
Red Hat AMQ 7.3

Using the AMQ JMS Client

For Use with AMQ Clients 2.4

Last Updated: 2019-06-18





Red Hat AMQ 7.3 Using the AMQ JMS Client

For Use with AMQ Clients 2.4



Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. OVERVIEW
1.1. KEY FEATURES
1.2. SUPPORTED STANDARDS AND PROTOCOLS
1.3. SUPPORTED CONFIGURATIONS
1.4. TERMS AND CONCEPTS
1.5. DOCUMENT CONVENTIONS

The sudo command
About the use of file paths in this document

CHAPTER 2. INSTALLATION
2.1. USING THE RED HAT MAVEN REPOSITORY
2.2. INSTALLING A LOCAL MAVEN REPOSITORY
2.3. INSTALLING THE .ZIP FILE

CHAPTER 3. GETTING STARTED
3.1. PREPARING THE BROKER
3.2. RUNNING HELLO WORLD

CHAPTER 4. CONFIGURATION
4.1. CONFIGURING A JNDI INITIALCONTEXT

Configuring an InitialContext using a jndi.properties file
Configuring an InitialContext using system properties
Configuring an InitialContext programmatically
JNDI property syntax

Variable expansion
4.2. CONNECTION URIS
4.3. CONNECTION URI OPTIONS

4.3.1. JMS options
Prefetch policy options
Redelivery policy options
Message ID policy options
Presettle policy options
Deserialization policy options

4.3.2. TCP transport options
4.3.3. SSL/TLS transport options
4.3.4. AMQP options
4.3.5. Failover options
4.3.6. Discovery options

4.4. SECURITY
4.4.1. Authenticating using Kerberos
4.4.2. Enabling OpenSSL support

4.5. LOGGING
4.6. EXTENDED SESSION ACKNOWLEDGMENT MODES

Individual acknowledge
No acknowledge

CHAPTER 5. EXAMPLES
5.1. CONFIGURING THE JNDI CONTEXT
5.2. SENDING MESSAGES
5.3. RECEIVING MESSAGES

CHAPTER 6. RECONNECT AND FAILOVER

4
4
4
4
5
6
6
6

7
7
7
7

9
9
9

11
11
11
11
11
11

12
12
13
13
14
15
15
15
15
16
17
18
18

20
21
21
22
22
23
23
23

24
24
24
26

28

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1. HANDLING UNACKNOWLEDGED DELIVERIES
Non-transacted producer with an unacknowledged delivery
Transacted producer with an uncommitted transaction
Transacted producer with a pending commit
Non-transacted consumer with an unacknowledged delivery
Transacted consumer with an uncommitted transaction
Transacted consumer with a pending commit

CHAPTER 7. INTEROPERABILITY
7.1. INTEROPERATING WITH OTHER AMQP CLIENTS

7.1.1. Sending messages
7.1.1.1. Message type
7.1.1.2. Message properties

7.1.2. Receiving messages
7.1.2.1. Message type
7.1.2.2. Message properties

7.2. CONNECTING TO AMQ BROKER
7.3. CONNECTING TO AMQ INTERCONNECT

APPENDIX A. USING YOUR SUBSCRIPTION
Accessing your account
Activating a subscription
Downloading ZIP and TAR files
Registering your system for packages

APPENDIX B. USING RED HAT MAVEN REPOSITORIES
B.1. USING THE ONLINE REPOSITORY

Adding the repository to your Maven settings
Adding the repository to your POM file

B.2. USING A LOCAL REPOSITORY

28
28
28
28
28
28
28

29
29
29
29
30
30
30
31
32
32

33
33
33
33
33

34
34
34
35
35

Red Hat AMQ 7.3 Using the AMQ JMS Client

2



Table of Contents

3



CHAPTER 1. OVERVIEW
AMQ JMS is a Java Message Service (JMS) 2.0 client for use in messaging applications that send and
receive AMQP messages.

AMQ JMS is part of AMQ Clients, a suite of messaging libraries supporting multiple languages and
platforms. For an overview of the clients, see AMQ Clients Overview. For information about this release,
see AMQ Clients 2.4 Release Notes .

AMQ JMS is based on the JMS client from Apache Qpid.

1.1. KEY FEATURES

JMS 1.1 and 2.0 compatible

SSL/TLS for secure communication

Flexible SASL authentication

Automatic reconnect and failover

Ready for use with OSGi containers

Pure-Java implementation

NOTE

AMQ JMS does not currently support distributed transactions (XA). If your application
requires distributed transactions, it is recommended that you use the AMQ Core Protocol
JMS client.

1.2. SUPPORTED STANDARDS AND PROTOCOLS

AMQ JMS supports the following industry-recognized standards and network protocols:

Version 2.0 of the Java Message Service API

Version 1.0 of the Advanced Message Queueing Protocol (AMQP)

Version 1.0 of the AMQP JMS Mapping

Versions 1.0, 1.1, 1.2, and 1.3 of the Transport Layer Security  (TLS) protocol, the successor to SSL

Simple Authentication and Security Layer  (SASL) mechanisms including ANONYMOUS, PLAIN,
SCRAM, EXTERNAL, and GSSAPI (Kerberos)

Modern TCP with IPv6

1.3. SUPPORTED CONFIGURATIONS

AMQ JMS supports the following OS and language versions:

Red Hat Enterprise Linux 6, 7, and 8 with the following JDKs:

OpenJDK 8 and 11

Red Hat AMQ 7.3 Using the AMQ JMS Client

4

https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/amq_clients_overview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/amq_clients_2.4_release_notes/
http://qpid.apache.org/
https://jcp.org/en/jsr/detail?id=343
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4422
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460


Oracle JDK 8

IBM JDK 8

HP-UX 11i with HP-UX JVM 8

IBM AIX 7.1 with IBM JDK 8

Oracle Solaris 10 and 11 with Oracle JDK 8

Microsoft Windows 10 Pro with Oracle JDK 8

Microsoft Windows Server 2012 R2 and 2016 with Oracle JDK 8

AMQ JMS is supported in combination with the following AMQ components and versions:

All versions of AMQ Broker

All versions of AMQ Interconnect

All versions of AMQ Online

A-MQ 6 versions 6.2.1 and higher

For more information, see Red Hat AMQ Supported Configurations .

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. API terms

Entity Description

ConnectionFactory An entry point for creating connections.

Connection A channel for communication between two peers on a network. It contains
sessions.

Session A context for producing and consuming messages. It contains message producers
and consumers.

MessageProducer A channel for sending messages to a destination. It has a target destination.

MessageConsumer A channel for receiving messages from a destination. It has a source destination.

Destination A named location for messages, either a queue or a topic.

Queue A stored sequence of messages.

Topic A stored sequence of messages for multicast distribution.

