
Red Hat Decision Manager 7.1

Packaging and deploying a Red Hat Decision
Manager project

Last Updated: 2020-04-30

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat
Decision Manager project

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to package and deploy a project in Red Hat Decision Manager 7.1.

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. RED HAT DECISION MANAGER PROJECT PACKAGING

CHAPTER 2. PROJECT DEPLOYMENT IN DECISION CENTRAL
2.1. CONFIGURING A DECISION SERVER TO CONNECT TO DECISION CENTRAL
2.2. CONFIGURING AN EXTERNAL MAVEN REPOSITORY FOR DECISION CENTRAL AND DECISION SERVER

2.3. EXPORTING A DECISION CENTRAL PROJECT TO AN EXTERNAL MAVEN REPOSITORY
2.4. BUILDING AND DEPLOYING A PROJECT IN DECISION CENTRAL
2.5. DEPLOYMENT UNITS IN DECISION CENTRAL

2.5.1. Creating a deployment unit in Decision Central
2.5.2. Starting, stopping, and removing deployment units in Decision Central

2.6. EDITING THE GAV VALUES FOR A PROJECT IN DECISION CENTRAL
2.7. DUPLICATE GAV DETECTION IN DECISION CENTRAL

2.7.1. Managing duplicate GAV detection settings in Decision Central

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT DECISION CENTRAL
3.1. CONFIGURING A KIE MODULE DESCRIPTOR FILE

3.1.1. KIE module configuration properties
3.1.2. KIE base attributes supported in KIE modules
3.1.3. KIE session attributes supported in KIE modules

3.2. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN MAVEN
3.3. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN A JAVA APPLICATION
3.4. STARTING A SERVICE IN DECISION SERVER
3.5. STOPPING AND REMOVING A SERVICE IN DECISION SERVER

CHAPTER 4. ADDITIONAL RESOURCES

APPENDIX A. VERSIONING INFORMATION

3

4

5
5

6
7
8
8
9
9
9

10
10

12
12
14
16
18
19
22
25
26

27

28

Table of Contents

1

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

2

PREFACE
As a business rules developer, you must build and deploy a developed Red Hat Decision Manager project
to a Decision Server in order to begin using the services you have created in Red Hat Decision Manager.
You can develop and deploy a project from Decision Central, from an independent Maven project, from
a Java application, or using a combination of various platforms. For example, you can develop a project
in Decision Central and deploy it using the Decision Server REST API, or develop a project in Maven
configured with Decision Central and deploy it using Decision Central.

Prerequisite

The project to be deployed has been developed and tested. For projects in Decision Central, consider
using test scenarios to test the assets in your project. For example, see Testing a decision service using
test scenarios.

PREFACE

3

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/testing_a_decision_service_using_test_scenarios

CHAPTER 1. RED HAT DECISION MANAGER PROJECT
PACKAGING

Red Hat Decision Manager projects contain the business assets that you develop in Red Hat Decision
Manager. Each project in Red Hat Decision Manager is packaged as a Knowledge JAR (KJAR) file with
configuration files such as a Maven project object model file (pom.xml), which contains build,
environment, and other information about the project, and a KIE module descriptor file (kmodule.xml),
which contains the KIE base and KIE session configurations for the assets in the project. You deploy the
packaged KJAR file to a Decision Server that runs the decision services and other deployable assets
(collectively referred to as services) from that KJAR file. These services are consumed at run time
through an instantiated KIE container, or deployment unit. Project KJAR files are stored in a Maven
repository and identified by three values: GroupId, ArtifactId, and Version (GAV). The Version value
must be unique for every new version that might need to be deployed. To identify an artifact (including a
KJAR file), you need all three GAV values.

Projects in Decision Central are packaged automatically when you build and deploy the projects. For
projects outside of Decision Central, such as independent Maven projects or projects within a Java
application, you must configure the KIE module descriptor settings in an appended kmodule.xml file or
directly in your Java application in order to build and deploy the projects.

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

4

CHAPTER 2. PROJECT DEPLOYMENT IN DECISION CENTRAL
You can use Decision Central to develop your business assets and services and to manage Decision
Servers configured for project deployment. When your project is developed, you can build the project in
Decision Central and deploy it automatically to the Decision Server. To enable automatic deployment,
Decision Central includes a built-in Maven repository. From Decision Central, you can start, stop, or
remove the deployment units (KIE containers) that contain the services and their project versions that
you have built and deployed.

You can also connect several Decision Servers to the same Decision Central instance and group them
into different server configurations (in Menu → Deploy → Execution Servers). Servers belonging to the
same server configuration run the same services, but you can deploy different projects or different
versions of projects on different configurations.

For example, you could have test servers in the Test configuration and production servers in a
Production configuration. As you develop business assets and services in a project, you deploy the
project on the Test server configuration and then, when a version of the project is sufficiently tested,
you can deploy it on the Production server configuration. In this case, to keep developing the project,
change the version in the project settings. Then the new version and the old version are seen as
different artifacts in the built-in Maven repository. You can deploy the new version on the Test server
configuration and keep running the old version on the Production server configuration. This
deployment process is simple but has significant limitations. Notably, there is not enough access control:
a developer can deploy a project directly into a production environment.

IMPORTANT

You cannot move a Decision Server into a different server configuration using Decision
Central. You must change the configuration file of the server to change the server
configuration name for it.

2.1. CONFIGURING A DECISION SERVER TO CONNECT TO DECISION
CENTRAL

If a Decision Server is not already configured in your Red Hat Decision Manager environment, or if you
require additional Decision Servers in your Red Hat Decision Manager environment, you must configure
a Decision Server to connect to Decision Central.

NOTE

If you are deploying Decision Server on Red Hat OpenShift Container Platform, see
Deploying a Red Hat Decision Manager authoring or managed server environment on Red
Hat OpenShift Container Platform for instructions about configuring it to connect to
Decision Central.

Prerequisite

Decision Server is installed. For installation options, see Planning a Red Hat Decision Manager
installation.

