiles
inherit from it. The default profile, which is the ancestor of all of the standard profiles, is the ideal place
for this.

Container restarts

In most cases, when a container is provisioned by the provisioning agent, the container is kept alive and
no restart is needed. A restart becomes necessary, however, whenever the following changes are made:

Changes to the OSGi framework;

Changes to the OSGi framework configuration.

The normal case is where the container stays alive during provisioning, because it is rarely necessary to
make changes to the underlying OSGi framework. If a container does need to restart, the restart is
performed automatically by the deployment agent and, after the restart, the container reconnects to the
cluster without any manual intervention.

Monitoring the provisioning status

Throughout the whole process of deploying and provisioning, the deployment agent stores the
provisioning status in the runtime registry, so that it is available to the whole cluster. The user can check
the provisioning status at any time using the fabric:container-list command.

fabric:profile-edit --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories=http://repositorymanag
er.mylocalnetwork.net default

JBossFuse:karaf@root> fabric:container-list

CHAPTER 8. FABRIC AGENTS

63

To monitor the provisioning status in real time, you can pass the fabric:container-list command
as an argument to the shell:watch command, as follows:

Resolution and startup ordering

To figure out what bundles need to be installed and what bundles need to be removed, the Fabric agent
uses the OSGi Bundle Repository (OBR) resolver. The OBR resolver makes sure that all requirements
are met (usually package requirements, but potentially also service requirements). To discover a
bundle's requirements, the OBR reads the following bundle headers:

Import-Package

For each package listed here, the OBR resolver searches for a bundle that declares the package in a
corresponding Export-Package header.

Import-Service

For each service listed here, the OBR resolver searches for a bundle that declares the service in a
corresponding Export-Service header.

If you are using Blueprint configuration files, it is especially important to be aware of the need to add an
Export-Service header to bundles that implement services. Blueprint configuration files with
mandatory references to services will automatically be packaged with the Import-Service bundle
header (assuming that you use the maven-bundle-plugin). If the bundle that exports the service
does not explicitly specify an Export-Service header, resolution will fail. To fix this error, either the
exporter bundle must add an Export-Service declaration, or the importer bundle must remove the
Import-Service directive.

If resolution is successful, the Fabric agent will start the bundles. Even though you should try to avoid
having requirements in the startup order of your bundles, the Fabric agent will attempt to start the
bundles based on their expressed requirements and capabilities. This will not solve all issues, especially
in cases where asynchronous service registration is involved. The best way to deal with this kind of
issues is to use OSGi services.

[id] [version] [alive] [profiles]
[provision status]
root* 1.0 true fabric, fabric-
ensemble-0000-1 success
mq1 1.0 true mq
success
mq2 1.0 true mq
downloading
billing-broker 1.0 true billing
success
 admin-console 1.0 true web, admin-console
success

shell:watch fabric:container-list

Red Hat JBoss Fuse 6.2 Fabric Guide

64

CHAPTER 9. ALLOCATING PORTS

Abstract

You can use the port service to take care of allocating ports for your services, where the port service
allocates ports in such a way as to avoid port clashes.

9.1. THE PORT SERVICE

What is the port service?

The port service is designed to address the problem of clashing IP port values, which frequently arises in
a production environment. The following kinds of problem commonly arise:

Ports clashing with third-party services—a server machine in a production environment often has
multiple services deployed on it, with a wide range of IP ports in use. In this environment, there
is a relatively large risk that a Fabric container could clash with existing IP ports.

Ports clashing with other Fabric containers—when multiple Fabric containers are deployed on
the same host, it is necessary to configure their standard services with different IP ports. Setting
the IP ports manually would be a considerable nuisance (and error prone).

Ports clashing within a container—a port clash can also occur within a single container, if
multiple services are competing for the same ports (for example, multiple routes binding to the
same ports). Because Fabric containers are highly dynamic, we need to be able to prevent port
clashes in this case, and ports must be allocated and de-allocated as services come and go.

The port service addresses this problem by taking over the process of allocating ports. A service that
uses the port service can specify a range of ports that it is willing to use, and the port service takes care
of allocating a port that does not clash with any of the existing services.

Benefits of the port service

The port service offers the following benefits at run time:

Avoiding port clashes for standard container services

Avoiding port clashes for custom services

Avoiding port clashes for standard container services

When you start up multiple containers on the same host, the port service ensures that the containers
automatically choose different IP ports for their standard services, thus avoiding port clashes between
containers. You get this benefit for free: the standard container services are already configured to use
the port service.

Avoiding port clashes for custom services

You can also use the port service for your own applications, enabling your custom services to avoid port
clashes. This requires you to configure your custom services, as appropriate, to use the port service.

Using the port service in your own applications

CHAPTER 9. ALLOCATING PORTS

65

To use the port service in your own application, proceed as follows:

1. Use the OSGi Config Admin service to define a key, whose value is a port range. Use the
following syntax to define a key:

The preceding syntax defines the key, KeyID, where MinValue specifies the minimum value of
the IP port, and MaxValue specifies the maximum value of the IP port. You can create this key
using the standard Karaf commands for editing persistent IDs (PIDs) and their keys (using the
fabric:profile-edit command with the --pid option in a Fabric container).

For example, if you are logged into a Fabric container, you can see that the default profile
defines the key, org.osgi.service.http.port, which specifies the container's Jetty port,
as follows:

2. In your application's XML configuration (either Spring XML or Blueprint XML), replace the literal
port value in the service's address by a property placeholder—for example,
${org.osgi.service.http.port}—which substitutes the value of the key defined in step
1.

For a complete example of how to configure the property placeholder, see Section 9.2, “Using
the Port Service”.

How the port service allocates a port

Given a service with a port range (for example, ${port:9090,9190}) running on a specific target
host, when you start up the service for the first time, the port service allocates a port as follows:

1. Determines which ports in the range are already in use on the target host (whether local or
remote), by actually trying to bind to the ports.

2. Checks the registered ports in the ZooKeeper registry for all of the containers deployed on the
target host (even if the containers are currently not running).

3. Allocates the first free port, within the specified range, that does not clash with any of the ports
discovered in steps 1 and 2.

How allocated ports are stored

Allocated ports are stored permanently in the ZooKeeper registry, under the following registry node:

Each key value, KeyID, is filed under its corresponding persistent ID, PID, and container name,
ContainerName, as follows:

KeyID = ${port:MinValue,MaxValue}

FuseFabric:karaf@root> fabric:profile-display default
...
PID: org.ops4j.pax.web
 org.ops4j.pax.web.config.checksum ${checksum:profile:jetty.xml}
 org.ops4j.pax.web.config.url profile:jetty.xml
 javax.servlet.context.tempdir ${karaf.data}/pax-web-jsp
 org.osgi.service.http.port ${port:8181,8282}

/fabric/registry/ports/

Red Hat JBoss Fuse 6.2 Fabric Guide

66

For example, given the child container, Child1, the key for the child container's Jetty port would be
stored in the following ZooKeeper node:

Keys used by the standard container services

Some of keys used by standard container services are as follows:

Behavior upon stopping and restarting a container

When you stop a container, the ports used by that container are stored in the ZooKeeper registry and
continue to be reserved for that container by the port service. Subsequently, when you restart the
container, Fabric reads the port values stored in ZooKeeper and restarts the container's services using
the stored values. This behavior has the following consequences:

The ports used by the container's services remain constant (after the initial allocation has
occurred). You can advertise the ports to clients and be confident that the ports will remain valid
over the long term.

If, while the container is stopped, another service binds to one of the container's ports, there is a
port clash when the container restarts, and the affected service fails to start (but at least we can
guarantee that Fabric will not cause such a clash, because Fabric deliberately avoids re-using
allocated container ports).

Deallocating ports

When you destroy a container (by invoking the fabric:container-delete command), Fabric
deallocates all of the ports assigned to that container, so that they become available for use again by
services in other containers. In other words, when the ContainerName container is deleted, all of the
key entries under /fabric/registry/ports/containers/ContainerName are deleted from the
ZooKeeper registry.

9.2. USING THE PORT SERVICE

Overview

This section explains how to use the port service in you own applications, taking the example-camel-
cxf profile as an example. There are two basic steps to configuring the port service in your application:

/fabric/registry/ports/containers/ContainerName/PID/KeyID

/fabric/registry/ports/containers/Child1/org.ops4j.pax.web/org.osgi.servic
e.http.port

/fabric/registry/ports/containers/ContainerName/org.apache.karaf.shell/ssh
Port
/fabric/registry/ports/containers/ContainerName/org.ops4j.pax.web/org.osgi
.service.http.port
/fabric/registry/ports/containers/ContainerName/org.apache.karaf.managemen
t/rmiServerPort
/fabric/registry/ports/containers/ContainerName/org.apache.karaf.managemen
t/rmiRegistryPort

CHAPTER 9. ALLOCATING PORTS

67

At development time—using the property placeholder service, replace a service's fixed port
number by a key.

At deployment time—using the OSGi Config Admin service, specify the key value as a port
range. For example, you can specify the key value as a PID property setting in a Fabric profile.

It is possible to configure the property placeholder in Blueprint XML, or in Java (using the relevant OSGi
API).

NOTE

The property placeholder syntax in Spring XML is deprecated (it belongs to the
deprecated Spring-DM component).

Demonstration code

This example is based on the example-camel-cxf profile. The source code for the example is taken
from the fabric-camel-cxf example on Github, which is available from the following URL:

Property placeholder in XML configuration

The following Spring XML configuration shows the definition of an endpoint for the greeter Web service
(taken from the file, src/main/resources/OSGI-INF/blueprint/cxf.xml, in the fabric-
camel-cxf demonstration):

https://github.com/fabric8io/fabric8/tree/1.x/fabric/fabric-
examples/fabric-camel-cxf

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://camel.apache.org/schema/blueprint/cxf"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-
cm/v1.1.0"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint/cxf
 http://camel.apache.org/schema/blueprint/cxf/camel-cxf.xsd">

 <cm:property-placeholder id="placeholder"
 persistent-
id="io.fabric8.examples.camel.cxf"
 update-strategy="reload">
 <cm:default-properties>
 <cm:property name="greeterPort" value="9090"/>
 </cm:default-properties>
 </cm:property-placeholder>

 <cxf:cxfEndpoint id="greeterEndpoint"
 address="http://localhost:${greeterPort}/greeter"
 serviceClass="io.fabric8.examples.camelcxf.Greeter">
 <cxf:features>
 <bean class="io.fabric8.cxf.endpoint.ManagedApiFeature"/>
 </cxf:features>

Red Hat JBoss Fuse 6.2 Fabric Guide

68

https://github.com/fabric8io/fabric8

The CXF endpoint (which binds to a Camel route) is defined by the cxf:cxfEndpoint element. In the
address attribute, the port number is specified by substituting the greeterPort key,
${greeterPort}. The property placeholder mechanism is configured by the cm:property-
placeholder element, which specifies that the greeterPort property belongs to the
io.fabric8.examples.camel.cxf PID. The property placeholder mechanism is integrated with the
OSGi Config Admin service, which allows you to override the port number at deployment time.

