
OpenStack Documentation Team

Red Hat Enterprise Linux OpenStack
Platform 7
Installation Reference

Installation Reference for Red Hat Enterprise Linux OpenStack Platform

Red Hat Enterprise Linux OpenStack Platform 7 Installation Reference

Installation Reference for Red Hat Enterprise Linux OpenStack Platform

OpenStack Documentation Team
Red Hat Customer Content Services
rhos-docs@redhat.com

Legal Notice

Copyright © 2015 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This document is a reference for how components are installed and configured in Red Hat
Enterprise Linux OpenStack Platform. It provides an instructional walkthrough of the deployment
process.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Chapter 1. Introduction
1.1. Subscribe to the Required Channels
1.2. Installation Prerequisites Checklists

Chapter 2. Prerequisites
2.1. Configure the Firewall
2.2. Install the Database Server
2.3. Install the Message Broker
2.4. Network Time Protocol

Chapter 3. Install the Identity Service
3.1. Install the Identity Service Packages
3.2. Create the Identity Database
3.3. Configure the Identity Service
3.4. Start the Identity Service
3.5. Create an Administrator Account
3.6. Create the Identity Service Endpoint
3.7. Create a Regular User Account
3.8. Create the Services Tenant
3.9. Validate the Identity Service Installation

Chapter 4. Install the Object Service
4.1. Object Storage Service Requirements
4.2. Configure rsyncd
4.3. Install the Object Storage Service Packages
4.4. Configure the Object Storage Service
4.5. Validate the Object Storage Service Installation

Chapter 5. Install the Image Service
5.1. Image Service Requirements
5.2. Install the Image Service Packages
5.3. Create the Image Service Database
5.4. Configure the Image Service
5.5. Launch the Image API and Registry Services
5.6. Validate the Image Service Installation

Chapter 6. Install the Block Storage Service
6.1. Install the Block Storage Service Packages
6.2. Create the Block Storage Service Database
6.3. Configure the Block Storage Service
6.4. Configure the Volume Service
6.5. Launch the Block Storage Services
6.6. Validate the Block Storage Service Installation

Chapter 7. Install OpenStack Networking
7.1. Install the OpenStack Networking Packages
7.2. Configure OpenStack Networking
7.3. Configure the DHCP Agent
7.4. Create an External Network
7.5. Configure the Plug-in Agent
7.6. Configure the L3 Agent
7.7. Validate the OpenStack Networking Installation

Chapter 8. Install the Compute Service

3
3
4

9
9

10
13
17

18
18
18
19
23
23
25
27
28
29

33
33
33
35
36
43

44
44
44
44
45
55
55

58
58
58
59
64
66
67

69
69
69
80
82
83
86
88

91

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

Chapter 8. Install the Compute Service
8.1. Install a Compute VNC Proxy
8.2. Install a Compute Node

Chapter 9. Install the Orchestration Service
9.1. Install the Orchestration Service Packages
9.2. Configure the Orchestration Service
9.3. Launch the Orchestration Service
9.4. Deploy a Stack Using Orchestration Templates
9.5. Integrate Telemetry and Orchestration Services

Chapter 10. Install the Dashboard
10.1. Dashboard Service Requirements
10.2. Install the Dashboard Packages
10.3. Launch the Apache Web Service
10.4. Configure the Dashboard
10.5. Validate Dashboard Installation

Chapter 11. Install the Data Processing Service
11.1. Install the Data Processing Service Packages
11.2. Configure the Data Processing Service
11.3. Configure and Launch the Data Processing Service

Chapter 12. Install the Telemetry Service
12.1. Overview of Telemetry Service Deployment
12.2. Install the Telemetry Service Packages
12.3. Configure the MongoDB Back End and Create the Telemetry Database
12.4. Configure the Telemetry Service Database Connection
12.5. Create the Telemetry Identity Records
12.6. Configure Telemetry Service Authentication
12.7. Configure the Firewall to Allow Telemetry Service Traffic
12.8. Configure RabbitMQ Message Broker Settings for the Telemetry Service
12.9. Configure the Compute Node
12.10. Configure Monitored Services
12.11. Launch the Telemetry API and Agents

Chapter 13. Install the File Share Service (Technology Preview)
13.1. File Share Service Back End Requirements
13.2. Install the File Share Service Packages
13.3. Create the File Share Service Identity Records
13.4. Configure Basic File Share Service Settings
13.5. Create the File Share Service Database
13.6. Define the File Share Service Back End
13.7. Enable Passwordless SSH Access to Back End
13.8. Launch the File Share Service
13.9. Create a Share Type for the Defined Back End
13.10. Known Issues

Appendix A. Revision History

91
91
94

107
107
107
114
115
116

117
117
117
117
118
123

125
125
125
128

130
130
130
131
132
133
135
136
137
137
138
140

141
141
142
142
143
145
146
150
151
152
153

155

Installation Reference

2

Chapter 1. Introduction

This document provides a reference for how components in a Red Hat Enterprise Linux OpenStack Platform
environment are installed and configured. Installation and configuration information is grouped by component
for the following components:

The MariaDB Database Service

The RabbitMQ Message Broker

The Identity Service

The Object Storage Service

The Image Service

The Block Storage Service

OpenStack Networking

The Compute Service

The Orchestration Service

The Dashboard

The Data Processing Service

The Telemetry Service

The File Share Service (Technology Preview)

Note

For an overview of the OpenStack components and their interfaces, see the Architecture Guide
(https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform/).

The document includes tasks, such as database setup and firewall configuration, that are common to all
components, and tasks that are specific to configuring each component.

1.1. Subscribe to the Required Channels

To install RHEL OpenStack Platform, you must register all systems in the OpenStack environment with Red
Hat Subscription Manager, and subscribe to the required channels.

Procedure 1.1. Subscribing to the Required Channels

1. Register your system with the Content Delivery Network, entering your Customer Portal user name
and password when prompted:

subscription-manager register

2. Obtain detailed information about the Red Hat OpenStack Platform subscription available to you:

subscription-manager list --available --matches '*OpenStack

Chapter 1. Introduction

3

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform/

Platform*'

This command should print output similar to the following:

+---+
 Available Subscriptions
+---+
Subscription Name: Red Hat Enterprise Linux OpenStack Platform,
Standard (2-sockets)
Provides: Red Hat Beta
...
 Red Hat OpenStack
...
SKU: ABC1234
Contract: 12345678
Pool ID: 0123456789abcdef0123456789abcdef
Provides Management: No
Available: Unlimited
Suggested: 1
Service Level: Standard
Service Type: L1-L3
Subscription Type: Stackable
Ends: 12/31/2099
System Type: Virtual

3. Use the Pool ID printed by this command to attach the Red Hat OpenStack Platform entitlement:

subscription-manager attach --pool=Pool ID

4. Disable any irrelevant and enable the required channels:

subscription-manager repos --disable=* \
--enable=rhel-7-server-rpms \
--enable=rhel-7-server-openstack-7.0-rpms \
--enable=rhel-7-server-rh-common-rpms

5. Run the yum update command and reboot to ensure that the most up-to-date packages, including
the kernel, are installed and running.

yum update
reboot

You have successfully configured your system to receive Red Hat Enterprise Linux OpenStack Platform
packages. You may use the yum repolist command to confirm the repository configuration again at any
time.

1.2. Installation Prerequisites Checklists

The following tables describe prerequisites for successfully installing a RHEL OpenStack Platform
environment. Checklist items are the minimum that should be known or verified before the installation is
started.

Installation Reference

4

The Value/Verified column can be used to provide the appropriate value or a 'check' that the item has been
verified.

Note

If you are installing single components after the initial RHEL OpenStack Platform installation, ensure
that you have the following permissions:

root access to the host machine (to install components and perform other administrative tasks
such as updating the firewall).
Administrative access to the Identity service.
Administrative access to the database (ability to add both databases and users).

Table 1.1. OpenStack Installation: General

Item Description Value/Verified
Hardware
requirements

Hardware requirements must be verified. Yes | No

Operating system Red Hat Enterprise Linux 7.1 Server Yes | No
Red Hat
subscription

You must have a subscription that entitles your
systems to receive the following updates:

Package updates from the Content Delivery
Network or an equivalent source such as a Red
Hat Satellite server
Software updates for both Red Hat Enterprise
Linux 7.1 Server and Red Hat Enterprise Linux
OpenStack Platform

Yes | No

Administrative
access on all
installation
machines

Almost all procedures in this guide must be
performed as the root user, so you must have root
access.

Yes | No

Red Hat
subscription user
name and
password

You must know the Red Hat subscription user name
and password. Name:

Password:

Machine
addresses

You must know the IP address or host name of the
server or servers on which any OpenStack
components and supporting software will be
installed.

Provide host addresses for the
following services:

Identity service
OpenStack Networking
Block Storage service
Compute service
Image service
Object Storage service
Dashboard service
Database server or
servers

Table 1.2. OpenStack Identity Service

Chapter 1. Introduction

5

Item Description Value
Host access The system hosting the Identity service must have

access to the following components:

Content Delivery Network or equivalent service
Network interface addressable by all OpenStack
hosts
Network access to the database server or
servers
If using LDAP, network access to the directory
server

Verify whether the system has
access to the following
components:

Yes | No
Yes | No
Yes | No
Yes | No

SSL certificates If you are using external SSL certificates, you must
know where the database and certificates are
located, and have access to them.

Yes | No

LDAP information If you are using LDAP, you must have
administrative access to configure a new directory
server schema.

Yes | No

Connections The system hosting the Identity service must have a
connection to all other OpenStack services.

Yes | No

Table 1.3. OpenStack Object Storage Service

Item Description Value
File system Red Hat currently supports the XFS and ext4 file

systems for object storage; one of these must be
available.

XFS
ext4

Mount point The /srv/node mount point must be available. Yes | No

Connections The system hosting the Object Storage service
requires a connection to the Identity service.

Yes | No

Table 1.4. OpenStack Image Service

Item Description Value
Back-end storage The Image service supports a number of storage

back ends. You must decide on one of the following:

File (local directory)
Object Storage service

Storage type:

Connections The server hosting the Image service must have a
connection to the Identity service, the dashboard
service, and the Compute services. The server must
also have access to the Object Storage service if it
is using Object Storage as its back end.

Yes | No

Table 1.5. OpenStack Block Storage Service

Item Description Value

Installation Reference

6

Back-end storage The Block Storage service supports a number of
storage back ends. You must decide on one of the
following:

LVM
NFS
Red Hat Storage

Storage type:

Connections The server hosting the Block Storage service must
have a connection to the Identity service, the
dashboard service, and the Compute services.

Yes | No

Item Description Value

Table 1.6. OpenStack Networking

Item Description Value
Plug-in agents In addition to the standard OpenStack Networking

components, a number of plug-in agents are also
available that implement various networking
mechanisms.

You must decide which of these apply to your
network and install them.

Circle the appropriate plug-in:

Open vSwitch
Cisco UCS/Nexus
Linux Bridge
VMware NSX virtualized
network platform
Ryu OpenFlow Controller
NEC OpenFlow
Big Switch Controller
Plugin
Cloudbase Hyper-V
MidoNet
Brocade Neutron Plugin
PLUMgrid

Connections The server hosting OpenStack Networking must
have a connection to the Identity service, the
dashboard service, and the Compute services.

Yes | No

Table 1.7. OpenStack Compute Service

Item Description Value
Hardware
virtualization
support

The Compute service requires hardware
virtualization support.

Yes | No

VNC client The Compute service supports Virtual Network
Computing (VNC) console access to instances
through a web browser. You must decide whether
this will be provided to your users.

Yes | No

Chapter 1. Introduction

7

Resources: CPU
and memory

OpenStack supports overcommitting of CPU and
memory resources on Compute nodes:

The default CPU overcommit ratio of 16 means
that up to 16 virtual cores can be assigned to a
node for each physical core.
The default memory overcommit ratio of 1.5
means that instances can be assigned to a
physical node if the total instance memory usage
is less than 1.5 times the amount of physical
memory available.

Decide:

CPU setting:
Memory setting:

Resources: host You can reserve resources for the host, to prevent a
given amount of memory and disk resources from
being automatically assigned to other resources on
the host.

Decide:

Host Disk (default 0MB):
Host Memory (default
512MB):

libvirt version You must know the version of libvirt that you are
using in order to configure Virtual Interface
Plugging.

Version:

Connections The server or servers hosting the Compute service
must have a connection to all other OpenStack
services.

Yes | No

Item Description Value

Table 1.8. OpenStack Dashboard Service

Item Description Value
Host software The system hosting the dashboard service must

have the following packages already installed:

httpd
mod_wsgi
mod_ssl

Yes | No

Connections The system hosting the dashboard service must
have a connection to all other OpenStack services.

Yes | No

Installation Reference

8

Chapter 2. Prerequisites

This chapter outlines how to configure all nodes to use iptables to provide firewall capabilities. It also
explains how to install the database service and message broker used by all components in the RHEL
OpenStack Platform environment. The MariaDB database service provides the tools to create and access the
databases required for each component. The RabbitMQ message broker allows internal communication
between the components. Messages can be sent from and received by any component that is configured to
use the message broker.

2.1. Configure the Firewall

Configure the server or servers hosting each component to use iptables. This involves disabling the
Network Manager service, and configuring the server to use the firewall capabilities provided by iptables
instead of those provided by firewalld. All further firewall configuration in this document uses iptables.

2.1.1. Disable Network Manager

OpenStack Networking does not work on systems that have the Network Manager service enabled. All steps
in this procedure must be performed on each server in the environment that will handle network traffic, while
logged in as the root user. This includes the server that will host OpenStack Networking, all network nodes,
and all Compute nodes.

Procedure 2.1. Disabling the Network Manager Service

1. Verify whether Network Manager is currently enabled:

systemctl status NetworkManager.service | grep Active:

A. The system displays an error if the Network Manager service is not currently installed. If this error
is displayed, no further action is required to disable the Network Manager service.

B. The system displays Active: active (running) if Network Manager is running, or
Active: inactive (dead) if it is not. If Network Manager is inactive, no further action is
required.

2. If Network Manager is running, stop it and then disable it:

systemctl stop NetworkManager.service
systemctl disable NetworkManager.service

3. Open each interface configuration file on the system in a text editor. Interface configuration files are
found in the /etc/sysconfig/network-scripts/ directory and have names in the format
ifcfg-X, where X is replaced by the name of the interface. Valid interface names include eth0,
p1p5, and em1.

To ensure that the standard network service takes control of the interfaces and automatically
activates them on boot, confirm that the following keys are set in each interface configuration file, or
add them manually:

NM_CONTROLLED=no
ONBOOT=yes

4. Start the standard network service:

Chapter 2. Prerequisites

9

systemctl start network.service

5. Configure the network service to start at boot time:

systemctl enable network.service

2.1.2. Disable the firewalld Service

Disable the firewalld service for Compute and OpenStack Networking nodes, and enable the iptables
service.

Procedure 2.2. Disabling the firewalld Service

1. Install the iptables service:

yum install iptables-services

2. Review the iptables rules defined in /etc/sysconfig/iptables:

Note

You can review your current firewalld configuration:

firewall-cmd --list-all

3. When you are satisfied with the iptables rules, disable firewalld:

systemctl disable firewalld.service

4. Stop the firewalld service and start the iptables services:

systemctl stop firewalld.service; systemctl start iptables.service;
systemctl start ip6tables.service

5. Configure the iptables services to start at boot time:

systemctl enable iptables.service
systemctl enable ip6tables.service

2.2. Install the Database Server

Each OpenStack component requires a running MariaDB database service. You must deploy the database
service before deploying a full Red Hat Enterprise Linux OpenStack Platform environment or installing any
single OpenStack component.

2.2.1. Install the MariaDB Database Packages

Installation Reference

10

The following packages are required by the MariaDB database service:

mariadb-galera-server

Provides the MariaDB database service.

mariadb-galera-common

Provides the MariaDB service shared files. This package is installed as a dependency of the
mariadb-galera-server package.

galera

Installs the Galera wsrep (Write Set REPlication) provider. This package is installed as a
dependency of the mariadb-galera-server package.

Install the packages:

yum install mariadb-galera-server

2.2.2. Configure the Firewall to Allow Database Traffic

All components in the OpenStack environment use the database server, and must be able to access it. The
firewall on the server hosting the database service must be configured to allow network traffic on the required
port. All steps in this procedure must be performed on the server hosting the database service, while logged
in as the root user.

Procedure 2.3. Configuring the Firewall to Allow Database Traffic

1. Open the /etc/sysconfig/iptables file in a text editor.

2. Add an INPUT rule allowing TCP traffic on port 3306 to the file. The new rule must appear before any
INPUT rules that REJECT traffic:

-A INPUT -p tcp -m multiport --dports 3306 -j ACCEPT

3. Save the changes to the /etc/sysconfig/iptables file.

4. Restart the iptables service to ensure that the change takes effect:

systemctl restart iptables.service

2.2.3. Start the Database Service

All steps in this procedure must be performed on the server hosting the database service, while logged in as
the root user.

Procedure 2.4. Starting the Database Service

1. Start the mariadb service:

systemctl start mariadb.service

2. Configure the mariadb service to start at boot time:

Chapter 2. Prerequisites

11

systemctl enable mariadb.service

2.2.4. Configure the Database Administrator Account

By default, MariaDB creates a database user account named root that provides access to the MariaDB
service from the machine on which the MariaDB service was installed. You must set a password for this
account to secure access to the server hosting the MariaDB service. You must also enable access to the
MariaDB service from machines other than the machine on which the MariaDB server is installed. It is also
recommended that you remove the anonymous user and test database that are created during installation.

Procedure 2.5. Configuring the Database Administrator Account

1. Log in to the machine on which the MariaDB service is installed.

2. Use the mysql_secure_installation to set the root password, allow remote root login, and
remove the anonymous user account and test database:

mysql_secure_installation

Note

Change the password of a database user, if required. In the following example, replace OLDPASS
with the existing password of the user and NEWPASS with a new password, leaving no space
between -p and the old password:

mysqladmin -u root -pOLDPASS password NEWPASS

2.2.5. Test Connectivity

To ensure that a database user account has been correctly configured, test the connectivity of that user
account with the MariaDB database service from the machine on which the MariaDB service is installed (local
connectivity), and from a machine other than the machine on which the MariaDB service is installed (remote
connectivity).

2.2.5.1. Test Local Connectivity

Test whether you can connect to the server hosting the database service from the machine on which the
MariaDB service is installed.

Procedure 2.6. Testing Local Connectivity

1. Connect to the database service, replacing USER with the user name with which to connect:

mysql -u USER -p

2. Enter the password of the database user when prompted.

Enter password:

If the permissions for the database user are correctly configured, the connection succeeds and the MariaDB

Installation Reference

12

welcome screen and prompt are displayed. If the permissions for the database user are not correctly
configured, an error message is displayed that explains that the database user is not allowed to connect to the
database service.

2.2.5.2. Test Remote Connectivity

Test whether you can connect to the database service from a machine other than the machine on which the
MariaDB service is installed.

Procedure 2.7. Testing Remote Connectivity

1. Install the MySQL client tools:

yum install mysql

2. Connect to the database service, replacing USER with the database user name and HOST with the
IP address or host name of the server hosting the database service:

mysql -u USER -h HOST -p

3. Enter the password of the database user when prompted:

Enter password:

If the permissions for the database user are correctly configured, the connection succeeds and the MariaDB
welcome screen and prompt are displayed. If the permissions for the database user are not correctly
configured, an error message is displayed that explains that the database user is not allowed to connect to the
database service.

2.3. Install the Message Broker

If you are deploying a full RHEL OpenStack Platform environment, you must set up a working message
broker for the following OpenStack components:

Block Storage service

Compute service

OpenStack Networking

Orchestration service

Image service

Telemetry service

2.3.1. Install the RabbitMQ Message Broker Package

RabbitMQ is the default (and recommended) message broker. The RabbitMQ messaging service is provided
by the rabbitmq-server package.

Install RabbitMQ:

yum install rabbitmq-server

Chapter 2. Prerequisites

13

2.3.2. Configure the Firewall for Message Broker Traffic

Before installing and configuring the message broker, allow incoming connections on the port it will use. The
default port for message broker (AMQP) traffic is 5672. All steps in this procedure must be performed on the
server hosting the messaging service, while logged in as the root user.

Procedure 2.8. Configuring the Firewall for Message Broker Traffic

1. Open the /etc/sysconfig/iptables file in a text editor.

2. Add an INPUT rule allowing incoming connections on port 5672. The new rule must appear before
any INPUT rules that REJECT traffic.

-A INPUT -p tcp -m tcp --dport 5672 -j ACCEPT

3. Save the changes to the /etc/sysconfig/iptables file.

4. Restart the iptables service for the firewall changes to take effect:

systemctl restart iptables.service

2.3.3. Launch and Configure the RabbitMQ Message Broker

Procedure 2.9. Launching and Configuring the RabbitMQ Message Broker for Use with OpenStack

1. Launch the rabbitmq-server service and configure it to start at boot time:

systemctl start rabbitmq-server.service
systemctl enable rabbitmq-server.service

2. When the rabbitmq-server package is installed, a guest user with a default guest password is
automatically created for the RabbitMQ service. Red Hat strongly advises that you change this
default password, especially if you have IPv6 available. With IPv6, RabbitMQ may be accessible
from outside the network. Change the default guest password:

rabbitmqctl change_password guest NEW_RABBITMQ_PASS

Replace NEW_RABBITMQ_PASS with a more secure password.

3. Create a RabbitMQ user account for the Block Storage service, the Compute service, OpenStack
Networking, the Orchestration service, the Image service, and the Telemetry service:

rabbitmqctl add_user cinder CINDER_PASS
rabbitmqctl add_user nova NOVA_PASS
rabbitmqctl add_user neutron NEUTRON_PASS
rabbitmqctl add_user heat HEAT_PASS
rabbitmqctl add_user glance GLANCE_PASS
rabbitmqctl add_user ceilometer CEILOMETER_PASS

Replace CINDER_PASS, NOVA_PASS, NEUTRON_PASS, HEAT_PASS, GLANCE_PASS, and
CEILOMETER_PASS with secure passwords for each service.

4. Grant each of these RabbitMQ users read and write permissions to all resources:

Installation Reference

14

rabbitmqctl set_permissions cinder ".*" ".*" ".*"
rabbitmqctl set_permissions nova ".*" ".*" ".*"
rabbitmqctl set_permissions neutron ".*" ".*" ".*"
rabbitmqctl set_permissions heat ".*" ".*" ".*"
rabbitmqctl set_permissions glance ".*" ".*" ".*"
rabbitmqctl set_permissions ceilometer ".*" ".*" ".*"

2.3.4. Enable SSL on the RabbitMQ Message Broker

The RabbitMQ message broker features built-in support for SSL, which you can use to secure traffic. Create
the certificates required for SSL communication, and configure SSL on RabbitMQ through the
/etc/rabbitmq/rabbitmq.config configuration file.

Procedure 2.10. Enabling SSL on the RabbitMQ Message Broker

1. Create a directory in which to store the required certificates:

mkdir /etc/pki/rabbitmq

2. Choose a secure certificate password and store it in a file within the /etc/pki/rabbitmq directory:

echo SSL_RABBITMQ_PW > /etc/pki/rabbitmq/certpw

Replace SSL_RABBITMQ_PW with a certificate password. This password will be used later for
further securing the necessary certificates.

3. Set the permissions for the certificate directory and password file:

chmod 700 /etc/pki/rabbitmq
chmod 600 /etc/pki/rabbitmq/certpw

4. Create the certificate database files (*.db) in the /etc/pki/rabbitmq directory, using the
password in the /etc/pki/rabbitmq/certpw file:

certutil -N -d /etc/pki/rabbitmq -f /etc/pki/rabbitmq/certpw

5. For a production environment, it is recommended that you use a reputable third-party Certificate
Authority (CA) to sign your certificates. Create a Certificate Signing Request (CSR) for a third-party
CA:

certutil -R -d /etc/pki/rabbitmq -s "CN=RABBITMQ_HOST" \
 -a -f /etc/pki/rabbitmq/certpw > RABBITMQ_HOST.csr

Replace RABBITMQ_HOST with the IP or host name of the server hosting the RabbitMQ message
broker. This command produces a CSR named RABBITMQ_HOST.csr and a key file (keyfile.key).
The key file will be used later when configuring the RabbitMQ message broker to use SSL.

Note

Some CAs may require additional values other than "CN=RABBITMQ_HOST".

Chapter 2. Prerequisites

15

6. Provide RABBITMQ_HOST.csr to your third-party CA for signing. Your CA should provide you with a
signed certificate (server.crt) and a CA file (ca.crt). Add these files to your certificate database:

certutil -A -d /etc/pki/rabbitmq -n RABBITMQ_HOST -f
/etc/pki/rabbitmq/certpw \
 -t u,u,u -a -i /path/to/server.crt
certutil -A -d /etc/pki/rabbitmq -n "Your CA certificate" \
 -f /etc/pki/rabbitmq/certpw -t CT,C,C -a -i /path/to/ca.crt

7. Configure the RabbitMQ message broker to use the certificate files for secure communications.
Open the /etc/rabbitmq/rabbitmq.config configuration file in a text editor, and add the
following section:

[
 {rabbit, [
 {ssl_listeners, [5671]},
 {ssl_options, [{cacertfile,"/path/to/ca.crt"},
 {certfile,"/path/to/server.crt"},
 {keyfile,"/path/to/keyfile.key"},
 {verify,verify_peer},
 {fail_if_no_peer_cert,false}]}
]}
].

Replace /path/to/ca.crt with the absolute path to the CA certificate.

Replace /path/to/server.crt with the absolute path to the signed certificate.

Replace /path/to/keyfile.key with the absolute path to the key file.

8. Disable SSLv3 by editing the rabbitmq.config to include support for only specific TLS encryption
versions:

{rabbit, [
{ssl_options, [{versions, ['tlsv1.2','tlsv1.1',tlsv1]}]},
]}

9. Restart the RabbitMQ service for the change to take effect:

systemctl restart rabbitmq-server.service

2.3.5. Export an SSL Certificate for Clients

When SSL is enabled on a server, the clients require a copy of the SSL certificate to establish a secure
connection.

The following example commands can be used to export a client certificate and the private key from the
message broker's certificate database:

pk12util -o <p12exportfile> -n <certname> -d <certdir> -w <p12filepwfile>
openssl pkcs12 -in <p12exportfile> -out <clcertname> -nodes -clcerts -
passin pass:<p12pw>

Installation Reference

16

For more information on SSL commands and options, see the OpenSSL Documentation. On Red Hat
Enterprise Linux, see the openssl manual page.

2.4. Network Time Protocol

Use Network Time Protocol (NTP) on each system in your OpenStack environment to synchronize all the
services. Start by configuring NTP on the controller node, and make sure the same external NTP servers that
are commonly used within your organization are also set here. Then, set the rest of the systems in your
OpenStack environment to take their synchronization information from the controller node.

Important

Use external NTP servers that are synchronized from various sources and routed via different
networks.

If multiple controller nodes are present in your OpenStack environment, pay special attention to the
synchronization of their clocks, as even a small drift can cause problems for the other systems. In
such an environment, it is also worthwhile for the systems to take their synchronization information
from multiple controller nodes in case one of them becomes unavailable.

Instructions on how to configure NTP are available in the System Administrator's Guide for Red Hat
Enterprise Linux 7.

Chapter 2. Prerequisites

17

http://www.openssl.org/docs/apps/openssl.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_the_chrony_Suite.html

Chapter 3. Install the Identity Service

This chapter outlines how to install and configure the OpenStack Identity service, and set up the basic user
accounts and tenants required to use the service.

3.1. Install the Identity Service Packages

The Identity service requires the following packages:

openstack-keystone

Provides the OpenStack Identity service.

openstack-utils

Provides supporting utilities to assist with a number of tasks, including the editing of configuration
files.

openstack-selinux

Provides OpenStack-specific SELinux policy modules.

Install the packages:

yum install -y openstack-keystone \
 openstack-utils \
 openstack-selinux

3.2. Create the Identity Database

Create the database and database user used by the Identity service. All steps in this procedure must be
performed on the database server, while logged in as the root user.

Procedure 3.1. Creating the Identity Service Database

1. Connect to the database service:

mysql -u root -p

2. Create the keystone database:

mysql> CREATE DATABASE keystone;

3. Create a keystone database user and grant the user access to the keystone database:

mysql> GRANT ALL ON keystone.* TO 'keystone'@'%' IDENTIFIED BY
'PASSWORD';
mysql> GRANT ALL ON keystone.* TO 'keystone'@'localhost' IDENTIFIED
BY 'PASSWORD';

Replace PASSWORD with a secure password that will be used to authenticate with the database
server as this user.

Installation Reference

18

4. Flush the database privileges to ensure that they take effect immediately:

mysql> FLUSH PRIVILEGES;

5. Exit the mysql client:

mysql> quit

3.3. Configure the Identity Service

3.3.1. Configure the Identity Service Database Connection

The database connection string used by the Identity service is defined in the
/etc/keystone/keystone.conf file. It must be updated to point to a valid database server before
starting the service.

All steps in this procedure must be performed on the server hosting the Identity service, while logged in as
the root user.

Procedure 3.2. Configuring the Identity Service SQL Database Connection

Set the value of the connection configuration key:

openstack-config --set /etc/keystone/keystone.conf \
 sql connection mysql://USER:PASS@IP/DB

Replace the following values:

Replace USER with the Identity service database user name, usually keystone.

Replace PASS with the password of the database user.

Replace IP with the IP address or host name of the database server.

Replace DB with the name of the Identity service database, usually keystone.

Important

The IP address or host name specified in the connection configuration key must match the IP address
or host name to which the keystone database user was granted access when creating the keystone
database. Moreover, if the database is hosted locally and you granted permissions to 'localhost' when
creating the keystone database, you must enter 'localhost'.

3.3.2. Set the Identity Service Administration Token

Before the Identity service is started for the first time, you must define an administration token as an
environment variable. This value is used to authenticate with the service before user and service accounts
have been defined using the Identity service.

All steps in this procedure must be performed on the server hosting the Identity service, while logged in as
the root user.

Chapter 3. Install the Identity Service

19

Procedure 3.3. Setting the Identity Service Administration Token

1. Generate an initial service token and save it in the OS_SERVICE_TOKEN environment variable:

export OS_SERVICE_TOKEN=$(openssl rand -hex 10)

2. Store the value of the administration token in a file for future use:

echo $OS_SERVICE_TOKEN > ~/ks_admin_token

3. Set the value of the admin_token configuration key to that of the newly created token:

openstack-config --set /etc/keystone/keystone.conf \
 DEFAULT admin_token $OS_SERVICE_TOKEN

Note

The Identity server's token database table grows over time as new tokens are generated. To manage
the size of the table, you must flush the tokens. Flushing tokens simply deletes expired tokens,
eliminating any means of traceability. It is recommended that this command be run approximately
once per minute:

keystone-manage token_flush

3.3.3. Configure the Public Key Infrastructure

3.3.3.1. Public Key Infrastructure Overview

The Identity service generates tokens, which are cryptographically signed documents that users and other
services use for authentication. The tokens are signed using a private key, while the public key is made
available in an X509 certificate.

The certificates and relevant configuration keys are automatically generated by the keystone-manage
pki_setup command. It is, however, possible to manually create and sign the required certificates using a
third party certificate authority. If using third party certificates the Identity service configuration must be
manually updated to point to the certificates and supporting files.

The configuration keys relevant to PKI setup appear in the [signing] section of the
/etc/keystone/keystone.conf configuration file. These keys are:

ca_certs

Specifies the location of the certificate for the authority that issued the certificate denoted by the
certfile configuration key. The default value is /etc/keystone/ssl/certs/ca.pem.

ca_key

Specifies the key of the certificate authority that issued the certificate denoted by the certfile
configuration key. The default value is /etc/keystone/ssl/certs/cakey.pem.

ca_password

Installation Reference

20

Specifies the password, if applicable, required to open the certificate authority file. The default
action if no value is specified is not to use a password.

certfile

Specifies the location of the certificate that must be used to verify tokens. The default value of
/etc/keystone/ssl/certs/signing_cert.pem is used if no value is specified.

keyfile

Specifies the location of the private key that must be used when signing tokens. The default value
of /etc/keystone/ssl/private/signing_key.pem is used if no value is specified.

token_format

Specifies the algorithm to use when generating tokens. Possible values are UUID and PKI. The
default value is PKI.

