
Red Hat Fuse 7.2

Designing APIs with Apicurito

Designing REST APIs for Fuse on OpenShift applications

Last Updated: 2020-03-27

Red Hat Fuse 7.2 Designing APIs with Apicurito

Designing REST APIs for Fuse on OpenShift applications

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using the Apicurito web-based REST API designer

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. ADD APICURITO AS A SERVICE TO YOUR OPENSHIFT PROJECT

CHAPTER 2. DESIGN AND DEVELOP AN API DEFINITION WITH APICURITO
2.1. CREATING A REST API DEFINITION
2.2. RESOLVING ISSUES IN APICURITO

CHAPTER 3. IMPLEMENT, BUILD, AND DEPLOY A FUSE APPLICATION BASED ON A REST API
3.1. UPLOADING AN API DEFINITION TO APICURITO
3.2. GENERATING A FUSE CAMEL PROJECT FROM APICURITO
3.3. COMPLETING THE APICURITO-GENERATED CAMEL PROJECT
3.4. BUILDING AND DEPLOYING A REST SERVICE

CHAPTER 4. DISCOVER AN API SERVICE IN 3SCALE
4.1. ADDING ANNOTATIONS FOR FUSE PROJECTS THAT ARE NOT GENERATED BY APICURITO
4.2. CUSTOMIZING THE API SERVICE ANNOTATION VALUES
4.3. FABRIC8 SERVICE DISCOVERY ENRICHER ELEMENTS

3

4

7
7

13

17
17
19
19

20

22
22
24
26

Table of Contents

1

Red Hat Fuse 7.2 Designing APIs with Apicurito

2

PREFACE
Red Hat Fuse on OpenShift provides Apicurito, a web-based API designer, that you can use to design
REST APIs that comply with the OpenAPI 2.0 specification, a vendor-neutral and portable open
description format for API services. Apicurito is a “light” version of the Apicurio Studio open source
project (https://www.apicur.io/). This means that your Apicurito design sessions are stateless and you
must save your API definition as a JSON file at the end of each session.

You can also use Apicurito to generate a preliminary Fuse project based on a REST API definition. In
your Fuse development environment, you can then complete the project’s Camel routes and build the
project. Finally, you can deploy the resulting REST service on Fuse on OpenShift.

Here is an overview of how you can use Apicurito to incorporate REST APIs in your Fuse on OpenShift
application solution:

1. Add Apicurito as a service to your OpenShift project.

2. In the Apicurito web-based designer:

Create an API definition with Apicurito. Save the REST API definition as a JSON file to your
local file system. You can save your API definition at any point during your editing session,
even if the API definition is not complete.

Upload an API definition to Apicurito.

Generate a Fuse Camel project based on the current REST API definition. Apicurito
provides a downloadable zip file that contains a complete Maven project.

3. In your Fuse development environment, complete the skeleton implementation provided by the
generated Fuse project.

4. Build and deploy the Fuse application to OpenShift.

5. (Optional) Integrate the Fuse application with Red Hat 3scale API Management, using the
3scale service discovery capability to find and configure your Fuse application.

The following chapters provide details on how to use Apicurito:

Chapter 1, Add Apicurito as a service to your OpenShift project

Chapter 2, Design and develop an API definition with Apicurito

Chapter 3, Implement, build, and deploy a Fuse application based on a REST API

For information about the 3scale service discovery capability, see the Chapter 4, Discover an API service
in 3scale chapter.

PREFACE

3

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://www.apicur.io/

CHAPTER 1. ADD APICURITO AS A SERVICE TO YOUR
OPENSHIFT PROJECT

You can add Apicurito as a service to your OpenShift project from the OpenShift service catalog. You
can access this instance at a URL external to the OpenShift environment.

Prerequisites

Obtain the hostname that will allow you to access Apicurito by following the guidelines
recommended by your OpenShift system administrator.

Verify that the Fuse on OpenShift images and templates, including apicurito-ui and fuse-
apicurito-generator, are installed on your OpenShift cluster, by running the following command
in a command window:

oc get is -n openshift

If the images and templates are not pre-installed, or if the provided versions are out of date,
install (or update) the Fuse on OpenShift images and templates as described in the Fuse on
OpenShift Guide.

