
Red Hat JBoss Fuse 6.0

Developing RESTful Web Services

Standards based RESTful service development

Last Updated: 2017-10-13

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

Standards based RESTful service development

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2013 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to use the JAX-RS APIs to implement Web services.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION TO RESTFUL WEB SERVICES
OVERVIEW
BASIC REST PRINCIPLES
RESOURCES
REST BEST PRACTICES
DESIGNING A RESTFUL WEB SERVICE
IMPLEMENTING REST WITH APACHE CXF
DATA BINDINGS

CHAPTER 2. CREATING RESOURCES
2.1. INTRODUCTION
2.2. BASIC JAX-RS ANNOTATIONS
2.3. ROOT RESOURCE CLASSES
2.4. WORKING WITH RESOURCE METHODS
2.5. WORKING WITH SUB-RESOURCES
2.6. RESOURCE SELECTION METHOD

CHAPTER 3. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS
3.1. BASICS OF INJECTING DATA
3.2. USING JAX-RS APIS
3.3. USING APACHE CXF EXTENSIONS

CHAPTER 4. RETURNING INFORMATION TO THE CONSUMER
4.1. RETURNING PLAIN JAVA CONSTRUCTS
4.2. FINE TUNING AN APPLICATION'S RESPONSES
4.3. RETURNING ENTITIES WITH GENERIC TYPE INFORMATION

CHAPTER 5. HANDLING EXCEPTIONS
5.1. USING WEBAPPLICAITONEXCEPTION EXCEPTIONS TO REPORT ERRORS
5.2. MAPPING EXCEPTIONS TO RESPONSES

CHAPTER 6. PUBLISHING A SERVICE

CHAPTER 7. ENTITY SUPPORT
OVERVIEW
NATIVELY SUPPORTED TYPES
CUSTOM READERS
CUSTOM WRITERS
REGISTERING READERS AND WRITERS

CHAPTER 8. CUSTOMIZING THE MEDIA TYPES HANDLED BY A RESOURCE

CHAPTER 9. GETTING AND USING CONTEXT INFORMATION
9.1. INTRODUCTION TO CONTEXTS
9.2. WORKING WITH THE FULL REQUEST URI
9.3. WORKING WITH THE HTTP HEADERS
9.4. WORKING WITH SECURITY INFORMATION
9.5. WORKING WITH PRECONDITIONS
9.6. WORKING WITH SERVLET CONTEXTS
9.7. WORKING WITH THE APACHE CXF CONTEXT OBJECT
9.8. ADDING CUSTOM CONTEXTS

CHAPTER 10. ANNOTATION INHERITANCE
OVERVIEW

4
4
4
5
5
5
6
6

7
7
8
9
11
13
16

20
20
20
29

31
31
32
38

41
41
43

46

47
47
47
48
52
57

58

59
59
60
65
65
65
65
65
65

66
66

Table of Contents

1

. .

INHERITANCE RULES
OVERRIDING INHERITED ANNOTATIONS

INDEX

66
67

67

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

2

Table of Contents

3

CHAPTER 1. INTRODUCTION TO RESTFUL WEB SERVICES

Abstract

Representational State Transfer(REST) is a software architecture style that centers around the
transmission of data over HTTP, using only the four basic HTTP verbs. It also eschews the use of any
additional wrappers such as a SOAP envelope and the use of any state data.

OVERVIEW

Representational State Transfer(REST) is an architectural style first described in a doctoral dissertation
by a researcher named Roy Fielding. In RESTful systems, servers expose resources using a URI, and
clients access these resources using the four HTTP verbs. As clients receive representations of a
resource they are placed in a state. When they access a new resource, typically by following a link, they
change, or transition, their state. In order to work, REST assumes that resources are capable of being
represented using a pervasive standard grammar.

The World Wide Web is the most ubiquitous example of a system designed on REST principles. Web
browsers act as clients accessing resources hosted on Web servers. The resources are represented
using HTML or XML grammars that all Web browsers can consume. The browsers can also easily follow
the links to new resources.

The advantages of RESTful systems is that they are highly scalable and highly flexible. Because the
resources are accessed and manipulated using the four HTTP verbs, the resources are exposed using a
URIs, and the resources are represented using standard grammars, clients are not as affected by
changes to the servers. Also, RESTful systems can take full advantage of the scalability features of
HTTP such as caching and proxies.

BASIC REST PRINCIPLES

RESTful architectures adhere to the following basic principles:

Application state and functionality are divided into resources.

Resources are addressable using standard URIs that can be used as hypermedia links.

All resources use only the four HTTP verbs.

DELETE

GET

POST

PUT

All resources provide information using the MIME types supported by HTTP.

The protocol is stateless.

Responses are cacheable.

The protocol is layered.

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

4

RESOURCES

Resources are central to REST. A resource is a source of information that can be addressed using a URI.
In the early days of the Web, resources were largely static documents. In the modern Web, a resource
can be any source of information. For example a Web service can be a resource if it can be accessed
using a URI.

RESTful endpoints exchange representations of the resources they address. A representation is a
document containing the data provided by the resource. For example, the method of a Web service that
provides access to a customer record would be a resource, the copy of the customer record
exchanged between the service and the consumer is a representation of the resource.

REST BEST PRACTICES

When designing RESTful Web services it is helpful to keep in mind the following:

Provide a distinct URI for each resource you wish to expose.

For example, if you are building a system that deals with driving records, each record should
have a unique URI. If the system also provides information on parking violations and speeding
fines, each type of resource should also have a unique base. For example, speeding fines could
be accessed through /speedingfines/driverID and parking violations could be accessed through
/parkingfines/driverID.

Use nouns in your URIs.

Using nouns highlights the fact that resources are things and not actions. URIs such as
/ordering imply an action, whereas /orders implies a thing.

Methods that map to GET should not change any data.

Use links in your responses.

Putting links to other resources in your responses makes it easier for clients to follow a chain
of data. For example, if your service returns a collection of resources, it would be easier for a
client to access each of the individual resources using the provided links. If links are not
included, a client needs to have additional logic to follow the chain to a specific node.

Make your service stateless.

Requiring the client or the service to maintain state information forces a tight coupling
between the two. Tight couplings make upgrading and migrating more difficult. Maintaining
state can also make recovery from communication errors more difficult.

DESIGNING A RESTFUL WEB SERVICE

Regardless of the framework you use to implement a RESTful Web service, there are a number of steps
that should be followed:

1. Define the resources the service will expose.

In general, a service will expose one or more resources that are organized as a tree. For
example, a driving record service could be organized into three resources:

/license/driverID

CHAPTER 1. INTRODUCTION TO RESTFUL WEB SERVICES

5

/license/driverID/speedingfines

/license/driverID/parkingfines

2. Define what actions you want to be able to perform on each resource.

For example, you may want to be able to update a diver's address or remove a parking ticket
from a driver's record.

3. Map the actions to the appropriate HTTP verbs.

Once you have defined the service, you can implement it using Apache CXF.

IMPLEMENTING REST WITH APACHE CXF

Apache CXF provides an implementation of the Java API for RESTFul Web Services(JAX-RS). JAX-RS
provides a standardized way to map POJOs to resources using annotations.

When moving from the abstract service definition to a RESTful Web service implemented using JAX-
RS, you need to do the following:

1. Create a root resource class for the resource that represents the top of the service's resource
tree.

See Section 2.3, “Root resource classes” .

2. Map the service's other resources into sub-resources.

See Section 2.5, “Working with sub-resources” .

3. Create methods to implement each of the HTTP verbs used by each of the resources.

See Section 2.4, “Working with resource methods”.

NOTE

Apache CXF continues to support the old HTTP binding to map Java interfaces into
RESTful Web services. The HTTP binding provides basic functionality and has a number
of limitations. Developers are encouraged to update their applications to use JAX-RS.

DATA BINDINGS

By default, Apache CXF uses Java Architecture for XML Binding(JAXB) objects to map the resources
and their representations to Java objects. Provides clean, well defined mappings between Java objects
and XML elements.

The Apache CXF JAX-RS implementation also supports exchanging data using JavaScript Object
Notation(JSON). JSON is a popular data format used by Ajax developers. The marshaling of data
between JSON and JAXB is handled by the Apache CXF runtime.

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

6

CHAPTER 2. CREATING RESOURCES

Abstract

In RESTful Web services all requests are handled by resources. The JAX-RS APIs implement resources
as a Java class. A resource class is a Java class that is annotated with one, or more, RAX-RS
annotations. The core of a RESTful Web service implemented using JAX-RS is a root resource class.
The root resource class is the entry point to the resource tree exposed by a service. It may handle all
requests itself, or it may provide access to sub-resources that handle requests.

2.1. INTRODUCTION

Overview

RESTful Web services implemented using JAX-RS APIs provide responses as representations of a
resource implemented by Java classes. A resource class is a class that uses JAX-RS annotations to
implement a resource. For most RESTful Web services, there is a collection of resources that need to be
accessed. The resource class' annotations provide information such as the URI of the resources and
which HTTP verb each operation handles.

Types of resources

The JAX-RS APIs allow you to create two basic types of resources:

A Section 2.3, “Root resource classes” is the entry point to a service's resource tree. It is
decorated with the @Path annotation to define the base URI for the resources in the service.

Section 2.5, “Working with sub-resources” are accessed through the root resource. They are
implemented by methods that are decorated with the @Path annotation. A sub-resource's
@Path annotation defines a URI relative to the base URI of a root resource.

Example

Example 2.1, “Simple resource class” shows a simple resource class.

Example 2.1. Simple resource class

1

2

package demo.jaxrs.server;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;

@Path("/customerservice")
public class CustomerService

{
 public CustomerService()
 {
 }

 @GET
 public Customer getCustomer(@QueryParam("id") String id)

CHAPTER 2. CREATING RESOURCES

7

1

2

Two items make the class defined in Example 2.1, “Simple resource class” a resource class:

The @Path annotation specifies the base URI for the resource.

The @GET annotation specifies that the method implements the HTTP GET method for the
resource.

2.2. BASIC JAX-RS ANNOTATIONS

Overview

The most basic pieces of information required by a RESTful Web service implementation are:

the URI of the service's resources

how the class' methods are mapped to the HTTP verbs

JAX-RS defines a set of annotations that provide this basic information. All resource classes must have
at least one of these annotations.

Setting the path

The @Path annotation specifies the URI of a resource. The annotation is defined by the
javax.ws.rs.Path interface and it can be used to decorate either a resource class or a resource
method. It takes a string value as its only parameter. The string value is a URI template that specifies
the location of an implemented resource.

The URI template specifies a relative location for the resource. As shown in Example 2.2, “URI
template syntax”, the template can contain the following:

unprocessed path components

parameter identifiers surrounded by { }

NOTE

Parameter identifiers can include regular expressions to alter the default path
processing.

Example 2.2. URI template syntax

 {
 ...
 }

 ...
}

@Path("resourceName/{param1}/../{paramN}")

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

8

For example, the URI template widgets/{color}/{number} would map to widgets/blue/12. The value of
the color parameter is assigned to blue. The value of the number parameter is assigned 12.

How the URI template is mapped to a complete URI depends on what the @Path annotation is
decorating. If it is placed on a root resource class, the URI template is the root URI of all resources in
the tree and it is appended directly to the URI at which the service is published. If the annotation
decorates a sub-resource, it is relative to the root resource URI.

Specifying HTTP verbs

JAX-RS uses five annotations for specifying the HTTP verb that will be used for a method:

javax.ws.rs.DELETE specifies that the method maps to a DELETE.

javax.ws.rs.GET specifies that the method maps to a GET.

javax.ws.rs.POST specifies that the method maps to a POST.

javax.ws.rs.PUT specifies that the method maps to a PUT.

javax.ws.rs.HEAD specifies that the method maps to a HEAD.

When you map your methods to HTTP verbs, you must ensure that the mapping makes sense. For
example, if you map a method that is intended to submit a purchase order, you would map it to a PUT or
a POST. Mapping it to a GET or a DELETE would result in unpredictable behavior.

2.3. ROOT RESOURCE CLASSES

Overview

A root resource class is the entry point into a JAX-RS implemented RESTful Web service. It is
decorated with a @Path that specifies the root URI of the resources implemented by the service. Its
methods either directly implement operations on the resource or provide access to sub-resources.

Requirements

In order for a class to be a root resource class it must meet the following criteria:

The class must be decorated with the @Path annotation.

The specified path is the root URI for all of the resources implemented by the service. If the
root resource class specifies that its path is widgets and one of its methods implements the
GET verb, then a GET on widgets invokes that method. If a sub-resource specifies that its URI is
{id}, then the full URI template for the sub-resource is widgets/{id} and it will handle requests
made to URIs like widgets/12 and widgets/42.

