‘® redhat.

Red Hat JBoss Data Grid 7.1

Getting Started Guide

For use with Red Hat JBoss Data Grid 7.1

Last Updated: 2018-05-16

Red Hat JBoss Data Grid 7.1 Getting Started Guide

For use with Red Hat JBoss Data Grid 7.1

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

.In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This quide outlines introductory concepts and operations within Red Hat JBoss Data Grid 7.1

Table of Contents

Table of Contents

PART . INTRODUCING RED HAT JBOSS DATA GRID ... i.iittiiiiiiinneetrossnnnncessosssnnnssssonns 6
CHAPTER 1. RED HAT JBOSS DATA GRID ..iiiiiiiittttiteiinnneeesosssnnassssossssnsssssosssnnnssssons 7
1.1. RED HAT JBOSS DATA GRID 7
1.2. SUPPORTED CONFIGURATIONS 7
1.3. COMPONENTS AND VERSIONS 7
1.4. RED HAT JBOSS DATA GRID USAGE MODES 7
1.4.1. Red Hat JBoss Data Grid Usage Modes 7
1.4.2. Remote Client-Server Mode 7
1.4.3. Library Mode 8

1.5. RED HAT JBOSS DATA GRID BENEFITS 8
1.6. RED HAT JBOSS DATA GRID VERSION INFORMATION 10
1.7. RED HAT JBOSS DATA GRID CACHE ARCHITECTURE 1
1.8. RED HAT JBOSS DATA GRID APIS 12
PART II. DOWNLOAD AND INSTALL RED HAT JBOSS DATAGRID ...cvurriiiiiiiiiiiiiiiiieeaanaaannnn 14
CHAPTER 2. DOWNLOAD RED HAT JBOSS DATA GRID ... iiutitttttiiiiinnneettosnsnnncessosssnnnsssson 15
2.1. RED HAT JBOSS DATA GRID INSTALLATION PREREQUISITES 15
2.2. JAVA VIRTUAL MACHINE 15
2.3.INSTALL OPENJDK ON RED HAT ENTERPRISE LINUX 15
2.4. DOWNLOAD AND INSTALL JBOSS DATA GRID 15
2.4.1. Download and Install JBoss Data Grid 15
2.4.2. Download Red Hat JBoss Data Grid 16
2.4.3. About the Red Hat Customer Portal 16
2.4.4. Checksum Validation 16
2.4.5. Verify the Downloaded File 16
2.4.6. Install Red Hat JBoss Data Grid 17
2.4.7. Red Hat Documentation Site 17
CHAPTER 3. INSTALL AND USE THE MAVEN REPOSITORIESiiiiiiiiiiiiieeninnneersocsnnnnnnss 18
3.1. ABOUT MAVEN 18
3.2. REQUIRED MAVEN REPOSITORIES 18
3.3.INSTALL THE MAVEN REPOSITORY 18
3.3.1. Install the Maven Repository 18
3.3.2. Local File System Repository Installation 18
3.3.3. Apache httpd Repository Installation 19
3.3.4. Maven Repository Manager Installation 19
3.4. CONFIGURE THE MAVEN REPOSITORY 19
3.4.1. Configure the Maven Repository 19
3.4.2. Configuring the JBoss Data Grid Maven Repository in an Offline Environment 20
3.4.3. Next Steps 21
3.5. MAVEN TRANSITIVE DEPENDENCIES 21
PART IIl. SUPPORTED CONTAINERS FORJBOSS DATA GRIDiiiiriiitttiiiiinnneerossnnnnncesonns 23
CHAPTER 4. USING JBOSS DATA GRID WITH SUPPORTED CONTAINERScoiiiiiiiiiinininnnnnns 24
4.1.USING JBOSS DATA GRID WITH SUPPORTED CONTAINERS 24
4.2. DEPLOY JBOSS DATA GRID IN JBOSS EAP (LIBRARY MODE) 24
4.3.DEPLOY JBOSS DATA GRID IN JBOSS EAP (REMOTE CLIENT-SERVER MODE) 26
4.3.1. Deploy JBoss Data Grid in JBoss EAP (Remote Client-Server Mode) 26
4.3.2. Using Custom Classes with the Hot Rod client 27
4.4. DEPLOY JBOSS DATA GRID IN JBOSS ENTERPRISE WEB SERVER 27

Red Hat JBoss Data Grid 7.1 Getting Started Guide

4.5.DEPLOY WEB APPLICATIONS ON WEBLOGIC SERVER (LIBRARY MODE) 28
4.6.DEPLOY WEB APPLICATIONS ON WEBLOGIC SERVER (REMOTE CLIENT-SERVER MODE) 29
4.7. RUNNING RED HAT JBOSS DATA GRID IN KARAF (OSGI) 30
4.7.1. Running Red Hat JBoss Data Grid in Karaf (OSGi) 30
4.7.2. Running a Deployment of JBoss Data Grid in Karaf (Remote Client-Server) 30
4.7.3. Installing the Hot Rod client feature in Karaf 30
4.7.4. Installing Red Hat JBoss Data Grid in Karaf (Library Mode) 31
CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL ciiiiiiiiiinnnnnnnnnns 33
5.1. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL 33
5.2. THE CAMEL-JBOSSDATAGRID COMPONENT 33
5.3. ROUTING WITH CAMEL IN JBOSS DATA GRID 42
5.4. REMOTE QUERY 43
5.5. CUSTOM LISTENERS FOR EMBEDDED CACHE 45
5.6. CUSTOM LISTENERS FOR REMOTE CACHE 46
5.7. RED HAT JBOSS DATA GRID AND RED HAT JBOSS FUSE 48
5.7.1. Installing camel-jbossdatagrid for Red Hat JBoss Fuse 48
5.8. RED HAT JBOSS DATA GRID AND RED HAT JBOSS EAP 50
5.8.1. Installing camel-jbossdatagrid for Red Hat JBoss Enterprise Application Platform 50
5.8.2. Deploy Camel with EAP 52
5.8.2.1. Add development and runtime dependencies 52
5.8.2.2. Optionally: Add runtime dependencies as a JBoss EAP Module 53
PART IV.RUNNING RED HAT JBOSS DATA GRID WITHMAVEN ... iiiiiiiiiiiiiineeerronnnnnnessoons 56
CHAPTER 6. RUN RED HAT JBOSS DATA GRID WITHMAVEN .. .iiiiiiiiiiiiiiiieiinnnerrsocnnnnnnnss 57
6.1. DEFINING MAVEN DEPENDENCIES FOR USE WITH JBOSS DATA GRID (REMOTE CLIENT-SERVER MODE)
57
6.2. DEFINING MAVEN DEPENDENCIES FOR USE WITH JBOSS DATA GRID (LIBRARY MODE) 58
CHAPTER 7. RUN RED HAT JBOSS DATA GRID IN REMOTE CLIENT-SERVERMODE 60
7.1. PREREQUISITES 60
7.2. RUN RED HAT JBOSS DATA GRID IN STANDALONE MODE 60
7.3.RUN RED HAT JBOSS DATA GRID IN CLUSTERED MODE 60
7.4.RUN RED HAT JBOSS DATA GRID IN A MANAGED DOMAIN 60
7.5.RUN RED HAT JBOSS DATA GRID WITH A CUSTOM CONFIGURATION 61
7.6. SET AN IP ADDRESS TO RUN RED HAT JBOSS DATA GRID 61
CHAPTER 8. RUN A RED HAT JBOSS DATA GRID AS A NODE WITHOUT ENDPOINTS 62
8.1. RUN A RED HAT JBOSS DATA GRID AS A NODE WITHOUT ENDPOINTS 62
8.2. BENEFITS OF A NODE WITHOUT ENDPOINTS 62
8.3. SAMPLE CONFIGURATION FOR A NODE WITHOUT ENDPOINTS 62
8.4. CONFIGURE A NODE WITH NO ENDPOINTS 62
CHAPTER 9. RUN RED HAT JBOSS DATA GRID INLIBRARYMODE ... iiiiiiiiiiiiiinietinonnnnnnnnns 63
9.1. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE 63
9.2. CREATE A NEW RED HAT JBOSS DATA GRID PROJECT 63
9.3. ADD DEPENDENCIES TO YOUR PROJECT 63
9.4. ADD A PROFILE TO YOUR PROJECT 63
CHAPTER 10. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE (SINGLE-NODE SETUP) 66
10.1. CREATE A SIMPLE CLASS 66
10.2. USE THE DEFAULT CACHE 66
10.2.1. Add and Remove Data from the Cache 66
10.2.2. Adding and Replacing a Key Value 67

Table of Contents

10.2.3. Removing Entries 68
10.2.4. Placing and Retrieving Sets of Data 68
10.2.5. Adjust Data Life 69
10.2.6. Default Data Mortality 69
10.2.7. Register the Named Cache Using XML 69
CHAPTER 11. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE (MULTI-NODE SETUP) I
11.1. SHARING JGROUP CHANNELS il
11.2. CONFIGURE THE CLUSTER 71
11.2.1. Configuring the Cluster I
11.2.2. Add the Default Cluster Configuration I
11.2.3. Customize the Default Cluster Configuration 72
11.2.4. Configure the Replicated Data Grid 73
11.2.5. Configure the Distributed Data Grid 74
CHAPTER 12. MONITOR RED HAT JBOSS DATA GRID APPLICATIONS IN RED HAT JBOSS EAP 76
12.1. MONITOR RED HAT JBOSS DATA GRID APPLICATIONS IN RED HAT JBOSS EAP 76
12.2. PREREQUISITES 76
12.3. MONITOR RED HAT JBOSS DATA GRID APPLICATIONS IN RED HAT JBOSS EAP 76
PART V.SETUP A CACHE MANAGERiiiiiiiiitiiiiiiiinneetrosssenneesssssssnsssssssssnnssssooss 78
CHAPTER 13. CACHE MANAGERS .. iiiiitttiiitiiiineetteesssnnesssosssssssssssssssnsssssossssnnnsss 79
13.1. CACHE MANAGERS 79
13.2. TYPES OF CACHE MANAGERS 79
13.3. CREATING CACHEMANAGERS 79
13.3.1. Create a New RemoteCacheManager 79
13.3.2. Create a New Embedded Cache Manager 79
13.3.3. Create a New Embedded Cache Manager Using CDI 80
13.4. MULTIPLE CACHE MANAGERS 80
13.4.1. Multiple Cache Managers 80
13.4.2. Create Multiple Caches with a Single Cache Manager 80
13.4.3. Using Multiple Cache Managers 81
13.4.4. Create Multiple Cache Managers 81
PART VI. RED HAT JBOSS DATA GRID QUICKSTARTS ... iiittittiitiinenneerrosssnnscsssssssnnsassooss 82
CHAPTER 14. RED HAT JBOSS DATA GRID QUICKSTARTS ...iititiiiiiiiinnetteoensonnssssocssonnnnns 83
CHAPTER 15. THE HELLO WORLD QUICK ST ART . ..iiitttiiiiiiinnetttoesssnssssssosssnnssssossssnnnass 85
15.1. THE HELLO WORLD QUICKSTART 85
15.2. QUICKSTART PREREQUISITES 85
15.3. START TWO APPLICATION SERVER INSTANCES 85
15.4. BUILD AND DEPLOY THE HELLO WORLD QUICKSTART 86
15.5. ACCESS THE RUNNING APPLICATION 87
15.6. TEST REPLICATION ON THE APPLICATION 87
15.7. REMOVE THE APPLICATION 88
PART VII. UNINSTALL RED HAT JBOSS DATA GRID ... iiiiiiittiiiiiienneessosssnnncessssssnnsassoons 89
CHAPTER 16. REMOVE RED HAT JBOSS DATA GRID ...iiiiiiiiiittiiieniinneetosessnnssssosssnnnnnss 920
16.1. REMOVE RED HAT JBOSS DATA GRID FROM YOUR LINUX SYSTEM 90
16.2. REMOVE RED HAT JBOSS DATA GRID FROM YOUR WINDOWS SYSTEM 90
APPENDIX A. REFERENCESitttiiiiiiiieetttennnnnaeesoosssnnsssssossssnssssssssssnsssssosssnns 92
A.1. ABOUT KEY-VALUE PAIRS 92

Red Hat JBoss Data Grid 7.1 Getting Started Guide

APPENDIX B. MAVEN CONFIGURATION INFORMATION .. ittt iiiiiiiiiiitiieennneenns 93
B.1. INSTALL THE JBOSS ENTERPRISE APPLICATION PLATFORM REPOSITORY USING NEXUS 93
B.2. MAVEN REPOSITORY CONFIGURATION EXAMPLE 93
B.3. DETERMINING THE URL OF THE JBOSS DATA GRID REPOSITORY 94

Table of Contents

Red Hat JBoss Data Grid 7.1 Getting Started Guide

PART I. INTRODUCING RED HAT JBOSS DATA GRID

CHAPTER 1. RED HAT JBOSS DATA GRID

CHAPTER 1. RED HAT JBOSS DATA GRID

1.1. RED HAT JBOSS DATA GRID

Red Hat JBoss Data Grid is a distributed in-memory data grid, which provides the following
capabilities:

o Schemaless key-value store - JBoss Data Grid is a NoSQL database that provides the
flexibility to store different objects without a fixed data model.

e Grid-based data storage - JBoss Data Grid is designed to easily replicate data across multiple
nodes.

e Elastic scaling - Adding and removing nodes is simple and non-disruptive.

e Multiple access protocols - It is easy to access the data grid using REST, Memcached, Hot Rod,
or simple map-like API.

1.2. SUPPORTED CONFIGURATIONS

The set of supported features, configurations, and integrations for Red Hat JBoss Data Grid (current
and past versions) are available at the Supported Configurations page at
https://access.redhat.com/articles/115883.

1.3. COMPONENTS AND VERSIONS

Red Hat JBoss Data Grid includes many components for Library and Remote Client-Server modes. A
comprehensive (and up to date) list of components included in each of these usage modes and their
versions is available in the Red Hat JBoss Data Grid Component Detailspage at
https://access.redhat.com/articles/488833

1.4. RED HAT JBOSS DATA GRID USAGE MODES

1.4.1. Red Hat JBoss Data Grid Usage Modes
Red Hat JBoss Data Grid offers two usage modes:
e Remote Client-Server mode

e Library mode

1.4.2. Remote Client-Server Mode

Remote Client-Server mode provides a managed, distributed, and clusterable data grid server. In
Client-Server mode the server runs as a self-contained process, utilizing a container based on JBoss
EAP, allowing client applications to remotely access the data grid server using Hot Rod, Memcached
or REST client APIs.

All Red Hat JBoss Data Grid operations in Remote Client-Server mode are non-transactional. As a
result, a number of features cannot be performed when running JBoss Data Grid in Remote Client-
Server mode.

https://access.redhat.com/articles/115883
https://access.redhat.com/articles/488833

Red Hat JBoss Data Grid 7.1 Getting Started Guide

There are a number of benefits to running JBoss Data Grid in Remote Client-Server mode if Library
mode features are not required. Remote Client-Server mode is client language agnostic, provided there
is a client library for your chosen protocol. As a result, Remote Client-Server mode provides:

e easier scaling of the data grid.

e easier upgrades of the data grid without impact on client applications.

Run the following commands to start a standalone JBoss Data Grid instance in Remote Client-Server
mode.

For Linux:

I $JBOSS_HOME/bin/standalone.sh
For Windows:

I $JBOSS_HOME\bin\standalone.bat

Run the following commands to start a managed domain JBoss Data Grid instance in Remote Client-
Server mode.

For Linux:
I $JBOSS_HOME/bin/domain.sh
For Windows:

I $JBOSS_HOME\bin\domain.bat

1.4.3. Library Mode

Library mode allows building and deploying a custom runtime environment. The Library mode hosts a
single data grid node in the applications process, with remote access to nodes hosted in other JVMs.

Tested containers for Red Hat JBoss Data Grid Library mode includes Red Hat JBoss Enterprise Web
Server 2.x and JBoss Enterprise Application Platform 7.x.

A number of features in JBoss Data Grid can be used in Library mode, but not in Remote Client-Server
mode.

The following features require Library mode:
e transactions
e listeners and notifications

JBoss Data Grid can also be run as a standalone application in Java SE. Standalone mode is a
supported alternative to running JBoss Data Grid in a container.

1.5. RED HAT JBOSS DATA GRID BENEFITS

Red Hat JBoss Data Grid provides the following benefits:

Benefits of JBoss Data Grid

CHAPTER 1. RED HAT JBOSS DATA GRID

Performance

Accessing objects from local memory is faster than accessing objects from remote data stores
(such as a database). JBoss Data Grid provides an efficient way to store in-memory objects coming
from a slower data source, resulting in faster performance than a remote data store. JBoss Data
Grid also offers optimization for both clustered and non clustered caches to further improve
performance.

Consistency

Storing data in a cache carries the inherent risk: at the time it is accessed, the data may be
outdated (stale). To address this risk, JBoss Data Grid uses mechanisms such as cache invalidation
and expiration to remove stale data entries from the cache. Additionally, JBoss Data Grid supports
JTA, distributed (XA) and two-phase commit transactions along with transaction recovery and a
version API to remove or replace data according to saved versions.

Massive Heap and High Availability

In JBoss Data Grid, applications no longer need to delegate the majority of their data lookup
processes to a large single server database for performance benefits. JBoss Data Grid employs
techniques such as replication and distribution to completely remove the bottleneck that exists in
the majority of current enterprise applications.

Massive Heap and High Availability Example

In a sample grid with 16 blade servers, each node has 2 GB storage space dedicated for a replicated
cache. In this case, all the data in the grid is copies of the 2 GB data. In contrast, using a distributed grid
(assuming the requirement of one copy per data item, resulting in the capacity of the overall heap
being divided by two) the resulting memory backed virtual heap contains 16 GB data. This data can now
be effectively accessed from anywhere in the grid. In case of a server failure, the grid promptly creates
new copies of the lost data and places them on operational servers in the grid.

Scalability

A significant benefit of a distributed data grid over a replicated clustered cache is that a data grid is
scalable in terms of both capacity and performance. Adding a node to JBoss Data Grid increases
throughput and capacity for the entire grid. JBoss Data Grid uses a consistent hashing algorithm
that limits the impact of adding or removing a node to a subset of the nodes instead of every node in
the grid.

Due to the even distribution of data in JBoss Data Grid, the only upper limit for the size of the grid
is the group communication on the network. The network’s group communication is minimal and
restricted only to the discovery of new nodes. Nodes are permitted by all data access patterns to
communicate directly via peer-to-peer connections, facilitating further improved scalability. JBoss
Data Grid clusters can be scaled up or down in real time without requiring an infrastructure restart.
The result of the real time application of changes in scaling policies results in an exceptionally
flexible environment.