Procedure

1. In your Red Hat Decision Manager installation directory, navigate to the standalone-full.xml
file. For example, if you use a Red Hat JBoss EAP installation for Red Hat Decision Manager, go
to $EAP_HOME/standalone/configuration/standalone-full.xml.

CHAPTER 2. PROJECT DEPLOYMENT IN DECISION CENTRAL

5

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/deploying_a_red_hat_decision_manager_authoring_or_managed_server_environment_on_red_hat_openshift_container_platform
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/planning_a_red_hat_decision_manager_installation

2. Open standalone-full.xml and under the <system-properties> tag, set the following
properties:

org.kie.server.controller.user: The user name of a user who can log in to the Decision
Central.

org.kie.server.controller.pwd: The password of the user who can log in to the Decision
Central.

org.kie.server.controller: The URL for connecting to the API of Decision Central. Normally,
the URL is http://<centralhost>:<centralport>/decision-central/rest/controller, where
<centralhost> and <centralport> are the host name and port for Decision Central. If
Decision Central is deployed on OpenShift, remove decision-central/ from the URL.

org.kie.server.location: The URL for connecting to the API of Decision Server. Normally,
the URL is http://<serverhost>:<serverport>/kie-server/services/rest/server, where
<serverhost> and <serverport> are the host name and port for Decision Server.

org.kie.server.id: The name of a server configuration. If this server configuration does not
exist in Decision Central, it is created automatically when Decision Server connects to
Decision Central.

Example:

3. Start or restart the Decision Server.

2.2. CONFIGURING AN EXTERNAL MAVEN REPOSITORY FOR
DECISION CENTRAL AND DECISION SERVER

You can configure Decision Central and Decision Server to use an external Maven repository, such as
Nexus or Artifactory, instead of the built-in repository. This enables Decision Central and Decision
Server to access and download artifacts that are maintained in the external Maven repository.

NOTE

For information about configuring an external Maven repository for an authoring
environment on Red Hat OpenShift Container Platform, see Deploying a Red Hat
Decision Manager authoring or managed server environment on Red Hat OpenShift
Container Platform.

Prerequisite

Decision Central and Decision Server are installed. For installation options, see Planning a Red Hat
Decision Manager installation.

Procedure

1. Create a Maven settings.xml file with connection and access details for your external

<property name="org.kie.server.controller.user" value="central_user"/>
<property name="org.kie.server.controller.pwd" value="central_password"/>
<property name="org.kie.server.controller" value="http://central.example.com:8080/decision-
central/rest/controller"/>
<property name="org.kie.server.location" value="http://kieserver.example.com:8080/kie-
server/services/rest/server"/>
<property name="org.kie.server.id" value="production-servers"/>

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

6

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/deploying_a_red_hat_decision_manager_authoring_or_managed_server_environment_on_red_hat_openshift_container_platform#environment-authoring-managed-con
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/planning_a_red_hat_decision_manager_installation

1. Create a Maven settings.xml file with connection and access details for your external
repository. For details about the settings.xml file, see the Maven Settings Reference.

2. Save the file in a known location, for example, /opt/custom-config/settings.xml.

3. In your Red Hat Decision Manager installation directory, navigate to the standalone-full.xml
file. For example, if you use a Red Hat JBoss EAP installation for Red Hat Decision Manager, go
to $EAP_HOME/standalone/configuration/standalone-full.xml.

4. Open standalone-full.xml and under the <system-properties> tag, set the
kie.maven.settings.custom property to the full path name of the settings.xml file.
For example:

5. Start or restart Decision Central and Decision Server.

Next steps

For each Decision Central project that you want to export or push as a KJAR artifact to the external
Maven repository, you must add the repository information in the project pom.xml file. For instructions,
see Section 2.3, “Exporting a Decision Central project to an external Maven repository” .

2.3. EXPORTING A DECISION CENTRAL PROJECT TO AN EXTERNAL
MAVEN REPOSITORY

If you configured an external Maven repository for Decision Central and Decision Server, you must add
the repository information in the pom.xml file for each Decision Central project that you want to export
or push as a KJAR artifact to that external repository. You can then progress the project KJAR files
through the repository as necessary to implement your integration process, and deploy the KJAR files
using Decision Central or the Decision Server REST API.

Prerequisite

You configured Decision Central and Decision Server to use an external Maven repository. If you
deployed Decision Central on-premise, for more information about configuring an external Maven
repository, see Section 2.2, “Configuring an external Maven repository for Decision Central and Decision
Server”. If you deployed your authoring environment on Red Hat OpenShift Container Platform, for
more information, see Deploying a Red Hat Decision Manager authoring or managed server environment
on Red Hat OpenShift Container Platform.

Procedure

1. In Decision Central, go to Menu → Design → Projects, click the project name, and select any
asset in the project.

2. In the Project Explorer menu on the left side of the screen, click the Customize View gear icon
and select Repository View → pom.xml.

3. Add the following settings at the end of the project pom.xml file (before the </project> closing
tag). The values must correspond to the settings that you defined in your settings.xml file.

<property name="kie.maven.settings.custom" value="/opt/custom-config/settings.xml"/>

<distributionManagement>
<repository>
<id>${maven-repo-id}</id>

CHAPTER 2. PROJECT DEPLOYMENT IN DECISION CENTRAL

7

https://maven.apache.org/settings.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/deploying_a_red_hat_decision_manager_authoring_or_managed_server_environment_on_red_hat_openshift_container_platform#environment-authoring-managed-con

4. Click Save to save the pom.xml file changes.

Repeat this procedure for each Decision Central project that you want to export or push as a KJAR
artifact to the external Maven repository.

2.4. BUILDING AND DEPLOYING A PROJECT IN DECISION CENTRAL

After your project is developed, you can build the project in Decision Central and deploy it to the
configured Decision Server. Projects in Decision Central are packaged automatically as KJARs with all
necessary components when you build and deploy the projects.

Procedure

1. In Decision Central, go to Menu → Design → Projects and click the project name.

2. In the upper-right corner, click Deploy to build and deploy the project.

NOTE

To compile the project without deploying it to Decision Server, click Build.