CHAPTER 1. OVERVIEW

5

https://access.redhat.com/articles/2791941


Message An application-specific piece of information.

Entity Description

AMQ JMS sends and receives messages. Messages are transferred between connected peers using
message producers  and consumers. Producers and consumers are established over sessions. Sessions
are established over connections. Connections are created by connection factories.

A sending peer creates a producer to send messages. The producer has a destination that identifies a
target queue or topic at the remote peer. A receiving peer creates a consumer to receive messages.
Like the producer, the consumer has a destination that identifies a source queue or topic at the remote
peer.

A destination is either a queue or a topic. In JMS, queues and topics are client-side representations of
named broker entities that hold messages.

A queue implements point-to-point semantics. Each message is seen by only one consumer, and the
message is removed from the queue after it is read. A topic implements publish-subscribe semantics.
Each message is seen by multiple consumers, and the message remains available to other consumers
after it is read.

See the JMS tutorial for more information.

1.5. DOCUMENT CONVENTIONS

This document uses the following conventions for the sudo command and file paths.

The sudo command
In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

For more information about using sudo, see The sudo Command.

About the use of file paths in this document
In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example, 
/home/...). If you are using Microsoft Windows, you should use the equivalent Microsoft Windows paths
(for example, C:\Users\...).

Red Hat AMQ 7.3 Using the AMQ JMS Client

6

https://docs.oracle.com/javaee/7/tutorial/jms-concepts001.htm
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html


CHAPTER 2. INSTALLATION
This chapter guides you through the steps to install AMQ JMS in your environment.

2.1. USING THE RED HAT MAVEN REPOSITORY

The client uses Apache Maven as its build tool. You can configure your Maven environment to download
the client library from the Red Hat Maven repository.

Procedure

1. Add the Red Hat repository to your Maven settings or POM file. For example configuration files,
see Section B.1, “Using the online repository” .

2. Add the client dependency to your POM file.

The client library is now available in your Maven project.

2.2. INSTALLING A LOCAL MAVEN REPOSITORY

As an alternative to the online repository, AMQ JMS can be installed to your local filesystem as a file-
based Maven repository.

Procedure

1. Use your subscription  to download the AMQ JMS 2.4.0 Maven repository .zip file.

2. Extract the file contents into a directory of your choosing.
On Linux or UNIX, use the unzip command to extract the file contents.

On Windows, right-click the .zip file and select Extract All.

3. Configure Maven to use the repository in the maven-repository directory inside the extracted
install directory. For more information, see Section B.2, “Using a local repository” .

2.3. INSTALLING THE .ZIP FILE

The AMQ JMS .zip file contains the examples and a distribution of the client libraries for those not using
Maven. If you are using Maven and do not require the examples, you do not need to install the .zip file.

<repository>
  <id>red-hat-ga</id>
  <url>https://maven.repository.redhat.com/ga</url>
</repository>

<dependency>
  <groupId>org.apache.qpid</groupId>
  <artifactId>qpid-jms-client</artifactId>
  <version>0.42.0.redhat-00002</version>
</dependency>

unzip amq-jms-2.4.0.GA-maven-repository.zip

CHAPTER 2. INSTALLATION

7

http://maven.apache.org/


Procedure

1. Use your subscription  to download the AMQ JMS 2.4.0 .zip file.

2. Extract the file contents into a directory of your choosing.
On Linux or UNIX, use the unzip command to extract the file contents.

On Windows, right-click the .zip file and select Extract All.

When you extract the contents of the .zip file, a directory named apache-qpid-jms-
0.42.0.redhat-00002 is created. This is the top-level directory of the installation and is referred
to as <install-dir> throughout this document.

3. (Optional) If you are not using Maven, add the .jar files in the <install-dir>/lib directory to your
Java classpath.

unzip apache-qpid-jms-0.42.0.redhat-00002-bin.zip

Red Hat AMQ 7.3 Using the AMQ JMS Client

8



CHAPTER 3. GETTING STARTED
This chapter guides you through a simple exercise to help you get started using AMQ JMS.

To build the examples, you must first configure Maven to discover the client repository .

3.1. PREPARING THE BROKER

The example programs require a running broker with a queue named queue. Follow these steps to
define the queue and start the broker:

Procedure

1. Install the broker.

2. Create a broker instance . Enable anonymous access.

3. Start the broker instance and check the console for any critical errors logged during startup.

4. Use the artemis queue command to create a queue called queue.

You are prompted to answer a series of questions. For yes or no questions, type N. Otherwise,
press Enter to accept the default value.

3.2. RUNNING HELLO WORLD

Use Maven to build the examples by running the following command in the <install-dir>/examples
directory:

NOTE

In this example, the addition of dependency:copy-dependencies results in the
dependencies being copied into the target/dependency directory.

Run the HelloWorld example by using one of the following commands:

$ <broker-instance-dir>/bin/artemis run
...
14:43:20,158 INFO  [org.apache.activemq.artemis.integration.bootstrap] AMQ101000: 
Starting ActiveMQ Artemis Server
...
15:01:39,686 INFO  [org.apache.activemq.artemis.core.server] AMQ221020: Started 
Acceptor at 0.0.0.0:5672 for protocols [AMQP]
...
15:01:39,691 INFO  [org.apache.activemq.artemis.core.server] AMQ221007: Server is now 
live

<broker-instance-dir>/bin/artemis queue create --name queue --auto-create-address --
anycast

mvn clean package dependency:copy-dependencies -DincludeScope=runtime -DskipTests

CHAPTER 3. GETTING STARTED

9

https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/getting_started_with_amq_broker/#installing-broker-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started


Linux:   java -cp "target/classes/:target/dependency/*" org.apache.qpid.jms.example.HelloWorld
Windows: java -cp "target\classes\;target\dependency\*" org.apache.qpid.jms.example.HelloWorld

The HelloWorld example creates a connection to the broker, creates a MessageConsumer and 
MessageProducer for the queue named queue, sends a Hello world!  TextMessage, receives it, and
prints its contents to the terminal.

For example, running it on Linux results in the following output:

The source code for the example can be found in the <install-dir>/src/main/java directory, with the
JNDI and logging configuration found in the <install-dir>/src/main/resources directory.

$ java -cp "target/classes/:target/dependency/*" org.apache.qpid.jms.example.HelloWorld
Hello world!

Red Hat AMQ 7.3 Using the AMQ JMS Client

10



CHAPTER 4. CONFIGURATION
This chapter details various configuration options for the client, such as how to configure and create a
JNDI InitialContext, the syntax for its related configuration, and the URI options that can be set when
defining a ConnectionFactory.

4.1. CONFIGURING A JNDI INITIALCONTEXT

JMS applications use a JNDI InitialContext obtained from an InitialContextFactory to look up JMS
objects such as ConnectionFactory. The client provides an implementation of the 
InitialContextFactory in the org.apache.qpid.jms.jndi.JmsInitialContextFactory class. You can
configure it three different ways.