Procedure

To add Apicurito as a service to your OpenShift project:

1. In a command window, log in to the OpenShift server:

oc login -u developer -p developer

2. Create a new project namespace. For example, the following command creates a new project
named test:

oc new-project test

3. In your web browser, open the OpenShift console and log in with your credentials (for example,
username developer and password developer).

4. Click Catalog. In the Catalog search field, type Apicurito and then select Red Hat Fuse
Apicurito.

The Information step of the Red Hat Fuse Apicurito wizard opens.

5. Click Next.
The Configuration step of the Red Hat Fuse Apicurito wizard opens.

6. In the Image Stream Namespace field, type openshift.

Red Hat Fuse 7.2 Designing APIs with Apicurito

4

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/fuse_on_openshift_guide/

7. In the ROUTE_HOSTNAME field, type the external hostname that allows you to access the
Apicurito instance, for example apicurito-myproject.192.168.64.43.nip.io.

8. Accept the default values for the rest of the settings in the Configuration step and click
Create.
The Results step of the template wizard opens.

9. Click Close.

10. In the OpenShift web console, in the My Projects pane, select the project, for example select
test.
The project’s Overview tab opens, showing the apicurito-ui application.

CHAPTER 1. ADD APICURITO AS A SERVICE TO YOUR OPENSHIFT PROJECT

5

11. Click the arrow to the left of the apicurito-ui deployment to expand and view the deployment
details:

12. Click the link for the Aplicurito instance, for example https://apicurito-
myproject.192.168.64.43.nip.io.
Apicurito opens in a new web browser window or tab:

NOTE

If you cannot open the Apicurito instance, you might need to edit your computer’s
/etc/hosts file to add the ROUTE_HOSTNAME using the following syntax, where
$OPENSHIFT_IP_ADDR is the IP address for the OpenShift server and apicurito.my-
minishift.apicurio.io is the ROUTE_HOSTNAME that you specified in step 7.

$OPENSHIFT_IP_ADDR apicurito.my-minishift.apicurio.io

Red Hat Fuse 7.2 Designing APIs with Apicurito

6

https://apicurito-myproject.192.168.64.43.nip.io

CHAPTER 2. DESIGN AND DEVELOP AN API DEFINITION WITH
APICURITO

You can use Apicurito to design and develop a REST API definition that complies with the OpenAPI 2.0
specification.

Prerequisites

You created an OpenShift project.

You added the Apicurito service to your OpenShift project.

2.1. CREATING A REST API DEFINITION

The following steps describe how to create an example REST API definition for managing address data
(including information such as street, city, state, zipcode, and so on). To implement the address example,
you create two paths - one for addresses and one for a specific address. You then define operations to
get a list of all addresses, add an address, update an address, get the details of an address, and delete an
address.

NOTE

Apicurito is stateless, meaning that it does not save your work between OpenShift
sessions. You need to save the API to your local file system between sessions.

Prerequisites

You created an OpenShift project.

You added the Apicurito service to your OpenShift project.

You know the endpoints for the API that you want to create. For the Address example, there are
two endpoints: addresses and addresses{addressId}.

Procedure

1. Log in to your OpenShift web console and then open the project that contains Apicurito.

2. In the list of applications, click the URL for Apicurito, for example https://apicurito-
myproject.192.168.64.43.nip.io

CHAPTER 2. DESIGN AND DEVELOP AN API DEFINITION WITH APICURITO

7

https://apicurito-myproject.192.168.64.43.nip.io

A new browser window or tab opens for Apicurito:

NOTE

Because Apicurito is a “light” version of the Apicurio Studio open source project ,
"Apicurio" shows in the Apicurito interface.

3. Click New API.
A new API page opens.

Red Hat Fuse 7.2 Designing APIs with Apicurito

8

https://www.apicur.io/

By default, the API name is New API, the version is 1.0, and the input and output types are
application/json.

4. To change the API name:

a. Hover the cursor over the name and then click the edit icon () that appears.

b. Edit the name. For example, type AddressBook API.

c. Click Save.

5. Optionally:

Add your contact information (name, email address, and URL).