If only one Decision Server is connected to Decision Central, or if all connected Decision
Servers are in the same server configuration, the services in the project are started
automatically in a deployment unit (KIE container).

If multiple server configurations are available, a deployment dialog is displayed in Decision
Central, prompting you to specify server and deployment details.

3. If the deployment dialog appears, verify or set the following values:

Deployment Unit Id / Deployment Unit Alias: Verify the name and alias of the deployment
unit (KIE container) running the service within the Decision Server. You normally do not
need to change these settings.

Server Configuration: Select the server configuration for deploying this project. You can
later deploy it to other configured servers without rebuilding the project.

Start Deployment Unit?: Verify that this box is selected to start the deployment unit (KIE
container). If you clear this box, the service is deployed onto the server but not started.

2.5. DEPLOYMENT UNITS IN DECISION CENTRAL

The services in a project are consumed at run time through an instantiated KIE container, or deployment
unit, on a configured Decision Server. When you build and deploy a project in Decision Central, the
deployment unit is created automatically in the configured server. You can start, stop, or remove
deployment units in Decision Central as needed. You can also create additional deployment units from
previously built projects and start them on existing or new Decision Servers configured in Decision
Central.

<url>${maven-repo-url}</url>
<layout>default</layout>
</repository>
</distributionManagement>

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

8

2.5.1. Creating a deployment unit in Decision Central

One or more deployment units should already exist as part of your Red Hat Decision Manager
configuration, but if not, you can create a deployment unit from a project that was previously built in
Decision Central.

Prerequisite

The project or projects for which you are creating the new deployment unit has been built in Decision
Central.

Procedure

1. In Decision Central, go to Menu → Deploy → Execution servers.

2. Under Server Configurations, select an existing configuration or click New Server
Configuration to create a new configuration.

3. Under Deployment Units, click Add Deployment Unit.

4. In the table within the window, select a GAV and click Select next to the GAV to populate the
deployment unit data fields.

5. Select the Start Deployment Unit? box to start the service immediately, or clear the box to
start it later.

6. Click Finish.
The new deployment unit for the service is created and placed on the Decision Servers that are
configured for this server configuration. If you have selected Start Deployment Unit?, the
service is started.

2.5.2. Starting, stopping, and removing deployment units in Decision Central

When a deployment unit is started, the services in the deployment unit are available for use. If only one
Decision Server is connected to Decision Central, or if all connected Decision Servers are in the same
server configuration, services are started in a deployment unit automatically when a project is deployed.
If multiple server configurations are available, you are prompted upon deployment to specify server and
deployment details and to start the deployment unit. However, at any time you can manually start, stop,
or remove deployment units in Decision Central to manage your deployed services as needed.

Procedure

1. In Decision Central, go to Menu → Deploy → Execution servers.

2. Under Server Configurations, select a configuration.

3. Under Deployment Units, select a deployment unit.

4. Click Start, Stop, or Remove in the upper-right corner. To remove a running deployment unit,
stop it and then remove it.

2.6. EDITING THE GAV VALUES FOR A PROJECT IN DECISION
CENTRAL

The GroupId, ArtifactId, and Version (GAV) values identify a project in a Maven repository. When

CHAPTER 2. PROJECT DEPLOYMENT IN DECISION CENTRAL

9

Decision Central and Decision Server are on the same file system and use the same Maven repository,
the project is automatically updated in the repository each time you build a new version of your project.
However, if Decision Central and Decision Server are on separate file systems and use separate local
Maven repositories, you must update a project GAV value, usually the version, for any new versions of
the project to ensure that the project is seen as a different artifact alongside the old version.

NOTE

For development purposes only, you can add the SNAPSHOT suffix in the project
version to instruct Maven to get a new snapshot update according to the Maven policy.
Do not use the SNAPSHOT suffix for a production environment.

You can set the GAV values in the project Settings screen.

Procedure

1. In Decision Central, go to Menu → Design → Projects and click the project name.

2. Click the project Settings tab.

3. In General Settings, modify the Group ID, Artifact ID, or Version fields as necessary. If you
have deployed the project and are developing a new version, usually you need to increase the
version number.

NOTE

For development purposes only, you can add the SNAPSHOT suffix in the
project version to instruct Maven to get a new snapshot update according to the
Maven policy. Do not use the SNAPSHOT suffix for a production environment.

4. Click Save to finish.

2.7. DUPLICATE GAV DETECTION IN DECISION CENTRAL

In Decision Central, all Maven repositories are checked for any duplicated GroupId, ArtifactId, and
Version (GAV) values in a project. If a GAV duplicate exists, the performed operation is canceled.

Duplicate GAV detection is executed every time you perform the following operations:

Save a project definition for the project.

Save the pom.xml file.

Install, build, or deploy a project.

The following Maven repositories are checked for duplicate GAVs:

Repositories specified in the <repositories> and <distributionManagement> elements of the
pom.xml file.

Repositories specified in the Maven settings.xml configuration file.

2.7.1. Managing duplicate GAV detection settings in Decision Central

Decision Central users with the admin role can modify the list of repositories that are checked for

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

10

Decision Central users with the admin role can modify the list of repositories that are checked for
duplicate GroupId, ArtifactId, and Version (GAV) values for a project.

Procedure

1. In Decision Central, go to Menu → Design → Projects and click the project name.

2. Click the project Settings tab and then click Validation to open the list of repositories.

3. Select or clear any of the listed repository options to enable or disable duplicate GAV detection.
In the future, duplicate GAVs will be reported for only the repositories you have enabled for
validation.

NOTE

To disable this feature, set the org.guvnor.project.gav.check.disabled system
property to true for Decision Central at system startup:

$ ~/EAP_HOME/bin/standalone.sh -c standalone-full.xml
-Dorg.guvnor.project.gav.check.disabled=true

CHAPTER 2. PROJECT DEPLOYMENT IN DECISION CENTRAL

11

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT DECISION
CENTRAL

As an alternative to developing and deploying projects in the Decision Central interface, you can use
independent Maven projects or your own Java applications to develop Red Hat Decision Manager
projects and deploy them in KIE containers (deployment units) to a configured Decision Server. You can
then use the Decision Server REST API to start, stop, or remove the KIE containers that contain the
services and their project versions that you have built and deployed. This flexibility enables you to
continue to use your existing application work flow to develop business assets using Red Hat Decision
Manager features.