Specifying a port range using OSGi Config Admin

At deployment time, you can override the default port number of the greeter Web service. In this
particular example, where the deployment is described by the example-camel-cxf profile, the port
number is integrated with the port service and specified as a port range.

Because the port range is defined at deployment time, it is not specified in the example source code, but
is instead specified in the example-camel-cxf Fabric profile. You can see the configured port range
by entering the following console command:

In the output of this command, you should see the following configuration setting for the
io.fabric8.examples.camel.cxf persistent ID:

The preceding output shows that the greeterPort key is set to ${port:9090,9190}.

Modifying the port range

If you want to modify the port range configured in the example-camel-cxf profile, you can do so using
the fabric:profile-edit console command. For example, to change the value of greeterPort to
the range, ${port:7070,7170}, you would enter the following console command:

Where the $ sign and the curly braces, { }, must be escaped by the backslash character, \, as shown.
Alternatively, if you prefer to edit the port range using the built-in text editor, you can enter the following
console command instead:

 </cxf:cxfEndpoint>
 ...
</blueprint>

JBossFuse:karaf@root> fabric:profile-display example-camel-cxf

...
Configuration details

PID: io.fabric8.examples.camel.cxf
 greeterPort ${port:9090,9190}
...

JBossFuse:karaf@root> fabric:profile-edit
 --pid io.fabric8.examples.camel.cxf/greeterPort=\$\{port:7070,7170\}
 example-camel-cxf

JBossFuse:karaf@root> fabric:profile-edit --pid
io.fabric8.examples.camel.cxf example-camel-cxf

CHAPTER 9. ALLOCATING PORTS

69

CHAPTER 10. GATEWAY

Abstract

The Fabric Gateway provides a TCP and HTTP/S gateway for discovery, load balancing and failover of
services running in a fabric. The Fabric Gateway enables you to use standard HTTP URLs to access
Web applications or Web services running in a fabric. In JBoss Fuse, messaging clients can discover
and connect to brokers over any supported messaging protocol (OpenWire, STOMP, MQTT, AMQP or
WebSockets), letting the gateway handle the connection management to the real services running inside
the fabric.

10.1. GATEWAY ARCHITECTURE

Deployment strategies

There are two main deployment strategies for a gateway:

Run the gateway on each machine that needs to discover services and communicate with it
through localhost. In this case, you do not need to hard code any host names in your
messaging or Web clients and the connection to the gateway on localhost is nice and fast.

Run the gateway on one or more known hosts using DNS or VIP load balancing (mapping host
names to machines). In thise case, you can use a fixed host name for all your services

How the gateway works

The gateway monitors and detects any changes in the ZooKeeper registry for all Web applications, Web
services, servlets and message brokers. For all of the registered services, the gateway applies mapping
rules to figure out how to expose those services through TCP or HTTP.

The ZooKeeper registry is automatically populated by Fabric when you deploy Web archives (WARs) or
CXF based Web services.

10.2. RUNNING THE GATEWAY

Deploy a gateway profile

To run the gateway, simply deploy one (or more) of the predefined profiles to a Fabric container. The
following gateway profiles are provided:

gateway-mq

Profile for a messaging gateway (for accessing Apache ActiveMQ brokers in the fabric).

gateway-http

Profile for a HTTP gateway (for Web applications or Web services).

10.3. CONFIGURING THE GATEWAY

Configuring with the Management Console

Red Hat JBoss Fuse 6.2 Fabric Guide

70

To configure the gateway using the Management Console UI, navigate to the Profiles page then click
on the Configuration tab, then select either the Fabric8 HTTP Gateway or the Fabric8 MQ
Gateway to configure its settings.

HTTP mapping rules

When using the HTTP gateway, it is a common requirement to map different versions of Web
applications or Web services to different URI paths on the gateway. You can perform very flexible
mappings using URI templates.

The default behavior is to expose all Web applications and Web services at the context path they are
running in the target server. For example, if you deploy the example-quickstarts-rest profile, that
uses a URI like /cxf/crm/customerservice/customers/123 on whatever host and port it is
deployed on. Hence, by default, it is visible on the gateway at
http://localhost:9000/cxf/crm/customerservice/customers/123. For this example, the URI template is:

Which means take the context path (in the above case, /cxf/crm) and append /, giving /cxf/crm/.
Any request within that path is then passed to an instance of the CXF crm service.

Selecting part of the ZooKeeper registry

The mapping rules for the MQ gateway and the HTTP gateway are tied to particular regions of the
ZooKeeper registry. If you specify a ZooKeeper path for a mapping rule, any services registered under
that path become associated with that rule.

For example, in the case of messaging, you could associate a messaging gateway with all message
brokers worldwide. Alternatively, you could provide continent-specific, country-specific or region-specific
gateways, just by specifying different ZooKeeper paths for each gateway configuration. For regional
messaging clusters, use different ZooKeeper folders for geographically distinct broker clusters.

With HTTP then REST APIs, SOAP Web Services, servlets and web applications all live in different parts
of the ZooKeeper registry. From the Management Console UI, you can browse the contents of the
registry in the Runtime | Registry section of the console (in the Fabric view).

Here are the common ZooKeeper paths:

ZooKeeper Path Description

/fabric/registry/clusters/apis/rest REST based web services

/fabric/registry/clusters/apis/ws SOAP based web services

/fabric/registry/clusters/servlets Servlets (registered usually individually via the OSGI
APIs)

/fabric/registry/clusters/webapps Web Applications (i.e. WARs)

Segregating URI paths

You might want to segregate servlets, Web services, or Web applications into different URI spaces.

{contextPath}/

CHAPTER 10. GATEWAY

71

https://en.wikipedia.org/wiki/URL_Template
http://localhost:9000/cxf/crm/customerservice/customers/123

For example, if you want all Web services to be available under /api/ and Web applications to be
available under /app/, update the URI templates as follows:

For the Web services mapping rule:

For the Web applications mapping rule:

If you want to split RESTful APIs and SOAP web services into different URI paths, replace the preceding
mapping rule with the following rules:

10.4. VERSIONING

Explicit URIs

You might want to expose all available versions of each Web service and Web application at a different
URI. For example, consider the case where you change your URI template to the following:

If you have 1.0 and 1.1 versions of a profile that packages Web services or Web applications, you can
now access the different versions using version-specific URIs. For example, if you are running version
1.0 and version 1.1 implementations of the example-quickstarts-rest profile, you can access
either one through the following URIs:

Version 1.0 through http://localhost:9000/version/1.0/cxf/crm/customerservice/customers/123

Version 1.1 through http://localhost:9000/version/1.1/cxf/crm/customerservice/customers/123

Both versions are available to the gateway, provided you include the version information in the URI.

Rolling upgrades

Another approach to dealing with versions of Web services and Web applications is to expose only a
single version at a time of each Web service or Web application in a single gateway. This is the default
configuration.

For example, if you deploy a 1.0 version of the gateway-http profile and run a few services, you will
see all 1.0 versions of them. If you run some 1.1 versions of these services, the gateway will not see
them. If you now do a rolling upgrade of your gateway to version 1.1, it will switch to showing only the
1.1 versions of the services.

ZooKeeperPath: /fabric/registry/clusters/apis
URI template: /api{contextPath}/

ZooKeeperPath: /fabric/registry/clusters/webapps
URI template: /app{contextPath}/

ZooKeeperPath: /fabric/registry/clusters/apis/rest
URI template: /rest{contextPath}/

ZooKeeperPath: /fabric/registry/clusters/apis/ws
URI template: /ws{contextPath}/

/version/{version}{contextPath}/

Red Hat JBoss Fuse 6.2 Fabric Guide

72

http://localhost:9000/version/1.0/cxf/crm/customerservice/customers/123
http://localhost:9000/version/1.1/cxf/crm/customerservice/customers/123

Alternatively, you can specify the exact profile version to use, on the mapping configuration screen.

Another approach you can use with Web applications is to specify the maven coordinates and maven
version of a web application in the ZooKeeper path.

10.5. URI TEMPLATE EXPRESSIONS

Variables

The following table shows the variables you can use in a URI template expression:

Expression Description

{bundleName} The name of the bundle that registers the Web
service, servlet or application. This variable is
currently not supported for Web services, but works
for Web applications and servlets in an OSGi
container.

{bundleVersion} The version of the bundle that registers the Web
service, servlet or application. This variable is
currently not supported for Web services, but works
for Web applications and servlets in an OSGi
container.

{container} The container ID of the container where the Web
service or Web application is deployed.

{contextPath} The context path (the part of the URL after the host
and port) of the Web service or Web application
implementation.

{servicePath} The relative path within ZooKeeper that a service is
registered. This is usually is made up of, for web
services as the service name and version. For web
applications its often the maven coordinates

{version} The profile version of the Web service or Web
application.

CHAPTER 10. GATEWAY

73

CHAPTER 11. SECURING FABRIC CONTAINERS

Abstract

By default, fabric containers uses text-based username/password authentication. Setting up a more
robust access control system involves creating and deploying a new JAAS realm to the containers in the
fabric.

DEFAULT AUTHENTICATION SYSTEM

By default, Fabric uses a simple text-based authentication system (implemented by the JAAS login
module, io.fabric8.jaas.ZookeeperLoginModule). This system allows you to define user
accounts and assign passwords and roles to the users. Out of the box, the user credentials are stored in
the Fabric registry, unencrypted.

MANAGING USERS

You can manage users in the default authentication system using the jaas:* family of console
commands. First of all you need to attach the jaas:* commands to the ZookeeperLoginModule login
module, as follows:

Which attaches the jaas:* commands to the ZookeeperLoginModule login module. You can then
add users and roles, using the jaas:useradd and jaas:roleadd commands. Finally, when you are
finished editing the user data, you must commit the changes by entering the jaas:update command,
as follows:

Alternatively, you can abort the pending changes by entering jaas:cancel.

OBFUSCATING STORED PASSWORDS

By default, the JAAS ZookeeperLoginModule stores passwords in plain text. You can provide
additional protection to passwords by storing them in an obfuscated format. This can be done by adding
the appropriate configuration properties to the io.fabric8.jaas PID and ensuring that they are
applied to all of the containers in the fabric.

For more details, see section "Using Encrypted Property Placeholders" in "Security Guide".

JBossFuse:karaf@root> jaas:realms
Index Realm Module Class
 1 karaf
org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
 2 karaf
org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule
 3 karaf io.fabric8.jaas.ZookeeperLoginModule
JBossFuse:karaf@root> jaas:manage --index 3

JBossFuse:karaf@root> jaas:update

Red Hat JBoss Fuse 6.2 Fabric Guide

74

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Security_Guide/FMQSecurityEncryptProperties.html

NOTE

Although message digest algorithms are not easy to crack, they are not invulnerable to
attack (for example, see the Wikipedia article on cryptographic hash functions). Always
use file permissions to protect files containing passwords, in addition to using password
encryption.

ENABLING LDAP AUTHENTICATION

Fabric supports LDAP authentication (implemented by the Apache Karaf LDAPLoginModule), which
you can enable by adding the requisite configuration to the default profile.

For details of how to enable LDAP authentication in a fabric, see chapter "LDAP Authentication Tutorial"
in "Security Guide".

