& RedHat

Red Hat AMQ 7.5

Using the AMQ Core Protocol JMS Client

For Use with AMQ Clients 2.6

Last Updated: 2020-02-26

Red Hat AMQ 7.5 Using the AMQ Core Protocol JMS Client

For Use with AMQ Clients 2.6

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.

Table of Contents

CHAPTER1.OVERVIEW e

11. KEY FEATURES

1.2. SUPPORTED STANDARDS AND PROTOCOLS
1.3. SUPPORTED CONFIGURATIONS

1.4. TERMS AND CONCEPTS

1.5. DOCUMENT CONVENTIONS

CHAPTER 2. INSTALLATION .. e

2.1. USING THE RED HAT MAVEN REPOSITORY
2.2. INSTALLING A LOCAL MAVEN REPOSITORY
2.3.INSTALLING THE ZIP FILE

CHAPTER 3. GETTING STARTEDot

3.1. PREREQUISITES
3.2. PREPARING THE BROKER
3.3. RUNNING YOUR FIRST EXAMPLE

CHAPTER 4. RECONNECT AND FAILOVERo

4.1. AUTOMATIC CLIENT FAILOVER
4.1.1. Failing over during the initial connection
Setting the number of reconnection attempts
Setting a global number of reconnection attempts
4.1.2. Handling blocking calls during failover
4.1.3. Handling failover with transactions
4.1.4. Getting notified of connection failure
4.2. APPLICATION-LEVEL FAILOVER
4.3. DETECTING DEAD CONNECTIONS
Detecting dead connections from the client side
4.4, CONNECTION TIME-TO-LIVE
Configuring time-to-live on the broker
Configuring time-to-live on the client
4.5. DISABLING ASYNCHRONOUS CONNECTION EXECUTION
4.6. CLOSING CONNECTIONS FROM THE CLIENT SIDE
4.6.1. Configuring a client to use dynamic discovery
Configuring dynamic discovery using JMS
4.7. CONFIGURING A CLIENT TO USE STATIC DISCOVERY
Configuring static discovery

APPENDIX A.USING YOURSUBSCRIPTIONciiiiiiiiiiiiiiiii,

Accessing your account

Activating a subscription
Downloading ZIP and TAR files
Registering your system for packages

APPENDIX B. USING RED HAT MAVEN REPOSITORIES

B.1. USING THE ONLINE REPOSITORY
Adding the repository to your Maven settings
Adding the repository to your POM file

B.2. USING A LOCAL REPOSITORY

Table of Contents

AW W W W

[C2lN¢)]

Red Hat AMQ 7.5 Using the AMQ Core Protocol JMS Client

CHAPTER 1. OVERVIEW

CHAPTER 1. OVERVIEW

AMQ Core Protocol JMS is a Java Message Service (JMS) 2.0 client for use in messaging applications
that send and receive Artemis Core Protocol messages.

AMQ Core Protocol JMS is part of AMQ Clients, a suite of messaging libraries supporting multiple
languages and platforms. For an overview of the clients, see AMQ Clients Overview. For information

about this release, see AMQ Clients 2.6 Release Notes.

AMQ Core Protocol JMS is based on the JMS client from Apache ActiveMQ Artemis.

1.1. KEY FEATURES
e JMS1.1and 2.0 compatible
® SSL/TLS for secure communication
® Automatic reconnect and failover
® Distributed transactions (XA)

® Pure-Java implementation

1.2. SUPPORTED STANDARDS AND PROTOCOLS

AMQ Core Protocol JMS supports the following industry-recognized standards and network protocols:
® \Version 2.0 of the Java Message Service API

® Modern TCP with IPv6

1.3. SUPPORTED CONFIGURATIONS
AMQ Core Protocol JMS supports the following OS and language versions.

® Red Hat Enterprise Linux 6, 7, and 8 with the following JDKs:

o OpendDK 8
o Oracle JDK 8
o IBMJDK8
® Microsoft Windows 10 Pro with Oracle JDK 8
® Microsoft Windows Server 2012 R2 and 2016 with Oracle JDK 8

For more information, see Red Hat AMQ 7 Supported Configurations .