Data Distribution

JBoss Data Grid uses consistent hash algorithms to determine the locations for keys in clusters.
Benefits associated with consistent hashing include:

e cost effectiveness.
e speed.

e deterministic location of keys with no requirements for further metadata or network traffic.
Data distribution ensures that sufficient copies exist within the cluster to provide durability
and fault tolerance, while not an abundance of copies, which would reduce the
environment’s scalability.

Red Hat JBoss Data Grid 7.1 Getting Started Guide

Persistence

JBoss Data Grid exposes a CacheStore interface and several high-performance implementations,
including the JDBC Cache stores and file system based cache stores. Cache stores can be used to
populate the cache when it starts and to ensure that the relevant data remains safe from
corruption. The cache store also overflows data to the disk when required to prevent running out of
memory.

Language bindings

JBoss Data Grid supports both the popular Memcached protocol, with existing clients for a large
number of popular programming languages, as well as an optimized JBoss Data Grid specific
protocol called Hot Rod. As a result, instead of being restricted to Java, JBoss Data Grid can be
used for any major website or application. Additionally, remote caches can be accessed using the
HTTP protocol via a RESTful API.

Management

In a grid environment of several hundred or more servers, management is an important feature.
JBoss Operations Network, the enterprise network management software, is the best tool to
manage multiple JBoss Data Grid instances. JBoss Operations Network’s features allow easy and
effective monitoring of the Cache Manager and cache instances.

Remote Data Grids

Rather than scale up the entire application server architecture to scale up your data grid, JBoss
Data Grid provides a Remote Client-Server mode which allows the data grid infrastructure to be
upgraded independently from the application server architecture. Additionally, the data grid server
can be assigned different resources than the application server and also allow independent data
grid upgrades and application redeployment within the data grid.

1.6. RED HAT JBOSS DATA GRID VERSION INFORMATION

Red Hat JBoss Data Grid is based on Infinispan, the open source community version of the data grid
software. Infinispan uses code, designs, and ideas from JBoss Cache, which have been tried, tested,
and proved in high stress environments. As a result, JBoss Data Grid’s first release is version 6.0 as a
result of its deployment history.

The following table lists the correlation between JBoss Data Grid and Infinispan versions.

Table 1.1. JBoss Data Grid and Infinispan Correlation

JBoss Data Grid Product Infinispan Version

JBoss Data Grid 6.0.0 Infinispan 5.1.5
JBoss Data Grid 6.0.1 Infinispan 5.1.7
JBoss Data Grid 6.1.0 Infinispan 5.2.4
JBoss Data Grid 6.2.0 Infinispan 6.0.1
JBoss Data Grid 6.3.0 Infinispan 6.1.0
JBoss Data Grid 6.3.1 Infinispan 6.1.1

JBoss Data Grid 6.4.0 Infinispan 6.2.0

10

CHAPTER 1. RED HAT JBOSS DATA GRID

JBoss Data Grid Product Infinispan Version

JBoss Data Grid 6.4.1 Infinispan 6.2.1

JBoss Data Grid 6.5.0 Infinispan 6.3.0

JBoss Data Grid 6.5.1 Infinispan 6.3.1

JBoss Data Grid 6.6.0 Infinispan 6.4.0

JBoss Data Grid 7.0.0 Infinispan 8.3.0

JBoss Data Grid 7.1.0 Infinispan 8.4.0
NOTE

From Red Hat JBoss Data Grid 6.2.0 onwards, there is no direct corresponding version
of Infinispan for each JBoss Data Grid release. The Infinispan version provided for JBoss
Data Grid 6.3.0 and later are based on an internal version number (possibly an
unreleased version) of Infinispan.

1.7. RED HAT JBOSS DATA GRID CACHE ARCHITECTURE

Figure 1.1. Red Hat JBoss Data Grid Cache Architecture

,——(Remote Client-Server Mode Architecture _} -~ (Library Mode Architecture)—\'

Cache

Permanently
Dwned Data

Lewvel 1 Cache

UELCEIERECTN 4mmmmp Cache Manager

Application

I Java Virmal Machine [JVM)

Cache

Permanently
Dwned Data

Level 1 Cache

(Temparary Data) 4uumsly Cache Manager

4mumsly Persistent Store 4y Persistent Store

N/

Server Module

Cache Client

Application

User Accessible Area

Red Hat JBoss Data Grid’s cache infrastructure depicts the individual elements and their interaction
with each other in each JBoss Data Grid Usage Mode (Library and Remote Client-Server). For clarity,
each cache architecture diagram is separated into two parts:

1

Red Hat JBoss Data Grid 7.1 Getting Started Guide

e Elements that a user cannot directly interact with are depicted within a dark grey box in the
diagram. In Remote Client-Server mode, this includes Persistent Store, Cache, Cache Manager,
L1 Cache, and Server Module. In Library mode, user cannot directly interact with Persistent
Store and L1 Cache.

e Elements that a user can interact directly with are depicted in a light grey box in the diagram.
In Remote Client-Server mode, this includes the Application and the Cache Client. In Library

mode, users are allowed to interact with the Cache and Cache Manager, as well as the
Application.

Cache Architecture Elements

JBoss Data Grid’s cache architecture includes the following elements:

1. The Persistent Store is an optional component. It can permanently store the cached entries for
restoration after a data grid shutdown.

2. The Level 1 Cache (or L1 Cache) stores remote cache entries after they are initially accessed,
preventing unnecessary remote fetch operations for each subsequent use of the same entries.

3. The Cache Manager controls the life cycle of Cache instances and can store and retrieve them
when required.

4. The Cache is the main component for storage and retrieval of the key-value entries.

Library and Remote Client-Server Mode Architecture

In Library mode, the Application (user code) can interact with the Cache and Cache Manager
components directly. In this case the Application resides in the same Java Virtual Machine (JVM) and
can call Cache and Cache Manager Java APl methods directly.

In Remote Client-Server mode, the Application does not directly interact with the cache. Additionally,
the Application usually resides in a different JVM, on different physical host, or does not need to be a
Java Application. In this case, the Application uses a Cache Client that communicates with a remote
JBoss Data Grid Server over the network using one of the supported protocols such as Memcached,
Hot Rod, or REST. The appropriate server module handles the communication on the server side. When

arequest is sent to the server remotely, it translates the protocol back to the concrete operations
performed on the cache component to store and retrieve data.

1.8. RED HAT JBOSS DATA GRID APIS
Red Hat JBoss Data Grid provides the following programmable APlIs:
e Cache
e Batching
e Grouping
e Persistence (formerly CacheStore)
e ConfigurationBuilder
e Externalizable
o Notification (also known as the Listener API because it deals with Notifications and Listeners)

JBoss Data Grid offers the following APlIs to interact with the data grid in Remote Client-Server mode:

12

CHAPTER 1. RED HAT JBOSS DATA GRID

The Asynchronous API (can only be used in conjunction with the Hot Rod Client in Remote
Client-Server Mode)

The REST Interface
The Memcached Interface

The Hot Rod Interface

o The RemoteCache API

13

Red Hat JBoss Data Grid 7.1 Getting Started Guide

PART Il. DOWNLOAD AND INSTALL RED HAT JBOSS DATA
GRID

14

CHAPTER 2. DOWNLOAD RED HAT JBOSS DATA GRID

CHAPTER 2. DOWNLOAD RED HAT JBOSS DATA GRID

2.1. RED HAT JBOSS DATA GRID INSTALLATION PREREQUISITES

The only prerequisite to set up Red Hat JBoss Data Grid is an installed Java Virtual Machine
(compatible with Java 8.0 or later).

2.2. JAVA VIRTUAL MACHINE

A Java Virtual Machine (JVM) is a virtual environment that runs and executes Java programs on a host
operating system. The JVM acts as an abstract computer and is a platform-independent execution
environment that converts the Java programming code into machine language. A Java Virtual Machine
(JVM) makes Java portable by providing an abstraction layer between the compiled Java program and
the underlying hardware platform and operating system.

Red Hat recommends using OpenJDK Java platform as it is an open source, supported Java Virtual

Machine that runs well on Red Hat Enterprise Linux systems. For Windows users, Oracle JDK 1.8
installation is recommended.

2.3.INSTALL OPENJDK ON RED HAT ENTERPRISE LINUX

Install OpenJDK on Red Hat Enterprise Linux

1. Subscribe to the Base Channel

Obtain the OpenJDK from the RHN base channel. Your installation of Red Hat Enterprise Linux
is subscribed to this channel by default.

2. Install the Package
Use the yum utility to install OpenJDK:

I $ sudo yum install java-1.8.0-openjdk-devel

3. Verify that OpenJDK is the System Default
Ensure that the correct JDK is set as the system default as follows:

a. Login as a user with root privileges and run the alternatives command:

I $ /usr/sbin/alternatives --config java

b. Select /usr/lib/jvm/java-1.8.0-openjdk-S{java-version}.x86_64/bin/java.

c. Use the following command to set javac :

I $ /usr/sbin/alternatives --config javac

d. Select /usr/lib/jvm/java-1.8.0-openjdk-S{java-version}.x86_64/bin/javac.
2.4. DOWNLOAD AND INSTALL JBOSS DATA GRID

2.4.1. Download and Install JBoss Data Grid

15

Red Hat JBoss Data Grid 7.1 Getting Started Guide

Use the following steps to download and install Red Hat JBoss Data Grid:
1. Download JBoss Data Grid from the Red Hat Customer Portal.
2. Verify the downloaded files.

3. Install JBoss Data Grid.

2.4.2. Download Red Hat JBoss Data Grid

Follow the listed steps to download Red Hat JBoss Data Grid from the Customer Portal:

Download JBoss Data Grid

1. Log into the Customer Portal at https://access.redhat.com.

2. Click the Downloads button near the top of the page.

3. Inthe Product Downloads page, click *Red Hat JBoss Data GridRed Hat JBoss Data Grid.
4. Select the appropriate JBoss Data Grid version from the Version drop down menu.

5. Download the appropriate files from the list that is displayed.

2.4.3. About the Red Hat Customer Portal

The Red Hat Customer Portalis the centralized platform for Red Hat knowledge and subscription
resources. Use the Red Hat Customer Portalto do the following:

e Manage and maintain Red Hat entitlements and support contracts.
e Download officially-supported software.

o Access product documentation and the Red Hat Knowledgebase.
e Contact Global Support Services.

e File bugs against Red Hat products.

The Customer Portal is available here: https://access.redhat.com.

2.4.4. Checksum Validation

Checksum validation is used to ensure a downloaded file has not been corrupted. Checksum validation
employs algorithms that compute a fixed-size datum (or checksum) from an arbitrary block of digital
data. If two parties compute a checksum of a particular file using the same algorithm, the results will be
identical. Therefore, when computing the checksum of a downloaded file using the same algorithm as
the supplier, if the checksums match, the integrity of the file is confirmed. If there is a discrepancy, the
file has been corrupted in the download process.

2.4.5. Verify the Downloaded File

Verify the Downloaded File

1. To verify that a file downloaded from the Red Hat Customer Portal is error-free, access the

16

https://access.redhat.com
https://access.redhat.com

CHAPTER 2. DOWNLOAD RED HAT JBOSS DATA GRID

portal site and go to that package’s Software Details page. The Software Details page displays
the MD5 and SHA256 checksum values. Use the checksum values to check the integrity of the
file.

2. Open a terminal window and run either the md5sum or sha256sum command, with the
downloaded file as an argument. The program displays the checksum value for the file as the
output for the command.

3. Compare the checksum value returned by the command to the corresponding value displayed
on the Software Details page for the file.

NOTE

Microsoft Windows does not come equipped with a checksum tool. Windows
operating system users have to download a third-party product instead.

Result

If the two checksum values are identical then the file has not been altered or corrupted and is,
therefore, safe to use.

If the two checksum values are not identical, then download the file again. A difference between the
checksum values means that the file has either been corrupted during download or has been modified

since it was uploaded to the server. If, after several downloads, the checksum will still not successfully
validate, contact Red Hat Support for assistance.

2.4.6. Install Red Hat JBoss Data Grid

Prerequisite

Locate the appropriate version, platform, and file type and download Red Hat JBoss Data Grid from the
Customer Portal.

Install JBoss Data Grid

1. Copy the downloaded JBoss Data Grid package to the preferred location on your machine.

2. Run the following command to extract the downloaded JBoss Data Grid package:
I $ unzip JDG_PACKAGE

Replace JDG_PACKAGE with the name of the JBoss Data Grid usage mode package
downloaded from the Red Hat Customer Portal.

3. The resulting unzipped directory will now be referred to as $JDG_HOME.

2.4.7. Red Hat Documentation Site

Red Hat’s official documentation site is available at https://access.redhat.com/site/documentation/.
There you will find the latest version of every book, including this one.

17

https://access.redhat.com/site/documentation/

Red Hat JBoss Data Grid 7.1 Getting Started Guide

CHAPTER 3. INSTALL AND USE THE MAVEN REPOSITORIES

3.1. ABOUT MAVEN

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model (POM) files to define projects and manage the build process. POM files describe the module and

component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built correctly and in a uniform manner.

IMPORTANT

Red Hat JBoss Data Grid requires Maven 3 (or better) for all quickstarts and general use.

Visit the Maven Download page (http://maven.apache.org/download.html) for instructions to
download and install Maven.

3.2. REQUIRED MAVEN REPOSITORIES

Red Hat JBoss Data Grid Quickstarts require the following Maven repositories to be setup as a
prerequisite:

e The JBoss Data Grid Maven Repository, installed using the instructions in Install the Maven
Repository

e Thega-all-repository (https://maven.repository.redhat.com/ga/all/)

Both Maven repositories are installed in the same way. As a result, the subsequent instructions are for
both repositories.

3.3.INSTALL THE MAVEN REPOSITORY

3.3.1. Install the Maven Repository

There are three ways to install the required repositories:
1. Onyour local file system (Local File System Repository Installation).
2. On Apache Web Server (Apache httpd Repository Installation).
3. With a Maven repository manager (Maven Repository Manager Installation).

Use the option that best suits your environment.

3.3.2. Local File System Repository Installation

This option is best suited for initial testing in a small team. Follow the outlined procedure to extract the
Red Hat JBoss Data Grid and JBoss Enterprise Application Platform Maven repositories to a directory
in your local file system:

Local File System Repository Installation (JBoss Data Grid)

18

http://maven.apache.org/download.html
https://maven.repository.redhat.com/ga/all/

CHAPTER 3. INSTALL AND USE THE MAVEN REPOSITORIES

1. Log Into the Customer Portal

In a browser window, navigate to the Customer Portal page (https://access.redhat.com/home)
and log in.

2. Download the JBoss Data Grid Repository File
Download the jboss-datagrid-{VERSION}-maven-repository.zip file from the Red Hat Customer
Portal.

3. Unzip the file to a directory on your local file system (for example
SJDG_HOME/projects/maven-repositories/).

The above procedure will create a new jboss-datagrid-S{jdg-version}-maven-repository directory, which
contains the Maven repository in a subdirectory entitled maven-repository/ .

3.3.3. Apache httpd Repository Installation

This example will cover the steps to download the JBoss Data Grid Maven Repository for use with
Apache httpd. This option is good for multi-user and cross-team development environments because
any developer that can access the web server can also access the Maven repository.

NOTE

Apache httpd must be configured for the following steps to work. For instructions on
configuring Apache refer to the Apache HTTP Server Project.

1. Open a web browser and access
https://access.redhat.com/jbossnetwork/restricted/listSoftware.htmi?product=data.qgrid

2. Find Red Hat JBoss Data Grid 7.1.0 Maven Repositoryin the list.
3. Click the Download button to download a .zip file containing the repository.
4. Unzip the files in a directory that is web accessible on the Apache server.

5. Configure Apache to allow read access and directory browsing in the created directory.

3.3.4. Maven Repository Manager Installation

This option is ideal if you are already using a repository manager.

The Red Hat JBoss Data Grid and JBoss Enterprise Application Server repositories are installed using
a Maven repository manager using its documentation. Examples of such repository managers are:

e Apache Archiva: link: http://archiva.apache.org/
e JFrog Artifactory: http://www.jfrog.com/products.php

e Sonatype Nexus: http://nexus.sonatype.org/ For details, see Install the JBoss Enterprise
Application Platform Using Nexus.

3.4. CONFIGURE THE MAVEN REPOSITORY

3.4.1. Configure the Maven Repository

19

https://access.redhat.com/home
http://httpd.apache.org/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=data.grid
http://archiva.apache.org/
http://www.jfrog.com/products.php
http://nexus.sonatype.org/

Red Hat JBoss Data Grid 7.1 Getting Started Guide

To configure the installed Red Hat JBoss Data Grid Maven repository, edit the settings.xml file. This file
may be configured in one of two locations:

1. User level - Maven user settings are located in the S{user.home}/.m2/ directory:

e For Linux or Mac environments this is typically ~/.m2/
e For Windows environments this is typically \Documents and Settings\.m2\ or \Users\.m2\

2. Global level - Settings for all users on a machine, assuming they are all using the same Maven
installation, is typically provided in S{maven.home}/conf/settings.xml

See to view sample Maven configurations, and refer to the Maven Documentation for more information
about configuring Maven.

3.4.2. Configuring the JBoss Data Grid Maven Repository in an Offline Environment

In certain environments it is preferred to have the Maven repository available offline. To accomplish
this configuration perform the following steps:

Prerequisites:

e The JBoss Data Grid Maven repository has been downloaded to the internal network where it
will be referenced.

e Aninternal repository, such as Sonatype Nexus or Apache Archiva, is available on the network
that contains Maven dependencies.

Configure the JBoss Data Grid Maven Repository for Offline Usage

1. Install the downloaded JBoss Data Grid Maven repository locally, following the instructions in
Local File System Repository Installation.

2. Update the settings.xml to point to the locally extracted repository, as seen in Configure the
Maven Repository. A sample configuration is shown below:

<?xml version="1.0" encoding="UTF-8"7?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">

<profiles>
<profile>
<id>jboss-datagrid-repository</id>
<repositories>
<repository>
<id>jboss-datagrid-repository</id>
<name>JBoss Data Grid Maven Repository</name>
<url>file:///path/to/jboss-datagrid-7.1.0-maven-
repository/maven-repository</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>

20

http://maven.apache.org/settings.html

CHAPTER 3. INSTALL AND USE THE MAVEN REPOSITORIES

</releases>
<snapshots>
<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-datagrid-repository</id>
<name>JBoss Data Grid Maven Repository</name>
<url>file:///path/to/jboss-datagrid-7.1.0-maven-
repository/maven-repository</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>
<activeProfiles>
<!-- make the profile active by default -->
<activeProfile>jboss-datagrid-repository</activeProfile>
</activeProfiles>

</settings>

3. Ensure that projects may now be built locally.

3.4.3. Next Steps

After the newest available version of Red Hat JBoss Data Grid is installed and Maven is set up and
configured, see to learn how to use JBoss Data Grid for the first time.