3.3.3.2. Create the Public Key Infrastructure Files

Create and configure the PKI files to be used by the Identity service. All steps in this procedure must be
performed on the server hosting the Identity service, while logged in as the root user.

Procedure 3.4. Creating the PKI Files to be Used by the Identity Service

1. Run the keystone-manage pki_setup command:

keystone-manage pki_setup \
 --keystone-user keystone \
 --keystone-group keystone

2. Ensure that the keystone user owns the /var/log/keystone/ and /etc/keystone/ssl/
directories:

chown -R keystone:keystone /var/log/keystone \
 /etc/keystone/ssl/

3.3.3.3. Configure the Identity Service to Use Public Key Infrastructure Files

After generating the PKI files for use by the Identity service, you must enable the Identity service to use them.

Set the values of the attributes in the /etc/keystone/keystone.conf file:

openstack-config --set /etc/keystone/keystone.conf \
 signing token_format PKI
openstack-config --set /etc/keystone/keystone.conf \
 signing certfile /etc/keystone/ssl/certs/signing_cert.pem
openstack-config --set /etc/keystone/keystone.conf \
 signing keyfile /etc/keystone/ssl/private/signing_key.pem
openstack-config --set /etc/keystone/keystone.conf \
 signing ca_certs /etc/keystone/ssl/certs/ca.pem
openstack-config --set /etc/keystone/keystone.conf \
 signing key_size 1024

Chapter 3. Install the Identity Service

21

openstack-config --set /etc/keystone/keystone.conf \
 signing valid_days 3650
openstack-config --set /etc/keystone/keystone.conf \
 signing ca_password None

You can also update these values directly by editing the /etc/keystone/keystone.conf file.

3.3.4. Configure the Firewall to Allow Identity Service Traffic

Each component in the OpenStack environment uses the Identity service for authentication and must be able
to access the service.

The firewall on the system hosting the Identity service must be altered to allow network traffic on the required
ports. All steps in this procedure must be run on the server hosting the Identity service, while logged in as the
root user.

Procedure 3.5. Configuring the Firewall to Allow Identity Service Traffic

1. Open the /etc/sysconfig/iptables file in a text editor.

2. Add an INPUT rule allowing TCP traffic on ports 5000 and 35357 to the file. The new rule must
appear before any INPUT rules that REJECT traffic:

-A INPUT -p tcp -m multiport --dports 5000,35357 -j ACCEPT

3. Save the changes to the /etc/sysconfig/iptables file.

4. Restart the iptables service to ensure that the change takes effect:

systemctl restart iptables.service

3.3.5. Populate the Identity Service Database

Populate the Identity service database after you have successfully configured the Identity service database
connection string.

Procedure 3.6. Populating the Identity Service Database

1. Log in to the system hosting the Identity service.

2. Switch to the keystone user and initialize and populate the database identified in
/etc/keystone/keystone.conf:

su keystone -s /bin/sh -c "keystone-manage db_sync"

3.3.6. Limit the Number of Entities in a Collection

Use this procedure to set a limit on the number of results returned by list commands. You can use a lower
limit to avoid problems when the number of results is larger than available memory or to avoid a long list's
response times.

Procedure 3.7. Limiting the Number of Entities in a Collection

1. Open the /etc/keystone/keystone.conf in a text editor.

Installation Reference

22

2. Set a global value using list_limit in the [DEFAULT] section.

3. Optionally override the global value with a specific limit in individual sections. For example:

[assignment]
list_limit = 100

If a response to a list_{entity} call has been truncated, the response status code will still be 200 (OK),
but the truncated attribute in the collection will be set to true.

3.4. Start the Identity Service

All steps in this procedure must be performed on the server hosting the Identity service, while logged in as
the root user.

Procedure 3.8. Launching the Identity Service

1. Start the openstack-keystone service:

systemctl start openstack-keystone.service

2. Configure the openstack-keystone service to start at boot time:

systemctl enable openstack-keystone.service

3.5. Create an Administrator Account

The following procedure creates an administrative user and an associated tenant and role.

All steps in this procedure must be performed on the system hosting the Identity service, while logged in as a
user who has access to a file containing the administration token.

Procedure 3.9. Creating an Administrator Account

1. Set the OS_SERVICE_TOKEN environment variable to the value of the administration token. This is
done by reading the token file created when setting the administration token:

export OS_SERVICE_TOKEN=`cat ~/ks_admin_token`

2. Set the OS_SERVICE_ENDPOINT environment variable to point to the server hosting the Identity
service:

export OS_SERVICE_ENDPOINT="http://IP:35357/v2.0"

Replace IP with the IP address or host name of your Identity server.

3. Create an admin user:

keystone user-create --name admin --pass PASSWORD
+----------+-----------------------------------+
| Property | Value |
+----------+-----------------------------------+

Chapter 3. Install the Identity Service

23

email	
enabled	True
id	94d659c3c9534095aba5f8475c87091a
name	admin
tenantId	
+----------+-----------------------------------+

Replace PASSWORD with a secure password for the account.

4. Create an admin role:

keystone role-create --name admin
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
| id | 78035c5d3cd94e62812d6d37551ecd6a |
| name | admin |
+----------+----------------------------------+

5. Create an admin tenant:

keystone tenant-create --name admin
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	
enabled	True
id	6f8e3e36c4194b86b9a9b55d4b722af3
name	admin
+-------------+----------------------------------+

6. Link the admin user and the admin role together in the context of the admin tenant:

keystone user-role-add --user admin --role admin --tenant admin

7. The newly-created admin account will be used for future management of the Identity service. To
facilitate authentication, create a keystonerc_admin file in a secure location such as the home
directory of the root user.

Add these lines to the file to set the environment variables that will be used for authentication:

unset OS_SERVICE_TOKEN
unset OS_SERVICE_ENDPOINT
export OS_USERNAME=admin
export OS_TENANT_NAME=admin
export OS_PASSWORD=PASSWORD
export OS_AUTH_URL=http://IP:35357/v2.0/
export PS1='[\u@\h \W(keystone_admin)]\$ '

Replace PASSWORD with the password of the admin user, and replace IP with the IP address or
host name of the Identity server.

8. Load the environment variables used for authentication:

Installation Reference

24

source ~/keystonerc_admin

3.6. Create the Identity Service Endpoint

Once the Identity service has been started, its API endpoint must be defined. Some OpenStack services,
including the dashboard, will not work unless this record is present.

All steps in this procedure must be performed on the Identity server, while logged in as the root user.

Procedure 3.10. Creating the Identity Service Endpoint

1. Set up the shell to access Keystone as the admin user:

source ~/keystonerc_admin

2. Set the OS_SERVICE_TOKEN environment variable to the administration token. This is done by
reading the token file created when setting the administration token:

[(keystone_admin)]# export OS_SERVICE_TOKEN=`cat ~/ks_admin_token`

3. Set the OS_SERVICE_ENDPOINT environment variable to point to the server hosting the Identity
service:

[(keystone_admin]# export OS_SERVICE_ENDPOINT='http://IP:35357/v2.0'

Replace IP with the IP address or host name of the Identity server.

4. Create a service entry for the Identity service:

[(keystone_admin)]# keystone service-create --name=keystone --
type=identity \
 --description="Keystone Identity service"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	Keystone Identity service
enabled	True
id	a8bff1db381f4751bd8ac126464511ae
name	keystone
type	identity
+-------------+----------------------------------+

5. Create an endpoint entry for the v2.0 API Identity service:

[(keystone_admin)]# keystone endpoint-create \
 --service keystone \
 --publicurl 'https://IP:443/v2.0' \
 --adminurl 'https://IP:443/v2.0' \
 --internalurl 'https://IP:5000/v2.0' \
 --region 'RegionOne'
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+

Chapter 3. Install the Identity Service

25

adminurl	https://IP:443/keystone/admin
id	1295011fdc874a838f702518e95a0e13
internalurl	https://IP:5000/v2.0
publicurl	https://IP:443/keystone/main
region	RegionOne
service_id	ID
+-------------+----------------------------------+

Replace IP with the IP address or host name of the Identity server.

Note

By default, the endpoint is created in the default region, RegionOne. If you need to specify a
different region when creating an endpoint, use the --region argument.

3.6.1. Service Regions

Each service cataloged in the Identity service is identified by its region, which typically represents a
geographical location, and its endpoint. In a Red Hat Enterprise Linux OpenStack Platform environment with
multiple Compute deployments, regions allow for the discrete separation of services, and are a robust way to
share some infrastructure between Compute installations, while allowing for a high degree of failure
tolerance.

Administrators determine which services are shared between regions and which services are used only with
a specific region. By default, when an endpoint is defined and no region is specified, it is created in the region
named RegionOne.

To begin using separate regions, specify the --region argument when adding service endpoints:

[(keystone_admin)]# keystone endpoint-create --region 'RegionOne' \
 --service SERVICENAME\
 --publicurl PUBLICURL
 --adminurl ADMINURL
 --internalurl INTERNALURL

Replace REGION with the name of the region to which the endpoint belongs. When sharing an endpoint
between regions, create an endpoint entry containing the same URLs for each applicable region. For
information on setting the URLs for each service, see the Identity service configuration information of the
service in question.

Example 3.1. Endpoints Within Discrete Regions

In this example, the APAC and EMEA regions share an Identity server (identity.example.com)
endpoint, while providing region specific compute API endpoints:

$ keystone endpoint-list
+---------+--------+--
----+
| id | region | publicurl
|
+---------+--------+--
----+

Installation Reference

26

| 0d8b... | APAC | http://identity.example.com:5000/v3
|
| 769f... | EMEA | http://identity.example.com:5000/v3
|
| 516c... | APAC | http://nova-apac.example.com:8774/v2/%(tenant_id)s
|
| cf7e... | EMEA | http://nova-emea.example.com:8774/v2/%(tenant_id)s
|
+---------+--------+--
----+

3.7. Create a Regular User Account

Create a regular tenant and user.

All steps in this procedure must be performed on the system hosting the Identity service, while logged in as a
user that has access to a file containing the administration token.

Procedure 3.11. Creating a Regular User Account

1. Set up the shell to access keystone as the administrative user:

source ~/keystonerc_admin

2. Create a tenant:

[(keystone_admin)]# keystone tenant-create --name TENANT
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	
enabled	True
id	6f8e3e36c4194b86b9a9b55d4b722af3
name	TENANT
+-------------+----------------------------------+

Replace TENANT with a name for the tenant.

3. Create a regular user:

[(keystone_admin)]# keystone user-create --name USER --tenant TENANT
--pass PASSWORD
+----------+-----------------------------------+
| Property | Value |
+----------+-----------------------------------+
email	
enabled	True
id	b8275d7494dd4c9cb3f69967a11f9765
name	USER
tenantId	6f8e3e36c4194b86b9a9b55d4b722af3
username	USER
+----------+-----------------------------------+

Chapter 3. Install the Identity Service

27

Replace USER with a user name for the account. Replace TENANT with the tenant name that you
used in the previous step. Replace PASSWORD with a secure password for the account.

Note

The user is associated with Identity's default _member_ role automatically thanks to the --
tenant option.

4. To facilitate authentication, create a keystonerc_user file in a secure location (for example, the
home directory of the root user).

Set the following environment variables to be used for authentication:

export OS_USERNAME=USER
export OS_TENANT_NAME=TENANT
export OS_PASSWORD=PASSWORD
export OS_AUTH_URL=http://IP:5000/v2.0/
export PS1='[\u@\h \W(keystone_user)]\$ '

Replace USER, TENANT, and PASSWORD with the values specified during tenant and user
creation. Replace IP with the IP address or host name of the Identity server.

3.8. Create the Services Tenant

Tenants are used to aggregate service resources. Tenants are also known as projects. Per tenant, quota
controls can be used to limit the numbers of resources.

Note

For more information about quotas, see the "Manage Projects" section in the Red Hat Enterprise
Linux OpenStack Platform Administration Guide. This document is available from the following page:

https://access.redhat.com/site/documentation/en-
US/Red_Hat_Enterprise_Linux_OpenStack_Platform

Each user is assigned to a tenant. For regular users, the tenant typically represents their group, project, or
organization. For service users (the entity accessing the Identity service on behalf of the service), the tenant
represents a service's geographical region. If the services in your environment are distributed, typically one
service tenant is created for each endpoint on which services are running (excepting the Identity and
dashboard services). If the services in your environment are deployed on a single node, only one service
tenant is required, though it is possible to create more for administrative purposes.

The service setup examples in this guide assume that all services are deployed on one node, therefore only
one service tenant is required. All such examples use the services tenant.

Installation Reference

28

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform

Note

Because administrators, regular users, and service users all need a tenant, at least three tenants are
typically created, one for each group. To create administrative and regular users and tenants, see
Section 3.5, “Create an Administrator Account” and Section 3.7, “Create a Regular User Account”.

Procedure 3.12. Creating the Services Tenant

1. Set up the shell to access keystone as the administrative user:

source ~/keystonerc_admin

2. Create the services tenant:

[(keystone_admin)]# keystone tenant-create --name services --
description "Services Tenant"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	Services Tenant
enabled	True
id	7e193e36c4194b86b9a9b55d4b722af3
name	services
+-------------+----------------------------------+

Note

To obtain a list of all Identity service tenants and their IDs, run:

[(keystone_admin)]# keystone tenant-list

3.9. Validate the Identity Service Installation

Verify that an Identity service installation is functioning correctly. All steps in this procedure must be
performed on the Identity server or on another server in the environment. The logged-in user must have
access to keystonerc_admin and keystonerc_user files containing the environment variables required
to authenticate as the administrative user and a regular user respectively. Also, the system must have the
following already installed: httpd, mod_wsgi, and mod_ssl (for security purposes).

Procedure 3.13. Validating the Identity Service Installation

1. Set up the shell to access keystone as the adminstrative user:

source ~/keystonerc_admin

2. List the users defined in the system:

[(keystone_admin)]# keystone user-list

Chapter 3. Install the Identity Service

29

+----------------------------------+--------+---------+------------
------+
| id | name | enabled | email
|
+----------------------------------+--------+---------+------------
------+
| 94d659c3c9534095aba5f8475c87091a | admin | True |
|
| b8275d7494dd4c9cb3f69967a11f9765 | USER | True |
|
+----------------------------------+--------+---------+------------
------+

The list of users defined in the system is displayed. If the list is not displayed, there is an issue with
the installation.

a. If the message returned indicates a permissions or authorization issue, check that the
administrative user account, tenant, and role were created properly. Also ensure that the
three objects are linked correctly.

Unable to communicate with identity service: {"error":
{"message": "You are not authorized to perform the requested
action: admin_required", "code": 403, "title": "Not
Authorized"}}. (HTTP 403)

b. If the message returned indicates a connectivity issue, verify that the openstack-
keystone service is running and that the firewall service is configured to allow connections
on ports 5000 and 35357.

Authorization Failed: [Errno 111] Connection refused

3. Set up the shell to access keystone as the regular Identity service user:

source ~/keystonerc_user

4. Attempt to list the users defined in the system:

[(keystone_user)]# keystone user-list
Unable to communicate with identity service: {"error": {"message":
"You are not authorized to perform the requested action:
admin_required", "code": 403, "title": "Not Authorized"}}. (HTTP 403)

An error message is displayed indicating that the user is Not Authorized to run the command. If
the error message is not displayed, but the user list appears instead, then the regular user account
was incorrectly attached to the admin role.

5. Verify that the regular user account is able to run commands that it is authorized to access:

[(keystone_user)]# keystone token-get
+-----------+----------------------------------+
| Property | Value |
+-----------+----------------------------------+
| expires | 2013-05-07T13:00:24Z |

Installation Reference

30

id	5f6e089b24d94b198c877c58229f2067
tenant_id	f7e8628768f2437587651ab959fbe239
user_id	8109f0e3deaf46d5990674443dcf7db7
+-----------+----------------------------------+

3.9.1. Troubleshoot Identity Client (keystone) Connectivity Problems

When the Identity client (keystone) is unable to contact the Identity service, it returns an error:

Unable to communicate with identity service: [Errno 113] No route to host.
(HTTP 400)

To debug the issue, check for these common causes:

Identity service is down

On the system hosting the Identity service, check the service status:

openstack-status | grep keystone
openstack-keystone: active

If the service is not running, log in as the root user and start it.

service openstack-keystone start

Firewall is not configured properly

The firewall might not be configured to allow TCP traffic on ports 5000 and 35357. See
Section 3.3.4, “Configure the Firewall to Allow Identity Service Traffic” for instructions on how to
correct this.

Service Endpoints not defined correctly

On the server hosting the Identity service, check that the endpoints are defined correctly.

Procedure 3.14. Verifying Identity Service Endpoints

1. Obtain the administration token:

grep admin_token /etc/keystone/keystone.conf
admin_token = 0292d404a88c4f269383ff28a3839ab4

2. Unset any pre-defined Identity service-related environment variables:

unset OS_USERNAME OS_TENANT_NAME OS_PASSWORD OS_AUTH_URL

3. Use the administration token and endpoint to authenticate with the Identity service.
Confirm that the Identity service endpoint is correct:

keystone --os-token TOKEN \
 --os-endpoint ENDPOINT \
 endpoint-list

Chapter 3. Install the Identity Service

31

Replace TOKEN with the ID of the administration token. Replace ENDPOINT with the
endpoint for the administration endpoint: http://IP:35357/v2.0.

Verify that the listed publicurl, internalurl, and adminurl for the Identity service
are correct. In particular, ensure that the IP addresses and port numbers listed within each
endpoint are correct and reachable over the network.

4. If these values are incorrect, see Section 3.6, “Create the Identity Service Endpoint” for
information on adding the correct endpoint. Once the correct endpoints have been added,
remove any incorrect endpoints:

keystone --os-token=TOKEN \
 --os-endpoint=ENDPOINT \
 endpoint-delete ID

Replace TOKEN and ENDPOINT with the values identified previously. Replace ID with the
identity of the endpoint to remove as listed by the endpoint-list action.

Installation Reference

32

Chapter 4. Install the Object Service

4.1. Object Storage Service Requirements

The following items are requirements for installing the Object Storage service:

Supported Filesystems

The Object Storage service stores objects in filesystems. Currently, XFS and ext4 are supported.
Your filesystem must be mounted with Extended Attributes (xattr) enabled.

It is recommended that you use XFS. Configure this in /etc/fstab:

Example 4.1. Sample /etc/fstab Entry for One XFS Storage Disk

/dev/sdb1 /srv/node/d1 xfs inode64,noatime,nodiratime 0 0

Note

Extended Attributes are already enabled on XFS by default. As such, you do not need to
specify user_xattr in your /etc/fstab entry.

Acceptable Mountpoints

The Object Storage service expects devices to be mounted at /srv/node/.

4.2. Configure rsyncd

To ensure replication, you must set up rsyncd for your filesystems before you install and configure the
Object Storage service. The following procedure must be performed on each storage node, while logged in
as the root user. The procedure assumes that at least two XFS storage disks have been mounted on each
storage node.

Example 4.2. Sample /etc/fstab Entry for Two XFS Storage Disks

/dev/sdb1 /srv/node/d1 xfs inode64,noatime,nodiratime 0 0
/dev/sdb2 /srv/node/d2 xfs inode64,noatime,nodiratime 0 0

Procedure 4.1. Configuring rsyncd

1. Copy addresses from the controller's /etc/hosts file, and add storage node IP addresses. Also
ensure that all nodes have all addresses in their /etc/hosts file.

2. Install the rsync and xinetd packages:

yum install rsync xinetd

Chapter 4. Install the Object Service

33

3. Open the /etc/rsyncd.conf file in a text editor, and add the following lines:

##assumes 'swift' has been used as the Object Storage user/group
uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
##address on which the rsync daemon listens
address = LOCAL_MGT_NETWORK_IP

[account]
max connections = 2
path = /srv/node/
read only = false
write only = no
list = yes
incoming chmod = 0644
outgoing chmod = 0644
lock file = /var/lock/account.lock

[container]
max connections = 2
path = /srv/node/
read only = false
write only = no
list = yes
incoming chmod = 0644
outgoing chmod = 0644
lock file = /var/lock/container.lock

[object]
max connections = 2
path = /srv/node/
read only = false
write only = no
list = yes
incoming chmod = 0644
outgoing chmod = 0644
lock file = /var/lock/object.lock

Note

Multiple account, container, and object sections can be used.

4. Open the /etc/xinetd.d/rsync file, and add the following lines:

service rsync
 {
 port = 873
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no

Installation Reference

34

 user = root
 group = root
 groups = yes
 server = /usr/bin/rsync
 bind = LOCAL_MGT_NETWORK_IP
 server_args = --daemon --config /etc/rsync.conf
 }

5. Start the xinetd service, and configure it to start at boot time:

systemctl start xinetd.service
systemctl enable xinetd.service

4.3. Install the Object Storage Service Packages

The following packages provide the components of the Object Storage service:

Primary OpenStack Object Storage Packages

openstack-swift-proxy

Proxies requests for objects.

openstack-swift-object

Stores data objects of up to 5GB.

openstack-swift-container

Maintains a database that tracks all of the objects in each container.

openstack-swift-account

Maintains a database that tracks all of the containers in each account.

OpenStack Object Storage Dependencies

openstack-swift

Contains code common to the specific services.

openstack-swift-plugin-swift3

The swift3 plugin for OpenStack Object Storage.

memcached

Soft dependency of the proxy server, caches authenticated clients rather than making them
reauthorize at every interaction.

openstack-utils

Provides utilities for configuring OpenStack.

python-swiftclient

Provides the swift command-line tool.

Chapter 4. Install the Object Service

35

Procedure 4.2. Installing the Object Storage Service Packages

Install the required packages:

yum install -y openstack-swift-proxy \
 openstack-swift-object \
 openstack-swift-container \
 openstack-swift-account \
 openstack-utils \
 memcached \
 python-swiftclient

4.4. Configure the Object Storage Service

4.4.1. Create the Object Storage Service Identity Records

Create and configure Identity service records required by the Object Storage service. These entries provide
authentication for the Object Storage service, and guide other OpenStack services attempting to locate and
access the functionality provided by the Object Storage service.

This procedure assumes that you have already created an administrative user account and a services
tenant. For more information, see:

Section 3.5, “Create an Administrator Account”

Section 3.8, “Create the Services Tenant”

Perform this procedure on the Identity service server, or on any machine onto which you have copied the
keystonerc_admin file and on which the keystone command-line utility is installed.

Procedure 4.3. Creating Identity Records for the Object Storage Service

1. Set up the shell to access keystone as the administrative user:

source ~/keystonerc_admin

2. Create the swift user:

[(keystone_admin)]# keystone user-create --name swift --pass PASSWORD
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	
enabled	True
id	e1765f70da1b4432b54ced060139b46a
name	swift
username	swift
+----------+----------------------------------+

Replace PASSWORD with a secure password that will be used by the Object Storage service when
authenticating with the Identity service.

3. Link the swift user and the admin role together within the context of the services tenant:

Installation Reference

36

[(keystone_admin)]# keystone user-role-add --user swift --role admin
--tenant services

4. Create the swift Object Storage service entry:

[(keystone_admin)]# keystone service-create --name swift --type
object-store \
 --description "Swift Storage Service"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	Swift Storage Service
enabled	True
id	9e0156e9965241e7a7d9c839884f9c01
name	swift
type	object-store
+-------------+----------------------------------+

5. Create the swift endpoint entry:

[(keystone_admin)]# keystone endpoint-create \
 --service swift \
 --publicurl 'http://IP:8080/v1/AUTH_%(tenant_id)s' \
 --adminurl 'http://IP:8080/v1' \
 --internalurl 'http://IP:8080/v1/AUTH_%(tenant_id)s' \
 --region 'RegionOne'

Replace IP with the IP address or fully qualified domain name of the server hosting the Object
Storage Proxy service.

4.4.2. Configure the Object Storage Service Storage Nodes

The Object Storage service stores objects on the filesystem, usually on a number of connected physical
storage devices. All of the devices that will be used for object storage must be formatted ext4 or XFS, and
mounted under the /srv/node/ directory. All of the services that will run on a given node must be enabled,
and their ports opened.

Although you can run the proxy service alongside the other services, the proxy service is not covered in this
procedure.

Procedure 4.4. Configuring the Object Storage Service Storage Nodes

1. Format your devices using the ext4 or XFS filesystem. Ensure that xattrs are enabled.

2. Add your devices to the /etc/fstab file to ensure that they are mounted under /srv/node/ at
boot time. Use the blkid command to find your device's unique ID, and mount the device using its
unique ID.

Note

If using ext4, ensure that extended attributes are enabled by mounting the filesystem with the
user_xattr option. (In XFS, extended attributes are enabled by default.)

Chapter 4. Install the Object Service

37

3. Configure the firewall to open the TCP ports used by each service running on each node. By default,
the account service uses port 6202, the container service uses port 6201, and the object service
uses port 6200.

a. Open the /etc/sysconfig/iptables file in a text editor.

b. Add an INPUT rule allowing TCP traffic on the ports used by the account, container, and
object service. The new rule must appear before any reject-with icmp-host-
prohibited rule:

-A INPUT -p tcp -m multiport --dports 6200,6201,6202,873 -j
ACCEPT

c. Save the changes to the /etc/sysconfig/iptables file.

d. Restart the iptables service for the firewall changes to take effect:

systemctl restart iptables.service

4. Change the owner of the contents of /srv/node/ to swift:swift:

chown -R swift:swift /srv/node/

5. Set the SELinux context correctly for all directories under /srv/node/:

restorecon -R /srv

6. Add a hash prefix to the /etc/swift/swift.conf file:

openstack-config --set /etc/swift/swift.conf swift-hash
swift_hash_path_prefix \
 $(openssl rand -hex 10)

7. Add a hash suffix to the /etc/swift/swift.conf file:

openstack-config --set /etc/swift/swift.conf swift-hash
swift_hash_path_suffix \
 $(openssl rand -hex 10)

8. Set the IP address that the storage services will listen on. Run the following commands for every
service on every node in your Object Storage cluster:

openstack-config --set /etc/swift/object-server.conf \
 DEFAULT bind_ip NODE_IP_ADDRESS
openstack-config --set /etc/swift/account-server.conf \
 DEFAULT bind_ip NODE_IP_ADDRESS
openstack-config --set /etc/swift/container-server.conf \
 DEFAULT bind_ip NODE_IP_ADDRESS

Replace NODE_IP_ADDRESS with the IP address of the node you are configuring.

9. Copy /etc/swift/swift.conf from the node you are currently configuring to all of your Object
Storage service nodes.

Installation Reference

38

Important

The /etc/swift/swift.conf file must be identical on all of your Object Storage service
nodes.

10. Start the services that will run on the node:

systemctl start openstack-swift-account.service
systemctl start openstack-swift-container.service
systemctl start openstack-swift-object.service

11. Configure the services to start at boot time:

systemctl enable openstack-swift-account.service
systemctl enable openstack-swift-container.service
systemctl enable openstack-swift-object.service

4.4.3. Configure the Object Storage Service Proxy Service

The Object Storage proxy service determines to which node gets and puts are directed.

Although you can run the account, container, and object services alongside the proxy service, only the proxy
service is covered in the following procedure.

Note

Because the SSL capability built into the Object Storage service is intended primarily for testing, it is
not recommended for use in production. In a production cluster, Red Hat recommends that you use
the load balancer to terminate SSL connections.

Procedure 4.5. Configuring the Object Storage Service Proxy Service

1. Update the configuration file for the proxy server with the correct authentication details for the
appropriate service user:

openstack-config --set /etc/swift/proxy-server.conf \
 filter:authtoken auth_host IP
openstack-config --set /etc/swift/proxy-server.conf \
 filter:authtoken admin_tenant_name services
openstack-config --set /etc/swift/proxy-server.conf \
 filter:authtoken admin_user swift
openstack-config --set /etc/swift/proxy-server.conf \
 filter:authtoken admin_password PASSWORD

Replace the following values:

Replace IP with the IP address or host name of the Identity server.

Replace services with the name of the tenant that was created for the Object Storage service
(previous examples set this to services).

Chapter 4. Install the Object Service

39

Replace swift with the name of the service user that was created for the Object Storage service
(previous examples set this to swift).

Replace PASSWORD with the password associated with the service user.

2. Start the memcached and openstack-swift-proxy services:

systemctl start memcached.service
systemctl start openstack-swift-proxy.service

3. Configure the memcached and openstack-swift-proxy services to start at boot time:

systemctl enable memcached.service
systemctl enable openstack-swift-proxy.service

4. Allow incoming connections to the server hosting the Object Storage proxy service. Open the
/etc/sysconfig/iptables file in a text editor, and Add an INPUT rule allowing TCP traffic on
port 8080. The new rule must appear before any INPUT rules that REJECT traffic: :

-A INPUT -p tcp -m multiport --dports 8080 -j ACCEPT

Important

This rule allows communication from all remote hosts to the system hosting the Swift proxy on
port 8080. For information regarding the creation of more restrictive firewall rules, see the Red
Hat Enterprise Linux Security Guide:

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/

5. Restart the iptables service to ensure that the change takes effect:

systemctl restart iptables.service

4.4.4. Object Storage Service Rings

Rings determine where data is stored in a cluster of storage nodes. Ring files are generated using the swift-
ring-builder tool. Three ring files are required, one each for the object, container, and account services.

Each storage device in a cluster is divided into partitions, with a recommended minimum of 100 partitions per
device. Each partition is physically a directory on disk. A configurable number of bits from the MD5 hash of
the filesystem path to the partition directory, known as the partition power, is used as a partition index for the
device. The partition count of a cluster that has 1000 devices, where each device has 100 partitions on it, is
100,000.

The partition count is used to calculate the partition power, where 2 to the partition power is the partition
count. If the partition power is a fraction, it is rounded up. If the partition count is 100,000, the part power is 17

(16.610 rounded up). This can be expressed mathematically as: 2partition power = partition count.

4.4.5. Build Object Storage Service Ring Files

Installation Reference

40

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/

Three ring files need to be created: one to track the objects stored by the Object Storage Service, one to
track the containers in which objects are placed, and one to track which accounts can access which
containers. The ring files are used to deduce where a particular piece of data is stored.

Ring files are generated using four possible parameters: partition power, replica count, zone, and the amount
of time that must pass between partition reassignments.

Table 4.1. Parameters Used when Building Ring Files

Ring File Parameter Description
part_power 2partition power = partition count.

The partition is rounded up after calculation.

replica_count The number of times that your data will be replicated
in the cluster.

min_part_hours Minimum number of hours before a partition can be
moved. This parameter increases availability of data
by not moving more than one copy of a given data
item within that min_part_hours amount of time.

zone Used when adding devices to rings (optional).
Zones are a flexible abstraction, where each zone
should be separated from other zones as possible in
your deployment. You can use a zone to represent
sites, cabinet, nodes, or even devices.

Procedure 4.6. Building Object Storage Service Ring Files

1. Build one ring for each service. Provide a builder file, a partition power, a replica count, and the
minimum hours between partition reassignment:

swift-ring-builder /etc/swift/object.builder create part_power
replica_count min_part_hours
swift-ring-builder /etc/swift/container.builder create part_power
replica_count min_part_hours
swift-ring-builder /etc/swift/account.builder create part_power
replica_count min_part_hours

2. When the rings are created, add devices to the account ring:

swift-ring-builder /etc/swift/account.builder add
zX-SERVICE_IP:6202/dev_mountpt part_count

Replace the following values:

Replace X with the corresponding integer of a specified zone (for example, z1 would correspond
to Zone One).

Replace SERVICE_IP with the IP on which the account, container, and object services should
listen. This IP should match the bind_ip value set during the configuration of the Object Storage
service storage nodes.

Replace dev_mountpt with the /srv/node subdirectory under which your device is mounted.

Replace part_count with the partition count you used to calculate your partition power.

Chapter 4. Install the Object Service

41

Note

Repeat this step for each device (on each node in the cluster) you want added to the ring.

3. Add each device to both the container and object rings:

swift-ring-builder /etc/swift/container.builder add
zX-SERVICE_IP:6201/dev_mountpt part_count
swift-ring-builder /etc/swift/object.builder add
zX-SERVICE_IP:6200/dev_mountpt part_count

Replace the variables with the same ones used in the previous step.

Note

Repeat these commands for each device (on each node in the cluster) you want added to the
ring.