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. APl terms

https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/amq_clients_overview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/amq_clients_2.6_release_notes/
http://activemq.apache.org/artemis/
https://jcp.org/en/jsr/detail?id=343
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460
https://access.redhat.com/articles/2791941

Red Hat AMQ 7.5 Using the AMQ Core Protocol JMS Client

Entity Description

ConnectionFactory An entry point for creating connections.

Connection A channel for communication between two peers on a network. It contains
sessions.

Session A context for producing and consuming messages. It contains message producers

and consumers.

MessageProducer A channel for sending messages to a destination. It has a target destination.
MessageConsumer A channel for receiving messages from a destination. It has a source destination.
Destination A named location for messages, either a queue or a topic.

Queue A stored sequence of messages.

Topic A stored sequence of messages for multicast distribution.

Message An application-specific piece of information.

AMQ Core Protocol JMS sends and receives messages. Messages are transferred between connected
peers using message producers and consumers. Producers and consumers are established over sessions.
Sessions are established over connections. Connections are created by connection factories.

A sending peer creates a producer to send messages. The producer has a destination that identifies a
target queue or topic at the remote peer. A receiving peer creates a consumer to receive messages.
Like the producer, the consumer has a destination that identifies a source queue or topic at the remote
peer.

A destination is either a queue or a topic. In JMS, queues and topics are client-side representations of
named broker entities that hold messages.

A queue implements point-to-point semantics. Each message is seen by only one consumer, and the
message is removed from the queue after it is read. A topic implements publish-subscribe semantics.
Each message is seen by multiple consumers, and the message remains available to other consumers
afteritis read.

See the JMS tutorial for more information.

1.5. DOCUMENT CONVENTIONS

In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/...). If you are using Microsoft Windows, you should use the equivalent Microsoft Windows paths
(for example, C:\Users\...).

https://docs.oracle.com/javaee/7/tutorial/jms-concepts001.htm

CHAPTER 2. INSTALLATION

CHAPTER 2. INSTALLATION

This chapter guides you through the steps to install AMQ Core Protocol JMS in your environment.

2.1. USING THE RED HAT MAVEN REPOSITORY

The client uses Apache Maven as its build tool. You can configure your Maven environment to download
the library from the Red Hat Maven repository.

Procedure

1. Add the Red Hat repository to your Maven settings or POM file. For example configuration files,
see Section B.1, “Using the online repository”.

<repository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
</repository>

2. Add the library dependency to your POM file.

<dependency>
<groupld>org.apache.activemg</groupld>
<artifactld>artemis-jms-client</artifactld>
<version>2.10.0.redhat-00004</version>
</dependency>

The client is now available in your Maven project.

2.2. INSTALLING A LOCAL MAVEN REPOSITORY
As an alternative to the online repository, AMQ Core Protocol JMS can be installed to your local

filesystem as a file-based Maven repository. Note that AMQ Core Protocol JMS is delivered as part of
the AMQ Broker component.

Procedure

1. Use your subscription to download the AMQ Broker Maven Repositoryzip file.

2. Extract the file contents into a directory of your choosing.
On Linux or UNIX, use the unzip command to extract the file contents.

I unzip amq-broker-<version>-maven-repository.zip

On Windows, right-click on the zip file and select Extract All.

3. Configure Maven to use the repository in the maven-repository directory inside the extracted
install directory. For more information, see Section B.2, “Using a local repository”.

2.3.INSTALLING THE ZIP FILE

http://maven.apache.org/

Red Hat AMQ 7.5 Using the AMQ Core Protocol JMS Client

AMQ Core Protocol JMS is delivered as part of the AMQ Broker component. The AMQ Broker zip file
contains the examples and a distribution of the client libraries for those not using Maven. If you are using
Maven and do not require the examples, you do not need to install the zip file.

Procedure

1. Use your subscription to download the AMQ Broker zip file.

2. Extract the file contents into a directory of your choosing.
On Linux or UNIX, use the unzip command to extract the file contents.

I unzip amqg-broker-<version>-bin.zip

On Windows, right-click on the zip file and select Extract All.

When you extract the contents of the zip file, a directory named amq-broker-<versions is
created. This is the top-level directory of the installation and is referred to as <install-dir>
throughout this document.

3. (Optional) If you are not using Maven, add the jar files in the <install-dir>/lib directory to your
Java classpath.

CHAPTER 3. GETTING STARTED

CHAPTER 3. GETTING STARTED

This chapter guides you through a simple exercise to help you get started using AMQ Core Protocol
JMS.

