& RedHat

Red Hat Directory Server 12

Managing indexes

Improving search performance by optimizing indexes

Last Updated: 2024-05-07

Red Hat Directory Server 12 Managing indexes

Improving search performance by optimizing indexes

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Indexing makes searching for and retrieving information faster by classifying and organizing
attributes or values. You can request a contiguous subset of a large search result by using virtual list
view control.

Table of Contents

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ... e 3
CHAPTER 1. DEFINING A DEFAULT INDEX THAT APPLIES TO ALL NEWLY CREATED DATABASES 4
11. THE DIFFERENT INDEX TYPES 4
1.2. BALANCING THE BENEFITS OF INDEXING 4
1.3. DEFAULT INDEX ATTRIBUTES 6
1.4. MAINTAINING THE DEFAULT INDEX 7
CHAPTER 2. MAINTAINING THE INDEXES OF ASPECIFIC DATABASE 9
2.1. THE DIFFERENT INDEX TYPES 9
2.2. BALANCING THE BENEFITS OF INDEXING 9
2.3. DEFAULT INDEX ATTRIBUTES il
2.4. MAINTAINING THE INDEXES OF A SPECIFIC DATABASE USING THE COMMAND LINE il
2.5.RECREATING AN INDEX WHILE THE INSTANCE OFFLINE 12
2.6. MAINTAINING THE INDEXES OF A SPECIFIC DATABASE USING THE WEB CONSOLE 13
CHAPTER 3. CHANGING THE SEARCHKEY LENGTH IN ASUBSTRING INDEXcoiiiiiiiinnn, 15
3.1. CHANGING THE SEARCH KEY LENGTH IN A SUBSTRING INDEX USING THE COMMAND LINE 15
CHAPTER 4. USING VIRTUAL LIST VIEW CONTROL TO REQUEST A CONTIGUOUS SUBSET OF A LARGE
SEARCH RESUL T oo i i e e i et et i et i i 17
41.HOW THE VLV CONTROL WORKS IN LDAPSEARCH COMMANDS 17
4.2. ENABLING UNAUTHENTICATED USERS TO USE THE VLV CONTROL 18

4.3. CREATING AVLV INDEX USING THE COMMAND LINE TO IMPROVE THE SPEED OF VLV QUERIES 19
4.4. CREATING AVLV INDEX USING THE WEB CONSOLE TO IMPROVE THE SPEED OF VLV QUERIES 21

Red Hat Directory Server 12 Managing indexes

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your input on our documentation. Please let us know how we could make it better. To do
so:

® For submitting feedback through Jira (account required):

1. Login to the Jira website.
2. Click Create in the top navigation bar
3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

® For submitting feedback through Bugzilla (account required):

1. Go to the Bugzilla website.
2. As the Component, use Documentation.

3. Fillin the Description field with your suggestion for improvement. Include a link to the
relevant part(s) of documentation.

4. Click Submit Bug.

https://issues.redhat.com/projects/RHELDOCS/issues
https://bugzilla.redhat.com/enter_bug.cgi?product=Red Hat Directory Server

Red Hat Directory Server 12 Managing indexes

CHAPTER 1. DEFINING A DEFAULT INDEX THAT APPLIES TO
ALL NEWLY CREATED DATABASES

The default index in Directory Server defines a set of attributes to be indexed. When you create a new
database, Directory Server copies the default index attributes from cn=default
indexes,cn=config,cn=ldbm database,cn=plugins,cn=config entry to the database-specific
cn=index,cn=database_name,cn=ldbm database,cn=plugins,ch=config entry.

NOTE

Directory Server does not apply changes in the default index to existing databases.

1.1. THE DIFFERENT INDEX TYPES

Directory Server stores the indexes of each indexed attribute in a separate database file in the
instance’s database directory. For example, the indexes of the sh attribute are stored in the
/var/lib/dirsrv/slapd-instance_name/db/database _name/sn.db file. Each index file can contain
multiple index types if Directory Server maintains different indexes for an attribute.

Directory Server supports the following index types:

® The presence index (pres) is a list of the entries that contain a particular attribute. For example,
use this type when clients frequently perform searches, such as attribute=mail.

® The equality index (eq) improves searches for entries containing a specific attribute value. For
example, an equality index on the cn attribute enables faster searches for cn=first_name
last_name.

® The approximate index (approx) enables efficient approximate or sounds-like searches. For
example, searches for cn~=first_name last_name, cn~=first_name, or cn~=first_nam (note
the misspelling) would return an entry cn=first_name X last_name. Note that the metaphone
phonetic algorithm in Directory Server supports only US-ASCII letters. Therefore, use
approximate indexing only with English values.

