Установка Red Hat Enterprise Linux 7 на разных платформах
Установка Red Hat Enterprise Linux 7 на разных платформах

Petr Bokoč
Red Hat: отдел инженерной документации
pbokoc@redhat.com

Tomáš Čapek
Red Hat: отдел инженерной документации
tcapek@redhat.com

Barbora Ančincová
Red Hat: отдел инженерной документации
bancinco@redhat.com

Yoana Ruseva
Red Hat: отдел инженерной документации
yruseva@redhat.com

Brian Exelbierd
Red Hat: отдел инженерной документации
bexelbie@redhat.com

Red Hat Engineering Content Services
Аннотация

Это руководство предоставляет информацию об установке Red Hat Enterprise Linux 7 с помощью программы Anaconda на платформах AMD64 и Intel 64, на 64-битных серверах IBM Power Systems и IBM System z. Дополнительно будут рассмотрены способы установки с использованием средств VNC, PXE, а также автоматизация установки. Наконец, вы познакомитесь с типичными задачами настройки установленной системы и способами решения наиболее распространенных проблем.
Содержание

Глава 1. Загрузка файлов Red Hat Enterprise Linux .. 5.

Глава 2. Создание установочных носителей ... 7.
 2.1. Создание установочного CD/DVD ... 7
 2.2. Создание установочного USB-носителя .. 7
 2.3. Подготовка источника установки .. 10

Часть I. AMD64 и Intel 64 — установка и загрузка ... 15

Глава 3. Планирование установки на AMD64 и Intel 64 16.
 3.1. Обновление или переустановка ... 16
 3.2. Совместимость оборудования .. 16
 3.3. Устройства установки .. 16
 3.4. Спецификация систем .. 17
 3.5. Наличие пространства .. 18
 3.6. RAID и другие дисковые устройства ... 18
 3.7. Выбор метода загрузки .. 19
 3.8. Автоматизация установки .. 19

Глава 4. Обновление драйверов в ходе установки на AMD64 и Intel 64 21.
 4.1. Ограничения обновления драйверов .. 21
 4.2. Подготовка к обновлению драйверов .. 21
 4.3. Обновление драйверов во время установки .. 22

Глава 5. Загрузка установки на AMD64 и Intel 64 .. 26.
 5.1. Запуск программы установки ... 26
 5.2. Меню загрузки .. 27

Глава 6. Установка Red Hat Enterprise Linux на AMD64 и Intel 64 30.
 6.1. Режимы установки .. 30
 6.2. Приветствие и выбор языка .. 34
 6.3. Окно обзора .. 35
 6.4. Дата и время .. 37
 6.5. Выбор языка ... 38
 6.6. Настройка клавиатуры .. 39
 6.7. Источник установки .. 40
 6.8. Сеть и имя узла ... 42
 6.9. Выбор программ .. 47
 6.10. Расположение установки ... 48
 6.11. Устройства хранения .. 70
 6.12. Начало установки .. 76
 6.13. Ход выполнения установки .. 77
 6.14. Завершение установки ... 80

Глава 7. Диагностика конфликтов установки на AMD64 и Intel 64 81.
 7.1. Решение конфликтов при запуске установки ... 82
 7.2. Решение конфликтов во время установки ... 83
 7.3. Решение конфликтов после установки .. 88

Часть II. IBM Power Systems — установка и загрузка ... 93.

Глава 8. Планирование установки на IBM Power Systems 94.
 8.1. Обновление или переустановка ... 94
 8.2. Совместимость оборудования ... 94
8.3. Средства установки IBM 94
8.4. Подготовка IBM Power Systems 94
8.5. Устройства установки 95
8.6. Спецификация систем 96
8.7. Наличие пространства 97
8.8. RAID и другие дисковые устройства 97
8.9. Выбор метода загрузки 97
8.10. Автоматизация установки 98

Глава 9. Обновление драйверов в ходе установки на IBM Power Systems 99
9.1. Ограничения обновления драйверов 99
9.2. Подготовка к обновлению драйверов 99
9.3. Обновление драйверов во время установки 100

Глава 10. Загрузка установки на IBM Power Systems .. 104
10.1. Меню загрузки .. 105
10.2. Источники установки 106
10.3. Загрузка с сервера yaboot 106

Глава 11. Установка Red Hat Enterprise Linux на IBM Power Systems 108
11.1. Режимы установки 108
11.2. Приветствие и выбор языка 112
11.3. Окно обзора ... 113
11.4. Дата и время .. 115
11.5. Выбор языка ... 116
11.6. Настройка клавиатуры 117
11.7. Источник установки 118
11.8. Сеть и имя узла .. 120
11.9. Выбор программ .. 125
11.10. Расположение установки 126
11.11. Устройства хранения 146
11.12. Начало установки 152
11.13. Ход выполнения установки 153
11.14. Завершение установки 156

Глава 12. Диагностика конфликтов установки на IBM Power Systems 157
12.1. Решение конфликтов при запуске установки 158
12.2. Решение конфликтов во время установки 158
12.3. Решение конфликтов после установки 163

Часть III. IBM System z — установка и загрузка .. 167

Глава 13. Планирование установки на IBM System z .. 168
13.1. Подготовка к установке 168
13.2. Обзор установки в System z 168

Глава 14. Загрузка установки на IBM System z .. 171
14.1. Подготовка generic.prm 171
14.2. Запуск установки с жесткого диска 171
14.3. Установка в z/VM .. 172
14.4. Установка в LPAR .. 175

Глава 15. Установка Red Hat Enterprise Linux на IBM System z .. 178
15.1. Режимы установки 178
15.2. Приветствие и выбор языка 181
15.3. Окно обзора ... 182
Глава 24. Создание установочного образа .. 333.
24.1. Создание образа вручную .. 333
24.2. Автоматическое создание образа ... 335

Глава 25. Обновление системы ... 342.

Часть V. После установки ... 343.

Глава 26. Первая настройка и Firstboot .. 344.
26.1. Первая настройка .. 344
26.2. Firstboot ... 346

Глава 27. Дальнейшие действия .. 351.

Глава 28. Восстановление системы ... 353.
28.1. Распространенные проблемы .. 353
28.2. Режим восстановления установщика .. 354

Глава 29. Отмена регистрации ... 360.
29.1. Управление подписками Red Hat ... 360
29.2. Регистрация на Red Hat Satellite .. 360

Глава 30. Удаление Red Hat Enterprise Linux ... 361.
30.1. Удаление Red Hat Enterprise Linux c AMD64 и Intel 64 361
30.2. Удаление Red Hat Enterprise Linux c IBM System z 366

Часть VI. Технические приложения .. 367.

Приложение A. Знакомство с дисковыми разделами 368.
A.1. Структура жесткого диска .. 368
A.2. Повторное разбиение диска .. 372
A.3. Обозначения разделов и точки подключения 376

Приложение B. Диски iSCSI ... 378.
B.1. Диски iSCSI в Anaconda ... 378
B.2. События iSCSI в процессе запуска ... 378

Приложение C. Знакомство с LVM ... 380.

Приложение D. Другая техническая документация 381.

Приложение E. Команды ext4 и XFS ... 383.

Приложение F. История переиздания ... 384.

Предметный указатель ... 384.
Глава 1. Загрузка файлов Red Hat Enterprise Linux

При наличии подписки Red Hat установочные образы Red Hat Enterprise Linux 7 можно загрузить из центра программ портала пользователей Red Hat. Пробная подписка доступна бесплатно по адресу https://access.redhat.com/site/downloads/.

Существует два базовых типа установочных носителей для AMD64, Intel 64 (x86_64) и IBM Power Systems (ppc64):

Установочный DVD

Полный установочный образ, с помощью которого можно загрузить компьютер и выполнить установку без необходимости добавления дополнительных репозиториев.

boot.iso

Минимальный загрузочный образ, с помощью которого можно запустить программу установки. При этом программы будут установлены из других источников.

Примечание

Установочные DVD также доступны для IBM System z. Для запуска установки потребуется привод DVD с подключением по iSCSI.

В приведенной ниже таблице перечислены типы носителей и необходимые для их создания образы.

<table>
<thead>
<tr>
<th>Архитектура</th>
<th>Минимальный загрузочный образ</th>
<th>Установочный образ</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD64 и Intel 64</td>
<td>rhel-тип-7.0-x86_64-boot.iso</td>
<td>rhel-тип-7.0-x86_64-dvd.iso</td>
</tr>
<tr>
<td>IBM Power Systems</td>
<td>rhel-тип-7.0-ppc64-boot.iso</td>
<td>rhel-тип-7.0-ppc64-dvd.iso</td>
</tr>
<tr>
<td>IBM System z</td>
<td>нет</td>
<td>rhel-тип-7.0-s390x-dvd.iso</td>
</tr>
</tbody>
</table>

Замените *тип* названием варианта операционной системы, например server и workstation.

Если у вас есть полная или пробная подписка, следуйте приведенным далее инструкциям.

Процедура 1.1. Загрузка образов Red Hat Enterprise Linux

1. Перейдите на портал пользователей по адресу https://access.redhat.com/home и в правом верхнем углу нажмите Вход. Введите имя пользователя и пароль.

2. Перейдите в меню Загрузки: https://rhn.redhat.com/rhn/software/downloads/SupportedISOs.do

Чтобы раскрыть список дистрибутивов, нажмите знак +.
4. В большинстве случаев будет доступно два образа — стандартный установочный и минимальный загрузочный. Иногда могут быть доступны образы предварительно настроенных виртуальных машин, но их обсуждение выходит за рамки этого руководства.

Щелкните на имени интересующего образа, чтобы начать его загрузку.

5. С помощью md5sum и sha256sum можно проверить контрольную сумму загруженного образа. Сравните полученное значение с суммой, опубликованной на странице загрузки. Подробную информацию можно найти на справочных страницах md5sum(1) и sha256sum(1).

Целостность носителей можно проверить в ходе установки (см. Раздел 20.2.2, «Проверка загрузочных носителей»).

После загрузки установочного образа можно сделать следующее:

- записать его на CD или DVD (см. Раздел 2.1, «Создание установочного CD/DVD»);
- создать загрузочный USB-диск (см. Раздел 2.2, «Создание установочного USB-носителя»);
- разместить на сервере для подготовки к сетевой установке (см. Раздел 2.3.3, «Источник установки в сети»);
- сохранить его на жесткий диск (см. Раздел 2.3.2, «Источник установки на жестком диске»);
- настроить PXE-сервер (Preboot Execution Environment), с которого будет загружен установщик (см. Глава 21, Подготовка к сетевой установке).
Глава 2. Создание установочных носителей

В этой главе приведены инструкции по созданию установочных носителей на основе предварительно загруженных ISO-образов (см. Глава 1, Загрузка файлов Red Hat Enterprise Linux). Созданные носители могут использоваться для запуска программы установки на платформах AMD64, Intel 64 и IBM Power Systems. Запуск установки на серверах IBM System z обсуждается отдельно (см. Глава 14, Загрузка установки на IBM System z). Глава 21, Подготовка к сетевой установке содержит информацию о подготовке PXE-сервера.

2.1. Создание установочного CD/DVD

Установочный CD/DVD можно создать в любой программе записи CD/DVD. В зависимости от операционной системы и выбранной программы последовательность действий может отличаться, поэтому приведенную здесь информацию следует воспринимать лишь как общую. За подробной информацией обратитесь к документации программы записи дисков.

Примечание

Для создания минимального загрузочного носителя подойдет и CD, и DVD, так как размер образа составляет всего лишь 300 МБ. Однако полный установочный образ занимает 4-4.5 ГБ, поэтому он должен быть записан на DVD.

Несмотря на то что многие современные программы записи способны создавать диски на основе образов, все же стоит убедиться, что выбранная вами программа включает эти функции. В частности, встроенные возможности записи компакт-дисков в Windows XP и Windows Vista не поддерживают запись DVD, а более ранние версии Windows вообще не поддерживали операции записи по умолчанию. Таким образом, в системах с версиями Windows, предшествующими Windows 7, для записи CD/DVD потребуется установить программы наподобие Nero Burning ROM или Roxio Creator. В Linux для этой цели широко используются программы Brasero и K3b.

В некоторых системах функция записи образов доступна в контекстном меню менеджера файлов. Так, в GNOME откройте список файлов в Nautilus и щелкните правой кнопкой мыши на файле ISO. Открывшееся меню будет содержать пункт Записать на диск.

2.2. Создание установочного USB-носителя

Установку Red Hat Enterprise Linux на платформах AMD64, Intel 64 и IBM Power Systems можно запустить с USB-носителя. Порядок его создания отличается в зависимости от операционной системы (Windows или Linux). Для создания минимального загрузочного носителя достаточно 350 МБ. Однако полный установочный ISO-образ занимает 4-4.5 ГБ, поэтому размер носителя должен быть соответствующим.

2.2.1. Создание USB-носителя в Linux

Приведенные здесь инструкции предполагают, что вы предварительно загрузили подходящий ISO (см. Глава 1, Загрузка файлов Red Hat Enterprise Linux).
Предупреждение

Все данные на USB-диске будут безвозвратно удалены, поэтому убедитесь что он не содержит важных данных.

Многие дистрибутивы Linux предлагают собственные инструменты для создания загрузочных USB: `liveusb-creator` в Fedora, `usb-creator` в Ubuntu и т.п. Их обсуждение выходит за рамки этого документа — ниже рассматривается общий порядок действий.

Процедура 2.1. Создание USB-носителя в Linux

1. Вставьте флэш-накопитель в разъем и выполните команду `dmesg` для просмотра последних событий. В конце списка будут показаны сообщения о подключении устройства:

```
[ 170.171135] sd 5:0:0:0: [sdb] Attached SCSI removable disk
```

Обратите внимание на обозначение `sdb`.

2. Перейдите в режим `root`:

```
$ su -
```

Введите пароль root.

3. Убедитесь, что устройство не подключено. Выполните команду `findmnt имя`, указав обнаруженное ранее имя (в этом примере — `sdb`):

```
# findmnt /dev/sdb
```

Если вывод команды пуст, можно перейти к следующему шагу. Наличие вывода означает, что устройство было смонтировано автоматически, и его надо отключить:

```
# findmnt /dev/sdb
TARGET   SOURCE   FSTYPE  OPTIONS
/mnt/iso /dev/sdb iso9660 ro,relatime
```

Отметьте значение в столбце TARGET и выполните команду `umount`:

```
# umount /mnt/iso
```

4. Запишите образ на носитель:

```
# dd if=`путь/image.iso` of=`/dev/имя` bs=размер_блока
```

Укажите полный путь к файлу ISO и замените имя значением из вывода `dmesg`. Параметр bs не является обязательным, но позволяет ускорить процесс записи. Подберите подходящий размер блока, например `512k`.
Важно

Имя должно содержать именно имя устройства (такое как /dev/sda), а не раздела (например, /dev/sda1).

К примеру, чтобы записать /home/testuser/Downloads/rhel-server-7.0x86_64-boot.iso на устройство sdb, выполните:

```
# dd if=/home/testuser/Downloads/rhel-server-7.0x86_64-boot.iso of=/dev/sdb bs=512k
```

5. Дождитесь завершения записи и появления приглашения #. Закройте сеанс root и извлеките готовое USB-устройство.

Глава 5, Загрузка установки на AMD64 и Intel 64 и Глава 10, Загрузка установки на IBM Power Systems содержат дальнейшую информацию.

2.2.2. Создание USB-носителя в Windows

Важно

Прямое копирование файла в окне проводника Windows не создаст загрузочный носитель.

Продедура 2.2. Создание USB-носителя в Windows

1. Загрузите и установите Fedora LiveUSB Creator.
2. Загрузите установочный образ (см. Глава 1, Загрузка файлов Red Hat Enterprise Linux).
3. Подключите флэш-накопитель.
4. Откройте Fedora LiveUSB Creator.
5. В главном окне нажмите Обзор и выберите ISO-файл Red Hat Enterprise Linux.
6. Если в списке Устройство нет интересующего устройства, нажмите кнопку обновления и выберите устройство.
7. Нажмите Создать Live USB. Не извлекайте носитель до тех пор, пока не появится сообщение о завершении операции. В зависимости от скорости записи и спецификации USB процесс может занять до 15 минут.
8. После успешного создания носителя отключите USB, выбрав пункт **Безопасно удалить устройство**.

Глава 5, Загрузка установки на AMD64 и Intel 64 и **Глава 10, Загрузка установки на IBM Power Systems** содержат дальнейшую информацию.

2.3. Подготовка источника установки

Как уже упоминалось (см. **Глава 1, Загрузка файлов Red Hat Enterprise Linux**), установка Red Hat Enterprise Linux может быть запущена с минимального или полного установочного носителя. Полный установочный DVD включает все необходимое для установки.

Минимальный загрузочный образ содержит лишь саму программу установки и обязательные программы для загрузки системы и запуска установки. Другие пакеты будут устанавливаться из внешних источников.

Полный установочный образ включает все необходимые пакеты Red Hat. Для установки дополнительных пакетов можно настроить дополнительные репозитории. Эти пакеты будут установлены после завершения установки системы. За подробной информацией обратитесь к руководству системного администратора Red Hat Enterprise Linux 7.

Категории источников установки:
DVD — установочный диск, созданный на основе полного установочного образа.

Жесткий диск — установочный образ может располагаться на жестком диске.

В сети — дерево каталогов можно разместить на другом компьютере и выполнить установку по сети с помощью протоколов:

- NFS, если установочный образ расположен на NFS-сервере (Network File System).
- HTTPS, HTTP, FTP, если доступ к дереву установки осуществляется по HTTP, HTTPS, FTP.

При загрузке системы с минимального носителя надо будет настроить внешний источник установки, в то время как при загрузке с полного установочного DVD в этом нет необходимости, так как он содержит все обязательные пакеты.

Источник установки можно определить несколькими способами:

- В ходе установки: в окне обзора выберите Источник установки. Более подробную информацию можно найти в следующих разделах:
 - Раздел 6.7, «Источник установки» (AMD64 и Intel 64);
 - Раздел 11.7, «Источник установки» (IBM Power Systems);
 - Раздел 15.7, «Источник установки» (IBM System z).

- С помощью параметра загрузки inst.repo= (см. Раздел 20.1, «Настройка системы установки в меню загрузки»).

- С помощью команды install в файле кикстарта (см. Раздел 23.3.2, «Команды и параметры», Глава 23, Кикстарт-установка).

2.3.1. Источник установки на DVD

В качестве источника пакетов может выступать установочный DVD (см. Раздел 2.1, «Создание установочного CD/DVD»). При этом сам процесс установки может быть запущен с другого носителя — минимального загрузочного образа или USB-диска.

Прежде чем приступить к установке, вставьте диск в привод DVD, так как Anaconda не сможет его обнаружить после запуска установки.

2.3.2. Источник установки на жестком диске

Установочный образ можно разместить на жестком диске. Чтобы получить доступ к его содержимому, надо его смонтировать.

Образ можно скопировать на любой диск (включая USB), в любой каталог, под любым именем. При наличии нескольких образов надо будет выбрать один. Это можно сделать с помощью параметра загрузки, указать путь в файле кикстарта или выбрать вручную в ходе работы Anaconda.

Главное требование к размещению образа на жестком диске состоит в том, чтобы Anaconda могла смонтировать файловую систему раздела, где расположен образ. Anaconda работает с xfs, ext2, ext3, ext4 и vfat (FAT32). В Microsoft Windows используются NTFS и exFAT, поэтому в этой ситуации рекомендуется отформатировать диск как FAT32.
Важно

FAT32 не поддерживает файлы размером больше 4 ГиБ (4.29 ГБ). Некоторые установочные образы Red Hat Enterprise Linux 7 занимают больше места, поэтому их нельзя будет скопировать в эту файловую систему.

Если установочные файлы расположены на жестком диске или USB-устройстве, прежде чем приступить к установке, убедитесь, что диск подключен.

2.3.3. Источник установки в сети

Основным преимуществом размещения установочного образа в сети является то, что это позволяет установить Red Hat Enterprise Linux в нескольких системах без необходимости подключения физических носителей. В комплексе с PXE-сервером, с помощью которого можно загрузить систему, это полностью отменяет необходимость в локальных носителях. Глава 21, Подготовка к сетевой установке содержит информацию о настройке PXE-сервера.

2.3.3.1. Источник установки на NFS-сервере

Установочный образ Red Hat Enterprise Linux можно разместить на сервере NFS (Network File System) и открыть к нему доступ из установочной системы.

В руководстве по администрированию пространства данных Red Hat Enterprise Linux 7 тема NFS обсуждается более подробно.

Примечание

Ниже приведены инструкции для Red Hat Enterprise Linux 7. В зависимости от архитектуры, операционной системы, программы установки пакетов и других факторов последовательность действий может отличаться. За информацией о подготовке установочной структуры для предыдущих версий Red Hat Enterprise Linux обратитесь к соответствующей версии руководства по установке.

Процедура 2.3. Подготовка к NFS-установке

1. Установите пакет nfs-utils:

```
# yum install nfs-utils
```

2. Откройте файл /etc/exports в текстовом редакторе, например Vim или Gedit. Если файл с этим именем не существует, надо его создать.

3. Добавьте строку:

```
/путь/к/экспортируемому/каталогу узел(параметры)
```

В этой команде укажите путь к каталогу, к которому будет открыт доступ, и IP-адрес узла, с которого вы будете к нему обращаться.
Чтобы открыть доступ с любого IP-адреса, вместо адреса укажите *. Список доступных параметров можно найти на справочной странице `nfs(5)`. Так, например, часто используемый `ro` разрешает чтение каталога.

Так, например, следующее выражение откроет каталог `/mnt/nfs` для чтения:

```
/mnt/nfs *(ro)
```

4. Сохраните файл и закройте окно редактора.
5. Скопируйте образ в экспортируемый каталог:

```
$ mv /путь/к/image.iso /экспортируемый/каталог/
```

Здесь первый аргумент — путь к установочному образу, второй — каталог из `/etc/exports`.
6. Запустите службу `nfs` (в режиме `root`):

```
# systemctl start nfs.service
```

Если служба уже работала до того, как файл `/etc/exports` был изменен, то чтобы изменения вступили в силу, выполните в режиме `root`:

```
# systemctl restart nfs.service
```

После этого установочный образ должен быть доступен.

При настройке источника установки в строке его адреса надо указать протокол NFS, имя сервера и путь. Так, например, если дерево установки расположено в `/mnt/nfs/rhel7-install/` на `myserver.example.com`, строка адреса будет иметь вид `nfs:myserver.example.com:/rhel7-install`.

2.3.3.2. Источник установки на сервере HTTPS, HTTP, FTP

В отличие от настройки NFS-ресурса, в этом случае на сервере размещается не сам образ, а его содержимое вместе с файлом `.treeinfo`. Доступ к установочным файлам можно получить с использованием протоколов HTTPS, HTTP, FTP.

За подробной информацией обратитесь к руководству системного администратора Red Hat Enterprise Linux 7.

Примечание

Ниже приведены инструкции для Red Hat Enterprise Linux 7. В зависимости от архитектуры, операционной системы, программы установки пакетов и других факторов последовательность действий может отличаться. За информацией о подготовке установочной структуры для предыдущих версий Red Hat Enterprise Linux обратитесь к соответствующей версии руководства по установке.

Процедура 2.4. Подготовка к установке с FTP-сервера

1. Установите `vsftpd`:

```
2. Параметры в /etc/vsftpd/vsftpd.conf при необходимости можно изменить с помощью Vim или Gedit. Описание параметров можно найти на справочной странице vsftpd.conf(5) и в руководстве системного администратора Red Hat Enterprise Linux 7.

Приведенная здесь процедура использует стандартные параметры. Для этого необходимо, чтобы анонимные пользователи обладали достаточными разрешениями для чтения файлов.

3. Скопируйте образ Red Hat Enterprise Linux на FTP-сервер.

4. Смонтируйте образ:

```bash
mount -o loop,ro -t iso9660 /путь/к/image.iso /mnt/iso
```

Здесь /путь/к/image.iso — путь к установочному образу.

5. Извлеките содержимое образа и скопируйте его в /var/ftp/:

```bash
cp -r /mnt/iso/ /var/ftp/
```

6. Запустите службу vsftpd:

```bash
systemctl start vsftpd.service
```

Если служба уже работала до того, как файл /etc/vsftpd/vsftpd.conf был изменен, то чтобы изменения вступили в силу, перезапустите ее, выполнив в режиме root:

```bash
systemctl restart vsftpd.service
```

После этого установочные файлы будут доступны.

При настройке источника установки в строке его адреса надо указать протокол FTP, а также имя или IP-адрес сервера. Если дерево установки размещается не в корневом каталоге, добавьте путь. Так, например, если дерево установки расположено в /var/ftp/rhel7-install/ на узле 192.168.100.100, строка адреса будет иметь вид ftp://192.168.100.100/rhel7-install/.

### 2.3.3.3. Конфигурация межсетевого экрана

При подготовке к сетевой установке необходимо разрешить входящие подключения к портам, которые будет использовать выбранный протокол.

#### Таблица 2.1. Открытые порты

<table>
<thead>
<tr>
<th>Протокол</th>
<th>Порт</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFS</td>
<td>2049, 111, 20048</td>
</tr>
<tr>
<td>HTTP</td>
<td>80</td>
</tr>
<tr>
<td>HTTPS</td>
<td>443</td>
</tr>
<tr>
<td>FTP</td>
<td>21</td>
</tr>
</tbody>
</table>

Способы предоставления доступа к портам могут отличаться в зависимости от операционной системы и программного обеспечения межсетевого экрана. Подробную информацию можно найти в руководстве по безопасности Red Hat Enterprise Linux 7.
Часть I. AMD64 и Intel 64 — установка и загрузка

В этой части обсуждаются основные вопросы установки на 64-битных платформах Intel и AMD. Часть IV, «Дополнительные методы установки» содержит описание более сложных аспектов установки.
Глава 3. Планирование установки на AMD64 и Intel 64

В этой главе обсуждаются вопросы подготовки к установке.

3.1. Обновление или переустановка

Существует два способа установки новой версии Red Hat Enterprise Linux в существующей системе:

Новая установка

Диск заново форматируется с удалением существующих разделов, поэтому предварительно надо создать резервные копии пользовательских данных, чтобы после установки их восстановить.

Примечание

Этот вариант является предпочтительным методом установки основных выпусков Red Hat Enterprise Linux.

Обновление

Обновление системы без удаления старой версии проводится с помощью специальных инструментов — в Red Hat Enterprise Linux для этой цели используются две программы: Preupgrade Assistant, который анализирует систему, оценивает потенциальные риски и корректирует ее конфигурацию, и Red Hat Upgrade Tool, который, собственно, загружает и устанавливает пакеты. Обновление существующей системы требует тщательной подготовки и должно проводиться, только если у вас нет другого выбора. Глава 25, Обновление системы содержит подробную информацию

Предупреждение

Прежде чем приступить к обновлению системы, настоятельно рекомендуется создать резервную копию и протестировать процесс обновления на ней.

3.2. Совместимость оборудования

Совместимость оборудования имеет большое значение, особенно для старых комплектаций и самостоятельно собранных компьютеров. По большей части версия Red Hat Enterprise Linux 7.0 совместима с оборудованием компьютеров, выпущенных в течение последних двух лет. Однако спецификации оборудования меняются практически ежедневно, поэтому невозможно однозначно гарантировать полную совместимость.

Обновленный список совместимого оборудования Red Hat доступен по адресу https://hardware.redhat.com, а общие системные требования перечислены на странице ограничений и требований Red Hat Enterprise Linux.

3.3. Устройства установки
Устройства установки (иногда называемые целевыми устройствами) — это устройства, на которых будет размещаться система Red Hat Enterprise Linux, и с которых она будет загружаться. Red Hat Enterprise Linux поддерживает следующие устройства:

- Напрямую подключенные накопители (SCSI, SATA, SAS).
- BIOS и микропрограммные RAID-устройства.
- НВА-адаптеры Fibre Channel и многопутевые устройства (для которых может потребоваться установить собственные драйверы).
- Блочные устройства Xen на процессорах Intel в виртуальных машинах Xen.
- Блочные устройства VirtIO на процессорах Intel в виртуальных машинах KVM.


3.4. Спецификация систем

Обычно программа установки автоматически определяет оборудование и устанавливает необходимые драйверы. Однако в некоторых случаях необходимо точно знать, какое оборудование находится в вашем распоряжении.

Так, если вы планируете создать собственную структуру разделов, запишите:

- Номера моделей жестких дисков, их емкость, тип и интерфейс. Пример: Seagate ST3320613AS 320 ГБ на SATA0, Western Digital WD7500AAKS 750 ГБ на SATA1. Эти данные помогут идентифицировать жесткие диски на этапе создания разделов.

Если Red Hat Enterprise Linux устанавливается в качестве дополнительной операционной системы, запишите:

- Информацию о существующих разделах: типы и метки файловых систем, имена устройств и размеры разделов. Это позволит их идентифицировать на этапе создания разделов. При этом стоит помнить, что разные операционные системы определяют разделы по-разному, поэтому даже если другая система построена на основе Unix, в Red Hat Enterprise Linux имена устройств могут быть представлены иначе. Точную информацию можно получить из файла /etc/fstab или с помощью аналогов команд mount и blkid.

Программа установки Red Hat Enterprise Linux 7 автоматически обнаружит другие установленные операционные системы и сохранит возможность их загрузки. По желанию эту функциональность можно настроить вручную (см. Раздел 6.10.1, «Установка загрузчика»).

При установке из локального образа запишите следующее:

- Жесткий диск и каталог с образом.

При установке из сети отметьте следующее:

- Производитель и номер модели сетевого адаптера. Пример: Netgear GA311. Это позволит идентифицировать адаптеры при ручной настройке сети.

- Адреса IP, DHCP и BOOTP.
- Маска сети.
- IP-адрес шлюза.
3.5. Наличие пространства

Практически все современные операционные системы используют дисковые разделы — и Red Hat Enterprise Linux не является исключением. Чтобы ознакомиться с основными понятиями, перед дальнейшим изучением материала прочитайте Приложение А, Знакомство с дисковыми разделами.

Пространство Red Hat Enterprise Linux должно быть отделено от пространства других операционных систем.

Примечание

На платформах AMD64 и Intel 64 надо создать хотя бы два раздела для Red Hat Enterprise Linux — / и swap.

Для установки Red Hat Enterprise Linux необходимо как минимум 7,5 ГБ. Раздел 6.10.4.5, «Рекомендуемая схема разбиения» поможет точно определить необходимый размер.

3.6. RAID и другие дисковые устройства

Некоторые технологии хранения данных предъявляют собственные требования к Red Hat Enterprise Linux. Важно понимать принципы их организации, их представления в Red Hat Enterprise Linux и степень изменения поддержки при обновлении операционной системы.

3.6.1. Аппаратный RAID

Массив RAID (Redundant Array of Independent Disks) обеспечивает функционирование группы дисков как единого целого. Прежде чем приступить к установке, настройте функции RAID материнской платы. В Red Hat Enterprise Linux массивы RAID будут представлены как отдельные диски.

3.6.2. Программный RAID

В системах с несколькими жесткими дисками можно их объединить в программный RAID-массив. Управление RAID-функциями осуществляется на уровне операционной системы (см. Раздел 6.10.4, «Создание разделов вручную»).
3.6.3. USB-диски

Внешние USB-диски можно подключить после установки. Они распознаются ядром и будут доступны сразу.

Некоторые USB-диски не распознаются программой установки Red Hat Enterprise Linux. Если диски не требуются для успешного завершения установки, во избежание путаницы рекомендуется их отсоединить.

3.6.4. RAID-массивы Intel BIOS

Для установки Red Hat Enterprise Linux 7 в RAID-массив Intel BIOS используется mdraid. Массивы определяются автоматически во время загрузки системы, поэтому пути к устройствам (такие как /dev/sda) могут меняться от одной загрузки к другой. Не следует добавлять такие пути в файлы /etc/fstab и /etc/crypttab, так как после перезагрузки они могут оказаться недействительными. Вместо этого лучше использовать метки файловой системы или идентификаторы UUID, определить которые можно с помощью команды blkid.

3.6.5. Рекомендации для BIOS iSCSI Remote Boot

При использовании модуля удаленной загрузки Intel iSCSI (Intel iSCSI Remote Boot) надо отключить все диски iSCSI, иначе после установки систему невозможно будет загрузить.

3.7. Выбор метода загрузки

Выбор метода запуска программы установки Red Hat Enterprise Linux 7 зависит от используемого установочного носителя.

Для загрузки с USB или DVD-диска, возможно, надо будет изменить порядок загрузки в BIOS или UEFI (см. Раздел 5.1.1, «Запуск с физического носителя»).

Полный установочный диск (DVD, USB)

Позволяет выполнить установку без необходимости доступа к другим ресурсам (см. Глава 2, Создание установочных носителей).

Минимальный загрузочный диск (CD, DVD, USB)

Программу установки можно загрузить с минимального носителя, в роли которого может выступать USB, CD или DVD-диск. Загрузив таким образом компьютер, завершите установку по сети или локально с жесткого диска. Раздел 2.2, «Создание установочного USB-носителя» содержит инструкции по созданию загрузочных носителей.

PXE-сервер

Программу установки можно загрузить с PXE-сервера (см. Глава 21, Подготовка к сетевой установке). После этого установку можно продолжить по сети или локально с жесткого диска.

3.8. Автоматизация установки

Процесс установки можно автоматизировать, определив необходимые данные — часовой пояс, схемы разделов и список пакетов — в файле кикстарта. Таким образом, отпадает необходимость в вводе этих данных вручную. Этот способ идеально подходит для установки Red Hat Enterprise Linux 7 на большом числе компьютеров.
Файл кикстарта предлагает гибкие возможности в плане выбора пакетов, в то время как при выполнении интерактивной установки ваш выбор ограничивается стандартными комплектами. Глава 23, Кикстарт-установка содержит дальнейшую информацию.
Глава 4. Обновление драйверов в ходе установки на AMD64 и Intel 64

Red Hat Enterprise Linux предоставляет драйверы для большинства известных устройств. Тем не менее, если оборудование было выпущено совсем недавно, не исключено, что его драйверы не вошли в состав дистрибутива. В этом случае их можно получить через Red Hat или непосредственно от производителя оборудования. Обычно они предоставляются в виде ISO-образов с RPM-пакетами.

**Важно**

Обновление драйверов требуется, только если их отсутствие препятствует нормальному завершению установки. Встроенные драйверы должны использоваться в первую очередь.

Для успешной установки наличие последних версий драйверов не обязательно — их можно будет установить позднее. Например, при установке с DVD процесс завершится успешно даже при отсутствии драйверов сетевых устройств. За подробной информацией обратитесь к руководству системного администратора Red Hat Enterprise Linux 7.

По желанию драйверы можно добавить в процессе установки. Например, драйвер сетевого устройства или адаптера накопителя предоставит установщику доступ к соответствующим устройствам. Это можно сделать двумя способами:

1. Разместить образ так, чтобы он был доступен программе установки — на локальном жестком диске, на флэш-устройстве, CD или DVD.

2. Распаковать образ и записать полученные файлы на USB, CD или DVD (см. Раздел 2.2, «Создание установочного USB-носителя», Раздел 2.1, «Создание установочного CD/DVD»).

Если производитель оборудования, Red Hat или доверенный посредник предупреждает о необходимости обновления драйверов в процессе установки, подготовьте их одним из перечисленных выше способов. Не стоит обновлять драйверы, если вы не уверены в их необходимости. Установка ненужного драйвера не повлияет на работу системы, но может безосновательно усложнить ее поддержку.

4.1. Ограничения обновления драйверов

Обновления драйверов не заменят уже загруженные драйверы. Если необходимо их заменить, завершите установку и уже потом обновите драйверы.

В системах с UEFI, использующих технологии безопасной загрузки, загружаемые драйверы должны быть подписаны действительным сертификатом — в противном случае они не будут установлены. Все драйверы Red Hat подписаны сертификатом UEFI.

За подробной информацией обратитесь к руководству системного администратора Red Hat Enterprise Linux 7.

4.2. Подготовка к обновлению драйверов

Red Hat и доверенные производители оборудования обычно предоставляют драйверы в виде ISO-образов.

Методы установки драйверов:
Автоматическое обновление

Программа установки автоматически пытается найти подключенные накопители. Устройство с меткой OEMDRV по умолчанию рассматривается как диск с драйверами, и Anaconda попытается загрузить драйверы с этого устройства.

Обновление с подтверждением

Укажите параметр inst.dd в строке загрузки, и Anaconda предложит выбрать диск из списка обнаруженных устройств.

Ручное обновление

Выражение inst.dd=путь в строке загрузки определяет точное расположение диска драйверов. Можно указать локальный или удаленный путь (на сервере HTTP/HTTPS, FTP).

Для автоматической установки драйверов необходимо физически подключить устройство с меткой OEMDRV. Метод с подтверждением позволяет использовать любые локальные устройства, а с помощью ручного метода можно указать путь к не только к локальным, но и к сетевым ресурсам.

4.2.1. Подготовка локального образа

Если образ расположен на локальном носителе (жестком диске или USB-накопителе), присвойте ему соответствующую метку тома, чтобы программа установки могла загрузить драйверы автоматически. Если это невозможно, выберите другой метод.

- Чтобы программа установки могла автоматически обнаружить диск драйверов, устройство должно иметь метку OEMDRV. Содержимое образа надо будет извлечь в корневой каталог (см. Раздел 4.3.1, «Автоматическое обновление»). Установка драйверов с устройства OEMDRV является более предпочтительным вариантом по сравнению с ручной установкой.

- Если выбран ручной метод, скопируйте образ на диск. Файл можно переименовать, но не следует изменять его расширение (.iso). Раздел 4.3.3, «Ручное обновление» содержит дополнительную информацию.

4.2.2. Подготовка диска с драйверами

Можно создать отдельный диск с драйверами, записав их на CD или DVD (см. Раздел 2.1, «Создание установочного CD/DVD»).

Вставьте созданный диск в привод и убедитесь, что он содержит файл подписи rhdd3 и каталог rpms.

Если список содержит лишь файл .iso, значит, диск был создан неправильно. Для создания рабочего диска необходимо выбрать опцию создания диска на основе образа.

4.3. Обновление драйверов во время установки

Выполнить обновление драйверов в начале процесса установки можно следующими способами:
позволить программе установки автоматически обнаружить обновления драйверов;
позволить программе установки запросить информацию о расположении драйверов;
ввести путь к образу или RPM-пакету.

Важно

Обновления драйверов следует размещать в стандартных разделах, так как другие типы — тома LVM и RAID — могут быть недоступны на ранних стадиях установки.

4.3.1. Автоматическое обновление

Программа установки автоматически идентифицирует устройство с меткой OEMDRV как диск с драйверами.

При запуске установки диски определяются автоматически. Устройство с меткой OEMDRV по умолчанию рассматривается как диск с драйверами, и вам будет предложено выбрать драйверы для установки.

Рисунок 4.1. Выбор драйвера

Введите цифру для выбора драйвера и нажмите с для перехода к графическому режиму Anaconda.

4.3.2. Обновление с подтверждением

Если в строке загрузки установки указан параметр inst.dd, но устройство OEMDRV не обнаружено, вам будет предложено указать диск. Выберите раздел из списка, на котором следует искать ISO-файлы с драйверами, затем выберите файл и, наконец, выберите драйверы.
Рисунок 4.2. Интерактивный выбор драйвера

Примечание

Если вы записали содержимое ISO-образа на CD или DVD-диск с меткой тома, отличной от OEMDRV, то либо запустите программу установки с параметром inst.dd без аргументов и выберите драйверы в меню (см. выше), либо укажите параметр в форме:

```
inst.dd=/dev/sr0
```

Введите цифру для выбора драйвера и нажмите с для перехода к графическому режиму Anaconda.

4.3.3. Ручное обновление

Подготовьте образ с драйверами и скопируйте его на USB-диск или разместите на веб-сервере. Подключите USB-диск, включите компьютер, в окне приветствия нажмите Tab и в конец строки загрузки добавьте inst.dd=путь.
Рисунок 4.3. Путь к образу в строке загрузки


Нажмите Enter.

4.3.4. Черный список

Неисправные драйверы могут помешать нормальной загрузке системы. Чтобы этого не случилось, проблемный драйвер можно отключить или добавить в черный список: в меню загрузки нажмите Tab для перехода к строке загрузки и добавьте выражение `modprobe.blacklist=драйвер`.

```
modprobe.blacklist=ahci
```

В готовой системе содержимое списка `modprobe.blacklist=` будет добавлено в файл `/etc/modprobe.d/anaconda-blacklist.conf` (см. Глава 20, Параметры загрузки).
Глава 5. Загрузка установки на AMD64 и Intel 64

Red Hat Enterprise Linux можно установить из локальных образов или по сети с серверов NFS, FTP, HTTP/HTTPS. Наиболее простой метод заключается в запуске установки с установочного DVD. Другие методы требуют некоторой подготовки, зато обладают большей гибкостью. Например, для установки Red Hat Enterprise Linux на большом числе компьютеров лучше выполнить загрузку с PXE-сервера и установку по сети с использованием файлов, расположенных на одном централизованном узле.

В приведенной таблице перечислены способы загрузки и рекомендуемые методы установки.

Таблица 5.1. Способы загрузки и источники установки

<table>
<thead>
<tr>
<th>Способ загрузки</th>
<th>Источник установки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Установочный носитель (DVD, USB)</td>
<td>Сам носитель</td>
</tr>
<tr>
<td>Минимальный загрузочный носитель (CD, USB)</td>
<td>Отдельный установочный образ DVD или копия его содержимого на локальном жестком диске или на другом узле в сети</td>
</tr>
<tr>
<td>Сетевая загрузка (PXE)</td>
<td>Отдельный установочный образ DVD или копия его содержимого на другом узле в сети</td>
</tr>
</tbody>
</table>

Раздел 2.2, «Создание установочного USB-носителя» содержит информацию о подготовке USB-накопителей.

Содержание этой главы:
- Раздел 5.1.1, «Запуск с физического носителя» (Red Hat Enterprise Linux DVD, CD-ROM, USB).
- Раздел 5.1.2, «Запуск из сети с помощью PXE».
- Раздел 5.2, «Меню загрузки».

5.1. Запуск программы установки

Для начала убедитесь, что у вас есть все необходимое для установки (см. Глава 3, Планирование установки на AMD64 и Intel 64), после чего загрузите программу установки с Red Hat Enterprise Linux DVD или другого загрузочного носителя.

Примечание

В некоторых случаях может потребоваться обновить драйверы устройств, что позволит программе установки работать с оборудованием, которое по умолчанию не поддерживается (см. Глава 4, Обновление драйверов в ходе установки на AMD64 и Intel 64).

5.1.1. Запуск с физического носителя

Следующая последовательность действий позволит запустить программу установки с Red Hat Enterprise Linux DVD и минимального загрузочного носителя.

Процедура 5.1. Загрузка установки с физического носителя

1. Отключите диски, которые не требуются для выполнения установки (см. Раздел 3.6.3, «USB-диски»).
2. Включите компьютер.
3. Вставьте носитель в привод.
4. Выключите компьютер. Не извлекайте носитель.
5. Снова включите компьютер. Войдите в BIOS и настройте загрузочное устройство. За подробной информацией обратитесь к документации компьютера.

После небольшой задержки появится окно с перечнем вариантов загрузки (см. Раздел 5.2, «Меню загрузки»). По истечении 1 минуты установка начнется автоматически.

5.1.2. Запуск из сети с помощью PXE

Для выполнения загрузки PXE необходимо предварительно настроить сервер, а сам компьютер должен быть оборудован сетевым интерфейсом с поддержкой PXE (см. Глава 21, Подготовка к сетевой установке).

Настройте сетевую загрузку вашей системы в BIOS, где соответствующие опции могут быть обозначены как Network Boot или Boot Services. Обратитесь к документации компьютера, чтобы узнать, поддерживает ли BIOS функции PXE. После выбора сетевого интерфейса в качестве загрузочного устройства компьютер будет готов к запуску установки Red Hat Enterprise Linux без использования локальных носителей.

Ниже обсуждается порядок загрузки программы установки с PXE-сервера. Обязательным требованием является наличие физического подключения к сети, например Ethernet. Беспроводного подключения будет недостаточно.

Процедура 5.2. Сетевая загрузка с помощью PXE

1. Проверьте подключение сетевого кабеля — световой индикатор сетевого разъема должен гореть, даже если компьютер выключен.
2. Включите компьютер.
3. Прежде чем компьютер подключится к PXE-серверу, будут показаны диагностические сообщения, включая сведения о конфигурации сети. Нажмите цифру для выбора нужного пункта. Если не уверены, обратитесь к администратору сервера.

После небольшой задержки появится окно с перечнем вариантов загрузки (см. Раздел 5.2, «Меню загрузки»). Если выбор не сделан в течение 1 минуты, установка начнется автоматически.

5.2. Меню загрузки

После загрузки компьютера с выбранного носителя появится меню, предлагающее запустить процесс установки или выполнить диагностику. Если выбор не сделан в течение 60 секунд, будет выбран стандартный вариант, выделенный белым цветом. Чтобы сразу выбрать предложенный вариант, нажмите Enter.
Перейдите к нужной строке с помощью стрелок и нажмите Enter.

Чтобы добавить или изменить параметры загрузки:

- В системах с BIOS нажмите Tab и введите параметры в конце команды. Другой подход позволяет определить параметры в строке приглашения boot: , для перехода к которой надо нажать Esc. Но так как в строке boot: обязательные параметры по умолчанию не указаны, в первую очередь надо будет добавить команду linux.

- В системах с UEFI нажмите e для перехода в режим редактирования. Внесите изменения и нажмите Ctrl+X.

Глава 20, Параметры загрузки содержит подробную информацию о дополнительных параметрах.

Состав меню загрузки:

**Установить Red Hat Enterprise Linux 7.0**

Запуск установки Red Hat Enterprise Linux в графическом режиме.

**Проверить носитель и установить Red Hat Enterprise Linux 7.0**

Этот вариант выбран по умолчанию. Специальная утилита проверит целостность установочного носителя до начала установки.

**Диагностика >**
Этот пункт открывает дополнительное меню диагностики. Нажмите Enter для просмотра доступных опций.

Рисунок 5.2. Меню диагностики

**Troubleshooting**

Install Red Hat Enterprise Linux 7.0 in basic graphics mode  
Rescue a Red Hat Enterprise Linux system  
Run a memory test  
Boot from local drive  

Press Tab for full configuration options on menu items.

Установить Red Hat Enterprise Linux 7.0 в базовом графическом режиме

Позволяет установить Red Hat Enterprise Linux в графическом режиме, даже если программа установки не смогла загрузить драйверы видеокарты. Если изображение на экране пропадает или искажается, перезапустите компьютер и используйте этот вариант.

Восстановить систему Red Hat Enterprise Linux

Предназначается для исправления ошибок, препятствующих нормальной загрузке Red Hat Enterprise Linux. Окружение восстановления включает программы, которые позволяют исправить большинство известных проблем.

Проверка памяти

См. Раздел 20.2.1, «Режим тестирования памяти».

Загрузить с локального диска

Позволяет загрузить систему с первого диска. Используйте эту опцию для загрузки системы с жесткого диска без запуска программы установки.
Глава 6. Установка Red Hat Enterprise Linux на AMD64 и Intel 64

В этой главе обсуждается выполнение установки с помощью Anaconda. Теперь отдельные стадии установки можно настроить в произвольном порядке в отличие от привычной пошаговой настройки. В процессе конфигурации можно будет выбрать язык системы, настроить сетевое подключение, устройства хранения данных и наборы пакетов. Доступ к секциям осуществляется из окна обзора.

6.1. Режимы установки

Установка Red Hat Enterprise Linux 7 проводится в графическом или текстовом режиме. По возможности рекомендуется использовать графический режим, так как в нем можно настроить все характеристики процесса установки. Оба режима включают меню обзора.

Рисунок 6.1. Окно обзора
6.1.1. Графический режим

Безусловно, вы уже знаете, что такое графический интерфейс пользователя (GUI, Graphical User Interface), знакомы с основными элементами и навигацией, умеете нажимать кнопки и заполнять поля.

Для навигации можно использовать клавиатуру. Так, Tab и Shift+Tab позволяют перемещаться между полями, стрелки Вверх и Вниз осуществляют прокрутку списков, Влево и Вправо помогают перейти от одного элемента к другому на горизонтальной панели или в строке таблицы, а Пробел и Enter позволяют выбрать объект. Для быстрого доступа можно использовать горячие клавиши Alt+X (где X — буква, выделенная подчеркиванием).

6.1.1.1. Снимки этапов установки

Anaconda позволяет создавать снимки экрана непосредственно в процессе установки. Просто нажмите Shift+Print Screen, и Anaconda сохранит снимок в /tmp/anaconda-screenshots.

Параметр autostep --autoscreenshot в файле кикстарта будет автоматически создавать снимок экрана на каждом этапе автоматизированной установки (см. Раздел 23.3, «Синтаксис команд»).

6.1.1.2. Виртуальные консоли

Программа установки Red Hat Enterprise Linux представляет собой гораздо больше, чем простой набор диалоговых окон. Вы встретите также разные типы диагностических сообщений и сможете ввести команды в строке приглашения оболочки. Доступ к дополнительным функциям осуществляется из виртуальных консолей, переключение между которыми выполняется с помощью...
простых комбинаций клавиш.

Виртуальная консоль представляет собой оболочку командной строки для локального доступа к системе. Пользователь может одновременно работать с несколькими консолями.

Сообщения процесса установки выводятся на виртуальную консоль, что значительно облегчает диагностику конфликтов. В приведенной ниже таблице перечислены виртуальные консоли, комбинации клавиш и их содержимое.

Примечание
Обычно нет необходимости выходить из стандартного окружения установки за исключением диагностики ошибок установки.

### Таблица 6.1. Виртуальные консоли

<table>
<thead>
<tr>
<th>Консоль</th>
<th>Комбинация</th>
<th>Содержание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ctrl + Alt + F1</td>
<td>главная консоль программы установки</td>
</tr>
<tr>
<td>2</td>
<td>Ctrl + Alt + F2</td>
<td>оболочка root</td>
</tr>
<tr>
<td>3</td>
<td>Ctrl + Alt + F3</td>
<td>сообщения программы установки из /tmp/anaconda.log</td>
</tr>
<tr>
<td>4</td>
<td>Ctrl + Alt + F4</td>
<td>сообщения системных служб и пространства данных из /tmp/storage.log</td>
</tr>
<tr>
<td>5</td>
<td>Ctrl + Alt + F5</td>
<td>сообщения программ из /tmp/program.log</td>
</tr>
<tr>
<td>6</td>
<td>Ctrl + Alt + F6</td>
<td>стандартная консоль графического режима</td>
</tr>
</tbody>
</table>

Дополнительный мультиплексор tmux позволяет увеличить число терминалов. Он запускается в первой виртуальной консолн и предоставляет доступ к нескольким терминалам в рамках одного экрана (см. Раздел 11.1.1.1, «Виртуальные консоли и tmux»).

### 6.1.1.3. Установка с помощью VNC

Выполнение графической установки в системе, не поддерживающей графический режим, возможно с помощью инструментов VNC (см. Глава 22, Установка с помощью VNC).

### 6.1.2. Текстовый режим

Anaconda также предоставляет текстовый интерфейс.

Переход в текстовый режим происходит, если:

- система не смогла обнаружить монитор;
- в строке загрузки указан параметр `inst.text`;
- в файле кикстарта присутствует команда `text`. 
Важно

Red Hat рекомендует выполнять установку в графическом режиме. Для установки Red Hat Enterprise Linux в системе без дисплея используется механизм VNC (см. Глава 22, Установка с помощью VNC). Если вы выбрали текстовый режим, но Anaconda обнаружила поддержку VNC, будет предложено подтвердить свой выбор.

Если компьютер оборудован дисплеем, но по каким-то причинам графический режим недоступен, попробуйте загрузить систему с параметром `inst.xdriver=vesa` (см. Глава 20, Параметры загрузки).

В противном случае можно выбрать автоматизированный метод установки (см. Глава 23, Кикстарт-установка).

В текстовом режиме некоторые функции недоступны:

- нестандартные схемы хранения данных — LVM, RAID, FCoE, zFCP, iSCSI;
- изменение стандартной схемы разделов;
- изменение конфигурации загрузчика;
- выбор пакетов в процессе установки;
- программа первой настройки;
- изменение языка и раскладки клавиатуры.
Примечание

Во время работы фоновых задач некоторые пункты меню будут недоступны, и вы увидите сообщение Обработка... Чтобы обновить состояние меню, используйте параметр r в командной строке.

Графический режим можно настроить и после завершения текстовой установки. Подробную информацию можно найти в руководстве системного администратора Red Hat Enterprise Linux 7.

Недоступные в текстовом режиме характеристики можно настроить с помощью параметров загрузки (см. Раздел 20.1, «Настройка системы установки в меню загрузки»). Так, например, параметр ip поможет настроить подключение к сети.

6.2. Приветствие и выбор языка

Сразу после запуска установки появится окно приветствия, где можно выбрать язык интерфейса, который будет использоваться не только в ходе установки, но и по умолчанию в готовой системе. Слева выберите язык, например Русский, а справа — регион, например Русский (Россия).

Примечание

Выбранный по умолчанию язык будет показан первым в списке. Если компьютер подключен к сети, язык будет выбран в соответствии с географическим расположением, которое автоматически определяется модулем GeoIP.

Для быстрого выбора можно ввести язык вручную в строке поиска.

Нажмите кнопку продолжения для перехода к следующему окну.
Рисунок 6.4. Выбор языка

6.3. Окно обзора

Окно обзора является центральным местом настройки всех аспектов установки.
Рисунок 6.5. Окно обзора

Вместо последовательного определения параметров теперь это можно сделать в произвольном порядке, выбирая интересующие категории в меню установки.

Выберите секцию для перехода к ее параметрам. Завершив редактирование, нажмите **Готово**, чтобы вернуться в окно обзора.

Секции, отмеченные восклицательным знаком, являются обязательными, что также подтверждает сообщение в нижней части экрана. Под заголовком секции приведена сводка текущих параметров, что поможет быстро оценить ситуацию.

Завершив подготовку, нажмите **Начать установку** (см. Раздел 6.12, «Начало установки»).

Чтобы отказаться от установки, нажмите кнопку выхода.

**Примечание**

Во время работы фоновых задач некоторые пункты меню будут недоступны.

Если в параметрах загрузки или в файле кикстарта определен адрес удаленного репозитория, но подключение к сети отсутствует, то прежде чем откроется окно обзора, будет предложено его настроить.
Рисунок 6.6. Окно конфигурации сети

При установке с локального носителя этот шаг можно пропустить. В других ситуациях — при установке с удаленного узла (см. Раздел 6.7, «Источник установки») и при подключении внешних накопителей (см. Раздел 6.11, «Устройства хранения») — надо будет настроить подключение к сети (см. Раздел 6.8, «Сеть и имя узла»).

6.4. Дата и время

Чтобы настроить часовой пояс, дату и время, выберите секцию Дата и время.

Время можно настроить несколькими способами:

» выбрать город на карте;

» выбрать регион и город из списка;

» в конце списка регионов выбрать Другое, затем выбрать часовой пояс (например, GMT+1).

Если интересующего города нет на карте, выберите ближайший город в той же часовой зоне.

Примечание

Список городов извлекается из глобальной базы данных tzdata, поддержкой которой занимается администрация адресного пространства Интернета (IANA, Internet Assigned Numbers Authority). Red Hat не участвует в ее разработке. Подробную информацию можно найти на сайте http://www.iana.org/time-zones.

Настройте часовой пояс, даже если вы планируете использовать NTP для синхронизации часов.
Рисунок 6.7. Окно выбора часового пояса

Если компьютер подключен к сети, будет доступен переключатель Сетевое время. Чтобы включить синхронизацию часов с использованием NTP, оставьте его включенным, рядом нажмите значок конфигурации и выберите серверы NTP. Чтобы настроить время вручную, переведите переключатель в выключенное положение. Если системные часы показывают неверное время, откорректируйте его в нижней части окна.

Если во время установки сервер NTP недоступен, то системное время будет выставлено, когда он снова станет активным.

Чтобы вернуться к окну обзора, нажмите Готово.

Примечание

После завершения установки часовой пояс можно будет изменить в секции Дата и время в окне системных параметров.

6.5. Выбор языка

Чтобы добавить поддержку дополнительных языков, в меню обзора выберите Языковая поддержка.

В левой части окна выберите язык, например Испанский, а справа — регион, например Испанский (Коста Рика). По желанию можно выбрать несколько языков — они будут выделены жирным шрифтом.
Рисунок 6.8. Настройка языка

Чтобы вернуться к окну обзора, нажмите **Готово**.

Примечание

После завершения установки язык можно будет изменить в секции **Язык и регион** в окне параметров.

6.6. Настройка клавиатуры

В секции **Клавиатура** можно добавить раскладки — они будут доступны сразу. Для переключения используйте значок клавиатуры в правом верхнем углу экрана.

Изначально в левой части окна будет показан язык, который был выбран в окне приветствия. По желанию его можно изменить или добавить другие языки с тем условием, что хотя бы один язык должен поддерживать ASCII (для установки пароля root, паролей доступа к разделам и т.п.).
Рисунок 6.9. Настройка клавиатуры

Чтобы добавить раскладку, нажмите +, выберите язык из списка и нажмите кнопку Добавить. Чтобы удалить выбранную раскладку, нажмите -. С помощью стрелок можно изменить порядок элементов в списке. Чтобы получить визуальную схему раскладки, нажмите значок клавиатуры в правом верхнем углу экрана.

Чтобы протестировать выбранную раскладку, щелкните в области ввода в правой части окна и начните вводить текст.

Для переключения между раскладками рекомендуется настроить комбинации клавиш. Для этого нажмите кнопку Параметры и выберите комбинацию (одну или несколько). Настроенная комбинация будет показана над кнопкой.

**Важно**

Если выбранная раскладка не использует латиницу (как например, русская), настоятельно рекомендуется дополнительно добавить английскую раскладку и настроить комбинацию клавиш для переключения. В противном случае вы не сможете авторизоваться в системе после завершения установки.

Чтобы вернуться к окну обзора, нажмите Готово.

**Примечание**

После завершения установки раскладку можно будет изменить в секции Клавиатура в окне параметров.

6.7. Источник установки
Чтобы настроить расположение установочных файлов, в окне обзора перейдите к секции **Источник установки**.

**Рисунок 6.10. Выбор источника установки**

Будут доступны следующие варианты:

**Автоматический выбор носителя**

Если программа установки была запущена с установочного DVD или USB, она попытается выбрать носитель автоматически. Нажмите Проверить, чтобы проверить его целостность (что аналогично выбору Проверить носитель и установить Red Hat Enterprise Linux 7.0 в меню загрузки и добавлению параметра загрузки *rd.live.check*).

**ISO-файл**

Это поле появится при обнаружении жесткого диска с файловыми системами. Нажмите кнопку Выбрать ISO и выберите файл. Нажмите Проверить.

**В сети**

Выберите протокол из списка:

- **http://**
- **https://**
- **ftp://**
- **nfs**
Справа от протокола введите адрес. Для NFS появится дополнительное поле параметров монтирования.

**Важно**
Для NFS-установки после имени сервера введите двоеточие:

```
server.example.com:/путь/к/каталогу
```

Для HTTP/HTTPS можно настроить прокси-сервер: нажмите **Настроить прокси**, в открывшемся окне установите флажок **Включить HTTP-прокси** и введите URL в поле **Адрес прокси**. Если для подключения к серверу требуется авторизация, выберите **Аутентификация**, введите имя пользователя и пароль. Нажмите кнопку **Добавить**.

Если адрес HTTP/HTTPS ссылается на список зеркальных репозиториев, установите соответствующий флажок.

Для установки внешних программ можно настроить дополнительные репозитории (см. Раздел 6.9, «Выбор программ»).

Чтобы добавить репозиторий, нажмите плюс; чтобы удалить — нажмите минус. С помощью стрелки можно отменить изменения и восстановить предыдущий список репозиториев. Флажки в столбце **Включено** позволяют включить или исключить репозитории.

Имя репозитория можно настроить в правой части окна.

Чтобы вернуться к окну обзора, нажмите **Готово**.

**6.8. Сеть и имя узла**

Чтобы настроить сетевое подключение, в окне обзора перейдите к секции **Сеть и имя узла**.

**Важно**

При первой загрузке Red Hat Enterprise Linux 7 будут включены все сетевые интерфейсы, настроенные в ходе установки. Однако в некоторых случаях программа установки не предлагает настроить интерфейсы, что характерно при установке с DVD на локальный жесткий диск.

Если система, установленная с локального носителя на локальный диск, должна иметь доступ к сети, настройте хотя бы один сетевой интерфейс. В окне редактирования соединения выберите опцию автоматического подключения.

Программа установки автоматически найдет локальные интерфейсы и покажет их в левой части окна. Их нельзя будет удалить, но можно отключить, установив переключатель в правом верхнем углу в положение **OFF**.
Рисунок 6.11. Настройка сетевого подключения и имени узла

В поле имени узла введите полное имя домена или «узел.домен». Если сеть использует протокол DHCP (Dynamic Host Configuration Protocol) для автоматического выбора имени домена, можно указать краткое имя узла.

**Важно**

При выборе имени интерфейса не используйте имена доменов, которые не делегированы вам, так как это ограничит доступ к сетевым ресурсам. Подробную информацию можно найти в сетевом руководстве Red Hat Enterprise Linux 7.

**Примечание**

В установленной системе параметры сети можно изменить в секции Сетевые соединения системной программы Параметры.

Чтобы вернуться к окну обзора, нажмите Готово.

**6.8.1. Изменение сетевых подключений**

В этой секции обсуждается настройка проводных подключений. Значения многих параметров определены по умолчанию и не сохраняются в готовой системе, поэтому на стадии установки их можно не менять. Подробную информацию о конфигурации соединений после установки можно найти в сетевом руководстве Red Hat Enterprise Linux 7.
Чтобы настроить сетевое подключение вручную, в правом нижнем углу нажмите НАСТРОЙ. В открывшемся окне можно настроить обычное, DSL, беспроводное, мобильное соединение, а также VPN, DSL и VLAN. Подробное описание программы настройки сетевых подключений выходит за рамки данного документа.

Основные параметры сетевых подключений:

- Для автоматического подключения установите флажок **Автоматически подключаться к этой сети**. Этот параметр сохранится после установки.

![Рисунок 6.12. Флажок автоматического подключения установлен](image)

- По умолчанию IPv4 настраивается автоматически с помощью DHCP. Для IPv6 также выбран автоматический метод настройки. В большинстве случаев это является предпочтительным вариантом.
Выберите Использовать это соединение только для ресурсов в этой сети, чтобы ограничить соединение пределами локальной сети. Ваш выбор сохранится после установки.

Нажмите Сохранить. Если вы изменили настройки активного устройства, надо будет его перезапустить: в окне Сеть и имя узла измените состояние переключателя в правом верхнем углу на OFF, затем — на ON.

6.8.2. Дополнительные сетевые интерфейсы
В этом окне можно добавить дополнительные сетевые интерфейсы (VLAN, а также виртуальные интерфейсы, созданные посредством объединения и группировки физических интерфейсов). Их подробное описание можно найти в сетевом руководстве.

Чтобы добавить новый интерфейс, нажмите + в левом нижнем углу.

Рисунок 6.15. Настройка сетевого подключения и имени узла

В открывшемся окне можно выбрать тип интерфейса:

- **Объединение** — объединение нескольких физических интерфейсов в один виртуальный канал.
- **Группа** — новая реализация агрегации интерфейсов, предоставляющая драйвер ядра для обработки пакетного трафика, и дополнительные программы пространства пользователя.
- **VLAN** — характеризует метод создания изолированных широковещательных доменов.

Рисунок 6.16. Дополнительные сетевые интерфейсы

Примечание

Автоматически обнаруженные интерфейсы не могут быть удалены.
После нажатия кнопки **Добавить** откроется окно настройки интерфейса. Подробную информацию об этом найти в сетевом руководстве. Чтобы изменить конфигурацию уже настроенного интерфейса, выберите его в окне сетевых подключений и в правом нижнем углу нажмите кнопку **Настроить**. Чтобы удалить интерфейс, нажмите минус в левом нижнем углу.

### 6.9. Выбор программ

Чтобы выбрать программы для установки, в окне обзора перейдите к секции **Выбор программ**. Пакеты сгруппированы в **окружения**, предназначенные для решения определенного ряда задач. Например, окружение **хоста виртуализации** включает набор пакетов для организации работы виртуальных машин. Во время установки можно выбрать только одно окружение.

В правой части окна можно выбрать дополнительные группы пакетов. Для разных окружений будут доступны разные дополнения.

Горизонтальная линия разделяет список на две части:

- группы, уникальные для выбранного окружения, перечислены до разделителя;
- общие группы для всех окружений перечислены после разделителя.

![SOFTWARE SELECTION](image)

Рисунок 6.17. Выбор программ для сервера

Список доступных окружений и дополнений зависит от устанавливаемого варианта Red Hat Enterprise Linux 7 — например, для Red Hat Enterprise Linux Server будут доступны серверные программы.
Точный список пакетов можно найти в файле `repodata/*-comps-вариант. архитектура.xml` на установочном диске. В этом файле окружения выделены тегом `<environment>`, а дополнительные группы — `<group>`.

В этом окне можно подобрать программы для любой конфигурации системы, но вы не сможете выбрать конкретные пакеты. Чтобы полностью контролировать то, какие пакеты должны быть включены, сначала установите минимальное окружение, а уже после этого установите интересующие пакеты с помощью `Yum`.

При автоматизации установки процесс выбора пакетов существенно упрощается — индивидуальные пакеты добавляются в секцию `packages` в файле кикстарта (см. Раздел 23.3.3, «Выбор пакетов», Глава 23, Кикстарт-установка).

Чтобы вернуться к окну обзора, нажмите Готово.

### 6.9.1. Сетевые службы

Все комплекты Red Hat Enterprise Linux включают следующие сетевые службы:

- централизованное ведение журналов с помощью `syslog`;
- обмен электронной почтой по SMTP (Simple Mail Transfer Protocol);
- общий доступ к файлам по NFS (Network File System);
- удаленный доступ SSH (Secure SHell);
- объявление ресурсов через mDNS (multicast DNS).

Некоторые процессы Red Hat Enterprise Linux отправляют отчеты системному администратору по электронной почте. Службы почты, журналов и печати по умолчанию не разрешают подключения из других систем.

В Red Hat Enterprise Linux можно настроить службы электронной почты, совместного доступа к файлам, журналирования, печати и доступа к удаленному рабочему столу. Функции SSH включены по умолчанию. Для доступа к файлам в другой системе можно использовать NFS без активации службы совместного доступа NFS.

### 6.10. Расположение установки

Диски и разделы настраиваются в секции Расположение установки. Приложение А, Знакомство с дисковыми разделами содержит подробную информацию о разделах.

---

**Предупреждение**

Во избежание потери данных при установке и обновлении системы следует создать их резервную копию.
Важно

В текстовом режиме установки доступны только стандартные схемы разбиения. В принципе, можно использовать весь диск или удалить существующие разделы Linux, но вы не сможете добавить или удалить разделы и файловые системы по собственному усмотрению.

Важно

Некоторые BIOS не поддерживают загрузку с RAID-контроллеров. В таких случаях раздел /boot следует создать на отдельном диске за пределами массива RAID. При возникновении проблем с RAID-контроллерами разделы лучше создавать на внутреннем жестком диске.

Даже если вы выбрали автоматическое разбиение, раздел /boot/ надо будет настроить вручную (см. Раздел 6.10.4, «Создание разделов вручную»).

Рисунок 6.18. Обзор устройств
Важно

Для настройки цепной загрузки Red Hat Enterprise Linux из другого загрузчика потребуется вручную определить загрузочный диск. Для этого в нижней части окна выберите Статистика дисков и загрузчика. Раздел 6.10.1, «Установка загрузчика» содержит инструкции по настройке загрузочного диска.

В этом окне показаны только локальные диски. Чтобы добавить другие устройства, нажмите кнопку Добавить диск (см. Раздел 6.11, «Устройства хранения»).

Для каждого диска показаны метка, размер, доступное пространство. Чтобы выбрать диск, щелкните на его значке. Если диск не выбран, он не будет принимать участие в установке.

Ниже можно настроить другие параметры хранения данных:

- В секции Разбиение можно выбрать автоматический или ручной метод.

  Вариант Создать разделы автоматически рекомендуется для новой установки с удалением всех данных.

  Дополнительно можно установить флажок Выделить дополнительное пространство. Если на выбранных дисках не хватает места для автоматического создания разделов, появится окно:

**INSTALLATION OPTIONS**

Your current Red Hat Enterprise Linux software selection requires 3.81 GB of available space, including 3 GB for software and 819 MB for swap space. The disks you've selected have the following amounts of free space:

969.23 kB Free space available for use.

OB Free space unavailable but reclaimable from existing partitions.

You don't have enough space available to install Red Hat Enterprise Linux. You can shrink or remove existing partitions via our guided reclaim space tool, or you can adjust your partitions on your own in the custom partitioning interface.

Рисунок 6.19. Диалог с предложением освободить пространство
Чтобы добавить дополнительные диски, нажмите Отменить и добавить диски. Чтобы освободить место, нажмите Освободить (см. Раздел 6.10.3, «Освобождение пространства»).

Если в предыдущем окне был выбран вариант Я настрою разделы, откроется окно ручного создания разделов (см. Раздел 6.10.4, «Создание разделов вручную»).

Чтобы зашифровать разделы (кроме /boot), установите флажок Зашифровать данные. Подробную информацию можно найти в руководстве по безопасности Red Hat Enterprise Linux 7.

Ссылка Статистика диска и загрузчика в нижней части окна откроет диалог настройки диска, где будет установлен загрузчик.

Раздел 6.10.1, «Установка загрузчика» содержит подробную информацию.

Закончив настройку, нажмите Готово.

### Важно

При установке Red Hat Enterprise Linux в системе с комбинацией обычных и многопутевых устройств автоматическое разбиение может создать группы томов, содержащие и те, и другие устройства, что нарушает идею организации многопутевого пространства данных.

Поэтому в окне дисков рекомендуется выбрать однотипные устройства или предпочесть ручной метод создания разделов.

### 6.10.1. Установка загрузчика

Red Hat Enterprise Linux 7 использует загрузчик GRUB2 (GRand Unified Bootloader 2). Загрузчик — первая программа, запускаемая после включения компьютера, которая передает управление ядру операционной системы. GRUB2 также может использоваться для цепной загрузки другого загрузчика нестандартной операционной системы.

### Предупреждение

При установке GRUB2 старый загрузчик может быть перезаписан.

Программа установки Red Hat Enterprise Linux автоматически определяет другие установленные операционные системы и сохраняет возможность их загрузки. По желанию эту функциональность можно настроить вручную.

Чтобы выбрать устройство для размещения загрузчика, в нижней части окна устройств выберите Статистика диска и загрузчика. В окне ручного создания разделов для этой цели перейдите по ссылке с меткой выбрано X устройств хранения в самом низу экрана.
Рисунок 6.20. Обзор выбранных дисков

Загрузочное устройство отмечено зеленой галочкой. Чтобы установить загрузчик на другое устройство, выберите его из списка и нажмите кнопку Выбрать устройство загрузки.

Чтобы отменить установку загрузчика, выберите устройство и нажмите Не устанавливать загрузчик. Галочка напротив устройства исчезнет.

Предупреждение

Следует помнить, что без загрузчика систему нельзя будет загрузить напрямую и придется использовать другой способ загрузки (например, коммерческий загрузчик). Не отменяйте установку загрузчика, если не предусмотрен другой способ загрузки компьютера.

6.10.1.1. Рекомендации по MBR и GPT

По умолчанию GRUB2 будет установлен в область MBR (master boot record) или GPT (GUID partition table) на диске с корневой файловой системой.

Системы с BIOS или UEFI в режиме совместимости с BIOS

Если диск уже отформатирован, существующие разделы не будут изменяться.

В противном случае Anaconda выберет:
MBR, если размер диска меньше 2 ТБ;
GPT, если размер диска больше 2 ТБ.

Примечание

Параметр `inst.gpt` в строке команды загрузки позволяет изменить стандартное поведение и использовать GPT на дисках размером меньше 2 ТБ. В то же время нельзя выбрать MBR для дисков размером больше 2 ТБ.

В системах с BIOS, использующих GPT, необходимо создать раздел `biosboot` размером 1 МБ (см. Раздел 6.10.1, «Установка загрузчика»), в то время как при наличии MBR в этом нет необходимости.

Системы с UEFI

В системах с UEFI поддерживается только GPT. Чтобы установить загрузчик в MBR, надо будет сначала отформатировать диск.

Также потребуется создать раздел EFI (efi) размером не меньше 50 МБ (рекомендуется — 200 МБ).

Примечание

Разделы `biosboot` и `efi` не могут располагаться в пределах логических томов, поэтому для них надо будет создать стандартные физические разделы.

6.10.2. Шифрование разделов

Если флажок шифрования был установлен, в следующем окне будет предложено ввести парольную фразу.

Для шифрования используется механизм LUKS (Linux Unified Key Setup). За подробной информацией обратитесь к руководству по безопасности Red Hat Enterprise Linux 7.
6.10.3. Освобождение пространства

Если для установки Red Hat Enterprise Linux недостаточно места, можно попробовать освободить пространство. Для этого в окне Параметры установки выберите пункт Освободить.

Предупреждение

При освобождении пространства данные будут удалены (за исключением случаев сжатия раздела), поэтому предварительно рекомендуется создать их резервные копии.
В списке перечислены обнаруженные диски и файловые системы. В столбце **Можно освободить** показан потенциально доступный размер. В столбце **Действие** показан метод освобождения пространства.

В этом окне доступны кнопки:

- **Не изменять** — не освобождать место в выбранной файловой системе. Это действие выбрано по умолчанию.
- **Удалить** — освободить все занятое пространство.
- **Сжать** — освобождает незанятое пространство в файловой системе. Размер корректируется с помощью ползунка. Это действие недоступно для LVM и RAID.
- **Удалить все/Оставить все** — это действие применимо ко всем файловым системам. Функционирует как переключатель, то есть выбрав один вариант, название кнопки изменится на другой, и наоборот.

Выберите файловую систему или весь диск. Значения в столбце **Действие** и в поле **Всего выбрано для освобождения** изменятся соответственно. В самом низу экрана показан необходимый для
установки размер.

Когда будет выбран достаточный размер для продолжения установки, кнопка Освободить станет доступна.

6.10.4. Создание разделов вручную

Чтобы открыть окно ручного создания разделов, в окне выбора устройств отметьте пункт Я настрою разделы и нажмите кнопку Готово.

**Предупреждение**

Во избежание потери данных при установке и обновлении системы следует создать их резервную копию.

Рисунок 6.23. Окно создания разделов

В левой части окна показаны точки монтирования, сгруппированные по операционным системам. Если раздел используется несколькими операционными системами, он будет повторяться. Внизу приведена статистика пространства.

При наличии существующих файловых систем убедитесь, что на диске достаточно места для установки Red Hat Enterprise Linux. Чтобы удалить раздел, нажмите кнопку со знаком -.

**Примечание**

Приложение А. Знакомство с дисковыми разделами и Раздел 6.10.4.5. «Рекомендуемая схема разбиения» содержат рекомендации по разбиению дисков. Как минимум надо создать корневой раздел и раздел подкачки.
6.10.4.1. Создание файловых систем и конфигурация разделов


Добавление файловой системы выполняется в два подхода — сначала в левой части окна надо создать точку монтирования, затем изменить ее параметры в правой части (тип устройства и файловой системы, метку, функции шифрования и форматирования раздела).

Чтобы позволить программе установки создать разделы и точки монтирования, выберите схему разбиения из выпадающего списка в левой части окна (по умолчанию выбран LVM) и щелкните ссылку автоматического создания. В результате будут созданы разделы /boot, / и раздел подкачки. Дополнительные разделы можно будет добавить позднее.

Точки монтирования можно создать вручную, нажав значок плюса в нижней части панели. В открывшемся окне выберите путь из списка или введите его вручную — / для корневого раздела, /boot для загрузочного и т.п. Укажите размер раздела в мегабайтах, гигабайтах или терабайтах — например, 2GB. Если размер не задан или превышает допустимый, будет занято все доступное пространство. Завершив редактирование, нажмите Добавить.

В левой части окна выберите тип раздела: стандартный, BTRFS, LVM, динамический LVM. Исключение составляет /boot, который будет иметь стандартный тип независимо от выбранного значения.

Чтобы изменить устройство для выбранной точки монтирования, нажмите кнопку конфигурации под левой панелью. В открывшемся окне выберите устройства и нажмите Выбрать. Вы вернетесь в окно ручного разбиения, где надо еще раз подтвердить изменения, нажав кнопку Применить.

Рисунок 6.24. Настройка точек подключения

Чтобы обновить список дисков и разделов, нажмите кнопку с круговой стрелкой. Обычно список обновляется после значительных изменений конфигурации разделов, сделанных за рамками программы установки. Следует помнить, что после нажатия кнопки Поиск изменений, сделанные в окне разделов, будут потеряны.
**Рисунок 6.25. Поиск дисков**

В нижней части экрана приведена ссылка с числом выбранных дисков (см. Раздел 6.10, «Расположение установки»), которая открывает диалог Выбранные диски (см. Раздел 6.10.1, «Установка загрузчика»).

Чтобы изменить параметры раздела, выберите его в левой части окна — справа открываются его характеристики.
Рисунок 6.26. Настройка разделов

- **Имя** — имя тома LVM или Btrfs. Имена стандартных разделов присваиваются автоматически и не меняются. Так, например, разделу `/home` может быть присвоено имя `sda1`.

- **Точка монтирования** — точка подключения раздела. Так, для корневого раздела введите `/`, для загрузочного раздела введите `/boot` и т.п. Для раздела подкачки точку не надо выбирать — достаточно лишь выбрать тип `swap`.

- **Метка** — уникальная метка раздела.

- **Размер** — размер раздела в килобайтах, мегабайтах, гигабайтах или терабайтах. Если единицы не указаны, будут использоваться килобайты.

- **Тип устройства** — стандартный раздел, BTRFS, LVM или динамический LVM. При наличии двух и более дисков также будет доступно значение RAID. Справа от поля расположен флажок шифрования раздела. Его пароль можно будет установить позднее.

- **Файловая система** — тип файловой системы. Справа расположен флажок форматирования.

Раздел 6.10.4.1.1, «Типы файловых систем» содержит подробную информацию.

Чтобы сохранить изменения, нажмите кнопку Применить. Они вступят в силу только после начала установки. Чтобы отменить изменения, нажмите Сбросить все.

Завершив настройку, нажмите Готово. Если флажок шифрования был установлен, будет предложено ввести парольную фразу. После этого появится окно, где будут перечислены операции по настройке.
разделов и файловых систем, включая создание, изменение размера и удаление. Нажмите **Принять изменения** или **Отменить и вернуться к настройке разделов**. Наконец, чтобы настроить разделы на другом диске, выберите его в окне устройств и перейдите к окну ручной разметки.

### 6.10.4.1.1. Типы файловых систем

Red Hat Enterprise Linux позволяет создать разделы и файловые системы разных типов.

#### Типы устройств

- **Стандартный раздел** может содержать файловую систему, пространство подкачки или может выступать в качестве основы для программного RAID-массива или физического тома LVM.

- **LVM** — при создании раздела LVM логический том будет создан автоматически. LVM оптимизирует работу жестких дисков (см. Раздел 6.10.4.3, «Создание LVM» и руководство по LVM в Red Hat Enterprise Linux 7).

- **Динамический LVM** перераспределяет свободное пространство между устройствами в зависимости от программных требований. По мере необходимости пул пространства может наращиваться динамически.

- **BTRFS** — файловая система с характеристиками устройства, которая может работать с большим числом файлов, файлами и томами гораздо большого размера по сравнению с ext2, ext3 и ext4 (см. Раздел 6.10.4.4, «Создание подраздела Btrfs»).

- **Программный RAID** — на основе таких разделов позднее можно будет создать RAID-массив. При этом каждому диску выделяется один RAID-раздел. Раздел 6.10.4.2, «Создание программного RAID» и руководство по администрированию накопителей в Red Hat Enterprise Linux 7 содержат дополнительную информацию.

#### Файловые системы

- **xfs** — высокопроизводительная масштабируемая файловая система, размер которой может достигать 16 экзабайт (~16 миллионов терабайт). XFS поддерживает файлы размером до 8 экзабайт (~8 миллионов терабайт), структуры каталогов с десятками миллионов записей и включает функции журналирования метаданных, что гарантирует быстрое восстановление в случае сбоя, а также поддерживает дефрагментацию и изменение размера без необходимости отключения файловой системы. Приложение Е, Команды ext4 и XFS содержит описание аналогов команд ext4 в XFS.

  Максимальный размер раздела XFS составляет **500 ТБ**.

- **ext4** создана на основе ext3 и обладает рядом преимуществ, включая поддержку больших файловых систем и файлов, быстрое и эффективное распределение пространства, отсутствие ограничений на число подкаталогов в одном каталоге, быструю проверку файловой системы и надежное ведение журналов.

  Максимально допустимый размер ext4 в Red Hat Enterprise Linux 7 составляет **50 ТБ**.

- **ext3** создана на основе ext2, ее главным преимуществом является поддержка журналов, что сокращает время восстановления благодаря отсутствию необходимости в проверке fsck.

- **ext2** поддерживает стандартные типы файлов Unix (обычные файлы, каталоги, символьные ссылки и т.п.) и позволяет присваивать им имена длиной до 255 знаков.

- **vfat** — файловая система Linux, совместимая с FAT и поддерживающая длинные имена файлов Microsoft Windows.
swap — раздел подкачки для организации виртуальной памяти: если в ОЗУ не хватает места для обработки данных, неактивные фрагменты перемещаются в область подкачки, освобождая место для новых страниц.

BIOS Boot — небольшой раздел для загрузки систем на базе BIOS с дисков с таблицей разделов GPT (см. Раздел 6.10.1, «Установка загрузчика»).

EFI — небольшой раздел для загрузки систем на базе UEFI с дисков с таблицей разделов GPT (см. Раздел 6.10.1, «Установка загрузчика»).

Каждая файловая система накладывает свои ограничения на размер файлов. Подробную информацию можно найти на портале пользователей по адресу https://access.redhat.com/site/articles/rhel-limits.

6.10.4.2. Создание программного RAID

Избыточные массивы независимых дисков или так называемые RAID-массивы (Redundant Arrays of Independent Disks) объединяют несколько устройств хранения для обеспечения должного уровня производительности и отказоустойчивости.

Устройство RAID создается один раз, после чего его состав можно корректировать посредством добавления или исключения дисков. На каждом диске может быть создан один RAID-раздел — таким образом, максимальный уровень RAID определяется числом дисков.

Рисунок 6.27. Окно создания раздела RAID с открытым списком типов устройств

Рисунок 6.27. Окно создания раздела RAID с открытым списком типов устройств
Если для установки было выбрано больше одного диска, в этом окне можно будет настроить RAID-устройство.

Порядок создания RAID-устройства:

1. Создайте точку монтирования (см. Раздел 6.10.4.1, «Создание файловых систем и конфигурация разделов»).  

2. Нажмите кнопку конфигурации под левой панелью. В открывшемся окне выберите устройства.  

3. В списке Тип устройства выберите RAID.  

4. В списке Файловая система выберите подходящее значение (см. Раздел 6.10.4.1.1, «Типы файловых систем»).  

5. Выберите Уровень RAID.

Возможные значения:

- **RAID0** — оптимальная производительность с чередованием  
  Данные распределяются между несколькими дисками. RAID 0 обеспечивает высокий уровень производительности за счет объединения дисков в одно виртуальное устройство. Надежность RAID 0 невысокая, так как отказ одного диска приведет к сбою всего массива. Для создания RAID 0 необходимо как минимум два раздела RAID.  

- **RAID1** — зеркалирование  
  Использует зеркалирование за счет копирования данных на все диски в составе массива. Дополнительные устройства повышают уровень избыточности. Для создания RAID 1 необходимо как минимум два раздела RAID.  

- **RAID4** — с четностью  
  Данные распределяются между несколькими дисками, но при этом один диск служит для хранения информации о четности, что помогает восстановить данные в случае сбоя. Недостаток такой организации заключается в том, что информация о четности хранится на одном диске, что представляет риск для общей производительности массива. Для создания RAID 4 необходимо как минимум три раздела RAID.  

- **RAID5** — распределенная схема  
  Контрольные суммы и данные циклически распределяются между элементами массива. RAID 5 пользуется гораздо большей популярностью по сравнению с RAID 4 благодаря параллельной обработке данных. Для создания RAID 5 необходимо как минимум три раздела RAID.  

- **RAID6** — избыточность  
  Аналогичен RAID 5, но контрольные данные копируются на два устройства. Для создания RAID 5 необходимо как минимум четыре раздела RAID — два для основных данных и два для контрольных.  

- **RAID10** — чередование с зеркалированием  
  RAID 10 (вложенный RAID или смешанный RAID) — данные распределяются между зеркальными наборами дисков. Так, RAID 10 из четырех разделов будет включать две зеркальные пары RAID 1. Данные при этом последовательно распределены между парами аналогично RAID 0. Для создания RAID 10 потребуются как минимум...
Четыре раздела RAID.

6. Чтобы сохранить изменения, нажмите Применить. Затем нажмите Готово, чтобы вернуться в меню обзора.

Если для создания массива не хватает дисков, в нижней части окна появится сообщение с рекомендуемым числом.

### 6.10.4.3. Создание LVM

LVM (Logical Volume Management) распределяет пространство между динамически изменяемыми томами. Разделы физического диска представлены в качестве физических томов, которые могут быть сгруппированы в группы. В свою очередь, группы томов могут подразделяться на логические тома, принцип работы которых аналогичен стандартным дисковым разделам. Таким образом, логические тома LVM функционируют как разделы, которые могут располагаться на нескольких физических дисках.

Функции настройки LVM доступны только в графическом режиме установки. Приложение C, Знакомство с LVM и Администрирование LVM в Red Hat Enterprise Linux 7 содержат подробную информацию.

---

**Важно**

В текстовом режиме установки функции настройки LVM недоступны. Если требуется создать структуру LVM, нажмите Ctrl+Alt+F2, чтобы открыть другую консоль, и используйте команду `lvm`. Для возврата к установке нажмите Ctrl+Alt+F1.

---

Рисунок 6.28. Настройка логического тома
Порядок создания логического тома с последующим добавлением в группу томов:

1. Создайте точку монтирования (см. Раздел 6.10.4.1, «Создание файловых систем и конфигурация разделов»).

2. В списке Тип устройства выберите LVM. Появится список Группа томов.

3. Выберите Создать группу томов в меню или нажмите кнопку Изменить, чтобы открыть диалог настройки группы.

Рисунок 6.29. Настройка группы томов

Здесь можно выбрать уровень RAID (см. Раздел 6.10.4.2, «Создание программного RAID»), установить флажок шифрования и настроить размер. Возможные варианты выбора размера:

- **Автоматически** — размер определяется автоматически с учетом заданных параметров логических томов. Этот вариант является оптимальным, если не требуется оставлять свободное пространство в пределах группы.

- **Как можно больше** — группе выделяется максимально возможный размер независимо от конфигурации логических томов. Этот вариант подходит для хранения данных в LVM с возможной перспективой добавления новых или наращивания существующих томов.

- **Фиксирован** — позволяет установить точный размер группы томов.

Нажмите Сохранить.
4. Чтобы сохранить изменения, нажмите **Применить**. Затем нажмите **Готово**, чтобы вернуться в меню обзора.

### Предупреждение

Раздел `/boot` не может располагаться в пределах логического тома.

#### 6.10.4.4. Создание подраздела Btrfs

Файловая система Btrfs характеризуется высоким уровнем устойчивости и способностью обнаружения и исправления ошибок. Btrfs использует контрольные суммы для обеспечения целостности данных и поддерживает снимки файловой системы.

Составляющие тома Btrfs создаются в окне ручного создания разделов. Показанный напротив них размер будет отражать суммарный размер тома.

Рисунок 6.30. Настройка подраздела Btrfs

Порядок создания подраздела Btrfs:

1. Создайте точку монтирования для подключения тома Btrfs (см. Раздел 6.10.4.1, «Создание файловых систем и конфигурация разделов»).

2. В списке Тип устройства выберите BTRFS. В результате список Файловая система станет недоступен, Btrfs — будет доступен. Дополнительно появится список Том с именем созданного тома.

3. Выберите Создать том в меню или нажмите кнопку Изменить, чтобы открыть диалог настройки тома.
Рисунок 6.31. Настройка тома Btrfs

Возможные значения:

**RAID0 (производительность)**

Данные распределяются между несколькими дисками. RAID 0 обеспечивает высокий уровень производительности за счет объединения дисков в одно виртуальное устройство. Надежность RAID 0 невысокая, так как отказ одного диска приведет к сбою всего массива. Для создания RAID 0 необходимо как минимум два раздела RAID.

**RAID1 (избыточность)**

Использует зеркалирование за счет копирования данных на все диски в составе массива. Дополнительные устройства повышают уровень избыточности. Для создания RAID 1 необходимо как минимум два раздела RAID.

**RAID10 (производительность, избыточность)**

Представляет собой комбинацию RAID0 и RAID1, где данные распределяются между зеркальными наборами дисков. Так, RAID 10 из четырех разделов будет включать две зеркальные пары RAID 1. Данные при этом последовательно распределены между парами аналогично RAID 0. Для создания RAID 10 потребуются как минимум четыре раздела RAID.

Дополнительно можно установить флажок шифрования и настроить размер тома. Возможные значения:
Автоматически — размер тома определяется автоматически с учетом заданных параметров. Этот вариант является оптимальным, если нет необходимости в наличии свободного пространства в пределах тома.

Как можно больше — выделяет максимально возможный размер независимо от конфигурации подразделов. Этот вариант подходит для хранения данных в Btrfs с возможной перспективой добавления новых или наращивания существующих подразделов.

Фиксирован — позволяет установить точный размер тома.

Нажмите Сохранить.

4. Чтобы сохранить изменения, нажмите Применить. Затем нажмите Готово, чтобы вернуться в меню обзора.

Если для создания массива не хватает дисков, в нижней части окна появится сообщение с рекомендуемым числом.

6.10.4.5. Рекомендуемая схема разбиения

На платформах AMD64 и Intel 64 рекомендуется создать разделы:

- `/boot`
- `/`
- `/home`
- `swap`

Раздел `/boot` (не меньше 500 МБ)

Раздел `/boot` содержит ядро операционной системы (отвечающее за загрузку Red Hat Enterprise Linux) и файлы начальной загрузки. Вследствие определенных микропрограммных ограничений рекомендуется рассмотреть возможность создания небольшого раздела для их хранения (500 МБ должно быть достаточно).

Предупреждение

Раздел `/boot` будет создан автоматически в ходе установки. Но если загрузка системы с (U)EFI осуществляется из корневого раздела, размер которого превышает 2 ТБ, надо будет создать отдельный раздел `/boot` размером меньше 2 ТБ.
Примечание

Некоторые BIOS не поддерживают загрузку с RAID-контроллеров. В таких случаях раздел `/boot` следует разместить за пределами RAID-массива — к примеру, на отдельном диске.

Раздел root (рекомендуется 10 ГБ)

Именно здесь располагается корневой каталог «/». Если путь к файлу не включает другой смонтированный раздел (например, `/boot` или `/home`), он будет помещен в этот раздел.

Для минимальной установки корневому разделу достаточно выделить 5 ГБ, в то время как для полной установки со всеми группами программ потребуется не меньше 10 ГБ.

Важно

Не следует путать каталог `/` с домашним каталогом `/root`.

Раздел /home (не меньше 1 ГБ)

Чтобы отделить файлы пользователя от системных данных, создайте отдельный раздел для каталога `/home` в группе томов. Таким образом, в случае обновления или перестановки Red Hat Enterprise Linux, содержимое `/home` не будет потеряно. При наличии более 50 ГБ пространства этот раздел будет создан автоматически в ходе установки.

Раздел swap (не меньше 1 ГБ)

Подкачка страниц представляет собой механизм организации виртуальной памяти. При дефиците оперативной памяти данные переносятся из памяти в раздел подкачки. При расчете его размера следует руководствоваться степенью нагрузки на память, а не ее размером. Для этого надо оценить нагрузку индивидуальных приложений.

При недостатке места в области подкачки ядро системы начнет останавливать процессы, и наоборот, слишком большой размер пространства подкачки снижает эффективность использования ресурсов и затрудняет обнаружение утечек памяти. Более подробно о расчете размера пространства подкачки рассказывается на справочной странице `mkswap(8)`.

Ниже приведена таблица с рекомендуемыми размерами раздела подкачки в зависимости от размера ОЗУ. Размер выбирается автоматически во время установки и не превышает 10% от размера жесткого диска. Чтобы увеличить размер или добавить возможность перехода системы в спящий режим, надо будет откорректировать это значение.

Таблица 6.2. Рекомендуемый размер пространства подкачки

<table>
<thead>
<tr>
<th>Объем ОЗУ</th>
<th>Swap</th>
<th>swap с учетом перехода в спящий режим</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2 ГБ</td>
<td>В два раза больше размера ОЗУ</td>
<td>В три раза больше размера ОЗУ</td>
</tr>
<tr>
<td>&gt; 2 – 8 ГБ</td>
<td>Равен размеру ОЗУ</td>
<td>В два раза больше размера ОЗУ</td>
</tr>
</tbody>
</table>
При расчете размера на стыке диапазонов (например, для 2 ГБ, 8 ГБ или 64 ГБ), рекомендуется увеличить размер пространства подкачки, так как это поможет повысить производительность.

Распределение пространства подкачки между несколькими устройствами значительно повысит производительность. Особенно разница будет заметна в системах с быстрыми дисками, контроллерами и интерфейсами.

Выше мы рассмотрели лишь минимальный набор разделов. В каждом отдельном случае число разделов определяется индивидуальными потребностями системы (см. Раздел 6.10.4.5.1, «Рекомендации по созданию разделов»).

Примечание

Выделите разделам минимально необходимое пространство — позднее их размер можно будет изменить. Приложение С, Знакомство с LVM содержит информацию о более гибком методе управления хранилищем.

Если вы не уверены, какие разделы лучше создать, выберите стандартный вариант.

6.10.4.5.1. Рекомендации по созданию разделов

Оптимальная схема разделов определяется тем, как именно данная система Linux будет использоваться. Далее приведены советы, которые помогут эффективно распределить дисковое пространство.

- Рассмотрите возможность шифрования разделов с важными данными для их защиты от неавторизованного доступа. Как минимум рекомендуется зашифровать /home.

- Установленное ядро требует примерно 20 МБ в разделе /boot. Предлагаемых по умолчанию 500 МБ должно хватить.

- Каталог /var содержит различные приложения (среди прочих, файлы веб-сервера Apache). Сюда будут временно загружаться обновления пакетов. Убедитесь, что разделу, где расположен /var, предоставлено достаточно места не только для приложений, но и для загрузки доступных обновлений.

- По умолчанию PackageKit загружает обновленные пакеты в /var/cache/yum/. Если вы решили создать отдельный раздел для /var, выделите ему не менее 3 гигабайт для загрузки обновлений.

- Каталог /usr содержит основную часть программ Red Hat Enterprise Linux. Для установки стандартного набора пакетов требуется по крайней мере 5 ГБ. При установке комплекта разработчика рекомендуется как минимум удвоить это число.

- По возможности оставьте часть пространства в группе томов LVM нераспределенной. Это позволит подстроиться к возможным изменениям требований пространства и избежать удаления данных для его освобождения. Дополнительно можно использовать функции динамического выделения пространства.
Распределение каталогов между разными разделами позволит сохранить их содержимое в случае переустановки Red Hat Enterprise Linux. Например, если база данных MySQL расположена в /var/lib/mysql, можно поместить этот каталог в отдельный раздел — тогда ее не надо будет восстанавливать при переустановке.

В системах с BIOS, использующих таблицу GPT, необходимо создать раздел biosboot размером 1 МБ (см. Раздел 6.10.1, «Установка загрузчика»).

В системах с UEFI надо создать раздел /boot/efi. Рекомендуемый размер — 200 МБ.

6.11. Устройства хранения

На странице Расположение установки показаны локальные диски, на которых можно установить Red Hat Enterprise Linux (см. Раздел 6.10, «Расположение установки»). Чтобы добавить другие устройства, нажмите кнопку Добавить диск.

![Панель выбора устройств хранения](image)

**Рисунок 6.32. Обзор устройств**

**Примечание**

В ходе установки процесс mdeventd не отслеживает программные RAID-устройства и LVM.

6.11.1. Окно выбора устройств хранения

В этом окне показаны доступные накопители.

Устройства сгруппированы следующим образом:
Многоканальные устройства

Накопители, для доступа к которым можно использовать несколько путей с помощью нескольких SCSI-контроллеров или портов Fibre Channel.

Программа установки может определить только номера многопутевых устройств длиной от 16 до 32 знаков.

Другие устройства SAN

Устройства в сети хранения данных.

Микропрограммный RAID

Накопители, подключенные к микропрограммному RAID-контроллеру.

Рисунок 6.33. Обзор специальных устройств

В нижней части окна доступны кнопки “Добавить целевое устройство iSCSI” и “Добавить FCoE SAN” (Fibre Channel over Ethernet).

На вкладке поиска можно отфильтровать устройства по идентификатору WWID (World Wide Identifier), порту, цели и номеру LUN (Logical Unit Number).

Рисунок 6.34. Вкладка поиска устройств

Чтобы выполнить поиск, выберите критерий (порт, цель, LUN, WWID), определите дополнительные параметры и нажмите кнопку поиска.
Обнаруженные накопители будут показаны в основной части окна. Установите флажок напротив устройства, чтобы добавить его в список установки.

Сам по себе выбор устройства в этом окне не подвергает его данные риску. Также стоит заметить, что даже если устройства не были выбраны на этом этапе, их можно будет добавить после установки, отредактировав файл `/etc/fstab`.

**Важно**

Выбранные на этом этапе устройства будут доступны программе Anaconda. Для цепной загрузки Red Hat Enterprise Linux из другого загрузчика надо выбрать все представленные в списке устройства.

Завершив, нажмите Готово.

### 6.11.1.1. Дополнительные параметры накопителей

В этом окне можно настроить цель iSCSI (см. Приложение В, Диски iSCSI) или FCoE (Fibre Channel over Ethernet) SAN (Storage Area Network).

**Рисунок 6.35. Дополнительные параметры накопителей**

#### 6.11.1.1.1. Настройка параметров iSCSI

Нажмите кнопку **Добавить целевое устройство iSCSI**...
Рисунок 6.36. Окно iSCSI

Для выполнения установки на дисках iSCSI необходимо создать сеанс доступа iSCSI. Для авторизации CHAP (Challenge Handshake Authentication Protocol) может потребоваться указать имя пользователя и пароль доступа к цели iSCSI. Дополнительно можно настроить обратную идентификацию, когда при подключении клиента (инициатора) к цели iSCSI она в свою очередь тоже должна будет представиться инициатору. Оба типа в совокупности образуют взаимную (двухстороннюю) проверку CHAP, обеспечивая максимальный уровень защиты соединений iSCSI.

Примечание

Повторите эти действия столько раз, сколько необходимо для добавления всех накопителей. Стоит помнить, что имя инициатора iSCSI после первого обнаружения нельзя будет изменить. Для этого потребуется перезапустить процесс установки.

Процедура 6.1. Обнаружение iSCSI и создание сеанса iSCSI

В окне добавления целевого устройства iSCSI введите необходимую информацию.

<table>
<thead>
<tr>
<th>ADD iSCSI STORAGE TARGET</th>
<th>Добавление iSCSI-хранения</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Target IP Address:</strong></td>
<td>IP-адрес целевого устройства iSCSI</td>
</tr>
<tr>
<td><strong>iSCSI Initiator Name:</strong></td>
<td>Долго и скучно. Возможно, стоит использовать вариант \texttt{iqn.1994-05.com.redhat:11b96f6ac2:7} для определения имени инициатора iSCSI.</td>
</tr>
<tr>
<td><strong>Discovery Authentication Type:</strong></td>
<td>Тип аутентификации при обнаружении</td>
</tr>
<tr>
<td>CHAP Username:</td>
<td>Имя пользователя для аутентификации</td>
</tr>
<tr>
<td>CHAP Password:</td>
<td>Пароль для аутентификации</td>
</tr>
<tr>
<td>Reverse CHAP Username:</td>
<td>Имя пользователя для обратной аутентификации</td>
</tr>
<tr>
<td>Reverse CHAP Password:</td>
<td>Пароль для обратной аутентификации</td>
</tr>
</tbody>
</table>

После заполнения всех полей нажмите кнопку «Start Discovery» (Запустить обнаружение). После обнаружения целей iSCSI вы можете приступить к установке.
1. Заполните адрес цели iSCSI.

2. В поле Имя инициатора iSCSI укажите имя в формате IQN (iSCSI qualified name):
   -iqn. (включая точку).
   - Дата регистрации домена в виде ГГГГ-ММ., например 2010-09. (включая точку).
   - Домен организации в обратном порядке, начиная с домена верхнего уровня. Так, storage.example.com будет представлен как com.example.storage.
   - Двоеточие, за которым следует идентификатор инициатора iSCSI в пределах домена. Например: :diskarrays-sn-a8675309.

   Таким образом, полное имя выглядит так: iqn.2010-09.storage.example.com:diskarrays-sn-a8675309. Anaconda заполнит поле имени инициатора iSCSI в соответствии с этим форматом.

   За дальнейшей информацией обратитесь к главе 3.2.6 в спецификации RFC 3720 - Internet Small Computer Systems Interface (iSCSI) (http://tools.ietf.org/html/rfc3720#section-3.2.6) и к главе 1 в RFC 3721 - Internet Small Computer Systems Interface (iSCSI) Naming and Discovery (http://tools.ietf.org/html/rfc3721#section-1).

3. Выберите тип аутентификации:
   - без проверки,
   - пара CHAP,
   - двухсторонняя пара CHAP.

4. A. При выборе пары CHAP введите имя пользователя и пароль доступа к цели iSCSI.
   B. Если выбрана двухсторонняя пара CHAP, заполните поля Пользователь CHAP, Пароль CHAP, Пользователь обратного CHAP и Пароль обратного CHAP.

5. Дополнительно можно отметить флажок Привязать устройства к сетевым интерфейсам.

6. Нажмите кнопку Найти. В случае успеха будет показан список обнаруженных устройств.

7. Напротив каждого узла будет показан флажок выбора.
Рисунок 6.37. Список узлов iSCSI

8. В списке Аутентификация на узле доступны те же варианты, которые рассматривались на этапе 3. Обычно для подключения к узлу используются те же реквизиты доступа, что и при его обнаружении. Для этого выберите пункт Использовать учетные данные с этапа обнаружения.

9. Нажмите кнопку входа, чтобы создать сеанс iSCSI.

6.11.1.1.2. Настройка параметров FCoE

Нажмите кнопку Добавить FCoE SAN, чтобы перейти к диалогу настройки сетевых интерфейсов для обнаружения устройств FCoE.

Выберите интерфейс, подключенный к коммутатору FCoE, и нажмите Добавить диски FCoE.
Рисунок 6.38. Настройка параметров FCoE

Дополнительные опции:

Использовать DCB

Стандарт DCB (Data Center Bridging) включает набор расширений для оптимизации соединений Ethernet в кластерах и сетях. Этот флажок позволяет включить поддержку DCB во время установки. DCB следует использовать только для сетевых интерфейсов, требующих наличия клиентов DCBX, реализованных на уровне узла. Для интерфейсов с аппаратными клиентами DCBX этот параметр надо отключить.

Авто VLAN

Отвечает за автоматическое определение VLAN. Если флажок установлен, протокол FIP (FCoE Initiation Protocol) будет включен на Ethernet-интерфейсе сразу после проверки конфигурации. Если интерфейсы не настроены, для обнаруженных FCoE VLAN будут созданы новые интерфейсы, а для интерфейсов VLAN будут созданы экземпляры FCoE.

Обнаруженные устройства будут показаны на вкладке Другие устройства SAN.

6.12. Начало установки

Кнопка начала установки станет доступна, как только вы заполните обязательные секции окна обзора.

Рисунок 6.39. Готов к установке
До этого момента изменения не записываются на диск. Как только вы нажмете кнопку **Начать установку**, Anaconda выделит место на жестком диске и начнет установку Red Hat Enterprise Linux. Этот процесс может удалить существующие данные.

Чтобы еще раз проверить выбранные настройки, нажмите **Вернуться**. Чтобы отменить установку, нажмите **Выход** или выключите компьютер, нажав и удерживая кнопку питания на системном блоке. После проверки настроек нажмите **Начать установку**.

После этого момента не следует прерывать установку. Если же это произошло (например, при аварийном отключении питания), процесс установки надо будет начать заново.

### 6.13. Ход выполнения установки

Индикатор прогресса помогает следить за ходом выполнения установки.

![Установка пакетов](image)

Рисунок 6.40. Установка пакетов

Журнал установки хранится в `/var/log/anaconda/anaconda.packaging.log`.

Пока устанавливаются программы, можно настроить пароль root или создать пользователя.

В секции **Пароль root** можно создать пароль учетной записи root. Пароль можно настроить во время или после установки пакетов. Без этого пароля вы не сможете завершить установку.

На этом этапе также рекомендуется создать пользователя. Учетная запись пользователя используется для ежедневного доступа к системе.

### 6.13.1. Установка пароля root

Создание учетной записи root является одним из важнейших этапов установки системы. Режим root
аналогичен режиму администратора в Microsoft Windows и предназначен для установки, обновления пакетов и решения административных задач. Пользователь root получает полный контроль над системой, и именно поэтому он должен использоваться исключительно в целях поддержки и администрирования системы. Подробную информацию можно найти в руководстве системного администратора Red Hat Enterprise Linux 7.

Рисунок 6.41. Окно пароля root

Введите пароль root. Из соображений безопасности вместо символов будут показаны звездочки. Введите его еще раз в поле подтверждения. Завершив, нажмите Готово.

При выборе пароля следует руководствоваться несколькими правилами:

- должен содержать не менее 8 символов;
- может содержать буквы, цифры, точку и другие символы;
- должен содержать буквы в верхнем и нижнем регистре;
- создайте такой пароль, чтобы его нельзя было легко подобрать;
- не используйте слова (на любом языке), аббревиатуры и цифры, связанные с вами или вашей организацией;
- хотя это и не рекомендуется, но если вы решили записать пароль, храните его в безопасном месте.

Примечание

Чтобы изменить пароль после завершения установки, воспользуйтесь программой настройки пароля root.

6.13.2. Создание пользователя

Для создания непривилегированного пользователя выберите пункт Настройки пользователя и в открывшемся окне определите имя пользователя и пароль. Если по какой-то причине вы не хотите создавать учетную запись на этом этапе, это можно будет сделать после установки.

Чтобы закрыть окно без сохранения изменений, оставьте поля пустыми и нажмите Готово.
Рисунок 6.42. Создание пользователя

Введите полное имя и имя пользователя. Имя пользователя не должно содержать пробелов и не может быть больше 32 знаков. Настоятельно рекомендуется установить пароль для создаваемой учетной записи.

При формировании пароля пользователя следует придерживаться нескольких рекомендаций (см. Раздел 6.13.1, «Установка пароля root»).

Чтобы определить другие параметры, нажмите Дополнительно.

**Глава 6. Установка Red Hat Enterprise Linux на AMD64 и Intel 64**
Рисунок 6.43. Дополнительные параметры пользователя

По умолчанию имя домашнего каталога пользователя совпадает с его именем. Обычно не требуется отклоняться от этой линии поведения.

Обычно нумерация пользователей начинается с 1000, но в этом окне можно присвоить другие идентификаторы пользователя и группы. В нижней части можно ввести список групп, в которые войдет созданный пользователь. Если группы не существуют, они будут автоматически созданы. В скобках можно указать новый идентификатор группы.

Нажмите Сохранить, чтобы вернуться к предыдущему окну.

6.14. Завершение установки

Поздравляем! Установка Red Hat Enterprise Linux завершена.

Нажмите кнопку перезагрузки, чтобы перезагрузить Red Hat Enterprise Linux. Не забудьте извлечь установочные носители, если они не были извлечены автоматически.

Появится индикатор прогресса загрузки Red Hat Enterprise Linux. После загрузки откроется окно авторизации. Если X Window System не установлена, появится строка приглашения login: .

Если же X Window System была установлена, после загрузки Red Hat Enterprise Linux будет запущена программа первоначальной настройки, с помощью которой можно настроить дату и время, зарегистрировать компьютер в Red Hat Network и т.д.

Глава 26, Первая настройка и Firstboot содержит подробную информацию.
Глава 7. Диагностика конфликтов установки на AMD64 и Intel 64

В этой секции обсуждаются общие проблемы установки и способы их решения.

Anaconda сохраняет журналы в каталог /tmp.

Таблица 7.1. Журналы установки

<table>
<thead>
<tr>
<th>Файл</th>
<th>Содержание</th>
</tr>
</thead>
<tbody>
<tr>
<td>/tmp/anaconda.log</td>
<td>общие сообщения Anaconda</td>
</tr>
<tr>
<td>/tmp/program.log</td>
<td>сообщения внешних программ</td>
</tr>
<tr>
<td>/tmp/storage.log</td>
<td>информация о модулях хранения данных</td>
</tr>
<tr>
<td>/tmp/packaging.log</td>
<td>сообщения yum и rpm</td>
</tr>
<tr>
<td>/tmp/syslog</td>
<td>сообщения об оборудовании</td>
</tr>
</tbody>
</table>

При сбое установки сообщения из этих файлов будут помещены в /tmp/anaconda-tb-ID, где ID — случайная строка.

Перечисленные файлы располагаются на RAM-диске установщика и будут удалены после перезапуска системы. Для создания постоянной копии скопируйте их на внешнее устройство или другой компьютер с помощью scp. Если используется внешнее устройство, при необходимости сделайте копию его данных. Ниже рассматриваются способы копирования журналов.

Процедура 7.1. Копирование журналов по сети

1. Нажмите Ctrl+Alt+F2, чтобы открыть окно оболочки. Вы автоматически войдете в режим root и получите доступ к временной файловой системе.
2. Вставьте USB-накопитель в разъем и выполните команду dmesg для получения списка последних событий. В конце журнала будут показаны сообщения о подключении устройства наподобие:

   [ 170.171135] sd 5:0:0:0: [sdb] Attached SCSI removable disk

Обратите внимание на обозначение sdb.
3. Перейдите в /mnt и создайте новый каталог, в который будет монтироваться USB-устройство. Имя каталога может быть любым — в приведенном примере будет выбрано имя usb.

   # mkdir usb

4. Смонтируйте устройство в созданный каталог. В большинстве случаев надо смонтировать лишь один раздел (например, sdb1), а не весь диск sdb.

   # mount /dev/sdb1 /mnt/usb

Проверьте наличие доступа к устройству, просмотрев список его файлов.

   # cd /mnt/usb

   # ls
5. Скопируйте журналы на устройство.

```
cp /tmp/*log /mnt/usb
```

6. Отключите USB-устройство. Если появилось сообщение о том, что устройство занято, перейдите в другой каталог, например `/`.

```
umount /mnt/usb
```

Журналы установки должны располагаться на USB-накопителе.

**Процедура 7.2. Копирование журналов по сети**

1. Нажмите `Ctrl+Alt+F2`, чтобы открыть окно оболочки. Вы автоматически войдете в режим root и получите доступ к временной файловой системе.

2. Перейдите в каталог `/tmp`:

```
cd /tmp
```

3. Скопируйте журналы на другой компьютер:

```
scp *log пользователь@адрес:путь
```

Укажите имя пользователя, адрес или имя узла, и путь к каталогу. Например, для копирования в каталог `/home/john/logs/` пользователя `john` на удаленном узле `192.168.0.122` выполните:

```
scp *log john@192.168.0.122:/home/john/logs/
```

При первом подключении к удаленной системе появится сообщение:

```
The authenticity of host '192.168.0.122 (192.168.0.122)' can't be established.
Are you sure you want to continue connecting (yes/no)?
```

Введите `yes` и нажмите `Enter`. Будет предложено ввести пароль, после чего начнется копирование файлов.

Журналы будут размещены в удаленной системе.

**7.1. Решение конфликтов при запуске установки**

**7.1.1. Конфликты при запуске графического режима**

При запуске графической версии установки на компьютерах с определенными типами видеокарт не исключена вероятность возникновения проблем. Так, если программа установки не может запуститься со стандартными настройками, она попытается продолжить работу в режиме с низким разрешением. Если и эта попытка завершилась неудачей, будет выбран текстовый режим.
Большинство подобных конфликтов можно решить с помощью параметров загрузки (см. Раздел 20.1, «Настройка системы установки в меню загрузки»).

Базовый графический режим

Можно попытаться запустить установку с использованием базового видеодрайвера. Для этого в меню загрузки надо выбрать Диагностика > Базовый режим установки Red Hat Enterprise Linux 7.0 или в конец строки загрузки добавить параметр inst.xdriver=vesa.

Выбор разрешения экрана вручную

Если программа установки не может определить разрешение экрана, можно задать его вручную с помощью параметра загрузки inst.resolution=x, заменив х желаемым разрешением, например 1024x768.

Выбор видеодрайвера

Параметр inst.xdriver=x позволяет указать видеодрайвер, переопределив автоматический выбор. Здесь x — имя драйвера, например nouveau.

Примечание


Установка с помощью VNC

Если перечисленные выше решения не помогли, можно попробовать удаленно запустить графический режим установки при помощи VNC (см. Глава 22, Установка с помощью VNC).

7.1.2. Последовательная консоль не обнаружена

Иногда установка в текстовом режиме с использованием последовательной консоли в системах с видеокартой, но без монитора, не генерирует вывод. Дело в том, что Anaconda автоматически определяет наличие видеокарты и пытается ее использовать для вывода, даже если монитор не подключен.

В этом случае рекомендуется использовать параметры inst.text и console= (см. Глава 20, Параметры загрузки).

7.2. Решение конфликтов во время установки

7.2.1. Диски не обнаружены

Если при запуске установки появилось сообщение

| Диски не обнаружены. Выключите компьютер и подключите хотя бы один диск. После этого можно вновь начать установку. |

это значит, что Anaconda не обнаружила устройства для установки.

При наличии аппаратного RAID-контроллера проверьте его конфигурацию. За подробной
информацией обратитесь к его документации.

При выполнении установки на iSCSI-устройства в бездисковых системах убедитесь, что на соответствующем адаптере (HBA, Host Bus Adapter) заданы обязательные LUN (Logical Unit Numbers) (см. Приложение В, Диски iSCSI).

Если диски подсоединены, но после перезагрузки сообщение не исчезло, это может служить индикатором того, что программа установки не смогла распознать SCSI-устройство.

Прежде чем приступить к установке, проверьте наличие обновлений драйверов на сайте производителя (см. Глава 4, Обновление драйверов в ходе установки на AMD64 и Intel 64).


7.2.2. Сохранение сообщений отладки

Если программа установки столкнулась с проблемами в графическом режиме, будет предложено заполнить отчет об ошибке. Чтобы его отправить, надо будет ввести данные авторизации на портале пользователей Red Hat. Новые пользователи могут зарегистрироваться здесь: https://www.redhat.com/wapps/ugc/register.html. Для автоматического создания отчетов необходимо наличие рабочего сетевого соединения.

Чтобы приступить к созданию отчета, нажмите Сообщить об ошибке, чтобы отменить установку — выберите Выход.

Для просмотра подробной информации об ошибке выберите Подробнее.... Если у вас есть опыт отладки, нажмите Отладка. Откроется окно виртуального терминала tty1, где можно выполнить другие команды для получения дополнительной информации. Чтобы вернуться к программе установки, выполните команду continue.
Рисунок 7.2. Развернутое окно данных сбоя

Ниже рассказывается, как отправить отчет через портал пользователей.

Процедура 7.3. Передача отчетов в службу поддержки Red Hat.

1. В меню выберите Сообщить об ошибке через портал пользователей Red Hat.
2. Потребуется авторизоваться на портале пользователей. Нажмите Настроить доступ к порталу пользователей Red Hat.
3. В открывшемся окне введите имя и пароль доступа к порталу пользователей Red Hat.
Если подключение осуществляется через прокси-сервер, щелкните на слове **дополнительно** и заполните необходимые данные.

Завершив, нажмите **OK**.

4. Появится новое окно, где можно объяснить, какие действия вызвали ошибку, и добавить комментарии. Постарайтесь подробно описать проблему и включить соответствующие данные, полученные в ходе отладки. Следует помнить, что введенные здесь данные будут открыто доступны на портале пользователей.

Если причина ошибки точно не известна, установите флажок **Я не знаю, что вызвало эту ошибку**.

Нажмите **Вперед**.
5. Еще раз проверьте введенную информацию. Описание можно найти на вкладке комментарии. По желанию можно удалить данные, которые вы не хотите отправлять, но это может усложнить поиск ошибки.

Нажмите Вперед.
6. Проверьте список вложенных файлов. Они содержат системные данные, что может помочь в определении причин проблемы. Чтобы исключить файлы, снимите флажки напротив их имен, а чтобы добавить новые — нажмите **Добавить файл**.

Проверив вложения, установите флажок **Я проверил(а) данные и разрешаю их передачу** и нажмите **Вперед**, чтобы отправить отчет.

![Список вложений](image)

**Рисунок 7.7. Список вложений**

7. Для просмотра результатов создания отчета выберите **Показать журнал**, или нажмите **Закрыть**, чтобы вернуться к исходному окну ошибки. Нажмите **Выход**, чтобы закрыть программу установки.

### 7.3. Решение конфликтов после установки

#### 7.3.1. Не удается загрузиться с RAID-контроллера

Если после выполнения установки вы не можете загрузить систему, возможно, придется ее переустановить, создав другую схему разделов.

Некоторые типы BIOS не поддерживают загрузку с RAID-контроллеров. После установки на экране будет показано приглашение загрузчика (например, `grub>`) и мигающий курсор. В этом случае потребуется создать разделы заново и разместить загрузчик и раздел `/boot` в одном разделе, но за пределами RAID-массива.

Применив изменения, вы сможете завершить установку и загрузить систему. Раздел 6.10, «Расположение установки» содержит подробную информацию о создании разделов.

#### 7.3.2. Ошибки графического режима загрузки
Если при запуске системы загрузчик появляется как и ожидается, но при выборе загрузочной записи система перестает отвечать, возможно, причина заключается в загрузочной последовательности. Попробуйте отключить графический режим и повторите попытку.

Процедура 7.4. Временное отключение графического режима загрузки

1. Включите компьютер и дождитесь появления меню загрузки. Если время ожидания равно нулю, для доступа к меню удерживайте клавишу Esc.
2. Выберите строку загрузчика и нажмите e для перехода в режим редактирования.
3. Перейдите к строке параметров ядра (начинается со слова linux, linux16 или linuxefi) и удалите параметр rhgb.
4. Нажмите F10 или Ctrl+X, чтобы продолжить загрузку с новыми параметрами.

После успешной загрузки вы сможете войти в систему. В такой ситуации надо будет насовсем отключить графический режим — в противном случае надо будет удалять вышеуказанный параметр каждый раз.

Процедура 7.5. Окончательное отключение графического режима загрузки

1. Перейдите в режим root:

   $ su -

2. Откройте файл /etc/default/grub в текстовом редакторе наподобие vim.
3. Перейдите к строке GRUB_CMDLINE_LINUX:

   GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/root rd.md=0 rd.dm=0 vconsole.keymap=us $(\[-\x /usr/sbin/rhcrashkernel-param ] & & /usr/sbin/rhcrashkernel-param || :) rd.luks=0 vconsole.font=latarcyrheb-sun16 rd.lvm.lv=vg_rhel/swap rhgb quiet"

Удалите параметр rhgb.
4. Сохраните файл.
5. Примените изменения, выполнив:

   # grub2-mkconfig --output=/boot/grub2/grub.cfg

После этого компьютер можно будет перезагрузить без активации графического режима. Чтобы снова включить графический режим, надо будет обратно добавить параметр rhgb в строку GRUB_CMDLINE_LINUX в /etc/default/grub и применить изменения, выполнив команду grub2-mkconfig.

Более подробно GRUB2 обсуждается в руководстве системного администратора Red Hat Enterprise Linux 7.

7.3.3. Запуск графического окружения

Если X Window System установлена, но после входа в систему графическое окружение не появляется, можно ее запустить с помощью команды startx. Это изменение будет применено только к текущему сеансу.
Чтобы включить графический режим выбора пользователя при входе, надо изменить стандартное действие `systemd` на `graphical.target` и перезагрузить компьютер. Следующая авторизация будет происходить в графическом режиме.

Процедура 7.6. Выбор графического режима входа по умолчанию

1. Откройте окно приглашения оболочки. Перейдите в режим пользователя root, выполнив `su -`.

2. Измените стандартный уровень загрузки на `graphical.target`:

   ```bash
 # systemctl set-default graphical.target
 ``

Таким образом, при следующем запуске графический режим будет выбран автоматически. Чтобы вернуться к использованию текстового режима, от имени `root` выполните:

```bash
# systemctl set-default multi-user.target
```

За подробной информацией об уровнях `systemd` обратитесь к руководству системного администратора Red Hat Enterprise Linux 7.

7.3.4. Графический интерфейс пользователя недоступен

Если вы не можете запустить X (X Window System), убедитесь, что она была установлена. Дело в том, что некоторые комплекты — Минимальная установка и Веб-сервер — не включают графический интерфейс, поэтому X Window надо будет установить отдельно.

X Window System можно установить и после установки. Информацию об установке графического окружения можно найти в статье https://access.redhat.com/site/solutions/5238.

7.3.5. Сбой сервера X при входе пользователя

Если при входе в систему происходит сбой сервера X, возможно, файловая система переполнена. Проверьте наличие места:

```bash
$ df -h
```

Это поможет определить заполненные разделы. В большинстве случаев причина заключается в переполнении раздела `/home`. Пример вывода `df`:

<table>
<thead>
<tr>
<th>Файловая система</th>
<th>Разм</th>
<th>Исп</th>
<th>Дост</th>
<th>Исп%</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/mapper/vg_rhel-root</td>
<td>20G 6.0G 13G 32% /</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>devtmpfs</td>
<td>1.8G 0 1.8G 0% /dev</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tmpfs</td>
<td>1.8G 2.7M 1.8G 1% /dev/shm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tmpfs</td>
<td>1.8G 1012K 1.8G 1% /run</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tmpfs</td>
<td>1.8G 0 1.8G 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/sys/fs/cgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tmpfs</td>
<td>1.8G 2.6M 1.8G 1% /tmp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/dev/sda1</td>
<td>976M 150M 760M 17% /boot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/dev/dm-4</td>
<td>90G 90G 0 100% /home</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Как видно из примера, раздел `/home` заполнен на 100%. Освободите место, удалив ненужные файлы, и запустите X, выполнив команду `startx`.

90
За дополнительной информацией о команде `df` и ее параметрах обратитесь к справочной странице `df(1)`.

7.3.6. Оперативная память не определяется

Если ядро не смогло определить оперативную память, может оказаться так, что размер доступной памяти будет меньше ожидаемого. Команда `free -m` поможет узнать размер доступной памяти. Если полученное значение меньше ожидаемого, в системах с BIOS можно проверить память с помощью `Memtest86+` (см. Раздел 20.2.1, «Режим тестирования памяти»).

Примечание

Некоторые схемы оборудования резервируют часть памяти. Например, ноутбуки со встроенными видеокартами резервируют память для графического процессора. Таким образом, на ноутбуке с 4 ГБ ОЗУ будет доступно примерно 3.7 ГБ.

В Red Hat Enterprise Linux механизм `kdump` по умолчанию включен и резервирует некоторый объем памяти для запасного ядра. Эта память не будет показана при выполнении команды `free`. Подробную информацию можно найти в руководстве по `Kdump в Red Hat Enterprise Linux 7`.

Если вы точно знаете, что проблема не связана с ошибками памяти, можно попробовать установить размер вручную с помощью параметра ядра `mem=`.

Процедура 7.7. Настройка размера памяти вручную

1. Включите компьютер и дождитесь появления меню загрузки. Если время ожидания равно нулю, для доступа к меню удерживайте клавишу `Esc`.

2. Выберите строку загрузчика и нажмите `e` для перехода в режим редактирования.

3. Перейдите к строке параметров ядра (начинается со слова `linux` или `linux16`) и добавьте:

   ```
   mem=xxM
   ```

 Замените `xx` размером оперативной памяти в мегабайтах.

4. Нажмите `F10` или `Ctrl+X`, чтобы продолжить загрузку с новыми параметрами.

5. Дождитесь завершения загрузки системы и авторизуйтесь. Откройте терминал и выполните команду `free -m`. Если общий размер памяти соответствует ожиданиям, откройте файл `/etc/default/grub` и отредактируйте строку `GRUB_CMDLINE_LINUX`:

   ```
   mem=xxM
   ```

 Замените `xx` размером оперативной памяти в мегабайтах.

6. Примените изменения, выполнив:

   ```
   # grub2-mkconfig --output=/boot/grub2/grub.cfg
   ```

Файл `/boot/grub/grub` должен выглядеть следующим образом:
Более подробно GRUB2 обсуждается в руководстве системного администратора Red Hat Enterprise Linux 7.

7.3.7. Ошибка Signal 11

Ошибка «Signal 11» (сбой сегментации) свидетельствует о попытке обращения к неизвестной ячейке памяти. Если во время установки вы столкнулись с ошибкой «Signal 11», скорее всего, это связано с ошибкой в коде установленных программ или сбоем оборудования.

Убедитесь, что вы используете последние установочные образы, и позвольте Anaconda проверить их целостность. Часто причина кроется в неверно записанных или поцарапанных установочных дисках, поэтому рекомендуется заранее их проверить.

Глава 1, Загрузка файлов Red Hat Enterprise Linux содержит информацию о том, где можно найти последние установочные носители. Чтобы их проверить, добавьте параметр загрузки `rd.live.check` (см. Раздел 20.2.2, «Проверка загрузочных носителей»).

Если носитель успешно прошел проверку, но ошибка не исчезла, следует проверить память. Для этой цели в системах с BIOS используется модуль Memtest86+ (доступен на установочном диске). Раздел 20.2.1, «Режим тестирования памяти» содержит подробную информацию.

<table>
<thead>
<tr>
<th>Важно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Предыдущие выпуски Red Hat Enterprise Linux поддерживали 32- и 64-разрядные серверы Power Systems (ppc и ppc64). Red Hat Enterprise Linux 7 поддерживает только 64-разрядный вариант ppc64.</td>
</tr>
</tbody>
</table>
Глава 8. Планирование установки на IBM Power Systems

В этой главе обсуждаются вопросы подготовки к установке.

8.1. Обновление или переустановка

Поддержка автоматического обновления предыдущих версий Red Hat Enterprise Linux до версии 7 в настоящее время ограничивается архитектурами AMD64 и Intel 64, поэтому на серверах IBM Power Systems надо будет выполнить установку заново. Так как диск будет отформатирован, и существующие разделы будут удалены, — предварительно надо будет создать резервные копии данных пользователя, чтобы после установки их восстановить.

8.2. Совместимость оборудования

8.3. Средства установки IBM

Комплект IBM Installation Toolkit значительно облегчает установку Linux на IBM Power Systems и особенно упрощает работу пользователей, незнакомых с Linux. Основные функции IBM Installation Toolkit: [1]

- Установка и конфигурация Linux на физических серверах IBM Power Systems.
- Установка и конфигурация Linux на виртуальных серверах (в контексте Power System чаще называются логическими разделами или LPAR).
- Установка инструментов IBM в системе Linux, включая средства динамического управления логическими разделами (DLPAR, Dynamic Logical Partitions).
- Обновление IBM Power Systems на микропрограммном уровне.
- Диагностика и обслуживание установленных систем.
- Миграция программного стека и данных сервера LAMP из System x в System p. Аббревиатура LAMP состоит из первых букв названий: Linux, Apache (http-сервер), MySQL и PHP (Perl и Python).

Дополнительные средства контроля производительности PowerLinux включают инструменты диагностики оборудования и вспомогательные средства установки операционных систем Linux на архитектурах POWER7, POWER6, POWER5 и POWER4.

Документацию средств контроля производительности можно найти в информационном центре IBM по адресу http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liauu/liaauraskickoff.htm.

8.4. Подготовка IBM Power Systems
Важно

Убедитесь, что параметр real-base имеет значение **c00000**, чтобы избежать ошибок наподобие:

```
DEFAULT CATCH!, exception-handler=fff00300
```

Серверы IBM Power Systems поддерживают множество вариантов создания схем разделов, организации физических, виртуальных устройств и консолей.

Если в системе нет разделов, она готова к установке. Если системы используют последовательную консоль HVSI, подключите ее к последовательному порту T2.

В системах с существующими разделами процессы создания дополнительных разделов и запуска установки практически не отличаются от стандартных. Новые разделы создаются в HMC с выделением им физических или виртуальных ресурсов (памяти, процессора, SCSI и Ethernet). Мастер создания разделов HMC значительно облегчает эту задачу.

Если необходимо настроить виртуальные устройства SCSI, в VIOS (Virtual I/O Server) или IBM i надо разрешить предоставление ресурсов физического раздела через виртуальный адаптер сервера SCSI, тем самым связать раздел с виртуальным сервером. Со своей стороны, в консоли HMC создается логическая связь между виртуальным адаптером SCSI и клиентом.

При использовании модуля удаленной загрузки Intel iSCSI (Intel iSCSI Remote Boot) надо отключить все iSCSI-диски, иначе после установки систему невозможно будет загрузить.

За дальнейшей информацией о виртуальных устройствах обратитесь к статье инфоцентра IBM: http://publib-b.boulder.ibm.com/abstracts/sg247499.html

По завершении настройки системы включите ее напрямую или выполните операцию активации в HMC. В зависимости от метода установки может потребоваться настроить меню SMS для корректной загрузки программы установки.

8.5. Устройства установки

Устройства установки (иногда называемые целью установки) — это устройства, на которых будет размещаться установленная система Red Hat Enterprise Linux, и с которых она будет загружаться. Red Hat Enterprise Linux поддерживает следующие устройства:

- Напрямую подключенные накопители (SCSI, SATA, SAS).
- HBA-адаптеры Fibre Channel и многопутевые устройства, которые могут требовать установки собственных драйверов.
- В логических разделах виртуальных клиентов, использующих vSCSI (Virtual SCSI), на серверах IBM Power Systems поддерживается виртуализированная установка.

Важно

Если система использует большие страницы (16 ГБ), то строка загрузки ядра должна содержать соответствующие параметры, в противном случае модуль eHEA не сможет инициализироваться. Поэтому при выполнении сетевой установки с использованием Ethernet-адаптера IBM eHEA придется выбрать меньший размер страниц.

8.6. Спецификация систем

Обычно программа установки автоматически определяет оборудование и устанавливает необходимые драйверы. Однако в некоторых случаях необходимо точно знать, какое оборудование находится в вашем распоряжении.

Так, если вы планируете создать собственную структуру разделов, запишите:

- Номера моделей жестких дисков, их емкость, тип и интерфейс. Пример: Seagate ST3320613AS 320 ГБ на SATA0, Western Digital WD7500AAKS 750 ГБ на SATA1. Это поможет идентифицировать диски на этапе создания разделов.

Если Red Hat Enterprise Linux устанавливается в качестве дополнительной операционной системы поверх существующей, запишите следующее:

- Информацию о существующих разделах: типы и метки файловых систем, имена устройств и размеры разделов. Это позволит их идентифицировать на этапе создания разделов. При этом стоит помнить, что разные операционные системы определяют разделы по-разному, поэтому даже если другая система построена на основе Unix, в Red Hat Enterprise Linux имена устройств могут быть представлены иначе. Точную информацию можно получить из файла `/etc/fstab` или с помощью аналогов команд `mount` и `blkid`.

Программа установки Red Hat Enterprise Linux 7 автоматически определяет другие установленные операционные системы и сохраняет возможность их загрузки. По желанию эту функциональность можно настроить вручную (см. Раздел 11.10.1, «Установка загрузчика»).

При установке из локального образа следует запомнить:

- Жесткий диск и каталог, где расположен образ.

При установке из сети отметьте следующее:

- Имя производителя и модели сетевых адаптеров. Пример: Netgear GA311. Это позволит идентифицировать адаптеры при ручной настройке сети.
- Адреса IP, DHCP и BOOTP.
- Мaska сети.
- IP-адрес шлюза.
- IP-адреса серверов имен (DNS).

Если какие-то из этих характеристик неизвестны, обратитесь к администратору сети.

При установке из сети отметьте следующее:

- Расположение образа на сервере FTP, HTTP, HTTPS или NFS.

При планировании установки в цели iSCSI отметьте следующее:
Расположение цели iSCSI. В зависимости от конфигурации сети может потребоваться имя пользователя и пароль прямого и обратного CHAP.

Если компьютер входит в состав домена:

- Убедитесь, что имя домена назначается DHCP-сервером, иначе его надо будет ввести в процессе установки вручную.

8.7. Наличие пространства

Практически все современные операционные системы используют дисковые разделы — и Red Hat Enterprise Linux не является исключением. Чтобы ознакомиться с основными понятиями, перед дальнейшим изучением материала прочитайте Приложение А, Знакомство с дисковыми разделами.

Пространство Red Hat Enterprise Linux должно быть отделено от других операционных систем.

Примечание

На серверах IBM Power Systems надо по крайней мере создать разделы /, swap и /PreP.

Для установки Red Hat Enterprise Linux необходимо как минимум 7.5 ГБ пространства. Раздел 11.10.4.5, «Рекомендуемая схема разбиения» познакомит вас с типами разделов.

8.8. RAID и другие дисковые устройства

Некоторые технологии хранения данных предъявляют собственные требования к Red Hat Enterprise Linux. Важно понимать принципы их организации, их представления в Red Hat Enterprise Linux и изменение уровня поддержки при обновлении операционной системы.

8.8.1. Аппаратный RAID

Массив RAID (Redundant Array of Independent Disks) позволяет группе дисков функционировать как единое целое. Прежде чем приступить к установке, настройте параметры RAID материнской платы. В Red Hat Enterprise Linux массивы RAID будут представлены как отдельные диски.

8.8.2. Программный RAID

Несколько жестких дисков можно объединить в программный RAID-массив. Управление RAID-функциями осуществляется на уровне операционной системы (см. Раздел 11.10.4, «Создание разделов вручную»).

8.8.3. USB-диски

Внешние USB-диски можно подключить после установки. Они распознаются ядром и будут доступны сразу.

Некоторые USB-диски не распознаются программой установки Red Hat Enterprise Linux. Если подобные диски не требуются для успешного завершения установки, во избежание путаницы рекомендуется их отсоединить.

8.9. Выбор метода загрузки
Программу установки Red Hat Enterprise Linux 7 можно запустить несколькими способами. Выбор способа зависит от установочного носителя.

Полный установочный диск (DVD, USB)

Позволяет выполнить установку без необходимости доступа к другим ресурсам (см. Глава 2, Создание установочных носителей).

Минимальный загрузочный диск (CD, DVD, USB)

Программу установки можно загрузить с минимального загрузочного носителя, в роли которого может выступать USB, CD или DVD-диск. Загрузив таким образом компьютер, завершите установку по сети или локально с жесткого диска. Глава 2, Создание установочных носителей содержит инструкции по созданию загрузочных носителей.

PXE-сервер

Программу установки можно загрузить с сервера PXE (см. Глава 21, Подготовка к сетевой установке). После этого установку можно продолжить по сети или локально с жесткого диска.

8.10. Автоматизация установки

Процесс установки можно автоматизировать, определив все необходимые данные, такие как часовой пояс, схемы разделов и список пакетов, в файле кикстарта. Таким образом, отпадет необходимость в вводе этих данных вручную. Этот способ идеально подходит для установки Red Hat Enterprise Linux 7 на большом числе компьютеров.

Файл кикстарта обладает исключительно гибкими возможностями в плане выбора пакетов для установки и удаления, в то время как при выполнении интерактивной установки ваш выбор ограничивается стандартными комплектами.

Глава 23, Кикстарт-установка содержит подробную информацию.

Глава 9. Обновление драйверов в ходе установки на IBM Power Systems

Red Hat Enterprise Linux предоставляет драйверы для большинства известных устройств. Тем не менее, если оборудование было выпущено совсем недавно, не исключено, что его драйверы не вошли в состав дистрибутива. В этом случае их можно получить через Red Hat или непосредственно от производителя оборудования. Обычно они предоставляются в виде ISO-образов с RPM-пакетами.

Важно
Обновление драйверов требуется, только если их отсутствие препятствует нормальному завершению установки. Встроенные драйверы должны использоваться в первую очередь.

Для успешной установки наличие последних версий драйверов не обязательно — их можно будет установить позднее. Например, при установке с DVD процесс завершится успешно даже при отсутствии драйверов сетевых устройств. За подробной информацией обратитесь к руководству системного администратора Red Hat Enterprise Linux 7.

По желанию драйверы можно добавить в процессе установки. Например, драйвер сетевого устройства или адаптера накопителя предоставит установщику доступ к соответствующим устройствам. Это можно сделать двумя способами:

1. Разместить образ так, чтобы он был доступен программе установки — на локальном жестком диске, на флэш-устройстве, CD или DVD.

2. Распаковать образ и записать полученные файлы на USB, CD или DVD (см. Раздел 2.2, «Создание установочного USB-носителя», Раздел 2.1, «Создание установочного CD/DVD»).

Если производитель оборудования, Red Hat или доверенный посредник предупреждает о необходимости обновления драйверов в процессе установки, подготовьте их одним из перечисленных выше способов. Не стоит обновлять драйверы, если вы не уверены в их необходимости. Установка ненужного драйвера не повлияет на работу системы, но может безосновательно усложнить ее поддержку.

9.1. Ограничения обновления драйверов

Обновления драйверов не заменяют уже загруженные драйверы. Если необходимо их заменить, завершите установку и уже потом обновите драйверы.

9.2. Подготовка к обновлению драйверов

Red Hat и доверенные производители оборудования обычно предоставляют драйверы в виде ISO-образов.

Методы установки драйверов:

Аutomатическое обновление

Программа установки автоматически пытается найти подключенные накопители. Устройство с меткой OEMDRV по умолчанию рассматривается как диск с драйверами, и Anaconda попытается загрузить драйверы с этого устройства.

Обновление с подтверждением
Укажите параметр `inst.dd` в строке загрузки, и Anaconda предложит выбрать диск из списка обнаруженных устройств.

Ручное обновление

Выражение `inst.dd=путь` в строке загрузки определяет точное расположение диска драйверов. Можно указать локальный или удаленный путь (на сервере HTTP/HTTPS, FTP).

Для автоматической установки драйверов необходимо физически подключить устройство с меткой `OEMDRV`. Метод с подтверждением позволяет использовать любые локальные устройства, а с помощью ручного метода можно указать путь к не только к локальным, но и к сетевым ресурсам.

Важно

Если драйверы расположены на удаленном узле, настройте подключение к сети с помощью `ip=` (см. Раздел 20.1, «Настройка системы установки в меню загрузки»).

9.2.1. Подготовка локального образа

Если образ расположен на локальном носителе (жестком диске или USB-накопителе), присвойте ему соответствующую метку тома, чтобы программа установки могла загрузить драйверы автоматически. Если это невозможно, выберите другой метод.

- Чтобы программа установки могла автоматически обнаружить диск драйверов, устройство должно иметь метку `OEMDRV`. Содержимое образа надо будет извлечь в корневой каталог (см. Раздел 9.3.1, «Автоматическое обновление»). Установка драйверов с устройства `OEMDRV` является более предпочтительным вариантом по сравнению с ручной установкой.

- Если выбран ручной метод, скопируйте образ на диск. Файл можно переименовать, но не следует изменять его расширение (`.iso`). Раздел 9.3.2, «Обновление с подтверждением» содержит дополнительную информацию.

9.2.2. Подготовка диска с драйверами

Можно создать отдельный диск с драйверами, записав их на CD или DVD (см. Раздел 2.1, «Создание установочного CD/DVD»).

Вставьте созданный диск в привод и убедитесь, что он содержит файл подписи `rhdd3` и каталог `rpms`.

Если список содержит лишь файл `.iso`, значит, диск был создан неправильно. Для создания рабочего диска необходимо выбрать опцию создания диска на основе образа.

9.3. Обновление драйверов во время установки

Выполнить обновление драйверов в начале процесса установки можно следующими способами:

- позволить программе установки автоматически обнаружить обновления драйверов;
- позволить программе установки запросить информацию о расположении драйверов;
- ввести путь к образу или RPM-пакету.
Важно

Обновления драйверов следует размещать в стандартных разделах, так как другие типы — тома LVM и RAID — могут быть недоступны на ранних стадиях установки.

9.3.1. Автоматическое обновление

Если устройство имеет метку OEMDRV, программа установки автоматически идентифицирует его как диск с драйверами.

При запуске установки диски определяются автоматически. Устройство с меткой OEMDRV по умолчанию рассматривается как диск с драйверами, и вам будет предложено выбрать драйверы для установки.

Рисунок 9.1. Выбор драйверов

Введите цифру для выбора драйвера и нажмите с для перехода к графическому режиму Anaconda.

9.3.2. Обновление с подтверждением

Если в строке загрузки установки указан параметр inst.dd, но устройство OEMDRV не обнаружено, вам будет предложено указать диск. Выберите раздел из списка, на котором следует искать ISO-файлы с драйверами, затем выберите файл и, наконец, выберите драйверы.
Рисунок 9.2. Интерактивный выбор драйвера

Примечание

Если вы записали содержимое ISO-образа на CD или DVD-диск с меткой тома, отличной от OEMDRV, то либо запустите программу установки с параметром inst.dd без аргументов и выберите драйверы в меню (см. выше), либо укажите параметр в форме:

```bash
inst.dd=/dev/sr0
```

Введите цифру для выбора драйвера и нажмите `c` для перехода к графическому режиму Anaconda.

9.3.3. Ручное обновление

Подготовьте образ с драйверами и скопируйте его на USB-диск или разместите на веб-сервере. Подключите USB-диск, включите компьютер, в окне приветствия нажмите `Tab` и в конце строки загрузки добавьте `inst.dd=путь`.
Рисунок 9.3. Путь к образу в строке загрузки

Нажмите Enter.

9.3.4. Черный список

Неисправные драйверы могут помешать нормальной загрузке системы. Чтобы этого не случилось, проблемный драйвер можно отключить или добавить в черный список: в меню загрузки нажмите Tab для перехода к строке загрузки и добавьте выражение modprobe.blacklist=драйвер.

В готовой системе содержимое списка modprobe.blacklist= будет добавлено в файл /etc/modprobe.d/anaconda-blacklist.conf (см. Глава 20, Параметры загрузки).
Глава 10. Загрузка установки на IBM Power Systems

Запуск программы установки на серверах IBM Power Systems осуществляется загрузчиком yaboot, в то время как за загрузку уже установленной системы отвечает GRUB2 (см. Раздел 11.10.1, "Установка загрузчика").

Чтобы загрузить IBM Power Systems с DVD, надо настроить его в качестве загрузочного устройства в меню SMS (System Management Services).

Чтобы открыть окно SMS, нажмите 1, когда услышите звуковой сигнал в процессе загрузки.

В текстовом режиме нажмите 1, как только появится баннер с проверяемыми компонентами

Рисунок 10.1. Консоль SMS

В меню SMS выберите Выбрать параметры загрузки, затем Выбрать загрузочные устройства и выберите CD/DVD и тип шины (обычно SCSI). Если вы не уверены, выберите просмотр всех устройств (включая сетевые адаптеры и жесткие диски).

Выберите установочный DVD, с которого будет загружен yaboot, после чего появится строка приглашения boot:. Чтобы начать установку, добавьте параметр загрузки inst.vnc и нажмите Enter (или дождитесь истечения заданного периода ожидания).
Важно

Так как IBM Power Systems обычно используют текстовую консоль, графический режим установки не выбирается автоматически несмотря на то, что он обладает более гибкими возможностями.

Для выбора графического режима надо добавить параметр `inst.vnc` (см. Удаленный доступ).

Для загрузки системы по сети следует использовать `yaboot` в совокупности с `vmlinuz` и `ramdisk`. Дело в том, что размер файла `ppc64.img` слишком велик для TFTP, поэтому прямая попытка загрузки системы по сети приведет к ошибках.

Важно

Если загрузка завершилась неудачей, появится сообщение `yaboot`:

```
Cannot load initrd.img: Claim failed for initrd memory at 02000000
rc=ffffffff
```

Чтобы это исправить, измените значение `real-base` на `c00000`. Текущее значение можно узнать в строке приглашения OpenFirmware, выполнив `printenv`. Команда `setenv` позволяет его изменить.

10.1. Меню загрузки

Строка приглашения `boot` будет выглядеть примерно так:

```
IBM IBM
IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM
IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM
IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM IBM
/  
Elapsed time since release of system processors: 276 mins 49 secs
System has 128 Mbytes in RMA
Config file read, 227 bytes

Welcome to the 64-bit Red Hat Enterprise Linux 7.0 installer!
Hit <TAB> for boot options.

Welcome to yaboot version 1.3.17 (Red Hat 1.3.17-12.el7)
Enter "help" to get some basic usage information
boot:
```

Для продолжения введите `linux` и нажмите `Enter`.

Здесь же можно указать дополнительные параметры (см. Глава 20, Параметры загрузки). Например,
чтобы запустить режим восстановления, введите `linux inst.rescue` и нажмите `Enter`.

Ниже для запуска установки в графическом режиме будет добавлен параметр `inst.vnc`.

```
boot:
  * linux
boot: linux inst.vnc
Please wait, loading kernel...
```

10.2. Источники установки

Red Hat Enterprise Linux можно установить из локальных образов или по сети с сервера NFS, FTP, HTTP/HTTPS. Опытные пользователи часто предпочитают эти методы установки, так как скорость обращения к жесткому диску и даже к удаленному серверу обычно выше по сравнению со скоростью чтения DVD.

Ниже перечислены способы загрузки и рекомендуемые методы установки.

<table>
<thead>
<tr>
<th>Способ загрузки</th>
<th>Источник установки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Установочный носитель (DVD, USB)</td>
<td>Сам носитель</td>
</tr>
<tr>
<td>Минимальный загрузочный носитель (CD, USB)</td>
<td>Отдельный установочный образ DVD или копия его содержимого на локальном жестком диске или на другом узле в сети</td>
</tr>
<tr>
<td>Сетевая загрузка (PXE)</td>
<td>Отдельный установочный образ DVD или копия его содержимого на другом узле в сети</td>
</tr>
</tbody>
</table>

10.3. Загрузка с сервера yaboot

Для загрузки компьютера с сервера необходимо, чтобы он был оборудован сетевым интерфейсом, и, собственно, подготовить сам сервер (см. Глава 21, Подготовка к сетевой установке).

Настройте сетевую загрузку системы. Это можно сделать в меню служб управления системой (SMS), выбрав **Выбрать параметры загрузки**, **Выбрать установочное или загрузочное устройство** и выбрав сетевой интерфейс из списка устройств.