Configuring an InitialContext using a jndi.properties file
If you include a file named jndi.properties on the classpath and set the java.naming.factory.initial
property value to org.apache.qpid.jms.jndi.JmsInitialContextFactory, the client 
InitialContextFactory implementation is discovered when the InitialContext object is instantiated.

The particular ConnectionFactory, Queue, and Topic objects that you want the Context to contain are
configured as properties either directly within the jndi.properties file or in a separate file whose path is
referenced in jndi.properties using the java.naming.provider.url property. The syntax for these
properties is detailed below.

Configuring an InitialContext using system properties
If you set the java.naming.factory.initial system property to the value 
org.apache.qpid.jms.jndi.JmsInitialContextFactory, the client InitialContextFactory implementation
is discovered when the InitialContext object is instantiated.

The particular ConnectionFactory, Queue, and Topic objects that you want the context to contain are
configured as properties in a file, the path to which is passed using the java.naming.provider.url system
property. The syntax for these properties is detailed below.

Configuring an InitialContext programmatically
You can configure the InitialContext directly by setting an environment variable on a Hashtable
environment object.

The particular ConnectionFactory, Queue, and Topic objects that you want the context to contain are
configured as properties (the syntax for which is detailed below) either directly within the environment 
Hashtable or in a separate file whose path is referenced using the java.naming.provider.url property
within the environment Hashtable.

JNDI property syntax
The property syntax used in the properties file or environment Hashtable is as follows:

To define a ConnectionFactory, use format connectionfactory.<lookup-name> = 

javax.naming.Context ctx = new javax.naming.InitialContext();

javax.naming.Context ctx = new javax.naming.InitialContext();

Hashtable<Object, Object> env = new Hashtable<Object, Object>();
env.put(Context.INITIAL_CONTEXT_FACTORY, 
"org.apache.qpid.jms.jndi.JmsInitialContextFactory");
javax.naming.Context context = new javax.naming.InitialContext(env);

CHAPTER 4. CONFIGURATION

11



To define a ConnectionFactory, use format connectionfactory.<lookup-name> = 
<connection-uri>.

To define a Queue, use format queue.<lookup-name> = <queue-name>.

To define a Topic use format topic.<lookup-name> = <topic-name>.

For more details about the connection URI, see the next section.

As an example, consider the following properties that define a ConnectionFactory, Queue, and Topic.

connectionfactory.myFactoryLookup = amqp://localhost:5672
queue.myQueueLookup = queueA
topic.myTopicLookup = topicA

These objects could then be looked up from a Context as follows.

Variable expansion
The JNDI property values can contain variables of the form ${<variable-name>}. The library searches
for the value in order in the following locations:

Java system properties

OS environment variables

The JNDI properties file or environment Hashtable

For example, on Linux ${HOME} resolves to the HOME environment variable, the current user’s home
directory.

A default value can be supplied using the syntax ${<variable-name>:-<default-value>}. If no value for 
<variable-name> is found, the default value is used instead.

4.2. CONNECTION URIS

A ConnectionFactory is configured using a connection URI.

Connection URI format

amqp[s]://host:port[?option=value[&option2=value...]]

The available connection settings are detailed in the Section 4.3, “Connection URI options” section.

When failover is configured, the client can reconnect to another server automatically if the connection to
the current server is lost. Failover URIs start with the prefix failover: and contain a comma-separated
list of server URIs inside parentheses. Additional options are specified at the end.

Failover URI format

failover:(amqp://host1:port[,amqp://host2:port...])[?option=value[&option2=value...]]

ConnectionFactory factory = (ConnectionFactory) context.lookup("myFactoryLookup");
Queue queue = (Queue) context.lookup("myQueueLookup");
Topic topic = (Topic) context.lookup("myTopicLookup");

Red Hat AMQ 7.3 Using the AMQ JMS Client

12



As with the connection URI example, the client can be configured with a number of different settings
using the URI in a failover configuration. These settings are detailed below, with the Section 4.3.5,
“Failover options” section being of particular interest.

When the amqps scheme is used to specify an SSL/TLS connection, the hostname segment from the
URI can be used by the JVM’s TLS SNI (Server Name Indication) extension to communicate the desired
server hostname during a TLS handshake. The SNI extension is automatically included if a Fully Qualified
Domain Name (for example, "myhost.mydomain") is specified, but not when an unqualified name (for
example, "myhost") or a bare IP address is used.

4.3. CONNECTION URI OPTIONS

4.3.1. JMS options

These options control the behaviour of JMS objects such as Connection, Session, MessageConsumer,
and MessageProducer.

jms.username

The user name used to authenticate the connection.

jms.password

The password used to authenticate the connection.

jms.clientID

The client ID that is applied to the connection.

jms.forceAsyncSend

If enabled, all messages from a MessageProducer are sent asynchronously. Otherwise, only certain
kinds, such as non-persistent messages or those inside a transaction, are sent asynchronously. It is
disabled by default.

jms.forceSyncSend

If enabled, all messages from a MessageProducer are sent synchronously. It is disabled by default.

jms.forceAsyncAcks

If enabled, all message acknowledgments are sent asynchronously. It is disabled by default.

jms.localMessageExpiry

If enabled, any expired messages received by a MessageConsumer are filtered out and not
delivered. It is enabled by default.

jms.localMessagePriority

If enabled, prefetched messages are reordered locally based on their message priority value. It is
disabled by default.

jms.validatePropertyNames

If enabled, message property names are required to be valid Java identifiers. It is enabled by default.

jms.receiveLocalOnly

If enabled, calls to receive with a timeout argument will check a consumer’s local message buffer
only. Otherwise, if the timeout expires, the remote peer is checked to ensure there are really no
messages. It is disabled by default.

jms.receiveNoWaitLocalOnly

If enabled, calls to receiveNoWait will check a consumer’s local message buffer only. Otherwise, the
remote peer is checked to ensure there are really no messages available. It is disabled by default.

jms.queuePrefix

CHAPTER 4. CONFIGURATION

13



An optional prefix value added to the name of any Queue created from a Session.

jms.topicPrefix

An optional prefix value added to the name of any Topic created from a Session.

jms.closeTimeout

The time in milliseconds for which the client will wait for normal resource closure before returning.
The default is 60000 (60 seconds).

jms.connectTimeout

The time in milliseconds for which the client will wait for connection establishment before returning
with an error. The default is 15000 (15 seconds).

jms.sendTimeout

The time in milliseconds for which the client will wait for completion of a synchronous message send
before returning an error. By default the client will wait indefinitely for a send to complete.