The class must have a public constructor for the runtime to invoke.

The runtime must be able to provide values for all of the constructor's parameters. The
constructor's parameters can include parameters decorated with the JAX-RS parameter
annotations. For more information on the parameter annotations see Chapter 3, Passing
Information into Resource Classes and Methods.

CHAPTER 2. CREATING RESOURCES

9

At least one of the classes methods must either be decorated with an HTTP verb annotation or
the @Path annotation.

Example

Example 2.3, “Root resource class” shows a root resource class that provides access to a sub-resource.

Example 2.3. Root resource class

1

2

3

4

package demo.jaxrs.server;

import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.Response;

@Path("/customerservice/")
public class CustomerService

{
 public CustomerService()
 {

 ...
 }

 @GET
 public Customer getCustomer(@QueryParam("id") String id)

 {
 ...
 }

 @DELETE
 public Response deleteCustomer(@QueryParam("id") String id)
 {
 ...
 }

 @PUT
 public Response updateCustomer(Customer customer)
 {
 ...
 }

 @POST
 public Response addCustomer(Customer customer)
 {
 ...
 }

 @Path("/orders/{orderId}/")
 public Order getOrder(@PathParam("orderId") String orderId)

 {

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

10

1

2

3

4

The class in Example 2.3, “Root resource class” meets all of the requirements for a root resource class.

The class is decorated with the @Path annotation. The root URI for the resources exposed by the
service is customerservice.

The class has a public constructor. In this case the no argument constructor is used for simplicity.

The class implements each of the four HTTP verbs for the resource.

The class also provides access to a sub-resource through the getOrder() method. The URI for
the sub-resource, as specified using the the @Path annotation, is customerservice/order/ id. The
sub-resource is implemented by the Order class.

For more information on implementing sub-resources see Section 2.5, “Working with sub-
resources”.

2.4. WORKING WITH RESOURCE METHODS

Overview

Resource methods are annotated using JAX-RS annotations. They have one of the HTTP method
annotation specifying the types of requests that the method processes. JAX-RS places several
constraints on resource methods.

General constraints

All resource methods must meet the following conditions:

It must be public.

It must be decorated with one of the HTTP method annotations described in the section called
“Specifying HTTP verbs”.

It must not have more than one entity parameter as described in the section called
“Parameters”.

Parameters

Resource method parameters take two forms:

entity parameters—Entity parameters are not annotated. Their value is mapped from the
request entity body. An entity parameter can be of any type for which your application has an
entity provider. Typically they are JAXB objects.

IMPORTANT

A resource method can have only one entity parameter.

 ...
 }

}

CHAPTER 2. CREATING RESOURCES

11

For more information on entity providers see Chapter 7, Entity Support.

annotated parameters—Annotated parameters use one of the JAX-RS annotations that
specify how the value of the parameter is mapped from the request. Typically, the value of the
parameter is mapped from portions of the request URI.

For more information about using the JAX-RS annotations for mapping request data to
method parameters see Chapter 3, Passing Information into Resource Classes and Methods.

Example 2.4, “Resource method with a valid parameter list” shows a resource method with a valid
parameter list.

Example 2.4. Resource method with a valid parameter list

Example 2.5, “Resource method with an invalid parameter list” shows a resource method with an
invalid parameter list. It has two parameters that are not annotated.

Example 2.5. Resource method with an invalid parameter list

Return values

Resource methods can return one of the following:

void

any Java class for which the application has an entity provider

For more information on entity providers see Chapter 7, Entity Support.

a Response object

For more information on Response objects see Section 4.2, “Fine tuning an application's
responses”.

a GenericEntity<T> object

@POST
@Path("disaster/monster/giant/{id}")
public void addDaikaiju(Kaiju kaiju,
 @PathParam("id") String id)
{
 ...
}

@POST
@Path("disaster/monster/giant/")
public void addDaikaiju(Kaiju kaiju,
 String id)
{
 ...
}

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

12

For more information on GenericEntity<T> objects see Section 4.3, “Returning entities
with generic type information”.

All resource methods return an HTTP status code to the requester. When the return type of the
method is void or the value being returned is null, the resource method sets the HTTP status code to
200. When the resource method returns any value other than null, it sets the HTTP status code to
204.

2.5. WORKING WITH SUB-RESOURCES

Overview

It is likely that a service will need to be handled by more than one resource. For example, in an order
processing service best-practices suggests that each customer would be handled as a unique resource.
Each order would also be handled as a unique resource.

Using the JAX-RS APIs, you would implement the customer resources and the order resources as sub-
resources. A sub-resource is a resource that is accessed through a root resource class. They are
defined by adding a @Path annotation to a resource class' method. Sub-resources can be implemented
in one of two ways:

Sub-resource method—directly implements an HTTP verb for a sub-resource and is decorated
with one of the annotations described in the section called “Specifying HTTP verbs” .

Sub-resource locator—points to a class that implements the sub-resource.

Specifying a sub-resource

Sub-resources are specified by decorating a method with the @Path annotation. The URI of the sub-
resource is constructed as follows:

1. Append the value of the sub-resource's @Path annotation to the value of the sub-resource's
parent resource's @Path annotation.

The parent resource's @Path annotation maybe located on a method in a resource class that
returns an object of the class containing the sub-resource.

2. Repeat the previous step until the root resource is reached.

3. The assembled URI is appended to the base URI at which the service is deployed.

For example the URI of the sub-resource shown in Example 2.6, “Order sub-resource” could be
baseURI/customerservice/order/12.

Example 2.6. Order sub-resource

...
@Path("/customerservice/")
public class CustomerService
{
 ...
 @Path("/orders/{orderId}/")
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)

CHAPTER 2. CREATING RESOURCES

13

Sub-resource methods

A sub-resource method is decorated with both a @Path annotation and one of the HTTP verb
annotations. The sub-resource method is directly responsible for handling a request made on the
resource using the specified HTTP verb.

Example 2.7, “Sub-resource methods” shows a resource class with three sub-resource methods:

getOrder() handles HTTP GET requests for resources whose URI matches
/customerservice/orders/{orderId}/.

updateOrder() handles HTTP PUT requests for resources whose URI matches
/customerservice/orders/{orderId}/.

newOrder() handles HTTP POST requests for the resource at /customerservice/orders/.

Example 2.7. Sub-resource methods

 {
 ...
 }
}

...
@Path("/customerservice/")
public class CustomerService
{
 ...
 @Path("/orders/{orderId}/")
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 @Path("/orders/{orderId}/")
 @PUT
 public Order updateOrder(@PathParam("orderId") String orderId,
 Order order)
 {
 ...
 }

 @Path("/orders/")
 @POST
 public Order newOrder(Order order)
 {
 ...
 }
}

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

14

NOTE

Sub-resource methods with the same URI template are equivalent to resource class
returned by a sub-resource locator.

Sub-resource locators

Sub-resource locators are not decorated with one of the HTTP verb annotations and do not directly
handle are request on the sub-resource. Instead, a sub-resource locator returns an instance of a
resource class that can handle the request.

In addition to not having an HTTP verb annotation, sub-resource locators also cannot have any entity
parameters. All of the parameters used by a sub-resource locator method must use one of the
annotations described in Chapter 3, Passing Information into Resource Classes and Methods.

As shown in Example 2.8, “Sub-resource locator returning a specific class” , sub-resource locator
allows you to encapsulate a resource as a reusable class instead of putting all of the methods into one
super class. The processOrder() method is a sub-resource locator. When a request is made on a URI
matching the URI template /orders/{orderId}/ it returns an instance of the Order class. The Order
class has methods that are decorated with HTTP verb annotations. A PUT request is handled by the
updateOrder() method.

Example 2.8. Sub-resource locator returning a specific class

...
@Path("/customerservice/")
public class CustomerService
{
 ...
 @Path("/orders/{orderId}/")
 public Order processOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 ...
}

public class Order
{
 ...
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 @PUT
 public Order updateOrder(@PathParam("orderId") String orderId,
 Order order)
 {
 ...
 }

}

CHAPTER 2. CREATING RESOURCES

15

Sub-resource locators are processed at runtime so that they can support polymorphism. The return
value of a sub-resource locator can be a generic Object, an abstract class, or the top of a class
hierarchy. For example, if your service needed to process both PayPal orders and credit card orders,
the processOrder() method's signature from Example 2.8, “Sub-resource locator returning a
specific class” could remain unchanged. You would simply need to implement two classes, ppOrder
and ccOder, that extended the Order class. The implementation of processOrder() would
instantiate the desired implementation of the sub-resource based on what ever logic is required.

2.6. RESOURCE SELECTION METHOD

Overview

It is possible for a given URI to map to one or more resource methods. For example the URI
customerservice/12/ma could match the templates @Path("customerservice/{id}") or
@Path("customerservice/{id}/{state}"). JAX-RS specifies a detailed algorithm for matching
a resource method to a request. The algorithm compares the normalized URI, the HTTP verb, and the
media types of the request and response entities to the annotations on the resource classes.

The basic selection algorithm

The JAX-RS selection algorithm is broken down into three stages:

1. Determine the root resource class.

The request URI is matched against all of the classes decorated with the @Path annotation.
The classes whose @Path annotation matches the request URI are determined.

If the value of the resource class' @Path annotation matches the entire request URI, the class'
methods are used as input into the third stage.

2. Determine the object will handle the request.

If the request URI is longer than the value of the selected class' @Path annotation, the values
of the resource methods' @Path annotations are used to look for a sub-resource that can
process the request.

If one or more sub-resource methods match the request URI, these methods are used as input
for the third stage.

If the only matches for the request URI are sub-resource locaters, the resource methods of the
object created by the sub-resource locater to match the request URI. This stage is repeated
until a sub-resource method matches the request URI.

3. Select the resource method that will handle the request.

The resource method whose HTTP verb annotation matches the HTTP verb in the request. In
addition, the selected resource method must accept the media type of the request entity body
and be capable of producing a response that conforms to the media type(s) specified in the
request.

Selecting from multiple resource classes

The first two stages of the selection algorithm determine the resource that will handle the request. In

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

16

some cases the resource is implemented by a resource class. In other cases, it is implemented by one
or more sub-resources that use the same URI template. When there are multiple resources that match
a request URI, resource classes are preferred over sub-resources.

If more than one resource still matches the request URI after sorting between resource classes and
sub-resources, the following criteria are used to select a single resource:

1. Prefer the resource with the most literal characters in its URI template.

Literal characters are characters that are not part of a template variable. For example,
/widgets/{id}/{color} has ten literal characters and /widgets/1/{color} has eleven literal
characters. So, the request URI /widgets/1/red would be matched to the resource with
/widgets/1/{color} as its URI template.

NOTE

A trailing slash (/) counts as a literal character. So /joefred/ will be preferred
over /joefred.

2. Prefer the resource with the most variables in its URI template.

The request URI /widgets/30/green could match both /widgets/{id}/{color} and
/widgets/{amount}/. However, the resource with the URI template /widgets/{id}/{color} will
be selected because it has two variables.

3. Prefer the resource with the most variables containing regular expressions.

The request URI /widgets/30/green could match both /widgets/{number}/{color} and
/widgets/{id:.+}/{color}. However, the resource with the URI template /widgets/{id:.+}/{color}
will be selected because it has a variable containing a regular expression.

Selecting from multiple resource methods

In many cases, selecting a resource that matches the request URI results in a single resource method
that can process the request. The method is determined by matching the HTTP verb specified in the
request with a resource method's HTTP verb annotation. In addition to having the appropriate HTTP
verb annotation, the selected method must also be able to handle the request entity included in the
request and be able to produce the proper type of response specified in the request's metadata.

NOTE

The type of request entity a resource method can handle is specified by the @Consumes
annotation. The type of responses a resource method can produce are specified using
the @Produces annotation. For more information see Chapter 8, Customizing the Media
Types Handled by a Resource.

When selecting a resource produces multiple methods that can handle a request the following criteria
is used to select the resource method that will handle the request:

1. Prefer resource methods over sub-resources.

2. Prefer sub-resource methods over sub-resource locaters.

3. Prefer methods that use the most specific values in the @Consumes annotation and the
@Produces annotation.

CHAPTER 2. CREATING RESOURCES

17

For example, a method that has the annotation @Consumes(text/xml) would be preferred
over a method that has the annotation @Consumes(text/*). Both methods would be
preferred over a method without an @Consumes annotation or the annotation
@Consumes(*/*).