После этого компьютер будет готов к загрузке программы установки Red Hat Enterprise Linux без использования локальных носителей.

Ниже рассматривается порядок загрузки компьютера с сервера `yaboot`.

Процедура 10.1. Сетевая загрузка с помощью PXE

1. Проверьте подключение сетевого кабеля — световой индикатор сетевого разъема должен гореть, даже если компьютер выключен.
2. Включите компьютер.
3. Прежде чем компьютер подключится к PXE-серверу, будут показаны диагностические сообщения, включая сведения о конфигурации сети. Нажмите цифру для выбора нужного пункта. Если не уверены, обратитесь к администратору сервера.
Если компьютер не смог загрузиться с сервера, убедитесь, что в настройках SMS в качестве первого загрузочного устройства выбран сетевой интерфейс. Точную информацию можно найти в документации компьютера.
Глава 11. Установка Red Hat Enterprise Linux на IBM Power Systems

В этой главе обсуждается выполнение установки с помощью Anaconda. Теперь отдельные стадии установки можно настроить в произвольном порядке в отличие от привычной пошаговой настройки. В процессе конфигурации можно будет выбрать язык системы, настроить сетевое подключение, устройства хранения данных и наборы пакетов. Доступ к секциям осуществляется из окна обзора.

11.1. Режимы установки

Установка Red Hat Enterprise Linux 7 проводится в графическом или текстовом режиме. По возможности рекомендуется использовать графический режим, так как в нем можно настроить все характеристики процесса установки. Оба режима включают меню обзора.

Рисунок 11.1. Окно обзора

<table>
<thead>
<tr>
<th>INSTALLATION SUMMARY</th>
<th>RED HAT ENTERPRISE LINUX 7.0 INSTALLATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCALIZATION</td>
<td></td>
</tr>
<tr>
<td>DATE & TIME</td>
<td>Americas/New York timezone</td>
</tr>
<tr>
<td>LANGUAGE SUPPORT</td>
<td>English (United States)</td>
</tr>
<tr>
<td>SOFTWARE</td>
<td>INSTALLATION SOURCE</td>
</tr>
<tr>
<td>INSTALLATION SOURCE</td>
<td>RHEL-7.0-Server.iso</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>INSTALLATION DESTINATION</td>
</tr>
<tr>
<td>INSTALLATION DESTINATION</td>
<td>Automatic partitioning selected</td>
</tr>
<tr>
<td>NETWORK & HOSTNAME</td>
<td>Not corrected</td>
</tr>
</tbody>
</table>

Рисунок 11.1. Окно обзора
Глава 11. Установка Red Hat Enterprise Linux на IBM Power Systems

Включенный загатимер,
anaconda 19.31.60-1 для Red Hat Enterprise Linux 7.0 начался.
15:37:48 Не просили за VNC, потому что у нас нет сети
==
Installation
1) [!] Timezone settings
 (Timezone is not set.)
2) [!] Software selection
 (Processing...)
3) [!] Installation source
 (Processing...)
4) [!] Install Destination
 (No disks selected)
5) [x] Network settings
 (Not connected)
6) [!] Create user
 (No user will be created)
7) [!] Set root password
 (Password is not set.)

Пожалуйста, сделайте свой выбор из приведенного выше ['q' для выхода | 'c' для продолжения | 'r' для обновления]: _

Рисунок 11.2. Окно обзора в текстовом режиме

Текстовый режим явно не документирован, но пользователи могут следовать инструкциям по установке в графическом режиме. Учтите, однако, что возможности текстовой установки ограничены — например, в текстовом режиме нельзя изменить стандартную схему разделов (см. Раздел 11.1.2, «Текстовый режим»).

11.1.1. Графический режим

Безусловно, вы уже знаете, что такое графический интерфейс пользователя (GUI, Graphical User Interface), знакомы с основными элементами и навигацией, умеете нажимать кнопки и заполнять поля.

Для навигации можно использовать клавиатуру. Так, Tab и Shift+Tab позволяют перемещаться между полями, стрелки Вверх и Вниз осуществляют прокрутку списков, Влево и Вправо помогают перейти от одного элемента к другому на горизонтальной панели или в строке таблицы, а Пробел и Enter позволяют выбрать объект. Для быстрого доступа можно использовать горячие клавиши Alt+X (где X — буква, выделенная подчеркиванием).

Выполнение графической установки в системе, не поддерживающей графический режим, возможно за счет средств VNC (см. Глава 22, Установка с помощью VNC).
Примечание

Если все же предпочитаете текстовый режим установки, то чтобы его запустить, в строке приглашения `boot:` выполните:

```
linux inst.text
```


Настоятельно рекомендуется использовать графический режим, предоставляющий все функции установки Red Hat Enterprise Linux, включая недоступную в текстовом режиме настройку LVM.

Пользователи, которые все же предпочитают текстовый вариант, могут следовать указаниям по установке в графическом режиме.

11.1.1.1. Виртуальные консоли и tmux

Программа установки Red Hat Enterprise Linux представляет собой гораздо больше, чем обычный набор диалоговых окон. Вы столкнетесь с разными типами диагностических сообщений и сможете ввести команды в строке приглашения. Доступ к дополнительным функциям осуществляется из виртуальных консолей и терминала tmux.

Виртуальная консоль представляет собой оболочку командной строки для локального доступа к системе. Пользователь может одновременно работать с несколькими консолями.

Сообщения процесса установки выводятся на виртуальную консоль, что значительно облегчает диагностику конфликтов. В приведенной ниже таблице перечислены виртуальные консоли, комбинации клавиш и их содержимое.

Таблица 11.1. Окна tmux

<table>
<thead>
<tr>
<th>Окно</th>
<th>Комбинация</th>
<th>Содержимое</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ctrl+b 1</td>
<td>главное окно программы установки</td>
</tr>
<tr>
<td>2</td>
<td>Ctrl+b 2</td>
<td>оболочка root</td>
</tr>
<tr>
<td>3</td>
<td>Ctrl+b 3</td>
<td>сообщения программы установки из <code>/tmp/anaconda.log</code></td>
</tr>
<tr>
<td>4</td>
<td>Ctrl+b 4</td>
<td>сообщения журнала системных служб и пространства данных из <code>/tmp/storage.log</code></td>
</tr>
<tr>
<td>5</td>
<td>Ctrl+b 5</td>
<td>сообщения журнала программ из <code>/tmp/program.log</code></td>
</tr>
</tbody>
</table>

Доступ к окнам tmux осуществляется из первой консоли (Ctrl+Alt+F1). Для переключения между окнами используются перечисленные выше комбинации клавиш, а также Ctrl+b p (переход к предыдущему окну) и Ctrl+b n (переход к следующему окну).
Обратите внимание, что комбинации для переключения между окнами tmux включают три клавиши — сначала надо вместе нажать Ctrl+b, затем отпустить, и уже после этого нажать последнюю клавишу.

Чтобы вернуться к процессу установки, перейдите в первое окно tmux, нажав Ctrl+b 1, затем вернитесь в виртуальную консоль 6, нажав Ctrl+Alt+F6 или Ctrl+F6.

11.1.2. HMC vterm

HMC vterm — консоль IBM Power. Чтобы ее открыть, щелкните правой кнопкой мыши на разделе в HMC и выберите Открыть окно терминала. Только один vterm может быть подключен к консоли, и он является единственным способом доступа с консоли. Его часто называют «виртуальной консолью», хотя на самом деле он ей не является (см. Раздел 11.1.1, «Виртуальные консоли и tmux»).

11.1.2. Текстовый режим

Anaconda также предоставляет текстовый интерфейс.

Переход в текстовый режим происходит, если:

- система не смогла обнаружить монитор;
- в строке загрузки указан параметр inst.text;
- в файле кикстарта присутствует команда text.

Starting installer, one moment...
anaconda 19.31.60-1 for Red Hat Enterprise Linux 7.0 started.
15:37:48 Not asking for UMC because we don’t have a network
===
Installation
1) [!] Timezone settings
 (Timezone is not set.)
3) [!] Installation source
 (Processing...)
5) [x] Network settings
 (Not connected)
7) [!] Set root password
 (Password is not set.)
2) [!] Software selection
 (Processing...)
4) [!] Install Destination
 (No disks selected)
6) [!] Create user
 (No user will be created)

Please make your choice from above [‘q’ to quit] [‘c’ to continue] [‘r’ to refresh]: _

Рисунок 11.3. Okно обзора в текстовом режиме
Важно

Red Hat рекомендует выполнять установку в графическом режиме. Для установки Red Hat Enterprise Linux в системе без дисплея используется механизм VNC (см. Глава 22, Установка с помощью VNC). Если вы выбрали текстовый режим, но Anaconda обнаружила поддержку VNC, будет предложено подтвердить свой выбор.

Если компьютер оборудован дисплеем, но по каким-то причинам графический режим недоступен, попробуйте загрузить систему с параметром inst.xdriver=vesa (см. Глава 20, Параметры загрузки).

В противном случае можно выбрать автоматизированный метод установки (см. Глава 23, Киностарт-установка).

В текстовом режиме некоторые функции недоступны:

- нестандартные схемы хранения данных — LVM, RAID, FCoE, zFCP, iSCSI;
- изменение стандартной схемы разделов;
- изменение конфигурации загрузчика;
- выбор пакетов в процессе установки;
- программа первой настройки;
- изменение языка и раскладки клавиатуры.

Примечание

 Во время работы фоновых задач некоторые пункты меню будут недоступны, и вы увидите сообщение Обработка... Чтобы обновить состояние меню, используйте параметр r в командной строке.

Графический режим можно настроить и после завершения текстовой установки. Подробную информацию можно найти в руководстве системного администратора Red Hat Enterprise Linux 7.

Недоступные в текстовом режиме характеристики можно настроить с помощью параметров загрузки (см. Раздел 20.1, «Настройка системы установки в меню загрузки»). Так, например, параметр ip поможет настроить подключение к сети.

11.2. Приветствие и выбор языка

Сразу после запуска установки появится окно приветствия, где можно выбрать язык интерфейса, который будет использоваться не только в ходе установки, но и по умолчанию в готовой системе. Слева выберите язык, например Русский, а справа — регион, например Русский (Россия).
Примечание

Выбранный по умолчанию язык будет показан первым в списке. Если компьютер подключен к сети, язык будет выбран в соответствии с географическим расположением, которое автоматически определяется модулем GeoIP.

Для быстрого выбора можно ввести язык вручную в строке поиска.

Нажмите кнопку продолжения для перехода к следующему окну.

Рисунок 11.4. Выбор языка

11.3. Окно обзора

Окно обзора является центральным местом настройки всех аспектов установки.
Рисунок 11.5. Окно обзора

Вместо последовательного определения параметров теперь это можно сделать в произвольном порядке, выбирая интересующие категории в меню установки.

Выберите секцию для перехода к ее параметрам. Завершив редактирование, нажмите Готово, чтобы вернуться в окно обзора.

Секции, отмеченные восклицательным знаком, являются обязательными, что также подтверждает сообщение в нижней части экрана. Под заголовком секции приведена сводка текущих параметров, что поможет быстро оценить ситуацию.

Завершив подготовку, нажмите Начать установку (см. Раздел 11.12, «Начало установки»).

Чтобы отказаться от установки, нажмите кнопку выхода.

Примечание

Во время работы фоновых задач некоторые пункты меню будут недоступны.

Если в параметрах загрузки или в файле кикстарта определен адрес удаленного репозитория, но подключение к сети отсутствует, то прежде чем откроется окно обзора, будет предложено его настроить.
При установке с локального носителя этот шаг можно пропустить. В других ситуациях — при установке с удаленного узла (см. Раздел 6.7, «Источник установки») и при подключении внешних накопителей (см. Раздел 6.11, «Устройства хранения») — надо будет настроить подключение к сети (см. Раздел 6.8, «Сеть и имя узла»).

11.4. Дата и время

Чтобы настроить часовой пояс, дату и время, выберите секцию **Дата и время**.

Время можно настроить несколькими способами:

- выбрать город на карте;
- выбрать регион и город из списка;
- в конце списка регионов выбрать **Другое**, затем выбрать часовой пояс (например, **GMT+1**).

Если интересующего города нет на карте, выберите ближайший город в той же часовой зоне.

Примечание

Настройте часовой пояс, даже если вы планируете использовать NTP для синхронизации часов.
Рисунок 11.7. Окно выбора часового пояса

Если компьютер подключен к сети, будет доступен переключатель Сетевое время. Чтобы включить синхронизацию часов с использованием NTP, оставьте его включенным, рядом нажмите значок конфигурации и выберите серверы NTP. Чтобы настроить время вручную, переведите переключатель в выключенное положение. Если системные часы показывают неверное время, откорректируйте его в нижней части окна.

Если во время установки сервер NTP недоступен, то системное время будет выставлено, когда он снова станет активным.

Чтобы вернуться к окну обзора, нажмите Готово.

Примечание

После завершения установки часовой пояс можно будет изменить в секции Дата и время в окне системных параметров.

11.5. Выбор языка

Чтобы добавить поддержку дополнительных языков, в меню обзора выберите Языковая поддержка.

В левой части окна выберите язык, например Испанский, а справа — регион, например Испанский (Коста Рика). По желанию можно выбрать несколько языков — они будут выделены жирным шрифтом.
Рисунок 11.8. Настройка языка

Чтобы вернуться к окну обзора, нажмите Готово.

Примечание

После завершения установки язык можно будет изменить в секции Язык и регион в окне параметров.

11.6. Настройка клавиатуры

В секции Клавиатура можно добавить раскладки — они будут доступны сразу. Для переключения используйте значок клавиатуры в правом верхнем углу экрана.

Изначально в левой части окна будет показан язык, который был выбран в окне приветствия. По желанию его можно изменить или добавить другие языки с тем условием, что хотя бы один язык должен поддерживать ASCII (для установки пароля root, паролей доступа к разделам и т.п.).
Рисунок 11.9. Настройка клавиатуры

Чтобы добавить раскладку, нажмите +, выберите язык из списка и нажмите кнопку Добавить. Чтобы удалить выбранную раскладку, нажмите -. С помощью стрелок можно изменить порядок элементов в списке. Чтобы получить визуальную схему раскладки, нажмите значок клавиатуры в правом верхнем углу экрана.

Чтобы протестировать выбранную раскладку, щелкните в области ввода в правой части окна и начните вводить текст.

Для переключения между раскладками рекомендуется настроить комбинации клавиш. Для этого нажмите кнопку Параметры и выберите комбинацию (одну или несколько). Настроенная комбинация будет показана над кнопкой.

Важно

Если выбранная раскладка не использует латиницу (как например, русская), настоятельно рекомендуется дополнительно добавить английскую раскладку и настроить комбинацию клавиш для переключения. В противном случае вы не сможете авторизоваться в системе после завершения установки.

Чтобы вернуться к окну обзора, нажмите Готово.

Примечание

После завершения установки раскладку можно будет изменить в секции Клавиатура в окне параметров.

11.7. Источник установки
Чтобы настроить расположение установочных файлов, в окне обзора перейдите к секции Источник установки.

Рисунок 11.10. Выбор источника установки

Будут доступны следующие варианты:

Автоматический выбор носителя

Если программа установки была запущена с установочного DVD или USB, она попытается выбрать носитель автоматически. Нажмите Проверить, чтобы проверить его целостность (что аналогично выбору Проверить носитель и установить Red Hat Enterprise Linux 7.0 в меню загрузки и добавлению параметра загрузки rd.live.check).

ISO-файл

Это поле появится при обнаружении жесткого диска с файловыми системами. Нажмите кнопку Выбрать ISO и выберите файл. Нажмите Проверить.

В сети

Выберите протокол из списка:

- **http://**
- **https://**
- **ftp://**
- **nfs**
Справа от протокола введите адрес. Для NFS появится дополнительное поле параметров монтирования.

Важно

Для NFS-установки после имени сервера введите двоеточие:

```
server.example.com:/путь/к/кatalogu
```

Для HTTP/HTTPS можно настроить прокси-сервер: нажмите **Настроить прокси**, в открывшемся окне установите флажок **Включить HTTP-прокси** и введите URL в поле **Адрес прокси**. Если для подключения к серверу требуется авторизация, выберите **Аутентификация**, введите имя пользователя и пароль. Нажмите кнопку **Добавить**.

Если адрес HTTP/HTTPS ссылается на список зеркальных репозиториев, установите соответствующий флажок.

Для установки внешних программ можно настроить дополнительные репозитории (см. Раздел 11.9, «Выбор программ»).

Чтобы добавить репозиторий, нажмите плюс; чтобы удалить — нажмите минус. С помощью стрелки можно отменить изменения и восстановить предыдущий список репозиториев. Флажки в столбце **Включено** позволяют включить или исключить репозитории.

Имя репозитория можно настроить в правой части окна.

Чтобы вернуться к окну обзора, нажмите **Готово**.

11.8. Сеть и имя узла

Чтобы настроить сетевое подключение, в окне обзора перейдите к секции **Сеть и имя узла**.

Важно

При первой загрузке Red Hat Enterprise Linux 7 будут включены все сетевые интерфейсы, настроенные в ходе установки. Однако в некоторых случаях программа установки не предлагает настроить интерфейсы, что характерно при установке с DVD на локальный жесткий диск.

Если система, установленная с локального носителя на локальный диск, должна иметь доступ к сети, настройте хотя бы один сетевой интерфейс. В окне редактирования соединения выберите опцию автоматического подключения.

Программа установки автоматически найдет локальные интерфейсы и покажет их в левой части окна. Их нельзя будет удалить, но можно отключить, установив переключатель в правом верхнем углу в положение **OFF**.
В поле имени узла введите полное имя домена или «узел.домен». Если сеть использует протокол DHCP (Dynamic Host Configuration Protocol) для автоматического выбора имени домена, можно указать краткое имя узла.

Важно

При выборе имени интерфейса не используйте имена доменов, которые не делегированы вам, так как это ограничит доступ к сетевым ресурсам. Подробную информацию можно найти в сетевом руководстве Red Hat Enterprise Linux 7.

Примечание

В установленной системе параметры сети можно изменить в секции **Сетевые соединения** системной программы **Параметры**.

Чтобы вернуться к окну обзора, нажмите **Готово**.

11.8.1. Изменение сетевых подключений

В этой секции обсуждается настройка проводных подключений. Значения многих параметров определены по умолчанию и не сохраняются в готовой системе, поэтому на стадии установки их можно не менять. Подробную информацию о конфигурации соединений после установки можно найти в сетевом руководстве Red Hat Enterprise Linux 7.
Чтобы настроить сетевое подключение вручную, в правом нижнем углу нажмите Настроить. В открывшемся окне можно настроить обычное, DSL, беспроводное, мобильное соединение, а также VPN, DSL и VLAN. Подробное описание программы настройки сетевых подключений выходит за рамки данного документа.

Основные параметры сетевых подключений:

- Для автоматического подключения установите флажок Автоматически подключаться к этой сети. Этот параметр сохранится после установки.

Рисунок 11.12. Флажок автоматического подключения установлен

- По умолчанию IPv4 настраивается автоматически с помощью DHCP. Для IPv6 также выбран автоматический метод настройки. В большинстве случаев это является предпочтительным вариантом.
Выберите Использовать это соединение только для ресурсов в этой сети, чтобы ограничить соединение пределами локальной сети. Ваш выбор сохранится после установки.

Рисунок 11.14. Okno маршрутов IPv4

Нажмите Сохранить. Если вы изменили настройки активного устройства, надо будет его перезапустить: в окне Сеть и имя узла измените состояние переключателя в правом верхнем углу на OFF, затем — на ON.

11.8.2. Дополнительные сетевые интерфейсы
В этом окне можно добавить дополнительные сетевые интерфейсы (VLAN, а также виртуальные интерфейсы, созданные посредством объединения и группировки физических интерфейсов). Их подробное описание можно найти в сетевом руководстве.

Чтобы добавить новый интерфейс, нажмите + в левом нижнем углу.

Рисунок 11.15. Настройка сетевого подключения и имени узла

В открывшемся окне можно выбрать тип интерфейса:

- **Объединение** — объединение нескольких физических интерфейсов в один виртуальный канал.
- **Группа** — новая реализация агрегации интерфейсов, предоставляющая драйвер ядра для обработки пакетного трафика, и дополнительные программы пространства пользователя.
- **VLAN** — характеризует метод создания изолированных широковещательных доменов.

Рисунок 11.16. Дополнительные сетевые интерфейсы

Примечание

Автоматически обнаруженные интерфейсы не могут быть удалены.
После нажатия кнопки **Добавить** откроется окно настройки интерфейса. Подробную информацию об этом найти в сетевом руководстве. Чтобы изменить конфигурацию уже настроенного интерфейса, выберите его в окне сетевых подключений и в правом нижнем углу нажмите кнопку **Настроить**. Чтобы удалить интерфейс, нажмите минус в левом нижнем углу.

11.9. Выбор программ

Чтобы выбрать программы для установки, в окне обзора перейдите к секции **Выбор программ**. Пакеты сгруппированы в **окружения**, предназначенные для решения определенного ряда задач. Например, окружение **хоста виртуализации** включает набор пакетов для организации работы виртуальных машин. Во время установки можно выбрать только одно окружение.

В правой части окна можно выбрать дополнительные группы пакетов. Для разных окружений будут доступны разные дополнения.

Горизонтальная линия разделяет список на две части:

- группы, уникальные для выбранного окружения, перечислены до разделителя;
- общие группы для всех окружений перечислены после разделителя.

![SOFTWARE SELECTION](image.png)

Рисунок 11.17. Выбор программ для сервера

Список доступных окружений и дополнений зависит от устанавливаемого варианта Red Hat Enterprise Linux 7 — например, для Red Hat Enterprise Linux Server будут доступны серверные программы.
Точный список пакетов можно найти в файле `repodata/*-comps-вариант. архитектура.xml` на установочном диске. В этом файле окружения выделены тегом `<environment>`, а дополнительные группы — `<group>`.

В этом окне можно подобрать программы для любой конфигурации системы, но вы не сможете выбирать конкретные пакеты. Чтобы полностью контролировать то, какие пакеты должны быть включены, сначала установите минимальное окружение, а уже после этого установите интересующие пакеты с помощью `Yum`.

При автоматизации установки процесс выбора пакетов существенно упрощается — индивидуальные пакеты добавляются в секцию `<packages>` в файле кикстарта (см. Раздел 23.3.3, «Выбор пакетов», Глава 23, Кикстарт-установка).

Чтобы вернуться к окну обзора, нажмите **Готово**.

11.9.1. Сетевые службы

Все комплекты Red Hat Enterprise Linux включают следующие сетевые службы:

- централизованное ведение журналов с помощью `syslog`;
- обмен электронной почтой по SMTP (Simple Mail Transfer Protocol);
- общий доступ к файлам по NFS (Network File System);
- удаленный доступ SSH (Secure SHell);
- объявление ресурсов через mDNS (multicast DNS).

Некоторые процессы Red Hat Enterprise Linux отправляют отчеты системному администратору по электронной почте. Службы почты, журналов и печати по умолчанию не разрешают подключения из других систем.

В Red Hat Enterprise Linux можно настроить службы электронной почты, совместного доступа к файлам, журналирования, печати и доступа к удаленному рабочему столу. Функции SSH включены по умолчанию. Для доступа к файлам в другой системе можно использовать NFS без активации службы совместного доступа NFS.

11.10. Расположение установки

Диски и разделы настраиваются в секции **Расположение установки**. Приложение А, Знакомство с дисковыми разделами содержит подробную информацию о разделах.

Предупреждение

Во избежание потери данных при установке и обновлении системы следует создать их резервную копию.
Важно

В текстовом режиме установки доступны только стандартные схемы разбиения. В принципе, можно использовать весь диск или удалить существующие разделы Linux, но вы не сможете добавить или удалить разделы и файловые системы по собственному усмотрению.

Важно

Некоторые BIOS не поддерживают загрузку с RAID-контроллеров. В таких случаях раздел /boot следует создать на отдельном диске за пределами массива RAID. При возникновении проблем с RAID-контроллерами разделы лучше создавать на внутреннем жестком диске.

Даже если вы выбрали автоматическое разбиение, раздел /boot/ надо будет настроить вручную (см. Раздел 11.10.4, «Создание разделов вручную»).

INSTALLATION DESTINATION

Local Standard Disks

- IBM-ESXS MBF260ORC
 - sda / 2.41 MB Free
 - IBM-ESXS MBF260ORC
 - sdb / 1.93 MB Free

Disks left unselected here will not be touched.

Specialized & Network Disks

- Add a disk...

Disks left unselected here will not be touched.

Other Storage Options

Partitioning

- Оnly automatically configure partitioning
- I will configure partitioning
- I would like to make additional space available

Encryption

- Encrypt my data: You'll set a passphrase later.

Full disk summary and bootloader...

1 disk selected; 572.32 GB capacity; 2.41 MB free

Рисунок 11.18. Обзор накопителей

В этом окне показаны только локальные диски. Чтобы добавить другие устройства, нажмите кнопку Добавить диск (см. Раздел 11.11, «Устройства хранения»).

Если вы не уверены, как создать оптимальную схему разделов, примите предложенный автоматический метод разбиения.

Ниже можно настроить другие параметры хранения данных:
В секции Разбиение можно выбрать автоматический или ручной метод.

Вариант Создать разделы автоматически рекомендуется для новой установки с удалением всех данных.

Дополнительно можно установить флажок Выделить дополнительное пространство. Если на выбранных дисках не хватает места для автоматического создания разделов, появится окно:

INSTALLATION OPTIONS

Your current Red Hat Enterprise Linux software selection requires **3.81 GB** of available space, including **3 GB** for software and **819 MB** for swap space. The disks you've selected have the following amounts of free space:

- **969.23 kB** Free space available for use.
- **OB** Free space unavailable but reclaimable from existing partitions.

You don't have enough space available to install Red Hat Enterprise Linux. You can shrink or remove existing partitions via our guided reclaim space tool, or you can adjust your partitions on your own in the custom partitioning interface.

Рисунок 11.19. Диалог с предложением освободить пространство

Чтобы добавить дополнительные диски, нажмите Отменить и добавить диски. Чтобы освободить место, нажмите Освободить (см. Раздел 11.10.3, «Освобождение пространства»).

Если в предыдущем окне был выбран вариант Я настрою разделы, откроется окно ручного создания разделов (см. Раздел 11.10.4, «Создание разделов вручную»).

Чтобы зашифровать разделы (кроме /boot), установите флажок Зашифровать данные. Подробную информацию можно найти в руководстве по безопасности Red Hat Enterprise Linux 7.

Ссылка Статистика диска и загрузчика в нижней части окна откроет диалог настройки диска, где будет установлен загрузчик.

Раздел 11.10.1, «Установка загрузчика» содержит дополнительную информацию.

Закончив настройку, нажмите Готово.
Важно
При установке Red Hat Enterprise Linux в системе с комбинацией обычных и многопутевых устройств автоматическое разбиение может создать группы томов, содержащие и те, и другие устройства, что нарушает идею организации многопутевого пространства данных.
Поскольку в окне дисков рекомендуется выбрать однотипные устройства или предпочесть ручной метод создания разделов.

11.10.1. Установка загрузчика

Red Hat Enterprise Linux 7 использует загрузчик GRUB2 (GRand Unified Bootloader 2). Загрузчик — первая программа, запускаемая после включения компьютера, которая передает управление ядру операционной системы. GRUB2 также может использоваться для цепной загрузки другого загрузчика нестандартной операционной системы.

Предупреждение
При установке GRUB2 старый загрузчик может быть перезаписан.

Программа установки Red Hat Enterprise Linux автоматически определяет другие установленные операционные системы и сохраняет возможность их загрузки. По желанию эту функциональность можно настроить вручную.
Чтобы выбрать устройство для размещения загрузчика, в нижней части окна устройств выберите Статистика диска и загрузчика. В окне ручного создания разделов для этой цели перейдите по ссылке с меткой выбрано X устройств хранения в самом низу экрана.
Рисунок 11.20. Обзор выбранных дисков

Загрузочное устройство отмечено зеленой галочкой. Чтобы установить загрузчик на другое устройство, выберите его из списка и нажмите кнопку **Выбрать устройство загрузки**.

Чтобы отменить установку загрузчика, выберите устройство и нажмите **Не устанавливать загрузчик**. Галочка напротив устройства исчезнет.

Предупреждение

Следует помнить, что без загрузчика систему нельзя будет загрузить напрямую и придется использовать другой способ загрузки (например, коммерческий загрузчик). Не отменяйте установку загрузчика, если не предусмотрен другой способ загрузки компьютера.

11.10.2. Шифрование разделов

Если флажок шифрования был установлен, в следующем окне будет предложено ввести парольную фразу.

Для шифрования используется механизм LUKS (*Linux Unified Key Setup*). За подробной информацией обратитесь к руководству по безопасности Red Hat Enterprise Linux 7.
Рисунок 11.21. Ввод парольной фразы для доступа к разделу

Введите парольную фразу, обратив внимание на раскладку клавиатуры. Ее надо будет вводить каждый раз при загрузке системы. Нажмите Tab для перехода к полю подтверждения и введите его еще раз. Если пароль слишком слабый, появится значок предупреждения. Наведите курсор на значок для получения подсказки.

Предупреждение

В случае утери парольной фразы зашифрованные разделы и их данные будут недоступны. Восстановить доступ будет невозможно.

При выполнении кикстарт-установки можно не только сохранить парольные фразы, но и создать запасные. Вопросы шифрования подробно обсуждаются в руководстве по безопасности Red Hat Enterprise Linux 7.

11.10.3. Освобождение пространства

Если для установки Red Hat Enterprise Linux недостаточно места, можно попробовать освободить пространство. Для этого в окне Параметры установки выберите пункт Освободить.

Предупреждение

При освобождении пространства данные будут удалены (за исключением случаев сжатия раздела), поэтому предварительно рекомендуется создать их резервные копии.
Рисунок 11.22. Освобождение места

В списке перечислены обнаруженные диски и файловые системы. В столбце *Можно освободить* показан потенциально доступный размер. В столбце *Действие* показан метод освобождения пространства.

В этом окне доступны кнопки:

- **Не изменять** — не освобождать место в выбранной файловой системе. Это действие выбрано по умолчанию.
- **Удалить** — освободить все занятое пространство.
- **Сжать** — освобождает незанятое пространство в файловой системе. Размер корректируется с помощью ползунка. Это действие недоступно для LVM и RAID.
- **Удалить все/Оставить все** — это действие применимо ко всем файловым системам. Функционирует как переключатель, то есть выбрав один вариант, название кнопки изменится на второй, и наоборот.

Выберите файловую систему или весь диск. Значения в столбце *Действие* и в поле *Всего выбрано для освобождения* изменяются соответственно. В самом низу экрана показан необходимый для установки размер.

Когда будет выбран достаточный размер для продолжения установки, кнопка *Освободить* станет доступна.

RECLAIM DISK SPACE

You can remove existing filesystems you no longer need to free up space for this installation. Removing a filesystem will permanently delete all of the data it contains.

<table>
<thead>
<tr>
<th>Диск</th>
<th>Имя</th>
<th>Система</th>
<th>Изменяемое пространство</th>
<th>Действие</th>
</tr>
</thead>
<tbody>
<tr>
<td>76.8 GB AIX VDASD</td>
<td>sda</td>
<td>xfs</td>
<td>Not reduceable</td>
<td>Preserve</td>
</tr>
</tbody>
</table>

1 диск; 76.79 GB изменяемых файлов (в файловых системах)

Total selected space to reclaim: 0 B

Installation requires a total of 1.24 GB for system data.

132
11.10.4. Создание разделов вручную

Чтобы открыть окно ручного создания разделов, в окне выбора устройств отметьте пункт Я настрою разделы и нажмите кнопку Готово.

Предупреждение

Во избежание потери данных при установке и обновлении системы следует создать их резервную копию.

Рисунок 11.23. Окно создания разделов

В левой части окна показаны точки монтирования, сгруппированные по операционным системам. Если раздел используется несколькими операционными системами, он будет повторяться. Внизу приведена статистика пространства.

При наличии существующих файловых систем убедитесь, что на диске достаточно места для установки Red Hat Enterprise Linux. Чтобы удалить раздел, нажмите кнопку со знаком -.

Примечание

Приложение А, Знакомство с дисковыми разделами и Раздел 11.10.4.5, «Рекомендуемая схема разбиения» содержат рекомендации по разбиению дисков. Как минимум надо создать корневой раздел и раздел подкачки.

11.10.4.1. Создание файловых систем и конфигурация разделов
Для установки Red Hat Enterprise Linux 7 надо создать по крайней мере загрузочный раздел PReP и еще один раздел, но Red Hat рекомендует создать пять: PReP, /, /home, /boot, swap (см. Раздел 11.10.4.5, «Рекомендуемая схема разбиения»). Другие разделы могут создаваться по собственному усмотрению.

Добавление файловой системы выполняется в два подхода — сначала в левой части окна надо создать точку монтирования, затем изменить ее параметры в правой части (тип устройства и файловой системы, метку, функции шифрования и форматирования раздела).

Чтобы позволить программе установки создать разделы и точки монтирования, выберите схему разбиения из выпадающего списка в левой части окна (по умолчанию выбран LVM) и щелкните ссылку автоматического создания. В результате будут созданы разделы /boot, / и раздел подкачки. Дополнительные разделы можно будет добавить позднее.

Точки монтирования можно создать вручную, нажав значок плюса в нижней части панели. В открывшемся окне выберите путь из списка или введите его вручную — / для корневого раздела, /boot для загрузочного и т.п. Укажите размер раздела в мегабайтах, гигабайтах или терабайтах — например, 2GB. Если размер не задан или превышает допустимый, будет занято все доступное пространство. Завершив редактирование, нажмите Добавить.

В левой части окна выберите тип раздела: стандартный, BTRFS, LVM, динамический LVM. Исключение составляет /boot, который будет иметь стандартный тип независимо от выбранного значения.

Чтобы изменить устройство для выбранной точки монтирования, нажмите кнопку конфигурации под левой панелью. В открывшемся окне выберите устройство и нажмите Выбрать. Вы вернетесь в окно ручного разбиения, где надо еще раз подтвердить изменения, нажав кнопку Применить.

Рисунок 11.24. Настройка точек подключения

Чтобы обновить список дисков и разделов, нажмите кнопку с круговой стрелкой. Обычно список обновляется после значительных изменений конфигурации разделов, сделанных за рамками программы установки. Следует помнить, что после нажатия кнопки Поиск изменения, сделанные в окне разделов, будут потеряны.
Рисунок 11.25. Поиск дисков

В нижней части экрана приведена ссылка с числом выбранных дисков (см. Раздел 11.10, «Расположение установки»), которая открывает диалог Выбранные диски (см. Раздел 11.10.1, «Установка загрузчика»).

Чтобы изменить параметры раздела, выберите его в левой части окна — справа откроются его характеристики.
Рисунок 11.26. Настройка разделов

- **Имя** — имя тома LVM или Btrfs. Имена стандартных разделов присваиваются автоматически и не меняются. Так, например, разделу `home` может быть присвоено имя `sda1`.

- **Точка монтирования** — точка подключения раздела. Так, для корневого раздела введите `/`, для загрузочного раздела введите `/boot` и т.п. Для раздела подкачки точку не надо выбирать — достаточно лишь выбрать тип `swap`.

- **Метка** — уникальная метка раздела.

- **Размер** — размер раздела в килобайтах, мегабайтах, гигабайтах или терабайтах. Если единицы не указаны, будут использоваться килобайты.

- **Тип устройства** — стандартный раздел, BTRFS, LVM или динамический LVM. При наличии двух и более дисков также будет доступно значение RAID. Справа от поля расположен флажок шифрования раздела. Его пароль можно будет установить позднее.

- **Файловая система** — тип файловой системы. Справа расположен флажок форматирования. Раздел 11.10.4.1.1, «Типы файловых систем» содержит подробную информацию.

Чтобы сохранить изменения, нажмите кнопку **Применить**. Они вступят в силу только после начала установки. Чтобы отменить изменения, нажмите **Сбросить все**.

Завершив настройку, нажмите **Готово**. Если флажок шифрования был установлен, будет предложено ввести парольную фразу. После этого появится окно, где будут перечислены операции по настройке.
разделов и файловых систем, включая создание, изменение размера и удаление. Нажмите Принять изменения или Отменить и вернуться к настройке разделов. Наконец, чтобы настроить разделы на другом диске, выберите его в окне устройств и перейдите к окну ручной разметки.

11.10.4.1.1. Типы файловых систем

Red Hat Enterprise Linux позволяет создать разделы и файловые системы разных типов.

Типы устройств

- **Стандартный раздел** может содержать файловую систему, пространство подкачки и выступать в качестве основы для создания программного RAID-массива или физического тома LVM.

- **LVM** — при создании раздела LVM логический том будет создан автоматически. LVM улучшает производительность жестких дисков (см. Раздел 11.10.4.3, «Создание LVM» и руководство по LVM в Red Hat Enterprise Linux 7).

- **Динамический LVM** перераспределяет свободное пространство между устройствами в зависимости от требований программ. По мере необходимости пул пространства может наращиваться динамически.

- **BTRFS** — файловая система с характеристиками устройства, которая может работать с большим числом файлов, файлами и томами гораздо большего размера по сравнению с ext2, ext3 и ext4 (см. Раздел 11.10.4.4, «Создание подраздела Btrfs»).

- **Программный RAID** — на основе таких разделов позднее можно будет создать RAID-массив. При этом каждому диску выделяется один RAID-раздел. Раздел 11.10.4.2, «Создание программного RAID» и руководство по администрированию накопителей в Red Hat Enterprise Linux 7 содержат дополнительную информацию.

Файловые системы

- **xfs** — высокопроизводительная масштабируемая файловая система, размер которой может достигать 16 эксабайт (~16 миллионов терабайт). XFS поддерживает файлы размером до 8 эксабайт (~8 миллионов терабайт), структуры каталогов с десятками миллионов записей и включает функции журналирования метаданных, что гарантирует быстрое восстановление в случае сбоя, а также поддерживает дефрагментацию и изменение размера без необходимости отключения файловой системы. Приложение Е, Команды ext4 и XFS содержит описание аналогов команд ext4 в XFS.

 Максимальный размер раздела XFS составляет 500 ТБ.

- **ext4** создана на основе ext3 и обладает рядом преимуществ, включая поддержку больших файловых систем и файлов, быстрое и эффективное распределение пространства, отсутствие ограничений на число подкаталогов в одном каталоге, быструю проверку файловой системы и надежное ведение журналов.

 Максимально допустимый размер ext4 в Red Hat Enterprise Linux 7 составляет 50 ТБ.

- **ext3** создана на основе ext2, ее главным преимуществом является поддержка журналов, что сокращает время восстановления благодаря отсутствию необходимости в проверке fsck.

- **ext2** поддерживает стандартные типы файлов Unix (обычные файлы, каталоги, символьные ссылки и т.п.) и позволяет присваивать им имена длиной до 255 знаков.

- **vfat** — файловая система Linux, совместимая с FAT и поддерживающая длинные имена файлов Windows.
swap — раздел подкачки для организации виртуальной памяти: если в ОЗУ не хватает места для обработки данных, неактивные фрагменты перемещаются в область подкачки, освобождая место для новых страниц.

PReP — небольшой раздел в первом разделе жесткого диска, содержащий загрузчик GRUB2. Позволяет выполнить загрузку Red Hat Enterprise Linux другими серверами IBM Power Systems.

Каждая файловая система накладывает свои ограничения на размер файлов. Подробную информацию можно найти на портале пользователей по адресу https://access.redhat.com/site/articles/rhel-limits.

11.10.4.2. Создание программного RAID

Избыточные массивы независимых дисков или так называемые RAID-массивы (Redundant Arrays of Independent Disks) объединяют несколько устройств хранения для обеспечения должного уровня производительности и отказоустойчивости.

Устройство RAID создается один раз, после чего его состав можно корректировать посредством добавления или исключения дисков. На каждом диске может быть создан один RAID-раздел — таким образом, максимальный уровень RAID определяется числом дисков.

Если для установки было выбрано больше одного диска, в этом окне можно будет настроить RAID-устройство.

Порядок создания RAID-устройства:
1. Создайте точку монтирования (см. Раздел 11.10.4.1, «Создание файловых систем и конфигурация разделов»).

2. Нажмите кнопку конфигурации под левой панелью. В открывшемся окне выберите устройство.

3. В списке Тип устройства выберите RAID.

4. В списке Файловая система выберите подходящее значение (см. Раздел 6.10.4.1.1, «Типы файловых систем»).

5. Выберите Уровень RAID.

Возможные значения:

RAID0 — оптимальная производительность с чередованием

Данные распределяются между несколькими дисками. RAID 0 обеспечивает высокий уровень производительности за счет объединения дисков в одно виртуальное устройство. Надежность RAID 0 невысокая, так как отказ одного диска приведет к сбою всего массива. Для создания RAID 0 необходимо как минимум два раздела RAID.

RAID1 — зеркалирование

Использует зеркалирование за счет копирования данных на все диски в составе массива. Дополнительные устройства повышают уровень избыточности. Для создания RAID 1 необходимо как минимум два раздела RAID.

RAID4 — с четностью

Данные распределяются между несколькими дисками, но при этом один диск служит для хранения информации о четности, что помогает восстановить данные в случае сбоя. Недостаток такой организации заключается в том, что информация о четности хранится на одном диске, что представляет риск для общей производительности массива. Для создания RAID 4 необходимо как минимум три раздела RAID.

RAID5 — распределенная схема

Контрольные суммы и данные циклически распределяются между элементами массива. RAID 5 пользуется гораздо большей популярностью по сравнению с RAID 4 благодаря параллельной обработке данных. Для создания RAID 5 необходимо как минимум три раздела RAID.

RAID6 — избыточность

Аналогичен RAID 5, но контрольные данные копируются на два устройства. Для создания RAID 5 необходимо как минимум четыре раздела RAID — два для основных данных и два для контрольных.

RAID10 — чередование с зеркалированием

RAID 10 (вложенный RAID или смешанный RAID) — данные распределяются между зеркальными наборами дисков. Так, RAID 10 из четырех разделов будет включать две зеркальные пары RAID 1. Данные при этом последовательно распределены между парами аналогично RAID 0. Для создания RAID 10 потребуются как минимум четыре раздела RAID.

6. Чтобы сохранить изменения, нажмите Применить. Затем нажмите Готово, чтобы вернуться в меню обзора.
Если для создания массива не хватает дисков, в нижней части окна появится сообщение с рекомендуемым числом.

11.10.4.3. Создание LVM

LVM (Logical Volume Management) распределяет пространство между динамически изменяемыми томами. Разделы физического диска представлены в качестве физических томов, которые могут быть сгруппированы в группы. В свою очередь, группы томов могут подразделяться на логические тома, принцип работы которых аналогичен стандартным дисковым разделам. Таким образом, логические тома LVM функционируют как разделы, которые могут располагаться на нескольких физических дисках.

Функции настройки LVM доступны только в графическом режиме установки. Приложение C, Знакомство с LVM и Администрирование LVM в Red Hat Enterprise Linux 7, содержат подробную информацию.

Важно

В текстовом режиме установки функции настройки LVM недоступны. Если требуется создать структуру LVM, нажмите Ctrl+Alt+F2, чтобы открыть другую консоль, и используйте команду lvm. Для возврата к установке нажмите Ctrl+Alt+F1.

Рисунок 11.28. Настройка логического тома

Порядок создания логического тома с последующим добавлением в группу томов:

1. Создайте точку монтирования (см. Раздел 11.10.4.1, «Создание файловых систем и конфигурация разделов»).
2. В списке **Тип устройства** выберите LVM. Появится список **Группа томов**.

3. Выберите **Создать группу томов** в меню или нажмите кнопку **Изменить**, чтобы открыть диалог настройки группы.

![Снимок экрана: Настройка группы томов](image)

Рисунок 11.29. Настройка группы томов

Здесь можно выбрать уровень RAID (см. Раздел 11.10.4.2, «Создание программного RAID»), установить флажок шифрования и настроить размер. Возможные варианты выбора размера:

- **Автоматически** — размер определяется автоматически с учетом заданных параметров логических томов. Этот вариант является оптимальным, если не требуется оставлять свободное пространство в пределах группы.

- **Как можно больше** — группе выделяется максимально возможный размер независимо от конфигурации логических томов. Этот вариант подходит для хранения данных в LVM с возможной перспективой добавления новых или наращивания существующих томов.

- **Фиксирован** — позволяет установить точный размер группы томов.

Нажмите **Сохранить**.

4. Чтобы сохранить изменения, нажмите **Применить**. Затем нажмите **Готово**, чтобы вернуться в меню обзора.
11.10.4.4. Создание подраздела Btrfs

Файловая система Btrfs характеризуется высоким уровнем устойчивости и способностью обнаружения и исправления ошибок. Btrfs использует контрольные суммы для обеспечения целостности данных и поддерживает снимки файловой системы.

Составляющие тома Btrfs создаются в окне ручного создания разделов. Показанный напротив них размер будет отражать суммарный размер тома.

Рисунок 11.30. Настройка подраздела Btrfs

Порядок создания подраздела Btrfs:

1. Создайте точку монтирования (см. Раздел 11.10.4.1, «Создание файловых систем и конфигурация разделов»).

2. В списке Тип устройства выберите BTRFS. В результате список Файловая система станет недоступен, Btrfs — будет доступен. Дополнительно появится список Том с именем созданного тома.

3. Выберите Создать том в меню или нажмите кнопку Изменить, чтобы открыть диалог настройки тома.
Возможные значения:

RAID0 (производительность)

Данные распределяются между несколькими дисками. RAID 0 обеспечивает высокий уровень производительности за счет объединения дисков в одно виртуальное устройство. Надежность RAID 0 невысокая, так как отказ одного диска приведет к сбоя всего массива. Для создания RAID 0 необходимо как минимум два раздела RAID.

RAID1 (избыточность)

Использует зеркалирование за счет копирования данных на все диски в составе массива. Дополнительные устройства повышают уровень избыточности. Для создания RAID 1 необходимо как минимум два раздела RAID.

RAID10 (производительность, избыточность)

Представляет собой комбинацию RAID0 и RAID1, где данные распределяются между зеркальными наборами дисков. Так, RAID 10 из четырех разделов будет включать две зеркальные пары RAID 1. Данные при этом последовательно распределены между парами аналогично RAID 0. Для создания RAID 10 потребуются как минимум четыре раздела RAID.

Дополнительно можно установить флажок шифрования и настроить размер тома. Возможные значения:
 Автоматически — размер тома определяется автоматически с учетом заданных параметров. Этот вариант является оптимальным, если нет необходимости в наличии свободного пространства в пределах тома.

 Как можно больше — выделяет максимально возможный размер независимо от конфигурации подразделов. Этот вариант подходит для хранения данных в Btrfs с возможной перспективой добавления новых или наращивания существующих подразделов.

 Фиксирован — позволяет установить точный размер тома.

Нажмите Сохранить.

4. Чтобы сохранить изменения, нажмите Применить. Затем нажмите Готово, чтобы вернуться в меню обзора.

Если для создания массива не хватает дисков, в нижней части окна появится сообщение с рекомендуемым числом.

Предупреждение

Раздел /boot не может располагаться в подразделе Btrfs.

11.10.4.5. Рекомендуемая схема разбиения

Если у вас нет веских причин выполнять разбиение иначе, рекомендуется создать следующие разделы:

 Загрузочный раздел PReP (4-8 МБ)

 Первый раздел жесткого диска с загрузчиком GRUB2, что позволяет загрузить Red Hat Enterprise Linux на IBM Power Systems.

 Раздел /boot (не меньше 500 МБ)

 Раздел /boot содержит ядро операционной системы (отвечающее за загрузку Red Hat Enterprise Linux) и файлы начальной загрузки. Вследствие определенных микропрограммных ограничений рекомендуется рассмотреть возможность создания небольшого раздела для их хранения (500 МБ должно быть достаточно).

Примечание

Некоторые BIOS не поддерживают загрузку с RAID-контроллеров. В таких случаях раздел /boot следует разместить за пределами RAID-массива — к примеру, на отдельном диске.
Предупреждение

Red Hat Enterprise Linux 7 не поддерживает настройку аппаратных RAID на картах IPR. В этой ситуации прежде чем приступить к установке, можно загрузить систему с диска диагностики и заранее создать RAID-массив.

Раздел root (рекомендуется 10 ГБ)

Именно здесь располагается корневой каталог «/». Если путь к файлу не включает другой смонтированный раздел (например, /boot или /home), он будет помещен в этот раздел.

Для минимальной установки корневому разделу достаточно выделить 5 ГБ, в то время как для полной установки со всеми группами программ потребуется не меньше 10 ГБ.

Важно

Не следует путать каталог / с домашним каталогом /root.

Раздел /home (не меньше 1 ГБ)

Чтобы отделить файлы пользователя от системных данных, создайте отдельный раздел для каталога /home в группе томов. Таким образом, в случае обновления или переустановки Red Hat Enterprise Linux, содержимое /home не будет потеряно. При наличии более 50 ГБ пространства этот раздел будет создан автоматически в ходе установки.

Раздел swap (не меньше 1 ГБ)

Подкачка страниц представляет собой механизм организации виртуальной памяти. При дефиците оперативной памяти данные переносятся из памяти в раздел подкачки. При расчете его размера следует руководствоваться степенью нагрузки на память, а не ее размером. Для этого надо оценить нагрузку индивидуальных приложений.

При недостатке места в области подкачки ядро системы начнет останавливать процессы, и наоборот, слишком большой размер пространства подкачки снижает эффективность использования ресурсов и затрудняет обнаружение утечек памяти. Более подробно о расчете размера пространства подкачки рассказывается на справочной странице mkswap(8).

Ниже приведена таблица с рекомендуемыми размерами раздела подкачки в зависимости от размера ОЗУ. Размер выбирается автоматически во время установки и не превышает 10% от размера жесткого диска. Чтобы увеличить размер, надо будет откорректировать это значение вручную.

Таблица 11.2. Рекомендуемый размер пространства подкачки

<table>
<thead>
<tr>
<th>Объем ОЗУ</th>
<th>Swap</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2 ГБ</td>
<td>В два раза больше размера ОЗУ</td>
</tr>
<tr>
<td>> 2 – 8 ГБ</td>
<td>Равен размеру ОЗУ</td>
</tr>
<tr>
<td>> 8 – 64 ГБ</td>
<td>В 2 раза меньше размера ОЗУ</td>
</tr>
<tr>
<td>больше 64 ГБ</td>
<td>В зависимости от нагрузки</td>
</tr>
</tbody>
</table>
При расчете размера на стыке диапазонов (например, для 2 ГБ, 8 ГБ или 64 ГБ), рекомендуется увеличить размер пространства подкачки, так как это поможет повысить производительность.

Распределение пространства подкачки между несколькими устройствами значительно повысит производительность. Особенно разница будет заметна в системах с быстрыми дисками, контроллерами и интерфейсами.

Предупреждение

По умолчанию PackageKit загружает обновленные пакеты в /var/cache/yum/. Если вы решили создать отдельный раздел для /var, выделите ему не менее 3 гигабайт для загрузки обновлений.

11.11. Устройства хранения

На странице Расположение установки показаны локальные диски, на которых можно установить Red Hat Enterprise Linux (см. Раздел 11.10, «Расположение установки»). Чтобы добавить другие устройства, нажмите кнопку Добавить диск.

Рисунок 11.32. Обзор накопителей

11.11.1. Окно выбора устройств хранения

В этом окне показаны доступные накопители.
Устройства сгруппированы следующим образом:

Многоканальные устройства

Накопители, для доступа к которым можно использовать несколько путей с помощью нескольких SCSI-контроллеров или портов Fibre Channel.

Программа установки может определить только номера многопутевых устройств длиной от 16 до 32 знаков.

Другие устройства SAN

Устройства в сети хранения данных.

Микропрограммный RAID

Накопители, подключенные к микропрограммному RAID-контроллеру.

Рисунок 11.33. Обзор специальных устройств

В нижней части окна доступны кнопки добавить целевое устройство iSCSI и добавить FCoE SAN (Fibre Channel over Ethernet).

На вкладке поиска можно отфильтровать устройства по идентификатору WWID (World Wide Identifier), порту, цели и номеру LUN (Logical Unit Number).

Рисунок 11.34. Вкладка поиска устройств
Чтобы выполнить поиск, выберите критерий (порт, цель, LUN, WWID), определите дополнительные параметры и нажмите кнопку поиска.

Обнаруженные накопители будут показаны в основной части окна. Установите флажок напротив устройства, чтобы добавить его в список установки.

Сам по себе выбор устройства в этом окне не подвергает его данные риску. Также стоит заметить, что даже если устройства не были выбраны на этом этапе, их можно будет добавить после установки, отредактировав файл /etc/fstab.

Важно

Выбранные на этом этапе устройства будут доступны программе Anaconda. Для целевой загрузки Red Hat Enterprise Linux из другого загрузчика надо выбрать все представленные в списке устройства.

Завершив, нажмите **Готово**.

11.11.1.1. Дополнительные параметры накопителей

В этом окне можно настроить цель iSCSI (см. Приложение B, Диски iSCSI) или FCoE (Fibre Channel over Ethernet) SAN (Storage Area Network).

Рисунок 11.35. Дополнительные параметры накопителей

11.11.1.1.1. Настройка параметров iSCSI

Нажмите кнопку **Добавить целевое устройство iSCSI**....
Для выполнения установки на дисках iSCSI необходимо создать сеанс доступа iSCSI. Для авторизации CHAP (Challenge Handshake Authentication Protocol) может потребоваться указать имя пользователя и пароль доступа к цели iSCSI. Дополнительно можно настроить обратную идентификацию, когда при подключении клиента (инициатора) к цели iSCSI она в свою очередь тоже должна будет представиться инициатору. Оба типа в совокупности образуют взаимную (двухстороннюю) проверку CHAP, обеспечивая максимальный уровень защиты соединений iSCSI.

Примечание

Повторите эти действия столько раз, сколько необходимо для добавления всех накопителей. Стоит помнить, что имя инициатора iSCSI после первого обнаружения нельзя будет изменить. Для этого потребуется перезапустить процесс установки.

Процедура 11.1. Обнаружение iSCSI и создание сеанса iSCSI

В окне добавления целевого устройства iSCSI введите необходимую информацию.
1. Заполните адрес цели iSCSI.

2. В поле Имя инициатора iSCSI укажите имя в формате IQN (iSCSI qualified name):

 - iqn. (включая точку).

 - Дата регистрации домена в виде ГГГГ-ММ., например 2010-09. (включая точку).

 - Домен организации в обратном порядке, начиная с домена верхнего уровня. Так, storage.example.com будет представлен как com.example.storage.

 - Двоеточие, за которым следует идентификатор инициатора iSCSI в пределах домена. Например: :diskarrays-sn-a8675309.

 Таким образом, полное имя выглядит так: iqn.2010-09.storage.example.com:diskarrays-sn-a8675309. Anaconda заполнит поле имени инициатора iSCSI в соответствии с этим форматом.

 За дальнейшей информацией обратитесь к главе 3.2.6 в спецификации RFC 3720 - Internet Small Computer Systems Interface (iSCSI) (http://tools.ietf.org/html/rfc3720#section-3.2.6) и к главе 1 в RFC 3721 - Internet Small Computer Systems Interface (iSCSI) Naming and Discovery (http://tools.ietf.org/html/rfc3721#section-1).

3. Выберите тип аутентификации:

 - без проверки,

 - пара CHAP,

 - двухсторонняя пара CHAP.

4. А. При выборе пара CHAP введите имя пользователя и пароль доступа к цели iSCSI.

 Б. Если выбрана двухсторонняя пара CHAP, заполните поля Пользователь CHAP, Пароль CHAP, Пользователь обратного CHAP и Пароль обратного CHAP.

5. Дополнительно можно отметить флажок Привязать устройства к сетевым интерфейсам.

6. Нажмите кнопку Найти. В случае успеха будет показан список обнаруженных устройств.

7. Напротив каждого узла будет показан флажок выбора.
Рисунок 11.37. Список узлов iSCSI

8. В списке Аутентификация на узле доступны те же варианты, которые рассматривались на этапе 3. Обычно для подключения к узлу используются те же реквизиты доступа, что и при его обнаружении. Для этого выберите пункт Использовать учетные данные с этапа обнаружения.

9. Нажмите кнопку входа, чтобы создать сеанс iSCSI.

11.11.1.2. Настройка параметров FCoE

Нажмите кнопку Добавить FCoE SAN, чтобы перейти к диалогу настройки сетевых интерфейсов для обнаружения устройств FCoE.

Выберите интерфейс, подключенный к коммутатору FCoE, и нажмите Добавить диски FCoE.
Рисунок 11.38. Настройка параметров FCoE

Дополнительные опции:

Использовать DCB

Стандарт DCB (Data Center Bridging) включает набор расширений для оптимизации соединений Ethernet в кластерах и сетях. Этот флажок позволяет включить поддержку DCB во время установки. DCB следует использовать только для сетевых интерфейсов, требующих наличия клиентов DCBX, реализованных на уровне узла. Для интерфейсов с аппаратными клиентами DCBX этот параметр надо отключить.

Авто VLAN

Отвечает за автоматическое определение VLAN. Если флажок установлен, протокол FIP (FCoE Initiation Protocol) будет включен на Ethernet-интерфейсе сразу после проверки конфигурации. Если интерфейсы не настроены, для обнаруженных FCoE VLAN будут созданы новые интерфейсы, а для интерфейсов VLAN будут созданы экземпляры FCoE.

Обнаруженные устройства будут показаны на вкладке Другие устройства SAN.

11.12. Начало установки

Кнопка начала установки станет доступна, как только вы заполните обязательные секции окна обзора.

Рисунок 11.39. Готов к установке
Предупреждение

До этого момента изменения не записываются на диск. Как только вы нажмете кнопку Начать установку, Anaconda выделит место на жестком диске и начнет установку Red Hat Enterprise Linux. Этот процесс может удалить существующие данные.

Чтобы еще раз проверить выбранные настройки, нажмите Вернуться. Чтобы отменить установку, нажмите Выход или выключите компьютер, нажав и удерживая кнопку питания на системном блоке.

После проверки настроек нажмите Начать установку.

После этого момента не следует прерывать установку. Если же это произошло (например, при аварийном отключении питания), процесс установки надо будет начать заново.

11.13. Ход выполнения установки

Индикатор прогресса помогает следить за ходом выполнения установки.

Рисунок 11.40. Установка пакетов

Журнал установки хранится в /var/log/anaconda/anaconda.packaging.log.

Пока устанавливаются программы, можно настроить пароль root или создать пользователя.

В секции Пароль root можно создать пароль учетной записи root. Пароль можно настроить во время или после установки пакетов. Без этого пароля вы не сможете завершить установку.

На этом этапе также рекомендуется создать пользователя. Учетная запись пользователя используется для ежедневного доступа к системе.

11.13.1. Установка пароля root

Создание учетной записи root является одним из важнейших этапов установки системы. Режим root
аналогичен режиму администратора в Microsoft Windows и предназначен для установки, обновления пакетов и решения административных задач. Пользователь root получает полный контроль над системой, и именно поэтому он должен использоваться исключительно в целях поддержки и администрирования системы. Подробную информацию можно найти в руководстве системного администратора Red Hat Enterprise Linux 7.

Рисунок 11.41. Окно пароля root

Введите пароль root. Из соображений безопасности вместо символов будут показаны звездочки. Введите его еще раз в поле подтверждения. Завершив, нажмите Готово.

При выборе пароля следует руководствоваться несколькими правилами:

- должен содержать не менее 8 символов;
- может содержать буквы, цифры, точку и другие символы;
- должен содержать буквы в верхнем и нижнем регистре;
- создайте такой пароль, чтобы его нельзя было легко подобрать;
- не используйте слова (на любом языке), аббревиатуры и цифры, связанные с вами или вашей организацией;
- хоть это и не рекомендуется, но если вы решили записать пароль, храните его в безопасном месте.

Примечание

Чтобы изменить пароль после завершения установки, воспользуйтесь программой настройки пароля root.

11.13.2. Создание пользователя

Для создания непривилегированного пользователя выберите пункт Настройки пользователя и в открывшемся окне определите имя пользователя и пароль. Если по какой-то причине вы не хотите создавать учетную запись на этом этапе, это можно будет сделать после установки.

Чтобы закрыть окно без сохранения изменений, оставьте поля пустыми и нажмите Готово.
Рисунок 11.42. Создание пользователя

Введите полное имя и имя пользователя. Имя пользователя не должно содержать пробелов и не может быть больше 32 знаков. Настоятельно рекомендуется установить пароль для создаваемой учетной записи.

При формировании пароля пользователя следует придерживаться нескольких рекомендаций (см. Раздел 11.13.1, «Установка пароля root»).

Чтобы определить другие параметры, нажмите Дополнительно.

Advanced User Configuration

Home Directory

- **Create a home directory for this user.**
 - Home directory: `/home/jdoe`

User and Group IDs

- **Specify a user ID manually:** 1000
- **Specify a group ID manually:** 1000

Group Membership

Add user to the following groups:

Example: wheel, my-team (1245), project-x (29935)

Tip: You may input a comma-separated list of group names and group IDs here. Groups that do not already exist will be created; specify their GID in parentheses.

[Cancel] [Save Changes]
Рисунок 11.43. Дополнительные параметры пользователя

По умолчанию имя домашнего каталога пользователя совпадает с его именем. Обычно не требуется отклоняться от этой линии поведения.

Обычно нумерация пользователей начинается с 1000, но в этом окне можно присвоить другие идентификаторы пользователя и группы. В нижней части можно ввести список групп, в которые войдет созданный пользователь. Если группы не существуют, они будут автоматически созданы. В скобках можно указать новый идентификатор группы.

Нажмите Сохранить, чтобы вернуться к предыдущему окну.

11.14. Завершение установки

Поздравляем! Установка Red Hat Enterprise Linux завершена.

Нажмите кнопку перезагрузки, чтобы перезагрузить Red Hat Enterprise Linux. Не забудьте извлечь установочные носители, если они не были извлечены автоматически.

Появится индикатор прогресса загрузки Red Hat Enterprise Linux. После загрузки откроется окно авторизации. Если X Window System не установлена, появится строка приглашения login: .

Если же X Window System была установлена, после загрузки Red Hat Enterprise Linux будет запущена программа первоначальной настройки, с помощью которой можно настроить дату и время, зарегистрировать компьютер в Red Hat Network и т.д.

Глава 26, Первая настройка u Firstboot содержит подробную информацию.
Глава 12. Диагностика конфликтов установки на IBM Power Systems

В этой секции обсуждаются общие проблемы установки и пути их решения.

Anaconda сохраняет журналы в каталог `/tmp`.

Таблица 12.1. Журналы установки

<table>
<thead>
<tr>
<th>Файл</th>
<th>Содержимое</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/tmp/anaconda.log</code></td>
<td>общие сообщения Anaconda</td>
</tr>
<tr>
<td><code>/tmp/program.log</code></td>
<td>сообщения внешних программ</td>
</tr>
<tr>
<td><code>/tmp/storage.log</code></td>
<td>информация о модулях хранения</td>
</tr>
<tr>
<td><code>/tmp/packaging.log</code></td>
<td>сообщения <code>yum</code> и <code>rpm</code></td>
</tr>
<tr>
<td><code>/tmp/syslog</code></td>
<td>сообщения об оборудовании</td>
</tr>
</tbody>
</table>

При сбое установки сообщения будут сохранены в `/tmp/anaconda-tb-ID`, где ID — случайная строка.

Перечисленные файлы расположены на RAM-диске установщика и будут удалены после перезапуска системы. Для создания постоянной копии скопируйте их на внешнее устройство или другой компьютер с помощью `scp`. Ниже рассматриваются способы копирования журналов.

Примечание

Для удаленного копирования журналов необходимо настроить доступ к сети и возможность подключения по **ssh**.

Процедура 12.1. Копирование журналов по сети

1. Нажмите **Ctrl+Alt+F2**, чтобы открыть окно оболочки. Вы автоматически перейдете в режим root и получите доступ к временной файловой системе.

2. Перейдите в каталог `/tmp`:

   ```bash
   # cd /tmp
   ```

3. Скопируйте журналы на другой узел:

   ```bash
   # scp *log пользователь@адрес:путь
   ```

Укажите имя пользователя, адрес или имя узла, и путь к каталогу. Например, для копирования в каталог `/home/john/logs/` пользователя `john` на узле `192.168.0.122` выполните:

```bash
# scp *log john@192.168.0.122:/home/john/logs/
```

При первом подключении к удаленной системе появится сообщение:

```
The authenticity of host '192.168.0.122 (192.168.0.122)' can't be established.
```
Введите yes и нажмите Enter. Будет предложено ввести пароль, после чего начнется копирование файлов.

Журналы будут размещены в удаленной системе.

12.1. Решение конфликтов при запуске установки

12.1.1. Конфликты при запуске графического режима

При запуске графической версии установки на компьютерах с определенными типами видеокарт не исключена вероятность возникновения проблем. Так, если программа установки не может запуститься со стандартными настройками, она попытается продолжить работу в режиме с низким разрешением. Если и эта попытка завершилась неудачей, будет выбран текстовый режим.

Большинство подобных конфликтов можно решить с помощью параметров загрузки (см. Раздел 20.1, «Настройка системы установки в меню загрузки»).

Базовый графический режим

Можно попытаться запустить установку с использованием базового видеодрайвера. Для этого в строке приглашения boot: отредактируйте параметры установки, добавив inst.xdriver=vesa в конец строки.

Выбор разрешения экрана вручную

Если программа установки не может определить разрешение экрана, можно задать его вручную с помощью параметра загрузки inst.resolution=, заменив x желаемым разрешением, например 1024x768.

12.1.2. Последовательная консоль не обнаружена

Иногда установка в текстовом режиме с использованием последовательной консоли в системах с видеокартой, но без монитора, не генерирует вывод. Дело в том, что Anaconda автоматически определяет наличие видеокарты и пытается ее использовать для вывода, даже если монитор не подключен.

В этом случае рекомендуется использовать параметры inst.text и console= (см. Глава 20, Параметры загрузки).

12.2. Решение конфликтов во время установки

12.2.1. Диски не обнаружены

Если при запуске установки появилось сообщение:

Диски не обнаружены. Выключите компьютер и подключите хотя бы один диск. После этого можно вновь начать установку.

Возможно, Anaconda не обнаружила устройства для установки.
При наличии аппаратного RAID-контроллера проверьте его конфигурацию. За подробной информацией обратитесь к его документации.

При выполнении установки на iSCSI-устройства в бездисковых системах убедитесь, что на соответствующем адаптере (HBA, Host Bus Adapter) заданы обязательные LUN (Logical Unit Numbers) (см. Приложение B, Диски iSCSI).

Если диски подсоединены, но после перезагрузки сообщение не исчезло, это может служить индикатором того, что программа установки не смогла распознать SCSI-устройство.

Тогда прежде чем приступить к установке, проверьте наличие обновлений драйверов на сайте производителя (см. Глава 9, Обновление драйверов в ходе установки на IBM Power Systems).

12.2.2. Сохранение сообщений отладки

Если программа установки столкнулась с проблемами в графическом режиме, будет предложено создать отчет об ошибке. Чтобы его отправить, надо будет ввести данные авторизации на портале пользователей Red Hat. Новые пользователи могут зарегистрироваться здесь: https://www.redhat.com/wapps/ugc/register.html. Для автоматического создания отчетов необходимо наличие рабочего сетевого соединения.

Рисунок 12.1. Окно создания отчета

Чтобы приступить к созданию отчета, нажмите Сообщить об ошибке, чтобы отменить установку — выберите Выход.

Для просмотра подробной информации выберите Подробнее.... Если у вас есть опыт отладки, нажмите Отладка. Откроется окно виртуального терминала tty1, где можно выполнить другие команды для получения дополнительной информации. Чтобы вернуться к программе установки, выполните команду continue.
Рисунок 12.2. Развернутое окно данных сбоя

Ниже рассказывается, как отправить отчет через портал пользователей.

Процедура 12.2. Передача отчетов в службу поддержки Red Hat.

1. В меню выберите Сообщить об ошибке через портал пользователей Red Hat.
2. Чтобы авторизоваться на портале, нажмите Настроить доступ к порталу пользователей Red Hat.
3. В открывшемся окне введите имя и пароль доступа к порталу пользователей Red Hat.
Рисунок 12.4. Настройка доступа к порталу пользователей

Если подключение осуществляется через прокси-сервер, щелкните на слове **дополнительно** и заполните необходимые данные.

Завершив, нажмите **OK**.

4. Появится окно, где можно объяснить, какие действия вызвали ошибку, и добавить комментарии. Постарайтесь подробно описать проблему и включить соответствующие данные, полученные в ходе отладки. Следует помнить, что введенные здесь данные будут открыто доступны на портале пользователей.

Если причина ошибки точно не известна, установите флажок **Я не знаю, что вызвало эту ошибку**.

Нажмите **Вперед**.
Рисунок 12.5. Заполните описание ошибки

5. Еще раз проверьте введенную информацию. Описание можно найти на вкладке комментарии. По желанию можно удалить данные, которые вы не хотите отправлять, но это может усложнить поиск ошибок.

Нажмите Вперед.

Рисунок 12.6. Проверьте отчет
6. Проверьте список вложенных файлов. Они содержат системные данные, что может помочь в определении причин проблемы. Чтобы исключить файлы, снимите флажки напротив их имен, а чтобы добавить новые — нажмите Добавить файл.

Установите флажок Я проверил(а) данные и разрешаю их передачу и нажмите Вперед, чтобы отправить отчет.

![Size: 618133 bytes, 41 files](image)

Рисунок 12.7. Список вложений

7. Для просмотра результата создания отчета выберите Показать журнал или нажмите Закрыть, чтобы вернуться к исходному окну. Нажмите Выход, чтобы закрыть программу установки.

12.2.3. Другие конфликты разделов на серверах IBM Power Systems

Если после создания разделов в ручном режиме не удается перейти к следующему этапу установки, возможно, некоторые обязательные разделы не были созданы.

Надо создать как минимум следующие разделы:

- корневой раздел `/`,
- `PReP Boot`,
- `/boot` (если корневой раздел расположен на LVM или в пределах тома Btrfs).

Раздел 11.10.4.5, «Рекомендуемая схема разбиения» содержит подробную информацию.

12.3. Решение конфликтов после установки

12.3.1. Ошибки графического режима загрузки
Если при запуске системы загрузчик появляется как и ожидается, но при выборе загрузочной записи система перестает отвечать, возможно, причина заключается в загрузочной последовательности. Попробуйте отключить графический режим и повторите попытку.

Процедура 12.3. Временное отключение графического режима загрузки

1. Включите компьютер и дождитесь появления меню загрузки. Если время ожидания равно нулю, для доступа к меню удерживайте клавишу Esc.
2. Выберите строку загрузчика и нажмите e для перехода в режим редактирования.
3. Перейдите к строке параметров ядра (начинается со слова linux) и удалите параметр rhgb.
4. Нажмите F10 или Ctrl+X, чтобы продолжить загрузку с новыми параметрами.

После успешной загрузки вы сможете войти в систему. В такой ситуации надо будет насовсем отключить графический режим — в противном случае надо будет удалять вышеуказанный параметр каждый раз.

Процедура 12.4. Окончательное отключение графического режима загрузки

1. Перейдите в режим root:

 $ su -

2. Откройте файл /etc/default/grub в текстовом редакторе, например vim.
3. Перейдите к строке, начинающейся с выражения GRUB_CMDLINE_LINUX:

 GRUB_CMDLINE_LINUX="rd.lvm.lv=rhel/root rd.md=0 rd.dm=0
 vconsole.keymap=us $([-x /usr/sbin/rhcrashkernel-param] &&
 /usr/sbin/rhcrashkernel-param || :) rd.luks=0
 vconsole.font=latarcyrheb-sun16 rd.lvm.lv=vg_rhel/swap rhgb quiet"

 Удалите параметр rhgb.
4. Сохраните файл.
5. Примените изменения, выполнив:

 # grub2-mkconfig --output=/boot/grub2/grub.cfg

После этого компьютер можно будет перезагрузить без активации графического режима. Чтобы снова его включить, надо будет опять добавить параметр rhgb в строку GRUB_CMDLINE_LINUX в /etc/default/grub и применить изменения, выполнив grub2-mkconfig.

Более подробно загрузчик GRUB2 обсуждается в руководстве системного администратора Red Hat Enterprise Linux 7.

12.3.2. Загрузка в графическом окружении

Если X Window System установлена, но после входа в систему графическое окружение не появляется, можно ее запустить с помощью команды startx. Это изменение будет применено только к текущему сеансу.
Чтобы включить графический режим выбора пользователя при входе, надо изменить стандартное действие `systemd` на `graphical.target` и перезагрузить компьютер. Следующая авторизация будет происходить в графическом режиме.

Процедура 12.5. Выбор графического режима входа по умолчанию

1. Откройте окно приглашения оболочки. Перейдите в режим пользователя root, выполнив `su -`.

2. Измените стандартный уровень загрузки на `graphical.target`:

```
# systemctl set-default graphical.target
```

Таким образом, при следующем запуске графический режим входа будет выбран автоматически. Чтобы вернуться к использованию текстового режима, выполните:

```
# systemctl set-default multi-user.target
```

За подробной информацией об уровнях `systemd` обратитесь к руководству системного администратора Red Hat Enterprise Linux 7.

12.3.3. Графический интерфейс пользователя недоступен

Если вы не можете запустить X (X Window System), убедитесь, что она была установлена. Дело в том, что некоторые комплекты — Минимальная установка и Веб-сервер — не включают графический интерфейс, поэтому X Window System надо будет установить отдельно.