3.5. MAVEN TRANSITIVE DEPENDENCIES

When building projects with Maven it will discover and download the dependencies of any included
libraries. These additional libraries are referred to as Transitive, or Transient, Dependencies, and are
discussed in Maven’s documentation at Transitive Dependencies.

As JBoss Data Grid jar files contain all necessary dependencies to use the product, it is possible to
have the same dependency included multiple times if both these jars and individual JBoss Data Grid
Maven artifact(s) are specified.

To prevent this issue only one of the following should be used per Maven project:

e Use the included uberjars, infinspan-embedded and infinispan-remote as the only
dependency for JBoss Data Grid. Defining the uberjar will pull in all necessary components for
that distribution (Library or Remote Client-Server Mode), and instructions for including these

21

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies

Red Hat JBoss Data Grid 7.1 Getting Started Guide

dependencies are found in Run JBoss Data Grid With Maven .

e Use the individual components from JBoss Data Grid, such as infinispan-core. Each
component should either be defined in the parent pom.xml, or be a dependency of a defined
component.

Alternatively, if the individual components are known they may be excluded. The following example
assumes that infinispan-core is being included twice; once from a defined dependency and the
second time as a transient dependency.

<dependencies>
<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-embedded</artifactId>
<version>${infinispan.version}</version>
<scope>compile</scope>
<exclusions>
<exclusion> <!-- declare the exclusion here -->
<groupId>org.infinispan</groupId>
<artifactId>infinispan-core</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>

22

PART Ill. SUPPORTED CONTAINERS FOR JBOSS DATA GRID

PART Ill. SUPPORTED CONTAINERS FOR JBOSS DATA GRID

23

Red Hat JBoss Data Grid 7.1 Getting Started Guide

CHAPTER 4. USING JBOSS DATA GRID WITH SUPPORTED
CONTAINERS

4.1. USING JBOSS DATA GRID WITH SUPPORTED CONTAINERS
Red Hat JBoss Data Grid can be used in the following runtimes:

e Java SE, started by your application.

e As astandalone JBoss Data Grid server.

e Bundled as a library in your application, deployed to an application server, and started by your
application. For example, JBoss Data Grid can be used with Tomcat or Weblogic.

e |Inside an OSGi runtime environment, in this case, Apache Karaf.

For a list of containers supported with Red Hat JBoss Data Grid, see the Release Notes or the support
information here: https://access.redhat.com/articles/2435931

4.2.DEPLOY JBOSS DATA GRID IN JBOSS EAP (LIBRARY MODE)

Red Hat JBoss Data Grid provides a set of modules for Red Hat JBoss Enterprise Application Platform
7.x. Using these modules means that JBoss Data Grid libraries do not need to be included in the user
deployment. To avoid conflicts with the Infinispan modules that are already included with JBoss EAP,
the JBoss Data Grid modules are placed within a separate slot and identified by the JBoss Data Grid
version (major.minor).

NOTE

The JBoss EAP modules are not included in JBoss EAP. Instead, navigate to the
Customer Support Portal at http://access.redhat.com to download these modules from
the Red Hat JBoss Data Grid downloads page.

To deploy JBoss Data Grid in JBoss EAP, add dependencies from the JBoss Data Grid module to the
application’s classpath (the JBoss EAP deployer) in one of the following ways:

e Add adependency to the jboss-deployment-structure.xml file.
e Add adependency to the MANIFEST.MF file.
e Generate the MANIFEST.MF file via Maven.

Add a Dependency to the jboss-deployment-structure.xml File

Add the following configuration to the jboss-deployment-structure.xml file:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
<deployment>
<dependencies>
<module name="org.infinispan" slot="jdg-7.1"
services="export"/>
</dependencies>
</deployment>
</jboss-deployment-structure>

24

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.1/html-single/7.1_release_notes/
https://access.redhat.com/articles/2435931
http://access.redhat.com

CHAPTER 4. USING JBOSS DATA GRID WITH SUPPORTED CONTAINERS

NOTE

For details about the jboss-deployment-structure.xml file, see the Red Hat JBoss
Enterprise Application Platform documentation.

Add a Dependency to the MANIFEST.MF File.
Add a dependency to the MANIFEST.MF files as follows:

MANIFEST.MF File

Manifest-Version: 1.0
Dependencies: org.infinispan:jdg-7.1 services

The first line remains the same as the example. Depending on the dependency required, add one of the
following to the second line of the file:

e JBoss Data Grid Core:

I Dependencies: org.infinispan:jdg-7.1 services

e Embedded Query:
Dependencies: org.infinispan:jdg-7.1 services,

org.infinispan.query:jdg-7.1 services, org.infinispan.query.dsl:jdg-
7.1 services

e JDBC Cache Store:

Dependencies: org.infinispan:jdg-7.1 services,
org.infinispan.persistence.jdbc:jdg-7.1 services

e JPA Cache Store:

Dependencies: org.infinispan:jdg-7.1 services,
org.infinispan.persistence.jpa:jdg-7.1 services
e LevelDB Cache Store:

Dependencies: org.infinispan:jdg-7.1 services,
org.infinispan.persistence.leveldb:jdg-7.1 services

e CDI:

Dependencies: org.infinispan:jdg-7.1 services,
org.infinispan.cdi:jdg-7.1 meta-inf

Generate the MANIFEST.MF file via Maven

The MANIFEST.MF file is generated during the build (specifically during the JAR or WAR process). As
an alternative to adding a dependency to the MANIFEST.MF file, configure the dependency directly in
Maven by adding the following to the pom.xml file:

25

Red Hat JBoss Data Grid 7.1 Getting Started Guide

<plugin>
<artifactId>maven-war-plugin</artifactId>
<version>2.4</version>
<configuration>
<failOnMissingWebXml>false</failOnMissingWebXml>
<archive>
<manifestEntries>
<Dependencies>org.infinispan:jdg-7.1 services</Dependencies>
</manifestEntries>
</archive>
</configuration>
</plugin>

4.3. DEPLOY JBOSS DATA GRID IN JBOSS EAP (REMOTE CLIENT-
SERVER MODE)

4.3.1. Deploy JBoss Data Grid in JBoss EAP (Remote Client-Server Mode)

Red Hat JBoss Data Grid provides a set of modules for Red Hat JBoss Enterprise Application Platform
7.x. Using these modules means that JBoss Data Grid libraries do not need to be included in the user
deployment. To avoid conflicts with the Infinispan modules that are already included with JBoss EAP,
the JBoss Data Grid modules are placed within a separate slot and identified by the JBoss Data Grid
version (major.minor).

NOTE

The JBoss EAP modules are not included in JBoss EAP. Instead, navigate to the
Customer Support Portal at http://access.redhat.com to download these modules from
the Red Hat JBoss Data Grid downloads page.

To deploy JBoss Data grid in JBoss EAP, add dependencies from the JBoss Data Grid module to the
application’s classpath (the JBoss EAP deployer) in one of the following ways:

e Add adependency to the jboss-deployment-structure.xml file.
o Add a dependency to the MANIFEST.MF file.

Add a Dependency to the jboss-deployment-structure.xml File

Add the following configuration to the jboss-deployment-structure.xml file:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
<deployment>
<dependencies>
<module name="org.infinispan.commons" slot="jdg-7.1"
services="export"/>
<module name="org.infinispan.client.hotrod" slot="jdg-7.1"
services="export"/>
</dependencies>
</deployment>
</jboss-deployment-structure>

26

http://access.redhat.com

CHAPTER 4. USING JBOSS DATA GRID WITH SUPPORTED CONTAINERS

NOTE

For details about the jboss-deployment-structure.xml file, see the Red Hat JBoss
Enterprise Application Platform documentation.

Add a Dependency to the MANIFEST.MF File.
Add a dependency to the MANIFEST.MF files as follows:

Example MANIFEST.MF File

Manifest-Version: 1.0
Dependencies: org.infinispan.commons:jdg-7.1 services,
org.infinispan.client.hotrod:jdg-7.1 services

The first line remains the same as the example. Depending on the dependency required, add one of the
following to the second line of the file:

e Basic Hot Rod client:

org.infinispan.commons:jdg-7.1 services,
org.infinispan.client.hotrod:jdg-7.1 services

e Hot Rod client with Remote Query functionality:

org.infinispan.commons:jdg-7.1 services,
org.infinispan.client.hotrod:jdg-7.1 services,
org.infinispan.query.dsl:jdg-7.1 services, org.jboss.remoting3

4.3.2. Using Custom Classes with the Hot Rod client

Either of the following two methods may be used to use custom classes with the Hot Rod client:

e Option 1: Reference the deployment’s class loader in the configuration builder for the Hot Rod
client, as seen in the below example:

Referencing the custom class loader in the ConfigurationBuilder instance

import
org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
[...]

ConfigurationBuilder config = new ConfigurationBuilder();
config.marshaller (new

GenericJBossMarshaller(Thread.currentThread().getContextClassLoader (

)));

e Option 2: Install the custom classes as their own module within JBoss EAP, and a dependency
on the newly created module should be added to the JBoss Data Grid module at
S{EAP_HOME}/modules/system/layers/base/org/infinispan/commons/jdg-7.x/module.xml .

4.4. DEPLOY JBOSS DATA GRID IN JBOSS ENTERPRISE WEB SERVER

27

Red Hat JBoss Data Grid 7.1 Getting Started Guide

Red Hat JBoss Data Grid supports JBoss Enterprise Web Server in Library and Remote Client Server
mode. To use JBoss Data Grid with JBoss Enterprise Web Server, bundle the JDG libraries in a web
application and deploy the application on the server.

For further information on how to deploy JBoss Data Grid on JBoss Enterprise Web Server, see the
Carmart Non-Transactional Quickstart in Red Hat JBoss Data Grid Quickstarts .

4.5.DEPLOY WEB APPLICATIONS ON WEBLOGIC SERVER (LIBRARY
MODE)

Red Hat JBoss Data Grid supports the WebLogic 12c application server in Library mode. The following
procedure describes how to deploy web applications on a WebLogic server.

Prerequisites

The prerequisites to deploy the web applications are as follows:
1. WebLogic Server 12c.

2. JBoss Data Grid Library (Embedded) mode.

Deploying Web Applications on a WebLogic Server

1. Create Web Applications
Create a web application and add the libraries in the WEB-INF folder.

2. Create a weblogic.xml Deployment Descriptor
Create a weblogic.xml deployment descriptor with the following elements in it:

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app
xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/90
http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd">
<container-descriptor>
<prefer-web-inf-classes>true</prefer-web-inf-classes>
</container-descriptor>
</weblogic-web-app>

NOTE

The prefer-web-inf-classes class indicates that the libraries and the
classes in the WEB-INF/Iib folder is preferred over the default libraries bundled
in the WebLogic server. For example, the commons-pool.jar file in the WebLogic
server has version 1.4 and is automatically loaded by the classloader, but the
Hot Rod client uses a newer version of this library.

3. Pack the Web Application into a Web Archive File
Create a web application archive (WAR) file of the web application and verify that the JBoss
Data Grid libraries are in the WEB-INF folder along with the WebLogic deployment descriptor
file.

4. Deploy the Application onto the WebLogic Server

28

CHAPTER 4. USING JBOSS DATA GRID WITH SUPPORTED CONTAINERS

To deploy the web application using the Infinispan CDI module, stop the WebLogic server if it is
running, apply the patch on it (Patch file p17424706_121200_Generic.zip) and restart the
WebLogic server. If the Infinispan CDI module is not being used, deploy the web application
normally.

For more information about applying patch to the WebLogic Server, see the Oracle patch
database on the Oracle website.

4.6. DEPLOY WEB APPLICATIONS ON WEBLOGIC SERVER (REMOTE
CLIENT-SERVER MODE)

Red Hat JBoss Data Grid supports the WebLogic 12c application server in Remote Client-Server mode.
The following procedure describes how to deploy web applications on a WebLogic server.

Deploying Web Applications on a WebLogic Server

1. Toinstall the WebLogic server, see
http://docs.oracle.com/cd/E24329_01/doc.1211/e24492/toc.htm.

2. Configure JBoss Data Grid in Remote Client-Server mode, define cache, cache container, and
endpoint configuration. After configuration, start JBoss Data Grid to confirm that the Hot Rod
endpoint is listening on the configured port. For information about configuring JBoss Data Grid
in Remote Client-Server, see Run Red Hat JBoss Data Grid in Remote Client-Server Mode .

3. Create a web application and add the infinispan-remote library as a dependency if Maven is
used.

4. Create a weblogic.xml deployment descriptor with the following elements in it:

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app
xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/90
http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd">
<container-descriptor>
<prefer-web-inf-classes>true</prefer-web-inf-classes>
</container-descriptor>
</weblogic-web-app>

/, NOTE

The prefer-web-inf-classes class indicates that the libraries and classes in
the WEB-INF/Iib folder are preferred over the default libraries bundled in the
WebLogic server. For example, the commons-pool.jar file in the WebLogic server
has version 1.4 and is automatically loaded by the classloader, however the Hot
Rod client uses a newer version of this library.

5. Add deployment descriptor file in the WEB-INF folder.

6. Ensure that the infinispan-remote dependency is added to the pom.xmlfile, then use a
Maven plugin to create a web archive.
Alternatively, create the web archive manually and add the library manually.

29

http://docs.oracle.com/cd/E24329_01/doc.1211/e24492/toc.htm

Red Hat JBoss Data Grid 7.1 Getting Started Guide

7. Deploy the application in the WebLogic server and verify that the Hot Rod client embedded
inside the web application connects to the remote JBoss Data Grid server.

4.7. RUNNING RED HAT JBOSS DATA GRID IN KARAF (OSGlI)

4.7.1. Running Red Hat JBoss Data Grid in Karaf (OSGi)

Apache Karaf is a powerful, lightweight OSGi-based runtime container into which components and
applications are deployed. OSGi implements a dynamic component model that does not exist in
standalone JVM environments. OSGi containers such as Karaf include a rich set of tools for managing
the life cycle of an application.

All dependencies between individual modules, including version numbers, must be explicitly specified.

Where more than one class of the same name exists, the strict rules of OSGi specify which of the
classes will be used by your bundle.

4.7.2. Running a Deployment of JBoss Data Grid in Karaf (Remote Client-Server)

The Red Hat JBoss Data Grid Hot Rod client can be run in an OSGi-based container such as Karaf,
allowing client applications deployed in Karaf to connect to pre-existing JBoss Data Grid servers.

Use the path in the JBoss Data Grid Maven repository to set up Karaf. Additionally, JBoss Data Grid
requires a features file, located in org/infinispan/infinispan-remote/S{VERSION}. This file lists all

dependencies for the Hot Rod client in OSGi, while also making it simpler to install the feature into
Karaf (version 2.3.3 or 3.0).

4.7.3. Installing the Hot Rod client feature in Karaf

Red Hat JBoss Data Grid’s Hot Rod feature is installed in Karaf as follows:

Prerequisite

Configure the Red Hat JBoss Data Grid Maven Repository.

Install the Hot Rod Feature in Karaf

1. Karaf 2.3.3
For Karaf 2.3.3 use the following commands:

karaf@root features:addUrl mvn:org.infinispan/infinispan-
remote/${VERSION}/xml/features

I karaf@root features:install infinispan-remote
Verify that the feature was successfully installed as follows:

karaf@root features:list
//output

2. Karaf 3.0.0
For Karaf use the following commands.

30

CHAPTER 4. USING JBOSS DATA GRID WITH SUPPORTED CONTAINERS

karaf@root feature:repo-add mvn:org.infinispan/infinispan-
remote/${VERSION}/xml/features

I karaf@root feature:install infinispan-remote
Verify that the feature was successfully installed:

I karaf@root feature:list
Alternatively, use the -i command parameter to install the Hot Rod Client feature using the following:

karaf@root() feature:repo-add -i mvn:org.infinispan/infinispan-
remote/${VERSION}/xml/features

4.7.4. Installing Red Hat JBoss Data Grid in Karaf (Library Mode)

The Red Hat JBoss Data Grid JAR files contain the required OSGi manifest headers and are used inside
OSGi runtime environments as OSGi bundles. Additionally, the required third-party dependencies must
be installed. These can be installed individually, or altogether via the features file, which defines all
required dependencies.

To install bundles using the features file:

o Register the feature repositories inside Karaf.

e |Install the features contained in the repositories.

Installing bundles using the features file

1. Start the Karaf console
Start the Karaf console using the following commands:

$ cd $APACHE_KARAF_HOME/bin
$./karaf

2. Register a feature repository
Register a feature repository as follows:

a. For Karaf 2.3.3:

karaf@root() features:addUrl mvn:org.infinispan/infinispan-
embedded/${VERSION}/xml/features

I karaf@root features:install infinispan-embedded

b. For Karaf 3.0.0:

karaf@root() feature:repo-add mvn:org.infinispan/infinispan-
embedded/${VERSION}/xml/features

I karaf@root feature:install infinispan-embedded

31

Red Hat JBoss Data Grid 7.1 Getting Started Guide

The URL for feature repositories is constructed from the Maven artifact coordinates using the
following format:

I mvn:<groupId>/<artifactId>/<version>/xml/features

IMPORTANT

The JPA Cache Store is not supported in Apache Karaf in JBoss Data Grid 7.1.

IMPORTANT

Querying in Library mode (which is covered in the JBoss Data Grid Developer Guide) is
not supported in Apache Karaf in JBoss Data Grid 7.1.

32

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH
APACHE CAMEL

5.1. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

Apache Camel is an open source integration and routing system that allows transference of messages
from various sources to different destinations, providing an integration framework that allows
interaction with various systems using the same API, regardless of the protocol or data type. Using
Camel with Red Hat JBoss Data Grid and Red Hat JBoss Fuse simplifies integration in large enterprise
applications by providing a wide variety of transports and APIs that add connectivity.

JBoss Data Grid provides support for caching on Camel routes in JBoss Fuse, partially replacing

Ehcache. JBoss Data Grid is supported as an embedded cache (local or clustered) or as a remote
cache in a Camel route.