Projects in Decision Central are packaged automatically when you build and deploy the projects. For
projects outside of Decision Central, such as independent Maven projects or projects within a Java
application, you must configure the KIE module descriptor settings in an appended kmodule.xml file or
directly in your Java application in order to build and deploy the projects.

3.1. CONFIGURING A KIE MODULE DESCRIPTOR FILE

A KIE module is a Maven project or module with an additional metadata file META-INF/kmodule.xml. All
Red Hat Decision Manager projects require a kmodule.xml file in order to be properly packaged and
deployed. This kmodule.xml file is a KIE module descriptor that defines the KIE base and KIE session
configurations for the assets in a project. A KIE base is a repository that contains all rules and other
business assets in Red Hat Decision Manager but does not contain any runtime data. A KIE session
stores and executes runtime data and is created from a KIE base or directly from a KIE container if you
have defined the KIE session in the kmodule.xml file.

If you create projects outside of Decision Central, such as independent Maven projects or projects
within a Java application, you must configure the KIE module descriptor settings in an appended
kmodule.xml file or directly in your Java application in order to build and deploy the projects.

Procedure

1. In the ~/resources/META-INF directory of your project, create a kmodule.xml metadata file
with at least the following content:

This empty kmodule.xml file is sufficient to produce a single default KIE base that includes all
files found under your project resources path. The default KIE base also includes a single
default KIE session that is triggered when you create a KIE container in your application at build
time.

The following example is a more advanced kmodule.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
</kmodule>

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://www.drools.org/xsd/kmodule">
 <configuration>
 <property key="drools.evaluator.supersetOf"
value="org.mycompany.SupersetOfEvaluatorDefinition"/>
 </configuration>
 <kbase name="KBase1" default="true" eventProcessingMode="cloud"

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

12

This example defines two KIE bases. Specific packages of rule assets are included with both KIE
bases. When you specify packages in this way, you must organize your rule files in a folder
structure that reflects the specified packages. Two KIE sessions are instantiated from the
KBase1 KIE base, and one KIE session from KBase2. The KIE session from KBase2 is a
stateless KIE session, which means that data from a previous invocation of the KIE session (the
previous session state) is discarded between session invocations. That KIE session also specifies
a file (or a console) logger, a WorkItemHandler, and listeners of the three supported types
shown: ruleRuntimeEventListener, agendaEventListener and processEventListener. The
<configuration> element defines optional properties that you can use to further customize
your kmodule.xml file.

As an alternative to manually appending a kmodule.xml file to your project, you can use a
KieModuleModel instance within your Java application to programatically create a
kmodule.xml file that defines the KIE base and a KIE session, and then add all resources in your
project to the KIE virtual file system KieFileSystem.

Creating kmodule.xml programmatically and adding it to KieFileSystem

equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg1">
 <ksession name="KSession1_1" type="stateful" default="true" />
 <ksession name="KSession1_2" type="stateful" default="true" beliefSystem="jtms" />
 </kbase>
 <kbase name="KBase2" default="false" eventProcessingMode="stream"
equalsBehavior="equality" declarativeAgenda="enabled" packages="org.domain.pkg2,
org.domain.pkg3" includes="KBase1">
 <ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
 <fileLogger file="debugInfo" threaded="true" interval="10" />
 <workItemHandlers>
 <workItemHandler name="name" type="new org.domain.WorkItemHandler()" />
 </workItemHandlers>
 <listeners>
 <ruleRuntimeEventListener type="org.domain.RuleRuntimeListener" />
 <agendaEventListener type="org.domain.FirstAgendaListener" />
 <agendaEventListener type="org.domain.SecondAgendaListener" />
 <processEventListener type="org.domain.ProcessListener" />
 </listeners>
 </ksession>
 </kbase>
</kmodule>

import org.kie.api.KieServices;
import org.kie.api.builder.model.KieModuleModel;
import org.kie.api.builder.model.KieBaseModel;
import org.kie.api.builder.model.KieSessionModel;
import org.kie.api.builder.KieFileSystem;

KieServices kieServices = KieServices.Factory.get();
KieModuleModel kieModuleModel = kieServices.newKieModuleModel();

KieBaseModel kieBaseModel1 = kieModuleModel.newKieBaseModel("KBase1")
 .setDefault(true)
 .setEqualsBehavior(EqualityBehaviorOption.EQUALITY)
 .setEventProcessingMode(EventProcessingOption.STREAM);

KieSessionModel ksessionModel1 = kieBaseModel1.newKieSessionModel("KSession1_1")
 .setDefault(true)

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT DECISION CENTRAL

13

2. After you configure the kmodule.xml file either manually or programmatically in your project,
retrieve the KIE bases and KIE sessions from the KIE container to verify the configurations:

If KieBase or KieSession have been configured as default="true" in the kmodule.xml file, as
in the previous kmodule.xml example, you can retrieve them from the KIE container without
passing any names:

For more information about the kmodule.xml file, download the Red Hat Decision Manager
[VERSION] Source Distribution ZIP file from the Red Hat Customer Portal and see the kmodule.xsd
XML schema located at $FILE_HOME/rhdm-$VERSION-sources/kie-api-parent-$VERSION/kie-
api/src/main/resources/org/kie/api/.

NOTE

KieBase or KiePackage serialization is not supported in Red Hat Decision Manager 7.1.
For more information, see Is serialization of kbase/package supported in BRMS 6/BPM
Suite 6/RHDM 7?.

3.1.1. KIE module configuration properties

The optional <configuration> element in the KIE module descriptor file (kmodule.xml) of your project
defines property key and value pairs that you can use to further customize your kmodule.xml file.