X Window System можно установить и после установки. Информацию об установке графического окружения можно найти в статье https://access.redhat.com/site/solutions/5238.

12.3.4. Сбой сервера X при входе пользователя

Если при входе в систему происходит сбой сервера X, возможно, файловая система переполнена.

```
$ df -h
```

Это поможет определить заполненные разделы. В большинстве случаев причина заключается в переполнении раздела `/home`. Пример вывода `df`:

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Size</th>
<th>Used</th>
<th>Avail</th>
<th>Use%</th>
<th>Mounted</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/mapper/vg_rhel-root</td>
<td>20G</td>
<td>6.0G</td>
<td>13G</td>
<td>32%</td>
<td>/</td>
</tr>
<tr>
<td>devtmpfs</td>
<td>1.8G</td>
<td>0</td>
<td>1.8G</td>
<td>0%</td>
<td>/dev</td>
</tr>
<tr>
<td>tmpfs</td>
<td>1.8G</td>
<td>2.7M</td>
<td>1.8G</td>
<td>1%</td>
<td>/dev/shm</td>
</tr>
<tr>
<td>tmpfs</td>
<td>1.8G</td>
<td>1012K</td>
<td>1.8G</td>
<td>1%</td>
<td>/run</td>
</tr>
<tr>
<td>tmpfs</td>
<td>1.8G</td>
<td>0</td>
<td>1.8G</td>
<td>0%</td>
<td>/</td>
</tr>
<tr>
<td>/sys/fs/cgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tmpfs</td>
<td>1.8G</td>
<td>2.6M</td>
<td>1.8G</td>
<td>1%</td>
<td>/tmp</td>
</tr>
<tr>
<td>/dev/sda1</td>
<td>976M</td>
<td>150M</td>
<td>760M</td>
<td>17%</td>
<td>/boot</td>
</tr>
<tr>
<td>/dev/dm-4</td>
<td>96G</td>
<td>90G</td>
<td>0</td>
<td>100%</td>
<td>/home</td>
</tr>
</tbody>
</table>

Как видно из примера, раздел `/home` заполнен на 100%. Освободите место, удалив ненужные файлы, и запустите X, выполнив команду `startx`.

За информацией о команде `df` и ее параметрах обратитесь к справочной странице `df(1)`.
12.3.5. Ошибки Signal 11

Ошибка «Signal 11» (сбой сегментации) свидетельствует о попытке обращения к неизвестной ячейке памяти. Если во время установки вы столкнулись с ошибкой «Signal 11», скорее всего, это связано с ошибкой в коде установленных программ или сбоем оборудования.

Убедитесь, что вы используете последние установочные образы, и позвольте Anaconda проверить их целостность. Часто причина заключается в неверно записанных или поцарапанных установочных дисках, поэтому рекомендуется их проверить до начала установки.

Глава 1, Загрузка файлов Red Hat Enterprise Linux содержит информацию о том, где можно найти последние установочные носители. Чтобы их проверить, добавьте параметр загрузки `rd.live.check` (см. Раздел 20.2.2, «Проверка загрузочных носителей»).

Подробное обсуждение возможных причин выходит за рамки этого руководства. За дальнейшей информацией обратитесь к документации оборудования.

12.3.6. Невозможно выполнить IPL из *NWSSTG

Если возникли проблемы при попытке выполнения IPL из *NWSSTG, причина может заключаться в отсутствии раздела PReP. В этом случае потребуется переустановить систему и на стадии разбивания создать этот раздел.
Часть III. IBM System z — установка и загрузка

В этой главе обсуждается установка и загрузка (IPL, Initial Program Load) Red Hat Enterprise Linux в IBM System z.
Глава 13. Планирование установки на IBM System z

13.1. Подготовка к установке

Red Hat Enterprise Linux 7 может устанавливаться на мэйнфреймах IBM, начиная с zEnterprise 196. Приведенные здесь инструкции подразумевают, что пользователь уже знаком с архитектурой IBM System z, может настроить логические разделы (LPAR, Logical Partitions) и виртуальные машины z/VM. За подробной информацией о System z обратитесь к сайту https://www-03.ibm.com/systems/ru/z/.

Red Hat Enterprise Linux на серверах System z можно установить на устройства DASD и FCP. Прежде чем приступить к установке, нужно ответить на несколько вопросов:

- Определитесь, будет ли операционная система установлена в логическом разделе или как гостевая система z/VM.
- Оцените необходимый размер пространства подкачки. Рекомендуется выделить достаточно памяти для z/VM и позволить z/VM осуществлять подкачку, но в некоторых случаях предсказать точный размер невозможно. В таких случаях нужен индивидуальный подход (см. Раздел 15.10.3.5, “Рекомендуемая схема разбиения”).
- Продумайте конфигурацию сети. Red Hat Enterprise Linux 7 для IBM System z поддерживает следующие сетевые устройства:
 - физические и виртуальные адаптеры открытых систем (OSA, Open Systems Adapter);
 - физические и виртуальные HiperSockets;
 - LCS (LAN channel station) для реальных OSA.

Аппаратные требования:

- Дисковое пространство. Выделите достаточно пространства на дисках DASD [2] или SCSI [3]. Например, для установки серверного комплекта достаточно 2 ГБ, в то время как для установки всех пакетов потребуется не меньше 5 ГБ. Для размещения программных данных потребуется дополнительное пространство. При необходимости после установки можно будет добавить новые или удалить существующие разделы.

Пространство Red Hat Enterprise Linux должно быть отделено от пространства других операционных систем.

Раздел 15.10.3.5, “Рекомендуемая схема разбиения” содержит дальнейшую информацию о конфигурации разделов и дисков.

- Оперативная память. Для работы Linux рекомендуется выделить 1 ГБ. В принципе, можно изменить настройки так, чтобы вся установка использовала не более 512 МБ оперативной памяти.

13.2. Обзор установки в System z

Установку Red Hat Enterprise Linux на серверах System z можно провести в интерактивном или автоматическом режиме. Процесс установки на System z отличается от других архитектур и обычно выполняется по сети. Вкратце, установка включает две стадии:

1. Загрузка установки
 Подключение к мэйнфрейму и выполнение IPL (Initial Program Load) или загрузка c
установочного носителя (см. Глава 14, Загрузка установки на IBM System z).

2. Anaconda

В ходе выполнения Anaconda можно настроить подключение к сети, добавить языковую поддержку, выбрать источник установки, список пакетов и, собственно, выполнить установку (см. Глава 15, Установка Red Hat Enterprise Linux на IBM System z).

13.2.1. Загрузка установки

Следующим шагом после установки соединения с мэйнфреймом будет выполнение IPL или его загрузка с установочного носителя. Здесь рассказывается о наиболее распространенных методах установки Red Hat Enterprise Linux в System z. Для загрузки системы установки Linux, которая состоит из ядра (kernel.img) и исходного RAM-диска (initrd.img) с параметрами в файле generic.prm, подойдет любой описанный метод. Система установки также известна как программа установки.

Способ запуска процесса IPL определяется окружением. Так, если новая установка Linux будет выступать в роли гостя z/VM, то управление будет осуществляться из управляющей программы хоста z/VM. Если же Linux устанавливается в логическом разделе, управление будет осуществляться из консоли управления оборудованием (HMC, Hardware Management Console) или сервисного элемента (SE, Service Element).

Если Linux устанавливается в качестве гостя z/VM, допускается использование следующих загрузочных носителей:

- устройство чтения z/VM (см. Раздел 14.3.1, «Загрузка с виртуального устройства чтения z/VM»).

При установке в логическом разделе можно использовать носители:

- сервисный элемент (SE) или HMC через удаленный сервер FTP (см. Раздел 14.4.1, «Загрузка с сервера FTP»);

- сервисный элемент (SE) или HMC DVD (см. Раздел 14.4.4, «Загрузка со SCSI DVD с подключением FCP»).

И для z/VM, и для LPAR подходят следующие носители:

- DASD (см. Раздел 14.3.2, «Загрузка с DASD» для z/VM и Раздел 14.4.2, «Загрузка с DASD» для LPAR);

- диски SCSI, подключенные с помощью FCP (см. Раздел 14.3.3, «Загрузка со SCSI-диска с подключением FCP» для z/VM и Раздел 14.4.3, «Загрузка со SCSI-диска с подключением FCP» для LPAR);

- SCSI DVD, подключенные с помощью FCP (см. Раздел 14.3.4, «Загрузка со SCSI DVD с подключением FCP» для z/VM и Раздел 14.4.4, «Загрузка со SCSI DVD с подключением FCP» для LPAR).

При использовании устройств DASD и SCSI, подключенных к FCP (за исключением SCSI DVD), надо будет настроить загрузчик zipl.

13.2.2. Установка с помощью Anaconda

Следующий этап — выполнение Anaconda в одном из трех режимов: текстовом, графическом или в режиме командной строки.

Графический режим
Установка в графическом режиме проводится с помощью инструментов VNC (см. Глава 22, Установка с помощью VNC).

Текстовый режим

В текстовом режиме доступен лишь ограниченный набор функций, поэтому к его помощи стоит прибегать, только если в силу каких-то ограничений нельзя использовать клиент VNC (см. Раздел 15.1.3, «Текстовый режим»).

Режим командной строки

Этот режим подходит для полностью автоматизированной и неинтерактивной установки на серверах System z. Если в ходе работы процесс обнаружит неверный или отсутствующий параметр, система будет перезагружена. Глава 23, Кикстарт-установка содержит более подробную информацию.

Текстовый режим установки нацелен на минимизацию взаимодействия с пользователем. Многие функции (установка на устройствах SCSI с подключением FCP, изменение схемы разделов и набора пакетов) доступны только в графическом режиме. Именно поэтому графическая установка является более предпочтительной (см. Глава 15, Установка Red Hat Enterprise Linux на IBM System z).

[2] Устройства прямого доступа (DASD, Direct Access Storage Devices) представляют собой диски, на которых может быть создано не более трех разделов. Так, например, dasda может содержать разделы dasda1, dasda2, dasda3.

[3] С помощью драйвера zFCP и коммутатора можно сделать так, чтобы SCSI LUN были представлены Linux в виде напрямую подключенных дисков SCSI.
Глава 14. Загрузка установки на IBM System z

В этой главе обсуждается выполнение IPL (Initial Program Boot) программы Anaconda в разных окружениях (z/VM или LPAR).

14.1. Подготовка generic.prm

Прежде чем приступить к установке, надо изменить конфигурацию generic.prm.

Репозиторий установки

Параметр inst.repo= (см. Выбор источника установки).

Сетевые устройства

ip= и nameserver= (см. Сетевые параметры).

Дополнительно можно добавить параметр rd.znet=, который принимает тип сетевого протокола, список каналов, а также параметров sysfs и их значений через запятую. Для активации нескольких сетевых устройств можно добавить несколько параметров rd.znet.

```
rd.znet=qeth,0.0.0600,0.0.0601,0.0.0602,layer2=1,portname=foo
rd.znet=ctc,0.0.0600,0.0.0601,protocol=bar
```

Устройства хранения

Параметр rd.dasd= принимает идентификатор шины устройства DASD и дополнительно — список параметров sysfs и их значений через запятую. Для активации нескольких устройств можно добавить несколько параметров rd.dasd.

```
rd.dasd=0.0.0200,readonly=0
```

rd.zfcp= отвечает за активацию устройства zFCP с заданным идентификатором шины, номером WWPN и FCP LUN. Для активации нескольких устройств добавьте несколько параметров rd.zfcp.

```
rd.zfcp=0.0.4000,0x5005076300C213e9,0x5022000000000000
```

14.2. Запуск установки с жесткого диска

Если программа установки запускается с жесткого диска, на этот же диск можно установить загрузчик zipl. Стоит помнить, что zipl поддерживает наличие только одно загрузочной записи для каждого диска. Если диск содержит несколько разделов, все они будут использовать одну и ту же загрузочную запись.

Чтобы установить zipl, выполните:

```
# zipl -V -t /mnt/ -i /mnt/images/kernel.img -r /mnt/images/initrd.img -p /mnt/images/generic.prm
```

Раздел 14.1, «Подготовка generic.prm» рассказывает о подготовке файла generic.prm к установке.
14.3. Установка в z/VM

При установке в z/VM программу установки можно загрузить с нескольких видов носителей:

- виртуальное устройство чтения z/VM;
- DASD или SCSI-диск с подключением FCP, подготовленный с помощью zipl;
- SCSI DVD, подключенный с помощью FCP.

Авторизуйтесь в виртуальной системе z/VM. Для подключения из других систем Linux можно использовать эмулятор x3270 или c3270 из пакета x3270-text. Также можно авторизоваться из эмулятора терминала IBM 3270 в консоли HMC IBM System z. Если вы подключаетесь из Microsoft Windows, можно выбрать эмулятор 3270 с поддержкой SSL (см. http://www.jollygiant.com/) или бесплатный Windows-аналог c3270, также известный как wc3270.

Примечание

Если произошел сбой подключения 3270, и повторная авторизация невозможна в силу того, что предыдущий сеанс все еще активен, новый сеанс можно создать следующим образом:

```
logon пользователь here
```

В качестве пользователя укажите имя гостевой виртуальной машины z/VM. Формат команды может отличаться в зависимости от внешней системы защиты (например, RACF).

Если операционная система CMS еще не выполняется в гостевой системе, загрузите ее:

```
cp ipl cms
```

Не выбирайте для установки диски CMS (например, диск А с номером устройства 0191). Чтобы узнать, какие диски используются в CMS, выполните команду:

```
query disk
```

Ниже обсуждаются команды гипервизора z/VM, с помощью которых можно получить информацию о конфигурации виртуальной машины.

- Получение сведений о доступной памяти. Виртуальной машине должно быть доступно не меньше 1 ГБ.

```
cp query virtual storage
```

- Определение доступных сетевых устройств заданного типа:

 - osa

 OSA — CHPID OSD, физические и виртуальные (VSWITCH или GuestLAN QDIO), в режиме QDIO.

 - hsi

 HiperSockets — CHPID IQD, реальные и виртуальные (GuestLAN Hipers).
Так, команда просмотра всех перечисленных типов сетевых устройств выглядит так:

```
cp query virtual osa
```

- Просмотр списка дисков DASD (установка может быть выполнена только на дисках, доступных для чтения и записи):

```
cp query virtual dasd
```

- Просмотр списка каналов FCP:

```
cp query virtual fcp
```

14.3.1. Загрузка с виртуального устройства чтения z/VM

Ниже обсуждается порядок загрузки с виртуального устройства чтения z/VM.

1. Добавьте устройство с необходимыми утилитами TCP/IP для z/VM в список дисков CMS. Например:

```
cp link tcpmaint 592 592
acc 592 fm
```

Замените `fm` буквой `FILEMODE`.

2. Выполните команду

```
ftp узел
```

Укажите имя узла или IP-адрес FTP-сервера, где расположены образы `kernel.img` и `initrd.img`.

3. Авторизуйтесь и выполните перечисленные ниже команды (используйте параметр `repl` для перезаписи существующих файлов `kernel.img`, `initrd.img`, `generic.prm`, `redhat.exec`):

```
cd /путь/к/дереву_установки/images/
ascii
generic.prm repl
get redhat.exec repl
locsite fix 80
binary
generic.prm repl
get kernel.img repl
get initrd.img repl
quit
```

4. С помощью команды `filelist` можно проверить список и формат полученных файлов. Так, длина логических записей в `kernel.img` и `initrd.img` должна быть фиксированной (т.е. столбец `Format` должен содержать `F`, а столбец `Lrecl` — 80).
5. При необходимости откорректируйте параметры загрузки в generic.prm (см. Раздел 14.1, "Подготовка generic.prm").

В generic.prm также можно определить CMSDASD= в CMSCONFFILE= для конфигурации пространства данных и сетевых устройств (см. Раздел 18.2, «Файл конфигурации z/VM»).

6. Программу установки можно запустить с помощью сценария redhat.exec:

```
redhat
```

14.3.2. Загрузка с DASD

Загрузите систему с подготовленного диска DASD и в меню загрузки zipl выберите Red Hat Enterprise Linux. Выполните:

```
cp ipl номер_устройства_DASD loadparm номер_загрузочной_записи
```

В этой команде укажите номер загрузочного устройства и порядковый номер записи для этого устройства в меню zipl, например:

```
cp ipl eb1c loadparm 0
```

14.3.3. Загрузка со SCSI-диска с подключением FCP

Ниже обсуждается порядок загрузки с диска SCSI, подключенного при помощи FCP.

1. В z/VM настройте доступ загрузчика к SCSI-диску в сети хранения данных FCP и добавьте номер загрузочной записи zipl, которая соответствует программе установки Red Hat Enterprise Linux:

```
cp set loaddev portname WWPN lun LUN bootprog номер_загрузочной_записи
```

В этой команде укажите номер WWPN (World Wide Port Name) системы хранения данных и логический номер диска. Шестнадцатеричные числа из 16 знаков должны быть разбиты на две пары из восьми знаков. Пример:

```
cp set loaddev portname 50050763 050b073d lun 40204011 00000000 bootprog 0
```

2. Проверьте настройки:

```
query loaddev
```
3. Загрузите FCP-устройство, которое подключено к системе с интересующим диском:

```
cp ipl устройство
```

Например:

```
cp ipl fc00
```

14.3.4. Загрузка со SCSI DVD с подключением FCP

Потребуется DVD-привод SCSI, подключенный к мосту FCP-SCSI, который, в свою очередь, подключен к адаптеру FCP в System z. Адаптер должен быть настроен и доступен в среде z/VM.

1. Вставьте Red Hat Enterprise Linux DVD для System z в привод.
2. Настройте доступ загрузчика в окружении z/VM к DVD-приводу в сети FCP и выберите первую загрузочную запись на DVD:

```
cp set loaddev portname WWPN lun FCP_LUN bootprog 1
```

Укажите номер WWPN моста FCP-SCSI и логический номер привода DVD. Шестнадцатеричные числа из 16 знаков должны быть разбиты на две пары из восьми знаков. Пример:

```
cp set loaddev portname 20010060 eb1c0103 lun 00010000 00000000 bootprog 1
```

3. Проверьте настройки:

```
cp query loaddev
```

4. Выполните IPL устройства FCP, подключенного к мосту FCP-SCSI:

```
cp ipl устройство
```

Например:

```
cp ipl fc00
```

14.4. Установка в LPAR

При установке в логическом разделе (LPAR) в качестве источника загрузки может выступать:

- FTP-сервер;
- DASD или SCSI-диск с подключением FCP, подготовленный с помощью `zipl`;
- SCSI DVD, подключенный с помощью FCP.

Сначала выполните следующее:
1. Авторизуйтесь в консоли HMC (Hardware Master Console) или SE (Support Element) от имени пользователя, обладающего правами установки новой операционной системы в LPAR, — например, как пользователь SYSPROG.

2. Выберите Images и логический раздел для установки. С помощью стрелок в правой части окна перейдите к меню CPC Recovery.

3. Дважды щелкните Operating System Messages, чтобы открыть консоль вывода сообщений загрузки Linux.

4. При необходимости откорректируйте параметры загрузки в generic.prm (см. Раздел 14.1, «Подготовка generic.prm»).

После этого можно продолжить загрузку системы установки.

14.4.1. Загрузка с сервера FTP

1. Дважды щелкните Load from CD-ROM, DVD or Server.

2. В следующем окне выберите FTP Source и заполните поля:
 - User ID — имя пользователя на FTP-сервере. В качестве имени можно указать anonymous.
 - Password — пароль. Для пользователя anonymous укажите свой электронный адрес.
 - Account — оставьте пустым.
 - File location — каталог на сервере, где расположен дистрибутив Red Hat Enterprise Linux, например /rhel/s390x/.

3. Нажмите кнопку продолжения.

4. В следующем окне можно оставить выбранный файл generic.ins и нажать кнопку продолжения.

14.4.2. Загрузка с DASD

1. Дважды щелкните Load.

2. В поле Load type выберите Normal.

3. В поле Load address введите номер устройства DASD.

4. В поле Load parameter введите порядковый номер загрузочной записи Red Hat Enterprise Linux в меню zipl.

5. Нажмите OK.

14.4.3. Загрузка со SCSI-диска с подключением FCP

1. Дважды щелкните Load.

2. В следующем окне в поле Load type выберите SCSI.
3. В поле **Load address** укажите номер устройства канала FCP, к которому подключен диск SCSI.

4. В поле **World wide port name** введите шестнадцатеричный номер WWPN из 16 знаков для системы с необходимым диском.

5. В поле **Logical unit number** введите шестнадцатеричный логический номер диска из 16 знаков.

6. В поле **Boot program selector** введите порядковый номер загрузочной записи Red Hat Enterprise Linux в меню **zipl**.

7. Не изменяйте нулевое значение **Boot record logical block address** и оставьте пустым поле **Operating system specific load parameters**.

8. Нажмите **OK**.

14.4.4. Загрузка со SCSI DVD с подключением FCP

Для этого потребуется DVD-привод SCSI, подключенный к мосту FCP-SCSI, который, в свою очередь, подключен к адаптеру FCP в System z. Адаптер должен быть настроен и доступен в логическом разделе.

1. Вставьте Red Hat Enterprise Linux DVD для System z в привод.

2. Дважды щелкните **Load**.

3. В следующем окне в поле **Load type** выберите **SCSI**.

4. В поле **Load address** введите номер устройства канала FCP, к которому подключен мост FCP-SCSI.

5. В поле **World wide port name** введите шестнадцатеричный номер WWPN моста FCP-SCSI (из 16 знаков).

6. В поле **Logical unit number** введите шестнадцатеричный логический номер DVD-привода (из 16 знаков).

7. В поле **Boot program selector** введите 1 для выбора загрузочной записи Red Hat Enterprise Linux.

8. Не изменяйте нулевое значение **Boot record logical block address** и оставьте пустым поле **Operating system specific load parameters**.

9. Нажмите **OK**.
Глава 15. Установка Red Hat Enterprise Linux на IBM System z

В этой главе обсуждается выполнение установки с помощью Anaconda. Теперь отдельные стадии установки можно настроить в произвольном порядке в отличие от привычной пошаговой настройки. В процессе конфигурации можно будет выбирать язык системы, настроить сетевое подключение, устройства хранения данных и наборы пакетов. Доступ к секциям осуществляется из окна обзора.

15.1. Режимы установки

Установка Red Hat Enterprise Linux 7 проводится в графическом или текстовом режиме. По возможности рекомендуется использовать графический режим, так как в нем можно настроить все характеристики процесса установки. Оба режима включают меню обзора.

Рисунок 15.1. Окно обзора
Глава 15. Установка Red Hat Enterprise Linux на IBM System z

15.1.1. Графический режим

Безусловно, вы уже знаете, что такое графический интерфейс пользователя (GUI, Graphical User Interface), знакомы с основными элементами и навигацией, умеете нажимать кнопки и заполнять поля.

Для навигации можно использовать клавиатуру. Так, Tab и Shift+Tab позволяют перемещаться между полями, стрелки Вверх и Вниз осуществляют прокрутку списков, Влево и Вправо помогают перейти от одного элемента к другому на горизонтальной панели или в строке таблицы, а Пробел и Enter позволяют выбрать объект. Для быстрого доступа можно использовать горячие клавиши Alt+X (где X — буква, выделенная подчеркиванием).

15.1.2. Неинтерактивный режим

Для запуска Anaconda в неинтерактивном режиме используйте параметр загрузки inst.cmdline (см. Раздел 18.4, «Параметры кикстарта») или добавьте команду cmdline в файл кикстарта (см. Глава 23, Кикстарт-установка). В этом случае программа установки будет получать необходимые данные из файла, а если они не определены — программа остановится, и их надо будет ввести вручную.

15.1.3. Текстовый режим

Anaconda также предоставляет текстовый интерфейс.

Переход в текстовый режим происходит, если:
система не смогла обнаружить монитор;
в строке загрузки указан параметр `inst.text`;
в файле кикстарта присутствует команда `text`.

```bash
Starting installer, one moment...
anaconda 19.31.60-1 for Red Hat Enterprise Linux 7.0 started.
15:37:48 Not asking for VNC because we don’t have a network
===============================================================================
Installation

1) [!] Timezone settings
   (Timezone is not set.)
2) [!] Software selection
   (Processing...)
3) [!] Installation source
   (Processing...)
4) [!] Install Destination
   (No disks selected)
5) [x] Network settings
   (Not connected)
6) [!] Create user
   (No user will be created)
7) [!] Set root password
   (Password is not set.)
Please make your choice from above [’q’ to quit ] ’c’ to continue [’r’ to refresh]: _
```

Рисунок 15.3. Окно обзора в текстовом режиме

Важно

Red Hat рекомендует выполнять установку в графическом режиме. Для установки Red Hat Enterprise Linux в системе без дисплея используется механизм VNC (см. Глава 22, Установка с помощью VNC). Если вы выбрали текстовый режим, но Anaconda обнаружила поддержку VNC, будет предложено подтвердить свой выбор.

Если компьютер оборудован дисплеем, но по каким-то причинам графический режим недоступен, попробуйте загрузить систему с параметром `inst.xdriver=vesa` (см. Глава 20, Параметры загрузки).

В противном случае можно выбрать автоматизированный метод установки (см. Глава 23, Кикстарт-установка).

В текстовом режиме некоторые функции недоступны:

- интерактивная активация FCP LUN;
- нестандартные схемы хранения данных — LVM, RAID, FCoE, zFCP, iSCSI;
- изменение стандартной схемы разделов;
- изменение конфигурации загрузчика;
выбор пакетов в процессе установки;
программа первой настройки;
изменение языка и раскладки клавиатуры.

Примечание

Во время работы фоновых задач некоторые пункты меню будут недоступны, и вы увидите сообщение Обработка... Чтобы обновить состояние меню, используйте параметр r в командной строке.

Графический режим можно настроить и после завершения текстовой установки. Подробную информацию можно найти в руководстве системного администратора Red Hat Enterprise Linux 7.

Недоступные в текстовом режиме характеристики можно настроить с помощью параметров загрузки (см. Раздел 20.1, «Настройка системы установки в меню загрузки»). Так, например, параметр ip поможет настроить подключение к сети.

15.2. Приветствие и выбор языка

Сразу после запуска установки появится окно приветствия, где можно выбрать язык интерфейса, который будет использоваться не только в ходе установки, но и по умолчанию в готовой системе. Слева выберите язык, например Русский, а справа — регион, например Русский (Россия).

Примечание

Выбранный по умолчанию язык будет показан первым в списке. Если компьютер подключен к сети, язык будет выбран в соответствии с географическим расположением, которое автоматически определяется модулем GeoIP.

Для быстрого выбора можно ввести язык вручную в строке поиска.

Нажмите кнопку продолжения для перехода к следующему окну.
Рисунок 15.4. Выбор языка

15.3. Окно обзора

Окно обзора является центральным местом настройки всех аспектов установки.
Рисунок 15.5. Окно обзора

Вместо последовательного определения параметров теперь это можно сделать в произвольном порядке, выбирая интересующие категории в меню установки.

Выберите секцию для перехода к ее параметрам. Завершив редактирование, нажмите Готово, чтобы вернуться в окно обзора.

Секции, отмеченные восклицательным знаком, являются обязательными, что также подтверждает сообщение в нижней части экрана. Под заголовком секции приведена сводка текущих параметров, что поможет быстро оценить ситуацию.

Завершив подготовку, нажмите Начать установку (см. Раздел 15.12, «Начало установки»).

Чтобы отказаться от установки, нажмите кнопку выхода.

Примечание

Во время работы фоновых задач некоторые пункты меню будут недоступны.

15.4. Дата и время

Чтобы настроить часовой пояс, дату и время, выберите секцию Дата и время.
Время можно настроить несколькими способами:

- выбрать город на карте;
- выбрать регион и город из списка;
- в конце списка регионов выбрать "Другое", затем выбрать часовой пояс (например, GMT+1).

Если интересующего города нет на карте, выберите ближайший город в той же часовой зоне.

Примечание

Список городов извлекается из глобальной базы данных tzdata, поддержкой которой занимается администрация адресного пространства Интернета (IANA, Internet Assigned Numbers Authority). Red Hat не участвует в ее разработке. Подробную информацию можно найти на сайте http://www.iana.org/time-zones.

Настройте часовой пояс, даже если вы планируете использовать NTP для синхронизации часов.

Рисунок 15.6. Окно выбора часового пояса

Если компьютер подключен к сети, будет доступен переключатель "Сетевое время". Чтобы включить синхронизацию часов с использованием NTP, оставьте его включенными, рядом нажмите значок конфигурации и выберите серверы NTP. Чтобы настроить время вручную, переведите переключатель в выключенное положение. Если системные часы показывают неверное время, откорректируйте его в нижней части окна.
Если во время установки сервер NTP недоступен, то системное время будет выставлено, когда он снова станет активным.

Чтобы вернуться к окну обзора, нажмите Готово.

Примечание

После завершения установки часовой пояс можно будет изменить в секции Дата и время в окне системных параметров.

15.5. Выбор языка

Чтобы добавить поддержку дополнительных языков, в меню обзора выберите Языковая поддержка.

В левой части окна выберите язык, например Испанский, а справа — регион, например Испанский (Коста Рика). По желанию можно выбрать несколько языков — они будут выделены жирным шрифтом.

Рисунок 15.7. Настройка языка

Чтобы вернуться к окну обзора, нажмите Готово.
Примечание

После завершения установки язык можно будет изменить в секции Язык и регион в окне параметров.

15.6. Настройка клавиатуры

В секции Клавиатура можно добавить раскладки — они будут доступны сразу. Для переключения используйте значок клавиатуры в правом верхнем углу экрана.

Изначально в левой части окна будет показан язык, который был выбран в окне приветствия. По желанию его можно изменить или добавить другие языки с тем условием, что хотя бы один язык должен поддерживать ASCII (для установки пароля root, паролей доступа к разделам и т.п.).

Рисунок 15.8. Настройка клавиатуры

Чтобы добавить раскладку, нажмите +, выберите язык из списка и нажмите кнопку Добавить. Чтобы удалить выбранную раскладку, нажмите -. С помощью стрелок можно изменить порядок элементов в списке. Чтобы получить визуальную схему раскладки, нажмите значок клавиатуры в правом верхнем углу экрана.

Чтобы протестировать выбранную раскладку, щелкните в области ввода в правой части окна и начните вводить текст.

Для переключения между раскладками рекомендуется настроить комбинации клавиш. Для этого нажмите кнопку Параметры и выберите комбинацию (одну или несколько). Настроенная комбинация будет показана над кнопкой.
Важно

Если выбранная раскладка не использует латиницу (как например, русская), настоятельно рекомендуется дополнительно добавить английскую раскладку и настроить комбинацию клавиш для переключения. В противном случае вы не сможете авторизоваться в системе после завершения установки.

Чтобы вернуться к окну обзора, нажмите Готово.

Примечание

После завершения установки раскладку можно будет изменить в секции Клавиатура в окне параметров.

15.7. Источник установки

Чтобы настроить расположение установочных файлов, в окне обзора перейдите к секции Источник установки.

Рисунок 15.9. Выбор источника установки

Будут доступны следующие варианты:

ISO-файл

Это поле появится при обнаружении жесткого диска с файловыми системами. Нажмите кнопку Выбрать ISO и выберите файл. Нажмите Проверить.
В сети

Выберите протокол из списка:

- http://
- https://
- ftp://
- nfs

Справа от протокола введите адрес. Для NFS появится дополнительное поле параметров монтирования.

Важно

Для NFS-установки после имени сервера введите двоеточие:

```
server.example.com:/путь
```

Для HTTP/HTTPS можно настроить прокси-сервер: нажмите Настроить прокси, в открывшемся окне установите флажок Включить HTTP-прокси и введите URL в поле Адрес прокси. Если для подключения к серверу требуется авторизация, выберите Аутентификация, введите имя пользователя и пароль. Нажмите кнопку Добавить.

Если адрес HTTP/HTTPS ссылается на список зеркальных репозиториев, установите соответствующий флажок.

Для установки внешних программ можно настроить дополнительные репозитории (см. Раздел 15.9, «Выбор программ»).

Чтобы добавить репозиторий, нажмите плюс; чтобы удалить — нажмите минус. С помощью стрелки можно отменить изменения и восстановить предыдущий список репозиториев. Флажки в столбце Включено позволяют включить или исключить репозитории.

Имя репозитория можно настроить в правой части окна.

Чтобы вернуться к окну обзора, нажмите Готово.

15.8. Сеть и имя узла

Чтобы настроить сетевое подключение, в окне обзора перейдите к секции Сеть и имя узла.

Программа установки автоматически найдет локальные интерфейсы и покажет их в левой части окна. Их нельзя будет удалить, но можно отключить, установив переключатель в правом верхнем углу в положение OFF.
Рисунок 15.10. Настройка сетевого подключения и имени узла

В поле имени узла введите полное имя домена или «узел.домен». Если сеть использует протокол DHCP (Dynamic Host Configuration Protocol) для автоматического выбора имени домена, можно указать краткое имя узла.

Важно

При выборе имени интерфейса не используйте имена доменов, которые не делегированы вам, так как это ограничит доступ к сетевым ресурсам. Подробную информацию можно найти в сетевом руководстве Red Hat Enterprise Linux 7.

Измените значение localhost.localdomain в соответствии со своими настройками.

Чтобы вернуться к окну обзора, нажмите Готово.

15.8.1. Изменение сетевых подключений

Сетевые соединения перечислены в окне Сеть и имя узла. По умолчанию список содержит настроенное на стадии загрузки соединение (OSA, LCS или HiperSockets) с именем в формате encsw1D_устройства (например, encsw0.0.0a00). На этом этапе нельзя добавить новое соединение, так как для этого надо сгруппировать и активировать подканалы, что на самом деле выполняется на стадии загрузки (см. Глава 14, Загрузка установки на IBM System z).

Обычно нет необходимости в модификации этого соединения. Если вы все же хотите это сделать, нажмите кнопку Настроить. Откроется окно NetworkManager, где можно будет отредактировать его параметры.
В этой секции обсуждается настройка проводных подключений. Значения многих параметров определены по умолчанию и не сохраняются в готовой системе, поэтому на стадии установки их можно не менять. Подробную информацию о конфигурации соединений после установки можно найти в сетевом руководстве Red Hat Enterprise Linux 7.

Чтобы настроить сетевое подключение вручную, нажмите кнопку Настroiть. Подробное описание системной программы настройки сетевых подключений выходит за рамки данного документа.

Основные параметры сетевых подключений:

▶ Для автоматического подключения установите флажок Автоматически подключаться к этой сети. Этот параметр сохранится после установки.

Рисунок 15.11. Флажок автоматического подключения установлен

▶ По умолчанию IPv4 настраивается автоматически с помощью DHCP. Для IPv6 также выбран автоматический метод настройки. В большинстве случаев это является предпочтительным вариантом.
Выберите Использовать это соединение только для ресурсов в этой сети, чтобы ограничить соединение пределами локальной сети. Ваш выбор сохранится после установки.

Нажмите Сохранить. Если вы изменили настройки активного устройства, надо будет его перезапустить: в окне Сеть и имя узла измените состояние переключателя в правом верхнем углу на OFF, затем — на ON.

15.9. Выбор программ
Чтобы выбрать программы для установки, в окне обзора перейдите к секции **Выбор программ**. Пакеты сгруппированы в окружения, предназначенные для решения определенного ряда задач. Например, окружение **хоста виртуализации** включает набор пакетов для организации работы виртуальных машин. Во время установки можно выбрать только одно окружение.

В правой части окна можно выбрать дополнительные группы пакетов. Для разных окружений будут доступны разные дополнения.

Горизонтальная линия разделяет список на две части:
- группы, уникальные для выбранного окружения, перечислены до разделителя;
- общие группы для всех окружений перечислены после разделителя.

Рисунок 15.14. Выбор программ для сервера

Список доступных окружений и дополнений зависит от устанавливаемого варианта Red Hat Enterprise Linux 7 — например, для Red Hat Enterprise Linux Server будут доступны серверные программы.

Точный список пакетов можно найти в файле `repodata/*-comps-вариант. архитектура.xml` на установочном диске. В этом файле окружения выделены тегом `<environment>`, а дополнительные группы — `<group>`.

В этом окне можно подобрать программы для любой конфигурации системы, но вы не сможете выбрать конкретные пакеты. Чтобы полностью контролировать то, какие пакеты должны быть включены, сначала установите минимальное окружение, а уже после этого установите интересующие пакеты с помощью **Yum**.
При автоматизации установки процесс выбора пакетов существенно упрощается — индивидуальные пакеты добавляются в секцию `%packages` в файле кикстарта (см. Раздел 23.3.3, «Выбор пакетов», Глава 23, Кикстарт-установка).

Чтобы вернуться к окну обзора, нажмите Готово.

15.9.1. Сетевые службы

Все комплекты Red Hat Enterprise Linux включают следующие сетевые службы:

- централизованное ведение журналов с помощью `syslog`;
- обмен электронной почтой по SMTP (Simple Mail Transfer Protocol);
- общий доступ к файлам по NFS (Network File System);
- удаленный доступ SSH (Secure SHell);
- объявление ресурсов через mDNS (multicast DNS).

Некоторые процессы Red Hat Enterprise Linux отправляют отчеты системному администратору по электронной почте. Службы почты, журналов и печати по умолчанию не разрешают подключения из других систем.

В Red Hat Enterprise Linux можно настроить службы электронной почты, совместного доступа к файлам, журналирования, печати и доступа к удаленному рабочему столу. Функции SSH включены по умолчанию. Для доступа к файлам в другой системе можно использовать NFS без активации службы совместного доступа NFS.

15.10. Расположение установки

Диски и разделы настраиваются в секции Расположение установки. Приложение A, Знакомство с дисковыми разделами содержит подробную информацию о разделах.

Предупреждение

Во избежание потери данных при установке и обновлении системы следует создать их резервную копию.

Важно

В текстовом режиме установки доступны только стандартные схемы разбиения. В принципе, можно использовать весь диск или удалять существующие разделы Linux, но вы не сможете добавить или удалить разделы и файловые системы по собственному усмотрению.
Рисунок 15.15. Обзор накопителей

В этом окне показаны только локальные диски. Чтобы добавить другие устройства, нажмите кнопку Добавить диск (см. Раздел 15.11, «Устройства хранения»).

Если вы не уверены, как создать оптимальную схему разделов, примите предложенный автоматический метод разбиения.

Ниже можно настроить другие параметры хранения данных:

- В секции Разбиение можно выбрать автоматический или ручной метод.

 Вариант Создать разделы автоматически рекомендуется для новой установки с удалением всех данных.

 Дополнительно можно установить флажок Выделить дополнительное пространство. Если на выбранных дисках не хватает места для автоматического создания разделов, появится окно:
Рисунок 15.16. Диалог с предложением освободить пространство

Чтобы добавить дополнительные диски, нажмите Отменить и добавить диски. Чтобы освободить место, нажмите Освободить (см. Раздел 15.10.2, «Освобождение пространства»).

Если в предыдущем окне был выбран вариант Я настрою разделы, откроется окно ручного создания разделов (см. Раздел 15.10.3, «Создание разделов вручную»).

» Чтобы зашифровать разделы (кроме /boot), установите флажок Зашифровать данные.

Подробную информацию можно найти в руководстве по безопасности Red Hat Enterprise Linux 7.

Ссылка Статистика диска и загрузчика в нижней части окна откроет диалог настройки диска, где будет установлен загрузчик.

Закончив настройку, нажмите Готово.
Важно

При установке Red Hat Enterprise Linux в системе с комбинацией обычных и многопутевых устройств автоматическое разбиение может создать группы томов, содержащие и те, и другие устройства, что нарушает идею организации многопутевого пространства данных.

Потому в окне дисков рекомендуется выбрать однотипные устройства или предпочесть ручной метод создания разделов.

15.10.1. Шифрование разделов

Если флажок шифрования был установлен, в следующем окне будет предложено ввести парольную фразу.

Для шифрования используется механизм LUKS (Linux Unified Key Setup). За подробной информацией обратитесь к руководству по безопасности Red Hat Enterprise Linux 7.

Рисунок 15.17. Ввод парольной фразы для доступа к разделу

Введите парольную фразу, обратив внимание на раскладку клавиатуры. Ее надо будет вводить каждый раз при загрузке системы. Нажмите Tab для перехода к полю подтверждения и введите его еще раз. Если пароль слишком слабый, появится значок предупреждения. Наведите курсор на значок для получения подсказки.
15.10.2. Освобождение пространства

Если для установки Red Hat Enterprise Linux недостаточно места, можно попробовать освободить пространство. Для этого в окне Параметры установки выберите пункт Освободить.

Предупреждение

При освобождении пространства данные будут удалены (за исключением случаев сжатия раздела), поэтому предварительно рекомендуется создать их резервные копии.

Рисунок 15.18. Освобождение места
В списке перечислены обнаруженные диски и файловые системы. В столбце **Можно освободить** показан потенциально доступный размер. В столбце **Действие** показан метод освобождения пространства.

В этом окне доступны кнопки:

- **Не изменять** — не освобождать место в выбранной файловой системе. Это действие выбрано по умолчанию.

- **Удалить** — освободить все занятое пространство.

- **Сжать** — освобождает незанятое пространство в файловой системе. Размер корректируется с помощью ползунка. Это действие недоступно для LVM и RAID.

- **Удалить все/Оставить все** — это действие применимо ко всем файловым системам. Функционирует как переключатель, то есть выбрав один вариант, название кнопки изменится на второй, и наоборот.

Выберите файловую систему или весь диск. Значения в столбце **Действие** и в поле **Всего выбрано для освобождения** изменяются соответственно. В самом низу экрана показан необходимый для установки размер.

Когда будет выбран достаточный размер для продолжения установки, кнопка **Освободить** станет доступна.

15.10.3. Создание разделов вручную

Чтобы открыть окно ручного создания разделов, в окне выбора устройств отметьте пункт **Я настрою разделы** и нажмите кнопку **Готово**.

Предупреждение

Во избежание потери данных при установке и обновлении системы следует создать их резервную копию.
Рисунок 15.19. Окно создания разделов

В левой части окна показаны точки монтирования, сгруппированные по операционным системам. Если раздел используется несколькими операционными системами, он будет повторяться. Внизу приведена статистика пространства.

При наличии существующих файловых систем убедитесь, что на диске достаточно места для установки Red Hat Enterprise Linux. Чтобы удалить раздел, нажмите кнопку со знаком «-».

Примечание

Приложение A, Знакомство с дисковыми разделами и Раздел 15.10.3.5, «Рекомендуемая схема разбиения» содержат рекомендации по разбиению дисков. Как минимум надо создать корневой раздел и раздел подкачки.

Обратите внимание на то, какое устройство выбрано для /boot, так как именно там будут расположены файлы ядра и сектор загрузчика. Обычно для этой цели используется первый DASD или SCSI LUN. Номер устройства потребуется при выполнении IPL-загрузки установленной системы.

15.10.3.1. Создание файловых систем и конфигурация разделов

Для установки Red Hat Enterprise Linux 7 достаточно одного раздела, но Red Hat рекомендует создать четыре: /, /home, /boot, swap (см. Раздел 15.10.3.5, «Рекомендуемая схема разбиения»). Другие разделы могут создаваться по собственному усмотрению.

Добавление файловой системы выполняется в два подхода — сначала в левой части окна надо создать точку монтирования, затем изменить ее параметры в правой части (тип устройства и файловой системы, метку, функции шифрования и форматирования раздела).
Чтобы позволить программе установки создать разделы и точки монтирования, выберите схему разбиения из выпадающего списка в левой части окна (по умолчанию выбран LVM) и щелкните ссылку автоматического создания. В результате будут созданы разделы `/boot`, `/` и раздел подкачки. Дополнительные разделы можно будет добавить позднее.

Точки монтирования можно создать вручную, нажав значок плюса в нижней части панели. В открывшемся окне выберите путь из списка или введите его вручную — `/` для корневого раздела, `/boot` для загрузочного и т.п. Укажите размер раздела в мегабайтах, гигабайтах или терабайтах — например, 2ГБ. Если размер не задан или превышает допустимый, будет занято все доступное пространство. Завершив редактирование, нажмите Добавить.

В левой части окна выберите тип раздела: стандартный, BTRFS, LVM, динамический LVM. Исключение составляет `/boot`, который будет иметь стандартный тип независимо от выбранного значения.

Чтобы изменить устройство для выбранной точки монтирования, нажмите кнопку конфигурации под левой панелью. В открывшемся окне выберите устройства и нажмите Выбрать. Вы вернетесь в окно ручного разбиения, где надо еще раз подтвердить изменения, нажав кнопку Применить.

Рисунок 15.20. Настройка точек подключения

Чтобы обновить список дисков и разделов, нажмите кнопку с круговой стрелкой. Обычно список обновляется после значительных изменений конфигурации разделов, сделанных за рамками программы установки. Следует помнить, что после нажатия кнопки Поиск изменения, сделанные в окне разделов, будут потеряны.
Приложение 15. Поиск дисков

В нижней части экрана приведена ссылка с числом выбранных дисков (см. Раздел 15.10, «Расположение установки»), которая открывает диалог Выбранные диски.

Чтобы изменить параметры раздела, выберите его в левой части окна — справа открываются его характеристики.
Рисунок 15.22. Настройка разделов

- **Имя** — имя тома LVM или Btrfs. Имена стандартных разделов присваиваются автоматически и не меняются. Так, например, разделу `/home` может быть присвоено имя `sda1`.

- **Точка монтирования** — точка подключения раздела. Так, для корневого раздела введите `/`, для загрузочного раздела введите `/boot` и т.п. Для раздела подкачки точку не надо выбирать — достаточно лишь выбрать тип `swap`.

- **Метка** — уникальная метка раздела.

- **Размер** — размер раздела в килобайтах, мегабайтах, гигабайтах или терабайтах. Если единицы не указаны, будут использоваться килобайты.

- **Тип устройства** — стандартный раздел, BTRFS, LVM или динамический LVM. При наличии двух и более дисков также будет доступно значение RAID. Справа от поля расположен флажок шифрования раздела. Его пароль можно будет установить позднее.

- **Файловая система** — тип файловой системы. Справа расположен флажок форматирования. Раздел 15.10.3.1.1, «Типы файловых систем» содержит подробную информацию.

Чтобы сохранить изменения, нажмите кнопку **Применить**. Они вступят в силу только после начала установки. Чтобы отменить изменения, нажмите **Сбросить все**.

Завершив настройку, нажмите **Готово**. Если флажок шифрования был установлен, будет предложено ввести парольную фразу. После этого появится окно, где будут перечислены операции по настройке
разделов и файловых систем, включая создание, изменение размера и удаление. Нажмите Принять изменения или Отменить и вернуться к настройке разделов. Наконец, чтобы настроить разделы на другом диске, выберите его в окне устройств и перейдите к окну ручной разметки.

15.10.3.1.1. Типы файловых систем

Red Hat Enterprise Linux позволяет создать разделы и файловые системы разных типов.

Типы устройств

- **Стандартный раздел** может содержать файловую систему, пространство подкачки и выступать в качестве основы для создания программного RAID-массива или физического тома LVM.

- **LVM** — при создании раздела LVM логический том будет создан автоматически. LVM улучшает производительность жестких дисков (см. Раздел 15.10.3.3, «Создание LVM» и руководство по LVM в Red Hat Enterprise Linux 7).

- **Динамический LVM** перераспределяет свободное пространство между устройствами в зависимости от требований программ. По мере необходимости пул пространства может наращиваться динамически.

- **BTRFS** — файловая система с характеристиками устройства, которая может работать с большим числом файлов, файлами и томами большего размера по сравнению с ext2, ext3 и ext4 (см. Раздел 15.10.3.4, «Создание подраздела Btrfs»).

- **Программный RAID** — на основе таких разделов позднее можно будет создать RAID-массив. При этом каждому диску выделяется один RAID-раздел. Раздел 15.10.3.2, «Создание программного RAID» и руководство по администрированию накопителей в Red Hat Enterprise Linux 7 содержат дополнительную информацию.

Файловые системы

- **xfs** — высокопроизводительная масштабируемая файловая система, размер которой может достигать 16 экскавайт (~16 миллионов терабайт). XFS поддерживает файлы размером до 8 экскавайт (~8 миллионов терабайт), структуры каталогов с десятками миллионов записей и включает функции журналирования метаданных, что гарантирует быстрое восстановление в случае сбоя, а также поддерживает дефрагментацию и изменение размера без необходимости отключения файловой системы. Приложение Е, Команды ext4 и XFS содержит описание аналогов команд ext4 в XFS.

Максимальный размер раздела XFS составляет 500 ТБ.

- **ext4** создана на основе ext3 и обладает рядом преимуществ, включая поддержку больших файловых систем и файлов, быстрое и эффективное распределение пространства, отсутствие ограничений на число подкаталогов в одном каталоге, быструю проверку файловой системы и надежное ведение журналов.

Максимально допустимый размер ext4 в Red Hat Enterprise Linux 7 составляет 50 ТБ.

- **ext3** создана на основе ext2, ее главным преимуществом является поддержка журналов, что сокращает время восстановления благодаря отсутствию необходимости в проверке fsck.

- **ext2** поддерживает стандартные типы файлов Unix (обычные файлы, каталоги, символьные ссылки и т.п.) и позволяет присваивать им имена длиной до 255 знаков.

- **vfat** — файловая система Linux, совместимая с FAT и поддерживающая длинные имена файлов Microsoft Windows.
swap — раздел подкачки для организации виртуальной памяти: если в ОЗУ не хватает места для обработки данных, неактивные фрагменты перемещаются в область подкачки, освобождая место для новых страниц.

Каждая файловая система накладывает свои ограничения на размер файлов. Подробную информацию можно найти на портале пользователей по адресу https://access.redhat.com/site/articles/rhel-limits.

15.10.3.2. Создание программного RAID

Примечание

Подсистема хранения в System z прозрачно работает с RAID, поэтому нет необходимости в отдельной настройке программных RAID-массивов.

Избыточные массивы независимых дисков или так называемые RAID-массивы (Redundant Arrays of Independent Disks) объединяют несколько устройств хранения для обеспечения должного уровня производительности и отказоустойчивости.

Устройство RAID создается один раз, после чего его состав можно корректировать посредством добавления или исключения дисков. На каждом диске может быть создан один RAID-раздел — таким образом, максимальный уровень RAID определяется числом дисков.

Рисунок 15.23. Окно создания раздела RAID с открытым списком типов устройств
Если для установки было выбрано больше одного диска, в этом окне можно будет настроить RAID-устройство.

Порядок создания RAID-устройства:

1. Создайте точку монтирования (см. Раздел 15.10.3.1, «Создание файловых систем и конфигурация разделов»).
2. Нажмите кнопку конфигурации под левой панелью. В открывшемся окне выберите устройства.
3. В списке Тип устройства выберите RAID.
4. В списке Файловая система выберите подходящее значение (см. Раздел 6.10.4.1.1, «Типы файловых систем»).
5. Выберите Уровень RAID.

Возможные значения:

- **RAID0** — оптимальная производительность с чередованием

 Данные распределяются между несколькими дисками. RAID 0 обеспечивает высокий уровень производительности за счет объединения дисков в одно виртуальное устройство. Надежность RAID 0 невысокая, так как отказ одного диска приведет к сбою всего массива. Для создания RAID 0 необходимо как минимум два раздела RAID.

- **RAID1** — зеркалирование

 Использует зеркалирование за счет копирования данных на все диски в составе массива. Дополнительные устройства повышают уровень избыточности. Для создания RAID 1 необходимо как минимум два раздела RAID.

- **RAID4** — с четностью

 Данные распределяются между несколькими дисками, но при этом один диск служит для хранения информации о четности, что помогает восстановить данные в случае сбоя. Недостаток такой организации заключается в том, что информация о четности хранится на одном диске, что представляет риск для общей производительности массива. Для создания RAID 4 необходимо как минимум три раздела RAID.

- **RAID5** — распределенная схема

 Контрольные суммы и данные циклически распределяются между элементами массива. RAID 5 пользуется гораздо большей популярностью по сравнению с RAID 4 благодаря параллельной обработке данных. Для создания RAID 5 необходимо как минимум три раздела RAID.

- **RAID6** — избыточность

 Аналогичен RAID 5, но контрольные данные копируются на два устройства. Для создания RAID 5 необходимо как минимум четыре раздела RAID — два для основных данных и два для контрольных.

- **RAID10** — чередование с зеркалированием

 RAID 10 (вложенный RAID или смешанный RAID) — данные распределяются между зеркальными наборами дисков. Так, RAID 10 из четырех разделов будет включать две зеркальные пары RAID 1. Данные при этом последовательно распределены между парами аналогично RAID 0. Для создания RAID 10 потребуются как минимум
четыре раздела RAID.

6. Чтобы сохранить изменения, нажмите Применить. Затем нажмите Готово, чтобы вернуться в меню обзора.

Если для создания массива не хватает дисков, в нижней части окна появится сообщение с рекомендуемым числом.

15.10.3.3. Создание LVM

LVM (Logical Volume Management) распределяет пространство между динамически изменяемыми томами. Разделы физического диска представлены в качестве физических томов, которые могут быть сгруппированы в группы. В свою очередь, группы томов могут подразделяться на логические тома, принцип работы которых аналогичен стандартным дисковым разделам. Таким образом, логические тома LVM функционируют как разделы, которые могут располагаться на нескольких физических дисках.

Функции настройки LVM доступны только в графическом режиме установки. Приложение C, Знакомство с LVM и Администрирование LVM в Red Hat Enterprise Linux 7 содержат подробную информацию.

Важно

В текстовом режиме установки функции настройки LVM недоступны. Если требуется создать структуру LVM, нажмите Ctrl+Alt+F2, чтобы открыть другую консоль, и используйте команду lvm. Для возврата к установке нажмите Ctrl+Alt+F1.

Рисунок 15.24. Настройка логического тома
Порядок создания логического тома с последующим добавлением в группу томов:

1. Создайте точку монтирования (см. Раздел 15.10.3.1, «Создание файловых систем и конфигурация разделов»).

2. В списке Тип устройства выберите LVM. Появится список Группа томов.

3. Выберите Создать группу томов в меню или нажмите кнопку Изменить, чтобы открыть диалог настройки группы.

Рисунок 15.25. Настройка группы томов

Здесь можно выбрать уровень RAID (см. Раздел 15.10.3.2, «Создание программного RAID»), установить флажок шифрования и настроить размер. Возможные варианты выбора размера:

- **Автоматически** — размер определяется автоматически с учетом заданных параметров логических томов. Этот вариант является оптимальным, если не требуется оставлять свободное пространство в пределах группы.

- **Как можно больше** — группе выделяется максимально возможный размер независимо от конфигурации логических томов. Этот вариант подходит для хранения данных в LVM с возможной перспективой добавления новых или наращивания существующих томов.

- **Фиксирован** — позволяет установить точный размер группы томов.

Нажмите Сохранить.
4. Чтобы сохранить изменения, нажмите Применить. Затем нажмите Готово, чтобы вернуться в меню обзора.

Предупреждение

Раздел /boot не может располагаться в пределах логического тома.

15.10.3.4. Создание подраздела Btrfs

Файловая система Btrfs характеризуется высоким уровнем устойчивости и способностью обнаружения и исправления ошибок. Btrfs использует контрольные суммы для обеспечения целостности данных и поддерживает снимки файловой системы.

Составляющие тома Btrfs создаются в окне ручного создания разделов. Показанный напротив них размер будет отражать суммарный размер тома.

Рисунок 15.26. Настройка подраздела Btrfs

Порядок создания подраздела Btrfs:

1. Создайте точку монтирования (см. Раздел 15.10.3.1, «Создание файловых систем и конфигурация разделов»).

2. В списке **Тип устройства** выберите BTRFS. В результате список **Файловая система** станет недоступен, Btrfs — будет доступен. Дополнительно появится список **Том** с именем созданного тома.

3. Выберите **Создать том** в меню или нажмите кнопку **Изменить**, чтобы открыть диалог настройки тома.
Рисунок 15.27. Настройка тома Btrfs

Возможные значения:

RAID0 (производительность)

Данные распределяются между несколькими дисками. RAID 0 обеспечивает высокий уровень производительности за счет объединения дисков в одно виртуальное устройство. Надежность RAID 0 невысокая, так как отказ одного диска приведет к сбою всего массива. Для создания RAID 0 необходимо как минимум два раздела RAID.

RAID1 (избыточность)

Использует зеркалирование за счет копирования данных на все диски в составе массива. Дополнительные устройства повышают уровень избыточности. Для создания RAID 1 необходимо как минимум два раздела RAID.

RAID10 (производительность, избыточность)

Представляет собой комбинацию RAID0 и RAID1, где данные распределяются между зеркальными наборами дисков. Так, RAID 10 из четырех разделов будет включать две зеркальные пары RAID 1. Данные при этом последовательно распределены между парами аналогично RAID 0. Для создания RAID 10 потребуются как минимум четыре раздела RAID.

Дополнительно можно установить флажок шифрования и настроить размер тома. Возможные значения:
Автоматически — размер тома определяется автоматически с учетом заданных параметров. Этот вариант является оптимальным, если нет необходимости в наличии свободного пространства в пределах тома.

Как можно больше — выделяет максимально возможный размер независимо от конфигурации подразделов. Этот вариант подходит для хранения данных в Btrfs с возможной перспективой добавления новых или наращивания существующих подразделов.

Фиксирован — позволяет установить точный размер тома.

Нажмите Сохранить.

4. Чтобы сохранить изменения, нажмите Применить. Затем нажмите Готово, чтобы вернуться в меню обзора.

Если для создания массива не хватает дисков, в нижней части окна появится сообщение с рекомендуемым числом.

15.10.3.5. Рекомендуемая схема разбиения

Расчет достаточного объема пространства подкачки в System z является довольно сложной задачей, так как это в значительной степени определяется особенностями конкретного окружения и системной нагрузкой.

За дополнительной информацией обратитесь к следующим ресурсам:

15.11. Устройства хранения

На странице Расположение установки показаны локальные диски, на которых можно установить Red Hat Enterprise Linux (см. Раздел 15.10, «Расположение установки»). Чтобы добавить другие устройства, нажмите кнопку Добавить диск.

Стандартные диски HDD и SDD обычно перечислены в секции Локальные диски, а для System z здесь будут показаны DASD-устройства.
Рисунок 15.28. Обзор накопителей

15.11.1. Окно выбора устройств хранения

В этом окне показаны доступные накопители. Устройства сгруппированы следующим образом:

Многоканальные устройства

Накопители, для доступа к которым в одной и той же системе можно использовать несколько путей с помощью нескольких SCSI-контроллеров или портов Fibre Channel.

Важно

Программа установки может определить только номера многопутевых устройств длиной от 16 до 32 знаков.

Другие устройства SAN

Любые другие устройства в сети хранения данных. В частности, к ним относятся FCP LUN, подключенные к одному пути.

Микропрограммный RAID

Накопители, подключенные к микропрограммному RAID-контроллеру. Эта вкладка недоступна в System z.

Устройства System z
На этой вкладке показаны устройства, подключенные с помощью драйвера zSeries Linux FCP.

Рисунок 15.29. Вкладки специальных устройств

В нижней части окна доступны три кнопки: Добавить ZFCP LUN, Добавить целевое устройство iSCSI и Добавить FCoE SAN.

На вкладке поиска можно отфильтровать устройства по идентификатору WWID (World Wide Identifier), порту, цели и номеру LUN (Logical Unit Number).

Рисунок 15.30. Вкладка поиска устройств

Чтобы выполнить поиск, выберите критерий (порт, цель, LUN, WWID), определите дополнительные параметры и нажмите кнопку поиска.

Обнаруженные накопители будут показаны в основной части окна. Установите флажок напротив устройства, чтобы добавить его в список установки.

Сам по себе выбор устройства в этом окне не подвергает его данные риску. Также стоит заметить, что даже если устройства не были выбраны на этом этапе, их можно будет добавить после установки, отредактировав файл /etc/fstab.
Завершив, нажмите Готово.

15.11.1. Низкоуровневое форматирование DASD

Диски DASD, принимающие участие в установке, должны быть отформатированы. Программа установки автоматически определяет необходимость низкоуровневого форматирования дисков, перечисленных в окне устройств установки. После нажатия кнопки Готово будет предложено это сделать.

Рисунок 15.31. Окно форматирования DASD

Чтобы отменить форматирование и вернуться к окну устройств, нажмите Отмена. Чтобы запустить dasdfmt для перечисленных дисков, нажмите кнопку Форматирование dasdfmt

После завершения форматирования нажмите OK, чтобы вернуться к окну устройств.

С помощью команды кикстарта zerombr можно включить автоматическое форматирование устройств DASD (см. zerombr (дополнительный)).

15.11.1.2. Дополнительные параметры накопителей

В этом окне можно настроить цель iSCSI (см. Приложение В. Диски iSCSI) или zFCP (zSeries Fibre Channel Protocol) LUN.
Рисунок 15.32. Дополнительные параметры накопителей

15.11.1.2.1. Настройка параметров iSCSI

Нажмите кнопку Добавить целевое устройство iSCSI...

ADD iSCSI STORAGE TARGET
To use iSCSI disks, you must provide the address of your iSCSI target and the iSCSI initiator name you’ve configured for your host.

Target IP Address: 10.18.25.23

iSCSI Initiator Name: iqn.1994-05.com.redhat:11b96f6ac83ec6995

Discovery Authentication Type: CHAP pair and a reverse pair

- CHAP Username:
- CHAP Password:
- Reverse CHAP Username:
- Reverse CHAP Password:

- Bind targets to network interfaces

Start Discovery
Рисунок 15.33. Окно iSCSI

Для выполнения установки на дисках iSCSI необходимо создать сеанс доступа iSCSI. Для авторизации CHAP (Challenge Handshake Authentication Protocol) может потребоваться указать имя пользователя и пароль доступа к цели iSCSI. Дополнительно можно настроить обратную идентификацию, когда при подключении клиента (инициатора) к цели iSCSI она в свою очередь тоже должна будет представиться инициатору. Оба типа в совокупности образуют взаимную (двухстороннюю) проверку CHAP, обеспечивая максимальный уровень защиты соединений iSCSI.

Примечание

Повторите эти действия столько раз, сколько необходимо для добавления всех накопителей. Стоит помнить, что имя инициатора iSCSI после первого обнаружения нельзя будет изменить. Для этого потребуется перезапустить процесс установки.

Процедура 15.1. Обнаружение iSCSI и создание сеанса iSCSI

В окне добавления целевого устройства iSCSI введите необходимую информацию.

1. Заполните адрес цели iSCSI.
2. В поле Имя инициатора iSCSI укажите имя в формате IQN (iSCSI qualified name):
 - iqn. (включая точку).
 - Дата регистрации домена в виде ГГГГ-ММ., например 2010-09. (включая точку).
 - Домен организации в обратном порядке, начиная с домена верхнего уровня. Так, storage.example.com будет представлен как com.example.storage.
 - Двоеточие, за которым следует идентификатор инициатора iSCSI в пределах домена. Например: :diskarrays-sn-a8675309.

 Таким образом, полное имя выглядит так: iqn.2010-09.storage.example.com:diskarrays-sn-a8675309.

 Anaconda заполнит поле имени инициатора iSCSI в соответствии с этим форматом.

 За дальнейшей информацией обратитесь к главе 3.2.6 в спецификации RFC 3720 - Internet Small Computer Systems Interface (iSCSI) (http://tools.ietf.org/html/rfc3720#section-3.2.6) и к главе 1 в RFC 3721 - Internet Small Computer Systems Interface (iSCSI) Naming and Discovery (http://tools.ietf.org/html/rfc3721#section-1).

3. Выберите тип аутентификации:
 - без проверки,
 - пара CHAP,
 - двухсторонняя пара CHAP.

4. A. При выборе пары CHAP введите имя пользователя и пароль доступа к цели iSCSI.
 B. Если выбрана двухсторонняя пара CHAP, заполните поля Пользователь CHAP, Пароль CHAP, Пользователь обратного CHAP и Пароль обратного CHAP.
5. Дополнительно можно отметить флажок **Привязать устройства к сетевым интерфейсам**.

6. Нажмите кнопку **Найти**. В случае успеха будет показан список обнаруженных устройств.

7. Напротив каждого узла будет показан флажок выбора.

![ADD iSCSI STORAGE TARGET](image)

Рисунок 15.34. Список узлов iSCSI

8. В списке **Аутентификация на узле** доступны те же варианты, которые рассматривались на этапе 3. Обычно для подключения к узлу используются те же реквизиты доступа, что и при его обнаружении. Для этого выберите пункт **Использовать учетные данные с этапа обнаружения**.

9. Нажмите кнопку входа, чтобы создать сеанс iSCSI.

15.11.1.2.2. Устройства FCP

Нажмите кнопку **Добавить ZFCP LUN**, чтобы перейти к диалогу настройки устройств FCP (Fibre Channel Protocol).

Топология FCP позволяет использовать устройства SCSI вместо DASD на платформах IBM System z. Таким образом, помимо традиционных дисков DASD, вы сможете подключить SCSI LUN (Logical Unit Number) в качестве дисковых устройств.

Для IBM System z надо вручную настроить FCP LUN либо в ходе выполнения **Anaconda**, либо в файле конфигурации CMS. Введенные значения должны быть уникальными для каждого узла.

Примечания

- Интерактивное создание устройств FCP возможно только в графическом режиме установки.
- Шестнадцатеричные значения могут содержать цифры и буквы в нижнем регистре. Если значение указано неверно, будет предложено откорректировать настройки.
За подробной информацией о допустимых значениях обратитесь к документации оборудования и проконсультируйтесь с администратором сети.

Чтобы настроить FCP SCSI-устройство, введите 16-битный номер устройства, 64-битный номер WWPN и 64-битный LUN. Затем нажмите кнопку Найти для подключения устройства.

ADD zFCP STORAGE TARGET
To use zFCP disks, you must provide the device number, WWPN, and LUN configured for the device.

Device number: [Field]
WWPN: [Field]
LUN: [Field]

Start Discovery

Рисунок 15.35. Добавление устройства FCP

Найденные устройства будут перечислены на вкладке Устройства System z.

Важно
Если в ходе установки используются только устройства SCSI, удалите выражение DASD= из файла конфигурации CMS.

15.12. Начало установки

Кнопка начала установки станет доступна, как только вы заполните обязательные секции окна обзора.
Рисунок 15.36. Готов к установке

Предупреждение

До этого момента изменения не записываются на диск. Как только вы нажмете кнопку Начать установку, Anaconda выделит место на жестком диске и начнет установку Red Hat Enterprise Linux. Этот процесс может удалить существующие данные.

Чтобы еще раз проверить выбранные настройки, нажмите Вернуться. Чтобы отменить установку, нажмите Выход или выключите компьютер, нажав и удерживая кнопку питания на системном блоке.

После проверки настроек нажмите Начать установку.

После этого момента не следует прерывать установку. Если же это произошло (например, при аварийном отключении питания), процесс установки надо будет начать заново.

15.13. Ход выполнения установки

Индикатор прогресса помогает следить за ходом выполнения установки.
Рисунок 15.37. Установка пакетов

Журнал установки хранится в /var/log/anaconda/anaconda.packaging.log.

Пока устанавливаются программы, можно настроить пароль root или создать пользователя.

В секции Пароль root можно создать пароль учетной записи root. Пароль можно настроить во время или после установки пакетов. Без этого пароля вы не сможете завершить установку.

На этом этапе также рекомендуется создать пользователя. Учетная запись пользователя используется для ежедневного доступа к системе.

15.13.1. Установка пароля root

Создание учетной записи root является одним из важнейших этапов установки системы. Режим root аналогичен режиму администратора в Microsoft Windows и предназначен для установки, обновления пакетов и решения административных задач. Пользователь root получает полный контроль над системой, и именно поэтому он должен использоваться исключительно в целях поддержки и администрирования системы. Подробную информацию можно найти в руководстве системного администратора Red Hat Enterprise Linux 7.

Рисунок 15.38. Окно пароля root

Введите пароль root. Из соображений безопасности вместо символов будут показаны звездочки. Введите его еще раз в поле подтверждения. Завершив, нажмите Готово.
При выборе пароля следует руководствоваться несколькими правилами:

- должен содержать не менее 8 символов;
- может содержать буквы, цифры, точку и другие символы;
- должен содержать буквы в верхнем и нижнем регистре;
- создайте такой пароль, чтобы его нельзя было легко подобрать;
- не используйте слова (на любом языке), аббревиатуры и цифры, связанные с вами или вашей организацией;
- хоть это и не рекомендуется, но если вы решили записать пароль, храните его в безопасном месте.

Примечание

Чтобы изменить пароль после завершения установки, воспользуйтесь программой настройки пароля root.

15.13.2. Создание пользователя

Для создания непривилегированного пользователя выберите пункт **Настройки пользователя** и в открывшемся окне определите имя пользователя и пароль. Если по какой-то причине вы не хотите создавать учетную запись на этом этапе, это можно будет сделать после установки.

Чтобы закрыть окно без сохранения изменений, оставьте поля пустыми и нажмите **Готово**.

![Создание пользователя](red-hat-enterprise-linux-7.0-installation.png)

Рисунок 15.39. Создание пользователя

Введите полное имя и имя пользователя. Имя пользователя не должно содержать пробелов и не может быть больше 32 знаков. Настоятельно рекомендуется установить пароль для создаваемой учетной записи.

При формировании пароля пользователя следует придерживаться нескольких рекомендаций (см. Раздел 15.13.1, «Установка пароля root»).

Чтобы определить другие параметры, нажмите **Дополнительно**.
Рисунок 15.40. Дополнительные параметры пользователя

По умолчанию имя домашнего каталога пользователя совпадает с его именем. Обычно не требуется отклоняться от этой линии поведения.

Обычно нумерация пользователей начинается с 1000, но в этом окне можно присвоить другие идентификаторы пользователя и группы. В нижней части можно ввести список групп, в которые войдет созданный пользователь. Если группы не существуют, они будут автоматически созданы. В скобках можно указать новый идентификатор группы.

Нажмите Сохранить, чтобы вернуться к предыдущему окну.

15.14. Завершение установки

Поздравляем! Установка Red Hat Enterprise Linux завершена.

Программа установки предложит подготовить систему к перезагрузке.

Перезагрузка будет выполнена автоматически.

Если компьютер не был перезагружен, программа установки предоставит информацию о том, с какого устройства следует выполнить IPL. Выберите пункт отключения компьютера. После выключения выполните IPL-загрузку с того DASD или SCSI LUN, где размещен раздел /boot.

15.14.1. Запуск в среде z/VM
Пример команды загрузки с DASD 200 из консоли 3270:

```bash
# cp i 200
```

В окружениях DASD с автоматически созданной структурой разделов (с удалением существующих данных), сначала будет активирован DASD, где размещен раздел `/boot`.

Если `/boot` располагается на FCP LUN, необходимо предоставить WWPN и LUN устройства.

Чтобы выполнить IPL-загрузку с FCP-устройства, выполните следующее:

1. Укажите данные маршрутизации. Например, если WWPN — `0x50050763050B073D`, а LUN — `0x4020400100000000`, команда будет выглядеть так:

   ```bash
   # cp set loaddev portname 50050763 050B073D lun 40204001 00000000
   ```

2. Выполните IPL адаптера FCP. Например, для `FC00` команда будет выглядеть так:

   ```bash
   # cp ip1 FC00
   ```

Примечание

Отключение от терминала 3270 без остановки работы Linux на виртуальной машине осуществляется с помощью команды `# cp disconnect` вместо `# cp logoff`. При повторном подключении виртуальной машины она может быть переведена в режим CP READ. Чтобы возобновить работу, выполните команду `BEGIN`.

15.14.2. Запуск на LPAR

В консоли HMC выполните команду загрузки LPAR, указав DASD или адаптер FCP, WWPN и LUN, где расположен раздел `/boot`.

15.14.3. После перезагрузки

После перезагрузки Red Hat Enterprise Linux можно авторизоваться с помощью `ssh`. Важно помнить, что единственной возможностью входа для пользователя root является вход из консоли 3270 или других устройств, перечисленных в `/etc/securetty`.

При первом запуске Red Hat Enterprise Linux в графическом режиме будет запущена программа первой настройки, с помощью которой можно настроить дату и время, установить приложения, зарегистрировать компьютер в Red Hat Network и т.д. Эта программа позволяет настроить окружение так, чтобы можно было сразу приступить к работе.

Глава 26, Первая настройка и Firstboot содержит подробную информацию.
Глава 16. Диагностика конфликтов установки на IBM System z

В этой секции обсуждаются общие проблемы установки и способы их решения.

Anaconda сохраняет журналы в каталог /tmp.

Таблица 16.1. Журналы установки

<table>
<thead>
<tr>
<th>Файл</th>
<th>Содержимое</th>
</tr>
</thead>
<tbody>
<tr>
<td>/tmp/anaconda.log</td>
<td>общие сообщения Anaconda</td>
</tr>
<tr>
<td>/tmp/program.log</td>
<td>сообщения внешних программ</td>
</tr>
<tr>
<td>/tmp/storage.log</td>
<td>информация о модулях хранения</td>
</tr>
<tr>
<td>/tmp/packaging.log</td>
<td>сообщения yum и rpm</td>
</tr>
<tr>
<td>/tmp/syslog</td>
<td>сообщения об оборудовании</td>
</tr>
</tbody>
</table>

При сбоев установки сообщения из этих файлов будут помещены в /tmp/anaconda-tb-ID, где ID — случайная строка.

Перечисленные файлы расположены на RAM-диске установщика и будут удалены после перезапуска системы. Для создания постоянной копии скопируйте их на внешнее устройство или другой компьютер с помощью scp.

Примечание

Для удаленного копирования журналов необходимо настроить доступ к сети и возможность подключения по ssh.