3.1. PREREQUISITES

® The example programs are located in the AMQ Broker zip file. To get started, you must install
the zip file.

® To build the example, Maven must be configured to use the Red Hat repository or a local
repository.

3.2. PREPARING THE BROKER

The example programs require a running broker with a queue named exampleQueue. Follow these
steps to define the queue and start the broker:

Procedure

1. Install the broker.

2. Create a broker instance. Enable anonymous access.

3. Start the broker instance and check the console for any critical errors logged during startup.
$ <broker-instance-dir>/bin/artemis run

14:43:20,158 INFO [org.apache.activemq.artemis.integration.bootstrap] AMQ101000:
Starting ActiveMQ Artemis Server

15:01:39,686 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started
Acceptor at 0.0.0.0:5672 for protocols [AMQP]

15:01:39,691 INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now
live

4. Use the artemis queue command to create a queue called exampleQueue.

<broker-instance-dir>/bin/artemis queue create --name exampleQueue --auto-create-
address --anycast

You are prompted to answer a series of questions. For yes or no questions, type N. Otherwise,
press Enter to accept the default value.

3.3. RUNNING YOUR FIRST EXAMPLE

Procedure

1. Use Maven to build the examples by running the following command in the <install-
dirs/examples/features/standard/queue directory.

I mvn clean package dependency:copy-dependencies -DincludeScope=runtime -DskipTests

https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/getting_started_with_amq_broker/#installing-broker-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

Red Hat AMQ 7.5 Using the AMQ Core Protocol JMS Client

The addition of dependency:copy-dependencies results in the dependencies being copied
into the target/dependency directory.

2. Use the java command to run the example.
On Linux or UNIX:

java -cp "target/classes:target/dependency/*"
org.apache.activemq.artemis.jms.example.QueueExample

On Windows:

java -cp "target\classes;target\dependency*"
org.apache.activemg.artemis.jms.example.QueueExample

The example creates a consumer and producer for a queue named exampleQueue. It sends a text
message and then receives it back, printing the received message to the console.

Running it on Linux results in the following output.

$ java -cp "target/classes:target/dependency/*"
org.apache.activemq.artemis.jms.example.QueueExample
Sent message: This is a text message

Received message: This is a text message

The source code for the example is in the <install-dir>/examples/features/standard/queue/src
directory. Additional examples are available in the <install-dirs/examples/features/standard directory.

CHAPTER 4. RECONNECT AND FAILOVER

CHAPTER 4. RECONNECT AND FAILOVER

AMQ Core Protocol JMS supports automatic reconnect after temporary network failures.

The client can also reconnect, or fail over, to alternate servers. This is often used in combination with HA
server clusters. For more information, see Implementing high availability.

4.1. AUTOMATIC CLIENT FAILOVER

A client can receive information about all master and slave brokers, so that in the event of a connection
failure, it can reconnect to the slave broker. The slave broker then automatically re-creates any sessions
and consumers that existed on each connection before failover. This feature saves you from having to
hand-code manual reconnection logic in your applications.

When a session is recreated on the slave, it does not have any knowledge of messages already sent or
acknowledged. Any in-flight sends or acknowledgements at the time of failover might also be lost.
However, even without transparent failover, it is simple to guarantee once and only once delivery, even in
the case of failure, by using a combination of duplicate detection and retrying of transactions.

Clients detect connection failure when they have not received packets from the broker within a
configurable period of time. See Detecting Dead Connections for more information.

You have a number of methods to configure clients to receive information about master and slave. One
option is to configure clients to connect to a specific broker and then receive information about the
other brokers in the cluster. See Configuring a Client to Use Static Discovery for more information. The
most common way, however, is to use broker discovery. For details on how to configure broker
discovery, see Configuring a Client to Use Dynamic Discovery .

Also, you can configure the client by adding parameters to the query string of the URL used to connect
to the broker, as in the example below.

I connectionFactory.ConnectionFactory=tcp://localhost:61616?ha=true&reconnectAttempts=3

Procedure

To configure your clients for failover through the use of a query string, ensure the following components
of the URL are set properly.

1. The host:port portion of the URL should point to a master broker that is properly configured
with a backup. This host and port is used only for the initial connection. The host:port value has
nothing to do with the actual connection failover between a live and a backup server. In the
example above, localhost:61616 is used for the host:port.