Select a license.

Define tags.

Select a security scheme.

Specify security requirements.

6. Define a relative path to each individual endpoint of the API. The field name must begin with a
slash (/).
For the AddressBook API example, create two paths:

A path for addresses: /addresses

A path for a specific address by ID: /addresses/{addressId}

CHAPTER 2. DESIGN AND DEVELOP AN API DEFINITION WITH APICURITO

9

7. Specify the type of any path parameters.
For the addressID parameter example:

a. In the Paths list, click /addresses/{addressId}.
The addressId parameter appears in the PATH PARAMETERS section.

b. Click Create, and then click Edit.

c. For the type, select string.

d. Accept string for the format, and then click OK.

8. In the Data Types section, define reusable types for the API.

a. Click Add a data type.

b. In the Add Data Type dialog, type a name, for example Address.

c. Optionally, you can provide an example from which Apicurito creates the data type’s
schema. You can then edit the generated schema.
For the AddressBook API example, start with the following JSON example:

{
"Id" : "12345",
"City" : "Boston",
"State" : "MA"
}

Red Hat Fuse 7.2 Designing APIs with Apicurito

10

d. Optionally, you can choose to create a REST Resource with the data type.

e. Click Save. If you provided an example, Apicurito generates a schema from the example:

You can add edit the properties and add new ones, for example street, zipcode, and
country.

9. For each path, define operations (GET, PUT, POST, DELETE, OPTIONS, HEAD, and PATCH).
For the AddressBook API example, define the following operations:

/addresses path:

GET - Lists all addresses.

POST - Adds an address.

/addresses/{addressId} path:

CHAPTER 2. DESIGN AND DEVELOP AN API DEFINITION WITH APICURITO

11

GET - Gets an address.

PUT - Updates an address.

DELETE - Deletes an address.

10. For each operation define a response.
For the AddressBook API example:

To define a response for the /addresses GET operation:

a. Click the green GET button.

b. Click Add a response.

c. For Response Status Code, select 200 and then click Add.

To define a response for the /addresses POST operation:

a. Click the POST button.

b. For Request Body Type, select Address.

c. For Response, click Add a response.

d. For Response Status Code, select 201 Created and then click Add.

11. For each response, provide a description.
For example:

Red Hat Fuse 7.2 Designing APIs with Apicurito

12

12. Resolve any issues, as described in Section 2.2, “Resolving issues in Apicurito” .

13. Click Save As → Save as JSON.
The JSON file is downloaded to your local download folder. The default filename is openapi-
spec.

Additional resources

For information about the OpenAPI 2.0 Specification, go to: https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/2.0.md

2.2. RESOLVING ISSUES IN APICURITO

When you create and edit an API, Apicurito identifies issues that you must resolve with an exclamation (!)
icon.

Prerequisites

Open an API in Apicurito.

Procedure

1. Find an issue indicated by an exclamation (!) icon. For example:

CHAPTER 2. DESIGN AND DEVELOP AN API DEFINITION WITH APICURITO

13

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

2. Click the exclamation icon to view a description of the issue. For example:

3. Based on the information provided by the issue description, navigate to the location of the issue
and fix it.
For example, open the PUT operation and then add a description for the response.

After you add a description, the issue is resolved and the exclamation icon disappears:

Red Hat Fuse 7.2 Designing APIs with Apicurito

14

4. For a summary of all issues:

a. Click the Issues link in the upper right corner.

b. Click Go to a problem for a specific issue to go to the location of the issue so that you can
resolve it.

CHAPTER 2. DESIGN AND DEVELOP AN API DEFINITION WITH APICURITO

15

Red Hat Fuse 7.2 Designing APIs with Apicurito

16

CHAPTER 3. IMPLEMENT, BUILD, AND DEPLOY A FUSE
APPLICATION BASED ON A REST API

You can use Red Hat Fuse Apicurito to generate a Camel Fuse project based on a REST API definition.
In your Fuse development environment, you can complete the Camel routes and Rest DSL API. Finally,
you can build the project and deploy the resulting application to Fuse on OpenShift.

Prerequisites

You have an existing API definition, which complies with the OpenAPI 2.0 specification. For
example, an openapi-spec.json file that you created with Apicurito.