CHAPTER 11. SECURING FABRIC CONTAINERS

75

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Security_Guide/FESBLDAPTutorial.html

CHAPTER 12. CONFIGURING A FABRIC'S MAVEN PROXY

Abstract

The Fabric Ensemble creates a Maven proxy to access the repositories from which artifacts are
distributed to the fabric's containers. You can modify the default settings to use a different set of
repositories or make an internal repository accessible.

OVERVIEW

The Fabric Ensemble creates a Maven proxy to facilitate access to the artifacts required by the
containers in the fabric. Each Fabric Server deployed in the fabric runs an instance of a Maven proxy.
The ensemble aggregates all of the proxies so that it appears to the Fabric Agents as a single Maven
proxy.

The Fabric Agents use the fabric's Maven proxy to access the known repositories. This ensures that all
of the containers use the same set of repositories and artifacts.

NOTE

Advanced users can configure each Fabric server to act as a proxy for a different set of
repositories. However, this is not a recommended set up.

NOTE

Fuse Management Console provides tooling for uploading bundles using the Maven
proxy. You can also add the fabric's Maven Proxy to a POM file so that bundles can be
distributed to the ensemble as part of an automated build process.

DEFAULT REPOSITORIES

By default a fabric's Maven proxy is configured to be a proxy for the following Maven repositories:

Maven Central (http://repo1.maven.org/maven2)

Fuse Public (https://repo.fusesource.com/nexus/content/groups/public)

Fuse Releases (https://repo.fusesource.com/nexus/content/repositories/releases)

Fuse Early Access (https://repo.fusesource.com/nexus/content/groups/ea)

JBoss Public
(https://repository.jboss.org/nexus/content/repositories/public)

SpringSource (http://repository.springsource.com/maven/bundles/release,
http://repository.springsource.com/maven/bundles/external)

User's Local (~/.m2/repository)

CHANGING THE REPOSITORIES

To change the repositories the ensemble proxies:

Red Hat JBoss Fuse 6.2 Fabric Guide

76

1. Create a new profile version. From the command console this is done using the
fabric:version-create command. See section "fabric:version-create" in "Console
Reference" for more information.

2. Change the org.ops4j.pax.url.mvn.repositories property in the io.fabric8.agent
PID of the default profile. Example 12.1, “Configuring the Maven Proxy URL” shows the
console command for editing this property.

Example 12.1. Configuring the Maven Proxy URL

JBossFuse:karaf@root> fabric:profile-edit -p
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories =
file:${runtime.home}/${karaf.default.repository}@snapshots@id=kara
f-default, file:${runtime.data}/maven/upload@snapshots@id=fabric-
upload, http://repo1.maven.org/maven2@id=central,
https://repo.fusesource.com/nexus/content/groups/public@id=fusepub
lic,
https://repository.jboss.org/nexus/content/repositories/public@id=
jbosspublic,
https://repo.fusesource.com/nexus/content/repositories/releases@id
=jbossreleases,
https://repo.fusesource.com/nexus/content/groups/ea@id=jbossearlya
ccess,
http://repository.springsource.com/maven/bundles/release@id=ebrrel
eases,
http://repository.springsource.com/maven/bundles/external@id=ebrex
ternal

NOTE

The io.fabric8.agent PID is refined in all of the fabric profiles. Setting the
proxy URL, the org.ops4j.pax.url.mvn.repositories property, in the
default profile ensures that all of the other fabric profiles share the same Maven
proxy setting.

IMPORTANT

The fabric profile's io.fabric8.maven PID, which ultimately controls the
Maven proxy, imports its value from the default profile's io.fabric8.agent
PID. You should not change the settings of the io.fabric8.maven PID.

Alternatively, instead of resetting the entire list of repositories, you can append a new entry to the
repository list by invoking fabric:profile-edit with the --append option, as follows:

3. Roll the changes out the fabric by upgrading the containers to the new profile version.

JBossFuse:karaf@root> profile-edit --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories='http://fusewin.
tpb.lab.eng.brq.redhat.com:8081/nexus/content/repositories/fuse-qe-
repo@id=fuse-qa' --append default 1.1

CHAPTER 12. CONFIGURING A FABRIC'S MAVEN PROXY

77

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Console_Reference/ConsoleFabricVersionCreate.html

IMPORTANT

You cannot test this configuration change out on a few containers to validate it.
The change must be made to the entire fabric or it will result in conflicts.

USING AN HTTP PROXY WITH THE MAVEN PROXY

Using fabric's built-in Maven proxy, all nodes communicate directly with each other over HTTP. If you
need to secure this communication (as when fabric's maven proxy must request maven artifacts from
remote repositories), you can configure an HTTP proxy in fabric using a Maven settings.xml file that
includes an HTTP proxy configuration.

To do so, follow these steps:

1. Prepare an HTTP proxy settings file (see Example 12.2, “Example HTTP proxy settings .xml
file” for example content), and put it in the Red Hat JBoss Fuse InstallDir/fuse/ directory.

2. Start up JBoss Fuse, and create a fabric. For details, see the section called “Steps to create the
fabric”.

3. Specify the name and location of the HTTP settings file. At the JBossFuse:karaf@root>
command line, type:

4. Remove the org.ops4j.pax,url.mvn.repositories property from the default profile. At the
JBossFuse:karaf@root> command line, type:

Removing this property causes the Maven proxy to pick up repositories from Maven's
/home/.m2/settings.xml file, pointed to in the /home/fuse/http-proxy-
settings.xml file.

All fabric Maven proxy requests for remote repositories will now be redirected to the HTTP proxy
server.

Example 12.2. Example HTTP proxy settings .xml file

profile-edit --pid
io.fabric8.maven/io.fabric8.maven.settings=/home/fuse/http-proxy-
settings.xml default

profile-edit --delete --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories default

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">

 <!-- localRepository contains the path to the local repository maven
 will use to store artifacts. Default: ~/.m2/repository -->

 <localRepository>/home/fuse/.m2/repository</localRepository>

 <proxies>
 <proxy>

Red Hat JBoss Fuse 6.2 Fabric Guide

78

 <id>qeos-proxy-1</id>
 <active>true</active>
 <protocol>http</protocol>
 <host>10.8.50.13</host>
 <port>3128</port>
 </proxy>
 </proxies>
 <profiles>
 <profile>
 <id>fuse-repo</id>
 <repositories>
 <repository>
 <id>fuse-qe-repo</id>

<url>http://fusewin.tpb.lab.eng.brq.redhat.com:8081/nexus/content/reposi
tories/fuse-qe-repo</url>
 <layout>default</layout>
 </repository>
 <repository>
 <id>central</id>

<url>http://repo1.maven.org/maven2@id=maven.central.repo</url>
 <layout>default</layout>
 </repository>
 </repositories>
 </profile>
 </profiles>
 <activeProfiles>
 <activeProfile>fuse-repos</activeProfile>
 </activeProfiles>

</settings>

CHAPTER 12. CONFIGURING A FABRIC'S MAVEN PROXY

79

CHAPTER 13. OFFLINE REPOSITORIES

Abstract

Its quite common a common requirement to need offline repositories: either as a local cache of remote
Maven repositories, or in cases where production machines do not have access to the Internet.

13.1. OFFLINE REPOSITORY FOR A PROFILE

Download into a specified directory

To download all the bundles and features of a given profile, ProfileName, enter the following console
command:

This command downloads all the bundles and features for the default version of the given profile into the
/tmp/myrepo directory.

Download into the system folder

If you omit the path, the fabric:profile-download command installs the files to the system folder
inside the current Fuse container (thereby populating the local maven repository for the container). For
example:

13.2. OFFLINE REPOSITORY FOR A VERSION

Download the current version

To download all the bundles and features for all the profiles in the default version, enter the following
console command:

Download a specific version

You can specify the version to download using the --version option, as follows:

If you omit the path the fabric:profile-download command installs the files into thesystem folder
inside the current Fuse container (thereby populating the local maven repository for the container).

13.3. OFFLINE REPOSITORY FOR A MAVEN PROJECT

Download repository for Maven project

fabric:profile-download --profile ProfileName /tmp/myrepo

fabric:profile-download --profile ProfileName

fabric:profile-download /tmp/myrepo

fabric:profile-download --version 1.0 /tmp/myrepo

Red Hat JBoss Fuse 6.2 Fabric Guide

80

If you have a Maven project and you need to create an offline repository for building this project and its
runtime dependencies, you can use the maven dependency plugin.

For example, from the top-level directory of a Maven project (such that the current directory has a
pom.xml file), you should be able to run the following Maven command:

Which downloads all the Maven dependencies and plug-ins required to build the project to the
/tmp/cheese directory.

mvn org.apache.maven.plugins:maven-dependency-plugin:2.8:go-offline -
Dmaven.repo.local=/tmp/cheese

CHAPTER 13. OFFLINE REPOSITORIES

81

http://maven.apache.org/plugins/maven-dependency-plugin/go-offline-mojo.html

CHAPTER 14. CONFIGURING WITH GIT

Abstract

Fabric implicitly uses Git to store much of its configuration data (in particular, for storing versioned profile
data). Normally, this aspect of Fabric is completely transparent, and there is no need to be concerned
with the Git functionality inside Fabric. But if you want to, you have the option of tapping directly into the
Git layer inside Fabric, in order to manage Fabric configurations.

14.1. HOW GIT WORKS INSIDE FABRIC

Cluster architecture

When Fabric is configured as a Git cluster, the Git configuration layer works as follows:

Each Fabric server has its own clone of the Git configuration.

One Fabric server is elected to be the master instance, and serves as the master remote
repository for the other Fabric servers.

All configuration changes made in the other Fabric servers (the slave instances) are pushed to
the master instance.

When changes occur in the master, the slaves automatically pull the new configuration from the
master.

If the master instance is stopped, another container is elected to be the master (failover).

An administrator can access the Git configuration layer by cloning a local Git repository from the
master instance. By pushing updates from this local repository, the administrator can change the
configuration of the fabric.

External Git repository architecture

When Fabric is configured with an external Git repository, the Git configuration layer works as follows:

The external Git repository is created in an external Git server (for example, using a service
such as GitLab or Gerrit).

When the Fabric is created, it automatically populates the external Git repository with the default
configuration (which is initialized by reading the InstallDir/fabric/import directory).

Each Fabric server maintains a synchronized state with the external Git repository.

All configuration changes made in the Fabric servers are pushed to the external Git repository.

When changes occur in the external Git repository, the Fabric servers automatically pull the new
configuration from the external Git repository.

An administrator can access the Git configuration layer by cloning a local Git repository from the
external Git repository. By pushing updates from this local repository to the external Git
repository, the administrator can change the configuration of the fabric.

Red Hat JBoss Fuse 6.2 Fabric Guide

82

https://git-scm.com/

What is stored in the Git repositories?

The Git repositories in Fabric are used to store Fabric profile configuration data. A Fabric profile consists
of the resources, configuration data, and meta-data required to deploy an application into a Fabric
container.