2. (Optional) To use more than one broker as a possible initial connection, group the host:port
entries as in the following example:

connectionFactory.ConnectionFactory=(tcp://host1:port,icp://host2:port)?
ha=true&reconnectAttempts=3

3. Include the name-value pair ha=true as part of the query string to ensure the client receives
information about each master and slave broker in the cluster.

4. Include the name-value pair reconnectAttempts=n, where nis an integer greater than 0. This
parameter sets the number of times the client attempts to reconnect to a broker.

https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/configuring_amq_broker/#implementing-high-availability-configuring

Red Hat AMQ 7.5 Using the AMQ Core Protocol JMS Client

NOTE

Failover occurs only if ha=true and reconnectAttempts is greater than 0. Also, the client
must make an initial connection to the master broker in order to receive information about
other brokers. If the initial connection fails, the client can only retry to establish it. See
Failing Over During the Initial Connection for more information.

4.1.1. Failing over during the initial connection

Because the client does not receive information about every broker until after the first connection to the
HA cluster, there is a window of time where the client can connect only to the broker included in the
connection URL. Therefore, if a failure happens during this initial connection, the client cannot failover to
other master brokers, but can only try to re-establish the initial connection. Clients can be configured

for set number of reconnection attempts. Once the number of attempts has been made an exception is
thrown.

Setting the number of reconnection attempts

Procedure

The examples below shows how to set the number of reconnection attempts to 3 using the AMQ Core
Protocol JMS client. The default value is 0, that is, try only once.

® Set the number of reconnection attempts by passing a value to
ServerLocator.setlnitialConnectAttempts().

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setlnitialConnectAttempts(3);

Setting a global number of reconnection attempts
Alternatively, you can apply a global value for the maximum number of reconnection attempts within the
broker's configuration. The maximum is applied to all client connections.

Procedure

e Edit <broker-instance-dir>/etc/broker.xml by adding the initial-connect-attempts
configuration element and providing a value for the time-to-live, as in the example below.

<configuration>
<core>

<initial-connect-attempts>3</initial-connect-attempts> ﬂ
</core>
</configuration>

All clients connecting to the broker are allowed a maximum of three attempts to reconnect.
The default is -1, which allows clients unlimited attempts.

4.1.2. Handling blocking calls during failover

When failover occurs and the client is waiting for a response from the broker to continue its execution,
the newly created session does not have any knowledge of the call that was in progress. The initial call
might otherwise hang forever, waiting for a response that never comes. To prevent this, the broker is

10

CHAPTER 4. RECONNECT AND FAILOVER

designed to unblock any blocking calls that were in progress at the time of failover by making them
throw an exception. Client code can catch these exceptions and retry any operations if desired.

When using AMQ JMS clients, if the unblocked method is a call to commit() or prepare(), the
transaction is automatically rolled back and the broker throws an exception.

4.1.3. Handling failover with transactions

When using AMQ JMS clients, if the session is transactional and messages have already been sent or
acknowledged in the current transaction, the broker cannot be sure that those messages or their

acknowledgements were lost during the failover. Consequently, the transaction is marked for rollback
only. Any subsequent attempt to commit it throws an javax.jms.TransactionRolledBackException.

' WARNING
A The caveat to this rule is when XA is used. If a two-phase commit is used and

prepare() has already been called, rolling back could cause a
HeuristicMixedException. Because of this, the commit throws an
XAException.XA_RETRY exception, which informs the Transaction Manager it
should retry the commit at some later point. If the original commit has not occurred,
it still exists and can be committed. If the commit does not exist, it is assumed to
have been committed, although the transaction manager might log a warning. A side
effect of this exception is that any nonpersistent messages are lost. To avoid such
losses, always use persistent messages when using XA. This is not an issue with
acknowledgements since they are flushed to the broker before prepare() is called.

The AMQ JMS client code must catch the exception and perform any necessary client side rollback.
There is no need to roll back the session, however, because it was already rolled back. The user can then
retry the transactional operations again on the same session.

If failover occurs when a commit call is being executed, the broker unblocks the call to prevent the AMQ
JMS client from waiting indefinitely for a response. Consequently, the client cannot determine whether
the transaction commit was actually processed on the master broker before failure occurred.