5.2. THE CAMEL-JBOSSDATAGRID COMPONENT

Red Hat JBoss Data Grid’s camel - jbossdatagrid component includes the following features:

e Local Camel Consumer

Receives cache change notifications and sends them to be processed. This can be done

synchronously or asynchronously, and is also supported with a replicated or distributed cache.

e Local Camel Producer

A producer creates and sends messages to an endpoint. The camel - jbossdatagrid
producer uses GET, PUT, REMOVE, and CLEAR operations. The local producer is also supported
with a replicated or distributed cache.

¢ Remote Camel Producer

In Remote Client-Server mode, the Camel producer can send messages using Hot Rod.

¢ Remote Camel Consumer

In Client-Server mode, receives cache change notifications and sends them to be processed.
The events are processed asynchronously.

The following camel - jbhossdatagrid dependency must be added to the pom.xmlfile to run JBoss
Data Grid with Camel:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jbossdatagrid</artifactId>
<version>2.17.0.Final-redhat-2</version>
</dependency>

NOTE

The camel-jbossdatagrid component ships with JBoss Data Grid, and is not
included in the JBoss Fuse 6.1 or JBoss Fuse Service Works 6.0 distributions.

33

Red Hat JBoss Data Grid 7.1 Getting Started Guide

Camel components are the main extension point in Camel, and are associated with the name used in a
URI, and act as a factory of endpoints. For example, a FileComponent is referred toina URl as file,
which creates FileEndpoints.

URI Format

The following URI format is used for camel-jbossdatagrid:
I infinispan://hostname?[options]

URI Options

The producer can create and send messages to a local or remote JBoss Data Grid cache configured in
the registry. If a cacheContainer is present, the cache will be either local or remote, depending on
whether the cacheContainer instance is a DefaultCacheManager or RemoteCacheManager. If it
is not present, the cache will try to connect to remote cache using the supplied hostname/port.

A consumer listens for events from the local JBoss Data Grid cache accessible from the registry.

Table 5.1. URI Options

Name Description

cacheContainer Default Value: null
Type: CacheContainer
Context: Shared

Description: Reference to a
org.infinispan.manager .CacheContainer inthe Registry.

cacheName Default Value: null
Type: String
Context: Shared

Description: The cache name to use. If not specified, the default cache is used.

command Default Value: PUT
Type: String
Context: Producer

Description: The operation to perform. Only the PUT, GET, REMOVE, and CLEAR
values are currently supported.

34

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

Name Description

eventTypes Default Value: null
Type: Set<String>
Context: Consumer

Description: A comma separated list of the event types to register. By default,
this listens for all event types. Possible values are defined in
org.infinispan.notifications.cachelistener.event.Event.

Type.

[source,java,options="nowrap"] ---- ...?
eventTypes=CACHE_ENTRY_EXPIRED,CACHE_ENTRY_EVICTED,... ----

sync Default Value: true
Type: Boolean
Context: Consumer

Description: By default the consumer will receive notifications synchronously by
the same thread that process the cache operation. Remote HotRod listeners
support only asynchronous notification.

clustered Default Value: false
Type: Boolean
Context: Consumer

Description: By default the consumer will only receive local events. By using this
option, the consumer also listens to events originated on other nodes in the
cluster. The only events available for clustered listeners are
CACHE_ENTRY_CREATED, CACHE_ENTRY_REMOVED, and
CACHE_ENTRY_MODIFIED.////

Camel Operations

A list of all available operations, along with their header information, is found below:

Table 5.2. Put Operations

Operation Name Description

35

Red Hat JBoss Data Grid 7.1 Getting Started Guide

Operation Name Description

CamellnfinispanOperationPut Context: Embedded / Remote

Description: Puts a key/value pair in the cache, optionally with
expiration

Required Headers: CamelinfinispanKey, CamelinfinispanValue

Optional Headers: CamellnfinispanLifespanTime,
CamelinfinispanLifespanTimeUnit,
CamelinfinispanMaxldleTime, CamelinfinispanMaxIdleTimeUnit,
CamellnfinispanlgnoreReturnValues

Result Header: CamellnfinispanOperationResult

CamelinfinispanOperationPutAsync Description: A variation of the
CamelInfinispanOperationPutAsync that
asynchronously puts a key/value pair in the cache, optionally
with expiration

CamelinfinispanOperationPutlfAbsent Description: A variation of the
CamelInfinispanOperationPutAsync that puts a
key/value pair in the cache if it did not exist, optionally with
expiration

CamelinfinispanOperationPutlfAbsentAs Description: A variation of the

ync CamelInfinispanOperationPutAsync that
asynchronously puts a key/value pair in the cache if it did not
exist, optionally with expiration

Table 5.3. Put All Operations

Operation Name Description

CamellnfinispanOperationPutAll Context: Embedded / Remote

Description: Adds multiple entries to a cache, optionally with
expiration

Required Headers: CamelinfinispanMap

Optional Headers: CamellnfinispanLifespanTime,
CamelinfinispanLifespanTimeUnit,
CamellnfinispanMaxldleTime, CamellnfinispanMaxIdleTimeUnit

Result Header: None

CamellnfinispanOperationPutAllAsync Description: A variation of the
CamelInfinispanOperationPutAll that
asynchronously adds multiple entries to a cache, optionally
with expiration

36

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

Table 5.4. Get Operation

Operation Name Description

CamellnfinispanOperationGet Context: Embedded / Remote

Description: Retrieves the value associated with a specific key
from the cache

Required Headers: CamelinfinispanKey
Optional Headers: None

Result Header: None

Table 5.5. Contains Key Operation

Operation Name Description

CamellnfinispanOperationContainsKey Context: Embedded / Remote

Description: Determines whether a cache contains a specific
key

Required Headers: CamelinfinispanKey
Optional Headers: None

Result Header: CamellnfinispanOperationResult

Table 5.6. Contains Value Operation

Operation Name Description

CamellnfinispanOperationContainsValue Context: Embedded / Remote

Description: Determines whether a cache contains a specific
value

Required Headers: CamelinfinispanKey
Optional Headers: None

Result Headers: None

Table 5.7. Remove Operations

Operation Name Description

Red Hat JBoss Data Grid 7.1 Getting Started Guide

Operation Name Description

CamellnfinispanOperationRemove Context: Embedded / Remote

Description: Removes an entry from a cache, optionally only if
the value matches a given one

Required Headers: CamelinfinispanKey
Optional Headers: CamellnfinispanValue

Result Header: CamellnfinispanOperationResult
CamellnfinispanOperationRemoveAsync Description: A variation of the
CamelInfinispanOperationRemove that

asynchronously removes an entry from a cache, optionally only
if the value matches a given one

Table 5.8. Replace Operations

Operation Name Description

CamellnfinispanOperationReplace Context: Embedded / Remote

Description: Conditionally replaces an entry in the cache,
optionally with expiration

Required Headers: CamellnfinispanKey, CamellnfinispanValue,
CamellnfinispanOldValue

Optional Headers: CamellnfinispanLifespanTime,
CamelinfinispanLifespanTimeUnit,
CamelinfinispanMaxldleTime, CamelinfinispanMaxIdleTimeUnit,
CamellnfinispanlgnoreReturnValues

Result Header: CamellnfinispanOperationResult

CamelinfinispanOperationReplaceAsync Description: A variation of the
CamelInfinispanOperationReplace that
asynchronously conditionally replaces an entry in the cache,
optionally with expiration

Table 5.9. Clear Operation

Operation Name Description

m ‘

3

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

Operation Name Description

CamellnfinispanOperationClear Context: Embedded / Remote
Description: Clears the cache
Required Headers: None
Optional Headers: None

Result Header: None

Table 5.10. Size Operation

Operation Name Description

CamellnfinispanOperationSize Context: Embedded / Remote
Description: Returns the number of entries in the cache
Required Headers: None
Optional Headers: None

Result Header: CamellnfinispanOperationResult

Table 5.11. Query Operation

Operation Name Description

CamellnfinispanOperationQuery Context: Remote
Description: Executes a query on the cache
Required Headers: CamellnfinispanQueryBuilder
Optional Headers: None

Result Header: CamellnfinispanOperationResult

NOTE

Any operations that take CamelInfinispanIgnoreReturnValues will receive a null
result.

Table 5.12. Message Headers

Name Description

w ‘

9

Red Hat JBoss Data Grid 7.1 Getting Started Guide

Name Description

CamellnfinispanCacheName Default Value: null

Type: String

Context: Shared

Description: The cache participating in the operation or event.
CamellnfinispanMap Default Value: null

Type: Map

Context: Producer

Description: A Map to use in case of the
CamelInfinispanOperationPutAll operation.

CamelinfinispanKey Default Value: null
Type: Object
Context: Shared

Description: The key to perform the operation to or the key
generating the event.

CamellnfinispanValue Default Value: null
Type: Object
Context: Producer

Description: The value to use for the operation.

CamellnfinispanOperationResult Default Value: null
Type: Object
Context: Producer

Description: The result of the operation.

40

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

Name Description

CamelinfinispanEventType Default Value: null
Type: String
Context: Consumer

Description: For local cache listeners (non-clustered), one of
the following values: CACHE_ENTRY_ACTIVATED,
CACHE_ENTRY_PASSIVATED,CACHE_ENTRY_VISITED,
CACHE_ENTRY_LOADED,CACHE_ENTRY_EVICTED,
CACHE_ENTRY_CREATED, CACHE_ENTRY_REMOVED,
CACHE_ENTRY_MODIFIED.

For remote HotRod listeners, one of the following values:
CLIENT_CACHE_ENTRY_CREATED,
CLIENT_CACHE_ENTRY_MODIFIED,
CLIENT_CACHE_ENTRY_REMOVED,
CLIENT_CACHE_FAILOVER

CamelinfinispanlsPre Default Value: null
Type: Boolean
Context: Consumer

Description: Infinispan fires two events for each operation when
local non-clustered listener is used: one before and one after
the operation. For clustered listeners and remote HotRod
listeners, Infinispan fires only one event after the operation.

CamellnfinispanQueryBuilder Default Value: null
Type: InfinispanQueryBuilder
Context: Producer
Description: Aninstance of InfinispanQueryBuilder

that, in its build (), defines the query to be executed on the
cache.

CamellnfinispanLifespanTime Default Value: null
Type: long
Context: Producer

Description: The Lifespan time of a value inside the cache.
Negative values are interpreted as infinity.

41

Red Hat JBoss Data Grid 7.1 Getting Started Guide

Name Description

CamellnfinispanTimeUnit Default Value: null
Type: String
Context: Producer

Description: The Time Unit of an entry Lifespan Time.

CamellnfinispanMaxldleTime Default Value: null
Type: long
Context: Producer

Description: The maximum amount of time an entry is allowed
to be idle for before it is considered as expired.

CamellnfinispanMaxldleTimeUnit Default Value: null
Type: String
Context: Producer

Description: The Time Unit of an entry Max Idle Time.

5.3. ROUTING WITH CAMEL IN JBOSS DATA GRID

Camel routing is a chain of processors that move messages in the background. The following is an
example of a route that retrieves a value from the cache for a specific key.

from("direct:start")
.setHeader (InfinispanConstants.OPERATION,
constant(InfinispanConstants.GET))
.setHeader (InfinispanConstants.KEY, constant("123"))
.to("infinispan://localhost?cacheContainer=#cacheContainer");

Routing can also be performed using XML configuration. The following example demonstrates camel-
jbossdatagrid’s local-camel-producer, a camel route that uses the camel-jbossdatagrid
component to send data to an embedded cache created by the 1local-cache module.

<camelContext id="local-producer"
xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="timer://local?fixedRate=true&period=5000"/>
<setHeader headerName="CamelInfinispanKey">
<constant>CamelTimerCounter</constant>
</setHeader>
<setHeader headerName="CamelInfinispanValue">
<constant>CamelTimerCounter</constant>
</setHeader>
<to uri="infinispan://foo?cacheContainer=#cacheManager"/>

42

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

<to uri="log:local-put?showAll=true"/>
</route>
</camelContext>

The provided example requires the cacheManager to be instantiated.

The cacheManager bean for Spring XML can be instantiated as follows:

<bean id="cacheManager" class="org.infinispan.manager .DefaultCacheManager"
init-method="start" destroy-method="stop">

<constructor-arg type="java.lang.String" value="infinispan.xml"/>
</bean>

The following demonstrates how to instantiate the cacheManager bean using Blueprint XML.

<bean id="cacheManager" class="org.infinispan.manager .DefaultCacheManager"
init-method="start" destroy-method="stop">

<argument value="infinispan.xml" />
</bean>

NOTE

Both the Spring XML and Blueprint XML examples use the configuration file
infinispan.xml for configuration of the cache. This file must be present on the classpath.

5.4. REMOTE QUERY

and an example configuration utilizing a RemoteCacheManager is found below for both Java and
.setHeader (InfinispanConstants.QUERY_BUILDER,
return

When executing remote queries the cacheManager must be an instance of RemoteCacheManager,
blueprint.xml:
Example 5.1. Using only Java
from("direct:start")
.setHeader (InfinispanConstants.OPERATION, InfinispanConstants.QUERY)
new InfinispanQueryBuilder() {
public Query build(QueryFactory<Query> queryFactory) {
gueryFactory.from(User.class).having("name").like("%abc%")
Lbuild();

to("lnflnlspan //1localhost?
cacheContainer=#cacheManager&cacheName=remote_query_cache") ;

Example 5.2. Using Blueprint and Java

Java RemoteCacheManagerFactory class:

I public class RemoteCacheManagerFactory {

43

Red Hat JBoss Data Grid 7.1 Getting Started Guide

ConfigurationBuilder clientBuilder;

public RemoteCacheManagerFactory(String hostname, int port) {
clientBuilder = new ConfigurationBuilder();
clientBuilder.addServer()

.host(hostname) .port(port);

}

public RemoteCacheManager newRemoteCacheManager() {
return new RemoteCacheManager(clientBuilder.build());

}

Java InfinispanQueryExample class:

public class InfinispanQueryExample {
public InfinispanQueryBuilder getBuilder() {
return new InfinispanQueryBuilder() {
public Query build(QueryFactory<Query> queryFactory) {
return queryFactory.from(User.class)

.having("name")

.like("%abc%")

Lbuild();

blueprint.xml:

<bean id="remoteCacheManagerFactory”
class=*“com. jboss.datagrid.RemoteCacheManagerFactory”>
<argument value="localhost”/>

<argument value="11222"/>
</bean>

<bean id="cacheManager”
factory-ref="remoteCacheManagerFactory”
factory-method=“newRemoteCacheManager”>
</bean>

<bean id="queryBuilder" class="org.example.com.InfinispanQueryExample"/>

<camelContext id="route"
xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="direct:start"/>
<setHeader headerName="CamelInfinispanOperation">
<constant>CamelInfinispanOperationQuery</constant>
</setHeader>
<setHeader headerName="CamelInfinispanQueryBuilder">
<method ref="queryBuilder" method="getBuilder"/>
</setHeader>
<to uri="infinispan://localhost?
cacheContainer=#cacheManager&cacheName=remote_query_cache"/>
</route>
</camelContext>

44

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

The remote_query_cache is an arbitrary name for a cache that holds the data, and the results of the
query will be a list of domain objects stored as a CamelInfinispanOperationResult header.

In addition, there are the following requirements:
e The RemoteCacheManager must be configured to use ProtoStreamMarshaller.

e TheProtoStreamMarshaller must be registered with the RemoteCacheManager's
serialization context.

e The .proto descriptors for domain objects must be registered with the remote JBoss Data Grid
server.

For more details on how to setup a RemoteCacheManager, see the Remote Querying section of the
Red Hat JBoss Data Grid Infinispan Query Guide.

5.5.CUSTOM LISTENERS FOR EMBEDDED CACHE

Custom Listeners for an embedded cache can be registered through the customListener parameter
as shown below:

Using Java

from("infinispan://?
cacheContainer=#myCustomContainer&cacheName=customCacheName&customListener
=#myCustomListener")

.to("mock:result");

Using Blueprint

<bean id="myCustomContainer" org.infinispan.manager .DefaultCacheManager"
init-method="start" destroy-method="stop">
<argument value="infinispan.xml" />

</bean>

<bean id="myCustomListener" class="org.example.com.CustomListener"/>

<camelContext id="route" xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="infinispan://?
cacheContainer=#myCustomContainer&cacheName=customCacheName&customListener
=#myCustomListener"/>
<to uri="mock:result"/>
</route>
</camelContext>

The instance of myCustomListener must exist. Users are encouraged to extend the
org.apache.camel.component.infinispan.embedded.InfinispanEmbeddedCustomListen
er and annotate the resulting class with the @Listener annotation from org.infinispan.notifications .

45

Red Hat JBoss Data Grid 7.1 Getting Started Guide

NOTE

Custom filters and converters for embedded caches are currently not supported.

5.6. CUSTOM LISTENERS FOR REMOTE CACHE

Custom listeners for a remote cache can be registered in the same way as an embedded cache, with
the exception that sync=false must be present. For instance:

cacheContainer=#cacheManageré&sync=false&customListener=#myCustomListener

from(infinispan://?
H)

Example 5.3. Using only Java
.to(mock:result);

Example 5.4. Using Blueprint and Java

Java class:

public class RemoteCacheManagerFactory {

ConfigurationBuilder clientBuilder;

public RemoteCacheManagerFactory(String hostname, int port) {
clientBuilder = new ConfigurationBuilder();
clientBuilder.addServer()

.host(hostname) .port(port);

}

public RemoteCacheManager newRemoteCacheManager() {
return new RemoteCacheManager(clientBuilder.build());

}

blueprint.xml:

<bean id="remoteCacheManagerFactory”
class=“com.jboss.datagrid.RemoteCacheManagerFactory”>
<argument value="localhost”/>

<argument value="11222"/>
</bean>

<bean id="cacheManager”
factory-ref="remoteCacheManagerFactory”
factory-method=“newRemoteCacheManager”>
</bean>

<bean id="myCustomListener" class="org.example.com.CustomListener"/>

<camelContext id="route"
xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="infinispan://?
cacheContainer=#cacheManager&sync=false&customListener=#myCustomListener
Il/>

46

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

</route>

<to uri="mock:result"/>
</camelContext>

The instance of myCustomListener must exist. Users are encouraged to extend the
org.apache.camel.component.infinispan.remote.InfinispanRemoteCustomListener
class and annotate the resulting class with @ClientListener;this annotation is found in
org.infinispan.client.hotrod.annotation .