Git branches

The branches of the Git repository correspond directly to profile versions in Fabric. For example, if you
enter the following console command:

You will discover that the underlying Git repository now has a new branch called 1.1. In fact, most of the
Fabric version commands are approximately equivalent to a corresponding git command, as shown in
the following table:

Fabric Version Command Analogous Git Command

fabric:version-create NewBranch git branch NewBranch

fabric:version-list git branch

fabric:version-set-default Branch git checkout Branch

fabric:version-delete Branch git branch -d Branch

Configuring through the console commands

When you make any changes to profiles using the console commands, these changes are implicitly
committed to the underlying Git repository. Hence, some of the console commands are equivalent to Git
operations. For example, if you create a new profile by invoking fabric:profile-create, new files
are added to the Git repository, and the changes are committed. Similarly, when you edit a profile using
the fabric:profile-edit command, these changes are added and committed to the underlying Git
repository.

Prerequisites

Fabric itself does not require any git binaries to be installed on your system, because it is implemented
using the JGit library. You will need to install Git binaries on your local system, however, if you want to
configure Fabric directly through Git, using a clone of the Git repository.

Configuring directly through Git

There are two alternative ways of setting up a fabric to use Git configuration, as follows:

Section 14.2, “Using a Git Cluster”

Section 14.4, “Using an External Git Repository”

JBossA-MQ:karaf@root> fabric:version-create
Created version: 1.1 as copy of: 1.0

CHAPTER 14. CONFIGURING WITH GIT

83

https://eclipse.org/jgit/

14.2. USING A GIT CLUSTER

Overview

Figure 14.1, “Git Cluster Architecture” shows an overview of the Fabric architecture when the fabric is
configured to use a Git cluster.

Figure 14.1. Git Cluster Architecture

Clone the Git repository

When a fabric is configured with a Git cluster, the current master behaves as a Git server. This means
that you can clone the Git repository directly from the Fabric server that is the master.

Clone the Git repository using a command like the following:

$ git clone -b 1.0 http://Hostname:Port/git/fabric

Red Hat JBoss Fuse 6.2 Fabric Guide

84

Where Hostname and Port are the hostname and IP port of the master Fabric server. Note the
following points:

The port number, Port, is usually 8181, by default. But if you deploy multiple Fabric containers
on the same host, their HTTP ports are automatically incremented, 8182, 8183, (or whichever is
the next available port number at the time the container is created).

The -b option is used to check out the 1.0 Git branch, which corresponds to version 1.0 of the
Fabric profile data. There is also a master branch, but it is normally not used by the Fabric
servers.

You can also see a sample clone command in the Fuse Management Console, if you navigate to
the Container: page for the relevant container, click on the URLs tag, and go to the Git: field.
Note, however, that if you try to clone from a slave instance, you will get an error (the Fuse
Management Console currently does not indicate whether the container is a slave or a master).

IMPORTANT

Do not attempt to clone your repository directly from the
InstallDir/data/git/local/fabric directory (which holds the container's local Git
repository). This approach does not work. When you push and pull to the container's
HTTP port, it automatically triggers synchronization events within the Git cluster. These
necessary synchronizations would be bypassed, if you cloned from a directory.

Authentication

The Git server exposed by the Fabric is deployed into the container's Jetty container and shares the
same security configuration as other default HTTP services. In particular, the HTTP port is configured to
request credentials through the HTTP BASIC authentication protocol, and these credentials are then
authenticated in the container using the standard JAAS authentication infrastructure. In practice, this
means you can use any of the JAAS credentials configured in the fabric to log on to the Git server.

You can use one of the following alternatives to specify the credentials for Git:

Let Git prompt you for credentials—this is the default, if you use a Git URL of the form,
http://Hostname:Port/git/fabric.

Embed credentials in the Git URL—you can embed the credentials directly in the Git URL, using
the following syntax:

Basic tasks with Git

You can now use standard Git commands to perform basic configuration tasks in Fabric:

Push to the Fabric Git server—you can use your local Git repository to edit profile configurations
and push the changes up to the fabric. For example, to edit the Camel route in the example-
camel-twitter profile:

1. Make sure that you are working in the correct branch (initially, this should be branch 1.0):

http://User:Pass@Hostname:Port/git/fabric

$ cd LocalGitRepo
$ git checkout 1.0

CHAPTER 14. CONFIGURING WITH GIT

85

2. Edit the following Blueprint XML file in your local Git repository, to alter the Camel route:

3. Add and commit the changes locally, using Git commands:

4. Push the changes to the fabric:

This updates the configuration in all of the Fabric servers in the Git cluster. If any of the
containers in your fabric have deployed the example-camel-twitter profile, they will
immediately be updated with the changes.

Pull from the Fabric Git server—if you change the profile configuration using commands in the
Karaf console, you can synchronize those changes with your local Git repository by doing a git
pull. For example, to edit the Camel route in the example-camel-twitter profile from the
Karaf console:

1. In the Karaf console, you can edit the Camel route from the example-camel-twitter
profile by entering the following console command:

2. You can now synchronize your local Git repository to these changes. Open a command
prompt, and enter the following commands:

3. Pull the changes from the fabric:

What happens after a failover?

So far, we have been assuming that the master instance remains unchanged, so that the master
instance is synonymous with the origin upstream repository. But what happens if there is a failover?
For example, if the Fabric server that is the master instance is stopped and restarted. If your ensemble
consists of only one Fabric server, this makes no difference, because there is no other server to fail over
to. But if there are three (or five) servers in your ensemble, one of the other Fabric servers will
automatically be elected as the new master.

The consequence for your local Git repository is that the origin repository is no longer the master
instance. Hence, if you try to do a git push or a git pull after failover, you will get the following
error:

LocalGitRepo/fabric/profiles/example/camel/twitter.profile/camel.
xml

$ git add -u
$ git commit -m "Changed the route in example-camel-twitter"

$ git push

fabric:profile-edit --resource camel.xml example-camel-twitter

$ cd LocalGitRepo
$ git checkout 1.0

$ git pull

Red Hat JBoss Fuse 6.2 Fabric Guide

86

Adding multiple upstream repositories

Currently, there is no mechanism in Git for failing over automatically to an alternative Git server. But
what you can do in Git is to add multiple upstream repositories. It then becomes possible to push to and
pull from alternative Git repositories, as long as you name them explicitly in the command line.

For example, consider the case where there are two additional Fabric servers in a Git cluster (making
three in total). You can add the two additional servers as upstream repositories, using the following Git
commands:

You can then push to either of these repositories explicitly, using a command of the form:

For example, to push to branch 1.0 of the ensemble2 Git server:

Only one of the repositories, origin, ensemble2, ensemble3, is accessible at one time, however
(whichever is the master).

Git cluster tutorial

The following tutorial explains how to create a fabric, which demonstrates a master-slave cluster of Git
repositories:

1. (Optional) Prepare the container for a cold start. Delete the following directories:

WARNING

Performing a cold start completely wipes the current state of the root
container, including all of the deployed bundles, and features, and most of
the stored data. Do not perform this operation on a production system.

2. Start up the container, by entering the following command:

$ git pull
fatal: repository 'http://Hostname:8181/git/fabric/' not found

$ git remote add ensemble2 Ensemble2GitURL
$ git remote add ensemble3 Ensemble2GitURL

$ git push UpstreamName BranchName

$ git push ensemble2 1.0

InstallDir/data
InstallDir/instances



./bin/fuse

CHAPTER 14. CONFIGURING WITH GIT

87

3. Create a new fabric. At the container prompt, enter the following console command:

You need to substitute your own values for AdminPass and ZooPass. This sample command
uses the --manual-ip option to assign the loopback address, 127.0.0.1, to the root
container. If your host has a static IP address and hostname assigned to it, however, it would be
better to use the assigned hostname here instead.

You need to wait a minute or two for this command to complete.

4. Create two new child containers in the fabric, by entering the following console command:

This command returns quickly, with the following message:

But it takes a couple of more minutes for the new child containers to be completely provisioned.
Check the status of the child containers, by entering the following command:

Wait until the child containers have a [provision status] of success before proceeding.

5. Add the two child containers to the Fabric ensemble, so that the Fabric ensemble consists of
three containers in all: root, ensemble, and ensemble2. Enter the following console
command:

Wait until the ensemble containers have been successfully provisioned before proceeding.

6. Clone the Git repository. The three containers in the Fabric ensemble now constitute a Git
cluster. Initially, the root container is the master instance of the cluster, so you should attempt
to clone the Git repository from the HTTP port exposed by the root container.

Open a new command prompt and, at a convenient location in the file system, enter the following
command:

This command clones the Fabric Git repository and checks out the 1.0 branch. You should now
be able to see the profile configuration files under the fabric/profiles subdirectory.

If the root container is not the current master, you can expect to see an error message like the
following when you attempt to clone:

fabric:create --new-user admin --new-user-password AdminPass --new-
user-role Administrator \
 --zookeeper-password ZooPass --global-resolver manualip \
 --resolver manualip --manual-ip 127.0.0.1 --wait-for-provisioning

fabric:container-create-child --profile fabric root ensemble 2

The following containers have been created successfully:
 Container: ensemble.
 Container: ensemble2.

fabric:container-list

fabric:ensemble-add ensemble ensemble2

git clone -b 1.0 http://127.0.0.1:8181/git/fabric

Red Hat JBoss Fuse 6.2 Fabric Guide

88

7. In the next few steps, we explore the failover behaviour of the Git cluster. First of all, we stop the
root container (the current Git master), in order to force a failover. In the root container console,
enter the shutdown command, as follows:

8. Now restart the root container, by entering the following command:

9. Return to the command prompt where you cloned the Git repository and try to do a git pull,
as follows:

You will get an error like the following:

Because the root container (listening on IP port 8181) is no longer the master.

NOTE

In this example, because all of the ensemble containers are running on the same
host, the ensemble containers are distinguished by having different IP port
numbers (8181, 8182, and 8183). If you created the other ensemble containers
on separate hosts, however, they would all have the same port number (8181),
but different host names.

10. One of the other Fabric servers (ensemble or ensemble2) is now the master. To gain access
to the master, try adding both of the alternative Git URLs as upstream repositories. From a
directory in the cloned Git repository, enter the following commands:

11. You can now try pulling from one of the other Fabric servers. You can either pull from the
ensemble container (pulling branch 1.0), as follows:

Or from the ensemble2 container (pulling branch 1.0), as follows:

Cloning into 'fabric'...
fatal: repository 'http://127.0.0.1:8181/git/fabric/' not found

JBossA-MQ:karaf@root> shutdown
Confirm: shutdown instance root (yes/no): yes

./bin/fuse

cd fabric
git pull

$ git pull
fatal: repository 'http://127.0.0.1:8181/git/fabric/' not found

$ git remote add ensemble http://127.0.0.1:8182/git/fabric
$ git remote add ensemble2 http://127.0.0.1:8183/git/fabric

$ git pull ensemble 1.0

$ git pull ensemble2 1.0

CHAPTER 14. CONFIGURING WITH GIT

89

Only one of these alternatives can succeed (pulling from the master). Pulling from the slave
instance returns an error.

12. After you have identified the current master, you can proceed to push and pull using the long
form of the git commands (for example, git pull RemoteName BranchName).