jms.requestTimeout

The time in milliseconds for which the client will wait for completion of various synchronous
interactions like opening a producer or consumer (excluding send) with the remote peer before
returning an error. By default the client will wait indefinitely for a request to complete.

jms.clientIDPrefix

An optional prefix value used to generate client ID values when a new Connection is created by the 
ConnectionFactory. The default is ID:.

jms.connectionIDPrefix

An optional prefix value used to generate connection ID values when a new Connection is created by
the ConnectionFactory. This connection ID is used when logging some information from the 
Connection object, so a configurable prefix can make breadcrumbing the logs easier. The default is 
ID:.

jms.populateJMSXUserID

If enabled, populate the JMSXUserID property for each sent message using the authenticated user
name from the connection. It is disabled by default.

jms.awaitClientID

If enabled, a connection with no client ID configured in the URI will wait for a client ID to be set
programmatically, or the connection being used otherwise to signal none can be set, before sending
the AMQP connection "open". It is enabled by default.

jms.useDaemonThread

If enabled, a connection will use a daemon thread for its executor, rather than a non-daemon thread.
It is disabled by default.

Prefetch policy options
Prefetch policy determines how many messages each MessageConsumer will fetch from the remote
peer and hold in a local "prefetch" buffer.

jms.prefetchPolicy.queuePrefetch

The default is 1000.

jms.prefetchPolicy.topicPrefetch

The default is 1000.

jms.prefetchPolicy.queueBrowserPrefetch

The default is 1000.

jms.prefetchPolicy.durableTopicPrefetch

The default is 1000.

Red Hat AMQ 7.3 Using the AMQ JMS Client

14



jms.prefetchPolicy.all

This can be used to set all prefetch values at once.

The value of prefetch can affect the distribution of messages to multiple consumers on a queue or
shared subscription. A higher value can result in larger batches sent at once to each consumer. To
achieve more even round-robin distribution, use a lower value.

Redelivery policy options
Redelivery policy controls how redelivered messages are handled on the client.

jms.redeliveryPolicy.maxRedeliveries

Controls when an incoming message is rejected based on the number of times it has been
redelivered. A value of 0 indicates that no message redeliveries are accepted. A value of 5 allows a
message to be redelivered five times, and so on. The default is -1, meaning no limit.

Message ID policy options
Message ID policy controls the data type of the message ID assigned to messages sent from the client.

jms.messageIDPolicy.messageIDType

By default, a generated String value is used for the message ID on outgoing messages. Other
available types are UUID, UUID_STRING, and PREFIXED_UUID_STRING.

Presettle policy options
Presettle policy controls when a producer or consumer instance will be configured to use AMQP
presettled messaging semantics.

jms.presettlePolicy.presettleAll

If enabled, all producers and non-transacted consumers created operate in presettled mode. It is
disabled by default.

jms.presettlePolicy.presettleProducers

If enabled, all producers operate in presettled mode. It is disabled by default.

jms.presettlePolicy.presettleTopicProducers

If enabled, any producer that is sending to a Topic or TemporaryTopic destination will operate in
presettled mode. It is disabled by default.

jms.presettlePolicy.presettleQueueProducers

If enabled, any producer that is sending to a Queue or TemporaryQueue destination will operate in
presettled mode. It is disabled by default.

jms.presettlePolicy.presettleTransactedProducers

If enabled, any producer that is created in a transacted Session will operate in presettled mode. It is
disabled by default.

jms.presettlePolicy.presettleConsumers

If enabled, all consumers operate in presettled mode. It is disabled by default.

jms.presettlePolicy.presettleTopicConsumers

If enabled, any consumer that is receiving from a Topic or TemporaryTopic destination will operate
in presettled mode. It is disabled by default.

jms.presettlePolicy.presettleQueueConsumers

If enabled, any consumer that is receiving from a Queue or TemporaryQueue destination will
operate in presettled mode. It is disabled by default.

Deserialization policy options

Deserialization policy provides a means of controlling which Java types are trusted to be deserialized

CHAPTER 4. CONFIGURATION

15



Deserialization policy provides a means of controlling which Java types are trusted to be deserialized
from the object stream while retrieving the body from an incoming ObjectMessage composed of
serialized Java Object content. By default all types are trusted during an attempt to deserialize the
body. The default deserialization policy provides URI options that allow specifying a whitelist and a
blacklist of Java class or package names.

jms.deserializationPolicy.whiteList

A comma-separated list of class and package names that should be allowed when deserializing the
contents of an ObjectMessage, unless overridden by blackList. The names in this list are not
pattern values. The exact class or package name must be configured, as in java.util.Map or java.util.
Package matches include sub-packages. The default is to allow all.

jms.deserializationPolicy.blackList

A comma-separated list of class and package names that should be rejected when deserializing the
contents of a ObjectMessage. The names in this list are not pattern values. The exact class or
package name must be configured, as in java.util.Map or java.util. Package matches include sub-
packages. The default is to prevent none.

4.3.2. TCP transport options

When connected to a remote server using plain TCP, the following options specify the behavior of the
underlying socket. These options are appended to the connection URI along with any other
configuration options.

Example: A connection URI with transport options

amqp://localhost:5672?jms.clientID=foo&transport.connectTimeout=30000

The complete set of TCP transport options is listed below.

transport.sendBufferSize

The send buffer size in bytes. The default is 65536 (64 KB).

transport.receiveBufferSize

The receive buffer size in bytes. The default is 65536 (64 KB).

transport.trafficClass

The default is 0.

transport.connectTimeout

The default is 60 seconds.

transport.soTimeout

The default is -1.

transport.soLinger

The default is -1.

transport.tcpKeepAlive

The default is false.

transport.tcpNoDelay

The default is true.

transport.useEpoll

When available, use the native epoll IO layer instead of the NIO layer. This can improve performance.
It is enabled by default.

Red Hat AMQ 7.3 Using the AMQ JMS Client

16



4.3.3. SSL/TLS transport options

The SSL/TLS transport is enabled by using the amqps URI scheme. Because the SSL/TLS transport
extends the functionality of the TCP-based transport, all of the TCP transport options are valid on an
SSL/TLS transport URI.