Remote listeners may also be associated with custom filters and converters as shown below:

@ClientListener(includeCurrentState=true, filterFactoryName = "static-
filter-factory", converterFactoryName = '"static-converter-factory")

private static class MyCustomListener extends
InfinispanRemoteCustomListener {

}

In order to use custom filters or converters classes annotated with @NamedFactory must be
implemented. A skeleton that implements the necessary methods is shown below:

import org.infinispan.notifications.cachelistener.filter;

@NamedFactory(name = '"static-converter-factory")
public static class StaticConverterFactory implements
CacheEventConverterFactory {

@override

public CacheEventConverter<Integer, String, CustomEvent>
getConverter(Object[] params) {

}

static class StaticConverter implements CacheEventConverter<Integer,
String, CustomEvent>, Serializable {
@Ooverride
public CustomEvent convert(Integer key, String previousValue, Metadata
previousMetadata,
String value, Metadata metadata, EventType
eventType) {

}
}
}

@NamedFactory(name = "static-filter-factory")
public static class StaticCacheEventFilterFactory implements
CacheEventFilterFactory {

@Ooverride

public CacheEventFilter<Integer, String> getFilter(final Object[]
params) {

}

static class StaticCacheEventFilter implements CacheEventFilter<Integer,
String>, Serializable {

47

Red Hat JBoss Data Grid 7.1 Getting Started Guide

@Ooverride
public boolean accept(Integer key, String previousValue, Metadata
previousMetadata,
String value, Metadata metadata, EventType
eventType) {

}
}
}

Custom filters and converters must be registered with the server. Registering these classes is
documented in the Remote Event Listeners section of the Red Hat JBoss Data Grid Developer
Guide.

NOTE

In order to listen for remote HotRod events the cacheManager must be of type
RemoteCacheManager and instantiated.

5.7. RED HAT JBOSS DATA GRID AND RED HAT JBOSS FUSE

5.7.1. Installing camel-jbossdatagrid for Red Hat JBoss Fuse

Red Hat JBoss Fuse is an OSGi container based on the Karaf container. To run Red Hat JBoss Data
Grid and JBoss Fuse using camel-jbossdatagrid, ensure that both JBoss Data Grid 7.1 and JBoss
Fuse 6.1 (Full Installation) are installed.

Installing JBoss Data Grid

For information about installing JBoss Data Grid, see Download and Install Red Hat JBoss Data Grid .
Only the following JBoss Data Grid components are required to run the camel component in JBoss
Fuse: * JBoss Data Grid Maven repository. * The JBoss Data Grid Server package (to use the Hot Rod
client).

The camel-jbossdatagrid library is also available in a separate distribution called jboss-datagrid-
7.1.0-camel-library

Installing JBoss Fuse

Before attempting to install and use Red Hat JBoss Fuse, ensure your system meets the minimum
requirements. For supported Platforms and recommended Java Runtime platforms, see the Red Hat
JBoss Fuse Installation Guide

The following hardware is required for the JBoss Fuse 6.1 Full Installation:
e 700 MB of free disk space
e 2GBof RAM

In addition to the disk space required for the base installation, a running system will require space for
caching, persistent message stores, and other functions.

1. Download the JBoss Fuse Full Installation
You can download the Red Hat JBoss Fuse archive from the Red Hat Customer
Portal>Downloads>Red Hat JBoss Middleware>Downloads page, after you register and login to
your customer account.

48

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

When logged in:
a. Select Fuse, listed under Integrated Platforms in the sidebar menu.
b. Select 6.1.0 from the Version drop-down list on the Software Downloads page.

c. Click the Download button next to the Red Hat JBoss Fuse 6.1.0 distribution file to
download.

JBoss Fuse allows you to choose between installations that contain different feature sets. To
run JBoss Data Grid with JBoss Fuse, the Full installation is required. The Full installation
includes the following:

e Apache Karaf

e Apache Camel

e Apache ActiveAMQ

e Apache CXF

e Fuse Management

e Console (hawtio)

e JBI components

2. Unpacking the Archive
Red Hat JBoss Fuse is installed by unpacking an archive on a system. JBoss Fuse is packaged
as a zip file. Using a suitable archive tool, unpack Red Hat JBoss Fuse into a directory to which
you have full access.

WARNING
A Do not unpack the archive file into a folder that has spaces in its path

name. For example, do not unpack into C:\Documents and Settings\Greco
Roman\Desktop\fusesrc.

Additionally, do not unpack the archive file into a folder that has any of the
following special characters in its path name: #, %, #, ".

3. Adding a Remote Console User
The server’s remote command console is not configured with a default user. Before remotely
connecting to the server’s console, add a user to the configuration.

IMPORTANT

The information in this file is unencrypted so it is not suitable for environments
that require strict security.

To add a user:

49

Red Hat JBoss Data Grid 7.1 Getting Started Guide

a. Open InstallDir/etc/users.properties in your favorite text editor.

b. Locate the line #admin=admin, admin. This line specifies a user admin with the password
admin and the role admin.

c. Remove the leading # to uncomment the line.
d. Replace the first admin with a name for the user.
e. Replace the second admin with the password for the user.

f. Leave the last admin as it is, and save the changes.

NOTE

To access the Fuse Management Console to monitor and manage your Camel
routes, ActiveMQ brokers, Web applications, and so on, open a browser to, after
starting Red Hat JBoss Fuse.

4. Red Hat JBoss Fuse Maven Repositories

To use Maven to build projects, specify the location of the artifacts in a Maven settings.xml file.

The following JBoss Fuse Maven repository contains the required dependencies for Camel and
must be added to the settings.xml file.

I https://repo.fusesource.com/nexus/content/groups/public/

The JBoss Fuse repository runs alongside the JBoss Data Grid repository.

JBoss Data Grid includes a features.xml file for Karaf that deploys all artifacts required for the
camel-jbossdatagrid component. This file is not included in the JBoss Fuse container
distribution. The features.xml file is in jboss-datagrid-7.1.0-maven-
repository/org/apache/camel/camel-jbossdatagrid/S{version}/ . No further configuration of the
JBoss Data Grid repository is required.

For more information about installing and getting started with JBoss Fuse, see the Red Hat
JBoss Fuse documentation on the Red Hat Customer Portal.

5.8. RED HAT JBOSS DATA GRID AND RED HAT JBOSS EAP

5.8.1. Installing camel-jbossdatagrid for Red Hat JBoss Enterprise Application
Platform

Red Hat JBoss Enterprise Application Platform 7 (JBoss EAP 7) is a middleware platform built on open
standards and compliant with the Java Enterprise Edition 8 specification.

As Camel is only supported through Red Hat JBoss Fuse valid entitlements for all of the following
products will be necessary:

50

e Red Hat JBoss EAP

e Red Hat JBoss Fuse

e Red Hat JBoss Data Grid

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

NOTE

Entitlement to Red Hat JBoss Fuse Service Works includes entitlements to Red Hat
JBoss EAP and Red Hat JBoss Fuse.

The following variables are used instead of specific version numbers in the installation procedures
below:

e jdg.version - the latest version of Red Hat JBoss Data Grid
e fuse.version - the latest version of Red Hat JBoss Fuse

e infinispan.version - the version of Infinispan that is included in the latest version of Red
Hat JBoss Data Grid

e camel.version - the version of Apache Camel that is included in the latest version of Red
Hat JBoss Fuse

For more information on tested integrations for "~ “camel-
jbossdatagrid™ ", please refer to
https://access.redhat.com/articles/115883.

Procedure: Installing JBoss Data Grid

For information about installing JBoss Data Grid, see Download and Install Red Hat JBoss Data Grid .
Only the following JBoss Data Grid components are required to run the camel component in JBoss
EAP: * JBoss Data Grid Maven repository. * The JBoss Data Grid Server package (to use the Hot Rod
client).

The camel-jbossdatagrid library is also available in a separate distribution called jboss-datagrid-
S{jdg.version}-camel-library .
Installing JBoss EAP

1. Before attempting to install and use Red Hat JBoss EAP ensure your system meets the
minimum requirements as documented in Red Hat JBoss EAP Installation Guide .

2. Unpacking the Archive
Red Hat JBoss EAP is installed by unpacking an archive on a system, as JBoss EAP is
packaged as a zip file; using a suitable archive tool, unpack Red Hat JBoss EAP into a directory
to which you have full access.

WARNING
A Do not unpack the archive file into a folder that has spaces in its path

name. For example, do not unpack into C:\Documents and Settings\Greco
Roman\Desktop\JBoss.

Additionally, do not unpack the archive file into a folder that has any of the
following special characters in its path name: #, %, ~,".

51

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/installation_guide/#installation_prerequisites

Red Hat JBoss Data Grid 7.1 Getting Started Guide

3. Once the archive has been extracted JBoss EAP will have been successfully installed. For more
information on installation options refer to the appropriate section, based on how JBoss EAP
was installed, under Red Hat JBoss EAP Installation Guide .

4. If JBoss Data Grid is being used in Library mode then refer to Deploy JBoss Data Grid in JBoss
EAP (Library Mode) to ensure the necessary dependencies have been installed.

5. If JBoss Data Grid is being used in Remote Client-Server mode then refer to Deploy JBoss
Data Grid in JBoss EAP (Remote Client-Server Mode) to ensure the necessary dependencies
have been installed.

5.8.2. Deploy Camel with EAP

5.8.2.1. Add development and runtime dependencies

In order to compile your application the dependent libraries for Camel and JBoss Data Grid will have to
be added to the pom. xml (if using Maven).

Add Camel from Fuse

1. Ensure that the Fuse repository has been added to the pom. xml:

<repository>
<id>fusesource</id>
<name>FuseSource Release Repository</name>

<url>https://repo.fusesource.com/nexus/content/groups/public/</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</repository>

2. Add the Camel components as a dependency in the pom. xm1:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>
<version>${camel.version}</version>
</dependency>

Add camel-jbossdatagrid to the deployment.

1. Follow the instructions in Install and Use the Maven Repositories to add the maven repository.

2. Add camel-jbossdatagrid as a dependency in the pom. xml1:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jbossdatagrid</artifactId>
<version>${jdg.version}</version>
</dependency>

52

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/installation_guide/#installing_jboss_eap

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

3. Add in the remaining JBoss Data Grid dependencies depending on which functionality is in use:

<!-- If Remote Camel Producer is used add the following dependency -
->

<dependency>

<groupId>org.infinispan</groupId>
<artifactId>infinispan-remote</artifactId>
<version>${infinispan.version}</version>

</dependency>

<!-- If the Local Camel Producer or Local Camel Consumer are 1in use
add -->

<!-- the following dependency -->

<dependency>

<groupId>org.infinispan</groupId>

<artifactId>infinispan-embedded</artifactId>

<version>${infinispan.version}</version>
</dependency>

5.8.2.2. Optionally: Add runtime dependencies as a JBoss EAP Module

Sometimes it is preferable to maintain other product libraries in JBoss EAP as modules. This requires
some additional procedures to create these modules.

NOTE

When using modules for dependencies the pom. xml will need to have the scope set to
"provided" for any dependencies provided as modules. For example:

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jbossdatagrid</artifactId>
<scope>provided</scope>
<version>${jdg.version}</version>
</dependency>

Download jbhoss-datagrid-${jdg.version}-camel-library.zip from the customer portal.

Extract the apache-camel-${camel.version}.zip found in Red Hat JBoss Fuse’s extras/
directory:

user@example modules] unzip /path/to/jboss-fuse-
${fuse.version}/extras/apache-camel-${camel.version}

Add in the Camel components from JBoss Fuse

1. Create a directory under SEAP_HOME/modules:

user@example jboss-eap-7.0] cd modules
user@example modules] mkdir -p org/apache/camel/core

2. Create amain subdirectory to store the jars:

53

Red Hat JBoss Data Grid 7.1 Getting Started Guide

I user@example modules] mkdir org/apache/camel/core/main

3. Copy over the camel-core jar from apache-camel-${camel.version}.zip to the newly
created main directory:

user@example modules] cp /path/to/jboss/fuse/extras/apache-camel-
${camel.version}/lib/camel-core-${camel.version}. jar
./org/apache/camel/core/main/

4. Create the module.xml descriptor by adding in the following text to
org/apache/camel/core/main/module . xml:

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.1" name="org.apache.camel.core'">
<resources>
<resource-root path="camel-core-${camel.version}.jar"/>
</resources>
</module>

5. Repeat the above steps to create a module for each dependency in use; note that modules may
have dependencies on other modules as described in the Red Hat JBoss Administration and
Configuration Guide .

Add in Camel components from JBoss Data Grid.

1. Create amain subdirectory for the JDG Camel components:

I user@example jboss-eap-7.0] mkdir -p modules/org/apache/camel/main

2. Unzip jboss-datagrid-${jdg.version}-camel-1library.zip.
3. Copy camel-jbossdatagrid-${jdg.version}. jar into the newly created directory:

user@example jboss-eap-7.0] cp jboss-datagrid-${jdg.version}-camel-
library/camel-jbossdatagrid-${jdg.version}.jar
modules/org/apache/camel/main/

4. Create amodule.xml descriptor by adding in the following text to
org/apache/camel/main/module.xml:

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.1" name="org.apache.camel">
<resources>
<resource-root path="camel-jbossdatagrid-${jdg.version}.jar"/>
</resources>
<dependencies>
<module name="org.apache.camel.core" />
</dependencies>
</module>

Create a jboss-deployment-structure.xml in the WEB-INF of the war, and add dependencies on
the newly created module:

54

CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL

<?xml version="1.0" encoding="UTF-8"?>
<jboss-deployment-structure>
<deployment>
<dependencies>
<module name="org.apache.camel" meta-inf="import"/>

<!-- Add the following lines if Library mode is used -->
<module name="org.infinispan" slot="jdg-7.1" />
<module name="org.jgroups" slot="jdg-7.1" />

<!-- Add the following lines if Remote Client-Server mode 1is
used -->
<module name="org.infinispan.client.hotrod" slot="jdg-7.1" />
</dependencies>
</deployment>

</jboss-deployment-structure>

55

Red Hat JBoss Data Grid 7.1 Getting Started Guide

PART IV. RUNNING RED HAT JBOSS DATA GRID WITH MAVEN

56

CHAPTER 6. RUN RED HAT JBOSS DATA GRID WITH MAVEN

CHAPTER 6. RUN RED HAT JBOSS DATA GRID WITH MAVEN

6.1. DEFINING MAVEN DEPENDENCIES FOR USE WITH JBOSS DATA
GRID (REMOTE CLIENT-SERVER MODE)

Use the following instructions to run Red Hat JBoss Data Grid with Maven in Remote Client-Server
mode.

Hot Rod Client with Querying

Add the following dependencies to the pom.xml file:

1. Add infinispan-remote dependency:

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-remote</artifactId>
<version>${infinispan.version}</version>
</dependency>

2. Forinstances where a Remote Cache Storeisinuse alsoadd the infinispan-embedded
dependency as shown below:

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-embedded</artifactId>
<version>${infinispan.version}</version>
</dependency>

3. Forinstances where JSR-107 is in use, ensure that the cache-api packages are available at
runtime. Having these packages available can be accomplished by any of the following
methods:

a. Option 1: If JBoss EAP is in use, then add the JBoss Data Grid modules to this instance as
described in Section 4.3, “Deploy JBoss Data Grid in JBoss EAP (Remote Client-Server
Mode)”.

Add the javax.cache.api module to the application’s jboss-deployment -
structure.xml. An example is shown below:

<jboss-deployment-structure xmlns="urn:jboss:deployment-
structure:1.2">
<deployment>
<dependencies>
<module name="javax.cache.api" slot="jdg-7.1"
services="export"/>
</dependencies>
</deployment>
</jboss-deployment-structure>

b. Option 2: Download the jboss-datagrid-${jdg.version}-1library file from the
customer portal.
Extract the downloaded archive.

Embed the jboss-datagrid-${jdg.version}-library/lib/cache-api-

57

Red Hat JBoss Data Grid 7.1 Getting Started Guide

${jcache.version}. jar file into the desired application.

c. Option 3: If the JBoss Data Grid Maven repository is available then add an explicit
dependency to the pom. xml of the project as seen below:

<dependency>
<groupId>javax.cache</groupId>
<artifactId>cache-api</artifactId>
<version>${jcache.version}</version>
</dependency>

' WARNING
A The Infinispan query API directly exposes the Hibernate Search and the Lucene

APIs and cannot be embedded within the infinispan-embedded-query.jar file. Do not
include other versions of Hibernate Search and Lucene in the same deployment as
infinispan-embedded-query . This action will cause classpath conflicts and result in
unexpected behavior.

6.2. DEFINING MAVEN DEPENDENCIES FOR USE WITH JBOSS DATA
GRID (LIBRARY MODE)

Use the provided instructions to run Red Hat JBoss Data Grid with Maven in Library mode.

NOTE

To simplify embedding Red Hat JBoss Data Grid directly in your application, the
distribution of JBoss Data Grid contains fewer, consolidated jars. For the list of
supported jar files, see the Packaging Revisions in the Release Notes.

Infinispan Embedded without Querying

Add the infinispan-embedded dependency to the pom.xmlfile:

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-embedded</artifactId>
<version>${infinispan.version}</version>
</dependency>

Infinispan Embedded with Querying

Add the infinispan-embedded-query dependency to the pom.xmlfile:

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-embedded-query</artifactId>
<version>${infinispan.version}</version>
</dependency>

58

CHAPTER 6. RUN RED HAT JBOSS DATA GRID WITH MAVEN

WARNING

The Infinispan query API directly exposes the Hibernate Search and the Lucene
APIs and cannot be embedded within the infinispan-embedded-query.jar file. Do not
include other versions of Hibernate Search and Lucene in the same deployment as
infinispan-embedded-query . This action will cause classpath conflicts and result in
unexpected behavior.

59

Red Hat JBoss Data Grid 7.1 Getting Started Guide

CHAPTER 7. RUN RED HAT JBOSS DATA GRID IN REMOTE
CLIENT-SERVER MODE

7.1. PREREQUISITES

The following is a list of prerequisites to run Red Hat JBoss Data Grid in Remote Client-Server mode
for the first time:

e Ensure an appropriate version of OpenJDK is installed. For more information, see Install
OpenJDK on Red Hat Enterprise Linux.

e Download and install the latest version of JBoss Data Grid. For more information, see
Download Red Hat JBoss Data Grid .

7.2. RUN RED HAT JBOSS DATA GRID IN STANDALONE MODE

Standalone mode refers to a single instance of Red Hat JBoss Data Grid operating in local mode. In
local mode, JBoss Data Grid operates as a simple single node in-memory data cache.