Процедура 16.1. Копирование журналов по сети

1. Откройте окно оболочки в устанавливаемой системе. Это можно сделать двумя способами:
 - В окне сеанса tmux нажимайте Ctrl+b p или Ctrl+b n для перехода к предыдущему или следующему терминалу до тех пор, пока не найдете окно оболочки root.
 - Установите ssh-подключение.

 Независимо от выбранного метода вы сможете авторизоваться в оболочке системы как root.

2. Перейдите в каталог /tmp:

   ```
   # cd /tmp
   ```

3. Скопируйте журналы на другой компьютер:

   ```
   # scp *log пользователь@адрес:путь
   ```

 Укажите имя пользователя, адрес или имя узла, и путь к каталогу. Например, для копирования в каталог /home/john/logs/ пользователя john на узле 192.168.0.122 выполните:

   ```
   # scp *log john@192.168.0.122:/home/john/logs/
   ```
При первом подключении к удаленной системе появится сообщение:

```
The authenticity of host '192.168.0.122 (192.168.0.122)' can't be established.
ECDSA key fingerprint is
Are you sure you want to continue connecting (yes/no)?
```

Введите `yes` и нажмите `Enter`. Будет предложено ввести пароль, после чего начнется копирование файлов.

Журналы будут размещены в удаленной системе.

16.1. Решение конфликтов во время установки

16.1.1. Диски не обнаружены

Если при запуске установки появилось сообщение

```
Диски не обнаружены. Выключите компьютер и подключите хотя бы один диск.
После этого можно вновь начать установку.
```

Это служит индикатором конфликта устройств DASD. В таком случае добавьте параметр DASD= `<диски>` в файл конфигурации CMS (где `диски` — диапазон DASD, зарезервированный для установки). Затем начните установку снова.

В режиме root выполните команду `dasdfmt` для форматирования DASD в оболочке Linux, а не из CMS. Anaconda автоматически определит неформатированные диски и предложит их отформатировать.

При установке на iSCSI-устройства в бездисковых системах убедитесь, что на соответствующем адаптере (HBA, Host Bus Adapter) заданы обязательные LUN (Logical Unit Numbers) (см. Приложение B, Диски iSCSI).

16.1.2. Сохранение сообщений отладки

Рисунок 16.1. Окно создания отчета

Чтобы приступить к созданию отчета, нажмите Сообщить об ошибке, чтобы отменить установку — выберите Выход.

Для просмотра подробной информации выберите Подробнее.... Если у вас есть опыт отладки, нажмите Отладка. Откроется окно виртуального терминала tty1, где можно выполнить другие команды для получения дополнительной информации. Чтобы вернуться к программе установки, выполните команду continue.

Рисунок 16.2. Развернутое окно данных сбоя

Ниже рассказывается, как отправить отчет через портал пользователей.
Процедура 16.2. Передача отчетов в службу поддержки Red Hat.

1. В меню выберите Сообщить об ошибке через портал пользователей Red Hat.

2. Чтобы отправить отчет, надо авторизоваться на портале пользователей. Нажмите Настроить доступ к порталу пользователей Red Hat.

![Red Hat Customer Support](image1)

Рисунок 16.3. Требуется авторизация

3. В открывшемся окне надо ввести имя и пароль доступа к порталу пользователей Red Hat.

![Red Hat Customer Support](image2)

Рисунок 16.4. Настройка доступа к порталу пользователей

Если подключение осуществляется через прокси-сервер, щелкните на слове Дополнительно и введите параметры доступа к серверу.

Завершив, нажмите OK.
4. Появится новое окно, где можно объяснить, какие действия вызвали ошибку, и добавить комментарии. Постарайтесь подробно описать проблему и включить соответствующие данные, полученные в ходе отладки. Следует помнить, что введенные здесь данные будут открыто доступны на портале пользователей.

Если причина ошибки точно не известна, установите флажок Я не знаю, что вызвало эту ошибку.

Нажмите Вперед.

Рисунок 16.5. Заполните описание ошибки

5. Еще раз проверьте введенную информацию. Описание можно найти на вкладке комментарии. По желанию можно удалить данные, которые вы не хотите отправлять, но это может нарушить целостность отчета и усложнить поиск ошибки.

Нажмите Вперед.
Рисунок 16.6. Проверьте отчет

6. Проверьте список вложенных файлов. Они содержат системные данные, что может помочь в определении причин проблемы. Чтобы исключить файлы, снимите флажки напротив их имен, а чтобы добавить новые — нажмите Добавить файл.

Проверив вложения, установите флажок Я проверил(а) данные и разрешаю их передачу и нажмите Вперед, чтобы отправить отчет.

Рисунок 16.7. Список вложений
7. Для просмотра результатов создания отчета выберите Показать журнал, или нажмите Закрыть, чтобы вернуться к исходному окну ошибки. Нажмите Выход, чтобы закрыть программу установки.

16.2. Решение конфликтов после установки

16.2.1. Удаленный графический рабочий стол и XDMCP

Если вы установили X Window System и хотели бы войти в Red Hat Enterprise Linux, используя графический менеджер авторизации, включите протокол XDMCP (X Display Manager Control Protocol), который обеспечивает возможность удаленной авторизации для доступа к рабочему столу при условии совместимости клиента с X Window (например, из терминала X11).

Процедура 16.3. Активация XDMCP на IBM System z

1. Откройте файл конфигурации /etc/gdm/custom.conf в vi или nano.

2. Перейдите к секции [xdmcp] и добавьте:

   ```
   Enable=true
   ```

3. Сохраните файл и закройте окно редактора.

4. Перезапустите X Window System, перезагрузив систему полностью или выполнив в режиме root:

   ```
   # systemctl restart gdm.service
   ```

 После появления строки приглашения авторизуйтесь, указав свое имя пользователя и пароль.

Сервер System z теперь сможет использовать протокол XDMCP. Так, например, чтобы подключиться к нему с другого компьютера, создайте удаленный сеанс X в системе клиента:

```
$ X :1 -query адрес
```

Замените адрес именем узла удаленного сервера X11. Эта команда осуществляет подключение к удаленному серверу X11 с помощью XDMCP и отображает удаленный экран входа на экране :1 системы сервера X11, доступ к которому обычно можно получить, нажав Ctrl-Alt-F8.

Доступ к сеансу удаленного рабочего стола также можно получить с помощью встроенного сервера X11, который открывает удаленный рабочий стол в окне текущего сеанса X11. Команда Xnest позволяет открыть удаленный рабочий стол в рамках локального для компьютера сеанса X11. К примеру, выполните команду, заменив адрес именем узла удаленного сервера X11:

```
$ Xnest :1 -query адрес
```


16.2.2. Ошибки Signal 11
Ошибка «Signal 11» (сбой сегментации) свидетельствует о попытке обращения к неизвестной ячейке памяти. Если во время установки вы столкнулись с ошибкой «Signal 11», скорее всего, это связано с ошибкой в коде установленных программ или сбоем оборудования.

Убедитесь, что вы используете последние установочные образы и проверьте их целостность. Часто причиной ошибки «signal 11» являются неверно записанные или поцарапанные установочные диски, поэтому рекомендуется заранее их проверить.

Глава 1, Загрузка файлов Red Hat Enterprise Linux содержит информацию о том, где можно найти последние установочные носители. Чтобы их проверить, добавьте параметр загрузки `rd.live.check` (см. Раздел 20.2.2, «Проверка загрузочных носителей»).

Подробное обсуждение возможных причин выходит за рамки этого руководства. За дальнейшей информацией обратитесь к документации производителя оборудования.
Глава 17. Конфигурация установленной системы на IBM System z

Глава 19, Информационные ресурсы содержит список публикаций о Linux на платформах System z. В этой главе обсуждаются наиболее распространенные задачи.

17.1. Добавление DASD

Ниже приведен пример настройки и форматирования DASD.

Примечание

В окружении z/VM надо убедиться, что устройство подключено в виртуальной машине:

```
CP ATTACH EB1C T0 *
```

Пример подключения минидиска:

```
CP LINK RHEL7X 4B2E 4B2E MR
DASD 4B2E LINKED R/W
```

Подробное описание команд можно найти в справочнике z/VM (SC24-6175).

17.1.1. Динамическая активация DASD

Активация устройств DASD выполняется следующим образом:

1. Удалите DASD из списка игнорируемых устройств:

```
# cio_ignore -r номер
```

где номер — номер устройства DASD, например:

```
# cio_ignore -r 4b2e
```

2. Собственно, команда активации:

```
# chccwdev -e номер
```

где номер — номер устройства DASD, например:

```
# chccwdev -e 4b2e
```

Другой способ активации устройства состоит в установке атрибутов sysfs:

a. Перейдите в каталог /sys/:

```
# cd /sys/bus/ccw/drivers/dasd-eckd/0.0.4b2e/
```
b. Убедитесь, что устройство включено:

```bash
# cat online
0
```

c. Если нет, выполните:

```bash
# echo 1 > online
# cat online
1
```

3. Проверьте адресацию:

```bash
# ls -l
```

В этом примере устройство 4B2E адресуется как /dev/dasdb.

После этого устройство будет доступно в текущем сеансе. Раздел 17.1.3, «Активация DASD с сохранением постоянства» объясняет, как включать устройство при каждой перезагрузке. Символьные ссылки таких устройств хранятся в /dev/disk/by-path/.

17.1.2. Низкоуровневое форматирование DASD

Если диск уже подключен, перейдите в каталог /root и отформатируйте его:

```bash
# cd
# dasdfmt -b 4096 -d cdl -p /dev/disk/by-path/ccw-0.0.4b2e
```

```
I am going to format the device /dev/disk/by-path/ccw-0.0.4b2e in the
```
Когда индикатор прогресса достигнет конца, fdasd сообщит:

```
Rereading the partition table...
Exiting...
```

Теперь создайте разделы с помощью fdasd (до трех разделов). В приведенном примере будет создан один раздел, занимающий весь диск:

```
# fdasd -a /dev/disk/by-path/ccw-0.0.4b2e
auto-creating one partition for the whole disk...
writing volume label...
writing VTOC...
checking!
wrote NATIVE!
rereading partition table...
```

После активации отформатированного устройства с ним можно работать так же как и с другими дисками в Linux: создавать файловые системы, физические тома LVM, пространство подкачки в разделах (например, `/dev/disk/by-path/ccw-0.0.4b2e-part1`). Устройство `dev/dasdb` само по себе может использоваться только командами `dasdfmt` и `fdasd`.

При добавлении новых дисков в будущем используйте схему именования из `/dev/disk/by-path/`, чтобы однозначно их идентифицировать, тем самым предотвратив повреждение записей в `/etc/fstab`.

17.1.3. Активация DASD с сохранением постоянства

Описанные выше действия позволяют динамически включить DASD в работающей системе, но сделанные изменения не будут сохраняться между перезагрузками. Способ настройки автоматического подключения дисков будет отличаться в зависимости от того, на каких дисках расположена корневая файловая система «/». Устройства корневой файловой системы должны подключаться на ранней стадии процесса загрузки с помощью `initramfs`.

Обработка команд `cio_ignore` для постоянной конфигурации осуществляется прозрачно, поэтому нет необходимости в удалении диска из списка игнорируемых устройств.

17.1.3.1. DASD в корневой файловой системе
В этом случае надо лишь изменить файл `/etc/zipl.conf` и выполнить `zipl`. Повторное создание `initramfs` не требуется.

Параметр `rd.dasd=` позволяет включить DASD на ранней стадии процесса загрузки и содержит идентификатор шины с дополнительными аргументами в виде пар `ключ=значение`, соответствующих атрибутам `sysfs`.

Ниже приведен пример файла `zipl.conf` для системы с физическими томами, созданными на базе разделов двух устройств DASD, объединенных в группу томов `vg_devel1`, на основе которой создан логический том `lv_root` для корневой файловой системы.

```
[defaultboot]
default=linux
target=/boot/
[linux]
    image=/boot/vmlinuz-2.6.32-19.el7.s390x
    ramdisk=/boot/initramfs-2.6.32-19.el7.s390x.img
    parameters="root=/dev/mapper/vg_devel1-lv_root
        rd.dasd=0.0.0200,use_diag=0,readonly=0,erplog=0,failfast=0
        rd.dasd=0.0.0207,use_diag=0,readonly=0,erplog=0,failfast=0
        rd_LVM_LV=vg_devel1/lv_root rd_NO_LUKS rd_NO_MD rd_NO_DM LANG=en_US.UTF-8
        SYSFONT=latarcyrheb-sun16 KEYTABLE=us cio_ignore=all,!condev"
```

Предположим, что надо добавить дополнительный физический том в раздел третьего DASD с идентификатором `0.0.202b`. В этом случае следует просто добавить выражение `rd.dasd=0.0.202b` к строке параметров ядра в `zipl.conf`:

```
[defaultboot]
default=linux
target=/boot/
[linux]
    image=/boot/vmlinuz-2.6.32-19.el7.s390x
    ramdisk=/boot/initramfs-2.6.32-19.el7.s390x.img
    parameters="root=/dev/mapper/vg_devel1-lv_root
        rd.dasd=0.0.0200,use_diag=0,readonly=0,erplog=0,failfast=0
        rd.dasd=0.0.0207,use_diag=0,readonly=0,erplog=0,failfast=0
        rd.dasd=0.0.202b,use_diag=0,readonly=0,erplog=0,failfast=0
        rd_LVM_LV=vg_devel1/lv_root rd_NO_LUKS rd_NO_MD rd_NO_DM LANG=en_US.UTF-8
        SYSFONT=latarcyrheb-sun16 KEYTABLE=us cio_ignore=all,!condev"
```

Выполните `zipl` для сохранения изменений в `/etc/zipl.conf`:

```
# zipl -V
Using config file '/etc/zipl.conf'
Target device information
  Device.........................: 5e:00
  Partition......................: 5e:01
  Device name...................: dasda
  DASD device number...........: 0202
  Type..........................: disk partition
  Disk layout..................: ECKD/compatible disk layout
  Geometry - heads..............: 15
  Geometry - sectors............: 12
  Geometry - cylinders..........: 3308
  Geometry - start..............: 24
  File system block size.......: 4096
```
17.1.3.2. DASD за пределами корневой файловой системы

Если устройства DASD не принадлежат корневой файловой системе, а служат лишь для хранения данных, постоянство их конфигурации можно настроить в */etc/dasd.conf*. Каждая строка в файле определяет отдельный DASD и начинается с идентификатора шины, за которым следуют пары «аргумент=значение», разделенные пробелом или табуляцией.

Значения параметров соответствуют одноименным атрибутам *sysfs*. При добавлении нового DASD записи в файле */etc/dasd.conf* будут соответственно изменены. Во время загрузки все обнаруженные DASD будут подключены автоматически.

Пример файла */etc/dasd.conf*:

```
0.0.0207
0.0.0200 use_diag=1 readonly=1
```

Изменения в */etc/dasd.conf* вступят в силу после перезагрузки системы или динамического добавления нового диска DASD и соответствующего изменения системной конфигурации ввода-вывода (то есть при подключении DASD в z/VM). Чтобы самостоятельно инициировать подключение диска, настроенного в */etc/dasd.conf*, выполните приведенные ниже действия.

1. Удалите DASD из списка игнорируемых устройств:

   ```
   # cio_ignore -r номер
   ```

 Например:

   ```
   # cio_ignore -r 021a
   ```

2. Разрешите активацию устройства, изменив его атрибут *uevent*:

   ```
   # cio_ignore -r 021a
   ```
echo add > /sys/bus/ccw/devices/ID_шины/uevent

Например:

echo add > /sys/bus/ccw/devices/0.0.021a/uevent

17.2. Добавление FCP LUN

Следующий пример демонстрирует добавление нового FCP LUN.

Примечание

Если вы работаете под z/VM, сначала надо подключить адаптер FCP к виртуальной машине. В многопутевых окружениях предусмотрено по крайней мере два устройства FCP на двух физических адаптерах (CHIPD).

CP ATTACH FC00 TO *
CP ATTACH FCD0 TO *

17.2.1. Динамическая активация FCP LUN

Последовательность действий:

1. Удалите адаптер FCP из списка игнорируемых устройств:

 # cio_ignore -r номер

Укажите номер устройства FCP.

2. Собственно, команда активации:

 # chccwdev -e fc00

3. Убедитесь, что при автоматическом сканировании портов номер WWPN определяется верно:

 # ls -l /sys/bus/ccw/drivers/zfcp/0.0.fc00/
 drwxr-xr-x. 3 root root 0 Apr 28 18:19 0x500507630040710b
 drwxr-xr-x. 3 root root 0 Apr 28 18:19 0x50050763050b073d
 drwxr-xr-x. 3 root root 0 Apr 28 18:19 0x500507630e060521
 drwxr-xr-x. 3 root root 0 Apr 28 18:19 0x500507630e860521
 lrwxrwxrwx. 1 root root 0 Apr 28 18:17 driver ->
 ../../bus/ccw/drivers/zfcp
 lrwxrwxrwx. 1 root root 0 Apr 28 18:17 availability
 .lrwxr-xr-x. 1 root root 0 Apr 28 18:17 cmb_enable
 lrwxr-xr-x. 1 root root 0 Apr 28 18:17 cutype
 lrwxr-xr-x. 1 root root 0 Apr 28 18:17 devtype
 lrwxrwxrwx. 1 root root 0 Apr 28 18:17 driver ->
 ../../../bus/ccw/drivers/zfcp
 lrwxr-xr-x. 1 root root 0 Apr 28 18:17 failed
 lrwxr-xr-x. 1 root root 0 Apr 28 18:17 hardware_version
4. Чтобы подключить FCP LUN, надо привязать его порту, через который к нему можно будет обращаться:

```
# echo 0x4020400100000000 > /sys/bus/ccw/drivers/zfcp/0.0.fc00/0x50050763050b073d/unit_add
```

5. Чтобы узнать присвоенное устройству имя, выполните:

```
# lszfcpc -DV
/sys/devices/css0/0.0.0015/0.0.fc00/0x50050763050b073d/0x4020400100000000
/sys/bus/ccw/drivers/zfcp/0.0.fc00/host0/rport-0:0-21/target0:0:21/0:0:21:1089355792
```

17.2.2. Автоматическое подключение FCP LUN во время загрузки

Описанные выше действия позволяют включить FCP LUN в работающей системе, но сделанные изменения не сохраняются после перезагрузки. Способ настройки их подключения будет отличаться в зависимости от того, на каких устройствах расположена корневая файловая система «/». Устройства корневой файловой системы должны подключаться на ранней стадии процесса загрузки с помощью initramfs, в то время как остальные устройства можно подключить позднее. При этом обработка списка cio_ignore осуществляется прозрачно, поэтому нет необходимости в удалении диска из списка игнорируемых устройств.

17.2.2.1. FCP LUN корневой файловой системы

В этом случае потребуется лишь изменить файл /etc/zipl.conf и выполнить zipl. Повторное создание initramfs не требуется.

Для активации FCP LUN на ранней стадии процесса загрузки используется параметр rd.zfcp=, который содержит список из трех значений через запятую: идентификатор шины, шестнадцатеричный номер WWPN из 16 знаков с префиксом 0x и шестнадцатеричный FCP LUN с префиксом 0x. Последнее значение должно включать 16 знаков, поэтому при необходимости справа добавляются нули.
Ниже приведен пример файла `zipl.conf`, где на базе разделов двух FCP LUN создаются физические тома, которые объединяются в группу `vg_devel1`, на основе которой, в свою очередь, создается логический том `lv_root` для корневой файловой системы. Чтобы не усложнять пример, многопутевые варианты не рассматриваются.

```
[defaultboot]
default=linux
target=/boot/
[linux]
image=/boot/vmlinuz-2.6.32-19.el7.s390x
ramdisk=/boot/initramfs-2.6.32-19.el7.s390x.img
parameters="root=/dev/mapper/vg_devel1-lv_root
rd.zfcp=0.0.fc00,0x5105074308c212e9,0x401040a000000000
rd.zfcp=0.0.fc00,0x5105074308c212e9,0x401040a100000000
rd.LVM_LV=vg_devel1/lv_root rd_NO_LUKS rd_NO_MD rd_NO_DM LANG=en_US.UTF-8
SYSFONT=latarcyrheb-sun16 KEYTABLE=us cio_ignore=all,!condev"
```

Предположим, надо создать дополнительный физический том на базе третьего FCP LUN с идентификатором шины 0.0.fc00, WWPN 0x5105074308c212e9 и LUN 0x401040a300000000. В этом случае в `zipl.conf` следует просто добавить выражение `rd.zfcp=0.0.fc00,0x5105074308c212e9,0x401040a300000000:

```
[defaultboot]
default=linux
target=/boot/
[linux]
image=/boot/vmlinuz-2.6.32-19.el7.s390x
ramdisk=/boot/initramfs-2.6.32-19.el7.s390x.img
parameters="root=/dev/mapper/vg_devel1-lv_root
rd.zfcp=0.0.fc00,0x5105074308c212e9,0x401040a000000000
rd.zfcp=0.0.fc00,0x5105074308c212e9,0x401040a100000000
rd.zfcp=0.0.fc00,0x5105074308c212e9,0x401040a300000000
rd.LVM_LV=vg_devel1/lv_root rd_NO_LUKS rd_NO_MD rd_NO_DM LANG=en_US.UTF-8
SYSFONT=latarcyrheb-sun16 KEYTABLE=us cio_ignore=all,!condev"
```

Выполните `zipl` для сохранения изменений в `/etc/zipl.conf`:

```
# zipl -V
Using config file '/etc/zipl.conf'
Target device information
Device..........................: 08:00
Partition.......................: 08:01
Device name.....................: sda
Device driver name..............: sd
Type............................: disk partition
Disk layout.....................: SCSI disk layout
Geometry - start...............: 2048
File system block size.........: 4096
Physical block size............: 512
Device size in physical blocks.: 10074112
Building bootmap in '/boot/'
Building menu 'rh-automatic-menu'
Adding #1: IPL section 'linux' (default)
kernel image......: /boot/vmlinuz-2.6.32-19.el7.s390x
kernel parmline...: 'root=/dev/mapper/vg_devel1-lv_root
```

238
17.2.2.2. FCP LUN за пределами корневой файловой системы

Если FCP LUN не принадлежит корневой файловой системе, а служит лишь для хранения данных, сохранение постоянства его конфигурации можно настроить в файле `/etc/zfcp.conf`. Каждая строка в файле определяет отдельный LUN и начинается с идентификатора шины адаптера FCP, затем следует шестнадцатеричный номер WWPN из 16 знаков с префиксом `0x` и шестнадцатеричный LUN с префиксом `0x`. Номер LUN должен включать 16 знаков, поэтому при необходимости можно справа добавить нули. Записи в `/etc/zfcp.conf` будут обработаны при добавлении адаптера FCP в систему. Во время загрузки будут добавлены все видимые адаптеры FCP.

Пример фрагмента `/etc/zfcp.conf`:

```
0.0.fc00 0x5105074308c212e9 0x401040a000000000
0.0.fc00 0x5105074308c212e9 0x401040a100000000
0.0.fc00 0x5105074308c212e9 0x401040a300000000
0.0.fcd0 0x5105074308c2aee9 0x401040a000000000
0.0.fcd0 0x5105074308c2aee9 0x401040a100000000
0.0.fcd0 0x5105074308c2aee9 0x401040a300000000
```

Изменения в `/etc/zfcp.conf` вступят в силу после перезагрузки системы или после динамического добавления новых каналов FCP и соответствующего изменения системной конфигурации ввода-вывода (то есть при подключении канала в z/VM). Или же для активации новой записи в `/etc/zfcp.conf` выполните:

1. Удалите адаптер FCP из списка игнорируемых устройств:

   ```
   # cio_ignore -r номер
   ```
 Укажите номер устройства FCP.

   ```
   # cio_ignore -r fcfc
   ```

2. Разрешите активацию устройства, изменяя его атрибут uevent:

   ```
   echo add > /sys/bus/ccw/devices/ID_шины/uevent
   ```
 Например:
17.3. Добавление сетевого устройства

Модули драйверов сетевых устройств загружаются автоматически с помощью udev.

В IBM System z сетевой интерфейс можно добавить динамически или с сохранением постоянства.

Динамическое добавление устройств:
- загрузите драйвер устройства;
- удалите интерфейсы из списка игнорируемых устройств;
- создайте устройство группы;
- настройте устройство;
- включите устройство.

С сохранением постоянства:
- создайте сценарий настройки;
- включите интерфейс.

В последующих секциях обсуждаются основные задачи драйверов сетевых устройств в IBM System z, в том числе добавление устройств qeth (см. Раздел 17.3.1, «Добавление устройства qeth») и lcs (см. Раздел 17.3.2, «Добавление устройства LCS») в Red Hat Enterprise Linux.

17.3.1. Добавление устройства qeth

Драйвер qeth поддерживает функции OSA-Express с QDIO, а также HiperSockets, LAN гостей z/VM и VSWITCH в z/VM.

qeth присваивает устройствам Ethernet и Hipersockets имена в виде enccwID_шины. Идентификатор шины имеет вид наподобие enccw0.0.0a00 и содержит идентификатор подсистемы канала, идентификатор подканала и номер устройства.

17.3.1.1. Динамическое добавление устройства qeth

Ниже рассматривается порядок действий при динамическом добавлении устройств qeth.

1. Убедитесь, что модули драйверов устройств qeth загружены. Ниже приведен пример списка загруженных модулей:

```
# lsmod | grep qeth
qeth_l3                  127056  9
qeth_l2                   73008  3
ipv6                  492872
155ip6t_REJECT,nf_conntrack_ipv6,qeth_l3
qeth                  115808  2 qeth_l3,qeth_l2
qdio                   68240  1 qeth
ccwgroup               12112  2 qeth
```

Если вывод `lsmod` подтверждает, что модули не были загружены, загрузите их с помощью
modprobe:

```bash
# modprobe qeth
```

2. Удалите сетевые каналы из списка игнорируемых устройств:

```bash
# cio_ignore -r
ID_шины_устройства_чтения, ID_шины_устройства_записи, ID_шины_устройства_данных
```

Замените ID_шины_устройства_чтения, ID_шины_устройства_записи и ID_шины_устройства_данных идентификаторами шины сетевого устройства. Так, например, если ID_шины_устройства_чтения — `0.0.f500`, ID_шины_устройства_записи — `0.0.f501`, а ID_шины_устройства_данных — `0.0.f502`, команда будет выглядеть так:

```bash
# cio_ignore -r 0.0.f500,0.0.f501,0.0.f502
```

3. Команда `znetconf` покажет список предлагаемых конфигураций сетевых устройств:

```bash
# znetconf -u
Scanning for network devices...
Device IDs    Type    Card Type      CHPID Drv.
------------------------------------------------------------
0.0.f500,0.0.f501,0.0.f502 1731/01 OSA (QDIO)        00 qeth
0.0.f503,0.0.f504,0.0.f505 1731/01 OSA (QDIO)        01 qeth
0.0.0400,0.0.0401,0.0.0402 1731/05 HiperSockets      02 qeth
```

4. `znetconf` также используется для выбора конфигурации и активации устройства с новыми настройками:

```bash
# znetconf -a f500
Scanning for network devices...
Successfully configured device 0.0.f500 (enccw0.0.f500)
```

5. Устройству можно передать дополнительные параметры:

```bash
# znetconf -a f500 -o portname=myname
Scanning for network devices...
Successfully configured device 0.0.f500 (enccw0.0.f500)
```

После этого можно продолжить настройку интерфейса `enccw0.0.f500`. Активацию устройства также можно осуществить с помощью атрибутов `sysfs`.

1. Создайте устройство `qeth`:

```bash
# echo
ID_шины_устройства_чтения, ID_шины_устройства_записи, ID_шины_устройства_данных > /sys/bus/ccwgroup/drivers/qeth/group
```

Например:
2. Убедитесь, что устройство было создано успешно:

```
# ls /sys/bus/ccwgroup/drivers/qeth/0.0.f500
```

В зависимости от конфигурации системы можно установить дополнительные параметры:

- `portno`
- `layer2`
- `portname`

3. Включите устройство, присвоив соответствующему атрибуту значение 1:

```
# echo 1 > /sys/bus/ccwgroup/drivers/qeth/0.0.f500/online
```

4. Проверьте состояние устройства:

```
# cat /sys/bus/ccwgroup/drivers/qeth/0.0.f500/online
```

1 означает, что устройство подключено, 0 — отключено.

5. Проверьте, какое имя интерфейса было назначено устройству:

```
# cat /sys/bus/ccwgroup/drivers/qeth/0.0.f500/if_name
enccw0.0.f500
```

После этого можно продолжить настройку интерфейса `enccw0.0.f500`.

Следующая команда из пакета `s390utils` вернет наиболее важные настройки устройства `qeth`:

```
# lsqeth enccw0.0.f500
Device name                     : enccw0.0.f500
--------------------------------------------------
card_type               : OSD_1000
cdev0                   : 0.0.f500
cdev1                   : 0.0.f501
cdev2                   : 0.0.f502
chpid                   : 76
online                  : 1
portname                : OSAPORT
portno                  : 0
state                   : UP (LAN ONLINE)
priority_queueing       : always queue 0
buffer_count            : 16
layer2                  : 1
isolation               : none
```

17.3.1.2. Динамическое удаление устройств qeth
Удалить устройство **qeth** можно с помощью **znetconf**:

1. Команда просмотра списка настроенных сетевых устройств:

```
$ znetconf -c
Dev ID                  Type          Card Type      CHPID Drv. Name
------------------------------------------------------------------
                  0.0.8036,0.0.8037,0.0.8038 1731/05 HiperSockets       FB qeth hsi1
                  0.0.f5f0,0.0.f5f1,0.0.f5f2 1731/01 OSD_1000       76 qeth
                  0.0.f500,0.0.f501,0.0.f502 1731/01 GuestLAN QDIO   00 qeth
```

2. Выберите устройство для удаления, отключите его и удалите из группы:

```
# znetconf -r f500
Remove network device 0.0.f500 (0.0.f500,0.0.f501,0.0.f502)?
Warning: this may affect network connectivity!
Do you want to continue (y/n)? y
Successfully removed device 0.0.f500 (enccw0.0.f500)
```

3. Убедитесь, что устройство удалено успешно:

```
$ znetconf -c
Dev ID                  Type          Card Type      CHPID Drv. Name
------------------------------------------------------------------
                  0.0.8036,0.0.8037,0.0.8038 1731/05 HiperSockets       FB qeth hsi1
                  0.0.f5f0,0.0.f5f1,0.0.f5f2 1731/01 OSD_1000       76 qeth
```

17.3.1.3. Добавление устройства qeth с сохранением постоянства

Чтобы устройство **qeth** оставалось в системе, потребуется создать файл конфигурации для нового интерфейса. Файлы конфигурации интерфейсов хранятся в `/etc/sysconfig/network-scripts/`.

Имена файлов следуют формату `ifcfg-устройство`, где **устройство** — значение из файла `if_name` ранее созданного устройства qeth (например, `eth1`). Команды `cio_ignore` обрабатываются как обычно, поэтому нет необходимости в удалении устройства из списка игнорируемых устройств.

Если файл конфигурации другого устройства того же типа уже существует, можно его скопировать и взять за основу.

```
# cd /etc/sysconfig/network-scripts
# cp ifcfg-enccw0.0.09a0 ifcfg-qeth
```

Для просмотра идентификаторов сетевых устройств выполните:
Если аналогичное устройство отсутствует, надо будет создать новый файл. В качестве образца используйте пример `ifcfg-eth0`.

Отредактируйте файл `ifcfg-0.0.0600`:

1. Измените значение `DEVICE` в соответствии с содержимым файла `if_name` группы `ccw`.

2. В `IPADDR` добавьте IP-адрес нового интерфейса.

3. При необходимости измените `NETMASK`.

4. Можно настроить активацию интерфейса при загрузке, присвоив `ONBOOT` значение `yes`.

5. Убедитесь, что выражение `SUBCHANNELS` содержит аппаратные адреса устройства `qeth`.

6. При необходимости измените значение `PORTNAME`.

7. Атрибуты `sysfs` и их значения можно добавить в параметр `OPTIONS`, с помощью которого программа установки Red Hat Enterprise Linux настраивает режим `layer2` и номер порта `portno` для устройств `qeth`.

По умолчанию драйвер `qeth` для устройств OSA работает на втором уровне. Если необходимо использовать старые настройки `ifcfg`, в `OPTIONS` добавьте выражение `layer2=0`.

```
# IBM QETH
DEVICE=enccw0.0.0600
BOOTPROTO=static
IPADDR=192.168.70.87
NETMASK=255.255.255.0
ONBOOT=yes
NETTYPE=qeth
SUBCHANNELS=0.0.09a0,0.0.09a1,0.0.09a2
PORTNAME=OSAPORT
OPTIONS='layer2=1 portno=0'
MACADDR=02:00:00:23:65:1a
TYPE=Ethernet
```

/etc/sysconfig/network-scripts/ifcfg-0.0.0600

```
# IBM QETH
DEVICE=enccw0.0.0600
BOOTPROTO=static
IPADDR=192.168.70.87
NETMASK=255.255.255.0
ONBOOT=yes
```
Изменения `ifcfg` вступят в силу после перезагрузки или динамического добавления новых каналов сетевых устройств и соответствующего изменения системных настроек ввода и вывода (то есть при подключении в z/VM). Или же для активации файла `ifcfg` можно сделать следующее:

1. Удалите сетевые каналы из списка игнорируемых устройств:

   ```
   # cio_ignore -r
   ID_шины_устройства_чтения, ID_шины_устройства_записи, ID_шины_устройства_данных
   ```

 Замените `ID_шины_устройства_чтения, ID_шины_устройства_записи` и `ID_шины_устройства_данных` идентификаторами шины сетевого устройства. Например:

   ```
   # cio_ignore -r 0.0.0600, 0.0.0601, 0.0.0602
   ```

2. Разрешите активацию устройства, изменяя его атрибут `uevent`:

   ```
   echo add > /sys/bus/ccw/devices/канал_чтения/uevent
   ```

 Например:

   ```
   echo add > /sys/bus/ccw/devices/0.0.0600/uevent
   ```

3. Проверьте состояние устройства:

   ```
   # lsqeth
   ```

4. Запустите интерфейс:

   ```
   # ifup enccw0.0.0600
   ```

5. Проверьте его статус:

   ```
   # ifconfig enccw0.0.0600
   enccw0.0.0600     Link encap:Ethernet  HWaddr 02:00:00:00:00:01
   inet addr:192.168.70.87  Bcast:192.168.70.255
   Mask:255.255.255.0
   inet6 addr: fe80::ff:fe00:1/64 Scope:Link
   UP BROADCAST RUNNING NOARP MULTICAST  MTU:1492  Metric:1
   RX packets:23 errors:0 dropped:0 overruns:0 frame:0
   TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
   collisions:0 txqueuelen:1000
   RX bytes:644 (644.0 b)  TX bytes:264 (264.0 b)
   ```

6. Проверьте маршрутизацию:
17.3.2. Добавление устройства LCS

Драйвер устройства LCS (LAN channel station) обеспечивает поддержку 1000Base-T Ethernet на OSA-Express2 и OSA-Express 3.

Драйвер LCS присваивает устройствам OSA-Express Fast Ethernet и Gigabit Ethernet имена в виде enccw<ID_шины>. Идентификатор шины имеет вид наподобие enccw0.0.09a0 и содержит идентификатор подсистемы канала, идентификатор подканала и номер устройства.

17.3.2.1. Динамическое добавление устройства LCS

1. Загрузите драйвер:

   ```
   # modprobe lcs
   ```

2. Удалите сетевые каналы из списка игнорируемых устройств:

   ```
   # cio_ignore -r ID_шины_устройства_чтения, ID_шины_устройства_записи
   ```

Замените ID_шины_устройства_чтения и ID_шины_устройства_записи идентификаторами шины сетевого устройства. Например:

   ```
   # cio_ignore -r 0.0.09a0, 0.0.09a1
   ```

3. Создайте устройство для группы:

   ```
   # echo ID_шины_устройства_чтения, ID_шины_устройства_записи >
   /sys/bus/ccwgroup/drivers/lcs/group
   ```

4. Теперь надо настроить устройство. Карты OSA предоставляют до 16 портов для одного CHPID. По умолчанию устройство LCS использует порт 0. Чтобы изменить порт, выполните следующее:
Замените номер номером порта для подключения.

5. Включите устройство:

```bash
# echo 1 > /sys/bus/ccwgroup/drivers/lcs/ID_шины_устройства_чтения/online
```

6. Для просмотра присвоенного устройству имени выполните:

```bash
# ls -l /sys/bus/ccwgroup/drivers/lcs/
```

17.3.2.2. Добавление устройства LCS с сохранением постоянства

Обработка команд `cio_ignore` для постоянной конфигурации осуществляется прозрачно, поэтому нет необходимости в удалении диска из списка игнорируемых устройств.

Ниже обсуждается порядок добавления устройств LCS.

1. Создайте сценарий `ifcfg-устройство` в каталоге `/etc/sysconfig/network-scripts/`, заменив `устройство` значением из файла `if_name` ранее созданного устройства `qeth`. Пример: `enccw0.0.09a0`.

   ```bash
   /etc/sysconfig/network-scripts/ifcfg-enccw0.0.09a0
   # IBM LCS
   DEVICE=enccw0.0.09a0
   BOOTPROTO=static
   IPADDR=10.12.20.136
   NETMASK=255.255.255.0
   ONBOOT=yes
   NETTYPE=lcs
   SUBCHANNELS=0.0.09a0,0.0.09a1
   PORTNAME=0
   OPTIONS=''
   TYPE=Ethernet
   ```

2. Измените значение `PORTNAME`, чтобы оно отражало номер порта LCS (`portno`). Атрибуты lcs sysfs можно определить в строке `OPTIONS` (см. Раздел 17.3.1.3, «Добавление устройства qeth с сохранением постоянства»).

3. Определите значение `DEVICE`:

   ```bash
   DEVICE=enccwID_шины
   ```

4. Включите устройство:

   ```bash
   # ifup enccwID_шины
   ```

Изменения `ifcfg` вступят в силу после перезагрузки системы. Активацию файла `ifcfg` можно выполнить следующим образом:

1. Удалите устройство LCS из списка игнорируемых устройств:
Замените ID_шины_устройства_чтения и ID_шины_устройства_записи идентификаторами шины сетевого устройства. Например:

```
# cio_ignore -r 0.0.09a0,0.0.09a1
```

2. Разрешите активацию устройства, изменив его атрибут uevent:

```
echo add > /sys/bus/ccw/devices/канал_чтения/uevent
```

Например:

```
echo add > /sys/bus/ccw/devices/0.0.09a0/uevent
```

17.3.3. Настройка сетевых устройств для корневой файловой системы в сети

Для добавления сетевого устройства с доступом к корневой файловой системе нужно лишь изменить параметры загрузки (см. Глава 18, Файлы конфигурации IBM System z), а при использовании загрузчика zipl — откорректировать файл zipl.conf устройства DASD или SCSI LUN, подключенного к каналу FCP. Повторное создание initramfs не требуется.

Dracut, который пришел на смену mkinitrd, предоставляет параметр `rd.znet=`, для активации сетевых устройств на ранней стадии загрузки.

Этот параметр принимает список разделенных запятой значений `NETTYPE` (qeth, lcs, ctc), два (lcs, ctc) или три (qeth) идентификатора шины устройства, а также пары параметров и значений, соответствующих атрибутам sysfs сетевого устройства. `rd.znet=` выполнит настройку и активацию сетевого оборудования System z. Настройка IP-адресов и прочих сетевых характеристик осуществляется аналогично тому, как это делается на других платформах. Подробную информацию можно найти в документации dracut.

Команды `cio_ignore` обрабатываются прозрачно в процессе загрузки системы.

Пример параметров загрузки для корневой файловой системы NFS:

```
root=10.16.105.196:/nfs/nfs_root cio_ignore=all,!condev
rd.znet=qeth,0.0.09a0,0.0.0a01,0.0.0a02,layer2=1,portno=0,portname=OSAPORT
ip=10.16.105.197:10.16.105.196:10.16.111.254:255.255.255.248.0:nfs-server.subdomain:enccw0.0.09a0:none
rd_NO_LUKS rd_NO_LVM rd_NO_MD rd_NO_DM
LANG=en_US.UTF-8 SYSFONT=latarcyrheb-sun16 KEYTABLE=us
```
Глава 18. Файлы конфигурации IBM System z

На платформе IBM System z для передачи параметров ядру и программе установки используется специальный файл. В этой секции будет рассмотрено его содержимое.

С этой секцией стоит ознакомиться, если вы планируете модифицировать стандартный файл параметров с целью:
- автоматизации установки с помощью файла кикстарта,
- изменения параметров, недоступных в графическом режиме установки.

Так, например, в этом файле можно настроить подключение к сети до запуска установки.

Файл может содержать до 895 знаков (не включая конец строки). Формат записей может быть фиксированным или переменным — фиксированный формат значительно увеличивает размер файла, так как длина каждой строки увеличивается до заданной длины. Если программа установки не распознает параметры в окружении LPAR, попробуйте разместить все параметры в одной строке или добавить пробел в начале и в конце каждой строки.

Файл содержит параметры ядра (например, `ro`) и программы установки (например, `vncpassword=test` и `vnc`).

18.1. Обязательные параметры

Ниже перечислены обязательные параметры. Их также можно найти в файле `generic.prm` в каталоге `images/` на установочном DVD.

- **ro**
 Подключает корневую файловую систему (RAM-диск) в режиме чтения.

 `ramdisk_size=размер`

 Определяет размер памяти для RAM-диска, достаточный для размещения программы установки Red Hat Enterprise Linux. Пример: `ramdisk_size=40000`.

Дополнительный параметр `cio_ignore=all,!condev` в файле `generic.prm` помогает ускорить обнаружение устройств на компьютерах с большим числом устройств.

Важно

Во избежание конфликтов установки в связи с отсутствием поддержки `cio_ignore` на всех уровнях стека, откорректируйте значение `cio_ignore=` в соответствии с требованиями конкретной системы или вовсе удалите его из файла параметров.

18.2. Файл конфигурации z/VM

Приведенная здесь информация относится к установке в z/VM. Файл конфигурации CMS используется в качестве дополнения к основному файлу параметров и содержит параметры DASD, FCP и подключения к сети (см. Раздел 18.3, «Сетевые параметры»).

Каждая строка в файле содержит выражение в форме `переменная=значение`.
Чтобы включить файл конфигурации CMS при выполнении установки, надо определить значения **CMSDASD** и **CMSCONFFILE** в основном файле параметров.

CMSDASD=адрес

где адрес — номер диска, отформатированного в CMS, на котором расположен файл (обычно — диск A).

Пример: **CMSDASD**=191

CMSCONFFILE=имя_файла

Имя файла конфигурации должно состоять из символов нижнего регистра и соответствовать формату имен файлов Linux: `имя . тип`.

Так, файл **REDHAT CONF** будет определен как **redhat.conf**. Длина имени и типа файла может быть от 1 до 8 знаков, а значение должно соответствовать требованиям CMS.

Пример: **CMSCONFFILE**=**redhat.conf**

18.3. Сетевые параметры

Здесь обсуждаются параметры, с помощью которых можно предварительно настроить сетевое подключение. Их можно определить как в основном файле параметров, так и в файле конфигурации CMS. Другие параметры должны быть заданы в основном файле параметров.

NETTYPE='тип'

тип может принимать значения `qeth`, `lcs` или `ctc`. По умолчанию используется `qeth`.

Выберите `lcs` для:

- OSA-2 Ethernet/Token Ring;
- OSA-Express Fast Ethernet (не-QDIO);
- OSA-Express High Speed Token Ring (не-QDIO);
- Gigabit Ethernet (не-QDIO).

Выберите `qeth` для:

- OSA-Express Fast Ethernet;
- Gigabit Ethernet (включая 1000Base-T);
- High Speed Token Ring;
- HiperSockets;
- ATM (эмуляция Ethernet LAN).

SUBCHANNELS= 'ID_шины'

ID_шины — список из двух или трех идентификаторов шин, разделенных запятой.

Определяет идентификаторы шин сетевых интерфейсов:
SUBCHANNELS='ID_шины_устройства_чтения, ID_шины_устройства_записи, ID_шины_устройства_данных'
lcs или ctc:
SUBCHANNELS='ID_шины_устройства_чтения, ID_шины_устройства_записи'

Пример:

SUBCHANNELS='0.0.f5f0,0.0.f5f1,0.0.f5f2'

PORTNAME='порт_osa', PORTNAME='порт_lcs'

Эта переменная поддерживает устройства OSA.

В режиме qdio (NETTYPE='qeth') значение port_osa будет содержать имя порта, сопоставленного устройству OSA, работающему в режиме qeth.

В режиме NETTYPE='lcs' значение port_lcs используется для передачи относительного номера порта в диапазоне от 0 до 15.

PORTNO='порт'

В файл конфигурации CMS можно добавить параметр PORTNO='0' или PORTNO='1', чтобы избежать появления запроса номера порта и необходимости его ввода вручную.

LAYER2='значение'

В качестве значения можно указать 0 или 1.

Для использования адаптера OSA или HiperSockets в режиме qeth (NETTYPE='qeth') укажите LAYER2='0'. Для виртуальных сетевых устройств z/VM это значение будет соответствовать его GuestLAN и VSWITCH.

Второй уровень рекомендуется для сетевых устройств, работающих на канальном уровне или его подуровне MAC (например, DHCP).

По умолчанию драйвер qeth для устройств OSA оперирует на втором уровне. Третий уровень можно принудительно выбрать с помощью LAYER2='0'.

VSWITCH='значение'

В качестве значения можно указать 0 или 1.

При подключении к VSWITCH и GuestLAN z/VM можно дополнительно указать VSWITCH='1', а при прямом подключении к OSA и HiperSockets — VSWITCH='0'.

MACADDR='адрес'

При наличии LAYER2='1' и VSWITCH='0' с помощью этого параметра можно указать адрес MAC. Он должен содержать шесть значений, разделенных двоеточием, каждое из которых содержит шестнадцатеричное значение (в нижнем регистре). Этот формат отличается от формата z/VM, поэтому при копировании подобных выражений надо соблюдать осторожность.

При наличии LAYER2='1' и VSWITCH='1' не следует добавлять параметр MACADDR, так как z/VM назначит уникальный MAC виртуальным сетевым устройствам на втором уровне.

CTCPROT='значение'
Допустимые значения: 0, 1, 3.

Определяет протокол СТС для NETTYPE='ctc'. По умолчанию равен 0.

HOSTNAME='имя'

Имя узла только что установленного экземпляра Linux.

IPADDR='адрес'

IP-адрес нового экземпляра Linux.

NETMASK='маска'

где маска — маска сети.

Формат маски следует правилам безклассовой маршрутизации между доменами (CIDR, classless interdomain routing) IPv4. Так, можно указать 24 вместо 255.255.255.0 или 20 вместо 255.255.240.0.

GATEWAY='шлюз'

IP-адрес шлюза сетевого устройства.

MTU='mtu'

mtu — максимальный размер блока MTU (Maximum Transmission Unit).

DNS='сервер1:сервер2:доп_серверы:серверN'

где 'сервер1:сервер2:доп_серверы:серверN' — перечень DNS-серверов, разделенных двоеточием. Например:

```
DNS='10.1.2.3:10.3.2.1'
```

SEARCHDNS='домен1:домен2:доп_домены:доменN'

где 'домен1:домен2:доп_домены:доменN' — перечень доменов поиска, разделенных двоеточием. Например:

```
SEARCHDNS='subdomain.domain:domain'
```

Если задан параметр DNS=, дополнительно надо определить SEARCHDNS=.

DASD=

Определяет устройства DASD.

Список содержит идентификаторы шин или их диапазоны, разделенные запятой, с дополнительными атрибутами ro, diag, erplog, failfast. Можно сократить идентификаторы, удалив ведущие нули и оставив лишь номера устройств. Дополнительные параметры следуют за идентификаторами, заключены в скобки и разделяются двоеточием.

В этом выражении можно определить один глобальный параметр — autodetect. Он должен содержать только существующие DASD, то есть не поддерживает резервирование имен устройств на случай их добавления в будущем. Для этого используйте постоянные имена устройств DASD (в виде /dev/disk/by-path/...). Другие глобальные параметры (probeonly, nopav,nofcx) не поддерживаются.
В этой строке следует указать только необходимые для установки устройства. Если список содержит неформатированные устройства, надо будет их отформатировать (см. Раздел 15.11.1, «Низкоуровневое форматирование DASD»). Дополнительные DASD можно будет добавить после установки (см. Раздел 17.1.3.2, «DASD за пределами корневой файловой системы»).

Пример:

```
DASD='eb1c,0.0.a000-0.0.a003,eb10-eb14(diag),0.0.ab1c(ro:diag)'
```

Для окружений с FCP-топологией без DASD выражение DASD= надо будет удалить.

FCP_n= 'ID_шины WWPN LUN'

Параметры:

- \(n \) обычно является целым числом (то есть обозначение устройства будет выглядеть как FCP_1 или FCP_2), но может включать буквы и пробелы.
- \(ID_\text{шины} \) определяет идентификатор шины устройства FCP (например, fc00 будет соответствовать идентификатор 0.0.fc00).
- \(WWPN \) (World Wide Port Name) заменяется именем порта, используемого для маршрутизации (чаще всего совокупности с многопутевыми возможностями) и является шестнадцатеричным значением из 16-ти знаков. Пример: 0x50050763050b073d.
- \(LUN \) — шестнадцатеричный логический номер устройства. Должен содержать 16 знаков, поэтому при необходимости справа дополняется нулями. Пример: 0x4020400100000000.

Этот способ поможет настроить использование FCP LUN в качестве SCSI-дисков. Другие LUN можно настроить в процессе установки или в файле кикстарта. Пример:

```
FCP_1='0.0.fc00 0x50050763050b073d 0x4020400100000000'
```

Важно

Значения FCP_1, FCP_2 и т.п. обычно предоставляются администратором пространства идентификаторов FCP.

Программа установки запросит ввод параметров, которые не были заранее определены в файле параметров или конфигурации (за исключением FCP_n).

18.4. Параметры кикстарта

Перечисленные ниже переменные могут быть определены в файле параметров и не работают в файле конфигурации CMS.

```
inst.ks=URL
```

Полный путь к файлу кикстарта, который может располагаться на удаленном узле. Параметры кикстарта и Раздел 23.2.5, «Начало установки» содержат подробную информацию об автоматизации установки.
RUNKS=значение

Присвойте значение 1, если загрузчик должен запускаться в консоли Linux автоматически без необходимости авторизации по SSH. При этом консоль должна поддерживать полноэкранный режим, или должен быть задан параметр `inst.cmdline` (для терминала 3270 в z/VM или консоли системных сообщений в LPAR). **RUNKS=1** рекомендуется для полностью автоматизированной кикстарт-установки. В этом случае установка не будет прерываться даже при наличии ошибок в параметрах.

В других ситуациях этот параметр можно пропустить или указать **RUNKS=0**.

inst.cmdline

Выводит сообщения установки в окно терминала (3270 в z/VM и консоль системных сообщений LPAR) и форматирует их, удаляя Escape-последовательности. При этом файл кикстarta должен содержать ответы на все вопросы, так как взаимодействие пользователя с программой установки будет отключено.

Прежде чем добавить **RUNKS** и **inst.cmdline**, убедитесь, что файл кикстарта содержит все необходимые параметры (см. Глава 23, Кикстарт-установка).

18.5. Другие параметры

Перечисленные ниже переменные могут быть определены в файле параметров и не работают в файле конфигурации CMS.

rd.live.check

Включает проверку установочного образа. Обычно используется с параметром **inst.repo=** при загрузке с DVD.

nompath

Отключает поддержку многопутевых устройств.

proxy=[протокол://][пользователь[:пароль]@]узел[:порт]

Прокси-сервер для установки по HTTP, HTTPS и FTP.

inst.rescue

Запуск режима восстановления с RAM-диска.

inst.stage2=URL

Путь к **install.img**. Этот параметр переопределяет другие методы определения пути к **install.img**. Игнорируется, если **Anaconda** обнаружила файл на локальном носителе.

Если **inst.stage2** не задан, и локальный файл **install.img** не обнаружен, то при поиске файла **Anaconda** будет опираться на значения **inst.repo=** и **method=**.

Если значение **inst.stage2=** определено, а **inst.repo=** или **method=** — нет, **Anaconda** будет искать файл в репозиториях, подключенных по умолчанию.

inst.syslog=IP_или_имя_узла[:порт]

Отправляет сообщения журнала на удаленный сервер syslog.
Выше перечислены лишь некоторые параметры. Глава 20, Параметры загрузки содержит более полный список.

18.6. Примеры файлов

Исходный файл *generic.prm* можно корректировать по своему усмотрению.

Пример *generic.prm*:

```
ro ramdisk_size=40000 cio_ignore=all,!condev
CMSDASD='191' CMSCONFFILE='redhat.conf'
vnc
inst.repo=http://example.com/путь/к/репозиторию
```

generic.prm содержит параметр CMSCONFFILE с ссылкой на файл *redhat.conf*, в котором определены настройки сетевого устройства QETH. Пример файла *redhat.conf*:

```
NETTYPE='qeth'
SUBCHANNELS='0.0.0600,0.0.0601,0.0.0602'
PORTNAME='FOOBAR'
PORTNO='0'
LAYER2='1'
MACADDR='02:00:be:3a:01:f3'
HOSTNAME='foobar.systemz.example.com'
IPADDR='192.168.17.115'
NETMASK='255.255.255.0'
GATEWAY='192.168.17.254'
DNS='192.168.17.1'
SEARCHDNS='systemz.example.com:example.com'
DASD='200-203'
```
Глава 19. Информационные ресурсы

19.1. Публикации IBM System z

Последние редакции публикаций о Linux в System z можно найти по адресу http://www.ibm.com/developerworks/linux/linux390/documentation_red_hat.html. Они включают:

19.2. IBM Redbooks по System z

Эту категорию документов можно найти по адресу http://www.redbooks.ibm.com/

Вводные публикации

- *Введение в современные мэйнфреймы: основы z/VM.* IBM Redbooks. 2007. SG24-7316.

Производительность и надежность

Безопасность

Сетевое окружение

- *FCP для Linux z/VM в IBM System z.* IBM Redbooks. 2007. SG24-7266.

19.3. Интернет-ресурсы

Часть IV. Дополнительные методы установки

В этой части руководства обсуждаются дополнительные настройки и нестандартные методы установки:

- корректирование поведения установщика с помощью параметров;
- настройка PXE-сервера для запуска программы установки по сети;
- удаленная установки с помощью VNC;
- автоматизация установки с помощью файла кикстарта;
- установка не на физический диск, а в образ;
- обновление предыдущих версий Red Hat Enterprise Linux.
Глава 20. Параметры загрузки

Комплект установки Red Hat Enterprise Linux предоставляет целый ряд дополнительных параметров, позволяющих изменить поведение процесса установки. Параметры загрузки добавляются в конец загрузочной строки (см. Раздел 20.1, «Настройка системы установки в меню загрузки») и разделяются одним пробелом.

Существует два типа параметров:

- В виде пары параметр=значение, например inst.vncpassword=пароль.
- Некоторые параметры определяются без значений, например rd.live.check разрешает проверить установочный носитель до начала установки. Если параметр не задан, носитель не будет проверяться.

20.1. Настройка системы установки в меню загрузки

Примечание

Параметры в меню загрузки могут отличаться в зависимости от архитектуры:

- AMD64 и Intel 64 (см. Раздел 5.2, «Меню загрузки»),
- IBM Power Systems (см. Раздел 10.1, «Меню загрузки»),
- IBM System z (см. Глава 18, Файлы конфигурации IBM System z).

Ниже обсуждаются способы изменения параметров в меню загрузки, которое появляется после загрузки компьютера с установочного носителя.

- В строке **boot:** , которую можно открыть, нажав Esc в меню загрузки. Первый параметр должен определять файл установочного образа (начинается с ключевого слова linux).

 Нажмите Tab для просмотра списка команд. Чтобы начать установку, нажмите Enter. Чтобы закрыть **boot:** и вернуться в меню загрузки, надо перезагрузить компьютер с установочного носителя.

- Для доступа к строке приглашения > на платформах AMD64 и Intel 64 с BIOS выберите интересующую строку в меню загрузки и нажмите Tab. В отличие от **boot:** , в этой строке можно редактировать параметры. Так, например, при выборе пункта Проверить носитель и установить Red Hat Enterprise Linux 7.0 в строке приглашения будут показаны соответствующие параметры.

 Чтобы начать установку, нажмите Enter. Чтобы закрыть окно и вернуться в меню загрузки, нажмите Esc.

- На платформах AMD64 и Intel 64 с UEFI параметры загрузки можно изменить в меню GRUB2. Выберите интересующую запись и нажмите e для перехода в режим редактирования. Завершив, нажмите F10 или Ctrl+X.

В строке приглашения также можно использовать параметры ядра dracut Список параметров можно найти на справочной странице dracut.cmdline(7).
Примечание

Параметры загрузки, имеющие прямое отношение к установке, начинаются с `inst`. В настоящее время этот префикс не требуется, то есть `resolution=1024x768` эквивалентен `inst.resolution=1024x768`, но в дальнейшем такой формат станет обязательным.

Выбор источника установки

`inst.repo=`

Определяет источник установки — место, где программа установки может найти файлы и программы, например:

`inst.repo=cdrom`

Типы источников установки:

- дерево установки — структура каталогов с установочными образами, пакетами и файлом `.treeinfo`;
- локальный DVD;
- ISO-образ установочного DVD на локальном или удаленном диске.

Формат параметра зависит от источника установки (см. таблицу).

Таблица 20.1. Источники установки

<table>
<thead>
<tr>
<th>Источник установки</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>Любой CD/DVD</td>
<td><code>inst.repo=cdrom</code></td>
</tr>
<tr>
<td>Конкретный CD/DVD</td>
<td><code>inst.repo=cdrom:устройство</code></td>
</tr>
<tr>
<td>Жесткий диск</td>
<td><code>inst.repo=hd:устройство:/путь</code></td>
</tr>
<tr>
<td>HTTP-сервер</td>
<td><code>inst.repo=http://узел/путь</code></td>
</tr>
<tr>
<td>HTTPS-сервер</td>
<td><code>inst.repo=https://узел/путь</code></td>
</tr>
<tr>
<td>FTP-сервер</td>
<td><code>inst.repo=ftp://пользователь:пароль@узел/путь</code></td>
</tr>
<tr>
<td>NFS-сервер</td>
<td><code>inst.repo=nfs:[параметры:]сервер:/путь</code> [a]</td>
</tr>
</tbody>
</table>

[a] По умолчанию используется NFS 3. Чтобы выбрать другую версию, к строке параметров добавьте `+nfsvers=X`.

Примечание

В предыдущих выпусках Red Hat Enterprise Linux для выбора ISO-образа и структуры каталогов на NFS-сервере использовались два разных параметра — `nfsiso` и `nfs`. В Red Hat Enterprise Linux 7 тип источника определяется автоматически, а параметр `nfsiso` был признан устаревшим.

Допустимые форматы имен дисковых устройств:

- имена устройств на уровне ядра в виде `/dev/sda1` и `sdb2`.
метки файловой системы наподобие LABEL=Flash и LABEL=RHEL7;

UUID, например UUID=8176c7bf-04ff-483a-a832-9557f94e61db.

Неалфавитно-цифровые знаки должны быть представлены в формате \
xNN, где NN — его шестнадцатеричное представление. Например, пробел обозначается как \x20.

\texttt{inst.stage2=}

Расположение образа программы установки. Синтаксис аналогичен \texttt{inst.repo} (см. Выбор источника установки). Этот параметр игнорирует все файлы за исключением образов, поэтому с его помощью нельзя задать расположение пакетов.

\texttt{inst.dd=}

Определяет расположение обновлений драйверов и может быть указан несколько раз. Допустимые форматы обсуждаются в секции Выбор источника установки. За исключением \texttt{inst.dd=cdrom}, должен содержать имя устройства, например:

\begin{verbatim}
inst.dd=/dev/sdb1
\end{verbatim}

Если значение не определено (то есть параметр имеет вид \texttt{inst.dd}), программа установки запросит путь к драйверам в интерактивном меню.

Глава 4. Обновление драйверов в ходе установки на AMD64 и Intel 64 и Глава 9. Обновление драйверов в ходе установки на IBM Power Systems содержат дополнительную информацию.

Параметры кикстарта

\texttt{inst.ks=}

Путь к файлу кикстарта. Формат аналогичен \texttt{inst.repo} (см. Выбор источника установки).

Если параметр содержит только устройство, а не полный путь, программа установки будет его искать в файле \texttt{/ks.cfg}. Если же, наоборот, не задано устройство, будет подразумеваться следующее:

\begin{verbatim}
inst.ks=nfs:сервер:/файл
\end{verbatim}

Таблица 20.2. Типичное расположение файла кикстарта

<table>
<thead>
<tr>
<th>DHCP-сервер</th>
<th>Адрес клиента</th>
<th>Расположение файла</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.122.1</td>
<td>192.168.122.1 00</td>
<td>192.168.122.1/kickstart/192.168.122.100-kickstart</td>
</tr>
</tbody>
</table>

\texttt{inst.ks.sendmac}

Добавляет заголовки в исходящие запросы HTTP с MAC-адресами сетевых интерфейсов, например:

\begin{verbatim}
X-RHN-Provisioning-MAC-0: eth0 01:23:45:67:89:ab
\end{verbatim}
Обычно используется вместе с

```
inst.ks=http
```

inst.ks.sendsn

Добавляет заголовки в исходящие запросы HTTP. Заголовок содержит серийный номер из `/sys/class/dmi/id/product_serial`. Пример:

```
X-System-Serial-Number: R8VA23D
```

Параметры консоли, окружения и дисплея

console=

Используется вместе с `inst.text` и определяет основную консоль. Пример: `console=ttyS0`.

Если параметр указан несколько раз, сообщение загрузки будет выведено на все указанные консоли, но в качестве основной консоли будет использоваться последняя консоль в списке. Например, при наличии `console=ttyS0 console=ttyS1` программа установки будет использовать `ttyS1`.

noshell

Отключает возможность перехода в оболочку root с помощью Ctrl+Alt+F2. Используется при автоматической установке — пользователь сможет наблюдать за ходом процесса установки, но не будет иметь доступа к оболочке.

inst.lang=

Определяет код языка установки аналогично параметру kickstarta `lang` (см. Раздел 23.3.2, «Команды и параметры»). Если установлен пакет `system-config-language`, список кодов можно просмотреть в файле `/usr/share/system-config-language/locale-list`.

inst.geoloc=

`inst.geoloc=` включает функции геолокации для выбора языка и часового пояса.

Возможные значения перечислены ниже.

<table>
<thead>
<tr>
<th>Таблица 20.3. Значения inst.geoloc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Отключить функции геолокации</td>
</tr>
<tr>
<td>Fedora GeoIP API</td>
</tr>
<tr>
<td>Hostip.info GeoIP API</td>
</tr>
</tbody>
</table>

Если значение не определено, `Anaconda` будет использовать `provider_fedora_geoip`.

inst.keymap=

Определяет раскладку клавиатуры аналогично параметру kickstarta `keyboard` (см. Раздел 23.3.2, «Команды и параметры»).

inst.text

Включает текстовый режим установки. Его возможности ограничены — в текстовом режиме доступны только стандартные схемы разделов. Если графический режим недоступен, обычно рекомендуется выбрать установку при помощи VNC (см. Удаленный доступ).
обычно рекомендуется выбирать установку при помощи VNC (см. удаленный доступ).

inst.cmdline

Выполнение программы установки в командной строке. Все параметры должны быть заданы в файле кикстарта, так как в этом режиме взаимодействие с процессом установки будет невозможно.

inst.graphical

Выбор графического режима установки. Используется по умолчанию.

inst.resolution=

Разрешение экрана в графическом режиме установки в формате XxY, где X — ширина, а Y — высота экрана в пикселях. По умолчанию равно 640x480.

inst.headless

Сообщает, что компьютер не оборудован экраном, и пропускает попытку его обнаружения.

inst.xdriver=

Драйвер X.

inst.usefbx

Разрешает использовать буфер кадров X вместо аппаратного драйвера. Эквивалентно `inst.xdriver=fbdev`.

modprobe.blacklist=

Запрещает загрузку драйверов, добавляя их в черный список. Список отключенных драйверов можно найти в каталоге `/etc/modprobe.d/`.

Список содержит названия драйверов через запятую:

```
modprobe.blacklist=ahci,firewire_ohci
```

inst.sshd

Позволяет подключиться к устанавливаемой системе при помощи SSH и наблюдать за процессом установки. За информацией о SSH обратитесь к справочной странице `ssh(1)` или руководству системного администратора Red Hat Enterprise Linux 7.

Примечание

Во время установки для перехода в режим root пароль не нужен. Чтобы установить пароль, используйте параметр кикстарта `sshpw` (см. Раздел 23.3.2, «Команды и параметры»).

Сетевые параметры

Инициализация сети выполняется на уровне `dracut`. В этой секции обсуждаются лишь основные параметры — полный список можно найти на справочной странице `dracut.cmdline(7)` и в сетевом руководстве Red Hat Enterprise Linux 7.
ip=

Определяет сетевой интерфейс. Для настройки нескольких интерфейсов надо указать по одному параметру на каждый интерфейс. Параметр bootdev поможет выбрать основной интерфейс.

Таблица 20.4. «Форматы сетевых интерфейсов» содержит описание допустимых форматов.

Таблица 20.4. Форматы сетевых интерфейсов

<table>
<thead>
<tr>
<th>Метод конфигурации</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>Автоматическая конфигурация всех интерфейсов</td>
<td>ip=метод</td>
</tr>
<tr>
<td>Автоматическая конфигурация конкретного интерфейса</td>
<td>ip=интерфейс:метод</td>
</tr>
<tr>
<td>Статическая конфигурация</td>
<td>ip=ip::шлюз:маска_сети:узел:интерфейс:none</td>
</tr>
</tbody>
</table>

[a] Включает заданный интерфейс, используя выбранный метод автоматической конфигурации, например dhcp, и переопределяет автоматически полученные характеристики (IP-адрес, шлюз, маску сети и т.п.) заданными значениями. Если значения явно не определены, используются автоматические настройки.

Ниже рассматриваются возможные методы.

Таблица 20.5. Методы автоматической конфигурации интерфейсов

<table>
<thead>
<tr>
<th>Метод автоматической конфигурации</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>dhcp</td>
</tr>
<tr>
<td>IPv6 DHCP</td>
<td>dhcp6</td>
</tr>
<tr>
<td>Автоматическая настройка IPv6</td>
<td>auto6</td>
</tr>
<tr>
<td>iBFT (iSCSI Boot Firmware Table)</td>
<td>ibft</td>
</tr>
</tbody>
</table>

Примечание

Если ip не определен, но в то же время задан параметр, требующий наличия сетевого доступа (такой как inst.ks=http://узел:/путь), программа установки будет использовать ip=dhcp.

В приведенных выше таблицах параметр ip определяет, как и ожидается, IP-адрес системы клиента. Адреса IPv6 заключаются в квадратные скобки. Пример: [2001:DB8::1].

Параметр шлюз определяет используемый по умолчанию шлюз. Может принимать адреса IPv6.

маска_сети может содержать полную маску (например, 255.255.255.0) или префикс (например, 64).
Дополнительный параметр узел определяет имя узла клиента.

nameserver=

Адрес сервера имен. Может быть указан несколько раз.

bootdev=

Определяет загрузочный интерфейс. Является обязательным, если параметр ip указан несколько раз.

ifname=

Позволяет присвоить имя устройству с заданным MAC-адресом. Может быть указан несколько раз. Формат: **ifname=интерфейс:MAC**

```
ifname=eth0:01:23:45:67:89:ab
```

inst.dhcpclass=

Идентификатор класса DHCP. По умолчанию равен **anaconda-$\{uname -sr\}**. Службе dhcpd будет представлено значение **vendor-class-identifier**.

vlan=

Настройка устройства VLAN для выбранного интерфейса. Формат: **vlan=имя:интерфейс**. Пример:

```
vlan=vlan5:em1
```

В этом примере на интерфейсе em1 будет настроено устройство vlan5.

Таблица 20.6. Формат имен устройств VLAN

<table>
<thead>
<tr>
<th>Формат</th>
<th>Пример</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN_PLUS_VID</td>
<td>vlan0005</td>
</tr>
<tr>
<td>VLAN_PLUS_VID_NO_PAD</td>
<td>vlan5</td>
</tr>
<tr>
<td>DEV_PLUS_VID</td>
<td>em1.0005</td>
</tr>
<tr>
<td>DEV_PLUS_VID_NO_PAD</td>
<td>em1.5</td>
</tr>
</tbody>
</table>

bond=

Настройка устройства агрегации. Формат: **bond=имя[:подчиненные][:параметры]**. Список подчиненные содержит имена Ethernet-устройств через запятую. Пример:

```
bond=bond0:em1,em2:mode=active-backup,tx_queues=32,downdelay=5000
```

Список параметров можно получить, выполнив команду modinfo bonding.

Если значение параметра не определено, по умолчанию используется **bond=bond0:eth0,eth1:mode=balance-rr**.

team=

Настройка группового устройства. Формат: **team=мастер:подчиненные**. Список подчиненные содержит имена Ethernet-устройств через запятую. Пример:
Дополнительные параметры установки

inst.multilib

Разрешает установку 32-битных пакетов в 64-битных системах x86.

На платформах AMD64 и Intel 64 по умолчанию устанавливаются пакеты, предназначенные для заданной архитектуры (например, `x86_64`) и стандартные пакеты (`noarch`). Параметр **inst.multilib** разрешает установку 32-битных пакетов (`i686`).

Этот подход применим только к пакетам в секции `%packages`. Если же пакет участвует в решении зависимостей, будет установлена только конкретно указанная версия. Так, например, при установке пакета `foo`, зависящего от `bar`, будут установлены все доступные варианты `foo` и лишь явно указанные версии пакета `bar`.

inst.gpt

Размещает сведения о разделах в таблице GPT (GUID Partition Table) вместо MBR (Master Boot Record).

Обычно системы с BIOS и системы с UEFI, работающие в режиме совместимости BIOS, хранят данные разделов в области MBR за исключением случаев, когда размер диска превышает 2 ТБ. Параметр **inst.gpt** позволяет изменить это поведение, сохраняя данные разделов в таблице GPT.

Этот параметр не имеет смысла для UEFI.

Удаленный доступ

Ниже рассматриваются параметры настройки удаленной установки (см. Глава 22, Установка с помощью VNC).

inst.vnc

Разрешает выполнение программы установки в сеансе VNC. При добавлении этого параметра надо будет подключиться к устанавливаемой системе с помощью VNC. Допускается одновременное подключение нескольких клиентов к системе.

Примечание

Системы, установленные через VNC, по умолчанию запускаются в текстовом режиме.

inst.vncpassword=

Пароль доступа к серверу VNC (от 6 до 8 знаков). Пример: `inst.vncpassword=testpwd`.

team=team0:em1,em2
Примечание

При вводе недопустимого пароля появится сообщение:

Пароль VNC может содержать от 6 до 8 знаков.
Введите новый пароль или оставьте поле пустым.

Пароль:

```
inst.vncconnect=
```

Подключение к клиенту VNC после начала установки. Формат:
```
inst.vncconnect=узел:порт,
```
где узел — адрес системы клиента VNC, а порт — номер порта (по умолчанию используется 5900).

Отладка и диагностика

```
inst.updates=
```

Определяет расположение файла `updates.img`. Если содержит путь к каталогу, а не файлу, то программа установки будет искать файл `updates.img`. Синтаксис аналогичен `inst.repo` (см. Таблица 20.1, «Источники установки»).

```
inst.loglevel=
```

Минимальный приоритет событий, о которых будет сообщаться в окне терминала. Этот параметр фильтрует сообщения только для терминала, в то время как файлы журналов будут содержать все события.

Допустимые значения в возрастающем порядке: `debug, info, warning, error, critical`. По умолчанию используется `info`, то есть будут регистрироваться все события с приоритетами от `info` до `critical`.

```
inst.syslog=
```

Включает функцию передачи диагностических сообщений процессу syslog на заданном узле (дополнительно можно указать порт). Для этого необходимо, чтобы syslog принимал входящие подключения. Подробную информацию можно найти в руководстве системного администратора Red Hat Enterprise Linux 7.

```
inst.virtiolog=
```

Порт `virtio` (символьное устройство `/dev/virtio-ports/имя`) для перенаправления журналов. По умолчанию содержит `org.fedoraproject.anaconda.log.0`.

20.1.1. Устаревшие и удаленные параметры

Устаревшие параметры

Ниже перечислены параметры, которые были признаны устаревшими и будут удалены из будущих версий. Несмотря на то что они все еще поддерживаются, использовать их не рекомендуется.
Примечание
Параметры, имеющие отношение к установке, начинаются с inst. Так, например, вместо vnc= теперь используется inst.vnc=.

method=
Выбор метода установки теперь осуществляется с помощью параметра inst.repo=.

repo=nfsiso:сервер:/путь
Этот параметр содержал путь к установочному образу. Теперь тип источника установки определяется автоматически, что эквивалентно inst.repo=nfs:сервер:/путь.

dns=
Для настройки DNS-сервера используется nameserver=.

netmask=, gateway=, hostname=, ip=, ipv6=
Эти параметры были интегрированы в ip=.

ksdevice=
Определял сетевое устройство на ранней стадии установки. Его заменили другие параметры (см. таблицу).