4. Prefer methods that most closely match the content type of the request body entity.

TIP

The content type of the request body entity is specified in the HTTP Content-Type property.

5. Prefer methods that most closely match the content type accepted as a response.

TIP

The content types accepted as a response are specified in the HTTP Accept property.

Customizing the selection process

In some cases, developers have reported the algorithm being somewhat restrictive in the way multiple
resource classes are selected. For example, if a given resource class has been matched and if this class
has no matching resource method, then the algorithm stops executing. It never checks the remaining
matching resource classes.

Apache CXF provides the org.apache.cxf.jaxrs.ext.ResourceComparator interface which
can be used to customize how the runtime handles multiple matching resource classes. The
ResourceComparator interface, shown in Example 2.9, “Interface for customizing resource
selection”, has to methods that need to be implemented. One compares two resource classes and the
other compares two resource methods.

Example 2.9. Interface for customizing resource selection

Custom implementations select between the two resources as follows:

Return 1 if the first parameter is a better match than the second parameter

package org.apache.cxf.jaxrs.ext;

import org.apache.cxf.jaxrs.model.ClassResourceInfo;
import org.apache.cxf.jaxrs.model.OperationResourceInfo;
import org.apache.cxf.message.Message;

public interface ResourceComparator
{
 int compare(ClassResourceInfo cri1,
 ClassResourceInfo cri2,
 Message message);

 int compare(OperationResourceInfo oper1,
 OperationResourceInfo oper2,
 Message message);
}

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

18

Return -1 if the second parameter is a better match than the first parameter

If 0 is returned then the runtime will proceed with the default selection algorithm

You register a custom ResourceComparator implementation by adding a resourceComparator
child to the service's jaxrs:server element.

CHAPTER 2. CREATING RESOURCES

19

CHAPTER 3. PASSING INFORMATION INTO RESOURCE
CLASSES AND METHODS

Abstract

JAX-RS specifies a number of annotations that allow the developer to control where the information
passed into resources come from. The annotations conform to common HTTP concepts such as matrix
parameters in a URI. The standard APIs allow the annotations to be used on method parameters, bean
properties, and resource class fields. Apache CXF provides an extension that allows for the injection of
a sequence of parameters to be injected into a bean.

3.1. BASICS OF INJECTING DATA

Overview

Parameters, fields, and bean properties that are initialized using data from the HTTP request message
have their values injected into them by the runtime. The specific data that is injected is specified by a
set of annotations described in Section 3.2, “Using JAX-RS APIs” .

The JAX-RS specification places a few restrictions on when the data is injected. It also places a few
restrictions on the types of objects into which request data can be injected.

When data is injected

Request data is injected into objects when they are instantiated due to a request. This means that only
objects that directly correspond to a resource can use the injection annotations. As discussed in
Chapter 2, Creating Resources, these objects will either be a root resource decorated with the @Path
annotation or an object returned from a sub-resource locator method.

Supported data types

The specific set of data types that data can be injected into depends on the annotation used to specify
the source of the injected data. However, all of the injection annotations support at least the following
set of data types:

primitives such as int, char, or long

Objects that have a constructor that accepts a single String argument

Objects that have a static valueOf() method that accepts a single String argument

List<T>, Set<T>, or SortedSet<T> objects where T satisfies the other conditions in the list

TIP

Where injection annotations have different requirements for supported data types, the differences will
be highlighted in the discussion of the annotation.

3.2. USING JAX-RS APIS

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

20

The standard JAX-RS API specifies annotations that can be used to inject values into fields, bean
properties, and method parameters. The annotations can be split up into three distinct types:

annotations that inject information from the request URI

annotations that inject information from the HTTP message header

annotations that inject information from HTML forms

3.2.1. Injecting data from a request URI

Overview

One of the best practices for designing a RESTful Web service is that each resource should have a
unique URI. A developer can use this principle to provide a good deal of information to the underlying
resource implementation. When designing URI templates for a resource, a developer can build the
templates to include parameter information that can be injected into the resource implementation.
Developers can also leverage query and matrix parameters for feeding information into the resource
implementations.

Getting data from the URI's path

One of the more common mechanisms for getting information about a resource is through the
variables used in creating the URI templates for a resource. This is accomplished using the
javax.ws.rs.PathParam annotation. The @PathParam annotation has a single parameter that
identifies the URI template variable from which the data will be injected.

In Example 3.1, “Injecting data from a URI template variable” the @PathParam annotation specifies
that the value of the URI template variable color is injected into the itemColor field.

Example 3.1. Injecting data from a URI template variable

The data types supported by the @PathParam annotation are different from the ones described in the
section called “Supported data types”. The entity into which the @PathParam annotation injects data
must be of one of the following types:

PathSegment

import javax.ws.rs.Path;
import javax.ws.rs.PathParam
...

@Path("/boxes/{shape}/{color}")
class Box
{
 ...

 @PathParam("color")
 String itemColor;

 ...
}

CHAPTER 3. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

21

The value will be the final segment of the matching part of the path.

List<PathSegment>

The value will be a list of PathSegment objects corresponding to the path segment(s) that
matched the named template parameter.

primitives such as int, char, or long

Objects that have a constructor that accepts a single String argument

Objects that have a static valueOf() method that accepts a single String argument

Using query parameters

A common way of passing information on the Web is to use query parameters in a URI. Query
parameters appear at the end of the URI and are separated from the resource location portion of the
URI by a question mark(?). They consist of one, or more, name value pairs where the name and value
are separated by an equal sign(=). When more than one query parameter is specified, the pairs are
separated from each other by either a semicolon(;) or an ampersand(&). Example 3.2, “URI with a
query string” shows the syntax of a URI with query parameters.

Example 3.2. URI with a query string

NOTE

You can use either the semicolon or the ampersand to separate query parameters, but
not both.

The javax.ws.rs.QueryParam annotation extracts the value of a query parameter and injects it into
a JAX-RS resource. The annotation takes a single parameter that identifies the name of the query
parameter from which the value is extracted and injected into the specified field, bean property, or
parameter. The @QueryParam annotation supports the types described in the section called
“Supported data types”.

Example 3.3, “Resource method using data from a query parameter” shows a resource method that
injects the value of the query parameter id into the method's id parameter.

Example 3.3. Resource method using data from a query parameter

http://fusesource.org?name=value;name2=value2;...

import javax.ws.rs.QueryParam;
import javax.ws.rs.PathParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

22

To process an HTTP POST to /monstersforhire/daikaiju?id=jonas the updateMonster() method's
type is set to daikaiju and the id is set to jonas.

Using matrix parameters

URI matrix parameters, like URI query parameters, are name/value pairs that can provide additional
information selecting a resource. Unlike query parameters, matrix parameters can appear anywhere in
a URI and they are separated from the hierarchical path segments of the URI using a semicolon(;).
/mostersforhire/daikaiju;id=jonas has one matrix parameter called id and
/monstersforhire/japan;type=daikaiju/flying;wingspan=40 has two matrix parameters called type
and wingspan.

NOTE

Matrix parameters are not evaluated when computing a resource's URI. So, the URI used
to locate the proper resource to handle the request URI
/monstersforhire/japan;type=daikaiju/flying;wingspan=40 is
/monstersforhire/japan/flying.

The value of a matrix parameter is injected into a field, parameter, or bean property using the
javax.ws.rs.MatrixParam annotation. The annotation takes a single parameter that identifies the
name of the matrix parameter from which the value is extracted and injected into the specified field,
bean property, or parameter. The @MatrixParam annotation supports the types described in the
section called “Supported data types”.

Example 3.4, “Resource method using data from matrix parameters” shows a resource method that
injects the value of the matrix parameters type and id into the method's parameters.

Example 3.4. Resource method using data from matrix parameters

 @Path("\{type}")
 public void updateMonster(@PathParam("type") String type,
 @QueryParam("id") String id)
 {
 ...
 }
 ...
}

import javax.ws.rs.MatrixParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST
 public void updateMonster(@MatrixParam("type") String type,
 @MatrixParam("id") String id)
 {
 ...

CHAPTER 3. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

23

To process an HTTP POST to /monstersforhire;type=daikaiju;id=whale the updateMonster()
method's type is set to daikaiju and the id is set to whale.

NOTE

JAX-RS evaluates all of the matrix parameters in a URI at once, so it cannot enforce
constraints on a matrix parameters location in a URI. For example
/monstersforhire/japan;type=daikaiju/flying;wingspan=40 ,
/monstersforhire/japan/flying;type=daikaiju;wingspan=40, and
/monstersforhire/japan;type=daikaiju;wingspan=40/flying are all treated as equivalent
by a RESTful Web service implemented using the JAX-RS APIs.

Disabling URI decoding

By default all request URIs are decoded. So the URI /monster/night%20stalker and the URI
/monster/night stalker are equivalent. The automatic URI decoding makes it easy to send characters
outside of the ASCII character set as parameters.

If you do not wish to have URI automatically decoded, you can use the javax.ws.rs.Encoded
annotation to deactivate the URI decoding. The annotation can be used to deactivate URI decoding at
the following levels:

class level—Decorating a class with the @Encoded annotation deactivates the URI decoding for
all parameters, field, and bean properties in the class.

method level—Decorating a method with the @Encoded annotation deactivates the URI
decoding for all parameters of the class.

parameter/field level—Decorating a parameter or field with the @Encoded annotation
deactivates the URI decoding for all parameters of the class.

Example 3.5, “Disabling URI decoding” shows a resource whose getMonster() method does not use
URI decoding. The addMonster() method only disables URI decoding for the type parameter.

Example 3.5. Disabling URI decoding

 }
 ...
}

@Path("/monstersforhire/")
public class MonsterService
{
 ...

 @GET
 @Encoded
 @Path("\{type}")
 public Monster getMonster(@PathParam("type") String type,
 @QueryParam("id") String id)
 {
 ...
 }

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

24

Error handling

If an error occurs when attempting to inject data using one of the URI injection annotations a
WebApplicationException exception wraps the original exception is generated. The
WebApplicationException exception's status is set to 404.

3.2.2. Injecting data from the HTTP message header

Overview

In normal usage the HTTP headers in a request message pass along generic information about the
message, how it is to be handled in transit, and details about the expected response. While a few
standard headers are commonly recognized and used, the HTTP specification allows for any
name/value pair to be used as an HTTP header. The JAX-RS APIs provide an easy mechanism for
injecting HTTP header information into a resource implementation.

One of the most commonly used HTTP headers is the cookie. Cookies allow HTTP clients and servers to
share static information across multiple request/response sequences. The JAX-RS APIs provide an
annotation inject data directly from a cookie into a resource implementation.

Injecting information from the HTTP headers

The javax.ws.rs.HeaderParam annotation is used to inject the data from an HTTP header field into
a parameter, field, or bean property. It has a single parameter that specifies the name of the HTTP
header field from which the value is extracted and injected into the resource implementation. The
associated parameter, field, or bean property must conform to the data types described in the section
called “Supported data types”.

Example 3.6, “Injecting the If-Modified-Since header” shows code for injecting the value of the HTTP
If-Modified-Since header into a class' oldestDate field.

Example 3.6. Injecting the If-Modified-Since header

 @PUT
 @Path("\{id}")
 public void addMonster(@Encoded @PathParam("type") String type,
 @QueryParam("id") String id)
 {
 ...
 }
 ...
}

import javax.ws.rs.HeaderParam;
...
class RecordKeeper
{
 ...
 @HeaderParam("If-Modified-Since")
 String oldestDate;
 ...
}

CHAPTER 3. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

25

Injecting information from a cookie

Cookies are a special type of HTTP header. They are made up of one or more name/value pairs that are
passed to the resource implementation on the first request. After the first request, the cookie is
passes back and forth between the provider and consumer with each message. Only the consumer,
because they generate requests, can change the cookie. Cookies are commonly used to maintain
session across multiple request/response sequences, storing user settings, and other data that can
persist.

The javax.ws.rs.CookieParam annotation extracts the value from a cookie's field and injects it
into a resource implementation. It takes a single parameter that specifies the name of the cookie's field
from which the value is to be extracted. In addition to the data types listed in the section called
“Supported data types”, entities decorated with the @CookieParam can also be a Cookie object.

Example 3.7, “Injecting a cookie” shows code for injecting the value of the handle cookie into a field in
the CB class.

Example 3.7. Injecting a cookie

Error handling

If an error occurs when attempting to inject data using one of the HTTP message injection annotations
a WebApplicationException exception wrapping the original exception is generated. The
WebApplicationException exception's status is set to 400.

