
Red Hat build of MicroShift 4.12

Networking

Configuring and managing cluster networking

Last Updated: 2023-10-03

Red Hat build of MicroShift 4.12 Networking

Configuring and managing cluster networking

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing your MicroShift cluster network,
including DNS, ingress, and the Pod network.

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING NETWORKING SETTINGS
1.1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

1.1.1. Network topology
1.1.1.1. IP forward

1.1.2. Network performance optimizations
1.1.3. Network features
1.1.4. Red Hat build of MicroShift networking components and services overview
1.1.5. Bridge mappings

1.1.5.1. Primary gateway interface
1.1.5.2. Secondary gateway interface

1.2. CREATING AN OVN-KUBERNETES CONFIGURATION FILE
1.3. RESTARTING THE OVNKUBE-MASTER POD
1.4. DEPLOYING RED HAT BUILD OF MICROSHIFT BEHIND AN HTTP(S) PROXY
1.5. USING A PROXY IN THE CRI-O CONTAINER RUNTIME
1.6. GETTING A SNAPSHOT OF OVS INTERFACES FROM A RUNNING CLUSTER
1.7. THE MULTICAST DNS PROTOCOL

CHAPTER 2. USING A FIREWALL
2.1. ABOUT NETWORK TRAFFIC THROUGH THE FIREWALL
2.2. INSTALLING THE FIREWALLD SERVICE
2.3. REQUIRED FIREWALL SETTINGS
2.4. USING OPTIONAL PORT SETTINGS
2.5. ALLOWING NETWORK TRAFFIC THROUGH THE FIREWALL

2.5.1. Applying firewall settings
2.6. VERIFYING FIREWALL SETTINGS
2.7. KNOWN FIREWALL ISSUE

3
3
3
3
3
3
4
5
5
5
5
7
8
8
8

10

11
11
11
11

12
13
14
14
14

Table of Contents

1

Red Hat build of MicroShift 4.12 Networking

2

CHAPTER 1. UNDERSTANDING NETWORKING SETTINGS
Learn how to apply networking customization and default settings to Red Hat build of MicroShift
deployments. Each node is contained to a single machine and single Red Hat build of MicroShift, so each
deployment requires individual configuration, pods, and settings.

Cluster Administrators have several options for exposing applications that run inside a cluster to
external traffic and securing network connections:

A service such as NodePort

API resources, such as Ingress and Route

By default, Kubernetes allocates each pod an internal IP address for applications running within the pod.
Pods and their containers can have traffic between them, but clients outside the cluster do not have
direct network access to pods except when exposed with a service such as NodePort.

1.1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN

OVN-Kubernetes is the default networking solution for Red Hat build of MicroShift deployments. OVN-
Kubernetes is a virtualized network for pods and services that is based on Open Virtual Network (OVN).
The OVN-Kubernetes Container Network Interface (CNI) plugin is the network plugin for the cluster. A
cluster that uses the OVN-Kubernetes network plugin also runs Open vSwitch (OVS) on the node. OVN
configures OVS on the node to implement the declared network configuration.

1.1.1. Network topology

OVN-Kubernetes provides an overlay-based networking implementation. This overlay includes an OVS-
based implementation of Service and NetworkPolicy. The overlay network uses the geneve tunnel, so
the pod maximum transmission unit (MTU) is set to smaller than that of the physical interface on the
host to remove the tunnel header.

OVS runs as a systemd service on the Red Hat build of MicroShift node. The OVS RPM package is
installed as a dependency to the microshift-networking RPM package. OVS is started immediately
when the microshift-networking RPM is installed.

1.1.1.1. IP forward

The host network sysctl net.ipv4.ip_forward kernel parameter is automatically enabled by the
ovnkube-master container when started. This is required to forward incoming traffic to the CNI. For
example, accessing the NodePort service from outside of a cluster fails if ip_forward is disabled.