4. Distribute the partitions across the devices in the ring:

swift-ring-builder /etc/swift/account.builder rebalance
swift-ring-builder /etc/swift/container.builder rebalance
swift-ring-builder /etc/swift/object.builder rebalance

5. Check to see that you now have three ring files in the directory /etc/swift:

ls /etc/swift/*gz

The files should be listed as follows:

/etc/swift/account.ring.gz /etc/swift/container.ring.gz
/etc/swift/object.ring.gz

6. Restart the openstack-swift-proxy service:

systemctl restart openstack-swift-proxy.service

7. Ensure that all files in the /etc/swift/ directory, including those that you have just created, are
owned by the root user and the swift group:

Important

All mount points must be owned by root; all roots of mounted file systems must be owned by
swift. Before running the following command, ensure that all devices are already mounted
and owned by root.

chown -R root:swift /etc/swift

Installation Reference

42

8. Copy each ring builder file to each node in the cluster, storing them under /etc/swift/.

4.5. Validate the Object Storage Service Installation

After installing and configuring the Object Storage service, you must validate it. The following procedure
must be performed on the server hosting the proxy service, or on any machine onto which you have copied
the keystonerc_admin file and on which the python-swiftclient package is installed.

Procedure 4.7. Validating the Object Storage Service Installation

1. On the proxy server node, turn on debug level logging:

openstack-config --set /etc/swift/proxy-server.conf DEFAULT
log_level debug

2. Restart the rsyslog service and the openstack-swift-proxy service:

systemctl restart rsyslog.service
systemctl restart openstack-swift-proxy.service

3. Set up the shell to access Keystone as the administrative user:

source ~/keystonerc_admin

4. Ensure that you can connect to the proxy server:

[(keystone_admin)]# swift list
 Message from syslogd@example-swift-01 at Jun 14 02:46:00 ...
 135 proxy-server Server reports support for api versions: v3.0, v2.0

5. Upload some files to your Object Storage service nodes:

[(keystone_admin)]# head -c 1024 /dev/urandom > data1.file ; swift
upload c1 data1.file
[(keystone_admin)]# head -c 1024 /dev/urandom > data2.file ; swift
upload c1 data2.file
[(keystone_admin)]# head -c 1024 /dev/urandom > data3.file ; swift
upload c1 data3.file

6. List the objects stored in the Object Storage service cluster:

[(keystone_admin)]# swift list
[(keystone_admin)]# swift list c1
data1.file
data2.file
data3.file

Chapter 4. Install the Object Service

43

Chapter 5. Install the Image Service

5.1. Image Service Requirements

To install the Image service, you must have access to the following credentials and information:

The root credentials and IP address of the server hosting the MariaDB database service

The administrative user credentials and endpoint URL of the Identity service

If you are using the OpenStack Object Storage service as the storage back end, you will also need to know
that service's endpoint public URL. This endpoint is configured as part of Section 4.4.1, “Create the Object
Storage Service Identity Records”.

5.2. Install the Image Service Packages

The OpenStack Image service requires the following packages:

openstack-glance

Provides the OpenStack Image service.

openstack-utils

Provides supporting utilities to assist with a number of tasks, including the editing of configuration
files.

openstack-selinux

Provides OpenStack-specific SELinux policy modules.

Install the packages:

yum install -y openstack-glance openstack-utils openstack-selinux

5.3. Create the Image Service Database

Create the database and database user used by the Image service. All steps must be performed on the
database server, while logged in as the root user.

Procedure 5.1. Creating the Image Service Database

1. Connect to the database service:

mysql -u root -p

2. Create the glance database:

mysql> CREATE DATABASE glance;

3. Create a glance database user and grant the user access to the glance database:

Installation Reference

44

mysql> GRANT ALL ON glance.* TO 'glance'@'%' IDENTIFIED BY
'PASSWORD';
mysql> GRANT ALL ON glance.* TO 'glance'@'localhost' IDENTIFIED BY
'PASSWORD';

Replace PASSWORD with a secure password that will be used to authenticate with the database
server as this user.

4. Flush the database privileges to ensure that they take effect immediately:

mysql> FLUSH PRIVILEGES;

5. Exit the mysql client:

mysql> quit

5.4. Configure the Image Service

To configure the Image service, the following tasks must be completed:

Configure the Identity service for Image service authentication (create database entries, set connection
strings, and update configuration files).

Configure the disk-image storage back end (this guide uses the Object Storage service).

Configure the firewall for Image service access.

Configure TLS/SSL.

Populate the Image service database.

5.4.1. Configure the Image Service Database Connection

The database connection string used by the Image service is defined in the /etc/glance/glance-
api.conf and /etc/glance/glance-registry.conf files. It must be updated to point to a valid
database server before starting the service.

All steps in this procedure must be performed on the server hosting the Image service, while logged in as the
root user.

Procedure 5.2. Configuring the Image Service SQL Database Connection

1. Set the value of the sql_connection configuration key in the glance-api.conf file:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT sql_connection mysql://USER:PASS@IP/DB

Replace the following values:

Replace USER with the Image service database user name, usually glance.

Replace PASS with the password of the database user.

Replace IP with the IP address or host name of the server hosting the database service.

Chapter 5. Install the Image Service

45

Replace DB with the name of the Image service database, usually glance.

2. Set the value of the sql_connection configuration key in the glance-registry.conf file:

openstack-config --set /etc/glance/glance-registry.conf \
 DEFAULT sql_connection mysql://USER:PASS@IP/DB

Replace USER, PASS, IP, and DB with the same values used in the previous step.

Important

The IP address or host name specified in the connection configuration key must match the IP address
or host name to which the Image service database user was granted access when creating the Image
service database. Moreover, if the database is hosted locally and you granted permissions to
'localhost' when creating the Image service database, you must enter 'localhost'.

5.4.2. Create the Image Service Identity Records

Create and configure Identity service records required by the Image service. These entries assist other
OpenStack services attempting to locate and access the volume functionality provided by the Image service.

This procedure assumes that you have already created an administrative user account and a services
tenant. For more information, see:

Section 3.5, “Create an Administrator Account”

Section 3.8, “Create the Services Tenant”

Perform this procedure on the Identity service server, or on any machine onto which you have copied the
keystonerc_admin file and on which the keystone command-line utility is installed.

Procedure 5.3. Creating Identity Records for the Image Service

1. Set up the shell to access Keystone as the admin user:

source ~/keystonerc_admin

2. Create the glance user:

[(keystone_admin)]# keystone user-create --name glance --pass
PASSWORD
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	
enabled	True
id	8091eaf121b641bf84ce73c49269d2d1
name	glance
username	glance
+----------+----------------------------------+

Replace PASSWORD with a secure password that will be used by the Image Service when
authenticating with the Identity service.

Installation Reference

46

3. Link the glance user and the admin role together within the context of the services tenant:

[(keystone_admin)]# keystone user-role-add --user glance --role admin
--tenant services

4. Create the glance Image service entry:

[(keystone_admin)]# keystone service-create --name glance \
 --type image \
 --description "Glance Image Service"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	Glance Image Service
enabled	True
id	7461b83f96bd497d852fb1b85d7037be
name	glance
type	image
+-------------+----------------------------------+

5. Create the glance endpoint entry:

[(keystone_admin)]# keystone endpoint-create \
 --service glance \
 --publicurl 'http://IP:9292' \
 --adminurl 'http://IP:9292' \
 --internalurl 'http://IP:9292' \
 --region 'RegionOne'

Replace IP with the IP address or host name of the server hosting the Image service.

5.4.3. Configure Image Service Authentication

Configure the Image service to use the Identity service for authentication. All steps in this procedure must be
performed on each node hosting the Image service, while logged in as the root user.

Procedure 5.4. Configuring the Image Service to Authenticate through the Identity Service

1. Configure the glance-api service:

openstack-config --set /etc/glance/glance-api.conf \
 paste_deploy flavor keystone
openstack-config --set /etc/glance/glance-api.conf \
 keystone_authtoken auth_host IP
openstack-config --set /etc/glance/glance-api.conf \
 keystone_authtoken auth_port 35357
openstack-config --set /etc/glance/glance-api.conf \
 keystone_authtoken auth_protocol http
openstack-config --set /etc/glance/glance-api.conf \
 keystone_authtoken admin_tenant_name services
openstack-config --set /etc/glance/glance-api.conf \
 keystone_authtoken admin_user glance
openstack-config --set /etc/glance/glance-api.conf \
 keystone_authtoken admin_password PASSWORD

Chapter 5. Install the Image Service

47

2. Configure the glance-registry service:

openstack-config --set /etc/glance/glance-registry.conf \
 paste_deploy flavor keystone
openstack-config --set /etc/glance/glance-registry.conf \
 keystone_authtoken auth_host IP
openstack-config --set /etc/glance/glance-registry.conf \
 keystone_authtoken auth_port 35357
openstack-config --set /etc/glance/glance-registry.conf \
 keystone_authtoken auth_protocol http
openstack-config --set /etc/glance/glance-registry.conf \
 keystone_authtoken admin_tenant_name services
openstack-config --set /etc/glance/glance-registry.conf \
 keystone_authtoken admin_user glance
openstack-config --set /etc/glance/glance-registry.conf \
 keystone_authtoken admin_password PASSWORD

Replace the following values:

Replace IP with the IP address or host name of the Identity server.

Replace services with the name of the tenant that was created for the use of the Image service (previous
examples set this to services).

Replace glance with the name of the service user that was created for the Image service (previous
examples set this to glance).

Replace PASSWORD with the password associated with the service user.

5.4.4. Use the Object Storage Service for Image Storage

By default, the Image service uses the local file system (file) for its storage back end; however, either of
the following storage back ends can be used to store uploaded disk images:

file - Local file system of the Image server (/var/lib/glance/images/ directory)

swift - OpenStack Object Storage service

Note

The configuration procedure below uses the openstack-config command; however, you can also
manually update the /etc/glance/glance-api.conf file. If manually updating the file, ensure
that the default_store parameter is set to the correct back end (for example,
'default_store=rbd'), and update the parameters in that back end's section (for example, under
'RBD Store Options').

Procedure 5.5. Configuring the Image Service to use the Object Storage Service

1. Set the default_store configuration key to swift:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT default_store swift

Installation Reference

48

2. Set the swift_store_auth_address configuration key to the public endpoint for the Identity
service:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT swift_store_auth_address http://IP:5000/v2.0/

3. Add the container for storing images in the Object Storage service:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT swift_store_create_container_on_put True

4. Set the swift_store_user configuration key, in the format TENANT:USER, to contain the tenant
and user to use for authentication:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT swift_store_user services:swift

If you followed the instructions in this guide to deploy Object Storage, replace these values with
the services tenant and the swift user respectively (as shown in the command example
above).

If you did not follow the instructions in this guide to deploy Object Storage, replace these values
with the appropriate Object Storage tenant and user for your environment.

5. Set the swift_store_key configuration key to the password that was set for the swift user when
deploying the Object Storage service:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT swift_store_key PASSWORD

5.4.5. Configure the Firewall to Allow Image Service Traffic

The Image service must be accessible over the network through port 9292. All steps in this procedure must
be performed on the server hosting the Image service, while logged in as the root user.

Procedure 5.6. Configuring the Firewall to Allow Image Service Traffic

1. Open the /etc/glance/glance-api.conf file in a text editor, and remove any comment
characters preceding the following parameters:

bind_host = 0.0.0.0
bind_port = 9292

2. Open the /etc/sysconfig/iptables file in a text editor.

3. Add an INPUT rule allowing TCP traffic on port 9292. The new rule must appear before any INPUT
rules that REJECT traffic:

-A INPUT -p tcp -m multiport --dports 9292 -j ACCEPT

4. Save the changes to the /etc/sysconfig/iptables file.

5. Restart the iptables service to ensure that the change takes effect:

Chapter 5. Install the Image Service

49

systemctl restart iptables.service

5.4.6. Configure RabbitMQ Message Broker Settings for the Image Service

RabbitMQ is the default (and recommended) message broker. The RabbitMQ messaging service is provided
by the rabbitmq-server package. All steps in the following procedure must be performed on the server hosting
the Image service, while logged in as the root user.

Procedure 5.7. Configuring the Image Service (glance) to Use the RabbitMQ Message Broker

1. Set RabbitMQ as the notifier:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT notification_driver messaging

2. Set the name of the RabbitMQ host:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT rabbit_host RABBITMQ_HOST

Replace RABBITMQ_HOST with the IP address or host name of the message broker.

3. Set the message broker port to 5672:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT rabbit_port 5672

4. Set the RabbitMQ user name and password created for the Image service when RabbitMQ was
configured:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT rabbit_userid glance
openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT rabbit_password GLANCE_PASS

Replace glance and GLANCE_PASS with the RabbitMQ user name and password created for the
Image service.

5. When RabbitMQ was launched, the glance user was granted read and write permissions to all
resources: specifically, through the virtual host /. Configure the Image service to connect to this
virtual host:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT rabbit_virtual_host /

5.4.7. Configure the Image Service to Use SSL

Use the following options in the glance-api.conf file to configure SSL.

Table 5.1. SSL Options for the Image Service

Installation Reference

50

Configuration
Option

Description

cert_file The path to the certificate file to use when starting the API server securely.

key_file The path to the private key file to use when starting the API server securely.

ca_file The path to the CA certificate file to use to verify connecting clients.

5.4.8. Populate the Image Service Database

Populate the Image service database after you have successfully configured the Image service database
connection string.

Procedure 5.8. Populating the Image Service Database

1. Log in to the system hosting the Image service.

2. Switch to the glance user:

su glance -s /bin/sh

3. Initialize and populate the database identified in /etc/glance/glance-api.conf and
/etc/glance/glance-registry.conf:

$ glance-manage db_sync

5.4.9. Enable Image Loading Through the Local File System

By default, the Image service provides images to instances using the HTTP protocol. Specifically, image data
is transmitted from the image store to the local disk of the Compute node using HTTP. This process is typical
for most deployments where the Image and Compute services are installed on different hosts.

Note

You can use direct image access if the Image service and the Compute service are not installed on
the same host, but are sharing a shared file system. In this case, the file system must be mounted in
the same location.

In deployments where both services are installed on the same host (and, consequently, share the same file
system), it is more efficient to skip the HTTP steps altogether. Instead, you must configure both the Image
service and the Compute service to send and receive images using the local file system.

The Image file system metadata generated for this procedure will only apply to new images. Any existing
images will not use this metadata.

Procedure 5.9. Configuring Image and Compute Services to Send and Receive Images through the
Local File System

1. Create a JSON document that exposes the Image file system metadata required by openstack-
nova-compute.

2. Configure the Image service to use the JSON document.

3. Configure openstack-nova-compute to use the file system metadata provided by the Image

Chapter 5. Install the Image Service

51

service.

If the Image service and the Compute service are hosted on different nodes, you can emulate local file
system sharing through Gluster. The following sections describe this in more detail.

5.4.9.1. Configure File System Sharing Across Different Image and Compute Nodes

If the Image service and the Compute service are hosted on different nodes, you can still enable them to
share images locally. To do so, you must use Gluster (Red Hat Storage shares).

The Image service and Compute service must share the same Gluster volume; the same volume must be
mounted on their respective nodes. This allows both services to access the same volume locally, and load
images through the local file system.

This configuration requires the following prerequisite steps:

1. Install and configure the packages required for Gluster on the node hosting the Image service and the
node hosting the Compute service.

2. Create the GlusterFS volume to be shared by the Image service and the Compute service.

3. Mount the GlusterFS volume on the Image service node and the Compute service node.

Note

For instructions on this procedure, see the most recent version of the Configuring Red Hat OpenStack
with Red Hat Storage guide, available from the following link:

https://access.redhat.com/site/documentation/en-US/Red_Hat_Storage/

After you have configured the GlusterFS volume and mounted it on the Image service node, you must
configure the Compute service node to use the mounted Gluster volume.

Procedure 5.10. Configuring the Compute Service Node to use a Mounted Gluster Volume

1. Log in to the Compute service node.

2. Install the packages required for Gluster:

yum install -y glusterfs glusterfs-fuse

3. Ensure that the drivers required to load the Gluster volume are enabled:

a. Open the /etc/nova/nova.conf configuration file in a text editor.

b. Search for the Libvirt handlers for remote volumes (specifically, volume_drivers). The
value for this parameter should be a comma-delimited list of drivers for different types of
volumes.

c. Depending on your Compute service deployment, the volume_drivers may already be
enabled (uncommented). If so, ensure that the Gluster volume driver (namely
glusterfs=nova.virt.libvirt.volume.LibvirtGlusterfsVolumeDriver) is
also listed. If the volume_drivers parameter is disabled or is not listed, edit the file
accordingly.

Installation Reference

52

https://access.redhat.com/site/documentation/en-US/Red_Hat_Storage/

4. Configure the Compute service to use the mounted Gluster volume:

openstack-config --set /etc/nova/nova-conf \
 DEFAULT glusterfs_mount_point_base GLUSTER_MOUNT

Replace GLUSTER_MOUNT with the directory where the Gluster volume is mounted.

5. Restart the Compute service:

systemctl restart openstack-nova-compute.service

The Image service and the Compute service can now emulate accessing the same file system as if it were a
local file system. Now, enable image loading through the local file system as normal.

5.4.9.2. Configure the Image Service to Provide Images Through the Local File System

To enable image loading through the local file system (as opposed to HTTP), the Image service must first
expose its local file-system metadata to the openstack-nova-compute service.

Procedure 5.11. Configuring the Image Service to Expose Local File System Metadata to the Compute
Service

1. Determine the mount point of the file system used by the Image service:

df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda3 51475068 10905752 37947876 23% /
devtmpfs 2005504 0 2005504 0% /dev
tmpfs 2013248 668 2012580 1% /dev/shm

For example, if the Image service uses the /dev/sda3 file system, its corresponding mount point is
/.

2. Create a unique ID for the mount point:

uuidgen
ad5517ae-533b-409f-b472-d82f91f41773

Note the output of the uuidgen, as this will be used in the next step.

3. Create a file with the .json extension.

4. Open the file in a text editor, and add the following information:

{
"id": "UID",
"mountpoint": "MOUNTPT"
}

Replace the following values:

Replace UID with the unique ID created in the previous step.

Replace MOUNTPT with the mount point of the Image service's file system, as determined in the
first step.

Chapter 5. Install the Image Service

53

5. Configure the Image service to use this JSON file:

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT show_multiple_locations True
openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT filesystem_store_metadata_file JSON_PATH

Replace JSON_PATH with the full path to the JSON file.

6. Restart the Image service (if it is already running):

systemctl restart openstack-glance-registry.service
systemctl restart openstack-glance-api.service

The Image file-system metadata generated for this procedure only applies to new images. Any existing
images will not use this metadata.

5.4.9.3. Configure the Compute Service to Use Local File System Metadata

After configuring the Image service to expose local file-system metadata, configure the Compute service to
use this metadata. This allows openstack-nova-compute to load images from the local file system.

Procedure 5.12. Configuring the Compute Service to use File System Metadata Provided by the Image
Service

1. Configure openstack-nova-compute to enable the use of direct URLs that have the file://
scheme:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT allowed_direct_url_schemes file

2. Create an entry for the Image service's file system:

openstack-config --set /etc/nova/nova.conf \
 image_file_url filesystems FSENTRY

Replace FSENTRY with a name to assign to the Image service's file system.

3. Open the .json file used by the Image service to expose its local file-system metadata. The
information in this file will be used in the next step.

4. Associate the entry for Image service's file system to the file system metadata exposed by the Image
service:

openstack-config --set /etc/nova/nova.conf \
 image_file_url:FSENTRY id UID
openstack-config --set /etc/nova/nova.conf \
 image_file_url:FSENTRY mountpoint MOUNTPT

Replace the following values:

Replace UID with the unique ID used by the Image service. In the .json file used by the Image
service, the UID is the "id" value.

Replace MOUNTPT with the mount point used by the Image service's file system. In the .json

Installation Reference

54

file used by the Image service, the MOUNTPT is the "mountpoint" value.

5.5. Launch the Image API and Registry Services

After Glance has been configured, start the glance-api and glance-registry services, and configure
each service to start at boot time:

systemctl start openstack-glance-registry.service
systemctl start openstack-glance-api.service
systemctl enable openstack-glance-registry.service
systemctl enable openstack-glance-api.service

5.6. Validate the Image Service Installation

This section outlines the steps required to upload a disk image to the Image service. This image can be used
as a basis for launching virtual machines in your OpenStack environment.

5.6.1. Obtain a Test Disk Image

Download from Red Hat a disk image that can be used to test the import of images into the Image service. A
new image is provided with each minor Red Hat Enterprise Linux 7 release, and is available on the Product
Downloads page for Red Hat Enterprise Linux.

Procedure 5.13. Downloading a Test Disk Image

1. Go to https://access.redhat.com, and log in to the Red Hat Customer Portal using your customer
account details.

2. Click Downloads in the menu bar.

3. Click A-Z to sort the product downloads alphabetically.

4. Click Red Hat Enterprise Linux to access the Product Downloads page.

5. Click the KVM Guest Image download link.

5.6.2. Upload a Disk Image

To launch instances based on images stored in the Image service, you must first upload one or more images
into the Image service. You must have access to images suitable for use in the OpenStack environment.

Chapter 5. Install the Image Service

55

https://access.redhat.com

Important

It is recommended that you run the virt-sysprep command on all Linux-based virtual machine
images prior to uploading them to the Image service. The virt-sysprep command reinitializes a
disk image in preparation for use in a virtual environment. Default operations include the removal of
SSH keys, removal of persistent MAC addresses, and removal of user accounts.

The virt-sysprep command is provided by the Red Hat Enterprise Linux libguestfs-tools package.
Install the package, and reinitialize the disk image:

yum install -y libguestfs-tools
virt-sysprep --add FILE

For information on enabling and disabling specific operations, see the virt-sysprep manual page.

Procedure 5.14. Uploading a Disk Image to the Image Service

1. Set up the shell to access keystone as a configured user (an administrative account is not required):

source ~/keystonerc_userName

2. Import the disk image:

[(keystone_userName)]# glance image-create --name "NAME" \
 --is-public IS_PUBLIC \
 --disk-format DISK_FORMAT \
 --container-format CONTAINER_FORMAT \
 --file IMAGE

Replace the following values:

Replace NAME with a name by which users will refer to the disk image.

Replace IS_PUBLIC with either true or false:

true - All users are able to view and use the image.

false - Only administrators are able to view and use the image.

Replace DISK_FORMAT with the disk image's format. Valid values include: aki, ami, ari, iso,
qcow2, raw, vdi, vhd, and vmdk. If the format of the virtual machine disk image is unknown, use
the qemu-img info command to try and identify it.

Replace CONTAINER_FORMAT with the container format of the image. The container format is
bare unless the image is packaged in a file format, such as ovf or ami, that includes additional
metadata related to the image.

Replace IMAGE with the local path to the image file (for uploading). If the image being uploaded
is not locally accessible but is available using a remote URL, provide the URL using the --
location parameter instead of the --file parameter. Note that you must also specify the --
copy-from argument to copy the image into the object store, otherwise the image will be
accessed remotely each time it is required.

Installation Reference

56

For more information about the glance image-create syntax, see the help page:

[(keystone_userName)]# glance help image-create

Note the unique identifier for the image in the output of the command above.

3. Verify that your image was successfully uploaded:

 [(keystone_userName)]# glance image-show IMAGE_ID
+------------------+--------------------------------------+
| Property | Value |
+------------------+--------------------------------------+
checksum	2f81976cae15c16ef0010c51e3a6c163
container_format	bare
created_at	2013-01-25T14:45:48
deleted	False
disk_format	qcow2
id	0ce782c6-0d3e-41df-8fd5-39cd80b31cd9
is_public	True
min_disk	0
min_ram	0
name	RHEL 6.6
owner	b1414433c021436f97e9e1e4c214a710
protected	False
size	25165824
status	active
updated_at	2013-01-25T14:45:50
+------------------+--------------------------------------+

Replace IMAGE_ID with the unique identifier for the image.

The disk image can now be used as the basis for launching virtual machine instances in your OpenStack
environment.

Chapter 5. Install the Image Service

57

Chapter 6. Install the Block Storage Service

6.1. Install the Block Storage Service Packages

The OpenStack Block Storage service requires the following packages:

openstack-cinder

Provides the Block Storage services and associated configuration files.

openstack-utils

Provides supporting utilities to assist with a number of tasks including the editing of configuration
files.

openstack-selinux

Provides OpenStack specific SELinux policy modules.

device-mapper-multipath

Provides tools to manage multipath devices using device-mapper. These tools are necessary for
proper block storage operations.

Install the packages:

yum install -y openstack-cinder openstack-utils openstack-selinux device-
mapper-multipath

6.2. Create the Block Storage Service Database

Create the database and database user used by the Block Storage services. All steps must be performed on
the database server, while logged in as the root user.

Procedure 6.1. Creating the Block Storage Services Database

1. Connect to the database service:

mysql -u root -p

2. Create the cinder database:

mysql> CREATE DATABASE cinder;

3. Create a cinder database user and grant the user access to the cinder database:

mysql> GRANT ALL ON cinder.* TO 'cinder'@'%' IDENTIFIED BY
'PASSWORD';
mysql> GRANT ALL ON cinder.* TO 'cinder'@'localhost' IDENTIFIED BY
'PASSWORD';

Replace PASSWORD with a secure password that will be used to authenticate with the database
server as this user.

Installation Reference

58

4. Flush the database privileges to ensure that they take effect immediately:

mysql> FLUSH PRIVILEGES;

5. Exit the mysql client:

mysql> quit

6.3. Configure the Block Storage Service

6.3.1. Configure the Block Storage Service Database Connection

The database connection string used by the Block Storage services is defined in the
/etc/cinder/cinder.conf file. It must be updated to point to a valid database server before starting the
service.

Set the value of the sql_connection configuration key on each system hosting Block Storage services:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT sql_connection mysql://USER:PASS@IP/DB

Replace the following values:

Replace USER with the Block Storage service database user name, usually cinder.

Replace PASS with the password of the database user.

Replace IP with the IP address or host name of the server hosting the database service.

Replace DB with the name of the Block Storage service database, usually cinder.

Important

The IP address or host name specified in the connection configuration key must match the IP address
or host name to which the Block Storage service database user was granted access when creating
the Block Storage service database. Moreover, if the database is hosted locally and you granted
permissions to 'localhost' when creating the Block Storage service database, you must enter
'localhost'.

6.3.2. Create the Block Storage Service Identity Records

Create and configure Identity service records required by the Block Storage service. These entries provide
authentication for the Block Storage services, and guide other OpenStack services attempting to locate and
access the volume functionality provided by Block Storage.

This procedure assumes that you have already created an administrative user account and a services
tenant. For more information, see:

Section 3.5, “Create an Administrator Account”

Section 3.8, “Create the Services Tenant”

Chapter 6. Install the Block Storage Service

59

Perform this procedure on the Identity service server, or on any machine onto which you have copied the
keystonerc_admin file and on which the keystone command-line utility is installed.

Procedure 6.2. Creating Identity Records for the Block Storage Service

1. Set up the shell to access Keystone as the administrative user:

source ~/keystonerc_admin

2. Create the cinder user:

[(keystone_admin)]# keystone user-create --name cinder --pass
PASSWORD
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	
enabled	True
id	e1765f70da1b4432b54ced060139b46a
name	cinder
username	cinder
+----------+----------------------------------+

Replace PASSWORD with a secure password that will be used by the Block Storage service when
authenticating with the Identity service.

3. Link the cinder user and the admin role together within the context of the services tenant:

[(keystone_admin)]# keystone user-role-add --user cinder --role admin
--tenant services

4. Create the cinder Block Storage service entry:

[(keystone_admin)]# keystone service-create --name cinder \
 --type volume \
 --description "Cinder Volume Service"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	Cinder Volume Service
enabled	True
id	dfde7878671e484c9e581a3eb9b63e66
name	cinder
type	volume
+-------------+----------------------------------+

5. Create the cinder endpoint entry:

[(keystone_admin)]# keystone endpoint-create \
 --service cinder \
 --publicurl 'http://IP:8776/v1/%(tenant_id)s' \
 --adminurl 'http://IP:8776/v1/%(tenant_id)s' \
 --internalurl 'http://IP:8776/v1/%(tenant_id)s' \
 --region 'RegionOne'

Installation Reference

60

Replace IP with the IP address or host name of the server hosting the Block Storage API service
(openstack-cinder-api). To install and run multiple instances of the API service, repeat this step
for the IP address or host name of each instance.

6.3.3. Configure Block Storage Service Authentication

Configure the Block Storage service to use the Identity service for authentication. All steps in this procedure
must be performed on each server hosting Block Storage services, while logged in as the root user.

Procedure 6.3. Configuring the Block Storage Service to Authenticate Through the Identity Service

1. Set the authentication strategy to keystone:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT auth_strategy keystone

2. Set the Identity service host that the Block Storage services must use:

openstack-config --set /etc/cinder/cinder.conf \
 keystone_authtoken auth_host IP

Replace IP with the IP address or host name of the server hosting the Identity service.

3. Set the Block Storage services to authenticate as the correct tenant:

openstack-config --set /etc/cinder/cinder.conf \
 keystone_authtoken admin_tenant_name services

Replace services with the name of the tenant created for the use of OpenStack Networking.
Examples in this guide use services.

4. Set the Block Storage services to authenticate using the cinder administrative user account:

openstack-config --set /etc/cinder/cinder.conf \
 keystone_authtoken admin_user cinder

5. Set the Block Storage services to use the correct cinder administrative user account password:

openstack-config --set /etc/cinder/cinder.conf \
 keystone_authtoken admin_password PASSWORD

Replace PASSWORD with the password set when the cinder user was created.

6.3.4. Configure the Firewall to Allow Block Storage Service Traffic

Each component in the OpenStack environment uses the Identity service for authentication and must be able
to access the service. The firewall on the system hosting the Block Storage service must be altered to allow
network traffic on the required ports. All steps in this procedure must be run on each server hosting Block
Storage services, while logged in as the root user.

Procedure 6.4. Configuring the Firewall to Allow Block Storage Service Traffic

1. Open the /etc/sysconfig/iptables file in a text editor.

Chapter 6. Install the Block Storage Service

61

2. Add an INPUT rule allowing TCP traffic on ports 3260 and 8776 to the file. The new rule must appear
before any INPUT rules that REJECT traffic:

-A INPUT -p tcp -m multiport --dports 3260,8776 -j ACCEPT

3. Save the changes to the /etc/sysconfig/iptables file.

4. Restart the iptables service to ensure that the change takes effect:

systemctl restart iptables.service

6.3.5. Configure the Block Storage Service to Use SSL

Use the following options in the cinder.conf file to configure SSL.

Table 6.1. SSL options for Block Storage

Configuration
Option

Description

backlog The number of backlog requests with which to configure the socket.

tcp_keepidle Sets the value of TCP_KEEPIDLE in seconds for each server socket.

ssl_ca_file The CA certificate file to use to verify connecting clients.

ssl_cert_file The certificate file to use when starting the server securely.

ssl_key_file The private key file to use when starting the server securely.

6.3.6. Configure RabbitMQ Message Broker Settings for the Block Storage Service

RabbitMQ is the default (and recommended) message broker. The RabbitMQ messaging service is provided
by the rabbitmq-server package. All steps in the following procedure must be performed on the server hosting
the Block Storage service, while logged in as the root user.

Procedure 6.5. Configuring the Block Storage Service to use the RabbitMQ Message Broker

1. Set RabbitMQ as the RPC back end:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT rpc_backend cinder.openstack.common.rpc.impl_kombu

2. Set the name of the RabbitMQ host:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT rabbit_host RABBITMQ_HOST

Replace RABBITMQ_HOST with the IP address or host name of the message broker.

3. Set the message broker port to 5672:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT rabbit_port 5672

4. Set the RabbitMQ username and password created for the Block Storage service when RabbitMQ
was configured:

Installation Reference

62

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT rabbit_userid cinder

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT rabbit_password CINDER_PASS

Replace cinder and CINDER_PASS with the RabbitMQ user name and password created for the
Block Storage service.

5. When RabbitMQ was launched, the cinder user was granted read and write permissions to all
resources: specifically, through the virtual host /. Configure the Block Storage service to connect to
this virtual host:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT rabbit_virtual_host /

6.3.7. Enable SSL Communication Between the Block Storage Service and the
Message Broker

If you enabled SSL on the message broker, you must configure the Block Storage service accordingly. This
procedure requires the exported client certificates and key file. See Section 2.3.5, “Export an SSL Certificate
for Clients” for instructions on how to export these files.