® The substring index (sub) is a costly index to maintain, but it enables efficient searching against
substrings within entries. Substring indexes are limited to a minimum of three characters for
each entry. For example, searches for telephoneNumber=*555* return all entries in the
directory with a value that contains 555 in the telephoneNumber attribute.

® International index speeds up searches for information in international directories. The process
for creating an international index is similar to the process for creating regular indexes, except

that it applies a matching rule by associating an object identifier (OID) with the attributes to be
indexed.

1.2. BALANCING THE BENEFITS OF INDEXING
Before you create new indexes, balance the benefits of maintaining indexes against the costs:

® Approximate indexes are not efficient for attributes commonly containing numbers, such as
phone numbers.

® Substring indexes do not work for binary attributes.

® Avoid equality indexes on attributes that contain big values, such as an image.

CHAPTER 1. DEFINING A DEFAULT INDEX THAT APPLIES TO ALL NEWLY CREATED DATABASES
® Maintaining indexes for attributes that are not commonly used in searches increases the
overhead without improving the search performance.

® Attributes that are not indexed can still be used in search requests, although the search
performance can be degraded significantly, depending on the type of search.

Indexes can become very time-consuming. For example, if Directory Server receives an add operation,
the server examines the indexing attributes to determine whether an index is maintained for the

attribute values. If the created attribute values are indexed, Directory Server adds the new attribute
values to the index, and then the actual attribute values are created in the entry.

Example 1.1. Indexing steps Directory Server performs when a user adds an entry
Assume that Directory Server maintains the following indexes:

® Equality, approximate, and substring indexes for the ch and sn attributes.

® Equality and substring indexes for the telephoneNumber attribute.

® Substring indexes for the description attribute.

For example, a user adds the following entry:

dn: cn=John Doe,ou=People,dc=example,dc=com
objectclass: top

objectClass: person

objectClass: orgperson
objectClass: inetorgperson

cn: John Doe

cn: John

sn: Doe

ou: Manufacturing

ou: people

telephoneNumber: 408 555 8834
description: Manufacturing lead

When the user adds the entry, Directory Server performs the following steps:
1. Create the cn equality index entry for John and John Doe.
2. Create the cn approximate index entries for John and John Doe.
3. Create the ¢n substring index entries for John and John Doe.
4. Create the sn equality index entry for Doe.
5. Create the sh approximate index entry for Doe.
6. Create the sn substring index entry for Doe.
7. Create the telephoneNumber equality index entry for 408 555 8834.
8. Create the telephoneNumber substring index entry for 408 555 8834.

9. Create the description substring index entry for Manufacturing lead.

Red Hat Directory Server 12 Managing indexes

This example illustrates that the number of actions required to create and maintain databases for a
large directory can be very resource-intensive.

IMPORTANT

Do not define a substring index for membership attributes (for example,
member,uniquemember) because it can impact Directory Server performance. When
adding or removing members, for example, uniquemember to a group with many
members, the computation of the uniquemember substring index requires to evaluating
all uniguemember values and not only added or removed values.

1.3. DEFAULT INDEX ATTRIBUTES

Directory Server stores the default index attributes in the cn=default indexes,cn=config,cn=ldbm
database,cn=plugins,ch=config entry. To display them, including their index types, enter:

ldapsearch -D "cn=Directory Manager" -W -H Idap://server.example.com -b "cn=default
indexes,cn=config,cn=Idbm database,cn=plugins,cn=config" -s one -o Idif-wrap=no

Table 1.1. Directory Server default index attributes

aci ch entryUSN
entryUUID givenName mail
mailAlternateAddress mailHost member
memberOf nsUniqueld nsCertSubjectDN
nsTombstoneCSN ntUniqueld ntUserDomainid
numSubordinates objectClass owner

parentld seeAlso sn
targetUniqueld telephoneNumber uid

uniqueMember

' WARNING
A Removing the attributes listed in the table (system indexes) from the index of

databases can significantly affect the Directory Server performance.

CHAPTER 1. DEFINING A DEFAULT INDEX THAT APPLIES TO ALL NEWLY CREATED DATABASES

1.4. MAINTAINING THE DEFAULT INDEX

Directory Server stores the default index attributes in the cn=default indexes,cn=config,cn=ldbm
database,cn=plugins,cn=config entry. Note that you can only maintain the default index attributes
using LDIF statements.

