& RedHat

Red Hat AMQ 7.6

Using the AMQ Core Protocol JMS Client

For Use with AMQ Clients 2.7

Last Updated: 2020-06-16

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

For Use with AMQ Clients 2.7

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.

Table of Contents

Table of Contents

CHAPTER 1. OVERVIEW ittt ettt ettt ettt ettt e et e aneeeaneenneeeanaenaneennneennns 4
11. KEY FEATURES 4
1.2. SUPPORTED STANDARDS AND PROTOCOLS 4
1.3. SUPPORTED CONFIGURATIONS 4
1.4. TERMS AND CONCEPTS 5
1.5. DOCUMENT CONVENTIONS 6

The sudo command 6
File paths 6
Variable text 6

CHAPTER 2. INST ALLATION Lttt ettt ettt ettt e et aaeeeaneeeaneeannesaneesaneennneenns 7
2.1. PREREQUISITES 7
2.2. USING THE RED HAT MAVEN REPOSITORY 7
2.3.INSTALLING A LOCAL MAVEN REPOSITORY 7
2.4.INSTALLING THE EXAMPLES 8

CHAPTER 3. GETTING STARTED .. ttttttttittteitte et eeeteenneeaneeeaneeeaneeannesaneesaneennneenns 9
3.1. PREREQUISITES 9
3.2. RUNNING YOUR FIRST EXAMPLE 9

CHAPTER 4. CONFIGURATION oottt e et e e et et aeeaneeeanaenaneennneenneenns 10
4.1. CONFIGURING THE INITIAL CONTEXT FACTORY 10

Using a jndi.properties file 10

Using a system property 10
4.2. CONFIGURING THE CONNECTION FACTORY 10
4.3. CONNECTION URIS 1
4.4. JMS OPTIONS 1
4.5. TCP OPTIONS 12
4.6.SSL/TLS OPTIONS 12
4.7. CORE PROTOCOL OPTIONS 13
4.8. FAILOVER OPTIONS 13
4.9. DISCOVERY OPTIONS 14
4.10. LARGE MESSAGE OPTIONS 14
4.11. CONFIGURING JNDI RESOURCES 14

4.11.1. Configuring queue and topic names 14

4.11.2. Setting JNDI properties programatically 15

CHAPTER 5. NETWORK CONNECTIONS ..ottt ittt e it aet et eeneenaneenaneenneenns 16

5.1. AUTOMATIC FAILOVER 16

5.1.1. Failing over during the initial connection 17
Setting the number of reconnection attempts 17
Setting a global number of reconnection attempts 17
5.1.2. Handling blocking calls during failover 17
5.1.3. Handling failover with transactions 18
5.1.4. Getting notified of connection failure 18
5.2. APPLICATION-LEVEL FAILOVER 19
5.3. DETECTING DEAD CONNECTIONS 19
5.4. CONFIGURING TIME-TO-LIVE 20
5.5. CLOSING CONNECTIONS 20
5.6. CONFIGURING DYNAMIC DISCOVERY 20
5.7. CONFIGURING STATIC DISCOVERY 21

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

CHAPTER 6. MESSAGE DELIVERY ..o i i e et
6.1. WRITING TO A STREAMED LARGE MESSAGE
6.2. READING FROM A STREAMED LARGE MESSAGE

APPENDIX A.USING YOUR SUBSCRIPTIONo et
Al ACCESSING YOUR ACCOUNT
A2. ACTIVATING A SUBSCRIPTION
A.3. DOWNLOADING RELEASE FILES
A.4.REGISTERING YOUR SYSTEM FOR PACKAGES

APPENDIX B. USING RED HAT MAVEN REPOSITORIES ... ittt ieii e eeaeennnen,
B.1. USING THE ONLINE REPOSITORY
Adding the repository to your Maven settings
Adding the repository to your POM file
B.2. USING A LOCAL REPOSITORY

APPENDIX C. USING AMQ BROKERWITHTHE EXAMPLES e
C.1. INSTALLING THE BROKER
C.2. STARTING THE BROKER
C.3. CREATING A QUEUE
C.4. STOPPING THE BROKER

23
23

24
24
24
24
24

26
26
26
27
27

29
29
29
29
29

Table of Contents

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

CHAPTER 1. OVERVIEW

AMQ Core Protocol JMS is a Java Message Service (JMS) 2.0 client for use in messaging applications
that send and receive Artemis Core Protocol messages.

AMQ Core Protocol JMS is part of AMQ Clients, a suite of messaging libraries supporting multiple
languages and platforms. For an overview of the clients, see AMQ Clients Overview. For information

about this release, see AMQ Clients 2.7 Release Notes .

AMQ Core Protocol JMS is based on the JMS implementation from Apache ActiveMQ Artemis. For
more information about the JMS API, see the JMS API| reference and the JMS tutorial.

1.1. KEY FEATURES
e JMS1.1and 2.0 compatible
® SSL/TLS for secure communication
® Automatic reconnect and failover
® Distributed transactions (XA)

® Pure-Javaimplementation

1.2. SUPPORTED STANDARDS AND PROTOCOLS

AMQ Core Protocol JMS supports the following industry-recognized standards and network protocols:
® Version 2.0 of the Java Message Service API
® Versions 1.0, 1.1,1.2, and 1.3 of the Transport Layer Security (TLS) protocol, the successor to SSL

® Modern TCP with IPv6

1.3. SUPPORTED CONFIGURATIONS

AMQ Core Protocol JMS supports the OS and language versions listed below. For more information,
see Red Hat AMQ 7 Supported Configurations .