Run the following script to start JBoss Data Grid in standalone mode:
I $JIDG_HOME/bin/standalone.sh

This command starts JBoss Data Grid using the default configuration information provided in the
SJDG_HOME/standalone/configuration/standalone.xml file.

7.3. RUN RED HAT JBOSS DATA GRID IN CLUSTERED MODE

Clustered mode refers to a cluster made up of two or more Red Hat JBoss Data Grid standalone
instances.

Run the following script to start JBoss Data Grid in clustered mode:
I $IDG_HOME/bin/standalone.sh -c clustered.xml

This command starts JBoss Data Grid using the default configuration information provided in the
SJDG_HOME/standalone/configuration/clustered.xmlfile.

7.4. RUN RED HAT JBOSS DATA GRID IN A MANAGED DOMAIN

A managed domain allows multiple server instances and groups to be centrally managed from the
Administration Console of the domain controller.

Run the following script to start JBoss Data Grid in a managed domain:
I $JIDG_HOME/bin/domain.sh

This command starts JBoss Data Grid using the default configuration information provided in the
SJDG_HOME/domain/configuration/domain.xmland SJDG_HOME/domain/configuration/host.xml files.

60

CHAPTER 7. RUN RED HAT JBOSS DATA GRID IN REMOTE CLIENT-SERVER MODE

7.5. RUN RED HAT JBOSS DATA GRID WITH A CUSTOM
CONFIGURATION

To run Red Hat JBoss Data Grid with a custom configuration, add a configuration file to the
SJDG_HOME/standalone/configuration directory.

Use the following command to specify the created custom configuration file for standalone mode:
I $JDG_HOME/bin/standalone.sh -c ${FILENAME}

The -c used for this script does not allow absolute paths, therefore the specified file must be available
in the SJDG_HOME/standalone/configuration directory.

If the command is run without the -c parameter, JBoss Data Grid uses the default configuration.

As a managed domain is configured with two separate files, domain.xm/and host.xml by default, there
are two separate flags for specifying custom configuration files.

To define the custom configuration file for the server group profiles, use the -c parameter as
described above, and demonstrated in the following command:

I $JIDG_HOME/bin/domain.sh -c ${FILENAME}

To define the custom configuration file for the servers use the - -host-config parameter, as
demonstrated in the following command:

I $JIDG_HOME/bin/domain.sh --host-config=${FILENAME}

7.6. SET AN IP ADDRESS TO RUN RED HAT JBOSS DATA GRID

For production use, the Red Hat JBoss Data Grid server must be bound to a specified IP address rather
thanto 127.0.0.1/1localhost. Use the -b parameter with the script to specify an IP address.

For standalone mode, set the IP address as follows:
I $JIDG_HOME/bin/standalone.sh -b ${IP_ADDRESS}
For domain mode, set the IP address for the host controller and any servers as follows:

I $JDG_HOME/bin/domain.sh -b ${IP_ADDRESS}

61

Red Hat JBoss Data Grid 7.1 Getting Started Guide

CHAPTER 8. RUN A RED HAT JBOSS DATA GRID AS A NODE
WITHOUT ENDPOINTS

8.1.RUN A RED HAT JBOSS DATA GRID AS ANODE WITHOUT
ENDPOINTS

Services send messages using channels to communicate with each other. An endpointis a
communications point for these services and is used to send and receive the messages sent through
the channels. As a result, a node with no endpoints can communicate with other nodes in the same
cluster, but not with clients.

8.2. BENEFITS OF A NODE WITHOUT ENDPOINTS

The primary benefit for creating a node without endpoints in Red Hat JBoss Data Grid involves data
replication.

A node without any endpoints cannot be accessed by the client directly. As a result, they are primarily
used to replicate data from other nodes that can communicate with clients. The result is a node with a
backup copy of the data that cannot be accessed by the client, which protects it from failure via an
error sent by the client.

8.3. SAMPLE CONFIGURATION FOR A NODE WITHOUT ENDPOINTS

Red Hat JBoss Data Grid provides a sample configuration to configure a node without an endpoint:

Find the JBoss Data Grid Sample Configuration for a Node Without Endpoints

1. Extract the JBoss Data Grid ZIP
Extract the ZIP file for JBoss Data Grid Remote Client-Server mode. This is named jboss-
datagrid-server-S{version} . Add the relevant version to the file name.

2. Navigate to the Appropriate Folder
In the extracted folder, navigate to the SUDG_HOME/docs/examples/configs folder.

3. Find the Configuration File Sample
View the clustered-storage-only.xml file, which contains the configuration for a node with no
endpoints.

8.4. CONFIGURE A NODE WITH NO ENDPOINTS

A standard configuration, such as a standalone high availability configuration, can be changed into a
configuration for a node with no endpoints by removing the endpoints subsystem from the
configuration file.

Remove the XML element that begins with the following:
I <subsystem xmlns="urn:infinispan:server:endpoint:8.0">

Removing the endpoints subsystem ensures endpoints are removed from the configuration and that
clustering is not possible.

62

CHAPTER 9. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE

CHAPTER 9. RUN RED HAT JBOSS DATA GRID IN LIBRARY
MODE

9.1. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE
This part includes information about using Red Hat JBoss Data Grid in Library Mode.

e As aprerequisite for the subsequent chapters, set up a new project using the instructions in
Create a New Red Hat JBoss Data Grid .

e Next, use JBoss Data Grid either as an embedded cache (see Run Red Hat JBoss Data Grid in
Library Mode (Single-Node Setup) for more information) or as a clustered cache (see Run Red
Hat JBoss Data Grid in Library Mode (Multi-Node Setup). Each tutorial is based on an
Infinispan quickstart.

e Finally, monitor Red Hat JBoss EAP applications using JBoss Data Grid using the instructions
in Monitor Red Hat JBoss Data Grid Applications in Red Hat JBoss EAP .

9.2. CREATE A NEW RED HAT JBOSS DATA GRID PROJECT

This chapter is a guide to creating a new Red Hat JBoss Data Grid project. The tasks prescribed are a
prerequisite for the quickstart tasks provided in Run Red Hat JBoss Data Grid in Library Mode (Single-
Node Setup) and Run Red Hat JBoss Data Grid in Library Mode (Multi-Node Setup)

9.3. ADD DEPENDENCIES TO YOUR PROJECT

Set up Red Hat JBoss Data Grid by adding dependencies to your project. If you are using Maven or
other build systems that support Maven dependencies, add the following to your pom.xml/ file, located
in the Maven repository folder:

<dependency>
<groupId>org.infinispan</groupId>
<artifactId>infinispan-embedded</artifactId>
<version>$VERSION</version>

</dependency>

NOTE

Replace the version value with the appropriate version of the libraries included in
JBoss Data Grid.

9.4. ADD A PROFILE TO YOUR PROJECT

To enable the JBoss Maven repository for your project, add a profile to your settings.xml file in
SHOME/.m2/settings.xml as follows:

Adding a Profile
<profiles>

<!-- Configure the JBoss GA Maven repository -->
<profile>

63

Red Hat JBoss Data Grid 7.1 Getting Started Guide

64

<id>jboss-ga-repository</id>
<repositories>
<repository>
<id>jboss-ga-repository</id>
<url>http://maven.repository.redhat.com/ga/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-ga-plugin-repository</id>
<url>http://maven.repository.redhat.com/ga/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
<!-- Configure the JBoss Early Access Maven repository -->
<profile>
<id>jboss-earlyaccess-repository</id>
<repositories>
<repository>
<id>jboss-earlyaccess-repository</id>
<url>http://maven.repository.redhat.com/earlyaccess/all/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-earlyaccess-plugin-repository</id>
<url>http://maven.repository.redhat.com/earlyaccess/all/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>

CHAPTER 9. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE

</profiles>

<!-- Add active profiles information here -->

Enable the profile by ensuring the following is included in the settings.xm/ file:

Enable the Profile

<activeProfiles>
<!-- Optionally, make the repositories active by default -->
<activeProfile>jboss-ga-repository</activeProfile>
<activeProfile>jboss-earlyaccess-repository</activeProfile>
</activeProfiles>

If you are using a build system that does not support declarative dependency management, ensure all
used libraries, such as infinispan-embedded, are found on the build classpath.

65

Red Hat JBoss Data Grid 7.1 Getting Started Guide

CHAPTER 10. RUN RED HAT JBOSS DATA GRID IN LIBRARY
MODE (SINGLE-NODE SETUP)

10.1. CREATE A SIMPLE CLASS

Create a Simple Class

1. Create a new Maven project and Java file, entitled SimpleLibraryExample. java:

In your editor of choice create a new Maven project. Add a Java file, entitled
SimpleLibraryExample. java,in the org. jdg.example package in this project.

2. Define the references to a DefaultCacheManager:
Define the basic imports, and create a DefaultCacheManager. This will then obtain a local
reference to the default cache, as no cache name is specified:

package org.jdg.example;

import org.infinispan.Cache;
import org.infinispan.manager.DefaultCacheManager;

public class SimplelLibraryExample {
public static void main(String args[]) throws Exception {
Cache<Object, Object> c = new

DefaultCacheManager().getCache();
}

3. Define the Maven dependencies
In your pom.xml define the infinispan-embedded dependency:

<groupId>org.infinispan</groupId>

<artifactId>infinispan-embedded</artifactId>
<version>8.4.0.Final-redhat-2</version>

4. Run the Main Method
Use the following command to run the main method:

mvn compile exec:java -
Dexec.mainClass="org.infinispan.quickstart.embeddedcache.Quickstart

5. Exit
Once compiled the class should execute, continuing to run until the process is terminated. This
process may be exited by entering Ctrl+C on the command line where it was launched.

10.2. USE THE DEFAULT CACHE

10.2.1. Add and Remove Data from the Cache

Red Hat JBoss Data Grid offers an interface that is similar to the proposed JSR-107 API to access and

66

CHAPTER 10. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE (SINGLE-NODE SETUP]

alter data stored in a cache.

The following procedures demonstrate adding and removing data from the cache:
Add and Remove Data from the Cache
1. Add an entry, replacing key and value with the desired key and value:

I cache.put("key", "value");

2. Confirm that the entry is present in the cache:

assertEquals(1, cache.size());
assertTrue(cache.containsKey("key"));

3. Remove the entry from the cache:

I Object v = cache.remove("key");

4. Confirm that the entry is no longer present in the cache:

assertEquals("value", v);
assertTrue(cache.isEmpty());

10.2.2. Adding and Replacing a Key Value

Red Hat JBoss Data Grid offers a thread-safe data structure.

The following procedure is an example that demonstrates conditionally adding values into the cache:
file does:

Adding and Replacing a Key Value

1. Add an entry key with value as the key’s value.

I cache.put("key", "value");

Replacing a Key Value.

1. The following code searches for keys (named key and key?2). If the two specific keys beings
searched for are not found, JBoss Data Grid creates two new keys with the specified key
names and values. In this example only key2 will be added to the cache, as key is already
present.

cache.putIfAbsent("key", "newValue");
cache.putIfAbsent("key2", "newValue2");

2. The following code confirms that the value of the stored key equals the value we wanted to
store.

assertEquals(cache.get("key"), "value");
assertEquals(cache.get("key2"), "newValue2");

67

Red Hat JBoss Data Grid 7.1 Getting Started Guide

10.2.3. Removing Entries

Separate methods are used to remove entries depending on how JBoss Data Grid is used:

Library Mode

All of the following methods are found on org.infinispan.Cache and its subclasses.
e remove(key) - remove a single key from the cache.
e removeAsync(key) - remove a single key from the cache, asynchronously.

e clear() - removes all of the mappings from the cache, leaving it empty once the call
completes.

e clearAsync() - asynchronously remove all of the mappings from the cache, leaving it empty
once the call completes.

e cache.evict(key) - remove the entry from the cache, moving it to the cache store if one is
defined. With no cache store defined the entry is removed from the cache and is lost.

Remote Client-Server Mode

All of the following methods are found onorg.infinispan.client.hotrod.RemoteCache and its
subclasses.

e remove(key) - remove a single key from the cache.
e removeAsync(key) - remove a single key from the cache, asynchronously.

e clear() - removes all of the mappings from the cache, leaving it empty once the call
completes.

e clearAsync() - asynchronously remove all of the mappings from the cache, leaving it empty
once the call completes.

e removeWithVersion(key, version) - remove asingle key from the cache only if its
current version matches the supplied version.

e removeWithVersionAsync(key, value) - asynchronously remove a single key from the
cache only if its current version matches the supplied version.

For additional information on any of the above methods refer to the AP/ Documentation.

10.2.4. Placing and Retrieving Sets of Data

The AdvancedCache and RemoteCache interfaces include methods to either put or get a Map of
existing data in bulk. These operations are typically much more efficient than an equivalent sequence
of individual operations, especially when using them in server-client mode, as a single network
operation occurs as opposed to multiple transactions.

When using the bulk operations the memory overhead is higher during the operation itself, as the get
or put operation must accommodate for the full Map in a single execution.

The methods for each class are found below:

e AdvancedCache:

68

CHAPTER 10. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE (SINGLE-NODE SETUP]

o Map<K,V>getAll(Set<?> keys) - returns a Map containing the values associated with
the set of keys requested.

o void putAll(Map<? extends K, ? extends V> map, Metadata metadata) -
copies all of the mappings from the specified map to this cache, which takes an instance of
Metadata to provide metadata information such as the lifespan, version, etc. on the
entries being stored.

e RemoteCache:

o Map<K,V>getAll(Set<? extends K> keys) - returns a Map containing the values
associated with the set of keys requested.

o voidputAll(Map<? extends K, ? extends V> map) - copies all of the mappings
from the specified map to this cache.

o void putAll(Map<? extends K, ? extends V> map, long lifespan,
TimeUnit unit) - copies all of the mappings from the specified map to this cache, along
with a lifespan before the entry is expired.

o void putAll(Map<? extends K, ? extends V> map, long lifespan,
TimeUnit lifespanUnit, long maxIdleTime, TimeUnit maxIdleTimeUnit) -
copies all of the mappings from the specified map to this cache, along with both a timespan

before the entries are expired and the maximum amount of time the entry is allowed to be
idle before it is considered to be expired.

10.2.5. Adjust Data Life

Red Hat JBoss Data Grid entries are immortal by default, but these settings can be altered.

The following procedure is an example that demonstrates defining key mortality:

Adjust the Data Life

1. Alter the key’s 1ifespan value:

I cache.put("key", "value", 5, TimeUnit.SECONDS);

2. Check if the cache contains the key:

I assertTrue(cache.containsKey("key"));

3. After the allocated 1ifespan time has expired, the key is no longer in the cache:

Thread.sleep(10000);
assertFalse(cache.containsKey("key"));

10.2.6. Default Data Mortality

As a default, newly created entries do not have a life span or maximum idle time value set. Without
these two values, a data entry will never expire and is therefore known as immortal data.

10.2.7. Register the Named Cache Using XML

69

Red Hat JBoss Data Grid 7.1 Getting Started Guide

To configure the named cache declaratively (using XML) rather than programmatically, configure the
infinispan.xml file.

An example infinispan.xml file is located in https://github.com/jboss-developer/jboss-jdg-

quickstarts/ within the secure-embedded-cache/src/main/resources/ folder, and the full
schema is available in the docs/schema/ directory of the Red Hat JBoss Data Grid Librarydistribution.

70

https://github.com/jboss-developer/jboss-jdg-quickstarts/

CHAPTER 11. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE (MULTI-NODE SETUP;

CHAPTER 11. RUN RED HAT JBOSS DATA GRID IN LIBRARY
MODE (MULTI-NODE SETUP)

11.1. SHARING JGROUP CHANNELS

Red Hat JBoss Data Grid offers an easy to use form of clustering using JGroups as the network
transport. As a result, JGroups manages the initial operations required to form a cluster for JBoss Data
Grid.

All caches created from a single CacheManager share the same JGroups channel by default. This
JGroups channel is used to multiplex replication/distribution messages.

In the following example, all three caches used the same JGroups channel:

Shared JGroups Channel

EmbeddedCacheManager cm = $LOCATION

Cache<Object, Object> cachel = cm.getCache("replSyncCache");
Cache<Object, Object> cache2 cm.getCache("replAsyncCache");
Cache<Object, Object> cache3 = cm.getCache("invalidationSyncCache");

Substitute SLOCATION with the CacheManager’s location.

An example of a clustered setup is found in the Hello World Quickstart.

11.2. CONFIGURE THE CLUSTER

11.2.1. Configuring the Cluster

Use the following steps to add and configure your cluster:

Configure the Cluster

1. Add the default configuration for a new cluster.

2. Customize the default cluster configuration according to the requirements of your network.
This is done declaratively (using XML) or programmatically.

3. Configure the replicated or distributed data grid.

11.2.2. Add the Default Cluster Configuration

Add a cluster configuration to ensure that Red Hat JBoss Data Grid is aware that a cluster exists and is
defined. The following is a default configuration that serves this purpose:

Default Configuration

new ConfigurationBuilder ()
.clustering().cacheMode(CacheMode.REPL_SYNC)
Lbuild()

I

Red Hat JBoss Data Grid 7.1 Getting Started Guide

NOTE

Use the new GlobalConfigurationBuilder().clusteredDefault () to quickly
create a preconfigured and cluster-aware GlobalConfiguration for clusters. This
configuration can also be customized.

11.2.3. Customize the Default Cluster Configuration

Depending on the network requirements, you may need to customize your JGroups configuration.

Programmatic Configuration:

Use the following GlobalConfiguration code to specify the name of the file to use for JGroups
configuration:

manager = new DefaultCacheManager (
new GlobalConfigurationBuilder ()
.clusteredDefault()
.transport().addProperty("configurationFile", "default-
configs/default-jgroups-tcp.xml")

.build(),

new ConfigurationBuilder ()
.clustering().cacheMode(CacheMode.REPL_SYNC)

.build());

Replace default-configs/default-jgroups-tcp.xml with the desired file name.

NOTE

To bind JGroups solely to your loopback interface (to avoid any configured firewalls),
use the system property -Djgroups.bind_addr="127.0.0.1". This is particularly
useful to test a cluster where all nodes are on a single machine.