Example: A simple SSL/TLS connection URI

amqps://myhost.mydomain:5671

The complete set of SSL/TLS transport options is listed below.

transport.keyStoreLocation

If unset, the value of the javax.net.ssl.keyStore system property is used.

transport.keyStorePassword

If unset, the value of the javax.net.ssl.keyStorePassword system property is used.

transport.trustStoreLocation

If unset, the value of the javax.net.ssl.trustStore system property is used.

transport.trustStorePassword

If unset, the value of the javax.net.ssl.trustStorePassword system property is used.

transport.keyStoreType

If unset, the value of the javax.net.ssl.keyStoreType system property is used. If the system
property is unset, the default is JKS.

transport.trustStoreType

If unset, the value of the javax.net.ssl.trustStoreType system property is used. If the system
property is unset, the default is JKS.

transport.storeType

Sets both keyStoreType and trustStoreType to the same value. If unset, keyStoreType and 
trustStoreType default to the values specified above.

transport.contextProtocol

The protocol argument used when getting an SSLContext. The default is TLS, or TLSv1.2 if using
OpenSSL.

transport.enabledCipherSuites

A comma-separated list of cipher suites to enable. If unset, the context-default ciphers are used. Any
disabled ciphers are removed from this list.

transport.disabledCipherSuites

A comma-separated list of cipher suites to disable. Ciphers listed here are removed from the enabled
ciphers.

transport.enabledProtocols

A comma-separated list of protocols to enable. If unset, the context-default protocols are used. Any
disabled protocols are removed from this list.

transport.disabledProtocols

A comma-separated list of protocols to disable. Protocols listed here are removed from the enabled
protocol list. The default is SSLv2Hello,SSLv3.

transport.trustAll

If enabled, trust the provided server certificate implicitly, regardless of any configured trust store. It is
disabled by default.

CHAPTER 4. CONFIGURATION

17



transport.verifyHost

If enabled, verify that the connection hostname matches the provided server certificate. It is enabled
by default.

transport.keyAlias

The alias to use when selecting a key pair from the key store if required to send a client certificate to
the server.

transport.useOpenSSL

If enabled, use native OpenSSL libraries for SSL/TLS connections if available. It is disabled by
default.
For more information, see Section 4.4.2, “Enabling OpenSSL support” .

4.3.4. AMQP options

The following options apply to aspects of behavior related to the AMQP wire protocol.

amqp.idleTimeout

The time in milliseconds after which the connection will be failed if the peer sends no AMQP frames.
The default is 60000 (1 minute).

amqp.vhost

The virtual host to connect to. This is used to populate the SASL and AMQP hostname fields. The
default is the main hostname from the connection URI.

amqp.saslLayer

If enabled, SASL is used when establishing connections. It is enabled by default.

amqp.saslMechanisms

A comma-separated list of SASL mechanisms the client should allow selection of, if offered by the
server and usable with the configured credentials. The supported mechanisms are EXTERNAL,
SCRAM-SHA-256, SCRAM-SHA-1, CRAM-MD5, PLAIN, ANONYMOUS, and GSSAPI for Kerberos.
The default is to allow selection from all mechanisms except GSSAPI, which must be explicitly
included here to enable.

amqp.maxFrameSize

The maximum AMQP frame size in bytes allowed by the client. This value will be advertised to the
remote peer. The default is 1048576 (1 MiB).

amqp.drainTimeout

The time in milliseconds that the client will wait for a response from the remote peer when a
consumer drain request is made. If no response is seen in the allotted timeout period, the link will be
considered failed and the associated consumer will be closed. The default is 60000 (1 minute).

amqp.allowNonSecureRedirects

If enabled, allow AMQP redirects to alternative hosts when the existing connection is secure and the
alternative connection is not. For example, if enabled this would permit redirecting an SSL/TLS
connection to a raw TCP connection. It is disabled by default.

4.3.5. Failover options

Failover URIs start with the prefix failover: and contain a comma-separated list of server URIs inside
parentheses. Additional options are specified at the end. Options prefixed with jms. are applied to the
overall failover URI, outside of parentheses, and affect the Connection object for its lifetime.

Example: A failover URI with failover options

Red Hat AMQ 7.3 Using the AMQ JMS Client

18



failover:(amqp://host1:5672,amqp://host2:5672)?
jms.clientID=foo&failover.maxReconnectAttempts=20

The individual broker details within the parentheses can use the transport. or amqp. options defined
earlier. These are applied as each host is connected to.

Example: A failover URI with per-connection transport and AMQP options

failover:(amqp://host1:5672?amqp.option=value,amqp://host2:5672?transport.option=value)?
jms.clientID=foo

All of the configuration options for failover are listed below.

failover.initialReconnectDelay

The time in milliseconds the client will wait before the first attempt to reconnect to a remote peer.
The default is 0, meaning the first attempt happens immediately.

failover.reconnectDelay

The time in milliseconds between reconnection attempts. If the backoff option is not enabled, this
value remains constant. The default is 10.

failover.maxReconnectDelay

The maximum time that the client will wait before attempting to reconnect. This value is only used
when the backoff feature is enabled to ensure that the delay does not grow too large. The default is
30 seconds.

failover.useReconnectBackOff

If enabled, the time between reconnection attempts grows based on a configured multiplier. It is
enabled by default.

failover.reconnectBackOffMultiplier

The multiplier used to grow the reconnection delay value. The default is 2.0.

failover.maxReconnectAttempts

The number of reconnection attempts allowed before reporting the connection as failed to the
client. The default is -1, meaning no limit.

failover.startupMaxReconnectAttempts

For a client that has never connected to a remote peer before, this option controls how many
attempts are made to connect before reporting the connection as failed. If unset, the value of 
maxReconnectAttempts is used.

failover.warnAfterReconnectAttempts

The number of failed reconnection attempts until a warning is logged. The default is 10.

failover.randomize

If enabled, the set of failover URIs is randomly shuffled before attempting to connect to one of
them. This can help to distribute client connections more evenly across multiple remote peers. It is
disabled by default.

failover.amqpOpenServerListAction

Controls how the failover transport behaves when the connection "open" frame from the server
provides a list of failover hosts to the client. Valid values are REPLACE, ADD, or IGNORE. If 
REPLACE is configured, all failover URIs other than the one for the current server are replaced with
those provided by the server. If ADD is configured, the URIs provided by the server are added to the

CHAPTER 4. CONFIGURATION

19



existing set of failover URIs, with deduplication. If IGNORE is configured, any updates from the
server are ignored and no changes are made to the set of failover URIs in use. The default is 
REPLACE.

The failover URI also supports defining nested options as a means of specifying AMQP and transport
option values applicable to all the individual nested broker URIs. This is accomplished using the same 
transport. and amqp. URI options outlined earlier for a non-failover broker URI but prefixed with 
failover.nested.. For example, to apply the same value for the amqp.vhost option to every broker
connected to you might have a URI like the following:

Example: A failover URI with shared transport and AMQP options

failover:(amqp://host1:5672,amqp://host2:5672)?
jms.clientID=foo&failover.nested.amqp.vhost=myhost

4.3.6. Discovery options

The client has an optional discovery module that provides a customized failover layer where the broker
URIs to connect to are not given in the initial URI but instead are discovered by interacting with a
discovery agent. There are currently two discovery agent implementations: a file watcher that loads URIs
from a file and a multicast listener that works with ActiveMQ 5.x brokers that are configured to
broadcast their broker addresses for listening clients.