Example configuration property in a kmodule.xml file

 .setType(KieSessionModel.KieSessionType.STATEFUL)
 .setClockType(ClockTypeOption.get("realtime"));

KieFileSystem kfs = kieServices.newKieFileSystem();
kfs.writeKModuleXML(kieModuleModel.toXML());

KieServices kieServices = KieServices.Factory.get();
KieContainer kContainer = kieServices.getKieClasspathContainer();

KieBase kBase1 = kContainer.getKieBase("KBase1");
KieSession kieSession1 = kContainer.newKieSession("KSession1_1"),
 kieSession2 = kContainer.newKieSession("KSession1_2");

KieBase kBase2 = kContainer.getKieBase("KBase2");
StatelessKieSession kieSession3 = kContainer.newStatelessKieSession("KSession2_1");

KieContainer kContainer = ...

KieBase kBase1 = kContainer.getKieBase();
KieSession kieSession1 = kContainer.newKieSession(),
 kieSession2 = kContainer.newKieSession();

KieBase kBase2 = kContainer.getKieBase();
StatelessKieSession kieSession3 = kContainer.newStatelessKieSession();

<kmodule>
 ...
 <configuration>
 <property key="drools.dialect.default" value="java"/>

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

14

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://access.redhat.com/solutions/3216951

The following are the <configuration> property keys and values supported in the KIE module descriptor
file (kmodule.xml) for your project:

drools.dialect.default

Sets the default Drools dialect.
Supported values: java, mvel

drools.accumulate.function.$FUNCTION

Links a class that implements an accumulate function to a specified function name, which allows you
to add custom accumulate functions into the decision engine.

drools.evaluator.$EVALUATION

Links a class that implements an evaluator definition to a specified evaluator name so that you can
add custom evaluators into the decision engine. An evaluator is similar to a custom operator.

drools.dump.dir

Sets a path to the Red Hat Decision Manager dump/log directory.

drools.defaultPackageName

Sets a default package for the business assets in your project.

drools.parser.processStringEscapes

Sets the String escape function. If this property is set to false, the \n character will not be interpreted
as the newline character.
Supported values: true (default), false

drools.kbuilder.severity.$DUPLICATE

 ...
 </configuration>
 ...
</kmodule>

<property key="drools.dialect.default"
 value="java"/>

<property key="drools.accumulate.function.hyperMax"
 value="org.drools.custom.HyperMaxAccumulate"/>

<property key="drools.evaluator.soundslike"
 value="org.drools.core.base.evaluators.SoundslikeEvaluatorsDefinition"/>

<property key="drools.dump.dir"
 value="$DIR_PATH/dump/log"/>

<property key="drools.defaultPackageName"
 value="org.domain.pkg1"/>

<property key="drools.parser.processStringEscapes"
 value="true"/>

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT DECISION CENTRAL

15

Sets a severity for instances of duplicate rules, processes, or functions reported when a KIE base is
built. For example, if you set duplicateRule to ERROR, then an error is generated for any duplicated
rules detected when the KIE base is built.
Supported key suffixes: duplicateRule, duplicateProcess, duplicateFunction

Supported values: INFO, WARNING, ERROR

drools.propertySpecific

Sets the property reactivity of the decision engine.
Supported values: DISABLED, ALLOWED, ALWAYS

drools.lang.level

Sets the DRL language level.
Supported values: DRL5, DRL6, DRL6_STRICT (default)

3.1.2. KIE base attributes supported in KIE modules

A KIE base is a repository that you define in the KIE module descriptor file (kmodule.xml) for your
project and contains all rules and other business assets in Red Hat Decision Manager. When you define
KIE bases in the kmodule.xml file, you can specify certain attributes and values to further customize
your KIE base configuration.

Example KIE base configuration in a kmodule.xml file

The following are the kbase attributes and values supported in the KIE module descriptor file
(kmodule.xml) for your project:

Table 3.1. KIE base attributes supported in KIE modules

Attribute Supported values Description

<property key="drools.kbuilder.severity.duplicateRule"
 value="ERROR"/>

<property key="drools.propertySpecific"
 value="ALLOWED"/>

<property key="drools.lang.level"
 value="DRL_STRICT"/>

<kmodule>
 ...
 <kbase name="KBase2" default="false" eventProcessingMode="stream" equalsBehavior="equality"
declarativeAgenda="enabled" packages="org.domain.pkg2, org.domain.pkg3" includes="KBase1">
 ...
 </kbase>
 ...
</kmodule>

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

16

name Any name Defines the name that retrieves KieBase
from KieContainer. This attribute is
mandatory.

includes Comma-separated list of
other KIE base objects in the
KIE module

Defines other KIE base objects and
artifacts to be included in this KIE base. A
KIE base can be contained in multiple KIE
modules if you declare it as a dependency
in the pom.xml file of the modules.

packages Comma-separated list of
packages to include in the KIE
base

Default: all

Defines packages of artifacts (such as
rules and processes) to be included in this
KIE base. By default, all artifacts in the
~/resources directory are included into
a KIE base. This attribute enables you to
limit the number of compiled artifacts.
Only the packages belonging to the list
specified in this attribute are compiled.

default true, false

Default: false

Determines whether a KIE base is the
default KIE base for a module so that it
can be created from the KIE container
without passing any name. Each module
can have only one default KIE base.

equalsBehavior identity, equality

Default: identity

Defines the behavior of Red Hat Decision
Manager when a new fact is inserted into
the working memory. If set to identity, a
new FactHandle is always created
unless the same object is already present
in the working memory. If set to equality,
a new FactHandle is created only if the
newly inserted object is not equal,
according to its equals() method, to an
existing fact.

eventProcessingMode cloud, stream

Default: cloud

Determines how events are processed in
the KIE base. If this property is set to
cloud, the KIE base treats events as
normal facts. If this property is set to
stream, temporal reasoning on events is
allowed.

declarativeAgenda disabled, enabled

Default: disabled

Determines whether the declarative
agenda is enabled or not.

Attribute Supported values Description

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT DECISION CENTRAL

17

3.1.3. KIE session attributes supported in KIE modules

A KIE session stores and executes runtime data and is created from a KIE base or directly from a KIE
container if you have defined the KIE session in the KIE module descriptor file (kmodule.xml) for your
project. When you define KIE bases and KIE sessions in the kmodule.xml file, you can specify certain
attributes and values to further customize your KIE session configuration.