3.2.3. Injecting data from HTML forms

Overview

HTML forms are an easy means of getting information from a user and they are also easy to create.
Form data can be used for HTTP GET requests and HTTP POST requests:

GET

When form data is sent as part of an HTTP GET request the data is appended to the URI as a set of
query parameters. Injecting data from query parameters is discussed in the section called “Using
query parameters”.

POST

When form data is sent as part of an HTTP POST request the data is placed in the HTTP message

import javax.ws.rs.CookieParam;
...
class CB
{
 ...
 @CookieParam("handle")
 String handle;
 ...
}

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

26

body. The form data can be handled using a regular entity parameter that supports the form data. It
can also be handled by using the @FormParam annotation to extract the data and inject the pieces
into resource method parameters.

Using the @FormParam annotation to inject form data

The javax.ws.rs.FormParam annotation extracts field values from form data and injects the value
into resource method parameters. The annotation takes a single parameter that specifies the key of
the field from which it extracts the values. The associated parameter must conform to the data types
described in the section called “Supported data types” .

IMPORTANT

The JAX-RS API Javadoc states that the @FormParam annotation can be placed on
fields, methods, and parameters. However, the @FormParam annotation is only
meaningful when placed on resource method parameters.

Example

Example 3.8, “Injecting form data into resource method parameters” shows a resource method that
injects form data into its parameters. The method assumes that the client's form includes three fields
—title, tags, and body—that contain string data.

Example 3.8. Injecting form data into resource method parameters

3.2.4. Specifying a default value to inject

Overview

To provide for a more robust service implementation, you may want to ensure that any optional
parameters can be set to a default value. This can be particularly useful for values that are taken from
query parameters and matrix parameters since entering long URI strings is highly error prone. You
may also want to set a default value for a parameter extracted from a cookie since it is possible for a
requesting system not have the proper information to construct a cookie with all the values.

The javax.ws.rs.DefaultValue annotation can be used in conjunction with the following injection
annotations:

@PathParam

import javax.ws.rs.FormParam;
import javax.ws.rs.POST;

...
@POST
public boolean updatePost(@FormParam("title") String title,
 @FormParam("tags") String tags,
 @FormParam("body") String post)
{
 ...
}

CHAPTER 3. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

27

@QueryParam

@MatrixParam

@FormParam

@HeaderParam

@CookieParam

The @DefaultValue annotation specifies a default value to be used when the data corresponding to
the injection annotation is not present in the request.

Syntax

Example 3.9, “Syntax for setting the default value of a parameter” shows the syntax for using the
@DefaultValue annotation.

Example 3.9. Syntax for setting the default value of a parameter

The annotation must come before the parameter, bean, or field, it will effect. The position of the
@DefaultValue annotation relative to the accompanying injection annotation does not matter.

The @DefaultValue annotation takes a single parameter. This parameter is the value that will be
injected into the field if the proper data cannot be extracted based on the injection annotation. The
value can be any String value. The value should be compatible with type of the associated field. For
example, if the associated field is of type int, a default value of blue results in an exception.

Dealing with lists and sets

If the type of the annotated parameter, bean or field is List, Set, or SortedSet then the resulting
collection will have a single entry mapped from the supplied default value.

Example

Example 3.10, “Setting default values” shows two examples of using the @DefaultValue to specify a
default value for a field whose value is injected.

Example 3.10. Setting default values

import javax.ws.rs.DefaultValue;
 ...
 void resourceMethod(@MatrixParam("matrix")
 @DefaultValue("value)
 int someValue, ...)
 ...

import javax.ws.rs.DefaultValue;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

28

The getMonster() method in Example 3.10, “Setting default values” is invoked when a GET request
is sent to baseURI/monster. The method expects two query parameters, id and type, appended to the
URI. So a GET request using the URI baseURI/monster?id=1&type=fomóiri would return the Fomóiri
with the id of one.

Because the @DefaultValue annotation is placed on both parameters, the getMonster() method
can function if the query parameters are omitted. A GET request sent to baseURI/monster is
equivalent to a GET request using the URI baseURI/monster?id=42&type=bogeyman.

3.3. USING APACHE CXF EXTENSIONS

Overview

Apache CXF provides an extension to the standard JAX-WS injection mechanism that allows
developers to replace a sequence of injection annotations with a single annotation. The single
annotation is place on a bean containing fields for the data that is extracted using the annotation. For
example, if a resource method is expecting a request URI to include three query parameters called id,
type, and size, it could use a single @QueryParam annotation to inject all of the parameters into a
bean with corresponding fields.

Supported injection annotations

This extension does not support all of the injection parameters. It only supports the following ones:

@PathParam

@QueryParam

@MatrixParam

@FormParam

Syntax

To indicate that an annotation is going to use serial injection into a bean, you need to do two things:

@Path("/monster")
public class MonsterService
{

 @Get
 public Monster getMonster(@QueryParam("id") @DefaultValue("42") int
id,
 @QueryParam("type")
@DefaultValue("bogeyman") String type)
 {
 ...
 }

 ...
}

CHAPTER 3. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

29

1. Specify the annotation's parameter as an empty string. For example @PathParam("")
specifies that a sequence of URI template variables are to be serialized into a bean.

2. Ensure that the annotated parameter is a bean with fields that match the values being injected.

Example

Example 3.11, “Injecting query parameters into a bean” shows an example of injecting a number of
Query parameters into a bean. The resource method expect the request URI to include two query
parameters: type and id. Their values are injected into the corresponding fields of the Monster bean.

Example 3.11. Injecting query parameters into a bean

import javax.ws.rs.QueryParam;
import javax.ws.rs.PathParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST
 public void updateMonster(@QueryParam("") Monster bean)
 {
 ...
 }
 ...
}

public class Monster
{
 String type;
 String id;

 ...
}

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

30

CHAPTER 4. RETURNING INFORMATION TO THE CONSUMER

Abstract

RESTful requests require that at least an HTTP response code be returned to the consumer. In many
cases, a request can be satisfied by returning a plain JAXB object or a GenericEntity object. When
the resource method needs to return additional metadata along with the response entity, JAX-RS
resource methods can return a Response object containing any needed HTTP headers or other
metadata.

The information returned to the consumer determines the exact type of object a resource method
returns. This may seem obvious, but the mapping between Java return objects and what is returned to
a RESTful consumer is not one-to-one. At a minimum, RESTful consumers need to be returned a valid
HTTP return code in addition to any response entity body. The mapping of the data contained within a
Java object to a response entity is effected by the MIME types a consumer is willing to accept.

To address the issues involved in mapping Java object to RESTful response messages, resource
methods are allowed to return four types of Java constructs:

common Java types return basic information with HTTP return codes determined by the JAX-
RS runtime.

JAXB objects return complex information with HTTP return codes determined by the JAX-RS
runtime.

JAX-RS return complex information with a programmatically determined HTTP return status.
The Response object also allows HTTP headers to be specified.

JAX-RS return complex information with HTTP return codes determined by the JAX-RS
runtime. The GenericEnitity object provides more information to the runtime components
serializing the data.

4.1. RETURNING PLAIN JAVA CONSTRUCTS

Overview

In many cases a resource class can return a standard Java type, a JAXB object, or any object for which
the application has an entity provider. In these cases the runtime determines the MIME type
information using the Java class of the object being returned. The runtime also determines the
appropriate HTTP return code to send to the consumer.

Returnable types

Resource methods can return void or any Java type for which an entity writer is provided. By default,
the runtime has providers for the following:

the Java primitives

the Number representations of the Java primitives

JAXB objects

CHAPTER 4. RETURNING INFORMATION TO THE CONSUMER

31

the section called “Natively supported types” lists all of the return types supported by default. the
section called “Custom writers” describes how to implement a custom entity writer.

MIME types

The runtime determines the MIME type of the returned entity by first checking the resource method
and resource class for a @Produces annotation. If it finds one, it uses the MIME type specified in the
annotation. If it does not find one specified by the resource implementation, it relies on the entity
providers to determine the proper MIME type.

By default the runtime assign MIME types as follows:

Java primitives and their Number representations are assigned a MIME type of
application/octet-stream.

JAXB objects are assigned a MIME type of application/xml.

Applications can use other mappings by implementing custom entity providers as described in the
section called “Custom writers”.

Response codes

When resource methods return plain Java constructs, the runtime automatically sets the response's
status code if the resource method completes without throwing an exception. The status code is set as
follows:

204(No Content)—the resource method's return type is void

204(No Content)—the value of the returned entity is null

200(OK)—the value of the returned entity is not null

If an exception is thrown before the resource method completes the return status code is set as
described in Chapter 5, Handling Exceptions.

4.2. FINE TUNING AN APPLICATION'S RESPONSES

4.2.1. Basics of building responses

Overview

RESTful services often need more precise control over the response returned to a consumer than is
allowed when a resource method returns a plain Java construct. The JAX-RS Response class allows a
resource method to have some control over the return status sent to the consumer and to specify
HTTP message headers and cookies in the response.

Response objects wrap the object representing the entity that is returned to the consumer.
Response objects are instantiated using the ResponseBuilder class as a factory.

The ResponseBuilder class also has many of the methods used to manipulate the response's
metadata. For instance the ResonseBuilder class contains the methods for setting HTTP headers
and cache control directives.

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

32

Relationship between a response and a response builder

The Response class has a protected constructor, so they cannot be instantiated directly. They are
created using the ResponseBuilder class enclosed by the Response class. The ResponseBuilder
class is a holder for all of the information that will be encapsulated in the response created from it. The
ResponseBuilder class also has all of the methods responsible for setting HTTP header properties
on the message.

The Response class does provide some methods that ease setting the proper response code and
wrapping the entity. There are methods for each of the common response status codes. The methods
corresponding to status that include an entity body, or required metadata, include versions that allow
for directly setting the information into the associated response builder.

The ResponseBuilder class' build() method returns a response object containing the information
stored in the response builder at the time the method is invoked. After the response object is returned,
the response builder is returned to a clean state.

Getting a response builder

There are two ways to get a response builder:

Using the static methods of the Response class as shown in Example 4.1, “Getting a response
builder using the Response class”.

Example 4.1. Getting a response builder using the Response class

When getting a response builder this way you do not get access to an instance you can
manipulate in multiple steps. You must string all of the actions into a single method call.

Using the Apache CXF specific ResponseBuilderImpl class. This class allows you to work
directly with a response builder. However, it requires that you manually set all of the response
builders information manually.

Example 4.2, “Getting a response builder using the ResponseBuilderImpl class” shows how
Example 4.1, “Getting a response builder using the Response class” could be rewritten using
the ResponseBuilderImpl class.

Example 4.2. Getting a response builder using the ResponseBuilderImpl class

import javax.ws.rs.core.Response;

Response r = Response.ok().build();

import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(200);
Response r = builder.build();

CHAPTER 4. RETURNING INFORMATION TO THE CONSUMER

33

TIP

You could also simply assign the ResponseBuilder returned from a Response class'
method to a ResponseBuilderImpl object.

More information

For more information about the Response class see the Response class' Javadoc.

For more information about the ResponseBuilder class see the ResponseBuilder class' Javadoc.

For more information on the Apache CXF ResponseBuilderIml class see the
ResponseBuilderImpl Javadoc.

4.2.2. Creating responses for common use cases

Overview

The Response class provides shortcut methods for handling the more common responses that a
RESTful service will need. These methods handle setting the proper headers using either provided
values or default values. They also handle populating the entity body when appropriate.

Creating responses for successful requests

When a request is successfully processed the application needs to send a response to acknowledge
that the request has been fulfilled. That response may contain an entity.

The most common response when successfully completing a response is OK. An OK response typically
contains an entity that corresponds to the request. The Response class has an overloaded ok()
method that sets the response status to 200 and adds a supplied entity to the enclosed response
builder. There are five versions of the ok() method. The most commonly used variant are:

Response.ok()—creates a response with a status of 200 and an empty entity body.

Response.ok(java.lang.Object entity)—creates a response with a status of 200,
stores the supplied object in the responses entity body, and determines the entities media
type by introspecting the object.

Example 4.3, “Creating a response with an 200 response” shows an example of creating a response
with an OK status.

Example 4.3. Creating a response with an 200 response

import javax.ws.rs.core.Response;
import demo.jaxrs.server.Customer;
...

Customer customer = new Customer("Jane", 12);

return Response.ok(customer).build();

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

34

https://jsr311.dev.java.net/nonav/releases/1.0/javax/ws/rs/core/Response.html
https://jsr311.dev.java.net/nonav/releases/1.0/javax/ws/rs/core/Response.ResponseBuilder.html
http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/jaxrs/impl/ResponseBuilderImpl.html

For cases where the requester is not expecting an entity body, it may be more appropriate to send a
204 No Content status instead of an 200 OK status. The Response.noContent() method will
create an appropriate response object.