1.1.2. Network performance optimizations

By default, three performance optimizations are applied to OVS services to minimize resource
consumption:

CPU affinity to ovs-vswitchd.service and ovsdb-server.service

no-mlockall to openvswitch.service

Limit handler and revalidator threads to ovs-vswitchd.service

1.1.3. Network features

CHAPTER 1. UNDERSTANDING NETWORKING SETTINGS

3

Networking features available with Red Hat build of MicroShift 4.12 include:

Kubernetes network policy

Dynamic node IP

Cluster network on specified host interface

Secondary gateway interface

Dual stack

Networking features not available with Red Hat build of MicroShift 4.12:

Egress IP/firewall/qos: disabled

Hybrid networking: not supported

IPsec: not supported

Hardware offload: not supported

1.1.4. Red Hat build of MicroShift networking components and services overview

This brief overview describes networking components and their operation in Red Hat build of MicroShift.
The microshift-networking RPM is a package that automatically pulls in any networking-related
dependencies and systemd services to initialize networking, for example, the microshift-ovs-init
systemd service.

NetworkManager

NetworkManager is required to set up the initial gateway bridge on the Red Hat build of MicroShift
node. The NetworkManager and NetworkManager-ovs RPM packages are installed as dependencies
to the microshift-networking RPM package, which contains the necessary configuration files.
NetworkManager in Red Hat build of MicroShift uses the keyfile plugin and is restarted after
installation of the microshift-networking RPM package.

microshift-ovs-init

The microshift-ovs-init.service is installed by the microshift-networking RPM package as a
dependent systemd service to microshift.service. It is responsible for setting up the OVS gateway
bridge.

OVN containers

Two OVN-Kubernetes daemon sets are rendered and applied by Red Hat build of MicroShift.

ovnkube-master Includes the northd, nbdb, sbdb and ovnkube-master containers.

ovnkube-node The ovnkube-node includes the OVN-Controller container.
After Red Hat build of MicroShift boots, the OVN-Kubernetes daemon sets are deployed in
the openshift-ovn-kubernetes namespace.

Packaging

OVN-Kubernetes manifests and startup logic are built into Red Hat build of MicroShift. The systemd
services and configurations included in microshift-networking RPM are:

/etc/NetworkManager/conf.d/microshift-nm.conf for NetworkManager.service

/etc/systemd/system/ovs-vswitchd.service.d/microshift-cpuaffinity.conf for ovs-

Red Hat build of MicroShift 4.12 Networking

4

/etc/systemd/system/ovs-vswitchd.service.d/microshift-cpuaffinity.conf for ovs-
vswitchd.service

/etc/systemd/system/ovsdb-server.service.d/microshift-cpuaffinity.conf

/usr/bin/configure-ovs-microshift.sh for microshift-ovs-init.service

/usr/bin/configure-ovs.sh for microshift-ovs-init.service

/etc/crio/crio.conf.d/microshift-ovn.conf for CRI-O service

1.1.5. Bridge mappings

Bridge mappings allow provider network traffic to reach the physical network. Traffic leaves the
provider network and arrives at the br-int bridge. A patch port between br-int and br-ex then allows the
traffic to traverse to and from the provider network and the edge network. Kubernetes pods are
connected to the br-int bridge through virtual ethernet pair: one end of the virtual ethernet pair is
attached to the pod namespace, and the other end is attached to the br-int bridge.

1.1.5.1. Primary gateway interface

You can specify the desired host interface name in the ovn.yaml config file as gatewayInterface. The
specified interface is added in OVS bridge br-ex which acts as gateway bridge for the CNI network.

1.1.5.2. Secondary gateway interface

You can set up one additional host interface for cluster ingress and egress in the ovn.yaml config file.
The additional interface is added in a second OVS bridge br-ex1. Cluster pod traffic directed to the
additional host subnet is routed automatically based on the destination IP through br-ex1.

Either two or three OVS bridges are created based on the CNI configuration:

Default deployment

The externalGatewayInterface in not specified in the ovn.yaml config file.

Two OVS bridges, br-ex and br-int, are created.

Customized deployment

The externalGatewayInterface is user-specified in the ovn.yaml config file.

Three OVS bridges are created: br-ex, br-ex1 and br-int.