Example KIE session configuration in a kmodule.xml file

The following are the ksession attributes and values supported in the KIE module descriptor file
(kmodule.xml) for your project:

Table 3.2. KIE session attributes supported in KIE modules

Attribute Supported values Description

name Any name Defines the name that retrieves
KieSession from KieContainer. This
attribute is mandatory.

type stateful, stateless

Default: stateful

Determines whether data is retained
(stateful) or discarded (stateless)
between invocations of the KIE session. A
session set to stateful enables you to
iteratively work with the working memory,
while a session set to stateless is
typically used for one-off execution of
assets. A stateless session stores a
knowledge state that is changed every
time a new fact is added, updated, or
deleted, and every time a rule is executed.
An execution in a stateless session has
no information about previous actions,
such rule executions.

default true, false

Default: false

Determines whether a KIE session is the
default session for a module so that it can
be created from the KIE container
without passing any name. Each module
can have only one default KIE session.

<kmodule>
 ...
 <kbase>
 ...
 <ksession name="KSession2_1" type="stateless" default="true" clockType="realtime">
 ...
 </kbase>
 ...
</kmodule>

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

18

clockType realtime, pseudo

Default: realtime

Determines whether event time stamps
are assigned by the system clock or by a
pseudo clock controlled by the
application. This clock is especially useful
for unit testing on temporal rules.

beliefSystem simple, jtms, defeasible

Default: simple

Defines the type of belief system used by
the KIE session. A belief system deduces
the truth from knowledge (facts). For
example, if a new fact is inserted based
on another fact which is later removed
from the decision engine, the system can
determine that the newly inserted fact
should be removed as well.

Attribute Supported values Description

3.2. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER
PROJECT IN MAVEN

If you want to deploy a Maven project outside of Decision Central to a configured Decision Server, you
can edit the project pom.xml file to package your project as a KJAR file and add a kmodule.xml file
with the KIE base and KIE session configurations for the assets in your project.

Prerequisites

You have a Mavenized project that contains Red Hat Decision Manager business assets.

Decision Server is installed and kie-server user access is configured. For installation options,
see Planning a Red Hat Decision Manager installation .

Procedure

1. In the pom.xml file of your Maven project, set the packaging type to kjar and add the kie-
maven-plugin build component:

The kjar packaging type activates the kie-maven-plugin component to validate and pre-
compile artifact resources. The <version> is the Maven artifact version for Red Hat Decision
Manager currently used in your project (for example, 7.11.0.Final-redhat-00002). These settings

<packaging>kjar</packaging>
...
<build>
 <plugins>
 <plugin>
 <groupId>org.kie</groupId>
 <artifactId>kie-maven-plugin</artifactId>
 <version>${rhdm.version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT DECISION CENTRAL

19

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/planning_a_red_hat_decision_manager_installation

are required to properly package the Maven project for deployment.

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

2. Add the following dependencies to the pom.xml file to generate an executable rule model from
your rule assets:

drools-canonical-model: Enables an executable canonical representation of a rule set
model that is independent from Red Hat Decision Manager

drools-model-compiler: Compiles the executable model into Red Hat Decision Manager
internal data structures so that it can be executed by the decision engine

Executable rule models are embeddable models that provide a Java-based representation of a
rule set for execution at build time. The executable model is a more efficient alternative to the
standard asset packaging in Red Hat Decision Manager and enables KIE containers and KIE
bases to be created more quickly, especially when you have large lists of DRL (Drools Rule
Language) files and other Red Hat Decision Manager assets.

For more information about executable rule models, see "Executable rule models" in Designing a
decision service using DRL rules.

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.1.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-canonical-model</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhdm.version}</version>
</dependency>

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

20

https://access.redhat.com/solutions/3363991
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/designing_a_decision_service_using_drl_rules#executable-model-con_execute-rules

3. In the ~/resources directory of your Maven project, create a META-INF/kmodule.xml
metadata file with at least the following content:

This kmodule.xml file is a KIE module descriptor that is required for all Red Hat Decision
Manager projects. You can use the KIE module to define one or more KIE bases and one or more
KIE sessions from each KIE base.

For more information about kmodule.xml configuration, see Section 3.1, “Configuring a KIE
module descriptor file”.

4. In the relevant resource in your Maven project, configure a .java class to create a KIE container
and a KIE session to load the KIE base:

In this example, the KIE container reads the files to be built from the class path for a testApp
project. The KieServices API enables you to access all KIE building and runtime configurations.

You can also create the KIE container by passing the project ReleaseId to the KieServices API.
The ReleaseId is generated from the GroupId, ArtifactId, and Version (GAV) values in the
project pom.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<kmodule xmlns="http://www.drools.org/xsd/kmodule">
</kmodule>

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public void testApp() {

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.getKieClasspathContainer();
 KieSession kSession = kContainer.newKieSession();

}

import org.kie.api.KieServices;
import org.kie.api.runtime.KieContainer;
import org.kie.api.runtime.KieSession;

public void testApp() {

 // Identify the project in the local repository:
 ReleaseId rid = new ReleaseId();
 rid.setGroupId("com.sample");
 rid.setArtifactId("my-app");
 rid.setVersion("1.0.0");

 // Load the KIE base:
 KieServices ks = KieServices.Factory.get();
 KieContainer kContainer = ks.newKieContainer(rid);
 KieSession kSession = kContainer.newKieSession();

}

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT DECISION CENTRAL

21

5. In a command terminal, navigate to your Maven project directory and run the following
command to build the project from an executable model:

mvn clean install -DgenerateModel=<VALUE>

The -DgenerateModel=<VALUE> property enables the project to be built as a model-based
KJAR instead of a DRL-based KJAR, so that rule assets are built in an executable rule model.

Replace <VALUE> with one of three values:

YES: Generates the executable model corresponding to the DRL files in the original project
and excludes the DRL files from the generated KJAR.

WITHDRL: Generates the executable model corresponding to the DRL files in the original
project and also adds the DRL files to the generated KJAR for documentation purposes
(the KIE base is built from the executable model regardless).