Apicurito is installed and running on your local OpenShift cluster.

You have an existing OpenShift project with Apicurito added as a service.

You have installed Maven and Red Hat Fuse.

The following topics describe how to implement, build, and deploy a Fuse application based on a REST
API:

Section 3.1, “Uploading an API definition to Apicurito”

Section 3.2, “Generating a Fuse Camel project from Apicurito”

Section 3.3, “Completing the Apicurito-generated Camel project”

Section 3.4, “Building and deploying a REST service”

3.1. UPLOADING AN API DEFINITION TO APICURITO

You can upload an existing API definition to Apicurito.

Prerequisites

You have an existing API definition, which complies with the OpenAPI 2.0 specification. For
example, an openapi.json file that you created with Apicurito.

Apicurito is installed and running on your local OpenShift cluster.

You have an existing OpenShift project with Apicurito added as an application.

Procedure

1. In your OpenShift web console, open the project that contains Apicurito.

2. Open the Apicurito console. In the list of applications for the project, click the URL under
apicurito. For example: https://apicurito-myproject.192.168.64.38.nip.io

CHAPTER 3. IMPLEMENT, BUILD, AND DEPLOY A FUSE APPLICATION BASED ON A REST API

17

https://apicurito-myproject.192.168.64.38.nip.io

The Apicurito console opens in a separate web browser tab or window:

3. Click Open API.
A file manager window opens.

4. In the file manager window:

a. Navigate to the folder that contains the existing OpenAPI definition file, for example,
openapi.json.

b. Select the OpenAPI definition file and then click Open.
The OpenAPI definition opens in the Apicurito console. For example:

Red Hat Fuse 7.2 Designing APIs with Apicurito

18

3.2. GENERATING A FUSE CAMEL PROJECT FROM APICURITO

You can use Apicurito to generate a Fuse Camel project based on an API definition.

Prerequisites

Apicurito is installed and running on your local OpenShift cluster.

You have an existing OpenShift project with Apicurito added as an application.

You have created or opened an API definition file in the Apicurito console.

Procedure

In the Apicurito console:

1. Click Generate.

2. Select Fuse Camel Project from the drop-down list.

Apicurito generates a camel-project.zip file and downloads it to your local default download folder.

The zip file contains a Fuse Camel project that provides a default skeleton implementation of the API
definition using Camel’s Rest DSL and includes all resource operations. The project also includes the
original OpenAPI definition file that you used to generate the project.

3.3. COMPLETING THE APICURITO-GENERATED CAMEL PROJECT

Apicurito generates a Fuse project that provides a default skeleton implementation of the API definition
using Camel’s Rest DSL and covering all resource operations. In your Fuse development environment,
you complete the project.

Prerequisites

You have a camel-project.zip file generated by Apicurito.

CHAPTER 3. IMPLEMENT, BUILD, AND DEPLOY A FUSE APPLICATION BASED ON A REST API

19

(Optional) You have installed Red Hat Developer Studio with Fuse Tooling.

Procedure

1. Unzip the Apicurito-generated camel-project.zip file to a temporary folder.

2. Open Red Hat Developer Studio.

3. In Developer Studio, select File → Import.

4. In the Import dialog, select Maven → Existing Maven Projects.

5. Open the project’s camel-context.xml file in the editor view.

6. Click the REST tab to edit the Rest DSL components.
For information on defining REST services, see the "Defining REST services" section of the
Apache Camel Development Guide .

For information on extending JAX-RS endpoints with Swagger support, see the Apache CXF
Development Guide.

For information on using the Fuse Tooling REST editor, see the "Viewing and editing Rest DSL
components" section of the Tooling User Guide .

7. In the Design tab, edit the Camel routes.
For information on editing Camel routes, see the "Editing a routing context in the route editor"
section of the Tooling User Guide .

3.4. BUILDING AND DEPLOYING A REST SERVICE

After you complete the Fuse project, you can build and deploy the project in OpenShift.

Prerequisites

You have a complete, error-free Fuse project that defines a REST service.

You have installed Java 8 JDK (or later) and Maven 3.3.x (or later).