1. Enable SSL communication with the message broker:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT rabbit_use_ssl True
openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT kombu_ssl_certfile /path/to/client.crt
openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT kombu_ssl_keyfile /path/to/clientkeyfile.key

Replace the following values:

Replace /path/to/client.crt with the absolute path to the exported client certificate.

Replace /path/to/clientkeyfile.key with the absolute path to the exported client key file.

2. If your certificates were signed by a third-party Certificate Authority (CA), you must also run the
following command:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT kombu_ssl_ca_certs /path/to/ca.crt

Replace /path/to/ca.crt with the absolute path to the CA file provided by the third-party CA (see
Section 2.3.4, “Enable SSL on the RabbitMQ Message Broker” for more information).

6.3.8. Populate the Block Storage Database

Populate the Block Storage database after you have successfully configured the Block Storage service
database connection string.

Chapter 6. Install the Block Storage Service

63

Important

This procedure must be followed only once to initialize and populate the database. You do not need to
perform these steps again when adding additional systems hosting Block Storage services.

Procedure 6.6. Populating the Block Storage Service Database

1. Log in to the system hosting one of the Block Storage services.

2. Switch to the cinder user:

su cinder -s /bin/sh

3. Initialize and populate the database identified in /etc/cinder/cinder.conf:

$ cinder-manage db sync

6.3.9. Increase the Throughput of the Block Storage API Service

By default, the Block Storage API service (openstack-cinder-api) runs in one process. This limits the
number of API requests that the Block Storage service can process at any given time. In a production
environment, you should increase the Block Storage API throughput by allowing openstack-cinder-api
to run in as many processes as the machine capacity allows.

The Block Storage API service option, osapi_volume_workers, allows you to specify the number of API
service workers (or OS processes) to launch for openstack-cinder-api.

To set this option, run the following command on the openstack-cinder-api host:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT osapi_volume_workers CORES

Replace CORES with the number of CPU cores/threads on a machine.

6.4. Configure the Volume Service

6.4.1. Block Storage Driver Support

The volume service (openstack-cinder-volume) requires access to suitable block storage. Red Hat
Enterprise Linux OpenStack Platform provides volume drivers for the following supported block storage
types:

LVM/iSCSI

ThinLVM

NFS

NetAPP NFS

Red Hat Storage (Gluster)

Installation Reference

64

Dell EqualLogic

For more detailed information on configuring volume drivers for the Block Storage service, see the Volume
Drivers section of the Red Hat Enterprise Linux OpenStack Platform Configuration Reference Guide. For
instructions on how to set up an NFS or GlusterFS back end, see the Manage Volumes section of the Red
Hat Enterprise Linux OpenStack Platform Managing Images and Instances Guide.

Both documents are available from the following link:

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform

For instructions on how to set up an LVM back end, refer to Section 6.4.2, “Configure OpenStack Block
Storage to Use an LVM Storage Back End”.

6.4.2. Configure OpenStack Block Storage to Use an LVM Storage Back End

The openstack-cinder-volume service can make use of a volume group attached directly to the server
on which the service runs. This volume group must be created exclusively for use by the Block Storage
service, and the configuration updated to point to the name of the volume group.

All steps in the following procedure must be performed on the server hosting the openstack-cinder-
volume service, while logged in as the root user.

Procedure 6.7. Configuring openstack-cinder-volume to Use LVM Storage as a Back End

1. Create a physical volume:

pvcreate DEVICE
 Physical volume "DEVICE" successfully created

Replace DEVICE with the path to a valid, unused, device. For example:

pvcreate /dev/sdX

2. Create a volume group:

vgcreate cinder-volumes DEVICE
 Volume group "cinder-volumes" successfully created

Replace DEVICE with the path to the device used when creating the physical volume. Optionally
replace cinder-volumes with an alternative name for the new volume group.

3. Set the volume_group configuration key to the name of the volume group created in the previous
step:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT volume_group cinder-volumes

4. Ensure that the correct volume driver for accessing LVM storage is in use by setting the
volume_driver configuration key to cinder.volume.drivers.lvm.LVMISCSIDriver:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT volume_driver cinder.volume.drivers.lvm.LVMISCSIDriver

Chapter 6. Install the Block Storage Service

65

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform

6.4.3. Configure the SCSI Target Daemon

The openstack-cinder-volume service uses a SCSI target daemon for mounting storage. You must
install a SCSI target daemon on each server hosting an instance of the openstack-cinder-volume
service, while logged in as the root user.

Procedure 6.8. Configure a SCSI Target Daemon

1. Install the targetcli package:

yum install targetcli

2. Launch the target daemon and configure it to start at boot time:

systemctl start target.service
systemctl enable target.service

3. Configure the volume service to use the lioadm iSCSI target user-land tool:

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT iscsi_helper lioadm

4. Set the IP address on which the iSCSI daemon must listen (ISCSIIP):

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT iscsi_ip_address ISCSIIP

Replace ISCSI_IP with the IP address or host name of the server hosting the openstack-cinder-
volume service.

6.5. Launch the Block Storage Services

To enable the Block Storage functionality at least one instance of each of the three services must be started:

The API service (openstack-cinder-api).

The scheduler service (openstack-cinder-scheduler).

The volume service (openstack-cinder-volume).

The services do not need to be located on the same system, but must be configured to communicate using
the same message broker and database instance. When the services are running, the API accepts incoming
volume requests, the scheduler assigns them as appropriate, and the volume service actions them.

Procedure 6.9. Launching Block Storage Services

1. Log in as the root user on each server where you intend to run the API, start the API service, and
configure it to start at boot time:

systemctl start openstack-cinder-api.service
systemctl enable openstack-cinder-api.service

Installation Reference

66

2. Log in as the root user on each server where you intend to run the scheduler, start the scheduler
service, and configure it to start at boot time:

systemctl start openstack-cinder-scheduler.service
systemctl enable openstack-cinder-scheduler.service

3. Log in as the root user on each server to which Block Storage has been attached, start the volume
service, and configure it to start at boot time:

systemctl start openstack-cinder-volume.service
systemctl enable openstack-cinder-volume.service

6.6. Validate the Block Storage Service Installation

6.6.1. Validate the Block Storage Service Installation Locally

Create and remove a volume locally to validate that the block storage installation is complete and ready for
use. Perform this test on the server hosting the Block Storage API service, while logged in as the root user
or a user with access to the keystonerc_admin file. Copy the keystonerc_admin file to the system
before proceeding.

Procedure 6.10. Validating the Block Storage Service Installation Locally

1. Populate the environment variables used for identifying and authenticating the administrative user:

source ~/keystonerc_admin

2. Verify that no errors are returned in the output of this command:

cinder list

3. Create a volume:

cinder create SIZE

Replace SIZE with the size of the volume to create in Gigabytes (GB).

4. Remove the volume:

cinder delete ID

Replace ID with the identifier returned when the volume was created.

6.6.2. Validate the Block Storage Service Installation Remotely

Create and remove a volume using a remote machine to validate that the block storage installation is
complete and ready for use. Perform this test on a server other than the server hosting the Block Storage API
service, while logged in as the root user or a user with access to the keystonerc_admin file. Copy the
keystonerc_admin file to the system before proceeding.

Procedure 6.11. Validating the Block Storage Service Installation Remotely

Chapter 6. Install the Block Storage Service

67

1. Install the python-cinderclient package:

yum install -y python-cinderclient

2. Populate the environment variables used for identifying and authenticating the administrative user:

source ~/keystonerc_admin

3. Verify that no errors are returned in the output of this command:

cinder list

4. Create a volume:

cinder create SIZE

Replace SIZE with the size of the volume to create in gigabytes (GB).

5. Remove the volume:

cinder delete ID

Replace ID with the identifier returned when the volume was created.

Installation Reference

68

Chapter 7. Install OpenStack Networking

7.1. Install the OpenStack Networking Packages

OpenStack Networking requires the following packages:

openstack-neutron

Provides OpenStack Networking and associated configuration files.

openstack-neutron-PLUGIN

Provides an OpenStack Networking plug-in. Replace PLUGIN with one of the recommended plug-
ins (ml2, openvswitch, or linuxbridge).

Note

The monolithic Open vSwitch and linuxbridge plug-ins have been deprecated and will be
removed in a future release; their functionality has instead been reimplemented as ML2
mechanisms.

openstack-utils

Provides supporting utilities to assist with a number of tasks, including the editing of configuration
files.

openstack-selinux

Provides OpenStack-specific SELinux policy modules.

The packages must be installed on all systems that will handle network traffic. This includes the OpenStack
Networking node, all network nodes, and all Compute nodes.

Install the packages:

yum install -y openstack-neutron \
 openstack-neutron-PLUGIN \
 openstack-utils \
 openstack-selinux

Replace PLUGIN with ml2,openvswitch, or linuxbridge to determine which plug-in is installed.

7.2. Configure OpenStack Networking

7.2.1. Set the OpenStack Networking Plug-in

Enable the desired OpenStack Networking plug-in. Below are the procedures for enabling the ML2, Open
vSwitch (OVS), and Linux Bridge plug-ins.

Chapter 7. Install OpenStack Networking

69

Note

The monolithic Open vSwitch and Linux Bridge plug-ins have been deprecated and will be removed in
a future release; their functionality has instead been reimplemented as ML2 mechanisms.

OpenStack Networking plug-ins can be referenced in neutron.conf by their nominated short names,
instead of their lengthy class names. For example:

core_plugin = neutron.plugins.ml2.plugin:Ml2Plugin

will become:

core_plugin = ml2

Take care not to introduce errant whitespace characters, as these could result in parse errors.

Table 7.1. core_plugin

Short name Class name
bigswitch neutron.plugins.bigswitch.plugin:NeutronRestProxyV2
brocade neutron.plugins.brocade.NeutronPlugin:BrocadePluginV2
cisco neutron.plugins.cisco.network_plugin:PluginV2
embrane neutron.plugins.embrane.plugins.embrane_ovs_plugin:EmbraneOvsPlugin
hyperv neutron.plugins.hyperv.hyperv_neutron_plugin:HyperVNeutronPlugin
linuxbridge neutron.plugins.linuxbridge.lb_neutron_plugin:LinuxBridgePluginV2
midonet neutron.plugins.midonet.plugin:MidonetPluginV2
ml2 neutron.plugins.ml2.plugin:Ml2Plugin
mlnx neutron.plugins.mlnx.mlnx_plugin:MellanoxEswitchPlugin
nec neutron.plugins.nec.nec_plugin:NECPluginV2
openvswitch neutron.plugins.openvswitch.ovs_neutron_plugin:OVSNeutronPluginV2
plumgrid neutron.plugins.plumgrid.plumgrid_plugin.plumgrid_plugin:NeutronPluginPLUMgridV2
ryu neutron.plugins.ryu.ryu_neutron_plugin:RyuNeutronPluginV2
vmware neutron.plugins.vmware.plugin:NsxPlugin

The service_plugins option accepts a comma-delimited list of multiple service plugins.

Table 7.2. service_plugins

Short name Class name
dummy neutron.tests.unit.dummy_plugin:DummyServicePlugin
router neutron.services.l3_router.l3_router_plugin:L3RouterPlugin
firewall neutron.services.firewall.fwaas_plugin:FirewallPlugin
lbaas neutron.services.loadbalancer.plugin:LoadBalancerPlugin
metering neutron.services.metering.metering_plugin:MeteringPlugin

7.2.1.1. Enable the ML2 Plug-in

Enable the ML2 plug-in on the node running the neutron-server service.

Installation Reference

70

Procedure 7.1. Enabling the ML2 Plug-in

1. Create a symbolic link to direct OpenStack Networking to the ml2_conf.ini file:

ln -s /etc/neutron/plugins/ml2/ml2_conf.ini /etc/neutron/plugin.ini

2. Set the tenant network type. Supported values are gre, local, vlan, and vxlan. The default value
is local, but this is not recommended for enterprise deployments:

openstack-config --set /etc/neutron/plugin.ini \
 ml2 tenant_network_type TYPE

Replace TYPE with the tenant network type.

3. If you chose flat or vlan networking, you must also map physical networks to VLAN ranges:

openstack-config --set /etc/neutron/plugin.ini \
 ml2 network_vlan_ranges NAME:START:END

Replace the following values:

Replace NAME with the name of the physical network.

Replace START with the VLAN identifier that starts the range.

Replace END with the VLAN identifier that ends the range.

Multiple ranges can be specified using a comma-delimited list, for example:

physnet1:1000:2999,physnet2:3000:3999

4. Set the driver types. Supported values are local, flat, vlan, gre, and vxlan:

openstack-config --set /etc/neutron/plugin.ini \
 ml2 type_drivers TYPE

Replace TYPE with the driver type. Specify multiple drivers using a comma-delimited list.

5. Set the mechanism drivers. Available values are openvswitch, linuxbridge, and
l2population:

openstack-config --set /etc/neutron/plugin.ini \
 ml2 mechanism_drivers TYPE

Replace TYPE with the mechanism driver type. Specify multiple mechanism drivers using a comma-
delimited list.

6. Enable L2 population:

openstack-config --set /etc/neutron/plugin.ini \
 agent l2_population True

Chapter 7. Install OpenStack Networking

71

7. Set the firewall driver in the
/etc/neutron/plugins/openvswitch/ovs_neutron_plugin.ini file or the
/etc/neutron/plugins/linxbridge/linuxbridge_conf.ini file, depending on which plug-
in agent you are using:

a. Open vSwitch Firewall Driver

openstack-config --set
/etc/neutron/plugins/openvswitch/ovs_neutron_plugin.ini
 securitygroup firewall_driver
neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallD
river

b. Linux Bridge Firewall Driver

openstack-config --set
/etc/neutron/plugins/linuxbridge/linuxbridge_conf.ini
 securitygroup firewall_driver
neutron.agent.linux.iptables_firewall.IptablesFirewallDriver

8. Enable the ML2 plug-in and the L3 router:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT core_plugin ml2
openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT service_plugins router

7.2.1.2. Enable the Open vSwitch Plug-in

Enable the Open vSwitch plug-in on the server hosting the neutron-server service.

Note

The monolithic Open vSwitch plug-in has been deprecated and will be removed in a future release; its
functionality has instead been reimplemented as a ML2 mechanism.

Procedure 7.2. Enabling the Open vSwitch Plug-in

1. Create a symbolic link to direct OpenStack Networking to the ovs_neutron_plugin.ini file:

ln -s /etc/neutron/plugins/openvswitch/ovs_neutron_plugin.ini \
 /etc/neutron/plugin.ini

2. Set the tenant network type. Supported values are gre, local, vlan, and vxlan. The default value
is local, but this is not recommended for enterprise deployments:

openstack-config --set /etc/neutron/plugin.ini \
 OVS tenant_network_type TYPE

Replace TYPE with the tenant network type.

Installation Reference

72

3. If you chose flat or vlan networking, you must also map physical networks to VLAN ranges:

openstack-config --set /etc/neutron/plugin.ini \
 OVS network_vlan_ranges NAME:START:END

Replace the following values:

Replace NAME with the name of the physical network.

Replace START with the VLAN identifier that starts the range.

Replace END with the VLAN identifier that ends the range.

Multiple ranges can be specified using a comma-delimited list, for example:

physnet1:1000:2999,physnet2:3000:3999

4. Set the firewall driver:

openstack-config --set /etc/neutron/plugin.ini \
 securitygroup firewall_driver
neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver

5. Enable the Open vSwitch plug-in:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT core_plugin openvswitch

7.2.1.3. Enable the Linux Bridge Plug-in

Enable the Linux Bridge plug-in on the server hosting the neutron-server service.

Note

The monolithic Linux Bridge plug-in has been deprecated and will be removed in a future release; its
functionality has instead been reimplemented as a ML2 mechanism.

Procedure 7.3. Enabling the Linux Bridge Plug-in

1. Create a symbolic link to direct OpenStack Networking to the linuxbridge_conf.ini file:

ln -s /etc/neutron/plugins/linuxbridge/linuxbridge_conf.ini \
 /etc/neutron/plugin.ini

2. Set the tenant network type. Supported values are flat, vlan, and local. The default is local,
but this is not recommended for enterprise deployments:

openstack-config --set /etc/neutron/plugin.ini \
 VLAN tenant_network_type TYPE

Replace TYPE with the chosen tenant network type.

Chapter 7. Install OpenStack Networking

73

3. If you chose flat or vlan networking, you must also map physical networks to VLAN ranges:

openstack-config --set /etc/neutron/plugin.ini \
 LINUX_BRIDGE network_vlan_ranges NAME:START:END

Replace NAME with the name of the physical network.

Replace START with the VLAN identifier that starts the range.

Replace END with the VLAN identifier that ends the range.

Multiple ranges can be specified using a comma-delimited list, for example:

physnet1:1000:2999,physnet2:3000:3999

4. Set the firewall driver:

openstack-config --set /etc/neutron/plugin.ini \
 securitygroup firewall_driver
neutron.agent.linux.iptables_firewall.IptablesFirewallDriver

5. Enable the Linux Bridge plug-in:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT core_plugin linuxbridge

7.2.2. Create the OpenStack Networking Database

Create the database and database user used by OpenStack Networking. All steps in this procedure must be
performed on the database server, while logged in as the root user, and prior to starting the neutron-
server service.

Procedure 7.4. Creating the OpenStack Networking Database

1. Connect to the database service:

mysql -u root -p

2. Create the database with one of the following names:

If you are using the ML2 plug-in, the recommended database name is neutron_ml2

If you are using the Open vSwitch plug-in, the recommended database name is ovs_neutron.

If you are using the Linux Bridge plug-in, the recommended database name is
neutron_linux_bridge.

This example creates the ML2 neutron_ml2 database:

mysql> CREATE DATABASE neutron_ml2 character set utf8;

3. Create a neutron database user and grant the user access to the neutron_ml2 database:

Installation Reference

74

mysql> GRANT ALL ON neutron_ml2.* TO 'neutron'@'%' IDENTIFIED BY
'PASSWORD';
mysql> GRANT ALL ON neutron_ml2.* TO 'neutron'@'localhost' IDENTIFIED
BY 'PASSWORD';

Replace PASSWORD with a secure password that will be used to authenticate with the database
server as this user.

4. Flush the database privileges to ensure that they take effect immediately:

mysql> FLUSH PRIVILEGES;

5. Exit the mysql client:

mysql> quit

7.2.3. Configure the OpenStack Networking Database Connection

The database connection string used by OpenStack Networking is defined in the
/etc/neutron/plugin.ini file. It must be updated to point to a valid database server before starting the
service. All steps in this procedure must be performed on the server hosting OpenStack Networking, while
logged in as the root user.

Procedure 7.5. Configuring the OpenStack Networking SQL Database Connection

1. Set the value of the connection configuration key.

openstack-config --set /etc/neutron/plugin.ini \
 DATABASE sql_connection mysql://USER:PASS@IP/DB

Replace the following values:

Replace USER with the OpenStack Networking database user name, usually neutron.

Replace PASS with the password of the database user.

Replace IP with the IP address or host name of the database server.

Replace DB with the name of the OpenStack Networking database.

Important

The IP address or host name specified in the connection configuration key must match the IP
address or host name to which the OpenStack Networking database user was granted access
when creating the OpenStack Networking database. Moreover, if the database is hosted
locally and you granted permissions to 'localhost' when creating the database, you must enter
'localhost'.

2. Upgrade the OpenStack Networking database schema:

Chapter 7. Install OpenStack Networking

75

neutron-db-manage --config-file /usr/share/neutron/neutron-
dist.conf \
 --config-file /etc/neutron/neutron.conf --config-file
/etc/neutron/plugin.ini upgrade head

7.2.4. Create the OpenStack Networking Identity Records

Create and configure Identity service records required by OpenStack Networking. These entries assist other
OpenStack services attempting to locate and access the functionality provided by OpenStack Networking.

This procedure assumes that you have already created an administrative user account and a services
tenant. For more information, see:

Section 3.5, “Create an Administrator Account”

Section 3.8, “Create the Services Tenant”

Perform this procedure on the Identity service server, or on any machine onto which you have copied the
keystonerc_admin file and on which the keystone command-line utility is installed.

Procedure 7.6. Creating Identity Records for OpenStack Networking

1. Set up the shell to access Keystone as the administrative user:

source ~/keystonerc_admin

2. Create the neutron user:

[(keystone_admin)]# keystone user-create --name neutron --pass
PASSWORD
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	
enabled	True
id	1df18bcd14404fa9ad954f9d5eb163bc
name	neutron
username	neutron
+----------+----------------------------------+

Replace PASSWORD with a secure password that will be used by OpenStack Networking when
authenticating with the Identity service.

3. Link the neutron user and the admin role together within the context of the services tenant:

[(keystone_admin)]# keystone user-role-add --user neutron --role
admin --tenant services

4. Create the neutron OpenStack Networking service entry:

[(keystone_admin)]# keystone service-create --name neutron \
 --type network \
 --description "OpenStack Networking"
+-------------+----------------------------------+

Installation Reference

76

| Property | Value |
+-------------+----------------------------------+
description	OpenStack Networking
enabled	True
id	134e815915f442f89c39d2769e278f9b
name	neutron
type	network
+-------------+----------------------------------+

5. Create the neutron endpoint entry:

[(keystone_admin)]# keystone endpoint-create
 --service neutron \
 --publicurl 'http://IP:9696' \
 --adminurl 'http://IP:9696' \
 --internalurl 'http://IP:9696' \
 --region 'RegionOne'

Replace IP with the IP address or host name of the server that will act as the OpenStack Networking
node.

7.2.5. Configure OpenStack Networking Authentication

Configure OpenStack Networking to use the Identity service for authentication. All steps in this procedure
must be performed on the server hosting OpenStack Networking, while logged in as the root user.

Procedure 7.7. Configuring the OpenStack Networking Service to Authenticate through the Identity
Service

1. Set the authentication strategy to keystone:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT auth_strategy keystone

2. Set the Identity service host that OpenStack Networking must use:

openstack-config --set /etc/neutron/neutron.conf \
 keystone_authtoken auth_host IP

Replace IP with the IP address or host name of the server hosting the Identity service.

3. Set OpenStack Networking to authenticate as the correct tenant:

openstack-config --set /etc/neutron/neutron.conf \
 keystone_authtoken admin_tenant_name services

Replace services with the name of the tenant created for the use of OpenStack Networking.
Examples in this guide use services.

4. Set OpenStack Networking to authenticate using the neutron administrative user account:

openstack-config --set /etc/neutron/neutron.conf \
 keystone_authtoken admin_user neutron

Chapter 7. Install OpenStack Networking

77

5. Set OpenStack Networking to use the correct neutron administrative user account password:

openstack-config --set /etc/neutron/neutron.conf \
 keystone_authtoken admin_password PASSWORD

Replace PASSWORD with the password set when the neutron user was created.

7.2.6. Configure the Firewall to Allow OpenStack Networking Traffic

OpenStack Networking receives connections on TCP port 9696. The firewall on the OpenStack Networking
node must be configured to allow network traffic on this port. All steps in this procedure must be performed on
the server hosting OpenStack Networking, while logged in as the root user.

Procedure 7.8. Configuring the Firewall to Allow OpenStack Networking Traffic

1. Open the /etc/sysconfig/iptables file in a text editor.

2. Add an INPUT rule allowing TCP traffic on port 9696. The new rule must appear before any INPUT
rules that REJECT traffic:

-A INPUT -p tcp -m multiport --dports 9696 -j ACCEPT

3. Save the changes to the /etc/sysconfig/iptables file.

4. Restart the iptables service to ensure that the change takes effect:

systemctl restart iptables.service

7.2.7. Configure RabbitMQ Message Broker Settings for OpenStack Networking

RabbitMQ is the default (and recommended) message broker. The RabbitMQ messaging service is provided
by the rabbitmq-server package. All steps in the following procedure must be performed on the system
hosting OpenStack Networking, while logged in as the root user.

Procedure 7.9. Configuring the OpenStack Networking Service to use the RabbitMQ Message Broker

1. Set RabbitMQ as the RPC back end:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT rpc_backend neutron.openstack.common.rpc.impl_kombu

2. Set OpenStack Networking to connect to the RabbitMQ host:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT rabbit_host RABBITMQ_HOST

Replace RABBITMQ_HOST with the IP address or host name of the message broker.

3. Set the message broker port to 5672:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT rabbit_port 5672

Installation Reference

78

4. Set the RabbitMQ user name and password created for OpenStack Networking when RabbitMQ was
configured:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT rabbit_userid neutron
openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT rabbit_password NEUTRON_PASS

Replace neutron and NEUTRON_PASS with the RabbitMQ user name and password created for
OpenStack Networking.

5. When RabbitMQ was launched, the neutron user was granted read and write permissions to all
resources: specifically, through the virtual host /. Configure the Networking service to connect to this
virtual host:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT rabbit_virtual_host /

7.2.8. Enable SSL Communication Between OpenStack Networking and the Message
Broker

If you enabled SSL on the message broker, you must configure OpenStack Networking accordingly. This
procedure requires the exported client certificates and key file. See Section 2.3.5, “Export an SSL Certificate
for Clients” for instructions on how to export these files.

Procedure 7.10. Enabling SSL Communication Between OpenStack Networking and the RabbitMQ
Message Broker

1. Enable SSL communication with the message broker:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT rabbit_use_ssl True
openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT kombu_ssl_certfile /path/to/client.crt
openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT kombu_ssl_keyfile /path/to/clientkeyfile.key

Replace the following values:

Replace /path/to/client.crt with the absolute path to the exported client certificate.

Replace /path/to/clientkeyfile.key with the absolute path to the exported client key file.

2. If your certificates were signed by a third-party Certificate Authority (CA), you must also run the
following command:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT kombu_ssl_ca_certs /path/to/ca.crt

Replace /path/to/ca.crt with the absolute path to the CA file provided by the third-party CA (see
Section 2.3.4, “Enable SSL on the RabbitMQ Message Broker” for more information).

7.2.9. Configure OpenStack Networking to Communicate with the Compute Service

Chapter 7. Install OpenStack Networking

79

Configure OpenStack Networking to communicate with the Compute service about network topology
changes.

Procedure 7.11. Configuring OpenStack Networking to Communicate with the Compute Service

1. Set OpenStack Networking to connect to the Compute controller node:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT nova_url http://CONTROLLER_IP:8774/v2

Replace CONTROLLER_IP with the IP address or host name of the Compute controller node.

2. Set the user name, password, and tenant for the nova user:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT nova_admin_username nova
openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT nova_admin_tenant_id TENANT_ID
openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT nova_admin_password PASSWORD

Replace TENANT_ID with the unique identifier of the tenant created for the use of the Compute
service. Replace PASSWORD with the password set when the nova user was created.

3. Set OpenStack Networking to connect to the Compute controller node in an administrative context:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT nova_admin_auth_url http://CONTROLLER_IP:35357/v2.0

Replace CONTROLLER_IP with the IP address or host name of the Compute controller node.

4. Set OpenStack Networking to use the correct region for the Compute controller node:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT nova_region_name RegionOne

7.2.10. Launch OpenStack Networking

Launch the neutron-server service and configure it to start at boot time:

systemctl start neutron-server.service
systemctl enable neutron-server.service

Important

By default, OpenStack Networking does not enforce Classless Inter-Domain Routing (CIDR) checking
of IP addresses. This is to maintain backwards compatibility with previous releases. If you require
such checks set the value of the force_gateway_on_subnet configuration key to True in the
/etc/neutron/neutron.conf file.

7.3. Configure the DHCP Agent

Installation Reference

80

7.3. Configure the DHCP Agent

Configure the DHCP agent. All steps in this procedure must be performed on the server hosting OpenStack
Networking, while logged in as the root user.

Procedure 7.12. Configuring the DHCP Agent

1. Configure the DHCP agent to use the Identity service for authentication.

a. Set the authentication strategy to keystone:

openstack-config --set /etc/neutron/dhcp_agent.ini \
 DEFAULT auth_strategy keystone

b. Set the Identity service host that the DHCP agent must use:

openstack-config --set /etc/neutron/dhcp_agent.ini \
 keystone_authtoken auth_host IP

Replace IP with the IP address or host name of the server hosting the Identity service.

c. Set the DHCP agent to authenticate as the correct tenant:

openstack-config --set /etc/neutron/dhcp_agent.ini \
 keystone_authtoken admin_tenant_name services

Replace services with the name of the tenant created for the use of OpenStack
Networking. Examples in this guide use services.

d. Set the DHCP agent to authenticate using the neutron administrative user account:

openstack-config --set /etc/neutron/dhcp_agent.ini \
 keystone_authtoken admin_user neutron

e. Set the DHCP agent to use the correct neutron administrative user account password:

openstack-config --set /etc/neutron/dhcp_agent.ini \
 keystone_authtoken admin_password PASSWORD

Replace PASSWORD with the password set when the neutron user was created.

2. Set the interface driver in the /etc/neutron/dhcp_agent.ini file based on the OpenStack
Networking plug-in being used. If you are using ML2, select either driver. Use the command that
applies to the plug-in used in your environment:

A. Open vSwitch Interface Driver

openstack-config --set /etc/neutron/dhcp_agent.ini \
 DEFAULT interface_driver
neutron.agent.linux.interface.OVSInterfaceDriver

B. Linux Bridge Interface Driver

Chapter 7. Install OpenStack Networking

81

openstack-config --set /etc/neutron/dhcp_agent.ini \
 DEFAULT interface_driver \
 neutron.agent.linux.interface.BridgeInterfaceDriver

3. Start the neutron-dhcp-agent service and configure it to start at boot time:

systemctl start neutron-dhcp-agent.service
systemctl enable neutron-dhcp-agent.service

7.4. Create an External Network

OpenStack Networking provides two mechanisms for connecting the Layer 3 (L3) agent to an external
network. The first, attaching it to an external bridge (br-ex) directly, is only supported when the Open
vSwitch plug-in (or its functionality, implemented through ML2) is in use. The second method, which is
supported by the ML2 plug-in, the Open vSwitch plug-in, and the Linux Bridge plug-in, is to use an external
provider network.

All steps in this procedure must be performed on a server with the OpenStack Networking command-line
interface (provided by the python-neutronclient package) installed. You must also have access to a
keystonerc_admin file containing the authentication details of the Identity service administrative user.

Take note of the unique identifiers generated by the steps listed in this procedure. These identifiers will be
required when configuring the L3 agent.

Procedure 7.13. Creating and Configuring an External Network

1. Set up the shell to access Keystone as the administrative user:

source ~/keystonerc_admin

2. Create a new provider network:

[(keystone_admin)]# neutron net-create EXTERNAL_NAME \
 --router:external \
 --provider:network_type TYPE \
 --provider:physical_network PHYSNET \
 --provider:segmentation_id VLAN_TAG

Replace the following values:

Replace EXTERNAL_NAME with a name for the new external network provider.

Replace TYPE with the type of provider network to use. Supported values are flat (for flat
networks), vlan (for VLAN networks), and local (for local networks).

Replace PHYSNET with a name for the physical network. This is not applicable if you intend to
use a local network type. PHYSNET must match one of the values defined under
bridge_mappings in the /etc/neutron/plugin.ini file.

Replace VLAN_TAG with the VLAN tag that will be used to identify network traffic. The VLAN tag
specified must have been defined by the network administrator. If the network_type was set to
a value other than vlan, this parameter is not required.

Take note of the unique external network identifier returned; this is required in subsequent steps.

Installation Reference

82

3. Create a new subnet for the external provider network:

[(keystone_admin)]# neutron subnet-create --gateway GATEWAY \
 --allocation-pool start=IP_RANGE_START,end=IP_RANGE_END \
 --disable-dhcp EXTERNAL_NAME EXTERNAL_CIDR

Replace the following values:

Replace GATEWAY with the IP address or hostname of the system that will act as the gateway
for the new subnet. This address must be within the block of IP addresses specified by
EXTERNAL_CIDR, but outside of the block of IP addresses specified by the range started by
IP_RANGE_START and ended by IP_RANGE_END.

Replace IP_RANGE_START with the IP address that denotes the start of the range of IP
addresses within the new subnet from which floating IP addresses will be allocated.

Replace IP_RANGE_END with the IP address that denotes the end of the range of IP addresses
within the new subnet from which floating IP addresses will be allocated.

Replace EXTERNAL_NAME with the name of the external network the subnet is to be associated
with. This must match the name that was provided to the net-create action in the previous
step.

