
Red Hat CodeReady Workspaces 2.11

End-user Guide

Using Red Hat CodeReady Workspaces 2.11

Last Updated: 2021-10-18

Red Hat CodeReady Workspaces 2.11 End-user Guide

Using Red Hat CodeReady Workspaces 2.11

Robert Kratky
rkratky@redhat.com

Michal Maléř
mmaler@redhat.com

Fabrice Flore-Thébault
ffloreth@redhat.com

Tereza Stastna
tstastna@redhat.com

Max Leonov
mleonov@redhat.com

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information for users using Red Hat CodeReady Workspaces.

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES
1.1. NAVIGATING CODEREADY WORKSPACES USING THE DASHBOARD

1.1.1. Logging in to CodeReady Workspaces on OpenShift for the first time using OAuth
1.1.2. Logging in to CodeReady Workspaces on OpenShift for the first time registering as a new user
1.1.3. Logging in to CodeReady Workspaces using crwctl
1.1.4. Finding CodeReady Workspaces cluster URL using the OpenShift 4 CLI

1.2. IMPORTING CERTIFICATES TO BROWSERS
1.2.1. Adding certificates to Google Chrome on Linux or Windows
1.2.2. Adding certificates to Google Chrome on macOS
1.2.3. Adding certificates to Firefox

1.3. ACCESSING CODEREADY WORKSPACES FROM OPENSHIFT DEVELOPER PERSPECTIVE
1.3.1. OpenShift Developer Perspective integration with CodeReady Workspaces
1.3.2. Editing the code of applications running in OpenShift Container Platform using CodeReady Workspaces

1.3.3. Accessing CodeReady Workspaces from Red Hat Applications menu

CHAPTER 2. CHE-THEIA IDE BASICS
2.1. DEFINING CUSTOM COMMANDS FOR CHE-THEIA

2.1.1. Che-Theia task types
2.1.2. Running and debugging
2.1.3. Editing a task and launch configuration

2.2. VERSION CONTROL
2.2.1. Managing Git configuration: identity
2.2.2. Accessing a Git repository using HTTPS
2.2.3. Accessing a Git repository using a generated SSH key pair

2.2.3.1. Generating an SSH key using the CodeReady Workspaces command palette
2.2.3.2. Adding the associated public key to a repository or account on GitHub
2.2.3.3. Adding the associated public key to a Git repository or account on GitLab

2.2.4. Managing pull requests using the GitHub PR plug-in
2.2.4.1. Using the GitHub Pull Requests plug-in

2.3. CHE-THEIA TROUBLESHOOTING
2.4. DIFFERENCES IN CHE-THEIA WEBVIEW IN SINGLE-HOST MODE AND MULTIHOST MODE

2.4.1. What’s a Webview
2.4.2. Webview in multihost mode
2.4.3. Webview in single-host mode

CHAPTER 3. DEVELOPER WORKSPACES
3.1. CREATING A WORKSPACE FROM CODE SAMPLE

3.1.1. Creating a workspace from Quick Add of user dashboard
3.1.2. Creating a custom workspace from a template

3.2. CREATING A WORKSPACE FROM REMOTE DEVFILE
3.2.1. Creating a workspace from the default branch of a Git repository
3.2.2. Creating a workspace from a feature branch of a Git repository
3.2.3. Creating a workspace from a publicly accessible standalone devfile using HTTP
3.2.4. Overriding devfile values using factory parameters
3.2.5. Allowing users to define workspace deployment labels and annotations
3.2.6. Allowing users to define workspace creation strategy

3.3. CREATING A WORKSPACE USING CRWCTL AND A LOCAL DEVFILE
3.4. CREATING A WORKSPACE BY IMPORTING THE SOURCE CODE OF A PROJECT

3.4.1. Select a sample from the Dashboard, then change the devfile to include your project

8

9
9
9
9

10
10
11
11

12
12
13
13

13
14

16
16
16
17
21
22
22
23
24
24
24
25
25
25
26
26
26
26
26

28
29
29
30
31
31
31
32
32
35
37
37
38
39

Table of Contents

1

. .

3.4.2. Importing from the Dashboard into an existing workspace
3.4.2.1. Editing the commands after importing a project

3.4.3. Importing to a running workspace using the Git: Clone command
3.4.4. Importing to a running workspace with git clone in a terminal

3.5. CONFIGURING A CODEREADY WORKSPACES 2.11 WORKSPACE
3.5.1. Changing the configuration of an existing workspace
3.5.2. Adding projects to your workspace
3.5.3. Configuring the workspace tools

3.5.3.1. Adding plug-ins
3.5.3.2. Defining the workspace editor

3.6. RUNNING AN EXISTING WORKSPACE FROM THE USER DASHBOARD
3.6.1. Running an existing workspace from the user dashboard with the Run button
3.6.2. Running an existing workspace from the user dashboard using the Open button
3.6.3. Running an existing workspace from the user dashboard using the Recent Workspaces

3.7. IMPORTING OPENSHIFT APPLICATIONS INTO A WORKSPACE
3.7.1. Including a OpenShift application in a workspace devfile definition
3.7.2. Adding a OpenShift application to an existing workspace using the dashboard
3.7.3. Generating a devfile from an existing OpenShift application

3.8. REMOTELY ACCESSING WORKSPACES
3.8.1. Remotely accessing workspaces using oc
3.8.2. Downloading and uploading a file to a workspace using the command-line interface

3.9. MOUNTING A SECRET AS A FILE OR AN ENVIRONMENT VARIABLE INTO A WORKSPACE CONTAINER

3.9.1. Mounting a secret as a file into a workspace container
3.9.2. Mounting a secret as an environment variable into a workspace container
3.9.3. Mounting a git credentials store into a workspace container
3.9.4. The use of annotations in the process of mounting a secret into a workspace container

3.10. AUTHENTICATING USERS ON PRIVATE REPOSITORIES OF SCM SERVERS
3.10.1. Authenticating on Bitbucket servers
3.10.2. Authenticating on GitLab servers
3.10.3. Authenticating on GitHub servers

CHAPTER 4. AUTHORING DEVFILES
4.1. AUTHORING DEVFILES VERSION 1

4.1.1. What is a devfile
4.1.2. A minimal devfile
4.1.3. Generating workspace names
4.1.4. Writing a devfile for a project

4.1.4.1. Preparing a minimal devfile
4.1.4.2. Specifying multiple projects in a devfile

4.1.5. Devfile reference
4.1.5.1. Adding schema version to a devfile
4.1.5.2. Adding a name to a devfile
4.1.5.3. Adding projects to a devfile

4.1.5.3.1. Project-source type: git
4.1.5.3.2. Project-source type: zip
4.1.5.3.3. Project clone-path parameter: clonePath

4.1.5.4. Adding components to a devfile
4.1.5.4.1. Component type: cheEditor
4.1.5.4.2. Component type: chePlugin
4.1.5.4.3. Specifying an alternative component registry
4.1.5.4.4. Specifying a component by linking to its descriptor
4.1.5.4.5. Tuning chePlugin component configuration

40
40
41

42
43
43
44
45
45
45
46
46
47
47
47
48
50
50
51
52
53

54
54
57
59
59
60
60
61

62

65
65
65
65
66
67
67
67
68
68
69
69
70
70
71
71
71
71
72
72
72

Red Hat CodeReady Workspaces 2.11 End-user Guide

2

. .

4.1.5.4.6. Component type: kubernetes
4.1.5.4.7. Overriding container entrypoints
4.1.5.4.8. Overriding container environment variables
4.1.5.4.9. Specifying mount-source option
4.1.5.4.10. Component type: dockerimage
4.1.5.4.11. Mounting project sources
4.1.5.4.12. Container entrypoint
4.1.5.4.13. Persistent Storage
4.1.5.4.14. Specifying container memory limit for components
4.1.5.4.15. Specifying container memory request for components
4.1.5.4.16. Specifying container CPU limit for components
4.1.5.4.17. Specifying container CPU request for components
4.1.5.4.18. Environment variables
4.1.5.4.19. Endpoints
4.1.5.4.20. OpenShift resources

4.1.5.5. Adding commands to a devfile
4.1.5.5.1. CodeReady Workspaces-specific commands
4.1.5.5.2. Editor-specific commands
4.1.5.5.3. Command preview URL

4.1.5.5.3.1. Setting the default way of opening preview URLs
4.1.5.6. Adding attributes to a devfile

4.1.5.6.1. Attribute: editorFree
4.1.5.6.2. Attribute: persistVolumes (ephemeral mode)
4.1.5.6.3. Attribute: asyncPersist (asynchronous storage)
4.1.5.6.4. Attribute: mergePlugins

4.1.6. Objects supported in Red Hat CodeReady Workspaces 2.11
4.2. AUTHORING DEVFILES VERSION 2

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS
5.1. WHAT IS A CHE-THEIA PLUG-IN

5.1.1. Features and benefits of Che-Theia plug-ins
5.1.2. Che-Theia plug-in concept in detail

5.1.2.1. Client-side and server-side Che-Theia plug-ins
5.1.2.2. Che-Theia plug-in APIs
5.1.2.3. Che-Theia plug-in capabilities
5.1.2.4. VS Code extensions and Eclipse Theia plug-ins

5.1.3. Che-Theia plug-in metadata
5.1.4. Che-Theia plug-in lifecycle
5.1.5. Embedded and remote Che-Theia plug-ins

5.1.5.1. Embedded (local) plug-ins
5.1.5.2. Remote plug-ins
5.1.5.3. Comparison matrix

5.1.6. Remote plug-in endpoint
5.1.6.1. Defining a launch remote plug-in endpoint using Dockerfile

5.1.6.1.1. Using a wrapper script
5.1.6.2. Defining a launch remote plug-in endpoint in a meta.yaml file

5.2. ADDING A VS CODE EXTENSION TO A WORKSPACE
5.2.1. Adding a VS Code extension using the workspace configuration
5.2.2. Adding a VS Code extension using recommendations

5.3. ADDING A VS CODE EXTENSION TO THE CHE PLUG-INS REGISTRY
5.4. PUBLISHING METADATA FOR A VS CODE EXTENSION
5.5. TESTING A VISUAL STUDIO CODE EXTENSION IN CODEREADY WORKSPACES

5.5.1. Testing a VS Code extension using GitHub gist

73
73
74
74
75
75
76
76
77
77
78
78
79
80
83
85
86
86
87
88
88
88
88
89
89
89
90

92
92
93
93
93
94
94
95
95

100
101
101
102
102
103
103
104
105
107
107
108
108

111
113
113

Table of Contents

3

. .

. .

5.5.2. Verifying the VS Code extension API compatibility level
5.6. USING ALTERNATIVE IDES IN CODEREADY WORKSPACES
5.7. THEIA-BASED IDES
5.8. ADDING TOOLS TO CODEREADY WORKSPACES AFTER CREATING A WORKSPACE

5.8.1. Additional tools in the CodeReady Workspaces workspace
5.8.2. Adding a language support plug-in to a CodeReady Workspaces workspace

5.9. USING PRIVATE CONTAINER REGISTRIES

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT
6.1. USING MAVEN ARTIFACT REPOSITORIES

6.1.1. Defining repositories in settings.xml
6.1.2. Defining Maven settings.xml file across workspaces

6.1.2.1. OpenShift 3.11 and OpenShift <1.13
6.1.3. Using self-signed certificates in Maven projects

6.2. USING GRADLE ARTIFACT REPOSITORIES
6.2.1. Downloading different versions of Gradle
6.2.2. Configuring global Gradle repositories
6.2.3. Using self-signed certificates in Gradle projects

6.3. USING PYTHON ARTIFACT REPOSITORIES
6.3.1. Configuring Python to use a non-standard registry
6.3.2. Using self-signed certificates in Python projects

6.4. USING GO ARTIFACT REPOSITORIES
6.4.1. Configuring Go to use a non-standard-registry
6.4.2. Using self-signed certificates in Go projects

6.5. USING NUGET ARTIFACT REPOSITORIES
6.5.1. Configuring NuGet to use a non-standard artifact repository
6.5.2. Using self-signed certificates in NuGet projects

6.6. USING NPM ARTIFACT REPOSITORIES

CHAPTER 7. TROUBLESHOOTING CODEREADY WORKSPACES
7.1. VIEWING CODEREADY WORKSPACES WORKSPACES LOGS

7.1.1. Viewing logs from language servers and debug adapters
7.1.1.1. Checking important logs
7.1.1.2. Detecting memory problems
7.1.1.3. Logging the client-server traffic for debug adapters
7.1.1.4. Viewing logs for Python
7.1.1.5. Viewing logs for Go

7.1.1.5.1. Finding the Go path
7.1.1.5.2. Viewing the Debug Console log for Go
7.1.1.5.3. Viewing the Go logs output in the Output panel

7.1.1.6. Viewing logs for the NodeDebug NodeDebug2 adapter
7.1.1.7. Viewing logs for Typescript

7.1.1.7.1. Enabling the label switched protocol (LSP) tracing
7.1.1.7.2. Viewing the Typescript language server log
7.1.1.7.3. Viewing the Typescript logs output in the Output panel

7.1.1.8. Viewing logs for Java
7.1.1.8.1. Verifying the state of the Eclipse JDT Language Server
7.1.1.8.2. Verifying the Eclipse JDT Language Server features
7.1.1.8.3. Viewing the Java language server log
7.1.1.8.4. Logging the Java language server protocol (LSP) messages

7.1.1.9. Viewing logs for Intelephense
7.1.1.9.1. Logging the Intelephense client-server communication
7.1.1.9.2. Viewing Intelephense events in the Output panel

117
117
118
119
119

120
122

123
123
123
125
126
126
127
127
128
128
129
129
130
131
131
131
132
132
132
133

135
135
135
135
135
136
136
136
136
137
138
138
138
138
138
139
139
139
139
140
140
140
140
140

Red Hat CodeReady Workspaces 2.11 End-user Guide

4

. .

. .

7.1.1.10. Viewing logs for PHP-Debug
7.1.1.11. Viewing logs for XML

7.1.1.11.1. Verifying the state of the XML language server
7.1.1.11.2. Checking XML language server feature flags
7.1.1.11.3. Enabling XML Language Server Protocol (LSP) tracing
7.1.1.11.4. Viewing the XML language server log

7.1.1.12. Viewing logs for YAML
7.1.1.12.1. Verifying the state of the YAML language server
7.1.1.12.2. Checking the YAML language server feature flags
7.1.1.12.3. Enabling YAML Language Server Protocol (LSP) tracing

7.1.1.13. Viewing logs for .NET with OmniSharp-Theia plug-in
7.1.1.13.1. OmniSharp-Theia plug-in
7.1.1.13.2. Verifying the state of the OmniSharp-Theia plug-in language server
7.1.1.13.3. Checking OmniSharp Che-Theia plug-in language server features
7.1.1.13.4. Viewing OmniSharp-Theia plug-in logs in the Output panel

7.1.1.14. Viewing logs for .NET with NetcoredebugOutput plug-in
7.1.1.14.1. NetcoredebugOutput plug-in
7.1.1.14.2. Verifying the state of the NetcoredebugOutput plug-in
7.1.1.14.3. Viewing NetcoredebugOutput plug-in logs in the Output panel

7.1.1.15. Viewing logs for Camel
7.1.1.15.1. Verifying the state of the Camel language server
7.1.1.15.2. Viewing Camel logs in the Output panel

7.1.2. Viewing Che-Theia IDE logs
7.1.2.1. Viewing Che-Theia editor logs using the OpenShift CLI

7.2. INVESTIGATING FAILURES AT A WORKSPACE START USING THE VERBOSE MODE
7.2.1. Restarting a CodeReady Workspaces workspace in Verbose mode after start failure
7.2.2. Starting a CodeReady Workspaces workspace in Verbose mode

7.3. TROUBLESHOOTING SLOW WORKSPACES
7.3.1. Improving workspace start time
7.3.2. Improving workspace runtime performance

7.4. TROUBLESHOOTING NETWORK PROBLEMS

CHAPTER 8. OPENSHIFT CONNECTOR OVERVIEW
8.1. FEATURES OF OPENSHIFT CONNECTOR
8.2. INSTALLING OPENSHIFT CONNECTOR IN CODEREADY WORKSPACES
8.3. AUTHENTICATING WITH OPENSHIFT CONNECTOR FROM CODEREADY WORKSPACES WHEN THE
OPENSHIFT OAUTH SERVICE DOES NOT AUTHENTICATE THE CODEREADY WORKSPACES INSTANCE
8.4. CREATING COMPONENTS WITH OPENSHIFT CONNECTOR IN CODEREADY WORKSPACES
8.5. CONNECTING SOURCE CODE FROM GITHUB TO AN OPENSHIFT COMPONENT USING OPENSHIFT
CONNECTOR

CHAPTER 9. TELEMETRY OVERVIEW
9.1. USE CASES
9.2. HOW IT WORKS
9.3. CREATING A TELEMETRY PLUG-IN

9.3.1. Getting Started
Optional: creating a server that receives events

9.3.2. Creating a new Maven project
9.3.3. Running the application
9.3.4. Creating a concrete implementation of AnalyticsManager and adding specialized logic
9.3.5. Implementing isEnabled()
9.3.6. Implementing onEvent()
9.3.7. Implementing increaseDuration()

141
141
141
141

142
142
142
142
143
143
144
144
144
144
144
144
144
145
145
145
145
146
146
146
148
148
148
149
149
150
151

152
152
153

154
155

156

158
158
158
159
160
160
162
163
164
165
166
166

Table of Contents

5

. .

9.3.8. Implementing onActivity()
9.3.9. Implementing destroy()
9.3.10. Packaging the Quarkus application
9.3.11. Creating a meta.yaml for your plug-in.
9.3.12. Updating CodeReady Workspaces to reference your telemetry plug-in

9.4. THE WOOPRA TELEMETRY PLUGIN

CHAPTER 10. JAVA LOMBOK

166
167
167
167
169
171

173

Red Hat CodeReady Workspaces 2.11 End-user Guide

6

Table of Contents

7

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat CodeReady Workspaces 2.11 End-user Guide

8

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES
This chapter describes available methods to navigate Red Hat CodeReady Workspaces.

Section 1.1, “Navigating CodeReady Workspaces using the Dashboard”

Section 1.2, “Importing certificates to browsers”

Section 1.3, “Accessing CodeReady Workspaces from OpenShift Developer Perspective”

1.1. NAVIGATING CODEREADY WORKSPACES USING THE
DASHBOARD

The Dashboard is accessible on your cluster from a URL such as \https://codeready-
<openshift_deployment_name>.<domain_name>/dashboard. This section describes how to access
this URL on OpenShift.

1.1.1. Logging in to CodeReady Workspaces on OpenShift for the first time using
OAuth

This section describes how to log in to CodeReady Workspaces on OpenShift for the first time using
OAuth.

Prerequisites

Contact the administrator of the OpenShift instance to obtain the Red Hat CodeReady
Workspaces URL.

Procedure

1. Navigate to the Red Hat CodeReady Workspaces URL to display the Red Hat CodeReady
Workspaces login page.

2. Choose the OpenShift OAuth option.

3. The Authorize Access page is displayed.

4. Click on the Allow selected permissions button.

5. Update the account information: specify the Username, Email, First name and Last name
fields and click the Submit button.

Validation steps

The browser displays the Red Hat CodeReady Workspaces Dashboard.

1.1.2. Logging in to CodeReady Workspaces on OpenShift for the first time
registering as a new user

This section describes how to log in to CodeReady Workspaces on OpenShift for the first time
registering as a new user.

Prerequisites

Contact the administrator of the OpenShift instance to obtain the Red Hat CodeReady

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES

9

Contact the administrator of the OpenShift instance to obtain the Red Hat CodeReady
Workspaces URL.

Self-registration is enabled. See Enabling self-registration.

Procedure

1. Navigate to the Red Hat CodeReady Workspaces URL to display the Red Hat CodeReady
Workspaces login page.

2. Choose the Register as a new user option.

3. Update the account information: specify the Username, Email, First name and Last name
field and click the Submit button.

Validation steps

The browser displays the Red Hat CodeReady Workspaces Dashboard.

1.1.3. Logging in to CodeReady Workspaces using crwctl

This section describes how to log in to CodeReady Workspaces using the crwctl tool by copying login
command from CodeReady Workspaces Dashboard.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see Installing CodeReady Workspaces .

The CodeReady Workspaces CLI management tool. See Using the crwctl management tool .

Red Hat CodeReady Workspaces Dashboard is opened in a browser.

Procedure

1. Using the upper-right corner of Dashboard, open the user’s pop-up menu.

2. Select the Copy crwctl login command option.

3. Wait for the notification message The login command copied to clipboard to display.

4. Paste the login command into a terminal and observe a successful login:

$ crwctl auth:login ...
Successfully logged into <server> as <user>

1.1.4. Finding CodeReady Workspaces cluster URL using the OpenShift 4 CLI

This section describes how to obtain the CodeReady Workspaces cluster URL using the OpenShift 4
command line interface (CLI). The URL can be retrieved from the OpenShift logs or from the
checluster Custom Resource.

Prerequisites

Red Hat CodeReady Workspaces 2.11 End-user Guide

10

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#enabling-self-registration_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#using-the-crwctl-management-tool_crw

An instance of Red Hat CodeReady Workspaces running on OpenShift.

User is located in a CodeReady Workspaces installation project.

Procedure

1. To retrieve the CodeReady Workspaces cluster URL from the checluster CR (Custom
Resource), run:

$ oc get checluster --output jsonpath='{.items[0].status.cheURL}'

2. Alternatively, to retrieve the CodeReady Workspaces cluster URL from the OpenShift logs, run:

$ oc logs --tail=10 `(oc get pods -o name | grep operator)` | \
 grep "available at" | \
 awk -F'available at: ' '{print $2}' | sed 's/"//'

1.2. IMPORTING CERTIFICATES TO BROWSERS

This section describes how to import a root certificate authority into a web browser to use CodeReady
Workspaces with self-signed TLS certificates.

When a TLS certificate is not trusted, the error message "Your CodeReady Workspaces server may be
using a self-signed certificate. To resolve the issue, import the server CA certificate in the
browser." blocks the login process. To prevent this, add the public part of the self-signed CA certificate
into the browser after installing CodeReady Workspaces.

1.2.1. Adding certificates to Google Chrome on Linux or Windows

Procedure

1. Navigate to URL where CodeReady Workspaces is deployed.

2. Save the certificate:

a. Click the warning or open lock icon on the left of the address bar.

b. Click Certificates and navigate to the Details tab.

c. Select the top-level certificate, which is the needed Root certificate authority (do not
export the unfolded certificate from the lower level), and export it:

On Linux, click the Export button.

On Windows, click the Save to file button.

3. Go to Google Chrome Certificates settings in the Privacy and security section and navigate to
the Authorities tab.

4. Click the Import button and open the saved certificate file.

5. Select Trust this certificate for identifying websites and click the OK button.

6. After adding the CodeReady Workspaces certificate to the browser, the address bar displays
the closed lock icon next to the URL, indicating a secure connection.

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES

11

chrome://settings/certificates

1.2.2. Adding certificates to Google Chrome on macOS

Procedure

1. Navigate to URL where CodeReady Workspaces is deployed.

2. Save the certificate:

a. Click the lock icon on the left of the address bar.

b. Click Certificates.

c. Select the certificate to use and drag its displayed large icon to the desktop.

3. Open the Keychain Access application.

4. Select the System keychain and drag the saved certificate file to it.

5. Double-click the imported CA, then go to Trust and select When using this certificate: Always
Trust.

6. Restart the browser for the added certificated to take effect.

1.2.3. Adding certificates to Firefox

Procedure

1. Navigate to URL where CodeReady Workspaces is deployed.

2. Save the certificate:

a. Click the lock icon on the left of the address bar.

b. Click the > button next to the Connection not secure warning.

c. Click the More information button.

d. Click the View Certificate button on the Security tab.

e. Select the second certificate tab. The certificate Common Name should start with ingress-
operator

f. Click the PEM (cert) link and save the certificate.

3. Navigate to about:preferences, search for certificates, and click View Certificates.

4. Go to the Authorities tab, click the Import button, and open the saved certificate file.

5. Check Trust this CA to identify websites and click OK.

6. Restart Firefox for the added certificated to take effect.

7. After adding the CodeReady Workspaces certificate to the browser, the address bar displays
the closed lock icon next to the URL, indicating a secure connection.

1.3. ACCESSING CODEREADY WORKSPACES FROM OPENSHIFT

Red Hat CodeReady Workspaces 2.11 End-user Guide

12

about:preferences

1.3. ACCESSING CODEREADY WORKSPACES FROM OPENSHIFT
DEVELOPER PERSPECTIVE

The OpenShift Container Platform web console provides two perspectives; the Administrator
perspective and the Developer perspective.

The Developer perspective provides workflows specific to developer use cases, such as the ability to:

Create and deploy applications on OpenShift Container Platform by importing existing
codebases, images, and dockerfiles.

Visually interact with applications, components, and services associated with them within a
project and monitor their deployment and build status.

Group components within an application and connect the components within and across
applications.

Integrate serverless capabilities (Technology Preview).

Create workspaces to edit your application code using CodeReady Workspaces.

1.3.1. OpenShift Developer Perspective integration with CodeReady Workspaces

This section provides information about OpenShift Developer Perspective support for CodeReady
Workspaces.

When the CodeReady Workspaces Operator is deployed into OpenShift Container Platform 4.2 and
later, it creates a ConsoleLink Custom Resource (CR). This adds an interactive link to the Red Hat
Applications menu for accessing the CodeReady Workspaces installation using the OpenShift
Developer Perspective console.

To access the Red Hat Applications menu, click the three-by-three matrix icon on the main screen of
the OpenShift web console. The CodeReady Workspaces Console Link, displayed in the drop-down
menu, creates a new workspace or redirects the user to an existing one.

NOTE

OpenShift Container Platform console links are not created when CodeReady
Workspaces is used with HTTP resources

When installing CodeReady Workspaces with the From Git option, the OpenShift
Developer Perspective console link is only created if CodeReady Workspaces is deployed
with HTTPS. The console link will not be created if an HTTP resource is used.

1.3.2. Editing the code of applications running in OpenShift Container Platform
using CodeReady Workspaces

This section describes how to start editing the source code of applications running on OpenShift using
CodeReady Workspaces.

Prerequisites

CodeReady Workspaces is deployed on the same OpenShift 4 cluster.

Procedure

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES

13

1. Open the Topology view to list all projects.

2. In the Select an Application search field, type workspace to list all workspaces.

3. Click the workspace to edit.
The deployments are displayed as graphical circles surrounded by circular buttons. One of these
buttons is Edit Source Code.

4. To edit the code of an application using CodeReady Workspaces, click the Edit Source Code
button. This redirects to a workspace with the cloned source code of the application
component.

1.3.3. Accessing CodeReady Workspaces from Red Hat Applications menu

This section describes how to access CodeReady Workspaces workspaces from the Red Hat
Applications menu on OpenShift Container Platform.

Prerequisites

The CodeReady Workspaces Operator is available in OpenShift 4.

Procedure

1. Open the Red Hat Applications menu by using the three-by-three matrix icon in the upper right
corner of the main screen.
The drop-down menu displays the available applications.

Red Hat CodeReady Workspaces 2.11 End-user Guide

14

2. Click the CodeReady Workspaces link to open the CodeReady Workspaces Dashboard.

CHAPTER 1. NAVIGATING CODEREADY WORKSPACES

15

CHAPTER 2. CHE-THEIA IDE BASICS
This section describes basics workflows and commands for Che-Theia: the native integrated
development environment for Red Hat CodeReady Workspaces.

Section 2.1, “Defining custom commands for Che-Theia”

Section 2.2, “Version Control”

Section 2.3, “Che-Theia Troubleshooting”

Section 2.4, “Differences in Che-Theia Webview in single-host mode and multihost mode”

2.1. DEFINING CUSTOM COMMANDS FOR CHE-THEIA

The Che-Theia IDE allows users to define custom commands in a devfile that are then available when
working in a workspace.

This is useful, for example, for:

Simplifying building, running, and debugging projects.

Allowing lead developers to customize workspaces based on team requirements.

Reducing time needed to onboard new team members.

See also Section 4.2, “Authoring devfiles version 2” .

2.1.1. Che-Theia task types

The following is an example of the commands section of a devfile.

commands:

 - name: Package Native App
 actions:
 - type: exec
 component: centos-quarkus-maven
 command: "mvn package -Dnative -Dmaven.test.skip"
 workdir: ${CHE_PROJECTS_ROOT}/quarkus-quickstarts/getting-started

 - name: Start Native App
 actions:
 - type: exec
 component: ubi-minimal
 command: ./getting-started-1.0-SNAPSHOT-runner
 workdir: ${CHE_PROJECTS_ROOT}/quarkus-quickstarts/getting-started/target

 - name: Attach remote debugger
 actions:
 - type: vscode-launch
 referenceContent: |
 {
 "version": "0.2.0",
 "configurations": [

Red Hat CodeReady Workspaces 2.11 End-user Guide

16

CodeReady Workspaces commands

Package Native App and Start Native App
The CodeReady Workspaces commands are to be used to define tasks that will be executed in the
workspace container.

The exec type implies that the CodeReady Workspaces runner is used for command
execution. The user can specify the component in whose container the command is
executed.

The command field contains the command line for execution.

The workdir is the working directory in which the command is executed.

The component field refers to the container where the command will be executed. The field
contains the component alias where the container is defined.

VS Code launch configurations

Attach remote debugger
VS Code launch configurations are commonly used to define debugging configuration. To trigger
these configurations, press F5 or choose Start Debugging from the Debug menu. The
configurations provide information to the debugger, such as the port to connect to for debugging or
the type of the application to debug (Node.js, Java, and others.).

The type is vscode-launch.

It contains the launch configurations in the VS Code format.

For more information about VS Code launch configurations, see the Debugging section on
the Visual Studio documentation page .

Tasks of type che, also known as exec commands, can be executed from the Terminal→Run Task menu
or by selecting them in the My Workspace panel. Other tasks are only available from Terminal→Run
Task. Configurations to start with are available in the Che-Theia debugger.

Additional resources

Quarkus command mode devfile, including a theia task and a vscode-launch task

2.1.2. Running and debugging

Che-Theia supports the Debug Adapter Protocol. This protocol defines a generic way for how a
development tool can communicate with a debugger. It means Che-Theia works with all
implementations.

 {
 "type": "java",
 "request": "attach",
 "name": "Attach to Remote Quarkus App",
 "hostName": "localhost",
 "port": 5005
 }
]
 }

CHAPTER 2. CHE-THEIA IDE BASICS

17

https://code.visualstudio.com/docs/editor/debugging#_launch-configurations
https://raw.githubusercontent.com/eclipse/che-devfile-registry/master/devfiles/quarkus-command-mode/devfile.yaml
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/implementors/adapters/

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

Procedure

To debug an application:

1. Click Debug → Add Configuration for debugging or adding of a launch configuration to the
project.

2. From the pop-up menu, select the appropriate configuration for the application that you are
about to debug.

Red Hat CodeReady Workspaces 2.11 End-user Guide

18

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

3. Update the configuration by modifying or adding attributes.

4. Breakpoints can be toggled by selecting the editor margin.

CHAPTER 2. CHE-THEIA IDE BASICS

19

5. After opening the breakpoint menu, use the Edit Breakpoint command to add conditions.

The IDE then displays the Expresion input field.

6. To start debugging, click View→Debug.

Red Hat CodeReady Workspaces 2.11 End-user Guide

20

7. In the Debug view, select the configuration and press F5 to debug the application. Or, start the
application without debugging by pressing Ctrl+F5.

2.1.3. Editing a task and launch configuration

Procedure

To customize the configuration file:

1. Edit the tasks.json or launch.json configuration files.

2. Add new definitions to the configuration file or modify the existing ones.

NOTE

CHAPTER 2. CHE-THEIA IDE BASICS

21

NOTE

The changes are stored in the configuration file.

3. To customize the task configuration provided by plug-ins, select the Terminal → Configure
Tasks menu option, and choose the task to configure. The configuration is then copied to the
tasks.json file and is available for editing.

2.2. VERSION CONTROL

Red Hat CodeReady Workspaces natively supports the VS Code SCM model . By default, Red Hat
CodeReady Workspaces includes the native VS Code Git extension as a Source Code Management
(SCM) provider.

2.2.1. Managing Git configuration: identity

The first thing to do before starting to use Git is to set a user name and email address. This is important
because every Git commit uses this information.

Procedure

To configure Git identity using the CodeReady Workspaces user interface:

1. Open File > Settings > Open Preferences or press Ctrl+,.

2. In the opened window, navigate to the Git → User sub-section and enter the User mail and
User name values.

To configure Git identity using the command line, open the terminal of the Che-Theia container.

1. Navigate to the My Workspace view, and open Plugins > theia-ide > New terminal:

Red Hat CodeReady Workspaces 2.11 End-user Guide

22

https://code.visualstudio.com/docs/editor/versioncontrol#_scm-providers
https://code.visualstudio.com/docs/editor/versioncontrol#_git-support

2. Execute the following commands:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Che-Theia permanently stores this information in the current container and restores it for other
containers on future workspace starts.

2.2.2. Accessing a Git repository using HTTPS

Procedure

To clone a repository using HTTPS:

1. Use the clone command provided by the Visual Studio Code Git extension.

Alternatively, use the native Git commands in the terminal to clone a project.

1. Navigate to destination folder using the cd command.

2. Use git clone to clone a repository:

$ git clone <link>

CHAPTER 2. CHE-THEIA IDE BASICS

23

https://code.visualstudio.com/docs/editor/versioncontrol#_cloning-a-repository

Red Hat CodeReady Workspaces supports Git self-signed TLS certificates. See Deploying
CodeReady Workspaces with support for Git repositories with self-signed certificates to learn
more.

2.2.3. Accessing a Git repository using a generated SSH key pair

2.2.3.1. Generating an SSH key using the CodeReady Workspaces command palette

You can generate an SSH key by using the CodeReady Workspaces command palette. You have to
create a unique SSH key for each Git provider in use because each SSH key restricts permissions for
one specific Git provider.

A common SSH key pair that works with all the Git providers is available by default. To start using it, add
the public key to the Git provider.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of Red Hat CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace defined on this instance of CodeReady Workspaces Section 3.5,
“Configuring a CodeReady Workspaces 2.11 workspace”.