® Red Hat Enterprise Linux 7 and 8 with the following JDKs:

o OpendDK 8andTl
o Oracle JDK 8
o IBMJDKS8

® Red Hat Enterprise Linux 6 with the following JDKs:

o OpendDK 8
o Oracle JDK 8
e |BM AIX7.1with IBM JDK 8

® Microsoft Windows 10 Pro with Oracle JDK 8

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/amq_clients_overview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/amq_clients_2.7_release_notes/
http://activemq.apache.org/artemis/
https://docs.oracle.com/javaee/7/api/index.html?javax/jms/package-summary.html
https://docs.oracle.com/javaee/7/tutorial/jms-concepts001.htm
https://jcp.org/en/jsr/detail?id=343
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460
https://access.redhat.com/articles/2791941

CHAPTER 1. OVERVIEW

® Microsoft Windows Server 2012 R2 and 2016 with Oracle JDK 8
® Oracle Solaris 10 and 11 with Oracle JDK 8

AMQ Core Protocol JMS is supported in combination with the latest version of AMQ Broker.

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. APl terms

Entity Description

ConnectionFactory An entry point for creating connections.

Connection A channel for communication between two peers on a network. It contains
sessions.

Session A context for producing and consuming messages. It contains message producers

and consumers.

MessageProducer A channel for sending messages to a destination. It has a target destination.
MessageConsumer A channel for receiving messages from a destination. It has a source destination.
Destination A named location for messages, either a queue or a topic.

Queue A stored sequence of messages.

Topic A stored sequence of messages for multicast distribution.

Message An application-specific piece of information.

AMQ Core Protocol JMS sends and receives messages. Messages are transferred between connected
peers using message producers and consumers. Producers and consumers are established over sessions.
Sessions are established over connections. Connections are created by connection factories.

A sending peer creates a producer to send messages. The producer has a destination that identifies a
target queue or topic at the remote peer. A receiving peer creates a consumer to receive messages.
Like the producer, the consumer has a destination that identifies a source queue or topic at the remote
peer.

A destination is either a queue or a topic. In JMS, queues and topics are client-side representations of
named broker entities that hold messages.

A queue implements point-to-point semantics. Each message is seen by only one consumer, and the
message is removed from the queue after it is read. A topic implements publish-subscribe semantics.
Each message is seen by multiple consumers, and the message remains available to other consumers
afteritis read.

See the JMS tutorial for more information.

https://docs.oracle.com/javaee/7/tutorial/jms-concepts001.htm

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

1.5. DOCUMENT CONVENTIONS

The sudo command

In this document, sudo is used for any command that requires root privileges. Exercise caution when
using sudo because any changes can affect the entire system. For more information about sudo, see
Using the sudo command.

File paths

In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/andrea). On Microsoft Windows, you must use the equivalent Windows paths (for example,
C:\Users\andrea).

Variable text

This document contains code blocks with variables that you must replace with values specific to your
environment. Variable text is enclosed in arrow braces and styled as italic monospace. For example, in
the following command, replace <project-dirs> with the value for your environment:

I $ cd <project-dir>

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-gaining_privileges#sect-Gaining_Privileges-The_sudo_Command

CHAPTER 2. INSTALLATION

CHAPTER 2. INSTALLATION

This chapter guides you through the steps to install AMQ Core Protocol JMS in your environment.

2.1. PREREQUISITES
® You must have a subscription to access AMQ release files and repositories.
® To build programs with AMQ Core Protocol JMS, you must install Apache Maven.

® To use AMQ Core Protocol JMS, you must install Java.

2.2. USING THE RED HAT MAVEN REPOSITORY

Configure your Maven environment to download the client library from the Red Hat Maven repository.

Procedure

1. Add the Red Hat repository to your Maven settings or POM file. For example configuration files,
see Section B.1, “Using the online repository”.

<repository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
</repository>

2. Add the library dependency to your POM file.

<dependency>
<groupld>org.apache.activemg</groupld>
<artifactld>artemis-jms-client</artifactld>
<version>2.11.0.redhat-00005</version>
</dependency>

The client is now available in your Maven project.

2.3.INSTALLING A LOCAL MAVEN REPOSITORY

As an alternative to the online repository, AMQ Core Protocol JMS can be installed to your local
filesystem as a file-based Maven repository.

Procedure

1. Use your subscription to download the AMQ Broker 7.6.0 Maven repository.zip file.

2. Extract the file contents into a directory of your choosing.
On Linux or UNIX, use the unzip command to extract the file contents.

I $ unzip amg-broker-7.6.0-maven-repository.zip

On Windows, right-click the .zip file and select Extract All.

http://maven.apache.org/

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

3. Configure Maven to use the repository in the maven-repository directory inside the extracted
install directory. For more information, see Section B.2, “Using a local repository”.

2.4.INSTALLING THE EXAMPLES

Procedure

1. Use your subscription to download the AMQ Broker 7.6.0.zip file.

2. Extract the file contents into a directory of your choosing.
On Linux or UNIX, use the unzip command to extract the file contents.

I $ unzip amqg-broker-7.6.0.zip

On Windows, right-click the .zip file and select Extract All.

When you extract the contents of the .zip file, a directory named amq-broker-7.6.0 is created.
This is the top-level directory of the installation and is referred to as <install-dir> throughout
this document.

CHAPTER 3. GETTING STARTED

CHAPTER 3. GETTING STARTED

This chapter guides you through the steps to set up your environment and run a simple messaging
program.

3.1. PREREQUISITES

® To build the example, Maven must be configured to use the Red Hat repository or a local
repository.

® You mustinstall the examples.

® You must have a message broker listening for connections on localhost. It must have
anonymous access enabled. For more information, see Starting the broker.

® You must have a queue named exampleQueue. For more information, see Creating a queue.