Replace EXTERNAL_CIDR with the Classless Inter-Domain Routing (CIDR) representation of the
block of IP addresses the subnet represents. An example is 192.168.100.0/24. The block of
IP addresses specified by the range started by IP_RANGE_START and ended by
IP_RANGE_END must fall within the block of IP addresses specified by EXTERNAL_CIDR.

Take note of the unique subnet identifier returned; this is required in subsequent steps.

4. Create a new router:

[(keystone_admin)]# neutron router-create NAME

Replace NAME with a name for the new router. Take note of the unique router identifier returned; this
is required in subsequent steps, and when configuring the L3 agent.

5. Link the router to the external provider network:

[(keystone_admin)]# neutron router-gateway-set ROUTER NETWORK

Replace ROUTER with the unique identifier of the router, and replace NETWORK with the unique
identifier of the external provider network.

6. Link the router to each private network subnet:

[(keystone_admin)]# neutron router-interface-add ROUTER SUBNET

Replace ROUTER with the unique identifier of the router, and replace SUBNET with the unique
identifier of a private network subnet. Perform this step for each existing private network subnet to
which to link the router.

7.5. Configure the Plug-in Agent

Chapter 7. Install OpenStack Networking

83

Configure the agent associated with the plug-in used in your environment. If you are using the ML2 plug-in or
the Open vSwitch plug-in, configure the Open vSwitch agent. If you are using the Linux Bridge plug-in,
configure the Linux Bridge agent.

7.5.1. Configure the Open vSwitch Plug-in Agent

You must install and enable the Open vSwitch plug-in before configuring it. See Section 7.2.1.2, “Enable the
Open vSwitch Plug-in”.

The Open vSwitch plug-in has a corresponding agent. When the Open vSwitch plug-in is in use, all nodes in
the environment that handle data packets must have the agent installed and configured. This includes all
Compute nodes and systems hosting the dedicated DHCP and L3 agents.

Note

Open vSwitch support for TCP segmentation offload (TSO) and Generic Segmentation Offload (GSO)
to VXLAN and GRE is enabled by default.

Procedure 7.14. Configuring the Open vSwitch Plug-in Agent

1. Start the openvswitch service:

systemctl start openvswitch.service

2. Configure the openvswitch service to start at boot time:

systemctl enable openvswitch.service

3. Each host running the Open vSwitch agent requires an Open vSwitch bridge called br-int. This
bridge is used for private network traffic:

ovs-vsctl add-br br-int

Warning

The br-int bridge is required for the agent to function correctly. Once created, do not
remove or otherwise modify the br-int bridge.

4. Ensure that the br-int device persists on reboot by creating a /etc/sysconfig/network-
scripts/ifcfg-br-int file, and adding the following lines:

DEVICE=br-int
DEVICETYPE=ovs
TYPE=OVSBridge
ONBOOT=yes
BOOTPROTO=none

5. Set the value of the bridge_mappings configuration key to a comma-separated list of physical
networks and the network bridges associated with them:

Installation Reference

84

openstack-config --set /etc/neutron/plugin.ini \
 OVS bridge_mappings PHYSNET:BRIDGE

Replace PHYSNET with the name of a physical network, and replace BRIDGE with the name of the
network bridge.

6. Start the neutron-openvswitch-agent service:

systemctl start neutron-openvswitch-agent.service

7. Configure the neutron-openvswitch-agent service to start at boot time:

systemctl enable neutron-openvswitch-agent.service

8. Configure the neutron-ovs-cleanup service to start at boot time. This service ensures that the
OpenStack Networking agents maintain full control over the creation and management of tap devices:

systemctl enable neutron-ovs-cleanup.service

7.5.2. Configure the Linux Bridge Plug-in Agent

You must install and enable the Linux Bridge plug-in before configuring it. See Section 7.2.1.3, “Enable the
Linux Bridge Plug-in”.

The Linux Bridge plug-in has a corresponding agent. When the Linux Bridge plug-in is in use, all nodes in the
environment that handle data packets must have the agent installed and configured. This includes all
Compute nodes and systems hosting the dedicated DHCP and L3 agents.

Procedure 7.15. Configuring the Linux Bridge Plug-in Agent

1. Set the value of the physical_interface_mappings configuration key to a comma-separated list
of physical networks and the VLAN ranges associated with them that are available for allocation to
tenant networks:

openstack-config --set /etc/neutron/plugin.ini \
 LINUX_BRIDGE physical_interface_mappings
PHYSNET:VLAN_START:VLAN_END

Replace the following values:

Replace PHYSNET with the name of a physical network.

Replace VLAN_START with an identifier indicating the start of the VLAN range.

Replace VLAN_END with an identifier indicating the end of the VLAN range.

2. Start the neutron-linuxbridge-agent service:

systemctl start neutron-linuxbridge-agent.service

3. Configure the neutron-linuxbridge-agent service to start at boot time:

systemctl enable neutron-linuxbridge-agent.service

Chapter 7. Install OpenStack Networking

85

7.6. Configure the L3 Agent

Configure the Layer 3 agent. All steps in this procedure must be performed on the server hosting OpenStack
Networking, while logged in as the root user.

Procedure 7.16. Configuring the L3 Agent

1. Configure the L3 agent to use the Identity service for authentication.

a. Set the authentication strategy to keystone:

openstack-config --set /etc/neutron/metadata_agent.ini \
 DEFAULT auth_strategy keystone

b. Set the Identity service host that the L3 agent must use:

openstack-config --set /etc/neutron/metadata_agent.ini \
 keystone_authtoken auth_host IP

Replace IP with the IP address or host name of the server hosting the Identity service.

c. Set the L3 agent to authenticate as the correct tenant:

openstack-config --set /etc/neutron/metadata_agent.ini \
 keystone_authtoken admin_tenant_name services

Replace services with the name of the tenant created for the use of OpenStack Networking.
Examples in this guide use services.

d. Set the L3 agent to authenticate using the neutron administrative user account:

openstack-config --set /etc/neutron/metadata_agent.ini \
 keystone_authtoken admin_user neutron

e. Set the L3 agent to use the correct neutron administrative user account password:

openstack-config --set /etc/neutron/metadata_agent.ini \
 keystone_authtoken admin_password PASSWORD

Replace PASSWORD with the password set when the neutron user was created.

f. If the neutron-metadata-agent service and the nova-metadata-api service are not
installed on the same server, set the address of the nova-metadata-api service:

openstack-config --set /etc/neutron/metadata_agent.ini \
 DEFAULT nova_metadata_ip IP

Replace IP with the IP address of the server hosting the nova-metadata-api service.

2. Set the interface driver in the /etc/neutron/l3_agent.ini file based on the OpenStack
Networking plug-in being used. Use the command the applies to the plug-in used in your
environment:

A. Open vSwitch Interface Driver

Installation Reference

86

openstack-config --set /etc/neutron/l3_agent.ini \
 DEFAULT interface_driver
neutron.agent.linux.interface.OVSInterfaceDriver

B. Linux Bridge Interface Driver

openstack-config --set /etc/neutron/l3_agent.ini \
 DEFAULT interface_driver
neutron.agent.linux.interface.BridgeInterfaceDriver

3. The L3 agent connects to external networks using either an external bridge or an external provider
network. When using the Open vSwitch plug-in, either approach is supported. When using the Linux
Bridge plug-in, only the use of an external provider network is supported. Set up the option that is
most appropriate for your environment.

A. Using an External Bridge

Create and configure an external bridge and configure OpenStack Networking to use it. Perform
these steps on each system hosting an instance of the L3 agent.

a. Create the external bridge, br-ex:

ovs-vsctl add-br br-ex

b. Ensure that the br-ex device persists on reboot by creating a
/etc/sysconfig/network-scripts/ifcfg-br-ex file, and adding the following
lines:

DEVICE=br-ex
DEVICETYPE=ovs
TYPE=OVSBridge
ONBOOT=yes
BOOTPROTO=none

c. Ensure that the L3 agent will use the external bridge:

openstack-config --set /etc/neutron/l3_agent.ini \
 DEFAULT external_network_bridge br-ex

B. Using a Provider Network

To connect the L3 agent to external networks using a provider network, you must first have
created the provider network. You must also have created a subnet and router to associate with
it. The unique identifier of the router is required to complete these steps.

Set the value of the external_network_bridge configuration to be blank. This ensures that
the L3 agent does not attempt to use an external bridge:

openstack-config --set /etc/neutron/l3_agent.ini \
 DEFAULT external_network_bridge ""

4. Start the neutron-l3-agent service and configure it to start at boot time:

Chapter 7. Install OpenStack Networking

87

systemctl start neutron-l3-agent.service
systemctl enable neutron-l3-agent.service

5. The OpenStack Networking metadata agent allows virtual machine instances to communicate with
the Compute metadata service. It runs on the same hosts as the L3 agent. Start the neutron-
metadata-agent service and configure it to start at boot time:

systemctl start neutron-metadata-agent.service
systemctl enable neutron-metadata-agent.service

6. The leastrouter scheduler enumerates L3 Agent router assignment, and consequently schedules
the router to the L3 Agent with the fewest routers. This differs from the ChanceScheduler behavior,
which randomly selects from the candidate pool of L3 Agents.

a. Enable the leastrouter scheduler:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT router_scheduler_driver
neutron.scheduler.l3_agent_scheduler.LeastRoutersScheduler

b. Set up the shell to access keystone as the administrative user:

source ~/keystonerc_admin

c. The router is scheduled once connected to a network. Unschedule the router:

[(keystone_admin)]# neutron l3-agent-router-remove L3_NODE_ID
ROUTER_ID

Replace L3_NODE_ID with the unique identifier of the agent on which the router is currently
hosted, and replace ROUTER_ID with the unique identifier of the router.

d. Assign the router:

[(keystone_admin)]# neutron l3-agent-router-add L3_NODE_ID
ROUTER_ID

Replace L3_NODE_ID with the unique identifier of the agent on which the router is to be
assigned, and replace ROUTER_ID with the unique identifier of the router.

7.7. Validate the OpenStack Networking Installation

To begin using OpenStack Networking, you must deploy networking components to Compute nodes. You
must also define initial networks and routers. It is, however, possible to perform basic sanity checking of the
OpenStack Networking deployment by following the steps outlined in this procedure.

Procedure 7.17. Validate the OpenStack Networking Installation

1. On All Nodes

a. Verify that the customized Red Hat Enterprise Linux kernel intended for use with Red Hat
Enterprise Linux OpenStack Platform is running:

Installation Reference

88

uname --kernel-release
2.6.32-358.6.2.openstack.el6.x86_64

If the kernel release value returned does not contain the string openstack, update the
kernel and reboot the system.

b. Ensure that the installed IP utilities support network namespaces:

ip netns

If an error indicating that the argument is not recognised or supported is returned, update the
system using yum.

2. On Service Nodes

a. Ensure that the neutron-server service is running:

openstack-status | grep neutron-server
neutron-server: active

3. On Network Nodes

Ensure that the following services are running:

DHCP agent (neutron-dhcp-agent)

L3 agent (neutron-l3-agent)

Plug-in agent, if applicable (neutron-openvswitch-agent or neutron-linuxbridge-
agent)

Metadata agent (neutron-metadata-agent)

openstack-status | grep SERVICENAME

7.7.1. Troubleshoot OpenStack Networking Issues

This section discusses the commands you can use and procedures you can follow to troubleshoot
OpenStack Networking issues.

Debugging Networking Device

Use the ip a command to display all the physical and virtual devices.

Use the ovs-vsctl show command to display the interfaces and bridges in a virtual switch.

Use the ovs-dpctl show command to show datapaths on the switch.

Tracking Networking Packets

Check where packets are not getting through:

tcpdump -n -i INTERFACE -e -w FILENAME

Chapter 7. Install OpenStack Networking

89

Replace INTERFACE with the name of the network interface to check. The interface name can
be the name of the bridge or host Ethernet device.

The -e flag ensures that the link-level header is printed (in which the vlan tag will appear).

The -w flag is optional. Use it if you want to write the output to a file. If not, the output is written
to the standard output (stdout).

For more information about tcpdump, see its manual page.

Debugging Network Namespaces

Use the ip netns list command to list all known network namespaces.

Show routing tables inside specific namespaces:

ip netns exec NAMESPACE_ID bash
route -n

Start the ip netns exec command in a bash shell so that subsequent commands can be
invoked without the ip netns exec command.

Installation Reference

90

Chapter 8. Install the Compute Service

8.1. Install a Compute VNC Proxy

8.1.1. Install the Compute VNC Proxy Packages

The VNC proxy is available to users of the Compute service. Two types of VNC proxy server packages are
available. The openstack-nova-novncproxy package provides VNC support to instances through a web
browser (using Websockets), while the openstack-nova-console package provides access to instances
through a traditional VNC client (through the openstack-nova-xvpvncproxy service).

The console authentication service, also provided by the openstack-nova-console package, is used to
authenticate the VNC connections. Typically the console authentication service and the proxy utilities are
installed on the same host as the Compute API service.

The following steps must be performed while logged in as the root user.

Procedure 8.1. Installing the Compute VNC proxy packages

Install the VNC proxy utilities and the console authentication service:

A. Install the openstack-nova-novncproxy package using the yum command:

yum install -y openstack-nova-novncproxy

B. Install the openstack-nova-console package using the yum command:

yum install -y openstack-nova-console

The VNC proxy packages and the console authentication service are now installed and ready for
configuration.

8.1.2. Configure the Firewall to Allow Compute VNC Proxy Traffic

The node that hosts VNC access to instances must be configured to allow VNC traffic through its firewall. By
default, the openstack-nova-novncproxy service listens on TCP port 6080 and the openstack-nova-
xvpvncproxy service listens on TCP port 6081.

The following procedure allows traffic on TCP port 6080 to traverse through the firewall for use by the
openstack-nova-novncproxy package:

The following steps must be performed while logged in as the root user.

Procedure 8.2. Configuring the firewall to allow Compute VNC proxy traffic

1. Edit the /etc/sysconfig/iptables file and add the following on a new line underneath the -A
INPUT -i lo -j ACCEPT line and before any -A INPUT -j REJECT rules:

-A INPUT -m state --state NEW -m tcp -p tcp --dport 6080 -j ACCEPT

2. Save the file and exit the editor.

Chapter 8. Install the Compute Service

91

Similarly, when using the openstack-nova-xvpvncproxy service, enable traffic on TCP port 6081
with the following on a new line in the same location:

-A INPUT -m state --state NEW -m tcp -p tcp --dport 6081 -j ACCEPT

Once the file has been edited with the new firewall rule or rules, run the following commands as the root
user to apply the changes:

service iptables restart

iptables-save

The firewall is now configured to allow VNC proxy traffic.

8.1.3. Configure the VNC Proxy Service

VNC access to instances is available over a web browser or with a traditional VNC client. The
/etc/nova/nova.conf file holds the following VNC options:

vnc_enabled - Default is true.

vncserver_listen - The IP address to which VNC services will bind.

vncserver_proxyclient_address - The IP address of the compute host used by proxies to connect to
instances.

novncproxy_base_url - The browser address where clients connect to instance.

novncproxy_port - The port listening for browser VNC connections. Default is 6080.

xvpvncproxy_port - The port to bind for traditional VNC clients. Default is 6081.

As the root user, use the service command to start the console authentication service:

service openstack-nova-consoleauth start

Use the chkconfig command to permanently enable the service:

chkconfig openstack-nova-consoleauth on

As the root user, use the service command on the nova node to start the browser-based service:

service openstack-nova-novncproxy start

Use the chkconfig command to permanently enable the service:

chkconfig openstack-nova-novncproxy on

To control access to the VNC service that uses a traditional client (non browser-based), substitute openstack-
nova-xvpvncproxy into the previous commands.

8.1.4. Configure Live Migration

Installation Reference

92

Red Hat Enterprise Linux OpenStack Platform supports live migration using either shared storage migration
or block migration. The following sections provide general prerequisites for both types. For detailed
configuration steps for both types, see "Migrate a Live (running) Instance".

8.1.4.1. General Requirements

General requirements for migration include:

Access to the cloud environment on the command line as an administrator (all steps in this procedure are
carried out on the command line). To execute commands, first load the user's authentication variables:

source ~/keystonerc_admin

Both source and destination nodes must be located in the same subnet, and have the same processor
type.

All compute servers (controller and nodes) must be able to perform name resolution with each other.

The UID and GID of the Compute service and libvirt users must be identical between compute nodes.

The compute nodes must be using KVM with libvirt.

8.1.4.2. Multipathing Requirements

When migrating an instance with multipathing configured, you need to ensure consistent multipath device
naming between the source and destination nodes. The migration will fail if the instance cannot resolve
multipath device names in the destination node.

You can ensure consistent multipath device naming by forcing both source and destination nodes to use
device WWIDs. To do this, disable user-friendly names and restart multipathd by running these
commands on both source and destination nodes:

mpathconf --enable --user_friendly_names n
service multipathd restart

For more information, see Consistent Multipath Device Names in a Cluster from the DM Multipath guide.

8.1.5. Access Instances with the Compute VNC Proxy

Browse to the novncproxy_base_url URL provided in the /etc/nova/nova.conf file to access instance
consoles.

The following image shows VNC access to a Fedora Linux instance with a web browser. It is provided only as
an example, and settings such as IP addresses will be different in your environment.

Chapter 8. Install the Compute Service

93

https://access.redhat.com/articles/1258893
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/DM_Multipath/multipath_consistent_names.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/DM_Multipath/index.html

Figure 8.1. VNC instance access

8.2. Install a Compute Node

8.2.1. Install the Compute Service Packages

The OpenStack Compute service requires the following packages:

openstack-nova-api

Provides the OpenStack Compute API service. At least one node in the environment must host an
instance of the API service. This must be the node pointed to by the Identity service endpoint
definition for the Compute service.

openstack-nova-compute

Provides the OpenStack Compute service.

openstack-nova-conductor

Provides the Compute conductor service. The conductor handles database requests made by
Compute nodes, ensuring that individual Compute nodes do not require direct database access. At
least one node in each environment must act as a Compute conductor.

openstack-nova-scheduler

Installation Reference

94

Provides the Compute scheduler service. The scheduler handles scheduling of requests made to
the API across the available Compute resources. At least one node in each environment must act
as a Compute scheduler.

python-cinderclient

Provides client utilities for accessing storage managed by the Block Storage service. This package
is not required if you do not intend to attach block storage volumes to your instances or you intend
to manage such volumes using a service other than the Block Storage service.

Install the packages:

yum install -y openstack-nova-api openstack-nova-compute \
 openstack-nova-conductor openstack-nova-scheduler \
 python-cinderclient

Note

In the example above, all Compute service packages are installed on a single node. In a production
deployment, Red Hat recommends that the API, conductor, and scheduler services be installed on a
separate controller node or on separate nodes entirely. The Compute service itself must be installed
on each node that is expected to host virtual machine instances.

8.2.2. Create the Compute Service Database

Create the database and database user used by the Compute service. All steps in this procedure must be
performed on the database server, while logged in as the root user.

Procedure 8.3. Creating the Compute Service Database

1. Connect to the database service:

mysql -u root -p

2. Create the nova database:

mysql> CREATE DATABASE nova;

3. Create a nova database user and grant the user access to the nova database:

mysql> GRANT ALL ON nova.* TO 'nova'@'%' IDENTIFIED BY 'PASSWORD';

mysql> GRANT ALL ON nova.* TO 'nova'@'localhost' IDENTIFIED BY
'PASSWORD';

Replace PASSWORD with a secure password that will be used to authenticate with the database
server as this user.

4. Flush the database privileges to ensure that they take effect immediately:

mysql> FLUSH PRIVILEGES;

Chapter 8. Install the Compute Service

95

5. Exit the mysql client:

mysql> quit

8.2.3. Configure the Compute Service Database Connection

The database connection string used by the Compute service is defined in the /etc/nova/nova.conf file.
It must be updated to point to a valid database server before starting the service.

The database connection string only needs to be set on nodes that are hosting the conductor service
(openstack-nova-conductor). Compute nodes communicate with the conductor using the messaging
infrastructure; the conductor orchestrates communication with the database. As a result, individual Compute
nodes do not require direct access to the database. There must be at least one instance of the conductor
service in any Compute environment.

All steps in this procedure must be performed on the server or servers hosting the Compute conductor
service, while logged in as the root user.

Procedure 8.4. Configuring the Compute Service SQL Database Connection

Set the value of the sql_connection configuration key:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT sql_connection mysql://USER:PASS@IP/DB

Replace the following values:

Replace USER with the Compute service database user name, usually nova.

Replace PASS with the password of the database user.

Replace IP with the IP address or host name of the database server.

Replace DB with the name of the Compute service database, usually nova.

Important

The IP address or host name specified in the connection configuration key must match the IP address
or host name to which the Compute service database user was granted access when creating the
Compute service database. Moreover, if the database is hosted locally and you granted permissions
to 'localhost' when creating the Compute service database, you must enter 'localhost'.

8.2.4. Create the Compute Service Identity Records

Create and configure Identity service records required by the Compute service. These entries assist other
OpenStack services attempting to locate and access the functionality provided by the Compute service.

This procedure assumes that you have already created an administrative user account and a services
tenant. For more information, see:

Section 3.5, “Create an Administrator Account”

Section 3.8, “Create the Services Tenant”

Installation Reference

96

Perform this procedure on the Identity service server, or on any machine onto which you have copied the
keystonerc_admin file and on which the keystone command-line utility is installed.

Procedure 8.5. Creating Identity Records for the Compute Service

1. Set up the shell to access keystone as the administrative user:

source ~/keystonerc_admin

2. Create the compute user:

[(keystone_admin)]# keystone user-create --name compute --pass
PASSWORD
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
email	
enabled	True
id	96cd855e5bfe471ce4066794bbafb615
name	compute
username	compute
+----------+----------------------------------+

Replace PASSWORD with a secure password that will be used by the Compute service when
authenticating with the Identity service.

3. Link the compute user and the admin role together within the context of the services tenant:

[(keystone_admin)]# keystone user-role-add --user compute --role
admin --tenant services

4. Create the compute service entry:

[(keystone_admin)]# keystone service-create --name compute \
 --type compute \
 --description "OpenStack Compute Service"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	OpenStack Compute Service
enabled	True
id	8dea97f5ee254b309c1792d2bd821e59
name	compute
type	compute
+-------------+----------------------------------+

5. Create the compute endpoint entry:

[(keystone_admin)]# keystone endpoint-create \
 --service compute
 --publicurl "http://IP:8774/v2/%(tenant_id)s" \
 --adminurl "http://IP:8774/v2/%(tenant_id)s" \
 --internalurl "http://IP:8774/v2/%(tenant_id)s" \
 --region 'RegionOne'

Chapter 8. Install the Compute Service

97

Replace IP with the IP address or host name of the system hosting the Compute API service.

8.2.5. Configure Compute Service Authentication

Configure the Compute service to use the Identity service for authentication. All steps in this procedure must
be performed on each system hosting Compute services, while logged in as the root user.

Procedure 8.6. Configuring the Compute Service to Authenticate Through the Identity Service

1. Set the authentication strategy to keystone:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT auth_strategy keystone

2. Set the Identity service host that the Compute service must use:

openstack-config --set /etc/nova/api-paste.ini \
 filter:authtoken auth_host IP

Replace IP with the IP address or host name of the server hosting the Identity service.

3. Set the Compute service to authenticate as the correct tenant:

openstack-config --set /etc/nova/api-paste.ini \
 filter:authtoken admin_tenant_name services

Replace services with the name of the tenant created for the use of the Compute service. Examples
in this guide use services.

4. Set the Compute service to authenticate using the compute administrative user account:

openstack-config --set /etc/nova/api-paste.ini \
 filter:authtoken admin_user compute

5. Set the Compute service to use the correct compute administrative user account password:

openstack-config --set /etc/nova/api-paste.ini \
 filter:authtoken admin_password PASSWORD

Replace PASSWORD with the password set when the compute user was created.

8.2.6. Configure the Firewall to Allow Compute Service Traffic

Connections to virtual machine consoles, whether direct or through the proxy, are received on ports 5900 to
5999. Connections to the Compute API service are received on port 8774. The firewall on the service node
must be configured to allow network traffic on these ports. All steps in this procedure must be performed on
each Compute node, while logged in as the root user.

Procedure 8.7. Configuring the Firewall to Allow Compute Service Traffic

1. Open the /etc/sysconfig/iptables file in a text editor.

Installation Reference

98

2. Add an INPUT rule allowing TCP traffic on ports in the ranges 5900 to 5999. The new rule must
appear before any INPUT rules that REJECT traffic:

-A INPUT -p tcp -m multiport --dports 5900:5999 -j ACCEPT

3. Add an INPUT rule allowing TCP traffic on port 8774. The new rule must appear before any INPUT
rules that REJECT traffic:

-A INPUT -p tcp -m multiport --dports 8774 -j ACCEPT

4. Save the changes to the /etc/sysconfig/iptables file.

5. Restart the iptables service to ensure that the change takes effect:

systemctl restart iptables.service

8.2.7. Configure the Compute Service to Use SSL

Use the following options in the nova.conf file to configure SSL.

Table 8.1. SSL Options for Compute

Configuration
Option

Description

enabled_ssl_ap
is

A list of APIs with enabled SSL.

ssl_ca_file The CA certificate file to use to verify connecting clients.

ssl_cert_file The SSL certificate of the API server.

ssl_key_file The SSL private key of the API server.

tcp_keepidle Sets the value of TCP_KEEPIDLE in seconds for each server socket. Defaults to
600.

8.2.8. Configure RabbitMQ Message Broker Settings for the Compute Service

RabbitMQ is the default (and recommended) message broker. The RabbitMQ messaging service is provided
by the rabbitmq-server package. All steps in the following procedure must be performed on systems hosting
the Compute controller service and Compute nodes, while logged in as the root user.

Procedure 8.8. Configuring the Compute Service to use the RabbitMQ Message Broker

1. Set RabbitMQ as the RPC back end:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT rpc_backend rabbit

2. Set the Compute service to connect to the RabbitMQ host:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT rabbit_host RABBITMQ_HOST

Replace RABBITMQ_HOST with the IP address or host name of the message broker.

Chapter 8. Install the Compute Service

99

3. Set the message broker port to 5672:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT rabbit_port 5672

4. Set the RabbitMQ user name and password created for the Compute service when RabbitMQ was
configured:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT rabbit_userid nova
openstack-config --set /etc/nova/nova.conf \
 DEFAULT rabbit_password NOVA_PASS

Replace nova and NOVA_PASS with the RabbitMQ user name and password created for the
Compute service.

5. When RabbitMQ was launched, the nova user was granted read and write permissions to all
resources: specifically, through the virtual host /. Configure the Compute service to connect to this
virtual host:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT rabbit_virtual_host /

8.2.9. Enable SSL Communication Between the Compute Service and the Message
Broker

If you enabled SSL on the message broker, you must configure the Compute service accordingly. This
procedure requires the exported client certificates and key file. See Section 2.3.5, “Export an SSL Certificate
for Clients” for instructions on how to export these files.

Procedure 8.9. Enabling SSL Communication Between the Compute Service and the RabbitMQ
Message Broker

1. Enable SSL communication with the message broker:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT rabbit_use_ssl True
openstack-config --set /etc/nova/nova.conf \
 DEFAULT kombu_ssl_certfile /path/to/client.crt
openstack-config --set /etc/nova/nova.conf \
 DEFAULT kombu_ssl_keyfile /path/to/clientkeyfile.key

Replace the following values:

Replace /path/to/client.crt with the absolute path to the exported client certificate.

Replace /path/to/clientkeyfile.key with the absolute path to the exported client key file.

2. If your certificates were signed by a third-party Certificate Authority (CA), you must also run the
following command:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT kombu_ssl_ca_certs /path/to/ca.crt

Installation Reference

100

Replace /path/to/ca.crt with the absolute path to the CA file provided by the third-party CA (see
Section 2.3.4, “Enable SSL on the RabbitMQ Message Broker” for more information).

8.2.10. Configure Resource Overcommitment

OpenStack supports overcommitting of CPU and memory resources on Compute nodes. Overcommitting is a
technique of allocating more virtualized CPUs and/or memory than there are physical resources.

Important

Overcommitting increases the number of instances you are able to run, but reduces instance
performance.

CPU and memory overcommit settings are represented as a ratio. OpenStack uses the following ratios by
default:

The default CPU overcommit ratio is 16. This means that up to 16 virtual cores can be assigned to a node
for each physical core.

The default memory overcommit ratio is 1.5. This means that instances can be assigned to a physical
node if the total instance memory usage is less than 1.5 times the amount of physical memory available.

Use the cpu_allocation_ratio and ram_allocation_ratio directives in /etc/nova/nova.conf to
change these default settings.

8.2.11. Reserve Host Resources

You can reserve host memory and disk resources so that they are always available to OpenStack. To
prevent a given amount of memory and disk resources from being considered as available to be allocated for
usage by virtual machines, edit the following directives in /etc/nova/nova.conf:

reserved_host_memory_mb. Defaults to 512MB.

reserved_host_disk_mb. Defaults to 0MB.

8.2.12. Configure Compute Networking

8.2.12.1. Compute Networking Overview

Unlike Nova-only deployments, when OpenStack Networking is in use, the nova-network service must not
run. Instead all network related decisions are delegated to the OpenStack Networking Service.

Therefore, it is very important that you refer to this guide when configuring networking, rather than relying on
Nova networking documentation or past experience with Nova networking. In particular, using CLI tools like
nova-manage and nova to manage networks or IP addressing, including both fixed and floating IPs, is not
supported with OpenStack Networking.

Chapter 8. Install the Compute Service

101

Important

It is strongly recommended that you uninstall nova-network and reboot any physical nodes that
were running nova-network before using these nodes to run OpenStack Network. Problems can
arise from inadvertently running the nova-network process while using OpenStack Networking
service; for example, a previously running nova-network could push down stale firewall rules.

8.2.12.2. Update the Compute Configuration

Each time a Compute instance is provisioned or deprovisioned, the service communicates with OpenStack
Networking through its API. To facilitate this connection, you must configure each Compute node with the
connection and authentication details outlined in this procedure.

All steps in the following procedure must be performed on each Compute node, while logged in as the root
user.

Procedure 8.10. Updating the Connection and Authentication Settings of Compute Nodes

1. Modify the network_api_class configuration key to indicate that OpenStack Networking is in use:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT network_api_class nova.network.neutronv2.api.API

2. Set the Compute service to use the endpoint of the OpenStack Networking API:

openstack-config --set /etc/nova/nova.conf \
 neutron url http://IP:9696/

Replace IP with the IP address or host name of the server hosting the OpenStack Networking API
service.

3. Set the name of the tenant used by the OpenStack Networking service. Examples in this guide use
services:

openstack-config --set /etc/nova/nova.conf \
 neutron admin_tenant_name services

4. Set the name of the OpenStack Networking administrative user:

openstack-config --set /etc/nova/nova.conf \
 neutron admin_username neutron

5. Set the password associated with the OpenStack Networking administrative user:

openstack-config --set /etc/nova/nova.conf \
 neutron admin_password PASSWORD

6. Set the URL associated with the Identity service endpoint:

openstack-config --set /etc/nova/nova.conf \
 neutron admin_auth_url http://IP:35357/v2.0

Installation Reference

102

Replace IP with the IP address or host name of the server hosting the Identity service.

7. Enable the metadata proxy and configure the metadata proxy secret:

openstack-config --set /etc/nova/nova.conf \
 neutron service_metadata_proxy true
openstack-config --set /etc/nova/nova.conf \
 neutron metadata_proxy_shared_secret METADATA_SECRET

Replace METADATA_SECRET with the string that the metadata proxy will use to secure
communication.

8. Enable the use of OpenStack Networking security groups:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT security_group_api neutron

9. Set the firewall driver to nova.virt.firewall.NoopFirewallDriver:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT firewall_driver nova.virt.firewall.NoopFirewallDriver

This must be done when OpenStack Networking security groups are in use.

10. Open the /etc/sysctl.conf file in a text editor, and add or edit the following kernel networking
parameters:

net.ipv4.ip_forward = 1
net.ipv4.conf.all.rp_filter = 0
net.ipv4.conf.default.rp_filter = 0
net.bridge.bridge-nf-call-arptables = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1

11. Load the updated kernel parameters:

sysctl -p

8.2.12.3. Configure the L2 Agent

Each compute node must run an instance of the Layer 2 (L2) agent appropriate to the networking plug-in that
is in use.