Таблица 20.7. Методы автоматической конфигурации интерфейсов

<table>
<thead>
<tr>
<th>Значение</th>
<th>Текущее поведение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Не задан</td>
<td>Если настройки устройства не определяются параметрами ip= и BOOTIF, оно будет настроено при помощи dhcp.</td>
</tr>
<tr>
<td>ksdevice=link</td>
<td>Аналогичен указанному выше с той разницей, что сетевые настройки обрабатываются в initramfs. Вместо этого рекомендуется использовать параметр dracut rd.neednet.</td>
</tr>
<tr>
<td>ksdevice=bootif</td>
<td>Игнорируется (по умолчанию используется BOOTID=).</td>
</tr>
<tr>
<td>ksdevice=ibft</td>
<td>Его заменил параметр dracut ip=ibft.</td>
</tr>
<tr>
<td>ksdevice=MAC</td>
<td>Его заменил BOOTIF=MAC.</td>
</tr>
<tr>
<td>ksdevice=удаление</td>
<td>Теперь определяется с помощью параметра dracut ip=.</td>
</tr>
</tbody>
</table>

Важно
При запуске установки с локального носителя, на котором расположен файл кикстарта, сеть не инициализируется. Если для выполнения установки (сценарии ре и post) требуется доступ к сети, это приведет к ошибке. Для этой ошибки уже есть отчет Bugzilla (см. BZ#1085310).

Чтобы такого не случилось, используйте параметр загрузки ksdevice=link или добавьте --device=link в команду network в файле кикстарта.

blacklist=
Для добавления драйверов в черный список теперь используется `modprobe.blacklist=`.

`nofirewire=`

Отключение драйвера FireWire (например, `firewire_ohci`) теперь осуществляется при помощи `modprobe.blacklist=firewire_ohci`.

Удаленные параметры

Ниже перечислены удаленные параметры.

`askmethod, asknetwork`

Параметры удалены, так как взаимодействие с `initramfs` теперь невозможно. Для выбора метода установки рекомендуется использовать `inst.repo=`, а для настройки сетевого подключения — `ip=`.

`serial`

Этот параметр перенаправлял вывод *Anaconda* в `/dev/ttyS0`. Его заменяет `console=/dev/ttyS0`.

`updates=`

Путь к обновлениям теперь определяется в `inst.updates=`.

`essid=, wepkey=, wpakey=`

За настройку сети теперь отвечает *dracut*, который не поддерживает беспроводные соединения.

`ethtool=`

Теперь за настройку сети отвечает параметр `ip`.

`gdb`

Включал отладку загрузчика. Его заменил `rd.debug`.

`mediacheck`

За проверку установочных носителей теперь отвечает `rd.live.check`.

`ks=floppy`

Дискеты больше не используются в качестве загрузочного носителя.

`display=`

За настройку удаленного дисплея теперь отвечает `inst.vnc`.

`utf8`

Поддержка UTF8 включена по умолчанию.

`noipv6`
Этот параметр отключал поддержку IPv6 при установке. Поддержка IPv6 теперь встроена в ядро, поэтому не может быть отключена таким образом. Для этой цели используется параметр `dracut ipv6.disable`.

upgradeany

Порядок обновления Red Hat Enterprise Linux 7 изменился (см. Глава 25, Обновление системы).

vlanid=

Отвечал за настройку Virtual LAN (802.1q tag). Теперь эту функцию выполняет параметр `dracut vlan=`.

20.2. Режимы обслуживания

20.2.1. Режим тестирования памяти

Конфликты модулей памяти могут привести к зависанию или сбою компьютера. В некоторых случаях причина кроется в определенных комбинациях программного обеспечения. Именно поэтому, прежде чем приступить к установке Red Hat Enterprise Linux, следует выполнить проверку памяти компьютера.

Для тестирования памяти Red Hat Enterprise Linux предоставляет программу `Memtest86+`. Чтобы начать проверку, в меню загрузки надо выбрать **Диагностика > Проверка памяти**. По умолчанию `Memtest86+` выполняет по десять проходов на каждую проверку, после чего начнется другая проверка. Число проходов можно изменить в окне конфигурации, которое открывается по нажатию клавиши c. Результаты проверки будут показаны в нижней части окна.

Примечание

На данный момент `Memtest86+` не поддерживает UEFI и работает только в системах с BIOS.
Рисунок 20.1. Тестирование памяти Memtest86+

Окно тестирования содержит три области:

- В левом верхнем углу показаны характеристики системы: размер памяти, кэш процессора, их пропускная способность и микросхема. Эти данные определяются при запуске Memtest86+.
- В правом верхнем углу приведена информация о тестах: текущий тест, его описание и ход выполнения конкретной проверки.
- В центральной части экрана показана общая статистика: время запуска программы, общее время работы, число завершенных проверок, число обнаруженных ошибок и выбранный тест. В некоторых системах также будет показана более подробная информация: число установленных модулей, производитель, частота, задержка и т.п.

** Pass complete, no errors, press Esc to exit **

Сообщения об ошибках выделяются красным цветом и содержат информацию о проверке, в ходе которой была обнаружена ошибка, место в памяти и т.п.

Сообщения об ошибках выделяются красным цветом и содержат информацию о проверке, в ходе которой была обнаружена ошибка, место в памяти и т.п.

Обычно одного успешного прохода из 10 достаточно для подтверждения рабочего состояния памяти, но в некоторых случаях ошибки выявляются при повторных проверках. В критических системах лучше выполнить полное тестирование, что может занять довольно длительное время.

Примечание

Время проверки Memtest86+ варьируется в зависимости от конфигурации системы — особенно от скорости и размера оперативной памяти. Например, в системе с частотой 7 МГц и 2 ГБ DDR2 один проход займет примерно 20 минут.

Нажатие Esc прервет тестирование и перезагрузит компьютер.

Подробную информацию о Memtest86+ можно найти в файле README в каталоге /usr/share/doc/memtest86+-версия/ и на официальном сайте http://www.memtest.org/.

20.2.2. Проверка загрузочных носителей

Прежде чем приступить к установке Red Hat Enterprise Linux, рекомендуется проверить целостность установочных DVD, локальных и удаленных ISO-образов.

Чтобы проверить контрольную сумму образа, в командной строке загрузчика добавьте параметр rd.live.check. Если в меню загрузки выбран пункт Проверить носитель и установить Red Hat Enterprise Linux 7.0, он будет добавлен автоматически.

20.2.3. Режим восстановления

Для восстановления системы Linux можно ее загрузить в текстовом режиме с установочного диска. В этом режиме доступны системные утилиты и функции восстановления системы.

Чтобы запустить режим восстановления с установочного диска или USB-устройства, можно использовать параметр inst.rescue или в меню загрузки выбрать Диагностика. Восстановить систему Red Hat Enterprise Linux.
Далее выберите язык, раскладку клавиатуры и определите сетевые настройки для восстанавливаемой системы. В последнем окне введите данные доступа к системе.

По умолчанию режим восстановления подключит операционную систему в каталог `/mnt/sysimage/`.

Глава 28, Восстановление системы содержит подробную информацию.
Глава 21. Подготовка к сетевой установке

Выполнение установки по сети позволяет параллельно установить Red Hat Enterprise Linux в разных системах. Системы будут загружаться при помощи PXE (Preboot Execution Environment) с использованием загрузочного образа, расположенного на сервере, после чего будет запущена программа установки.

Особенность этого метода заключается в отсутствии необходимости использования физических установочных носителей. В этой главе обсуждается порядок подготовки к установке с помощью PXE.

Основные действия перечислены ниже.

1. Настройте сервер (NFS, HTTPS, HTTP, FTP), на котором размещается установочная структура (см. Раздел 2.3.3, «Источник установки в сети»).

2. На сервере tftp настройте файлы сетевой загрузки и DHCP, а на сервере PXE запустите службу tftp (см. Раздел 21.1, «Настройка PXE-загрузки»).

3. Загрузите систему, в которой будет устанавливаться Red Hat Enterprise Linux, и начните процесс установки (см. Раздел 21.2, «Загрузка сетевой установки»).

Примечание

В приведенных в этой главе примерах сервер PXE настраивается в окружении Red Hat Enterprise Linux 7. Информацию о настройке в предыдущих выпусках Red Hat Enterprise Linux можно найти в соответствующих версиях руководства по установке.

21.1. Настройка PXE-загрузки

После настройки сервера репозиториев надо настроить сервер PXE, на котором будут размещаться файлы, необходимые для загрузки системы и запуска установки Red Hat Enterprise Linux. Дополнительно надо будет настроить сервер DHCP и включить соответствующие службы.

Примечание

Порядок настройки PXE может отличаться в зависимости от микропрограммной спецификации устанавливаемой системы (BIOS или UEFI). Точную информацию можно найти в документации компьютера.

Для IBM Power Systems используется другая последовательность (см. Раздел 21.1.3, "Настройка PXE-сервера для IBM Power Systems").

IBM System z не поддерживает PXE-загрузку.

Раздел 22.4, «Рекомендации для систем без дисплея» обсуждает тонкости организации PXE-сервера в окружениях без периферийных устройств.

21.1.1. Настройка PXE-сервера для клиентов с BIOS
В этой секции обсуждается порядок подготовки PXE-сервера для загрузки компьютеров AMD64 и Intel 64 с BIOS, а Раздел 21.1.2, «Настройка PXE-сервера для клиентов с UEFI» — содержит информацию о UEFI.

Процедура 21.1. Настройка PXE-загрузки клиентов с BIOS

1. Установите пакет tftp в режиме root:

```bash
# yum install tftp-server
```

2. В файле `/etc/xinetd.d/tftp` измените значение `disabled` на `no`.

3. Настройте DHCP-сервер так, чтобы он мог использовать загрузочные образы, созданные с помощью SYSLINUX. За информацией об установке DHCP-сервера обратитесь к сетевому руководству Red Hat Enterprise Linux 7.

Пример файла `/etc/dhcp/dhcpd.conf`:

```plaintext
option space pxelinux;
option pxelinux.magic code 208 = string;
option pxelinux.configfile code 209 = text;
option pxelinux.pathprefix code 210 = text;
option pxelinux.reboottime code 211 = unsigned integer 32;

subnet 10.0.0.0 netmask 255.255.255.0 {
    option routers 10.0.0.254;
    range 10.0.0.2 10.0.0.253;
    class "pxeclients" {
        match if substring (option vendor-class-identifier, 0, 9) = "PXEClient";
        next-server 10.0.0.1;
        if option arch = 00:07 {
            filename "uefi/shim.efi";
        } else {
            filename "pxelinux/pxelinux.0";
        }
    }
    host example-ia32 {
        hardware ethernet XX:YY:ZZ:11:22:33;
        fixed-address 10.0.0.2;
    }
}
```

4. В дальнейшем понадобится файл `pxelinux.0` из пакета SYSLINUX, который включен в ISO-образ. В режиме root выполните:

```bash
# mount -t iso9660 /путь/образ.iso /точка_монтирования -o loop,ro

# cp -pr /точка_монтирования/Packages/sylinux-версия-архитектура.rpm /открытый_каталог
```
Извлеките пакет:

```
# rpm2cpio syslinux-версия-архитектура.rpm | cpio -dimv
```

5. В `tftpboot/` создайте каталог `pxelinux/` и скопируйте в него `pxelinux.0`:

```
# mkdir /var/lib/tftpboot/pxelinux
# cp открытый_каталог/usr/share/syslinux/pxelinux.0
/var/lib/tftpboot/pxelinux
```

6. Добавьте файл конфигурации в `pxelinux/`. Имя файла может быть определено как `default` или сформировано на основе IP-адреса системы. Например, компьютеру с адресом 10.0.0.1 будет соответствовать файл `0A000001`.

Пример `/var/lib/tftpboot/pxelinux/default`:

```
default vesamenu.c32
prompt 1
timeout 600

display boot.msg

label linux
    menu label ^Install system
    menu default
    kernel vmlinuz
    append initrd=initrd.img ip=dhcp
    inst.repo=http://10.32.5.1/mnt/archive/RHEL-7/7.x/Server/x86_64/os/
label vesa
    menu label Install system with ^basic video driver
    kernel vmlinuz
    append initrd=initrd.img ip=dhcp inst.xdriver=vesa nomodeset
    inst.repo=http://10.32.5.1/mnt/archive/RHEL-7/7.x/Server/x86_64/os/
label rescue
    menu label ^Rescue installed system
    kernel vmlinuz
    append initrd=initrd.img rescue
label local
    menu label Boot from ^local drive
    localboot 0xffff
```
Примечание

Для загрузки программы установки используется один из двух параметров:

- `inst.repo=` (параметр Anaconda). Позволяет загрузить программу установки и настроить источник установки (см. Раздел 20.1, «Настройка системы установки в меню загрузки»).
- `root=` (параметр dracut). Вместе с ним необходимо указать путь к файлу `initrd.img`, предварительно извлеченному с загрузочного носителя Red Hat Enterprise Linux 7. Этот параметр предназначен для загрузки программы установки, но источник установки должен быть задан другим способом (в файле кикстарта или вручную в окне установки). За подробной информацией обратитесь к справочной странице `dracut.cmdline(7)`.

Необходимо указать один из этих двух параметров.

7. Скопируйте загрузочные образы в tftp:/

```bash
# cp /пусть/x86_64/os/images/pxeboot/{vmlinuz,initrd.img} /var/lib/tftpboot/pxelinux/
```

8. Запустите службы `tftp` и `xinetd` при помощи `systemctl`.

```bash
# systemctl enable xinetd.service tftp.service
# systemctl start xinetd.service tftp.service
```

После этого сервер PXE будет готов к установке. Включите компьютер, где будет устанавливаться Red Hat Enterprise Linux, и в меню выбора источника загрузки выберите PXE.

21.1.2. Настройка PXE-сервера для клиентов с UEFI

В этой секции обсуждается порядок подготовки PXE-сервера для загрузки компьютеров AMD64 и Intel 64 с UEFI. Раздел 21.1.1, «Настройка PXE-сервера для клиентов с BIOS» содержит информацию о BIOS.

Процедура 21.2. Настройка PXE-загрузки клиентов с UEFI

1. Установите пакет `tftp` в режиме `root`:

```bash
# yum install tftp-server
```

2. В файле `/etc/xinet.d/tftp` измените значение `disabled` на `no`.

3. Настройте DHCP-сервер так, чтобы он мог использовать загрузочные образы EFI, созданные с помощью `shim`. За информацией об установке DHCP-сервера обратитесь к сетевому руководству Red Hat Enterprise Linux 7.

Пример файла `/etc/dhcp/dhcpd.conf`:

```conf
option space PXE;
option PXE.mtftp-ip code 1 = ip-address;
```
option PXE.mtftp-cport code 2 = unsigned integer 16;
option PXE.mtftp-sport code 3 = unsigned integer 16;
option PXE.mtftp-tmout code 4 = unsigned integer 8;
option PXE.mtftp-delay code 5 = unsigned integer 8;
option arch code 93 = unsigned integer 16; # RFC4578

subnet 10.0.0.0 netmask 255.255.255.0 {
 option routers 10.0.0.254;
 range 10.0.0.2 10.0.0.253;

 class "pxeclients" {
 match if substring (option vendor-class-identifier, 0, 9) = "PXEClient";
 next-server 10.0.0.1;

 if option arch = 00:07 {
 filename "uefi/shim.efi";
 } else {
 filename "pxelinux/pxelinux.0";
 }
 }
}

host example-ia32 {
 hardware ethernet XX:YY:ZZ:11:22:33;
 fixed-address 10.0.0.2;
}

4. В дальнейшем понадобятся файлы shim.efi (из пакета shim) и grubx64.efi (из пакета grub2-efi). Эти пакеты включены в ISO-образ. В режиме root выполните:

```bash
# mount -t iso9660 /путь/образ.iso /точка_монтирования -o loop,ro

# cp -pr /mount_point/Packages/shim-версия-архитектура.rpm /
# открытый_каталог

# cp -pr /точка_монтирования/Packages/grub2-efi-версия-
# архитектура.rpm /
# открытый_каталог

# umount /точка_монтирования
```

Извлеките пакеты:

```bash
# rpm2cpio shim-версия-архитектура.rpm | cpio -dimv

# rpm2cpio grub2-efi-версия-архитектура.rpm | cpio -dimv
```

5. В tftpboot/ создайте каталог uefi/ и скопируйте туда загрузочные образы:

```bash
# mkdir /var/lib/tftpboot/uefi
```
6. В каталоге `uefi/` создайте файл конфигурации `grub.cfg`. Пример:

```
/set timeout=1
/menuentry 'RHEL' {
    linuxefi uefi/vmlinuz ip=dhcp
    inst.repo=http://10.32.5.1/mnt/archive/RHEL-7/7.x/Server/x86_64/os/
    initrdeff uefi/initrd.img
}
```

Примечание

Для загрузки программы установки используется один из двух параметров:
- `inst.repo=` (параметр `Anaconda`). Позволяет загрузить программу установки и настроить источник установки (см. Раздел 20.1, «Настройка системы установки в меню загрузки»).
- `root=` (параметр `dracut`). Вместе с ним необходимо указать путь к файлу `initrd.img`, предварительно извлеченному с загрузочного носителя Red Hat Enterprise Linux 7. Этот параметр предназначен для загрузки программы установки, но источник установки должен быть задан другим способом (в файле кикстарта или вручную в окне установки). За подробной информацией обратитесь к справочной странице `dracut.cmdline(7)`.

Необходимо указать один из этих двух параметров.

7. Скопируйте загрузочные образы в `uefi/`:

```
# cp /путь/~/x86_64/os/images/pxeboot/*{vmlinuz,initrd.img} /var/lib/tftpboot/uefi/
```

8. Запустите службы `tftp` и `xinetd` при помощи `systemctl`.

```
# systemctl enable xinetd.service tftp.service
# systemctl start xinetd.service tftp.service
```

После этого сервер PXE будет готов к установке. Включите компьютер, где будет устанавливаться Red Hat Enterprise Linux, и в меню выбора источника загрузки выберите PXE.

21.1.3. Настройка PXE-сервера для IBM Power Systems

В этой секции обсуждается порядок подготовки PXE-сервера к загрузке IBM Power Systems.
Процедура 21.3. Настройка PXE-загрузки IBM Power Systems

1. Установите пакет tftp в режиме root:

   ```
   # yum install tftp-server
   ```

2. В файле `/etc/xinet.d/tftp` измените значение `disabled` на `no`.

3. Настройте DHCP-сервер так, чтобы он мог использовать загрузочные образы, созданные с помощью `yaboot`. За информацией об установке DHCP-сервера обратитесь к сетевому руководству Red Hat Enterprise Linux 7.

 Пример `/etc/dhcp/dhcpd.conf`:

   ```
   host bonn {
     filename "yaboot";
     next-server             10.32.5.1;
     hardware ethernet 00:0e:91:51:6a:26;
     fixed-address 10.32.5.144;
   }
   ```

4. В дальнейшем понадобится двоичный файл `yaboot` из одноименного пакета. Чтобы скопировать его из образа, в режиме root выполните:

   ```
   # mkdir /открытый_каталог/yaboot-unpack
   # mount -t iso9660 /путь/образ.iso /точка_монтирования -o loop,ro
   # cp -pr /точка_монтирования/Packages/yaboot-версия.ppc.rpm /открытый_каталог/yaboot-unpack
   ```

 Извлеките пакет:

   ```
   # cd /открытый_каталог/yaboot-unpack
   # rpm2cpio yaboot-версия.ppc.rpm | cpio -dimv
   ```

5. В `tftpboot/` создайте каталог `yaboot` и скопируйте в него файл `yaboot`:

   ```
   # mkdir /var/lib/tftpboot/yaboot
   # cp /открытый_каталог/yaboot-unpack/usr/lib/yaboot/yaboot /var/lib/tftpboot/yaboot
   ```

6. Добавьте `yaboot.conf` в этот каталог. Пример файла:

   ```
   init-message = "\nWelcome to the Red Hat Enterprise Linux 7 installer!\n\n"
   timeout=60
   default=rhel7
   image=/rhel7/vmlinuz-RHEL7
   ```
Примечание

Для загрузки программы установки используется один из двух параметров:

- **inst.repo** (параметр *Anaconda*). Позволяет загрузить программу установки и настроить источник установки (см. Раздел 20.1, «Настройка системы установки в меню загрузки»).
- **root** (параметр *dracut*). Вместе с ним необходимо указать путь к файлу *initrd.img*, предварительно извлеченному с загрузочного носителя Red Hat Enterprise Linux 7. Этот параметр предназначен для загрузки программы установки, но источник установки должен быть задан другим способом (в файле кикстарта или вручную в окне установки). За подробной информацией обратитесь к справочной странице *dracut.cmdline(7)*.

Необходимо указать один из этих двух параметров.

7. Скопируйте загрузочные образы в каталог *tftp*:

```bash
# cp /точка_монтирования/images/ppc/ppc64/vmlinuz /var/lib/tftpboot/yaboot/rhel7/vmlinuz-RHEL7

# cp /точка_монтирования/images/ppc/ppc64/initrd.img /var/lib/tftpboot/yaboot/rhel7/initrd-RHEL7.img
```

8. Удалите каталог *yaboot-unpack* и отключите образ:

```bash
# rm -rf /открытый_каталог/yaboot-unpack

# umount /точка_монтирования
```

9. Запустите службы *tftp* и *xinetd* при помощи *systemctl*.

```bash
# systemctl enable xinetd.service tftp.service

# systemctl start xinetd.service tftp.service
```

После этого сервер PXE будет готов к установке. Включите компьютер, где будет устанавливаться Red Hat Enterprise Linux, и в меню выбора источника загрузки выберите PXE.

21.2. Загрузка сетевой установки

Прежде чем приступить к установке, надо настроить возможность загрузки системы из сети. Методы настройки могут отличаться в зависимости от оборудования.
Подробную информацию о загрузке системы с помощью PXE можно найти в следующих разделах:

- Раздел 5.1.2, «Запуск из сети с помощью PXE»;
- Раздел 10.3, «Загрузка с сервера yaboot».
Глава 22. Установка с помощью VNC

Как уже говорилось, установку Red Hat Enterprise Linux рекомендуется выполнять в графическом режиме. Однако в некоторых случаях это невозможно — например, если корпоративные серверы IBM Power Systems и IBM System z не предусматривают возможность подключения монитора и клавиатуры. В этом случае VNC является единственным вариантом осуществления интерактивной установки.

Anaconda предоставляет режим VNC (Virtual Network Computing), позволяющий запустить графическую установку локально с перенаправлением вывода на удаленный дисплей.

В этой главе рассказывается, как включить режим VNC в устанавливаемой системе и подключиться к ней с помощью программы-клиента VNC.

22.1. Установка клиента VNC

Для удаленного доступа к установке потребуется программа-клиент VNC. Подобные программы обычно включены в стандартные репозитории большинства дистрибутивов Linux, в то время как для других операционных систем доступны бесплатные версии.

Red Hat Enterprise Linux доступно несколько клиентов VNC:

- **TigerVNC** (пакет tigervnc) — платформонезависимая программа доступа к удаленному рабочему столу.
- **Vinagre** (пакет vinagre) — программа доступа к удаленному рабочему столу GNOME.
- **KRDC** (пакет kdenetwork-krdc) — программа доступа к удаленному рабочему столу KDE.

Чтобы установить выбранную программу, в режиме root выполните:

```
# yum install пакет
```

В этой команде укажите имя соответствующего пакета, например tigervnc

Примечание

Приведенные в этой главе инструкции используют **TigerVNC**. Общая последовательность действий останется неизменной независимо от выбранной программы.

22.2. Выполнение установки VNC

Anaconda поддерживает два режима VNC-установки — прямой режим и режим ожидания. Эти режимы отличаются только способом установки соединения. Так, в прямом режиме клиент VNC инициирует подключение к устанавливаемой системе, а в режиме ожидания — наоборот, устанавливаемая система сама подключается к клиенту VNC. Выбор режима определяется конфигурацией индивидуального окружения.

Прямой режим

В прямом режиме Anaconda начинает установку и ожидает подключения клиента. Необходимые для соединения данные (IP-адрес и порт) будут доступны в устанавливаемой системе, поэтому для их просмотра необходим интерактивный доступ.
Режим ожидания

В этом случае клиент VNC работает в режиме прослушивания, ожидая подключения к определенному порту. Имя узла и порт клиента передаются в Anaconda с помощью параметров загрузки или в файле кикстарта. Программа установки устанавливает соединение с заданным клиентом, система которого, в свою очередь, должна разрешать входящие подключения.

Рекомендации по выбору режима

- Визуальный и интерактивный доступ
 - Если у вас нет доступа к устанавливаемой системе, выберите прямой режим.
- Входящие подключения и межсетевой экран
 - Если устанавливаемая система защищена межсетевым экраном, запрещающим входящие подключения, надо использовать прямой режим или отключить межсетевой экран. При этом следует помнить, что отключение экрана снижает уровень защиты системы.
 - Если система клиента VNC не может установить соединение вследствие ограничений межсетевого экрана, отключите экран или выберите прямой режим.

Примечание

Запуск установки с использованием VNC выполняется с помощью параметров загрузки, которые могут отличаться в зависимости от архитектуры:

- AMD64 и Intel 64 (см. Раздел 5.2, «Меню загрузки»),
- IBM Power Systems (см. Раздел 10.1, «Меню загрузки»),
- IBM System z (см. Глава 18, Файлы конфигурации IBM System z).

22.2.1. Запуск VNC в прямом режиме

В прямом режиме клиент VNC подключается к устанавливаемой системе. Anaconda сообщает, когда следует инициализировать подключение.

Процедура 22.1. Запуск VNC в прямом режиме

1. Запустите клиент VNC (например, TigerVNC). Откроется окно, где надо будет ввести адрес удаленной системы (см. Рисунок 22.1, «Настройка подключения в TigerVNC»).
Рисунок 22.1. Настройка подключения в TigerVNC

2. Загрузите устанавливаемую систему, дождитесь появления меню загрузки и нажмите Tab для перехода в режим редактирования. Добавьте inst.vnc в конец команды.

По желанию с помощью параметра inst.vncpassword=пароль можно установить пароль доступа VNC. Длина пароля должна быть от 6 до 8 знаков.

Важно

Не используйте пароль доступа к системе или root в качестве значения inst.vncpassword.
3. Нажмите Enter, чтобы запустить процесс установки. Знаком того, что система готова к установке, будет служить сообщение:

```
13:14:47 Please manually connect your VNC viewer to 192.168.100.131:1 to begin the install.
```

Обратите внимание на адрес и порт (192.168.100.131:1).

4. В окне настройки соединения клиента VNC введите IP-адрес и номер порта в том же формате, в котором они были представлены на предыдущем этапе. После этого можно попробовать подключиться к устанавливаемой системе. Если предварительно был определен пароль, появится запрос его ввода. Введите пароль и нажмите OK.

После успешного подключения появится окно с меню установки. С этого момента можно продолжить работу с привычной графической версией установки.

После этого можно перейти к следующим шагам:

- Глава 6, Установка Red Hat Enterprise Linux на AMD64 и Intel 64,
- Глава 11, Установка Red Hat Enterprise Linux на IBM Power Systems,
- Глава 15, Установка Red Hat Enterprise Linux на IBM System z.

22.2.2. Запуск VNC в режиме ожидания

В этом режиме устанавливаемая система сама инициирует подключение к удаленному клиенту VNC.
Предварительно убедитесь, что настройки системы не блокируют внешние подключения через выбранный для этой цели порт. Информацию о настройке межсетевого экрана в Red Hat Enterprise Linux 7 можно найти в сетевом руководстве Red Hat Enterprise Linux 7.

Процедура 22.2. Запуск VNC в режиме ожидания

1. Запустите клиент VNC в режиме прослушивания. Например, для запуска TigerVNC в Red Hat Enterprise Linux выполните:

 $ vncviewer -listen порт

 Замените порт номером порта для подключения.

 В окне терминала будет показано подтверждение.

Пример 22.1. TigerVNC в режиме прослушивания

 TigerVNC Viewer 64-bit v1.3.0 (20130924)
 Built on Sep 24 2013 at 16:32:56
 Copyright (C) 1999-2011 TigerVNC Team and many others (see README.txt)
 See http://www.tigervnc.org for information on TigerVNC.

 Thu Feb 20 15:23:54 2014
 main: Listening on port 5901

 Это означает, что клиент VNC готов к приему входящих подключений.

2. Загрузите устанавливаемую систему, дождитесь появления меню загрузки и нажмите Tab для перехода в режим редактирования. В конец команды добавьте:

 inst.vnc inst.vncconnect=узел:порт

 Замените узел IP-адресом системы клиента VNC, а порт — номером прослушиваемого порта.

3. Нажмите Enter, чтобы запустить процесс установки. После инициализации Anaconda попытается подключиться к заданному порту на указанном узле.

 После успешного подключения появится окно с меню установки. С этого момента можно продолжить работу с привычной графической версией установки.

Дальнейшую информацию можно найти в главах:

- Глава 6, Установка Red Hat Enterprise Linux на AMD64 и Intel 64
- Глава 11, Установка Red Hat Enterprise Linux на IBM Power Systems
- Глава 15, Установка Red Hat Enterprise Linux на IBM System z

22.3. VNC в файле кикстарта

Команды и параметры VNC можно определить в файле кикстарта (см. Раздел 23.3.2, «Команды и параметры»).
22.4. Рекомендации для систем без дисплея

В системах, не оборудованных дисплеем, установка может быть выполнена только в прямом режиме VNC или с использованием файла кикстарта (см. Раздел 23.3.2, «Команды и параметры»). Ниже перечислены общие шаги VNC-установки.

1. Настройте сервер PXE (см. Глава 21, Подготовка к сетевой установке).

2. Настройте загрузочные параметры прямого режима VNC на сервере PXE (см. Раздел 22.2.2, «Запуск VNC в режиме ожидания»).

3. Следуйте инструкциям по запуску прямого режима VNC (см. Процедура 22.2, «Запуск VNC в режиме ожидания»), но загрузите систему с сервера PXE (см. Раздел 21.2, «Загрузка сетевой установки»).
Глава 23. Кикстарт-установка

23.1. Что такое кикстарт-установка?

Процесс установки можно автоматизировать, определив необходимые данные — часовой пояс, схемы разделов и список пакетов — в файле кикстарта. Таким образом, отпадет необходимость в вводе этих данных вручную. Этот способ идеально подходит для установки Red Hat Enterprise Linux на большом числе компьютеров.

Файлы кикстарта могут располагаться на отдельном сервере и подгружаться во время установки. Один файл может использоваться для одновременной установки Red Hat Enterprise Linux на нескольких компьютерах, что делает его предпочитаемым выбором сетевых и системных администраторов.

Сценарии и журналы кикстарта хранятся в каталоге /tmp.

Примечание

В предыдущих версиях Red Hat Enterprise Linux с помощью файла кикстарта можно было настроить обновление системы. Теперь эту роль выполняют другие инструменты (см. Глава 25, Обновление системы).

23.2. Порядок установки

Автоматизированная установка может быть запущена с локального жесткого диска, DVD или с сервера NFS, FTP, HTTP, HTTPS.

Для этого необходимо:

1. Создать файл кикстарта.
2. Записать файл на локальный или удаленный носитель.
3. Создать загрузочный диск, с которого будет запускаться установка.
4. Предоставить доступ к установочной структуре.
5. Начать процесс установки.

Далее перечисленные действия будут рассмотрены подробно.

23.2.1. Создание файла кикстарта

Файл кикстарта представляет собой обычный текстовый файл, содержащий параметры установки, каждый из которых определяется ключевым словом (см. Раздел 23.3, «Синтаксис команд»). Его можно создать в любом текстовом редакторе, способном сохранять файлы в формате ASCII — для этой цели подойдет блокнот в Windows, Gedit и vim в Linux.

Другой способ заключается в модификации готового шаблона, который автоматически создается в ходе установки исходя из выбранных параметров. Файл anaconda-ks.cfg можно найти в каталоге /root/.
Важно

В предыдущих выпусках Red Hat Enterprise Linux предлагалась отдельная программа для создания и редактирования файлов кикстарта — *system-config-kickstart*. Этот пакет все еще доступен в Red Hat Enterprise Linux 7, но его активная поддержка прекращена, поэтому следует отказаться от его использования.

При создании файла следует придерживаться нескольких рекомендаций:

- Секции файла должны быть упорядочены. Элементы внутри секций могут располагаться в любом порядке. Порядок секций следующий:
 - Раздел команд (см. Раздел 23.3.2, «Команды и параметры»). Обязательные параметры должны быть определены.
 - Раздел `%packages` (см. Раздел 23.3.3, «Выбор пакетов»).
 - Разделы `%pre` и `%post`, которые могут следовать в любом порядке и обязательными не являются (см. Раздел 23.3.4, «Сценарий %pre», Раздел 23.3.5, «Сценарий %post»).

Важно

- Секции `%packages`, `%post` и `%pre` должны завершаться директивой `%end`. В противном случае файл не будет обработан.

- Элементы, не отмеченные как обязательные, могут быть опущены.

- Если обязательный параметр не определен, программа установки предложит его ввести, так же как и во время обычной установки. После получения ответа установка будет продолжена без вмешательства пользователя (если снова не столкнется с отсутствующим параметром).

- Строки, начинающиеся с символа `#`, интерпретируются как комментарии.

23.2.2. Проверка файла кикстарта

После создания файла кикстарта рекомендуется проверить его формат. Для этой цели Red Hat Enterprise Linux 7 предлагает программу `ksvalidator` в составе пакета `pykickstart`. Установите пакет:

```sh
# yum install pykickstart
```

Чтобы проверить формат файла, выполните:

```sh
$ ksvalidator /путь/kickstart.ks
```

Вместо `/путь/kickstart.ks` укажите действительный путь.

За дальнейшей информацией обратитесь к справочной странице `ksvalidator(1)`.
23.2.3. Расположение файла кикстарта

Файл кикстарта может быть расположен:

- на съемном носителе (DVD, USB);
- на локальном жестком диске;
- на удаленном диске в сети.

Размещение файла кикстарта в сети используется чаще — для автоматизации установки в системах, подключенных к сети. Сначала устанавливаемая система загружается с PXE-сервера, затем файл кикстарта загружается с удаленного диска, а перечисленные в файле пакеты в дальнейшем будут установлены в системе.

Доступ программы установки к файлу кикстарта необходимо обеспечить аналогично тому, как это делается для установочных образов (см. Раздел 2.3, «Подготовка источника установки»).

23.2.4. Доступ к структуре установки

Процесс установки должен иметь доступ к установочному образу Red Hat Enterprise Linux DVD или к дереву установки, которое представляет собой копию Red Hat Enterprise Linux DVD.

Прежде чем приступить к установке, вставьте диск Red Hat Enterprise Linux в DVD-привод (см. Раздел 2.3.1, «Источник установки на DVD»).

При выполнении установки с жесткого диска надо будет разместить ISO-образ диска Red Hat Enterprise Linux на жестком диске компьютера (см. Раздел 2.3.2, «Источник установки на жестком диске»).

При выполнении сетевой установки (NFS, FTP, HTTP) потребуется открыть доступ к установочному образу DVD (см. Раздел 2.3.3, «Источник установки в сети»).

23.2.5. Начало установки

Для запуска кикстарт-установки используется параметр inst.ks= (см. Глава 20, Параметры загрузки).

Компьютеры AMD64, Intel 64 и IBM Power Systems можно загрузить с PXE-сервера (см. Глава 21, Подготовка к сетевой установке). В файл конфигурации загрузчика можно добавить параметр автоматического запуска установки. Этот подход позволяет полностью автоматизировать процесс загрузки.

Перечисленные ниже действия подразумевают, что у программы установки есть доступ к файлу кикстарта, к загрузочному носителю или PXE-серверу. Приведенные инструкции являются общими и могут отличаться в зависимости от архитектуры.
23.2.5.1. Запуск установки вручную

В этой секции рассказывается о запуске установки вручную, что подразумевает некоторую степень взаимодействия с пользователем (добавление параметров в строке boot:).

Процедура 23.1. Запуск кикстарт-установки с помощью параметров загрузки

1. Загрузите систему с локального носителя (CD, DVD, USB).

 Глава 5, Загрузка установки на AMD64 и Intel 64 содержит инструкции для AMD64 и Intel 64.

 Глава 10, Загрузка установки на IBM Power Systems содержит инструкции для IBM Power Systems.

 Глава 14, Загрузка установки на IBM System z содержит инструкции для IBM System z.

2. В строке приглашения загрузки добавьте параметр inst.ks= и путь к файлу кикстарта. Если файл расположен на другом компьютере в сети, дополнительно надо будет определить параметр ip=. Обычно также требуется указать расположение пакетов с помощью inst.repo=.

 Глава 20, Параметры загрузки содержит описание параметров загрузки.

3. Подтвердите выбранные параметры и начните установку.

Если файл кикстарта не содержит ошибок, процесс установки сможет завершиться без необходимости ввода каких-либо данных.

23.2.5.2. Автоматический запуск установки

Далее обсуждается автоматизация запуска установки с участием PXE-сервера. Следование приведенным инструкциям позволит выполнить установку без дополнительного вмешательства.

Примечание

PXE-установка недоступна на платформе IBM System z.

Процедура 23.2. Изменение параметров загрузки и запуск установки

1. Откройте файл конфигурации загрузчика на PXE-сервере и добавьте параметр inst.ks=.

 Для AMD64 и Intel 64 с BIOS используется файл default или путь, определяемый с помощью IP-адреса. Добавьте inst.ks= в конец строки append:

   ```
   append initrd=initrd.img inst.ks=http://10.32.5.1/mnt/archive/RHEL-7/7.x/Server/x86_64/kickstarts/ks.cfg
   ```

 На платформах AMD64 и Intel 64 с UEFI параметр inst.ks= добавляется к строке kernel в файле grub.cfg:

   ```
   kernel vmlinuz inst.ks=http://10.32.5.1/mnt/archive/RHEL-7/7.x/Server/x86_64/kickstarts/ks.cfg
   ```
На серверах IBM Power Systems используется файл `yaboot.conf`.

```plaintext
append="inst.ks=http://10.32.5.1/mnt/archive/RHEL-7/7.x/Server/x86_64/kickstarts/ks.cfg"
```

2. Загрузите программу установки с сервера PXE.

- Раздел 5.1.2, «Запуск из сети с помощью PXE» содержит инструкции для AMD64 и Intel 64.

Если файл кикстарта не содержит ошибок, процесс установки сможет завершиться без необходимости ввода каких-либо данных.

23.3. Синтаксис команд

23.3.1. Изменения синтаксиса

В целом, структура файла кикстарта не изменилась с момента выхода Red Hat Enterprise Linux 6, но синтаксис команд и параметров подвергся изменениям. Команда `ksverdiff` позволяет получить список изменений, что поможет адаптировать старые файлы кикстарта.

```plaintext
$ ksverdiff -f RHEL6 -t RHEL7
```

- `f` определяет исходную версию, а `-t` — версию, с которой надо будет ее сравнить. Подробную информацию можно найти на справочной странице `ksverdiff(1)`.

23.3.2. Команды и параметры

Примечание

Если за параметром следует знак равенства, необходимо определить его значение. В приведенных примерах параметры в квадратных скобках ([]) не являются обязательными.
Важно

Имена устройств могут измениться после перезагрузки, что затруднит обращение к устройствам из сценариев, поэтому вместо имен рекомендуется использовать обозначения из `/dev/disk`. Например, вместо

```bash
part / --fstype=xfs --onpart=sda1
```

следует использовать

```bash
part / --fstype=xfs --onpart=/dev/disk/by-path/pci-0000:00:05.0-scsi-0:0:0:0-part1
part / --fstype=xfs --onpart=/dev/disk/by-id/ata-ST3160815AS_6RA0C882-part1
```

Такой формат гарантирует точное обращение к дискам, что особенно важно в окружениях с большим количеством накопителей.

auth или authconfig (дополнительный)

Определяет параметры аутентификации в системе. Аналогичные функции выполняет команда `authconfig`, которую можно выполнить после установки. Подробную информацию можно найти на справочных страницах `authconfig(8)` и `authconfig --help`. По умолчанию пароли будут скрыты в файле `shadow`.

- `-enablenis` — включает поддержку NIS. По умолчанию `-enablenis` использует первый обнаруженный домен, хотя рекомендуется указать его явно с помощью `-nisdomain=`

- `-nisdomain=` — имя домена NIS.

- `-nisserver=` — сервер, который будет использоваться службами NIS.

- `-useshadow` или `-enableshadow` — использовать скрытые пароли.

- `-enableldap` — включает поддержку LDAP в `/etc/nsswitch.conf`, что позволяет получать информацию о пользователях (UID, домашний каталог, оболочка и т.п.) из каталога LDAP. Чтобы использовать эту функцию, надо установить пакет `nss-pam-ldapd`, а также определить сервер и уникальное имя (DN, Distinguished Name) с помощью `-ldapserver=` и `-ldapbasedn=`.

- `-enableldapauth` — разрешает использовать аутентификацию LDAP с помощью модуля `pam_ldap`, который отвечает за проверку подлинности и смену паролей. Для этого потребуется установить пакет `nss-pam-ldapd`. Вы также должны указать сервер и уникальное имя DN с помощью `-ldapserver=` и `-ldapbasedn=`. Если TLS (Transport Layer Security) не используется, надо добавить `-disableldaptls`.

- `-ldapserver=` — если указан `-enableldap` или `-enableldapauth`, то с помощью `-ldapserver=` в файле `/etc/ldap.conf` можно определить имя LDAP-сервера.

- `-ldapbasedn=` — если указан `-enableldap` или `-enableldapauth`, то этот параметр определяет уникальное имя узла в дереве каталогов LDAP, где размещены данные пользователя, и сохраняет его в `/etc/ldap.conf`.

292
--enableldaptls — разрешает использовать протокол TLS, что позволяет передавать зашифрованные имена пользователей и пароли на сервер LDAP до их аутентификации.

--disableldap_tls — отключает подстановку TSL в окружениях, использующих аутентификацию LDAP.

--enablekrb5 — включает аутентификацию Kerberos 5. Kerberos изначально ничего не известно о домашних каталогах, идентификаторах UID и оболочках пользователей. При активации Kerberos необходимо сообщить компьютеру о существовании учетных записей пользователей, включив LDAP, NIS, Hesiod или с помощью useradd. Эти функции требуют наличия пакета pam_krb5.

--krb5realm= — область Kerberos 5, которой принадлежит ваш компьютер.

--krb5kdc= — сервер KDC, обслуживающий эту область. При наличии нескольких серверов перечислите их через запятую.

--krb5adminserver= — сервер KDC, на котором выполняется процесс kadmind. Этот сервер решает задачи изменения паролей и обслуживает административные запросы. При наличии нескольких серверов процесс должен быть запущен на главном сервере KDC.

--enablehesiod — включает поддержку Hesiod при поиске домашних каталогов, идентификаторов UID и оболочек пользователей. Дополнительная информация о настройке Hesiod находится в файле /usr/share/doc/glibc-2.x.x/README.hesiod, входящем в пакет glibc. Hesiod — расширение DNS, использующее записи DNS для хранения информации о пользователях, группах и других объектах.

--hesiodlhs и --hesiodrhs — значения Hesiod LHS (left-hand side) и RHS (right-hand side) в /etc/hesiod.conf. Используются библиотекой Hesiod для поиска DNS-имени аналогично тому, как LDAP использует DN-имена.

Так, чтобы найти информацию о пользователе jim, библиотека Hesiod выполнит поиск jim.passwdLHSRHS, результат которого будет преобразован в текстовый формат по аналогии с записями в passwd — например, jim:*:501:501:Jungle Jim:/home/jim:/bin/bash. Запрос для групп составляется аналогично: jim.groupLHSRHS.

Чтобы иметь возможность поиска пользователей и групп по уникальному номеру, присвойте CNAME значение 501.uid для записи jim.passwd и 501.gid — для jim.group. При подстановке библиотека не добавляет точку перед LHS и RHS, поэтому значения --hesiodlhs и --hesiodrhs должны содержать точку.

--enablesmbauth — включает аутентификацию на сервере SMB (Samba, Windows). SMB ничего не известно о домашних каталогах, UID или оболочках пользователей. При активации SMB надо сообщить компьютеру о существовании учетных записей пользователей, включив LDAP, NIS, Hesiod или выполнив команду useradd.

--smbservers= — имена серверов для аутентификации SMB. Несколько серверов разделяются запятой.

--smbworkgroup= — имя рабочей группы серверов SMB.

--enablecache — включает службу кэширования nscd, что помогает распределять информацию о пользователях и группах по сети при помощи NIS, LDAP или Hesiod.

--passalgo= — может принимать значения sha256 и sha512.
autopart (дополнительный)

Автоматически создает корневой раздел `/` (не меньше 1 ГБ), `swap` и `/boot`. На больших дисках (больше 50 ГБ) также будет создан раздел `/home`.

Важно

`autopart` не может использоваться одновременно с параметрами `part/partition`, `raid`, `logvol`, `volgroup` в одном файле кикстарта.

- **--type=** — позволяет выбрать готовую схему разделов. Возможные значения:
 - `lvm`;
 - `btrfs`;
 - `plain`: стандартные разделы (не LVM и Btrfs);
 - `thinp`: динамическая схема LVM.

Раздел 6.10.4.1.1, «Типы файловых систем» содержит их подробное описание.

- **--nolvm** — запрещает выбор LVM и Btrfs при автоматическом создании разделов. Эквивалентно **--type=plain**.

- **--encrypted** — включает шифрование разделов. Аналогично установке флажка шифрования в окне создания разделов программы установки.

- **--passphrase=** — пароль доступа к зашифрованным устройствам.

- **--escrowcert=** — сертификат X.509, с помощью которого зашифрованы ключи томов в `/root`. Для каждого тома создается отдельный файл. Этот параметр имеет смысл только при наличии аргумента **--encrypted**.

- **--backuppassphrase** — случайная парольная фраза для зашифрованного тома. Файлы паролей хранятся в `/root` и зашифрованы с помощью сертификата X.509. Этот параметр используется вместе с **--escrowcert**.

- **--cipher=** — тип шифрования, который будет выбран, если стандартного значения `aes-xts-plain64` оказалось недостаточно. Этот параметр используется вместе с **--encrypted** и сам по себе силы не имеет. Описание типов можно найти в руководстве по безопасности Red Hat Enterprise Linux 7, но Red Hat рекомендует выбрать `aes-xts-plain64` или `aes-cbc-essiv:sha256`.

autostep (дополнительный)

Обычно при выполнении кикстарт-установки необязательные этапы пропускаются. Этот параметр включает отображение всех окон. Не следует использовать эту функцию при новой установке системы, так как это может нарушить ход установки пакетов.

- **--autoscreenshot** — создает снимок экрана на каждом этапе установки и сохраняет полученный файл в `/tmp/anaconda-screenshots`. Может помочь при создании документации.

bootloader (обязательный)

-
Определяет порядок установки загрузчика.

Важно

Red Hat рекомендует настроить пароль загрузчика для каждой системы. Если пароль не задан, потенциальные злоумышленники смогут изменить параметры ядра и взломать защиту.

В некоторых системах AMD64 и Intel 64 загрузчик должен быть установлен в отдельном разделе. Тип и размер раздела зависит от наличия MBR (Master Boot Record) и GPT (GUID Partition Table). Раздел 6.10.1, «Установка загрузчика» содержит подробную информацию.

- **--append=** — содержит список параметров ядра через запятую, например:

```
bootloader --location=mbr --append="hdd=ide-scsi ide=nodma"
```

Параметры rhgb и quiet используются по умолчанию, даже если они явно не заданы, или строка --append= вовсе не определена.

- **--boot-drive=** — диск, на который будет записан загрузчик, и с которого будет загружаться система.

Важно

--boot-drive= игнорируется на IBM System z с загрузчиком zipl, так как zipl определяет собственный порядок загрузки.

- **--leavebootloader** — запрещает вносить изменения в список загрузочных образов на ISeries/PSeries и EFI.

- **--driveorder** — определяет порядок загрузки в BIOS, например:

```
bootloader --driveorder=sda,hda
```

- **--location=** — место расположения загрузочной записи. Допустимые значения:

 - **mbr** (используется по умолчанию). Его поведение определяется наличием MBR или GPT.

 - На диске с GPT код загрузчика стадии 1.5 будет установлен в раздел BIOS.

 - На диске с MBR код загрузчика стадии 1.5 будет установлен в свободное пространство между MBR и первым разделом.

 - **partition** — установка загрузчика в первый сектор раздела, содержащего ядро.

 - **none** — не устанавливать загрузчик.
В большинстве случаев этот параметр можно не определять.

- **--password=** — пароль GRUB2. Рекомендуется установить пароль для ограничения доступа к оболочке GRUB2 во избежание несанкционированной передачи параметров ядру.

Если пароль задан, будет предложено ввести имя пользователя. По умолчанию будет выбран пользователь `root`.

- **--iscrypted** — разрешает использование зашифрованного пароля, который изначально был создан помощью параметра `--password=`. В противном случае пароль хранится в открытой форме.

Пароль можно зашифровать с помощью команды `grub2-mkpasswd-pbkdf2`. Скопируйте код из строки вывода, начинающейся с `grub.pbkdf2`, и сохраните его в файл кикстарта.

Пример записи с зашифрованным паролем:

```
bootloader --iscrypted --
password=grub.pbkdf2.sha512.10000.5520C6C9832F3AC3D149AC0B24BE69E2
D4FB6BDE6BD92CA1D36A44DE2645C47A291E585D4DC43F8A4D82479FB895CA4
BA4A31F8559510B75E8EBB293B9900.C68B86F0EF93751FF9BD1A8EC7FE5BD233
3790C9BF28420C5CCBF1A2A33DE22C83705BB614EA17F3FDFDF4AC2161CEA3384
E56EB38A2E39102F5334C47405E
```

- **--timeout=** — время ожидания в секундах, по истечении которого начнется загрузка в соответствии с параметром `--default=.`

- **--default=** — определяет загрузочный образ, который будет использоваться по умолчанию.

- **--extlinux** — выбирает extlinux вместо GRUB2. Используется только в системах с поддержкой extlinux.

btrfs (дополнительный)

Отвечает за создание томов Btrfs:

```
btrfs точка_монтирования --data=уровень --metadata=уровень --
label=метка разделы
```

расседелы содержит список разделов через пробел (см. Пример 23.1, «Создание томов Btrfs»).

Формат команды создания подраздела:

```
btrfs точка_монтирования --subvol --name=путь родитель
```

родитель содержит идентификатор родительского тома по отношению к создаваемому, а точка_монтирования — путь к каталогу, в который будет подключена файловая система.

- **--data=** (дополнительный) — уровень RAID, например 0, 1, 10. Не имеет смысла для подразделов.

- **--metadata=** (дополнительный)— уровень RAID тома или файловой системы, где будут храниться метаданные. Не имеет смысла для подразделов.

- **--label=** — метка файловой системы Btrfs. Если метка уже используется, будет создана новая метка. Не имеет смысла для подразделов.
- **-noformat** и **-useexisting** — использование существующего тома Btrfs без форматирования файловой системы.

Ниже приведен пример создания тома Btrfs на основе трех дисков. Также будут созданы два подраздела — / и /home. Основной том в этом примере не монтируется.

Пример 23.1. Создание томов Btrfs

```bash
part btrfs.01 --size=6000 --ondisk=sda
part btrfs.02 --size=6000 --ondisk=sdb
part btrfs.03 --size=6000 --ondisk=sdc

btrfs none --data=0 --metadata=1 --label=rhel7 btrfs.01 btrfs.02 btrfs.03
btrfs / --subvol --name=root LABEL=rhel7
btrfs /home --subvol --name=home rhel7
```

clearpart (дополнительный)

Удаляет разделы с диска, прежде чем создавать новые. По умолчанию разделы не удаляются.

Примечание

clearpart и **part --onpart** не могут использоваться вместе по отношению к одному и тому же логическому разделу.

Раздел 23.4.1, «Сложное разбиение» содержит пример создания разделов с использованием **clearpart**.

- **--all** — удаляет все разделы.
- **--drives=** — удаляет разделы на заданных дисках:

```bash
clearpart --drives=hda,hdb --all
```

Чтобы очистить многопутевое устройство, используйте формат **disk/by-id/scsi-**WWID. Так, очистка диска с идентификатором 2416CD96995134CA5D787F00A5AA11017 будет выглядеть так:

```bash
clearpart --drives=disk/by-id/scsi-58095BEC5510947BE8C0360F604351918
```

Чтобы очистить многопутевое устройство, не использующее LVM, следуйте формату **disk/by-id/dm-uuid-mpath-**WWID. Так, команда очистки диска с идентификатором 2416CD96995134CA5D787F00A5AA11017 будет выглядеть так:

```bash
clearpart --drives=disk/by-id/dm-uuid-mpath-2416CD96995134CA5D787F00A5AA11017
```
Предупреждение

Не используйте имена устройств в виде mpatha, так как они не привязаны к конкретным дискам, и могут измениться в процессе установки. Это может привести к тому, что clearpart выбирает не тот диск для освобождения.

---list= — список разделов для удаления. Допускается выбор разделов на разных дисках. Этот параметр переопределяет - -all и - -linux.

clearpart --list=sd2, sda3, sdb1

- -initlabel — метка диска, которая будет выбираться по умолчанию для заданной архитектуры (например, msdos для x86). Используется вместе с - -all.

- -linux — удаляет разделы Linux.

- -none (по умолчанию) — не удалять разделы.

cmdline (дополнительный)

Выполняет установку в неинтерактивном режиме. Любой запрос взаимодействия прервет установку. Этот режим подходит для IBM System z с консолью x3270. Рекомендуется использовать в комплексе с RUNKS=1 и inst.ks= (см. Раздел 18.4, «Параметры кикстарта»).

device (дополнительный)

Часто в PCI-системах программа установки автоматически определяет карты Ethernet и SCSI. Однако на некоторых старых компьютерах и системах PCI надо будет явно определить устройства:

device модуль --opts=параметры

модуль — имя модуля ядра для установки.

- -opts= — параметры для передачи модулю ядра. Пример:

device --opts="aic152x=0x340 io=11"

driverdisk (дополнительный)

Во время кикстарт-установки допускается использовать дополнительные диски с драйверами. Содержимое диска надо будет скопировать в корневой каталог, после чего можно будет сообщить их расположение процессу установки с помощью команды driverdisk.

driverdisk [раздел] --source=url|--biospart=раздел_bios]

Если диск с драйверами расположен в сети:

driverdisk --source=ftp://путь/dd.img
driverdisk --source=http://путь/dd.img
driverdisk --source=nfs:host://путь/img
раздел — раздел с диском драйверов. Необходимо указать не просто имя раздела (такое как sdb1), а полный путь, например /dev/sdb1.

--source= — адрес диска драйверов. Формат для NFS: nfs:узел:/путь/к/образу.

--biospart= — раздел BIOS, где расположены драйверы, например 82p2.

eula (дополнительный)

Позволяет принять условия лицензионного соглашения EULA (End User License Agreement) без подтверждения пользователя. Используется для автоматизации настройки установленной системы (см. Раздел 26.1, «Первая настройка»).

--agreed (обязательный) — принять соглашение EULA. Используется в комбинации с eula.

fcoe (дополнительный)

Определяет устройства FCoE, которые будут активированы автоматически помимо обнаруженных службами EDD (Enhanced Disk Drive Services).

```
fcoe --nic=имя [параметры]
```

--nic= (обязательный) — имя устройства.

--dcb= — параметры DCB (Data Center Bridging).

--autovlan — автоматическое определение VLAN.

firewall (дополнительный)

Отвечает за настройку межсетевого экрана.

```
firewall --enabled|--disabled устройство [параметры]
```

--enabled, --enable — отклоняет входящие подключения, которые не отвечают на исходящие запросы. Если необходим доступ к службам, запущенным на этом компьютере, можно его включить в настройках межсетевого экрана.

--disabled, --disable — отключает настройку правил iptables.

--trust= — доверенное устройство, через которое может проходить трафик. Чтобы указать несколько устройств, используйте формат --trust em1 --trust em2.

mul — это значение можно заменить типом соединений, которые будут пропускаться через экран:

- --ssh,
- --smtp,
- --http,
- --ftp.
- **port=** — список открытых портов в формате «порт:протокол». Например, чтобы разрешить доступ IMAP через межсетевой экран, укажите `imap:tcp`. Номер порта можно указать явно — например, чтобы разрешить прохождение пакетов UDP через порт 1234, введите `1234:udp`. Несколько портов разделяются запятыми.

- **service=** — пропускает трафик указанной службы через межсетевой экран. Некоторые службы, такие как `cups` и `avahi`, используют несколько портов, поэтому вместо перечисления списка портов и других специальных параметров можно указать имя службы. Допустимые значения включают службы, которые распознает `firewall-offline-cmd`. Если в системе выполняется `firewalld`, для получения списка службы выполните `firewall-cmd --get-services`.

firstboot (дополнительный)

Контролирует запуск программы первоначальной настройки после перезагрузки установленной системы. При этом должен быть установлен пакет `initial-setup`. Если параметр не задан, подразумевается, что он отключен.

- **--enable, --enabled** — включает запуск программы первоначальной настройки.
- **--disable, --disabled** — отключает запуск программы настройки.
- **--reconfig** — разрешает запуск программы первоначальной настройки в режиме конфигурации. Помимо стандартных параметров этот режим позволяет изменить настройки мыши, клавиатуры, язык, пароль root, уровень безопасности, часовой пояс и настройки сети.

group (дополнительный)

Позволяет создать новую группу пользователей. Если группа с заданным именем или идентификатором уже существует, команда завершится ошибкой. Чтобы создать группу для нового пользователя, можно использовать эту команду совместно с `user`.

```
group --name=имя [--gid=gid]
```

- **--name=** — имя группы.
- **--gid=** — идентификатор группы. Если не задан, по умолчанию используется следующий свободный идентификатор.

graphical (дополнительный)

Запуск установки в графическом режиме (используется по умолчанию).

halt (дополнительный)

После завершения установки ожидает нажатия клавиши для перезагрузки. Этот метод используется по умолчанию.

Параметр `halt` аналогичен команде `shutdown -h`.

За дополнительной информацией обратитесь к описанию команд `poweroff`, `reboot` и `shutdown`.

ignoredisk (дополнительный)
Позволяет пропустить некоторые диски. Это, в частности, поможет исключить диски при автоматическом разбиении. К примеру, попытка установки без параметра ignoredisk в SAN-кластере завершится неудачей вследствие того, что установщик будет находить пассивные пути к SAN без таблицы разделов.

```
ignoredisk --drives=диск1,диск2,...
```

где диск может принимать значения sda, sdb, ..., hda и т.п.

Чтобы пропустить многопутевое устройство, не использующее LVM, выберите формат disk/by-id/dm-uuid-mpath-<WWID>. Так, чтобы пропустить диск с идентификатором 2416CD96995134CA5D787F00A5AA11017 выполните:

```
ignoredisk --drives=disk/by-id/dm-uuid-mpath-2416CD96995134CA5D787F00A5AA11017
```

Построение многопутевых устройств, использующих LVM, будет осуществляться после обработки файла кикстарта, поэтому их имена не могут определяться в виде dm-uuid-mpath. Чтобы игнорировать такое устройство, используйте формат disk/by-id/scsi-<WWID>, например:

```
ignoredisk --drives=disk/by-id/scsi-58095BEC5510947BE8C0360F604351918
```

Предупреждение

Не используйте имена устройств в виде mpatha, так как они не привязаны к конкретным дискам, и могут изменяться в процессе установки. Это может привести к тому, что clearpart выберет не тот диск для освобождения.

- --only-use — список разрешенных дисков. Остальные диски будут проигнорированы. Так, следующая команда разрешает использовать только диск sda:

```
ignoredisk --only-use=sda
```

Чтобы включить многопутевое устройство, не использующее LVM:

```
ignoredisk --only-use=disk/by-id/dm-uuid-mpath-2416CD96995134CA5D787F00A5AA11017
```

Чтобы включить многопутевое устройство, использующее LVM:

```
ignoredisk --only-use=disk/by-id/scsi-58095BEC5510947BE8C0360F604351918
```

- --interactive — разрешает интерактивную навигацию в окне дополнительных параметров пространства данных.

`install` (дополнительный)
Существует по умолчанию и выполняет новую установку с cdrom, harddrive, nfs, liveimg или с заданного url (FTP, HTTP, HTTPS). Команды определения источника установки и install должны располагаться в разных строках.

```
install
liveimg --url=file:///images/install/squashfs.img --noverifyssl
```

- **cdrom** — установка с первого привода CD-ROM.

- **harddrive** — установка с локального жесткого диска с файловой системой, которую сможет смонтировать установщик (ext2, ext3, ext4, vfat, xfs).
 - **--biospart** — установка из раздела BIOS (например, 82).
 - **--partition** — раздел с каталогом установки (например, sdb2).
 - **--dir** — DVD, ISO-образ или каталог, содержащий дерево установки.

Например:

```
harddrive --partition=hdb2 --dir=/tmp/install-tree
```

- **liveimg** — установка из образа, например здесь можно указать файл squashfs.img с Live ISO. Важно, чтобы установщик мог смонтировать файловую систему, в которой расположен образ. Допустимые файловые системы: ext2, ext3, ext4, vfat и xfs.
 - **--url** — путь к образу. Поддерживаемые протоколы: HTTP, HTTPS, FTP и file.
 - **--proxy** — определяет прокси HTTP, HTTPS или FTP.
 - **--checksum** (дополнительный) — контрольная сумма SHA256.
 - **--noverifyssl** — отключает проверку SSL при подключении к серверу HTTPS.

Например:

```
liveimg --url=file:///images/install/squashfs.img --checksum=03825f567f17705100de3308a20354b4d81ac9d8bed4bb4692b2381045e56197 --noverifyssl
```

- **nfs** — установка с NFS-сервера.
 - **--server** — имя или IP-адрес сервера, с которого будет выполняться установка.
 - **--dir** — каталог дерева установки.
 - **--opts** (дополнительный) — параметры монтирования.

Например:

```
nfs --server=nfsserver.example.com --dir=/tmp/install-tree
```

- **url** — путь к дереву установки на сервере FTP, HTTP, HTTPS.
 - **--url** — адрес дерева установки. Поддерживаемые протоколы: HTTP, HTTPS, FTP, file.
- `--mirrorlist=` — адрес зеркала.
- `--proxy=` — прокси-сервер HTTP, HTTPS или FTP.
- `--noverifyssl` — отключает проверку SSL при подключении к серверу HTTPS.

Например:

```
url --url http://сервер/путь
```

или

```
url --url ftp://пользователь:пароль@сервер/путь
```

iscsi (дополнительный)

```
iscsi --ipaddr=адрес [параметры]
```

Определяет дополнительный iSCSI-накопитель. Если задан параметр `iscsi`, надо присвоить имя узла iSCSI при помощи `iscsiname`. В файле кикстарта `iscsi` должен следовать за командой `iscsiname`.

Так как параметр `iscsi` требует дополнительной конфигурации, более предпочтительным вариантом является настройка iSCSI-накопителей в BIOS (или iBFT на Intel). *Anaconda* автоматически определяет диски, настроенные в BIOS, и не требует специального изменения файла кикстарта.

Если все же необходимо использовать `iscsi`, проверьте работоспособность сетевого подключения и убедитесь, что в файле кикстарта эта команда предшествует остальным командам iSCSI-дисков, таким как `clearpart` и `ignoredisk`.

- `--ipaddr=` (дополнительный) — адрес ресурса.
- `--port=` (дополнительный) — номер порта, обычно `--port=3260`.
- `--target=--IQN-имя ресурса (iSCSI Qualified Name)`.
- `--iface=— привязка соединения к конкретному сетевому интерфейсу. Определив таким образом интерфейс, убедитесь, что остальные экземпляры `iscsi` тоже содержат его обозначение.
- `--user=— имя пользователя для доступа к ресурсу.`
- `--password=— пароль доступа.`
- `--reverse-user=— имя пользователя для авторизации на инициаторе из целевого объекта, использующего обратное шифрование CHAP.`
- `--reverse-password=— пароль пользователя инициатора.`

iscsiname (дополнительный)

Позволяет определить имя узла iSCSI, заданного с помощью `iscsi`. Параметр `iscsiname` должен предшествовать параметру `iscsi`.

```
iscsiname ign
```
keyboard (дополнительный)

Выбор раскладки клавиатуры.

- **--vckeymap** — определяет раскладку VConsole. В качестве значения можно выбирать имена файлов из `/usr/lib/kbd/keymaps/*` без расширения `.map.gz`.

- **--xlayouts** — список раскладок X через запятую без пробелов. Значения можно определить в форме регистр клавиатуры (например, `cz`) или регистр клавиатуры (вариант) (например, `cz (qwerty)`), что аналогично формату `setxkbmap(1)`.

Полный список раскладок можно найти на справочной странице `xkeyboard-config(7)`, в секции `Layouts`.

- **--switch** — комбинации клавиш для переключения между раскладками в формате, аналогичном `setxkbmap(1)`. Несколько значений разделяются запятыми без пробелов.

Описание дополнительных параметров можно найти на справочной странице `xkeyboard-config(7)`, в секции `Options`.

Ниже будут настроены две раскладки — английская (CША) и чешская — переключение между которыми осуществляется с помощью Alt+Shift:

```
keyboard --xlayouts=us,'cz (qwerty)' --switch=grp:alt_shift_toggle
```

Важно

--vckeymap и --xlayouts не должны использоваться вместе.

lang (обязательный)

Определяет язык, который будет использоваться в ходе установки и по умолчанию — в установленной системе. Пример выбора английского языка:

```
lang en_US
```

Список кодов языков приведен в файле `/usr/share/system-config-language/locale-list`, в первом столбце.

Некоторые языки, в частности китайский, японский, корейский и языки индийской группы, не поддерживаются в текстовом режиме установки. Если такого рода язык задан с помощью команды **lang**, установка будет продолжена на английском, а указанный язык будет включен в готовой системе.

- **--addsupport** — список дополнительных языков через запятую без пробелов.

```
lang en_US --addsupport=cs_CZ,de_DE,en_UK
```

logging (дополнительный)

Отвечает за настройку журналирования ошибок Anaconda. Не оказывает влияния на результат установки.
logging [--host=узел] [--port=порт] [--level=debug|info|error|critical]

- **--host=** — узел, на котором ведется журнал. Чтобы использовать функции удаленного журналирования, необходимо, чтобы на узле выполнялся процесс syslogd.
- **--port=** — порт для подключения удаленного процесса syslogd.
- **--level=** — минимальный приоритет сообщений для вывода на tty3. Однако в журнал будут записываться все сообщения независимо от приоритета (debug, info, warning, error, critical).

`logvol` (дополнительный)

Помогает создать логический том LVM. Формат команды:

```
logvol точка_монтирования --vgname=имя_группы --size=размер --name=имя [параметры]
```

Примечание

Имена логических томов и их групп не должны содержать дефис — в противном случае в списке `/dev/mapper/` они будут включать по два дефиса. То есть если группа `volgrp-01` содержит том `logvol-01`, его имя будет иметь вид `/dev/mapper/volgrp-01-logvol-01`.

Это ограничение накладывается только на новые группы и тома. Имена существующих томов (см. `--noformat`) не изменятся.

Раздел 23.4.1. «Сложное разбиение» демонстрирует пример `logvol`.

- **Формат точки подключения:**
 - `/путь`
 Примеры: `/` или `/home`
 - `swap`
 Раздел подкачки.
 Чтобы автоматически выбрать размер раздела подкачки, добавьте аргумент `--recommended`:
    ```
    swap --recommended
    ```
 Будет выбран подходящий, но не обязательно оптимальный размер.
 Чтобы автоматически выбрать размер с выделением дополнительного пространства для перехода в спящий режим, добавьте аргумент `--hibernation`:
    ```
    swap --hibernation
    ```
Общая формула расчета: размер пространства подкачки = (-recommended) + (размер ОЗУ).

Раздел 6.10.4.5, «Рекомендуемая схема разбиения» (AMD64 и Intel 64), Раздел 11.10.4.5, «Рекомендуемая схема разбиения» (IBM Power Systems) и Раздел 15.10.3.5, «Рекомендуемая схема разбиения» (IBM System z) содержат вспомогательную информацию по выбору оптимального размера пространства подкачки.

Параметры:

- --noformat — использует существующий логический том без форматирования.
- --useexisting — использует существующий логический том и повторно его форматирует.
- --fstype= — тип файловой системы: xfs, ext2, ext3, ext4, swap или vfat.
- --fsoptions= — строка параметров монтирования файловой системы, заключенная в кавычки. В готовой системе эта строка будет записана в /etc/fstab.
- --label= — метка логического тома.
- --grow — увеличить размер логического тома до заданной величины или заполнить все свободное место.
- --size= — минимальный размер тома в мегабайтах.
- --maxsize= — максимально допустимый размер тома в мегабайтах. Укажите целое значение без единиц, например 500.
- --recommended — автоматический выбор размера тома. Раздел 6.10.4.5, «Рекомендуемая схема разбиения» (AMD64 и Intel 64), Раздел 11.10.4.5, «Рекомендуемая схема разбиения» (IBM Power Systems) и Раздел 15.10.3.5, «Рекомендуемая схема разбиения» (IBM System z) содержат вспомогательную информацию по выбору оптимального размера.
- --resize — изменение размера тома. Также надо будет определить параметры --useexisting и --size.
- --percent= — размер увеличения логического тома в процентной доле от доступного места в группе томов. Используется вместе с --size и --grow.
- --encrypted — включает шифрование логического тома с использованием парольной фразы из --passphrase=. Если парольная фраза не определена, Anaconda использует стандартный пароль из строки autopart --passphrase, а если и он не задан — будет предложено ввести пароль во время установки.
- --passphrase= — парольная фраза для доступа к логическому тому. Используется вместе с --encrypted.
- --cipher= — тип шифрования, который будет выбран, если стандартного значения aes-xts-plain64, используемого в Anaconda, оказалось недостаточно. Этот параметр используется вместе с --encrypted и сам по себе силы не имеет. Описание типов можно найти в руководстве по безопасности Red Hat Enterprise Linux 7, но Red Hat рекомендует выбрать aes-xts-plain64 или aes-cbc-essiv:sha256.
--escrowcert=URL — сертификат X.509, с помощью которого зашифрованы ключи томов в /root. Для каждого тома создается отдельный файл. Этот параметр имеет смысл только при наличии аргумента --encrypted.

--backup passphrase — случайная парольная фраза для зашифрованного тома. Файлы паролей хранятся в /root и зашифрованы с помощью сертификата X.509. Этот параметр используется вместе с --escrowcert.

--thinpool — создание логического тома в динамическом пуле. В качестве точки монтирования укажите none.

--metadatasize=размер — размер области метаданных (в МБ).

--chunksize=размер — размер секции для нового устройства динамического пула (в КиБ).

--thin — создание динамического логического тома. Используется вместе с --poolname.

--poolname=имя — пул, в котором будет создан динамический том. Используется вместе с --thin.

Создайте раздел, затем группу логических томов, а уже потом — логический том:

```bash
part pv.01 --size 3000
volgroup myvg pv.01
logvol / --vgname=myvg --size=2000 --name=rootvol
```

Пример создания раздела, группы логических томов, и наконец, логического тома, который будет занимать 90% от размера группы:

```bash
part pv.01 --size 1 --grow
volgroup myvg pv.01
logvol / --vgname=myvg --size=1 --name=rootvol --grow --percent=90
```

mediacheck (дополнительный)

Этот параметр отвечает за выполнение проверки rd.live.check до начала установки. Так как проверка должна проводиться под наблюдением пользователя, по умолчанию параметр отключен.

network (дополнительный)

Настройка сетевого окружения. По умолчанию будет включено первое указанное в команде устройство. Активацию конкретного устройства можно явно запросить с помощью --activate.

--activate — отвечает за активацию устройства.

Если этот параметр указан применительно к уже активному устройству, будет выполнена его повторная активация согласно настройкам в файле кикстарта.

--nodefroute — запрещает использовать стандартный маршрут.

--bootproto= — может принимать одно из следующих значений: dhcp (используется по умолчанию), bootp, ibft, static.
В режиме DHCP для получения сетевых настроек используется DHCP-сервер. Как можно догадаться, в случае с BOOTP для получения сетевых настроек подобным образом используется сервер BOOTP. Чтобы настроить функции DHCP, добавьте:

```
network --bootproto=dhcp
```

Чтобы настроить получение сетевой конфигурации с помощью BOOTP, добавьте в файл кикстарта:

```
network --bootproto=bootp
```

Чтобы использовать конфигурацию из iBFT, добавьте строку:

```
network --bootproto=ibft
```

Для метода static в файле кикстарта необходимо определить IP, маску сети, шлюз и сервер имен. Эти данные не изменяются и используются во время и после установки.

Все данные статической конфигурации должны быть указаны в одной строке.

```
network --bootproto=static --ip=10.0.2.15 --netmask=255.255.255.0 --gateway=10.0.2.254 --nameserver=10.0.2.1
```

Здесь же можно настроить несколько серверов имен, разделив запятой.

```
network --bootproto=static --ip=10.0.2.15 --netmask=255.255.255.0 --gateway=10.0.2.254 --nameserver=192.168.2.1,192.168.3.1
```

> **--device=** — сетевое устройство.

Если в первом вхождении команды network не указан параметр --device=, по умолчанию будет использоваться значение параметра загрузки ksdevice=. Это поведение считается устаревшим, поэтому рекомендуется явно определить значение --device=.

Для всех последующих команд network необходимо явно определить --device=.

Устройства могут быть заданы:

- по имени интерфейса, например eth0,
- по MAC-адресу, например 01:23:45:67:89:ab,
- по ключевому слову link, которое определяет первый интерфейс со статусом up.
- по ключевому слову bootif с целью наследования адреса MAC из переменной BOOTIF. Чтобы pxelinux смог определить переменную BOOTIF, включите IPAPPEND 2 в файл pxelinux.cfg.