Procedure

If you have a single-node OpenShift cluster, such as Minishift or the Red Hat Container Development
Kit, installed and running, you can deploy your project there.

To deploy this project to a running single-node OpenShift cluster:

1. Log in to your OpenShift cluster:

2. Create a new OpenShift project for the project. For example, the following command creates a
new project named test-deploy.

$ oc new-project test-deploy

3. Change the directory to the folder that contains your Fuse Camel project (for example,

$ oc login -u developer -p developer

Red Hat Fuse 7.2 Designing APIs with Apicurito

20

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/apache_camel_development_guide/index
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/apache_cxf_development_guide/index
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/tooling_user_guide/index
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/tooling_user_guide/index
http://appdev.openshift.io/docs/minishift-installation.html

3. Change the directory to the folder that contains your Fuse Camel project (for example,
myworkspace/camel-project) :

$ cd myworkspace/camel-project

4. Build and deploy the project to the OpenShift cluster:

5. In your browser, open the OpenShift console and navigate to the project (for example, test-
deploy). Wait until you can see that the pod for the camel-project application has started.

6. On the project’s Overview page, locate the URL for the camel-project application. The URL
uses this form: http://camel-project-MY_PROJECT_NAME.OPENSHIFT_IP_ADDR.nip.io.

7. Click the URL to access the service.

$ mvn clean fabric8:deploy -Popenshift

CHAPTER 3. IMPLEMENT, BUILD, AND DEPLOY A FUSE APPLICATION BASED ON A REST API

21

http://camel-project-my_project_name.openshift_ip_addr.nip.io

CHAPTER 4. DISCOVER AN API SERVICE IN 3SCALE
Red Hat 3scale API Management is an offering from Red Hat that enables you to regulate access to API
services on the public Internet. The functionality of 3scale includes the ability to enforce service-level
agreements (SLAs), manage API versions, provide security and authentication services and more. Fuse
supports a service discovery feature for 3scale, which makes it easy to discover Fuse services from the
3scale Admin Portal UI. Using service discovery, you can scan for Fuse applications running in the same
OpenShift cluster and automatically import the associated API definitions into 3scale.

Prerequisites

A Fuse application that provides an API service is deployed and running in OpenShift.

The Fuse application is annotated with the requisite annotations to make it discoverable by
3scale.

NOTE

Fuse projects that are generated by Apicurito are pre-configured to
automatically provide the requisite annotations.

For Fuse projects that are not generated by Apicurito, you must configure your
project as described in Section 4.1, “Adding annotations for Fuse projects that
are not generated by Apicurito”.

The 3scale API Management system is deployed on the same OpenShift cluster as the API
service that is to be discovered.

For details of the procedure to discover an API service in 3scale, see Using Service Discovery in the Red
Hat 3scale API Management Service Discovery guide.

Additional resources

Red Hat 3scale API Management product page .

Red Hat 3scale API Management documentation .

4.1. ADDING ANNOTATIONS FOR FUSE PROJECTS THAT ARE NOT
GENERATED BY APICURITO

In order for 3scale to discover an API service, the Fuse application that provides the API service must
include Kubernetes Service Annotations that make it discoverable. These annotations are provided by
the Fabric8 service discovery enricher which is part of the Fabric8 Maven Plugin.

For Apache Camel Rest DSL projects, the Fabric8 Maven Plugin runs the Fabric8 service discovery
enricher by default.

Fuse projects that are generated by Apicurito are pre-configured to automatically provide the required
annotations.

Procedure

For a Fuse Rest DSL project that is not generated by Apicurito, configure the project as follows:

1. Edit the Fuse project’s pom.xml file to include the fabric8-maven-plugin dependency, as

Red Hat Fuse 7.2 Designing APIs with Apicurito

22

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.4/html-single/service_discovery/#service-discovery-procedure
https://access.redhat.com/products/red-hat-3scale/
https://doc-stage.usersys.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.4/

1. Edit the Fuse project’s pom.xml file to include the fabric8-maven-plugin dependency, as
shown in this example:

The Fabric8 Maven Plugin runs the Fabric8 service discovery enricher if certain project-level
conditions are met (for example, the project must be a Camel Rest DSL project). You do not
need to specify the Fabric8 service discovery enricher as a dependency in the pom.xml file,
unless you want to customize the enricher’s behavior (as described in Section 4.2, “Customizing
the API service annotation values”.)