Procedure

® For example, to add the roomNumber attribute to the default index with the index types eq
and sub, enter:

|dapadd -D "cn=Directory Manager" -W -H Idap://server.example.com -x

dn: cn=roomNumber,cn=default indexes,cn=config,cn=ldbm database,cn=plugins,cn=config
objectClass: nsindex

objectClass: top

cn: roomNumber

nsSystemindex: false

nsindexType: eq

nsindexType: sub

Explanation of the LDIF statement:

o

o

objectClass: nsindex: Defines that this entry is an index entry.
objectClass: top: This object class is additionally required in index entries.
cn: Sets the name of the attribute to index.

nsSystemindex: Indicates whether or not the index is essential to Directory Server
operations.

nsindexType: This multi-value attribute specifies the index types.

® For example, to add the pres index type to the default index attributes of the roomNumber
attribute, enter:

ldapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

dn: cn=roomNumber,cn=default indexes,cn=config,cn=ldbm database,cn=plugins,cn=config
changetype: modify

add: nsindexType

nsindexType: pres

® For example, to remove the pres index type from the default index attributes of the
roomNumber attribute, enter:

Idapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

dn: cn=roomNumber,cn=default indexes,cn=config,cn=ldbm database,cn=plugins,cn=config
changetype: modify

delete: nsindexType

nsindexType: pres

® For example, to remove the roomNumber attribute from the default index, enter:

Red Hat Directory Server 12 Managing indexes

|dapdelete -D "cn=Directory Manager" -W -H Idap://server.example.com -x
cn=roomNumber,cn=default indexes,ch=config,ch=ldbm
database,cn=plugins,cn=config

Verification

® | ist the default index attributes to verify your changes:

|dapsearch -H Idap://server.example.com:389 -D " cn=Directory Manager" -W -b
"cnh=default indexes,cn=config,cn=ldbm database,cn=plugins,cn=config" -x -s one -0
Idif-wrap=no

CHAPTER 2. MAINTAINING THE INDEXES OF A SPECIFIC DATABASE

CHAPTER 2. MAINTAINING THE INDEXES OF A SPECIFIC

DATABASE

Each database in Directory Server has its own index. You can create, update, and delete indexes using
the dsconf utility or the web console.

21. THE DIFFERENT INDEX TYPES

Directory Server stores the indexes of each indexed attribute in a separate database file in the
instance’s database directory. For example, the indexes of the sh attribute are stored in the
/var/lib/dirsrv/slapd-instance_name/db/database _name/sn.db file. Each index file can contain
multiple index types if Directory Server maintains different indexes for an attribute.

Directory Server supports the following index types:

The presence index (pres) is a list of the entries that contain a particular attribute. For example,
use this type when clients frequently perform searches, such as attribute=mail.

The equality index (eq) improves searches for entries containing a specific attribute value. For
example, an equality index on the cn attribute enables faster searches for cn=first_name
last_name.

The approximate index (approx) enables efficient approximate or sounds-like searches. For
example, searches for cn~=first_name last_name, cn~=first_name, or cn~=first_nam (note
the misspelling) would return an entry cn=first_name X last_name. Note that the metaphone
phonetic algorithm in Directory Server supports only US-ASCII letters. Therefore, use
approximate indexing only with English values.

The substring index (sub) is a costly index to maintain, but it enables efficient searching against
substrings within entries. Substring indexes are limited to a minimum of three characters for
each entry. For example, searches for telephoneNumber=*555* return all entries in the
directory with a value that contains 555 in the telephoneNumber attribute.

International index speeds up searches for information in international directories. The process
for creating an international index is similar to the process for creating regular indexes, except
that it applies a matching rule by associating an object identifier (OID) with the attributes to be
indexed.

2.2. BALANCING THE BENEFITS OF INDEXING

Before you create new indexes, balance the benefits of maintaining indexes against the costs:

Approximate indexes are not efficient for attributes commonly containing numbers, such as
phone numbers.

Substring indexes do not work for binary attributes.
Avoid equality indexes on attributes that contain big values, such as an image.

Maintaining indexes for attributes that are not commonly used in searches increases the
overhead without improving the search performance.

Attributes that are not indexed can still be used in search requests, although the search
performance can be degraded significantly, depending on the type of search.

Red Hat Directory Server 12 Managing indexes

Indexes can become very time-consuming. For example, if Directory Server receives an add operation,
the server examines the indexing attributes to determine whether an index is maintained for the
attribute values. If the created attribute values are indexed, Directory Server adds the new attribute
values to the index, and then the actual attribute values are created in the entry.

Example 2.1. Indexing steps Directory Server performs when a user adds an entry

Assume that Directory Server maintains the following indexes:
® Equality, approximate, and substring indexes for the ch and sn attributes.
® Equality and substring indexes for the telephoneNumber attribute.
® Substring indexes for the description attribute.