14.3. USING A GIT HTTP PROXY

When using Fabric's built-in Git cluster, all nodes communicate directly with each other over HTTP. If
you need to secure communications, you can configure a Git HTTP proxy.

Configuring a Git HTTP proxy

You configure a Git HTTP proxy by configuring the GitProxyService.

After you have created the fabric (as described in the section called “Git cluster tutorial”) issue these
commands at the command line:

14.4. USING AN EXTERNAL GIT REPOSITORY

Overview

Figure 14.2, “External Git Repository Architecture” shows an overview of the Fabric architecture when
the fabric is configured to use an external Git repository.

$ fabric:profile-edit --pid io.fabric8.git.proxy/proxyHost=servername
default
$ fabric:profile-edit --pid io.fabric8.git.proxy/proxyPort=portNumber
default

Red Hat JBoss Fuse 6.2 Fabric Guide

90

Figure 14.2. External Git Repository Architecture

External git repository architecture

When you configure a fabric with an external Git repository (which must be done at fabric creation time),
the external Git repository becomes the primary Git repository for all of the containers in the Fabric. All of
the Fabric servers in the ensemble maintain their own copy of the Git repository (under their respective
data/ directories), but this local copy is kept up-to-date by regularly polling the external Git repository
for updates. If a change is detected in the external Git repository, every Fabric server will do a git
pull to update it's local copy of the Git repository.

It is also possible for an administrator to clone a local copy of the external Git repository. Using standard
git commands, the administrator can now edit the configuration files in the local copy and push the
changes to the external Git repository. As soon as those changes are received by the external Git
repository, the Fabric servers will detect that an update has occurred and pull the latest configuration.

Preparing an external Git repository

When setting up this type of Fabric architecture, the first step is to prepare an external Git repository.
When setting up this repository, you should pay attention to the following points:

The Git repository must be initialized. For example, if you were creating a new Git repository on

CHAPTER 14. CONFIGURING WITH GIT

91

your local file system, you would initialize it using the command git init. If you are using a
Git server to host your repository (for example, Gerrit, GitLab, or GitHub), the Git repository is
usually initialized automatically, after you create it.

You must ensure that all of your Fabric servers are able to access the external Git repository.
For example, if your Git server uses a HTTP based protocol to access the repository, you are
generally required to have username/password credentials for the HTTP BASIC authentication
protocol.

Authentication

In this architecture, authentication is handled by the external Git repository (and the Git server that hosts
it). The most common cases are:

HTTP URL—in this case, the Git server is likely to use HTTP with TLS (HTTPS), to verify the
server identity, and HTTP BASIC authentication, to verify the client identity. When creating the
fabric (with the fabric:create command), you need to specify the following additional options
in this case:

--external-git-url ExternalGitHttpUrl

--external-git-user ExternalGitUser

--external-git-password ExternalGitPass

File URL—in this case, no authentication is required. You can specify the Git URL either in the
form /path/to/repo (recommended) or file:///path/to/repo (slower). If the Fabric
servers are deployed on separate hosts, you must make sure that they all have access to the
specified directory (for example, through a Network File Server). When creating the fabric (with
the fabric:create command), you need to specify the following additional options in this
case:

--external-git-url ExternalGitFileUrl

Creating a fabric with an external Git repository

Typically, to create a fabric with an external Git repository, you would enter a console command like the
following:

Note the following points:

A new user is created with username, admin, password, AdminPass, and role,
Administrator. You can use these JAAS credentials to log on to any of the containers in the
fabric.

fabric:create --new-user admin --new-user-password AdminPass --new-user-
role Administrator \
 --zookeeper-password ZooPass --global-resolver manualip \
 --resolver manualip --manual-ip StaticIPAddress --wait-for-provisioning
\
 --external-git-url ExternalGitHttpUrl \
 --external-git-user ExternalGitUser --external-git-password
ExternalGitPass

Red Hat JBoss Fuse 6.2 Fabric Guide

92

The Zookeeper password is set to ZooPass (the only time you are prompted to enter the
Zookeeper password is when joining a container to the fabric).

The resolver policy for the root container is set to manualip (using the --resolver option)
and the global resolver policy (which becomes the default resolver policy for containers created
in this fabric) is also set to manualip. This enables you to specify the root container's IP
address, StaticIPAddress, explicitly. It is essential that you assign a static IP address to the
Fabric server host (for demonstrations and tests on a single machine, you can use the loopback
address, 127.0.0.1).

The Git URL, ExternalGitHttpUrl, is specified through the --external-git-url option.

Assuming that you use a HTTP Git URL with BASIC authentication enabled, you will also need
to specify credentials, using the --external-git-user and --external-git-password
options.

What happens if the external Git repository fails?

Because the external Git repository is the primary Git repository, which is used to synchronize
configuration data with the other Fabric servers, it is technically a single point of failure. The effect of a
failure of the external Git repository is not as serious as you might think, however. It does not lead to a
failure of the Fabric servers. In case of an external Git repository failure (or a loss of connectivity) the
Fabric servers continue to operate with the configuration data they have already cached in their local
copies of the Git repository. As soon as the external Git repository comes back on line, they will re-
synchronize their configuration data.

External Git repository tutorial

The following tutorial explains how to create a fabric, which synchronizes its configuration with an
external Git repository:

1. Create a new (empty) Git repository, which you can use as the external Git repository. Typically,
you would create the Git repository in a hosting service, such as GitLab, Gerrit, or GitHub. Make
a note of the new repository's HTTP URL, ExternalGitHttpUrl, and make sure that it is
possible to access the external Git repository from the hosts where you will be deploying your
Fabric servers.

2. (Optional) Prepare the container for a cold start. Delete the following directories:

WARNING

Performing a cold start completely wipes the current state of the root
container, including all of the deployed bundles, and features, and most of
the stored data. Do not perform this operation on a production system.

3. Start up the container, by entering the following command:

InstallDir/data
InstallDir/instances



CHAPTER 14. CONFIGURING WITH GIT

93

4. Create a new fabric. At the container prompt, enter the following console command:

You need to substitute your own values for AdminPass and ZooPass. The
ExternalGitHttpUrl is the HTTP URL of the external Git repository you created earlier and
the ExternalGitUser value and the ExternalGitPass value are the username/password
credentials required to access the external Git repository (using HTTP BASIC authentication).

This sample command uses the --manual-ip option to assign the loopback address,
127.0.0.1, to the root container. If your host has a static IP address and hostname assigned to
it, however, it would be better to use the assigned hostname here instead.

You need to wait a minute or two for this command to complete.

5. After your fabric has been created, navigate to the contents of the external Git repository in your
browser (assuming that your Git server supports this functionality). The external repository
should now be populated with the default configuration of your fabric, with two branches
available: master and 1.0. The 1.0 branch is the branch that is initially used by your fabric.

6. Create a local clone of the external Git repository, which you can then use to push or pull profile
configurations. Open a new command prompt and, in a convenient location on the file system,
enter the following command:

This git command will prompt you to enter the username and password credentials for the
external Git repository.

This command clones the Fabric Git repository and checks out the 1.0 branch. You should now
be able to see the profile configuration files under the fabric/profiles subdirectory.

7. You can now use regular git commands to configure your Fabric profiles. Simply edit the files
in your local Git repository, add the changes, commit, and then push the changes to the external
Git repository (working in the 1.0 branch). Shortly after the changes are pushed to the external
Git repository, the containers in your Fabric ensemble (the Fabric servers) will poll the
repository, pull the changes, and redeploy any changed profiles..

14.5. USING AN HTTP PROXY WITH A GIT CLUSTER

Using fabric's built-in Git cluster, all nodes communicate directly with each other over HTTP. If you need
to secure this communication, you can configure an HTTP proxy by configuring the GitProxyService.

1. Start up JBoss Fuse, and create a fabric. For details, see the section called “Steps to create the
fabric”.

./bin/fuse

fabric:create --new-user admin --new-user-password AdminPass --new-
user-role Administrator \
 --zookeeper-password ZooPass --global-resolver manualip \
 --resolver manualip --manual-ip 127.0.0.1 --wait-for-provisioning
\
 --external-git-url ExternalGitHttpUrl \
 --external-git-user ExternalGitUser --external-git-password
ExternalGitPass

git clone -b 1.0 ExternalGitHttpUrl

Red Hat JBoss Fuse 6.2 Fabric Guide

94

2. At the JBossFuse:karaf@root> command line, type:

These commands specify the hostname and port to use, and the default profile is updated
with the new configuration.

For example:

All changes made to the fabric configuration will now be redirected to the Git HTTP proxy on
host 10.8.50.60's port 3128.

profile-edit --pid io.fabric8.git.proxy/proxyHost=serverName default
profile-edit --pid io.fabric8.git.proxy/proxyPort=portNumber default

profile-edit --pid io.fabric8.git.proxy/proxyHost=10.8.50.60 default
profile-edit --pid io.fabric8.git.proxy/proxyPort=3128 default

CHAPTER 14. CONFIGURING WITH GIT

95

CHAPTER 15. PATCHING

15.1. PATCHING A CONTAINER IN A FABRIC

Abstract

In a fabric patches are applied to profiles and the patched version of the profile is applied to the container.
The management console is the recommended tool for patching containers in a fabric. The fabric
shell also has the commands needed to apply a patch and roll it out to running containers.

Overview

The bundles loaded by a container in a fabric are controlled by the container's Fabric Agent. The agent
inspects the profiles applied to the container to determine what bundles to load, and the version of each
bundle, and then loads the specified version of each bundle for the container.

A patch typically includes a new version of one or more bundles, so to apply the patch to a container in a
fabric you need to update the profiles applied to it. This will cause the Fabric Agent to load the patched
versions of the bundles.

The management console is the recommended tool for patching containers in a fabric. However, the
command console's fabric shell also provides the commands needed to patch containers running in a
fabric.

Is it necessary to patch the underlying container?

In general, when you want to patch a fabric, it is not necessary to patch the underlying container as well
(for example, by following the instructions in ???). Fabric has its own mechanisms for distributing patch
artefacts (for example, using a git repository for the profile data, and Apache Maven for the OSGi
bundles), which are independent of the underlying container installation.

NOTE

In exceptional cases, however, it might be necessary to patch the underlying container
(for example, if there was an issue with the fabric:create command). Always read the
patch README file to find out whether there are any special steps required to install a
particular patch.

Using the management console

The management console is the easiest and most verbose method of patching containers in a fabric. Its
Patching tab uploads patches to a fabric's Maven repository and applies the patch to a specified profile
version. You can then use the management console to roll the patch out to all of the containers in the
fabric.

See chapter "Patching a Fabric" in "Management Console User Guide" for more information.

Using the command console

The Red Hat JBoss Fuse command console can also be used to patch containers running in a fabric. To
patch a fabric container:

Red Hat JBoss Fuse 6.2 Fabric Guide

96

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Management_Console_User_Guide/FMCUG_Fabric_Patching.html

1. Before you proceed to install the patch, make sure to read the text of the README file that comes
with the patch, as there might be additional manual steps required to install a particular patch.