3.2. RUNNING YOUR FIRST EXAMPLE

The example creates a consumer and producer for a queue named exampleQueue. It sends a text
message and then receives it back, printing the received message to the console.

Procedure

1. Use Maven to build the examples by running the following command in the <install-
dirs/lexamples/features/standard/queue directory.

I $ mvn clean package dependency:copy-dependencies -DincludeScope=runtime -DskipTests

The addition of dependency:copy-dependencies results in the dependencies being copied
into the target/dependency directory.

2. Use the java command to run the example.
On Linux or UNIX:

$ java -cp "target/classes:target/dependency/*"
org.apache.activemq.artemis.jms.example.QueueExample

On Windows:

> java -cp "target\classes;target\dependency*"
org.apache.activemq.artemis.jms.example.QueueExample

For example, running it on Linux results in the following output:

$ java -cp "target/classes:target/dependency/*"
org.apache.activemq.artemis.jms.example.QueueExample
Sent message: This is a text message

Received message: This is a text message

The source code for the example is in the <install-dirs/examples/features/standard/queue/src
directory. Additional examples are available in the <install-dirs/examples/features/standard directory.

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

CHAPTER 4. CONFIGURATION

This chapter describes the process for binding the AMQ Core Protocol JMS implementation to your
JMS application and setting configuration options.

JMS uses the Java Naming Directory Interface (JNDI) to register and look up APl implementations and
other resources. This enables you to write code to the JMS API without tying it to a particular

implementation.

Configuration options are exposed as query parameters on the connection URI. Some of the options are
also exposed as corresponding set and get methods on the ConnectionFactory implementation object.

4.1. CONFIGURING THE INITIAL CONTEXT FACTORY

JMS applications use a JNDI InitialContext object obtained from an InitialContextFactory to look up
JMS objects such as the connection factory. AMQ Core Protocol JMS provides an implementation of
the InitialContextFactory in the org.apache.activemg.artemis.jndi.ActiveMQlInitialContextFactory
class.

The InitialContextFactory implementation is discovered when the InitialContext object is instantiated:

I javax.naming.Context context = new javax.naming.InitialContext();

To find an implementation, JNDI must be configured in your environment. There are two main ways of
achieving this, using a jndi.properties file or using a system property.

Using a jndi.properties file
Create a file named jndi.properties and place it on the Java classpath. Add a property with the key
java.naming.factory.initial.

Example: Setting the JNDI initial context factory using a jndi.properties file
I java.naming.factory.initial = org.apache.activemq.artemis.jndi.ActiveMQlnitialContextFactory

In Maven-based projects, the jndi.properties file is placed in the <project-dirs/src/main/resources
directory.

Using a system property
Set the java.naming.factory.initial system property.

Example: Setting the JNDI initial context factory using a system property

I $ java -Djava.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQlInitial ContextFactory

4.2. CONFIGURING THE CONNECTION FACTORY

The JMS connection factory is the entry point for creating connections. It uses a connection URI that
encodes your application-specific configuration settings.

To set the factory name and connection URI, create a property in the format below. You can store this
configuration in a jndi.properties file or set the corresponding system property.

10

CHAPTER 4. CONFIGURATION

The JNDI property format for connection factories
I connectionFactory.<factory-name> = <connection-uri>

For example, this is how you might configure a factory named app1:

Example: Setting the connection factory in a jndi.properties file
I connectionFactory.app1 = tcp://example.net:616167?clientiD=backend
You can then use the JNDI context to look up your configured connection factory using the name app1:

I ConnectionFactory factory = (ConnectionFactory) context.lookup("app1");

4.3. CONNECTION URIS

A connection factory is configured using a connection URI in the following format:

The connection URI format
I tep://<host>:<port>[?<option>=<value>[&<option>=<value>...]]

For example, the following is a connection URI that connects to host example.net at port 61616 and
sets the client ID to backend:

Example: A connection URI
I tcp://example.net:616167clientiD=backend

Failover URIs take the following form:

The failover URI format
I (<connection-uri>[,<connection-uri>])[?<option>=<value>[&<option>=<value>...]]

The available connection options are described in the following sections.

4.4. JMS OPTIONS

user

The user name used to authenticate the connection.
password

The password used to authenticate the connection.
clientlD

The client ID that is applied to the connection.
grouplD

The group ID that is applied to all produced messages.

autoGroup

1

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

If enabled, generated a random group ID and apply it to all produced messages.
cacheDestinations

If enabled, cache destination lookups. It is disabled by default.
blockOnDurableSend

If enabled, when sending non-transacted durable messages, block until the remote peer
acknowledges receipt. It is enabled by default.

blockOnNonDurableSend

If enabled, when sending non-transacted non-durable messages, block until the remote peer
acknowledges receipt. It is disabled by default.

blockOnAcknowledge

If enabled, when acknowledging non-transacted received messages, block until the remote peer
confirms acknowledgment. It is disabled by default.

dupsOkBatchSize

When using the DUPS_OK_ACKNOWLEDGE acknowledgment mode, the size in bytes of
acknowledgment batches. The default is 1048576 (1 MiB).

preAcknowledge

If enabled, acknowledge messages as soon as they are sent and before delivery is complete. This
provides "at most once" delivery. It is disabled by default.

4.5. TCP OPTIONS

tcpNoDelay
If enabled, do not delay and buffer TCP sends. It is enabled by default.
tcpSendBufferSize
The send buffer size in bytes. The default is 32768 (32 KiB).
tcpReceiveBufferSize
The receive buffer size in bytes. The default is 32768 (32 KiB).
writeBufferLowWaterMark
The limit in bytes below which the write buffer becomes writable. The default is 32768 (32 KiB).
writeBufferHighWaterMark
The limit in bytes above which the write buffer becomes non-writable. The default is 131072 (128 KiB).