To remedy this, the AMQ JMS client can enable duplicate detection in the transaction, and retry the
transaction operations again after the call is unblocked. If the transaction was successfully committed on
the master broker before failover, duplicate detection ensures that any durable messages present in the
transaction when it is retried are ignored on the broker side. This prevents messages from being sent
more than once.

If the session is non transactional, messages or acknowledgements can be lost in case of failover. If you

want to provide once and only once delivery guarantees for non transacted sessions, enable duplicate
detection and catch unblock exceptions.

4.1.4. Getting notified of connection failure

JMS provides a standard mechanism for getting notified asynchronously of connection failure:
java.jms.ExceptionListener.

Any ExceptionListener or SessionFailureListener instance is always called by the broker if a

1

Red Hat AMQ 7.5 Using the AMQ Core Protocol JMS Client

connection failure occurs, whether the connection was successfully failed over, reconnected, or
reattached. You can find out if a reconnect or a reattach has happened by examining the failedOver flag
passed in on the connectionFailed on SessionFailureListener. Alternatively, you can inspect the error
code of the javax.jms.JMSException, which can be one of the following:

Table 4.1. JMSException error codes

Error code Description

FAILOVER Failover has occurred and the broker has successfully reattached or
reconnected
DISCONNECT No failover has occurred and the broker is disconnected

4.2. APPLICATION-LEVEL FAILOVER

In some cases you might not want automatic client failover, but prefer to code your own reconnection
logic in a failure handler instead. This is known as application-level failover, since the failover is handled
at the application level.

To implement application-level failover when using JMS, set an ExceptionListener class on the JMS
connection. The ExceptionListener is called by the broker in the event that a connection failure is
detected. In your ExceptionListener, you should close your old JMS connections. You might also want
to look up new connection factory instances from JNDI and create new connections.

4.3. DETECTING DEAD CONNECTIONS

Sometimes clients stop unexpectedly and do not have a chance to clean up their resources. If this
occurs, it can leave resources in a faulty state and result in the broker running out of memory or other
system resources. The broker detects that a client’s connection was not properly shut down at garbage
collection time. The connection is then closed and a message similar to the one below is written to the
log. The log captures the exact line of code where the client session was instantiated. This enables you
to identify the error and correct it.

[Finalizer] 20:14:43,244 WARNING [org.apache.activemq.artemis.core.client.impl.DelegatingSession]
I'm closing a JMS Conection you left open. Please make sure you close all connections explicitly
before let
ting them go out of scope!
[Finalizer] 20:14:43,244 WARNING [org.apache.activemq.artemis.core.client.impl.DelegatingSession]
The session you didn't close was created here:
java.lang.Exception

at org.apache.activemgq.artemis.core.client.impl.DelegatingSession.<init>
(DelegatingSession.java:83)

at org.acme.yourproject.YourClass (YourClass.java:666) ﬂ

ﬂ The line in the client code where the connection was instantiated.

Detecting dead connections from the client side

As long as the it is receiving data from the broker, the client considers a connection to be alive.
Configure the client to check its connection for failure by providing a value for the client-failure-check-
period property. The default check period for a network connectionis 30000 milliseconds, or 30

12

CHAPTER 4. RECONNECT AND FAILOVER

seconds, while the default value for an In-VM connection, is -1, which means the client never fails the
connection from its side if no data is received.

Typically, you set the check period to be much lower than the value used for the broker’s connection
time-to-live, which ensures that clients can reconnect in case of a temporary failure.

The examples below show how to set the check period to 10000 milliseconds, or 10 seconds using Core
JMS clients.
Procedure

® Set the check period for detecting dead connections.

o If you are using JNDI with your Core JMS client, set the check period within the JNDI
context environment, jndi.properties, for example, as below.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:616167?
clientFailureCheckPeriod=10000

o If you are not using JNDI set the check period directly by passing a value to
ActiveMQConnectionFactory.setClientFailureCheckPeriod().

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setClientFailureCheckPeriod(10000);

4.4. CONNECTION TIME-TO-LIVE

Because the network connection between the client and the server can fail and then come back online,
allowing a client to reconnect, AMQ Broker waits to clean up inactive server-side resources. This wait
period is called a time-to-live (TTL). The default TTL for a network-based connection is 60000
milliseconds, or T minute. The default TTL on an In-VM connection is -1, which means the broker never
times out the connection on the broker side.