For example, a user adds the following entry:

dn: cn=John Doe,ou=People,dc=example,dc=com
objectclass: top

objectClass: person

objectClass: orgperson
objectClass: inetorgperson

cn: John Doe

cn: John

sn: Doe

ou: Manufacturing

ou: people

telephoneNumber: 408 555 8834
description: Manufacturing lead

When the user adds the entry, Directory Server performs the following steps:
1. Create the cn equality index entry for John and John Doe.
2. Create the cn approximate index entries for John and John Doe.
3. Create the ¢n substring index entries for John and John Doe.
4. Create the sn equality index entry for Doe.
5. Create the sh approximate index entry for Doe.
6. Create the sn substring index entry for Doe.
7. Create the telephoneNumber equality index entry for 408 555 8834.
8. Create the telephoneNumber substring index entry for 408 555 8834.
9. Create the description substring index entry for Manufacturing lead.

This example illustrates that the number of actions required to create and maintain databases for a
large directory can be very resource-intensive.

10

CHAPTER 2. MAINTAINING THE INDEXES OF A SPECIFIC DATABASE

IMPORTANT

Do not define a substring index for membership attributes (for example,
member,uniquemember) because it can impact Directory Server performance. When
adding or removing members, for example, uniquemember to a group with many
members, the computation of the uniquemember substring index requires to evaluating
all uniguemember values and not only added or removed values.

2.3.DEFAULT INDEX ATTRIBUTES

Directory Server stores the default index attributes in the cn=default indexes,cn=config,cn=ldbm
database,cn=plugins,ch=config entry. To display them, including their index types, enter:

|dapsearch -D "cn=Directory Manager" -W -H Idap://server.example.com -b "cn=default
indexes,cn=config,cn=Idbm database,cn=plugins,cn=config" -s one -o Idif-wrap=no

Table 2.1. Directory Server default index attributes

aci ch entryUSN
entryUUID givenName mail
mailAlternateAddress mailHost member
memberOf nsUniqueld nsCertSubjectDN
nsTombstoneCSN ntUniqueld ntUserDomainid
numSubordinates objectClass owner

parentid seeAlso sn
targetUniqueld telephoneNumber uid

uniqueMember

' WARNING
A Removing the attributes listed in the table (system indexes) from the index of

databases can significantly affect the Directory Server performance.

2.4. MAINTAINING THE INDEXES OF A SPECIFIC DATABASE USING
THE COMMAND LINE

You can use the dsconf utility to maintain index settings using the command line.

1

Red Hat Directory Server 12 Managing indexes

Procedure

® For example, to add the roomNumber attribute to the index of the userRoot database with the
index types eq and sub, enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend index add --
attr roomNumber --index-type eq --index-type sub --reindex userRoot

The --reindex option causes that Directory Server automatically re-indexes the database.

® For example, to add the pres index type to the index settings of the roomNumber attribute in
the userRoot database, enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend index set --
attr roomNumber --add-type pres userRoot

® For example, to remove the pres index type from the index settings of the roomNumber
attribute in the userRoot database, enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend index set --
attr roomNumber --del-type pres userRoot

® For example, to remove the roomNumber attribute from the index in the userRoot database,
enter:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend index delete -
-attr roomNumber userRoot

Verification

e |ist the index settings of the userRoot database:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend index list
userRoot

2.5. RECREATING AN INDEX WHILE THE INSTANCE OFFLINE

You can use the dsctl db2index utility for reindexing the whole database while the instance is offline.

Prerequisites

® You created an indexing entry or added additional index types to the existing userRoot
database.

Procedure

1. Shut down the instance:

I # dsctl instance_name stop

2. Recreate the index:

a. Forallindexes in the database, run:

12

CHAPTER 2. MAINTAINING THE INDEXES OF A SPECIFIC DATABASE

dsctl instance_name db2index

[23/Feb/2023:05:38:28.034826108 -0500] - INFO - check_and_set_import_cache -
pagesize: 4096, available bytes 1384095744, process usage 27467776
[23/Feb/2023:05:38:28.037952026 -0500] - INFO - check_and_set_import_cache -
Import allocates 540662KB import cache.