4.6.SSL/TLS OPTIONS

ss|lEnabled
If enabled, use SSL/TLS to authenticate and encrypt connections. It is disabled by default.
keyStorePath

The path to the SSL/TLS key store. A key store is required for mutual SSL/TLS authentication. If
unset, the value of the javax.net.ssl.keyStore system property is used.

keyStorePassword

The password for the SSL/TLS key store. If unset, the value of the javax.net.ssl.keyStorePassword
system property is used.

trustStorePath

The path to the SSL/TLS trust store. If unset, the value of the javax.net.ssl.trustStore system
property is used.

12

CHAPTER 4. CONFIGURATION

trustStorePassword

The password for the SSL/TLS trust store. If unset, the value of the
javax.net.ssl.trustStorePassword system property is used.

trustAll

If enabled, trust the provided server certificate implicitly, regardless of any configured trust store. It is
disabled by default.

verifyHost

If enabled, verify that the connection hostname matches the provided server certificate. It is disabled
by default.

enabledCipherSuites
A comma-separated list of cipher suites to enable. If unset, the JVM default ciphers are used.
enabledProtocols

A comma-separated list of SSL/TLS protocols to enable. If unset, the JVM default protocols are
used.

4.7. CORE PROTOCOL OPTIONS

clientFailureCheckPeriod

The time in milliseconds between checks for dead connections. The default is 30000 (30 seconds).
-1disables checking.

connectionTTL

The time in milliseconds after which the connection is failed if the server sends no ping packets. The
default is 60000 (1 minute). -1 disables the timeout.

consumerWindowsSize

The size in bytes of the per-consumer message prefetch buffer. The default is 1048576 (1 MiB). -1
means no limit. O disables prefetching.

consumerMaxRate
The maximum number of messages to consume per second. The default is -1, meaning no limit.
producerWindowSize

The requested size in bytes for credit to produce more messages. This limits the total amount of data
in flight at one time. The default is 1048576 (1 MiB). -1 means no limit.

producerMaxRate
The maximum number of messages to produce per second. The default is -1, meaning no limit.
transactionBatchSize

When receiving messsages in a transaction, the size in bytes of acknowledgment batches. The
default is 1048576 (1 MiB).

4.8. FAILOVER OPTIONS

reconnnectAttempts

The number of reconnection attempts allowed before reporting the connection as failed. The default
is -1, meaning no limit.

initialConnectAttempts

The number of reconnection attempts allowed before the first successful connection and before the
client discovers the broker topology. The default is O, meaning only one attempt is allowed.

failoverOnlnitialConnection

13

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

If enabled, attempt to connect to the backup server if the initial connection fails. It is disabled by
default.

4.9. DISCOVERY OPTIONS

ha

If enabled, track changes in the topology of HA brokers. The host and port from the URI is used only
for the initial connection. After initial connection, the client receives the current failover endpoints
and any updates resulting from topology changes. It is disabled by default.

useTopologyForLoadBalancing

If enabled, use the cluster topology for connection load balancing. It is enabled by default.

4.10. LARGE MESSAGE OPTIONS

The client can enable large message support by setting a value for the property minLargeMessageSize.
Any message larger than minLargeMessageSize is considered a large message.

minLargeMessageSize

The minimum size in bytes at which a message is treated as a large message. The default is 102400
(100 KiB).

compressLargeMessages

If enabled, compress large messages, as defined by minLargeMessageSize. It is disabled by default.

NOTE

If the compressed size of a large message is less than the value of
minLargeMessageSize, the message is sent as a regular message. Therefore, it is not
written to the broker's large-message data directory.

4.11. CONFIGURING JNDI RESOURCES

4.11.1. Configuring queue and topic names

JMS provides the option of using JNDI to look up deployment-specific queue and topic resources.

To set queue and topic names in JNDI, create properties in the following format. Either place this
configuration in a jndi.properties file or define corresponding system properties.

The JNDI property format for queues and topics

queue.<queue-lookup-name> = <queue-name>
topic.<topic-lookup-name> = <topic-name>

For example, the following properties define the names jobs and notifications for two deployment-
specific resources:

Example: Setting queue and topic names in a jndi.properties file

14

CHAPTER 4. CONFIGURATION

queue.jobs = app1/work-items
topic.notifications = app1/updates

You can then look up the resources by their JNDI names:

Queue queue = (Queue) context.lookup("jobs");
Topic topic = (Topic) context.lookup("notifications");

4.11.2. Setting JNDI properties programatically

As an alternative to using a jndi.properties file or system properties to configure JNDI, you can define
properties programatically using the JNDI initial context API.

Example: Setting JNDI properties programatically

Hashtable<Object, Object> env = new Hashtable<>();

env.put("java.naming.factory.initial",
"org.apache.activemgq.artemis.jndi.ActiveMQlInitial ContextFactory");
env.put("connectionFactory.app1”, "tcp://example.net:61616?clientiD=backend");

env.put("queue.jobs", "app1/work-items");

env.put("topic.notifications", "app1/updates");

InitialContext context = new InitialContext(env);

15

https://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

CHAPTER 5. NETWORK CONNECTIONS

5.1. AUTOMATIC FAILOVER

A client can receive information about all master and slave brokers, so that in the event of a connection
failure, it can reconnect to the slave broker. The slave broker then automatically re-creates any sessions
and consumers that existed on each connection before failover. This feature saves you from having to
hand-code manual reconnection logic in your applications.

When a session is recreated on the slave, it does not have any knowledge of messages already sent or
acknowledged. Any in-flight sends or acknowledgements at the time of failover might also be lost.
However, even without transparent failover, it is simple to guarantee once and only once delivery, even in
the case of failure, by using a combination of duplicate detection and retrying of transactions.