Например:

```
network --bootproto=dhcp --device=em1
```

> **--ip=** — адрес устройства.
--ipv6= — IPv6-адрес устройства в формате адрес[префикс длина], например 3ffe:ffff:0:1::1/128. Если префикс не задан, по умолчанию будет использоваться 64. Другие допустимые значения включают auto (автоматическая конфигурация) и dhcp (DHCPv6).

--gateway= — IPv4-адрес шлюза.

--ipv6gateway= — IPv6-адрес шлюза.

--nodefroute — определяет, что выбранный интерфейс не может использоваться по умолчанию. Обычно устанавливается при активации дополнительных устройств с помощью --activate= — например для сетевой карты в другой подсети или цели iSCSI.

--nameserver= — IP-адрес сервера имен. Несколько серверов разделяются запятыми.

--nodns — не настраивать DNS-сервер.

--netmask= — маска сети.

--hostname= — имя устанавливаемой системы.

--ethtool= — дополнительные параметры сетевого устройства для передачи ethtool.

--essid= — идентификатор беспроводной сети.

--wepkey= — ключ WEP беспроводной сети.

--wpakey= — ключ WPA беспроводной сети.

--onboot= — активация устройства при загрузке.

--dhcpclass= — класс DHCP.

--mtu= — MTU устройства.

--noipv4 — отключает IPv4.

--noipv6 — отключает IPv6.

--bondslaves= — определяет подчиненные устройства, которые войдут в состав устройства --device=:

```
network --device=mynetwork --bondslaves=em1,em2
```

Этот команда создаст устройство mynetwork на основе интерфейсов em1 и em2.

--bondopts= — список дополнительных параметров для интерфейса агрегации. Пример:

```
network --bondopts=mode=active-backup,primary=em2
```

Описание параметров можно найти в главе модулей ядра в руководстве системного администратора Red Hat Enterprise Linux 7.
Важно

--bondopts=mode= принимает полное имя режима, такое как balance-rr или broadcast, а не его числовое представление, такое как 0 или 3.

- --vlanid= — идентификатор VLAN (тег 802.1q) подчиненного устройства, которое будет создано для устройства --device. Так, например, network --device=em1 --vlanid=171 создаст виртуальное устройство LAN em1.171.

- --interfacename= — позволяет изменить имя VLAN-устройства, присвоенное в соответствии с --vlanid=.

Пример:

```
network --device=em1 --vlanid=171 --interfacename=vlan171
```

Эта команда создаст виртуальный интерфейс vlan171 для устройства em1.

Обозначение интерфейса может быть любым, например my-vlan, но в некоторых случаях следует придерживаться определенных рекомендаций:

- Если имя содержит точку, то обозначение интерфейса должно иметь формат имя.ID, где имя может быть произвольным, а ID содержит идентификатор VLAN. Примеры: em1.171, my-vlan.171.

- Если имя начинается с vlan, то интерфейсу будет присвоено имя в формате vlanID, например vlan171.

- --teamslaves= — список подчиненных устройств, которые войдут в состав устройства --device=, через запятую.

Пример:

```
network --teamslaves="p3p1'{"prio": -10, "sticky": true}',p3p2'{"prio": 100}'"
```

Также смотрите описание параметра --teamconfig=.

- --teamconfig= — JSON-строка конфигурации созданного устройства агрегации в кавычках, где каждый параметр тоже заключен в двойные кавычки с предшествующим им знаком ". Пример:

```
network --device team0 --activate --bootproto static --ip=10.34.102.222 --netmask=255.255.255.0 --gateway=10.34.102.254 --nameserver=10.34.39.2 --teamslaves="p3p1'{"prio": -10, "sticky": true}',p3p2'{"prio": 100}'" --teamconfig="{"runner": {"name": "activebackup"}}"
```

part, partition (обязательный)

Отвечает за создание раздела.
Если параметры `--noformat` и `--onpart` не определены, создаваемые разделы будут форматироваться в процессе установки.

Раздел 23.4.1. «Сложное разбиение» демонстрирует пример `part`.

```bash
part|partition точка_монтирования --name=имя --device=устройство --rule=правило [параметры]
```

Формат точки монтирования:

- `/путь`
 Примеры: `/`, `/usr`, `/home`

- `swap`
 Раздел подкачки.

Чтобы автоматически выбрать размер раздела подкачки, добавьте аргумент `--recommended`:

```
swap --recommended
```

Будет выбран подходящий, но не обязательно оптимальный размер.

Чтобы автоматически выбрать размер с выделением дополнительного пространства для перехода в спящий режим, добавьте аргумент `--hibernation`:

```
swap --hibernation
```

Общая формула расчета: размер пространства подкачки = (`--recommended`) + (размер ОЗУ).

Раздел 6.10.4.5, «Рекомендуемая схема разбиения» (AMD64 и Intel 64), Раздел 11.10.4.5, «Рекомендуемая схема разбиения» (IBM Power Systems) и Раздел 15.10.3.5, «Рекомендуемая схема разбиения» (IBM System z) содержат вспомогательную информацию по выбору оптимального размера пространства подкачки.

- `raid.id`
 Программный RAID-массив (см. `raid`).

- `pv.id`
 Раздел LVM (см. `logvol`).

- `biosboot`
 Загрузочный раздел BIOS. На платформах AMD64 и Intel 64 с BIOS, использующих таблицу разделов GPT, необходимо создать загрузочный раздел размером 1 МБ. Именно в этот раздел будет установлен загрузчик. В системах с UEFI этот раздел не требуется. Также смотрите описание команды `bootloader`.

efi

Системный раздел EFI. На платформах AMD64 и Intel 64 с UEFI необходимо создать раздел с минимальным размером 50 МБ (рекомендуется 200 МБ). В системах с BIOS этот раздел не требуется. Также смотрите описание команды bootloader.

- **--size** — минимальный размер раздела в мегабайтах. Введите целое значение без указания единиц, например 500.

Важно

Если значение **--size** недостаточно велико, установка будет прекращена. Раздел 6.10.4.5, «Рекомендуемая схема разбиения» обсуждает рекомендуемые размеры.

- **--grow** — увеличить размер раздела до заданной величины или заполнить все свободное место.

Примечание

Если для раздела подкачки определен параметр **--grow** без **--maxsize**, Anaconda ограничит его максимальный размер, руководствуясь следующими правилами: в системах с физической памятью <2 ГБ максимальный размер будет равен двойному объему памяти, а в системах с памятью >2 ГБ максимальный размер будет равен объему памяти плюс 2 ГБ.

- **--maxsize** — максимальный размер раздела в мегабайтах. Укажите целое значение без единиц, например 500.

- **--noformat** — использует существующий логический том без форматирования. Используется вместе с **--onpart**.

- **--onpart** или **--usepart** — устройство, где будет создан раздел.

    ```bash
    partition /home --onpart=hda1
    ```

Эта команда создаст раздел /home на /dev/hda1.

Пример создания раздела в пределах логического тома:

```bash
partition pv.1 --onpart=hda2
```

Устройство уже должно существовать, так как **--onpart** не может это сделать.

- **--ondisk** или **--ondrive** — позволяет выбрать диск, на котором будет создан раздел. Например, **--ondisk=sdb** размещает раздел на втором SCSI-диске.

Для выбора многопутевое устройство, не использующее LVM, следуйте формату `disk/by-id/dm-uuid-mpath-<WWID>`. Так, для устройства с идентификатором 2416CD96995134CA5D787F80A5AA11017 выполните:
Anaconda осуществляет построение многопутевых устройств, использующих LVM, после обработки файла кикстарта, поэтому их имена должны определяться в формате `disk/by-id/scsi-WWID`, а не `dm-uuid-mpath`. Так, для устройства с идентификатором `58095BEC5510947BE8C0360F604351918` выполните:

```bash
part / --fstype=xfs --grow --asprimary --size=8192 --ondisk=disk/by-id/scsi-58095BEC5510947BE8C0360F604351918
```

Предупреждение

Не используйте имена устройств в виде `mpatha`, так как они не привязаны к конкретным дискам, и могут измениться в процессе установки. Это может привести к тому, что `clearpart` выбирает не тот диск для освобождения.

- `--fsprofile` — определяет профиль для передачи программе создания файловой системы. Профиль содержит набор параметров файловой системы. Этот аргумент требует наличия файла конфигурации. Так, в файловых системах `ext2`, `ext3`, `ext4` файл расположен в `/etc/mke2fs.conf`.

- `--fstype=` — тип файловой системы: `xfs`, `ext2`, `ext3`, `ext4`, `swap`, `vfat`, `efi`, `biosboot`.

- `--fsoptions=` — строка параметров монтирования файловой системы, заключенная в кавычки. В готовой системе эта строка будет записана в `/etc/fstab`.

- `--label=` — метка раздела.

- `--recommended` — автоматический выбор размера. Раздел 6.10.4.5, «Рекомендуемая схема разбиения» (AMD64 и Intel 64), Раздел 11.10.4.5, «Рекомендуемая схема разбиения» (IBM Power Systems) и Раздел 15.10.3.5, «Рекомендуемая схема разбиения» (IBM System z) содержат инструкции по выбору оптимального размера.

- `--onbiosdisk` — создание раздела на заданном диске (в соответствии с обозначенным в BIOS).

- `--encrypted` — включает шифрование раздела с использованием парольной фразы из `--passphrase=`. Если парольная фраза не задана, Anaconda использует стандартный пароль из строки `autopart --passphrase`, а если и он не задан — будет предложено его ввести во время установки.

- `--passphrase=` — парольная фраза для доступа к разделу. Используется вместе с `--encrypted`.

- `--cipher=` — тип шифрования, который будет выбран, если стандартного значения `aes-xts-plain64` оказалось недостаточно. Этот параметр используется вместе с `--encrypted`.
encrypted и сам по себе силы не имеет. Описание типов можно найти в руководстве по безопасности Red Hat Enterprise Linux 7, но Red Hat рекомендует выбирать aes-xts-plain64 или aes-cbc-essiv:sha256.

- escrowcert=URL — сертификат X.509, с помощью которого зашифрованы ключи разделов в /root. Для каждого тома создается отдельный файл. Этот параметр имеет смысл только при наличии аргумента --encrypted.

- backuppassphrase — случайная парольная фраза для зашифрованного раздела. Файлы паролей хранятся в /root и зашифрованы с помощью сертификата X.509. Этот параметр используется вместе с --escrowcert.

- resize — изменение размера раздела. Используется в комбинации с --size= и --onpart=.

Примечание

Если по какой-либо причине разбиение не было успешно, сообщения диагностики будут выведены на виртуальную консоль.

poweroff (дополнительный)

После установки завершает работу системы и отключает питание компьютера. Обычно при установке вручную Anaconda выводит на экран сообщение и ожидает нажатия клавиши для перезагрузки. Если метод завершения не указан, по умолчанию выбирается halt.

Параметр poweroff аналогичен команде shutdown -p.

Примечание

Функции poweroff сильно зависят от оборудования компьютера. В частности, необходимо, чтобы BIOS, система расширенного управления питанием (APM, Advanced Power Management) и расширенный интерфейс настройки и управления питанием (ACPI, Advanced Configuration and Power Interface) могли правильно взаимодействовать с ядром системы. Подробную информацию о APM и ACPI можно найти в документации оборудования.

За дополнительной информацией обратитесь к описанию команд halt, reboot и shutdown.

raid (дополнительный)

Создание программного RAID-массива. Формат:

raid каталог --level=уровень --device=md разделы*

- каталог — каталог, в который будет смонтирована файловая система RAID. Если это — /, то уровень RAID должен быть равен 1. Если определен загрузочный раздел, /boot будет иметь уровень 1, а корневой раздел / может быть любого типа. Параметр разделы* определяет идентификаторы разделов, которые будут добавлены в RAID-массив.
Важно

Если на платформах IBM Power Systems RAID-устройство не было отформатировано во время установки, убедитесь, что метаданные RAID имеют версию 0.90. Это является обязательным условием для размещения разделов `/boot` и `PReP` в пределах RAID-массива.

Версия метаданных `mdadm`, используемая по умолчанию в Red Hat Enterprise Linux 7, для загрузочных устройств не поддерживается.

Раздел 23.4.1, «Сложное разбиение» демонстрирует пример `raid`.

- `--level=` — уровень RAID (0, 1, 4, 5, 6, 10).
- `--device=` — имя устройства. В Red Hat Enterprise Linux 7 RAID-устройствам перестали присваиваться имена наподобие `md0`. К старым версиям RAID-массивов (с метаданными версии 0.90), которым нельзя присвоить имя, можно обращаться по метке файловой системы или UUID. Пример: `--device=rhel7-root --label=rhel7-root`.
- `--spares=` — число резервных дисков. Резервные диски используются для восстановления массива в случае сбоя одного из дисков.
- `--fsprofile` — профиль файловой системы, который определяет набор параметров файловой системы. Этот параметр требует наличия файла конфигурации. Так, в файловых системах `ext2`, `ext3`, `ext4` файл расположен в `/etc/mke2fs.conf`.
- `--fstype=` — тип файловой системы. Допустимые значения: `xfs`, `ext2`, `ext3`, `ext4`, `swap`, `vfat`.
- `--fsoptions=` — строка параметров монтирования файловой системы, заключенная в кавычки. В готовой системе эта строка будет записана в `/etc/fstab`.
- `--label=` — метка файловой системы. Если метка уже используется, будет создана новая метка.
- `--noformat` — использует существующее устройство без форматирования RAID-массива.
- `--useexisting` — использует существующее устройство и повторно его форматирует.
- `--encrypted` — включает шифрование RAID-устройства с использованием парольной фразы из `--passphrase`. Если парольная фраза не задана, `Anaconda` использует стандартный пароль из строки `autopart --passphrase`, а если и он не задан — будет предложено его ввести во время установки.
- `--cipher=` — тип шифрования, который будет выбран, если стандартного значения `aes-xts-plain64`, используемого в `Anaconda`, оказалось недостаточно. Этот параметр используется вместе с `--encrypted` и сам по себе силы не имеет. Описание типов можно найти в руководстве по безопасности Red Hat Enterprise Linux 7, но Red Hat рекомендует выбрать `aes-xts-plain64` или `aes-cbc-essiv:sha256`.
- `--passphrase=` — парольная фраза для доступа к RAID-устройству. Используется вместе с `--encrypted`.
- `--escrowcert=URL` — сертификат X.509, с помощью которого зашифрован ключ
устройства в /root. Этот параметр имеет смысл только при наличии аргумента --encrypted.

- --backuppassphrase — случайная парольная фраза для устройства. Файлы паролей хранятся в /root и зашифрованы с помощью сертификата X.509. Этот параметр используются вместе с --escrowcert.

В следующем примере будут созданы разделы / (RAID1) и /home (RAID5). Предполагается, что всего установлено три диска SCSI. Также будут созданы три раздела подкачки, по одному на каждом диске.

Пример 23.2. Команда raid

```
part raid.01 --size=6000 --ondisk=sda
part raid.02 --size=6000 --ondisk=sdb
part raid.03 --size=6000 --ondisk=sdc

part swap --size=512 --ondisk=sda
part swap --size=512 --ondisk=sdb
part swap --size=512 --ondisk=sdc

part raid.11 --size=1 --grow --ondisk=sda
part raid.12 --size=1 --grow --ondisk=sdb
part raid.13 --size=1 --grow --ondisk=sdc

raid / --level=1 --device=rhel7-root --label=rhel7-root raid.01 raid.02 raid.03
raid /home --level=5 --device=rhel7-home --label=rhel7-home raid.11 raid.12 raid.13
```

realm (дополнительный)

Настраивает подключение к домену IPA или Active Directory.Подробную информацию можно найти на справочной странице realm(8).

```
realm join домен [параметры]
```

- --computer-ou=OU= — уникальное имя подразделения. Формат определяется программным обеспечением клиента. Составляющую rootDSE можно опустить.

- --no-password — автоматическое подключение без ввода пароля.

- --one-time-password= — при входе необходимо ввести пароль один раз. Подходит только для некоторых областей.

- --client-software= — подключаться только к областям, где могут выполняться выбранные программы клиента. Допустимые значения включают sssd и winbind. По умолчанию программное обеспечение клиента выбирается автоматически.

- --server-software= — подключаться только к областям, где могут выполняться выбранные программы сервера. Допустимые значения включают active-directory и freeipa.
- **-membership-software=** — программа, выбираемая при подключении к области. Допустимые значения включают samba и adcli. По умолчанию выбирается автоматически.

reboot (дополнительный)

Перезагружает компьютер после завершения установки (без аргументов). Обычно после кикстарта на экране будет показано сообщение, и пользователь должен будет нажать клавишу для перезагрузки.

Параметр reboot аналогичен команде shutdown -r.

Для полной автоматизации текстовой установки на платформах System z используйте reboot.

Другие методы завершения работы системы включают halt, poweroff и shutdown.

Если в файле кикстарта явно не указан режим завершения, по умолчанию будет использоваться halt.

- **-eject** — прежде чем установленная система будет перезагружена, эта команда откроет привод с установочным DVD.

Примечание

Параметр reboot может привести к заикливианию установки в зависимости от выбранного носителя и способа установки.

repo (дополнительный)

Позволяет настроить дополнительные репозитории yum.

```bash
repo --name=ID [--baseurl=<url>|--mirrorlist=url] [параметры]
```

- **--name=** — обязательный идентификатор репозитория. Если репозиторий уже был добавлен, он будет пропущен. Программа установки использует заранее подготовленный список репозиториев, поэтому имена дополнительных репозиториев не должны с ними совпадать.

- **--baseurl=** — адрес репозитория. Переменные из файлов конфигурации репозиториев yum здесь не поддерживаются. Этот параметр не может использоваться вместе с --mirrorlist.

- **--mirrorlist=** — адрес списка зеркал репозитория. Переменные из файлов конфигурации репозиториев yum здесь не поддерживаются. Этот параметр не может использоваться вместе с --baseurl.

- **--cost=** — целое значение, определяющее приоритет репозитория. Используется для выбора репозитория, если интересующий пакет входит в состав нескольких репозиториев. В этом случае будет выбран репозиторий с минимальным значением.

- **--excludepkgs=** — список пакетов через запятую, которые будут исключены при загрузке из репозитория. Обычно используется, если один пакет входит в состав нескольких репозиториев, и вы хотите исключить одну из версий. В качестве значений принимаются полные имена пакетов (например, publican) и шаблоны (например, publican.*).
gnome-*).

- **--includepkgs**= — список пакетов и шаблонов их имен, которые будут загружены из репозитория. Используется, если один пакет входит в состав нескольких репозиториев, и вы хотите загрузить конкретную версию из определенного репозитория.

- **--proxy=[протокол://][]{пользователь[:пароль]}@узел[:порт]** — прокси-сервер HTTP, HTTPS или FTP для доступа к репозиторию. Этот параметр на меняет способ загрузки install.img при выполнении установки с HTTP-сервера.

- **--ignoregroups=true** — если установлен, программа установки не будет обрабатывать сведения о группах пакетов при копировании установочной структуры, что позволит уменьшить размер данных в зеркале.

- **--noverifyssl** — отключает проверку SSL при подключении к серверу HTTPS.

Важно

Состояние репозиториев должно оставаться неизменным во время установки, так как их модификация может нарушить ход установки.

rescue (дополнительный)

Переводит программу установки в режим восстановления.

```
rescue [--nomount|--romount]
```

- **--nomount** и **--romount** — управляют монтированием в режиме восстановления. По умолчанию установленная система будет подключена в режиме чтения-записи. **--nomount** отключает монтирование, а **--romount** подключает систему в режиме чтения. Эти параметры являются взаимоисключающими.

rootpw (обязательный)

Позволяет установить пароль root.

```
rootpw [--iscrypted|--plaintext] [--lock] пароль
```

- **--iscrypted** — сообщает, что пароль зашифрован. Параметры **--plaintext** и **--iscrypted** являются взаимоисключающими. Зашифровать пароль можно следующим образом:

```
$ python -c 'import crypt; print(crypt.crypt("My Password", "$6$My Salt"))'
```

Эта команда создает шифр SHA512 с использованием заданной случайной строки (соли).

- **--plaintext** — сообщает, что пароль определен в открытом виде. Параметры **--plaintext** и **--iscrypted** являются взаимоисключающими.

- **--lock** — блокирует учетную запись. Авторизация пользователя root из консоли будет недоступна.
selinux (дополнительный)

Определяет режим SELinux (по умолчанию будет выбран строгий режим).

```
$ selinux [--disabled|--enforcing|--permissive]
```

- **--enforcing** — строгий режим SELinux.
- **--permissive** — режим предупреждений.
- **--disabled** — отключает SELinux.

За дальнейшей информацией обратитесь к руководству по SELinux в Red Hat Enterprise Linux.

services (дополнительный)

Список служб, выполняемых в рамках systemd. Список отключенных служб проверяется первым, а включенных — вторым. Таким образом, если служба присутствует в обоих списках, она будет включена.

```
$ services [--disabled=список] [--enabled=список]
```

- **--disabled=** — отключает службы.
- **--enabled=** — включает службы.

Важно

Службы должны быть перечислены через запятую без пробелов. Если строка содержит пробелы, будут обработаны только элементы до первого пробела.

```
$ services --disabled=auditd, cups, smartd, nfslock
```

В этом примере будет отключена только служба `auditd`. Для отключения всех служб удалите пробел:

```
$ services --disabled=auditd,cups,smartd,nfslock
```

shutdown (дополнительный)

После установки завершает работу системы. Если метод не указан, будет выбран `halt`.

Параметр `shutdown` аналогичен команде `shutdown`.

Другие методы завершения работы включают `halt`, `poweroff` и `reboot`.

skipx (дополнительный)

Пропускает настройку системы X.
Важно

Если среди прочих пакетов в системе был установлен менеджер дисплея, он создаст свою конфигурацию X, а система будет по умолчанию работать на уровне `graphical.target`. Таким образом, параметр `skipx` будет переопределен.

sshpw (дополнительный)

За ходом установки можно следить, удаленно подключившись к системе по SSH. С помощью команды `sshpw` можно создать временные учетные записи для подключения. Каждый вызов команды создает новую учетную запись в среде установки. После установки временные записи будут удалены.

```bash
sshpw --username=пользователь пароль [--iscrypted|--plaintext] [--lock]
```

- `--username` — обязательное имя пользователя.
- `--iscrypted` — сообщает, что пароль зашифрован. Параметры `--plaintext` и `--iscrypted` являются взаимоисключающими. Зашифровать пароль можно следующим образом:

```bash
$ python -c 'import crypt; print(crypt.crypt("My Password", "$6$My Salt"))'
```

Эта команда создаст шифр SHA512 с использованием заданной случайной строки (соли).

- `--plaintext` — сообщает, что пароль определен в открытом виде. `--plaintext` и `--iscrypted` являются взаимоисключающими.
- `--lock` — блокирует учетную запись, то есть пользователи не смогут авторизоваться из консоли.

Важно

Во время установки ssh по умолчанию не запускается. За активацию ssh отвечает параметр `inst.sshd` (см. Параметры консоли, окружения и дисплея).

Примечание

Чтобы ограничить ssh-доступ на время установки, выполните:

```bash
sshpw --username=root --lock
```

text (дополнительный)

Выполнение установки в текстовом режиме.
timezone (обязательный)

Устанавливает часовой пояс. Для просмотра полного списка часовых поясов выполните `timedatectl list-timezones`.

- `--utc` — если задан, подразумевается, что системные часы установлены по Гринвичу.
- `--nontp` — отключает автоматический запуск NTP.
- `--ntpservers` — список NTP-серверов через запятую без пробелов.

unsupported_hardware (дополнительный)

Позволяет игнорировать сообщения о неподдерживаемом оборудовании. Если эта команда пропущена, при обнаружении неподдерживаемого оборудования установка будет приостановлена.

user (дополнительный)

Создание пользователя.

- `--name=пользователь` — обязательное имя пользователя.
- `--username=` — обязательное имя пользователя.
- `--gecos=` — строка параметров GECOS через запятую. Типичные параметры включают полное имя пользователя, номер офиса, и т.п. Подробную информацию можно найти на справочной странице `passwd(5)`.
- `--groups=` — список групп пользователя, разделенных запятой. Список должен содержать существующие группы (см. описание команды `group`).
- `--homedir=` — домашний каталог пользователя. По умолчанию используется `/home/пользователь`.
- `--lock` — блокирует учетную запись, то есть пользователи не смогут авторизоваться из консоли.
- `--password=` — пароль пользователя. Если не задан, учетная запись будет заблокирована.
- `--iscrypted` — сообщает, что пароль зашифрован. Параметры `--plaintext` и `--iscrypted` являются взаимоисключающими. Зашифровать пароль можно следующим образом:

```bash
$ python -c 'import crypt; print(crypt.crypt("My Password", "$6$My Salt"))'
```

Эта команда создаст шифр SHA512 с использованием заданной случайной строки (соли).

- `--plaintext` — сообщает, что пароль определен в открытом виде. `--plaintext` и `--iscrypted` являются взаимоисключающими.
- **--shell=** — оболочка пользователя. По умолчанию используются системные настройки.

- **--uid=** — идентификатор пользователя. По умолчанию будет использоваться следующий незарезервированный идентификатор.

- **--gid=** — идентификатор группы. По умолчанию используется следующий свободный идентификатор.

Важно

В настоящий момент параметр **--gid=** не работает вследствие ошибок. Не следует добавлять его в файл кикстарта, так как это приведет к ошибке.

vnc (дополнительный)

Разрешает удаленное подключение к графической установке с помощью VNC, что более предпочтительно по сравнению с вынужденным переходом в текстовый режим в силу его ограничений. Если команда используется без параметров, VNC-сервер будет запущен без пароля, и на экране появится сообщение с информацией о подключении к удаленному компьютеру.

```vnc [--host=узел] [--port=порт] [--password=пароль]
```

- **--host=** — подключение к клиенту VNC, прослушивающему заданный узел.

- **--port=** — порт, который будет прослушиваться клиентом VNC. Если не задан, Anaconda использует стандартное значение VNC.

- **--password=** — пароль доступа к сеансу VNC. Этот параметр не является обязательным, но рекомендуется его определить.

Глава 22. Установка с помощью VNC содержит дальнейшую информацию.

volgroup (дополнительный)

Создание группы LVM.

```volgroup имя раздел [параметры]
```

Важно

Имена логических томов и их групп не должны содержать дефис — в противном случае в списке `/dev/mapper/` они будут включать по два дефиса. То есть если группа `volgrp-01` содержит том `logvol-01`, его имя будет иметь вид `/dev/mapper/volgrp--01-logvol--01`. Это ограничение накладывается только на новые группы и тома. Имена существующих томов (см. **--noformat**) не изменяются.
Раздел 23.4.1. «Сложное разбиение» демонстрирует пример схемы разбиения с использованием команды `volgroup`.

Параметры:

- `--noformat` — использует существующую группу томов без форматирования.
- `--useexisting` — использует существующую группу томов и повторно ее форматирует.
- `--pesize=` — размер физических экстентов.
- `--reserved-space=` — размер пространства в мегабайтах, которое должно быть зарезервировано в группе томов. Применимо только к новым группам томов.
- `--reserved-percent=` — процентная доля пространства, зарезервированного в группе томов.

Пример создания раздела, группы логических томов и отдельного тома:

```
part pv.01 --size 10000
volgroup volgrp pv.01
logvol / --vgname=volgrp --size=2000 --name=root
```

xconfig (дополнительный)

Настраивает X Window System. Если в файле кикстарта есть запись для установки X, но нет команды `xconfig`, настройки X надо будет определить вручную.

Не следует добавлять эту команду в файл кикстарта, если вы не планируете устанавливать X Window System.

- `--defaultdesktop=` — рабочее окружение. Чтобы выбрать GNOME или KDE, необходимо, чтобы они также присутствовали в секции `%packages`.
- `--startxonboot` — графическая авторизация в установленной системе.

zerombr (дополнительный)

Параметр `zerombr` заново инициализирует недействительные таблицы разделов. Это приведет к потере данных на дисках с этими таблицами.
Предупреждение

Если в ходе выполнения установки на платформах IBM System z были обнаружены неотформатированные DASD-устройства (Direct Access Storage Device), они будут автоматически отформатированы с помощью dasdfmt. Эта команда подавляет запросы подтверждения пользователя в ходе интерактивной установки.

Если параметр zerombr не задан, и программа установки обнаружила неотформатированное DASD-устройство, кикстарт-установка завершится неудачей.

Если он не указан, и программа установки обнаружила хотя бы одно неформатированное DASD-устройство, но пользователь не подтвердил форматирование дисков, интерактивная установка завершит работу. Чтобы это предотвратить, следует подключать только те диски, которые будут использоваться в процессе установки. Остальные устройства можно будет добавить позднее.

zfcp (дополнительный)

Применимо к IBM System z и определяет FC-устройство (Fibre Channel).

zfcp --devnum=номер --wwpn=wwpn --fcplun=lun

- --devnum — номер устройства (идентификатор шины адаптера zFCP).
- --wwpn — шестнадцатеричный номер WWPN (World Wide Port Name) с префиксом 0x.
- --fcplun — шестнадцатеричный номер LUN (Logical Unit Number) с префиксом 0x.

Например:

zfcp --devnum=0.0.4000 --wwpn=0x5005076300C213e9 --fcplun=0x5022000000000000

%include (дополнительный)

%include /путь/к/файлу поможет включить содержимое другого файла в файл кикстарта.

23.3.3. Выбор пакетов

Команда packages отмечает начало секции устанавливаемых пакетов.

В этой секции можно указать отдельный пакет, группу или целое окружение. Список групп и окружений можно найти в файле repodata/*-comps-вариант.архитектура.xml на Red Hat Enterprise Linux 7 DVD.

В *-comps-вариант.архитектура.xml окружения отмечены тегом <environment>, а группы — тегом <group>. Каждая запись имеет свой идентификатор, признак отображения для пользователей, название, описание и список пакетов. Пакеты, отмеченные в как обязательные (mandatory), будут всегда устанавливаться при установке группы, пакеты default автоматически выбираются при выборе группы, а пакеты optional должны быть заданы явно.

Группы и окружения можно выбрать по имени (тег <name>) и идентификатору (тег <id>).
Важно

Чтобы установить 32-битный пакет в 64-битной системе, необходимо указать его имя и архитектуру, например glibc.i686. Также потребуется добавить параметр --multilib.

Важно

Если в процессе установки не была установлена X Window System и не включены возможности графической авторизации, то после перезагрузки этап первоначальной настройки будет пропущен, и только пользователь root сможет авторизоваться в системе. Чтобы создать другие учетные записи, то прежде чем приступить к установке других систем, добавьте параметр user в файл кикстарта (см. Раздел 23.3.2, «Команды и параметры») или авторизуйтесь как root в виртуальной консоли и добавьте пользователей вручную с помощью adduser.

Секция %packages должна завершаться директивой %end.

Выбор окружения

Секция %packages может содержать не только пакеты, но и целые окружения.

```
%packages
@^Infrastructure Server
%end
```

Этот фрагмент установит окружение Infrastructure Server. Список доступных окружений можно найти в файле repodata/*-comps-вариант.архитектура.xml на установочном диске Red Hat Enterprise Linux 7. Файл кикстарта должен содержать только одно окружение.

Выбор групп

В каждой строке определяется по одной группе, начиная со знака @. Имена групп должны соответствовать записям в файле *-comps-вариант.архитектура.xml.

```
%packages
@X Window System
@Desktop
@Sound and Video
%end
```

Основные группы пакетов будут выбраны по умолчанию, поэтому их не надо указывать в разделе %packages.

Файл *-comps-вариант.архитектура.xml также содержит определения групп Conflicts для всех вариантов Red Hat Enterprise Linux. Как и следует из названия, эта группа включает пакеты, которые могут вызвать конфликты.

Выбор отдельных пакетов

Отдельные пакеты вводятся по одному в строке. Допускается использование шаблонов (*), например:
%%packages
sqlite
curl
aspell
docbook*

%%end

Так, запись docbook* охватывает пакеты docbook-dtds, docbook-simple, docbook-slides и т.п.

Исключение окружений, групп и пакетов

Добавление дефиса перед именем пакетов и групп исключает их из списка установки:

%%packages
-@Graphical Internet
-autofs
-ipa*fonts
%%end

Важно

Использование шаблона * для обозначения всех файлов в файле кикстарта не допускается, даже при условии исключения группы @Conflicts (вариант).

Поведение секции %packages можно контролировать с помощью параметров.

Общие параметры выбора пакетов

Ниже перечислены параметры секции %packages. Параметры добавляются в конец заголовка секции, например:

%packages --multilib --ignoremissing

--nобase
Не устанавливает группу @Base. Используется, если целью является создание компактной системы.

--ignoremissing
Игнорирует недостающие пакеты вместо того, чтобы приостановить установку и ожидать подтверждения продолжения.

--excludedocs
Исключает документацию пакетов. В большинстве случаев это означает исключение файлов из /usr/share/doc*.

--multilib
Разрешает установку 32-битных пакетов в 64-битных системах.
Обычно на платформах AMD64 и Intel 64 по умолчанию устанавливаются пакеты, предназначенные для заданной архитектуры (например, x86_64) и стандартные пакеты (noarch). Этот параметр разрешает установку 32-битных пакетов (i686).

Этот подход применим только к пакетам в секции %packages. Если же пакет участвует в решении зависимостей, будет установлена только необходимая версия.

Параметры для отдельных групп

Чтобы определить параметры для конкретной группы пакетов, надо добавить их после названия группы.

```
%packages
@Graphical Internet --optional
%end
```

--nodefaults

Устанавливает только обязательные пакеты, а не стандартный набор.

--optional

Установка дополнительных пакетов группы согласно списку в *-comps-вариант.архитектура.xml.

23.3.4. Сценарий %pre

В секции %pre определяются команды, которые будут выполняться сразу после обработки файла кикстарта, но до начала установки (см. Раздел 23.3.2, «Команды и параметры»). Эта секция должна располагаться ближе к концу файла, начинаться с директивы %pre и заканчиваться директивой %end. Порядок секций %pre и %post не имеет значения.

В этой секции можно обращаться к сети, но так как на этом этапе служба имен еще не настроена, следует использовать IP-адреса.

В секции %pre нельзя работать с разными установочными структурами. Чтобы обойти это ограничение, надо будет создать новый файл кикстарта.

Примечание

Сценарий %pre не выполняется в окружении chroot в отличие от %post.

Ниже перечислены параметры %pre. Они добавляются в конец заголовка секции:

```
%pre --interpreter=/usr/bin/python
--- Python script omitted --
%end
```

--interpreter=

Язык сценариев, например /usr/bin/sh, /usr/bin/bash или /usr/bin/python.

--erroronfail

При сбое сценария показывает сообщение об ошибке и прерывает установку.

--log=

Вывод сообщений сценария в заданный файл:

```
%post --log=/mnt/sysimage/root/ks-pre.log
```

Ниже приведен пример предустановочного сценария.

Пример 23.3. Сценарий %pre

```bash
%pre
#!/bin/sh
hds=""
mymedia=""
for file in /proc/ide/h* do
    mymedia=`cat $file/media`
    if [ $mymedia == "disk" ] ; then
        hds="$hds `basename $file`"
    fi
done
set $hds
numhd=`echo $#`
drive1=`echo $hds | cut -d' ' -1`
drive2=`echo $hds | cut -d' ' -2`

#Write out partition scheme based on whether there are 1 or 2 hard drives
if [ $numhd == "2" ] ; then
    #2 drives
    echo "#partitioning scheme generated in %pre for 2 drives" > /tmp/part-
    include
    echo "clearpart --all" >> /tmp/part-include
    echo "part /boot --fstype xfs --size 75 --ondisk hda" >> /tmp/part-
    include
    echo "part / --fstype xfs --size 1 --grow --ondisk hda" >> /tmp/part-
    include
    echo "part swap --recommended --ondisk $drive1" >> /tmp/part-include
    echo "part /home --fstype xfs --size 1 --grow --ondisk hdb" >> /tmp/part-
    include
else
    #1 drive
    echo "#partitioning scheme generated in %pre for 1 drive" > /tmp/part-
    include
    echo "clearpart --all" >> /tmp/part-include
    echo "part /boot --fstype xfs --size 75" >> /tmp/part-include
    echo "part swap --recommended" >> /tmp/part-include
    echo "part / --fstype xfs --size 2048" >> /tmp/part-include
    echo "part /home --fstype xfs --size 2048 --grow" >> /tmp/part-include
fi
%end
```

Этот сценарий определяет число жестких дисков и создает текстовый файл с командами создания разделов, который в дальнейшем можно включить в файл кикстарта.
Эта команда включит команды создания разделов из файла /tmp/part-include.

23.3.5. Сценарий %post

В секции %post определяются команды, которые будут выполняться после установки, но до перезагрузки системы. Эта секция должна располагаться после секции команд (см. Раздел 23.3.2, "Команды и параметры") ближе к концу файла, начинаться с директивы %post и заканчиваться директивой %end. Порядок секций %pre и %post не имеет значения.

В этой секции можно установить дополнительные программы или настроить сервер имен. Сценарий %post выполняется в окружении chroot, поэтому некоторые задачи (такие как копирование сценариев и пакетов с установочных носителей) выполнить не удается. Это поведение можно изменить с помощью --nochroot.

Важно

Если вы используете статическую настройку IP, в секции %post можно обращаться к сети с разрешением IP-адресов. Если же используется DHCP, файл /etc/resolv.conf еще не будет сформирован к моменту обработки %post, поэтому при обращении к сети надо использовать IP-адреса.

Ниже перечислены параметры %post. Параметры добавляются в конец заголовка секции:

```
%post --interpreter=/usr/bin/python
--- сценарий Python ---
%end
```

Определяет язык сценариев, например Python.

```
%post --interpreter=/usr/bin/python
```

Здесь можно указать любой установленный язык, например /usr/bin/sh, /usr/bin/bash или /usr/bin/python.

```
--nochroot
```

Позволяет определить команды для выполнения вне окружения chroot.

```
%post --nochroot
cp /etc/resolv.conf /mnt/sysimage/etc/resolv.conf
%end
```

Ошибка при выполнении

```
--erroronfail
```
При сбое сценария показывает сообщение об ошибке и прерывает установку.

|--log=

Сохраняет протокол выполнения сценария в файл. Путь должен учитывать наличие --nochroot. Пример без --nochroot:

```bash
%post --log=/root/ks-post.log
```

Пример с --nochroot:

```bash
%post --nochroot --log=/mnt/sysimage/root/ks-post.log
```

Ниже приведен пример постустановочного сценария.

Пример 23.4. Сценарий %post

```bash
# Начало секции %post. Журнал в /root/ks-post.log
%post --log=/root/ks-post.log

# Монтирование NFS-ресурса
mkdir /mnt/temp
mount -o nolock 10.10.0.2:/usr/new-machines /mnt/temp
openvt -s -w -- /mnt/temp/runme
umount /mnt/temp

# Конец секции %post
%end
```

В этом примере будет подключен внешний NFS-ресурс и запущен сценарий runme из /usr/new-machines/. Аргумент -o nolock в этом случае является обязательным, так как NFS-блокирование файлов в режиме кикстарта не поддерживается.

Постустановочный сценарий, в частности, поможет зарегистрировать систему при помощи менеджера подписок Red Hat.

Пример 23.5. Регистрация системы в секции %post

```bash
%post --log=/root/ks-post.log
/usr/sbin/subscription-manager register --username=admin@example.com --password=secret --serverurl=sam-server.example.com --org="Admin Group" --environment="Dev" --servicelevel=standard --release="7.0"
%end
```

subscription-manager зарегистрирует систему (в Subscription Asset Manager, CloudForms System Engine и на портале пользователей). С его помощью также можно подобрать подходящие подписки.

При регистрации на портале пользователей надо будет ввести имя пользователя и пароль доступа к Red Hat Network, в то время как для доступа к Subscription Asset Manager и CloudForms System Engine потребуется имя и пароль пользователя, созданного локальным администратором.
Дополнительно можно определить предпочтительный уровень обслуживания и ограничить получение обновлений версией операционной системы.

23.4. Примеры конфигурации

23.4.1. Сложное разбиение

Ниже показан комплексный пример, демонстрирующий команды clearpart, zerombr, part, raid, volgroup и logvol в действии:

Пример 23.6. Сложное разбиение

```bash
# Raд 1 IDE
part raid.11 --size 1000 --asprimary --ondrive=hda
part raid.12 --size 1000 --asprimary --ondrive=hda
part raid.13 --size 2000 --asprimary --ondrive=hda
part raid.14 --size 8000 --ondrive=hda
part raid.15 --size 16384 --grow --ondrive=hda
part raid.21 --size 1000 --asprimary --ondrive=hdc
part raid.22 --size 1000 --asprimary --ondrive=hdc
part raid.23 --size 2000 --asprimary --ondrive=hdc
part raid.24 --size 8000 --ondrive=hdc
part raid.25 --size 16384 --grow --ondrive=hdc

# Можно добавить --spares=x
raid / --fstype xfs --device root --level=RAID1 raid.11 raid.21
raid /safe --fstype xfs --device safe --level=RAID1 raid.12 raid.22
raid swap --fstype swap --device swap --level=RAID1 raid.13 raid.23
raid /usr --fstype xfs --device usr --level=RAID1 raid.14 raid.24
raid pv.01 --fstype xfs --device pv.01 --level=RAID1 raid.15 raid.25

# Настройка LVM, включая возможность изменения размера /var и /usr/local
volgroup sysvg pv.01
logvol /var --vname=sysvg --size=8000 --name=var
logvol /var/freespace --vname=sysvg --size=8000 --name=freespacetouse
logvol /usr/local --vname=sysvg --size=1 --grow --name=usrlocal
```

Этот пример демонстрирует создание логических томов поверх RAID и прочие возможности, позволяющие увеличить размер каталогов в будущем.

Сначала clearpart очистит диски hda и hdc, а zerombr инициализирует пустые таблицы разделов.

Затем на будут созданы разделы — по пять разделов на каждом диске.

После этого на основе пар разделов с обоих дисков будут созданы зеркальные массивы RAID1. На первом RAID-устройстве будет размещен корневой раздел /, на втором — /safe, на третьем — swap, на четвертом — /usr. На основе самого большого — пятого раздела pv.01 — будет создан физический том для LVM.
Последние команды создают группу томов `sysvg` на `pv.01`, в которой будут созданы три логических тома — `/var` и `/var/freespace` размером 8 ГБ, а также `/usr/local` с параметром `--grow`, который займет все оставшееся место.
Глава 24. Создание установочного образа

В этой главе обсуждаются методы создания загрузочных образов. Ручной метод напоминает обычную установку операционной системы, а автоматический — использует `livemedia-creator` и заранее подготовленный файл кикстарта.

Ручной подход позволяет установить Red Hat Enterprise Linux в графическом режиме аналогично привычному выполнению установки с загрузочного носителя в заранее подготовленный пустой образ.

Автоматический метод напоминает сетевую кикстарт-установку. `Livemedia-creator` автоматически создаст файл дискового образа с учетом параметров в файле кикстарта.

Оба подхода требуют наличия доступа к отдельному источнику установки — обычно ISO DVD Red Hat Enterprise Linux (см. Глава 1, Загрузка файлов Red Hat Enterprise Linux).

<table>
<thead>
<tr>
<th>Важно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Прежде чем приступить к установке с ISO Red Hat Enterprise Linux, как и при установке с других носителей, надо будет настроить источник установки (см. Раздел 2.3, «Подготовка источника установки»).</td>
</tr>
</tbody>
</table>

24.1. Создание образа вручную

Ручной метод создания установочного образа заключается в запуске `Anaconda` в существующей системе с выполнением установки в дисковый образ. Поведение процесса можно контролировать с помощью параметров (см. `anaconda` -h).

<table>
<thead>
<tr>
<th>Предупреждение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Такой способ создания образов предполагает определенный риск в силу использования не специально созданной виртуальной машины, а программы установки физической системы. Поведение этого процесса может быть непредсказуемым, поэтому во избежание потери данных в рабочей системе для этой цели следует создать виртуальную машину.</td>
</tr>
</tbody>
</table>

В этой секции рассказывается о создании пустых дисковых образов с последующей установкой Red Hat Enterprise Linux.

24.1.1. Создание пустого образа

Сначала надо подготовить файлы образов, в которые впоследствии будет установлена операционная система. В Red Hat Enterprise Linux команда создания файла образа выглядит так:

```
$ fallocate -l size name
```

Введите размер с указанием единиц (например, 10G или 5900M). Так, чтобы создать файл `myimage.raw` размером 30 гигабайт, выполните:

```
$ fallocate -l 30G myimage.raw
```
Примечание

Подробную информацию о формате команды можно найти на справочной странице fallocate(1).

Размер файла накладывает ограничения на размер разделов, которые будут созданы в ходе установки. Так, размер образа не должен быть меньше 3 гигабай, но в зависимости от индивидуальных требований — числа пакетов, размера пространства подкачки и пространства данных — может требовать больше места. Информацию о разделах можно найти в следующих секциях:

- Раздел 6.10.4.5, «Рекомендуемая схема разбиения» (AMD64 и Intel 64);
- Раздел 11.10.4.5, «Рекомендуемая схема разбиения» (IBM Power Systems);
- Раздел 15.10.3.5, «Рекомендуемая схема разбиения» (IBM System z).

После создания пустого образа можно приступить установке (см. Раздел 24.1.2, «Добавление Red Hat Enterprise Linux»).

24.1.2. Добавление Red Hat Enterprise Linux

Важно

Прежде чем приступить, убедитесь, что SELinux работает в режиме предупреждений или отключен (см. руководство по SELinux в Red Hat Enterprise Linux 7).

Чтобы начать установку, в режиме root выполните:

```
# anaconda --image=/path/to/image/file
```

Укажите полный путь к ранее созданному файлу.

Эта команда запустит Anaconda и начнет интерактивную установку аналогично тому, как это делается при запуске процесса с установочного носителя Red Hat Enterprise Linux, но в обход меню загрузки. Параметры загрузки должны передаваться в строке команды anaconda (см. anaconda -h).

Параметр --repo= позволяет определить источник установки. Его формат аналогичен inst.repo= (см. Раздел 20.1, «Настройка системы установки в меню загрузки»).

--image= определяет файл образа. Чтобы создать несколько образов, укажите параметр повторно:

```
# anaconda --image=/home/testuser/diskinstall/image1.raw --image=/home/testuser/diskinstall/image2.raw
```

Перечисленные образы будут показаны в окне выбора места установки.

По желанию образам можно присвоить произвольные имена. Для этого после имени файла добавьте :имя. Так, в приведенном примере образ /home/testuser/diskinstall/image1.raw будст обозначен как myimage:

```
# anaconda --image=/home/testuser/diskinstall/image1.raw:myimage
```
24.2. Автоматическое создание образа

Livemedia-creator автоматизирует процесс создания установочного образа. Для этого потребуется установленная система Red Hat Enterprise Linux и заранее подготовленный файл кикстарта (см. Глава 23, Кикстарт-установка).

24.2.1. Livemedia-creator

Процесс создания установочного образа в livemedia-creator включает два этапа: сначала создается временный образ дистрибутива Red Hat Enterprise Linux в соответствии с настройками в файле кикстарта, затем livemedia-creator создает загрузочный образ, с которого можно запустить установку.

Стандартное поведение можно корректировать с помощью дополнительных параметров — например, ограничиться только созданием файла образа или, наоборот, пропустить первый этап и сразу перейти к записи готового образа.

Важно

В настоящее время создание пользовательских образов в livemedia-creator поддерживается только на платформах MD64 и Intel 64 (x86_64).

Red Hat официально поддерживает только создание образов Red Hat Enterprise Linux 7. При необходимости можно создать образы предыдущих версий, но их работоспособность не гарантируется.

Раздел 24.2.4, «Примеры создания образов» содержит пример создания образа с помощью livemedia-creator. Если в системе установлен пакет lorax, дополнительную информацию можно найти на справочной странице livemedia-creator(1) и в файле README.livemedia-creator в каталоге /usr/share/doc/lorax-версия/ (где версия — номер версии пакета lorax). Для просмотра доступных параметров выполните livemedia-creator --help.

24.2.2. Установка livemedia-creator

Livemedia-creator входит в состав пакета lorax. Чтобы его установить, выполните в режиме root:

```
# yum install lorax
```

Помимо lorax надо будет установить несколько других пакетов. Они не помогают решить зависимости lorax и не устанавливаются автоматически, поэтому их надо будет установить отдельно:

- `virt-install` — предоставляет инструменты для создания виртуальных машин. Используется, если не задан параметр `--no-virt`.
- `libvirt`, `qemu-kvm`, `virsh` и другие средства виртуализации — необходимы для нормальной работы `virt-install`. Более подробно о виртуализации рассказывается в руководстве по виртуализации Red Hat Enterprise Linux 7.
- `anaconda` — если задан параметр `--no-virt`, на первом этапе создания установочного образа используется программа установки Red Hat Enterprise Linux.
Обсуждение других приложений выходит за рамки этого руководства. Если при запуске `livemedia-creator` оказалось, что необходимый пакет не установлен, будет показано сообщение со списком обязательных пакетов.

24.2.3. Образцы файла кикстарта

Установочный образ создается с учетом параметров в файле кикстарта. При установке пакета `lorax` в каталог `/usr/share/doc/lorax-версия/` будут установлены шаблоны, на основе которых можно создать собственный файл.

Образы:

- `rhe17-minimal.ks` — минимальная конфигурация без графического окружения, включающая группу `@core`, ядро, GRUB2 и другие необходимые компоненты. Будет создан только пользователь `root`.

- `rhe17-livemedia.ks` — комплект с графическим окружением. Будут созданы пользователи `root` и `liveuser`.

На основе этих шаблонов можно создать свой файл кикстарта. При этом как минимум надо будет изменить расположение источника установки — откройте файл в текстовом редакторе (например, `vim`) и откорректируйте строку `url`.

Важно

Не изменяйте исходный шаблон. Скопируйте его в другой каталог и используйте копию как рабочий вариант.

Примечание

Команда `url` должна содержать ссылки на официальные репозитории Red Hat. Работоспособность файла при добавлении других репозиториев не гарантирована.

24.2.4. Примеры создания образов

В этой секции рассматриваются наиболее распространенные примеры использования `livemedia-creator`. Полный список параметров можно просмотреть на справочной странице `livemedia-creator(1)` или выполнив `livemedia-creator(1)`.

24.2.4.1. Создание Live-образа с помощью `virt-install`

`Livemedia-creator` использует `virt-install` для создания временной виртуальной машины, где будет запущен процесс создания образа. Для создания Live-образа потребуется файл кикстарта и загрузочный ISO-образ с программой `Anaconda` (см. Раздел 2.2, «Создание установочного USB-носителя»).

Для создания Live-образа с помощью `virt-install` надо выполнить команду:

```bash
# livemedia-creator --make-iso --iso=/path/to/boot.iso --ks=/path/to/valid/kickstart.ks
```
Укажите действительные пути к минимальному загрузочному образу и файлу кикстарта.

Дополнительные параметры:

- **--vnc vnc** — передается параметру virt-install --graphics и позволяет наблюдать за процессом установки, подключившись из клиента VNC, например TigerVNC (см. Глава 22, Установка с помощью VNC).

- **--ram x** — размер ОЗУ виртуальной машины в мегабайтах.

- **--vcpus x** — число процессоров виртуальной машины.

24.2.4.2. Создание Live-образа с помощью Anaconda

Anaconda предлагает собственные инструменты для создания Live-образов. Процесс состоит из двух этапов: сначала создается временный образ диска с установкой дистрибутива Red Hat Enterprise Linux, затем на его основе создается загрузочный ISO-образ.

Предупреждение

Такой способ создания образа предполагает определенный риск в силу использования не специально созданной виртуальной машины, а программы установки физической системы. Поведение этого процесса может оказаться непредсказуемым, поэтому во избежание потери данных в рабочей системе для этой цели следует создать виртуальную машину и там создать образ, выполнив `livemedia-creator` с параметром **--no-virt**.

Важно

Прежде чем приступить, убедитесь, что SELinux работает в режиме предупреждений или отключен (см. руководство по SELinux в Red Hat Enterprise Linux 7).

Для создания установочного образа с помощью Anaconda используется параметр **--no-virt**:

```
# livemedia-creator --make-iso --ks=/path/to/valid/kickstart.ks --no-virt
```

24.2.4.3. Создание файла образа

С помощью `livemedia-creator` можно завершить первый этап, создав файл образа. Программа остановится после создания файла на временном диске или в локальной файловой системе. Полученный образ можно смонтировать, чтобы убедиться в отсутствии ошибок.

Существует несколько способов остановки процесса после первого этапа. Например, это можно сделать с помощью аргумента **--image-only**:

```
# livemedia-creator --make-iso --ks=/path/to/valid/kickstart ks --image-only
```

Или использовать **--make-disk** вместо **--make-iso**:

```
# livemedia-creator --make-disk --ks=/path/to/valid/kickstart.ks --iso=/path/to/boot.iso
```
Наконец, `--make-fsimage` позволит создать локальный образ:

```
# livemedia-creator --make-fsimage --ks=/path/to/valid/kickstart.ks --iso=/path/to/boot.iso
```

Примечание

Все перечисленные выше команды принимают аргумент `--no-virt`

По умолчанию образ будет сохранен в `/var/tmp/`. Чтобы изменить путь, добавьте параметр `--tmp /путь/`.

24.2.4.4. Создание загрузочного ISO

С помощью `livemedia-creator` можно создать загрузочный ISO, взяв за основу подготовленный образ (см. Раздел 24.2.4.3, «Создание файла образа»).

Для создания ISO-файла из дискового образа служит параметр `--disk-image`:

```
# livemedia-creator --make-iso --disk-image=/path/to/disk/image.img
```

Для создания ISO-файла из образа в файловой системе служит параметр `--fs-image`:

```
# livemedia-creator --make-iso --fs-image=/path/to/filesystem/image.img
```

24.2.4.5. Создание образа виртуальной машины

`Livemedia-creator --make-appliance` создаст образ виртуальной машины (образ диска с готовой схемой разделов) из шаблона и XML-файл с описанием.

```
# livemedia-creator --make-appliance --ks=/path/to/valid/kickstart.ks --iso=/path/to/boot.iso
```

Созданные файлы по умолчанию будут помещены в `/var/tmp/`. Этот путь можно переопределить при помощи параметра `--resultdir`.

Дополнительные параметры:

- `--app-name имя` — имя образа. В XML-файле имя будет отмечено тегом `<name>`. По умолчанию равно `None`.
- `--app-file /путь/к/file.xml` — путь к файлу XML. По умолчанию используется `appliance.xml`.

24.2.4.6. Создание образа машины Amazon
Чтобы создать AMI (Amazon Machine Image) для Amazon EC2 (Elastic Compute Cloud), используйте параметр `--make-ami`.

```
# livemedia-creator --make-ami --ks=/path/to/valid/kickstart.ks --iso=/path/to/boot.iso
```

По умолчанию созданный файл `ami-root.img` будет сохранен в `/var/tmp/`. Путь можно переопределить при помощи параметра `--resultdir`.

24.2.4.7. Дополнительные параметры

Далее перечислены дополнительные параметры, которые могут использоваться в разобранных выше примерах.

- `--keep-image` — отменяет удаление временного образа, созданного на первом этапе установки. Файл образа со случайным именем наподобие `diskgU42Cq.img` по умолчанию хранится в каталоге `/var/tmp/`.

- `--image-only` — останавливает процесс после первого этапа, в ходе которого будет создан временный образ. Это позволит значительно сэкономить время при тестировании изменений в файле кикстарта, полностью отменив продолжительный второй этап.

- `--image-name имя` — имя временного образа. По умолчанию будет выбрано случайным образом (например, `disk1Fac8G.img`).

- `--tmp /путь/` — путь к временному каталогу. По умолчанию образ будет сохранен в `/var/tmp/`. Необходимо указать путь к существующему каталогу.

- `--resultdir /путь/` — путь к новому каталогу, где будет располагаться полученный ISO-образ. По умолчанию файл будет сохранен в `/var/tmp/`. Этот параметр не оказывает влияния на расположение временного образа — для этой цели служит `--tmp`.

- `--logfile /путь/` — расположение журнала.

24.2.5. Диагностика livemedia-creator

В этой секции обсуждаются проблемы, с которыми может столкнуться пользователь в ходе работы `livemedia-creator`. Если решение здесь не приведено, проверьте журналы, которые создаются в том же каталоге, откуда была запущена программа, или в каталоге, заданном с помощью `--logfile`. Одни журналы, такие как `livemedia.log` и `program.log`, создаются каждый раз, другие определяются параметрами команды — например, при добавлении `--no-virt` файл `virt-install.log` не создается, а журналы будут располагаться в каталоге `anaconda/`.

Параметр `--image-only` может помочь при поиске ошибок, остановив процесс после первого этапа, в ходе которого будет создан временный образ. Полученный образ можно смонтировать и проверить его содержимое. При запуске команды с параметром `--keep-image` будут завершены оба этапа, но временный образ не будет удаляться.

`--vnc` позволяет подключиться к виртуальной машине и наблюдать за процессом установки (см. Глава 22, Установка с помощью VNC).

24.2.5.1. Установка виртуальной машины заволяс
Если процесс установки виртуальной машины завис по какой-то причине, `livemedia-creator` не сможет продолжить работу. В этой ситуации можно принудительно прервать работу программы или остановить виртуальную машину. После остановки гостевой системы `livemedia-creator` удалит временные файлы и продолжит выполнение.

Ниже рассматривается порядок остановки виртуальной машины.

Продцедура 24.1. Остановка временной виртуальной машины

1. Выполните команду `virsh` для просмотра списка виртуальных машин.

   ```
   # virsh list --all
   Id   Name               State
   ------------------------------
   93   LiveOS-2a198971-ba97-454e-a056-799f453e1bd7 running - RHEL7 shut off
   ```

 Имя временной виртуальной машины начинается с `LiveOS`.

2. Чтобы остановить машину, выполните `virsh destroy имя`.

   ```
   # virsh destroy LiveOS-2a198971-ba97-454e-a056-799f453e1bd7
   Domain LiveOS-2a198971-ba97-454e-a056-799f453e1bd7 destroyed
   ```

24.2.5.2. Установка виртуальной машины прервалась

Если процесс установки прервался на первой стадии из-за сбоя оборудования, отключения питания или по запросу пользователя, прежде чем начать его заново, надо удалить временный образ и виртуальную машину.

Последовательность действий можно корректировать в зависимости от ситуации. Например, при восстановлении после системного сбоя виртуальную машину не требуется останавливать — надо лишь удалить ее определение, а шаги 4-5 необходимы только для очистки временных файлов `livemedia-creator`.

Продцедура 24.2. Удаление временных образов и виртуальных машин

1. Выполните команду `virsh` для просмотра списка виртуальных машин.

   ```
   # virsh list --all
   Id   Name               State
   ------------------------------
   93   LiveOS-2a198971-ba97-454e-a056-799f453e1bd7 running - RHEL7 shut off
   ```

 Имя временной виртуальной машины начинается с `LiveOS`.

2. Чтобы остановить машину, выполните `virsh destroy имя`.

   ```
   # virsh destroy LiveOS-2a198971-ba97-454e-a056-799f453e1bd7
   Domain LiveOS-2a198971-ba97-454e-a056-799f453e1bd7 destroyed
   ```

3. `virsh undefine имя` удаляет временную виртуальную машину.

   ```
   # virsh undefine LiveOS-2a198971-ba97-454e-a056-799f453e1bd7
   Domain LiveOS-2a198971-ba97-454e-a056-799f453e1bd7 has been undefined
   ```
4. Найдите точное место монтирования временной файловой системы. Обычно она подключается в `/var/tmp/lorax.imgutils` (с шестью случайными знаками в конце строки).

```bash
# findmnt -T /var/tmp/lorax.imgutils* TARGET SOURCE FSTYPE OPTIONS
/var/tmp/lorax.imgutils.bg6iPJ /dev/loop1 iso9660 ro,relatime
```

Отключите файловую систему:

```bash
# umount /var/tmp/lorax.imgutils.bg6iPJ
```

5. Определите точное имя временного образа в `/var/tmp`. Имя файла будет показано в начале процесса установки, по умолчанию генерируется случайным образом, но может быть изменено с помощью `--image-name`.

В этом примере временный образ расположен в `/var/tmp/diskQBkzRz.img`.

Если исходные сообщения не удалось найти, выведите список файлов в `/var/tmp`, имена которых содержат слово `disk`:

```bash
# ls /var/tmp/ | grep disk diskQBkzRz.img
```

Удалите найденный образ:

```bash
# rm -f /var/tmp/diskQBkzRz.img
```

После этого можно заново запустить установку с помощью `virt-install`.

24.2.5.3. Ошибка установки при наличии --no-virt

При сбое процесса установки, запущенного с параметром `--no-virt`, надо выполнить сценарий `anaconda-clean` (устанавливается в составе пакета `anaconda` и расположен в `/usr/bin/`).

Выполните сценарий в режиме root:

```bash
# anaconda-clean
```
Глава 25. Обновление системы

Обновление существующей установки проводится в два этапа:

- **Ассистент подготовки к обновлению**, который анализирует состояние системы и оценивает потенциальные риски.

- **Утилита обновления Red Hat**, которая, собственно, обновляет Red Hat Enterprise Linux 6 до версии 7.

Подробную информацию можно найти по адресу https://access.redhat.com/site/solutions/637583.
Часть V. После установки

В этой части руководства обсуждаются вопросы, которые могут возникнуть после установки. Они включают:

- регистрация системы в службе управления подписками Red Hat;
- восстановление Red Hat Enterprise Linux с помощью установочного диска;
- удаление Red Hat Enterprise Linux.
Глава 26. Первая настройка и Firstboot

Важно

Программы первой настройки и Firstboot будут доступны только при наличии установленной среды X Window System.

26.1. Первая настройка

При первом запуске Red Hat Enterprise Linux будет предложено выполнить первую настройку — ознакомиться с условиями лицензионного соглашения, а также создать и настроить учетную запись root (если она не была создана в ходе установки).

Рисунок 26.1. Окно первой настройки

В окне Лицензионная информация приведен текст лицензионного соглашения Red Hat Enterprise Linux.
Рисунок 26.2. Лицензионная информация

Для продолжения необходимо принять условия соглашения. Если вы не согласитесь и закроете программу первой настройки, система будет перезагружена, и вам будет предложено опять ознакомиться с лицензией.

Прочтите текст соглашения, установите флажок Я принимаю лицензионное соглашение и нажмите Готово.

Окно создания пользователя идентично одноименному окну, с которым вы уже сталкивались в процессе установки (см. Раздел 6.13.2, «Создание пользователя»).

Нажмите Завершить, чтобы перейти к этапу Firstboot.
Рисунок 26.3. Настройка завершена

26.2. Firstboot

Firstboot запускается после программы первой настройки. С его помощью можно настроить Kdump и службы подписки.

26.2.1. Kdump

Здесь можно настроить механизм Kdump, который позволяет создать снимок состояния системы в случае сбоя. Обычно используется для диагностики.

Для нормальной работы Kdump необходимо выделить память для его эксклюзивного использования.

Установите флажок Включить kdump, выберите объем памяти для выделения Kdump и нажмите кнопку продолжения.
26.2.2. Настройка подписок

Служба подписок предоставляет обновления и исправления для установленных программ и операционной системы в соответствии с выделенными системе подписками. Red Hat поддерживает несколько служб подписок, которые можно выбрать на стадии **Firstboot**:

- Управление подписками на портале пользователей (по умолчанию).
- Менеджер активов подписок (SAM, Subscription Asset Manager) позволяет управлять подписками на месте, выступая в роли посредника между организацией и порталом пользователей.
- CloudForms System Engine предлагает гибкие средства управления подписками и доставки контента.

Примечание

Для выделения системе подписок необходимо подключение к сети.

Можно не выбирать конкретный тип службы, так как все они являются элементами инфраструктуры управления подписками Red Hat и используют аналогичные типы API. Однако потребуется указать имя хоста соответствующей службы, а также имя пользователя и пароль для авторизации.

В окнах регистрации можно выбрать службу и стандартный набор подписок.

Рисунок 26.5. Регистрация для получения обновлений

Примечание
Если вы пропустили регистрацию системы на стадии Firstboot, это можно будет сделать позднее в любое удобное для вас время. Управление подписками Red Hat и руководство пользователя Red Hat Satellite содержат дальнейшую информацию.

Процедура 26.1. Регистрация системы

1. Поле имени узла определяет тип службы подписок. Так, для портала пользователей введите subscription.rhn.redhat.com, а для менеджера управления подписками — имя локального сервера.

Рисунок 26.6. Выбор службы подписок
Нажмите кнопку **Готово**.

2. Введите имя и пароль для авторизации в выбранной службе подписок.

![Subscription Management Registration](image)

Рисунок 26.7. Регистрация системы

Важно

Реквизиты доступа отличаются в зависимости от выбранной службы. Так, для регистрации на портале пользователей введите имя администратора Red Hat Network.

Для менеджера комплектов подписок и CloudForms System Engine, скорее всего, будет использоваться другая, отдельно созданная учетная запись.

Если вы забыли имя пользователя или пароль на портале, перейдите на https://www.redhat.com/wapps/sso/rhn/lostPassword.html для их восстановления, в то время как для восстановления доступа к менеджеру комплектов подписок и CloudForms System Engine потребуется обратиться к локальному администратору.

3. Введите имя системы. Оно должно быть уникальным и однозначно идентифицировать систему в каталоге службы подписок. Обычно это имя хоста или полное имя домена.

Дополнительно можно установить флажок ручного выбора подписок. По умолчанию флажок не установлен, то есть подписки будут выбираться автоматически, но даже в этой ситуации позднее можно будет добавить другие подписки с помощью менеджера подписок.

Нажмите **Готово**, чтобы начать процесс регистрации.

4. Порядок регистрации:

 - **Firstboot** выполнит поиск организаций и окружений (поддоменов организации), в которых можно зарегистрировать систему. Если обнаружено несколько организаций, будет предложено выбрать одну из них.

 - Если разрешен автоматический выбор подписок, на этом этапе они будут подобраны.
5. После успешной регистрации менеджер подписок сообщит уровень обслуживания системы и выбранные подписки. Пользователь должен будет подтвердить выбор.

Рисунок 26.8. Подтверждение подписок

6. Нажмите Готово, чтобы закрыть Firstboot и перейти к окну входа в систему.
Глава 27. Дальнейшие действия

В этой главе перечислены наиболее распространенные действия по администрированию установленной системы.

Восстановление пароля root

Пароль root необходим для установки программ, изменения конфигурации системы и выполнения прочих административных задач. Если вы забыли пароль root, его можно восстановить (см. Раздел 28.1.3, «Восстановление пароля root»).

Установка обновлений драйверов

Ядро Red Hat Enterprise Linux по умолчанию включает поддержку драйверов большинства известных устройств. Тем не менее, если оборудование было выпущено совсем недавно, не исключено, что его драйверы еще не поддерживаются. В такой ситуации драйверы могут предоставляться в виде обновлений.

Если в ходе установки используется устройство без последних драйверов, надо будет предоставить доступ к их обновлениям до начала установки. За информацией об установке драйверов с помощью RPM и Yum обратитесь к руководству системного администратора Red Hat Enterprise Linux 7.

Настройка сети

Сетевое подключение настраивается в файле кикстарта (см. Глава 23, Кикстарт-установка) или непосредственно во время установки (см. Раздел 11.8, «Сеть и имя узла»). Подробную информацию можно найти в сетевом руководстве Red Hat Enterprise Linux 7.

Настройка Kdump

Kdump предоставляет механизм для сбора статистики о сбоях и сохранения состояния системной памяти в файл для последующего определения причины сбоя.

Kdump можно настроить на этапе первоначальной настройки системы (см. Раздел 26.2.1, «Kdump») или в любое другое время. Руководство по Kdump в Red Hat Enterprise Linux 7 содержит всю необходимую информацию.

Регистрация

Поддержка установленной операционной системы оговаривается условиями подписки. Служба подписок следит за состоянием зарегистрированных систем, установленных продуктов и выделенных им подписок. Систему можно зарегистрировать на стадии Firstboot (см. Раздел 26.2.2, «Настройка подписок»).

Если система не была зарегистрирована на стадии Firstboot, это можно сделать в любое удобное для вас время (см. Управление подписками Red Hat and Red Hat Satellite User Guide).

Обновление системы после установки

После завершения установки рекомендуется сразу установить доступные обновления. Обновления могут включать дополнительные функции, исправления ошибок и критические обновления безопасности.

В Red Hat Enterprise Linux установка новых и обновление существующих пакетов осуществляется с помощью Yum, информацию о котором можно найти в руководстве системного администратора Red Hat Enterprise Linux 7.
Настройка дополнительных репозиториев

Пакеты загружаются из репозиториев, которые представляют собой организованные коллекции программ и метаданных. Для зарегистрированных систем стандартные репозитории будут настроены автоматически. Настройка дополнительных репозиториев потребует дополнительных действий.

За информацией о настройке дополнительных репозиториев обратитесь к руководству системного администратора Red Hat Enterprise Linux 7.

Установка дополнительных пакетов

В графическом режиме установки выбор дополнительных пакетов осуществляется в окне Выбор программ. Здесь вы не сможете выбрать отдельные пакеты, а лишь предопределенные группы. Дополнительные пакеты можно будет установить позднее с помощью Yum, информацию о котором можно найти в руководстве системного администратора Red Hat Enterprise Linux 7.

Графический режим входа

Если в ходе установки не был выбран комплект X Window System, вместо графического окна входа вы увидите текстовую строку приглашения. Для доступа к графическому режиму авторизации надо установить X Window System и графическое окружение рабочего стола (GNOME или KDE).

Эти комплекты устанавливаются так же как и другие пакеты — с помощью Yum, который детально обсуждается в руководстве системного администратора Red Hat Enterprise Linux 7. Раздел 7.3.3, «Запуск графического окружения» содержит инструкции по настройке графического режима входа.

Дополнения GNOME3

По умолчанию Red Hat Enterprise Linux 7 использует рабочее окружение GNOME 3, предлагаемое на выбор два стиля — GNOME Shell и GNOME Classic — каждый из которых может быть дополнен с помощью расширений GNOME 3. Подробную информацию можно найти в руководстве по администрированию и миграции рабочего окружения Red Hat Enterprise Linux 7.
Глава 28. Восстановление системы

Для решения конфликтов в системе необходимо обладать определенным набором знаний. В этой главе обсуждаются известные проблемы, с которыми может столкнуться пользователь, методы их решения и режимы диагностики.

28.1. Распространенные проблемы

Необходимость загрузки в режиме восстановления может возникнуть в следующих случаях:

- не удается выполнить нормальную загрузку Red Hat Enterprise Linux;
- возникли программные или аппаратные конфликты, и вы хотите извлечь важные файлы с жесткого диска;
- вы забыли пароль root.

28.1.1. Не удается загрузить Red Hat Enterprise Linux

Эта проблема возникает в результате установки другой операционной системы после установки Red Hat Enterprise Linux. Некоторые операционные системы предполагают, что в системе не установлены другие операционные системы, и перезаписывают основную загрузочную запись (MBR, Master Boot Record), содержащую GRUB2. После перезаписи загрузчика вы не сможете загрузить Red Hat Enterprise Linux до тех пор, пока вы не перейдете в режим восстановления и не перенастроите загрузчик.

В других случаях конфликт возникает, если с помощью программы разбиения диска вы изменили размер раздела после установки или создали новый раздел, используя свободное место, и это повлияло на порядок разделов. Если номер раздела / изменялся, загрузчик не сможет его найти и смонтировать. Чтобы это исправить, надо будет переустановить загрузчик (см. Раздел 28.2.2, «Переустановка загрузчика»).

28.1.2. Аппаратные и программные конфликты

Эта категория охватывает самые разные ситуации. Например, это может быть сбой жестких дисков или указание неверного ядра или корневого устройства в файле конфигурации загрузчика. В этом случае вы не сможете загрузить Red Hat Enterprise Linux. Можно попробовать загрузить систему в режиме восстановления и, возможно, проблему можно будет решить или как минимум создать копии важных файлов.

28.1.3. Восстановление пароля root

Если вы забыли пароль root, его можно восстановить при помощи загрузчика.

Процедура 28.1. Восстановление пароля root

1. Запустите систему и дождитесь появления меню GRUB2.
2. В меню загрузчика выберите любую строку и нажмите e для перехода в режим редактирования.
3. Перейдите к строке, начинающейся со слова linux, и добавьте в конец:

 init=/bin/sh
4. Нажмите F10 или Ctrl+X, чтобы продолжить загрузку системы с новыми параметрами.

После загрузки системы появится строка приглашения:

```
sh-4.2#
```

5. Включите политику SELinux:

```
sh-4.2# /usr/sbin/load_policy -i
```

6. Заново смонтируйте корневой раздел:

```
sh4.2# mount -o remount,rw /
```

7. Теперь можно изменить пароль root:

```
sh4.2# passwd root
```

Введите пароль и нажмите Enter. В ответ на запрос подтверждения введите его еще раз. Если оба пароля совпадают, появится сообщение о том, что пароль был успешно изменен.

8. Смонтируйте раздел, но в этот раз — в режиме чтения:

```
sh4.2# mount -o remount,ro /
```

9. Перезагрузите систему. После этого можно будет использовать новый пароль root.

28.2. Режим восстановления установщика

Для запуска режима восстановления установщика в меню загрузки выберите Диагностика. Будет загружено минимальное окружение Linux. В этом окружении доступен набор команд, которые помогут провести диагностику, смонтировать файловые системы в режиме чтения, отфильтровать драйверы, установить и обновить системные пакеты, а также редактировать разделы.