The br-ex bridge is created by microshift-ovs-init.service or manually. The br-ex bridge contains
statically programmed openflow rules which distinguish traffic to and from the host network (underlay)
and the OVN network (overlay).

The br-int bridge is created by the ovnkube-master container. The br-int bridge contains dynamically
programmed openflow rules which handle cluster network traffic.

1.2. CREATING AN OVN-KUBERNETES CONFIGURATION FILE

Red Hat build of MicroShift uses built-in default OVN-Kubernetes values if an OVN-Kubernetes

CHAPTER 1. UNDERSTANDING NETWORKING SETTINGS

5

1

2

Red Hat build of MicroShift uses built-in default OVN-Kubernetes values if an OVN-Kubernetes
configuration file is not created. You can write an OVN-Kubernetes configuration file to
/etc/microshift/ovn.yaml. An example file is provided for your configuration.

Procedure

1. To create your ovn.yaml file, run the following command:

2. To list the contents of the configuration file you created, run the following command:

Example 'yaml' configuration file with default values

The default value is an empty string that means "not-specified." The CNI network plugin
auto-detects to interface with the default route.

The default value is an empty string that means "disabled."

3. To customize your configuration, use the following table that lists the valid values you can use:

Table 1.1. Supported optional OVN-Kubernetes configurations for Red Hat build of
MicroShift

Field Type Default Description Example

ovsInit.disable
OVSInit

bool false Skip configuring
OVS bridge br-
ex in
microshift-
ovs-
init.service

true 1

ovsInit.gatewa
yInterface

Alpha eth0 Ingress that is
the API gateway

eth0

ovsInit.extern
alGatewayInte
rface

Alpha eth1 Ingress routing
external traffic
to your services
and pods inside
the node

eth1

$ sudo cp /etc/microshift/ovn.yaml.default /etc/microshift/ovn.yaml

$ cat /etc/microshift/ovn.yaml.default

ovsInit:
 disableOVSInit: false
 gatewayInterface: "" 1
 externalGatewayInterface: "" 2
mtu: 1400

Red Hat build of MicroShift 4.12 Networking

6

mtu uint32 1400 MTU value used
for the pods

1300

Field Type Default Description Example

1. The OVS bridge is required. When disableOVSInit is true, OVS bridge br-ex must be
configured manually.

IMPORTANT

If you change the mtu configuration value in the ovn.yaml file, you must
restart the host that Red Hat build of MicroShift is running on to apply the
updated setting.

Example custom ovn.yaml configuration file

IMPORTANT

When disableOVSInit is set to true in the ovn.yaml config file, the br-ex OVS bridge
must be manually configured.

1.3. RESTARTING THE OVNKUBE-MASTER POD

The following procedure restarts the ovnkube-master pod.

Prerequisites

The OpenShift CLI (oc) is installed.

Access to the cluster as a user with the cluster-admin role.

A cluster installed on infrastructure configured with the OVN-Kubernetes network plugin.

The KUBECONFIG environment variable is set.

Procedure

Use the following steps to restart the ovnkube-master pod.

1. Access the remote cluster by running the following command:

2. Find the name of the ovnkube-master pod that you want to restart by running the following
command:

ovsInit:
 disableOVSInit: true
 gatewayInterface: eth0
 externalGatewayInterface: eth1
mtu: 1300

$ export KUBECONFIG=$PWD/kubeconfig

CHAPTER 1. UNDERSTANDING NETWORKING SETTINGS

7

3. Delete the ovnkube-master pod by running the following command:

4. Confirm that a new ovnkube-master pod is running by using the following command:

The listing of the running pods shows a new ovnkube-master pod name and age.

1.4. DEPLOYING RED HAT BUILD OF MICROSHIFT BEHIND AN HTTP(S)
PROXY

Deploy a Red Hat build of MicroShift cluster behind an HTTP(S) proxy when you want to add basic
anonymity and security measures to your pods.

You must configure the host operating system to use the proxy service with all components initiating
HTTP(S) requests when deploying Red Hat build of MicroShift behind a proxy.