2. Create a new version, using the fabric:version-create command:

IMPORTANT

The version name must be a pure numeric string, such as 1.1, 1.2, 2.1, or 2.2.
You cannot incorporate alphabetic characters in the version name (such as
1.0.patch).

3. Apply the patch to the new version, using the fabric:patch-apply command. For example,
to apply the activemq.zip patch file to version 1.1:

4. Upgrade the container using the fabric:container-upgrade command, specifying which
container you want to upgrade. For example, to upgrade the root container, enter the following
command:

IMPORTANT

It is recommended that you upgrade only one or two containers to the patched
profile version, to ensure that the patch does not introduce any new issues. When
you are certain that the patch works as expected, upgrade the remaining
containers in the fabric.

5. You can check that the new patch profile has been created using the fabric:profile-list
command, as follows:

Where we presume that the patch was applied to profile version 1.1.

TIP

If you want to avoid specifying the profile version (with --version) every time you invoke a
profile command, you can change the default profile version using the fabric:version-set-
default Version command.

You can also check whether specific JARs are included in the patch, for example:

JBossFuse:karaf@root> fabric:version-create 1.1
Created version: 1.1 as copy of: 1.0

JBossFuse:karaf@root> fabric:patch-apply --version 1.1
file:///patches/activemq.zip

JBossFuse:karaf@root> fabric:container-upgrade 1.1 root
Upgraded container root from version 1.0 to 1.1

BossFuse:karaf@root> fabric:profile-list --version 1.1 | grep patch
default 0 patch-
activemq-patch
patch-activemq-patch

CHAPTER 15. PATCHING

97

JBossFuse:karaf@root> list | grep -i activemq
[131] [Active] [Created] [] [50] activemq-osgi
(5.9.0.redhat-61037X)
[139] [Active] [Created] [] [50] activemq-
karaf (5.9.0.redhat-61037X)
[207] [Active] [] [] [60] activemq-
camel (5.9.0.redhat-61037X)

Red Hat JBoss Fuse 6.2 Fabric Guide

98

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT
EDITOR

Abstract

When you have a lot of changes and additions to make to a profile's configuration, it is usually more
convenient to do this interactively, using the built-in text editor for profiles. The editor can be accessed by
entering the profile-edit command with no arguments except for the profile's name (and optionally,
version); or adding the --pid option for editing OSGi PID properties; or adding the --resource option
for editing general resources.

A.1. EDITING AGENT PROPERTIES

Overview

This section explains how to use the built-in text editor to modify a profile's agent properties, which are
mainly used to define what bundles and features are deployed by the profile.

Open the agent properties resource

To start editing a profile's agent properties using the built-in text editor, enter the following console
command:

Where Profile is the name of the profile to edit and you can optionally specify the profile version,
Version, as well. The text editor opens in the console window, showing the current profile name and
version in the top-left corner of the Window. The bottom row of the editor screen summarizes the
available editing commands and you can use the arrow keys to move about the screen.

Specifying feature repository locations

To specify the location of a feature repository, add a line in the following format:

Where ID is an arbitrary unique identifier and URL gives the location of a single feature repository (only
one repository URL can be specified on a line).

Specifying deployed features

To specify a feature to deploy (which must be available from one of the specified feature repositories),
add a line in the following format:

Where ID is an arbitrary unique identifier and FeatureName is the name of a feature.

Specifying deployed bundles

JBossFuse:karaf@root> profile-edit Profile [Version]

repository.ID=URL

feature.ID=FeatureName

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR

99

To specify a bundle to deploy, add a line in the following format:

Where ID is an arbitrary unique identifier and URL specifies the bundle's location.

NOTE

A bundle entry can be used in combination with a blueprint: (or spring:) URL
handler to deploy a Blueprint XML resource (or a Spring XML resource) as an OSGi
bundle.

Specifying bundle overrides

To specify a bundle override, add a line in the following format:

Where ID is an arbitrary unique identifier and URL specifies the bundle's location.

NOTE

A bundle override is used to override a bundle installed by a feature, replacing it with a
different version of the bundle. For example, this functionality is used by the patching
system to install a patched bundle in a container.

Specifying etc/config.properties properties

To specify Java system properties that affect the Apache Karaf container (analogous to editing
etc/config.properties in a standalone container), add a line in the following format:

Specifying etc/system.properties properties

To specify Java system properties that affect the bundles deployed in the container (analogous to editing
etc/system.properties in a standalone container), add a line in the following format:

If the system property, Property, is already set at the JVM level (for example, through the --jvm-
opts option to the fabric:container-create command), the preceding fabric:profile-edit
command will not override the JVM level setting. To override a JVM level setting, set the system property
as follows:

Specifying libraries to add to Java runtime lib/

To specify a Java library to deploy (equivalent to adding a library to the lib/ directory of the underlying
Java runtime), add a line in the following format:

bundle.ID=URL

override.ID=URL

config.Property=Value

system.Property=Value

system.karaf.override.Property=Value

Red Hat JBoss Fuse 6.2 Fabric Guide

100

Where ID is an arbitrary unique identifier and URL specifies the library's location.

Specifying libraries to add to Java runtime lib/ext/

To specify a Java extension library to deploy (equivalent to adding a library to the lib/ext/ directory of
the underlying Java runtime), add a line in the following format:

Where ID is an arbitrary unique identifier and URL specifies the extension library's location.

Specifying libraries to add to Java runtime lib/endorsed/

To specify a Java endorsed library to deploy (equivalent to adding a library to the lib/endorsed/
directory of the underlying Java runtime), add a line in the following format:

Where ID is an arbitrary unique identifier and URL specifies the endorsed library's location.

Example

To open the mq-client profile's agent properties for editing, enter the following console command:

The text editor starts up, and you should see the following screen in the console window:

lib.ID=URL

ext.ID=URL

endorsed.ID=URL

JBossFuse:karaf@root> profile-edit mq-client

Profile:mq-client 1.0
L:1 C:1
#
Copyright (C) Red Hat, Inc.
http://redhat.com
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

repository.activemq=mvn:org.apache.activemq/activemq-
karaf/${version:activemq}/xml/features
repository.karaf-

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR

101

Type ̂ X to quit the text editor and get back to the console prompt.

A.2. EDITING OSGI CONFIG ADMIN PROPERTIES

Overview

This section explains how to use the built-in text editor to edit the property settings associated with a
specific persistent ID.

Persistent ID

In the context of the OSGi Config Admin service, a persistent ID (PID) refers to and identifies a set of
related properties. In particular, when defining PID property settings in a profile, the properties
associated with the PID persistent ID are defined in the PID.properties resource.

Open the Config Admin properties resource

To start editing the properties associated with the PID persistent ID, enter the following console
command:

NOTE

It is also possible to edit PID properties by specifying --resource PID.properties
in the profile-edit command, instead of using the --pid PID option.

Specifying OSGi config admin properties

The text editor opens, showing the contents of the specified profile's PID.properties resource (which
is actually stored in the ZooKeeper registry). To edit the properties, add, modify, or delete lines of the
following form:

Example

To edit the properties for the io.fabric8.hadoop PID in the hadoop-base profile, enter the following
console command:

The text editor starts up, and you should see the following screen in the console window:

standard=mvn\:org.apache.karaf.assemblies.features/standard/${version:kara
f}/
xml/features

 ^X Quit ^S Save ^Z Undo ^R Redo ^G Go To ^F Find
^N Next ^P Previous

JBossFuse:karaf@root> profile-edit --pid PID Profile [Version]

Property=Value

JBossFuse:karaf@root> profile-edit --resource io.fabric8.hadoop.properties
hadoop-base 1.0

Red Hat JBoss Fuse 6.2 Fabric Guide

102

You might notice that colon characters are escaped in this example (as in \:). Strictly speaking, it is only
necessary to escape a colon if it appears as part of a property name (left hand side of the equals sign),
but the profile-edit command automatically escapes all colons when it writes to a resource. When
manually editing resources using the text editor, however, you do not need to escape colons in URLs
appearing on the right hand side of the equals sign.

Type ̂ X to quit the text editor and get back to the console prompt.

A.3. EDITING OTHER RESOURCES

Overview

In addition to agent properties and PID properties, the built-in text editor makes it possible for you edit
any resource associated with a profile. This is particularly useful, if you need to store additional
configuration files in a profile. The extra configuration files can be stored as profile resources (which
actually correspond to ZooKeeper nodes) and then can be accessed by your applications at run time.

NOTE

The ZooKeeper registry is designed to work with small nodes only. If you try to store a
massive configuration file as a profile resource, it will severely degrade the performance
of the Fabric registry.

Profile:hadoop-base 1.0
L:1 C:1
#
Copyright (C) Red Hat, Inc.
http://redhat.com
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
#

fs.default.name=hdfs\://localhost\:9000
dfs.replication=1
mapred.job.tracker=localhost\:9001
dfs.name.dir=${karaf.data}/hadoop/dfs/name
dfs.http.address=0.0.0.0\:9002
dfs.data.dir=${karaf.data}/hadoop/dfs/data
dfs.name.edits.dir=${karaf.data}/hadoop/dfs/name

 ^X Quit ^S Save ^Z Undo ^R Redo ^G Go To ^F Find
^N Next ^P Previous

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR

103

Creating and editing an arbitrary resource

You can create and edit arbitrary profile resources using the following command syntax:

Where Resource is the name of the profile resource you want to edit. If Resource does not already
exist, it will be created.

broker.xml example

For example, the mq-base profile has the broker.xml resource, which stores the contents of an
Apache ActiveMQ broker configuration file. To edit the broker.xml resource, enter the following
console command:

The text editor starts up, and you should see the following screen in the console window:

JBossFuse:karaf@root> profile-edit --resource Resource Profile [Version]

JBossFuse:karaf@root> profile-edit --resource broker.xml mq-base 1.0

Profile:mq-base 1.0
L:1 C:1
<!--
 Copyright (C) FuseSource, Inc.
 http://fusesource.com

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
 -->
<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:amq="http://activemq.apache.org/schema/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://activemq.apache.org/schema/core
http://activemq.apache.org/schema/core/activemq-core.xsd">

 <!-- Allows us to use system properties and fabric as variables in
this configuration file -->
 <bean
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigu
rer">
 <property name="properties">
 <bean
class="org.fusesource.mq.fabric.ConfigurationProperties"/>
 </property>

Red Hat JBoss Fuse 6.2 Fabric Guide

104

Any changes you make to this file will take effect whenever the broker restarts.

Type ̂ X to quit the text editor and get back to the console prompt.

Referencing a profile resource

In order to use an arbitrary profile resource, you must be able to reference it. Because a profile resource
is ultimately stored as a ZooKeeper node, you must reference it using a ZooKeeper URL. For example,
the broker.xml resource from the previous example is stored under the following ZooKeeper location:

In general, you can find version, Version, of the Profile profile's Resource resource at the following
location:

For example, the mq profile's org.fusesource.mq.fabric.server-broker PID defines the
following properties, where the config property references the broker.xml resource:

A.4. PROFILE ATTRIBUTES

Overview

In addition to the resources described in the other sections, a profile also has certain attributes that affect
its behavior. You cannot edit profile attributes directly using the text editor.