Section 7.5.1, “Configure the Open vSwitch Plug-in Agent”

Section 7.5.2, “Configure the Linux Bridge Plug-in Agent”

8.2.12.4. Configure Virtual Interface Plugging

When nova-compute creates an instance, it must 'plug' each of the vNIC associated with the instance into a
OpenStack Networking controlled virtual switch. Compute must also inform the virtual switch of the
OpenStack Networking port identifier associated with each vNIC.

A generic virtual interface driver, nova.virt.libvirt.vif.LibvirtGenericVIFDriver, is provided in
Red Hat Enterprise Linux OpenStack Platform. This driver relies on OpenStack Networking being able to

Chapter 8. Install the Compute Service

103

return the type of virtual interface binding required. The following plug-ins support this operation:

Linux Bridge

Open vSwitch

NEC

BigSwitch

CloudBase Hyper-V

Brocade

To use the generic driver, execute the openstack-config command to set the value of the vif_driver
configuration key appropriately:

openstack-config --set /etc/nova/nova.conf \
 libvirt vif_driver \
 nova.virt.libvirt.vif.LibvirtGenericVIFDriver

Important

Considerations for Open vSwitch and Linux Bridge deployments:

If running Open vSwitch with security groups enabled, use the Open vSwitch specific driver,
nova.virt.libvirt.vif.LibvirtHybridOVSBridgeDriver, instead of the generic driver.
For Linux Bridge environments, you must add the following to the /etc/libvirt/qemu.conf
file to ensure that the virtual machine launches properly:

user = "root"
group = "root"
cgroup_device_acl = [
 "/dev/null", "/dev/full", "/dev/zero",
 "/dev/random", "/dev/urandom",
 "/dev/ptmx", "/dev/kvm", "/dev/kqemu",
 "/dev/rtc", "/dev/hpet", "/dev/net/tun",
]

8.2.13. Populate the Compute Service Database

Populate the Compute Service database after you have successfully configured the Compute Service
database connection string.

Important

This procedure must be followed only once to initialize and populate the database. You do not need to
perform these steps again when adding additional systems hosting Compute services.

Procedure 8.11. Populating the Compute Service Database

Installation Reference

104

1. Log in to a system hosting an instance of the openstack-nova-conductor service.

2. Switch to the nova user:

su nova -s /bin/sh

3. Initialize and populate the database identified in /etc/nova/nova.conf:

$ nova-manage db sync

8.2.14. Launch the Compute Services

Procedure 8.12. Launching Compute Services

1. Libvirt requires that the messagebus service be enabled and running. Start the service:

systemctl start messagebus.service

2. The Compute service requires that the libvirtd service be enabled and running. Start the service
and configure it to start at boot time:

systemctl start libvirtd.service
systemctl enable libvirtd.service

3. Start the API service on each system that is hosting an instance of it. Note that each API instance
should either have its own endpoint defined in the Identity service database or be pointed to by a
load balancer that is acting as the endpoint. Start the service and configure it to start at boot time:

systemctl start openstack-nova-api.service
systemctl enable openstack-nova-api.service

4. Start the scheduler on each system that is hosting an instance of it. Start the service and configure it
to start at boot time:

systemctl start openstack-nova-scheduler.service
systemctl enable openstack-nova-scheduler.service

5. Start the conductor on each system that is hosting an instance of it. Note that it is recommended that
this service is not run on every Compute node as this eliminates the security benefits of restricting
direct database access from the Compute nodes. Start the service and configure it to start at boot
time:

systemctl start openstack-nova-conductor.service
systemctl enable openstack-nova-conductor.service

6. Start the Compute service on every system that is intended to host virtual machine instances. Start
the service and configure it to start at boot time:

systemctl start openstack-nova-compute.service
systemctl enable openstack-nova-compute.service

7. Depending on your environment configuration, you may also need to start the following services:

Chapter 8. Install the Compute Service

105

openstack-nova-cert

The X509 certificate service, required if you intend to use the EC2 API to the Compute
service.

Note

To use the EC2 API to the Compute service, you must set the options in the
nova.conf configuration file. For more information, see Configuring the EC2 API
section in the Red Hat Enterprise Linux OpenStack Platform Configuration
Reference Guide. This document is available from the following link:

https://access.redhat.com/site/documentation/en-
US/Red_Hat_Enterprise_Linux_OpenStack_Platform

openstack-nova-network

The Nova networking service. Note that you must not start this service if you have
installed and configured, or intend to install and configure, OpenStack Networking.

openstack-nova-objectstore

The Nova object storage service. It is recommended that the Object Storage service
(Swift) is used for new deployments.

Installation Reference

106

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform

Chapter 9. Install the Orchestration Service

9.1. Install the Orchestration Service Packages

The Orchestration service requires the following packages:

openstack-heat-api

Provides the OpenStack-native REST API to the Orchestration engine service.

openstack-heat-api-cfn

Provides the AWS CloudFormation-compatible API to the Orchestration engine service.

openstack-heat-common

Provides components common to all Orchestration services.

openstack-heat-engine

Provides the OpenStack API for launching templates and submitting events back to the API.

openstack-heat-api-cloudwatch

Provides the AWS CloudWatch-compatible API to the Orchestration engine service.

heat-cfntools

Provides the tools required on heat-provisioned cloud instances.

python-heatclient

Provides a Python API and command-line script, both of which make up a client for the
Orchestration API service.

openstack-utils

Provides supporting utilities to assist with a number of tasks, including the editing of configuration
files.

Install the packages:

yum install -y openstack-heat-* python-heatclient openstack-utils

9.2. Configure the Orchestration Service

To configure the Orchestration service, you must complete the following tasks:

Configure a database for the Orchestration service.

Bind each Orchestration API service to a corresponding IP address.

Create and configure the Orchestration service Identity records.

Configure how Orchestration services authenticate with the Identity service.

The following sections describe each procedure in detail.

Chapter 9. Install the Orchestration Service

107

9.2.1. Create the Orchestration Service Database

Create the database and database user used by the Orchestration service. The database connection string
used by the Orchestration service is defined in the /etc/heat/heat.conf file. It must be updated to point
to a valid database server before the service is started. All steps in this procedure must be performed on the
database server, while logged in as the root user.

Procedure 9.1. Configuring the Orchestration Service Database

1. Connect to the database service:

mysql -u root -p

2. Create the heat database:

mysql> CREATE DATABASE heat;

3. Create a database user named heat and grant the user access to the heat database:

mysql> GRANT ALL ON heat.* TO 'heat'@'%' IDENTIFIED BY 'PASSWORD';
mysql> GRANT ALL ON heat.* TO 'heat'@'localhost' IDENTIFIED BY
'PASSWORD';

Replace PASSWORD with a secure password that will be user to authenticate with the database
server as this user.

4. Flush the database privileges to ensure that they take effect immediately:

mysql> FLUSH PRIVILEGES;

5. Exit the mysql client:

mysql> quit

6. Set the value of the sql_connection configuration key:

openstack-config --set /etc/heat/heat.conf \
 DEFAULT sql_connection mysql://heat:PASSWORD@IP/heat

Replace the following values:

Replace PASSWORD with the password of the heat database user.

Replace IP with the IP address or host name of the database server.

7. As the heat user, sync the database:

runuser -s /bin/sh heat -c "heat-manage db_sync"

Installation Reference

108

Important

The IP address or host name specified in the connection configuration key must match the IP address
or host name to which the Orchestration service database user was granted access when creating the
Orchestration service database. Moreover, if the database is hosted locally and you granted
permissions to 'localhost' when creating the Orchestration service database, you must enter
'localhost'.

9.2.2. Restrict the Bind Addresses of Each Orchestration API Service

After configuring the database, set the bind_host setting of each Orchestration API service. This setting
controls which IP address a service should use for incoming connections.

Set the bind_host setting for each Orchestration API service:

openstack-config --set /etc/heat/heat.conf
 heat_api bind_host IP
openstack-config --set /etc/heat/heat.conf
 heat_api_cfn bind_host IP
openstack-config --set /etc/heat/heat.conf
 heat_api_cloudwatch bind_host IP

Replace IP with the IP address that the corresponding API should use.

9.2.3. Create the Orchestration Service Identity Records

Create and configure Identity service records required by the Orchestration service. These entries assist
other OpenStack services attempting to locate and access the functionality provided by the Orchestration
service.

This procedure assumes that you have already created an administrative user account and a services
tenant. For more information, see:

Section 3.5, “Create an Administrator Account”

Section 3.8, “Create the Services Tenant”

Perform this procedure on the Identity service server, or on any machine onto which you have copied the
keystonerc_admin file and on which the keystone command-line utility is installed.

Procedure 9.2. Creating Identity Records for the Orchestration Service

1. Set up the shell to access Keystone as the administrative user:

source ~/keystonerc_admin

2. Create the heat user:

[(keystone_admin)]# keystone user-create --name heat --pass PASSWORD
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
| email | |

Chapter 9. Install the Orchestration Service

109

enabled	True
id	96cd855e5bfe471ce4066794bbafb615
name	heat
username	heat
+----------+----------------------------------+

Replace PASSWORD with a password that will be used by the Orchestration service when
authenticating with the Identity service.

3. Link the heat user and the admin role together within the context of the services tenant:

[(keystone_admin)]# keystone user-role-add --user heat --role admin -
-tenant services

4. Create the heat and heat-cfn service entries:

[(keystone_admin)]# keystone service-create --name heat \
 --type orchestration
keystone service-create --name heat-cfn \
 --type cloudformation

5. Create endpoint entries for the heat service and the heat-cfn service:

[(keystone_admin)]# keystone endpoint-create \
 --service heat-cfn \
 --publicurl 'HEAT_CFN_IP:8000/v1' \
 --adminurl 'HEAT_CFN_IP:8000/v1' \
 --internalurl 'HEAT_CFN_IP:8000/v1' \
 --region 'RegionOne'
[(keystone_admin)]# keystone endpoint-create \
 --service heat \
 --publicurl 'HEAT_IP:8004/v1/%(tenant_id)s' \
 --adminurl 'HEAT_IP:8004/v1/%(tenant_id)s' \
 --internalurl 'HEAT_IP:8004/v1/%(tenant_id)s' \
 --region 'RegionOne'

Replace the following values:

Replace HEAT_CFN_IP with the IP or host name of the system hosting the heat-cfn service.

Replace HEAT_IP with the IP or host name of the system hosting the heat service.

Important

Include the http:// prefix for HEAT_CFN_IP and HEAT_IP values.

9.2.3.1. Create the Required Identity Domain for the Orchestration Service

The Orchestration service requires its own Identity domain, through which users can be created and
associated with credentials deployed inside instances owned by heat stacks. Using a separate domain
allows for separation between the instances and the user deploying the stack. This allows regular users
without administrative rights to deploy heat stacks that require such credentials.

Installation Reference

110

Procedure 9.3. Creating an Identity Service Domain for the Orchestration Service

1. Obtain the administrative token used by the Identity service. This token is the value of the
admin_token configuration key in the /etc/keystone/keystone.conf file of the Identity
server:

cat /etc/keystone/keystone.conf | grep admin_token
 admin_token = 0292d404a88c4f269383ff28a3839ab4

The administrative token is used to perform all actions requiring administrative credentials.

2. Install the python-openstackclient package on the Red Hat Enterprise Linux 7.1 host you will use to
create and configure the domain:

yum install python-openstackclient

Run the rest of the steps in this procedure from the Red Hat Enterprise Linux 7.1 host.

3. Create the heat domain:

openstack --os-token ADMIN_TOKEN --os-url=IDENTITY_IP:5000/v3 \
 --os-identity-api-version=3 domain create heat \
 --description "Owns users and projects created by heat"

Replace the following values:

Replace ADMIN_TOKEN with the administrative token.

Replace IDENTITY_IP with the IP or host name of the server hosting the Identity service.

This command returns the domain ID of the heat domain. This ID (HEAT_DOMAIN_ID) is used in
the next step.

4. Create a user named heat_domain_admin that can have administrative rights within the heat
domain:

openstack --os-token ADMIN_TOKEN --os-url=IDENTITY_IP:5000/v3 \
 --os-identity-api-version=3 user create heat_domain_admin \
 --password PASSWORD \
 --domain HEAT_DOMAIN_ID
 --description "Manages users and projects created by heat"

Replace PASSWORD with a password for this user. This command returns a user ID
(DOMAIN_ADMIN_ID), which is used in the next step.

5. Grant the heat_domain_admin user administrative rights within the heat domain:

openstack --os-token ADMIN_TOKEN --os-url=IDENTITY_IP:5000/v3 \
 --os-identity-api-version=3 role add --user DOMAIN_ADMIN_ID \
 --domain HEAT_DOMAIN_ID admin

6. On the server hosting the Orchestration service, configure the service to use the heat domain and
user:

openstack-config --set /etc/heat/heat.conf \

Chapter 9. Install the Orchestration Service

111

 DEFAULT stack_domain_admin_password DOMAIN_PASSWORD
openstack-config --set /etc/heat/heat.conf \
 DEFAULT stack_domain_admin heat_domain_admin
openstack-config --set /etc/heat/heat.conf \
 DEFAULT stack_user_domain HEAT_DOMAIN_ID

9.2.4. Configure Orchestration Service Authentication

Configure the Orchestration service to use the Identity service for authentication. All steps in this procedure
must be performed on each system hosting Orchestration services, while logged in as the root user.

Procedure 9.4. Configuring the Orchestration Service to Authenticate Through the Identity Service

1. Set the Orchestration services to authenticate as the correct tenant:

openstack-config --set /etc/heat/heat.conf \
 keystone_authtoken admin_tenant_name services

Replace services is the name of the tenant created for the use of the Orchestration service.
Examples in this guide use services.

2. Set the Orchestration services to authenticate using the heat administrative user account:

openstack-config --set /etc/heat/heat.conf \
 keystone_authtoken admin_user heat

3. Set the Orchestration services to use the correct heat administrative user account password:

openstack-config --set /etc/heat/heat.conf \
 keystone_authtoken admin_password PASSWORD

Replace PASSWORD with the password set when the heat user was created.

4. Set the Identity service host that the Orchestration services must use:

openstack-config --set /etc/heat/heat.conf \
 keystone_authtoken service_host KEYSTONE_HOST
openstack-config --set /etc/heat/heat.conf \
 keystone_authtoken auth_host KEYSTONE_HOST
openstack-config --set /etc/heat/heat.conf \
 keystone_authtoken auth_uri http://KEYSTONE_HOST:35357/v2.0
openstack-config --set /etc/heat/heat.conf \
 keystone_authtoken keystone_ec2_uri http://KEYSTONE_HOST:35357/v2.0

Replace KEYSTONE_HOST with the IP address or host name of the server hosting the Identity
service. If the Identity service is hosted on the same system, use 127.0.0.1.

5. Configure the heat-api-cfn and heat-api-cloudwatch service host names to which virtual
machine instances will connect:

openstack-config --set /etc/heat/heat.conf \
 DEFAULT heat_metadata_server_url HEAT_CFN_HOST:8000
openstack-config --set /etc/heat/heat.conf \
 DEFAULT heat_waitcondition_server_url

Installation Reference

112

HEAT_CFN_HOST:8000/v1/waitcondition
openstack-config --set /etc/heat/heat.conf \
 DEFAULT heat_watch_server_url HEAT_CLOUDWATCH_HOST:8003

Replace the following values:

Replace HEAT_CFN_HOST with the IP address or host name of the server hosting the heat-
api-cfn service.

Replace HEAT_CLOUDWATCH_HOST with the IP address or host name of the server hosting
the heat-api-cloudwatch service.

Important

Even if all services are hosted on the same system, do not use 127.0.0.1 for either service
host name. This IP address refers to the local host of each instance, and would therefore
prevent the instance from reaching the actual service.

6. Application templates use wait conditions and signaling for orchestration. Define the Identity role for
users that should receive progress data. By default, this role is heat_stack_user:

openstack-config --set /etc/heat/heat.conf \
 DEFAULT heat_stack_user_role heat_stack_user

9.2.5. Configure RabbitMQ Message Broker Settings for the Orchestration Service

RabbitMQ is the default (and recommended) message broker. The RabbitMQ messaging service is provided
by the rabbitmq-server package. All steps in the following procedure must be performed on system hosting
the Orchestration controller service, while logged in as the root user.

Procedure 9.5. Configuring the Orchestration Service to use the RabbitMQ Message Broker

1. Set RabbitMQ as the RPC back end:

openstack-config --set /etc/heat/heat.conf \
 DEFAULT rpc_backend heat.openstack.common.rpc.impl_kombu

2. Set the Orchestration service to connect to the RabbitMQ host:

openstack-config --set /etc/heat/heat.conf \
 DEFAULT rabbit_host RABBITMQ_HOST

Replace RABBITMQ_HOST with the IP address or host name of the message broker.

3. Set the message broker port to 5672:

openstack-config --set /etc/heat/heat.conf \
 DEFAULT rabbit_port 5672

4. Set the RabbitMQ user name and password created for the Orchestration service when RabbitMQ
was configured:

Chapter 9. Install the Orchestration Service

113

openstack-config --set /etc/heat/heat.conf \
 DEFAULT rabbit_userid heat
openstack-config --set /etc/heat/heat.conf \
 DEFAULT rabbit_password HEAT_PASS

Replace heat and HEAT_PASS with the RabbitMQ user name and password created for the
Orchestration service.

5. When RabbitMQ was launched, the heat user was granted read and write permissions to all
resources: specifically, through the virtual host /. Configure the Orchestration service to connect to
this virtual host:

openstack-config --set /etc/heat/heat.conf \
 DEFAULT rabbit_virtual_host /

9.2.6. Enable SSL Communication Between the Orchestration Service and the
Message Broker

If you enabled SSL on the message broker, you must configure the Orchestration service accordingly. This
procedure requires the exported client certificates and key file. See Section 2.3.5, “Export an SSL Certificate
for Clients” for instructions on how to export these files.

Procedure 9.6. Enabling SSL Communication Between the Orchestration Service and the RabbitMQ
Message Broker

1. Enable SSL communication with the message broker:

openstack-config --set /etc/heat/heat.conf \
 DEFAULT rabbit_use_ssl True
openstack-config --set /etc/heat/heat.conf \
 DEFAULT kombu_ssl_certfile /path/to/client.crt
openstack-config --set /etc/heat/heat.conf \
 DEFAULT kombu_ssl_keyfile /path/to/clientkeyfile.key

Replace the following values:

Replace /path/to/client.crt with the absolute path to the exported client certificate.

Replace /path/to/clientkeyfile.key with the absolute path to the exported client key file.

2. If your certificates were signed by a third-party Certificate Authority (CA), you must also run the
following command:

openstack-config --set /etc/heat/heat.conf \
 DEFAULT kombu_ssl_ca_certs /path/to/ca.crt

Replace /path/to/ca.crt with the absolute path to the CA file provided by the third-party CA (see
Section 2.3.4, “Enable SSL on the RabbitMQ Message Broker” for more information).

9.3. Launch the Orchestration Service

Procedure 9.7. Launching Orchestration Services

Installation Reference

114

1. Start the Orchestration API service, and configure it to start at boot time:

systemctl start openstack-heat-api.service
systemctl enable openstack-heat-api.service

2. Start the Orchestration AWS CloudFormation-compatible API service, and configure it to start at boot
time:

systemctl start openstack-heat-api-cfn.service
systemctl enable openstack-heat-api-cfn.service

3. Start the Orchestration AWS CloudFormation-compatible API service, and configure it to start at boot
time:

systemctl start openstack-heat-api-cfn.service
systemctl enable openstack-heat-api-cfn.service

4. Start the Orchestration AWS CloudWatch-compatible API service, and configure it to start at boot
time:

systemctl start openstack-heat-api-cloudwatch.service
systemctl enable openstack-heat-api-cloudwatch.service

5. Start the Orchestration API service for launching templates and submitting events back to the API,
and configure it to start at boot time:

systemctl start openstack-heat-engine.service
systemctl enable openstack-heat-engine.service

9.4. Deploy a Stack Using Orchestration Templates

The Orchestration engine service uses templates (defined as .template files) to launch instances, IPs,
volumes, or other types of stacks. The heat utility is a command-line interface that allows you to create,
configure, and launch stacks.

Note

The openstack-heat-templates package provides sample templates that you can use to test core
Orchestration features. It also contains template-related scripts and conversion tools. To install this
package, run the following command:

yum install -y openstack-heat-templates

Some Orchestration templates launch instances that require access to the openstack-heat-api-cfn
service. Such instances must be able to communicate with the openstack-heat-api-cloudwatch
service and the openstack-heat-api-cfn service. The IPs and ports used by these services are the
values set in the /etc/heat/heat.conf file as heat_metadata_server_url and
heat_watch_server_url.

Chapter 9. Install the Orchestration Service

115

To allow access to these services, you must open the ports used by openstack-heat-api-cloudwatch
(8003), openstack-heat-api-cfn (8000), and openstack-api (8004).

Procedure 9.8. Deploying a Stack Using Orchestration Templates

1. Open the /etc/sysconfig/iptables file in a text editor.

2. Add the following INPUT rules to allow TCP traffic on ports 8003, 8000, and 8004:

-A INPUT -i BR -p tcp --dport 8003 -j ACCEPT
-A INPUT -i BR -p tcp --dport 8000 -j ACCEPT
-A INPUT -p tcp -m multiport --dports 8004 -j ACCEPT

Replace BR with the interface of the bridge used by the instances launched from Orchestration
templates. Do not include the -i BR parameter in the INPUT rules if you are not using nova-
network, or if the Orchestration service and nova-compute are not hosted on the same server.

3. Save the changes to the /etc/sysconfig/iptables file.

4. Restart the iptables service for the firewall changes to take effect:

systemctl restart iptables.service

5. Launch an application:

heat stack-create STACKNAME \
 --template-file=PATH_TEMPLATE \
 --parameters="PARAMETERS"

Replace the following values:

Replace STACKNAME with the name to assign to the stack. This name will appear when you run
the heat stack-list command.

Replace PATH_TEMPLATE with the path to your .template file.

Replace PARAMETERS with a semicolon-delimited list of stack creation parameters to use.
Supported parameters are defined in the template file itself.

9.5. Integrate Telemetry and Orchestration Services

The Orchestration service can use the Telemetry service (and its alarms) to monitor the resource usage of
stacks created using the heat stack-create command. To enable this, the Orchestration service must be
installed and configured accordingly (see Section 12.1, “Overview of Telemetry Service Deployment” for more
information).

Telemetry service alarms are used by the autoscaling feature. This feature allows the Orchestration service
to automatically create stacks when the usage of a specific resource reaches a certain level. To allow
Orchestration to use Telemetry alarms, uncomment or add the following line in the resource_registry
section of /etc/heat/environment.d/default.yaml:

"AWS::CloudWatch::Alarm":
"file:///etc/heat/templates/AWS_CloudWatch_Alarm.yaml"

Installation Reference

116

Chapter 10. Install the Dashboard

10.1. Dashboard Service Requirements

The system hosting the dashboard service must be configured in the following way:

The httpd, mod_wsgi, and mod_ssl packages must be installed (for security purposes):

yum install -y mod_wsgi httpd mod_ssl

The system must have a connection to the Identity service, as well as to the other OpenStack API
services (Compute, Block Storage, Object Storage, Image, and Networking services).

You must know the URL of the Identity service endpoint.

10.2. Install the Dashboard Packages

Install the packages required by the dashboard service.

Note

The dashboard service uses a configurable back-end session store. This installation uses memcached
as the session store.

The following package is required:
openstack-dashboard

Provides the OpenStack dashboard service.

If you are using memcached, the following packages must also be installed:
memcached

Memory-object caching system that speeds up dynamic web applications by alleviating database
load.

python-memcached

Python interface to the memcached daemon.

Procedure 10.1. Installing the Dashboard Packages

1. If required, install the memcached object caching system:

yum install -y memcached python-memcached

2. Install the dashboard package:

yum install -y openstack-dashboard

10.3. Launch the Apache Web Service

Chapter 10. Install the Dashboard

117

The dashboard is a Django (Python) web application; it is hosted by the httpd service. Start the service, and
configure it to start at boot time:

systemctl start httpd.service
systemctl enable httpd.service

10.4. Configure the Dashboard

10.4.1. Configure Connections and Logging

Before users connect to the dashboard for the first time, the following parameters must be configured in the
/etc/openstack-dashboard/local_settings file (sample files are available in the Configuration
Reference Guide at https://access.redhat.com/site/documentation/en-
US/Red_Hat_Enterprise_Linux_OpenStack_Platform):

Procedure 10.2. Configuring Connections and Logging for the Dashboard

1. Set the ALLOWED_HOSTS parameter with a comma-separated list of host/domain names that the
application can serve. For example:

ALLOWED_HOSTS = ['horizon.example.com', 'localhost', '192.168.20.254',
]

2. Update the CACHES settings with the memcached values:

SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
CACHES = {
 'default': {
 'BACKEND' : 'django.core.cache.backends.memcached.MemcachedCache',
 'LOCATION' : 'memcacheURL:port',
 }
}

Replace the following values:

Replace memcacheURL with IP address of the host on which memcached was installed.

Replace port with the value from the PORT parameter in the /etc/sysconfig/memcached file.

3. Specify the host URL for the Identity service endpoint. For example:

OPENSTACK_KEYSTONE_URL="127.0.0.1"

4. Update the dashboard's time zone:

TIME_ZONE="UTC"

The time zone can also be updated using the dashboard GUI.

5. To ensure the configuration changes take effect, restart the Apache service:

systemctl restart httpd.service

Installation Reference

118

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform

Note

The HORIZON_CONFIG dictionary contains all the settings for the dashboard. Whether or not a service
is in the dashboard depends on the Service Catalog configuration in the Identity service.

Note

It is recommended that you use the django-secure module to ensure that most of the
recommended practices and modern browser protection mechanisms are enabled. For more
information http://django-secure.readthedocs.org/en/latest/ (django-secure).

10.4.2. Configure the Dashboard to Use HTTPS

Although the default installation uses a non-encrypted channel (HTTP), it is possible to enable SSL support
for the dashboard.

Procedure 10.3. Configuring the Dashboard to use HTTPS

1. Open the /etc/openstack-dashboard/local_settings file in a text editor, and uncomment
the following parameters:

SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTOCOL', 'https')
CSRF_COOKIE_SECURE = True
SESSION_COOKIE_SECURE = True

The latter two settings instruct the browser to only send dashboard cookies over HTTPS connections,
ensuring that sessions will not work over HTTP.

2. Open the /etc/httpd/conf/httpd.conf file in a text editor, and add the following line:

NameVirtualHost *:443

3. Open the /etc/httpd/conf.d/openstack-dashboard.conf file in a text editor.

a. Delete the following lines:

WSGIDaemonProcess dashboard
WSGIProcessGroup dashboard
WSGISocketPrefix run/wsgi

WSGIScriptAlias /dashboard /usr/share/openstack-
dashboard/openstack_dashboard/wsgi/django.wsgi
Alias /static /usr/share/openstack-dashboard/static/

<Directory /usr/share/openstack-
dashboard/openstack_dashboard/wsgi>
 <IfModule mod_deflate.c>
 SetOutputFilter DEFLATE
 <IfModule mod_headers.c>
 # Make sure proxies donâ t deliver the wrong content
 Header append Vary User-Agent env=!dont-vary

Chapter 10. Install the Dashboard

119

http://django-secure.readthedocs.org/en/latest/

 </IfModule>
 </IfModule>

 Order allow,deny
 Allow from all
</Directory>
<Directory /usr/share/openstack-dashboard/static>
 <IfModule mod_expires.c>
 ExpiresActive On
 ExpiresDefault "access 6 month"
 </IfModule>
 <IfModule mod_deflate.c>
 SetOutputFilter DEFLATE
 </IfModule>

 Order allow,deny
 Allow from all
</Directory>

 RedirectMatch permanent ^/$
https://xxx.xxx.xxx.xxx:443/dashboard

b. Add the following lines:

WSGIDaemonProcess dashboard
WSGIProcessGroup dashboard
WSGISocketPrefix run/wsgi
LoadModule ssl_module modules/mod_ssl.so

<VirtualHost *:80>
 ServerName openstack.example.com
 RedirectPermanent / https://openstack.example.com/
</VirtualHost>

<VirtualHost *:443>
 ServerName openstack.example.com
 SSLEngine On
 SSLCertificateFile /etc/httpd/SSL/openstack.example.com.crt
 SSLCACertificateFile
/etc/httpd/SSL/openstack.example.com.crt
 SSLCertificateKeyFile
/etc/httpd/SSL/openstack.example.com.key
 SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-
shutdown
 WSGIScriptAlias / /usr/share/openstack-
dashboard/openstack_dashboard/wsgi/django.wsgi
 WSGIDaemonProcess horizon user=apache group=apache
processes=3 threads=10
 RedirectPermanent /dashboard https://openstack.example.com
 Alias /static /usr/share/openstack-dashboard/static/
 <Directory /usr/share/openstack-
dashboard/openstack_dashboard/wsgi>
 Order allow,deny
 Allow from all
 </Directory>
</VirtualHost>

Installation Reference

120

<Directory /usr/share/openstack-dashboard/static>
 <IfModule mod_expires.c>
 ExpiresActive On
 ExpiresDefault "access 6 month"
 </IfModule>
 <IfModule mod_deflate.c>
 SetOutputFilter DEFLATE
 </IfModule>

Order allow,deny
Allow from all
</Directory>

RedirectMatch permanent ^/$ /dashboard/

In the new configuration, Apache listens on port 443 and redirects all non-secured requests to the
HTTPS protocol. The <VirtualHost *:443> section defines the required options for this protocol,
including private key, public key, and certificates.

4. Restart the Apache service and the memcached service:

systemctl restart httpd.service
systemctl restart memcached.service

When using the HTTP version of the dashboard (through the browser), the user is redirected to the HTTPS
version of the page.

10.4.3. Change the Default Role for the Dashboard

By default, the dashboard service uses the Identity role, _member_, which is created automatically by the
Identity service. This is adequate for regular users. If you choose to create a different role and set the
dashboard to use this role, you must create this role in the Identity service prior to using the dashboard, then
configure the dashboard to use it.

Perform this procedure on the Identity service server, or on any machine onto which you have copied the
keystonerc_admin file and on which the keystone command-line utility is installed.

Procedure 10.4. Changing the Default Role for the Dashboard

1. Set up the shell to access keystone as the administrative user:

source ~/keystonerc_admin

2. Create the new role:

[(keystone_admin)]# keystone role-create --name NEW_ROLE
+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
| id | 8261ac4eabcc4da4b01610dbad6c038a |
| name | NEW_ROLE |
+----------+----------------------------------+

Replace NEW_ROLE with a name for the role.

Chapter 10. Install the Dashboard

121

3. Open the /etc/openstack-dashboard/local_settings file in a text editor, and change the
value of the following parameter:

OPENSTACK_KEYSTONE_DEFAULT_ROLE = 'NEW_ROLE'

Replace NEW_ROLE with the name of the role you created in the previous step.

4. Restart the Apache service for the change to take effect:

systemctl restart httpd.service

10.4.4. Configure SELinux

SELinux is a security feature of Red Hat Enterprise Linux that provides access control. SELinux status values
are 'Enforcing', 'Permissive', and 'Disabled'. If SELinux is in 'Enforcing' mode, you must modify the SELinux
policy to allow connections from the httpd service to the Identity server. This is also recommended if
SELinux is configured in 'Permissive' mode.

Procedure 10.5. Configuring SELinux to Allow Connections from the Apache Service

1. Check the status of SELinux on the system:

getenforce

2. If the resulting value is 'Enforcing' or 'Permissive', allow connections between the httpd service and
the Identity service:

setsebool -P httpd_can_network_connect on

10.4.5. Configure the Dashboard Firewall

To allow users to connect to the dashboard, you must configure the system firewall to allow connections. The
httpd service and the dashboard support both HTTP and HTTPS connections. All steps in this procedure
must be performed on the server hosting the httpd service, while logged in as the root user.

Note

To protect authentication credentials and other data, it is highly recommended that you enable only
HTTPS connections.