All the user-specific workloads or pods with egress traffic, such as accessing cloud services, must be
configured to use the proxy. There is no built-in transparent proxying of egress traffic in Red Hat build
of MicroShift.

1.5. USING A PROXY IN THE CRI-O CONTAINER RUNTIME

To use an HTTP(S) proxy in CRI-O, you need to set the HTTP_PROXY and HTTPS_PROXY
environment variables. You can also set the NO_PROXY variable to exclude a list of hosts from being
proxied.

Procedure

1. Add the following settings to the /etc/systemd/system/crio.service.d/00-proxy.conf file:

2. Reload the configuration settings:

3. Restart the CRI-O service to apply the settings:

1.6. GETTING A SNAPSHOT OF OVS INTERFACES FROM A RUNNING
CLUSTER

$ pod=$(oc get pods -n openshift-ovn-kubernetes | awk -F " " '/ovnkube-master/{print $1}')

$ oc -n openshift-ovn-kubernetes delete pod $pod

$ oc get pods -n openshift-ovn-kubernetes

Environment=NO_PROXY="localhost,127.0.0.1"
Environment=HTTP_PROXY="http://$PROXY_USER:$PROXY_PASSWORD@$PROXY_SE
RVER:$PROXY_PORT/"
Environment=HTTPS_PROXY="http://$PROXY_USER:$PROXY_PASSWORD@$PROXY_S
ERVER:$PROXY_PORT/"

$ sudo systemctl daemon-reload

$ sudo systemctl restart crio

Red Hat build of MicroShift 4.12 Networking

8

1 2

3 4 5

6

A snapshot represents the state and data of OVS interfaces at a specific point in time.

Procedure

To see a snapshot of OVS interfaces from a running Red Hat build of MicroShift cluster, use the
following command:

Example OVS interfaces in a running cluster

The patch-br-ex_localhost.localdomain-to-br-int and patch-br-int-to-br-
ex_localhost.localdomain are OVS patch ports that connect br-ex and br-int.

The pod interfaces eebee1ce5568761, b47b1995ada84f4 and 3031f43d67c167f are named
with the first 15 bits of pod sandbox ID and are plugged in the br-int bridge.

The OVS internal port for hairpin traffic,ovn-k8s-mp0 is created by the ovnkube-master
container.

$ sudo ovs-vsctl show

9d9f5ea2-9d9d-4e34-bbd2-dbac154fdc93
 Bridge br-ex
 Port enp1s0
 Interface enp1s0
 type: system
 Port br-ex
 Interface br-ex
 type: internal
 Port patch-br-ex_localhost.localdomain-to-br-int 1
 Interface patch-br-ex_localhost.localdomain-to-br-int
 type: patch
 options: {peer=patch-br-int-to-br-ex_localhost.localdomain} 2
 Bridge br-int
 fail_mode: secure
 datapath_type: system
 Port patch-br-int-to-br-ex_localhost.localdomain
 Interface patch-br-int-to-br-ex_localhost.localdomain
 type: patch
 options: {peer=patch-br-ex_localhost.localdomain-to-br-int}
 Port eebee1ce5568761
 Interface eebee1ce5568761 3
 Port b47b1995ada84f4
 Interface b47b1995ada84f4 4
 Port "3031f43d67c167f"
 Interface "3031f43d67c167f" 5
 Port br-int
 Interface br-int
 type: internal
 Port ovn-k8s-mp0 6
 Interface ovn-k8s-mp0
 type: internal
 ovs_version: "2.17.3"

CHAPTER 1. UNDERSTANDING NETWORKING SETTINGS

9

1.7. THE MULTICAST DNS PROTOCOL

The multicast DNS protocol (mDNS) allows name resolution and service discovery within a Local Area
Network (LAN) using multicast exposed on the 5353/UDP port.

Red Hat build of MicroShift includes an embedded mDNS server for deployment scenarios in which the
authoritative DNS server cannot be reconfigured to point clients to services on Red Hat build of
MicroShift. The embedded DNS server allows .local domains exposed by Red Hat build of MicroShift to
be discovered by other elements on the LAN.