NO: Does not generate the executable model.

Example build command:

mvn clean install -DgenerateModel=YES

If the build fails, address any problems described in the command line error messages and try
again to validate the files until the build is successful.

6. After you successfully build and test the project locally, deploy the project to the remote Maven
repository:

mvn deploy

3.3. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER
PROJECT IN A JAVA APPLICATION

If you want to deploy a project from within your own Java application to a configured Decision Server,
you can use a KieModuleModel instance to programatically create a kmodule.xml file that defines the
KIE base and a KIE session, and then add all resources in your project to the KIE virtual file system
KieFileSystem.

Prerequisites

You have a Java application that contains Red Hat Decision Manager business assets.

Decision Server is installed and kie-server user access is configured. For installation options,
see Planning a Red Hat Decision Manager installation .

Procedure

1. In your client application, add the following dependencies to the relevant classpath of your Java
project to generate an executable rule model from your rule assets:

drools-canonical-model: Enables an executable canonical representation of a rule set
model that is independent from Red Hat Decision Manager

drools-model-compiler: Compiles the executable model into Red Hat Decision Manager

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

22

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/planning_a_red_hat_decision_manager_installation

drools-model-compiler: Compiles the executable model into Red Hat Decision Manager
internal data structures so that it can be executed by the decision engine

Executable rule models are embeddable models that provide a Java-based representation of a
rule set for execution at build time. The executable model is a more efficient alternative to the
standard asset packaging in Red Hat Decision Manager and enables KIE containers and KIE
bases to be created more quickly, especially when you have large lists of DRL (Drools Rule
Language) files and other Red Hat Decision Manager assets.

For more information about executable rule models, see "Executable rule models" in Designing a
decision service using DRL rules.

The <version> is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.11.0.Final-redhat-00002).

NOTE

Instead of specifying a Red Hat Decision Manager <version> for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

For more information about the Red Hat Business Automation BOM, see What is
the mapping between Red Hat Decision Manager and the Maven library version?.

2. Use the KieServices API to create a KieModuleModel instance with the desired KIE base and
KIE session. The KieServices API enables you to access all KIE building and runtime
configurations. The KieModuleModel instance generates the kmodule.xml file for your project.
For more information about kmodule.xml configuration, see Section 3.1, “Configuring a KIE
module descriptor file”.

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-canonical-model</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-model-compiler</artifactId>
 <version>${rhdm.version}</version>
</dependency>

<dependency>
 <groupId>com.redhat.ba</groupId>
 <artifactId>ba-platform-bom</artifactId>
 <version>7.1.0.GA-redhat-00002</version>
 <scope>import</scope>
 <type>pom</type>
</dependency>

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT DECISION CENTRAL

23

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/designing_a_decision_service_using_drl_rules#executable-model-con_execute-rules
https://access.redhat.com/solutions/3363991

3. Convert your KieModuleModel instance into XML and add the XML to KieFileSystem.

Creating kmodule.xml programmatically and adding it to KieFileSystem

4. Add any remaining Red Hat Decision Manager assets that you use in your project to your
KieFileSystem instance. The artifacts must be in a Maven project file structure.

In this example, the project assets are added both as a String variable and as a Resource
instance. You can create the Resource instance using the KieResources factory, also provided
by the KieServices instance. The KieResources class provides factory methods to convert
InputStream, URL, and File objects, or a String representing a path of your file system to a
Resource instance that the KieFileSystem can manage.

You can also explicitly assign a ResourceType property to a Resource object when you add
project artifacts to KieFileSystem:

5. Use KieBuilder with buildAll(ExecutableModelProject.class) specified to build the content
of KieFileSystem from an executable model, and create a KIE container to deploy it:

import org.kie.api.KieServices;
import org.kie.api.builder.model.KieModuleModel;
import org.kie.api.builder.model.KieBaseModel;
import org.kie.api.builder.model.KieSessionModel;
import org.kie.api.builder.KieFileSystem;

 KieServices kieServices = KieServices.Factory.get();
 KieModuleModel kieModuleModel = kieServices.newKieModuleModel();

 KieBaseModel kieBaseModel1 = kieModuleModel.newKieBaseModel("KBase1")
 .setDefault(true)
 .setEqualsBehavior(EqualityBehaviorOption.EQUALITY)
 .setEventProcessingMode(EventProcessingOption.STREAM);

 KieSessionModel ksessionModel1 = kieBaseModel1.newKieSessionModel("KSession1")
 .setDefault(true)
 .setType(KieSessionModel.KieSessionType.STATEFUL)
 .setClockType(ClockTypeOption.get("realtime"));

 KieFileSystem kfs = kieServices.newKieFileSystem();
 kfs.writeKModuleXML(kieModuleModel.toXML());

import org.kie.api.builder.KieFileSystem;

 KieFileSystem kfs = ...
 kfs.write("src/main/resources/KBase1/ruleSet1.drl", stringContainingAValidDRL)
 .write("src/main/resources/dtable.xls",
 kieServices.getResources().newInputStreamResource(dtableFileStream));

import org.kie.api.builder.KieFileSystem;

 KieFileSystem kfs = ...
 kfs.write("src/main/resources/myDrl.txt",
 kieServices.getResources().newInputStreamResource(drlStream)
 .setResourceType(ResourceType.DRL));

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

24

After KieFileSystem is built from the executable model, the resulting KieSession uses
constraints based on lambda expressions instead of less-efficient mvel expressions. To build
the project in the standard method without an executable model, do not specify any argument
in buildAll().

A build ERROR indicates that the project compilation failed, no KieModule was produced, and
nothing was added to the KieRepository singleton. A WARNING or an INFO result indicates
that the compilation of the project was successful, with information about the build process.

3.4. STARTING A SERVICE IN DECISION SERVER

If you have deployed Red Hat Decision Manager assets from a Maven or Java project outside of
Decision Central, you use a Decision Server REST API call to start the KIE container (deployment unit)
and the services in it. You can use the Decision Server REST API to start services regardless of your
deployment type, including deployment from Decision Central, but projects deployed from Decision
Central either are started automatically or can be started within the Decision Central interface.