Example 4.4, “Creating a response with a 204 status” shows an example of creating a response with an
204 status.

Example 4.4. Creating a response with a 204 status

Creating responses for redirection

The Response class provides methods for handling three of the redirection response statuses.

303 See Other

The 303 See Other status is useful when the requested resource needs to permanently redirect
the consumer to a new resource to process the request.

The Response classes seeOther() method creates a response with a 303 status and places the
new resource URI in the message's Location field. The seeOther() method takes a single
parameter that specifies the new URI as a java.net.URI object.

304 Not Modified

The 304 Not Modified status can be used for different things depending on the nature of the
request. It can be used to signify that the requested resource has not changed since a previous GET
request. It can also be used to signify that a request to modify the resource did not result in the
resource being changed.

The Response classes notModified() methods creates a response with a 304 status and sets
the modified date property on the HTTP message. There are three versions of the notModified()
method:

notModified();

notModified(javax.ws.rs.core.Entity tag);

notModified(java.lang.String tag);

307 Temporary Redirect

The 307 Temporary Redirect status is useful when the requested resource needs to direct the
consumer to a new resource, but wants the consumer to continue using this resource to handle
future requests.

The Response classes temporaryRedirect() method creates a response with a 307 status and
places the new resource URI in the message's Location field. The temporaryRedirect()
method takes a single parameter that specifies the new URI as a java.net.URI object.

import javax.ws.rs.core.Response;

return Response.noContent().build();

CHAPTER 4. RETURNING INFORMATION TO THE CONSUMER

35

Example 4.5, “Creating a response with a 304 status” shows an example of creating a response with an
304 status.

Example 4.5. Creating a response with a 304 status

Creating responses to signal errors

The Response class provides methods to create responses for two basic processing errors:

serverError()();—creates a response with a status of 500 Internal Server Error.

notAcceptable()(java.util.List<javax.ws.rs.core.Variant> variants);—
creates a response with a 406 Not Acceptable status and an entity body containing a list of
acceptable resource types.

Example 4.6, “Creating a response with a 500 status” shows an example of creating a response with an
500 status.

Example 4.6. Creating a response with a 500 status

4.2.3. Handling more advanced responses

Overview

The Response class methods provide short cuts for creating responses for common cases. When you
need to address more complicated cases such as specifying cache control directives, adding custom
HTTP headers, or sending a status not handled by the Response class, you need to use the
ResponseBuilder classes methods to populate the response before using the build() method to
generate the response object.

TIP

As discussed in the section called “Getting a response builder” , you can use the Apache CXF
ResponseBuilderImpl class to create a response builder instance that can be manipulated directly.

Adding custom headers

Custom headers are added to a response using the ResponseBuilder class' header() method. The
header() method takes two parameters:

name—a string specifying the name of the header

import javax.ws.rs.core.Response;

return Response.notModified().build();

import javax.ws.rs.core.Response;

return Response.serverError().build();

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

36

value—a Java object containing the data stored in the header

You can set multiple headers on the message by calling the header() method repeatedly.

Example 4.7, “Adding a header to a response” shows code for adding a header to a response.

Example 4.7. Adding a header to a response

Adding a cookie

Custom headers are added to a response using the ResponseBuilder class' cookie() method. The
cookie() method takes one or more cookies. Each cookie is stored in a
javax.ws.rs.core.NewCookie object. The easiest of the NewCookie class' contructors to use
takes two parameters:

name—a string specifying the name of the cookie

value—a string specifying the value of the cookie

You can set multiple cookies by calling the cookie() method repeatedly.

Example 4.8, “Adding a cookie to a response” shows code for adding a cookie to a response.

Example 4.8. Adding a cookie to a response

WARNING

Calling the cookie() method with a null parameter list erases any cookies
already associated with the response.

Setting the response status

import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.header("username", "joe");
Response r = builder.build();

import javax.ws.rs.core.Response;
import javax.ws.rs.core.NewCookie;

NewCookie cookie = new NewCookie("username", "joe");

Response r = Response.ok().cookie(cookie).build();

CHAPTER 4. RETURNING INFORMATION TO THE CONSUMER

37

When you want to return a status other than one of the statuses supported by the Response class'
helper methods, you can use the ResponseBuilder class' status() method to set the response's
status code. The status() method has two variants. One takes an int that specifies the response
code. The other takes a Response.Status object to specify the response code.

The Response.Status class is an enumeration enclosed in the Response class. It has entries for
most of the defined HTTP response codes.

Example 4.9, “Adding a header to a response” shows code for setting the response status to 404 Not
Found.

Example 4.9. Adding a header to a response

Setting cache control directives

The ResponseBuilder class' cacheControl() method allows you to set the cache control headers
on the response. The cacheControl() method takes a javax.ws.rs.CacheControl object that
specifies the cache control directives for the response.

The CacheControl class has methods that correspond to all of the cache control directives supported
by the HTTP specification. Where the directive is a simple on or off value the setter method takes a
boolean value. Where the directive requires a numeric value, such as the max-age directive, the setter
takes an int value.

Example 4.10, “Adding a header to a response” shows code for setting the no-store cache control
directive.

Example 4.10. Adding a header to a response

4.3. RETURNING ENTITIES WITH GENERIC TYPE INFORMATION

Overview

import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(404);
Response r = builder.build();

import javax.ws.rs.core.Response;
import javax.ws.rs.core.CacheControl;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

CacheControl cache = new CacheControl();
cache.setNoCache(true);

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.cacheControl(cache);
Response r = builder.build();

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

38

There are occasions where the application needs more control over the MIME type of the returned
object or the entity provider used to serialize the response. The JAX-RS
javax.ws.rs.core.GenericEntity<T> class provides finer control over the serializing of entities
by providing a mechanism for specifying the generic type of the object representing the entity.

Using a GenericEntity<T> object

One of the criteria used for selecting the entity provider that serializes a response is the generic type
of the object. The generic type of an object represents the Java type of the object. When a common
Java type or a JAXB object is returned, the runtime can use Java reflection to determine the generic
type. However, when a JAX-RS Response object is returned, the runtime cannot determine the
generic type of the wrapped entity and the actual Java class of the object is used as the Java type.

To ensure that the entity provider is provided with correct generic type information, the entity can be
wrapped in a GenericEntity<T> object before being added to the Response object being returned.

Resource methods can also directly return a GenericEntity<T> object. In practice, this approach is
rarely used. The generic type information determined by reflection of an unwrapped entity and the
generic type information stored for an entity wrapped in a GenericEntity<T> object are typically
the same.

Creating a GenericEntity<T> object

There are two ways to create a GenericEntity<T> object:

1. Create a subclass of the GenericEntity<T> class using the entity being wrapped.
Example 4.11, “Creating a GenericEntity<T> object using a subclass” shows how to create a
GenericEntity<T> object containing an entity of type List<String> whose generic type
will be available at runtime.

Example 4.11. Creating a GenericEntity<T> object using a subclass

TIP

The subclass used to create a GenericEntity<T> object is typically anonymous.

2. Create an instance directly by supplying the generic type information with the entity.
Example 4.12, “Directly instantiating a GenericEntity<T> object” shows how to create a
response containing an entity of type AtomicInteger.

Example 4.12. Directly instantiating a GenericEntity<T> object

import javax.ws.rs.core.GenericEntity;

List<String> list = new ArrayList<String>();
...
GenericEntity<List<String>> entity =
 new GenericEntity<List<String>>(list) {};
Response response = Response.ok(entity).build();

import javax.ws.rs.core.GenericEntity;

CHAPTER 4. RETURNING INFORMATION TO THE CONSUMER

39

AtomicInteger result = new AtomicInteger(12);
GenericEntity<AtomicInteger> entity =
 new GenericEntity<AtomicInteger>(result,

result.getClass().getGenericSuperclass());
Response response = Response.ok(entity).build();

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

40

CHAPTER 5. HANDLING EXCEPTIONS

Abstract

When possible, exceptions caught by a resource method should cause a useful error to be returned to
the requesting consumer. JAX-RS resource methods can throw a WebApplicaitonException
exception. You can also provide ExceptionMapper<E> implementations to map exceptions to
appropriate responses.

5.1. USING WEBAPPLICAITONEXCEPTION EXCEPTIONS TO REPORT ERRORS

Overview

The JAX-RS API introduced the WebApplicationException runtime exception to provide an easy
way for resource methods to create exceptions that are appropriate for RESTful clients to consume.
WebApplicationException exceptions can include a Response object that defines the entity body
to return to the originator of the request. It also provides a mechanism for specifying the HTTP status
code to be returned to the client if no entity body is provided.

Creating a simple exception

The easiest means of creating a WebApplicaitonException exception is to use either the no
argument constructor or the constructor that wraps the original exception in a
WebApplicationException exception. Both constructors create a WebApplicaitonException
with an empty response.

When an exception created by either of these constructors is thrown, the runtime returns a response
with an empty entity body and a status code of 500 Server Error.

Setting the status code returned to the client

When you want to return an error code other than 500, you can use one of the four
WebApplicaitonException constructors that allow you to specify the status. Two of these
constructors, shown in Example 5.1, “Creating a WebApplicationException with a status code” ,
take the return status as an integer.

Example 5.1. Creating a WebApplicationException with a status code

WebApplicationException(int status);
WebApplicationException(java.lang.Throwable cause,
 int status);

The other two, shown in Example 5.2, “Creating a WebApplicationException with a status code”
take the response status as an instance of Response.Status.

Example 5.2. Creating a WebApplicationException with a status code

WebApplicationException(javax.ws.rs.core.Response.Status status);
WebApplicationException(java.lang.Throwable cause,
 javax.ws.rs.core.Response.Status status);

CHAPTER 5. HANDLING EXCEPTIONS

41

When an exception created by either of these constructors is thrown, the runtime returns a response
with an empty entity body and the specified status code.

Providing an entity body

If you want a message to be sent along with the exception, you can use one of the
WebApplicationException constructors that takes a Response object. The runtime uses the
Response object to create the response sent to the client. The entity stored in the response is
mapped to the entity body of the message and the status field of the response is mapped to the HTTP
status of the message.

Example 5.3, “Sending a message with an exception” shows code for returning a text message to a
client containing the reason for the exception and sets the HTTP message status to 409 Conflict.

Example 5.3. Sending a message with an exception

Extending the generic exception

It is possible to extend the WebApplicationException exception. This would allow you to create
custom exceptions and eliminate some boiler plate code.

Example 5.4, “Extending WebApplicationException” shows a new exception that creates a similar
response to the code in Example 5.3, “Sending a message with an exception” .

Example 5.4. Extending WebApplicationException

import javax.ws.rs.core.Response;
import javax.ws.rs.WebApplicationException;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

...
ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(Response.Status.CONFLICT);
builder.entity("The requested resource is conflicted.");
Response response = builder.build();
throw WebApplicationException(response);

public class ConflicteddException extends WebApplicationException
{
 public ConflictedException(String message)
 {
 ResponseBuilderImpl builder = new ResponseBuilderImpl();
 builder.status(Response.Status.CONFLICT);
 builder.entity(message);
 super(builder.build());
 }
}

...
throw ConflictedException("The requested resource is conflicted.");

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

42

5.2. MAPPING EXCEPTIONS TO RESPONSES

Overview

There are instances where throwing a WebApplicationException exception is impractical or
impossible. For example, you may not want to catch all possible exceptions and then create a
WebApplicationException for them. You may also want to use custom exceptions that make
working with your application code easier.

To handle these cases the JAX-RS API allows you to implement a custom exception provider that
generates a Response object to send to a client. Custom exception providers are created by
implementing the ExceptionMapper<E> interface. When registered with the Apache CXF runtime,
the custom provider will be used whenever an exception of type E is thrown.

How exception mappers are selected

Exception mappers are used in two cases:

When a WebApplicationException, or one of its subclasses, with an empty entity body is
thrown, the runtime will check to see if there is an exception mapper that handles
WebApplicationException exceptions. If there is the exception mapper is used to create
the response sent to the consumer.

When any exception other than a WebApplicationException exception, or one of its
subclasses, is thrown, the runtime will check for an appropriate exception mapper. An
exception mapper is selected if it handles the specific exception thrown. If there is not an
exception mapper for the specific exception that was thrown, the exception mapper for the
nearest superclass of the exception is selected.

If an exception mapper is not found for an exception, the exception is wrapped in an
ServletException exception and passed onto the container runtime. The container runtime will
then determine how to handle the exception.