Personal GitHub account or other Git provider account created.

Procedure

1. Generate an SSH key pair that only works with a particular Git provider:

In the CodeReady Workspaces IDE, press F1 to open the Command Palette, or navigate to
View → Find Command in the top menu.
The command palette can be also activated by pressing Ctrl+Shift+p (or Cmd+Shift+p on
macOS).

Search for SSH: generate key pair for particular host by entering generate into the search
box and pressing Enter once filled.

Provide the hostname for the SSH key pair such as, for example, github.com.
The SSH key pair is generated.

2. Click the View button in the lower-right corner and copy the public key from the editor and add
it to the Git provider.
It is possible to use another command from the command palette: Clone git repository by
providing an SSH secured URL.

2.2.3.2. Adding the associated public key to a repository or account on GitHub

To add the associated public key to a repository or account on GitHub:

1. Navigate to github.com.

2. Click the drop-down arrow next to the user icon in the upper right corner of the window.

3. Click Settings → SSH and GPG keys and then click the New SSH key button.

4. In the Title field, type a title for the key, and in the Key field, paste the public key copied from

Red Hat CodeReady Workspaces 2.11 End-user Guide

24

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#deploying-codeready-workspaces-with-support-for-git-repositories-with-self-signed-certificates_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://help.github.com/en/articles/types-of-github-accounts
https://github.com

4. In the Title field, type a title for the key, and in the Key field, paste the public key copied from
CodeReady Workspaces.

5. Click the Add SSH key button.

2.2.3.3. Adding the associated public key to a Git repository or account on GitLab

To add the associated public key to a Git repository or account on GitLab:

1. Navigate to gitlab.com.

2. Click the user icon in the upper right corner of the window.

3. Click Settings → SSH Keys.

4. In the Title field, type a title for the key and in the Key field, paste the public key copied from
CodeReady Workspaces.

5. Click the Add key button.

2.2.4. Managing pull requests using the GitHub PR plug-in

To manage GitHub pull requests, the VS Code GitHub Pull Request plug-in is available in the list of
plug-ins of the workspace.

2.2.4.1. Using the GitHub Pull Requests plug-in

Prerequisites

GitHub OAuth is configured. See Configuring GitHub OAuth.

Procedure

Sign in to GitHub, using the Accounts menu or the Sign in button in the plugin’s view:

CHAPTER 2. CHE-THEIA IDE BASICS

25

https://gitlab.com
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#configuring-github-oauth_crw

To sign out from GitHub use the Accounts menu in the left bottom side, or GitHub Pull Requests: Sign
out of GitHub command.

Additional resources

vscode GitHub Pull Requests plugin documentation

2.3. CHE-THEIA TROUBLESHOOTING

This section describes the most frequent issues with the Che-Theia IDE.

Che-Theia shows a notification with the following message: Plugin runtime crashed unexpectedly,
all plugins are not working, please reload the page. Probably there is not enough memory for the
plugins.

This means that one of the Che-Theia plug-ins that are running in the Che-Theia IDE container
requires more memory than the container has. To fix this problem, increase the amount of memory
for the Che-Theia IDE container:

1. Navigate to the CodeReady Workspaces Dashboard.

2. Select the workspace in which the problem happened.

3. Switch to the Devfile tab.

4. In the components section of the devfile, find a component of the cheEditor type.

5. Add a new property, memoryLimit: 1024M (or increase the value if it already exists).

6. Save changes and restart the workspace.

2.4. DIFFERENCES IN CHE-THEIA WEBVIEW IN SINGLE-HOST MODE
AND MULTIHOST MODE

Depending on which Che deployment strategy is used, single-host or multihost, there are differences in
how Che-Theia Webview API works.

2.4.1. What’s a Webview

Webview Plug-in API allows creating a view within Che-Theia to show an arbitrary HTML content.
Internally, it’s implemented with an iframe and service worker.

2.4.2. Webview in multihost mode

When Red Hat CodeReady Workspaces is deployed in multihost mode, Webview content is served on a
separate origin. That means it’s isolated from the main Che-Theia context. So, a contributed view has no
access:

to the top-level DOM

to the Che-Theia state, like local storage, cookies, and so on.

2.4.3. Webview in single-host mode

When Red Hat CodeReady Workspaces is deployed in single-host mode, Webview content is loaded

Red Hat CodeReady Workspaces 2.11 End-user Guide

26

https://code.visualstudio.com/docs/editor/github#_pull-requests
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Glossary/Origin

When Red Hat CodeReady Workspaces is deployed in single-host mode, Webview content is loaded
through the same origin as the main Che-Theia context. It means that nothing prevents external content
from accessing the main Che-Theia in a browser. So, pay extra attention to what content may be loaded
by different Plugins that contribute the Webviews.

CHAPTER 2. CHE-THEIA IDE BASICS

27

CHAPTER 3. DEVELOPER WORKSPACES
Red Hat CodeReady Workspaces provides developer workspaces with everything needed to a code,
build, test, run, and debug applications. To allow that, the developer workspaces provide four main
components:

1. The source code of a project.

2. A web-based integrated development environment (IDE).

3. Tool dependencies, needed by developers to work on a project.

4. Application runtime: a replica of the environment where the application runs in production.

Pods manage each component of a CodeReady Workspaces workspace. Therefore, everything running
in a CodeReady Workspaces workspace is running inside containers. This makes a CodeReady
Workspaces workspace highly portable.

The embedded browser-based IDE is the point of access for everything running in a CodeReady
Workspaces workspace. This makes a CodeReady Workspaces workspace easy to share.

IMPORTANT

By default, it is possible to run only one workspace at a time. To increase the number of
concurrent workspaces a user can run, update the CheCluster:

$ oc patch checluster/codeready-workspaces -n openshift-workspaces --type=merge \
-p '{ "spec": { "server": { "customCheProperties": {
"CHE_LIMITS_USER_WORKSPACES_RUN_COUNT": "-1" } } } }'

For additional information, see: Users workspace limits .

Table 3.1. Features and benefits

Features Traditional IDE workspaces Red Hat CodeReady
Workspaces workspaces

Configuration and installation
required

Yes. No.

Embedded tools Partial. IDE plug-ins need
configuration. Dependencies
need installation and
configuration. Example: JDK,
Maven, Node.

Yes. Plug-ins provide their
dependencies.

Application runtime provided No. Developers have to manage
that separately.

Yes. Application runtime is
replicated in the workspace.

Shareable No. Or not easily Yes. Developer workspaces are
shareable with a URL.

Red Hat CodeReady Workspaces 2.11 End-user Guide

28

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#users-workspace-limits

Capable of being versioned No Yes. Devfiles exist with project
source code.

Accessible from anywhere No. Installation is needed. Yes. Only requires a browser.

Features Traditional IDE workspaces Red Hat CodeReady
Workspaces workspaces

To start a CodeReady Workspaces workspace:

Section 3.5, “Configuring a CodeReady Workspaces 2.11 workspace”

Use the Dashboard to discover CodeReady Workspaces 2.11:

Section 3.1, “Creating a workspace from code sample”

Section 3.4, “Creating a workspace by importing the source code of a project”

Use a devfile as the preferred way to start a CodeReady Workspaces 2.11 workspace:

Chapter 4, Authoring devfiles

Section 3.7, “Importing OpenShift applications into a workspace”

Use the browser-based IDE as the preferred way to interact with a CodeReady Workspaces 2.11
workspace. For an alternative way to interact with a CodeReady Workspaces 2.11 workspace, see:
Section 3.8, “Remotely accessing workspaces”.

3.1. CREATING A WORKSPACE FROM CODE SAMPLE

This section explains how to create a workspace from code sample or devfile template.

1. Creating a workspace from sample using the Quick Add view.

2. Creating a custom workspace using templates on Custom Workspace view.

For more information about devfiles, see Section 4.2, “Authoring devfiles version 2” .

3.1.1. Creating a workspace from Quick Add of user dashboard

This section describes how to create a workspace using the user dashboard and a code sample.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

Procedure

1. Navigate to the CodeReady Workspaces dashboard. See Section 1.1, “Navigating CodeReady
Workspaces using the Dashboard”.

CHAPTER 3. DEVELOPER WORKSPACES

29

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

2. In the left navigation panel, go to Create Workspace.

3. Click the Quick Add tab.
The gallery lists sample projects to build and run.

4. To start a workspace, select a sample project from the set of pre-created devfiles.

A NEW WORKSPACE NAME

Unless overridden, workspace names will be generated from the
metadata.generateName property in the devfile, plus four random characters to ensure
uniqueness.

3.1.2. Creating a custom workspace from a template

This section describes how to create a custom workspace from a template.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see Installing CodeReady Workspaces .

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Section 1.1, “Navigating CodeReady
Workspaces using the Dashboard”.

2. In the left navigation panel, go to Create Workspace.

3. Click the Custom Workspace tab.

4. Define a Name for the workspace.

NEW WORKSPACE NAME

Workspace name can be auto-generated based on the underlying devfile of the
stack. Generated names always consist of the devfile metadata.generateName
property as the prefix and four random characters.

5. In the Devfile section, select the devfile template that will be used to build and run projects.

Red Hat CodeReady Workspaces 2.11 End-user Guide

30

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

6. Start the workspace: click the Create & Open button at the bottom of the form:

3.2. CREATING A WORKSPACE FROM REMOTE DEVFILE

For quick and easy CodeReady Workspaces workspace creation, use a factory link.

3.2.1. Creating a workspace from the default branch of a Git repository

This section describes how to start a CodeReady Workspaces workspace using a factory URL. The
factory URL is a link pointing CodeReady Workspaces to a Git source repository containing a devfile.

The factory URL exist in two forms:

the short form /#$URL

long /f?url=$URL form that supports additional configuration parameters used in previous
versions of CodeReady Workspaces

Prerequisites

A running instance of Red Hat CodeReady Workspaces. See Installing CodeReady Workspaces .

The Git repository <GIT_REPOSITORY_URL> is available over HTTPS and contains a
devfile.yaml or .devfile.yaml in the root folder. See Section 4.2, “Authoring devfiles version 2” .

Procedure

Run the workspace by opening the factory URL. Two formats are available:

\https://codeready-<openshift_deployment_name>.
<domain_name>/#<GIT_REPOSITORY_URL>

This is the short format.

\https://codeready-<openshift_deployment_name>.<domain_name>/f?
url=<GIT_REPOSITORY_URL>

This long format supports additional configuration parameters.

Example 3.1. Create a workspace on Eclipse Che hosted by Red Hat from the default
branch of the https://github.com/eclipse-che/che-server repository using the short
factory URL format.

https://workspaces.openshift.com/#https://github.com/eclipse-che/che-server

Example 3.2. Create a workspace on Eclipse Che hosted by Red Hat from the default
branch of the https://github.com/eclipse-che/che-server repository using the long
factory URL format.

https://workspaces.openshift.com/f?url=https://github.com/eclipse-che/che-server

3.2.2. Creating a workspace from a feature branch of a Git repository

A CodeReady Workspaces workspace can be created by pointing to devfile that is stored in a Git source

CHAPTER 3. DEVELOPER WORKSPACES

31

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://github.com/eclipse-che/che-server
https://workspaces.openshift.com/#https://github.com/eclipse-che/che-server
https://github.com/eclipse-che/che-server
https://workspaces.openshift.com/f?url=https://github.com/eclipse-che/che-server

A CodeReady Workspaces workspace can be created by pointing to devfile that is stored in a Git source
repository on a feature branch of the user’s choice. The CodeReady Workspaces instance then uses the
discovered devfile to build a workspace.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see Installing CodeReady Workspaces .

The devfile.yaml or .devfile.yaml file is located in the root folder of a Git repository, on a
specific branch of the user’s choice that is accessible over HTTPS. See Section 4.2, “Authoring
devfiles version 2” for detailed information about creating and using devfiles.

Procedure

Execute the workspace by opening the following URL: \https://codeready-
<openshift_deployment_name>.<domain_name>/#<GitHubBranch>

Example

Use following URL format to open an experimental quarkus-quickstarts branch hosted on
workspaces.openshift.com.

https://workspaces.openshift.com/f?url=https://github.com/maxandersen/quarkus-quickstarts/tree/che

3.2.3. Creating a workspace from a publicly accessible standalone devfile using
HTTP

A workspace can be created using a devfile, the URL of which is pointing to the raw content of the
devfile. The CodeReady Workspaces instance then uses the discovered devfile to build a workspace.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see Installing CodeReady Workspaces .

The publicly-accessible standalone devfile.yaml file. See Section 4.2, “Authoring devfiles
version 2” for detailed information about creating and using devfiles.

Procedure

1. Execute the workspace by opening the following URL: \https://codeready-
<openshift_deployment_name>.<domain_name>/#https://<yourhosturl>/devfile.yaml

3.2.4. Overriding devfile values using factory parameters

You can override values in the following sections of a remote devfile:

apiVersion

metadata

projects

attributes

Red Hat CodeReady Workspaces 2.11 End-user Guide

32

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://github.com/quarkusio/quarkus-quickstarts
https://workspaces.openshift.com
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

You can override the values by using additional factory parameters.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. See Installing CodeReady Workspaces .

A publicly accessible stand-alone devfile.yaml file. See Section 4.2, “Authoring devfiles version
2” for information about creating and using devfiles.

Procedure

1. Open the workspace by navigating to the following URL: \https://codeready-
<openshift_deployment_name>.<domain_name>/f?
url=https://<hostURL>/devfile.yaml&override.<parameter.path>=<value>

Example 3.3. Example of overriding the generateName property

Consider the following initial devfile:

apiVersion: 1.0.0
metadata:
 generateName: golang-
projects:
...

To add or override generateName value, use the following factory URL:

https://workspaces.openshift.com/f?url=<repository-
url>&override.metadata.generateName=myprefix

The resulting workspace has the following devfile model:

apiVersion: 1.0.0
metadata:
 generateName: myprefix
projects:
...

Example 3.4. Example of overriding project source branch property

Consider the following initial devfile:

apiVersion: 1.0.0
metadata:
 generateName: java-mysql-
projects:
 - name: web-java-spring-petclinic
 source:
 type: git
 location: "https://github.com/spring-projects/spring-petclinic.git"
...

CHAPTER 3. DEVELOPER WORKSPACES

33

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

To add or override the source branch value, use the following factory URL:

https://workspaces.openshift.com/f?url=<repository-url>&override.projects.web-java-spring-
petclinic.source.branch=1.0.x

The resulting workspace has the following devfile model:

apiVersion: 1.0.0
metadata:
 generateName: java-mysql-
projects:
 - name: web-java-spring-petclinic
 source:
 type: git
 location: "https://github.com/spring-projects/spring-petclinic.git"
 branch: 1.0.x
...

Example 3.5. Example of overriding or creating an attribute value

Consider the following initial devfile:

apiVersion: 1.0.0
metadata:
 generateName: golang-
attributes:
 persistVolumes: false
projects:
...

To add or override the persistVolumes attribute value, use the following factory URL:

https://workspaces.openshift.com/f?url=<repository-url>&override.attributes.persistVolumes=true

The resulting workspace has the following devfile model:

apiVersion: 1.0.0
metadata:
 generateName: golang-
attributes:
 persistVolumes: true
projects:
...

When overriding attributes, everything that follows the attributes keyword is interpreted as an
attribute name. You can use dot-separated names:

https://workspaces.openshift.com/f?url=<repository-
url>&override.attributes.dot.name.format.attribute=true

The resulting workspace has the following devfile model:

Red Hat CodeReady Workspaces 2.11 End-user Guide

34

apiVersion: 1.0.0
metadata:
 generateName: golang-
attributes:
 dot.name.format.attribute: true
projects:
...

Verification steps

1. In CodeReady Workspaces Dashboard, navigate to the Devfile tab of the newly created
workspace and inspect the content.

3.2.5. Allowing users to define workspace deployment labels and annotations

This section describes how to customize workspace deployment labels and annotation using factory
parameters.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see Installing CodeReady Workspaces .

A publicly accessible standalone devfile.yaml file. See Section 4.2, “Authoring devfiles version
2” for detailed information about creating and using devfiles.

Procedure

1. Open the workspace by navigating to the following URL: \https://codeready-
<openshift_deployment_name>.<domain_name>/f?
url=https://<hostURL>/devfile.yaml&workspaceDeploymentLabels=<url_encoded_comma
_separated_key_values>&workspaceDeploymentAnnotations=<url_encoded_comma_sep
arated_key_values override>

Example 3.6. Example of overriding the deployment labels

Consider the following labels to add:

ike.target=preference-v1
ike.session=test

To add or override labels, use the following factory URL:

https://workspaces.openshift.com/f?url=<repository-
url>&workspaceDeploymentLabels=ike.target%3Dpreference-v1%2Cike.session%3Dtest

The resulting workspace has the following deployment labels:

apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:

CHAPTER 3. DEVELOPER WORKSPACES

35

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

 deployment.kubernetes.io/revision: "1"
 creationTimestamp: "2020-10-27T14:03:26Z"
 generation: 1
 labels:
 che.component.name: che-docs-dev
 che.original_name: che-docs-dev
 che.workspace_id: workspacegln2g1shejjufpkd
 ike.session: test
 ike.target: preference-v1
 name: workspacegln2g1shejjufpkd.che-docs-dev
 namespace: opentlc-mgr-che
 resourceVersion: "107516"
spec:
...

Example 3.7. Example of overriding the deployment annotations

Consider the following annotations to add:

ike.A1=preference-v1
ike.A=test

To add or override annotations, use the following factory URL:

https://workspaces.openshift.com/f?url=<repository-
url>&workspaceDeploymentAnnotations=ike.A1%3Dpreference-v1%2Cike.A%3Dtest

The resulting workspace has the following deployment annotations:

apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: "1"
 ike.A: test
 ike.A1: preference-v1
 creationTimestamp: "2020-10-28T09:58:52Z"
 generation: 1
 labels:
 che.component.name: che-docs-dev
 che.original_name: che-docs-dev
 che.workspace_id: workspacexrtf710v64rl5ouz
 name: workspacexrtf710v64rl5ouz.che-docs-dev
 namespace: opentlc-mgr-che
 resourceVersion: "213191"
...

Verification steps

To display the deployment labels and annotations:

1. Get the name of the user’s namespace:

Red Hat CodeReady Workspaces 2.11 End-user Guide

36

a. Using CodeReady Workspaces Dashboard, move to the Workspaces tab and read the name of
the OpenShift namespace field.

1. Log in to the cluster:

a. Retrieve the CodeReady Workspaces cluster URL from the checluster CR (Custom
Resource), run:

$ oc get checluster --output jsonpath='{.items[0].status.cheURL}'

b. Log in:

$ oc login -u <username> -p <password> <cluster_URL>

1. Display the deployment labels and annotations for all deployments in the project using the
OpenShift namespace name from the first step:

$ oc get deployment -n <NAMESPACE> -o=custom-
columns="NAMESPACE:.metadata.namespace,NAME:.metadata.name,LABELS:.metadata.lab
els,ANNOTATIONS:.metadata.annotations"

3.2.6. Allowing users to define workspace creation strategy

As a developer, you can configure CodeReady Workspaces to create a new workspace each time it
accepts a factory URL, or to reuse the existing workspace if a user already has one.

CodeReady Workspaces supports the following options:

perclick: The default strategy, which creates a new workspace each time a given factory URL is
accepted.

peruser: Initially, a workspace is created using a factory URL. Other user’s calls then re-use the
particular workspace created by the factory URL (1 factory = 1 workspace).

Prerequisites

A running instance of CodeReady Workspaces. See Installing CodeReady Workspaces .

The Git repository <GIT_REPOSITORY_URL> is available over HTTPS.

Procedure

Run the workspace by opening the factory URL and specify the additional strategy parameter:
\https://codeready-<openshift_deployment_name>.<domain_name>/f?
url=<GIT_REPOSITORY_URL>&policies.create=<value>

Additional resources

Section 4.2, “Authoring devfiles version 2”

3.3. CREATING A WORKSPACE USING CRWCTL AND A LOCAL
DEVFILE

A CodeReady Workspaces workspace can be created by pointing the crwctl tool to a locally stored

CHAPTER 3. DEVELOPER WORKSPACES

37

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

1

A CodeReady Workspaces workspace can be created by pointing the crwctl tool to a locally stored
devfile. The CodeReady Workspaces instance then uses the discovered devfile to build a workspace.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see Installing CodeReady Workspaces .

The CodeReady Workspaces CLI management tool. See Using the crwctl management tool .

The devfile is available on the local filesystem in the current working directory. See Section 4.2,
“Authoring devfiles version 2” for detailed information about creating and using devfiles.

You are logged in to Red Hat CodeReady Workspaces. See How to login into CodeReady
Workspaces using crwctl

Procedure

1. Run a workspace from a devfile using the workspace:create parameter with the crwctl tool as
follows:

$ crwctl workspace:create --name=<WORKSPACE_NAME> \ 1
--devfile=devfile.yaml --start \
-n openshift-workspaces

The workspace name to create.

NOTE

If --devfile flag is omitted, the crwctl looks for devfile.yaml or devfile.yml files in the
current directory to create a workspace from.

3.4. CREATING A WORKSPACE BY IMPORTING THE SOURCE CODE OF
A PROJECT

This section describes how to create a new workspace for editing an existing codebase.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace with plug-ins related to your development environment defined on this
instance of Red Hat CodeReady Workspaces Section 3.5, “Configuring a CodeReady
Workspaces 2.11 workspace”.

A user can progress with two methods that have to be applied before starting a workspace:

Select a sample from the Dashboard, then change the devfile to include your project

Section 4.2, “Authoring devfiles version 2”

To create a new workspace for editing an existing codebase, use one of the following methods after the

Red Hat CodeReady Workspaces 2.11 End-user Guide

38

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#using-the-crwctl-management-tool_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

To create a new workspace for editing an existing codebase, use one of the following methods after the
workspace has been started:

Import from the Dashboard into an existing workspace

Import to a running workspace using the git clone command

Import to a running workspace using git clone in a terminal

3.4.1. Select a sample from the Dashboard, then change the devfile to include your
project

In the left navigation panel, go to Create Workspace.

In a case it’s not selected already, click the Custom Workspace tab.

In the Devfile section, select the devfile template that will be used to build and run projects.

In the Devfile editor, update projects section:

EXAMPLE: ADD A PROJECT

CHAPTER 3. DEVELOPER WORKSPACES

39

EXAMPLE: ADD A PROJECT

To add a project into the workspace, add or edit the following section:

See the Devfile reference.

To open the workspace, click the Create & Open button.

3.4.2. Importing from the Dashboard into an existing workspace

From the Dashboard, select Workspaces.

Select your workspace by selecting its name. This will link you to the workspace’s Overview tab.

Open Devfile tab where you can enter your own YAML configuration.

Add the project.

EXAMPLE: ADD A PROJECT

To add a project into the workspace, add or edit the following section:

See the Devfile reference.

3.4.2.1. Editing the commands after importing a project

After you have a project in your workspace, you can add commands to it. Adding commands to your
projects allows you to run, debug, or start your application in a browser.

To add commands to the project:

1. Open the workspace configuration in the Dashboard, then select the Devfile tab.

2. Modify the commands field.

3. Open the workspace.

4. To run a command, select Terminal > Run Task from the main menu.

projects:
 - name: che
 source:
 type: git
 location: 'https://github.com/eclipse-che/che-server.git'

projects:
 - name: che
 source:
 type: git
 location: 'https://github.com/eclipse-che/che-server.git'

Red Hat CodeReady Workspaces 2.11 End-user Guide

40

5. To configure commands, select Terminal > Configure Tasks from the main menu.

3.4.3. Importing to a running workspace using the Git: Clone command

To import to a running workspace using the Git: Clone command:

1. Start a workspace, then use the Git: Clone command from the command palette or the
Welcome screen to import a project to a running workspace.

CHAPTER 3. DEVELOPER WORKSPACES

41

2. Open the command palette by using F1, CTRL-SHIFT-P, or the link displayed on the Welcome
screen.

3. Enter the path to the project that is about to be cloned.

3.4.4. Importing to a running workspace with git clone in a terminal

In addition to the approaches above, you can also start a workspace, open a Terminal, and type git
clone to pull code.

Red Hat CodeReady Workspaces 2.11 End-user Guide

42

NOTE

Importing or deleting workspace projects in the terminal does not update the workspace
configuration, and the IDE does not reflect the changes in the Devfile tab in the
dashboard.

Similarly, when you add a project using the Dashboard, then delete it with rm -fr
myproject, it may still appear in the Devfile tab.

3.5. CONFIGURING A CODEREADY WORKSPACES 2.11 WORKSPACE

3.5.1. Changing the configuration of an existing workspace

This section describes how to change the configuration of an existing workspace from the user
Dashboard.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace defined on this instance of CodeReady Workspaces.

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Section 1.1, “Navigating CodeReady
Workspaces using the Dashboard”.

2. In the left navigation panel, go to Workspaces.

3. Click the name of a workspace to navigate to the configuration overview page.

4. Click the Overview tab and execute following actions:

Change the Workspace name.

Select Storage Type.

CHAPTER 3. DEVELOPER WORKSPACES

43

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

Review project.

5. From the Devfile tab, edit YAML configuration of the workspace. See Section 4.2, “Authoring
devfiles version 2”.

3.5.2. Adding projects to your workspace

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace defined on this instance of CodeReady Workspaces.

Procedure

To add a project to your workspace:

1. Navigate to the Workspaces page and click the workspace, which is about to be updated.

2. Open the Devfile tab.

3. In the Devfile editor, add a projects section with desired project.

4. Once the project is added, click the Save button to save this workspace configuration.
For demonstration example, see below:

Example - Adding a .git project into a workspace using a devfile

In the following instance, the project crw acts as the example of a user’s project. A user
specifies this project using the name attribute of a devfile. The location attribute defines the
source repository represented by an URL to a Git repository or ZIP archive.

To add a project into the workspace, add or edit the following section:

projects:
 - name: <crw>
 source:
 type: git
 location: 'https://github.com/<github-organization>/<crw>.git'

Red Hat CodeReady Workspaces 2.11 End-user Guide

44

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

For additional information, see the Section 4.1.5, “Devfile reference” section.

3.5.3. Configuring the workspace tools

3.5.3.1. Adding plug-ins

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace defined on this instance of CodeReady Workspaces.

Procedure

To add plug-ins to your workspace:

1. Click the Devfile tab.

2. Add the desired chePlugin component and click the Save button.

NOTE

To see a list of available plugins, activate the completion feature by pressing
Ctrl+Space.

3.5.3.2. Defining the workspace editor

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace defined on this instance of CodeReady Workspaces.

Procedure

To define the editor to use with the workspace:

1. Click the Devfile tab.

CHAPTER 3. DEVELOPER WORKSPACES

45

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

2. Add the desired cheEditor component and click the Save button.

NOTE

To see a list of available plugins, activate the completion feature by pressing
Ctrl+Space. The recommended editor for CodeReady Workspaces 2.11 is Che-
Theia.

Additional resources

Section 4.2, “Authoring devfiles version 2”

3.6. RUNNING AN EXISTING WORKSPACE FROM THE USER
DASHBOARD

This section describes how to run an existing workspace from the user dashboard.

3.6.1. Running an existing workspace from the user dashboard with the Run button

This section describes how to run an existing workspace from the user dashboard using the Run button.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace defined on this instance of CodeReady Workspaces.

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Section 1.1, “Navigating CodeReady
Workspaces using the Dashboard”.

2. In the left navigation panel, navigate to Workspaces.

3. Click on the name of a non-running workspace to navigate to the overview page.

Red Hat CodeReady Workspaces 2.11 End-user Guide

46

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

4. Click on the Run button in the top right corner of the page.
The workspace is started, and a browser does not navigates to the workspace.

3.6.2. Running an existing workspace from the user dashboard using the Open
button

This section describes how to run an existing workspace from the user dashboard using the Open
button.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace defined on this instance of CodeReady Workspaces.

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Section 1.1, “Navigating CodeReady
Workspaces using the Dashboard”.

2. In the left navigation panel, navigate to Workspaces.

3. Click on the name of a non-running workspace to navigate to the overview page.

4. Click on the Open button in the top right corner of the page.
The workspace is started, and a browser navigates to the workspace.

3.6.3. Running an existing workspace from the user dashboard using the Recent
Workspaces

This section describes how to run an existing workspace from the user dashboard using the Recent
Workspaces.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace defined on this instance of CodeReady Workspaces.

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Section 1.1, “Navigating CodeReady
Workspaces using the Dashboard”.

2. In the left navigation panel, in the Recent Workspaces section, right-click the name of a non-
running workspace and click Run in the contextual menu to start it.

3.7. IMPORTING OPENSHIFT APPLICATIONS INTO A WORKSPACE

To deploy a new instance of an application in a CodeReady Workspaces workspace, use one of the
following scenarios:

CHAPTER 3. DEVELOPER WORKSPACES

47

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

1

Modifying an existing workspace: Using the Dashboard user interface

From a running application: Generating a devfile with crwctl

3.7.1. Including a OpenShift application in a workspace devfile definition

This procedure describes how to define a CodeReady Workspaces workspace devfile to include a
OpenShift application.

For demonstration purposes, the section uses a sample OpenShift application having the following two
Pods:

A Node.js application specified by this nodejs-app.yaml

A MongoDB Pod specified by this mongo-db.yaml

To run the application on a OpenShift cluster:

$ node=https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-
db-sample/nodejs-app.yaml && \
mongo=https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-
db-sample/mongo-db.yaml && \
oc apply -f ${mongo} && \
oc apply -f ${node}

Prerequisites

You are logged in to the cluster with a running instance of Red Hat CodeReady Workspaces. To
install an instance of Red Hat CodeReady Workspaces, see Installing CodeReady Workspaces .

The crwctl management tool is available. See the Using the crwctl management tool section.

Procedure

1. Create the simplest devfile:

Specify the name minimal-workspace. After the CodeReady Workspaces server
processes this devfile, the devfile is converted to a minimal CodeReady Workspaces
workspace that only has the default editor (Che-Theia) and the default editor plug-ins,
including, for example, the terminal.

2. To add OpenShift applications to a workspace, modify the devfile and add the Kubernetes
component type.
For example, to embed the NodeJS-Mongo application in the minimal-workspace:

apiVersion: 1.0.0
metadata:
 name: minimal-workspace 1

apiVersion: 1.0.0
metadata:
 name: minimal-workspace
components:

Red Hat CodeReady Workspaces 2.11 End-user Guide

48

https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-db-sample/nodejs-app.yaml
https://raw.githubusercontent.com/redhat-developer/devfile/master/samples/web-nodejs-with-db-sample/mongo-db.yaml
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#using-the-crwctl-management-tool_crw

1

1

The sleep infinity command is added as the entrypoint of the Node.js application. The
command prevents the application from starting at the workspace start phase. This
configuration allows the user to start the application when needed for testing or debugging
purposes.

3. Add the commands in the devfile to make it easier for a developer to test the application:

The run command added to the devfile is available as a task in Che-Theia from the
command palette. When executed, the command starts the Node.js application.

4. Use the devfile to create and start a workspace:

$ crwctl workspace:start --devfile <devfile-path>

Additional resources

Chapter 4, Authoring devfiles.

 - type: openshift
 reference: https://raw.githubusercontent.com/.../mongo-db.yaml
 - alias: nodejs-app
 type: openshift
 reference: https://raw.githubusercontent.com/.../nodejs-app.yaml
 entrypoints:
 - command: ['sleep'] 1
 args: ['infinity']

apiVersion: 1.0.0
metadata:
 name: nodejs-with-db
projects:
 - name: nodejs-mongo-app
 source:
 type: git
 location: 'https://github.com/ijason/NodeJS-Sample-App.git'
 commitId: 187d468 # refers to the last commitId the project compiles (with express3)
components:
 - type: openshift
 reference: https://raw.githubusercontent.com/redhat-
developer/devfile/master/samples/web-nodejs-with-db-sample/mongo-db.yaml
 - alias: nodejs-app
 type: openshift
 reference: https://raw.githubusercontent.com/redhat-
developer/devfile/master/samples/web-nodejs-with-db-sample/nodejs-app.yaml
commands:
 - name: run 1
 actions:
 - type: exec
 component: nodejs-app
 command: cd ${CHE_PROJECTS_ROOT}/nodejs-mongo-app/EmployeeDB/ && npm
install && sed -i -- ''s/localhost/mongo/g'' app.js && node app.js

CHAPTER 3. DEVELOPER WORKSPACES

49

3.7.2. Adding a OpenShift application to an existing workspace using the dashboard

This procedure demonstrates how to modify an existing workspace and import the OpenShift
application using the newly created devfile.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace defined on this instance of CodeReady Workspaces.

Procedure

1. After the creation of a workspace, use the Workspace menu and then click on the desired
workspace.

2. Modify the workspace devfile, use the Devfile tab.

3. Add a OpenShift component.

4. For the changes to take effect, save the devfile and restart the CodeReady Workspaces
workspace.

3.7.3. Generating a devfile from an existing OpenShift application

This procedure demonstrates how to generate a devfile from an existing OpenShift application using the
crwctl tool.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

The crwctl management tool is available. See Using the crwctl management tool .

You are logged in to CodeReady Workspaces. See How to login into CodeReady Workspaces
using crwctl

Procedure

1. To generate a devfile, use:

$ crwctl devfile:generate

It is also possible to generate a devfile from, for example, the NodeJS-MongoDB
application that includes the NodeJS component, using the crwctl devfile:generate
command:

Example:

$ crwctl devfile:generate --selector="app=nodejs"
apiVersion: 1.0.0
metadata:
 name: crwctl-generated

Red Hat CodeReady Workspaces 2.11 End-user Guide

50

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#using-the-crwctl-management-tool_crw

components:
 - type: kubernetes
 alias: app=nodejs
 referenceContent: |
 kind: List
 apiVersion: v1
 metadata:
 name: app=nodejs
 items:
 - apiVersion: apps/v1
 kind: Deployment
 metadata:
 labels:
 app: nodejs
 name: web
(...)

The Node.js application YAML definition is available in the devfile, inline, using the
referenceContent attribute.