Procedure 10.6. Configuring the Firewall to Allow Dashboard Traffic

1. Open the /etc/sysconfig/iptables configuration file in a text editor:

To allow incoming connections using only HTTPS, add the following firewall rule:

-A INPUT -p tcp --dport 443 -j ACCEPT

To allow incoming connections using both HTTP and HTTPS, add the following firewall rule:

-A INPUT -p tcp -m multiport --dports 80,443 -j ACCEPT

Installation Reference

122

2. Restart the iptables service for the changes to take effect:

systemctl restart iptables.service

Important

These rules allow communication on ports 80 and 443 from all remote hosts to the server running the
dashboard service. For information regarding the creation of more restrictive firewall rules, see the
Red Hat Enterprise Linux Security Guide at the following link:

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/

10.5. Validate Dashboard Installation

After the dashboard has been successfully installed and configured, access the user interface with your web
browser. Replace HOSTNAME with the host name or IP address of the server on which you installed the
dashboard service:

HTTPS

https://HOSTNAME/dashboard/

HTTP

http://HOSTNAME/dashboard/

When prompted, log in using the credentials of your OpenStack user.

Chapter 10. Install the Dashboard

123

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/

Figure 10.1. Dashboard Login Screen

Installation Reference

124

Chapter 11. Install the Data Processing Service

11.1. Install the Data Processing Service Packages

On the server hosting the Data Processing service, install the openstack-sahara-api and openstack-sahara-
engine packages:

yum install openstack-sahara-api openstack-sahara-engine

This package provides the Data Processing CLI clients (sahara and sahara-db-manage) and the
openstack-sahara-api service.

11.2. Configure the Data Processing Service

To configure the Data Processing service (Sahara), you must complete the following tasks:

Configure the Data Processing service database connection.

Configure the Data Processing API service to authenticate with the Identity service.

Configure the firewall to allow service traffic for the Data Processing service (through port 8386).

11.2.1. Create the Data Processing Service Database

Create the database and database user used by the Data Processing API service. The database connection
string used by the Data Processing service is defined in the /etc/sahara/sahara.conf file. It must be
updated to point to a valid database server before starting the Data Processing API service (openstack-
sahara-api).

Procedure 11.1. Creating and Configuring a Database for the Data Processing API Service

1. Connect to the database service:

mysql -u root -p

2. Create the sahara database:

mysql> CREATE DATABASE sahara;

3. Create a sahara database user and grant the user access to the sahara database:

mysql> GRANT ALL ON sahara.* TO 'sahara'@'%' IDENTIFIED BY
'PASSWORD';
mysql> GRANT ALL ON sahara.* TO 'sahara'@'localhost' IDENTIFIED BY
'PASSWORD';

Replace PASSWORD with a secure password that will be used to authenticate with the database
server as this user.

4. Exit the mysql client:

mysql> quit

Chapter 11. Install the Data Processing Service

125

5. Set the value of the sql_connection configuration key:

openstack-config --set /etc/sahara/sahara.conf \
 database connection mysql://sahara:PASSWORD@IP/sahara

Replace the following values:

Replace PASS with the password of the database user.

Replace IP with the IP address or host name of the server hosting the database service.

6. Configure the schema of the sahara database:

sahara-db-manage --config-file /etc/sahara/sahara.conf upgrade head

Important

The IP address or host name specified in the connection configuration key must match the IP address
or host name to which the Data Processing service database user was granted access when creating
the Data Processing service database. Moreover, if the database is hosted locally and you granted
permissions to 'localhost' when creating the Data Processing service database, you must enter
'localhost'.

11.2.2. Create the Data Processing Service Identity Records

Create and configure Identity service records required by the Data Processing service. These entries assist
other OpenStack services attempting to locate and access the functionality provided by the Data Processing
service.

This procedure assumes that you have already created an administrative user account and a services
tenant. For more information, see:

Section 3.5, “Create an Administrator Account”

Section 3.8, “Create the Services Tenant”

Perform this procedure on the Identity service server, or on any machine onto which you have copied the
keystonerc_admin file and on which the keystone command-line utility is installed.

Procedure 11.2. Creating Identity Records for the Data Processing Service

1. Set up the shell to access keystone as the administrative user:

source ~/keystonerc_admin

2. Create the sahara user:

[(keystone_admin)]# keystone user-create --name sahara --pass
PASSWORD

Replace PASSWORD with a password that will be used by the Data Processing service when
authenticating with the Identity service.

Installation Reference

126

3. Link the sahara user and the admin role together within the context of the services tenant:

[(keystone_admin)]# keystone user-role-add --user sahara --role admin
--tenant services

4. Create the sahara service entry:

[(keystone_admin)]# keystone service-create --name sahara \
--type data-processing \
--description "OpenStack Data Processing"

5. Create the sahara endpoint entry:

[(keystone_admin)]# keystone endpoint-create \
 --service sahara \
 --publicurl 'http://SAHARA_HOST:8386/v1.1/%(tenant_id)s' \
 --adminurl 'http://SAHARA_HOST:8386/v1.1/%(tenant_id)s' \
 --internalurl 'http://SAHARA_HOST:8386/v1.1/%(tenant_id)s' \
 --region 'RegionOne'

Replace SAHARA_HOST with the IP address or fully qualified domain name of the server hosting the
Data Processing service.

Note

By default, the endpoint is created in the default region, RegionOne. This is a case-sensitive
value. To specify a different region when creating an endpoint, use the --region argument
to provide it.

See Section 3.6.1, “Service Regions” for more information.

11.2.3. Configure Data Processing Service Authentication

Configure the Data Processing API service (openstack-sahara-api) to use the Identity service for
authentication. All steps in this procedure must be performed on the server hosting the Data Processing API
service, while logged in as the root user.

Procedure 11.3. Configuring the Data Processing API Service to Authenticate through the Identity
Service

1. Set the Identity service host that the Data Processing API service must use:

openstack-config --set /etc/sahara/sahara.conf \
 keystone_authtoken auth_uri http://IP:5000/v2.0/
openstack-config --set /etc/sahara/sahara.conf \
 keystone_authtoken identity_uri http://IP:35357

Replace IP with the IP address of the server hosting the Identity service.

2. Set the Data Processing API service to authenticate as the correct tenant:

Chapter 11. Install the Data Processing Service

127

openstack-config --set /etc/sahara/sahara.conf \
 keystone_authtoken admin_tenant_name services

Replace services with the name of the tenant created for the use of the Data Processing service.
Examples in this guide use services.

3. Set the Data Processing API service to authenticate using the sahara administrative user account:

openstack-config --set /etc/sahara/sahara.conf \
 keystone_authtoken admin_user sahara

4. Set the Data Processing API service to use the correct sahara administrative user account
password:

openstack-config --set /etc/sahara/sahara.conf \
 keystone_authtoken admin_password PASSWORD

Replace PASSWORD with the password set when the sahara user was created.

11.2.4. Configure the Firewall to Allow OpenStack Data Processing Service Traffic

The Data Processing service receives connections on port 8386. The firewall on the service node must be
configured to allow network traffic on this port. All steps in this procedure must be performed on the server
hosting the Data Processing service, while logged in as the root user.

Procedure 11.4. Configuring the Firewall to Allow Data Processing Service Traffic

1. Open the /etc/sysconfig/iptables file in a text editor.

2. Add an INPUT rule allowing TCP traffic on port 8386. The new rule must appear before any INPUT
rules that REJECT traffic:

-A INPUT -p tcp -m multiport --dports 8386 -j ACCEPT

3. Save the changes to the /etc/sysconfig/iptables file.

4. Restart the iptables service to ensure that the change takes effect:

systemctl restart iptables.service

11.3. Configure and Launch the Data Processing Service

Procedure 11.5. Launching the Data Processing Service

1. If your OpenStack deployment uses OpenStack Networking (neutron), you must configure the Data
Processing service accordingly:

openstack-config --set /etc/sahara/sahara.conf \
 DEFAULT use_neutron true

2. Start the Data Processing services and configure them to start at boot time:

Installation Reference

128

systemctl start openstack-sahara-api.service
systemctl start openstack-sahara-engine.service
systemctl enable openstack-sahara-api.service
systemctl enable openstack-sahara-engine.service

Chapter 11. Install the Data Processing Service

129

Chapter 12. Install the Telemetry Service

12.1. Overview of Telemetry Service Deployment

The Telemetry service is composed of an API service, three openstack-ceilometer agents, and two
alarm services. The API service (provided by the openstack-ceilometer-api package) runs on one or more
central management servers to provide access to the Telemetry database.

Note

At present, mongod is the only database service supported by the Telemetry service.

The three Telemetry agents (and their respective packages) are listed below:

The Central agent (provided by openstack-ceilometer-central) runs on a central management server to
poll public REST APIs for utilization statistics about resources that are not visible (either through
notifications or from the hypervisor layer).

The Collector (provided by openstack-ceilometer-collector) runs on one or more central management
servers to receive notifications on resource usage. The Collector also parses resource usage statistics
and saves them as datapoints in the Telemetry database.

The Compute agent (provided by openstack-ceilometer-compute) runs on each Compute service node to
poll for instance utilization statistics. You must install and configure the Compute service before installing
the openstack-ceilometer-compute package on any node.

The two alarm services (and their respective packages) that comprise the rest of the Telemetry service are
listed below:

The Evaluator (provided by ceilometer-alarm-evaluator) triggers state transitions on alarms.

The Notifier (provided by ceilometer-alarm-notifier) executes required actions when alarms are triggered.

You must configure the following settings for each of the components:

Authentication, including the Identity service tokens and Telemetry secret

The database connection string, for connecting to the Telemetry database

The authentication settings and database connection string for these components are all configured in
/etc/ceilometer/ceilometer.conf. As such, components deployed on the same host will share the
same settings. If Telemetry components are deployed on multiple hosts, you must replicate any
authentication changes to these hosts by copying the ceilometer.conf file to each host after applying the
new settings.

Once the Telemetry service (all of its components, wherever each is hosted) is deployed and configured, you
must configure each monitored service (Image, Networking, Object Storage, Block Storage, and each
Compute node) to submit data to the Telemetry service. The related settings are configured in each service's
configuration file.

12.2. Install the Telemetry Service Packages

The Telemetry service requires the following packages:

Installation Reference

130

mongodb

Provides the MongoDB database service. The Telemetry service uses MongoDB as its back-end
data repository.

openstack-ceilometer-api

Provides the ceilometer API service.

openstack-ceilometer-central

Provides the Central ceilometer agent.

openstack-ceilometer-collector

Provides the ceilometer Collector agent.

openstack-ceilometer-common

Provides components common to all ceilometer services.

openstack-ceilometer-compute

Provides the ceilometer agent that must run on each Compute node.

openstack-ceilometer-alarm

Provides the ceilometer alarm notification and evaluation services.

openstack-ceilometer-notification

Provides the ceilometer Notification agent. This agent provides metrics to the Collector agent
from different OpenStack services.

python-ceilometer

Provides the ceilometer Python library.

python-ceilometerclient

Provides the ceilometer command-line tool and a Python API (specifically, the
ceilometerclient module).

You can deploy the API Server, Central agent, MongoDB database service, and Collector on different hosts.
Each Compute node must also have a Compute agent installed; this agent gathers detailed usage metrics on
instances running on the Compute node.

Install the required packages on the same host:

yum install -y mongodb openstack-ceilometer-* python-ceilometer python-
ceilometerclient

12.3. Configure the MongoDB Back End and Create the Telemetry
Database

Chapter 12. Install the Telemetry Service

131

The Telemetry service uses MongoDB as its back-end data repository. Before starting the mongod service,
optionally configure mongod to run with the --smallfiles parameter. This parameter configures MongoDB
to use a smaller default data file and journal size. MongoDB will limit the size of each data file, creating and
writing to a new one when it reaches 512MB.

Procedure 12.1. Configuring the MongoDB Back End and Creating the Telemetry Database

1. Optionally configure mongod to run with the --smallfiles parameter. Open the
/etc/sysconfig/mongod file in a text editor, and add the following line:

OPTIONS="--smallfiles /etc/mongodb.conf"

MongoDB uses the parameters specified in the OPTIONS section when mongod launches.

2. Start the MongoDB service:

systemctl start mongod.service

3. If the database must be accessed from a server other than its local host, open the
/etc/mongod.conf file in a text editor, and update the bind_ip with the IP address of your
MongoDB server:

bind_ip = MONGOHOST

4. Open the /etc/sysconfig/iptables file in a text editor and add an INPUT rule allowing TCP
traffic on port 27017. The new rule must appear before any INPUT rules that REJECT traffic:

-A INPUT -p tcp -m multiport --dports 27017 -j ACCEPT

5. Restart the iptables service to ensure that the change takes effect:

systemctl restart iptables.service

6. Create a database for the Telemetry service:

mongo --host MONGOHOST --eval '
 db = db.getSiblingDB("ceilometer");
 db.addUser({user: "ceilometer",
 pwd: "MONGOPASS",
 roles: ["readWrite", "dbAdmin"]})'

This also creates a database user named ceilometer. Replace MONGOHOST with the IP address
or host name of the server hosting the MongoDB database. Replace MONGOPASS with a password
for the ceilometer user.

12.4. Configure the Telemetry Service Database Connection

The database connection URL used by the Telemetry service is defined in the
/etc/ceilometer/ceilometer.conf file. It must be updated to point to a valid database server before
starting the Telemetry API service (openstack-ceilometer-api), Notification agent (openstack-
ceilometer-notification), and Collector agent (openstack-ceilometer-collector).

Installation Reference

132

All steps in this procedure must be performed on the server or servers hosting the openstack-
ceilometer-api service and the openstack-ceilometer-collector service, while logged in as the
root user.

Procedure 12.2. Configuring the Telemetry Service Database Connection

Set the database connection string:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 database connection mongodb://ceilometer:MONGOPASS@MONGOHOST/ceilometer

Replace the following values:

Replace MONGOPASS with the password of the ceilometer user; it is required by the Telemetry
service to log in to the database server. Supply these credentials only when required by the database
server (for example, when the database server is hosted on another system or node).

Replace MONGOHOST with the IP address or host name and the port of the server hosting the
database service.

If MongoDB is hosted locally on the same host, use the following database connection string:

mongodb://localhost:27017/ceilometer

12.5. Create the Telemetry Identity Records

Create and configure Identity service records required by the Telemetry service. These entries assist other
OpenStack services attempting to locate and access the functionality provided by the Telemetry service.

This procedure assumes that you have already created an administrative user account and a services
tenant. For more information, see:

Section 3.5, “Create an Administrator Account”

Section 3.8, “Create the Services Tenant”

Perform this procedure on the Identity service server, or on any machine onto which you have copied the
keystonerc_admin file and on which the keystone command-line utility is installed.

Procedure 12.3. Creating Identity Records for the Telemetry Service

1. Set up the shell to access keystone as the administrative user:

source ~/keystonerc_admin

2. Create the ceilometer user:

[(keystone_admin)]# keystone user-create --name ceilometer \
 --pass PASSWORD \
 --email CEILOMETER_EMAIL

Replace the following values:

Replace PASSWORD with the password that will be used by the Telemetry service when
authenticating with the Identity service.

Chapter 12. Install the Telemetry Service

133

Replace CEILOMETER_EMAIL with the email address used by the Telemetry service.

3. Create the ResellerAdmin role:

[(keystone_admin)]# keystone role-create --name ResellerAdmin

4. Link the ceilometer user and the ResellerAdmin role together within the context of the
services tenant:

[(keystone_admin)]# keystone user-role-add --user ceilometer \
 --role ResellerAdmin \
 --tenant services

5. Link the ceilometer user and the admin role together within the context of the services tenant:

[(keystone_admin)]# keystone user-role-add --user ceilometer \
 --role admin \
 --tenant services

6. Create the ceilometer service entry:

[(keystone_admin)]# keystone service-create --name ceilometer \
 --type metering \
 --description "OpenStack Telemetry Service"
+-------------+----------------------------------+
| Property | Value |
+-------------+----------------------------------+
description	OpenStack Telemetry Service
enabled	True
id	a511aea8bc1264641f4dff1db38751br
name	ceilometer
type	metering
+-------------+----------------------------------+

7. Create the ceilometer endpoint entry:

[(keystone_admin)]# keystone endpoint-create \
 --service ceilometer \
 --publicurl 'IP:8777' \
 --adminurl 'IP:8777' \
 --internalurl 'IP:8777' \
 --region 'RegionOne'

Replace IP with the IP address or host name of the server hosting the Telemetry service.

Installation Reference

134

Note

By default, the endpoint is created in the default region, RegionOne. This is a case-sensitive
value. To specify a different region when creating an endpoint, use the --region argument
to provide it.

See Section 3.6.1, “Service Regions” for more information.

12.6. Configure Telemetry Service Authentication

Configure the Telemetry API service (openstack-ceilometer-api) to use the Identity service for
authentication. All steps in this procedure must be performed on the server hosting the Telemetry API
service, while logged in as the root user.

Procedure 12.4. Configuring the Telemetry Service to Authenticate Through the Identity Service

1. Set the Identity service host that the Telemetry API service must use:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 keystone_authtoken auth_host IP

Replace IP with the IP address or host name of the server hosting the Identity service.

2. Set the authentication port that the Telemetry API service must use:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 keystone_authtoken auth_port PORT

Replace PORT with the authentication port used by the Identity service, usually 35357.

3. Set the Telemetry API service to use the http protocol for authenticating:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 keystone_authtoken auth_protocol http

4. Set the Telemetry API service to authenticate as the correct tenant:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 keystone_authtoken admin_tenant_name services

Replace services with the name of the tenant created for the use of the Telemetry service. Examples
in this guide use services.

5. Set the Telemetry service to authenticate using the ceilometer administrative user account:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 keystone_authtoken admin_user ceilometer

6. Set the Telemetry service to use the correct ceilometer administrative user account password:

Chapter 12. Install the Telemetry Service

135

openstack-config --set /etc/ceilometer/ceilometer.conf \
 keystone_authtoken admin_password PASSWORD

Replace PASSWORD with the password set when the ceilometer user was created.

7. The Telemetry secret is a string used to help secure communication between all components of the
Telemetry service across multiple hosts (for example, between the Collector agent and a Compute
node agent). Set the Telemetry secret:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 publisher_rpc metering_secret SECRET

Replace SECRET with the string that all Telemetry service components should use to sign and verify
messages that are sent or received over AMQP.

8. Configure the service endpoints to be used by the Central agent, Compute agents, and Evaluator on
the host where each component is deployed:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 DEFAULT os_auth_url http://IP:35357/v2.0
openstack-config --set /etc/ceilometer/ceilometer.conf \
 DEFAULT os_username ceilometer
openstack-config --set /etc/ceilometer/ceilometer.conf \
 DEFAULT os_tenant_name services
openstack-config --set /etc/ceilometer/ceilometer.conf \
 DEFAULT os_password PASSWORD

Replace the following values:

Replace IP with the IP address or host name of the server hosting the Identity service.

Replace PASSWORD with the password set when the ceilometer user was created.

12.7. Configure the Firewall to Allow Telemetry Service Traffic

The Telemetry service receives connections on port 8777. The firewall on the service node must be
configured to allow network traffic on this port. All steps in this procedure must be performed on the server
hosting the Telemetry service, while logged in as the root user.

Procedure 12.5. Configuring the Firewall to Allow Telemetry Service Traffic

1. Open the /etc/sysconfig/iptables file in a text editor.

2. Add an INPUT rule allowing TCP traffic on port 8777. The new rule must appear before any INPUT
rules that REJECT traffic:

-A INPUT -p tcp -m multiport --dports 8777 -j ACCEPT

3. Save the changes to the /etc/sysconfig/iptables file.

4. Restart the iptables service to ensure that the change takes effect:

systemctl restart iptables.service

Installation Reference

136

12.8. Configure RabbitMQ Message Broker Settings for the Telemetry
Service

RabbitMQ is the default (and recommended) message broker. The RabbitMQ messaging service is provided
by the rabbitmq-server package. All steps in the following procedure must be performed on the system
hosting the Telemetry service, while logged in as the root user.

Procedure 12.6. Configuring the Telemetry Service to Use the RabbitMQ Message Broker

1. Set RabbitMQ as the RPC back end:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 DEFAULT rpc_backend ceilometer.openstack.common.rpc.impl_kombu

2. Set the Telemetry service to connect to the RabbitMQ host:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 DEFAULT rabbit_host RABBITMQ_HOST

Replace RABBITMQ_HOST with the IP address or host name of the message broker.

3. Set the message broker port to 5672:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 DEFAULT rabbit_port 5672

4. Set the RabbitMQ user name and password created for the Telemetry service when RabbitMQ was
configured:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 DEFAULT rabbit_userid ceilometer
openstack-config --set /etc/ceilometer/ceilometer.conf \
 DEFAULT rabbit_password CEILOMETER_PASS

Replace ceilometer and CEILOMETER_PASS with the RabbitMQ user name and password
created for the Telemetry service.

5. When RabbitMQ was launched, the ceilometer user was granted read and write permissions to all
resources: specifically, through the virtual host /. Configure the Telemetry service to connect to this
virtual host:

openstack-config --set /etc/ceilometer/ceilometer.conf \
 DEFAULT rabbit_virtual_host /

12.9. Configure the Compute Node

The Telemetry service monitors each node by collecting usage data from the Compute agent (openstack-
ceilometer-compute) installed on that node. You can configure a node's Compute agent by replicating
the /etc/ceilometer/ceilometer.conf file from another host whose Telemetry components have
already been configured.

You must also configure the Compute node itself to enable notifications.

Chapter 12. Install the Telemetry Service

137

Procedure 12.7. Enabling Notifications on a Compute Node

1. Install python-ceilometer and python-ceilometerclient on the node:

yum install python-ceilometer python-ceilometerclient

2. Enable auditing on the node:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT instance_usage_audit True

3. Configure the audit frequency:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT instance_usage_audit_period hour

4. Configure what type of state changes should trigger a notification:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT notify_on_state_change vm_and_task_state

5. Set the node to use the correct notification drivers. Open the /etc/nova/nova.conf file in a text
editor, and add the following lines in the DEFAULT section:

notification_driver = messagingv2
notification_driver = ceilometer.compute.nova_notifier

The Compute node requires two different notification drivers, which are defined using the same
configuration key. You cannot use openstack-config to set these values.

6. Start the Compute agent:

systemctl start openstack-ceilometer-compute.service

7. Configure the agent to start at boot time:

systemctl enable openstack-ceilometer-compute.service

8. Restart the openstack-nova-compute service to apply all changes to /etc/nova/nova.conf:

systemctl restart openstack-nova-compute.service

12.10. Configure Monitored Services

The Telemetry service can also monitor the Image service, OpenStack Networking, the Object Storage
service, and the Block Storage service. You must configure each service to submit samples to the Collector
services. Before configuring any of these services, you must install the python-ceilometer and python-
ceilometerclient packages on the node hosting the service:

yum install python-ceilometer python-ceilometerclient

Installation Reference

138

Note

Restart each service after configuring it to be monitored by the Telemetry service.

Image service (glance)

openstack-config --set /etc/glance/glance-api.conf \
 DEFAULT notifier_strategy NOTIFYMETHOD

Replace NOTIFYMETHOD with a notification queue: rabbit (to use a rabbitmq queue) or qpid
(to use a qpid message queue).

Block Storage service (cinder)

openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT notification_driver messagingv2
openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT rpc_backend cinder.openstack.common.rpc.impl_kombu
openstack-config --set /etc/cinder/cinder.conf \
 DEFAULT control_exchange cinder

Object Storage service (swift)

The Telemetry service collects samples from the Object Storage service (swift) through the
ResellerAdmin role that was created when configuring the required Identity records for
Telemetry. You must also configure the Object Storage service to process traffic from
ceilometer.

1. Open the /etc/swift/proxy-server.conf file in a text editor, and add or update the
following lines:

[filter:ceilometer]
use = egg:ceilometer#swift

[pipeline:main]
pipeline = healthcheck cache authtoken keystoneauth ceilometer
proxy-server

2. Add the swift user to the ceilometer group:

usermod -a -G ceilometer swift

3. Allow the Object Storage service to output logs to /var/log/ceilometer/swift-
proxy-server.log:

touch /var/log/ceilometer/swift-proxy-server.log
chown ceilometer:ceilometer /var/log/ceilometer/swift-proxy-
server.log
chmod 664 /var/log/ceilometer/swift-proxy-server.log

OpenStack Networking (neutron)

Chapter 12. Install the Telemetry Service

139

Telemetry supports the use of labels for distinguishing IP ranges. Enable OpenStack Networking
integration with Telemetry:

openstack-config --set /etc/neutron/neutron.conf \
 DEFAULT notification_driver messagingv2

12.11. Launch the Telemetry API and Agents

Launch the corresponding service for each component of the Telemetry service, and configure each service
to start at boot time:

systemctl start SERVICENAME.service
systemctl enable SERVICENAME.service

Replace SERVICENAME with the corresponding name of each Telemetry component service:

openstack-ceilometer-compute

openstack-ceilometer-central

openstack-ceilometer-collector

openstack-ceilometer-api

openstack-ceilometer-alarm-evaluator

openstack-ceilometer-alarm-notifier

openstack-ceilometer-notification

Installation Reference

140

Chapter 13. Install the File Share Service (Technology Preview)

OpenStack’s File Share Service provides the means to easily provision shared file systems that can be
consumed by multiple instances. These shared file systems are provisioned from pre-existing back end
volumes.

Warning

The OpenStack File Share Service is available in this release as a Technology Preview, and therefore
is not fully supported by Red Hat. It should only be used for testing, and should not be deployed in a
production environment. For more information about Technology Preview features, see Scope of
Coverage Details.

The OpenStack File Share Service can be deployed with either of two drivers:

glusterfs_native

This driver uses the FUSE protocol to mount shares, and can secure access to provisioned shares
through TLS authentication and network encryption. With this driver, the File Share Service will
require existing Red Hat Gluster volumes to serve as back ends for provisioned shares. You can
also create snapshots of shares provisioned through this driver, but only if the back end volumes
are created from thinly-provisioned LV bricks.

glusterfs

With this driver, you can provision and serve ready-to-mount shares through NFS or NFS-
Ganesha, securing share access through IP-based authentication. The glusterfs driver requires
an existing Red Hat Gluster volume as a back end; when provisioning a share, the driver creates a
sub-directory in the volume for the share.

Red Hat also provides comprehensive instructions on how to deploy the File Share Service with OpenStack
specifically for testing purposes. For more information (including steps on provisioning and managing shares
through the file share service), see:

glusterfs_native

glusterfs over NFS

glusterfs over NFS-Ganesha

13.1. File Share Service Back End Requirements

The OpenStack File Share Service allows you to create shared file systems on demand. However, the
volumes that will serve as back ends for these shares must already exist. This release has been tested
successfully with Red Hat Gluster Storage 3.1 volumes serving as share back ends.

13.1.1. glusterfs_native

The glusterfs_native driver uses Red Hat Gluster Storage volumes as storage back end for provisioned
shares. These volumes must be created and configured beforehand; each provisioned share uses up a
volume. As such, you should anticipate demand with an appropriate number of volumes.

For best results when deploying with the glusterfs_native driver, use thinly-provisioned LV bricks as
your share back ends, with one logical volume per brick. These are the only volumes from which the File

Chapter 13. Install the File Share Service (Technology Preview)

141

https://access.redhat.com/support/offerings/production/scope_moredetail
https://access.redhat.com/articles/1555463
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-openstack-platform/version-7/test-the-openstack-file-share-service-technology-preview-with-nfs/
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-openstack-platform/version-7/test-the-openstack-file-share-service-technology-preview-with-nfs-ganesha

Share Service can create snapshots. Attempting to create snapshots on any other back end types
(particularly, those that don't support snapshots) will fail ungracefully (BZ#1250043). For instructions on how
to create volumes from a thin LV brick, see Formatting and Mounting Bricks.

In addition, volumes serving as file share back ends must also follow a naming convention that allows the File
Share Service to identify their sizes. For the purposes of this chapter, we will use the naming convention
manila-share-volume-VOLSIZEG-VOLNUM, where VOLSIZE is the size of the volume (in gigabytes) and
VOLNUM is a simple unique identifier. For example, manila-share-volume-1G-01 would be the name of
the first 1GB volume available for use.

Lastly, if you are enabling TLS authentication on the Red Hat Gluster Storage back end, use I/O Encryption
instead of Management Encryption. For more information, see Configuring Network Encryption in Red Hat
Gluster Storage.

13.1.2. glusterfs

With the glusterfs driver, the File Share Service can provision shares that can be mounted through either
NFS or NFS-Ganesha. This driver, however, only requires one pre-configured Red Hat Gluster Storage
volume from one storage pool to serve as back end for all provisioned shares. By contrast, the
glusterfs_native driver requires one volume per provisioned share.

When provisioning a share, the glusterfs driver creates a sub-directory in the back end volume to serve as
storage for the share. In addition, the driver also controls access to each share through IP authentication.

Shares provisioned through the glusterfs driver are served through NFS or NFS-Ganesha. As such, you
should have either service already configured on the Red Hat Gluster Storage host. For instructions on how
to set up either service, see NFS and NFS-Ganesha.

13.2. Install the File Share Service Packages

The following packages provide the components of the File Share Service:

openstack-manila

Provides the main OpenStack File Share service.

openstack-manila-share

Provides the service necessary for exporting provisioned shares.

python-manilaclient

Provides the client library and CLI for the File Share Service

Install the packages on the Controller node:

yum install -y openstack-manila openstack-manila-share python-
manilaclient

As mentioned in Section 13.1.1, “glusterfs_native”, this release has been tested successfully with Red Hat
Gluster Storage volumes as share back ends. To use the same back ends, install the Red Hat Gluster
Storage client packages:

yum install -y glusterfs glusterfs-fuse

13.3. Create the File Share Service Identity Records

Installation Reference

142

https://bugzilla.redhat.com/show_bug.cgi?id=1250043
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/Formatting_and_Mounting_Bricks.html
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/chap-Network_Encryption.html
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/sect-NFS.html
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/sect-NFS.html#sect-NFS_Ganesha

13.3. Create the File Share Service Identity Records

After installing the necessary packages, create the Identity records required for the File Share Service.
Perform the following procedure on the Identity service host, or on any machine onto which you have copied
the keystonerc_admin file.

Note

For more details about the keystonerc_admin file, see Section 3.5, “Create an Administrator
Account”.

Procedure 13.1. Creating Identity Records for the File Share Service

1. Set up the shell to access the Identity service as an administrative user.

source ~/keystonerc_admin

2. Create the manila service user:

[(keystone_admin)]# keystone user-create --name manila --pass
MANILAPASS --enabled true --email manila@localhost

Replace MANILAPASS with a password that will be used by the File Share Service when
authenticating with the Identity service.

3. Add the admin role to the manila user.

[(keystone_admin)]# keystone user-role-add --user manila --tenant
services --role admin

4. Create the manila service entities:

[(keystone_admin)]# keystone service-create --name manila --type
share --description "OpenStack Shared Filesystems"

5. Create the manila endpoint entry:

[(keystone_admin)]# keystone endpoint-create \
--service manila \
--publicurl 'http://MANILAIP:8786/v1/%(tenant_id)s' \
--internalurl 'http://MANILAIP:8786/v1/%(tenant_id)s' \
--adminurl 'http://MANILAIP:8786/v1/%(tenant_id)s' \
--region 'RegionOne'

Replace MANILAIP with the IP of the Controller node.

13.4. Configure Basic File Share Service Settings

When manually installing the File Share Service packages, the service's configuration file (namely,
/etc/manila/manila.conf) will have no settings configured. You will need to manually uncomment/add
and configure each setting as required.

Chapter 13. Install the File Share Service (Technology Preview)

143

The following code snippet is the basic configuration required for deploying the File Share Service. You can
copy its contents to /etc/manila/manila.conf, replacing the necessary variables when you do:

[DEFAULT]

osapi_share_listen=0.0.0.0

sql_connection=mysql://manila:MANILADBPASS@CONTROLLERIP/manila #

api_paste_config=/etc/manila/api-paste.ini
state_path=/var/lib/manila
sql_idle_timeout=3600
storage_availability_zone=nova
rootwrap_config=/etc/manila/rootwrap.conf
auth_strategy=keystone
nova_catalog_info=compute:nova:publicURL
nova_catalog_admin_info=compute:nova:adminURL
nova_api_insecure=False
nova_admin_username=nova

nova_admin_password=NOVAADMINPASS #

nova_admin_tenant_name=services
nova_admin_auth_url=http://localhost:5000/v2.0
network_api_class=manila.network.neutron.neutron_network_plugin.NeutronNetwo
rkPlugin
debug=False
verbose=True
log_dir=/var/log/manila
use_syslog=False
rpc_backend=manila.openstack.common.rpc.impl_kombu
control_exchange=openstack
amqp_durable_queues=False

[oslo_messaging_rabbit]
rabbit_ha_queues=False
rabbit_userid=guest
rabbit_password=guest
rabbit_port=5672
rabbit_use_ssl=False
rabbit_virtual_host=/

rabbit_host=CONTROLLERIP #

rabbit_hosts=CONTROLLERIP:5672 #

[oslo_concurrency]
lock_path=/tmp/manila/manila_locks

Replace the following values:

MANILADBPASS is the database password of the File Share Service, which you used in
Section 13.5, “Create the File Share Service Database”.
CONTROLLERIP is the IP address of the Controller node.