2. In the Fuse Rest DSL project’s camel-context.xml file, specify the following attributes in the
restConfiguration element:

scheme: The scheme part of the URL where the service is hosted. You can specify “http” or
“https”.

contextPath: The path part of the URL where the API service is hosted.

apiContextPath: The path to the location where the API service description document is
hosted. You can specify either a relative path if the document is self-hosted or a full URL if
the document is hosted externally.
The following excerpt from an example camel-context.xml file shows annotation attribute
values in the restConfiguration element:

The enricher uses the information provided by these restConfiguration element attribute values to
create values for the discovery.3scale.net/scheme, discovery.3scale.net/path, and the
discovery.3scale.net/description-path annotations, thereby making the project’s deployed OpenShift
service discoverable by 3scale as described in the Making a service discoverable section of the Red Hat
3scale API Management Service Discovery guide.

<plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>${fuse.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <restConfiguration component="servlet" scheme="https"
 contextPath="myapi" apiContextPath="myapi/openapi.json"/>
...

CHAPTER 4. DISCOVER AN API SERVICE IN 3SCALE

23

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.4/html-single/service_discovery/#making-service-discoverable

The enricher adds the following label and annotations to make the service discoverable by 3scale:

The discovery.3scale.net label: By default, the enricher sets this value to “true”. 3scale uses
this label when it executes the selector definition to find all services that need discovery.

The following annotations:

discovery.3scale.net/discovery-version: (optional) The version of the 3scale discovery
process. The enricher sets this value to "v1" by default.

discovery.3scale.net/scheme: The scheme part of the URL where the service is hosted.
The enricher uses the default "http" unless you override it in the restConfiguration
element’s scheme attribute. The other possible value is "https".

discovery.3scale.net/path: The path part of the URL where the service is hosted. This
annotation is omitted when the path is at root, "/". The enricher gets this value from the
restConfiguration element’s path attribute.

discovery.3scale.net/port: The port of the service. The enricher obtains this value from the
Kubernetes service definition, which contains the the port numbers of the services it
exposes. If the Kubernetes service definition exposes more than one service, the enricher
uses the first port listed.

discovery.3scale.net/description-path: (optional) The path to the OpenAPI service
description document. The enricher gets this value from the restConfiguration element’s
contextPath attribute.

You can customize the behavior of the Fabric8 service discovery enricher, as described in Section 4.2,
“Customizing the API service annotation values”.

4.2. CUSTOMIZING THE API SERVICE ANNOTATION VALUES

The Maven Fabric8 Plugin runs the Fabric8 service discovery enricher by default. The enricher adds
annotations to the Fuse Rest DSL project’s API service so that the API service is discoverable by 3scale,
as described in Using Service Discovery in the Red Hat 3scale API Management Service Discovery
guide.

The enricher uses default values for some annotations and obtains values for other annotations from
the project’s camel-context.xml file.

You can override the default values and the values defined in the camel-context.xml file by defining
values in the Fuse project pom.xml file or in a service.yml file. (If you define values in both files, the
enricher uses the values from the service.yml file.) See Section 4.3, “Fabric8 service discovery enricher
elements” for a description of the elements that you can specify for the Fabric8 service discovery
enricher.

Procedure

To specify annotation values in the Fuse project pom.xml file:

1. Open your Fuse project’s pom.xml file in an editor of your choice.

2. Locate the fabric8-maven-plugin dependency, as shown in this example:

<plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>

Red Hat Fuse 7.2 Designing APIs with Apicurito

24

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.4/html-single/service_discovery/#service-discovery-procedure

3. Add the Fabric8 service discovery enricher as a dependency to the Fabric8-Maven plugin as
shown in the following example.