To include support for a language, use the --language parameter:

$ crwctl devfile:generate --selector="app=nodejs" --language="typescript"
apiVersion: 1.0.0
metadata:
 name: crwctl-generated
components:
 - type: kubernetes
 alias: app=nodejs
 referenceContent: |
 kind: List
 apiVersion: v1
(...)
 - type: chePlugin
 alias: typescript-ls
 id: che-incubator/typescript/latest

2. Use the generated devfile to start a CodeReady Workspaces workspace with crwctl.

$ crwctl workspace:start --devfile=devfile .yaml

3.8. REMOTELY ACCESSING WORKSPACES

This section describes how to remotely access CodeReady Workspaces workspaces outside of the
browser.

CodeReady Workspaces workspaces exist as containers and are, by default, modified from a browser
window. In addition to this, there are the following methods of interacting with a CodeReady
Workspaces workspace:

Opening a command line in the workspace container using the OpenShift command-line tool,
oc.

Uploading and downloading files using the oc tool.

CHAPTER 3. DEVELOPER WORKSPACES

51

3.8.1. Remotely accessing workspaces using oc

To access CodeReady Workspaces workspaces remotely using OpenShift command-line tool (oc),
follow the instructions in this section.

Prerequisites

The oc, version 1.5.0 or higher, is available. For information about installed version, use:

$ oc version
Client Version: version.Info{Major:"1", Minor:"15", GitVersion:"v1.15.0"

...

Procedure

In the example below:

workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4 is the name of the Pod.

crw is the project.

1. To find the name of the OpenShift project and the Pod that runs the CodeReady
Workspaces workspace:

$ oc get pod -l che.workspace_id --all-namespaces
NAMESPACE NAME READY STATUS RESTARTS
AGE
crw workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4 4/4 Running 0
6m4s

2. To find the name of the container:

$ NAMESPACE=crw
$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4
$ oc get pod ${POD} -o custom-columns=CONTAINERS:.spec.containers[*].name
CONTAINERS
maven,che-machine-execpau,theia-ide6dj,vscode-javaw92

3. When you have the project, Pod name, and the name of the container, use the `oc `
command to open a remote shell:

$ NAMESPACE=crw
$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4
$ CONTAINER=maven
$ oc exec -ti -n ${NAMESPACE} ${POD} -c ${CONTAINER} bash
user@workspace7b2wemdf3hx7s3ln $

4. From the container, execute the build and run commands (as if from the CodeReady
Workspaces workspace terminal):

user@workspace7b2wemdf3hx7s3ln $ mvn clean install
[INFO] Scanning for projects...
(...)

Red Hat CodeReady Workspaces 2.11 End-user Guide

52

Additional resources

For more about oc, see the Getting started with the CLI.

3.8.2. Downloading and uploading a file to a workspace using the command-line
interface

This procedure describes how to use the oc tool to download or upload files remotely from or to an
CodeReady Workspaces workspace.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

Remote access to the CodeReady Workspaces workspace you intend to modify. See Remotely
accessing workspaces.

The oc, version 1.5.0 or higher, is available. For information about installed version, use:

$ oc version
Client Version: version.Info{Major:"1", Minor:"15", GitVersion:"v1.15.0"

...

Procedure

The following procedure uses crw as an example of a user project.

To download a local file named downloadme.txt from a workspace container to the current
home directory of the user, use the following in the CodeReady Workspaces remote shell.

$ REMOTE_FILE_PATH=/projects/downloadme.txt
$ NAMESPACE=crw
$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4
$ CONTAINER=maven
$ oc cp ${NAMESPACE}/${POD}:${REMOTE_FILE_PATH} ~/downloadme.txt -c
${CONTAINER}

To upload a local file named uploadme.txt to a workspace container in the /projects directory:

$ LOCAL_FILE_PATH=./uploadme.txt
$ NAMESPACE=crw
$ POD=workspace7b2wemdf3hx7s3ln.maven-74885cf4d5-kf2q4
$ CONTAINER=maven
$ oc cp ${LOCAL_FILE_PATH} ${NAMESPACE}/${POD}:/projects -c ${CONTAINER}

Using the preceding steps, the user can also download and upload directories.

Additional resources

For more about oc, see the Getting started with the CLI.

3.9. MOUNTING A SECRET AS A FILE OR AN ENVIRONMENT

CHAPTER 3. DEVELOPER WORKSPACES

53

https://docs.openshift.com/container-platform/4.5/cli_reference/openshift_cli/getting-started-cli.html
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://docs.openshift.com/container-platform/4.5/cli_reference/openshift_cli/getting-started-cli.html

3.9. MOUNTING A SECRET AS A FILE OR AN ENVIRONMENT
VARIABLE INTO A WORKSPACE CONTAINER

Secrets are OpenShift objects that store sensitive data such as user names, passwords, authentication
tokens, and configurations in an encrypted form.

Users can mount a secret that contains sensitive data in a workspace container. This reapplies the stored
data from the secret automatically for every newly created workspace. As a result, the user does not
have to provide these credentials and configuration settings manually.

The following section describes how to automatically mount a OpenShift secret in a workspace
container and create permanent mount points for components such as:

Maven configuration, the settings.xml file

SSH key pairs

AWS authorization tokens

Git credentials store file

A OpenShift secret can be mounted into a workspace container as:

A file - This creates automatically mounted Maven settings that will be applied to every new
workspace with Maven capabilities.

An environment variable - This uses SSH key pairs and AWS authorization tokens for automatic
authentication.

NOTE

SSH key pairs can also be mounted as a file, but this format is primarily aimed at
the settings of the Maven configuration.

The mounting process uses the standard OpenShift mounting mechanism, but it requires additional
annotations and labeling for a proper bound of a secret with the required CodeReady Workspaces
workspace container.

3.9.1. Mounting a secret as a file into a workspace container

WARNING

On OpenShift 3.11, secrets mounted as file overrides volume mounts defined in the
devfile.

This section describes how to mount a secret from the user’s project as a file in single-workspace or
multiple-workspace containers of CodeReady Workspaces.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady

Red Hat CodeReady Workspaces 2.11 End-user Guide

54

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

Procedure

1. Create a new OpenShift secret in the OpenShift project where a CodeReady Workspaces
workspace will be created.

The labels of the secret that is about to be created must match the set of labels configured
in che.workspace.provision.secret.labels property of CodeReady Workspaces. The
default labels are:

app.kubernetes.io/part-of: che.eclipse.org

app.kubernetes.io/component: workspace-secret:

NOTE

Note that the following example describes variations in the usage of the
target-container annotation in versions 2.1 and 2.2 of Red Hat CodeReady
Workspaces.

Example:

Annotations must indicate the given secret is mounted as a file, provide the mount path,
and, optionally, specify the name of the container in which the secret is mounted. If there is
no target-container annotation, the secret will be mounted into all user containers of the
CodeReady Workspaces workspace, but this is applicable only for the CodeReady
Workspaces version 2.1.

Since the CodeReady Workspaces version 2.2, the target-container annotation is
deprecated and automount-workspace-secret annotation with Boolean values is
introduced. Its purpose is to define the default secret mounting behavior, with the ability to
be overridden in a devfile. The true value enables the automatic mounting into all

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspace-secret
...

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 annotations:
 che.eclipse.org/target-container: maven
 che.eclipse.org/mount-path: {prod-home}/.m2/
 che.eclipse.org/mount-as: file
 labels:
...

CHAPTER 3. DEVELOPER WORKSPACES

55

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

workspace containers. In contrast, the false value disables the mounting process until it is
explicitly requested in a devfile component using the automountWorkspaceSecrets:true
property.

Data of the OpenShift secret may contain several items, whose names must match the
desired file name mounted into the container.

This results in a file named settings.xml being mounted at the /home/jboss/.m2/ path of all
workspace containers.

The secret-s mount path can be overridden for specific components of the workspace using
devfile. To change mount path, an additional volume should be declared in a component of
the devfile, with name matching overridden secret name, and desired mount path.

Note that for this kind of overrides, components must declare an alias to be able to
distinguish containers which belong to them and apply override path exclusively for those
containers.

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 annotations:
 che.eclipse.org/automount-workspace-secret: "true"
 che.eclipse.org/mount-path: {prod-home}/.m2/
 che.eclipse.org/mount-as: file
 labels:
...

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspace-secret
 annotations:
 che.eclipse.org/automount-workspace-secret: "true"
 che.eclipse.org/mount-path: {prod-home}/.m2/
 che.eclipse.org/mount-as: file
data:
 settings.xml: <base64 encoded data content here>

apiVersion: 1.0.0
metadata:
 ...
components:
 - type: dockerimage
 alias: maven
 image: maven:3.11
 volumes:
 - name: <secret-name>
 containerPath: /my/new/path
 ...

Red Hat CodeReady Workspaces 2.11 End-user Guide

56

3.9.2. Mounting a secret as an environment variable into a workspace container

The following section describes how to mount a OpenShift secret from the user’s project as an
environment variable, or variables, into single-workspace or multiple-workspace containers of
CodeReady Workspaces.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

Procedure

1. In the OpenShift project where a CodeReady Workspaces workspace will be created, generate a
new OpenShift secret.

The labels of the secret that is about to be generated must match the set of labels
configured in che.workspace.provision.secret.labels property of CodeReady
Workspaces. By default, it is a set of two labels:

app.kubernetes.io/part-of: che.eclipse.org

app.kubernetes.io/component: workspace-secret:

NOTE

Note that the following example describes variations in the usage of the
target-container annotation in versions 2.1 and 2.2 of Red Hat CodeReady
Workspaces.

Example:

Annotations must indicate that the given secret is mounted as an environment variable,
provides variable names, and optionally, specifies the container name where this mount will
be applied. If there is no target-container annotation defined, the secret will be mounted
into all user containers of the CodeReady Workspaces workspace, but this is applicable only
for the CodeReady Workspaces version 2.1.

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspace-secret
...

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 annotations:
 che.eclipse.org/target-container: maven
 che.eclipse.org/env-name: FOO_ENV

CHAPTER 3. DEVELOPER WORKSPACES

57

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

This results in the environment variable named FOO_ENV and the value myvalue being
provisioned into the container named maven.

Since the CodeReady Workspaces version 2.2, the target-container annotation is
deprecated and automount-workspace-secret annotation with Boolean values is
introduced. Its purpose is to define the default secret mounting behavior, with the ability to
be overridden in a devfile. The true value enables the automatic mounting into all
workspace containers. In contrast, the false value disables the mounting process until it is
explicitly requested in a devfile component using the automountWorkspaceSecrets:true
property.

This results in the environment variable named FOO_ENV and the value myvalue being
provisioned into all workspace containers.

If the secret provides more than one data item, the environment variable name must be
provided for each of the data keys as follows:

This results in two environment variables with names FOO_ENV, OTHER_ENV, and values
myvalue and othervalue, being provisioned into all workpsace containers.

NOTE

 che.eclipse.org/mount-as: env
 labels:
 ...
data:
 mykey: myvalue

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 annotations:
 che.eclipse.org/automount-workspace-secret: "true"
 che.eclipse.org/env-name: FOO_ENV
 che.eclipse.org/mount-as: env
 labels:
 ...
data:
 mykey: myvalue

apiVersion: v1
kind: Secret
metadata:
 name: mvn-settings-secret
 annotations:
 che.eclipse.org/automount-workspace-secret: "true"
 che.eclipse.org/mount-as: env
 che.eclipse.org/mykey_env-name: FOO_ENV
 che.eclipse.org/otherkey_env-name: OTHER_ENV
 labels:
 ...
data:
 mykey: myvalue
 otherkey: othervalue

Red Hat CodeReady Workspaces 2.11 End-user Guide

58

NOTE

The maximum length of annotation names in a OpenShift secret is 63
characters, where 9 characters are reserved for a prefix that ends with /. This
acts as a restriction for the maximum length of the key that can be used for
the secret.

3.9.3. Mounting a git credentials store into a workspace container

This section describes how to mount git credentials store as secret from the user’s project into the file in
single-workspace or multiple-workspace containers of CodeReady Workspaces.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

Procedure

1. Prepare git credential file in the Storage format .

2. Encode content of the file to the base64 format.

3. Create a new OpenShift secret in the OpenShift project where a CodeReady Workspaces
workspace will be created.

The labels of the secret that is about to be created must match the set of labels configured
in che.workspace.provision.secret.labels property of CodeReady Workspaces. The
default labels are:

app.kubernetes.io/part-of: che.eclipse.org

app.kubernetes.io/component: workspace-secret:

3.9.4. The use of annotations in the process of mounting a secret into a workspace
container

Kubernetes annotations and labels are tools used by libraries, tools, and other clients, to attach arbitrary
non-identifying metadata to OpenShift native objects.

Labels select objects and connect them to a collection that satisfies certain conditions, where
annotations are used for non-identifying information that is not used by OpenShift objects internally.

This section describes OpenShift annotation values used in the process of OpenShift secret mounting in
a CodeReady Workspaces workspace.

Annotations must contain items that help identify the proper mounting configuration. These items are:

che.eclipse.org/target-container: Valid till the version 2.1. The name of the mounting
container. If the name is not defined, the secret mounts into all user’s containers of the
CodeReady Workspaces workspace.

che.eclipse.org/automount-workspace-secret: Introduced in the version 2.2.. The main
mount selector. When set to true, the secret mounts into all user’s containers of the CodeReady
Workspaces workspace. When set to false, the secret does not mount into containers by

CHAPTER 3. DEVELOPER WORKSPACES

59

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://git-scm.com/docs/git-credential-store#_storage_format

default. The value of this attribute can be overridden in devfile components, using the
automountWorkspaceSecrets boolean property that gives more flexibility to workspace
owners. This property requires an alias to be defined for the component that uses it.

che.eclipse.org/env-name: The name of the environment variable that is used to mount a
secret.

che.eclipse.org/mount-as: This item describes if a secret will be mounted as an environmental
variable or a file. Options: env or file.

che.eclipse.org/<mykeyName>-env-name: FOO_ENV: The name of the environment variable
used when data contains multiple items. mykeyName is used as an example.

3.10. AUTHENTICATING USERS ON PRIVATE REPOSITORIES OF SCM
SERVERS

The following section describes how to configure user authentications for SCM servers.

Section 3.10.1, “Authenticating on Bitbucket servers”

Section 3.10.2, “Authenticating on GitLab servers”

Section 3.10.3, “Authenticating on GitHub servers”

3.10.1. Authenticating on Bitbucket servers

The following section describes the configuration needed to enables CodeReady Workspaces to use
Bitbucket (BB) repositories with Git cloning operations.

BB authentication is based on using personal access tokens. Each BB user is able to request several
personal access tokens with different attributes, such as names, permissions, or expiration times. Those
tokens can also be used to sign BB REST API calls and perform Git repository operations.

CodeReady Workspaces users may use public or private repositories on the BB Source Code
Management (SCM) system as a source of their projects.

NOTE

Before configuring the OAuth 1 authentication that is required for reading from private
repositories and writing to both private and public repositories, configure the BB server
with CodeReady Workspaces first. To do so, see the Prerequisites section below.

Additional resources

For a remote Git repository that uses a self-signed certificate, add an additional server configuration.
See Deploying CodeReady Workspaces with support for Git repositories with self-signed certificates .

Prerequisites

A BB endpoint has been registered with CodeReady Workspaces. Follow the Configuring
Bitbucket servers procedure and register a BB server using the
CHE_INTEGRATION_BITBUCKET_SERVER__ENDPOINTS YAML secret property.

Procedure

1. Configure the OAuth 1 authentication by following the Configuring Bitbucket Server OAuth 1

Red Hat CodeReady Workspaces 2.11 End-user Guide

60

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#deploying-codeready-workspaces-with-support-for-git-repositories-with-self-signed-certificates_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#configuring_bitbucket_servers_crw

1. Configure the OAuth 1 authentication by following the Configuring Bitbucket Server OAuth 1
procedure.

3.10.2. Authenticating on GitLab servers

Configuring authentication on the GitLab system is similar to Bitbucket.

GitLab authentication is based on using personal access tokens. Each GitLab user is able to request
several personal access tokens with different names, permissions, expiration times, and so on. Those
tokens can be used to sign GitLab REST API calls and perform Git repository operations.

See the GitLab documentation for more details about personal access tokens.

To allow GitLab authentication on CodeReady Workspaces side, personal tokens must be stored in the
user’s project in the form of a secret. The secret must look as follows:

Example 3.8. GitLab personal access token secret

The main parts of the secret are:

Label app.kubernetes.io/compone
nt

Indicates it is a SCM personal
token secret.

Annotation che.eclipse.org/che-userid Red Hat CodeReady Workspaces
id of the user token belongs to

Annotation che.eclipse.org/scm-userid GitLab user id to which token
belongs

Annotation che.eclipse.org/scm-
username

GitlLab user name to which token
belongs

Annotation che.eclipse.org/scm-url GitLab server URL to which this
token belong

apiVersion: v1
kind: Secret
metadata:
 name: gitlab-personal-access-token-secret
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: scm-personal-access-token
 annotations:
 che.eclipse.org/expired-after: '-1'
 che.eclipse.org/che-userid: '355d1ce5-990e-401e-9a8c-094bca10b5b3'
 che.eclipse.org/scm-userid: '2'
 che.eclipse.org/scm-username: 'user-foo'
 che.eclipse.org/scm-url: 'https://gitlab.apps.cluster-example.com'
data:
 token: Yzh5cEt6cURxUWVCa3FKazhtaHg=

CHAPTER 3. DEVELOPER WORKSPACES

61

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#proc_configuring-bitbucket-server-oauth1_crw
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html#personal-access-tokens

Annotation che.eclipse.org/expired-after Personal access token expiration
time

Data entry token Base-64 encoded value of the
personal access token

NOTE

Encoding a string into the base64 format using the base64 tool on Linux machines leads
to adding the newline character to the end of the source string and causing a value to be
unusable as the authentication header value after decoding. Avoid this by using base64 -
w0, which removes newly added lines, or strip newlines explicitly using`tr -d \\n`.

1. To obtain a user ID from a secret, take a look into user profile page on GitLab web UI or make a
call to a REST API URL:

For GitLab:

https://<gitlab-hostname>/api/v4/users?username=<username>

For CodeReady Workspaces

\https://codeready-<openshift_deployment_name>.<domain_name>/api/user

With the token credentials obtained from a secret, another secret is automatically created,
allowing authorization to Git operations. This secret is mounted into a workspace container
as a Git credentials file, and any additional configurations are not required to work with
private Git repositories.

When a remote Git repository uses a self-signed certificate, add an additional server
configuration. See: Deploying CodeReady Workspaces with support for Git repositories
with self-signed certificates.

3.10.3. Authenticating on GitHub servers

Configuring authentication on the GitHub system is similar to GitLab.

GitHub authentication can be based on using personal access tokens. Each GitHub user is able to
request several personal access tokens with different names, permissions, expiration times, and so on.
Those tokens can be used to sign GitHub REST API calls and perform Git repository operations.

To allow GitHub authentication on CodeReady Workspaces side, personal tokens must be stored in the
user’s project in the form of a secret. The secret must look as follows:

Example 3.9. GitHub personal access token secret

apiVersion: v1
kind: Secret
metadata:
 name: github-personal-access-token-secret
 labels:

Red Hat CodeReady Workspaces 2.11 End-user Guide

62

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#deploying-codeready-workspaces-with-support-for-git-repositories-with-self-signed-certificates_crw

The main parts of the secret are:

Label app.kubernetes.io/compone
nt

Indicates it is an SCM personal
token secret.

Annotation che.eclipse.org/che-userid Red Hat CodeReady Workspaces
id of the user token belongs to

Annotation che.eclipse.org/scm-userid GitHub user id to which token
belongs

Annotation che.eclipse.org/scm-
username

GitHub username to which token
belongs

Annotation che.eclipse.org/scm-url GitHub server URL to which this
token belongs. Typically, it is
https://github.com

Annotation che.eclipse.org/expired-after Personal access token expiration
time

Data entry token Base-64 encoded value of the
personal access token

NOTE

Encoding a string into the base64 format using the base64 tool on Linux machines leads
to adding the newline character to the end of the source string and causing a value to be
unusable as the authentication header value after decoding. Avoid this by using base64 -
w0, which removes newly added lines, or strip newlines explicitly using`tr -d \\n`.

1. To obtain a user ID from a secret, make a call to a REST API URL:

https://api.github.com/user

For CodeReady Workspaces

\https://codeready-<openshift_deployment_name>.<domain_name>/api/user

 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: scm-personal-access-token
 annotations:
 che.eclipse.org/expired-after: '-1'
 che.eclipse.org/che-userid: '355d1ce5-990e-401e-9a8c-094bca10b5b3'
 che.eclipse.org/scm-userid: '1651062'
 che.eclipse.org/scm-username: 'user-foo'
 che.eclipse.org/scm-url: 'https://github.com'
data:
 token: Yzh5cEt6cURxUWVCa3FKazhtaHg=

CHAPTER 3. DEVELOPER WORKSPACES

63

https://github.com

With the token credentials obtained from a secret, another secret is automatically created,
allowing authorization to Git operations. This secret is mounted into a workspace container
as a Git credentials file, and any additional configurations are not required to work with
private Git repositories.

When a remote Git repository uses a self-signed certificate, add an additional server
configuration. See: Deploying CodeReady Workspaces with support for Git repositories
with self-signed certificates.

Red Hat CodeReady Workspaces 2.11 End-user Guide

64

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#deploying-codeready-workspaces-with-support-for-git-repositories-with-self-signed-certificates_crw

CHAPTER 4. AUTHORING DEVFILES
Section 4.1, “Authoring devfiles version 1”

Section 4.2, “Authoring devfiles version 2”

4.1. AUTHORING DEVFILES VERSION 1

This section explains the concept of a devfile and how to configure a CodeReady Workspaces
workspace by using a devfile of the 1.0 specification.

4.1.1. What is a devfile

A devfile is a file that describes and define a development environment:

The source code.

The development components, such as browser IDE tools and application runtimes.

A list of pre-defined commands.

Projects to clone.

A devfiles is a YAML file that CodeReady Workspaces consumes and transforms into a cloud workspace
composed of multiple containers. It is possible to store a devfile remotely or locally, in any number of
ways, such as:

In a git repository, in the root folder, or on a feature branch.

On a publicly accessible web server, accessible through HTTP.

Locally as a file, and deployed using crwctl.

In a collection of devfiles, known as a devfile registry.

When creating a workspace, CodeReady Workspaces uses that definition to initiate everything and run
all the containers for the required tools and application runtimes. CodeReady Workspaces also mounts
file-system volumes to make source code available to the workspace.

Devfiles can be versioned with the project source code. When there is a need for a workspace to fix an
old maintenance branch, the project devfile provides a definition of the workspace with the tools and
the exact dependencies to start working on the old branch. Use it to instantiate workspaces on demand.

CodeReady Workspaces maintains the devfile up-to-date with the tools used in the workspace:

Elements of the project, such as the path, git location, or branch.

Commands to perform daily tasks such as build, run, test, and debug.

The runtime environment with its container images needed for the application to run.

Che-Theia plug-ins with tools, IDE features, and helpers that a developer would use in the
workspace, for example, Git, Java support, SonarLint, and Pull Request.

4.1.2. A minimal devfile

CHAPTER 4. AUTHORING DEVFILES

65

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#understanding-the-che-registries_crw

The following is the minimum content required in a devfile:

apiVersion

metadata name

For a complete devfile example, see Red Hat CodeReady Workspaces in CodeReady Workspaces
devfile.yaml.

NOTE

A choice of use of the parameter generateName or name is optional, but only one of
these parameters has to be chosen by a user and defined. When both attributes are
specified, generateName is ignored. See Section 4.1.3, “Generating workspace names”.

or

4.1.3. Generating workspace names

To specify a prefix for automatically generated workspace names, set the generateName parameter in
the devfile:

The workspace name will be in the <generateName>YYYYY format (for example, che-2y7kp). Y is
random [a-z0-9] character.

The following naming rules apply when creating workspaces:

When name is defined, it is used as the workspace name: <name>

When only generateName is defined, it is used as the base of the generated name:
<generateName>YYYYY

NOTE

For workspaces created using a factory, defining name or generateName has the same
effect. The defined value is used as the name prefix: <name>YYYYY or
<generateName>YYYYY. When both generateName and name are defined,
generateName takes precedence.

apiVersion: 1.0.0
metadata:
 name: crw-in-crw-out

metadata:
 generatedName:

metadata:
 name:

apiVersion: 1.0.0
metadata:
 generateName: crw-

Red Hat CodeReady Workspaces 2.11 End-user Guide

66

https://redhat-developer.github.io/devfile/devfile#apiversion
https://redhat-developer.github.io/devfile/devfile#metadata
https://raw.githubusercontent.com/eclipse-che/che-server/main/devfile.yaml

4.1.4. Writing a devfile for a project

This section describes how to create a minimal devfile for your project and how to include more than one
projects in a devfile.

4.1.4.1. Preparing a minimal devfile

A minimal devfile sufficient to run a workspace consists of the following parts:

Specification version

Name

Example of a minimal devfile with no project

Without any further configuration, a workspace with the default editor is launched along with its default
plug-ins, which are configured on the CodeReady Workspaces Server. Che-Theia is configured as the
default editor along with the CodeReady Workspaces Machine Exec plug-in. When launching a
workspace within a Git repository using a factory, the project from the given repository and branch is be
created by default. The project name then matches the repository name.

Add the following parts for a more functional workspace:

List of components: Development components and user runtimes

List of projects: Source code repositories

List of commands: Actions to manage the workspace components, such as running the
development tools, starting the runtime environments, and others

Example of a minimal devfile with a project

4.1.4.2. Specifying multiple projects in a devfile

A single devfile can define multiple projects, which are cloned to the desired destination. These projects
are created inside a user’s workspace after the workspace is started.

For each project, specify the following:

The type of the source repository - this can be .git or .zip. For additional information, see the

apiVersion: 1.0.0
metadata:
 name: minimal-workspace

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
projects:
 - name: petclinic
 source:
 type: git
 location: 'https://github.com/spring-projects/spring-petclinic.git'
components:
 - type: chePlugin
 id: redhat/java/latest

CHAPTER 4. AUTHORING DEVFILES

67

The type of the source repository - this can be .git or .zip. For additional information, see the
Devfile reference section.

The location of the source repository - an URL to a Git repository or zip archive.

Optionally, the directory to which the project is cloned. If none is specified, the default directory
is used, which is a directory that matches the project name or project Git repository.

Example of a devfile with two projects

In the following example, the projects frontend and backend act as examples of a user’s projects. Each
project is located in a separate repository.

The backend project has a specific requirement to be cloned into the src/github.com/<github-
organization>/<backend>/ directory under the source root, implicitly defined by the
CodeReady Workspaces runtime.

The frontend project will be cloned into the <frontend/> directory under the source root.

Additional resources

For a detailed explanation of all devfile component assignments and possible values, see:

Specification repository

Detailed json-schema documentation

These sample devfiles are a good source of inspiration:

Sample devfiles for Red Hat CodeReady Workspaces workspaces used by default in the user
interface.

Sample devfiles for Red Hat CodeReady Workspaces workspaces from Red Hat Developer
program.

4.1.5. Devfile reference

This section contains devfile reference and instructions on how to use the various elements that
devfiles consist of.

4.1.5.1. Adding schema version to a devfile

apiVersion: 1.0.0
metadata:
 name: example-devfile
projects:
- name: <frontend>
 source:
 type: git
 location: https://github.com/<github-organization>/<frontend>.git
- name: <backend>
 clonePath: src/github.com/<github-organization>/<backend>
 source:
 type: git
 location: https://github.com/<github-organization>/<backend>.git

Red Hat CodeReady Workspaces 2.11 End-user Guide

68

https://github.com/redhat-developer/devfile
https://redhat-developer.github.io/devfile/devfile
https://github.com/eclipse-che/che-devfile-registry/tree/master/devfiles
https://github.com/redhat-developer/devfile/tree/master/samples

Procedure

Define the schemaVersion attribute in the devfile:

Example 4.1. Adding schema version to a devfile

4.1.5.2. Adding a name to a devfile

Adding a name to a devfile is mandatory. Both name and generateName are optional attributes, but at
least one of them must be defined.

Procedure

1. To specify a static name for the workspace, define the name attribute.

Adding a static name to a devfile

2. To specify a prefix for automatically generated workspace names, define the generateName
attribute and don’t define the name attribute. The workspace name will be in the
<generateName>YYYYY format, for example, devfile-sample-2y7kp, where Y is a random [a-
z0-9] character.

Adding a generated name to a devfile

NOTE

For workspaces created using a factory, defining name or generateName has the same
effect. The defined value is used as the name prefix: <name>YYYYY or
<generateName>YYYYY. When both generateName and name are defined,
generateName takes precedence.

4.1.5.3. Adding projects to a devfile

A devfile is designed to contain one or more projects. A workspace is created to develop those projects.
Projects are added in the projects section of devfiles.

Each project in a single devfile must have:

Unique name

Source specified

schemaVersion: 1.0.0

schemaVersion: 1.0.0
metadata:
 name: devfile-sample

schemaVersion: 1.0.0
metadata:
 generateName: devfile-sample-

CHAPTER 4. AUTHORING DEVFILES

69

1

2

Project source consists of two mandatory values: type and location.

type

The kind of project-source provider.

location

The URL of project source.

CodeReady Workspaces supports the following project types:

git

Projects with sources in Git. The location points to a clone link.

github

Same as git but for projects hosted on GitHub only. Use git for projects that do not use GitHub-
specific features.

zip

Projects with sources in a ZIP archive. Location points to a ZIP file.

4.1.5.3.1. Project-source type: git

startPoint: The general value for tag, commitId, and branch. The startPoint, tag, commitId, and
branch parameters are mutually exclusive. When more than one is supplied, the following order is
used: startPoint, tag, commitId, branch.

sparseCheckoutDir: The template for the sparse checkout Git feature. This is useful when only a
part of a project, typically a single directory, is needed.

Example 4.2. sparseCheckoutDir parameter settings

Set to /my-module/ to create only the root my-module directory (and its content).

Omit the leading slash (my-module/) to create all my-module directories that exist in the
project. Including, for example, /addons/my-module/.
The trailing slash indicates that only directories with the given name (including their content)
are created.

Use wildcards to specify more than one directory name. For example, setting module-*
checks out all directories of the given project that start with module-.

For more information, see Sparse checkout in Git documentation .

4.1.5.3.2. Project-source type: zip

source:
 type: git
 location: https://github.com/eclipse-che/che-server.git
 startPoint: main 1
 tag: 7.34.0
 commitId: 36fe587
 branch: 7.34.x
 sparseCheckoutDir: core 2

Red Hat CodeReady Workspaces 2.11 End-user Guide

70

https://github.com/
https://git-scm.com/docs/git-read-tree#_sparse_checkout

4.1.5.3.3. Project clone-path parameter: clonePath

The clonePath parameter specifies the path into which the project is to be cloned. The path must be
relative to the /projects/ directory, and it cannot leave the /projects/ directory. The default value is the
project name.

Example devfile with projects

4.1.5.4. Adding components to a devfile

Each component in a single devfile must have a unique name.

4.1.5.4.1. Component type: cheEditor

Describes the editor used in the workspace by defining its id. A devfile can only contain one component
of the cheEditor type.

When cheEditor is missing, a default editor is provided along with its default plug-ins. The default plug-
ins are also provided for an explicitly defined editor with the same id as the default one (even if it is a
different version). Che-Theia is configured as default editor along with the CodeReady Workspaces
Machine Exec plug-in.

To specify that a workspace requires no editor, use the editorFree:true attribute in the devfile
attributes.

4.1.5.4.2. Component type: chePlugin

Describes plug-ins in a workspace by defining their id. A devfile is allowed to have multiple chePlugin
components.

source:
 type: zip
 location: http://host.net/path/project-src.zip

apiVersion: 1.0.0
metadata:
 name: my-project-dev
projects:
 - name: my-project-resourse
 clonePath: resources/my-project
 source:
 type: zip
 location: http://host.net/path/project-res.zip
 - name: my-project
 source:
 type: git
 location: https://github.com/my-org/project.git
 branch: develop

components:
 - alias: theia-editor
 type: cheEditor
 id: eclipse/che-theia/next

CHAPTER 4. AUTHORING DEVFILES

71

Both types above use an ID, which is slash-separated publisher, name and version of plug-in from the
CodeReady Workspaces Plug-in registry. Note that the CodeReady Workspaces Plug-in registry uses
the latest version by default for all plug-ins.

To reference a custom plug-in by ID, build and deploy a custom plug-in registry. See Building custom
registry images.

4.1.5.4.3. Specifying an alternative component registry

To specify an alternative registry for the cheEditor and chePlugin component types, use the
registryUrl parameter:

4.1.5.4.4. Specifying a component by linking to its descriptor

Rather than using the editor or plug-in id to specify cheEditor or chePlugin, provide a direct link to the
component descriptor, typically named as meta.yaml, using the reference field:

The URL in the reference field must be publicly accessible and should directly point to a fetchable
meta.yaml file. URLs that redirect or do not directly point to a meta.yaml file will cause the workspace
startup to fail. To learn more about publishing meta.yaml files, see Section 5.4, “Publishing metadata for
a VS Code extension”.

NOTE

It is impossible to mix the id and reference fields in a single component definition; they
are mutually exclusive.

4.1.5.4.5. Tuning chePlugin component configuration

A chePlugin component may need to be precisely tuned, and in such case, component preferences can
be used. The example shows how to configure JVM using plug-in preferences.

 components:
 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/latest

 components:
 - alias: exec-plugin
 type: chePlugin
 registryUrl: https://my-customregistry.com
 id: eclipse/che-machine-exec-plugin/latest

 components:
 - alias: exec-plugin
 type: chePlugin
 reference: https://raw.githubusercontent.com.../plugin/1.0.1/meta.yaml

 id: redhat/java/latest
 type: chePlugin
 preferences:
 java.jdt.ls.vmargs: '-noverify -Xmx1G -XX:+UseG1GC -XX:+UseStringDeduplication'

Red Hat CodeReady Workspaces 2.11 End-user Guide

72

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#building-custom-registry-images_crw

Preferences may also be specified as an array:

4.1.5.4.6. Component type: kubernetes

A complex component type that allows to apply configuration from a list of OpenShift components.

The content can be provided through the reference attribute, which points to the file with the
component content.

Alternatively, to post a devfile with such components to REST API, the contents of the OpenShift List
object can be embedded into the devfile using the referenceContent field:

4.1.5.4.7. Overriding container entrypoints

As with the understood by OpenShift).