The general set of failover-related options when using discovery are the same as those detailed earlier,
with the main prefix changed from failover. to discovery., and with the nested prefix used to supply URI
options common to all the discovered broker URIs. For example, without the agent URI details, a general
discovery URI might look like the following:

Example: A discovery URI

discovery:(<agent-uri>)?
discovery.maxReconnectAttempts=20&discovery.discovered.jms.clientID=foo

To use the file watcher discovery agent, create an agent URI like the following:

Example: A discovery URI using the file watcher agent

discovery:(file:///path/to/monitored-file?updateInterval=60000)

The URI options for the file watcher discovery agent are listed below.

updateInterval

The time in milliseconds between checks for file changes. The default is 30000 (30 seconds).

To use the multicast discovery agent with an ActiveMQ 5.x broker, create an agent URI like the following:

Example: A discovery URI using the multicast listener agent

discovery:(multicast://default?group=default)

Note that the use of default as the host in the multicast agent URI above is a special value that is
substituted by the agent with the default 239.255.2.3:6155. You can change this to specify the actual IP
address and port in use with your multicast configuration.

Red Hat AMQ 7.3 Using the AMQ JMS Client

20



The URI option for the multicast discovery agent is listed below.

group

The multicast group used to listen for updates. The default is default.

4.4. SECURITY

AMQ JMS has a range of security-related configuration options that can be leveraged according to your
application’s needs.

Basic user credentials such as username and password should be passed directly to the 
ConnectionFactory when creating the Connection within the application. However, if you are using the
no-argument factory method, it is also possible to supply user credentials in the connection URI. For
more information, see the Section 4.3.1, “JMS options” section.

Another common security consideration is use of SSL/TLS. The client connects to servers over an
SSL/TLS transport when the amqps URI scheme is specified in the connection URI, with various options
available to configure behavior. For more information, see the Section 4.3.3, “SSL/TLS transport
options” section.

In concert with the earlier items, it may be desirable to restrict the client to allow use of only particular
SASL mechanisms from those that may be offered by a server, rather than selecting from all it supports.
For more information, see the Section 4.3.4, “AMQP options” section.

Applications calling getObject() on a received ObjectMessage may wish to restrict the types created
during deserialization. Note that message bodies composed using the AMQP type system do not use the
ObjectInputStream mechanism and therefore do not require this precaution. For more information, see
the the section called “Deserialization policy options”  section.

4.4.1. Authenticating using Kerberos

The client can be configured to authenticate using Kerberos when used with an appropriately configured
server. To enable Kerberos, use the following steps.

1. Configure the client to use the GSSAPI mechanism for SASL authentication using the 
amqp.saslMechanisms URI option.

amqp://myhost:5672?amqp.saslMechanisms=GSSAPI
failover:(amqp://myhost:5672?amqp.saslMechanisms=GSSAPI)

2. Set the java.security.auth.login.config system property to the path of a JAAS login
configuration file containing appropriate configuration for a Kerberos LoginModule.

-Djava.security.auth.login.config=<login-config-file>

The login configuration file might look like the following example:

amqp-jms-client {
    com.sun.security.auth.module.Krb5LoginModule required
    useTicketCache=true;
};

The precise configuration used will depend on how you wish the credentials to be established for the
connection, and the particular LoginModule in use. For details of the Oracle Krb5LoginModule, see the

CHAPTER 4. CONFIGURATION

21



Oracle Krb5LoginModule class reference. For details of the IBM Java 8 Krb5LoginModule, see the
IBM Krb5LoginModule class reference.

It is possible to configure a LoginModule to establish the credentials to use for the Kerberos process,
such as specifying a principal and whether to use an existing ticket cache or keytab. If, however, the 
LoginModule configuration does not provide the means to establish all necessary credentials, it may
then request and be passed the username and password values from the client Connection object if
they were either supplied when creating the Connection using the ConnectionFactory or previously
configured via its URI options.

Note that Kerberos is supported only for authentication purposes. Use SSL/TLS connections for
encryption.

The following connection URI options can be used to influence the Kerberos authentication process.

sasl.options.configScope

The name of the login configuration entry used to authenticate. The default is amqp-jms-client.

sasl.options.protocol

The protocol value used during the GSSAPI SASL process. The default is amqp.

sasl.options.serverName

The serverName value used during the GSSAPI SASL process. The default is the server hostname
from the connection URI.

Similar to the amqp. and transport. options detailed previously, these options must be specified on a
per-host basis or as all-host nested options in a failover URI.

4.4.2. Enabling OpenSSL support

SSL/TLS connections can be configured to use a native OpenSSL implementation for improved
performance. To use OpenSSL, the transport.useOpenSSL option must be enabled, and an OpenSSL
support library must be available on the classpath.

To use the system-installed OpenSSL libraries on Red Hat Enterprise Linux, install the openssl and apr
RPM packages and add the following dependency to your POM file:

Example: Adding native OpenSSL support

A list of OpenSSL library implementations is available from the Netty project.

4.5. LOGGING

The client uses the SLF4J API, enabling users to select a particular logging implementation based on
their needs by supplying an SLF4J binding, such as slf4j-log4j, in order to use Log4J. More details on
SLF4J are available from its website.

The client uses Logger names residing within the org.apache.qpid.jms hierarchy, which you can use to
configure a logging implementation based on your needs.

<dependency>
  <groupId>io.netty</groupId>
  <artifactId>netty-tcnative</artifactId>
  <version>2.0.22.Final-redhat-00001</version>
</dependency>

Red Hat AMQ 7.3 Using the AMQ JMS Client

22

https://docs.oracle.com/javase/8/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.api.doc/jgss/com/ibm/security/auth/module/Krb5LoginModule.html
https://netty.io/wiki/forked-tomcat-native.html
http://www.slf4j.org
http://www.slf4j.org/


When debugging, it is sometimes useful to enable additional protocol trace logging from the Qpid
Proton AMQP 1.0 library. There are two ways to achieve this.

Set the environment variable (not the Java system property) PN_TRACE_FRM to 1. This will
cause Proton to emit frame logging to the console.

Add the option amqp.traceFrames=true to your connection URI and configure the 
org.apache.qpid.jms.provider.amqp.FRAMES logger to log level TRACE. This will add a
protocol tracer to Proton and include the output in your logs.

You can also configure the client to emit low-level tracing of input and output bytes. To enable this, add
the option transport.traceBytes=true to your connection URI and configure the 
org.apache.qpid.jms.transports.netty.NettyTcpTransport logger to log level DEBUG.

4.6. EXTENDED SESSION ACKNOWLEDGMENT MODES

The client supports two additional session acknowledgement modes beyond those defined in the JMS
specification.