Configuring time-to-live on the broker
If you do not want clients to specify their own connection TTL, you can set a global value on the broker
side. This can be done by specifying the connection-ttl-override element in the broker configuration.

The logic to check connections for TTL violations runs periodically on the broker, as determined by the
connection-ttl-check-interval element.

Procedure

e Edit <broker-instance-dir>/etc/broker.xml by adding the connection-ttl-override
configuration element and providing a value for the time-to-live, as in the example below.

<configuration>
<core>

<connection-ttl-override>30</connection-ttl-override> ﬂ
<connection-ttl-check-interval>1000</connection-ttl-check-interval> 9

13

Red Hat AMQ 7.5 Using the AMQ Core Protocol JMS Client

</core>
</configuration>

ﬂ The global TTL for all connections is set to 30 seconds. The default value is -1, which allows
clients to set their own TTL.

9 The interval between checks for dead connections is set to 1000 milliseconds, or every 1

second. By default, the checks are done every 2000 milliseconds, or 2 seconds.

Configuring time-to-live on the client
By default clients can set a TTL for their own connections. The examples below show you how to set the
Time-To-Live using Core JMS clients.

Procedure
® Set the Time-To-Live for a Client Connection.

o If you are using JNDI to instantiate your connection factory, you can specify it in the xml
config, using the parameter connectionTtl.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQlInitial ContextFactory

connectionFactory.myConnectionFactory=tcp://localhost:61616?connectionTtl=30000

o Ifyou are not using JNDI, the connection TTL is defined by the ConnectionTTL attribute on
a ActiveMQConnectionFactory instance.

ConnectionFactory cf = ActiveMQJMSClient.createConnectionFactory(...)
cf.setConnectionTTL(30000);

4.5. DISABLING ASYNCHRONOUS CONNECTION EXECUTION
Most packets received on the broker side are executed on the remoting thread. These packets
represent short-running operations and are always executed on the remoting thread for performance
reasons. However, some packet types are executed using a thread pool instead of the remoting thread,
which adds a little network latency.
The packet types that use the thread pool are implemented within the Java classes listed below. The
classes are all found in the package
org.apache.actiinvemg.artemis.core.protocol.core.impl.wireformat.

® RollbackMessage

® SessionCloseMessage

® SessionCommitMessage

® SessionXACommitMessage

® SessionXAPrepareMessage

® SessionXARollbackMessage

14

CHAPTER 4. RECONNECT AND FAILOVER

Procedure

® To disable asynchronous connection execution, add the async-connection-execution-enabled
configuration element to <broker-instance-dir>/etc/broker.xml and set it to false, as in the
example below. The default value is true.

<configuration>
<core>

<async-connection-execution-enabled>false</async-connection-execution-enabled>
</core>
</configuration>

4.6. CLOSING CONNECTIONS FROM THE CLIENT SIDE

A client application must close its resources in a controlled manner before it exits to prevent dead
connections from occurring. In Java, it is recommended to close connections inside a finally block:

Connection jmsConnection = null;
try {
ConnectionFactory jmsConnectionFactory =
ActiveMQJMSClient.createConnectionFactoryWithoutHA(...);
jmsConnection = jmsConnectionFactory.createConnection();
...use the connection...
}
finally {
if (jmsConnection != null) {
jmsConnection.close();
}
}

4.6.1. Configuring a client to use dynamic discovery

You can configure a Red Hat AMQ 7.5 Core JMS client to discover a list of brokers when attempting to
establish a connection.

Configuring dynamic discovery using JMS

If you are using JNDI on the client to look up your JMS connection factory instances, you can specify
these parameters in the JNDI context environment. Typically the parameters are defined in a file named
jndi.properties. The host and part in the URL for the connection factory should match the group-
address and group-port from the corresponding broadcast-group inside broker’s broker.xml
configuration file. Below is an example of a jndi.properties file configured to connect to a broker’s
discovery group.

java.naming.factory.initial = ActiveMQlInitialContextFactory
connectionFactory.myConnectionFactory=udp://231.7.7.7:9876
When this connection factory is downloaded from JNDI by a client application and JMS connections are
created from it, those connections will be load-balanced across the list of servers that the discovery
group maintains by listening on the multicast address specified in the broker's discovery group
configuration.