Prerequisite

Decision Server is installed and kie-server user access is configured. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

In your command terminal, run the following API request to load a service into a KIE container in the
Decision Server and to start it:

$ curl --user "<username>:<password>" -H "Content-Type: application/json" -X PUT -d '{"container-
id" : "<containerID>","release-id" : {"group-id" : "<groupID>","artifact-id" : "<artifactID>","version" : "
<version>"}}' http://<serverhost>:<serverport>/kie-
server/services/rest/server/containers/<containerID>

Replace the following values:

<username>, <password>: The user name and password of a user with the kie-server role.

<containerID>: The identifier for the KIE container (deployment unit). You can use any random
identifier but it must be the same in both places in the command (the URL and the data).

import org.kie.api.KieServices;
import org.kie.api.KieServices.Factory;
import org.kie.api.builder.KieFileSystem;
import org.kie.api.builder.KieBuilder;
import org.kie.api.runtime.KieContainer;

 KieServices kieServices = KieServices.Factory.get();
 KieFileSystem kfs = ...

 KieBuilder kieBuilder = ks.newKieBuilder(kfs);
 // Build from an executable model
 kieBuilder.buildAll(ExecutableModelProject.class)
 assertEquals(0, kieBuilder.getResults().getMessages(Message.Level.ERROR).size());

 KieContainer kieContainer = kieServices
 .newKieContainer(kieServices.getRepository().getDefaultReleaseId());

CHAPTER 3. PROJECT DEPLOYMENT WITHOUT DECISION CENTRAL

25

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/planning_a_red_hat_decision_manager_installation

<groupID>, <artifactID>, <version>: The project GAV values.

<serverhost>: The host name for the Decision Server, or localhost if you are running the
command on the same host as the Decision Server.

<serverport>: The port number for the Decision Server.

Example:

curl --user "rhdmAdmin:password@1" -H "Content-Type: application/json" -X PUT -d '{"container-id" :
"kie1","release-id" : {"group-id" : "org.kie.server.testing","artifact-id" : "container-crud-tests1","version" :
"2.1.0.GA"}}' http://localhost:39043/kie-server/services/rest/server/containers/kie1

3.5. STOPPING AND REMOVING A SERVICE IN DECISION SERVER

If you have started Red Hat Decision Manager services from a Maven or Java project outside of
Decision Central, you use a Decision Server REST API call to stop and remove the KIE container
(deployment unit) containing the services. You can use the Decision Server REST API to stop services
regardless of your deployment type, including deployment from Decision Central, but services from
Decision Central can also be stopped within the Decision Central interface.

Prerequisite

Decision Server is installed and kie-server user access is configured. For installation options, see
Planning a Red Hat Decision Manager installation .

Procedure

In your command terminal, run the following API request to stop and remove a KIE container with
services on Decision Server:

$ curl --user "<username>:<password>" -X DELETE http://<serverhost>:<serverport>/kie-
server/services/rest/server/containers/<containerID>

Replace the following values:

<username>, <password>: The user name and password of a user with the kie-server role.

<containerID>: The identifier for the KIE container (deployment unit). You can use any random
identifier but it must be the same in both places in the command (the URL and the data).

<serverhost>: The host name for the Decision Server, or localhost if you are running the
command on the same host as the Decision Server.

<serverport>: The port number for the Decision Server.

Example:

curl --user "rhdmAdmin:password@1" -X DELETE http://localhost:39043/kie-
server/services/rest/server/containers/kie1

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

26

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/planning_a_red_hat_decision_manager_installation

CHAPTER 4. ADDITIONAL RESOURCES
"Executing rules" in Designing a decision service using DRL rules

Deploying a Red Hat Decision Manager authoring or managed server environment on Red Hat
OpenShift Container Platform

CHAPTER 4. ADDITIONAL RESOURCES

27

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/designing_a_decision_service_using_drl_rules#assets-executing-proc_execute-rules
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.1/html-single/deploying_a_red_hat_decision_manager_authoring_or_managed_server_environment_on_red_hat_openshift_container_platform

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Wednesday, March 27, 2019.

Red Hat Decision Manager 7.1 Packaging and deploying a Red Hat Decision Manager project

28

	Table of Contents
	PREFACE
	CHAPTER 1. RED HAT DECISION MANAGER PROJECT PACKAGING
	CHAPTER 2. PROJECT DEPLOYMENT IN DECISION CENTRAL
	2.1. CONFIGURING A DECISION SERVER TO CONNECT TO DECISION CENTRAL
	2.2. CONFIGURING AN EXTERNAL MAVEN REPOSITORY FOR DECISION CENTRAL AND DECISION SERVER
	2.3. EXPORTING A DECISION CENTRAL PROJECT TO AN EXTERNAL MAVEN REPOSITORY
	2.4. BUILDING AND DEPLOYING A PROJECT IN DECISION CENTRAL
	2.5. DEPLOYMENT UNITS IN DECISION CENTRAL
	2.5.1. Creating a deployment unit in Decision Central
	2.5.2. Starting, stopping, and removing deployment units in Decision Central

	2.6. EDITING THE GAV VALUES FOR A PROJECT IN DECISION CENTRAL
	2.7. DUPLICATE GAV DETECTION IN DECISION CENTRAL
	2.7.1. Managing duplicate GAV detection settings in Decision Central

	CHAPTER 3. PROJECT DEPLOYMENT WITHOUT DECISION CENTRAL
	3.1. CONFIGURING A KIE MODULE DESCRIPTOR FILE
	3.1.1. KIE module configuration properties
	3.1.2. KIE base attributes supported in KIE modules
	3.1.3. KIE session attributes supported in KIE modules

	3.2. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN MAVEN
	3.3. PACKAGING AND DEPLOYING A RED HAT DECISION MANAGER PROJECT IN A JAVA APPLICATION
	3.4. STARTING A SERVICE IN DECISION SERVER
	3.5. STOPPING AND REMOVING A SERVICE IN DECISION SERVER

	CHAPTER 4. ADDITIONAL RESOURCES
	APPENDIX A. VERSIONING INFORMATION