Installation Reference

144

NOVAADMINPASS is the admin password of the Compute service. This is identical to the value of
nova_admin_password in /etc/neutron/neutron.conf.

Note

If you deployed OpenStack using the Director, you can also find this password in the
undercloud's /home/stack/tripleo-overcloud-passwords file.

As of this release, some File Share Service settings are still defined in /etc/manila/api-paste.ini.
Update this file with the following code snippet:

[filter:keystonecontext]
paste.filter_factory =
manila.api.middleware.auth:ManilaKeystoneContext.factory

[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory
service_protocol = http
service_host = localhost
service_port = 5000
auth_host = localhost
auth_port = 35357
auth_protocol = http
admin_tenant_name = services
admin_user = manila

admin_password = MANILAPASS #

signing_dir = /var/lib/manila

auth_uri=http://CONTROLLERIP:5000/v2.0 #

identity_uri=http://CONTROLLERIP:35357 #

MANILAPASS is the admin password of the manila service user (which you used in Section 13.3,
“Create the File Share Service Identity Records”).
CONTROLLERIP is the IP address of the Controller node.

13.5. Create the File Share Service Database

Create a database and database user for the File Share Service. All steps must be performed on the
database server, while logged in as the root user.

Procedure 13.2. Creating the File Share Service Database

1. Connect to the database service:

mysql -u root

2. Create the manila database:

Chapter 13. Install the File Share Service (Technology Preview)

145

mysql> CREATE DATABASE manila;

3. Create a manila database user and grant the user access to the manila database:

mysql> GRANT ALL ON manila.* TO 'manila'@'%' IDENTIFIED BY
'MANILADBPASS';
mysql> GRANT ALL ON manila.* TO 'manila'@'localhost' IDENTIFIED BY
'MANILADBPASS';

Replace MANILADBPASS with a secure password that the manila service can use to authenticate
with the database server. You will use this same password later in Section 13.4, “Configure Basic
File Share Service Settings”.

4. Flush the database privileges to ensure that they take effect immediately:

mysql> FLUSH PRIVILEGES;

5. Exit the mysql client:

mysql> quit

6. Create the File Share Service tables and apply all necessary migrations:

manila-manage db sync

13.6. Define the File Share Service Back End

The File Share Service requires a back end. Each back end is defined in its own section in
/etc/manila/manila.conf. As mentioned earlier in Chapter 13, Install the File Share Service
(Technology Preview), the File Share Service can use either of two share drivers; the back end configuration
is different depending on your chosen driver. For detailed information about back end configuration for either
driver type, refer to the appropriate subsection.

13.6.1. Define a Back End for the gluster_native Driver

The gluster_native driver uses the FUSE protocol to serve shares, and secures share access through
TLS. In addition, provisioning a share with this driver consumes an entire volume; this volume must already
exist at the back end. The following code snippet defines a suitable back end for this scenario, named
glusternative:

[glusternative1] #

share_backend_name = GLUSTERNATIVE #

share_driver =

manila.share.drivers.glusterfs_native.GlusterfsNativeShareDriver #

Installation Reference

146

glusterfs_servers = root@RHGSNODE1,root@RHGSNODE2 #

driver_handles_share_servers=False #

glusterfs_volume_pattern = manila-share-volume-#{size}G-\d+$ #

The header ([glusternative1]) specifies the back end definition. The File Share Service uses this
definition when enabling back ends (through the enabled_share_backends option).

share_backend_name: the name of the back end. When multiple back ends are enabled, use this
value (GLUSTERNATIVE) as an extra specification when creating a share type for the back end (as in
Section 13.9, “Create a Share Type for the Defined Back End” later on).
share_driver: the share driver that the File Share Service should use for the defined back end. In
this case, manila.share.drivers.glusterfs_native.GlusterfsNativeShareDriver sets
the glusterfs_native driver.

glusterfs_servers: specifies the server/s that provide the pool of Red Hat Gluster Storage
volumes. Each IP/host name in the comma-separated list (RHGSNODE1, RHGSNODE2, and so on)
is the node from a distinct Red Hat Gluster Storage cluster (specifically, this must be the node where
the shared volumes are available).
driver_handles_share_servers: defines whether the driver should handle share servers. The
glusterfs_native driver does not use share servers, so this is set to False for now.

glusterfs_volume_pattern: defines the naming convention used by the pre-created volumes
available as back ends for the File Share Service.

The string manila-share-volume-#{size}G-\d+$ is a REGEX pattern that helps filter available volumes on the
back end based on name. This pattern will match volume names that:

start with manila-share-volume-,

are followed by the size (in gigabytes) + G, and

end in a number (which can serve as a unique identifier).

The purpose of using this particular pattern is to allow the File Share Service to filter available volumes on the
back end by size based on the volume name alone. For example, the naming convention used in
Section 13.1.1, “glusterfs_native” calls for the creation of a 1GB volume named manila-share-volume-
1GB-01, which would be matched when creating a share requiring 1GB.

Note

When configured to filter size using volume names, the File Share Service will also match larger-sized
volumes, and will choose the closest size. For example, if you provision a 3GB share and no
manila-share-volume-3G-* volumes exist, the File Share Service will match both manila-
share-volume-4G-* and manila-share-volume-5G-*, but will pick manila-share-volume-
4G-*.

Next, enable the back end definition [glusternative1] by configuring the following options in the
[DEFAULT] section of /etc/manila/manila.conf:

enabled_share_backends=glusternative1 #

enabled_share_protocols=GLUSTERFS #

Chapter 13. Install the File Share Service (Technology Preview)

147

enabled_share_backends: defines which back ends are enabled. Each specified value here must
have a corresponding section defining a back end’s settings. You can enable multiple back ends here
by listing them all as a comma-separated list (for example,
enabled_share_backends=glusternative1,generic).

enabled_share_protocols: defines what protocols are used for all enabled back ends. The
GLUSTERFS protocol is the only protocol supported by the glusterfs_native driver.

After configuring the back end, you will also need to configure compute instances for TLS-based
authentication. The following subsection describes how to do so.

13.6.1.1. Configure Compute Instances for TLS-Based Authentication

Red Hat Gluster Storage supports TLS-based authentication and network encryption to secure back end
access. The File Share Service’s gluster_native driver, in turn, is TLS-compatible; instances can then
authenticate through TLS and use shares securely.

As such, if your Red Hat Gluster Storage back ends have TLS authentication enabled, all instances that will
use provisioned shares must be able to authenticate first. For instructions on how to properly set up secure,
encrypted communication between the Red Hat Gluster Storage host and its clients, see Configuring Network
Encryption in Red Hat Gluster Storage and Authorizing a New Client.

After configuring the back end, see Section 13.7, “Enable Passwordless SSH Access to Back End” for
instructions on how to enable passwordless access to it.

13.6.2. Define an NFS Back End for the glusterfs Driver

The glusterfs driver allows you to serve shares through either NFS or NFS-Ganesha. The following code
snippet is suitable for a back end serving shares over NFS:

[glusternfs] #

share_backend_name = GLUSTERNFS #

share_driver = manila.share.drivers.glusterfs.GlusterfsShareDriver #

glusterfs_target = root@RHGSNODE1:/manila-nfs-volume-01 #

glusterfs_nfs_server_type = Gluster #

driver_handles_share_servers=False #

The header ([glusternfs]) specifies the back end definition. The File Share Service uses this
definition when enabling back ends (through the enabled_share_backends option).

share_backend_name: the name of the back end. When multiple back ends are enabled, use this
value (GLUSTERNFS) as an extra specification when creating a share type for the back end (as in
Section 13.9, “Create a Share Type for the Defined Back End” later on).
share_driver: the share driver that the File Share Service should use for the defined back end. In
this case, manila.share.drivers.glusterfs.GlusterfsShareDriver sets the glusterfs
driver (as explained in Section 13.1.2, “glusterfs”).
glusterfs_target: specifies the Red Hat Gluster Storage volume on which sub-directories should
be created for the share. Replace RHGSNODE1 with the IP address of the Red Hat Gluster Storage
host.

Installation Reference

148

https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/chap-Network_Encryption.html
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/ch08s05.html

glusterfs_nfs_server_type: defines what type of NFS server the Red Hat Gluster Storage back
end uses. In this deployment, the type should be Gluster. For more information about the NFS
server used in this scenario, see NFS.
driver_handles_share_servers: specifies whether the driver should handle share servers. As
the glusterfs driver does not use share servers, this should be False.

Next, enable the back end definition [glusternfs] by configuring the following options in the [DEFAULT]
section of /etc/manila/manila.conf:

enabled_share_backends=glusternfs #

enabled_share_protocols=NFS #

enabled_share_backends: defines which back ends are enabled. Each specified value here must
have a corresponding section defining a back end’s settings. By default, this is set to
enabled_share_backends=generic. You can enable multiple back ends here by listing them all
as a comma-separated list (for example, enabled_share_backends=glusternfs,generic).

enabled_share_protocols: defines what protocols are used for all enabled back ends. The
glusterfs driver supports the NFS protocol. This setting is not configured by default.

After configuring the back end, see Section 13.7, “Enable Passwordless SSH Access to Back End” for
instructions on how to enable passwordless access to it.

13.6.3. Define an NFS-Ganesha Back End for the glusterfs Driver

On the File Share Service host, the service’s settings are configured in /etc/manila/manila.conf. Each
back end is defined in its own section; Packstack defines a default one named [generic]. You can add the
following code snippet to define a new back end section named glusternfsganesha to the File Share
Service:

[glusternfsganesha] #

share_backend_name = GLUSTERNFSGANESHA #

share_driver = manila.share.drivers.glusterfs.GlusterfsShareDriver #

glusterfs_target = root@RHGSNODE1:/manila-nfs-volume-01 #

glusterfs_nfs_server_type = Ganesha #

ganesha_service_name = nfs-ganesha #

glusterfs_ganesha_server_username = NFSGADMIN #

glusterfs_ganesha_server_password = NFSGPW #

driver_handles_share_servers=False #

The header ([glusternfsganesha]) specifies the back end definition. The File Share Service uses
this definition when enabling back ends (through the enabled_share_backends option).

share_backend_name: the name of the back end. When multiple back ends are enabled, use this
value (GLUSTERNFSGANESHA) as an extra specification when creating a share type for the back end
(as in Section 13.9, “Create a Share Type for the Defined Back End” later on).

Chapter 13. Install the File Share Service (Technology Preview)

149

https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/sect-NFS.html

share_driver: the share driver that the File Share Service should use for the defined back end. In
this case, manila.share.drivers.glusterfs.GlusterfsShareDriver sets the glusterfs
driver.
glusterfs_target: specifies the Red Hat Gluster Storage volume on which sub-directories should
be created for the share. Replace RHGSNODE1 with the IP address of the Red Hat Gluster Storage
host.
glusterfs_nfs_server_type: defines what type of NFS server the Red Hat Gluster Storage back
end uses. In this deployment, the type should be Ganesha. For more information about the NFS
server used in this scenario, see NFS-Ganesha.
ganesha_service_name: defines the NFS-Ganesha service name. Typically, this is set to nfs-
ganesha.

glusterfs_ganesha_server_username: sets the username (NFSGADMIN) that the File Share
Service should use to use the NFS-Ganesha service.
glusterfs_ganesha_server_password: sets the corresponding password (NFSGPW) of the
username defined in +glusterfs_ganesha_server_username.
driver_handles_share_servers: specifies whether the driver should handle share servers. As
the glusterfs driver does not use share servers, this should be False.

Next, enable the back end definition [glusternfsganesha] by configuring the following options in the
[DEFAULT] section of /etc/manila/manila.conf:

enabled_share_backends=glusternfsganesha #

enabled_share_protocols=NFS #

enabled_share_backends: defines which back ends are enabled. Each specified value here must
have a corresponding section defining a back end’s settings. By default, this is set to
enabled_share_backends=generic. You can enable multiple back ends here by listing them all
as a comma-separated list (for example,
enabled_share_backends=glusternfsganesha,generic).

enabled_share_protocols: defines what protocols are used for all enabled back ends. The
glusterfs driver supports the NFS protocol. This setting is not configured by default.

After configuring the File Share Service, install the Red Hat Gluster Storage client packages:

yum -y install glusterfs glusterfs-fuse

Then, log in to the NFS-Ganesha back end (RHGSNODE1). From there, create the following files:

+/etc/ganesha/export.d/INDEX.conf+
+/etc/ganesha/ganesha.conf+

The INDEX.conf must remain empty, while the ganesha.conf file must contain the following:

%include /etc/ganesha/export.d/INDEX.conf

After configuring the back end, see Section 13.7, “Enable Passwordless SSH Access to Back End” for
instructions on how to enable passwordless access to it.

13.7. Enable Passwordless SSH Access to Back End

Installation Reference

150

https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/sect-NFS.html#sect-NFS_Ganesha

The File Share Service user (namely, manila) requires passwordless root SSH access to the Red Hat
Gluster Storage back end. This back end is defined in glusterfs_servers (for glusterfs_native, as
in Section 13.6.1, “Define a Back End for the gluster_native Driver”) or glusterfs_target (for
glusterfs, as in Section 13.6.2, “Define an NFS Back End for the glusterfs Driver” and Section 13.6.3,
“Define an NFS-Ganesha Back End for the glusterfs Driver”).

For this, you need to create the required keys. On the OpenStack/File Share Service host, log in as the
manila user and run:

sudo -u manila /bin/bash
$ ssh-keygen -t rsa

The public and private keys will be generated in the manila user’s home directory; specifically,
/var/lib/manila/.ssh/.

To grant the manila user with the required passwordless root access, perform the following steps for each
node in the Red Hat Gluster Storage cluster (RHGSNODE):

Procedure 13.3. Granting passwordless SSH access to a Red Hat Gluster Storage node

1. As the manila user and also from the same host, create an .ssh directory on RHGSNODE. This
directory will store your authentication details later on:

$ ssh root@RHGSNODE mkdir .ssh

2. Copy the manila user’s public key to RHGSNODE's list of authorized keys for that user:

$ cat /var/lib/manila/.ssh/id_rsa.pub | ssh root@RHGSNODE 'cat >>
.ssh/authorized_keys'

To test whether the procedure was successful, try logging into RHGSNODE as root. When you do,
you should not be prompted with a password:

$ ssh root@RHGSNODE

If your back end is a cluster of nodes (specifically, if you use the glusterfs_native driver), then you need
to perform this procedure for each node defined in glusterfs_servers. For example, given the
configuration in Section 13.6.1, “Define a Back End for the gluster_native Driver”, you need to grand
passwordless SSH access to RHGSNODE1 and RHGSNODE2.

13.8. Launch the File Share Service

At this point, the File Share Service should be fully configured. To apply the required settings, restart all the
File Share Services:

systemctl start openstack-manila-api
systemctl start openstack-manila-share
systemctl start openstack-manila-scheduler

Afterwards, enable them as well:

systemctl enable openstack-manila-api
systemctl enable openstack-manila-share

Chapter 13. Install the File Share Service (Technology Preview)

151

systemctl enable openstack-manila-scheduler

To check whether each service were launched and enabled successfully, run:

systemctl status openstack-manila-api
openstack-manila-api.service - OpenStack Manila API Server
Loaded: loaded (/usr/lib/systemd/system/openstack-manila-api.service;
enabled)
Active: active (running) since Mon 2015-07-27 17:02:49 AEST; 1 day 18h ago
[...]

systemctl status openstack-manila-share
openstack-manila-share.service - OpenStack Manila Share Service
Loaded: loaded (/usr/lib/systemd/system/openstack-manila-share.service;
enabled)
Active: active (running) since Mon 2015-07-27 17:02:49 AEST; 1 day 18h ago
[...]

systemctl status openstack-manila-scheduler
openstack-manila-scheduler.service - OpenStack Manila Scheduler
Loaded: loaded (/usr/lib/systemd/system/openstack-manila-scheduler.service;
enabled)
Active: active (running) since Mon 2015-07-27 17:02:49 AEST; 1 day 18h ago
[...]

13.9. Create a Share Type for the Defined Back End

The File Share Service allows you to define share types that you can use to create shares with specific
settings. Share types work exactly like Block Storage volume types: each type has associated settings
(namely, extra specifications), and invoking the type during share creation applies those settings.

When creating a share on a non-default back end, you need to explicitly specify which back end to use. To
make the process seamless for users, create a share type and associate it with the share_backend_name
value of your back end (whichever you chose in Section 13.6, “Define the File Share Service Back End”).

To create a share type named TYPENAME, run the following as an OpenStack admin:

manila type-create TYPENAME SHAREHANDLING

SHAREHANDLING specifies whether or not the share type will use a driver to handle shares. This should be
the value set in driver_handles_share_servers of your back end definition. Note that all the back end
configurations from Section 13.6, “Define the File Share Service Back End” specifies
driver_handles_share_servers=False; as such, SHAREHANDLING should also be false. So, to
create a share type called glusterfs_native:

manila type-create glusterfs_native false

Next, associate the glusterfs_native type to a specific back end. You can specify the back end through
its share_backend_name value. For example, to associate the share type glusterfs_native to the
back end defined in Section 13.6.1, “Define a Back End for the gluster_native Driver”, run:

manila type-key glusterfs_native set share_backend_name='GLUSTERNATIVE'

Installation Reference

152

Users should now be able to invoke the glusterfs_native type to create a share from the
GLUSTERNATIVE back end.

13.10. Known Issues

This section lists current known issues with the OpenStack File Share service:

BZ#1256630

The glusterfs_native driver allows users to create shares of specified sizes. If no Red Hat
Gluster volumes of the exact requested size exist, the driver chooses one with the nearest possible
size and creates a share on the volume. Whenever this occurs, the resulting share will use the
entire volume.

For example, if a user requests a 1GB share and only 2GB, 3GB, and 4GB volumes are available,
the driver will choose the 2GB volume as a back end for the share. The driver will also proceed
with creating a 2GB share; the user will be able to use and mount the entire 2GB share.

BZ#1257291

With the glusterfs_native driver, providing or revoking cert-based access to a share restarts
a Red Hat Gluster Storage volume. This, in turn, will disrupt any ongoing I/O to existing mounts. To
prevent any data loss, unmount a share on all clients before allowing or denying access to it.

BZ#1069157

At present, policy rules for volume extension prevent you from taking snapshots of GlusterFS
volumes currently in use. To work around this, you will have to manually edit those policy rules.

To do so, open the Compute service’s policy.json file and change "rule:admin_api" entries to
"" for "compute_extension:os-assisted-volume-snapshots:create" and
"compute_extension:os-assisted-volume-snapshots:delete" . Afterwards, restart the Compute
API service.

BZ#1250130

The manila list command shows information on all available shares. This command also shows
the Export Location field of each one, which should provide information for composing its
mount point entry in an instance. However, the field displays this information in the following
format:

USER@HOST:/VOLUMENAME

The USER@ prefix is unnecessary, and should therefore be ignored when composing its mount
point entry.

BZ#1257304

With the the File Share Service, when an attempt to create a snapshot of a provisioned share fails,
an entry for the snapshot will still be created. However, this entry will be in an error state, and any
attempts to delete it will fail.

BZ#1250043

When using the gluster_native driver, snapshot commands can fail ungracefully with a key error if
any of the following components are down in the back end cluster’s nodes:

Logical volume brick

Chapter 13. Install the File Share Service (Technology Preview)

153

https://bugzilla.redhat.com/1256630
https://bugzilla.redhat.com/1257291
https://bugzilla.redhat.com/1069157
https://bugzilla.redhat.com/1250130
https://bugzilla.redhat.com/1257304
https://bugzilla.redhat.com/1250043

The glusterd service

Red Hat Gluster Storage volume

In addition, the following could also cause the same error:

An entire node in a cluster is down.

An unsupported volume is used as a back end.

Specifically, these issues can cause the openstack-manila-share service to produce a traceback
with KeyError instead of producing a useful error message. When troubleshooting this error,
consider these possible back end issues.

BZ#1261248

Attempting to mount a Red Hat Gluster Storage volume through FUSE from an OpenStack
instance will fail. To work around this, you will need to configure the volume to allow client
connections from insecure ports.

To do so, first add the entry option rpc-auth-allow-insecure on to
/etc/glusterfs/glusterd.vol. Then, restart the glusterd service. Perform both steps for
each Red Hat Gluster Storage node.

At this point, you should be able configure a volume to allow client connections from insecure
ports. To do so, run the following commands:

gluster vol stop VOLUMENAME && gluster vol start VOLUMENAME
gluster vol set VOLUMENAME server.allow-insecure on

Run these two commands for every volume you need to mount through FUSE from an OpenStack
instance.

Installation Reference

154

https://bugzilla.redhat.com/show_bug.cgi?id=1261248

Appendix A. Revision History

Revision 7.0.0-1 Fri 26 Jun 2015 Red Hat Enterprise Linux
OpenStack Platform
Documentation Team

Document updated for Red Hat Enterprise Linux OpenStack 7.0.

Appendix A. Revision History

155

	Table of Contents
	Chapter 1. Introduction
	1.1. Subscribe to the Required Channels
	1.2. Installation Prerequisites Checklists

	Chapter 2. Prerequisites
	2.1. Configure the Firewall
	2.1.1. Disable Network Manager
	2.1.2. Disable the firewalld Service

	2.2. Install the Database Server
	2.2.1. Install the MariaDB Database Packages
	2.2.2. Configure the Firewall to Allow Database Traffic
	2.2.3. Start the Database Service
	2.2.4. Configure the Database Administrator Account
	2.2.5. Test Connectivity
	2.2.5.1. Test Local Connectivity
	2.2.5.2. Test Remote Connectivity

	2.3. Install the Message Broker
	2.3.1. Install the RabbitMQ Message Broker Package
	2.3.2. Configure the Firewall for Message Broker Traffic
	2.3.3. Launch and Configure the RabbitMQ Message Broker
	2.3.4. Enable SSL on the RabbitMQ Message Broker
	2.3.5. Export an SSL Certificate for Clients

	2.4. Network Time Protocol

	Chapter 3. Install the Identity Service
	3.1. Install the Identity Service Packages
	3.2. Create the Identity Database
	3.3. Configure the Identity Service
	3.3.1. Configure the Identity Service Database Connection
	3.3.2. Set the Identity Service Administration Token
	3.3.3. Configure the Public Key Infrastructure
	3.3.3.1. Public Key Infrastructure Overview
	3.3.3.2. Create the Public Key Infrastructure Files
	3.3.3.3. Configure the Identity Service to Use Public Key Infrastructure Files

	3.3.4. Configure the Firewall to Allow Identity Service Traffic
	3.3.5. Populate the Identity Service Database
	3.3.6. Limit the Number of Entities in a Collection

	3.4. Start the Identity Service
	3.5. Create an Administrator Account
	3.6. Create the Identity Service Endpoint
	3.6.1. Service Regions

	3.7. Create a Regular User Account
	3.8. Create the Services Tenant
	3.9. Validate the Identity Service Installation
	3.9.1. Troubleshoot Identity Client (keystone) Connectivity Problems

	Chapter 4. Install the Object Service
	4.1. Object Storage Service Requirements
	4.2. Configure rsyncd
	4.3. Install the Object Storage Service Packages
	4.4. Configure the Object Storage Service
	4.4.1. Create the Object Storage Service Identity Records
	4.4.2. Configure the Object Storage Service Storage Nodes
	4.4.3. Configure the Object Storage Service Proxy Service
	4.4.4. Object Storage Service Rings
	4.4.5. Build Object Storage Service Ring Files

	4.5. Validate the Object Storage Service Installation

	Chapter 5. Install the Image Service
	5.1. Image Service Requirements
	5.2. Install the Image Service Packages
	5.3. Create the Image Service Database
	5.4. Configure the Image Service
	5.4.1. Configure the Image Service Database Connection
	5.4.2. Create the Image Service Identity Records
	5.4.3. Configure Image Service Authentication
	5.4.4. Use the Object Storage Service for Image Storage
	5.4.5. Configure the Firewall to Allow Image Service Traffic
	5.4.6. Configure RabbitMQ Message Broker Settings for the Image Service
	5.4.7. Configure the Image Service to Use SSL
	5.4.8. Populate the Image Service Database
	5.4.9. Enable Image Loading Through the Local File System
	5.4.9.1. Configure File System Sharing Across Different Image and Compute Nodes
	5.4.9.2. Configure the Image Service to Provide Images Through the Local File System
	5.4.9.3. Configure the Compute Service to Use Local File System Metadata

	5.5. Launch the Image API and Registry Services
	5.6. Validate the Image Service Installation
	5.6.1. Obtain a Test Disk Image
	5.6.2. Upload a Disk Image

	Chapter 6. Install the Block Storage Service
	6.1. Install the Block Storage Service Packages
	6.2. Create the Block Storage Service Database
	6.3. Configure the Block Storage Service
	6.3.1. Configure the Block Storage Service Database Connection
	6.3.2. Create the Block Storage Service Identity Records
	6.3.3. Configure Block Storage Service Authentication
	6.3.4. Configure the Firewall to Allow Block Storage Service Traffic
	6.3.5. Configure the Block Storage Service to Use SSL
	6.3.6. Configure RabbitMQ Message Broker Settings for the Block Storage Service
	6.3.7. Enable SSL Communication Between the Block Storage Service and the Message Broker
	6.3.8. Populate the Block Storage Database
	6.3.9. Increase the Throughput of the Block Storage API Service

	6.4. Configure the Volume Service
	6.4.1. Block Storage Driver Support
	6.4.2. Configure OpenStack Block Storage to Use an LVM Storage Back End
	6.4.3. Configure the SCSI Target Daemon

	6.5. Launch the Block Storage Services
	6.6. Validate the Block Storage Service Installation
	6.6.1. Validate the Block Storage Service Installation Locally
	6.6.2. Validate the Block Storage Service Installation Remotely

	Chapter 7. Install OpenStack Networking
	7.1. Install the OpenStack Networking Packages
	7.2. Configure OpenStack Networking
	7.2.1. Set the OpenStack Networking Plug-in
	7.2.1.1. Enable the ML2 Plug-in
	7.2.1.2. Enable the Open vSwitch Plug-in
	7.2.1.3. Enable the Linux Bridge Plug-in

	7.2.2. Create the OpenStack Networking Database
	7.2.3. Configure the OpenStack Networking Database Connection
	7.2.4. Create the OpenStack Networking Identity Records
	7.2.5. Configure OpenStack Networking Authentication
	7.2.6. Configure the Firewall to Allow OpenStack Networking Traffic
	7.2.7. Configure RabbitMQ Message Broker Settings for OpenStack Networking
	7.2.8. Enable SSL Communication Between OpenStack Networking and the Message Broker
	7.2.9. Configure OpenStack Networking to Communicate with the Compute Service
	7.2.10. Launch OpenStack Networking

	7.3. Configure the DHCP Agent
	7.4. Create an External Network
	7.5. Configure the Plug-in Agent
	7.5.1. Configure the Open vSwitch Plug-in Agent
	7.5.2. Configure the Linux Bridge Plug-in Agent

	7.6. Configure the L3 Agent
	7.7. Validate the OpenStack Networking Installation
	7.7.1. Troubleshoot OpenStack Networking Issues

	Chapter 8. Install the Compute Service
	8.1. Install a Compute VNC Proxy
	8.1.1. Install the Compute VNC Proxy Packages
	8.1.2. Configure the Firewall to Allow Compute VNC Proxy Traffic
	8.1.3. Configure the VNC Proxy Service
	8.1.4. Configure Live Migration
	8.1.4.1. General Requirements
	8.1.4.2. Multipathing Requirements

	8.1.5. Access Instances with the Compute VNC Proxy

	8.2. Install a Compute Node
	8.2.1. Install the Compute Service Packages
	8.2.2. Create the Compute Service Database
	8.2.3. Configure the Compute Service Database Connection
	8.2.4. Create the Compute Service Identity Records
	8.2.5. Configure Compute Service Authentication
	8.2.6. Configure the Firewall to Allow Compute Service Traffic
	8.2.7. Configure the Compute Service to Use SSL
	8.2.8. Configure RabbitMQ Message Broker Settings for the Compute Service
	8.2.9. Enable SSL Communication Between the Compute Service and the Message Broker
	8.2.10. Configure Resource Overcommitment
	8.2.11. Reserve Host Resources
	8.2.12. Configure Compute Networking
	8.2.12.1. Compute Networking Overview
	8.2.12.2. Update the Compute Configuration
	8.2.12.3. Configure the L2 Agent
	8.2.12.4. Configure Virtual Interface Plugging

	8.2.13. Populate the Compute Service Database
	8.2.14. Launch the Compute Services

	Chapter 9. Install the Orchestration Service
	9.1. Install the Orchestration Service Packages
	9.2. Configure the Orchestration Service
	9.2.1. Create the Orchestration Service Database
	9.2.2. Restrict the Bind Addresses of Each Orchestration API Service
	9.2.3. Create the Orchestration Service Identity Records
	9.2.3.1. Create the Required Identity Domain for the Orchestration Service

	9.2.4. Configure Orchestration Service Authentication
	9.2.5. Configure RabbitMQ Message Broker Settings for the Orchestration Service
	9.2.6. Enable SSL Communication Between the Orchestration Service and the Message Broker

	9.3. Launch the Orchestration Service
	9.4. Deploy a Stack Using Orchestration Templates
	9.5. Integrate Telemetry and Orchestration Services

	Chapter 10. Install the Dashboard
	10.1. Dashboard Service Requirements
	10.2. Install the Dashboard Packages
	10.3. Launch the Apache Web Service
	10.4. Configure the Dashboard
	10.4.1. Configure Connections and Logging
	10.4.2. Configure the Dashboard to Use HTTPS
	10.4.3. Change the Default Role for the Dashboard
	10.4.4. Configure SELinux
	10.4.5. Configure the Dashboard Firewall

	10.5. Validate Dashboard Installation

	Chapter 11. Install the Data Processing Service
	11.1. Install the Data Processing Service Packages
	11.2. Configure the Data Processing Service
	11.2.1. Create the Data Processing Service Database
	11.2.2. Create the Data Processing Service Identity Records
	11.2.3. Configure Data Processing Service Authentication
	11.2.4. Configure the Firewall to Allow OpenStack Data Processing Service Traffic

	11.3. Configure and Launch the Data Processing Service

	Chapter 12. Install the Telemetry Service
	12.1. Overview of Telemetry Service Deployment
	12.2. Install the Telemetry Service Packages
	12.3. Configure the MongoDB Back End and Create the Telemetry Database
	12.4. Configure the Telemetry Service Database Connection
	12.5. Create the Telemetry Identity Records
	12.6. Configure Telemetry Service Authentication
	12.7. Configure the Firewall to Allow Telemetry Service Traffic
	12.8. Configure RabbitMQ Message Broker Settings for the Telemetry Service
	12.9. Configure the Compute Node
	12.10. Configure Monitored Services
	12.11. Launch the Telemetry API and Agents

	Chapter 13. Install the File Share Service (Technology Preview)
	13.1. File Share Service Back End Requirements
	13.1.1. glusterfs_native
	13.1.2. glusterfs

	13.2. Install the File Share Service Packages
	13.3. Create the File Share Service Identity Records
	13.4. Configure Basic File Share Service Settings
	13.5. Create the File Share Service Database
	13.6. Define the File Share Service Back End
	13.6.1. Define a Back End for the gluster_native Driver
	13.6.1.1. Configure Compute Instances for TLS-Based Authentication

	13.6.2. Define an NFS Back End for the glusterfs Driver
	13.6.3. Define an NFS-Ganesha Back End for the glusterfs Driver

	13.7. Enable Passwordless SSH Access to Back End
	13.8. Launch the File Share Service
	13.9. Create a Share Type for the Defined Back End
	13.10. Known Issues

	Appendix A. Revision History