15

Red Hat AMQ 7.5 Using the AMQ Core Protocol JMS Client

As an alternative to using JNDI, you can use specify the discovery group parameters directly in your Java
code when creating the JMS connection factory. The code below provides an example of how to do this.

final String groupAddress = "231.7.7.7";
final int groupPort = 9876;

DiscoveryGroupConfiguration discoveryGroupConfiguration = new DiscoveryGroupConfiguration();
UDPBroadcastEndpointFactory udpBroadcastEndpointFactory = new
UDPBroadcastEndpointFactory();
udpBroadcastEndpointFactory.setGroupAddress(groupAddress).setGroupPort(groupPort);
discoveryGroupConfiguration.setBroadcastEndpointFactory(udpBroadcastEndpointFactory);

ConnectionFactory jmsConnectionFactory = ActiveMQJMSClient.createConnectionFactoryWithHA
(discoveryGroupConfiguration, JMSFactory Type.CF);

Connection jmsConnection1 = jmsConnectionFactory.createConnection();
Connection jmsConnection2 = jmsConnectionFactory.createConnection();

The refresh timeout can be set directly on the DiscoveryGroupConfiguration by using the setter
method setRefreshTimeout(). The default value is 10000 milliseconds.

On first usage, the connection factory will make sure it waits this long since creation before creating the
first connection. The default wait time is 10000 milliseconds, but you can change it by passing a new
value to DiscoveryGroupConfiguration.setDiscoverylnitialWaitTimeout().

4.7. CONFIGURING A CLIENT TO USE STATIC DISCOVERY

Sometimes it may be impossible to use UDP on the network you are using. In this case you can configure
a connection with an initial list if possible servers. The list can be just one broker that you know will
always be available, or a list of brokers where at least one will be available.

This does not mean that you have to know where all your servers are going to be hosted, you can
configure these servers to use the reliable servers to connect to. After they are connected, their
connection details will be propagated via the server the client.

Both Red Hat AMQ 7.5 Core JMS and Java EE UMS clients can use a static list to discover brokers.

Configuring static discovery

If you are using JNDI on the client to look up your JMS connection factory instances, you can specify
these parameters in the JNDI context environment. Typically the parameters are defined in a file named
jndi.properties. Below is an example jndi.properties file that provides a static list of brokers instead of
using dynamic discovery.

java.naming.factory.initial=org.apache.activemq.artemis.jndi.ActiveMQInitialContextFactory
connectionFactory.myConnectionFactory=(tcp://myhost:61616,tcp://myhost2:61616)

When the above connection factory is used by a client, its connections will be load-balanced across the
list of brokers defined within the parentheses ().

If you are instantiating the JMS connection factory directly, you can specify the connector list explicitly
when creating the JMS connection factory, as in the example below.

HashMap<String, Object> map = new HashMap<String, Object>();
map.put("host", "myhost");
map.put("port", "61616");

16

CHAPTER 4. RECONNECT AND FAILOVER

TransportConfiguration broker1 = new TransportConfiguration
(NettyConnectorFactory.class.getName(), map);

HashMap<String, Object> map2 = new HashMap<String, Object>();

map2.put("host", "myhost2");

map2.put("port", "61617");

TransportConfiguration broker2 = new TransportConfiguration
(NettyConnectorFactory.class.getName(), map2);

ActiveMQConnectionFactory cf = ActiveMQJMSClient.createConnectionFactoryWithHA
(JMSFactoryType.CF, broker1, broker2);

17

Red Hat AMQ 7.5 Using the AMQ Core Protocol JMS Client

APPENDIX A. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

Accessing your account
1. Go to access.redhat.com.
2. If you do not already have an account, create one.
3. Login to your account.
Activating a subscription
1. Go to access.redhat.com.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscriptionand enter your 16-digit activation number.

Downloading ZIP and TAR files
To access ZIP or TAR files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQentries in the JBOSS INTEGRATION AND AUTOMATIONCcategory.
3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
ZIP or TAR files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

18

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

APPENDIX B. USING RED HAT MAVEN REPOSITORIES

APPENDIX B. USING RED HAT MAVEN REPOSITORIES

This section describes how to use Red Hat-provided Maven repositories in your software.

B.1. USING THE ONLINE REPOSITORY

Red Hat maintains a central Maven repository for use with your Maven-based projects. For more
information, see the repository welcome page.