For completeness, this section describes what the profile attributes are and what console commands you
can use to modify them.

parents attribute

The parents attribute is a list of one or more parent profiles. This attribute can be set using the
profile-change-parents console command. For example, to assign the parent profiles camel and
cxf to the my-camel-cxf-profile profile, you would enter the following console command:

abstract attribute

 ^X Quit ^S Save ^Z Undo ^R Redo ^G Go To ^F Find
^N Next ^P Previous

zk:/fabric/configs/versions/1.0/profiles/mq-base/broker.xml

zk:/fabric/configs/versions/Version/profiles/Profile/Resource

connectors=openwire
config=zk\:/fabric/configs/versions/1.0/profiles/mq-base/broker.xml
group=default
standby.pool=default

JBossFuse:karaf@root> profile-change-parents --version 1.0 my-camel-cxf-
profile camel cxf

APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR

105

When a profile's abstract attribute is set to true, the profile cannot be directly deployed to a
container. This is useful for profiles that are only intended to be the parents of other profiles—for
example, mq-base. You can set the abstract attribute from the Management Console.

locked attribute

A locked profile cannot be changed or edited until it is unlocked. You can lock or unlock a profile from
the Management Console.

hidden attribute

The hidden attribute is a flag that is typically set on profiles that Fabric creates automatically (for
example, to customize the setup of a registry server). By default, hidden profiles are not shown when you
run the profile-list command, but you can see them when you add the --hidden flag, as follows:

JBossFuse:karaf@root> profile-list --hidden
...
fabric 1 karaf
fabric-ensemble-0000 0
fabric-ensemble-0000-1 1 fabric-ensemble-0000
fmc 0 default
...

Red Hat JBoss Fuse 6.2 Fabric Guide

106

APPENDIX B. FABRIC URL HANDLERS

Abstract

The Fabric runtime provides a variety of URL handlers, which can be used in application code deployed
in a Fabric-enabled container. These URLs are intended to be used in profile configuration files to locate
configuration resources.

B.1. PROFILE URL HANDLER

The profile URL is used to access resources stored under the current profile (or parent profile). It has the
following format:

A key characteristic of the profile URL is that the location of a resource can change dynamically at run
time, as follows:

1. The profile URL handler first tries to find the named resource, ResourceName, in the current
version of the current profile (where the current version is a property of the container in which the
profile is running).

2. If the specified resource is not found in the current profile, the profile URL tries to find the
resource in the current version of the parent profile.

This behavior implies that whenever you change the version assigned to a container (for example, by
invoking the fabric:container-upgrade or fabric:container-rollback console commands),
the referenced resources are also, automatically, upgraded or rolled back.

B.2. ZK URL HANDLER

You can reference the contents of a ZooKeeper node using the zk URL. The URL can be specified either
as an absolute node:

Or you can reference configuration properties from a specific container using the following syntax:

The preceding syntax is effectively a short cut to the following URL reference:

B.3. BLUEPRINT URL HANDLER

The Blueprint URL handler enables you to deploy a Blueprint XML resource directly as an OSGi bundle,
without needing to create any of the usual OSGi bundle packaging in advance. The blueprint:
scheme can be prefixed to any of the usual location URL handlers (for example, file:, http:,
profile:, zk:).

profile:ResourceName

zk:/PathToNode

zk:ContainerName/Property

zk:/fabric/registry/containers/config/ContainerName/Property

APPENDIX B. FABRIC URL HANDLERS

107

To use the Blueprint URL handler, create a bundle entry in the agent properties (equivalent to the
io.fabric8.agent PID) in the following format:

For example, to activate the camel.xml resource (Blueprint file) from the current profile, you would add
the following bundle entry:

NOTE

The Blueprint URL handler has an important side effect. If the referenced Blueprint
resource is changed at run time, the Blueprint URL handler detects this change and
automatically reloads the resource. This means, for example, that if you edit a deployed
Camel route in a Blueprint resource, the route automatically gets updated in real time.

B.4. SPRING URL HANDLER

The Spring URL handler enables you to deploy a Spring XML resource directly as an OSGi bundle,
without needing to create any of the usual OSGi bundle packaging in advance. The spring: scheme
can be prefixed to any of the usual location URL handlers (for example, file:, http:, profile:,
zk:).

To use the Spring URL handler, create a bundle entry in the agent properties (equivalent to the
io.fabric8.agent PID) in the following format:

For example, to load the Spring resource, camel-spring.xml, from the current profile, you could add
the following entry to the profile's agent properties:

NOTE

If the referenced Spring resource is changed at run time, the Spring URL handler detects
this change and automatically reloads the resource.

bundle.ID=blueprint:LocationScheme:LocationOfBlueprintXML

bundle.camel-fabric=blueprint:profile:camel.xml

bundle.ID=spring:LocationScheme:LocationOfBlueprintXML

bundle.spring-resource=spring:profile:camel-spring.xml

Red Hat JBoss Fuse 6.2 Fabric Guide

108

APPENDIX C. PROFILE PROPERTY RESOLVERS

Abstract

When defining properties for a profile, you can use a variable substitution mechanism, which has the
general syntax ${ResourceReference}. This variable substitution mechanism can be used in any
profile resource, including the agent properties, PID properties, and other resources—for example, the
mq-base profile's broker.xml resource references the ${broker.name} and ${data} variables.

C.1. SUBSTITUTING SYSTEM PROPERTIES

Syntax

System properties can be substituted in a profile resource, using the following syntax:

Where PropName can be the name of any Java system property. In particular, Java system properties
can be defined in the following locations:

The etc/system.properties file, relative to the container's home directory.

System property settings in the profile's agent properties.

Some of the more useful system properties defined in the etc/system.properties file are, as
follows:

Table C.1. System Properties

System Property Description

${karaf.home} The directory where Red Hat JBoss Fuse is installed.

${karaf.data} Location of the current container's data directory,
which is usually ${karaf.home}/data for a
main container or
${karaf.home}/instances/InstanceName
/data for a child container.

${karaf.name} The name of the current container.

C.2. SUBSTITUTING ENVIRONMENT VARIABLES

Syntax

You can substitute the value of a system environment variable using the environment property resolver,
which has the following syntax:

${PropName}

${env:VarName}

APPENDIX C. PROFILE PROPERTY RESOLVERS

109

C.3. SUBSTITUTING CONTAINER ATTRIBUTES

Syntax

You can substitute the value of a container attribute using the container attribute property resolver, which
has the following syntax:

You can substitute any of the following container attributes:

Table C.2. Container Attributes

Attribute Description

${container:resolver} The effective resolver policy for the current container.
Possible values are: localip, localhostname,
publicip, publichostname, manualip.

${container:ip} The effective IP address used by the current
container, which has been selected by applying the
resolver policy. This is the form of host address that
is advertised to other containers and applications.

${container:localip} The numerical IP address of the current container,
which is suitable for accessing the container on a
LAN.

${container:localhostname} The host name of the current container, which is
suitable for accessing the container on a LAN.

${container:publicip} The numerical IP address of the current container,
which is suitable for accessing the container from a
WAN (on the Internet).

${container:publichostname} The host name of the current container, which is
suitable for accessing the container from a WAN (on
the Internet).

${container:manualip} An IP address that is specified manually, by setting
the value of the relevant node in the ZooKeeper
registry.

${container:bindaddress}

${container:sshurl} The URL of the SSH service, which can be used to
log on to the container console.

${container:jmxurl} The URL of the JMX service, which can be used to
monitor the container.

${container:Attribute}

Red Hat JBoss Fuse 6.2 Fabric Guide

110

${container:jolokiaurl} The URL of the Jolokia service, which is used by the
Fuse Management Console to access the container.

${container:httpurl} The base URL of the container's default Jetty HTTP
server.

${container:domains} List of JMX domains registered by the container.

${container:processid} Returns the process ID of the container process (on
Linux-like and UNIX-like operating systems).

${container:openshift} A boolean flag that returns true, if the container is
running on OpenShift; otherwise, false.

${container:blueprintstatus} The aggregate status of all the deployed Blueprint
contexts. If all of the deployed contexts are ok, the
status is ok; if one or more deployed contexts have
failed, the status is failed.

${container:springstatus} The aggregate status of all the deployed Spring
contexts. If all of the deployed contexts are ok, the
status is ok; if one or more deployed contexts have
failed, the status is failed.

${container:provisionstatus} Returns the container provision status.

${container:provisionexception} If the container provisioning has failed, this variable
returns the provisioning exception.

${container:provisionlist} The list of provisioned artefacts in the container.

${container:geolocation} The geographic location of the container (which is
obtained by making a Web request to a public service
that gives the GPS coordinates of the container
host).

Attribute Description

C.4. SUBSTITUTING PID PROPERTIES

Syntax

The profile property resolver is used to access PID properties from the current profile (or parent profile). It
has the following format:

${profile:PID/Property}

APPENDIX C. PROFILE PROPERTY RESOLVERS

111

NOTE

This should not be confused with the syntax of a profile URL, which is used to access
general resource files (not PID properties) and which is not resolved immediately (in
contrast to the profile property resolver, which substitutes the corresponding property
value as soon as the configuration file is read).

Example using a profile property resolver

For example, the fabric profile's io.fabric8.maven.properties PID resource includes the
following property setting:

So that the remoteRepositories property is set to the value of the
org.ops4j.pax.url.mvn.repositories agent property (io.fabric8.agent is the PID for the
agent properties).

C.5. SUBSTITUTING ZOOKEEPER NODE CONTENTS

Syntax

You can substitute the contents of a ZooKeeper node using the zk property resolver. The property
resolver can be specified either as an absolute node:

Or you can reference configuration properties from a specific container using the following syntax:

The preceding syntax is effectively a short cut to the following property resolver:

Recursive variable substitution

It is also possible to use a variable within a variable (recursive substitution). For example, the dosgi
profile's io.fabric8.dosgi.properties resource defines the following property:

How to reference the current version of a resource

A potential problem arises with ZooKeeper property resolver if you need to reference a ZooKeeper node
that has a version number embedded in it. For example, suppose you want to reference the my-
profile profile's my-resource resource, which can be done using the following ZooKeeper URL:

remoteRepositories=${profile:io.fabric8.agent/org.ops4j.pax.url.mvn.reposi
tories}

${zk:/PathToNode}

${zk:ContainerName/Property}

${zk:/fabric/registry/containers/config/ContainerName/Property}

exportedAddress=${zk:${karaf.name}/ip}

 ${zk:/fabric/configs/versions/1.0/profiles/my-profile/my-resource}

Red Hat JBoss Fuse 6.2 Fabric Guide

112

Notice that the profile version number, 1.0, is embedded in this path. But if you decide to upgrade this
profile to version 1.1, this means you must manually edit all occurrences of this ZooKeeper URL,
changing the version number to 1.1 in order to reference the upgraded resource. To avoid this extra
work, and to ensure that the resolver always references the current version of the resource, you can use
the following trick which exploits recursive variable substitution:

This works because the /fabric/configs/containers/${karaf.name} ZooKeeper node
contains the current profile version deployed in the container.