Implementing an exception mapper

Exception mappers are created by implementing the javax.ws.rs.ext.ExceptionMapper<E>
interface. As shown in Example 5.5, “Exception mapper interface” , the interface has a single method,
toResponse(), that takes the original exception as a parameter and returns a Response object.

Example 5.5. Exception mapper interface

The Response object created by the exception mapper is processed by the runtime just like any other
Response object. The resulting response to the consumer will contain the status, headers, and entity
body encapsulated in the Response object.

public interface ExceptionMapper<E extends java.lang.Throwable>
{
 public Response toResponse(E exception);
}

CHAPTER 5. HANDLING EXCEPTIONS

43

Exception mapper implementations are considered providers by the runtime. Therefor they must be
decorated with the @Provder annotation.

If an exception occurs while the exception mapper is building the Response object, the runtime will a
response with a status of 500 Server Error to the consumer.

Example 5.6, “Mapping an exception to a response” shows an exception mapper that intercepts Spring
AccessDeniedException exceptions and generates a response with a 403 Forbidden status and
an empty entity body.

Example 5.6. Mapping an exception to a response

The runtime will catch any AccessDeniedException exceptions and create a Response object with
no entity body and a status of 403. The runtime will then process the Response object as it would for a
normal response. The result is that the consumer will receive an HTTP response with a status of 403.

Registering an exception mapper

Before a JAX-RS application can use an exception mapper, the exception mapper must be registered
with the runtime. Exception mappers are registered with the runtime using the jaxrs:providers
element in the application's configuration file.

The jaxrs:providers element is a child of the jaxrs:server element and contains a list of bean
elements. Each bean element defines one exception mapper.

Example 5.7, “Registering exception mappers with the runtime” shows a JAX-RS server configured to
use a an exception mapper.

Example 5.7. Registering exception mappers with the runtime

import javax.ws.rs.core.Response;
import javax.ws.rs.ext.ExceptionMapper;

import org.springframework.security.AccessDeniedException;

@Provider
public class SecurityExceptionMapper implements
ExceptionMapper<AccessDeniedException>
{

 public Response toResponse(AccessDeniedException exception)
 {
 return Response.status(Response.Status.FORBIDDEN).build();
 }

}

<beans ...>
 <jaxrs:server id="customerService" address="/">
 ...
 <jaxrs:providers>
 <bean id="securityException"
class="com.bar.providers.SecurityExceptionMapper"/>

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

44

 </jaxrs:providers>
 </jaxrs:server>
</beans>

CHAPTER 5. HANDLING EXCEPTIONS

45

CHAPTER 6. PUBLISHING A SERVICE

Abstract

How you publish a RESTful Web service depends on the runtime environment. Apache CXF allows you
to publish RESTful Web services as standalone applications. You can also publish them using Spring, a
servlet container, or an OSGi container.

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

46

CHAPTER 7. ENTITY SUPPORT

Abstract

The Apache CXF runtime supports a limited number of mappings between MIME types and Java objects
out of the box. Developers can extend the mappings by implementing custom readers and writers. The
custom readers and writers are registered with the runtime at start-up.

OVERVIEW

The runtime relies on JAX-RS MessageBodyReader and MessageBodyWriter implementations to
serialize and de-serialize data between the HTTP messages and their Java representations. The
readers and writers can restrict the MIME types they are capable of processing.

The runtime provides readers and writers for a number of common mappings. If an application requires
more advanced mappings, a developer can provide custom implementations of the
MessageBodyReader interface and/or the MessageBodyWriter interface. Custom readers and
writers are registered with the runtime when the application is started.

NATIVELY SUPPORTED TYPES

Table 7.1, “Natively supported entity mappings” lists the entity mappings provided by Apache CXF out
of the box.

Table 7.1. Natively supported entity mappings

Java Type MIME Type

primitive types text/plain

java.lang.Number text/plain

byte[] */*

java.lang.String */*

java.io.InputStream */*

java.io.Reader */*

java.io.File */*

javax.activation.DataSource */*

javax.xml.transform.Source text/xml, application/xml,
application/*+xml

javax.xml.bind.JAXBElement text/xml, application/xml,
application/*+xml

CHAPTER 7. ENTITY SUPPORT

47

JAXB annotated objects text/xml, application/xml,
application/*+xml

javax.ws.rs.core.MultivaluedMap<Stri
ng, String>

application/x-www-form-urlencoded [a]

javax.ws.rs.core.StreamingOutput */* [b]

[a] This mapping is used for handling HTML form data.

[b] This mapping is only supported for returning data to a consumer.

Java Type MIME Type

CUSTOM READERS

Custom entity readers are responsible for mapping incoming HTTP requests into a Java type that a
service's implementation can manipulate. They implement the
javax.ws.rs.ext.MessageBodyReader interface.

The interface, shown in Example 7.1, “Message reader interface” , has two methods that need
implementing:

Example 7.1. Message reader interface

isReadable()

The isReadable() method determines if the reader is capable of reading the data stream and
creating the proper type of entity representation. If the reader can create the proper type of entity
the method returns true.

package javax.ws.rs.ext;

public interface MessageBodyReader<T>
{
 public boolean isReadable(java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[]
annotations,
 javax.ws.rs.core.MediaType mediaType);

 public T readFrom(java.lang.Class<T> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType,
 javax.ws.rs.core.MultivaluedMap<String, String>
httpHeaders,
 java.io.InputStream entityStream)
 throws java.io.IOException, WebApplicationException;
}

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

48

Table 7.2, “Parameters used to determine if a reader can produce an entity” describes the
isReadable() method's parameters.

Table 7.2. Parameters used to determine if a reader can produce an entity

Parameter Type Description

type Class<T> Specifies the actual Java class
of the object used to store the
entity.

genericType Type Specifies the Java type of the
object used to store the entity.
For example, if the message
body is to be converted into a
method parameter, the value
will be the type of the method
parameter as returned by the
Method.getGenericParam
eterTypes() method.

annotations Annotation[] Specifies the list of annotations
on the declaration of the object
created to store the entity. For
example if the message body is
to be converted into a method
parameter, this will be the
annotations on that parameter
returned by the
Method.getParameterAnn
otations() method.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

readFrom()

The readFrom() method reads the HTTP entity and coverts it into the desired Java object. If the
reading is successful the method returns the created Java object containing the entity. If an error
occurs when reading the input stream the method should throw an IOException exception. If an
error occurs that requires an HTTP error response, an WebApplicationException with the
HTTP response should be thrown.

Table 7.3, “Parameters used to read an entity” describes the readFrom() method's parameters.

Table 7.3. Parameters used to read an entity

Parameter Type Description

type Class<T> Specifies the actual Java class
of the object used to store the
entity.

CHAPTER 7. ENTITY SUPPORT

49

genericType Type Specifies the Java type of the
object used to store the entity.
For example, if the message
body is to be converted into a
method parameter, the value
will be the type of the method
parameter as returned by the
Method.getGenericParam
eterTypes() method.

annotations Annotation[] Specifies the list of annotations
on the declaration of the object
created to store the entity. For
example if the message body is
to be converted into a method
parameter, this will be the
annotations on that parameter
returned by the
Method.getParameterAnn
otations() method.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

httpHeaders MultivaluedMap<String,
String>

Specifies the HTTP message
headers associated with the
entity.

entityStream InputStream Specifies the input stream
containing the HTTP entity.

Parameter Type Description

IMPORTANT

This method should not close the input stream.

Before an MessageBodyReader implementation can be used as an entity reader, it must be decorated
with the javax.ws.rs.ext.Provider annotation. The @Provider annotation alerts the runtime
that the supplied implementation provides additional functionality. The implementation must also be
registered with the runtime as described in the section called “Registering readers and writers” .

By default a custom entity provider handles all MIME types. You can limit the MIME types that a custom
entity reader will handle using the javax.ws.rs.Consumes annotation. The @Consumes annotation
specifies a comma separated list of MIME types that the custom entity provider reads. If an entity is
not of a specified MIME type, the entity provider will not be selected as a possible reader.

Example 7.2, “XML source entity reader” shows an entity reader the consumes XML entities and stores
them in a Source object.

Example 7.2. XML source entity reader

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

50

import java.io.IOException;
import java.io.InputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

import javax.ws.rs.Consumes;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.ext.MessageBodyReader;
import javax.ws.rs.ext.Provider;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.Source;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamSource;

import org.w3c.dom.Document;
import org.apache.cxf.jaxrs.ext.xml.XMLSource;

@Provider
@Consumes({"application/xml", "application/*+xml", "text/xml",
"text/html" })
public class SourceProvider implements MessageBodyReader<Object>
{
 public boolean isReadable(Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {
 return Source.class.isAssignableFrom(type) ||
XMLSource.class.isAssignableFrom(type);
 }

 public Object readFrom(Class<Object> source,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType,
 MultivaluedMap<String, String> httpHeaders,
 InputStream is)
 throws IOException
 {
 if (DOMSource.class.isAssignableFrom(source))
 {
 Document doc = null;
 DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
 DocumentBuilder builder;
 try
 {
 builder = factory.newDocumentBuilder();
 doc = builder.parse(is);
 }
 catch (Exception e)
 {
 IOException ioex = new IOException("Problem creating a Source

CHAPTER 7. ENTITY SUPPORT

51

CUSTOM WRITERS

Custom entity writers are responsible for mapping Java types into HTTP entities. They implement the
javax.ws.rs.ext.MessageBodyWriter interface.

The interface, shown in Example 7.3, “Message writer interface” , has three methods that need
implementing:

Example 7.3. Message writer interface

object");
 ioex.setStackTrace(e.getStackTrace());
 throw ioex;
 }

 return new DOMSource(doc);
 }
 else if (StreamSource.class.isAssignableFrom(source) ||
Source.class.isAssignableFrom(source))
 {
 return new StreamSource(is);
 }
 else if (XMLSource.class.isAssignableFrom(source))
 {
 return new XMLSource(is);
 }

 throw new IOException("Unrecognized source");
 }
}

package javax.ws.rs.ext;

public interface MessageBodyWriter<T>
{
 public boolean isWriteable(java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[]
annotations,
 javax.ws.rs.core.MediaType mediaType);

 public long getSize(T t,
 java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType);

 public void writeTo(T t,
 java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType,
 javax.ws.rs.core.MultivaluedMap<String, Object>
httpHeaders,

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

52

isWriteable()

The isWriteable() method determines if the entity writer can map the Java type to the proper
entity type. If the writer can do the mapping, the method returns true.

Table 7.4, “Parameters used to read an entity” describes the isWritable() method's parameters.

Table 7.4. Parameters used to read an entity

Parameter Type Description

type Class<T> Specifies the Java class of the
object being written.

genericType Type Specifies the Java type of object
to be written, obtained either by
reflection of a resource method
return type or via inspection of
the returned instance. The
GenericEntity class,
described in Section 4.3,
“Returning entities with generic
type information”, provides
support for controlling this
value.

annotations Annotation[] Specifies the list of annotations
on the method returning the
entity.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

getSize()

The getSize() method is called before the writeTo(). It returns the length, in bytes, of the
entity being written. If a positive value is returned the value is written into the HTTP message's
Content-Length header.

Table 7.5, “Parameters used to read an entity” describes the getSize() method's parameters.

Table 7.5. Parameters used to read an entity

Parameter Type Description

t generic Specifies the instance being
written.

 java.io.OutputStream entityStream)
 throws java.io.IOException, WebApplicationException;
}

CHAPTER 7. ENTITY SUPPORT

53

type Class<T> Specifies the Java class of the
object being written.

genericType Type Specifies the Java type of object
to be written, obtained either by
reflection of a resource method
return type or via inspection of
the returned instance. The
GenericEntity class,
described in Section 4.3,
“Returning entities with generic
type information”, provides
support for controlling this
value.

annotations Annotation[] Specifies the list of annotations
on the method returning the
entity.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

Parameter Type Description

writeTo()

The writeTo() method converts a Java object into the desired entity type and writes the entity to
the output stream. If an error occurs when writing the entity to the output stream the method
should throw an IOException exception. If an error occurs that requires an HTTP error response,
an WebApplicationException with the HTTP response should be thrown.

Table 7.6, “Parameters used to read an entity” describes the writeTo() method's parameters.

Table 7.6. Parameters used to read an entity

Parameter Type Description

t generic Specifies the instance being
written.

type Class<T> Specifies the Java class of the
object being written.