There can be more containers in the list (contained in Pods or Pod templates of deployments). To
select which containers to apply the entrypoint changes to.

The entrypoints can be defined as follows:

 id: redhat/java/latest
 type: chePlugin
 preferences:
 go.lintFlags: ["--enable-all", "--new"]

 components:
 - alias: mysql
 type: kubernetes
 reference: petclinic.yaml
 selector:
 app.kubernetes.io/name: mysql
 app.kubernetes.io/component: database
 app.kubernetes.io/part-of: petclinic

 components:
 - alias: mysql
 type: kubernetes
 reference: petclinic.yaml
 referenceContent: |
 kind: List
 items:
 -
 apiVersion: v1
 kind: Pod
 metadata:
 name: ws
 spec:
 containers:
 ... etc

 components:
 - alias: appDeployment
 type: kubernetes

CHAPTER 4. AUTHORING DEVFILES

73

The entrypoints list contains constraints for picking the containers along with the command and args
parameters to apply to them. In the example above, the constraint is parentName: mysqlServer, which
will cause the command to be applied to all containers defined in any parent object called mysqlServer.
The parent object is assumed to be a top level object in the list defined in the referenced file, which is
app-deployment.yaml in the example above.

Other types of constraints (and their combinations) are possible:

containerName

the name of the container

parentName

the name of the parent object that (indirectly) contains the containers to override

parentSelector

the set of labels the parent object needs to have

A combination of these constraints can be used to precisely locate the containers inside the referenced
OpenShift List.

4.1.5.4.8. Overriding container environment variables

To provision or override entrypoints in a OpenShift component, configure it in the following way:

This is useful for temporary content or without access to editing the referenced content. The specified
environment variables are provisioned into each init container and containers inside all Pods and
Deployments.

4.1.5.4.9. Specifying mount-source option

To specify a project sources directory mount into container(s), use the mountSources parameter:

If enabled, project sources mounts will be applied to every container of the given component. This

 reference: app-deployment.yaml
 entrypoints:
 - parentName: mysqlServer
 command: ['sleep']
 args: ['infinity']
 - parentSelector:
 app: prometheus
 args: ['-f', '/opt/app/prometheus-config.yaml']

 components:
 - alias: appDeployment
 type: kubernetes
 reference: app-deployment.yaml
 env:
 - name: ENV_VAR
 value: value

 components:
 - alias: appDeployment
 type: kubernetes
 reference: app-deployment.yaml
 mountSources: true

Red Hat CodeReady Workspaces 2.11 End-user Guide

74

If enabled, project sources mounts will be applied to every container of the given component. This
parameter is also applicable for chePlugin type components.

4.1.5.4.10. Component type: dockerimage

A component type that allows to define a container image-based configuration of a container in a
workspace. The dockerimage type of component brings in custom tools into the workspace. The
component is identified by its image.

Example of a minimal dockerimage component

It specifies the type of the component, dockerimage and the image attribute names the image to be
used for the component using the usual Docker naming conventions, that is, the above type attribute is
equal to docker.io/library/golang:latest.

A dockerimage component has many features that enable augmenting the image with additional
resources and information needed for meaningful integration of the tool provided by the image with
Red Hat CodeReady Workspaces.

4.1.5.4.11. Mounting project sources

For the dockerimage component to have access to the project sources, you must set the
mountSources attribute to true.

 components:
 - alias: maven
 type: dockerimage
 image: quay.io/eclipse/che-java11-maven:nightly
 volumes:
 - name: mavenrepo
 containerPath: /root/.m2
 env:
 - name: ENV_VAR
 value: value
 endpoints:
 - name: maven-server
 port: 3101
 attributes:
 protocol: http
 secure: 'true'
 public: 'true'
 discoverable: 'false'
 memoryLimit: 1536M
 memoryRequest: 256M
 command: ['tail']
 args: ['-f', '/dev/null']

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: dockerimage
 image: golang
 memoryLimit: 512Mi
 command: ['sleep', 'infinity']

CHAPTER 4. AUTHORING DEVFILES

75

The sources is mounted on a location stored in the CHE_PROJECTS_ROOT environment variable that
is made available in the running container of the image. This location defaults to /projects.

4.1.5.4.12. Container entrypoint

The command attribute of the dockerimage along with other arguments, is used to modify the
entrypoint command of the container created from the image. In Red Hat CodeReady Workspaces the
container is needed to run indefinitely so that you can connect to it and execute arbitrary commands in
it at any time. Because the availability of the sleep command and the support for the infinity argument
for it is different and depends on the base image used in the particular images, CodeReady Workspaces
cannot insert this behavior automatically on its own. However, you can take advantage of this feature to,
for example, start necessary servers with modified configurations, and so on.

4.1.5.4.13. Persistent Storage

Components of any type can specify the custom volumes to be mounted on specific locations within the
image. Note that the volume names are shared across all components and therefore this mechanism can
also be used to share file systems between components.

Example specifying volumes for dockerimage type:

Example specifying volumes for cheEditor/chePlugin type:

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: dockerimage
 image: golang
 memoryLimit: 512Mi
 command: ['sleep', 'infinity']

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: dockerimage
 image: golang
 memoryLimit: 512Mi
 mountSources: true
 command: ['sleep', 'infinity']
 volumes:
 - name: cache
 containerPath: /.cache

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: cheEditor
 alias: theia-editor
 id: eclipse/che-theia/next
 env:
 - name: HOME
 value: $(CHE_PROJECTS_ROOT)

Red Hat CodeReady Workspaces 2.11 End-user Guide

76

Example specifying volumes for kubernetes/openshift type:

4.1.5.4.14. Specifying container memory limit for components

To specify a container(s) memory limit for dockerimage, chePlugin or cheEditor, use the
memoryLimit parameter:

This limit will be applied to every container of the given component.

For the cheEditor and chePlugin component types, RAM limits can be described in the plug-in
descriptor file, typically named meta.yaml.

If none of them are specified, system-wide defaults will be applied (see description of
CHE_WORKSPACE_SIDECAR_DEFAULT__MEMORY__LIMIT__MB system property).

4.1.5.4.15. Specifying container memory request for components

To specify a container(s) memory request for dockerimage, chePlugin or cheEditor, use the
memoryRequest parameter:

 volumes:
 - name: cache
 containerPath: /.cache

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: openshift
 alias: mongo
 reference: mongo-db.yaml
 volumes:
 - name: mongo-persistent-storage
 containerPath: /data/db

 components:
 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/latest
 memoryLimit: 1Gi
 - alias: maven
 type: dockerimage
 image: quay.io/eclipse/che-java11-maven:nightly
 memoryLimit: 512M

 components:
 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/latest
 memoryLimit: 1Gi
 memoryRequest: 512M
 - alias: maven
 type: dockerimage

CHAPTER 4. AUTHORING DEVFILES

77

This limit will be applied to every container of the given component.

For the cheEditor and chePlugin component types, RAM requests can be described in the plug-in
descriptor file, typically named meta.yaml.

If none of them are specified, system-wide defaults are applied (see description of
CHE_WORKSPACE_SIDECAR_DEFAULT__MEMORY__REQUEST__MB system property).

4.1.5.4.16. Specifying container CPU limit for components

To specify a container(s) CPU limit for chePlugin, cheEditor or dockerimage use the cpuLimit
parameter:

This limit will be applied to every container of the given component.

For the cheEditor and chePlugin component types, CPU limits can be described in the plug-in
descriptor file, typically named meta.yaml.

If none of them are specified, system-wide defaults are applied (see description of
CHE_WORKSPACE_SIDECAR_DEFAULT__CPU__LIMIT__CORES system property).

4.1.5.4.17. Specifying container CPU request for components

To specify a container(s) CPU request for chePlugin, cheEditor or dockerimage use the cpuRequest
parameter:

This limit will be applied to every container of the given component.

For the cheEditor and chePlugin component types, CPU requests can be described in the plug-in

 image: quay.io/eclipse/che-java11-maven:nightly
 memoryLimit: 512M
 memoryRequest: 256M

 components:
 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/latest
 cpuLimit: 1.5
 - alias: maven
 type: dockerimage
 image: quay.io/eclipse/che-java11-maven:nightly
 cpuLimit: 750m

 components:
 - alias: exec-plugin
 type: chePlugin
 id: eclipse/che-machine-exec-plugin/latest
 cpuLimit: 1.5
 cpuRequest: 0.225
 - alias: maven
 type: dockerimage
 image: quay.io/eclipse/che-java11-maven:nightly
 cpuLimit: 750m
 cpuRequest: 450m

Red Hat CodeReady Workspaces 2.11 End-user Guide

78

For the cheEditor and chePlugin component types, CPU requests can be described in the plug-in
descriptor file, typically named meta.yaml.

If none of them are specified, system-wide defaults are applied (see description of
CHE_WORKSPACE_SIDECAR_DEFAULT__CPU__REQUEST__CORES system property).

4.1.5.4.18. Environment variables

Red Hat CodeReady Workspaces allows you to configure Docker containers by modifying the
environment variables available in component’s configuration. Environment variables are supported by
the following component types: dockerimage, chePlugin, cheEditor, kubernetes, openshift. In case
component has multiple containers, environment variables will be provisioned to each container.

NOTE

The variable expansion works between the environment variables, and it uses the
Kubernetes convention for the variable references.

The predefined variables are available for use in custom definitions.

The following environment variables are pre-set by the CodeReady Workspaces server:

CHE_PROJECTS_ROOT: The location of the projects directory (note that if the component
does not mount the sources, the projects will not be accessible).

CHE_WORKSPACE_LOGS_ROOT__DIR: The location of the logs common to all the
components. If the component chooses to put logs into this directory, the log files are
accessible from all other components.

CHE_API_INTERNAL: The URL to the CodeReady Workspaces server API endpoint used for
communication with the CodeReady Workspaces server.

CHE_WORKSPACE_ID: The ID of the current workspace.

CHE_WORKSPACE_NAME: The name of the current workspace.

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: dockerimage
 image: golang
 memoryLimit: 512Mi
 mountSources: true
 command: ['sleep', 'infinity']
 env:
 - name: GOPATH
 value: $(CHE_PROJECTS_ROOT)/go
 - type: cheEditor
 alias: theia-editor
 id: eclipse/che-theia/next
 memoryLimit: 2Gi
 env:
 - name: HOME
 value: $(CHE_PROJECTS_ROOT)

CHAPTER 4. AUTHORING DEVFILES

79

CHE_WORKSPACE_NAMESPACE: The CodeReady Workspaces project of the current
workspace. This environment variable is the name of the user or organization that the
workspace belongs to. Note that this is different from the OpenShift project to which the
workspace is deployed.

CHE_MACHINE_TOKEN: The token used to authenticate the request against the CodeReady
Workspaces server.

CHE_MACHINE_AUTH_SIGNATURE__PUBLIC__KEY: The public key used to secure the
communication with the CodeReady Workspaces server.

CHE_MACHINE_AUTH_SIGNATURE__ALGORITHM: The encryption algorithm used in the
secured communication with the CodeReady Workspaces server.

A devfile might need the CHE_PROJECTS_ROOT environment variable to locate the cloned projects
in the component’s container. More advanced devfiles might use the
CHE_WORKSPACE_LOGS_ROOT__DIR environment variable to read the logs. The environment
variables for securely accessing the CodeReady Workspaces server are out of scope for devfiles. These
variables are available only to CodeReady Workspaces plug-ins, which use them for advanced use cases.

4.1.5.4.19. Endpoints

Components of any type can specify the endpoints that the Docker image exposes. These endpoints
can be made accessible to the users if the CodeReady Workspaces cluster is running using a Kubernetes
ingress or an OpenShift route and to the other components within the workspace. You can create an
endpoint for your application or database, if your application or database server is listening on a port and
you need to be able to directly interact with it yourself or you allow other components to interact with it.

Endpoints have several properties as shown in the following example:

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
components:
 - type: dockerimage
 image: golang
 memoryLimit: 512Mi
 mountSources: true
 command: ['sleep', 'infinity']
 env:
 - name: GOPATH
 value: $(CHE_PROJECTS_ROOT)/go
 - name: GOCACHE
 value: /tmp/go-cache
 endpoints:
 - name: web
 port: 8080
 attributes:
 discoverable: false
 public: true

Red Hat CodeReady Workspaces 2.11 End-user Guide

80

Here, there are two Docker images, each defining a single endpoint. Endpoint is an accessible port that
can be made accessible inside the workspace or also publicly (example, from the UI). Each endpoint has
a name and port, which is the port on which certain server running inside the container is listening. The
following are a few attributes that you can set on the endpoint:

discoverable: If an endpoint is discoverable, it means that it can be accessed using its name as
the host name within the workspace containers (in the OpenShift terminology, a service is
created for it with the provided name). 55

public: The endpoint will be accessible outside of the workspace, too (such endpoint can be
accessed from the CodeReady Workspaces user interface). Such endpoints are publicized
always on port 80 or 443 (depending on whether tls is enabled in CodeReady Workspaces).

protocol: For public endpoints the protocol is a hint to the UI on how to construct the URL for
the endpoint access. Typical values are http, https, ws, wss.

secure: A boolean value (defaulting to false) specifying whether the endpoint is put behind a
JWT proxy requiring a JWT workspace token to grant access. The JWT proxy is deployed in the
same Pod as the server and assumes the server listens solely on the local loop-back interface,
such as 127.0.0.1.

WARNING

Listening on any other interface than the local loop-back poses a security
risk because such server is accessible without the JWT authentication
within the cluster network on the corresponding IP addresses.

path: The path portion of the URL to the endpoint. This defaults to /, meaning that the endpoint
is assumed to be accessible at the web root of the server defined by the component.

unsecuredPaths: A comma-separated list of endpoint paths that are to stay unsecured even if
the secure attribute is set to true.

 protocol: http
 - type: dockerimage
 image: postgres
 memoryLimit: 512Mi
 env:
 - name: POSTGRES_USER
 value: user
 - name: POSTGRES_PASSWORD
 value: password
 - name: POSTGRES_DB
 value: database
 endpoints:
 - name: postgres
 port: 5432
 attributes:
 discoverable: true
 public: false

CHAPTER 4. AUTHORING DEVFILES

81

cookiesAuthEnabled: When set to true (the default is false), the JWT workspace token is
automatically fetched and included in a workspace-specific cookie to allow requests to pass
through the JWT proxy.

WARNING

This setting potentially allows a CSRF attack when used in conjunction with
a server using POST requests.

When starting a new server within a component, CodeReady Workspaces automatically detects this, and
the UI offers to expose this port as a public port automatically. This behavior is useful for debugging a
web application. It is impossible to do this for servers, such as a database server, which automatically
starts at the container start. For such components, specify the endpoints explicitly.

Example specifying endpoints for kubernetes/openshift and chePlugin/cheEditor types:

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: cheEditor
 alias: theia-editor
 id: eclipse/che-theia/next
 endpoints:
 - name: 'theia-extra-endpoint'
 port: 8880
 attributes:
 discoverable: true
 public: true

 - type: chePlugin
 id: redhat/php/latest
 memoryLimit: 1Gi
 endpoints:
 - name: 'php-endpoint'
 port: 7777

 - type: chePlugin
 alias: theia-editor
 id: eclipse/che-theia/next
 endpoints:
 - name: 'theia-extra-endpoint'
 port: 8880
 attributes:
 discoverable: true
 public: true

 - type: openshift
 alias: webapp
 reference: webapp.yaml
 endpoints:

Red Hat CodeReady Workspaces 2.11 End-user Guide

82

https://en.wikipedia.org/wiki/Cross-site_request_forgery

4.1.5.4.20. OpenShift resources

To describe complex deployments, include references to OpenShift resource lists in the devfile. The
OpenShift resource lists become a part of the workspace.

IMPORTANT

CodeReady Workspaces merges all resources from the OpenShift resource lists
into a single deployment.

Be careful when designing such lists to avoid name conflicts and other problems.

Table 4.1. Supported OpenShift resources

Platform Supported resources

OpenShift deployments, pods, services, persistent
volume claims, secrets, ConfigMaps, Routes

The preceding component references a file that is relative to the location of the devfile itself. Meaning,
this devfile is only loadable by a CodeReady Workspaces factory to which you supply the location of the
devfile and therefore it is able to figure out the location of the referenced OpenShift resource list.

 - name: 'web'
 port: 8080
 attributes:
 discoverable: false
 public: true
 protocol: http

 - type: openshift
 alias: mongo
 reference: mongo-db.yaml
 endpoints:
 - name: 'mongo-db'
 port: 27017
 attributes:
 discoverable: true
 public: false

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
components:
 - type: kubernetes
 reference: ../relative/path/postgres.yaml

CHAPTER 4. AUTHORING DEVFILES

83

The following is an example of the postgres.yaml file.

apiVersion: v1
kind: List
items:
-
 apiVersion: v1
 kind: Deployment
 metadata:
 name: postgres
 labels:
 app: postgres
 spec:
 template:
 metadata:
 name: postgres
 app:
 name: postgres
 spec:
 containers:
 - image: postgres
 name: postgres
 ports:
 - name: postgres
 containerPort: 5432
 volumeMounts:
 - name: pg-storage
 mountPath: /var/lib/postgresql/data
 volumes:
 - name: pg-storage
 persistentVolumeClaim:
 claimName: pg-storage
-
 apiVersion: v1
 kind: Service
 metadata:
 name: postgres
 labels:
 app: postgres
 name: postgres
 spec:
 ports:
 - port: 5432
 targetPort: 5432
 selector:
 app: postgres
-
 apiVersion: v1
 kind: PersistentVolumeClaim
 metadata:
 name: pg-storage
 labels:
 app: postgres
 spec:
 accessModes:
 - ReadWriteOnce

Red Hat CodeReady Workspaces 2.11 End-user Guide

84

For a basic example of a devfile with an associated OpenShift list, see web-nodejs-with-db-sample on
redhat-developer GitHub.

If you use generic or large resource lists from which you will only need a subset of resources, you can
select particular resources from the list using a selector (which, as the usual OpenShift selectors, works
on the labels of the resources in the list).

Additionally, you can modify the entrypoints (command and arguments) of the containers in the
resource list.

4.1.5.5. Adding commands to a devfile

A devfile allows to specify commands to be available for execution in a workspace. Every command can
contain a subset of actions, which are related to a specific component in whose container it will be
executed.

You can use commands to automate the workspace. You can define commands for building and testing
your code, or cleaning the database.

The following are two kinds of commands:

CodeReady Workspaces specific commands: You have full control over what component
executes the command.

Editor specific commands: You can use the editor-specific command definitions (example:
tasks.json and launch.json in Che-Theia, which is equivalent to how these files work in VS
Code).

 resources:
 requests:
 storage: 1Gi

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
components:
 - type: kubernetes
 reference: ../relative/path/postgres.yaml
 selector:
 app: postgres

 commands:
 - name: build
 actions:
 - type: exec
 component: mysql
 command: mvn clean
 workdir: /projects/spring-petclinic

CHAPTER 4. AUTHORING DEVFILES

85

https://github.com/redhat-developer/devfile/tree/master/samples/web-nodejs-with-db-sample

4.1.5.5.1. CodeReady Workspaces-specific commands

Each CodeReady Workspaces-specific command features:

An actions attribute that specifies a command to execute.

A component attribute that specifies the container in which to execute the command.

The commands are run using the default shell in the container.

NOTE

If a component to be used in a command must have an alias. This alias is used to
reference the component in the command definition. Example: alias: go-cli in
the component definition and component: go-cli in the command definition.
This ensures that Red Hat CodeReady Workspaces can find the correct container
to run the command in.

A command can have only one action.

4.1.5.5.2. Editor-specific commands

If the editor in the workspace supports it, the devfile can specify additional configuration in the editor-
specific format. This is dependent on the integration code in the workspace editor itself and so is not a
generic mechanism. However, the default Che-Theia editor within Red Hat CodeReady Workspaces is
equipped to understand the tasks.json and launch.json files provided in the devfile.

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
components:
 - type: dockerimage
 image: golang
 alias: go-cli
 memoryLimit: 512Mi
 mountSources: true
 command: ['sleep', 'infinity']
 env:
 - name: GOPATH
 value: $(CHE_PROJECTS_ROOT)/go
 - name: GOCACHE
 value: /tmp/go-cache
commands:
 - name: compile and run
 actions:
 - type: exec
 component: go-cli
 command: “go get -d && go run main.go”
 workdir: “${CHE_PROJECTS_ROOT}/src/github.com/acme/my-go-project”

Red Hat CodeReady Workspaces 2.11 End-user Guide

86

1

2

This example shows association of a tasks.json file with a devfile. Notice the vscode-task type that
instructs the Che-Theia editor to interpret this command as a tasks definition and referenceContent
attribute that contains the contents of the file itself. You can also save this file separately from the
devfile and use reference attribute to specify a relative or absolute URL to it.

In addition to the vscode-task commands, the Che-Theia editor understands vscode-launch type
using which you can specify the start configurations.

4.1.5.5.3. Command preview URL

It is possible to specify a preview URL for commands that expose web UI. This URL is offered for
opening when the command is executed.

TCP port where the application listens. Mandatory parameter.

The path part of the URL to the UI. Optional parameter. The default is root (/).

The example above opens http://__<server-domain>__/myweb, where <server-domain> is the URL to

apiVersion: 1.0.0
metadata:
 name: MyDevfile
projects:
 - name: my-go-project
 clonePath: go/src/github.com/acme/my-go-project
 source:
 type: git
 location: https://github.com/acme/my-go-project.git
commands:
 - name: tasks
 actions:
 - type: vscode-task
 referenceContent: >
 {
 "version": "2.0.0",
 "tasks": [
 {
 "label": "create test file",
 "type": "shell",
 "command": "touch ${workspaceFolder}/test.file"
 }
]
 }

commands:
 - name: tasks
 previewUrl:
 port: 8080 1
 path: /myweb 2
 actions:
 - type: exec
 component: go-cli
 command: "go run webserver.go"
 workdir: ${CHE_PROJECTS_ROOT}/webserver

CHAPTER 4. AUTHORING DEVFILES

87

The example above opens http://__<server-domain>__/myweb, where <server-domain> is the URL to
the dynamically created OpenShift Route.

4.1.5.5.3.1. Setting the default way of opening preview URLs

By default, a notification that asks the user about the URL opening preference is displayed.

To specify the preferred way of previewing a service URL:

1. Open CodeReady Workspaces preferences in File → Settings → Open Preferences and find
che.task.preview.notifications in the CodeReady Workspaces section.

2. Choose from the list of possible values:

on — enables a notification for asking the user about the URL opening preferences

alwaysPreview — the preview URL opens automatically in the Preview panel as soon as a
task is running

alwaysGoTo — the preview URL opens automatically in a separate browser tab as soon as a
task is running

off — disables opening the preview URL (automatically and with a notification)

4.1.5.6. Adding attributes to a devfile

Devfile attributes can be used to configure various features.

4.1.5.6.1. Attribute: editorFree

When an editor is not specified in a devfile, a default is provided. When no editor is needed, use the
editorFree attribute. The default value of false means that the devfile requests the provisioning of the
default editor.

Example of a devfile without an editor

4.1.5.6.2. Attribute: persistVolumes (ephemeral mode)

By default, volumes and PVCs specified in a devfile are bound to a host folder to persist data even after
a container restart. To disable data persistence to make the workspace faster, such as when the volume
back end is slow, modify the persistVolumes attribute in the devfile. The default value is true. Set to
false to use emptyDir for configured volumes and PVC.

Example of a devfile with ephemeral mode enabled

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
components:
 - alias: myApp
 type: kubernetes
 reference: my-app.yaml
attributes:
 editorFree: true

Red Hat CodeReady Workspaces 2.11 End-user Guide

88

4.1.5.6.3. Attribute: asyncPersist (asynchronous storage)

When persistVolumes is set to false (see above), the additional attribute asyncPersist can be set to
true to enable asynchronous storage. See Configuring storage types for more details.

Example of a devfile with asynchronous storage enabled

4.1.5.6.4. Attribute: mergePlugins

This property can be set to manually control how plugins are included in the workspace. When the
property mergePlugins is set to true, Che will attempt to avoid running multiple instances of the same
container by combining plugins. The default value when this property is not included in a devfile is
governed by the Che configuration property che.workspace.plugin_broker.default_merge_plugins;
adding the mergePlugins: false attribute to a devfile will disable plugin merging for that workspace.

Example of a devfile with plugin merging disabled

4.1.6. Objects supported in Red Hat CodeReady Workspaces 2.11

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
projects:
 - name: petclinic
 source:
 type: git
 location: 'https://github.com/che-samples/web-java-spring-petclinic.git'
attributes:
 persistVolumes: false

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
projects:
 - name: petclinic
 source:
 type: git
 location: 'https://github.com/che-samples/web-java-spring-petclinic.git'
attributes:
 persistVolumes: false
 asyncPersist: true

apiVersion: 1.0.0
metadata:
 name: petclinic-dev-environment
projects:
 - name: petclinic
 source:
 type: git
 location: 'https://github.com/che-samples/web-java-spring-petclinic.git'
attributes:
 mergePlugins: false

CHAPTER 4. AUTHORING DEVFILES

89

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#configuring-storage-types_crw

The following table lists the objects that are partially supported in Red Hat CodeReady Workspaces 2.11:

Object API Kuberne
tes Infra

OpenShi
ft Infra

Notes

Pod Kuberne
tes

Yes Yes -

Deploy
ment

Kuberne
tes

Yes Yes -

ConfigM
ap

Kuberne
tes

Yes Yes -

PVC Kuberne
tes

Yes Yes -

Secret Kuberne
tes

Yes Yes -

Service Kuberne
tes

Yes Yes -

Ingress Kuberne
tes

Yes No Minishift allows you to create Ingress and it works when the
host is specified (OpenShift creates a route for it). But, the
loadBalancer IP is not provisioned. To add Ingress support
for the OpenShift infrastructure node, generate routes
based on the provided Ingress.

Route OpenShi
ft

No Yes The OpenShift recipe must be made compatible with the
Kubernetes Infrastructure: OpenShift routes replaced on
Ingresses.

Templat
e

OpenShi
ft

Yes Yes The Kubernetes API does not support templates. A
workspace with a template in the recipe starts successfully
and the default parameters are resolved.

4.2. AUTHORING DEVFILES VERSION 2

This section explains the concept of the devfile 2.0 specification and how to configure a CodeReady
Workspaces workspace by using a devfile 2.0.

Prerequisites:

An instance of CodeReady Workspaces with the DevWorkspace Operator enabled, see Enabling
Dev Workspace engine

Procedure

To create devfiles with the 2.0 specification, see https://docs.devfile.io/devfile/2.0.0/user-
guide/authoring-stacks.html

Red Hat CodeReady Workspaces 2.11 End-user Guide

90

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#enabling-dev-workspace-engine_crw
https://docs.devfile.io/devfile/2.0.0/user-guide/authoring-stacks.html

Additional resources

Devfile 2.0 specification

CHAPTER 4. AUTHORING DEVFILES

91

https://redhat-developer.github.io/devfile/devfile

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS
Red Hat CodeReady Workspaces is an extensible and customizable developer-workspaces platform.

You can extend Red Hat CodeReady Workspaces in three different ways:

Alternative IDEs provide specialized tools for Red Hat CodeReady Workspaces. For example, a
Jupyter notebook for data analysis. Alternate IDEs can be based on Eclipse Theia or any other
IDE (web or desktop based). The default IDE in Red Hat CodeReady Workspaces is Che-Theia.

Che-Theia plug-ins add capabilities to the Che-Theia IDE. They rely on plug-in APIs that are
compatible with Visual Studio Code. The plug-ins are isolated from the IDE itself. They can be
packaged as files or as containers to provide their own dependencies.

Stacks are pre-configured CodeReady Workspaces workspaces with a dedicated set of tools,
which cover different developer personas. For example, it is possible to pre-configure a
workbench for a tester with only the tools needed for their purposes.

Figure 5.1. CodeReady Workspaces extensibility

Workspaces

Project sources

A user can extend CodeReady Workspaces by using self-hosted mode, which CodeReady Workspaces
provides by default.

Section 5.1, “What is a Che-Theia plug-in”

Section 5.6, “Using alternative IDEs in CodeReady Workspaces”

Section 5.2, “Adding a VS Code extension to a workspace”

Section 5.9, “Using private container registries”

5.1. WHAT IS A CHE-THEIA PLUG-IN

A Che-Theia plug-in is an extension of the development environment isolated from the IDE. Plug-ins
can be packaged as files or containers to provide their own dependencies.

Extending Che-Theia using plug-ins can enable the following capabilities:

Language support: Extend the supported languages by relying on the Language Server
Protocol.

Debuggers: Extend debugging capabilities with the Debug Adapter Protocol.

Development Tools: Integrate your favorite linters, and as testing and performance tools.

Red Hat CodeReady Workspaces 2.11 End-user Guide

92

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/debug-adapter-protocol/

Menus, panels, and commands: Add your own items to the IDE components.

Themes: Build custom themes, extend the UI, or customize icon themes.

Snippets, code formatting, and syntax highlighting: Enhance comfort of use with supported
programming languages.

Keybindings: Add new keyboard mapping and popular keybindings to make the environment
feel natural.

5.1.1. Features and benefits of Che-Theia plug-ins

Features Description Benefits

Fast Loading Plug-ins are loaded at runtime
and are already compiled. IDE is
loading the plug-in code.

Avoid any compilation time. Avoid
post-installation steps.

Secure Loading Plug-ins are loaded separately
from the IDE. The IDE stays
always in a usable state.

Plug-ins do not break the whole
IDE if it has bugs. Handle network
issue.

Tools Dependencies Dependencies for the plug-in are
packaged with the plug-in in its
own container.

No-installation for tools.
Dependencies running into
container.

Code Isolation Guarantee that plug-ins cannot
block the main functions of the
IDE like opening a file or typing

Plug-ins are running into separate
threads. Avoid dependencies
mismatch.

VS Code Extension
Compatibility

Extend the capabilities of the IDE
with existing VS Code Extensions.

Target multiple platform. Allow
easy discovery of Visual Studio
Code Extension with required
installation.

5.1.2. Che-Theia plug-in concept in detail

Red Hat CodeReady Workspaces provides a default web IDE for workspaces: Che-Theia. It is based on
Eclipse Theia. It is a slightly different version than the plain Eclipse Theia one because there are
functionalities that have been added based on the nature of the Red Hat CodeReady Workspaces
workspaces. This version of Eclipse Theia for CodeReady Workspaces is called Che-Theia .

You can extend the IDE provided with Red Hat CodeReady Workspaces by building a Che-Theia plug-
in. Che-Theia plug-ins are compatible with any other Eclipse Theia-based IDE.

5.1.2.1. Client-side and server-side Che-Theia plug-ins

The Che-Theia editor plug-ins let you add languages, debuggers, and tools to your installation to
support your development workflow. Plug-ins run when the editor completes loading. If a Che-Theia
plug-in fails, the main Che-Theia editor continues to work.

Che-Theia plug-ins run either on the client side or on the server side. This is a scheme of the client and

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

93

Che-Theia plug-ins run either on the client side or on the server side. This is a scheme of the client and
server-side plug-in concept:

Figure 5.2. Client and server-side Che-Theia plug-ins

Browser

Web worker

Extension manager

Plug-in API

The same Che-Theia plug-in API is exposed to plug-ins running on the client side (Web Worker) or the
server side (Node.js).

5.1.2.2. Che-Theia plug-in APIs

To provide tool isolation and easy extensibility in Red Hat CodeReady Workspaces, the Che-Theia IDE
has a set of plug-in APIs. The APIs are compatible with Visual Studio Code extension APIs. Usually, Che-
Theia can run VS Code extensions as its own plug-ins.

When developing a plug-in that depends on or interacts with components of CodeReady Workspaces
workspaces (containers, preferences, factories), use the CodeReady Workspaces APIs embedded in
Che-Theia.

5.1.2.3. Che-Theia plug-in capabilities

Che-Theia plug-ins have the following capabilities:

Plug-in Description Repository

CodeReady Workspaces
Extended Tasks

Handles the CodeReady
Workspaces commands and
provides the ability to start those
into a specific container of the
workspace.

Task plug-in

CodeReady Workspaces
Extended Terminal

Allows to provide terminal for any
of the containers of the
workspace.

Extended Terminal extension

CodeReady Workspaces Factory Handles the Red Hat CodeReady
Workspaces Factories

Workspace plug-in

CodeReady Workspaces
Container

Provides a container view that
shows all the containers that are
running in the workspace and
allows to interact with them.

Containers plug-in

Red Hat CodeReady Workspaces 2.11 End-user Guide

94

https://github.com/eclipse-che/che-theia/tree/master/plugins/task-plugin
https://github.com/eclipse-che/che-theia/tree/master/extensions/eclipse-che-theia-terminal
https://github.com/eclipse-che/che-theia/tree/master/plugins/workspace-plugin
https://github.com/eclipse-che/che-theia/tree/master/plugins/containers-plugin

Dashboard Integrates the IDE with the
Dashboard and facilitate the
navigation.

Che-Theia Dashbord extension

CodeReady Workspaces APIs Extends the IDE APIs to allow
interacting with CodeReady
Workspaces-specific components
(workspaces, preferences).

Che-Theia API extension

Plug-in Description Repository

5.1.2.4. VS Code extensions and Eclipse Theia plug-ins

A Che-Theia plug-in can be based on a VS Code extension or an Eclipse Theia plug-in.

A Visual Studio Code extension

To repackage a VS Code extension as a Che-Theia plug-in with its own set of dependencies,
package the dependencies into a container. This ensures that Red Hat CodeReady Workspaces users
do not need to install the dependencies when using the extension. See Section 5.2, “Adding a VS
Code extension to a workspace”.

An Eclipse Theia plug-in

You can build a Che-Theia plug-in by implementing an Eclipse Theia plug-in and packaging it to Red
Hat CodeReady Workspaces.

Additional resources

Section 5.1.5, “Embedded and remote Che-Theia plug-ins”

5.1.3. Che-Theia plug-in metadata

Che-Theia plug-in metadata is information about individual plug-ins for the plug-in registry.

The Che-Theia plug-in metadata, for each specific plug-in, is defined in a meta.yaml file. These files can
be referenced in a devfile to include Che-Theia plug-ins in a workspace.

Here is an overview of all fields that can be available in plug-in meta YAML files. This document
represents the plugin meta YAML structure (version 3) .