C.6. CHECKSUM PROPERTY RESOLVER

Syntax

The checksum property resolver can be used, if you want a resource to reload automatically at run time,
whenever it is updated. The checksum: scheme can be prefixed to any of the usual location URL
handlers (for example, file:, http:, profile:, zk:).

For example, the default profile defines the following checksum property in the org.ops4j.pax.web
PID:

C.7. PORT PROPERTY RESOLVER

Syntax

The port property resolver is used to access the port service, which can automatically allocate an IP port
within a specified range. It has the following syntax:

Where Min and Max specify the minimum and maximum values of the allocated IP port.

 ${zk:/fabric/configs/versions/${zk:/fabric/configs/containers/${karaf.nam
e}}/profiles/my-profile/my-resource}

org.ops4j.pax.web.config.checksum=${checksum:profile\:jetty.xml}

${port:Min,Max}

APPENDIX C. PROFILE PROPERTY RESOLVERS

113

	Table of Contents
	PART I. BASIC FABRIC DEPLOYMENT
	CHAPTER 1. GETTING STARTED WITH FUSE FABRIC
	1.1. CREATE A FABRIC
	Overview
	Steps to create the fabric

	1.2. DEPLOY A PROFILE
	Deploy a profile to the child container
	View the sample output

	1.3. UPDATE A PROFILE
	Atomic container upgrades
	Profile versioning
	Upgrade to a new profile
	Roll back to an old profile

	1.4. SHUTTING DOWN THE CONTAINERS
	Shutting down the containers

	CHAPTER 2. CREATING A NEW FABRIC
	STATIC IP ADDRESS REQUIRED FOR FABRIC SERVER
	PROCEDURE
	FABRIC CREATION PROCESS
	EXPANDING A FABRIC

	CHAPTER 3. FABRIC CONTAINERS
	3.1. CHILD CONTAINERS
	Overview
	One container or many?
	Creating a child container
	Stopping and starting a child container
	Deleting a child container

	3.2. SSH CONTAINERS
	Overview
	Prerequisites
	Creating an SSH container
	Creating a Fabric server using SSH
	Managing remote SSH containers
	References

	3.3. FABRIC CONTAINERS ON WINDOWS
	Overview
	Creating a Fabric container on Windows
	Creating a Fabric server on Windows
	Managing remote containers on Windows

	3.4. CLOUD CONTAINERS
	3.4.1. Preparing to use Fabric in the Cloud
	Overview
	Prerequisites
	Hybrid clusters
	Preparation
	Feature naming convention
	Registering a cloud provider

	3.4.2. Administering Cloud Containers
	Creating a new fabric in the cloud
	Basic security
	Joining a standalone container to the fabric
	Creating a cloud container
	Images
	Locations and hardware

	CHAPTER 4. FABRIC PROFILES
	4.1. INTRODUCTION TO PROFILES
	Overview
	What is in a profile?
	Profile hierarchies
	Some basic profiles

	4.2. WORKING WITH PROFILES
	Changing the profiles in a container
	Adding a profile to a container
	Listing available profiles
	Inspecting profiles
	Creating a new profile
	Adding or removing features
	Editing PID properties
	Editing a PID inline
	Example of editing a PID inline
	Setting encrypted PID property values
	Alternative method for encrypting PID property values
	Customizing the PID property encryption mechanism
	Profile editor
	Editing resources with the profile editor

	4.3. PROFILE VERSIONS
	Overview
	Creating a new version
	Rolling upgrades and rollbacks

	CHAPTER 5. FABRIC8 MAVEN PLUG-IN
	5.1. PREPARING TO USE THE PLUG-IN
	Edit your Maven settings
	Customising the repository ID

	5.2. USING THE PLUG-IN TO DEPLOY A MAVEN PROJECT
	Prerequisites
	Running the plug-in on any Maven project
	Adding the plug-in to a Maven POM
	What does the plug-in do?
	Example

	5.3. CONFIGURING THE PLUG-IN
	Specifying profile information
	Multi-module Maven projects
	Specifying features, additional bundles, repositories and parent profiles
	Configuring with Maven properties
	Specifying profile resources

	5.4. CONFIGURATION PROPERTIES
	Specifying properties
	Property reference

	CHAPTER 6. ACTIVEMQ BROKERS AND CLUSTERS
	6.1. CREATING A STANDALONE BROKER INSTANCE
	MQ profiles
	Creating a new broker instance
	fabric:mq-create command
	Starting a broker on an existing container
	Broker groups

	6.2. CONNECTING TO A BROKER
	Overview
	Client URL
	Example client profiles

	6.3. TOPOLOGIES
	6.3.1. Load-Balancing Cluster
	Overview
	Create brokers in a load-balancing cluster
	Configure clients of a load-balancing cluster

	6.3.2. Master-Slave Cluster
	Overview
	Create brokers in a master-slave cluster
	Configure clients of a master-slave cluster
	Locking mechanism
	Re-using containers for multiple clusters
	Configuring persistent data

	6.3.3. Broker Networks
	Overview
	Broker networks
	Creating network connectors
	Example broker network
	Connecting to the example broker network

	6.4. BROKER CONFIGURATION
	Overview
	Setting OSGi Config Admin properties
	Setting network connector properties
	Network connector properties by reflection
	Broker configuration file
	Additional broker configuration files

	PART II. FABRIC IN PRODUCTION
	CHAPTER 7. FABRIC ENSEMBLE AND REGISTRY
	7.1. FABRIC REGISTRY
	Overview
	Registry structure
	Parts of the registry
	Making the registry highly available

	7.2. ADMINISTERING A FABRIC ENSEMBLE
	Recommendations for an ensemble in production
	Creating an ensemble
	Creating an initial ensemble
	Expanding the ensemble
	Taking a Fabric server down for maintenance

	CHAPTER 8. FABRIC AGENTS
	8.1. INTRODUCTION
	Fabric agent
	Agent modules

	8.2. THE CONFIGURATION ADMIN BRIDGE
	Overview
	Information in a profile
	Actions performed
	Configuration updates

	8.3. THE DEPLOYMENT AGENT
	Actions performed
	Downloading artifacts
	Container restarts
	Monitoring the provisioning status
	Resolution and startup ordering

	CHAPTER 9. ALLOCATING PORTS
	9.1. THE PORT SERVICE
	What is the port service?
	Benefits of the port service
	Avoiding port clashes for standard container services
	Avoiding port clashes for custom services
	Using the port service in your own applications
	How the port service allocates a port
	How allocated ports are stored
	Keys used by the standard container services
	Behavior upon stopping and restarting a container
	Deallocating ports

	9.2. USING THE PORT SERVICE
	Overview
	Demonstration code
	Property placeholder in XML configuration
	Specifying a port range using OSGi Config Admin
	Modifying the port range

	CHAPTER 10. GATEWAY
	10.1. GATEWAY ARCHITECTURE
	Deployment strategies
	How the gateway works

	10.2. RUNNING THE GATEWAY
	Deploy a gateway profile

	10.3. CONFIGURING THE GATEWAY
	Configuring with the Management Console
	HTTP mapping rules
	Selecting part of the ZooKeeper registry
	Segregating URI paths

	10.4. VERSIONING
	Explicit URIs
	Rolling upgrades

	10.5. URI TEMPLATE EXPRESSIONS
	Variables

	CHAPTER 11. SECURING FABRIC CONTAINERS
	DEFAULT AUTHENTICATION SYSTEM
	MANAGING USERS
	OBFUSCATING STORED PASSWORDS
	ENABLING LDAP AUTHENTICATION

	CHAPTER 12. CONFIGURING A FABRIC'S MAVEN PROXY
	OVERVIEW
	DEFAULT REPOSITORIES
	CHANGING THE REPOSITORIES
	USING AN HTTP PROXY WITH THE MAVEN PROXY

	CHAPTER 13. OFFLINE REPOSITORIES
	13.1. OFFLINE REPOSITORY FOR A PROFILE
	Download into a specified directory
	Download into the system folder

	13.2. OFFLINE REPOSITORY FOR A VERSION
	Download the current version
	Download a specific version

	13.3. OFFLINE REPOSITORY FOR A MAVEN PROJECT
	Download repository for Maven project

	CHAPTER 14. CONFIGURING WITH GIT
	14.1. HOW GIT WORKS INSIDE FABRIC
	Cluster architecture
	External Git repository architecture
	What is stored in the Git repositories?
	Git branches
	Configuring through the console commands
	Prerequisites
	Configuring directly through Git

	14.2. USING A GIT CLUSTER
	Overview
	Clone the Git repository
	Authentication
	Basic tasks with Git
	What happens after a failover?
	Adding multiple upstream repositories
	Git cluster tutorial

	14.3. USING A GIT HTTP PROXY
	Configuring a Git HTTP proxy

	14.4. USING AN EXTERNAL GIT REPOSITORY
	Overview
	External git repository architecture
	Preparing an external Git repository
	Authentication
	Creating a fabric with an external Git repository
	What happens if the external Git repository fails?
	External Git repository tutorial

	14.5. USING AN HTTP PROXY WITH A GIT CLUSTER

	CHAPTER 15. PATCHING
	15.1. PATCHING A CONTAINER IN A FABRIC
	Overview
	Is it necessary to patch the underlying container?
	Using the management console
	Using the command console

	APPENDIX A. EDITING PROFILES WITH THE BUILT-IN TEXT EDITOR
	A.1. EDITING AGENT PROPERTIES
	Overview
	Open the agent properties resource
	Specifying feature repository locations
	Specifying deployed features
	Specifying deployed bundles
	Specifying bundle overrides
	Specifying etc/config.properties properties
	Specifying etc/system.properties properties
	Specifying libraries to add to Java runtime lib/
	Specifying libraries to add to Java runtime lib/ext/
	Specifying libraries to add to Java runtime lib/endorsed/
	Example

	A.2. EDITING OSGI CONFIG ADMIN PROPERTIES
	Overview
	Persistent ID
	Open the Config Admin properties resource
	Specifying OSGi config admin properties
	Example

	A.3. EDITING OTHER RESOURCES
	Overview
	Creating and editing an arbitrary resource
	broker.xml example
	Referencing a profile resource

	A.4. PROFILE ATTRIBUTES
	Overview
	parents attribute
	abstract attribute
	locked attribute
	hidden attribute

	APPENDIX B. FABRIC URL HANDLERS
	B.1. PROFILE URL HANDLER
	B.2. ZK URL HANDLER
	B.3. BLUEPRINT URL HANDLER
	B.4. SPRING URL HANDLER

	APPENDIX C. PROFILE PROPERTY RESOLVERS
	C.1. SUBSTITUTING SYSTEM PROPERTIES
	Syntax

	C.2. SUBSTITUTING ENVIRONMENT VARIABLES
	Syntax

	C.3. SUBSTITUTING CONTAINER ATTRIBUTES
	Syntax

	C.4. SUBSTITUTING PID PROPERTIES
	Syntax
	Example using a profile property resolver

	C.5. SUBSTITUTING ZOOKEEPER NODE CONTENTS
	Syntax
	Recursive variable substitution
	How to reference the current version of a resource

	C.6. CHECKSUM PROPERTY RESOLVER
	Syntax

	C.7. PORT PROPERTY RESOLVER
	Syntax