Individual acknowledge
In this mode, messages must be acknowledged individually by the application using the 
Message.acknowledge() method used when the session is in CLIENT_ACKNOWLEDGE mode. Unlike
with CLIENT_ACKNOWLEDGE mode, only the target message is acknowledged. All other delivered
messages remain unacknowledged. The integer value used to activate this mode is 101.

No acknowledge
In this mode, messages are accepted at the server before being dispatched to the client, and no
acknowledgment is performed by the client. The client supports two integer values to activate this
mode, 100 and 257.

connection.createSession(false, 101);

connection.createSession(false, 100);

CHAPTER 4. CONFIGURATION

23



CHAPTER 5. EXAMPLES
This chapter demonstrates the use of AMQ JMS through example programs.

See the Qpid JMS examples for more sample programs.

5.1. CONFIGURING THE JNDI CONTEXT

Applications using JMS typically use JNDI to obtain the ConnectionFactory and Destination objects
used by the application. This keeps the configuration separate from the program and insulates it from
the particular client implementation.

For the purpose of using these examples, a file named jndi.properties should be placed on the
classpath to configure the JNDI Context, as detailed previously .

The contents of the jndi.properties file should match what is shown below, which as per the format
described previously establishes that the client’s InititalContextFactory implementation should be
used, configures a ConnectionFactory to connect to a local server, and defines a destination queue
named queue.

# Configure the InitialContextFactory class to use
java.naming.factory.initial = org.apache.qpid.jms.jndi.JmsInitialContextFactory

# Configure the ConnectionFactory
connectionfactory.myFactoryLookup = amqp://localhost:5672

# Configure the destination
queue.myDestinationLookup = queue

5.2. SENDING MESSAGES

This example first creates a JNDI Context, uses it to look up a ConnectionFactory and Destination,
creates and starts a Connection using the factory, and then creates a Session. Then a 
MessageProducer is created to the Destination, and a message is sent using it. The Connection is
then closed, and the program exits.

A runnable variant of this Sender example is in the <install-dir>/examples directory, along with the
Hello World example covered previously in Chapter 3, Getting started.

Example: Sending messages

package org.jboss.amq.example;

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.DeliveryMode;
import javax.jms.Destination;
import javax.jms.ExceptionListener;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.naming.Context;

Red Hat AMQ 7.3 Using the AMQ JMS Client

24

https://github.com/apache/qpid-jms/tree/0.42.0/qpid-jms-examples


1

2

3

4

5

Creates the JNDI Context to look up ConnectionFactory and Destination objects. The
configuration is picked up from the jndi.properties file as detailed earlier .

The ConnectionFactory and Destination objects are retrieved from the JNDI Context using their
lookup names.

The factory is used to create the Connection, which then has an ExceptionListener registered and
is then started. The credentials given when creating the connection will typically be taken from an
appropriate external configuration source, ensuring they remain separate from the application
itself and can be updated independently.

A non-transacted, auto-acknowledge Session is created on the Connection.

The MessageProducer is created to send messages to the Destination.

import javax.naming.InitialContext;

public class Sender {
  public static void main(String[] args) throws Exception {
    try {
      Context context = new InitialContext(); 1

      ConnectionFactory factory = (ConnectionFactory) context.lookup("myFactoryLookup");
      Destination destination = (Destination) context.lookup("myDestinationLookup"); 2

      Connection connection = factory.createConnection("<username>", "<password>");
      connection.setExceptionListener(new MyExceptionListener());
      connection.start(); 3

      Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); 4

      MessageProducer messageProducer = session.createProducer(destination); 5

      TextMessage message = session.createTextMessage("Message Text!"); 6
      messageProducer.send(message, DeliveryMode.NON_PERSISTENT,
                           Message.DEFAULT_PRIORITY, Message.DEFAULT_TIME_TO_LIVE); 7

      connection.close(); 8
    } catch (Exception exp) {
      System.out.println("Caught exception, exiting.");
      exp.printStackTrace(System.out);
      System.exit(1);
    }
  }

  private static class MyExceptionListener implements ExceptionListener {
    @Override
    public void onException(JMSException exception) {
      System.out.println("Connection ExceptionListener fired, exiting.");
      exception.printStackTrace(System.out);
      System.exit(1);
    }
  }
}

CHAPTER 5. EXAMPLES

25



6

7

8

A TextMessage is created with the given content.

The TextMessage is sent. It is sent non-persistent, with default priority and no expiration.

The Connection is closed. The Session and MessageProducer are closed implicitly.

Note that this is only an example. A real-world application would typically use a long-lived
MessageProducer and send many messages using it over time. Opening and then closing a Connection, 
Session, and MessageProducer per message is generally not efficient.

5.3. RECEIVING MESSAGES

This example starts by creating a JNDI Context, using it to look up a ConnectionFactory and 
Destination, creating and starting a Connection using the factory, and then creates a Session. Then a 
MessageConsumer is created for the Destination, a message is received using it, and its contents are
printed to the console. The Connection is then closed and the program exits. The same JNDI
configuration is used as in the sending example .

An executable variant of this Receiver example is contained within the examples directory of the client
distribution, along with the Hello World example covered previously in Chapter 3, Getting started.

Example: Receiving messages

package org.jboss.amq.example;

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.Destination;
import javax.jms.ExceptionListener;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.naming.Context;
import javax.naming.InitialContext;

public class Receiver {
  public static void main(String[] args) throws Exception {
    try {
      Context context = new InitialContext(); 1

      ConnectionFactory factory = (ConnectionFactory) context.lookup("myFactoryLookup");
      Destination destination = (Destination) context.lookup("myDestinationLookup"); 2

      Connection connection = factory.createConnection("<username>", "<password>");
      connection.setExceptionListener(new MyExceptionListener());
      connection.start(); 3

      Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); 4

      MessageConsumer messageConsumer = session.createConsumer(destination); 5

      Message message = messageConsumer.receive(5000); 6

Red Hat AMQ 7.3 Using the AMQ JMS Client

26



1

2

3

4

5

6

7

8

Creates the JNDI Context to look up ConnectionFactory and Destination objects. The
configuration is picked up from the jndi.properties file as detailed earlier .

The ConnectionFactory and Destination objects are retrieved from the JNDI Context using their
lookup names.

The factory is used to create the Connection, which then has an ExceptionListener registered and
is then started. The credentials given when creating the connection will typically be taken from an
appropriate external configuration source, ensuring they remain separate from the application
itself and can be updated independently.

A non-transacted, auto-acknowledge Session is created on the Connection.

The MessageConsumer is created to receive messages from the Destination.

A call to receive a message is made with a five second timeout.

The result is checked, and if a message was received, its contents are printed, or notice that no
message was received. The result is cast explicitly to TextMessage as this is what we know the 
Sender sent.

The Connection is closed. The Session and MessageConsumer are closed implicitly.