Table 5.1. meta.yml

apiVersion Version 2 and higher where version is 1 supported for
backwards compatibility

category Available: Category must be set to one of the
followings: Editor, Debugger, Formatter,
Language, Linter, Snippet, Theme, Other

description Short description of the plug-in purpose

displayName Name shown in user dashboard

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

95

https://github.com/eclipse-che/che-theia/tree/master/extensions/eclipse-che-theia-dashboard
https://github.com/eclipse-che/che-theia/tree/master/extensions/eclipse-che-theia-plugin-ext
https://github.com/eclipse-che/che-plugin-registry#user-content-plugin-meta-yaml-structure

deprecate Optional; section for deprecating plug-ins in favor of
others

* autoMigrate - boolean

* migrateTo - new org/plugin-id/version, for
example redhat/vscode-apache-camel/latest

firstPublicationDate Not required to be in YAML; if it is not included, the
plug-in registry dockerimage build generates it

latestUpdateDate Not required to be in YAML; if it is not included, the
plug-in registry dockerimage build generates it

icon URL of an SVG or PNG icon

name Name (no spaces allowed), must match [-a-z0-9]

publisher Name of the publisher, must match [-a-z0-9]

repository URL for plug-in repository, for example, GitHub

title Plug-in title (long)

type Che Plugin, VS Code extension

version Version information, for example: 7.5.1, [-.a-z0-9]

spec Specifications (see below)

Table 5.2. spec attributes

endpoints Optional; plug-in endpoint

containers Optional; sidecar containers for the plug-in. Che
Plug-in and VS Code extension supports only one
container

initContainers Optional; sidecar init containers for the plug-in

workspaceEnv Optional; environment variables for the workspace

extensions Optional; Attribute that is required for VS Code and
Che-Theia plug-ins in a form list of URLs to plug-in
artefacts, such as .vsix or .theia files

Table 5.3. spec.containers. Notice: spec.initContainers has absolutely the same container
definition.

Red Hat CodeReady Workspaces 2.11 End-user Guide

96

name Sidecar container name

image Absolute or relative container image URL

memoryLimit OpenShift memory limit string, for example 512Mi

memoryRequest OpenShift memory request string, for example
512Mi

cpuLimit OpenShift CPU limit string, for example 2500m

cpuRequest OpenShift CPU request string, for example 125m

env List of environment variables to set in the sidecar

command String array definition of the root process command
in the container

args String array arguments for the root process
command in the container

volumes Volumes required by the plug-in

ports Ports exposed by the plug-in (on the container)

commands Development commands available to the plug-in
container

mountSources Boolean flag to bound volume with source code
/projects to the plug-in container

initContainers Optional; init containers for sidecar plug-in

Lifecycle Container lifecycle hooks. See lifecycle description

Table 5.4. spec.containers.env and spec.initContainers.env attributes. Notice: workspaceEnv has
absolutely the same attributes

name Environment variable name

value Environment variable value

Table 5.5. spec.containers.volumes and spec.initContainers.volumes attributes

mountPath Path to the volume in the container

name Volume name

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

97

https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/

ephemeral If true, the volume is ephemeral, otherwise the
volume is persisted

Table 5.6. spec.containers.ports and spec.initContainers.ports attributes

exposedPort Exposed port

Table 5.7. spec.containers.commands and spec.initContainers.commands attributes

name Command name

workingDir Command working directory

command String array that defines the development command

Table 5.8. spec.endpoints attributes

name Name (no spaces allowed), must match [-a-z0-9]

public true, false

targetPort Target port

attributes Endpoint attributes

Table 5.9. spec.endpoints.attributes attributes

protocol Protocol, example: ws

type ide, ide-dev

discoverable true, false

secure true, false. If true, then the endpoint is assumed to
listen solely on 127.0.0.1 and is exposed using a
JWT proxy

cookiesAuthEnabled true, false

requireSubdomain true, false. If true, the endpoint is exposed on
subdomain in single-host mode.

Table 5.10. spec.containers.lifecycle and spec.initContainers.lifecycle attributes

Red Hat CodeReady Workspaces 2.11 End-user Guide

98

postStart The postStart event that runs immediately after a
Container is started. See postStart and preStop
handlers

* exec: Executes a specific command, resources
consumed by the command are counted against the
Container

* command: ["/bin/sh", "-c", "/bin/post-start.sh"]

preStop The preStop event that runs before a Container is
terminated. See postStart and preStop handlers

* exec: Executes a specific command, resources
consumed by the command are counted against the
Container

* command: ["/bin/sh", "-c", "/bin/post-start.sh"]

Example meta.yaml for a Che-Theia plug-in: the CodeReady Workspaces machine-exec
Service

 apiVersion: v2
 publisher: eclipse
 name: che-machine-exec-plugin
 version: 7.9.2
 type: Che Plugin
 displayName: CodeReady Workspaces machine-exec Service
 title: Che machine-exec Service Plugin
 description: CodeReady Workspaces Plug-in with che-machine-exec service to provide creation
terminal
 or tasks for Eclipse CHE workspace containers.
 icon: https://www.eclipse.org/che/images/logo-eclipseche.svg
 repository: https://github.com/eclipse-che/che-machine-exec/
 firstPublicationDate: "2020-03-18"
 category: Other
 spec:
 endpoints:
 - name: "che-machine-exec"
 public: true
 targetPort: 4444
 attributes:
 protocol: ws
 type: terminal
 discoverable: false
 secure: true
 cookiesAuthEnabled: true
 containers:
 - name: che-machine-exec
 image: "quay.io/eclipse/che-machine-exec:7.9.2"

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

99

https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/
https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/

Example meta.yaml for a VisualStudio Code extension: the AsciiDoc support extension

5.1.4. Che-Theia plug-in lifecycle

Every time a user starts a Che workspace, a Che-Theia plug-in life cycle process starts. The steps of this
process are as follows:

1. CodeReady Workspaces server checks for plug-ins to start from the workspace definition.

2. CodeReady Workspaces server retrieves plug-in metadata, recognizes each plug-in type, and
stores them in memory.

3. CodeReady Workspaces server selects a broker according to the plug-in type.

4. The broker processes the installation and deployment of the plug-in. The installation process of
the plug-in differs for each specific broker.

NOTE

Plug-ins exist in various types. A broker ensures the success of a plug-in deployment by
meeting all installation requirements.

Figure 5.3. Che-Theia plug-in lifecycle

 ports:
 - exposedPort: 4444
 command: ['/go/bin/che-machine-exec', '--static', '/cloud-shell', '--url', '127.0.0.1:4444']

apiVersion: v2
category: Language
description: This extension provides a live preview, syntax highlighting and snippets for the AsciiDoc
format using Asciidoctor flavor
displayName: AsciiDoc support
firstPublicationDate: "2019-12-02"
icon: https://www.eclipse.org/che/images/logo-eclipseche.svg
name: vscode-asciidoctor
publisher: joaompinto
repository: https://github.com/asciidoctor/asciidoctor-vscode
title: AsciiDoctor Plug-in
type: VS Code extension
version: 2.7.7
spec:
 extensions:
 - https://github.com/asciidoctor/asciidoctor-vscode/releases/download/v2.7.7/asciidoctor-vscode-
2.7.7.vsix

Red Hat CodeReady Workspaces 2.11 End-user Guide

100

Figure 5.3. Che-Theia plug-in lifecycle

User Server Plug-in registry

Create plug-in

Publish plug-in metadata

Before a CodeReady Workspaces workspace is launched, CodeReady Workspaces server starts the
workspace containers:

1. The Che-Theia plug-in broker extracts the information about sidecar containers that a
particular plug-in needs from the .theia file.

2. The broker sends the appropriate container information to CodeReady Workspaces server.

3. The broker copies the Che-Theia plug-in to a volume to have it available for the Che-Theia
editor container.

4. CodeReady Workspaces server then starts all the containers of the workspace.

5. Che-Theia starts in its container and checks the correct folder to load the plug-ins.

A user experience with Che-Theia plug-in lifecycle

1. When a user opens a browser tab with Che-Theia, Che-Theia starts a new plug-in session with:

Web Worker for frontend

Node.js for backend

2. Che-Theia notifies all Che-Theia plug-ins with the start of the new session by calling the start()
function for each triggered plug-in.

3. A Che-Theia plug-in session runs and interacts with the Che-Theia backend and frontend.

4. When the user closes the Che-Theia browser tab, or the session ended on a timeout limit, Che-
Theia notifies all plug-ins with the stop() function for each triggered plug-in.

5.1.5. Embedded and remote Che-Theia plug-ins

Developer workspaces in Red Hat CodeReady Workspaces provide all dependencies needed to work on
a project. The application includes the dependencies needed by all the tools and plug-ins used.

Based on the required dependencies, Che-Theia plug-in can run as:

Embedded, also know as local

Remote

5.1.5.1. Embedded (local) plug-ins

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

101

The Embedded plug-ins are plug-ins without specific dependencies that are injected into the Che-Theia
IDE. These plug-ins use the Node.js runtime, which runs in the IDE container.

Examples:

Code linting

New set of commands

New UI components

To include a Che-Theia plug-in or VS Code extension, define a URL to the plug-in .theia archive binary
in the meta.yaml file. See Section 5.2, “Adding a VS Code extension to a workspace”

When starting a workspace, CodeReady Workspaces downloads and unpacks the plug-in binaries and
includes them in the Che-Theia editor container. The Che-Theia editor initializes the plug-ins when it
starts.

5.1.5.2. Remote plug-ins

The plug-in relies on dependencies or it has a back end. It runs in its own sidecar container, and all
dependencies are packaged in the container.

A remote Che-Theia plug-in consist of two parts:

Che-Theia plug-in or VS Code extension binaries. The definition in the meta.yaml file is the
same as for embedded plug-ins.

Container image definition, for example, eclipse/che-theia-dev:nightly. From this image,
CodeReady Workspaces creates a separate container inside a workspace.

Examples:

Java Language Server

Python Language Server

When starting a workspace, CodeReady Workspaces creates a container from the plug-in image,
downloads and unpacks the plug-in binaries, and includes them in the created container. The Che-Theia
editor connects to the remote plug-ins when it starts.

5.1.5.3. Comparison matrix

Embedded plug-ins are those Che-Theia plug-ins or VS Code extensions that do not require
extra dependencies inside its container.

Remote plug-ins are containers that contain a plug-in with all required dependencies.

Table 5.11. Che-Theia plug-in comparison matrix: embedded vs remote

 Configure RAM per
plug-in

Environment
dependencies

Create separated
container

Red Hat CodeReady Workspaces 2.11 End-user Guide

102

Remote TRUE Plug-in uses
dependencies defined in
the remote container.

TRUE

Embedded FALSE (users can
configure RAM for the
whole editor container,
but not per plug-in)

Plug-in uses
dependencies from the
editor container; if
container does not
include these
dependencies, the plug-
in fails or does not
function as expected.

FALSE

 Configure RAM per
plug-in

Environment
dependencies

Create separated
container

Depending on your use case and the capabilities provided by your plug-in, select one of the described
running modes.

5.1.6. Remote plug-in endpoint

Red Hat CodeReady Workspaces has a remote plug-in endpoint service to start VS Code Extensions
and Che-Theia plug-ins in separate containers. Red Hat CodeReady Workspaces injects the remote
plug-in endpoint binaries into each remote plug-in container. This service starts remote extensions and
plug-ins defined in the plug-in meta.yaml file and connects them to the Che-Theia editor container.

The remote plug-in endpoint creates a plug-in API proxy between the remote plug-in container and the
Che-Theia editor container. The remote plug-in endpoint is also an interceptor for some plug-in API
parts, which it launches inside a remote sidecar container rather than an editor container. Examples:
terminal API, debug API.

The remote plug-in endpoint executable command is stored in the environment variable of the remote
plug-in container: PLUGIN_REMOTE_ENDPOINT_EXECUTABLE.

Red Hat CodeReady Workspaces provides two ways to start the remote plug-in endpoint with a sidecar
image:

Defining a launch remote plug-in endpoint using a Dockerfile. To use this method, patch an
original image and rebuild it.

Defining a launch remote plug-in endpoint in the plug-in meta.yaml file. Use this method to
avoid patching an original image.

5.1.6.1. Defining a launch remote plug-in endpoint using Dockerfile

To start a remote plug-in endpoint, set the PLUGIN_REMOTE_ENDPOINT_EXECUTABLE
environment variable in the Dockerfile.

Procedure

Start a remote plug-in endpoint using the CMD command in the Dockerfile:

Dockerfile example

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

103

FROM fedora:30

RUN dnf update -y && dnf install -y nodejs htop && node -v

RUN mkdir /home/jboss

ENV HOME=/home/jboss

RUN mkdir /projects \
 && chmod -R g+rwX /projects \
 && chmod -R g+rwX "${HOME}"

CMD ${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}

Start a remote plug-in endpoint using the ENTRYPOINT command in the Dockerfile:

Dockerfile example

FROM fedora:30

RUN dnf update -y && dnf install -y nodejs htop && node -v

RUN mkdir /home/jboss

ENV HOME=/home/jboss

RUN mkdir /projects \
 && chmod -R g+rwX /projects \
 && chmod -R g+rwX "${HOME}"

ENTRYPOINT ${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}

5.1.6.1.1. Using a wrapper script

Some images use a wrapper script to configure permissions inside the container. The Dockertfile
ENTRYPOINT command defines this script, which executes the main process defined in the CMD
command of the Dockerfile.

CodeReady Workspaces uses images with a wrapper script to provide permission configurations to
different infrastructures protected by advanced security. OpenShift Container Platform is an example
of such an infrastructure.

Example of a wrapper script:

#!/bin/sh

set -e

export USER_ID=$(id -u)
export GROUP_ID=$(id -g)

if ! whoami >/dev/null 2>&1; then
 echo "${USER_NAME:-user}:x:${USER_ID}:0:${USER_NAME:-user}
user:${HOME}:/bin/sh" >> /etc/passwd
fi

Red Hat CodeReady Workspaces 2.11 End-user Guide

104

Example of a Dockerfile with a wrapper script:

Dockerfile example

FROM alpine:3.10.2

ENV HOME=/home/theia

RUN mkdir /projects ${HOME} && \
 # Change permissions to let any arbitrary user
 for f in "${HOME}" "/etc/passwd" "/projects"; do \
 echo "Changing permissions on ${f}" && chgrp -R 0 ${f} && \
 chmod -R g+rwX ${f}; \
 done

ADD entrypoint.sh /entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]
CMD ${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}

Explanation:

The container launches the /entrypoint.sh script defined in the ENTRYPOINT command of
the Dockerfile.

The script configures the permissions and executes the command using exec $@.

CMD is the argument for ENTRYPOINT, and the exec $@ command calls
${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}.

The remote plug-in endpoint then starts in the container after permission configuration.

5.1.6.2. Defining a launch remote plug-in endpoint in a meta.yaml file

Use this method to re-use images for starting a remote plug-in endpoint without any modifications.

Procedure

Modify the plug-in meta.yaml file properties command and args:

command - CodeReady Workspaces uses the command properties to override the
Dockerfile#ENTRYPOINT value.

args - CodeReady Workspaces uses uses the args properties to override the Dockerfile#CMD
value.

Example of a YAML file with the command and args properties modified:

Grant access to projects volume in case of non root user with sudo rights
if ["${USER_ID}" -ne 0] && command -v sudo >/dev/null 2>&1 && sudo -n true > /dev/null
2>&1; then
 sudo chown "${USER_ID}:${GROUP_ID}" /projects
fi

exec "$@"

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

105

Modify args instead of command to use an image with a wrapper script pattern and to keep a
call of the entrypoint.sh script:

Red Hat CodeReady Workspaces calls the entrypoint.sh wrapper script defined in the

apiVersion: v2
category: Language
description: "Typescript language features"
displayName: Typescript
firstPublicationDate: "2019-10-28"
icon: "https://www.eclipse.org/che/images/logo-eclipseche.svg"
name: typescript
publisher: che-incubator
repository: "https://github.com/Microsoft/vscode"
title: "Typescript language features"
type: "VS Code extension"
version: remote-bin-with-override-entrypoint
spec:
 containers:
 - image: "example/fedora-for-ts-remote-plugin-without-endpoint:latest"
 memoryLimit: 512Mi
 name: vscode-typescript
 command:
 - sh
 - -c
 args:
 - ${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}
 extensions:
 - "https://github.com/che-incubator/ms-code.typescript/releases/download/v1.35.1/che-
typescript-language-1.35.1.vsix"

apiVersion: v2
category: Language
description: "Typescript language features"
displayName: Typescript
firstPublicationDate: "2019-10-28"
icon: "https://www.eclipse.org/che/images/logo-eclipseche.svg"
name: typescript
publisher: che-incubator
repository: "https://github.com/Microsoft/vscode"
title: "Typescript language features"
type: "VS Code extension"
version: remote-bin-with-override-entrypoint
spec:
 containers:
 - image: "example/fedora-for-ts-remote-plugin-without-endpoint:latest"
 memoryLimit: 512Mi
 name: vscode-typescript
 args:
 - sh
 - -c
 - ${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}
 extensions:
 - "https://github.com/che-incubator/ms-code.typescript/releases/download/v1.35.1/che-
typescript-language-1.35.1.vsix"

Red Hat CodeReady Workspaces 2.11 End-user Guide

106

Red Hat CodeReady Workspaces calls the entrypoint.sh wrapper script defined in the
ENTRYPOINT command of the Dockerfile. The script executes [‘sh’, ‘-c”, ‘
${PLUGIN_REMOTE_ENDPOINT_EXECUTABLE}’] using the exec “$@” command.

NOTE

By modifying the command and args properties of the meta.yaml file, a user can:

Execute a service at a container start

Start a remote plug-in endpoint

To make these actions run at the same time:

1. Start the service.

2. Detach the process.

3. Start the remote plug-in endpoint.

5.2. ADDING A VS CODE EXTENSION TO A WORKSPACE

This section describes how to add a VS Code extension to a workspace using the workspace
configuration.

Prerequisites

The VS Code extension is available in the CodeReady Workspaces plug-in registry, or metadata
for the VS Code extension are available. See Section 5.4, “Publishing metadata for a VS Code
extension”.

5.2.1. Adding a VS Code extension using the workspace configuration

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace defined on this instance of CodeReady Workspaces.

The VS Code extension is available in the CodeReady Workspaces plug-in registry, or metadata
for the VS Code extension are available. See Section 5.4, “Publishing metadata for a VS Code
extension”.

Procedure

To add a VS Code extension using the workspace configuration:

1. Click the Workspaces tab on the Dashboard and select the plug-in destination workspace.
The Workspace <workspace-name> window is opened showing the details of the workspace.

2. Click the devfile tab.

3. Locate the components section, and add a new entry with the following structure:

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

107

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

1

1

ID format: <publisher>/<plug-inName>/<plug-inVersion>

CodeReady Workspaces automatically adds the other fields to the new component.

Alternatively, you can link to a meta.yaml file hosted on GitHub, using the dedicated reference
field.

https://raw.githubusercontent.com/<username>/<registryRepository>/v3/plugins/<pu
blisher>/<plug-inName>/<plug-inVersion>/meta.yaml

4. Restart the workspace for the changes to take effect.

5.2.2. Adding a VS Code extension using recommendations

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

Featured VS Code extensions are available in the CodeReady Workspaces plug-in registry.

Procedure

Open a workspace without any existing devfile using the CodeReady Workspaces dashboard:

The recommendations plug-in will scan files, discover languages and install VS Code extensions
matching these languages. Disable this feature by setting extensions.ignoreRecommendations to
true in the devfile attributes.

The recommendations plug-in can suggest VS Code extensions to install when opening files. It suggests
extensions based on the workspace content, allowing the user to work with the given files. Enable this
feature by setting extensions.openFileRecommendations to true in the devfile attributes.

5.3. ADDING A VS CODE EXTENSION TO THE CHE PLUG-INS
REGISTRY

To use a VS Code extension in a CodeReady Workspaces workspace, CodeReady Workspaces need to
consume metadata describing the extension. The CodeReady Workspaces plug-ins registry is a static
website publishing metadata for common VS Code extensions. VS Code extension metadata for the
CodeReady Workspaces plug-ins registry is generated from a central file named che-theia-
plugins.yaml.

To add or modify an extension in the CodeReady Workspaces plug-ins registry, edit the che-theia-
plugins.yaml file and add relevant metadata.

NOTE

 - type: chePlugin
 id: 1

 - type: chePlugin
 reference: 1

Red Hat CodeReady Workspaces 2.11 End-user Guide

108

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

NOTE

This article describes the steps needed to build the plug-ins registry with a custom plugin
definition. If you are looking to create a custom meta.yaml file that can be directly
referenced in a devfile, see Section 5.4, “Publishing metadata for a VS Code extension” .

Prerequisite

A working knowledge of customizing the registries, see Customizing the registries

A link to a sidecar container image, should the VS Code extension require one.

Procedure

1. Edit the che-theia-plugins.yaml file and create a new entry.

- id: publisher/my-vscode-ext 1
 repository: 2
 url: https://github.com/publisher/my-vscode-ext 3
 revision: 1.7.2 4
 aliases: 5
 - publisher/my-vscode-ext-revised
 preferences: 6
 asciidoc.use_asciidoctorpdf: true
 shellcheck.executablePath: /bin/shellcheck
 solargraph.bundlerPath: /usr/local/bin/bundle
 solargraph.commandPath: /usr/local/bundle/bin/solargraph
 sidecar: 7
 image: quay.io/repository/eclipse/che-plugin-sidecar:sonarlint-2fcf341 8
 name: my-vscode-ext-sidecar 9
 memoryLimit: "1500Mi" 10
 memoryRequest: "1000Mi" 11
 cpuLimit: "500m" 12
 cpuRequest: "125m" 13
 command: 14
 - /bin/sh
 args: 15
 - "-c"
 - "./entrypoint.sh"
 volumeMounts: 16
 - name: vscode-ext-volume 17
 path: "/home/theia/my-vscode-ext" 18
 endpoints: 19
 - name: "configuration-endpoint" 20
 public: true 21
 targetPort: 61436 22
 attributes: 23
 protocol: http
 extension: https://github.com/redhat-developer/vscode-
yaml/releases/download/0.4.0/redhat.vscode-yaml-0.4.0.vsix 24
 skipDependencies: 25
 - id-of/extension1

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

109

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#customizing-the-registries_crw

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(OPTIONAL) The ID of the plugin, useful if a plugin has multiple entries for one repository (for
example, Java 8 compared to Java 11)

Repository information about the plugin. If ID is specified then this field is not a list element.

The URL to the extension’s git repository URL

Tag or SHA1 ID of the upstream repository that hosts the extension, corresponding to a version,
snapshot, or release.

(OPTIONAL) An alias for this plugin: this means anything listed here will get its own meta.yaml file
generated

(OPTIONAL) Plugin preferences in freeform format

(OPTIONAL) If the plugin runs in a sidecar container, then the sidecar information is specified here

A location of a container image to be used as this plugin’s sidecar. This line cannot be specified
concurrently with directory (see above)

(OPTIONAL) The name of the sidecar container

(OPTIONAL) The memory limit of the sidecar container

(OPTIONAL) The memory request of the sidecar container

(OPTIONAL) The CPU limit of the sidecar container

(OPTIONAL) The CPU request of the sidecar container

(OPTIONAL) Definitions of root process commands inside container

(OPTIONAL) Arguments for root process commands inside container

(OPTIONAL) Any volume mounting information for the sidecar container

The name of the mount

The path of the mount

(OPTIONAL) Any endpoint information for the sidecar container

Endpoint name

 - id-of/extension2
 extraDependencies: 26
 - id-of/extension1
 - id-of/extension2
 metaYaml:
 skipIndex: <true|false> 27
 skipDependencies: 28
 - id-of/extension1
 - id-of/extension2
 extraDependencies: 29
 - id-of/extension1
 - id-of/extension2

Red Hat CodeReady Workspaces 2.11 End-user Guide

110

21

22

23

24

25

26

27

28

29

A Boolean value determining whether the endpoint is exposed publicly

The port number

Attributes relating to the endpoint

Direct link(s) to the vsix files included with this plugin. The vsix built by the repository specified,
such as the main extension, must be listed first

TODO

(OPTIONAL) Extra dependencies in addition to the one listed in extensionDependencies field of
package.json

(OPTIONAL) Do not include this plug-in in index.json if true. Useful in case of dependencies that
you do not want to expose as standalone plug-ins

(OPTIONAL) Do not look at specified dependencies from extensionDependencies field of
package.json (only for meta.yaml generation)

(OPTIONAL) Extra dependencies in addition to the one listed in extensionDependencies field of
package.json (only for meta.yaml generation)

1. Run the build.sh script with the options of your choosing. The build process will generate
meta.yaml files automatically, based on the entries in the che-theia-plugins.yaml file.

2. Use the resulting plug-ins registry image in CodeReady Workspaces, or copy the
meta.yaml file out of the registry container and reference it directly as an HTTP resource.

5.4. PUBLISHING METADATA FOR A VS CODE EXTENSION

To use a VS Code extension in a CodeReady Workspaces workspace, CodeReady Workspaces needs to
consume metadata describing the extension. The CodeReady Workspaces plug-ins registry is a static
website publishing metadata for common VS Code extensions.

This article describes how to publish metadata for an additional extension, not available in the
CodeReady Workspaces plug-ins registry, by using the extension configuration meta.yaml file.

For details on adding a plugin to an existing plug-in registry, see Section 5.3, “Adding a VS Code
extension to the Che plug-ins registry”

Prerequisite

If the VS Code extension requires it, the required associated container image is available.

Procedure

1. Create a meta.yaml file.

2. Edit the meta.yaml file and provide the necessary information. The file must have the following
structure:

apiVersion: v2 1
publisher: myorg 2
name: my-vscode-ext 3

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

111

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Version of the file structure.

Name of the plug-in publisher. Must be the same as the publisher in the path.

Name of the plug-in. Must be the same as in path.

Version of the plug-in. Must be the same as in path.

Type of the plug-in. Possible values: Che Plugin, Che Editor, Theia plugin, VS Code
extension.

A short name of the plug-in.

Title of the plug-in.

A brief explanation of the plug-in and what it does.

The link to the plug-in logo.

Optional. The link to the source-code repository of the plug-in.

Defines the category that this plug-in belongs to. Should be one of the following: Editor,
Debugger, Formatter, Language, Linter, Snippet, Theme, or Other.

If this section is omitted, the VS Code extension is added into the Che-Theia IDE
container.

The Docker image from which the sidecar container will be started. Example: theia-
endpoint-image.

The maximum RAM which is available for the sidecar container. Example: "512Mi". This value
might be overridden by the user in the component configuration.

The RAM which is given for the sidecar container by default. Example: "256Mi". This value
might be overridden by the user in the component configuration.

version: 1.7.2 4
type: value 5
displayName: 6
title: 7
description: 8
icon: https://www.eclipse.org/che/images/logo-eclipseche.svg 9
repository: 10
category: 11
spec:
 containers: 12
 - image: 13
 memoryLimit: 14
 memoryRequest: 15
 cpuLimit: 16
 cpuRequest: 17
 extensions: 18
 - https://github.com/redhat-developer/vscode-
yaml/releases/download/0.4.0/redhat.vscode-yaml-0.4.0.vsix
 - https://github.com/SonarSource/sonarlint-vscode/releases/download/1.16.0/sonarlint-
vscode-1.16.0.vsix

Red Hat CodeReady Workspaces 2.11 End-user Guide

112

16

17

18

might be overridden by the user in the component configuration.

The maximum CPU amount in cores or millicores (suffixed with "m") which is available for
the sidecar container. Examples: "500m", "2". This value might be overridden by the user in
the component configuration.

The CPU amount in cores or millicores (suffixed with "m") which is given for the sidecar
container by default. Example: "125m". This value might be overridden by the user in the
component configuration.

A list of VS Code extensions run in this sidecar container.

3. Publish the meta.yaml file as an HTTP resource by creating a gist on GitHub or GitLab with a
file content published there.

5.5. TESTING A VISUAL STUDIO CODE EXTENSION IN CODEREADY
WORKSPACES

Visual Studio Code (VS Code) extensions work in a workspace. VS Code extensions can run in the Che-
Theia editor container, or in their own isolated and preconfigured containers with their prerequisites.

This section describes how to test a VS Code extension in CodeReady Workspaces with workspaces and
how to review the compatibility of VS Code extensions to check whether a specific API is available.

NOTE

The extension-hosting sidecar container and the use of the extension in a devfile are
optional.

5.5.1. Testing a VS Code extension using GitHub gist

Each workspace can have its own set of plug-ins. The list of plug-ins and the list of projects to clone are
defined in the devfile.yaml file.

For example, to enable an AsciiDoc plug-in from the Red Hat CodeReady Workspaces dashboard, add
the following snippet to the devfile:

To add a plug-in that is not in the default plug-in registry, build a custom plug-in registry. See
Customizing the registries, or, alternatively, use GitHub and the gist service.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

A GitHub account.

Procedure

1. Go to the gist webpage and create a README.md file with the following description: Try

components:
 - id: joaopinto/vscode-asciidoctor/latest
 type: chePlugin

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

113

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#customizing-the-registries_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

1

1

1. Go to the gist webpage and create a README.md file with the following description: Try
Bracket Pair Colorizer extension in Red Hat CodeReady Workspaces and content:
Example VS Code extension. (Bracket Pair Colorizer is a popular VS Code extension.)

2. Click the Create secret gist button.

3. Clone the gist repository by using the URL from the navigation bar of the browser:

$ git clone https://gist.github.com/<your-github-username>/<gist-id>

Example of the output of the git clone command

git clone https://gist.github.com/benoitf/85c60c8c439177ac50141d527729b9d9 1
Cloning into '85c60c8c439177ac50141d527729b9d9'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), done.

Each gist has a unique ID.

4. Change the directory:

$ cd <gist-directory-name> 1

Directory name matching the gist ID.

5. Download the plug-in from the VS Code marketplace or from its GitHub page, and store the
plug-in file in the cloned directory.

6. Create a plugin.yaml file in the cloned directory to add the definition of this plug-in.

Example of the plugin.yaml file referencing the .vsix binary file extension

apiVersion: v2
publisher: CoenraadS
name: bracket-pair-colorizer
version: 1.0.61
type: VS Code extension
displayName: Bracket Pair Colorizer
title: Bracket Pair Colorizer
description: Bracket Pair Colorizer
icon: https://raw.githubusercontent.com/redhat-developer/codeready-workspaces/crw-2-rhel-
8/dependencies/che-plugin-registry/resources/images/default.svg?sanitize=true
repository: https://github.com/CoenraadS/BracketPair
category: Language
firstPublicationDate: '2020-07-30'
spec: 1
 extensions:
 - "{{REPOSITORY}}/CoenraadS.bracket-pair-colorizer-1.0.61.vsix" 2
latestUpdateDate: "2020-07-30"

Red Hat CodeReady Workspaces 2.11 End-user Guide

114

https://gist.github.com/
https://marketplace.visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer
https://marketplace.visualstudio.com/items?itemName=CoenraadS.bracket-pair-colorizer
https://github.com/CoenraadS/BracketPair/releases

1

2

This extension requires a basic Node.js runtime, so it is not necessary to add a custom
runtime image in plugin.yaml.

{{REPOSITORY}} is a macro for a pre-commit hook.

7. Define a memory limit and volumes:

8. Create a devfile.yaml that references the plugin.yaml file:

spec:
 containers:
 - image: "quay.io/eclipse/che-sidecar-java:8-0cfbacb"
 name: vscode-java
 memoryLimit: "1500Mi"
 volumes:
 - mountPath: "/home/theia/.m2"
 name: m2

apiVersion: 1.0.0
metadata:
 generateName: java-maven-
projects:
 -
 name: console-java-simple
 source:
 type: git
 location: "https://github.com/che-samples/console-java-simple.git"
 branch: java1.11
components:
 -
 type: chePlugin
 id: redhat/java11/latest
 -
 type: chePlugin 1
 reference: "{{REPOSITORY}}/plugin.yaml"
 -
 type: dockerimage
 alias: maven
 image: quay.io/eclipse/che-java11-maven:nightly
 memoryLimit: 512Mi
 mountSources: true
 volumes:
 - name: m2
 containerPath: /home/user/.m2
commands:
 -
 name: maven build
 actions:
 -
 type: exec
 component: maven
 command: "mvn clean install"
 workdir: ${CHE_PROJECTS_ROOT}/console-java-simple
 -
 name: maven build and run

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

115

1 Any other devfile definition is also accepted. The important information in this devfile are
the lines defining this external component. It means that an external reference defines the
plug-in and not an ID, which pointing to a definition in the default plug-in registry.

9. Verify there are 4 files in the current Git directory:

$ ls -la
.git
CoenraadS.bracket-pair-colorizer-1.0.61.vsix
README.md
devfile.yaml
plugin.yaml

10. Before committing the files, add a pre-commit hook to update the {{REPOSITORY}} variable to
the public external raw gist link:

a. Create a .git/hooks/pre-commit file with this content:

The hook replaces the {{REPOSITORY}} macro and adds the external raw link to the gist.

b. Make the script executable:

$ chmod u+x .git/hooks/pre-commit

 actions:
 -
 type: exec
 component: maven
 command: "mvn clean install && java -jar ./target/*.jar"
 workdir: ${CHE_PROJECTS_ROOT}/console-java-simple

#!/bin/sh

get modified files
FILES=$(git diff --cached --name-only --diff-filter=ACMR "*.yaml" | sed 's| |\\ |g')

exit fast if no files found
[-z "$FILES"] && exit 0

grab remote origin
origin=$(git config --get remote.origin.url)
url="${origin}/raw"

iterate on files and add the good prefix pattern
for FILE in ${FILES}; do
 sed -e "s#{{REPOSITORY}}#${url}#g" "${FILE}" > "${FILE}.back"
 mv "${FILE}.back" "${FILE}"
done

Add back to staging
echo "$FILES" | xargs git add

exit 0

Red Hat CodeReady Workspaces 2.11 End-user Guide

116

11. Commit and push the files:

Add files
$ git add *

Commit
$ git commit -m "Initial Commit for the test of our extension"
[main 98dd370] Initial Commit for the test of our extension
 3 files changed, 61 insertions(+)
 create mode 100644 CoenraadS.bracket-pair-colorizer-1.0.61.vsix
 create mode 100644 devfile.yaml
 create mode 100644 plugin.yaml

and push the files to the main branch
$ git push origin

12. Visit the gist website and verify that all links have the correct public URL and do not contain any
{{REPOSITORY}} variables. To reach the devfile:

$ echo "$(git config --get remote.origin.url)/raw/devfile.yaml"

or:

$ echo "https://<che-server>/#$(git config --get remote.origin.url)/raw/devfile.yaml"

5.5.2. Verifying the VS Code extension API compatibility level

Che-Theia does not fully support the VS Code extensions API. The vscode-theia-comparator is used to
analyze the compatibility between the Che-Theia plug-in API and the VS Code extension API. This tool
runs nightly, and the results are published on the vscode-theia-comparator GitHub page.