Clients detect connection failure when they have not received packets from the broker within a
configurable period of time. See Section 5.3, "“Detecting dead connections” for more information.

You have a number of methods to configure clients to receive information about master and slave. One
option is to configure clients to connect to a specific broker and then receive information about the
other brokers in the cluster. See Section 5.7, “Configuring static discovery” for more information. The
most common way, however, is to use broker discovery. For details on how to configure broker
discovery, see Section 5.6, “Configuring dynamic discovery”.

Also, you can configure the client by adding parameters to the query string of the URI used to connect to
the broker, as in the example below.

I connectionFactory.ConnectionFactory=tcp://localhost:61616?ha=true&reconnectAttempts=3

Procedure

To configure your clients for failover through the use of a query string, ensure the following components
of the URI are set properly:

1. The host:port portion of the URI must point to a master broker that is properly configured with
a backup. This host and port is used only for the initial connection. The host:port value has
nothing to do with the actual connection failover between a live and a backup server. In the
example above, localhost:61616 is used for the host:port.

2. (Optional) To use more than one broker as a possible initial connection, group the host:port
entries as in the following example:

connectionFactory.ConnectionFactory=(tcp://host1:port,icp://host2:port)?
ha=true&reconnectAttempts=3

3. Include the name-value pair ha=true as part of the query string to ensure the client receives
information about each master and slave broker in the cluster.

4. Include the name-value pair reconnectAttempts=n, where nis an integer greater than 0. This
parameter sets the number of times the client attempts to reconnect to a broker.

16

CHAPTER 5. NETWORK CONNECTIONS

NOTE

Failover occurs only if ha=true and reconnectAttempts is greater than 0. Also, the client
must make an initial connection to the master broker in order to receive information about
other brokers. If the initial connection fails, the client can only retry to establish it. See
Section 5.1.1, “Failing over during the initial connection” for more information.

5.1.1. Failing over during the initial connection

Because the client does not receive information about every broker until after the first connection to the
HA cluster, there is a window of time where the client can connect only to the broker included in the
connection URI. Therefore, if a failure happens during this initial connection, the client cannot failover to
other master brokers, but can only try to re-establish the initial connection. Clients can be configured

for set number of reconnection attempts. Once the number of attempts has been made an exception is
thrown.

Setting the number of reconnection attempts

Procedure

The examples below shows how to set the number of reconnection attempts to 3 using the AMQ Core
Protocol JMS client. The default value is 0, that is, try only once.

® Set the number of reconnection attempts by passing a value to
ServerLocator.setlnitialConnectAttempts().

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setlnitialConnectAttempts(3);

Setting a global number of reconnection attempts
Alternatively, you can apply a global value for the maximum number of reconnection attempts within the
broker's configuration. The maximum is applied to all client connections.

Procedure

e Edit <broker-instance-dir>/etc/broker.xml by adding the initial-connect-attempts
configuration element and providing a value for the time-to-live, as in the example below.

<configuration>
<core>

<initial-connect-attempts>3</initial-connect-attempts> ﬂ
</core>
</configuration>

All clients connecting to the broker are allowed a maximum of three attempts to reconnect.
The default is -1, which allows clients unlimited attempts.

5.1.2. Handling blocking calls during failover

When failover occurs and the client is waiting for a response from the broker to continue its execution,
the newly created session does not have any knowledge of the call that was in progress. The initial call
might otherwise hang forever, waiting for a response that never comes. To prevent this, the broker is

17

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

designed to unblock any blocking calls that were in progress at the time of failover by making them
throw an exception. Client code can catch these exceptions and retry any operations if desired.

When using AMQ Core Protocol JMS clients, if the unblocked method is a call to commit() or prepare(),
the transaction is automatically rolled back and the broker throws an exception.

5.1.3. Handling failover with transactions

When using AMQ Core Protocol JMS clients, if the session is transactional and messages have already
been sent or acknowledged in the current transaction, the broker cannot be sure that those messages
or their acknowledgements were lost during the failover. Consequently, the transaction is marked for
rollback only. Any subsequent attempt to commit it throws an
javax.jms.TransactionRolledBackException.

WARNING
A The caveat to this rule is when XA is used. If a two-phase commit is used and

prepare() has already been called, rolling back could cause a
HeuristicMixedException. Because of this, the commit throws an
XAException.XA_RETRY exception, which informs the Transaction Manager it
should retry the commit at some later point. If the original commit has not occurred,
it still exists and can be committed. If the commit does not exist, it is assumed to
have been committed, although the transaction manager might log a warning. A side
effect of this exception is that any nonpersistent messages are lost. To avoid such
losses, always use persistent messages when using XA. This is not an issue with
acknowledgements since they are flushed to the broker before prepare() is called.

The AMQ Core Protocol JMS client code must catch the exception and perform any necessary client
side rollback. There is no need to roll back the session, however, because it was already rolled back. The
user can then retry the transactional operations again on the same session.

If failover occurs when a commit call is being executed, the broker unblocks the call to prevent the AMQ
Core Protocol JMS client from waiting indefinitely for a response. Consequently, the client cannot
determine whether the transaction commit was actually processed on the master broker before failure
occurred.

To remedy this, the AMQ Core Protocol JMS client can enable duplicate detection in the transaction,
and retry the transaction operations again after the call is unblocked. If the transaction was successfully
committed on the master broker before failover, duplicate detection ensures that any durable
messages present in the transaction when it is retried are ignored on the broker side. This prevents
messages from being sent more than once.