[23/Feb/2023:05:38:28.055104135 -0500] - INFO - bdb_db2index - userroot: Indexing
attribute: aci

[23/Feb/2023:05:38:28.134350191 -0500] - INFO - bdb_db2index - userroot: Finished
indexing.
[23/Feb/2023:05:38:28.151907852 -0500] - INFO - bdb_pre_close - All database threads

now stopped
db2index successful

b. For specific attribute indexes, run:
I # dsctl instance_name db2index userRoot --attr aci ch givenname

The following command recreates indexes for aci, cn, and givenname attributes.

c. For more information regarding dsctl (offline) command, run:
I # dsctl instance_name db2index --help
3. Start the instance:

I # dsctl instance_name start

Verification

e |ist the index settings of the userRoot database:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend index list
userRoot

2.6. MAINTAINING THE INDEXES OF A SPECIFIC DATABASE USING
THE WEB CONSOLE

You can use the web console to maintain index settings in Directory Server.

Prerequisites

® You are logged in to the instance in the web console.

Procedure
e Navigate to Database — Suffixes — suffix_ name — Indexes - Database Indexes.
o To add an attribute to the index:

m Click Add Index.

13

Red Hat Directory Server 12 Managing indexes

® Enter the attribute name to the Select An Attribute field.
B Select the index types.

m Select Index attribute after creation.

m Click Create Index.

o To update the index settings of an attribute:

m Click the overflow menu next to the attribute, and select Edit Index.
B Update the index settings to your needs.

m Select Index attribute after creation.

m Click Save Index.

o To delete an attribute from the index:

m Click the overflow menu next to the attribute, and select Delete Index.
B Select Yes, | am sure, and click Delete.

® |n the Suffix Tasks menu, select Reindex Suffix.

Verification

® Navigate to Database — Suffixes - suffix_ name — Indexes - Database Indexes, and verify
that the index settings reflect the changes you made.

14

CHAPTER 3. CHANGING THE SEARCH KEY LENGTH IN A SUBSTRING INDE>

CHAPTER 3. CHANGING THE SEARCH KEY LENGTH IN A
SUBSTRING INDEX

By default, the length of the search key for substring indexes must be at least three characters. For
example, Directory Server will add the string abc as a search key to an index while ab* will not. However,
to improve the search performance, particularly for searches with many wildcard characters, you can
shorten the search key length. This increases the number of search keys in the index.

Directory Server has three attributes that change the minimum number of characters required for a
search key:

® nsSubStrBegin: Sets the minimum number of characters for the beginning of a search key,
before the wildcard character. For example:

I abc*

o nsSubStrMiddle: Sets the minimum number of characters in the search key between wildcard
characters. For example:

I *abc*

® nsSubStrEnd: Sets the number of characters for the end of a search key, after the wildcard
character. For example:

I *Xyz

3.1. CHANGING THE SEARCH KEY LENGTH IN A SUBSTRING INDEX
USING THE COMMAND LINE

You can improve search speeds by setting a new search key length for an attribute index.

Procedure

1. To set new search key length, add the extensibleObject object class and then add the
nsSubStrBegin, nsSubStrEnd, or nsSubStrMiddle attributes to the entry. For example:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: attribute _name,cn=index,cn=database _name,cn=ldom database,cn=plugins,cn=config
changetype: modify

add: objectclass

objectclass: extensibleObject

add: nsSubStrBegin
nsSubStrBegin: 2

add: nsSubStrMiddle
nsSubStrMiddle: 2

add: nsSubStrEnd
nsSubStrEnd: 2

15

Red Hat Directory Server 12 Managing indexes

2. Recreate the index to apply new setting. For example, while the Directory Server instance is
running, use the following command to recreate the index for the specified attribute:

dsconf -D "cn=Directory Manager" |dap://server.example.com backend index reindex --attr
attribute_name database name

Verification
® Select the attribute for which you want to change the search key length, for example, cn.

® Dump the cnindex:

I dbscan -D bdb -f /var/lib/dirsrv/slapd-instance/db/database/cn.db > /tmp/default_len

e Configure the new search key length as described in section Changing the search key length in a
substring index using the command line.

® Stop the instance to synchronize the database on the disk:

I # dsctl instance_name stop
® Dump the cnindex:

I dbscan -D bdb -f /var/lib/dirsrv/slapd-instance/db/database/cn.db > /tmp/len_2
e Comparelen_2 and default_len files:

I diff imp/len_2 /tmp/default_len

16

CHAPTER 4. USING VIRTUAL LIST VIEW CONTROL TO
REQUEST A CONTIGUOUS SUBSET OF A LARGE SEARCH
RESULT

Directory Server supports the LDAP virtual list view control. This control enables an LDAP client to
request a contiguous subset of a large search result.

For example, you have stored an address book with 100.000 entries in Directory Server. By default, a
query for all entries returns all entries at once. This is a resource and time-consuming operation, and

clients often do not require the whole data set because, if the user scrolls through the results, only a
partial set is visible.

However, if the client uses the VLV control, the server only returns a subset and, for example, if the user
scrolls in the client application, the server returns more entries. This reduces the load on the server, and
the client does not need to store and process all data at once.