Additional resources

Troubleshooting

Troubleshooting the NodePort service

NodePort unreachable workround

Red Hat build of MicroShift 4.12 Networking

10

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.12/html-single/troubleshooting/#microshift-version
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.12/html-single/troubleshooting/#microshift-troubleshooting-nodeport
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.12/html-single/troubleshooting/#microshift-nodeport-unreachable-workaround

CHAPTER 2. USING A FIREWALL
Firewalls are not required in Red Hat build of MicroShift, but using a firewall can prevent undesired
access to the Red Hat build of MicroShift API.

2.1. ABOUT NETWORK TRAFFIC THROUGH THE FIREWALL

When using a firewall, you must explicitly allow the following OVN-Kubernetes traffic when the firewalld
service is running:

CNI pod to CNI pod

CNI pod to Host-Network pod Host-Network pod to Host-Network pod

CNI pod

The Kubernetes pod that uses the CNI network

Host-Network pod

The Kubernetes pod that uses host network Install and configure the firewalld service by using the
following procedures.

IMPORTANT

Red Hat build of MicroShift pods must have access to the internal CoreDNS component
and API servers.

2.2. INSTALLING THE FIREWALLD SERVICE

Use the following procedure to install and run the firewalld service for Red Hat build of MicroShift.

Procedure

1. To install the firewalld service, run the following command:

2. To initiate the firewall, run the following command:

2.3. REQUIRED FIREWALL SETTINGS

An IP address range for the cluster network must be enabled during firewall configuration. You can use
the default values or customize the IP address range. If you choose to customize the cluster network IP
address range from the default 10.42.0.0/16 setting, you must also use the same custom range in the
firewall configuration.

Table 2.1. Firewall IP address settings

IP Range Firewall rule required Description

10.42.0.0/16 No Host network pod access to other
pods

$ sudo dnf install -y firewalld

$ sudo systemctl enable firewalld --now

CHAPTER 2. USING A FIREWALL

11

169.254.169.1 Yes Host network pod access to Red
Hat build of MicroShift API server

IP Range Firewall rule required Description

The following are examples of commands for settings that are mandatory for firewall configuration:

Example commands

Configure host network pod access to other pods:

Configure host network pod access to services backed by Host endpoints, such as the Red Hat
build of MicroShift API:

2.4. USING OPTIONAL PORT SETTINGS

The Red Hat build of MicroShift firewall service allows optional port settings.

Procedure

To add customized ports to your firewall configuration, use the following command syntax:

Table 2.2. Optional ports

Port(s) Protocol(s) Description

80 TCP HTTP port used to serve
applications through the
OpenShift Container Platform
router.

443 TCP HTTPS port used to serve
applications through the
OpenShift Container Platform
router.

5353 UDP mDNS service to respond for
OpenShift Container Platform
route mDNS hosts.

30000-32767 TCP Port range reserved for
NodePort services; can be
used to expose applications on
the LAN.

$ sudo firewall-cmd --permanent --zone=trusted --add-source=10.42.0.0/16

$ sudo firewall-cmd --permanent --zone=trusted --add-source=169.254.169.1

$ sudo firewall-cmd --permanent --zone=public --add-port=<port number>/<port protocol>

Red Hat build of MicroShift 4.12 Networking

12

30000-32767 UDP Port range reserved for
NodePort services; can be
used to expose applications on
the LAN.

6443 TCP HTTPS API port for the Red
Hat build of MicroShift API.

Port(s) Protocol(s) Description

The following are examples of commands used when requiring external access through the firewall to
services running on Red Hat build of MicroShift, such as port 6443 for the API server, for example, ports
80 and 443 for applications exposed through the router.

Example commands

Configuring a port for the Red Hat build of MicroShift API server:

Configuring ports for applications exposed through the router:

2.5. ALLOWING NETWORK TRAFFIC THROUGH THE FIREWALL

You can allow network traffic through the firewall by first configuring the IP address range with either
default or custom values, and then allow internal traffic from pods through the network gateway by
inserting the DNS server.