If the session is non transactional, messages or acknowledgements can be lost in case of failover. If you

want to provide once and only once delivery guarantees for non transacted sessions, enable duplicate
detection and catch unblock exceptions.

5.1.4. Getting notified of connection failure

JMS provides a standard mechanism for getting notified asynchronously of connection failure:
java.jms.ExceptionListener.

18

CHAPTER 5. NETWORK CONNECTIONS

Any ExceptionListener or SessionFailureListener instance is always called by the broker if a
connection failure occurs, whether the connection was successfully failed over, reconnected, or
reattached. You can find out if a reconnect or a reattach has happened by examining the failedOver flag
passed in on the connectionFailed on SessionFailureListener. Alternatively, you can inspect the error
code of the javax.jms.JMSException, which can be one of the following:

Table 5.1. JMSException error codes

Error code Description

FAILOVER Failover has occurred and the broker has successfully reattached or
reconnected
DISCONNECT No failover has occurred and the broker is disconnected

5.2. APPLICATION-LEVEL FAILOVER

In some cases you might not want automatic client failover, but prefer to code your own reconnection
logic in a failure handler instead. This is known as application-level failover, since the failover is handled
at the application level.

To implement application-level failover when using JMS, set an ExceptionListener class on the JMS
connection. The ExceptionListener is called by the broker in the event that a connection failure is
detected. In your ExceptionListener, you should close your old JMS connections. You might also want
to look up new connection factory instances from JNDI and create new connections.

5.3. DETECTING DEAD CONNECTIONS

As long as the it is receiving data from the broker, the client considers a connection to be alive.
Configure the client to check its connection for failure by providing a value for the client-failure-check-
period property. The default check period for a network connectionis 30000 milliseconds, or 30
seconds, while the default value for an In-VM connection, is -1, which means the client never fails the
connection from its side if no data is received.

Typically, you set the check period to be much lower than the value used for the broker’s connection
time-to-live, which ensures that clients can reconnect in case of a temporary failure.

The examples below show how to set the check period to 10000 milliseconds, or 10 seconds.

Procedure
® Set the check period for detecting dead connections.

o If you are using JNDI, set the check period within the JNDI context environment,
jndi.properties, for example, as below.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:616167?
clientFailureCheckPeriod=10000

o If you are not using JNDI set the check period directly by passing a value to
ActiveMQConnectionFactory.setClientFailureCheckPeriod().

19

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setClientFailureCheckPeriod(10000);

5.4. CONFIGURING TIME-TO-LIVE

By default clients can set a time-to-live (TTL) for their own connections. The examples below show you
how to set the TTL.

Procedure
® Set the time-to-live for a client connection.

o If you are using JNDI to instantiate your connection factory, you can specify it in the xml
config, using the parameter connectionTtl.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQlInitial ContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?connectionTtl=30000

o Ifyou are not using JNDI, the connection TTL is defined by the ConnectionTTL attribute on
a ActiveMQConnectionFactory instance.

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConnectionTTL(30000);

5.5. CLOSING CONNECTIONS

A client application must close its resources in a controlled manner before it exits to prevent dead
connections from occurring. In Java, it is recommended to close connections inside a finally block:

Connection jmsConnection = null;
try {
ConnectionFactory jmsConnectionFactory =
ActiveMQJMSClient.createConnectionFactoryWithoutHA(...);
jmsConnection = jmsConnectionFactory.createConnection();
...use the connection...
}
finally {
if (jmsConnection != null) {
jmsConnection.close();

}
}

5.6. CONFIGURING DYNAMIC DISCOVERY

You can configure AMQ Core Protocol JMS to discover a list of brokers when attempting to establish a
connection.

If you are using JNDI on the client to look up your JMS connection factory instances, you can specify

these parameters in the JNDI context environment. Typically the parameters are defined in a file named
jndi.properties. The host and part in the URI for the connection factory should match the group-

20

CHAPTER 5. NETWORK CONNECTIONS

address and group-port from the corresponding broadcast-group inside broker’s broker.xml
configuration file. Below is an example of a jndi.properties file configured to connect to a broker’s
discovery group.

java.naming.factory.initial = ActiveMQlInitialContextFactory
connectionFactory.myConnectionFactory=udp://231.7.7.7:9876

When this connection factory is downloaded from JNDI by a client application and JMS connections are
created from it, those connections will be load-balanced across the list of servers that the discovery
group maintains by listening on the multicast address specified in the broker's discovery group
configuration.

As an alternative to using JNDI, you can use specify the discovery group parameters directly in your Java
code when creating the JMS connection factory. The code below provides an example of how to do this.

final String groupAddress = "231.7.7.7";
final int groupPort = 9876;

DiscoveryGroupConfiguration discoveryGroupConfiguration = new DiscoveryGroupConfiguration();
UDPBroadcastEndpointFactory udpBroadcastEndpointFactory = new
UDPBroadcastEndpointFactory();
udpBroadcastEndpointFactory.setGroupAddress(groupAddress).setGroupPort(groupPort);
discoveryGroupConfiguration.setBroadcastEndpointFactory(udpBroadcastEndpointFactory);

ConnectionFactory jmsConnectionFactory = ActiveMQJMSClient.createConnectionFactoryWithHA
(discoveryGroupConfiguration, JMSFactory Type.CF);

Connection jmsConnection1 = jmsConnectionFactory.createConnection();
Connection jmsConnection2 = jmsConnectionFactory.createConnection();

The refresh timeout can be set directly on the DiscoveryGroupConfiguration by using the setter
method setRefreshTimeout(). The default value is 10000 milliseconds.

On first usage, the connection factory will make sure it waits this long since creation before creating the
first connection. The default wait time is 10000 milliseconds, but you can change it by passing a new
value to DiscoveryGroupConfiguration.setDiscoverylnitialWaitTimeout().