VLV also improves the performance of server-sorted searches when all search parameters are fixed.
Directory Server pre-computes the search results within the VLV index. Therefore, the VLV index is

much more efficient than retrieving the results and sorting them afterwards.

In Directory Server, the VLV control is always available. However, if you use it in a large directory, a VLV
index, also called browsing index, can significantly improve the speed.

Directory Server does not maintain VLV indexes for attributes, such as for standard indexes. The server

generates VLV indexes dynamically based on attributes set in entries and the location of those entries in
the directory tree. Unlike standard entries, VLV entries are special entries in the database.

4.1. HOW THE VLV CONTROL WORKS IN LDAPSEARCH COMMANDS

Typically, you use the virtual list view (VLV) feature in LDAP client applications. However, for example
for testing purposes, you can use the Idapsearch utility to request only partial results.

To use the VLV feature in Idapsearch commands, specify the -E option for both the sss (server-side
sorting) and vlv search extensions:

I # Idapsearch ... -E 'sss=attribute_list' -E 'vlv=query_options'
The sss search extension has the following syntax:

I [']sss=[-]<attr[:OID]>[/[-]<attr[:OID]>...]

The vlv search extension has the following syntax:

I ['vlv=<before>/<after>(/<offset>/<count>|:<value>)

® before sets the number of entries returned before the targeted one.
e after sets the number of entries returned after the targeted one.

e index, count, and value help to determine the target entry. If you set value, the target entry is
the first one having its first sorting attribute starting with the value. Otherwise, you set count to
0, and the target entry is determined by the index value (starting from 1). If the count value is
higher than 0, the target entry is determined by the ratio index * number of entries / count.

4. USING VIRTUAL LIST VIEW CONTROL TO REQUEST A CONTIGUOUS SUBSET OF A LARGE SEARCH RESUL"

17

Red Hat Directory Server 12 Managing indexes

Example 4.1. Output of an Idapsearch command with VLV search extension

The following command searches in ou=People,dc=example,dc=com. The server then sorts the
results by the en attribute and returns the uid attributes of the 70th entry together with one entry
before and two entries after the offset.

ldapsearch -D "cn=Directory Manager" -W -H Idap://server.example.com -b
"ou=People,dc=example,dc=com" -s one -x -E 'sss=cn’ -E 'vlv=1/2/70/0" uid
user069, People, example.com

dn: uid=user069,ou=People,dc=example,dc=com

uid: user069

user070, People, example.com
dn: uid=user070,o0u=People,dc=example,dc=com
uid: user070

user071, People, example.com
dn: uid=user071,ou=People,dc=example,dc=com
uid: user071

user072, People, example.com
dn: uid=user072,0u=People,dc=example,dc=com
uid: user072

search result

search: 2

result: 0 Success

control: 1.2.840.113556.1.4.474 false MIQAAAADCgEA

sortResult: (0) Success

control: 2.16.840.1.113730.3.4.10 false MIQAAAALAgFGAgMAnaQKAQA=
vlvResult: pos=70 count=40356 context= (0) Success

numResponses: 5
numEntries: 4
Press [before/after(/offset/count|:value)] Enter for the next window.

Additional resources

The -E parameter description in the ldapsearch(1) man page.

4.2. ENABLING UNAUTHENTICATED USERS TO USE THE VLV
CONTROL

By default, the access control instruction (ACI) in the
0id=2.16.840.1.113730.3.4.9,cn=features,ch=config entry enables only authenticated users to use the
VLV control. To enable also non-authenticated users to use the VLV control, update the ACl by
changing userdn = "ldap:///all" to userdn = "ldap:///anyone"

Procedure

® Update the ACl in 0id=2.16.840.1.113730.3.4.9,cn=features,cn=config:

I # ldapmodify -D " cn=Directory Manager" -W -H Idap://server.example.com -x

18

4. USING VIRTUAL LIST VIEW CONTROL TO REQUEST A CONTIGUOUS SUBSET OF A LARGE SEARCH RESUL"

dn: 0id=2.16.840.1.113730.3.4.9,cn=features,cn=config

changetype: modify

replace: aci

aci: (targetattr != "aci")(version 3.0; acl "VLV Request Control"; allow(read, search,
compare, proxy) userdn = "ldap:///anyone";)

Verification

® Perform a query with VLV control not specify a bind user:

|dapsearch -H Idap://server.example.com -b " ou=People,dc=example,dc=com’ -s one
-x -E 'sss=cn' -E 'vlv=1/2/70/0' uid
This command requires that the server allows anonymous binds.