Примечание

Не следует путать этот режим с обычным режимом восстановления (также известным как монопольный режим) и аварийным режимом. Более подробно они обсуждаются в руководстве системного администратора Red Hat Enterprise Linux 7.

Для загрузки системы в режиме восстановления установщика потребуется:

- загрузочный CD или DVD;
- другой загрузочный носитель, например USB-устройство;
- установочный DVD Red Hat Enterprise Linux.

Подробную информацию можно найти в главах:

- Глава 5, Загрузка установки на AMD64 и Intel 64;
- Глава 10, Загрузка установки на IBM Power Systems.
Глава 14. Загрузка установки на IBM System z.

Процедура 28.2. Загрузка в режиме восстановления загрузчика

1. Загрузите систему с установочного носителя.

2. В меню загрузки выберите Диагностика, Восстановить Red Hat Enterprise Linux system или в строке загрузки добавьте параметр inst.rescue. Чтобы добавить параметр, нажмите Tab в системах с BIOS и e в системах с UEFI.

3. Если для загрузки требуется дополнительный драйвер, добавьте inst.dd=

 inst.rescue inst.dd=driver_name

 Раздел 4.3.3, «Ручное обновление» (AMD64 и Intel 64) и Раздел 9.3.3, «Ручное обновление» (IBM Power Systems) содержат информацию об использовании дисков драйверов во время загрузки.

4. Если же, наоборот, драйвер, входящий в дистрибутив, препятствует нормальной загрузке, добавьте его в черный список:

 inst.rescue modprobe.blacklist=driver_name

 Раздел 4.3.4, «Черный список» содержит подробную информацию.

5. Нажмите Enter (BIOS) или Ctrl+X (UEFI) и дождитесь появления сообщения:

 The rescue environment will now attempt to find your Linux installation and mount it under the /mnt/sysimage directory. You can then make any changes required to your system. If you want to proceed with this step choose 'Continue'. You can also choose to mount your file systems read-only instead of read-write by choosing 'Read-only'. If for some reason this process fails you can choose 'Skip' and this step will be skipped and you will go directly to a command line.

Файловая система будет подключена в /mnt/sysimage. В случае неудачи появится сообщение. При выборе варианта только для чтения будет предприята попытка ее подключения в /mnt/sysimage в режиме чтения. Если вы считаете, что файловая система повреждена, и ее не следует подключать, нажмите Пропустить.

6. После загрузки в окнах виртуальных консолей 1 и 2 будет доступна строка приглашения. Для доступа к консолям используются комбинации клавиш Ctrl+Alt+F1 и Ctrl+Alt+F2.

 sh-4.2#

Даже если файловая система подключена, в режиме восстановления корневым разделом становится временный раздел, а не тот, что используется при работе в обычном режиме (на уровнях multi-user.target и graphical.target). Если файловая система была смонтирована успешно, можно сменить корневой раздел окружения восстановления на корневой раздел вашей файловой системы:

 sh-4.2# chroot /mnt/sysimage

Некоторые команды (например, rpm) требуют, чтобы корневой раздел был подключен как /. Чтобы выйти из окружения chroot, выполните команду exit.
Выберите **Пропустить**, если вы хотите попробовать вручную смонтировать раздел или логический том LVM2. Для этого надо создать каталог (например, `/foo`) и выполнить:

```sh
sh-4.2# mount -t xfs /dev/mapper/VolGroup00-LogVol02 /directory
```

В этой команде `/dev/mapper/VolGroup00-LogVol02` — логический том LVM2, который будет смонтирован в `/мой_каталог`. Параметр `-t` определяет тип файловой системы (в этом примере — `xfs`).

Чтобы просмотреть список физических разделов, выполните:

```sh
sh-4.2# fdisk -l
```

Названия физических томов LVM2, логических томов и их групп можно узнать с помощью команд `pvdisplay`, `vgdisplay` и `lvdisplay`.

Другие команды включают:
- `ssh, scp` и `ping` при наличии подключения к сети;
- `dump` и `restore`, если используются ленточные накопители;
- `parted` и `fdisk` для управления разделами;
- `rpm` для установки и обновления программного обеспечения;
- `vi` для редактирования текстовых файлов.

28.2.1. Создание отчета sosreport

Sosreport формирует отчет о конфигурации системы, в который будет включена версия ядра, информация о загруженных модулях и файлах конфигурации, и сохраняет его в архив `*.tar` в каталоге `/var/tmp/`.

Полученная информация поможет при анализе системных ошибок и облегчит диагностику. Ниже обсуждается порядок создания отчета.

Процедура 28.3. sosreport в режиме восстановления установщика

1. Загрузите режим восстановления установщика (см. **Процедура 28.2. «Загрузка в режиме восстановления загрузчика»**). Подключите установленную систему в режиме чтения-записи:

   ```sh
   sh-4.2# chroot /mnt/sysimage/
   ```

2. Измените корневой каталог на `/mnt/sysimage/`:

   ```sh
   sh-4.2# chroot /mnt/sysimage/
   ```

3. Создайте архив системной конфигурации:

   ```sh
   sh-4.2# sosreport
   ```
Важно

Будет предложено ввести свое имя и номер отчета для его идентификации службой поддержки Red Hat. Используйте только буквы и цифры, так как наличие специальных символов и пробелов приведет к тому, что отчет будет невозможно прочитать. Не используйте:

% { } \ < > * ? / $ ~ ' " : @ + ` | =

4. Дополнительно. Для переноса архива в другое место в сети необходимо настроить сетевой интерфейс. При использовании динамической адресации в дополнительных действиях нет необходимости, а при статической адресации — надо будет присвоить сетевому интерфейсу IP-адрес. В приведенном ниже примере интерфейсу dev eth0 будет присвоен адрес 10.13.153.64/23.

```
bash-4.2# ip addr add 10.13.153.64/23 dev eth0
```

Статическая адресация обсуждается в сетевом руководстве Red Hat Enterprise Linux 7.

5. Закройте chroot:

```
sh-4.2# exit
```

6. Перенесите архив в другое место:

```
sh-4.2# cp /mnt/sysimage/var/tmp/sosreport путь
```

Чтобы сохранить архив на удаленном узле:

```
sh-4.2# scp /mnt/sysimage/var/tmp/sosreport
пользователь@узел:sosreport
```

Дополнительные статьи на эту тему:

- Как создать sosreport в окружении восстановления.
- Как настроить место хранения отчета sosreport.
- Не удается создать отчет sosreport. Как собрать статистику?

28.2.2. Переустановка загрузчика

Если загрузчик GRUB2 был по ошибке удален, поврежден или замещен загрузчиком другой операционной системы, его можно переустановить.

Процедура 28.4. Переустановка GRUB2

1. Загрузите режим восстановления установщика (см. Процедура 28.2, «Загрузка в режим восстановления загрузчика»). Подключите установленную систему в режиме чтения-записи.
2. Измените корневой раздел:

```
sh-4.2# chroot /mnt/sysimage/
```

3. Переустановите GRUB2. Замените устройство обозначением загрузочного устройства, например /dev/sda.

```
sh-4.2# /sbin/grub2-install устройство
```

4. Перезагрузите систему.

28.2.3. Добавление, удаление и замена драйверов с помощью RPM

Нехватка необходимых драйверов и наличие поврежденных драйверов могут помешать нормальной загрузке системы. В этом случае можно загрузить систему в режиме восстановления, в котором можно будет добавить, удалить или заменить драйвер. Для этого рекомендуется использовать **RPM**.

Примечание

При установке с диска драйверов он автоматически обновит системные образы initramfs, чтобы система смогла использовать этот драйвер. Поэтому если какой-то драйвер препятствует нормальной загрузке системы, не следует полагаться на возможность загрузки из другого initramfs.

Процедура 28.5. Удаление драйвера

1. Загрузите режим восстановления установщика (см. Процедура 28.2, «Загрузка в режим восстановления загрузчика»). Подключите установленную систему в режиме чтения-записи.

2. Измените корневой каталог на /mnt/sysimage/:

```
sh-4.2# chroot /mnt/sysimage/
```

3. Команда `rpm -e` поможет удалить пакет драйвера. Например, команда удаления `xorg-x11-driv-wacom` выглядит так:

```
sh-4.2# rpm -e xorg-x11-driv-wacom
```

4. Закройте chroot:

```
sh-4.2# exit
```

Если по какой-то причине не удается удалить драйвер, добавьте его в черный список (см. Раздел 4.3.4, «Черный список», Глава 20, Параметры загрузки).

Последовательность действий при установке драйвера примерно такая же, но с тем условием, что RPM драйвера должен быть доступен в системе.

Процедура 28.6. Установка драйвера
1. Загрузите режим восстановления установщика (см. Процедура 28.2. «Загрузка в режиме восстановления загрузчика»). При этом не следует монтировать установленную систему в режиме чтения.

2. Подключите CD или USB-носитель и скопируйте пакет драйвера в любой подкаталог в /mnt/sysimage/, например в /mnt/sysimage/root/drivers/.

3. Измените корневой каталог на /mnt/sysimage/:

 sh-4.2# chroot /mnt/sysimage/

4. С помощью rpm -ivh установите драйвер. Например, команда установки xorg-x11-drv-wacom из /root/drivers/ выглядит так:

 sh-4.2# rpm -i /root/drivers/xorg-x11-drv-wacom-0.23.0-6.el7.x86_64.rpm

 Примечание

 Каталог /root/drivers/ в окружении chroot на самом деле расположен в /mnt/sysimage/root/drivers/ в окружении восстановления.

5. Закройте chroot:

 sh-4.2# exit

После этого можно перезагрузить систему.
Глава 29. Отмена регистрации

Система может быть зарегистрирована всего в одной службе подписок. Порядок удаления регистрации или выбора другой службы зависит от типа исходной службы.

29.1. Управление подписками Red Hat

Службы управления подписками на портале пользователей, менеджер активов подписок и CloudForms System Engine используют одну и ту же схему идентификации систем на основе сертификатов. Все эти службы входят в состав инфраструктуры управления подписками Red Hat.

Управление системами в этой инфраструктуре осуществляется с помощью менеджера подписок Red Hat.

Чтобы удалить регистрацию системы с сервера управления подписками Red Hat, выполните команду unregister в режиме root.

```
# subscription-manager unregister
```

За подробной информацией обратитесь к руководству по работе с менеджером подписок Red Hat.

29.2. Регистрация на Red Hat Satellite

Для удаления регистрации Satellite выберите компьютер на вкладке Системы и удалите профиль.

За дальнейшей информацией обратитесь к руководству пользователя Red Hat Satellite.
Глава 30. Удаление Red Hat Enterprise Linux

30.1. Удаление Red Hat Enterprise Linux с AMD64 и Intel 64

Методы удаления Red Hat Enterprise Linux могут отличаться в зависимости от того, является ли Red Hat Enterprise Linux единственной операционной системой или установлена параллельно с другими ОС.

Прежде чем приступить к удалению:

- Проверьте наличие установочных носителей для оставшихся операционных систем.
- Проверьте возможность загрузки оставшихся операционных систем и убедитесь, что у вас есть все пароли администраторов, включая те, которые были автоматически созданы производителем.
- Создайте резервную копию данных, которые вы хотите сохранить. При удалении конфиденциальных данных следуйте правилам политики безопасности своей организации. Убедитесь, что резервный носитель может быть прочитан в той системе, где будут восстановлены данные. Например, Microsoft Windows не сможет прочитать внешний диск, если он был отформатирован в Red Hat Enterprise Linux как ext2, ext3, ext4 или XFS. Для его чтения потребуется установить дополнительные программы.

Предупреждение

Также рекомендуется создать резервную копию данных других операционных систем во избежание их потери.

Если вы планируете удалить Red Hat Enterprise Linux без последующей переустановки, на всякий случай сохраните структуру разделов (см. вывод команды `mount`) и запомните, какой пункт меню `grub.cfg` используется для загрузки Red Hat Enterprise Linux.

В целом, процесс удаления Red Hat Enterprise Linux на платформах AMD64 и Intel 64 подразделяется на два этапа:

1. Удаление данных загрузчика Red Hat Enterprise Linux из MBR.
2. Удаление разделов Red Hat Enterprise Linux.

Наиболее распространенные комбинации операционных систем включают:

- только Red Hat Enterprise Linux:
 см. Раздел 30.1.1, «Только Red Hat Enterprise Linux».

- Red Hat Enterprise Linux и другой дистрибутив Linux:
 см. Раздел 30.1.2, «Red Hat Enterprise Linux и другой дистрибутив Linux».

 см. Раздел 30.1.3, «Red Hat Enterprise Linux и Microsoft Windows».
Приведенные здесь инструкции не могут охватить все возможные конфигурации. Если схема разделов вашего компьютера довольно специфична, рассматривайте эту информацию лишь как общую. В таких случаях также потребуется изменить настройки выбранного загрузчика. Руководство системного администратора Red Hat Enterprise Linux 7 содержит описание загрузчика GRUB2.

Чтобы удалить Red Hat Enterprise Linux вместе с другой установленной операционной системой, следуйте инструкциям по удалению только Red Hat Enterprise Linux.

30.1.1. Только Red Hat Enterprise Linux

Если Red Hat Enterprise Linux является единственной операционной системой, ее можно удалить с помощью установочного носителя операционной системы, которая будет установлена вместо Red Hat Enterprise Linux. Примеры включают установочный CD Windows XP, DVD Windows Vista и установочные диски других дистрибутивов Linux.

Некоторые производители компьютеров включают установленную систему Microsoft Windows, но не предоставляют установочный диск, вместо этого предлагая собственный «диск восстановления» или программы для его создания. Иногда для хранения программ восстановления выделяется отдельный раздел. Если вы не уверены, входил ли в комплект установочный диск, обратитесь к документации компьютера.

Если у вас есть установочный носитель операционной системы:

1. Создайте резервную копию важных данных.
2. Выключите компьютер.
3. Загрузите компьютер с диска новой операционной системы.
4. Следуйте инструкциям процесса установки. Установочные диски Windows, OS X и большинства систем Linux позволяют создать разделы вручную при установке или предложить удалить все разделы и создать их заново. Удалите существующие разделы или разрешите установщику удалить их автоматически. Диски восстановления для компьютеров с предустановленной системой Microsoft Windows могут создать схему разделов автоматически без участия администратора.

Предупреждение

Если программы восстановления системы хранятся в отдельном разделе, соблюдайте осторожность при удалении разделов.

30.1.2. Red Hat Enterprise Linux и другой дистрибутив Linux

Если параллельно с Red Hat Enterprise Linux установлен другой дистрибутив Linux, с помощью его загрузчика можно удалить загрузочную запись Red Hat Enterprise Linux, после чего можно будет удалить разделы.

В силу различий между многочисленными дистрибутивами Linux здесь приведена лишь общая информация.
Важно

Приведенные инструкции предполагают, что система использует загрузчик GRUB2. За информацией о других загрузчиках (например, LILO) обратитесь к их документации и удалите записи Red Hat Enterprise Linux из списка загрузки.

1. Удалите записи Red Hat Enterprise Linux из загрузчика
 a. Загрузите операционную систему Linux, которая будет оставлена.
 b. В командной строке выполните su -. Введите пароль root и нажмите Enter.
 c. Откройте файл /etc/default/grub2 в текстовом редакторе (например, vim) и удалите загрузочную запись Red Hat Enterprise Linux, которая выглядит примерно так:

 Пример 30.1. Запись Red Hat Enterprise Linux в grub.cfg

   ```
   menuentry 'Red Hat Enterprise Linux Server (3.10.0-57.el7.x86_64) 7.0 (Maipo)' --class red --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.10.0-53.el7.x86_64-advanced-9eeccde6-586c-439b-bfa4-76a9ea6b0906' {
   load_video
   set gfxpayload=keep
   insmod gzio
   insmod part_msdos
   insmod xfs
   set root='hd0,msdos1'
   if [x$feature_platform_search_hint = xy ]; then
     search --no-floppy --fs-uuid --set=root --hint='hd0,msdos1'
     0c70bc74-7675-4989-9dc8-bbcf5418ddf1
   else
     search --no-floppy --fs-uuid --set=root 0c70bc74-7675-4989-9dc8-bbcf5418ddf1
   fi
   linux16 /vmilinux-3.10.0-57.el7.x86_64 root=/dev/mapper/rhel-root ro rd.lvm.lv=rhel/root vconsole.font=latarcyrheb-sun16 rd.lvm.lv=rhel/swap crashkernel=auto vconsole.keymap=us rhgb quiet LANG=en_US.UTF-8
   initrd16 /initramfs-3.10.0-57.el7.x86_64.img
   }
   ```
 d. Удалите всю секцию, начиная со слова menuentry и заканчивая скобкой }.

 В зависимости от конфигурации системы файл может содержать несколько таких записей для разных версий ядра Linux. Удалите все записи Red Hat Enterprise Linux.

 e. Сохраните grub.conf и закройте редактор.

2. Удалите разделы Red Hat Enterprise Linux.

 Довольно часто разные дистрибутивы Linux, установленные в одной системе, совместно используют некоторые разделы данных.

 Будьте внимательны, так как случайное удаление разделов, используемых другими
дистрибутивами, может нарушить их работу.

a. Загрузите операционную систему Linux, которая будет оставлена.

b. Обычные разделы можно удалить с помощью `fdisk`, а логические тома и группы — с помощью `lvremove` и `vgremove`. За подробной информацией обратитесь к руководству системного администратора Red Hat Enterprise Linux 7.

В будущем освобожденное пространство можно будет использовать для наращивания существующих разделов. За инструкциями следует обратиться к документации операционной системы.

30.1.3. Red Hat Enterprise Linux и Microsoft Windows

Другие выпуски Microsoft Windows и MS-DOS не рассматриваются, так как они не способны работать с разделами Linux в силу ограниченных возможностей управления разделами.

Здесь приведены лишь общие инструкции, которые следует корректировать в каждой конкретной ситуации в зависимости версии Microsoft Windows. Более точную информацию можно найти в документации Microsoft Windows.

Предупреждение

Приведенные здесь операции выполняются в среде или консоль восстановления Windows, для загрузки которых требуется наличие установочного диска Windows. Если вы начали, но по какой-то причине не завершили восстановление, может оказаться так, что компьютер будет невозможно загрузить. Поставляемые с некоторыми компьютерами Windows диски восстановления не всегда включают это окружение.

1. Удаление разделов Red Hat Enterprise Linux.

 a. Загрузите Microsoft Windows.

 b. Нажмите Пуск > Выполнить, введите `diskmgmt.msc` и нажмите Enter. Откроется окно программы управления дисками.

 Эта программа представляет диск в виде диаграммы. Первый раздел обычно обозначен как NTFS и соответствует диску C:. Также будут показаны как минимум два раздела Red Hat Enterprise Linux без указания типа файловой системы, но, возможно, с буквой диска.

 c. Выберите раздел Red Hat Enterprise Linux и щелкните правой кнопкой мыши, чтобы открыть контекстное меню. Выберите пункт Удалить раздел и нажмите Да для подтверждения выбора. Повторите эти действия для остальных разделов Red Hat Enterprise Linux. По мере их удаления Windows будет отмечать занимаемое ими место как свободное.
2. Восстановление загрузчика Windows

i. Вставьте установочный диск Windows и перезагрузите компьютер. Появится сообщение:

Нажмите любую клавишу для загрузки с CD

Нажмите любую клавишу. Начнется загрузка установочных программ Windows.

ii. После появления окна Добро пожаловать в программу установки можно запустить консоль восстановления Windows. Этот процесс несколько отличается в разных версиях Windows:

B. В Windows XP и Windows Server 2003 нажмите R.

iii. Консоль восстановления Windows выполняет поиск установок Windows на жестких дисках, присваивает каждой установке номер и выводит список на экран. Введите номер установки Windows, которую вы хотите восстановить.

iv. Появится запрос пароля администратора. Введите пароль и нажмите Enter. Если пароль администратора изначально не был задан, просто нажмите Enter.

v. В строке приглашения выполните команду fixmbr для восстановления MBR.

vi. После появления приглашения введите exit и нажмите Enter.

vii. Компьютер загрузит операционную систему Windows.

b. Инструкции для Windows Vista и Windows Server 2008:

i. Вставьте установочный диск Windows и перезагрузите компьютер. Появится сообщение:

Нажмите любую клавишу для загрузки с CD или DVD

Нажмите любую клавишу. Начнется загрузка установочных программ Windows.

ii. В окне Установить Windows выберите язык, время, формат денежных единиц и тип клавиатуры. Нажмите кнопку продолжения.

iii. Выберите Восстановить компьютер.

iv. Появится список обнаруженных установок Windows. Выберите установку для восстановления и нажмите кнопку продолжения.

v. Выберите пункт Командная строка.

vi. Введите bootrec /fixmbr и нажмите Enter.
vii. Дождитесь завершения команды, закройте окно и выберите Перезагрузить.

viii. Компьютер загрузит операционную систему Windows.

30.2. Удаление Red Hat Enterprise Linux с IBM System z

Прежде чем приступить к удалению операционной системы, ознакомьтесь с правилами защиты информации вашей организации. Оцените возможные последствия:

» При новой установке диски будут перезаписаны.

» Откройте доступ к диску DASD/SCSI, где установлена система Linux, с другого компьютера и удалите данные (для этого могут понадобиться дополнительные разрешения). Если не уверены, проконсультируйтесь с системным администратором. Команды, которые при этом могут использоваться: dasdfmt (для DASD), parted, mke2fs, dd. Подробную информацию можно найти на соответствующих справочных страницах.

30.2.1. Запуск другой ОС на виртуальной машине z/VM или LPAR

Чтобы выполнить загрузку с DASD или SCSI-диска, который расположен за пределами установленной системы на виртуальной машине z/VM или LPAR, выключите Red Hat Enterprise Linux и загрузите систему с выбранного DASD/SCSI. Данные существующей системы при этом останутся в прежнем состоянии.
Приложения не содержат инструкции по установке Red Hat Enterprise Linux. Скорее, они предоставляют техническую информацию, которая поможет лучше понять поведение процесса установки Red Hat Enterprise Linux.
Приложение А. Знакомство с дисковыми разделами

Примечание

Информация в этом разделе применима к AMD64 и Intel 64, но общие принципы могут быть применены и к другим платформам.

В этом разделе обсуждаются основы организации дисков, схема разбиения раздела в Linux, распределение дискового пространства между разными операционными системами и пр.

Если вы уже знакомы с дисковыми разделами, можно сразу перейти к следующему разделу (см. Раздел А.2, «Повторное разбиение диска»), где вы узнаете об освобождении пространства для установки Red Hat Enterprise Linux.

А.1. Структура жесткого диска

Жесткие диски выполняют очень простую функцию — они хранят данные и по команде их извлекают.

При обсуждении таких тем как разбиение диска, важно иметь представление об оборудовании, чтобы не путаться в деталях. В этом приложении использована упрощенная схема диска, помогающая понять, что же собственно происходит при разбиении.

Рисунок А.1, «Пустой диск» демонстрирует структуру абсолютно нового диска.

Рисунок А.1. Пустой диск

А.1.1. Файловые системы

Новый диск надо отформатировать, диск. При форматировании на диске создается файловая система, что позволит записывать данные на диск в определенном порядке.

Рисунок А.2. Диск с файловой системой

Как демонстрирует Рисунок А.2, «Диск с файловой системой», такая организация выдвигает некоторые ограничения:

» Незначительная часть пространства тратится на хранение данных о файловой системе.
Файловая система разбивает оставшееся место на небольшие сегменты одинакового размера, которые в Linux называются блоками. [4]

Также стоит заметить, что не существует универсальной файловой системы. Как демонстрирует Рисунок А.3. «Диск с другой файловой системой», на диске может располагаться несколько файловых систем. Иногда файловые системы могут быть несовместимы, то есть операционная система, поддерживающая одну файловую систему или набор родственных файловых систем, может не поддерживать другую. Однако Red Hat Enterprise Linux поддерживает широкий диапазон файловых систем, что существенно облегчает взаимодействие с другими операционными системами.

Рисунок А.3. Диск с другой файловой системой

Конечно, создание файловой системы на диске — это только начало. Главной задачей все же является хранение данных и обеспечение к ним доступа. Взгляните, как выглядит диск с файлами.

Рисунок А.4. Диск с данными

Как демонстрирует Рисунок А.4, «Диск с данными», некоторые блоки теперь содержат данные. Однако просто посмотрев на эту схему, нельзя точно определить, сколько файлов хранится на диске. Это может быть и один файл, и несколько, так как файлы используют минимум один блок, а могут использовать и больше. Занятые блоки не должны находиться рядом — занятые и свободные блоки могут перемежаться. Это называется фрагментацией. Фрагментация может сказаться при попытке изменить размер существующего раздела.

Как и большинство компьютерных технологий, жесткие диски неоднократно менялись с момента своего появления. Самым главным изменением, конечно, является увеличение их объема. Объем не в физическом смысле, а как мера информационной емкости. Конечно, многократно увеличившийся объем привел к изменению способов использования жестких дисков.

A.1.2. Разбиение диска на разделы

Диски могут разбиваться на разделы. К каждому разделу можно обращаться как к отдельному диску. Выполняется это с помощью дополнительной таблицы разделов.

Существует несколько оснований для создания разделов:

- логическое разделение операционной системы и данных пользователей;
- возможность использования разных файловых систем;
- установка нескольких операционных систем на одном компьютере.
На данный момент существует два базовых стандарта размещения таблиц разделов на жестких дисках — MBR (Master Boot Record) и GPT (GUID Partition Table). Главная загрузочная запись традиционно использовалась для систем с BIOS. В свою очередь, GPT является частью стандарта UEFI (Unified Extensible Firmware Interface). Раздел A.1.3, «Обзор расширенных разделов» и эта секция обсуждают схему MBR, а Раздел A.1.4, «Таблица разделов GUID» содержит основную информацию о GPT.

Примечание

Представление таблицы разделов отдельно от диска на приведенных схемах не является точным. В действительности, таблица разделов находится в самом начале диска — до файловых систем и данных пользователя. Но ясности ради, на наших диаграммах они разделены.

Представление таблицы разделов отдельно от диска на приведенных схемах не является точным. В действительности, таблица разделов находится в самом начале диска — до файловых систем и данных пользователя. Но ясности ради, на наших диаграммах они разделены.

Рисунок A.5. Диск с таблицей разделов

Каждая запись таблицы содержит важные характеристики разделов:

- координаты начала и конца раздела;
- флаг активности раздела;
- тип раздела.

Координаты начала и конца определяют размер раздела и его расположение на диске. Флаг активности используется некоторыми загрузчиками операционных систем. Так, при запуске компьютера будет загружена операционная система, расположенная в активном разделе. Тип раздела — число, характеризующее предназначение раздела. Возможно, это определение покажется немного расплывчатым; причина в том, что понятие типа раздела само по себе довольно обширно. Например, он может определять тип файловой системы, тип операционной системы раздела или служить индикатором того, что раздел является загрузочным.

Рисунок A.6, «Диск с одним разделом» демонстрирует схему с одним разделом.

Рисунок A.6. Диск с одним разделом
Часто на диске создается один раздел, занимающий весь диск, — по сути это то же самое, что и схема без разделов. В этом случае таблица разделов будет содержать только одну запись, указывающую на начало раздела.

Допустим, этот раздел имеет тип DOS. Доступны и другие типы (см. Таблица A.1, «Типы разделов»), но DOS хорошо подходит для дальнейшего объяснения.

Таблица A.1, «Типы разделов» содержит список некоторых типов с соответствующими шестнадцатеричными значениями.

<table>
<thead>
<tr>
<th>Тип раздела</th>
<th>Значение</th>
<th>Тип раздела</th>
<th>Значение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пустой</td>
<td>00</td>
<td>Novell Netware 386</td>
<td>65</td>
</tr>
<tr>
<td>DOS 12-бит FAT</td>
<td>01</td>
<td>PIC/IX</td>
<td>75</td>
</tr>
<tr>
<td>XENIX root</td>
<td>02</td>
<td>устаревший MINIX</td>
<td>80</td>
</tr>
<tr>
<td>XENIX usr</td>
<td>03</td>
<td>Linux/ MINUX</td>
<td>81</td>
</tr>
<tr>
<td>DOS 16-бит <=32 МБ</td>
<td>04</td>
<td>Linux swap</td>
<td>82</td>
</tr>
<tr>
<td>расширенный</td>
<td>05</td>
<td>стандартный Linux</td>
<td>83</td>
</tr>
<tr>
<td>DOS 16-бит >=32</td>
<td>06</td>
<td>Linux расширенный</td>
<td>85</td>
</tr>
<tr>
<td>OS/2 HPFS</td>
<td>07</td>
<td>Amoeba</td>
<td>93</td>
</tr>
<tr>
<td>AIX</td>
<td>08</td>
<td>Amoeba BBT</td>
<td>94</td>
</tr>
<tr>
<td>AIX загрузочный</td>
<td>09</td>
<td>BSD/386</td>
<td>a5</td>
</tr>
<tr>
<td>OS/2 Boot Manager</td>
<td>0a</td>
<td>OpenBSD</td>
<td>a6</td>
</tr>
<tr>
<td>Win95 FAT32</td>
<td>0b</td>
<td>NEXTSTEP</td>
<td>a7</td>
</tr>
<tr>
<td>Win95 FAT32 (LBA)</td>
<td>0c</td>
<td>BSDI fs</td>
<td>b7</td>
</tr>
<tr>
<td>Win95 FAT16 (LBA)</td>
<td>0e</td>
<td>BSDI swap</td>
<td>b8</td>
</tr>
<tr>
<td>Win95 расширенный (LBA)</td>
<td>0f</td>
<td>Syrinx</td>
<td>c7</td>
</tr>
<tr>
<td>Venix 80286</td>
<td>40</td>
<td>CP/M</td>
<td>db</td>
</tr>
<tr>
<td>Novell</td>
<td>51</td>
<td>DOS access</td>
<td>e1</td>
</tr>
<tr>
<td>PReP Boot</td>
<td>41</td>
<td>DOS R/O</td>
<td>e3</td>
</tr>
<tr>
<td>GNU HURD</td>
<td>63</td>
<td>DOS вторичный</td>
<td>f2</td>
</tr>
<tr>
<td>Novell Netware 286</td>
<td>64</td>
<td>BBT</td>
<td>ff</td>
</tr>
</tbody>
</table>

A.1.3. Обзор расширенных разделов

Конечно, четырех разделов может быть недостаточно. В этом случае помогут так называемые расширенные разделы.

Для расширенного раздела создается дополнительная таблица разделов. По сути расширенный раздел похож на диск — у него есть своя таблица разделов, указывающая на логические разделы в противоположность четырем первичным разделами. На рисунке (см. Рисунок A.7, «Диск с дополнительным разделом») показан диск с одним первичным разделом, одним расширенным, содержащим два логических раздела, и некоторым нераспределенным пространством.
Рисунок A.7. Диск с дополнительным разделом

Как видно из рисунка, главное отличие основных разделов от логических заключается в том, что на диске может быть до четырех основных разделов, в то время как число логических разделов не ограничено. Но учитывая то, как Linux работает с разделами, следует избегать создания больше 12 логических разделов на одном диске.

A.1.4. Таблица разделов GUID

Таблица разделов GUID (GPT, GUID Partition Table) — новый стандарт размещения таблиц разделов на основе глобальных идентификаторов (GUID, Globally Unique Identifiers), которые снимают ограничения, присущие MBR. Так, например, MBR не может адресовать пространство за пределами 2.2 Тб, в то время как максимальный размер диска для GPT составляет 2.2 зеттабайт. По умолчанию GPT поддерживает до 128 первичных разделов, что можно изменить, увеличив пространство для таблицы разделов.

GPT использует систему адресации логических блоков (LBA, Logical Block Addressing) с такой структурой разделов:

- Первый сектор (LBA 0) зарезервирован для таблицы MBR и носит название «защищенной MBR», так как выполняет чисто защитную функцию и обеспечивает обратную совместимость с MBR.
- LBA 1 содержит оглавление GPT, что включает GUID диска, информацию о расположении главной таблицы разделов и оглавления вторичной таблицы GPT, а также контрольные суммы CRC32 (собственную и сумму основной таблицы разделов). Оглавление также содержит число записей данных о разделах.
- По умолчанию основная таблица GPT включает 128 записей разделов, GUID типа раздела и уникальный идентификатор раздела. Размер каждой записи составляет 128 байт.
- Вторичная таблица GPT является резервной копией основной таблицы.
- Вторичное оглавление GPT располагается в последнем логическом секторе диска и используется для восстановления исходного оглавления. Содержит GUID диска, информацию о расположении вторичной таблицы разделов и оглавления первичной таблицы, контрольные суммы CRC32 (собственную и сумму вторичной таблицы разделов), а также число записей данных о разделах.

Важно

Для успешной установки операционной системы на диск с GPT необходимо, чтобы он содержал загрузочный раздел BIOS. В этом разделе будет размещаться загрузчик.

A.2. Повторное разбиение диска

Существует несколько причин для повторного разбиения диска:

- наличие нераспределенного свободного места;
- наличие неиспользуемого раздела;
- наличие свободного места в активно используемом разделе.

В этой секции приведены лишь общие инструкции. Подробное обсуждение перечисленных процедур выходит за рамки этого документа.
Примечание

Не забывайте, что приведенные здесь инструкции упрощены для большей ясности и не учитывают точное распределение разделов при установке Red Hat Enterprise Linux.

A.2.1. Использование нераспределенного пространства

В этой ситуации существующие разделы не занимают весь жесткий диск, оставляя нераспределенным пространство, не относящееся ни к одному из разделов (см. Рисунок A.8, «Диск с нераспределенным пространством»).

Рисунок A.8. Диск с нераспределенным пространством

Рисунок 1 демонстрирует нераспределенную область, а 2 — созданный в этой области раздел.

Как можно догадаться, новый жесткий диск тоже относится к этой категории с тем отличием, что все пространство не относится ни к одному из разделов.

Для создания разделов используется нераспределенное пространство. К сожалению, хотя рассмотренная ситуация очень простая, вряд ли вы ее встретите (если только вы не приобрели новый диск специально для Red Hat Enterprise Linux). Большинство предустановленных систем занимают все доступное место на диске (см. Раздел A.2.3, «Использование свободного места в активном разделе»).

A.2.2. Использование пространства, занятого неиспользуемым разделом

Вероятно, у вас есть один или несколько разделов, которые вам больше не нужны (см. Рисунок A.9, «Диск с неиспользуемым разделом»).

Рисунок A.9. Диск с неиспользуемым разделом

На рисунке 1 показан ненужный раздел, а 2 демонстрирует использование этого раздела для Linux.

В такой ситуации можно использовать место, занятое ненужным разделом. Надо удалить раздел и создать на его месте разделы Linux. При желании это можно сделать в процессе установки.

A.2.3. Использование свободного места в активном разделе
Это самая распространенная ситуация и также, к сожалению, самая сложная. Основной проблемой является то, что даже если у вас есть свободное место, оно относится к существующему разделу. Если вы приобрели компьютер с предустановленным программным обеспечением, чаще всего на жестком диске будет всего один большой раздел, содержащий и операционную систему, и данные.

Помимо добавления нового жесткого диска в систему, у вас есть два варианта:

Создание разделов с потерей данных

По большому счету, вы удаляете один раздел и создаете несколько других, меньшего размера. Как можно догадаться, данные, находившиеся в исходном разделе, будут потеряны. Это значит, что необходимо полное резервное копирование. Позаботьтесь о защите своих данных и создайте две резервных копии, проверьте их (если программа резервного копирования это позволяет) и попробуйте прочитать данные с копии перед удалением раздела.

Предупреждение

Если в этом разделе находилась операционная система, ее придется переустановить. Будьте осторожны и проверьте наличие установочных компакт-дисков, прежде чем приступить к удалению исходного раздела и файлов операционной системы.

После создания меньшего раздела для существующей операционной системы можно переустановить программное обеспечение, восстановить свои данные и начать установку (см. Рисунок A.10, «Создание разделов с потерей данных»).

Рисунок A.10. Создание разделов с потерей данных

На рисунке 1 показано состояние до операции, а 2 — ее результат.

Предупреждение

Все данные в этом разделе будут потеряны.

Создание разделов без потери данных

Программа изменения разделов может сжать раздел без потери файлов, расположенных в этом разделе. Этот метод считается довольно надежным, но может занять какое-то время.

Хотя неразрушительное переразбиение диска выполняется довольно просто, сам процесс включает три этапа:

1. Сжатие и резервное копирование данных
2. Изменение размера существующего раздела
3. Создание новых разделов

Далее эти этапы будут рассмотрены подробнее.

A.2.3.1. Сжатие существующих данных

Как показано на рисунке, первым этапом является сжатие данных существующего раздела. Это упорядочит данные, собрав все свободное место в конце раздела.

![Рисунок A.11. Сжатие данных на диске](image)

На рисунке 1 показано состояние до операции, а 2 — ее результат.

Этот шаг является обязательным, в противном случае неудачное размещение данных помешает уменьшить раздел до требуемого размера. Также обратите внимание на то, что не все данные могут быть перемещены. Если вы столкнулись с этим ограничением (и это не дает вам уменьшить размер раздела), придется переразбить диск заново, используя метод с разрушением данных.

A.2.3.2. Изменение размера раздела

![Рисунок A.12. Диск с уменьшенным разделом](image)

Рисунок A.12, «Диск с уменьшенным разделом» демонстрирует процесс изменения размера раздела. Хотя окончательный результат зависит от используемой программы, в большинстве случаев освобожденное место используется для создания свободного раздела того же типа, что и исходный.

На рисунке 1 показано состояние до операции, а 2 — ее результат.

Важно понимать, что именно происходит с освобожденным пространством. В приведенном примере будет лучше удалить раздел DOS и создать разделы Linux.

A.2.3.3. Создание новых разделов

Если используемая программа не работает с Linux, скорее всего, надо будет удалить раздел, созданный при уменьшении раздела (см. Рисунок A.13, «Диск с окончательным вариантом разбиения»), и создать другие разделы.
На рисунке 1 показано состояние до операции, а 2 — ее результат.

A.3. Обозначения разделов и точки подключения

Пользователи, начинающие знакомство с Linux, часто затрудняются понять, как Linux работает с разделами. В DOS и Windows это относительно просто — каждому разделу соответствует буква диска, которую можно использовать для обращения к файлам и каталогам в этом разделе. Это кардинально отличается от того, как работает с разделами Linux, и как вообще представляется дисковое пространство. В этой секции рассматриваются основные правила выбора имен и методы доступа к разделам в Red Hat Enterprise Linux.

A.3.1. Схема обозначения разделов

В Red Hat Enterprise Linux используется гибкая и информативная схема с использованием имен файлов, где имена имеют вид /dev/xxYN.

Этот формат расшифрован ниже.

/dev/

Это имя каталога, в котором находятся файлы всех устройств. Так как разделы располагаются на жестких дисках, а жесткие диски представляют собой устройства, /dev/ содержит файлы для разделов.

xx

Первые две буквы обозначают тип устройства, содержащего раздел, — обычно sd.

y

Определяет устройство, содержащее раздел. Например, /dev/sda (первый жесткий диск) или /dev/sdb (второй).

N

Номер раздела. Первые четыре раздела нумеруются от 1 до 4. Номера логических разделов начинаются с 5. Так, например, /dev/sda3 обозначает третий раздел на первом жестком диске, а /dev/sdb6 — второй логический раздел на втором диске.
Примечание

Даже если Red Hat Enterprise Linux может идентифицировать все разделы, это не значит, что она может обращаться к разделам любого типа, но в большинстве случаев получить доступ данным в разделе, выделенном другой операционной системе, все же возможно.

A.3.2. Разделы и точки подключения

В Red Hat Enterprise Linux разделы являются составляющими элементами общего пространства данных. Процесс сопоставления разделов каталогам называется подключением или монтированием диска. Подключение диска делает его содержимое доступным в указанном каталоге, также называемом точкой подключения (монтирования).

Например, если раздел /dev/sda5 подключен в /usr/, это означает, что файлы и каталоги в /usr/ физически расположены на устройстве /dev/sda5. Например, файл /usr/share/doc/FAQ/txt/Linux-FAQ будет расположен на /dev/sda5, тогда как /etc/gdm/custom.conf будет расположен на другом диске.

Продолжая пример, представим, что каталоги в /usr/ являлись точками подключения других разделов. Например, раздел /dev/sda7 может быть подключен в /usr/local/. Это значит, что файл /usr/local/man/whatis на самом деле расположен в /dev/sda7.

A.3.3. Число разделов

На этапе подготовки к установке Red Hat Enterprise Linux следует определиться с числом и размером разделов. Число разделов зависит от требований конкретного окружения.

В целом, как минимум создайте разделы swap, /boot/ и корневой /. Раздел 6.10.4.5, «Рекомендуемая схема разбиения» (AMD64 и Intel 64), Раздел 11.10.4.5, «Рекомендуемая схема разбиения» (IBM Power Systems) и Раздел 15.10.3.5, «Рекомендуемая схема разбиения» (IBM System z) содержат дополнительную информацию.

Приложение Б. Диски iSCSI

Протокол iSCSI (Internet Small Computer System Interface) позволяет взаимодействовать с устройствами хранения посредством обмена запросами SCSI по TCP/IP. В основу iSCSI положены стандартные протоколы SCSI, и он использует терминологию SCSI. Устройство на шине SCSI, которому направляются запросы, и которое на них отвечает, называется целью или сервером iSCSI. Устройство, отправляющее запросы, называется инициатором или клиентом iSCSI. Другими словами, диск iSCSI представляет собой цель, а программный аналог SCSI-контроллера или адаптера HBA представляет собой инициатор. В этом приложении обсуждается роль Linux на уровне инициатора, то есть как Linux использует диски iSCSI.

Программный инициатор iSCSI включен в состав ядра Linux и заменяет HBA-драйвер SCSI, что позволяет Linux использовать диски iSCSI. Но так как iSCSI является сетевым протоколом, поддержка инициатора iSCSI должна включать возможность отправки пакетов SCSI по сети. Прежде чем Linux сможет использовать цель iSCSI, к ней нужно подключиться. В некоторых случаях для доступа к цели потребуется авторизация. Системы Linux должны определять любые сбои сетевого подключения и при необходимости устанавливать новое соединение.

Обнаружение устройств, подключение и авторизация — все эти действия обрабатываются средствами iscsiadm в пространстве пользователя. За обработку ошибок отвечает iscsid.

Iscsiadm и iscsid входят в состав пакета iscsi-initiator-utils.

B.1. Диски iSCSI в Anaconda

Anaconda может определять диски iSCSI двумя способами:

1. При запуске Anaconda проверяет, поддерживает ли BIOS (или другая система загрузки) расширение iBFT (iSCSI Boot Firmware Table), которое разрешает загрузку компьютера с устройства iSCSI. Если iBFT поддерживается, Anaconda получит из BIOS сведения о загрузочном целевом устройстве iSCSI и сможет к нему подключиться.

2. В графическом режиме цель iSCSI можно добавить вручную: в окне обзора перейдите к секции Расположение установки и в открывшемся окне нажмите кнопку Добавить диск. В правом нижнем углу нажмите Добавить целевое устройство iSCSI (см. Раздел 6.11.1, «Окно выбора устройств хранения»).

Iscsiadm автоматически сохраняет сведения о найденных целях в своей базе данных iSCSI. Anaconda разместит эту базу данных в готовой системе и настроит автоматическое подключение ко всем дискам iSCSI за исключением тех, на которых размещается / . Если / расположен на целевом устройстве iSCSI, Anaconda не будет его включать в сценарии запуска во избежание одновременных попыток подключения.

Если / размещается на целевом диске iSCSI, Anaconda заставит NetworkManager игнорировать активные сетевые интерфейсы, так как их настройку выполнит initrd, и Anaconda не будет его включать в сценарии запуска во избежание одновременных попыток подключения.

В.2. События iSCSI в процессе запуска

События iSCSI происходят в следующих ситуациях:

1. Когда сценарий в initrd подключается к цели iSCSI, где размещается / . Это действие осуществляет утилита iscsistart (то есть нет необходимости в выполнении iscsid).
2. После монтирования корневой файловой системы будут запущены сценарии инициализации (включая iscsi). При наличии целей iSCSI, используемых для размещения /, и целей, для которых настроено автоматическое подключение в базе данных iSCSI, сценарий iscsi запустит процесс iscsid.

3. Сценарий iscsi запускается после выполнения стандартного сетевого сценария. При наличии доступа к сети будут подключены целевые устройства, для которых в базе данных iSCSI настроена автоматическая авторизация. Если же сеть недоступна, сценарий просто завершит работу.

4. Если подключение к сети осуществляется с помощью NetworkManager, то вместо стандартного сетевого сценария NetworkManager использует сценарий iscsi (см. /etc/NetworkManager/dispatcher.d/04-iscsi).

Важно

Файлы NetworkManager хранятся в каталоге /usr. Как следствие, если /usr располагается на удаленном диске в сети, NetworkManager не может использоваться для настройки сетевого доступа.

iscsid не запускается автоматически, а лишь при необходимости — например, его может запустить iscsiadm.
Приложение C. Знакомство с LVM

LVM (Logical Volume Management) предлагает простое логическое представление физического пространства данных. Разделы LVM форматируются как **физические тома**, которые объединяются в **группы томов**. В свою очередь, группа может подразделяться на **логические тома**, принцип работы которых аналогичен стандартным разделам. Таким образом, логические тома LVM функционируют как разделы, где можно создать файловую систему, например xfs.

Важно

На платформах AMD64, Intel 64 и серверах IBM Power Systems у загрузчика нет доступа к логическим томам, поэтому для /boot потребуется создать стандартный раздел (не LVM).

В System z загрузчик zipl допускает размещение /boot в логическом томе с линейным соответствием.

По умолчанию в процессе установки будет создан корневой раздел (/), раздел swap и отдельный раздел /boot.

Чтобы лучше понять организацию LVM, представьте физический том в виде группы блоков. Блоки — сегменты хранения данных, которые могут быть объединены в группы аналогично объединению физических томов. Полученная группа может быть разделена на секции произвольного размера, что аналогично разделению группы томов на логические тома.

Администратор может увеличить или уменьшить размер логических томов без потери данных, что невозможно в случае с обычными дисковыми разделами. Физические тома в составе группы могут располагаться на различных дисках или в разных RAID-массивах.

При существенном сжатии логического тома вероятность потери данных остается. При создании логических томов следует использовать лишь необходимый объем пространства. Дополнительное пространство можно будет выделить по мере необходимости.
Приложение D. Другая техническая документация

Red Hat Enterprise Linux и Anaconda используют стандартный набор программных компонентов.

Загрузчик

Управление накопителями

Звук

Графическая система

Система установки и Red Hat Enterprise Linux используют механизм Xorg для управления дисплеем, клавиатурой и мышью в привычных пользователю окружениях рабочего стола.Подробную информацию можно найти на сайте http://www.x.org/.

Удаленный дисплей

Интерфейс командной строки

Удаленный доступ к системе

Для удаленного доступа Red Hat Enterprise Linux использует OpenSSH. Служба SSH позволяет установить удаленный доступ, выполнять команды и отправлять файлы по сети в командной строке. В процессе установки Anaconda может использовать scp для передачи отчетов о сбоях удаленным системам. Подробную информацию можно найти на сайте OpenSSH: http://www.openssh.com/.

Управление доступом

Межсетевой экран

Управление межсетевым экраном в Red Hat Enterprise Linux осуществляется с помощью firewalld: https://fedoraproject.org/wiki/FirewallD.

Установка программного обеспечения
Для управления пакетами в Red Hat Enterprise Linux используется yum. Подробную информацию можно найти по адресу http://yum.baseurl.org/.

Виртуализация

Виртуализация делает возможной одновременную работу нескольких операционных систем на одном компьютере. Red Hat Enterprise Linux включает инструменты для установки и управления дополнительными операционными системами на хосте Red Hat Enterprise Linux. Поддержку виртуализации можно включить во время или после установки. Подробную информацию можно найти в руководстве по виртуализации Red Hat Enterprise Linux 7.
Приложение E. Команды ext4 и XFS

В Red Hat Enterprise Linux 7 файловую систему ext4 заменила XFS. Ниже приведена сравнительная таблица основных операций в ext4 и XFS.

Таблица E.1. Команды ext4 и XFS

<table>
<thead>
<tr>
<th>Задача</th>
<th>ext4</th>
<th>XFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Создание файловой системы</td>
<td>mkfs.ext4</td>
<td>mkfs.xfs</td>
</tr>
<tr>
<td>Монтирование файловой системы</td>
<td>mount</td>
<td>mount</td>
</tr>
<tr>
<td>Изменение размера файловой системы</td>
<td>resize2fs</td>
<td>xfs_growfs [a]</td>
</tr>
<tr>
<td>Восстановление файловой системы</td>
<td>e2fsck</td>
<td>xfs_repair</td>
</tr>
<tr>
<td>Изменение метки файловой системы</td>
<td>e2label</td>
<td>xfs_admin -L</td>
</tr>
<tr>
<td>Статистика пространства</td>
<td>quota</td>
<td>quota</td>
</tr>
<tr>
<td>Отладка файловой системы</td>
<td>debugfs</td>
<td>xfs_db</td>
</tr>
<tr>
<td>Сохранение критических метаданных в файл</td>
<td>e2image</td>
<td>xfs_metadump</td>
</tr>
</tbody>
</table>

[a] Эта команда только увеличивает размер файловой системы, так как размер XFS нельзя уменьшить.
Приложение F. История переиздания

<table>
<thead>
<tr>
<th>Издание 1.0-0.3</th>
<th>Mon Jun 22 2015</th>
<th>Yuliya Poyarkova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Редакция 3.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Издание 1.0-0.2</th>
<th>Mon May 25 2015</th>
<th>Yuliya Poyarkova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Адаптация изменений из 6.7. Редакция 2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Издание 1.0-0.1</th>
<th>Mon May 25 2015</th>
<th>Yuliya Poyarkova</th>
</tr>
</thead>
<tbody>
<tr>
<td>Синхронизация с XML 1.0-0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Издание 1.0-0</th>
<th>Tue Jun 03 2014</th>
<th>Petr Bokoć</th>
</tr>
</thead>
<tbody>
<tr>
<td>Версия 7.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Предметный указатель

Символы

Виртуализация
- документация, Другая техническая документация

Многопутевые устройства
- в комбинации с обычными устройствами, Расположение установки, Расположение установки

Разбиение, Создание разделов вручную, Создание разделов вручную

Разбиение диска на разделы
- добавление разделов, Создание файловых систем и конфигурация разделов, Создание файловых систем и конфигурация разделов, Создание файловых систем и конфигурация разделов

автоматическое разбиение, Расположение установки, Расположение установки, Расположение установки

виртуальные консоли, Виртуальные консоли, Виртуальные консоли и tmux

восстановление системы, Восстановление системы
- типичные проблемы, Расспространенные проблемы
 - sosreport, Создание отчета sosreport
 - аппаратные и программные проблемы, Аппаратные и программные конфликты
 - не удалось загрузить Red Hat Enterprise Linux, Не удается загрузить Red Hat Enterprise Linux
 - переустановка загрузчика, Переустановка загрузчика

выбор
- пакетов, Выбор программ, Выбор программ, Выбор программ

диагностика
- AMD64 и Intel 64, Диагностика конфликтов установки на AMD64 и Intel 64
- IBM Power Systems, Диагностика конфликтов установки на IBM Power Systems
- IBM System z, Диагностика конфликтов установки на IBM System z
- X (X Window System)
 - IBM Power Systems, Графический интерфейс пользователя недоступен
- X Window System
 - AMD64 и Intel 64, Графический интерфейс пользователя недоступен
- Не найдены устройства для установки Red Hat Enterprise Linux
 - AMD64 и Intel 64, Диски не обнаружены
 - IBM Power Systems, Диски не обнаружены
 - IBM System z, Диски не обнаружены
- в процессе установки
 - AMD64 и Intel 64, Решение конфликтов во время установки
- граfический режим недоступен
 - AMD64 и Intel 64, Конфликты при запуске графического режима
 - IBM Power Systems, Конфликты при запуске графического режима
- загрузка в графическом режиме
 - AMD64 и Intel 64, Ошибки графического режима загрузки
- запуск GNOME и KDE
 - AMD64 и Intel 64, Запуск графического окружения
- запуск X Window System
 - AMD64 и Intel 64, Запуск графического окружения
 - IBM Power Systems, Загрузка в графическом окружении
- запуск графического окружения
 - AMD64 и Intel 64, Запуск графического окружения
- консоль недоступна
 - AMD64 и Intel 64, Последовательная консоль не обнаружена
- начало установки
 - AMD64 и Intel 64, Решение конфликтов при запуске установки
- ошибка Signal 11
 - AMD64 и Intel 64, Ошибка Signal 11
- память не определена
 - AMD64 и Intel 64, Оперативная память не определяется
- после установки
 - AMD64 и Intel 64, Решение конфликтов после установки
- сбой сервера X
 - AMD64 и Intel 64, Сбой сервера X при входе пользователя
 - IBM Power Systems, Сбой сервера X при входе пользователя
- сохранение сообщений отладки без съемного накопителя
 - AMD64 и Intel 64, Сохранение сообщений отладки
 - IBM Power Systems, Сохранение сообщений отладки
 - IBM System z, Сохранение сообщений отладки

диагностика проблем
- IPL NWSSTG
 - IBM Power Systems, Невозможно выполнить IPL из *NWSSTG
- signal 11
 - IBM Power Systems, Ошибки Signal 11
 - IBM System z, Ошибки Signal 11

- во время установки
 - IBM Power Systems, Решение конфликтов во время установки
 - IBM System z, Решение конфликтов во время установки

- графический режим входа
 - IBM System z, Удаленный графический рабочий стол и XDMCP

- загрузка
 - RAID-контроллеры, Не удаётся загрузиться с RAID-контроллера

- запуск GNOME и KDE
 - IBM Power Systems, Загрузка в графическом окружении

- запуск графического окружения
 - IBM Power Systems, Загрузка в графическом окружении

- начало установки
 - IBM Power Systems, Решение конфликтов при запуске установки,
 Последовательная консоль не обнаружена

- после установки
 - IBM Power Systems, Решение конфликтов после установки, Ошибки
 графического режима загрузки
 - IBM System z, Решение конфликтов после установки

- создание разделов
 - IBM Power Systems, Другие конфликты разделов на серверах IBM
 Power Systems

- удаленный рабочий стол
 - IBM System z, Удаленный графический рабочий стол и XDMCP

дисковое пространство, Наличие пространства, Наличие пространства
dобавление разделов, Создание файловых систем и конфигурация разделов, Создание
файловых систем и конфигурация разделов, Создание файловых систем и конфигурация
разделов
 - тип файловой системы, Типы файловых систем, Типы файловых систем, Типы
 файловых систем

dополнительные разделы, Обзор расширенных разделов
жесткий диск
 - введение в разделы, Разбиение диска на разделы
 - общие понятия, Структура жесткого диска
 - разбиение, Знакомство с дисковыми разделами
 - расширенные разделы, Обзор расширенных разделов
 - типы разделов, Разбиение диска на разделы
 - форматы файловой системы, Файловые системы

журнал установки
 - anaconda.packaging.log, Ход выполнения установки, Ход выполнения установки, Ход
выполнения установки

журналы
Загрузка
- программа установки
 - AMD64 и Intel 64, Запуск с физического носителя

- режим восстановления, Режим восстановления установщика

Загрузка программы установки
- IBM Power Systems, Загрузка установки на IBM Power Systems

Загрузочный USB
- создание
 - в Linux, Создание USB-носителя в Linux
 - в Windows, Создание USB-носителя в Windows

Загрузчик, Установка загрузчика, Установка загрузчика
- GRUB2, Установка загрузчика, Установка загрузчика
- установка, Установка загрузчика, Установка загрузчика

Запуск
- установка, Запуск программы установки

Имя узла, Сеть и имя узла, Сеть и имя узла

Интерфейс пользователя, графический
- программа установки, Графический режим, Графический режим, Графический режим

Кикстарт
- подписки, Сценарий %post
- поиск файла кикстарта, Начало установки
- файл параметров System z, Параметры кикстарта

Кикстарт-установка, Кикстарт-установка
- LVM, Команды и параметры
- запуск, Начало установки
- источник установки, Доступ к структуре установки
- проверка, Проверка файла кикстарта
- расположение файла, Расположение файла кикстарта
- сетевая, Доступ к структуре установки
- формат файлов, Создание файла кикстарта

Консоли, виртуальные, Виртуальные консоли, Виртуальные консоли и tmux

Корневой раздел /
- рекомендуемое разбиение, Рекомендуемая схема разбиения, Рекомендуемая схема разбиения

Массив (см. RAID)

Меню загрузки
- параметры, Параметры загрузки

Настройка
- оборудование, Спецификация систем, Спецификация систем
- часовой пояс, Дата и время, Дата и время, Дата и время
- часы, Дата и время, Дата и время, Дата и время

настройка RHN
- выбор службы подписки, Настройка подписок

обновление
- Preupgrade Assistant, Обновление системы
- Red Hat Upgrade, Обновление системы
- Red Hat Enterprise Linux 6, Обновление системы

оборудование
- настройка, Спецификация систем, Спецификация систем
- поддержка, Устройства установки, Устройства установки
- совместимость, Совместимость оборудования, Совместимость оборудования

образ
- создание, Создание установочного образа

образы ISO
- загрузка, Загрузка файлов Red Hat Enterprise Linux

основная загрузочная запись, Установка загрузчика, Установка загрузчика
- переустановка, Переустановка загрузчика

пакеты
- выбор, Выбор программ, Выбор программ, Выбор программ
- группы, Выбор программ, Выбор программ, Выбор программ
- установка, Выбор программ, Выбор программ, Выбор программ

параметры загрузки, Параметры загрузки
- gpt, Настройка системы установки в меню загрузки
- multilib, Настройка системы установки в меню загрузки
- VNC, Настройка системы установки в меню загрузки
- ведение журналов, Настройка системы установки в меню загрузки
- диагностика, Настройка системы установки в меню загрузки
- имена дисков, Настройка системы установки в меню загрузки
- источник установки, Настройка системы установки в меню загрузки
- консоль, Настройка системы установки в меню загрузки
- обновления драйверов, Настройка системы установки в меню загрузки
- образ для установочной программы, Настройка системы установки в меню загрузки
- отладка, Настройка системы установки в меню загрузки
- проверка носителей, Проверка загрузочных носителей
- режим восстановления, Режим восстановления
- режим тестирования памяти, Режим тестирования памяти
- сеть, Настройка системы установки в меню загрузки
- таблица разделов GUID, Настройка системы установки в меню загрузки
- текстовый режим, Настройка системы установки в меню загрузки
- удаленный доступ, Настройка системы установки в меню загрузки

пароль
- установка пароля root,

Установка пароля root, **Установка пароля root**, **Установка пароля root**, **Установка пароля root**

пароль root, **Установка пароля root**, **Установка пароля root**, **Установка пароля root**

первая настройка, **Первая настройка и Firstboot**

подготовка к установке
 - System z, **Подготовка к установке**

подготовка оборудования, IBM Power Systems, **Подготовка IBM Power Systems**

подписка
 - кикстарт, **Сценарий %post**

подписки
 - в Firstboot, **Настройка подписок**

программа установки
 - AMD64 и Intel 64
 - загрузка, **Запуск с физического носителя**

разбиение, **Создание разделов вручную**, **Создание разделов вручную**, **Создание разделов вручную**

- автоматическое, **Расположение установки**, **Расположение установки**, **Расположение установки**
- введение, **Разбиение диска на разделы**
- выделение пространства для разделов, **Повторное разбиение диска**
- добавление разделов
 - тип файловой системы, **Типы файловых систем**, **Типы файловых систем**, **Типы файловых систем**

- дополнительные разделы, **Обзор расширенных разделов**
- имена разделов, **Схема обозначения разделов**
- использование занятого раздела, **Использование свободного места в активном разделе**
- использование незанятого раздела, **Использование пространства, занятого неиспользуемым разделом**
- использование свободного пространства, **Использование нераспределенного пространства**
- нумерация разделов, **Схема обозначения разделов**
- основные понятия, **Знакомство с дисковыми разделами**
- основные разделы, **Разбиение диска на разделы**
- рекомендуемое, **Рекомендуемая схема разбиения**, **Рекомендуемая схема разбиения**
- создание новых разделов
 - тип файловой системы, **Типы файловых систем**, **Типы файловых систем**, **Типы файловых систем**

- создание разделов, **Создание файловых систем и конфигурация разделов**, **Создание файловых систем и конфигурация разделов**, **Создание файловых систем и конфигурация разделов**
 - типы разделов, **Разбиение диска на разделы**
 - точки подключения и, **Разделы и точки подключения**
 - число разделов, **Разбиение диска на разделы**, **Число разделов**

разбиение диска на разделы, **Расположение установки**, **Расположение установки**, **Расположение установки**
раздел
- дополнительный, Обзор расширенных разделов

раздел /boot
- рекомендуемое разбиение, Рекомендуемая схема разбиения, Рекомендуемая схема разбиения

раздел /var/
- рекомендуемое разбиение, Рекомендуемая схема разбиения, Рекомендуемая схема разбиения

раздел подкачки
- рекомендуемое разбиение, Рекомендуемая схема разбиения, Рекомендуемая схема разбиения

раскладка
- выбор типа клавиатуры, Настройка клавиатуры, Настройка клавиатуры
- выбор языка, Приветствие и выбор языка, Приветствие и выбор языка
- настройка, Настройка клавиатуры, Настройка клавиатуры

регистрация
- firstboot, Настройка подписок
- кикстарт, Сценарий %post

режим восстановления, Режим восстановления
- типичные проблемы
 - забыли пароль root, Восстановление пароля root

режим восстановления установщика
- определение, Режим восстановления установщика
- утилиты, Режим восстановления установщика

режим тестирования памяти, Режим тестирования памяти

служба подписки, Отмена регистрации

снимки
- в процессе установки, Снимки этапов установки

создание разделов
- с разрушением, Использование свободного места в активном разделе

сообщения трассировки
- сохранение сообщений отладки без съемных носителей
 - AMD64 и Intel 64, Сохранение сообщений отладки
 - IBM Power Systems, Сохранение сообщений отладки
 - IBM System z, Сохранение сообщений отладки

схема разделов
- без потери данных, Использование свободного места в активном разделе

таблица разделов GUID
- параметр загрузки, Настройка системы установки в меню загрузки
tekstovyi_rezhim
- ustanovka, Novostroyka_sistemy_ustanovki_v_meno_zagruzki

ity_faylovoi_sistemy, Tyipy_faylovoi_sistemy, Tyipy_faylovoi_sistemy, Tyipy_faylovoi_sistemy

 точки подключения
- razdelы i, Razdelы_i_toчки_podklyucheniya

 udalenie
- IBM System z, Udalenie_Red_Hat_Enterprise_Linux_s IBM_System_z
- Red Hat Enterprise Linux
 - IBM System z, Udalenie_Red_Hat_Enterprise_Linux_s IBM_System_z
 - x86_64, Udalenie_Red_Hat_Enterprise_Linux_s AMD64_i Intel 64
- x86_64, Udalenie_Red_Hat_Enterprise_Linux_s AMD64_i Intel 64

 udalenie registrovaniya, Otmena_registrovaniya

 udalenennaya ustanovka
- pri pomoshchi VNC, Ustanovka_s_pomoshchyu VNC

 ustanovka
- GRUB2, Ustanovka_zagruzchika, Ustanovka_zagruzchika
- GUI, Ustanovka_Red_Hat_Enterprise_Linux_na AMD64_i Intel 64, Ustanovka_Red_Hat_Enterprise_Linux_na IBM_System_z
 - graficheskiy_interfeys, Ustanovka_Red_Hat_Enterprise_Linux_na IBM_Power_Systems
 - diskovoy prostor, Nahliche_prostor, Nahliche_prostor
 - kikstart (sm. kikstart-ustanovka)
 - pri pomoshchi VNC, Ustanovka_s_pomoshchyu VNC
 - programma
 - vиртуальные консоли, Virtualnye_konsole, Virotnye_konsole_i tmux
 - graficheskiy_interfeys_polzovatelya, Graficheskiy_rezhim, Graficheskiy_rezhim
 - запуск, Zapusk_programmy_ustanovki

- razbienie, Sotsnovenie_razdelov_vruchnuyu, Sotsnovenie_razdelov_vruchnuyu, Sotsnovenie_razdelov_vruchnuyu
- tekstovyi_rezhim, Novostroyka_sistemy_ustanovki_v_meno_zagruzki

 ustanovka paketov, Vybor_programm, Vybor_programm, Vybor_programm

 ustanovka s zagruzokoy iz seti
- konfiguratsiya, Novostroyka_PXE-zagruzki
- obzor, Podgotovka_k_setevoy_ustanovke

 ustanovochnyy nositel
- zagruzka, Zagruzka файла Red_Hat_Enterprise_Linux

 ustanovochnyy server yaboot, Zagruzka_s_servera yaboot

 ustroistva FCP, Ustroistva FCP

 ustroistvaхранения
- spetsializirovannye ustroistvaхранения, Ustroistvaхранения, Ustroistvaхранения
- standardnye ustroistvaхранения, Ustroistvaхранения, Ustroistvaхранения,
файл кикстарта
- %include, Команды и параметры
- %post, Сценарий %post
- %pre, Сценарий %pre
- auth, Команды и параметры
- authconfig, Команды и параметры
- autopart, Команды и параметры
- autostep, Команды и параметры
- bootloader, Команды и параметры
- btrfs, Команды и параметры
- clearpart, Команды и параметры
- cmdline, Команды и параметры
- device, Команды и параметры
- driverdisk, Команды и параметры
- eula, Команды и параметры
- fcoe, Команды и параметры
- firewall, Команды и параметры
- firstboot, Команды и параметры
- graphical, Команды и параметры
- group, Команды и параметры
- halt, Команды и параметры
- ignoredisk, Команды и параметры
- install, Команды и параметры
- iscsi, Команды и параметры
- iscsiname, Команды и параметры
- keyboard, Команды и параметры
- lang, Команды и параметры
- logging, Команды и параметры
- logvol, Команды и параметры
- mediatech, Команды и параметры
- network, Команды и параметры
- part, Команды и параметры
- partition, Команды и параметры
- poweroff, Команды и параметры
- raid, Команды и параметры
- realm, Команды и параметры
- reboot, Команды и параметры
- rescue, Команды и параметры
- rootpw, Команды и параметры
- selinux, Команды и параметры
- services, Команды и параметры
- shutdown, Команды и параметры
- skipx, Команды и параметры
- sshpw, Команды и параметры
- text, Команды и параметры
- timezone, Команды и параметры
- unsupported_hardware, Команды и параметры
- user, Команды и параметры
- vnc, Команды и параметры
- volgroup, Команды и параметры
- xconfig, Команды и параметры
- zerombr, Команды и параметры
- zfcp, Команды и параметры
- включение содержимого другого файла, Команды и параметры
- выбор пакетов, Выбор пакетов
- доступ по сети, Доступ к структуре установки
изменения синтаксиса, Изменения синтаксиса
источник установки, Команды и параметры
конфигурация репозитория, Команды и параметры
методы установки, Команды и параметры
настройка до установки, Сценарий %pre
настройка после установки, Сценарий %post
параметры, Команды и параметры
- примеры разбиения, Сложное разбиение
- содержимое, Создание файла кикстарта
- создание, Команды и параметры
- формат, Создание файла кикстарта

файловая система
- форматы, обзор, Файловые системы

файлы конфигурации
- файл конфигурации z/VM, Файл конфигурации z/VM
- файлы конфигурации CMS, Файлы конфигурации IBM System z

файлы конфигурации CMS, Файлы конфигурации IBM System z
- пример файла конфигурации CMS, Примеры файлов

файлы параметров, Файлы конфигурации IBM System z (см. файлы параметров)
- обязательные параметры, Обязательные параметры
- параметры кикстарта, Параметры кикстарта
- пример файла параметров, Примеры файлов
- сетевые параметры, Сетевые параметры

цепная загрузка, Расположение установки, Окно выбора устройств хранения, Окно выбора устройств хранения

часовой пояс
- настройка, Дата и время, Дата и время, Дата и время

часы, Дата и время, Дата и время, Дата и время

шаги
- дисковое пространство, Наличие пространства, Наличие пространства
- загрузка с CD или DVD, Выбор метода загрузки, Выбор метода загрузки
- подготовка оборудования IBM Power Systems, Подготовка IBM Power Systems
- поддерживаемое оборудование, Устройства установки, Устройства установки
- совместимость оборудования, Совместимость оборудования

язык
- настройка, Приветствие и выбор языка, Выбор языка, Приветствие и выбор языка, Выбор языка

anaconda.log
- AMD64 и Intel 64, Диагностика конфликтов установки на AMD64 и Intel 64
- IBM Power Systems, Диагностика конфликтов установки на IBM Power Systems
- IBM System z, Диагностика конфликтов установки на IBM System z

anaconda.packaging.log
Руководство по установке

- расположение журнала установки, Ход выполнения установки, Ход выполнения установки, Ход выполнения установки

B

BIOS (Basic Input/Output System), Загрузка установки на AMD64 и Intel 64

C

CD/DVD
- загрузка, Загрузка установки на AMD64 и Intel 64, Загрузка установки на IBM Power Systems
- создание, Создание установочного CD/DVD
 - (см. также образы ISO)

D

DHCP (Dynamic Host Configuration Protocol), Сеть и имя узла, Сеть и имя узла, Создание установочного CD/DVD

CDVD
- загрузка файлов Red Hat Enterprise Linux
 - (см. также образы ISO)

F

FCoE
- установка, Дополнительные параметры накопителей, Дополнительные параметры накопителей

fcoe
- при помощи кикстарта, Команды и параметры

firewall
- документация, Другая техническая документация

Firstboot, Firstboot
- кикстарт, Команды и параметры
- настройка RHN, Настройка подписок
- подписки, Настройка подписок

G

GRUB2, Установка загрузчика, Установка загрузчика
- документация, Другая техническая документация
- установка, Установка загрузчика, Установка загрузчика

H

HMC vterm, HMC vterm

I

IPv4, Сеть и имя узла, Сеть и имя узла, Сеть и имя узла

iscsi
- установка, Дополнительные параметры накопителей, Дополнительные параметры накопителей

K

kdump, Kdump
KRDC, Установка клиента VNC

Live-образ
- создание, Создание установочного образа

livemedia-creator, Создание установочного образа
- диагностика, Диагностика livemedia-creator
- дополнительные пакеты, Установка livemedia-creator
- журналы, Диагностика livemedia-creator
- использование, Примеры создания образов
- примеры, Примеры создания образов
- установка, Установка livemedia-creator
- файлы кикстарта, Образы файла кикстарта

LVM
- группа томов, Знакомство с LVM
- документация, Другая техническая документация
- кикстарт, Команды и параметры
- логический том, Знакомство с LVM
- понимание, Знакомство с LVM
- физический том, Знакомство с LVM

Master Boot Record, Не удаётся загрузить Red Hat Enterprise Linux

multilib
- активация во время установки, Настройка системы установки в меню загрузки

NTP (Network Time Protocol), Дата и время, Дата и время, Дата и время

OpenSSH, Другая техническая документация
- (см. также SSH)

P
packaging.log
- AMD64 и Intel 64, Диагностика конфликтов установки на AMD64 и Intel 64
- IBM Power Systems, Диагностика конфликтов установки на IBM Power Systems
- IBM System z, Диагностика конфликтов установки на IBM System z

program.log
- AMD64 и Intel 64, Диагностика конфликтов установки на AMD64 и Intel 64
- IBM Power Systems, Диагностика конфликтов установки на IBM Power Systems
- IBM System z, Диагностика конфликтов установки на IBM System z

PulseAudio
- документация, Другая техническая документация

PXE (Pre-boot eXecution Environment), Запуск из сети с помощью PXE

RAID
- кикстарт-установка, Команды и параметры
- невозможно загрузиться с устройства, подключенного к RAID-контроллеру
 - AMD64 и Intel 64, Не удаётся загрузиться с RAID-контроллера
- оборудование, RAID и другие дисковые устройства, RAID и другие дисковые устройства
- программный, RAID и другие дисковые устройства, RAID и другие дисковые устройства

Red Hat Subscription Management, Настройка подписок

scp, Другая техническая документация
 (см. также SSH)

SELinux
- документация, Другая техническая документация

SSH (Secure SHell)
- документация, Другая техническая документация

storage.log
- AMD64 и Intel 64, Диагностика конфликтов установки на AMD64 и Intel 64
- IBM Power Systems, Диагностика конфликтов установки на IBM Power Systems
- IBM System z, Диагностика конфликтов установки на IBM System z

syslog
- AMD64 и Intel 64, Диагностика конфликтов установки на AMD64 и Intel 64
- IBM Power Systems, Диагностика конфликтов установки на IBM Power Systems
- IBM System z, Диагностика конфликтов установки на IBM System z

TigerVNC, Установка клиента VNC

UEFI (Unified Extensible Firmware Interface), Загрузка установки на AMD64 и Intel 64

USB
- загрузка, Загрузка установки на AMD64 и Intel 64, Загрузка установки на IBM Power Systems

USB-носитель
- загрузка, Загрузка файлов Red Hat Enterprise Linux
- создание, Создание установочного USB-носителя

VNC
- клиент, Установка клиента VNC
- прямой режим, Запуск VNC в прямом режиме
- режим ожидания, Запуск VNC в режиме ожидания
- установка, Установка с помощью VNC

VNC (Virtual Network Computing)
- документация, Другая техническая документация
Приложение F. История переиздания

X

XDMCP
- активация
 - IBM System z, Удаленный графический рабочий стол и XDMCP

Xorg
- документация, Другая техническая документация

Y

yum
- документация, Другая техническая документация