Prerequisites

Personal GitHub access token. See Creating a personal access token for the command line . A
GitHub access token is required to increase the GitHub download limit for your IP address.

Procedure

To run the vscode-theia comparator manually:

1. Clone the vscode-theia-comparator repository, and build it using the yarn command.

2. Set the GITHUB_TOKEN environment variable to your token.

3. Execute the yarn run generate command to generate a report.

4. Open the out/status.html file to view the report.

5.6. USING ALTERNATIVE IDES IN CODEREADY WORKSPACES

Extending Red Hat CodeReady Workspaces developer workspaces using different IDEs (integrated
development environments) enables:

Re-purposing the environment for different use cases.

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

117

https://github.com/che-incubator/vscode-theia-comparator/
https://che-incubator.github.io/vscode-theia-comparator/status.html
https://help.github.com/en/articles/creating-a-personal-access-token-for-the-command-line
https://github.com/che-incubator/vscode-theia-comparator/

Providing a dedicated custom IDE for specific tools.

Providing different perspectives for individual users or groups of users.

Red Hat CodeReady Workspaces provides a default web IDE to be used with the developer workspaces.
This IDE is completely decoupled. You can bring your own custom IDE for Red Hat CodeReady
Workspaces:

Built from Eclipse Theia, which is a framework to build web IDEs. Example: Sirius on the web.

Completely different web IDEs, such as Jupyter, Eclipse Dirigible, or others. Example: Jupyter
in Red Hat CodeReady Workspaces workspaces.

Bringing custom IDE built from Eclipse Theia

Creating your own custom IDE based on Eclipse Theia.

Adding CodeReady Workspaces-specific tools to your custom IDE.

Packaging your custom IDE into the available editors for CodeReady Workspaces.

Bringing your completely different web IDE into CodeReady Workspaces

Packaging your custom IDE into the available editors for CodeReady Workspaces.

5.7. THEIA-BASED IDES

This section describes how to provide a custom IDE, based on Eclipse Theia framework.

To use a Theia-based IDE in Red Hat CodeReady Workspaces as an editor, you need to prepare two
main components:

a Docker image containing your IDE

the Che editor descriptor file - meta.yaml

Procedure

1. Describe the IDE with an editor descriptor - meta.yaml file:

version: 1.0.0
editors:
 - id: eclipse/che-theia/next
 title: Eclipse Theia development version.
 displayName: theia-ide
 description: Eclipse Theia, get the latest release each day.
 icon: https://raw.githubusercontent.com/theia-ide/theia/master/logo/theia-logo-no-text-
black.svg?sanitize=true
 repository: https://github.com/eclipse-che/che-theia
 firstPublicationDate: "2021-01-01"
 endpoints:
 - name: "theia"
 public: true
 targetPort: 3100
 attributes:

Red Hat CodeReady Workspaces 2.11 End-user Guide

118

https://www.youtube.com/watch?v=B6aCqywKpyY
https://www.youtube.com/watch?v=VooNzKxRFgw

targetPort and exposedPort must be the same as the Theia-based IDE running inside the
container. Replace <your-ide-image> with the name of the IDE image. The meta.yaml file
should be publicly accessible through an HTTP(S) link.

2. Add your editor to a Devfile:

<meta.yaml URL> should point to the publicly hosted meta.yaml file described in the previous
step.

5.8. ADDING TOOLS TO CODEREADY WORKSPACES AFTER
CREATING A WORKSPACE

When installed in a workspace, CodeReady Workspaces plug-ins bring new capabilities to CodeReady
Workspaces. Plug-ins consist of a Che-Theia plug-in, metadata, and a hosting container. These plug-ins
may provide the following capabilities:

Integrating with other systems, including OpenShift.

Automating some developer tasks, such as formatting, refactoring, and running automated
tests.

Communicating with multiple databases directly from the IDE.

Enhanced code navigation, auto-completion, and error highlighting.

This chapter provides basic information about installing, enabling, and using CodeReady Workspaces
plug-ins in workspaces.

Section 5.8.1, “Additional tools in the CodeReady Workspaces workspace”

Section 5.8.2, “Adding a language support plug-in to a CodeReady Workspaces workspace”

5.8.1. Additional tools in the CodeReady Workspaces workspace

CodeReady Workspaces plug-ins are extensions to the Che-Theia IDE that come bundled with container

 protocol: http
 type: ide
 secure: true
 cookiesAuthEnabled: true
 discoverable: false
 containers:
 - name: theia-ide
 image: "<your-ide-image>"
 mountSources: true
 ports:
 - exposedPort: 3100
 memoryLimit: "512M"

apiVersion: 1.0.0
metadata:
 name: che-theia-based-ide
components:
 - type: cheEditor
 reference: '<meta.yaml URL>'

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

119

images. These images contain the native prerequisites of their respective extensions. For example, the
OpenShift command-line tool is bundled with a command to install it, which ensures the proper
functionality of the OpenShift Connector plug-in, all available in the dedicated image.

Plug-ins can also include metadata to define a description, categorization tags, and an icon. CodeReady
Workspaces provides a registry of plug-ins available for installation into the user’s workspace.

The Che-Theia IDE is generally compatible with the VS Code extensions API and VS Code extensions
are automatically compatible with Che-Theia. These extensions are possible to package as CodeReady
Workspaces plug-ins by combining them with their dependencies. By default, CodeReady Workspaces
includes a plug-in registry containing common plug-ins.

Adding a plug-in

Using the Dashboard:

Add a plug-in directly into a devfile using the Devfile tab.
The devfile can also further the plug-in configuration, such as defining memory or CPU
consumption.

Using the Che-Theia IDE:

By pressing Ctrl+Shift+J or by navigating to View → Plugins.

Additional resources

Adding components to a devfile

5.8.2. Adding a language support plug-in to a CodeReady Workspaces workspace

This procedure describes adding a tool to an existing workspace by enabling a dedicated plug-in from
the Dashboard.

To add tools that are available as plug-ins into a CodeReady Workspaces workspace, use one of the
following methods:

Edit the workspace devfile from the Dashboard Devfile tab.

This procedure uses the Language Support for Java plug-in as an example.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces .

An existing workspace defined in this instance of Red Hat CodeReady Workspaces; see:

Section 3.5, “Configuring a CodeReady Workspaces 2.11 workspace”

Creating a workspace from Quick Add view of user dashboard

The workspace must be in a stopped state. To stop a workspace:

a. Navigate to the CodeReady Workspaces Dashboard. See Section 1.1, “Navigating
CodeReady Workspaces using the Dashboard”.

b. In the Dashboard, click the Workspaces menu to open the workspaces list and locate the

Red Hat CodeReady Workspaces 2.11 End-user Guide

120

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

b. In the Dashboard, click the Workspaces menu to open the workspaces list and locate the
workspace.

c. On the same row with the displayed workspace, on the right side of the screen, click the
square Stop button to stop the workspace.

d. Wait a few seconds for the workspace to stop (the workspace’s icon on the list will turn
grey), then configure the workspace by selecting it.

Procedure

To add the plug-in from the Plug-in registry to an existing CodeReady Workspaces workspace, use one
of the following methods:

Installing the plug-in by adding content to the devfile.

1. Navigate to the Devfile tab. The devfile YAML is displayed.

2. Locate the components section of the devfile and add the following lines to add the Java
language plugin with Java 8 to the workspace:

An example of the final result:

3. On the bottom right side of the screen, save the changes using the Save button. After
changes are saved, the workspace can be restarted and will include the new plug-in.

Additional resources

Devfile specifications

 - id: redhat/java8/latest
 type: chePlugin

components:
 - id: redhat/php/latest
 memoryLimit: 1Gi
 type: chePlugin
 - id: redhat/php-debugger/latest
 memoryLimit: 256Mi
 type: chePlugin
 - mountSources: true
 endpoints:
 - name: 8080/tcp
 port: 8080
 memoryLimit: 512Mi
 type: dockerimage
 volumes:
 - name: composer
 containerPath: {prod-home}/.composer
 - name: symfony
 containerPath: {prod-home}/.symfony
 alias: php
 image: 'quay.io/eclipse/che-php-7:nightly'
 - id: redhat/java8/latest
 type: chePlugin

CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS

121

https://redhat-developer.github.io/devfile/devfile

5.9. USING PRIVATE CONTAINER REGISTRIES

This section describes the necessary steps to use container images from private container registries.

Prerequisites

A running instance of CodeReady Workspaces. See Installing CodeReady Workspaces .

Procedure

1. Navigate to the CodeReady Workspaces Dashboard. See Section 1.1, “Navigating CodeReady
Workspaces using the Dashboard”.

2. Navigate to User Preferences.

a. Click on your username in the top right corner.

b. Click the User Preferences tab.

3. Click the Add Container Registry button in Container Registries tab and execute following
actions:

Enter the container registry domain name in the Registry field.

Optionally, enter the username of your account at this registry in the Username field.

Enter the password in the Password field to authenticate in the container registry.

4. Click the Add button.

Verification

1. See that there is a new entry in the Container Registries tab.

2. Create a workspace that uses a container image from the specified container registry. See
Section 4.2, “Authoring devfiles version 2” .

Additional resources

Kubernetes documentation: Pull an Image from a Private Registry

Red Hat CodeReady Workspaces 2.11 End-user Guide

122

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A
RESTRICTED ENVIRONMENT

By configuring technology stacks, you can work with artifacts from in-house repositories using self-
signed certificates.

Section 6.1, “Using Maven artifact repositories”

Section 6.2, “Using Gradle artifact repositories”

Section 6.3, “Using Python artifact repositories”

Section 6.4, “Using Go artifact repositories”

Section 6.5, “Using NuGet artifact repositories”

Section 6.6, “Using npm artifact repositories”

6.1. USING MAVEN ARTIFACT REPOSITORIES

Maven downloads artifacts that are defined in two locations:

Artifact repositories defined in a pom.xml file of the project. Configuring repositories in
pom.xml is not specific to Red Hat CodeReady Workspaces. For more information, see the
Maven documentation about the POM.

Artifact repositories defined in a settings.xml file. By default, settings.xml is located at
`~/.m2/settings.xml.

6.1.1. Defining repositories in settings.xml

To specify your own artifact repositories at example.server.org, use the settings.xml file. Ensure that
settings.xml is in all the containers that use Maven tools. In particular, ensure that it is in the Maven
container and the Java plug-in container.

By default, settings.xml is located at the <home dir>/.m2 directory which is already on persistent
volume in Maven and Java plug-in containers and you don’t need to re-create the file each time you
restart the workspace if it isn’t in ephemeral mode.

In case you have another container that uses Maven tools and you are about to share <home dir>/.m2
folder with this container, you have to specify the custom volume for this specific component in the
devfile:

apiVersion: 1.0.0
metadata:
 name: MyDevfile
components:
 - type: chePlugin
 alias: maven-tool
 id: plugin/id
 volumes:
 - name: m2
 containerPath: <home dir>/.m2

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

123

https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

Procedure

1. Configure your settings.xml file to use artifact repositories at example.server.org:

<settings>
 <profiles>
 <profile>
 <id>my-nexus</id>
 <pluginRepositories>
 <pluginRepository>
 <id>my-nexus-snapshots</id>
 <releases>
 <enabled>false</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <url>http://example.server.org/repository/maven-snapshots/</url>
 </pluginRepository>
 <pluginRepository>
 <id>my-nexus-releases</id>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <url>http://example.server.org/repository/maven-releases/</url>
 </pluginRepository>
 </pluginRepositories>
 <repositories>
 <repository>
 <id>my-nexus-snapshots</id>
 <releases>
 <enabled>false</enabled>
 </releases>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <url>http://example.server.org/repository/maven-snapshots/</url>
 </repository>
 <repository>
 <id>my-nexus-releases</id>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <url>http://example.server.org/repository/maven-releases/</url>
 </repository>
 </repositories>
 </profile>
 </profiles>
 <activeProfiles>

Red Hat CodeReady Workspaces 2.11 End-user Guide

124

6.1.2. Defining Maven settings.xml file across workspaces

To use your own settings.xml file across all your workspaces, create a Secret object (with a name of
your choice) in the same project as the workspace. Put the contents of the required settings.xml in the
data section of the Secret (possibly along with other files that should reside in the same directory).
Labelling and annotating this Secret according to Section 3.9.1, “Mounting a secret as a file into a
workspace container” ensures that the contents of the Secret is mounted into the workspace Pod. Note
that you need to restart any previously running workspaces for them to use this Secret.

Prerequisites

This is required to set your private credentials to a Maven repository. See the Maven documentation
Settings.xml#Servers for additional information.

To mount this settings.xml:

Procedure

1. Convert settings.xml to base64:

$ cat settings.xml | base64

2. Copy the output to a new file, secret.yaml, which also defines needed annotations and labels:

 <activeProfile>my-nexus</activeProfile>
 </activeProfiles>
</settings>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 https://maven.apache.org/xsd/settings-1.0.0.xsd">
 <servers>
 <server>
 <id>repository-id</id>
 <username>username</username>
 <password>password123</password>
 </server>
 </servers>
</settings>

apiVersion: v1
kind: Secret
metadata:
 name: maven-settings-secret
 labels:
 app.kubernetes.io/part-of: che.eclipse.org
 app.kubernetes.io/component: workspace-secret
 annotations:
 che.eclipse.org/automount-workspace-secret: "true"
 che.eclipse.org/mount-path: /home/jboss/.m2
 che.eclipse.org/mount-as: file
type: Opaque
data:

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

125

https://maven.apache.org/settings.html#servers

3. Create this secret in the cluster:

$ oc apply -f secret.yaml

4. Start a new workspace. The maven container contains a file /home/jboss/.m2/settings.xml
with your original content.

6.1.2.1. OpenShift 3.11 and OpenShift <1.13

On OpenShift 3.11 , it’s impossible to have multiple VolumeMounts at same path so having devfile with
volume /home/jboss/.m2 and secret at /home/jboss/.m2/settings.xml would resolve into the conflict.
On these clusters use /home/jboss/.m2/repository as a volume for maven repository in the devfile:

6.1.3. Using self-signed certificates in Maven projects

Internal artifact repositories often do not have a certificate signed by an authority that is trusted by
default in Java. They are mainly signed by an internal company authority or are self-signed. Configure
your tools to accept these certificates by adding them to the Java truststore.

Procedure

1. Obtain a server certificate file from the repository server. It is customary for administrators to
provide certificates of internal artifact servers as OpenShift secrets (see Importing untrusted
TLS certificates to CodeReady Workspaces). The relevant server certificates will be mounted in
/public-certs in every container in the workspace.

a. Copy the original Java truststore file:

$ mkdir /projects/maven
$ cp $JAVA_HOME/lib/security/cacerts /projects/maven/truststore.jks
$ chmod +w /projects/maven/truststore.jks

 settings.xml:
PHNldHRpbmdzIHhtbG5zPSJodHRwOi8vbWF2ZW4uYXBhY2hlLm9yZy9TRVRUSU5HUy8xLj
AuMCIKICAgICAgICAgIHhtbG5zOnhzaT0iaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2
hlbWEtaW5zdGFuY2UiCiAgICAgICAgICB4c2k6c2NoZW1hTG9jYXRpb249Imh0dHA6Ly9tYXZl
bi5hcGFjaGUub3JnL1NFVFRJTkdTLzEuMC4wCiAgICAgICAgICAgICAgICAgICAgICAgICAgI
CAgIGh0dHBzOi8vbWF2ZW4uYXBhY2hlLm9yZy94c2Qvc2V0dGluZ3MtMS4wLjAueHNkIj4KIC
A8c2VydmVycz4KICAgIDxzZXJ2ZXI+CiAgICAgIDxpZD5yZXBvc2l0b3J5LWlkPC9pZD4KICAgI
CAgPHVzZXJuYW1lPnVzZXJuYW1lPC91c2VybmFtZT4KICAgICAgPHBhc3N3b3JkPnBhc3N3
b3JkMTIzPC9wYXNzd29yZD4KICAgIDwvc2VydmVyPgogIDwvc2VydmVycz4KPC9zZXR0aW5
ncz4K

apiVersion: 1.0.0
metadata:
 ...
components:
 - type: dockerimage
 alias: maven
 image: maven:3.11
 volumes:
 - name: m2
 containerPath: /home/jboss/.m2/repository
 ...

Red Hat CodeReady Workspaces 2.11 End-user Guide

126

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#importing-untrusted-tls-certificates_crw

b. Import the certificate into the Java truststore file

$ keytool -import -noprompt -file /public-certs/nexus.cer -alias nexus -keystore
/projects/maven/truststore.jks -storepass changeit
Certificate was added to keystore

2. Add the truststore file.

In the Maven container:

a. Add the javax.net.ssl system property to the MAVEN_OPTS environment variable:

b. Restart the workspace.

In the Java plug-in container:
In the devfile, add the javax.net.ssl system property for the Java language server:

6.2. USING GRADLE ARTIFACT REPOSITORIES

This section describes how to download and configure Gradle.

6.2.1. Downloading different versions of Gradle

The recommended way to download any version of Gradle is by using the Gradle Wrapper script. If your
project does not have a gradle/wrapper directory, run $ gradle wrapper to configure the Wrapper.

Prerequisites

The Gradle Wrapper is available in your project.

Procedure

To download a Gradle version from a non-standard location, change your Wrapper settings in

 - mountSources: true
 alias: maven
 type: dockerimage
 ...
 env:
 -name: MAVEN_OPTS
 value: >-
 -Duser.home=/projects/maven -
Djavax.net.ssl.trustStore=/projects/maven/truststore.jks -
Djavax.net.ssl.trustStorePassword=changeit

components:
 - id: redhat/java11/latest
 type: chePlugin
 preferences:
 java.jdt.ls.vmargs: >-
 -noverify -Xmx1G -XX:+UseG1GC -XX:+UseStringDeduplication
 -Duser.home=/projects/maven
 -Djavax.net.ssl.trustStore=/projects/maven/truststore.jks
 -Djavax.net.ssl.trustStorePassword=changeit
[...]

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

127

To download a Gradle version from a non-standard location, change your Wrapper settings in
/projects/<your_project>/gradle/wrapper/gradle-wrapper.properties:

Change the distributionUrl property to point to a URL of the Gradle distribution ZIP file:

properties
distributionUrl=http://<url_to_gradle>/gradle-6.1-bin.zip

Alternatively, you may place a Gradle distribution zip file locally in /project/gradle in your workspace.

Change the distributionUrl property to point to a local address of the Gradle distribution zip
file:

properties
distributionUrl=file\:/projects/gradle/gradle-6.1-bin.zip

6.2.2. Configuring global Gradle repositories

Use an initialization script to configure global repositories for the workspace. Gradle performs extra
configuration before projects are evaluated, and this configuration is used in each Gradle project from
the workspace.

Procedure

To set global repositories for Gradle that could be used in each Gradle project in the workspace, create
an init.gradle script in the ~/.gradle/ directory:

This file configures Gradle to use a local Maven repository with the given credentials.

NOTE

The ~/.gradle directory does not persist in the current Java plug-in versions, so you must
create the init.gradle script at each workspace start in the Java plug-in sidecar
container.

6.2.3. Using self-signed certificates in Gradle projects

Internal artifact repositories often do not have a certificate signed by an authority that is trusted by
default in Java. They are mainly signed by an internal company authority or are self-signed. Configure
your tools to accept these certificates by adding them to the Java truststore.

allprojects {
 repositories {
 mavenLocal ()
 maven {
 url "http://repo.mycompany.com/maven"
 credentials {
 username "admin"
 password "my_password"
 }
 }
 }
}

Red Hat CodeReady Workspaces 2.11 End-user Guide

128

Procedure

1. Obtain a server certificate file from the repository server. It is customary for administrators to
provide certificates of internal artifact servers as OpenShift secrets (see Importing untrusted
TLS certificates to CodeReady Workspaces). The relevant server certificates will be mounted in
/public-certs in every container in the workspace.

a. Copy the original Java truststore file:

$ mkdir /projects/maven
$ cp $JAVA_HOME/lib/security/cacerts /projects/maven/truststore.jks
$ chmod +w /projects/maven/truststore.jks

b. Import the certificate into the Java truststore file

$ keytool -import -noprompt -file /public-certs/nexus.cer -alias nexus -keystore
/projects/maven/truststore.jks -storepass changeit
Certificate was added to keystore

c. Upload the truststore file to /projects/gradle/truststore.jks to make it available for all
containers.

2. Add the truststore file in the Gradle container.

a. Add the javax.net.ssl system property to the JAVA_OPTS environment variable:

Additional resources

Gradle documentation about initialization scripts

The Gradle Wrapper documentation

6.3. USING PYTHON ARTIFACT REPOSITORIES

6.3.1. Configuring Python to use a non-standard registry

To specify a non-standard repository for use by the Python pip tool, set the PIP_INDEX_URL
environment variable.

Procedure

In your devfile, configure the PIP_INDEX_URL environment variable for the language support
and for the development container components:

 - mountSources: true
 alias: maven
 type: dockerimage
 ...
 env:
 -name: JAVA_OPTS
 value: >-
 -Duser.home=/projects/gradle
 -Djavax.net.ssl.trustStore=/projects/maven/truststore.jks
 -Djavax.net.ssl.trustStorePassword=changeit

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

129

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#importing-untrusted-tls-certificates_crw
https://docs.gradle.org/current/userguide/init_scripts.html
https://docs.gradle.org/current/userguide/gradle_wrapper.html

6.3.2. Using self-signed certificates in Python projects

Internal artifact repositories often do not have a self-signed TLS certificate signed by an authority that is
trusted by default. They are mainly signed by an internal company authority or are self-signed. Configure
your tools to accept these certificates.

Python uses certificates from a file defined in the PIP_CERT environment variable.

Procedure

1. Obtain the certificate used by the pip server in the Privacy-Enhanced Mail (PEM) format. It is
customary for administrators to provide certificates of internal artifact servers as OpenShift
secrets (see Importing untrusted TLS certificates to CodeReady Workspaces). The relevant
server certificates will be mounted in /public-certs in every container in the workspace.

NOTE

pip accepts certificates in the Privacy-Enhanced Mail (PEM) format only.
Convert the certificate to the PEM format using OpenSSL if necessary.

2. Configure the devfile:

 - id: ms-python/python/latest
 memoryLimit: 512Mi
 type: chePlugin
 env:
 - name: 'PIP_INDEX_URL'
 value: 'https://<username>:<password>@pypi.company.com/simple'
 - mountSources: true
 memoryLimit: 512Mi
 type: dockerimage
 alias: python
 image: 'registry.redhat.io/codeready-workspaces/plugin-java8-rhel8:2.5'
 env:
 - name: 'PIP_INDEX_URL'
 value: 'https://<username>:<password>@pypi.company.com/simple'

 - id: ms-python/python/latest
 memoryLimit: 512Mi
 type: chePlugin
 env:
 - name: 'PIP_INDEX_URL'
 value: 'https://<username>:<password>@pypi.company.com/simple'
 - value: '/projects/tls/rootCA.pem'
 name: 'PIP_CERT'
 - mountSources: true
 memoryLimit: 512Mi
 type: dockerimage
 alias: python
 image: 'registry.redhat.io/codeready-workspaces/plugin-java8-rhel8:2.5'
 env:
 - name: 'PIP_INDEX_URL'

Red Hat CodeReady Workspaces 2.11 End-user Guide

130

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#importing-untrusted-tls-certificates_crw

6.4. USING GO ARTIFACT REPOSITORIES

To configure Go in a restricted environment, use the GOPROXY environment variable and the Athens
module data store and proxy.

6.4.1. Configuring Go to use a non-standard-registry

Athens is a Go module data store and proxy with many configuration options. It can be configured to act
only as a module data store and not as a proxy. An administrator can upload their Go modules to the
Athens data store and have them available across their Go projects. If a project tries to access a Go
module that is not in the Athens data store, the Go build fails.

To work with Athens, configure the GOPROXY environment variable in the devfile of your CLI
container:

6.4.2. Using self-signed certificates in Go projects

Internal artifact repositories often do not have a self-signed TLS certificate signed by an authority that is
trusted by default. They are typically signed by an internal company authority or are self-signed.
Configure your tools to accept these certificates.

Go uses certificates from a file defined in the SSL_CERT_FILE environment variable.

Procedure

1. Obtain the certificate used by the Athens server in the Privacy-Enhanced Mail (PEM) format. It
is customary for administrators to provide certificates of internal artifact servers as OpenShift
secrets (see Importing untrusted TLS certificates to CodeReady Workspaces). The relevant
server certificates will be mounted in /public-certs in every container in the workspace.

2. Add the appropriate environment variables to your devfile:

 value: 'https://<username>:<password>@pypi.company.com/simple'
 - value: '/projects/tls/rootCA.pem'
 name: 'PIP_CERT'

components:
- mountSources: true
 type: dockerimage
 alias: go-cli
 image: 'quay.io/eclipse/che-golang-1.12:7.7.0'
 ...
 - value: /tmp/.cache
 name: GOCACHE
 - value: 'http://your.athens.host'
 name: GOPROXY

components:
- mountSources: true
 type: dockerimage
 alias: go-cli
 image: 'registry.redhat.io/codeready-workspaces/stacks-golang-rhel8:2.5'
 ...
 - value: /tmp/.cache

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

131

https://github.com/gomods/athens
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#importing-untrusted-tls-certificates_crw

Additional resources

The Athens project repository

The Athens project documentation

6.5. USING NUGET ARTIFACT REPOSITORIES

To configure NuGet in a restricted environment, modify the nuget.config file and use the
SSL_CERT_FILE environment variable in the devfile to add self-signed certificates.

6.5.1. Configuring NuGet to use a non-standard artifact repository

NuGet searches for configuration files anywhere between the solution directory and the driver root
directory. If you put the nuget.config file in the /projects directory, the nuget.config file defines
NuGet behavior for all projects in /projects.

Procedure

Create and place the nuget.config file in the /projects directory.

Example nuget.config with a Nexus repository hosted at nexus.example.org:

6.5.2. Using self-signed certificates in NuGet projects

Internal artifact repositories often do not have a self-signed TLS certificate signed by an authority that is
trusted by default. They are mainly signed by an internal company authority or are self-signed. Configure
your tools to accept these certificates.

Procedure

1. Obtain the certificate used by the .NET server in the Privacy-Enhanced Mail (PEM) format. It is
customary for administrators to provide certificates of internal artifact servers as OpenShift
secrets (see Importing untrusted TLS certificates to CodeReady Workspaces). The relevant

 name: GOCACHE
 - value: 'http://your.athens.host'
 name: GOPROXY
 - value: '/projects/tls/rootCA.crt'
 name: SSL_CERT_FILE

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <packageSources>
 <add key="nexus2" value="https://nexus.example.org/repository/nuget-hosted/"/>
 </packageSources>
 <packageSourceCredentials>
 <nexus2>
 <add key="Username" value="user" />
 <add key="Password" value="..." />
 </nexus2>
 </packageSourceCredentials>
</configuration>

Red Hat CodeReady Workspaces 2.11 End-user Guide

132

https://github.com/gomods/athens
https://docs.gomods.io/
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#importing-untrusted-tls-certificates_crw

server certificates will be mounted in /public-certs in every container in the workspace.

2. Specify the location of the certificate file in the SSL_CERT_FILE environment variable in your
devfile for the OmniSharp plug-in and for the .NET container.

Example of the devfile:

6.6. USING NPM ARTIFACT REPOSITORIES

The npm (Node Package Manager) package manager for the JavaScript programming language is
configured using the npm config command, by writing values to the .npmrc files. However,
configuration values can also be set using the environment variables beginning with NPM_CONFIG_.

The Typescript plug-in used in Red Hat CodeReady Workspaces does not download any artifacts. It is
enough to configure npm in the dev-machine component.

Use the following environment variables for configuration:

The URL for the artifact repository: NPM_CONFIG_REGISTRY

For using a certificate from a file: NODE_EXTRA_CA_CERTS

Obtain a server certificate file from the repository server. It is customary for administrators to provide
certificates of internal artifact servers as OpenShift secrets (see Importing untrusted TLS certificates to
CodeReady Workspaces). The relevant server certificates will be mounted in /public-certs in every
container in the workspace.

1. An example configuration for the use of an internal repository with a self-signed certificate:

components:
 - id: redhat-developer/che-omnisharp-plugin/latest
 memoryLimit: 1024Mi
 type: chePlugin
 alias: omnisharp
 env:
 - value: /public-certs/nuget.cer
 name: SSL_CERT_FILE
 - mountSources: true
 endpoints:
 - name: 5000/tcp
 port: 5000
 memoryLimit: 512Mi
 type: dockerimage
 volumes:
 - name: dotnet
 containerPath: /home/jboss
 alias: dotnet
 image: 'quay.io/eclipse/che-dotnet-2.2:7.7.1'
 env:
 - value: /projects/tls/rootCA.crt
 name: SSL_CERT_FILE

 - mountSources: true
 endpoints:
 - name: nodejs

CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT

133

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#importing-untrusted-tls-certificates_crw

 port: 3000
 memoryLimit: '512Mi'
 type: 'dockerimage'
 alias: 'nodejs'
 image: 'quay.io/eclipse/che-nodejs10-ubi:nightly'
 env:
 -name: NODE_EXTRA_CA_CERTS
 value: '/public-certs/nexus.cer
 - name: NPM_CONFIG_REGISTRY
 value: 'https://snexus-airgap.apps.acme.com/repository/npm-proxy/'

Red Hat CodeReady Workspaces 2.11 End-user Guide

134

CHAPTER 7. TROUBLESHOOTING CODEREADY
WORKSPACES

This section provides troubleshooting procedures for the most frequent issues a user can come in
conflict with.

Additional resources

Section 7.1, “Viewing CodeReady Workspaces workspaces logs”

Section 7.2, “Investigating failures at a workspace start using the Verbose mode”

Section 7.3, “Troubleshooting slow workspaces”

Section 7.4, “Troubleshooting network problems”

7.1. VIEWING CODEREADY WORKSPACES WORKSPACES LOGS

This section describes how to view CodeReady Workspaces workspaces logs.

7.1.1. Viewing logs from language servers and debug adapters

7.1.1.1. Checking important logs

This section describes how to check important logs.

Procedure

1. In the OpenShift web console, click Applications → Pods to see a list of all the active
workspaces.

2. Click on the name of the running Pod where the workspace is running. The Pod screen contains
the list of all containers with additional information.

3. Choose a container and click the container name.

NOTE

The most important logs are the theia-ide container and the plug-ins container
logs.

4. On the container screen, navigate to the Logs section.

7.1.1.2. Detecting memory problems

This section describes how to detect memory problems related to a plug-in running out of memory. The
following are the two most common problems related to a plug-in running out of memory:

The plug-in container runs out of memory

This can happen during plug-in initialization when the container does not have enough RAM to
execute the entrypoint of the image. The user can detect this in the logs of the plug-in container. In
this case, the logs contain OOMKilled, which implies that the processes in the container requested

CHAPTER 7. TROUBLESHOOTING CODEREADY WORKSPACES

135

more memory than is available in the container.

A process inside the container runs out of memory without the container noticing this

For example, the Java language server (Eclipse JDT Language Server, started by the vscode-java
extension) throws an OutOfMemoryException. This can happen any time after the container is
initialized, for example, when a plug-in starts a language server or when a process runs out of memory
because of the size of the project it has to handle.
To detect this problem, check the logs of the primary process running in the container. For example,
to check the log file of Eclipse JDT Language Server for details, see the relevant plug-in-specific
sections.

7.1.1.3. Logging the client-server traffic for debug adapters

This section describes how to log the exchange between Che-Theia and a debug adapter into the
Output view.

Prerequisites

A debug session must be started for the Debug adapters option to appear in the list.

Procedure

1. Click File → Settings and then open Preferences.

2. Expand the Debug section in the Preferences view.

3. Set the trace preference value to true (default is false).
All the communication events are logged.

4. To watch these events, click View → Output and select Debug adapters from the drop-down
list at the upper right corner of the Output view.

7.1.1.4. Viewing logs for Python

This section describes how to view logs for the Python language server.

Procedure

Navigate to the Output view and select Python in the drop-down list.

7.1.1.5. Viewing logs for Go

This section describes how to view logs for the Go language server.

7.1.1.5.1. Finding the Go path

This section describes how to find where the GOPATH variable points to.

Red Hat CodeReady Workspaces 2.11 End-user Guide

136

Procedure

Execute the Go: Current GOPATH command.

7.1.1.5.2. Viewing the Debug Console log for Go

This section describes how to view the log output from the Go debugger.

Procedure

1. Set the showLog attribute to true in the debug configuration.

2. To enable debugging output for a component, add the package to the comma-separated list
value of the logOutput attribute:

3. The debug console prints the additional information in the debug console.

{
 "version": "0.2.0",
 "configurations": [
 {
 "type": "go",
 "showLog": true

 }
]
}

{
 "version": "0.2.0",
 "configurations": [
 {
 "type": "go",
 "showLog": true,
 "logOutput": "debugger,rpc,gdbwire,lldbout,debuglineerr"

 }
]
}

CHAPTER 7. TROUBLESHOOTING CODEREADY WORKSPACES

137

7.1.1.5.3. Viewing the Go logs output in the Output panel

This section describes how to view the Go logs output in the Output panel.

Procedure

1. Navigate to the Output view.

2. Select Go in the drop-down list.

7.1.1.6. Viewing logs for the NodeDebug NodeDebug2 adapter

NOTE

No specific diagnostics exist other than the general ones.

7.1.1.7. Viewing logs for Typescript

7.1.1.7.1. Enabling the label switched protocol (LSP) tracing

Procedure

1. To enable the tracing of messages sent to the Typescript (TS) server, in the Preferences view,
set the typescript.tsserver.trace attribute to verbose. Use this to diagnose the TS server
issues.