Declarative Configuration:

Use the following XML snippet in the infinispan.xml file to configure the JGroups properties to use
Red Hat JBoss Data Grid’s XML configuration:

<?xml version="1.0" encoding="UTF-8"?>

<infinispan
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:infinispan:config:8.4

http://www.infinispan.org/schemas/infinispan-config-8.4.xsd"
xmlns="urn:infinispan:config:8.4">

<jgroups>
<stack-file name="jgroupsStack"
path="${infinispan.jgroups.config:default-configs/default-jgroups-
udp.xml}"/>
</jgroups>

<cache-container name="default" default-cache="localCache"
statistics="true">
<transport stack="jgroupsStack" lock-timeout="600000"
cluster="default" />

72

CHAPTER 11. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE (MULTI-NODE SETUP;

<serialization></serialization>

<jmx>
<property name="enabled">true</property>
</jmx>
<local-cache name="localCache"/> <!-- this is here so we don't

ever mistakingly use the default cache in a test (local cache will give
superb results) -->
</cache-container>

</infinispan>

11.2.4. Configure the Replicated Data Grid

Red Hat JBoss Data Grid’s replicated mode ensures that every entry is replicated on every node in the
data grid.

This mode offers security against data loss due to node failures and excellent data availability. These
benefits are at the cost of limiting the storage capacity to the amount of storage available on the node
with the least memory.

Programmatic Configuration:

Use the following code snippet to programmatically configure the cache for replication mode (either
synchronous or asynchronous):

private static EmbeddedCacheManager createCacheManagerProgramatically() {
return new DefaultCacheManager (
new GlobalConfigurationBuilder ()
.clusteredDefault()
.transport().addProperty("configurationFile", "default-
configs/default-jgroups-tcp.xml")
.build(),
new ConfigurationBuilder ()
.clustering().cacheMode(CacheMode.REPL_SYNC)
.build()

Declarative Configuration:

Edit the infinispan.xml file to include the following XML code to declaratively configure the cache for
replication mode (either synchronous or asynchronous):

<?xml version="1.0" encoding="UTF-8"?>

<infinispan
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:infinispan:config:8.4

http://www.infinispan.org/schemas/infinispan-config-8.4.xsd"
xmlns="urn:infinispan:config:8.4">

<jgroups>
<stack-file name="jgroupsStack"
path="${infinispan.jgroups.config:default-configs/default-jgroups-
udp.xml}"/>
</jgroups>

73

Red Hat JBoss Data Grid 7.1 Getting Started Guide

<cache-container name="default" default-cache="localCache"
statistics="true">
<transport stack="jgroupsStack" lock-timeout="600000"
cluster="default" />
<serialization></serialization>
<jmx>
<property name="enabled">true</property>
</jmx>
<local-cache name="localCache'"/>
<replicated-cache name="replCache" mode="SYNC" remote-
timeout="60000" statistics="true">
<locking acquire-timeout="3000" concurrency-level="1000" />
</replicated-cache>
</cache-container>

</infinispan>
Use the following code to initialize and return a DefaultCacheManager with the XML configuration file:

private static EmbeddedCacheManager createCacheManagerFromxXml() throws
IOException {
return new DefaultCacheManager ("infinispan.xml");}

NOTE

JBoss EAP includes its own underlying JMX. This can cause a collision when using the
sample code with JBoss EAP and display an error such as

org.infinispan. jmx.JmxDomainConflictException: Domain already
registered org.infinispan.

To avoid this, configure global configuration as follows:

GlobalConfiguration glob = new GlobalConfigurationBuilder ()
.clusteredDefault()
.globalJmxStatistics()
.allowbDuplicateDomains(true)
.enable()
Lbuild();

11.2.5. Configure the Distributed Data Grid

Red Hat JBoss Data Grid’s distributed mode ensures that each entry is stored on a subset of the total
nodes in the data grid. The number of nodes in the subset is controlled by the numOwners parameter,
which sets how many owners each entry has.

Distributed mode offers increased storage capacity but also results in increased access times and less
durability (protection against node failures). Adjust the numOwners value to set the desired trade off
between space, durability and availability. Durability is further improved by JBoss Data Grid’s topology
aware consistent hash, which locates entry owners across a variety of data centers, racks and nodes.

Programmatic Configuration:

Programmatically configure the cache for distributed mode (either synchronous or asynchronous) as
follows:

74

CHAPTER 11. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE (MULTI-NODE SETUP;

new ConfigurationBuilder ()
.clustering()
.cacheMode(CacheMode.DIST_SYNC)
.hash().numOwners(2)
.build()

Declarative Configuration:

Edit the infinispan.xml file to include the following XML code to declaratively configure the cache for
distributed mode (either synchronous or asynchronous):

<?xml version="1.0" encoding="UTF-8"?>

<infinispan
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:infinispan:config:8.4

http://www.infinispan.org/schemas/infinispan-config-8.4.xsd"
xmlns="urn:infinispan:config:8.4">

<jgroups>
<stack-file name="jgroupsStack"
path="${infinispan.jgroups.config:default-configs/default-jgroups-
udp.xml}"/>
</jgroups>

<cache-container name="default" default-cache="localCache"
statistics="true">
<transport stack="jgroupsStack" lock-timeout="600000"
cluster="default" />
<serialization></serialization>
<jmx>
<property name="enabled">true</property>
</jmx>
<local-cache name="localCache'"/>
<distributed-cache name="distCache" mode="SYNC" remote-
timeout="60000" statistics="true" li-lifespan="-1" owners="2"
segments="512" >
<locking acquire-timeout="3000" concurrency-level="1000" />
<state-transfer timeout="60000" />
</distributed-cache>
</cache-container>
</infinispan>

75

Red Hat JBoss Data Grid 7.1 Getting Started Guide

CHAPTER 12. MONITOR RED HAT JBOSS DATA GRID
APPLICATIONS IN RED HAT JBOSS EAP

12.1. MONITOR RED HAT JBOSS DATA GRID APPLICATIONS IN RED
HAT JBOSS EAP

Red Hat JBoss Data Grid library applications (in the form of WAR or EAR files) can be deployed within
JBoss Enterprise Application Server 6 (or better) and then monitored using JBoss Operations
Network.

12.2. PREREQUISITES

The following are prerequisites to monitor a Red Hat JBoss Data Grid library application in JBoss
Enterprise Application Platform:

e |Install and configure JBoss Enterprise Application Platform 6 (or better).
e |Install and configure JBoss Operations Network 3.2.2 (or better).

e |Install and configure JBoss Data Grid (6.3 or better) Library mode plug-in.

12.3. MONITOR RED HAT JBOSS DATA GRID APPLICATIONS IN RED
HAT JBOSS EAP

Ensure that all requirements outlined as prerequisites are met. Follow the listed steps to monitor Red
Hat JBoss Data Grid applications in JBoss Enterprise Application Platform using JBoss Operations
Network or RHQ.

Monitor JBoss Data Grid Applications in JBoss Enterprise Application Platform

1. Configure RHQ/JBoss Operations Network
Add an RHQ/JBoss Operations Network specific property (named org.rhq. resourceKey)
to the /bin/[path] standalone.conffile as follows:

I JAVA_OPTS="$JAVA_OPTS -Dorg.rhqg.resourcekKey=MyEAP"

This command adds the property to the JBoss Enterprise Application Platform’s command line
indirectly.

2. Check RHQ/JBoss Operations Network is Running Using a Full JDK
Ensure that the RHQ/JBoss Operations Network agent started using a full JDK instead of a
JRE. This is because the agent requires access to the JDK’s tools.jar file.

To configure your RHQ/JBoss Operations Network agent to use the JDK, follow the
instructions relevant to your operating system:

a. For Linux users, set the RHQ_AGENT_JAVA_HOME environment variable to the JDK home
directory in the agent’s rhg-agent-env.sh file.

b. For Windows users, set the RHQ_AGENT_JAVA_HOME environment variable to the JDK
home directory in the agent’s rhq-agent-env.bat file.

76

CHAPTER 12. MONITOR RED HAT JBOSS DATA GRID APPLICATIONS IN RED HAT JBOSS EAF

3. Ensure the Agent is Local to the JBoss Enterprise Application Platform Instance
Ensure that the RHQ/JBoss Operations Network agent runs locally to and under the same
user as the JBoss Application Platform instance. This is required for the Java Attach API to
connect to the process.

4. Import Resources to the Agent Inventory
RHQ/JBoss Operations Network can now discover resources. These resources can
subsequently be imported into the agent inventory.

When a JBoss Data Grid user deployment enables JMX statistics to expose JBoss Data Grid
Cache Managers or caches, the resources appear as children resources of the JBoss
Enterprise Application Platform instance.

77

Red Hat JBoss Data Grid 7.1 Getting Started Guide

PART V.SET UP A CACHE MANAGER

78

CHAPTER 13. CACHE MANAGERS

CHAPTER 13. CACHE MANAGERS

13.1. CACHE MANAGERS

A Cache Manager is the primary mechanism to retrieve a cache instance in Red Hat JBoss Data Grid,
and is a starting point for using the cache.

In JBoss Data Grid, a cache manager is useful because:
e it creates cache instances on demand.

e itretrieves existing cache instances (i.e. caches that have already been created).

13.2. TYPES OF CACHE MANAGERS
Red Hat JBoss Data Grid offers the following Cache Managers:

e EmbeddedCacheManager is a cache manager that runs within the Java Virtual Machine (JVM)
used by the client. Currently, JBoss Data Grid offers only the DefaultCacheManager
implementation of the EnbeddedCacheManager interface.

e RemoteCacheManager is used to access remote caches. When started, the
RemoteCacheManager instantiates connections to the Hot Rod server (or multiple Hot Rod
servers). It then manages the persistent TCP connections while it runs. As a result,
RemoteCacheManager is resource-intensive. The recommended approach is to have a single
RemoteCacheManager instance for each Java Virtual Machine (JVM).

13.3. CREATING CACHEMANAGERS

13.3.1. Create a New RemoteCacheManager

Configure a New RemoteCacheManager

import org.infinispan.client.hotrod.RemoteCache;

import org.infinispan.client.hotrod.RemoteCacheManager;

import org.infinispan.client.hotrod.configuration.Configuration;
import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;

Configuration conf = new
ConfigurationBuilder().addServer().host("localhost").port(11222).build();

RemoteCacheManager manager = new RemoteCacheManager (conf);
RemoteCache defaultCache = manager.getCache();

1. Use the ConfigurationBuilder () constructor to create a new configuration builder. The
.addServer () method adds a remote server, configured via the .host (<hostname|ip>)
and .port(<port>) properties.

2. Create anew RemoteCacheManager using the supplied configuration.

3. Retrieve the default cache from the remote server.
13.3.2. Create a New Embedded Cache Manager

79

Red Hat JBoss Data Grid 7.1 Getting Started Guide

Use the following instructions to create a new EmbeddedCacheManager without using CDI:

Create a New Embedded Cache Manager

1. Create a configuration XML file. For example, create the my-config-file.xml file on the classpath
(in the resources/ folder) and add the configuration information in this file.

2. Use the following programmatic configuration to create a cache manager using the
configuration file:

EmbeddedCacheManager manager = new DefaultCacheManager ("my-config-
file.xml");
Cache defaultCache = manager.getCache();

The outlined procedure creates a new EmbeddedCacheManager using the configuration specified in
my-config-file.xml .

13.3.3. Create a New Embedded Cache Manager Using CDI

Use the following steps to create a new EmbeddedCacheManager instance using CDI:

Use CDI to Create a New EmbeddedCacheManager

1. Specify a default configuration:

public class Config
@Produces
public EmbeddedCacheManager defaultCacheManager() {
ConfigurationBuilder builder = new ConfigurationBuilder();
Configuration configuration =
builder.eviction().strategy(EvictionStrategy.LRU).maxEntries(100).bu
ild();
return new DefaultCacheManager (configuration);

}

2. Inject the default cache manager.

<!-- Additional configuration information here -->
@Inject

EmbeddedCacheManager cacheManager;

<!-- Additional configuration information here -->

13.4. MULTIPLE CACHE MANAGERS

13.4.1. Multiple Cache Managers

Cache managers are an entry point to the cache and Red Hat JBoss Data Grid allows users to create
multiple cache managers. Each cache manager is configured with a different global configuration,
which includes settings for things like JMX, executors and clustering.

13.4.2. Create Multiple Caches with a Single Cache Manager

80

CHAPTER 13. CACHE MANAGERS

Red Hat JBoss Data Grid allows using the same cache manager to create multiple caches, each with a
different cache mode (synchronous and asynchronous cache modes).

13.4.3. Using Multiple Cache Managers

Red Hat JBoss Data Grid allows multiple cache managers to be used. In most cases, such as with
replication and networking components, cache instances share internal components and a single cache
manager is sufficient.

However, if multiple caches are required to have different network characteristics, for example if one
cache uses the TCP protocol and the other uses the UDP protocol, multiple cache managers must be
used.

13.4.4. Create Multiple Cache Managers

Red Hat JBoss Data Grid allows users to create multiple cache managers of various types by repeating
the procedure used to create the first cache manager (and adjusting the contents of the configuration
file, if required).

To use the declarative API to create multiple new cache managers, copy the contents of the

infinispan.xml file to a new configuration file. Edit the new file for the desired configuration and then use
the new file for a new cache manager.

81

Red Hat JBoss Data Grid 7.1 Getting Started Guide

PART VI. RED HAT JBOSS DATA GRID QUICKSTARTS

82

CHAPTER 14. RED HAT JBOSS DATA GRID QUICKSTARTS

CHAPTER 14. RED HAT JBOSS DATA GRID QUICKSTARTS

The Hello World quickstart is included to demonstrate a sample, clustered, Library mode
deployment, and instructions for it are included in The Hello World Quickstart.

The table below lists the Quickstarts included in the quickstarts zip file which can be downloaded from
the Customer Portal using similar procedures as outlined in 2.4 Download and Install JBoss Data Grid.

For instructions on using these quickstarts refer to the README . md file found in the root directory of

each individual quickstart.

Table 14.1. Quickstarts Information

Quickstart Name

Container

JBoss Data Grid Mode

Hello World

camel-jbossdatagrid-fuse

Carmart Non-Transactional

Carmart Non-Transactional

Carmart Transactional

cdi-jdg (Infinispan Injection)

eap-cluster-app

hadoop (Football Championship)

hotrod-endpoint (Football
Manager)

hotrod-endpoint-js (Football
Manager javascript)

hotrod-secured (Football
Manager secured auth)

memcached-endpoint (Football
Manager)

rapid-stock-market

JBoss EAP

JBoss Fuse

JBoss EAP and JBoss Enterprise
Web Server

JBoss EAP and JBoss Enterprise
Web Server

JBoss EAP and JBoss Enterprise
Web Server

JBoss EAP

JBoss EAP

No container

No container

No container

No container

No container

No container

Library mode

Library mode

Library mode

Remote Client-Server mode

Library mode

Library mode

Library mode

Remote Client-Server mode

Remote Client-Server mode

Remote Client-Server mode

Remote Client-Server mode

Remote Client-Server mode

Remote Client-Server mode

83

Red Hat JBoss Data Grid 7.1 Getting Started Guide

84

Quickstart Name

remote-query
(AddressBookManager/SnowFor
ecast)

remote-tasks-with-streams
(Library manager)

rest-endpoint (Football Manager)

secure-embedded-cache

spark (Temperature sensors)

spring

spring (Tomcat)

spring-session (embedded
Tomcat)

spring-session (JWS/Tomcat)

Container

No container

No container

No container

JBoss EAP

No container

JBoss EAP

Tomcat

Tomcat

JWS/Tomcat

JBoss Data Grid Mode

Remote Client-Server mode

Remote Client-Server mode

Remote Client-Server mode

Library mode

Remote Client-Server mode

Library mode

Library mode

Library

Library

CHAPTER 15. THE HELLO WORLD QUICKSTAR1

CHAPTER 15. THE HELLO WORLD QUICKSTART

15.1. THE HELLO WORLD QUICKSTART

Hello World is a simple quickstart that illustrates how to store and retrieve data from a cache using
Red Hat JBoss Data Grid. For this quickstart, users can access the cache in two ways:

e from aservlet.

e from a JSF page using request scoped beans.
All libraries (JAR files) bundles with the application are deployed to JBoss Enterprise Application
Platform 7.x. JBoss Data Grid’s Library mode only allows local access to a single node in a distributed

cluster. This mode also allows the application to access the data grid functionality within a virtual
machine in the target container.

IMPORTANT

The Hello World quickstart works only in JBoss Data Grid’s Library mode.

Location

JBoss Data Grid’s Hello World quickstart is available at the following location: jboss-datagrid-
{VERSION}-quickstarts/

15.2. QUICKSTART PREREQUISITES

The prerequisites for this quickstart are as follows:
e Java 8.0 (Java SDK 1.8) or better
e JBoss Enterprise Application Platform 7.x or JBoss Enterprise Web Server 2.x
e Maven 3.0 or better

e Configure the Maven Repository. For details, see Install and Use the Maven Repositories.

15.3. START TWO APPLICATION SERVER INSTANCES

Before deploying the Hello World quickstart, start two instances of your application server (JBoss
Enterprise Application Platform 7.x).

Start the First Application Server Instance

1. Navigate to the Root Directory
In the command line terminal, navigate to the root for your JBoss server directory.

2. Start the First Application Server
Depending on your operating system, use the appropriate command from the following to start
the first instance of your selected application server:

a. For Linux:

I $JBOSS_HOME/bin/standalone. sh

85

Red Hat JBoss Data Grid 7.1 Getting Started Guide

b. For Windows:

I $JBOSS_HOME\bin\standalone.bat

Start the Second Application Server Instance

1. Clone the Application Server

Create a copy of the selected JBoss Server to create a second instance.

. Navigate to the Root Directory

In the command line terminal, navigate to the root for your JBoss server directory.

. Start the Second Application Server

Use the appropriate command for your operating system from the following commands. This
command starts the server with the provided port offset to ensure that both the server
instances run on the same host.

a. For Linux:

$JBOSS_HOME2/bin/standalone.sh -Djboss.socket.binding.port-
offset=100

b. For Windows:

$JB0OSS_HOME2\bin\standalone.bat -Djboss.socket.binding.port-
offset=100

15.4. BUILD AND DEPLOY THE HELLO WORLD QUICKSTART

Before building and deploying the quickstart, ensure that all the listed prerequisites are met and that
the two application server instances are running (see for details).

Build and Deploy the Hello World Quickstart

86

1. Navigate to the Required Directory

In the command line terminal, navigate to the root directory of the quickstart on the command
line interface.

. Build and Deploy to the First Application Server Instance

Use the following command to build and deploy the quickstart to the first application server
instance as follows:

I # mvn clean package wildfly:deploy

This command deploys target/[path]jboss-helloworld-jdg.war to the first running server
instance.