4. Save your changes.

Alternatively, you can use a src/main/fabric8/service.yml fragment to override the annotation values,
as shown in the following example:

kind: Service
name:
metadata:
 labels:

 <version>${fuse.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

<plugin>
 <groupId>org.jboss.redhat-fuse</groupId>
 <artifactId>fabric8-maven-plugin</artifactId>
 <version>${fuse.version}</version>
 <executions>
 <execution>
 <goals>
 <goal>resource</goal>
 <goal>build</goal>
 </goals>
 </execution>
 </executions>
 <dependencies>
 <dependency>
 <groupId>io.acme</groupId>
 <artifactId>myenricher</artifactId>
 <version>1.0</version>
 <configuration>
 <enricher>
 <config>
 <f8-service-discovery>
 <scheme>https</scheme>
 <path>/api</path>
 <descriptionPath>/api/openapi.json</descriptionPath>
 </f8-service-discovery>
 </config>
 </enricher>
 </configuration>
 </dependency>
 </dependencies>
</plugin>

CHAPTER 4. DISCOVER AN API SERVICE IN 3SCALE

25

 discovery.3scale.net/discoverable : "true"
 annotations:
 discovery.3scale.net/discovery-version : "v1"
 discovery.3scale.net/scheme : "https"
 discovery.3scale.net/path : "/api"
 discovery.3scale.net/port : "443"
 discovery.3scale.net/description-path : "/api/openapi.json"
spec:
 type: LoadBalancer

4.3. FABRIC8 SERVICE DISCOVERY ENRICHER ELEMENTS

The following table describes the elements that you can specify for the Fabric8 service discovery
enricher, if you want to override the default values and the values defined in the camel-context.xml file.

You can define these values in the Fuse Rest DSL project’s pom.xml file or in a
src/main/fabric8/service.yml file. (If you define values in both files, the enricher uses the values from
the service.yml file.) See Section 4.2, “Customizing the API service annotation values” for examples.

Table 4.1. Fabric8 service discovery enricher elements

Element Description Default

springDir The path to the spring
configuration directory that
contains the camel-
context.xml file.

The
/src/main/resources/spring
path which is used to recognize a
Camel Rest DSL project.

scheme The scheme part of the URL
where the service is hosted. You
can specify “http” or “https”.

http

path The path part of the URL where
the API service is hosted.

port The port part of the URL where
the API service is hosted.

80

descriptionPath The path to a location where the
API service description document
is hosted. You can specify either a
relative path if the document is
self-hosted or a full URL if the
document is hosted externally.

discoveryVersion The version of the 3scale
discovery implementation.

v1

Red Hat Fuse 7.2 Designing APIs with Apicurito

26

discoverable The element that sets the
discovery.3scale.net label to
either true or false.

If set to true, 3scale will try to
discover this service.

If set to false, 3scale will not try to
discover this service.

You can use this element as a
switch, to temporary turn off
3scale discovery integration by
setting it to "false".

If you do not specify a value, the
enricher tries to auto-detect
whether it can make the service
discoverable. If the enricher
determines that it cannot make
the service discoverable, 3scale
will not try to discover this service.

Element Description Default

CHAPTER 4. DISCOVER AN API SERVICE IN 3SCALE

27

	Table of Contents
	PREFACE
	CHAPTER 1. ADD APICURITO AS A SERVICE TO YOUR OPENSHIFT PROJECT
	CHAPTER 2. DESIGN AND DEVELOP AN API DEFINITION WITH APICURITO
	2.1. CREATING A REST API DEFINITION
	2.2. RESOLVING ISSUES IN APICURITO

	CHAPTER 3. IMPLEMENT, BUILD, AND DEPLOY A FUSE APPLICATION BASED ON A REST API
	3.1. UPLOADING AN API DEFINITION TO APICURITO
	3.2. GENERATING A FUSE CAMEL PROJECT FROM APICURITO
	3.3. COMPLETING THE APICURITO-GENERATED CAMEL PROJECT
	3.4. BUILDING AND DEPLOYING A REST SERVICE

	CHAPTER 4. DISCOVER AN API SERVICE IN 3SCALE
	4.1. ADDING ANNOTATIONS FOR FUSE PROJECTS THAT ARE NOT GENERATED BY APICURITO
	4.2. CUSTOMIZING THE API SERVICE ANNOTATION VALUES
	4.3. FABRIC8 SERVICE DISCOVERY ENRICHER ELEMENTS