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

54

genericType Type Specifies the Java type of object
to be written, obtained either by
reflection of a resource method
return type or via inspection of
the returned instance. The
GenericEntity class,
described in Section 4.3,
“Returning entities with generic
type information”, provides
support for controlling this
value.

annotations Annotation[] Specifies the list of annotations
on the method returning the
entity.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

httpHeaders MultivaluedMap<String,
Object>

Specifies the HTTP response
headers associated with the
entity.

entityStream OutputStream Specifies the output stream into
which the entity is written.

Parameter Type Description

Before a MessageBodyWriter implementation can be used as an entity writer, it must be decorated
with the javax.ws.rs.ext.Provider annotation. The @Provider annotation alerts the runtime
that the supplied implementation provides additional functionality. The implementation must also be
registered with the runtime as described in the section called “Registering readers and writers” .

By default a custom entity provider handles all MIME types. You can limit the MIME types that a custom
entity writer will handle using the javax.ws.rs.Produces annotation. The @Produces annotation
specifies a comma separated list of MIME types that the custom entity provider generates. If an entity
is not of a specified MIME type, the entity provider will not be selected as a possible writer.

Example 7.4, “XML source entity writer” shows an entity writer that takes Source objects and
produces XML entities.

Example 7.4. XML source entity writer

import java.io.IOException;
import java.io.OutputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

import javax.ws.rs.Produces;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MediaType;

CHAPTER 7. ENTITY SUPPORT

55

import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.ext.MessageBodyWriter;
import javax.ws.rs.ext.Provider;
import javax.xml.transform.Source;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Document;

import org.apache.cxf.jaxrs.ext.xml.XMLSource;

@Provider
@Produces({"application/xml", "application/*+xml", "text/xml" })
public class SourceProvider implements MessageBodyWriter<Source>
{

 public boolean isWriteable(Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {
 return Source.class.isAssignableFrom(type);
 }

 public void writeTo(Source source,
 Class<?> clazz,
 Type genericType,
 Annotation[] annotations,
 MediaType mediatype,
 MultivaluedMap<String, Object> httpHeaders,
 OutputStream os)
 throws IOException
 {
 StreamResult result = new StreamResult(os);
 TransformerFactory tf = TransformerFactory.newInstance();
 try
 {
 Transformer t = tf.newTransformer();
 t.transform(source, result);
 }
 catch (TransformerException te)
 {
 te.printStackTrace();
 throw new WebApplicationException(te);
 }
 }

 public long getSize(Source source,
 Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

56

REGISTERING READERS AND WRITERS

Before a JAX-RS application can use any custom entity providers, the custom providers must be
registered with the runtime. Providers are registered with the runtime using either the
jaxrs:providers element in the application's configuration file or using the
JAXRSServerFactoryBean class.

The jaxrs:providers element is a child of the jaxrs:server element and contains a list of bean
elements. Each bean element defines one entity provider.

Example 7.5, “Registering entity providers with the runtime” show a JAX-RS server configured to use a
set of custom entity providers.

Example 7.5. Registering entity providers with the runtime

The JAXRSServerFactoryBean class is a Apache CXF extension that provides access to the
configuration APIs. It has a setProvider() method that allows you to add instantiated entity
providers to an application. Example 7.6, “Programmatically registering an entity provider” shows
code for registering an entity provider programmatically.

Example 7.6. Programmatically registering an entity provider

 return -1;
 }
}

<beans ...>
 <jaxrs:server id="customerService" address="/">
 ...
 <jaxrs:providers>
 <bean id="isProvider"
class="com.bar.providers.InputStreamProvider"/>
 <bean id="longProvider" class="com.bar.providers.LongProvider"/>
 </jaxrs:providers>
 </jaxrs:server>
</beans>

import org.apache.cxf.jaxrs.JAXRSServerFactoryBean;
...
JAXRSServerFactoryBean sf = new JAXRSServerFactoryBean();
...
SourceProvider provider = new SourceProvider();
sf.setProvider(provider);
...

CHAPTER 7. ENTITY SUPPORT

57

CHAPTER 8. CUSTOMIZING THE MEDIA TYPES HANDLED BY
A RESOURCE

Abstract

By default, resources process all requests using the media type specifier */*. You can restrict the
media types a resource will process using annotations.

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

58

CHAPTER 9. GETTING AND USING CONTEXT INFORMATION

Abstract

Context information includes detailed information about a resource's URI, the HTTP headers, and other
details that are not readily available using the other injection annotations. Apache CXF provides
special class that amalgamates the all possible context information into a single object.

9.1. INTRODUCTION TO CONTEXTS

Context annotation

You specify that context information is to be injected into a field or a resource method parameter
using the javax.ws.rs.core.Context annotation. Annotating a field or parameter of one of the
context types will instruct the runtime to inject the appropriate context information into the annotated
field or parameter.

Types of contexts

Table 9.1, “Context types” lists the types of context information that can be injected and the objects
that support them.

Table 9.1. Context types

Object Context information

UriInfo The full request URI

HttpHeaders The HTTP message headers

Request Information that can be used to determine the best
representation variant or to determine if a set of
preconditions have been set

SecurityContext Information about the security of the requester
including the authentication scheme in use, if the
request channel is secure, and the user principle

Where context information can be used

Context information is available to the following parts of a JAX-RS application:

resource classes

resource methods

entity providers

exception mappers

CHAPTER 9. GETTING AND USING CONTEXT INFORMATION

59

Scope

All context information injected using the @Context annotation is specific to the current request. This
is true in all cases including entity providers and exception mappers.

Adding contexts

The JAX-RS framework allows developers to extend the types of information that can be injected using
the context mechanism. You add custom contexts by implementing a Context<T> object and
registering it with the runtime.

For information on creating custom contexts see Section 9.8, “Adding custom contexts” .

9.2. WORKING WITH THE FULL REQUEST URI

The request URI contains a significant amount of information. Most of this information can be accessed
using method parameters as described in Section 3.2.1, “Injecting data from a request URI” , however
using parameters forces certain constraints on how the URI is processed. Using parameters to access
the segments of a URI also does not provide a resource access to the full request URI.

You can provide access to the complete request URI by injecting the URI context into a resource. The
URI is provided as a UriInfo object. The UriInfo interface provides functions for decomposing the
URI in a number of ways. It can also provide the URI as a UriBuilder object that allows you to
construct URIs to return to clients.

9.2.1. Injecting the URI information

Overview

When a class field or method parameter that is a UriInfo object is decorated with the @Context
annotation, the URI context for the current request is injected into the UriInfo object.

Example

Example 9.1, “Injecting the URI context into a class field” shows a class with a field populated by
injecting the URI context.

Example 9.1. Injecting the URI context into a class field

import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;
import javax.ws.rs.Path;
...
@Path("/monstersforhire/")
public class MonsterService
{
 @Context
 UriInfo requestURI;
 ...
}

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

60

9.2.2. Working with the URI

Overview

One of the main advantages of using the URI context is that it provides access to the base URI of the
service and the path segment of the URI for the selected resource. This information can be useful for a
number of purposes such as making processing decisions based on the URI or calculating URIs to
return as part of the response. For example if the base URI of the request contains a .com extension the
service may decide to use US dollars and if the base URI contains a .co.uk extension is may decide to
us British Pounds.

The UriInfo interface provides methods for accessing the parts of the URI:

the base URI

the resource path

the full URI

Getting the Base URI

The base URI is the root URI on which the service is published. It does not contain any portion of the
URI specified in any of the service's @Path annotations. For example if a service implementing the
resource defined in Example 3.5, “Disabling URI decoding” were published to http://fusesource.org
and a request was made on http://fusesource.org/montersforhire/nightstalker?12 the base URI would
be http://fusesource.org.

Table 9.2, “Methods for accessing a resource's base URI” describes the methods that return the base
URI.

Table 9.2. Methods for accessing a resource's base URI

Method Desription

URI getBaseUri(); Returns the service's base URI as a URI object.

UriBuilder getBaseUriBuilder(); Returns the base URI as a
javax.ws.rs.core.UriBuilder object. The
UriBuilder class is useful for creating URIs for
other resources implemented by the service.

Getting the path

The path portion of the request URI is the portion of the URI that was used to select the current
resource. It does not include the base URI, but does include any URI template variable and matrix
parameters included in the URI.

The value of the path depends on the resource selected. For example, the paths for the resources
defined in Example 9.2, “Getting a resource's path” would be:

rootPath — /monstersforhire/

getterPath — /mostersforhire/nightstalker

CHAPTER 9. GETTING AND USING CONTEXT INFORMATION

61

The GET request was made on /monstersforhire/nightstalker.

putterPath — /mostersforhire/911

The PUT request was made on /monstersforhire/911.

Example 9.2. Getting a resource's path

Table 9.3, “Methods for accessing a resource's path” describes the methods that return the resource
path.

Table 9.3. Methods for accessing a resource's path

Method Desription

String getPath(); Returns the resource's path as a decoded URI.

@Path("/monstersforhire/")
public class MonsterService
{
 @Context
 UriInfo rootUri;

 ...

 @GET
 public List<Monster> getMonsters(@Context UriInfo getUri)
 {
 String rootPath = rootUri.getPath();
 ...
 }

 @GET
 @Path("\{type}")
 public Monster getMonster(@PathParam("type") String type,
 @Context UriInfo getUri)
 {
 String getterPath = getUri.getPath();
 ...
 }

 @PUT
 @Path("\{id}")
 public void addMonster(@Encoded @PathParam("type") String type,
 @Context UriInfo putUri)
 {
 String putterPath = putUri.getPath();
 ...
 }
 ...
}

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

62

String getPath(boolean decode); Returns the resource's path. Specifying false
disables URI decoding.

List<PathSegment> getPathSegments()
;

Returns the decoded path as a list of
javax.ws.rs.core.PathSegment objects.
Each portion of the path, including matrix
parameters, is placed into a unique entry in the list.

For example the resource path box/round#tall
would result in a list with three entries: box, round,
and tall.

List<PathSegment> getPathSegments(b
oolean decode);

Returns the path as a list of
javax.ws.rs.core.PathSegment objects.
Each portion of the path, including matrix
parameters, is placed into a unique entry in the list.
Specifying false disables URI decoding.

For example the resource path box#tall/round
would result in a list with three entries: box, tall,
and round.

Method Desription

Getting the full request URI

Table 9.4, “Methods for accessing the full request URI” describes the methods that return the full
request URI. You have the option of returning the request URI or the absolute path of the resource. The
difference is that the request URI includes the any query parameters appended to the URI and the
absolute path does not include the query parameters.

Table 9.4. Methods for accessing the full request URI

Method Desription

URI getRequestUri(); Returns the complete request URI, including query
parameters and matrix parameters, as a
java.net.URI object.

UriBuilder getRequestUriBuilder(); Returns the complete request URI, including query
parameters and matrix parameters, as a
javax.ws.rs.UriBuilder object. The
UriBuilder class is useful for creating URIs for
other resources implemented by the service.

URI getAbsolutePath(); Returns the complete request URI, including matrix
parameters, as a java.net.URI object. The
absolute path does not include query parameters.

CHAPTER 9. GETTING AND USING CONTEXT INFORMATION

63

UriBuilder getAbsolutePathBuilder()
;

Returns the complete request URI, including matrix
parameters, as a javax.ws.rs.UriBuilder
object. The absolute path does not include query
parameters.

Method Desription

For a request made using the URI http://fusesource.org/montersforhire/nightstalker?12, the
getRequestUri() methods would return http://fusesource.org/montersforhire/nightstalker?12. The
getAbsolutePath() method would return http://fusesource.org/montersforhire/nightstalker.

9.2.3. Getting the value of URI template variables

Overview

As described in the section called “Setting the path” , resource paths can contain variable segments
that are bound to values dynamically. Often these variable path segments are used as parameters to a
resource method as described in the section called “Getting data from the URI's path” . You can,
however, also access them through the URI context.

Methods for getting the path parameters

The UriInfo interface provides two methods, shown in Example 9.3, “Methods for returning path
parameters from the URI context”, that return a list of the path parameters.

Example 9.3. Methods for returning path parameters from the URI context

MultivaluedMap<java.lang.String, java.lang.String> getPathParameters();
MultivaluedMap<java.lang.String,
java.lang.String> getPathParameters(boolean decode);

The getPathParameters() method that does not take any parameters automatically decodes the
path parameters. If you want to disable URI decoding use getPathParameters(false).

The values are stored in the map using their template identifiers as keys. For example if the URI
template for the resource is /{color}/box/{note} the returned map will have two entries with the keys
color and note.

Example

Example 9.4, “Extracting path parameters from the URI context” shows code for retrieving the path
parameters using the URI context.