There are two ways to configure Maven to use the Red Hat repository:
® Add the repository to your Maven settings
® Add the repository to your POM file

Adding the repository to your Maven settings
This method of configuration applies to all Maven projects owned by your user, as long as your POM file
does not override the repository configuration and the included profile is enabled.

Procedure

1. Locate the Maven settings.xml file. It is usually inside the .m2 directory in the user home
directory. If the file does not exist, use a text editor to create it.
On Linux or UNIX:

I /home/<username>/.m2/settings.xml

On Windows:
I C:\Users\<username>\.m2\settings.xml

2. Add a new profile containing the Red Hat repository to the profiles element of the
settings.xml file, as in the following example:

Example: A Maven settings.xml file containing the Red Hat repository

<settings>
<profiles>
<profile>
<id>red-hat</id>
<repositories>
<repository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>

19

https://access.redhat.com/maven-repository

Red Hat AMQ 7.5 Using the AMQ Core Protocol JMS Client

<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>
<activeProfiles>
<activeProfile>red-hat</activeProfile>
</activeProfiles>
</settings>

For more information about Maven configuration, see the Maven settings reference.

Adding the repository to your POM file
To configure a repository directly in your project, add a new entry to the repositories element of your
POM file, as in the following example:

Example: A Maven pom.xml file containing the Red Hat repository

<project>
<modelVersion>4.0.0</modelVersion>

<groupld>com.example</groupld>
<artifactld>example-app</artifactid>
<version>1.0.0</version>

<repositories>
<repository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
</repository>
</repositories>
</project>

For more information about POM file configuration, see the Maven POM reference.

B.2. USING A LOCAL REPOSITORY

Red Hat provides file-based Maven repositories for some of its components. These are delivered as
downloadable archives that you can extract to your local filesystem.

To configure Maven to use a locally extracted repository, apply the following XML in your Maven
settings or POM file:

<repository>
<id>red-hat-local</id>
<url>${repository-url}</url>
</repository>

${repository-url} must be a file URL containing the local filesystem path of the extracted repository.

Table B.1. Example URLs for local Maven repositories

20

http://maven.apache.org/settings.html
https://maven.apache.org/pom.html

APPENDIX B. USING RED HAT MAVEN REPOSITORIES

Operating system Filesystem path URL
Linux or UNIX /home/alice/maven-repository file:’home/alice/maven-repository
Windows C:\repos\red-hat file:C:\repos\red-hat

Revised on 2020-02-26 17:17:07 UTC

21

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS
	1.5. DOCUMENT CONVENTIONS

	CHAPTER 2. INSTALLATION
	2.1. USING THE RED HAT MAVEN REPOSITORY
	2.2. INSTALLING A LOCAL MAVEN REPOSITORY
	2.3. INSTALLING THE ZIP FILE

	CHAPTER 3. GETTING STARTED
	3.1. PREREQUISITES
	3.2. PREPARING THE BROKER
	3.3. RUNNING YOUR FIRST EXAMPLE

	CHAPTER 4. RECONNECT AND FAILOVER
	4.1. AUTOMATIC CLIENT FAILOVER
	4.1.1. Failing over during the initial connection
	Setting the number of reconnection attempts
	Setting a global number of reconnection attempts

	4.1.2. Handling blocking calls during failover
	4.1.3. Handling failover with transactions
	4.1.4. Getting notified of connection failure

	4.2. APPLICATION-LEVEL FAILOVER
	4.3. DETECTING DEAD CONNECTIONS
	Detecting dead connections from the client side

	4.4. CONNECTION TIME-TO-LIVE
	Configuring time-to-live on the broker
	Configuring time-to-live on the client

	4.5. DISABLING ASYNCHRONOUS CONNECTION EXECUTION
	4.6. CLOSING CONNECTIONS FROM THE CLIENT SIDE
	4.6.1. Configuring a client to use dynamic discovery
	Configuring dynamic discovery using JMS

	4.7. CONFIGURING A CLIENT TO USE STATIC DISCOVERY
	Configuring static discovery

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading ZIP and TAR files
	Registering your system for packages

	APPENDIX B. USING RED HAT MAVEN REPOSITORIES
	B.1. USING THE ONLINE REPOSITORY
	Adding the repository to your Maven settings
	Adding the repository to your POM file

	B.2. USING A LOCAL REPOSITORY