If the command succeeds but returns no entries, run the query again with a bind user to ensure
that the query works when using authentication.

Additional resources

® Disabling anonymous binds

4.3. CREATING A VLV INDEX USING THE COMMAND LINE TO
IMPROVE THE SPEED OF VLV QUERIES

Follow this procedure to create a virtual list view (VLV) index, also called browsing index, for entries in

ou=People,dc=example,dc=com that contain a mail attribute and have the objectClass attribute set
to person.

Prerequisites

® Your client applications use the VLV control.
e C(lient applications require to query a contiguous subset of a large search result.

® The directory contains a large number of entries.

Procedure

1. Create the VLV search entry:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend viv-index
add-search --name " VLV People" --search-base "ou=People,dc=example,dc=com" --
search-filter "(&(objectClass=person)(mail=*))" --search-scope 2 userRoot

This command uses the following options:
® --name sets the name of the search entry. This can be any name.

e --search-base sets the base DN for the VLV index. Directory Server creates the VLV index
on this entry.

19

https://access.redhat.com/documentation/en-us/red_hat_directory_server/12/html-single/securing_red_hat_directory_server/index#assembly_disabling-anonymous-binds_securing-rhds

Red Hat Directory Server 12 Managing indexes

--search-scope sets the scope of the search to run for entries in the VLV index. You can
set this option to 0 (base search), 1 (one-level search), or 2 (subtree search).

--search-filter sets the filter Directory Server applies when it creates the VLV index. Only
entries that match this filter become part of the index.

userRoot is the name of the database in which to create the entry.

2. Create the index entry:

dsconf -D "cn=Directory Manager" Idap://server.example.com backend viv-index
add-index --index-name " VLV People - cn sn" --parent-name " VLV People" --sort ""cn
sn" --index-it userRoot

This command uses the following options:

--index-name sets the name of the index entry. This can be any name.

--parent-name sets the name of the VLV search entry and must match the name you set in
the previous step.

--sort sets the attribute names and their sort order. Separate the attributes by space.

--index-it causes that Directory Server automatically starts an index task after the entry was
created.

userRoot is the name of the database in which to create the entry.

Verification

20

1. Verify the successful creation of the VLV index in the
/var/log/dirsrv/slapd-instance_name/errors file:

[26/Nov/2021:11:32:59.001988040 +0100] - INFO - bdb_db2index - userroot: Indexing VLV:
VLV People - cn sn

[26/Nov/2021:11:32:59.507092414 +0100] - INFO - bdb_db2index - userroot: Indexed 1000
entries (2%).

[26/Nov/2021:11:33:21.450916820 +0100] - INFO - bdb_db2index - userroot: Indexed 40000
entries (98%).

[26/Nov/2021:11:33:21.671564324 +0100] - INFO - bdb_db2index - userroot: Finished
indexing.

2. Use the VLV control in an Idapsearch command to query only specific records from the

directory:

|dapsearch -D "cn=Directory Manager" -W -H Idap://server.example.com -b
"ou=People,dc=example,dc=com" -s one -x -E 'sss=cn' -E 'vlv=1/2/70/0" uid
user069, People, example.com

dn: uid=user069,o0u=People,dc=example,dc=com

cn: user069

user070, People, example.com
dn: uid=user070,o0u=People,dc=example,dc=com
cn: user070

4. USING VIRTUAL LIST VIEW CONTROL TO REQUEST A CONTIGUOUS SUBSET OF A LARGE SEARCH RESUL"

user071, People, example.com
dn: uid=user071,ou=People,dc=example,dc=com
cn: user071

user072, People, example.com

dn: uid=user072,o0u=People,dc=example,dc=com
cn: user072

This example assumes you have entries continuously named uid=user001 to at least
uid=user072in ou=People,dc=example,dc=com.

Additional resources
® The -E parameter description in the Idapsearch(1) man page.

® The VLV control in [dapsearch commands

4.4. CREATING A VLV INDEX USING THE WEB CONSOLE TO IMPROVE
THE SPEED OF VLV QUERIES

Follow this procedure to create a virtual list view (VLV) index, also called browsing index, for entries in

ou=People,dc=example,dc=com that contain a mail attribute and have the objectClass attribute set
to person.

Prerequisites

® You are logged in to the instance in the web console.
® Your client applications use the VLV control.
e Client applications require to query a contiguous subset of a large search result.

® The directory contains a large number of entries.

Procedure
1. Navigate to Database — Suffixes = dc=example,dc=com — VLV Indexes.