5.7. CONFIGURING STATIC DISCOVERY

Sometimes it may be impossible to use UDP on the network you are using. In this case you can configure
a connection with an initial list of possible servers. The list can be just one broker that you know will
always be available, or a list of brokers where at least one will be available.

This does not mean that you have to know where all your servers are going to be hosted. You can
configure these servers to use the reliable servers to connect to. After they are connected, their
connection details will be propagated from the server to the client.

If you are using JNDI on the client to look up your JMS connection factory instances, you can specify
these parameters in the JNDI context environment. Typically the parameters are defined in a file named
jndi.properties. Below is an example jndi.properties file that provides a static list of brokers instead of
using dynamic discovery.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory
connectionFactory.myConnectionFactory=(tcp://myhost:61616,tcp://myhost2:61616)

21

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

When the above connection factory is used by a client, its connections will be load-balanced across the
list of brokers defined within the parentheses ().

If you are instantiating the JMS connection factory directly, you can specify the connector list explicitly
when creating the JMS connection factory, as in the example below.

22

HashMap<String, Object> map = new HashMap<String, Object>();

map.put("host", "myhost");

map.put("port", "61616");

TransportConfiguration broker1 = new TransportConfiguration
(NettyConnectorFactory.class.getName(), map);

HashMap<String, Object> map2 = new HashMap<String, Object>();

map2.put("host", "myhost2");

map2.put("port", "61617");

TransportConfiguration broker2 = new TransportConfiguration
(NettyConnectorFactory.class.getName(), map2);

ActiveMQConnectionFactory cf = ActiveMQJMSClient.createConnectionFactoryWithHA
(JMSFactoryType.CF, broker1, broker2);

CHAPTER 6. MESSAGE DELIVERY

CHAPTER 6. MESSAGE DELIVERY

6.1. WRITING TO ASTREAMED LARGE MESSAGE

To write to a large message, use the BytesMessage.writeBytes() method. The following example reads
bytes from a file and writes them to a message:

Example: Writing to a streamed large message

BytesMessage message = session.createBytesMessage();
File inputFile = new File(inputFilePath);
InputStream inputStream = new FilelnputStream(inputFile);

int numRead;
byte[] buffer = new byte[1024];

while ((nhumRead = inputStream.read(buffer, 0, buffer.length)) !=-1) {
message.writeBytes(buffer, 0, numRead);

}

6.2. READING FROM A STREAMED LARGE MESSAGE

To read from a large message, use the BytesMessage.readBytes() method. The following example
reads bytes from a message and writes them to a file:

Example: Reading from a streamed large message

BytesMessage message = (BytesMessage) consumer.receive();
File outputFile = new File(outputFilePath);
OutputStream outputStream = new FileOutputStream(outputFile);

int numRead;
byte buffer[] = new byte[1024];

for (int pos = 0; pos < message.getBodyLength(); pos += buffer.length) {
numRead = message.readBytes(buffer);
outputStream.write(buffer, 0, numRead);

}

23

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

APPENDIX A. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

A.1. ACCESSING YOUR ACCOUNT

Procedure

1. Go to access.redhat.com.
2. If you do not already have an account, create one.

3. Login to your account.

A.2. ACTIVATING A SUBSCRIPTION

Procedure

1. Go to access.redhat.com.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscriptionand enter your 16-digit activation number.

A.3. DOWNLOADING RELEASE FILES

To access .zip, .tar.gz, and other release files, use the customer portal to find the relevant files for
download. If you are using RPM packages or the Red Hat Maven repository, this step is not required.

Procedure

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQentries in the INTEGRATION AND AUTOMATION category.
3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
downloaded release files, this step is not required.

Procedure

1. Go to access.redhat.com.
2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

24

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com

APPENDIX A. USING YOUR SUBSCRIPTION

4. Use the listed command in your system terminal to complete the registration.

For more information, see How to Register and Subscribe a System to the Red Hat Customer Portal .

25

https://access.redhat.com/solutions/253273

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

APPENDIX B. USING RED HAT MAVEN REPOSITORIES

This section describes how to use Red Hat-provided Maven repositories in your software.

B.1. USING THE ONLINE REPOSITORY

Red Hat maintains a central Maven repository for use with your Maven-based projects. For more
information, see the repository welcome page.

There are two ways to configure Maven to use the Red Hat repository:
® Add the repository to your Maven settings
® Add the repository to your POM file

Adding the repository to your Maven settings
This method of configuration applies to all Maven projects owned by your user, as long as your POM file
does not override the repository configuration and the included profile is enabled.

Procedure

1. Locate the Maven settings.xml file. It is usually inside the .m2 directory in the user home
directory. If the file does not exist, use a text editor to create it.
On Linux or UNIX:

I /home/<username>/.m2/settings.xml

On Windows:
I C:\Users\<username>\.m2\settings.xml

2. Add a new profile containing the Red Hat repository to the profiles element of the
settings.xml file, as in the following example:

Example: A Maven settings.xml file containing the Red Hat repository

<settings>
<profiles>
<profile>
<id>red-hat</id>
<repositories>
<repository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>

26

https://access.redhat.com/maven-repository

APPENDIX B. USING RED HAT MAVEN REPOSITORIES

<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>
<activeProfiles>
<activeProfile>red-hat</activeProfile>
</activeProfiles>
</settings>

For more information about Maven configuration, see the Maven settings reference.

Adding the repository to your POM file
To configure a repository directly in your project, add a new entry to the repositories element of your
POM file, as in the following example:

Example: A Maven pom.xml file containing the Red Hat repository

<project>
<modelVersion>4.0.0</modelVersion>

<groupld>com.example</groupld>
<artifactld>example-app</artifactid>
<version>1.0.0</version>

<repositories>
<repository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
</repository>
</repositories>
</project>

For more information about POM file configuration, see the Maven POM reference.