2. To enable logging of the TS server to a file, set the typescript.tsserver.log attribute to
verbose. Use this log to diagnose the TS server issues. The log contains the file paths.

7.1.1.7.2. Viewing the Typescript language server log

This section describes how to view the Typescript language server log.

Red Hat CodeReady Workspaces 2.11 End-user Guide

138

Procedure

1. To get the path to the log file, see the Typescript Output console:

2. To open log file, use the Open TS Server log command.

7.1.1.7.3. Viewing the Typescript logs output in the Output panel

This section describes how to view the Typescript logs output in the Output panel.

Procedure

1. Navigate to the Output view

2. Select TypeScript in the drop-down list.

7.1.1.8. Viewing logs for Java

Other than the general diagnostics, there are Language Support for Java (Eclipse JDT Language
Server) plug-in actions that the user can perform.

7.1.1.8.1. Verifying the state of the Eclipse JDT Language Server

Procedure

Check if the container that is running the Eclipse JDT Language Server plug-in is running the Eclipse
JDT Language Server main process.

1. Open a terminal in the container that is running the Eclipse JDT Language Server plug-in (an
example name for the container: vscode-javaxxx).

2. Inside the terminal, run the ps aux | grep jdt command to check if the Eclipse JDT Language
Server process is running in the container. If the process is running, the output is:

usr/lib/jvm/default-jvm/bin/java --add-modules=ALL-SYSTEM --add-opens java.base/java.util

This message also shows the VSCode Java extension used. If it is not running, the language
server has not been started inside the container.

3. Check all logs described in Checking important logs

7.1.1.8.2. Verifying the Eclipse JDT Language Server features

CHAPTER 7. TROUBLESHOOTING CODEREADY WORKSPACES

139

https://github.com/redhat-developer/vscode-java

Procedure

If the Eclipse JDT Language Server process is running, check if the language server features are
working:

1. Open a Java file and use the hover or autocomplete functionality. In case of an erroneous file,
the user sees Java in the Outline view or in the Problems view.

7.1.1.8.3. Viewing the Java language server log

Procedure

The Eclipse JDT Language Server has its own workspace where it logs errors, information about
executed commands, and events.

1. To open this log file, open a terminal in the container that is running the Eclipse JDT Language
Server plug-in. You can also view the log file by running the Java: Open Java Language Server
log file command.

2. Run cat <PATH_TO_LOG_FILE> where PATH_TO_LOG_FILE is
/home/theia/.theia/workspace-
storage/<workspace_name>/redhat.java/jdt_ws/.metadata/.log.

7.1.1.8.4. Logging the Java language server protocol (LSP) messages

Procedure

To log the LSP messages to the VS Code Output view, enable tracing by setting the java.trace.server
attribute to verbose.

Additional resources

For troubleshooting instructions, see the VS Code Java Github repository .

7.1.1.9. Viewing logs for Intelephense

7.1.1.9.1. Logging the Intelephense client-server communication

Procedure

To configure the PHP Intelephense language support to log the client-server communication in the
Output view:

1. Click File → Settings.

2. Open the Preferences view.

3. Expand the Intelephense section and set the trace.server.verbose preference value to
verbose to see all the communication events (the default value is off).

7.1.1.9.2. Viewing Intelephense events in the Output panel

This procedure describes how to view Intelephense events in the Output panel.

Procedure

Red Hat CodeReady Workspaces 2.11 End-user Guide

140

https://github.com/redhat-developer/vscode-java

1. Click View → Output

2. Select Intelephense in the drop-down list for the Output view.

7.1.1.10. Viewing logs for PHP-Debug

This procedure describes how to configure the PHP Debug plug-in to log the PHP Debug plug-in
diagnostic messages into the Debug Console view. Configure this before the start of the debug
session.

Procedure

1. In the launch.json file, add the "log": true attribute to the php configuration.

2. Start the debug session.

3. The diagnostic messages are printed into the Debug Console view along with the application
output.

7.1.1.11. Viewing logs for XML

Other than the general diagnostics, there are XML plug-in specific actions that the user can perform.

7.1.1.11.1. Verifying the state of the XML language server

Procedure

1. Open a terminal in the container named vscode-xml-<xxx>.

2. Run ps aux | grep java to verify that the XML language server has started. If the process is
running, the output is:

java ***/org.eclipse.ls4xml-uber.jar`

If is not, see the Checking important logs chapter.

7.1.1.11.2. Checking XML language server feature flags

Procedure

1. Check if the features are enabled. The XML plug-in provides multiple settings that can enable
and disable features:

xml.format.enabled: Enable the formatter

xml.validation.enabled: Enable the validation

xml.documentSymbols.enabled: Enable the document symbols

2. To diagnose whether the XML language server is working, create a simple XML element, such as
<hello></hello>, and confirm that it appears in the Outline panel on the right.

3. If the document symbols do not show, ensure that the xml.documentSymbols.enabled
attribute is set to true. If it is true, and there are no symbols, the language server may not be
hooked to the editor. If there are document symbols, then the language server is connected to

CHAPTER 7. TROUBLESHOOTING CODEREADY WORKSPACES

141

the editor.

4. Ensure that the features that the user needs, are set to true in the settings (they are set to true
by default). If any of the features are not working, or not working as expected, file an issue
against the Language Server.

7.1.1.11.3. Enabling XML Language Server Protocol (LSP) tracing

Procedure

To log LSP messages to the VS Code Output view, enable tracing by setting the xml.trace.server
attribute to verbose.

7.1.1.11.4. Viewing the XML language server log

Procedure

The log from the language server can be found in the plug-in sidecar at /home/theia/.theia/workspace-
storage/<workspace_name>/redhat.vscode-xml/lsp4xml.log.

7.1.1.12. Viewing logs for YAML

This section describes the YAML plug-in specific actions that the user can perform, in addition to the
general diagnostics ones.

7.1.1.12.1. Verifying the state of the YAML language server

This section describes how to verify the state of the YAML language server.

Procedure

Check if the container running the YAML plug-in is running the YAML language server.

1. In the editor, open a terminal in the container that is running the YAML plug-in (an example
name of the container: vscode-yaml-<xxx>).

2. In the terminal, run the ps aux | grep node command. This command searches all the node
processes running in the current container.

3. Verify that a command node **/server.js is running.

Red Hat CodeReady Workspaces 2.11 End-user Guide

142

https://github.com/angelozerr/lsp4xml

The node **/server.js running in the container indicates that the language server is running. If it is
not running, the language server has not started inside the container. In this case, see Checking
important logs.

7.1.1.12.2. Checking the YAML language server feature flags

Procedure

To check the feature flags:

1. Check if the features are enabled. The YAML plug-in provides multiple settings that can
enable and disable features, such as:

yaml.format.enable: Enables the formatter

yaml.validate: Enables validation

yaml.hover: Enables the hover function

yaml.completion: Enables the completion function

2. To check if the plug-in is working, type the simplest YAML, such as hello: world, and then
open the Outline panel on the right side of the editor.

3. Verify if there are any document symbols. If yes, the language server is connected to the
editor.

4. If any feature is not working, make sure that the settings listed above are set to true (they
are set to true by default). If a feature is not working, file an issue against the Language
Server.

7.1.1.12.3. Enabling YAML Language Server Protocol (LSP) tracing

Procedure

To log LSP messages to the VS Code Output view, enable tracing by setting the yaml.trace.server

CHAPTER 7. TROUBLESHOOTING CODEREADY WORKSPACES

143

https://github.com/redhat-developer/yaml-language-server

To log LSP messages to the VS Code Output view, enable tracing by setting the yaml.trace.server
attribute to verbose.

7.1.1.13. Viewing logs for .NET with OmniSharp-Theia plug-in

7.1.1.13.1. OmniSharp-Theia plug-in

CodeReady Workspaces uses the OmniSharp-Theia plug-in as a remote plug-in. It is located at
github.com/redhat-developer/omnisharp-theia-plugin. In case of an issue, report it, or contribute
your fix in the repository.

This plug-in registers omnisharp-roslyn as a language server and provides project dependencies
and language syntax for C# applications.

The language server runs on .NET SDK 2.2.105.

7.1.1.13.2. Verifying the state of the OmniSharp-Theia plug-in language server

Procedure

To check if the container running the OmniSharp-Theia plug-in is running OmniSharp, execute the
ps aux | grep OmniSharp.exe command. If the process is running, the following is an example
output:

/tmp/theia-unpacked/redhat-developer.che-omnisharp-
plugin.0.0.1.zcpaqpczwb.omnisharp_theia_plugin.theia/server/bin/mono
/tmp/theia-unpacked/redhat-developer.che-omnisharp-
plugin.0.0.1.zcpaqpczwb.omnisharp_theia_plugin.theia/server/omnisharp/OmniSharp.exe

If the output is different, the language server has not started inside the container. Check the logs
described in Checking important logs.

7.1.1.13.3. Checking OmniSharp Che-Theia plug-in language server features

Procedure

If the OmniSharp.exe process is running, check if the language server features are working
by opening a .cs file and trying the hover or completion features, or opening the Problems
or Outline view.

7.1.1.13.4. Viewing OmniSharp-Theia plug-in logs in the Output panel

Procedure

If OmniSharp.exe is running, it logs all information in the Output panel. To view the logs, open the
Output view and select C# from the drop-down list.

7.1.1.14. Viewing logs for .NET with NetcoredebugOutput plug-in

7.1.1.14.1. NetcoredebugOutput plug-in

The NetcoredebugOutput plug-in provides the netcoredbg tool. This tool implements the VS Code
Debug Adapter protocol and allows users to debug .NET applications under the .NET Core runtime.

Red Hat CodeReady Workspaces 2.11 End-user Guide

144

https://github.com/redhat-developer/omnisharp-theia-plugin
https://github.com/OmniSharp/omnisharp-roslyn
https://github.com/Samsung/netcoredbg

The container where the NetcoredebugOutput plug-in is running contains .NET SDK v.2.2.105.

7.1.1.14.2. Verifying the state of the NetcoredebugOutput plug-in

Procedure

1. Search for a netcoredbg debug configuration in the launch.json file.

Example 7.1. Sample debug configuration

2. Test the autocompletion feature within the braces of the configuration section of the
launch.json file. If you can find netcoredbg, the Che-Theia plug-in is correctly initialized. If
not, see Checking important logs.

7.1.1.14.3. Viewing NetcoredebugOutput plug-in logs in the Output panel

This section describes how to view NetcoredebugOutput plug-in logs in the Output panel.

Procedure

Open the Debug console.

7.1.1.15. Viewing logs for Camel

7.1.1.15.1. Verifying the state of the Camel language server

{
 "type": "netcoredbg",
 "request": "launch",
 "program": "${workspaceFolder}/bin/Debug/<target-framework>/<project-
name.dll>",
 "args": [],
 "name": ".NET Core Launch (console)",
 "stopAtEntry": false,
 "console": "internalConsole"
}

CHAPTER 7. TROUBLESHOOTING CODEREADY WORKSPACES

145

Procedure

The user can inspect the log output of the sidecar container using the Camel language tools that
are stored in the vscode-apache-camel<xxx> Camel container.

To verify the state of the language server:

1. Open a terminal inside the vscode-apache-camel<xxx> container.

2. Run the ps aux | grep java command. The following is an example language server process:

java -jar /tmp/vscode-unpacked/camel-tooling.vscode-apache-
camel.latest.euqhbmepxd.camel-tooling.vscode-apache-camel-
0.0.14.vsix/extension/jars/language-server.jar

3. If you cannot find it, see Checking important logs.

7.1.1.15.2. Viewing Camel logs in the Output panel

The Camel language server is a SpringBoot application that writes its log to the $\
{java.io.tmpdir}/log-camel-lsp.out file. Typically, $\{java.io.tmpdir} points to the /tmp directory, so
the filename is /tmp/log-camel-lsp.out.

Procedure

The Camel language server logs are printed in the Output channel named Language Support for
Apache Camel.

NOTE

The output channel is created only at the first created log entry on the client side. It
may be absent when everything is going well.

7.1.2. Viewing Che-Theia IDE logs

This section describes how to view Che-Theia IDE logs.

7.1.2.1. Viewing Che-Theia editor logs using the OpenShift CLI

Observing Che-Theia editor logs helps to get a better understanding and insight over the plug-ins

Red Hat CodeReady Workspaces 2.11 End-user Guide

146

Observing Che-Theia editor logs helps to get a better understanding and insight over the plug-ins
loaded by the editor. This section describes how to access the Che-Theia editor logs using the
OpenShift CLI (command-line interface).

Prerequisites

CodeReady Workspaces is deployed in an OpenShift cluster.

A workspace is created.

User is located in a CodeReady Workspaces installation project.

Procedure

1. Obtain the list of the available Pods:

$ oc get pods

Example

$ oc get pods
NAME READY STATUS RESTARTS AGE
codeready-9-xz6g8 1/1 Running 1 15h
workspace0zqb2ew3py4srthh.go-cli-549cdcf69-9n4w2 4/4 Running 0 1h

2. Obtain the list of the available containers in the particular Pod:

$ oc get pods <name-of-pod> --output jsonpath='\{.spec.containers[*].name}'

Example:

$ oc get pods workspace0zqb2ew3py4srthh.go-cli-549cdcf69-9n4w2 -o
jsonpath='\{.spec.containers[*].name}'
> go-cli che-machine-exechr7 theia-idexzb vscode-gox3r

3. Get logs from the theia/ide container:

$ oc logs --follow <name-of-pod> --container <name-of-container>

Example:

$ oc logs --follow workspace0zqb2ew3py4srthh.go-cli-549cdcf69-9n4w2 -container
theia-idexzb
>root INFO unzipping the plug-in 'task_plugin.theia' to directory: /tmp/theia-
unpacked/task_plugin.theia
root INFO unzipping the plug-in 'theia_yeoman_plugin.theia' to directory: /tmp/theia-
unpacked/theia_yeoman_plugin.theia
root WARN A handler with prefix term is already registered.
root INFO [nsfw-watcher: 75] Started watching: /home/theia/.theia
root WARN e.onStart is slow, took: 367.4600000013015 ms
root INFO [nsfw-watcher: 75] Started watching: /projects
root INFO [nsfw-watcher: 75] Started watching: /projects/.theia/tasks.json

CHAPTER 7. TROUBLESHOOTING CODEREADY WORKSPACES

147

root INFO [4f9590c5-e1c5-40d1-b9f8-ec31ec3bdac5] Sync of 9 plugins took:
62.26000000242493 ms
root INFO [nsfw-watcher: 75] Started watching: /projects
root INFO [hosted-plugin: 88] PLUGIN_HOST(88) starting instance

7.2. INVESTIGATING FAILURES AT A WORKSPACE START USING THE
VERBOSE MODE

Verbose mode allows users to reach an enlarged log output, investigating failures at a workspace
start.

In addition to usual log entries, the Verbose mode also lists the container logs of each workspace.

7.2.1. Restarting a CodeReady Workspaces workspace in Verbose mode after start
failure

This section describes how to restart a CodeReady Workspaces workspace in the Verbose mode
after a failure during the workspace start. Dashboard proposes the restart of a workspace in the
Verbose mode once the workspace fails at its start.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces.

An existing workspace that fails to start.

Procedure

1. Using Dashboard, try to start a workspace.

2. When it fails to start, click on the displayed Open in Verbose mode link.

3. Check the Logs tab to find a reason for the workspace failure.

7.2.2. Starting a CodeReady Workspaces workspace in Verbose mode

This section describes how to start the Red Hat CodeReady Workspaces workspace in Verbose
mode.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see Installing CodeReady Workspaces.

An existing workspace defined on this instance of CodeReady Workspaces.

Procedure

1. Open the Workspaces tab.

2. On the left side of a row dedicated to the workspace, access the drop-down menu
displayed as three horizontal dots and select the Open in Verbose mode option.
Alternatively, this option is also available in the workspace details, under the Actions drop-

Red Hat CodeReady Workspaces 2.11 End-user Guide

148

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

down menu.

3. Check the Logs tab to find a reason for the workspace failure.

7.3. TROUBLESHOOTING SLOW WORKSPACES

Sometimes, workspaces can take a long time to start. Tuning can reduce this start time. Depending
on the options, administrators or users can do the tuning.

This section includes several tuning options for starting workspaces faster or improving workspace
runtime performance.

7.3.1. Improving workspace start time

Caching images with Image Puller

Role: Administrator
When starting a workspace, OpenShift pulls the images from the registry. A workspace can
include many containers meaning that OpenShift pulls Pod’s images (one per container).
Depending on the size of the image and the bandwidth, it can take a long time.

Image Puller is a tool that can cache images on each of OpenShift nodes. As such, pre-pulling
images can improve start times. See Caching images for faster workspace start.

Choosing better storage type

Role: Administrator and user
Every workspace has a shared volume attached. This volume stores the project files, so that
when restarting a workspace, changes are still available. Depending on the storage, attach time
can take up to a few minutes, and I/O can be slow.

To avoid this problem, use ephemeral or asynchronous storage. See Configuring storage types.

Installing offline

Role: Administrator
Components of CodeReady Workspaces are OCI images. Set up Red Hat CodeReady
Workspaces in offline mode (air-gap scenario) to reduce any extra download at runtime because
everything needs to be available from the beginning. See
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-
single/installation_guide/index#installing-codeready-workspaces-in-a-restricted-
environment_crw.

Optimizing workspace plug-ins

Role: User
When selecting various plug-ins, each plug-in can bring its own sidecar container, which is an
OCI image. OpenShift pulls the images of these sidecar containers.

Reduce the number of plug-ins, or disable them to see if start time is faster. See also Caching
images for faster workspace start.

Reducing the number of public endpoints

Role: Administrator
For each endpoint, OpenShift is creating OpenShift Route objects. Depending on the underlying
configuration, this creation can be slow.

CHAPTER 7. TROUBLESHOOTING CODEREADY WORKSPACES

149

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#caching-images-for-faster-workspace-start_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#configuring-storage-types_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces-in-a-restricted-environment_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#caching-images-for-faster-workspace-start_crw

1

2

To avoid this problem, reduce the exposure. For example, to automatically detect a new port
listening inside containers and redirect traffic for the processes using a local IP address
(127.0.0.1), the Che-Theia IDE plug-in has three optional routes.

By reducing the number of endpoints and checking endpoints of all plug-ins, workspace start
can be faster.

CDN configuration

The IDE editor uses a CDN (Content Delivery Network) to serve content. Check that the
content uses a CDN to the client (or a local route for offline setup).
To check that, open Developer Tools in the browser and check for vendors in the Network tab.
vendors.<random-id>.js or editor.main.* should come from CDN URLs.

7.3.2. Improving workspace runtime performance

Providing enough CPU resources

Plug-ins consume CPU resources. For example, when a plug-in provides IntelliSense features,
adding more CPU resources may lead to better performance.
Ensure the CPU settings in the devfile definition, devfile.yaml, are correct:

Specifies the CPU limit for the plug-in.

Specifies the CPU request for the plug-in.

Providing enough memory

Plug-ins consume CPU and memory resources. For example, when a plug-in provides
IntelliSense features, collecting data can consume all the memory allocated to the container.
Providing more memory to the plug-in can increase performance. Ensure about the correctness
of memory settings:

in the plug-in definition - meta.yaml file

in the devfile definition - devfile.yaml file

apiVersion: 1.0.0

components:
 -
 type: chePlugin
 id: id/of/plug-in
 cpuLimit: 1360Mi 1
 cpuRequest: 100m 2

apiVersion: v2

spec:
 containers:
 - image: "quay.io/my-image"
 name: "vscode-plugin"

Red Hat CodeReady Workspaces 2.11 End-user Guide

150

1

1

Specifies the memory limit for the plug-in.

In the devfile definition (devfile.yaml):

Specifies the memory limit for this plug-in.

Choosing better storage type

Use ephemeral or asynchronous storage for faster I/O. See Configuring storage types.

7.4. TROUBLESHOOTING NETWORK PROBLEMS

This section describes how to prevent or resolve issues related to network policies. CodeReady
Workspaces requires the availability of the WebSocket Secure (WSS) connections. Secure
WebSocket connections improve confidentiality and also reliability because they reduce the risk of
interference by bad proxies.

Prerequisites

The WebSocket Secure (WSS) connections on port 443 must be available on the network.
Firewall and proxy may need additional configuration.

Use a supported web browser:

Chrome

Firefox

Procedure

1. Verify the browser supports the WebSocket protocol. See: Searching a websocket test.

2. Verify firewalls settings: WebSocket Secure (WSS) connections on port 443 must be
available.

3. Verify proxy servers settings: The proxy transmits and intercepts WebSocket Secure (WSS)
connections on port 443.

 memoryLimit: "512Mi" 1
 extensions:
 - https://link.to/vsix

apiVersion: 1.0.0

components:
 -
 type: chePlugin
 id: id/of/plug-in
 memoryLimit: 1048M 1
 memoryRequest: 256M

CHAPTER 7. TROUBLESHOOTING CODEREADY WORKSPACES

151

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#configuring-storage-types_crw
https://www.google.com/search?q=websocket+test

CHAPTER 8. OPENSHIFT CONNECTOR OVERVIEW
OpenShift Connector, also referred to as Visual Studio Code OpenShift Connector for Red Hat
OpenShift, is a plug-in for CodeReady Workspaces that provides a method for interacting with Red
Hat OpenShift 3 or 4 clusters.

OpenShift Connector makes it possible to create, build, and debug applications in the CodeReady
Workspaces IDE and then deploy the applications directly to a running OpenShift cluster.

OpenShift Connector is a GUI for the OpenShift Do (odo) utility, which aggregates OpenShift CLI
(oc) commands into compact units. As such, OpenShift Connector helps new developers who do
not have OpenShift background with creating applications and running them on the cloud. Rather
than using several oc commands, the user creates a new component or service by selecting a
preconfigured template, such as a Project, an Application, or a Service, and then deploys it as an
OpenShift Component to their cluster.

This section provides information about installing, enabling, and basic use of the OpenShift
Connector plug-in.

Section 8.1, “Features of OpenShift Connector”

Section 8.2, “Installing OpenShift Connector in CodeReady Workspaces”

Section 8.3, “Authenticating with OpenShift Connector from CodeReady Workspaces when
the OpenShift OAuth service does not authenticate the CodeReady Workspaces instance”

Section 8.4, “Creating Components with OpenShift Connector in CodeReady Workspaces”

Section 8.5, “Connecting source code from GitHub to an OpenShift Component using
OpenShift Connector”

8.1. FEATURES OF OPENSHIFT CONNECTOR

The OpenShift Connector plug-in enables the user create, deploy, and push OpenShift
Components to an OpenShift Cluster in a GUI.

When used in CodeReady Workspaces, the OpenShift Connector GUI provides the following
benefits to its users:

Cluster management

Logging in to clusters using:

Authentication tokens

Username and password

Auto-login feature when CodeReady Workspaces is authenticated with the OpenShift
OAuth service

Switching contexts between different .kube/config entries directly from the extension view.

Viewing and managing OpenShift resources as build and deployment. configurations from
the Explorer view.

Development

Red Hat CodeReady Workspaces 2.11 End-user Guide

152

Connecting to a local or hosted OpenShift cluster directly from CodeReady Workspaces.

Quickly updating the cluster with your changes.

Creating Components, Services, and Routes on the connected cluster.

Adding storage directly to a component from the extension itself.

Deployment

Deploying to OpenShift clusters with a single click directly from CodeReady Workspaces.

Navigating to the multiple Routes, created to access the deployed application.

Deploying multiple interlinked Components and Services directly on the cluster.

Pushing and watching component changes from the CodeReady Workspaces IDE.

Streaming logs directly on the integrated terminal view of CodeReady Workspaces.

Monitoring

Working with OpenShift resources directly from the CodeReady Workspaces IDE.

Starting and resuming build and deployment configurations.

Viewing and following logs for deployments, Pods, and containers.

8.2. INSTALLING OPENSHIFT CONNECTOR IN CODEREADY
WORKSPACES

OpenShift Connector is a plug-in designed to create basic OpenShift Components, using
CodeReady Workspaces as the editor, and to deploy the Component to an OpenShift cluster. To
visually verify that the plug-in is available in your instance, see whether the OpenShift icon is
displayed in the CodeReady Workspaces left menu.

To install and enable OpenShift Connector in a CodeReady Workspaces instance, use instructions
in this section.

Prerequisites

A running instance of Red Hat CodeReady Workspaces. To install an instance of Red Hat
CodeReady Workspaces, see Installing CodeReady Workspaces.

Procedure

Install OpenShift Connector in CodeReady Workspaces by adding it as an extension in the
CodeReady Workspaces Plugins panel.

1. Open the CodeReady Workspaces Plugins panel by pressing Ctrl+Shift+J or by navigating to
View → Plugins.

2. Search for vscode-openshift-connector, and click the Install button.

3. Restart the workspace for the changes to take effect.

CHAPTER 8. OPENSHIFT CONNECTOR OVERVIEW

153

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

4. The dedicated OpenShift Application Explorer icon is added to the left panel.

8.3. AUTHENTICATING WITH OPENSHIFT CONNECTOR FROM
CODEREADY WORKSPACES WHEN THE OPENSHIFT OAUTH SERVICE
DOES NOT AUTHENTICATE THE CODEREADY WORKSPACES
INSTANCE

This section describes how to authenticate with an OpenShift cluster when the OpenShift OAuth
service does not authenticate the CodeReady Workspaces instance. It enables the user to develop
and push Components from CodeReady Workspaces to the OpenShift instance that contains
CodeReady Workspaces.

NOTE

When the OpenShift OAuth service authenticates the CodeReady Workspaces
instance, the OpenShift Connector plug-in automatically establishes the
authentication with the OpenShift instance containing CodeReady Workspaces.

OpenShift Connector offers the following methods for logging in to the OpenShift Cluster from
the CodeReady Workspaces instance:

Using the notification asking to log in to the OpenShift instance containing CodeReady
Workspaces.

Using the Log in to the cluster button.

Using the Command Palette.

NOTE

OpenShift Connector plug-in requires manual connecting to the target cluster.

The OpenShift Connector plug-in logs in to the cluster as inClusterUser. If this user
does not have manage project permission, this error message appears when creating
a project using OpenShift Application Explorer:

Failed to create Project with error 'Error: Command failed:
"/tmp/vscode-unpacked/redhat.vscode-openshift -
connector.latest.qvkozqtkba.openshift-connector-0.1.4-
523.vsix/extension/out/tools/linux/odo" project create test-project
✗ projectrequests.project.openshift.io is forbidden

To work around this issue:

1. Log out from the local cluster.

2. Log in to OpenShift cluster using the OpenShift user’s credentials.

Prerequisites

A running instance of CodeReady Workspaces. See Installing CodeReady Workspaces.

A CodeReady Workspaces workspace is available. See Chapter 3, Developer workspaces.

Red Hat CodeReady Workspaces 2.11 End-user Guide

154

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

The OpenShift Connector plug-in is available. See Section 8.2, “Installing OpenShift
Connector in CodeReady Workspaces”.

The OpenShift OAuth provider is available only for the auto-login to the OpenShift
instance containing CodeReady Workspaces. See Configuring OpenShift OAuth.

Procedure

1. In the left panel, click the OpenShift Application Explorer icon.

2. In the OpenShift Connector panel, log in using the OpenShift Application Explorer. Use one
of the following methods:

Click the Log in to cluster button in the top left corner of the pane.

Press F1 to open the Command Palette, or navigate to View > Find Command in the top
menu.
Search for OpenShift: Log in to cluster and press Enter.

3. If a You are already logged in a cluster. message appears, click Yes.

4. Select the method to log in to the cluster: Credentials or Token, and follow the login
instructions.

NOTE

To authenticate with a token, the required token information is in the upper
right corner of the main OpenShift Container Platform screen, under <User
name> > Copy Login Command.

8.4. CREATING COMPONENTS WITH OPENSHIFT CONNECTOR IN
CODEREADY WORKSPACES

In the context of OpenShift, Components and Services are basic structures that need to be stored
in Application, which is a part of the OpenShift project that organizes deployable assets into virtual
folders for better readability.

This chapter describes how to create OpenShift Components in the CodeReady Workspaces using
the OpenShift Connector plug-in and push them to an OpenShift cluster.

Prerequisites

A running instance of CodeReady Workspaces. To install an instance of CodeReady
Workspaces, see Installing CodeReady Workspaces.

The user is logged in to an OpenShift cluster using the OpenShift Connector plug-in.

Procedure

1. In the OpenShift Connector panel, right-click the row with the red OpenShift icon and
select New Project.

2. Enter a name for your project.

3. Right-click the created project and select New Component.

CHAPTER 8. OPENSHIFT CONNECTOR OVERVIEW

155

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/administration_guide/index#configuring-openshift-oauth_crw
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/2.11/html-single/installation_guide/index#installing-codeready-workspaces_crw

4. When prompted, enter the name for a new OpenShift Application in which the component
can be stored.
The following options of source for your component are displayed:

a. Git Repository
This prompts you to specify a Git repository URL and select the intended revision of
the runtime.

b. Binary File
This prompts you to select a file from the file explorer.

c. Workspace Directory
This prompts you to select a folder from the file explorer.

5. Enter the name for the component.

6. Select the component type.

7. Select the component type version.

8. The component is created. Right-click the component, select New URL, and enter a name
of your choice.

9. The component is ready to be pushed to the OpenShift cluster. To do so, right-click the
component and select Push.
The component is deployed to the cluster. Use a right-click for selecting additional actions,
such as debugging and opening in a browser, which requires the exposure of the port 8080.

8.5. CONNECTING SOURCE CODE FROM GITHUB TO AN OPENSHIFT
COMPONENT USING OPENSHIFT CONNECTOR

When the user has a Git-stored source code that is wanted for further development, it is more
efficient to deploy it directly from the Git repository into the OpenShift Connector Component.

This chapter describes how to obtain the content from the Git repository and connect it with a
CodeReady Workspaces-developed OpenShift Component.

Prerequisites

Have a running CodeReady Workspaces workspace.

Be logged in to the OpenShift cluster using the OpenShift Connector.

Procedure

To make changes to your GitHub component, clone the repository into CodeReady Workspaces to
obtain this source code:

1. In the CodeReady Workspaces main screen, open the Command Palette by pressing F1.

2. Type the Git Clone command in the Command Palette and press Enter.

3. Provide the GitHub URL and select the destination for the deployment.

4. Add source-code files to your Project using the Add to workspace button.

For additional information about cloning Git repository, see: Section 2.2.2, “Accessing a Git

Red Hat CodeReady Workspaces 2.11 End-user Guide

156

For additional information about cloning Git repository, see: Section 2.2.2, “Accessing a Git
repository using HTTPS”.

CHAPTER 8. OPENSHIFT CONNECTOR OVERVIEW

157

CHAPTER 9. TELEMETRY OVERVIEW
Telemetry is the explicit and ethical collection of operation data. By default, telemetry is not
available in Red Hat CodeReady Workspaces, but there is an abstract API that allows enabling
telemetry using the plug-in mechanism. This approach is used in the Eclipse Che hosted by Red Hat
service where telemetry is enabled for every workspace.

This documentation includes a guide describing how to make your own telemetry client for Red Hat
CodeReady Workspaces, followed by an overview of the Red Hat CodeReady Workspaces Woopra
Telemetry Plugin.

9.1. USE CASES

Red Hat CodeReady Workspaces telemetry API allows tracking:

Duration of a workspace utilization

User-driven actions such as file editing, committing, and pushing to remote repositories.

The list of plug-ins enabled in a workspace

Programming languages and devfiles used in workspaces. See Section 4.2, “Authoring
devfiles version 2”

9.2. HOW IT WORKS

When a CodeReady Workspaces workspace starts, the che-theia container starts the telemetry
plug-in, which is responsible for sending telemetry events to a back-end. If the
$CHE_WORKSPACE_TELEMETRY_BACKEND_PORT environment variable was set in the
workspace Pod, the telemetry plug-in will send events to a back-end listening at that port.

If the CodeReady Workspaces workspace has a telemetry back-end container running, and it is
listening on $CHE_WORKSPACE_TELEMETRY_BACKEND_PORT, it takes the events sent from
the telemetry plug-in, turns them into the back-end-specific representation of events, and sends
them to the configured analytics back-end (for example, Segment or Woopra).

Red Hat CodeReady Workspaces 2.11 End-user Guide

158

https://workspaces.openshift.com
https://github.com/che-incubator/che-workspace-telemetry-woopra-plugin

9.3. CREATING A TELEMETRY PLUG-IN

This section shows how to create an AnalyticsManager class that extends
AbstractAnalyticsManager and implements the following methods:

isEnabled() - determines whether or not the telemetry back-end is functioning correctly.
This could mean always returning true, or have more complex checks, for example,
returning false when a connection property is missing.

destroy() - cleanup method that is run before shutting down the telemetry back-end. This
method sends the WORKSPACE_STOPPED event.

onActivity() - notifies that some activity is still happening for a given user. This is mainly

CHAPTER 9. TELEMETRY OVERVIEW

159

https://github.com/che-incubator/che-workspace-telemetry-client/blob/master/backend-base/src/main/java/org/eclipse/che/incubator/workspace/telemetry/base/AbstractAnalyticsManager.java

onActivity() - notifies that some activity is still happening for a given user. This is mainly
used to send WORKSPACE_INACTIVE events.

onEvent() - submits telemetry events to the telemetry server, such as WORKSPACE_USED
or WORKSPACE_STARTED.

increaseDuration() - increases the duration of a current event rather than sending multiple
events in a small frame of time.

The following sections cover:

Creation of a telemetry server to echo events to standard output.

Extending the CodeReady Workspaces telemetry client and implementing a user’s custom
back-end.

Creating a meta.yaml file representing a CodeReady Workspaces workspace plug-in for a
user’s custom back-end.

Specifying of a location of a custom plug-in to CodeReady Workspaces by setting the
CHE_WORKSPACE_DEVFILE_DEFAULT__EDITOR_PLUGINS environment variable.

9.3.1. Getting Started

This document describes the steps required to extend the CodeReady Workspaces telemetry
system to connect to a custom back-end:

1. Creating a server process that receives events

2. Extending CodeReady Workspaces libraries to create a back-end that send events to the
server

3. Packaging the telemetry back-end in a container and deploying it to an image registry

4. Adding a plug-in for your back-end and instructing CodeReady Workspaces to load the
plug-in in your workspaces

Optional: creating a server that receives events
This example shows how to create a server that receives events from CodeReady Workspaces and
writes them to standard output.