Procedure

Set the default values or a custom IP address range. After setting the IP address range, allow internal
traffic from the pods through the network gateway.

1. To set the IP address range:

a. To configure the IP address range with default values, run the following command:

b. Alternatively, you can configure the IP address range with custom values by running the
following command:

2. To allow internal traffic from pods through the network gateway, run the following command:

$ sudo firewall-cmd --permanent --zone=public --add-port=6443/tcp

$ sudo firewall-cmd --permanent --zone=public --add-port=80/tcp

$ sudo firewall-cmd --permanent --zone=public --add-port=443/tcp

$ sudo firewall-offline-cmd --permanent --zone=trusted --add-source=10.42.0.0/16

$ sudo firewall-offline-cmd --permanent --zone=trusted --add-source=<custom IP range>

$ sudo firewall-offline-cmd --permanent --zone=trusted --add-source=169.254.169.1

CHAPTER 2. USING A FIREWALL

13

2.5.1. Applying firewall settings

To apply firewall settings, use the following one-step procedure:

Procedure

After you have finished configuring network access through the firewall, run the following command to
restart the firewall and apply settings:

2.6. VERIFYING FIREWALL SETTINGS

After you have restarted the firewall, you can verify your settings by listing them.

Procedure

To verify rules added in the default public zone, such as ports-related rules, run the following
command:

To verify rules added in the trusted zone, such as IP-range related rules, run the following
command:

2.7. KNOWN FIREWALL ISSUE

To avoid breaking traffic flows with a firewall reload or restart, execute firewall commands
before starting Red Hat build of MicroShift. The CNI driver in Red Hat build of MicroShift makes
use of iptable rules for some traffic flows, such as those using the NodePort service. The iptable
rules are generated and inserted by the CNI driver, but are deleted when the firewall reloads or
restarts. The absence of the iptable rules breaks traffic flows. If firewall commands have to be
executed after Red Hat build of MicroShift is running, manually restart ovnkube-master pod in
the openshift-ovn-kubernetes namespace to reset the rules controlled by the CNI driver.

Additional resources

Troubleshooting iptables deleted .

$ sudo firewall-cmd --reload

$ sudo firewall-cmd --list-all

$ sudo firewall-cmd --zone=trusted --list-all

Red Hat build of MicroShift 4.12 Networking

14

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.12/html-single/troubleshooting/#microshift-ki-cni-iptables-deleted

	Table of Contents
	CHAPTER 1. UNDERSTANDING NETWORKING SETTINGS
	1.1. ABOUT THE OVN-KUBERNETES NETWORK PLUGIN
	1.1.1. Network topology
	1.1.1.1. IP forward

	1.1.2. Network performance optimizations
	1.1.3. Network features
	1.1.4. Red Hat build of MicroShift networking components and services overview
	1.1.5. Bridge mappings
	1.1.5.1. Primary gateway interface
	1.1.5.2. Secondary gateway interface

	1.2. CREATING AN OVN-KUBERNETES CONFIGURATION FILE
	1.3. RESTARTING THE OVNKUBE-MASTER POD
	1.4. DEPLOYING RED HAT BUILD OF MICROSHIFT BEHIND AN HTTP(S) PROXY
	1.5. USING A PROXY IN THE CRI-O CONTAINER RUNTIME
	1.6. GETTING A SNAPSHOT OF OVS INTERFACES FROM A RUNNING CLUSTER
	1.7. THE MULTICAST DNS PROTOCOL

	CHAPTER 2. USING A FIREWALL
	2.1. ABOUT NETWORK TRAFFIC THROUGH THE FIREWALL
	2.2. INSTALLING THE FIREWALLD SERVICE
	2.3. REQUIRED FIREWALL SETTINGS
	2.4. USING OPTIONAL PORT SETTINGS
	2.5. ALLOWING NETWORK TRAFFIC THROUGH THE FIREWALL
	2.5.1. Applying firewall settings

	2.6. VERIFYING FIREWALL SETTINGS
	2.7. KNOWN FIREWALL ISSUE