B.2. USING A LOCAL REPOSITORY

Red Hat provides file-based Maven repositories for some of its components. These are delivered as
downloadable archives that you can extract to your local filesystem.

To configure Maven to use a locally extracted repository, apply the following XML in your Maven
settings or POM file:

<repository>
<id>red-hat-local</id>
<url>${repository-url}</url>
</repository>

${repository-url} must be a file URL containing the local filesystem path of the extracted repository.

Table B.1. Example URLs for local Maven repositories

27

http://maven.apache.org/settings.html
https://maven.apache.org/pom.html

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

Operating system Filesystem path URL
Linux or UNIX /home/alice/maven-repository file:’home/alice/maven-repository
Windows C:\repos\red-hat file:C:\repos\red-hat

28

APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES

APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES

The AMQ Core Protocol JMS examples require a running message broker with a queue named
exampleQueue. Use the procedures below to install and start the broker and define the queue.

C.1. INSTALLING THE BROKER

Follow the instructions in Getting Started with AMQ Broker to install the broker and create a broker
instance. Enable anonymous access.

The following procedures refer to the location of the broker instance as <broker-instance-dir>.

C.2.STARTING THE BROKER
Procedure
1. Use the artemis run command to start the broker.

I $ <broker-instance-dir>/bin/artemis run

2. Check the console output for any critical errors logged during startup. The broker logs Server
is now live when it is ready.

$ example-broker/bin/artemis run

ANV A |
NN e
[ANTIVITE T </ NV
N TTTO T <

7\) N\ A\ N]

Red Hat AMQ <version>

2020-06-03 12:12:11,807 INFO [org.apache.activemq.artemis.integration.bootstrap]
AMQ101000: Starting ActiveMQ Artemis Server

2020-06-03 12:12:12,336 INFO [org.apache.activemq.artemis.core.server] AMQ221007:
Server is now live

C.3. CREATING A QUEUE

In a new terminal, use the artemis queue command to create a queue named exampleQueue.

$ <broker-instance-dir>/bin/artemis queue create --name exampleQueue --address exampleQueue -
-auto-create-address --anycast

You are prompted to answer a series of yes or no questions. Answer N for no to all of them.

Once the queue is created, the broker is ready for use with the example programs.

C.4.STOPPING THE BROKER

29

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/getting_started_with_amq_broker/#installing-broker-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

Red Hat AMQ 7.6 Using the AMQ Core Protocol JMS Client

When you are done running the examples, use the artemis stop command to stop the broker.

I $ <broker-instance-dir>/bin/artemis stop

Revised on 2020-06-16 17:51:13 UTC

30

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS
	1.5. DOCUMENT CONVENTIONS
	The sudo command
	File paths
	Variable text

	CHAPTER 2. INSTALLATION
	2.1. PREREQUISITES
	2.2. USING THE RED HAT MAVEN REPOSITORY
	2.3. INSTALLING A LOCAL MAVEN REPOSITORY
	2.4. INSTALLING THE EXAMPLES

	CHAPTER 3. GETTING STARTED
	3.1. PREREQUISITES
	3.2. RUNNING YOUR FIRST EXAMPLE

	CHAPTER 4. CONFIGURATION
	4.1. CONFIGURING THE INITIAL CONTEXT FACTORY
	Using a jndi.properties file
	Using a system property

	4.2. CONFIGURING THE CONNECTION FACTORY
	4.3. CONNECTION URIS
	4.4. JMS OPTIONS
	4.5. TCP OPTIONS
	4.6. SSL/TLS OPTIONS
	4.7. CORE PROTOCOL OPTIONS
	4.8. FAILOVER OPTIONS
	4.9. DISCOVERY OPTIONS
	4.10. LARGE MESSAGE OPTIONS
	4.11. CONFIGURING JNDI RESOURCES
	4.11.1. Configuring queue and topic names
	4.11.2. Setting JNDI properties programatically

	CHAPTER 5. NETWORK CONNECTIONS
	5.1. AUTOMATIC FAILOVER
	5.1.1. Failing over during the initial connection
	Setting the number of reconnection attempts
	Setting a global number of reconnection attempts

	5.1.2. Handling blocking calls during failover
	5.1.3. Handling failover with transactions
	5.1.4. Getting notified of connection failure

	5.2. APPLICATION-LEVEL FAILOVER
	5.3. DETECTING DEAD CONNECTIONS
	5.4. CONFIGURING TIME-TO-LIVE
	5.5. CLOSING CONNECTIONS
	5.6. CONFIGURING DYNAMIC DISCOVERY
	5.7. CONFIGURING STATIC DISCOVERY

	CHAPTER 6. MESSAGE DELIVERY
	6.1. WRITING TO A STREAMED LARGE MESSAGE
	6.2. READING FROM A STREAMED LARGE MESSAGE

	APPENDIX A. USING YOUR SUBSCRIPTION
	A.1. ACCESSING YOUR ACCOUNT
	A.2. ACTIVATING A SUBSCRIPTION
	A.3. DOWNLOADING RELEASE FILES
	A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

	APPENDIX B. USING RED HAT MAVEN REPOSITORIES
	B.1. USING THE ONLINE REPOSITORY
	Adding the repository to your Maven settings
	Adding the repository to your POM file

	B.2. USING A LOCAL REPOSITORY

	APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES
	C.1. INSTALLING THE BROKER
	C.2. STARTING THE BROKER
	C.3. CREATING A QUEUE
	C.4. STOPPING THE BROKER