. Build and Deploy the Second Application Server Instance

Use the following command to build and deploy the quickstart to the second application server
instance with the specified ports as follows:

I # mvn clean package wildfly:deploy -Dwildfly.port=10090

CHAPTER 15. THE HELLO WORLD QUICKSTAR1

This command deploys target/[path]jboss-helloworld-jdg.war to the second running server
instance.

15.5. ACCESS THE RUNNING APPLICATION
The Hello World quickstart application runs on the following URLSs:
e First Server Instance: http://localhost:8080/jboss-helloworld-jdg

e Second Server Instance: http://localhost:8180/jboss-helloworld-jdg

15.6. TEST REPLICATION ON THE APPLICATION

Use the following instructions to test that cache entries are replicating from the first server instance
to the second as desired.

Test Replication on the Application

1. Access the First Server
Access the first application server and enter the key and value.

a. Access the first application server in a browser window using the following URL:

I http://localhost:8080/jboss-helloworld-jdg

b. Insert the key foo.
c. Insert the value bar.

2. Access the Second Server
Access the second application server and enter the key and value.

a. Access the second application server in a browser window using the following URL:

I http://localhost:8180/jboss-helloworld-jdg

b. Click Get Some.

c. Get the key foo.

d. Click Put Some More.

e. Insert the key mykey.

f. Insert the value myvalue.

3. Get All Keys and Values
Access the first server and request all keys.

a. Access the first application server in a browser window using the following URL:

I http://localhost:8080/jboss-helloworld-jdg

87

http://localhost:8080/jboss-helloworld-jdg
http://localhost:8180/jboss-helloworld-jdg

Red Hat JBoss Data Grid 7.1 Getting Started Guide

b. Click Get Some.
c. Click Get All to request all key and values.

As the results of the last step show, all the data added at each server has been replicated to the other
server.

NOTE

Entries expire after 60 seconds from the most recent update.

Directly Access Keys in the Cache

To interact with predefined servlets or to directly store and retrieve keys from the cache, use the
following URLs:

I http://localhost:8080/jboss-helloworld-jdg/TestServletPut

I http://localhost:8180/jboss-helloworld-jdg/TestServletGet

15.7. REMOVE THE APPLICATION

Use the following procedure to remove the Hello World application:

Remove the Application

1. Start the Application Servers
Ensure that both server instances are running.

2. Navigate to the Root
In the command line terminal, navigate to the root directory of the quickstart.

3. Remove the Archive
Use the following commands to remove the archive from both the server instances.

a. Remove the archive from the first server as follows:

I mvn wildfly:undeploy

b. Remove the archive from the second server as follows:

I mvn wildfly:undeploy -Dwildfly.port=10090

88

PART VII. UNINSTALL RED HAT JBOSS DATA GRID

PART VII. UNINSTALL RED HAT JBOSS DATA GRID

89

Red Hat JBoss Data Grid 7.1 Getting Started Guide

CHAPTER 16. REMOVE RED HAT JBOSS DATA GRID

16.1. REMOVE RED HAT JBOSS DATA GRID FROM YOUR LINUX
SYSTEM

The following procedures contain instructions to remove Red Hat JBoss Data Grid from your Linux
system.

' WARNING
A Once deleted, all JBoss Data Grid configuration and settings are permanently lost.

Remove JBoss Data Grid from Your Linux System

1. Shut Down Server
Ensure that the JBoss Data Grid server is shut down.

2. Navigate to the JBoss Data Grid Home Directory
Use the command line to change into the level above the SJDG_HOME folder.

3. Delete the JBoss Data Grid Home Directory
Enter the following command in the terminal to remove JBoss Data Grid, replacing $JDG_HOME
with the name of your JBoss Data Grid home directory:

I $ rm -Rf $IDG_HOME

16.2. REMOVE RED HAT JBOSS DATA GRID FROM YOUR WINDOWS
SYSTEM

The following procedures contain instructions to remove Red Hat JBoss Data Grid from your Microsoft
Windows system.

' WARNING
A Once deleted, all JBoss Data Grid configuration and settings are permanently lost.

Remove JBoss Data Grid from Your Windows System

1. Shut Down Server
Ensure that the JBoss Data Grid server is shut down.

2. Navigate to the JBoss Data Grid Home Directory

90

CHAPTER 16. REMOVE RED HAT JBOSS DATA GRID

Use the Windows Explorer to navigate to the directory in which the SJDG_HOME folder is
located.

3. Delete the JBoss Data Grid Home Directory
Select the SJDG_HOME folder and delete it.

91

Red Hat JBoss Data Grid 7.1 Getting Started Guide

APPENDIX A. REFERENCES

A.1. ABOUT KEY-VALUE PAIRS
A key-value pair (KVP) is a set of data consisting of a key and a value.

e A Kkey is unique to a particular data entry. It consists of entry data attributes from the related
entry.

e Avalueis the data assigned to and identified by the key.

92

APPENDIX B. MAVEN CONFIGURATION INFORMATION

APPENDIX B. MAVEN CONFIGURATION INFORMATION

B.1. INSTALL THE JBOSS ENTERPRISE APPLICATION PLATFORM
REPOSITORY USING NEXUS
This example outlines the steps to install the JBoss Enterprise Application Platform 7 Maven

Repository using Sonatype Nexus Maven Repository Manager. For further instructions, see
http://www.sonatype.org/nexus/.

Procedure: Download the JBoss Enterprise Application Platform 7 Maven Repository ZIP archive

1. Open a web browser and access the following URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find Application Platform 7 Maven Repository in the list.
3. Click Download to download a ZIP file that contains the repository.

4. Unzip the files into the desired target directory.

Procedure: Add the JBoss Enterprise Application Platform 7 Maven Repository using Nexus Maven
Repository Manager.. Log into Nexus as an Administrator.

a. Select the Repositories section from the Repositories menu to the left of your repository
manager.

b. Click the Add... drop-down menu, then select Hosted Repository.
c. Provide a name and ID for the new repository.
d. Enter the unzipped repository path in the Override Local Storage Location field.

e. Continue if the artifact must be available in a repository group. If not, do not continue with this
procedure.

f. Select the repository group.
g. Click on the Configure tab.

h. Drag the new JBoss Maven repository from the Available Repositories list to the Ordered
Group Repositories list on the left.

NOTE

The order of this list determines the priority for searching Maven artifacts.

B.2. MAVEN REPOSITORY CONFIGURATION EXAMPLE

A sample Maven repository file named example-settings.xmlis available in the root directory of the
Maven repository folder after it is unzipped. The following is an excerpt that contains the relevant
parts of the example-settings.xml file:

Sample Maven Repository Configuration

93

http://www.sonatype.org/nexus/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform

Red Hat JBoss Data Grid 7.1 Getting Started Guide

<?xml version="1.0" encoding="UTF-8"7?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">

<profiles>
<profile>
<id>jboss-datagrid-repository</id>
<repositories>
<repository>
<id>jboss-datagrid-repository</id>
<name>JBoss Data Grid Maven Repository</name>
<url>JDG_REPOSITORY_URL</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-datagrid-repository</id>
<name>JBoss Data Grid Maven Repository</name>
<url>JDG_REPOSITORY_URL</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>
<activeProfiles>
<!-- make the profile active by default -->
<activeProfile>jboss-datagrid-repository</activeProfile>
</activeProfiles>
</settings>

The JDG_REPOSITORY_URL may be found by following the instructions in Determining the URL of the
JBoss Data Grid Repository.

B.3. DETERMINING THE URL OF THE JBOSS DATA GRID REPOSITORY

94

APPENDIX B. MAVEN CONFIGURATION INFORMATION

The repository URL depends on where the repository is located. You can configure Maven to use any of
the following repository locations:

o Touse the online JBoss Data Grid Maven repository, specify the following URL:
https://maven.repository.redhat.com/ga/

e To use a JBoss Data Grid Maven repository installed on the local file system, you must
download the repository and then use the local file path for the URL. For example:
file:///path/to/repo/jboss-datagrid-7.1.0-maven-repository/maven-repository/

e |[f youinstall the JBoss Data Grid Maven repository using the Nexus Repository Manager, the
URL will look something like the following:
https://intranet.acme.com/nexus/content/repositories/jboss-datagrid-7.1.0-maven-
repository/maven-repository/

95

https://maven.repository.redhat.com/ga/
file:///path/to/repo/jboss-datagrid-7.1.0-maven-repository/maven-repository/
https://intranet.acme.com/nexus/content/repositories/jboss-datagrid-7.1.0-maven-repository/maven-repository/

	Table of Contents
	PART I. INTRODUCING RED HAT JBOSS DATA GRID
	CHAPTER 1. RED HAT JBOSS DATA GRID
	1.1. RED HAT JBOSS DATA GRID
	1.2. SUPPORTED CONFIGURATIONS
	1.3. COMPONENTS AND VERSIONS
	1.4. RED HAT JBOSS DATA GRID USAGE MODES
	1.4.1. Red Hat JBoss Data Grid Usage Modes
	1.4.2. Remote Client-Server Mode
	1.4.3. Library Mode

	1.5. RED HAT JBOSS DATA GRID BENEFITS
	1.6. RED HAT JBOSS DATA GRID VERSION INFORMATION
	1.7. RED HAT JBOSS DATA GRID CACHE ARCHITECTURE
	1.8. RED HAT JBOSS DATA GRID APIS

	PART II. DOWNLOAD AND INSTALL RED HAT JBOSS DATA GRID
	CHAPTER 2. DOWNLOAD RED HAT JBOSS DATA GRID
	2.1. RED HAT JBOSS DATA GRID INSTALLATION PREREQUISITES
	2.2. JAVA VIRTUAL MACHINE
	2.3. INSTALL OPENJDK ON RED HAT ENTERPRISE LINUX
	2.4. DOWNLOAD AND INSTALL JBOSS DATA GRID
	2.4.1. Download and Install JBoss Data Grid
	2.4.2. Download Red Hat JBoss Data Grid
	2.4.3. About the Red Hat Customer Portal
	2.4.4. Checksum Validation
	2.4.5. Verify the Downloaded File
	2.4.6. Install Red Hat JBoss Data Grid
	2.4.7. Red Hat Documentation Site

	CHAPTER 3. INSTALL AND USE THE MAVEN REPOSITORIES
	3.1. ABOUT MAVEN
	3.2. REQUIRED MAVEN REPOSITORIES
	3.3. INSTALL THE MAVEN REPOSITORY
	3.3.1. Install the Maven Repository
	3.3.2. Local File System Repository Installation
	3.3.3. Apache httpd Repository Installation
	3.3.4. Maven Repository Manager Installation

	3.4. CONFIGURE THE MAVEN REPOSITORY
	3.4.1. Configure the Maven Repository
	3.4.2. Configuring the JBoss Data Grid Maven Repository in an Offline Environment
	3.4.3. Next Steps

	3.5. MAVEN TRANSITIVE DEPENDENCIES

	PART III. SUPPORTED CONTAINERS FOR JBOSS DATA GRID
	CHAPTER 4. USING JBOSS DATA GRID WITH SUPPORTED CONTAINERS
	4.1. USING JBOSS DATA GRID WITH SUPPORTED CONTAINERS
	4.2. DEPLOY JBOSS DATA GRID IN JBOSS EAP (LIBRARY MODE)
	4.3. DEPLOY JBOSS DATA GRID IN JBOSS EAP (REMOTE CLIENT-SERVER MODE)
	4.3.1. Deploy JBoss Data Grid in JBoss EAP (Remote Client-Server Mode)
	4.3.2. Using Custom Classes with the Hot Rod client

	4.4. DEPLOY JBOSS DATA GRID IN JBOSS ENTERPRISE WEB SERVER
	4.5. DEPLOY WEB APPLICATIONS ON WEBLOGIC SERVER (LIBRARY MODE)
	4.6. DEPLOY WEB APPLICATIONS ON WEBLOGIC SERVER (REMOTE CLIENT-SERVER MODE)
	4.7. RUNNING RED HAT JBOSS DATA GRID IN KARAF (OSGI)
	4.7.1. Running Red Hat JBoss Data Grid in Karaf (OSGi)
	4.7.2. Running a Deployment of JBoss Data Grid in Karaf (Remote Client-Server)
	4.7.3. Installing the Hot Rod client feature in Karaf
	4.7.4. Installing Red Hat JBoss Data Grid in Karaf (Library Mode)

	CHAPTER 5. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL
	5.1. RUNNING RED HAT JBOSS DATA GRID WITH APACHE CAMEL
	5.2. THE CAMEL-JBOSSDATAGRID COMPONENT
	5.3. ROUTING WITH CAMEL IN JBOSS DATA GRID
	5.4. REMOTE QUERY
	5.5. CUSTOM LISTENERS FOR EMBEDDED CACHE
	5.6. CUSTOM LISTENERS FOR REMOTE CACHE
	5.7. RED HAT JBOSS DATA GRID AND RED HAT JBOSS FUSE
	5.7.1. Installing camel-jbossdatagrid for Red Hat JBoss Fuse

	5.8. RED HAT JBOSS DATA GRID AND RED HAT JBOSS EAP
	5.8.1. Installing camel-jbossdatagrid for Red Hat JBoss Enterprise Application Platform
	5.8.2. Deploy Camel with EAP
	5.8.2.1. Add development and runtime dependencies
	5.8.2.2. Optionally: Add runtime dependencies as a JBoss EAP Module

	PART IV. RUNNING RED HAT JBOSS DATA GRID WITH MAVEN
	CHAPTER 6. RUN RED HAT JBOSS DATA GRID WITH MAVEN
	6.1. DEFINING MAVEN DEPENDENCIES FOR USE WITH JBOSS DATA GRID (REMOTE CLIENT-SERVER MODE)
	6.2. DEFINING MAVEN DEPENDENCIES FOR USE WITH JBOSS DATA GRID (LIBRARY MODE)

	CHAPTER 7. RUN RED HAT JBOSS DATA GRID IN REMOTE CLIENT-SERVER MODE
	7.1. PREREQUISITES
	7.2. RUN RED HAT JBOSS DATA GRID IN STANDALONE MODE
	7.3. RUN RED HAT JBOSS DATA GRID IN CLUSTERED MODE
	7.4. RUN RED HAT JBOSS DATA GRID IN A MANAGED DOMAIN
	7.5. RUN RED HAT JBOSS DATA GRID WITH A CUSTOM CONFIGURATION
	7.6. SET AN IP ADDRESS TO RUN RED HAT JBOSS DATA GRID

	CHAPTER 8. RUN A RED HAT JBOSS DATA GRID AS A NODE WITHOUT ENDPOINTS
	8.1. RUN A RED HAT JBOSS DATA GRID AS A NODE WITHOUT ENDPOINTS
	8.2. BENEFITS OF A NODE WITHOUT ENDPOINTS
	8.3. SAMPLE CONFIGURATION FOR A NODE WITHOUT ENDPOINTS
	8.4. CONFIGURE A NODE WITH NO ENDPOINTS

	CHAPTER 9. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE
	9.1. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE
	9.2. CREATE A NEW RED HAT JBOSS DATA GRID PROJECT
	9.3. ADD DEPENDENCIES TO YOUR PROJECT
	9.4. ADD A PROFILE TO YOUR PROJECT

	CHAPTER 10. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE (SINGLE-NODE SETUP)
	10.1. CREATE A SIMPLE CLASS
	10.2. USE THE DEFAULT CACHE
	10.2.1. Add and Remove Data from the Cache
	10.2.2. Adding and Replacing a Key Value
	10.2.3. Removing Entries
	10.2.4. Placing and Retrieving Sets of Data
	10.2.5. Adjust Data Life
	10.2.6. Default Data Mortality
	10.2.7. Register the Named Cache Using XML

	CHAPTER 11. RUN RED HAT JBOSS DATA GRID IN LIBRARY MODE (MULTI-NODE SETUP)
	11.1. SHARING JGROUP CHANNELS
	11.2. CONFIGURE THE CLUSTER
	11.2.1. Configuring the Cluster
	11.2.2. Add the Default Cluster Configuration
	11.2.3. Customize the Default Cluster Configuration
	11.2.4. Configure the Replicated Data Grid
	11.2.5. Configure the Distributed Data Grid

	CHAPTER 12. MONITOR RED HAT JBOSS DATA GRID APPLICATIONS IN RED HAT JBOSS EAP
	12.1. MONITOR RED HAT JBOSS DATA GRID APPLICATIONS IN RED HAT JBOSS EAP
	12.2. PREREQUISITES
	12.3. MONITOR RED HAT JBOSS DATA GRID APPLICATIONS IN RED HAT JBOSS EAP

	PART V. SET UP A CACHE MANAGER
	CHAPTER 13. CACHE MANAGERS
	13.1. CACHE MANAGERS
	13.2. TYPES OF CACHE MANAGERS
	13.3. CREATING CACHEMANAGERS
	13.3.1. Create a New RemoteCacheManager
	13.3.2. Create a New Embedded Cache Manager
	13.3.3. Create a New Embedded Cache Manager Using CDI

	13.4. MULTIPLE CACHE MANAGERS
	13.4.1. Multiple Cache Managers
	13.4.2. Create Multiple Caches with a Single Cache Manager
	13.4.3. Using Multiple Cache Managers
	13.4.4. Create Multiple Cache Managers

	PART VI. RED HAT JBOSS DATA GRID QUICKSTARTS
	CHAPTER 14. RED HAT JBOSS DATA GRID QUICKSTARTS
	CHAPTER 15. THE HELLO WORLD QUICKSTART
	15.1. THE HELLO WORLD QUICKSTART
	15.2. QUICKSTART PREREQUISITES
	15.3. START TWO APPLICATION SERVER INSTANCES
	15.4. BUILD AND DEPLOY THE HELLO WORLD QUICKSTART
	15.5. ACCESS THE RUNNING APPLICATION
	15.6. TEST REPLICATION ON THE APPLICATION
	15.7. REMOVE THE APPLICATION

	PART VII. UNINSTALL RED HAT JBOSS DATA GRID
	CHAPTER 16. REMOVE RED HAT JBOSS DATA GRID
	16.1. REMOVE RED HAT JBOSS DATA GRID FROM YOUR LINUX SYSTEM
	16.2. REMOVE RED HAT JBOSS DATA GRID FROM YOUR WINDOWS SYSTEM

	APPENDIX A. REFERENCES
	A.1. ABOUT KEY-VALUE PAIRS

	APPENDIX B. MAVEN CONFIGURATION INFORMATION
	B.1. INSTALL THE JBOSS ENTERPRISE APPLICATION PLATFORM REPOSITORY USING NEXUS
	B.2. MAVEN REPOSITORY CONFIGURATION EXAMPLE
	B.3. DETERMINING THE URL OF THE JBOSS DATA GRID REPOSITORY