For production use cases, consider integrating with a third-party telemetry system (for example,
Segment, Woopra) rather than creating your own telemetry server. In this case, use your provider’s
APIs to send events from your custom back-end to their system.

The following Go code starts a server on port 8080 and writes events to standard output:

Example 9.1. main.go

package main

import (
 "io/ioutil"
 "net/http"

 "go.uber.org/zap"

Red Hat CodeReady Workspaces 2.11 End-user Guide

160

)

var logger *zap.SugaredLogger

func event(w http.ResponseWriter, req *http.Request) {
 switch req.Method {
 case "GET":
 logger.Info("GET /event")
 case "POST":
 logger.Info("POST /event")
 }
 body, err := req.GetBody()
 if err != nil {
 logger.With("err", err).Info("error getting body")
 return
 }
 responseBody, err := ioutil.ReadAll(body)
 if err != nil {
 logger.With("error", err).Info("error reading response body")
 return
 }
 logger.With("body", string(responseBody)).Info("got event")
}

func activity(w http.ResponseWriter, req *http.Request) {
 switch req.Method {
 case "GET":
 logger.Info("GET /activity, doing nothing")
 case "POST":
 logger.Info("POST /activity")
 body, err := req.GetBody()
 if err != nil {
 logger.With("error", err).Info("error getting body")
 return
 }
 responseBody, err := ioutil.ReadAll(body)
 if err != nil {
 logger.With("error", err).Info("error reading response body")
 return
 }
 logger.With("body", string(responseBody)).Info("got activity")
 }
}

func main() {

 log, _ := zap.NewProduction()
 logger = log.Sugar()

 http.HandleFunc("/event", event)
 http.HandleFunc("/activity", activity)
 logger.Info("Added Handlers")

 logger.Info("Starting to serve")
 http.ListenAndServe(":8080", nil)
}

CHAPTER 9. TELEMETRY OVERVIEW

161

Create a container image based on this code and expose it as a deployment in OpenShift in the
openshift-workspaces project. The code for the example telemetry server is available at che-
workspace-telemetry-example. To deploy the telemetry server, clone the repository and build the
container:

$ git clone https://github.com/che-incubator/che-workspace-telemetry-example
$ cd che-workspace-telemetry-example
$ docker build -t registry/organization/che-workspace-telemetry-example:latest
$ docker push registry/organization/che-workspace-telemetry-example:latest

In manifest.yaml, replace the image and host fields to match the image you pushed, and the public
hostname of your OpenShift cluster. Then run:

$ oc apply -f manifest.yaml -n {prod-namespace}

9.3.2. Creating a new Maven project

NOTE

For fast feedback when developing, it is recommended to do development inside a
CodeReady Workspaces workspace. This way, you can run the application in a cluster
and connect to the workspaces front-end telemetry plug-in to send events to your
custom back-end.

1. Create a new Maven Quarkus project scaffolding:

$ mvn io.quarkus:quarkus-maven-plugin:1.2.1.Final:create \
 -DprojectGroupId=mygroup -DprojectArtifactId=telemetryback-end \
 -DprojectVersion=my-version -DclassName="org.my.group.MyResource"

2. Add a dependency to org.eclipse.che.incubator.workspace-telemetry.back-end-base in
your pom.xml:

Example 9.2. pom.xml

3. Add the Apache HTTP components library to send HTTP requests.

4. Consult the GitHub packages for the latest version and Maven coordinates of back-end-
base. GitHub packages require a personal access token with read:packages permissions to

<dependency>
 <groupId>org.eclipse.che.incubator.workspace-telemetry</groupId>
 <artifactId>backend-base</artifactId>
 <version>0.0.11</version>
</dependency>
<dependency>
 <groupId>org.apache.httpcomponents</groupId>
 <artifactId>httpclient</artifactId>
 <version>4.5.12</version>
</dependency>

Red Hat CodeReady Workspaces 2.11 End-user Guide

162

https://github.com/che-incubator/che-workspace-telemetry-example
https://github.com/che-incubator/che-workspace-telemetry-client/packages
https://help.github.com/en/packages/publishing-and-managing-packages/about-github-packages

download the CodeReady Workspaces telemetry libraries. Create a personal access token
and copy the token value.

5. Create a settings.xml file in the repository root and add the coordinates and token to the
che-incubator packages:

Example 9.3. settings.xml

This file is used when packaging the application in a container. When running locally, add
the information to your personal settings.xml file.

9.3.3. Running the application

Run and test the application is in a CodeReady Workspaces workspace:

$ mvn quarkus:dev -Dquarkus.http.port=${CHE_WORKSPACE_TELEMETRY_BACKEND_PORT}

If CodeReady Workspaces is secured using a self-signed certificate, add the certificate to a trust

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
 <servers>
 <server>
 <id>che-incubator</id>
 <username>${env.GITHUB_USERNAME}</username>
 <password>${env.GITHUB_TOKEN}</password>
 </server>
 </servers>

 <profiles>
 <profile>
 <id>github</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>central</id>
 <url>https://repo1.maven.org/maven2</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>false</enabled></snapshots>
 </repository>
 <repository>
 <id>che-incubator</id>
 <name>GitHub navikt Apache Maven Packages</name>
 <url>https://maven.pkg.github.com/che-incubator/che-workspace-
telemetry-client</url>
 </repository>
 </repositories>
 </profile>
 </profiles>
 </settings>

CHAPTER 9. TELEMETRY OVERVIEW

163

store and mount it into the workspace. Also add the Java system property, -
Djavax.net.ssl.trustStore=/path/to/trustStore, to the mvn command. For example, assuming the
trust store is located in $JAVA_HOME/jre/lib/security/cacerts:

$ keytool -import -alias self-signed-certificate \
 -file <path/to/self-signed-certificate> -keystore $JAVA_HOME/jre/lib/security/cacerts

Followed by:

$ mvn quarkus:dev -Dquarkus.http.port=${CHE_WORKSPACE_TELEMETRY_BACKEND_PORT} \
 -Djavax.net.ssl.trustStore=$JAVA_HOME/jre/lib/security/cacerts

9.3.4. Creating a concrete implementation of AnalyticsManager and adding
specialized logic

Create two new files in your project:

AnalyticsManager.java - contains the logic specific to the telemetry system.

MainConfiguration.java - is the main entrypoint that creates an instance of
AnalyticsManager and starts listening for events.

Example 9.4. AnalyticsManager.java

package org.my.group;

import java.util.Map;

import org.eclipse.che.api.core.rest.HttpJsonRequestFactory;
import org.eclipse.che.incubator.workspace.telemetry.base.AbstractAnalyticsManager;
import org.eclipse.che.incubator.workspace.telemetry.base.AnalyticsEvent;

public class AnalyticsManager extends AbstractAnalyticsManager {

 public AnalyticsManager(String apiEndpoint, String workspaceId, String machineToken,
 HttpJsonRequestFactory requestFactory) {
 super(apiEndpoint, workspaceId, machineToken, requestFactory);
 }

 @Override
 public boolean isEnabled() {
 // TODO Auto-generated method stub
 return true;
 }

 @Override
 public void destroy() {
 // TODO Auto-generated method stub
 }

 @Override
 public void onEvent(AnalyticsEvent event, String ownerId, String ip, String userAgent,
String resolution,
 Map<String, Object> properties) {

Red Hat CodeReady Workspaces 2.11 End-user Guide

164

Example 9.5. MainConfiguration.java

9.3.5. Implementing isEnabled()

For the purposes of the example, this method just returns true whenever it is called. Whenever the
server is running, it is enabled and operational.

Example 9.6. AnalyticsManager.java

It is possible to put more a complex login in isEnabled(). For example, the service should not be
considered operational in certain cases. The hosted CodeReady Workspaces woopra back-end
checks that a configuration property exists before determining if the back-end is enabled.

 // TODO Auto-generated method stub
 }

 @Override
 public void increaseDuration(AnalyticsEvent event, Map<String, Object> properties) {
 // TODO Auto-generated method stub
 }

 @Override
 public void onActivity() {
 // TODO Auto-generated method stub
 }
}

package org.my.group;

import javax.enterprise.context.Dependent;
import javax.enterprise.inject.Produces;

import org.eclipse.che.incubator.workspace.telemetry.base.AbstractAnalyticsManager;
import org.eclipse.che.incubator.workspace.telemetry.base.BaseConfiguration;

@Dependent
public class MainConfiguration extends BaseConfiguration {
 @Produces
 public AbstractAnalyticsManager analyticsManager() {
 return new AnalyticsManager(apiEndpoint, workspaceId, machineToken,
requestFactory());

 }
}

@Override
public boolean isEnabled() {
 return true;
}

CHAPTER 9. TELEMETRY OVERVIEW

165

https://github.com/redhat-developer/che-workspace-telemetry-woopra-backend/blob/master/src/main/java/com/redhat/che/workspace/services/telemetry/woopra/AnalyticsManager.java

9.3.6. Implementing onEvent()

onEvent() sends the event passed to the back-end to the telemetry system. For the example
application, it sends an HTTP POST payload to the telemetry server. The example telemetry server
application is deployed to OpenShift at the following URL: http://little-telemetry-back-end-
che.apps-crc.testing.

Example 9.7. AnalyticsManager.java

This sends an HTTP request to the telemetry server and automatically delays identical events in a
small time period, where the default value is 1500 milliseconds. It is possible to modify this period
by setting subclasses.

9.3.7. Implementing increaseDuration()

Many telemetry systems recognize event duration. The AbstractAnalyticsManager merges similar
events that happen in the same frame of time into one event, so that a user does not get several
identical events sent to the server in a small time frame. This implementation of increaseDuration()
is a no-op. This method uses the APIs of a user’s telemetry provider to alter the event or event
properties to reflect an event’s increased duration.

Example 9.8. AnalyticsManager.java

9.3.8. Implementing onActivity()

Set an inactive timeout limit, and use onActivity() to send a WORKSPACE_INACTIVE event if the
last event time is longer than the inactivity timeout.

Example 9.9. AnalyticsManager.java

@Override
public void onEvent(AnalyticsEvent event, String ownerId, String ip, String userAgent,
String resolution, Map<String, Object> properties) {
 HttpClient httpClient = HttpClients.createDefault();
 HttpPost httpPost = new HttpPost("http://little-telemetry-backend-che.apps-
crc.testing/event");
 HashMap<String, Object> eventPayload = new HashMap<String, Object>(properties);
 eventPayload.put("event", event);
 StringEntity requestEntity = new StringEntity(new JsonObject(eventPayload).toString(),
 ContentType.APPLICATION_JSON);
 httpPost.setEntity(requestEntity);
 try {
 HttpResponse response = httpClient.execute(httpPost);
 } catch (IOException e) {
 e.printStackTrace();
 }
}

@Override
public void increaseDuration(AnalyticsEvent event, Map<String, Object> properties) {}

Red Hat CodeReady Workspaces 2.11 End-user Guide

166

9.3.9. Implementing destroy()

When destroy() is called, send a WORKSPACE_STOPPED event and shutdown any resources, such
as connection pools.

Example 9.10. AnalyticsManager.java

Running mvn quarkus:dev as described in Section 9.3.3, “Running the application” displays the
WORKSPACE_STOPPED event, sent to the server when the Quarkus application is terminated.

9.3.10. Packaging the Quarkus application

See the quarkus documentation for the best instructions to package the application in a container.
Build and push the container to a container registry of your choice.

9.3.11. Creating a meta.yaml for your plug-in.

Create a meta.yaml definition representing a CodeReady Workspaces plug-in that runs your
custom back-end in a workspace Pod. For more information about meta.yaml, see Section 5.1,
“What is a Che-Theia plug-in”.

Example 9.11. meta.yaml

public class AnalyticsManager extends AbstractAnalyticsManager {

 ...

 private long inactiveTimeLimt = 60000 * 3;

 ...

 @Override
 public void onActivity() {
 if (System.currentTimeMillis() - lastEventTime >= inactiveTimeLimt) {
 onEvent(WORKSPACE_INACTIVE, lastOwnerId, lastIp, lastUserAgent,
lastResolution, commonProperties);
 }
 }

@Override
public void destroy() {
 onEvent(WORKSPACE_STOPPED, lastOwnerId, lastIp, lastUserAgent, lastResolution,
commonProperties);
}

apiVersion: v2
publisher: demo-publisher
name: little-telemetry-backend
version: 0.0.1

CHAPTER 9. TELEMETRY OVERVIEW

167

https://quarkus.io/guides/building-native-image#using-a-multi-stage-docker-build

In most cases, a user would deploy this file to a corporate web server. This guide demonstrates how
to create an Apache web server on OpenShift and host the plug-in there.

Create a ConfigMap referencing the new meta.yaml file.

$ oc create configmap --from-file=meta.yaml -n openshift-workspaces telemetry-plugin-meta

Create a deployment, a service, and a route to expose the web server. The deployment references
this ConfigMap and places it in the /var/www/html directory.

Example 9.12. manifests.yaml

type: Che Plugin
displayName: Little Telemetry Backend
description: A Demo telemetry backend
title: Little Telemetry Backend
category: Other
spec:
 workspaceEnv:
 - name: CHE_WORKSPACE_TELEMETRY_BACKEND_PORT
 value: '4167'
 containers:
 - name: YOUR BACKEND NAME
 image: YOUR IMAGE NAME
 env:
 - name: CHE_API
 value: $(CHE_API_INTERNAL)

kind: Deployment
apiVersion: apps/v1
metadata:
 name: apache
 namespace: <openshift-workspaces>
spec:
 replicas: 1
 selector:
 matchLabels:
 app: apache
 template:
 metadata:
 labels:
 app: apache
 spec:
 volumes:
 - name: plugin-meta-yaml
 configMap:
 name: telemetry-plugin-meta
 defaultMode: 420
 containers:
 - name: apache
 image: 'registry.redhat.io/rhscl/httpd-24-rhel7:latest'
 ports:
 - containerPort: 8080
 protocol: TCP

Red Hat CodeReady Workspaces 2.11 End-user Guide

168

$ oc apply -f manifests.yaml

Wait a few minutes for the image to pull and the deployment to start, and then confirm that
meta.yaml is available in the web server:

$ curl apache-che.apps-crc.testing/meta.yaml

This command should return the meta.yaml file.

9.3.12. Updating CodeReady Workspaces to reference your telemetry plug-in

Update the CheCluster Custom Resource, and add the

 resources: {}
 volumeMounts:
 - name: plugin-meta-yaml
 mountPath: /var/www/html
 strategy:
 type: RollingUpdate
 rollingUpdate:
 maxUnavailable: 25%
 maxSurge: 25%
 revisionHistoryLimit: 10
 progressDeadlineSeconds: 600

kind: Service
apiVersion: v1
metadata:
 name: apache
 namespace: <openshift-workspaces>
spec:
 ports:
 - protocol: TCP
 port: 8080
 targetPort: 8080
 selector:
 app: apache
 type: ClusterIP

kind: Route
apiVersion: route.openshift.io/v1
metadata:
 name: apache
 namespace: <openshift-workspaces>
spec:
 host: apache-che.apps-crc.testing
 to:
 kind: Service
 name: apache
 weight: 100
 port:
 targetPort: 8080
 wildcardPolicy: None

CHAPTER 9. TELEMETRY OVERVIEW

169

CHE_WORKSPACE_DEVFILE_DEFAULT__EDITOR_PLUGINS environment variable to
spec.server.customCheProperties. The value of the environment variable must be the URL of the
location of the meta.yaml file on your web server. This can be accomplished by running oc edit
checluster -n openshift-workspaces and typing in the change at the terminal, or by editing the CR
in the OpenShift console (Installed Operators → Red Hat CodeReady Workspaces → Red Hat
CodeReady Workspaces Cluster → codeready-workspaces → YAML).

Example 9.13. Example of a YAML file

apiVersion: org.eclipse.che/v1
kind: CheCluster
metadata:
 creationTimestamp: '2020-05-14T13:21:51Z'
 finalizers:
 - oauthclients.finalizers.che.eclipse.org
 generation: 18
 name: codeready-workspaces
 namespace: <openshift-workspaces>
 resourceVersion: '5108404'
 selfLink: /apis/org.eclipse.che/v1/namespaces/che/checlusters/eclipse-che
 uid: bae08db2-104d-4e44-a001-c9affc07528d
spec:
 auth:
 identityProviderURL: 'https://keycloak-che.apps-crc.testing'
 identityProviderRealm: che
 updateAdminPassword: false
 oAuthSecret: ZMmNPRbgOJJQ
 oAuthClientName: eclipse-che-openshift-identity-provider-yrlcxs
 identityProviderClientId: che-public
 identityProviderPostgresSecret: che-identity-postgres-secret
 externalIdentityProvider: false
 identityProviderSecret: che-identity-secret
 openShiftoAuth: true
 database:
 chePostgresDb: dbche
 chePostgresHostName: postgres
 chePostgresPort: '5432'
 chePostgresSecret: che-postgres-secret
 externalDb: false
 k8s: {}
 metrics:
 enable: false
 server:
 cheLogLevel: INFO
 customCheProperties:
 CHE_WORKSPACE_DEVFILE_DEFAULT__EDITOR_PLUGINS: 'http://apache-che.apps-
crc.testing/meta.yaml'
 externalDevfileRegistry: false
 cheHost: che-che.apps-crc.testing
 selfSignedCert: true
 cheDebug: 'false'
 tlsSupport: true
 allowUserDefinedWorkspaceNamespaces: false
 externalPluginRegistry: false
 gitSelfSignedCert: false
 cheFlavor: che

Red Hat CodeReady Workspaces 2.11 End-user Guide

170

Wait for the CodeReady Workspaces server to restart, and create a new workspace. See a new
message stating that the plug-in is being installed into the workspace.

Perform any operations in the started workspace and observe their events in the example
telemetry server logs.

9.4. THE WOOPRA TELEMETRY PLUGIN

The Woopra Telemetry Plugin is a plugin built to send telemetry from a Red Hat CodeReady
Workspaces installation to Segment and Woopra. This plugin is used by Eclipse Che hosted by Red
Hat, but any Red Hat CodeReady Workspaces deployment can take advantage of this plugin. There
are no dependencies other than a valid Woopra domain and Segment Write key. The plugin’s
meta.yaml file has 5 environment variables that can be passed to the plugin:

WOOPRA_DOMAIN - The Woopra domain to send events to.

SEGMENT_WRITE_KEY - The write key to send events to Segment and Woopra.

WOOPRA_DOMAIN_ENDPOINT - If you prefer not to pass in the Woopra domain directly,
the plugin will get it from a supplied HTTP endpoint that returns the Woopra Domain.

SEGMENT_WRITE_KEY_ENDPOINT - If you prefer not to pass in the Segment write key
directly, the plugin will get it from a supplied HTTP endpoint that returns the Segment write
key.

To enable the Woopra plugin on the Red Hat CodeReady Workspaces installation, deploy the
meta.yaml file to an HTTP server with the environment variables set correctly. Then, edit the
CheCluster Custom Resource, and set the
spec.server.customCheProperties.CHE_WORKSPACE_DEVFILE_DEFAULT__EDITOR_PLUGINS
field:

 storage:
 preCreateSubPaths: true
 pvcClaimSize: 1Gi
 pvcStrategy: per-workspace
status:
 devfileRegistryURL: 'https://devfile-registry-che.apps-crc.testing'
 keycloakProvisioned: true
 cheClusterRunning: Available
 cheURL: 'https://che-che.apps-crc.testing'
 openShiftoAuthProvisioned: true
 dbProvisioned: true
 cheVersion: 7.13.1
 keycloakURL: 'https://keycloak-che.apps-crc.testing'
 pluginRegistryURL: 'https://plugin-registry-che.apps-crc.testing/v3'

spec:

CHAPTER 9. TELEMETRY OVERVIEW

171

https://github.com/che-incubator/che-workspace-telemetry-woopra-plugin
https://workspaces.openshift.com
https://raw.githubusercontent.com/che-incubator/che-workspace-telemetry-woopra-plugin/master/meta.yaml

 server:
 customCheProperties:
 CHE_WORKSPACE_DEVFILE_DEFAULT__EDITOR_PLUGINS: 'eclipse/che-machine-exec-
plugin/7.20.0,https://your-web-server/meta.yaml'

Red Hat CodeReady Workspaces 2.11 End-user Guide

172

CHAPTER 10. JAVA LOMBOK
This section shows how to enable Lombok support in your Java projects. By default, the lombok.jar
file is available in all Java plug-ins provided by CodeReady Workspaces.

To enable Lombok in a CodeReady Workspaces workspace, see the instructions below.

Prerequisites

A workspace or a devfile with:

One of the Java-based plug-ins enabled (redhat/java, redhat/java11, redhat/java8,
redhat/quarkus-java8 or redhat/quarkus-java11)

A valid Lombok project to import

Procedure

1. Open the workspace devfile.

2. Edit the existing Java plug-in section, adding the preference:

Verification

1. Start or restart the workspace.

2. Open a file containing Lombok annotations.

3. Verify that the Class outline contains the Lombok generated methods.

 - id: redhat/java/latest
 preferences:
 java.jdt.ls.vmargs: '-javaagent:/lombok.jar'

CHAPTER 10. JAVA LOMBOK

173

Additional resources

For more details, see the Project Lombok website.

Red Hat CodeReady Workspaces 2.11 End-user Guide

174

https://projectlombok.org/

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. NAVIGATING CODEREADY WORKSPACES
	1.1. NAVIGATING CODEREADY WORKSPACES USING THE DASHBOARD
	1.1.1. Logging in to CodeReady Workspaces on OpenShift for the first time using OAuth
	1.1.2. Logging in to CodeReady Workspaces on OpenShift for the first time registering as a new user
	1.1.3. Logging in to CodeReady Workspaces using crwctl
	1.1.4. Finding CodeReady Workspaces cluster URL using the OpenShift 4 CLI

	1.2. IMPORTING CERTIFICATES TO BROWSERS
	1.2.1. Adding certificates to Google Chrome on Linux or Windows
	1.2.2. Adding certificates to Google Chrome on macOS
	1.2.3. Adding certificates to Firefox

	1.3. ACCESSING CODEREADY WORKSPACES FROM OPENSHIFT DEVELOPER PERSPECTIVE
	1.3.1. OpenShift Developer Perspective integration with CodeReady Workspaces
	1.3.2. Editing the code of applications running in OpenShift Container Platform using CodeReady Workspaces
	1.3.3. Accessing CodeReady Workspaces from Red Hat Applications menu

	CHAPTER 2. CHE-THEIA IDE BASICS
	2.1. DEFINING CUSTOM COMMANDS FOR CHE-THEIA
	2.1.1. Che-Theia task types
	2.1.2. Running and debugging
	2.1.3. Editing a task and launch configuration

	2.2. VERSION CONTROL
	2.2.1. Managing Git configuration: identity
	2.2.2. Accessing a Git repository using HTTPS
	2.2.3. Accessing a Git repository using a generated SSH key pair
	2.2.3.1. Generating an SSH key using the CodeReady Workspaces command palette
	2.2.3.2. Adding the associated public key to a repository or account on GitHub
	2.2.3.3. Adding the associated public key to a Git repository or account on GitLab

	2.2.4. Managing pull requests using the GitHub PR plug-in
	2.2.4.1. Using the GitHub Pull Requests plug-in

	2.3. CHE-THEIA TROUBLESHOOTING
	2.4. DIFFERENCES IN CHE-THEIA WEBVIEW IN SINGLE-HOST MODE AND MULTIHOST MODE
	2.4.1. What’s a Webview
	2.4.2. Webview in multihost mode
	2.4.3. Webview in single-host mode

	CHAPTER 3. DEVELOPER WORKSPACES
	3.1. CREATING A WORKSPACE FROM CODE SAMPLE
	3.1.1. Creating a workspace from Quick Add of user dashboard
	3.1.2. Creating a custom workspace from a template

	3.2. CREATING A WORKSPACE FROM REMOTE DEVFILE
	3.2.1. Creating a workspace from the default branch of a Git repository
	3.2.2. Creating a workspace from a feature branch of a Git repository
	3.2.3. Creating a workspace from a publicly accessible standalone devfile using HTTP
	3.2.4. Overriding devfile values using factory parameters
	3.2.5. Allowing users to define workspace deployment labels and annotations
	3.2.6. Allowing users to define workspace creation strategy

	3.3. CREATING A WORKSPACE USING CRWCTL AND A LOCAL DEVFILE
	3.4. CREATING A WORKSPACE BY IMPORTING THE SOURCE CODE OF A PROJECT
	3.4.1. Select a sample from the Dashboard, then change the devfile to include your project
	3.4.2. Importing from the Dashboard into an existing workspace
	3.4.2.1. Editing the commands after importing a project

	3.4.3. Importing to a running workspace using the Git: Clone command
	3.4.4. Importing to a running workspace with git clone in a terminal

	3.5. CONFIGURING A CODEREADY WORKSPACES 2.11 WORKSPACE
	3.5.1. Changing the configuration of an existing workspace
	3.5.2. Adding projects to your workspace
	3.5.3. Configuring the workspace tools
	3.5.3.1. Adding plug-ins
	3.5.3.2. Defining the workspace editor

	3.6. RUNNING AN EXISTING WORKSPACE FROM THE USER DASHBOARD
	3.6.1. Running an existing workspace from the user dashboard with the Run button
	3.6.2. Running an existing workspace from the user dashboard using the Open button
	3.6.3. Running an existing workspace from the user dashboard using the Recent Workspaces

	3.7. IMPORTING OPENSHIFT APPLICATIONS INTO A WORKSPACE
	3.7.1. Including a OpenShift application in a workspace devfile definition
	3.7.2. Adding a OpenShift application to an existing workspace using the dashboard
	3.7.3. Generating a devfile from an existing OpenShift application

	3.8. REMOTELY ACCESSING WORKSPACES
	3.8.1. Remotely accessing workspaces using oc
	3.8.2. Downloading and uploading a file to a workspace using the command-line interface

	3.9. MOUNTING A SECRET AS A FILE OR AN ENVIRONMENT VARIABLE INTO A WORKSPACE CONTAINER
	3.9.1. Mounting a secret as a file into a workspace container
	3.9.2. Mounting a secret as an environment variable into a workspace container
	3.9.3. Mounting a git credentials store into a workspace container
	3.9.4. The use of annotations in the process of mounting a secret into a workspace container

	3.10. AUTHENTICATING USERS ON PRIVATE REPOSITORIES OF SCM SERVERS
	3.10.1. Authenticating on Bitbucket servers
	3.10.2. Authenticating on GitLab servers
	3.10.3. Authenticating on GitHub servers

	CHAPTER 4. AUTHORING DEVFILES
	4.1. AUTHORING DEVFILES VERSION 1
	4.1.1. What is a devfile
	4.1.2. A minimal devfile
	4.1.3. Generating workspace names
	4.1.4. Writing a devfile for a project
	4.1.4.1. Preparing a minimal devfile
	4.1.4.2. Specifying multiple projects in a devfile

	4.1.5. Devfile reference
	4.1.5.1. Adding schema version to a devfile
	4.1.5.2. Adding a name to a devfile
	4.1.5.3. Adding projects to a devfile
	4.1.5.4. Adding components to a devfile
	4.1.5.5. Adding commands to a devfile
	4.1.5.6. Adding attributes to a devfile

	4.1.6. Objects supported in Red Hat CodeReady Workspaces 2.11

	4.2. AUTHORING DEVFILES VERSION 2

	CHAPTER 5. CUSTOMIZING DEVELOPER ENVIRONMENTS
	5.1. WHAT IS A CHE-THEIA PLUG-IN
	5.1.1. Features and benefits of Che-Theia plug-ins
	5.1.2. Che-Theia plug-in concept in detail
	5.1.2.1. Client-side and server-side Che-Theia plug-ins
	5.1.2.2. Che-Theia plug-in APIs
	5.1.2.3. Che-Theia plug-in capabilities
	5.1.2.4. VS Code extensions and Eclipse Theia plug-ins

	5.1.3. Che-Theia plug-in metadata
	5.1.4. Che-Theia plug-in lifecycle
	5.1.5. Embedded and remote Che-Theia plug-ins
	5.1.5.1. Embedded (local) plug-ins
	5.1.5.2. Remote plug-ins
	5.1.5.3. Comparison matrix

	5.1.6. Remote plug-in endpoint
	5.1.6.1. Defining a launch remote plug-in endpoint using Dockerfile
	5.1.6.2. Defining a launch remote plug-in endpoint in a meta.yaml file

	5.2. ADDING A VS CODE EXTENSION TO A WORKSPACE
	5.2.1. Adding a VS Code extension using the workspace configuration
	5.2.2. Adding a VS Code extension using recommendations

	5.3. ADDING A VS CODE EXTENSION TO THE CHE PLUG-INS REGISTRY
	5.4. PUBLISHING METADATA FOR A VS CODE EXTENSION
	5.5. TESTING A VISUAL STUDIO CODE EXTENSION IN CODEREADY WORKSPACES
	5.5.1. Testing a VS Code extension using GitHub gist
	5.5.2. Verifying the VS Code extension API compatibility level

	5.6. USING ALTERNATIVE IDES IN CODEREADY WORKSPACES
	5.7. THEIA-BASED IDES
	5.8. ADDING TOOLS TO CODEREADY WORKSPACES AFTER CREATING A WORKSPACE
	5.8.1. Additional tools in the CodeReady Workspaces workspace
	5.8.2. Adding a language support plug-in to a CodeReady Workspaces workspace

	5.9. USING PRIVATE CONTAINER REGISTRIES

	CHAPTER 6. USING ARTIFACT REPOSITORIES IN A RESTRICTED ENVIRONMENT
	6.1. USING MAVEN ARTIFACT REPOSITORIES
	6.1.1. Defining repositories in settings.xml
	6.1.2. Defining Maven settings.xml file across workspaces
	6.1.2.1. OpenShift 3.11 and OpenShift <1.13

	6.1.3. Using self-signed certificates in Maven projects

	6.2. USING GRADLE ARTIFACT REPOSITORIES
	6.2.1. Downloading different versions of Gradle
	6.2.2. Configuring global Gradle repositories
	6.2.3. Using self-signed certificates in Gradle projects

	6.3. USING PYTHON ARTIFACT REPOSITORIES
	6.3.1. Configuring Python to use a non-standard registry
	6.3.2. Using self-signed certificates in Python projects

	6.4. USING GO ARTIFACT REPOSITORIES
	6.4.1. Configuring Go to use a non-standard-registry
	6.4.2. Using self-signed certificates in Go projects

	6.5. USING NUGET ARTIFACT REPOSITORIES
	6.5.1. Configuring NuGet to use a non-standard artifact repository
	6.5.2. Using self-signed certificates in NuGet projects

	6.6. USING NPM ARTIFACT REPOSITORIES

	CHAPTER 7. TROUBLESHOOTING CODEREADY WORKSPACES
	7.1. VIEWING CODEREADY WORKSPACES WORKSPACES LOGS
	7.1.1. Viewing logs from language servers and debug adapters
	7.1.1.1. Checking important logs
	7.1.1.2. Detecting memory problems
	7.1.1.3. Logging the client-server traffic for debug adapters
	7.1.1.4. Viewing logs for Python
	7.1.1.5. Viewing logs for Go
	7.1.1.6. Viewing logs for the NodeDebug NodeDebug2 adapter
	7.1.1.7. Viewing logs for Typescript
	7.1.1.8. Viewing logs for Java
	7.1.1.9. Viewing logs for Intelephense
	7.1.1.10. Viewing logs for PHP-Debug
	7.1.1.11. Viewing logs for XML
	7.1.1.12. Viewing logs for YAML
	7.1.1.13. Viewing logs for .NET with OmniSharp-Theia plug-in
	7.1.1.14. Viewing logs for .NET with NetcoredebugOutput plug-in
	7.1.1.15. Viewing logs for Camel

	7.1.2. Viewing Che-Theia IDE logs
	7.1.2.1. Viewing Che-Theia editor logs using the OpenShift CLI

	7.2. INVESTIGATING FAILURES AT A WORKSPACE START USING THE VERBOSE MODE
	7.2.1. Restarting a CodeReady Workspaces workspace in Verbose mode after start failure
	7.2.2. Starting a CodeReady Workspaces workspace in Verbose mode

	7.3. TROUBLESHOOTING SLOW WORKSPACES
	7.3.1. Improving workspace start time
	7.3.2. Improving workspace runtime performance

	7.4. TROUBLESHOOTING NETWORK PROBLEMS

	CHAPTER 8. OPENSHIFT CONNECTOR OVERVIEW
	8.1. FEATURES OF OPENSHIFT CONNECTOR
	8.2. INSTALLING OPENSHIFT CONNECTOR IN CODEREADY WORKSPACES
	8.3. AUTHENTICATING WITH OPENSHIFT CONNECTOR FROM CODEREADY WORKSPACES WHEN THE OPENSHIFT OAUTH SERVICE DOES NOT AUTHENTICATE THE CODEREADY WORKSPACES INSTANCE
	8.4. CREATING COMPONENTS WITH OPENSHIFT CONNECTOR IN CODEREADY WORKSPACES
	8.5. CONNECTING SOURCE CODE FROM GITHUB TO AN OPENSHIFT COMPONENT USING OPENSHIFT CONNECTOR

	CHAPTER 9. TELEMETRY OVERVIEW
	9.1. USE CASES
	9.2. HOW IT WORKS
	9.3. CREATING A TELEMETRY PLUG-IN
	9.3.1. Getting Started
	Optional: creating a server that receives events

	9.3.2. Creating a new Maven project
	9.3.3. Running the application
	9.3.4. Creating a concrete implementation of AnalyticsManager and adding specialized logic
	9.3.5. Implementing isEnabled()
	9.3.6. Implementing onEvent()
	9.3.7. Implementing increaseDuration()
	9.3.8. Implementing onActivity()
	9.3.9. Implementing destroy()
	9.3.10. Packaging the Quarkus application
	9.3.11. Creating a meta.yaml for your plug-in.
	9.3.12. Updating CodeReady Workspaces to reference your telemetry plug-in

	9.4. THE WOOPRA TELEMETRY PLUGIN

	CHAPTER 10. JAVA LOMBOK