2. Click Create VLV Index, and fill the fields:

21

Red Hat Directory Server 12 Managing indexes

Create VLV Search Index X

VLV Index Name VLV People

Search Base ou=People,dc=example dc=com
Search Filter (&(objectClass=person)(mail=*))
Search Scope one -

After creating this VLV Search entry you can goto the table and add VLV Sort Indexes to
this VLV Search. After adding the Sort Indexes you will need to reindex the VLV Index to
make it active.

Save VLV Index Cancel

® VLV Index Name: The name of the search entry. This can be any name.

e Search base: The base DN for the VLV index. Directory Server creates the VLV index on
this entry.

e Search Filter: The filter Directory Server applies when it creates the VLV index. Only entries
that match this filter become part of the index.

e Search Scope: The scope of the search to run for entries in the VLV index.
3. Click Save VLV Index.
4. Click Create Sort Index

5. Enter the attribute names, and select Reindex After Saving.

Create VLV Sort Index X

Build a list of attributes to form the "Sort" index

Reindex After Saving

Create Sort Index Cancel

6. Click Create Sort Index.

Verification

22

4. USING VIRTUAL LIST VIEW CONTROL TO REQUEST A CONTIGUOUS SUBSET OF A LARGE SEARCH RESUL"

1. Navigate to Monitoring = Logging = Errors Log and verify the successful creation of the VLV
index:

[26/Nov/2021:11:32:59.001988040 +0100] - INFO - bdb_db2index - userroot: Indexing VLV:
VLV People - cn sn

[26/Nov/2021:11:32:59.507092414 +0100] - INFO - bdb_db2index - userroot: Indexed 1000
entries (2%).

[26/Nov/2021:11:33:21.450916820 +0100] - INFO - bdb_db2index - userroot: Indexed 40000
entries (98%).

[26/Nov/2021:11:33:21.671564324 +0100] - INFO - bdb_db2index - userroot: Finished
indexing.

2. Use the VLV control in an Idapsearch command to query only specific records from the
directory:

ldapsearch -D "cn=Directory Manager" -W -H Idap://server.example.com -b
"ou=People,dc=example,dc=com" -s one -x -E 'sss=cn' -E 'vlv=1/2/70/0" uid
user069, People, example.com

dn: uid=user069,o0u=People,dc=example,dc=com

cn: user069

user070, People, example.com
dn: uid=user070,o0u=People,dc=example,dc=com
cn: user070

user071, People, example.com

dn: uid=user071,ou=People,dc=example,dc=com
cn: user071

user072, People, example.com

dn: uid=user072,o0u=People,dc=example,dc=com
cn: user072

This example assumes you have entries continuously named uid=user001 to at least
uid=user072in ou=People,dc=example,dc=com.

Additional resources

® The -E parameter description in the Idapsearch(1) man page.

® The VLV control in [dapsearch commands

23

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. DEFINING A DEFAULT INDEX THAT APPLIES TO ALL NEWLY CREATED DATABASES
	1.1. THE DIFFERENT INDEX TYPES
	1.2. BALANCING THE BENEFITS OF INDEXING
	1.3. DEFAULT INDEX ATTRIBUTES
	1.4. MAINTAINING THE DEFAULT INDEX

	CHAPTER 2. MAINTAINING THE INDEXES OF A SPECIFIC DATABASE
	2.1. THE DIFFERENT INDEX TYPES
	2.2. BALANCING THE BENEFITS OF INDEXING
	2.3. DEFAULT INDEX ATTRIBUTES
	2.4. MAINTAINING THE INDEXES OF A SPECIFIC DATABASE USING THE COMMAND LINE
	2.5. RECREATING AN INDEX WHILE THE INSTANCE OFFLINE
	2.6. MAINTAINING THE INDEXES OF A SPECIFIC DATABASE USING THE WEB CONSOLE

	CHAPTER 3. CHANGING THE SEARCH KEY LENGTH IN A SUBSTRING INDEX
	3.1. CHANGING THE SEARCH KEY LENGTH IN A SUBSTRING INDEX USING THE COMMAND LINE

	CHAPTER 4. USING VIRTUAL LIST VIEW CONTROL TO REQUEST A CONTIGUOUS SUBSET OF A LARGE SEARCH RESULT
	4.1. HOW THE VLV CONTROL WORKS IN LDAPSEARCH COMMANDS
	4.2. ENABLING UNAUTHENTICATED USERS TO USE THE VLV CONTROL
	4.3. CREATING A VLV INDEX USING THE COMMAND LINE TO IMPROVE THE SPEED OF VLV QUERIES
	4.4. CREATING A VLV INDEX USING THE WEB CONSOLE TO IMPROVE THE SPEED OF VLV QUERIES