Example 9.4. Extracting path parameters from the URI context

import javax.ws.rs.Path;
import javax.ws.rs.Get;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;
import javax.ws.rs.core.MultivaluedMap;

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

64

9.2.4. Getting the query parameters

9.2.5. Getting the matrix parameters

9.3. WORKING WITH THE HTTP HEADERS

9.4. WORKING WITH SECURITY INFORMATION

9.5. WORKING WITH PRECONDITIONS

9.6. WORKING WITH SERVLET CONTEXTS

9.7. WORKING WITH THE APACHE CXF CONTEXT OBJECT

9.8. ADDING CUSTOM CONTEXTS

@Path("/monstersforhire/")
public class MonsterService

 @GET
 @Path("\{type}\{size}")
 public Monster getMonster(@Context UriInfo uri)
 {
 MultivaluedMap paramMap = uri.getPathParameters();
 String type = paramMap.getFirst("type");
 String size = paramMap.getFirst("size");
 }
}

CHAPTER 9. GETTING AND USING CONTEXT INFORMATION

65

CHAPTER 10. ANNOTATION INHERITANCE

Abstract

JAX-RS annotations can be inherited by subclasses and classes implementing annotated interfaces.
The inheritance mechanism allows for subclasses and implementation classes to override the
annotations inherited from its parents.

OVERVIEW

Inheritance is one of the more powerful mechanisms in Java because it allows developers to create
generic objects that can then be specialized to meet particular needs. JAX-RS keeps this power by
allowing the annotations used in mapping classes to resources to be inherited from super classes.

JAX-RS's annotation inheritance also extends to support for interfaces. Implementation classes inherit
the JAX-RS annotations used in the interface they implement.

The JAX-RS inheritance rules do provide a mechanism for overriding inherited annotations. However, it
is not possible to completely remove JAX-RS annotations from a construct that inherits them from a
super class or interface.

INHERITANCE RULES

Resource classes inherit any JAX-RS annotations from the interface(s) it implements. Resource
classes also inherit any JAX-RS annotations from any super classes they extend. Annotations inherited
from a super class take precedence over annotations inherited from am interface.

In the code sample shown in Example 10.1, “Annotation inheritance”, the Kaijin class'
getMonster() method inherits the @Path, @GET, and @PathParam annotations from the Kaiju
interface.

Example 10.1. Annotation inheritance

public interface Kaiju
{
 @GET
 @Path("/{id}")
 public Monster getMonster(@PathParam("id") int id);
 ...
}

@Path("/kaijin")
public class Kaijin implements Kaiju
{
 public Monster getMonster(int id)
 {
 ...
 }
 ...
}

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

66

OVERRIDING INHERITED ANNOTATIONS

Overriding inherited annotations is as easy as providing new annotations. If the subclass, or
implementation class, provides any of its own JAX-RS annotations for a method then all of the JAX-RS
annotations for that method are ignored.

In the code sample shown in Example 10.2, “Overriding annotation inheritance”, the Kaijin class'
getMonster() method does not inherit any of the annotations from the Kaiju interface. The
implementation class overrides the @Produces annotation which causes all of the annotations from
the interface to be ignored.

Example 10.2. Overriding annotation inheritance

INDEX
Symbols

@Consumes, Custom readers

@Context, Context annotation, Overview

@CookieParam, Injecting information from a cookie

@DefaultValue, Specifying a default value to inject

@DELETE, Specifying HTTP verbs

@Encoded, Disabling URI decoding

@FormParam, Injecting data from HTML forms

@GET, Specifying HTTP verbs

public interface Kaiju
{
 @GET
 @Path("/{id}")
 @Produces("text/xml");
 public Monster getMonster(@PathParam("id") int id);
 ...
}

@Path("/kaijin")
public class Kaijin implements Kaiju
{

 @GET
 @Path("/{id}")
 @Produces("application/octect-stream");
 public Monster getMonster(@PathParam("id") int id)
 {
 ...
 }
 ...
}

INDEX

67

@HEAD, Specifying HTTP verbs

@HeaderParam, Injecting information from the HTTP headers

@MatrixParam, Using matrix parameters

@Path, Setting the path, Requirements, Specifying a sub-resource

@PathParam, Getting data from the URI's path

@POST, Specifying HTTP verbs

@Produces, Custom writers

@Provider, Implementing an exception mapper, Custom readers, Custom writers

@PUT, Specifying HTTP verbs

@QueryParam, Using query parameters

A

annotations

@Consumes (see @Consumes)

@Context (see @Context)

@CookieParam (see @CookieParam)

@DefaultValue (see @DefaultValue)

@DELETE (see @DELETE)

@Encoded (see @Encoded)

@FormParam (see @FormParam)

@GET (see @GET)

@HEAD (see @HEAD)

@HeaderParam (see @HeaderParam)

@MatrixParam (see @MatrixParam)

@Path (see @Path)

@PathParam (see @PathParam)

@POST (see @POST)

@Produces (see @Produces)

@Provider (see @Provider)

@PUT (see @PUT)

@QueryParam (see @QueryParam)

inheritance, Annotation Inheritance

B

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

68

build(), Relationship between a response and a response builder

C

CacheControl, Setting cache control directives

cacheControl(), Setting cache control directives

ContextResolver<T>, Adding contexts

cookie(), Adding a cookie

cookies, Injecting information from a cookie

E

entity parameter, Parameters

ExceptionMapper<E>, Implementing an exception mapper

F

form parameters, Injecting data from HTML forms

forms, Injecting data from HTML forms

G

GenericEntity<T>, Returning entities with generic type information

H

header(), Adding custom headers

HTML forms, Injecting data from HTML forms

HTTP

DELETE, Specifying HTTP verbs

GET, Specifying HTTP verbs

HEAD, Specifying HTTP verbs

POST, Specifying HTTP verbs

PUT, Specifying HTTP verbs

HTTP headers, Injecting information from the HTTP headers , Types of contexts

HttpHeaders, Types of contexts

M

matrix parameters, Using matrix parameters, Getting the matrix parameters

MessageBodyReader, Custom readers

MessageBodyWriter, Custom writers

INDEX

69

N

NewCookie, Adding a cookie

noContent(), Creating responses for successful requests

notAcceptable(), Creating responses to signal errors

notModified(), Creating responses for redirection

O

ok(), Creating responses for successful requests

P

parameter constraints, Parameters

PathSegment, Getting the path

Q

query parameters, Using query parameters, Getting the query parameters

R

Request, Types of contexts

ResourceComparator, Customizing the selection process

Response, Relationship between a response and a response builder , Providing an entity body ,
Implementing an exception mapper

Response.Status, Setting the status code returned to the client

ResponseBuilder, Relationship between a response and a response builder , Getting a response
builder, Handling more advanced responses

ResponseBuilderImpl, Getting a response builder, Handling more advanced responses

root resource

requirements, Requirements

root URI, Requirements, Working with the URI

S

SecurityContext, Types of contexts

seeOther(), Creating responses for redirection

serverError(), Creating responses to signal errors

status(), Setting the response status

sub-resource locator, Sub-resource locators

sub-resource method, Sub-resource methods

Red Hat JBoss Fuse 6.0 Developing RESTful Web Services

70

T

temporaryRedirect(), Creating responses for redirection

U

URI

decoding, Disabling URI decoding

injecting, Overview

matrix parameters, Using matrix parameters, Getting the matrix parameters

query parameters, Using query parameters, Getting the query parameters

root, Requirements, Working with the URI

template variables, Getting data from the URI's path , Getting the value of URI template
variables

UriBuilder, Getting the Base URI , Getting the full request URI

UriInfo, Types of contexts, Working with the full request URI

W

WebApplicationException, Using WebApplicaitonException exceptions to report errors

INDEX

71

	Table of Contents
	CHAPTER 1. INTRODUCTION TO RESTFUL WEB SERVICES
	OVERVIEW
	BASIC REST PRINCIPLES
	RESOURCES
	REST BEST PRACTICES
	DESIGNING A RESTFUL WEB SERVICE
	IMPLEMENTING REST WITH APACHE CXF
	DATA BINDINGS

	CHAPTER 2. CREATING RESOURCES
	2.1. INTRODUCTION
	Overview
	Types of resources
	Example

	2.2. BASIC JAX-RS ANNOTATIONS
	Overview
	Setting the path
	Specifying HTTP verbs

	2.3. ROOT RESOURCE CLASSES
	Overview
	Requirements
	Example

	2.4. WORKING WITH RESOURCE METHODS
	Overview
	General constraints
	Parameters
	Return values

	2.5. WORKING WITH SUB-RESOURCES
	Overview
	Specifying a sub-resource
	Sub-resource methods
	Sub-resource locators

	2.6. RESOURCE SELECTION METHOD
	Overview
	The basic selection algorithm
	Selecting from multiple resource classes
	Selecting from multiple resource methods
	Customizing the selection process

	CHAPTER 3. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS
	3.1. BASICS OF INJECTING DATA
	Overview
	When data is injected
	Supported data types

	3.2. USING JAX-RS APIS
	3.2.1. Injecting data from a request URI
	Overview
	Getting data from the URI's path
	Using query parameters
	Using matrix parameters
	Disabling URI decoding
	Error handling

	3.2.2. Injecting data from the HTTP message header
	Overview
	Injecting information from the HTTP headers
	Injecting information from a cookie
	Error handling

	3.2.3. Injecting data from HTML forms
	Overview
	Using the @FormParam annotation to inject form data
	Example

	3.2.4. Specifying a default value to inject
	Overview
	Syntax
	Dealing with lists and sets
	Example

	3.3. USING APACHE CXF EXTENSIONS
	Overview
	Supported injection annotations
	Syntax
	Example

	CHAPTER 4. RETURNING INFORMATION TO THE CONSUMER
	4.1. RETURNING PLAIN JAVA CONSTRUCTS
	Overview
	Returnable types
	MIME types
	Response codes

	4.2. FINE TUNING AN APPLICATION'S RESPONSES
	4.2.1. Basics of building responses
	Overview
	Relationship between a response and a response builder
	Getting a response builder
	More information

	4.2.2. Creating responses for common use cases
	Overview
	Creating responses for successful requests
	Creating responses for redirection
	Creating responses to signal errors

	4.2.3. Handling more advanced responses
	Overview
	Adding custom headers
	Adding a cookie
	Setting the response status
	Setting cache control directives

	4.3. RETURNING ENTITIES WITH GENERIC TYPE INFORMATION
	Overview
	Using a GenericEntity<T> object
	Creating a GenericEntity<T> object

	CHAPTER 5. HANDLING EXCEPTIONS
	5.1. USING WEBAPPLICAITONEXCEPTION EXCEPTIONS TO REPORT ERRORS
	Overview
	Creating a simple exception
	Setting the status code returned to the client
	Providing an entity body
	Extending the generic exception

	5.2. MAPPING EXCEPTIONS TO RESPONSES
	Overview
	How exception mappers are selected
	Implementing an exception mapper
	Registering an exception mapper

	CHAPTER 6. PUBLISHING A SERVICE
	CHAPTER 7. ENTITY SUPPORT
	OVERVIEW
	NATIVELY SUPPORTED TYPES
	CUSTOM READERS
	CUSTOM WRITERS
	REGISTERING READERS AND WRITERS

	CHAPTER 8. CUSTOMIZING THE MEDIA TYPES HANDLED BY A RESOURCE
	CHAPTER 9. GETTING AND USING CONTEXT INFORMATION
	9.1. INTRODUCTION TO CONTEXTS
	Context annotation
	Types of contexts
	Where context information can be used
	Scope
	Adding contexts

	9.2. WORKING WITH THE FULL REQUEST URI
	9.2.1. Injecting the URI information
	Overview
	Example

	9.2.2. Working with the URI
	Overview
	Getting the Base URI
	Getting the path
	Getting the full request URI

	9.2.3. Getting the value of URI template variables
	Overview
	Methods for getting the path parameters
	Example

	9.2.4. Getting the query parameters
	9.2.5. Getting the matrix parameters

	9.3. WORKING WITH THE HTTP HEADERS
	9.4. WORKING WITH SECURITY INFORMATION
	9.5. WORKING WITH PRECONDITIONS
	9.6. WORKING WITH SERVLET CONTEXTS
	9.7. WORKING WITH THE APACHE CXF CONTEXT OBJECT
	9.8. ADDING CUSTOM CONTEXTS

	CHAPTER 10. ANNOTATION INHERITANCE
	OVERVIEW
	INHERITANCE RULES
	OVERRIDING INHERITED ANNOTATIONS

	INDEX