Note that this is only an example. A real-world application would typically use a long-lived 
MessageConsumer and receive many messages using it over time. Opening and then closing a 
Connection, Session, and MessageConsumer for each message is generally not efficient.

      if (message == null) { 7
        System.out.println("A message was not received within given time.");
      } else {
        System.out.println("Received message: " + ((TextMessage) message).getText());
      }

      connection.close(); 8
    } catch (Exception exp) {
      System.out.println("Caught exception, exiting.");
      exp.printStackTrace(System.out);
      System.exit(1);
    }
 }

  private static class MyExceptionListener implements ExceptionListener {
    @Override
    public void onException(JMSException exception) {
      System.out.println("Connection ExceptionListener fired, exiting.");
      exception.printStackTrace(System.out);
      System.exit(1);
    }
  }
}

CHAPTER 5. EXAMPLES

27



CHAPTER 6. RECONNECT AND FAILOVER
This chapter discusses how AMQ JMS handles connection failures.

6.1. HANDLING UNACKNOWLEDGED DELIVERIES

Messaging systems use message acknowledgment to track if the goal of sending a message is truly
accomplished.

When a message is sent, there’s a period of time after the message is sent and before it is acknowledged
(the message is "in flight"). If the network connection is lost during that time, the status of the message
delivery is unknown, and the delivery might require special handling in application code to ensure its
completion.

The sections below describe the conditions for message delivery when connections fail.

Non-transacted producer with an unacknowledged delivery
If a message is in flight, it is sent again after reconnect, provided a send timeout is not set and has not
elapsed.

No user action is required.

Transacted producer with an uncommitted transaction
If a message is in flight, it is sent again after reconnect. If the send is the first in a new transaction, then
sending continues as normal after reconnect. If there are previous sends in the transaction, then the
transaction is considered failed, and any subsequent commit operation throws a 
TransactionRolledBackException.

To ensure delivery, the user must resend any messages belonging to a failed transaction.

Transacted producer with a pending commit
If a commit is in flight, then the transaction is considered failed, and any subsequent commit operation
throws a TransactionRolledBackException.

To ensure delivery, the user must resend any messages belonging to a failed transaction.

Non-transacted consumer with an unacknowledged delivery
If a message is received but not yet acknowledged, then acknowledging the message produces no error
but results in no action by the client.

Because the received message is not acknowledged, the producer might resend it. To avoid duplicates,
the user must filter out duplicate messages by message ID.

Transacted consumer with an uncommitted transaction
If an active transaction is not yet committed, it is considered failed, and any pending acknowledgments
are dropped. Any subsequent commit operation throws a TransactionRolledBackException.

The producer might resend the messages belonging to the transaction. To avoid duplicates, the user
must filter out duplicate messages by message ID.

Transacted consumer with a pending commit
If a commit is in flight, then the transaction is considered failed. Any subsequent commit operation
throws a TransactionRolledBackException.

The producer might resend the messages belonging to the transaction. To avoid duplicates, the user
must filter out duplicate messages by message ID.

Red Hat AMQ 7.3 Using the AMQ JMS Client

28



CHAPTER 7. INTEROPERABILITY
This chapter discusses how to use AMQ JMS in combination with other AMQ components. For an
overview of the compatibility of AMQ components, see the product introduction.

7.1. INTEROPERATING WITH OTHER AMQP CLIENTS

AMQP messages are composed using the AMQP type system. Having this common format is one of the
reasons AMQP clients in different languages are able to interoperate with each other. This section
serves to document behaviour around the AMQP payloads sent and received by the client in relation to
the various JMS Message types used, to aid in using the client along with other AMQP clients.

7.1.1. Sending messages

This section serves to document the different payloads sent by the client when using the various JMS
Message types, so as to aid in using other clients to receive them.

7.1.1.1. Message type

JMS message type Description of transmitted AMQP message

TextMessage A TextMessage will be sent using an amqp-value body section containing a utf8
encoded string of the body text, or null if no body text is set. The message
annotation with symbol key of “x-opt-jms-msg-type” will be set to a byte value of
5.

BytesMessage A BytesMessage will be sent using a data body section containing the raw bytes
from the BytesMessage body, with the properties section content-type field set
to the symbol value “application/octet-stream”. The message annotation with
symbol key of “x-opt-jms-msg-type” will be set to a byte value of 3.

MapMessage A MapMessage body will be sent using an amqp-value body section containing a
single map value. Any byte[] values in the MapMessage body will be encoded as
binary entries in the map. The message annotation with symbol key of “x-opt-
jms-msg-type” will be set to a byte value of 2.

StreamMessage A StreamMessage will be sent using an amqp-sequence body section containing
the entries in the StreamMessage body. Any byte[] entries in the StreamMessage
body will be encoded as binary entries in the sequence. The message annotation
with symbol key of “x-opt-jms-msg-type” will be set to a byte value of 4.

ObjectMessage An ObjectMessage will be sent using an data body section, containing the bytes
from serializing the ObjectMessage body using an ObjectOutputStream, with the
properties section content-type field set to the symbol value “application/x-java-
serialized-object”. The message annotation with symbol key of “x-opt-jms-msg-
type” will be set to a byte value of 1.

Message A plain JMS Message has no body, and will be sent as an amqp-value body
section containing a null. The message annotation with symbol key of “x-opt-jms-
msg-type” will be set to a byte value of 0.

CHAPTER 7. INTEROPERABILITY

29

https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/introducing_red_hat_amq_7/#component_compatibility
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#section-message-format
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/MapMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-map
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-sequence
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte


7.1.1.2. Message properties

JMS messages support setting application properties of various Java types. This section serves to show
the mapping of these property types to AMQP typed values in the application-properties section of the
sent message. Both JMS and AMQP use string keys for property names.

JMS property type AMQP application property type

boolean boolean

byte byte

short short

int int

long long

float float

double double

String string or null

7.1.2. Receiving messages

This section serves to document the different payloads received by the client will be mapped to the
various JMS Message types, so as to aid in using other clients to send messages for receipt by the JMS
client.

7.1.2.1. Message type

If the the “x-opt-jms-msg-type” message-annotation is present on the received AMQP message, its
value is used to determine the JMS message type used to represent it, according to the mapping
detailed in the following table. This reflects the reverse process of the mappings discussed for messages
sent by the JMS client .

AMQP “x-opt-jms-msg-type” message-annotation value (type) JMS message type

0 (byte) Message

1 (byte) ObjectMessage

2 (byte) MapMessage

3 (byte) BytesMessage

4 (byte) StreamMessage

Red Hat AMQ 7.3 Using the AMQ JMS Client

30

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-application-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/MapMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html


5 (byte) TextMessage

AMQP “x-opt-jms-msg-type” message-annotation value (type) JMS message type

If the “x-opt-jms-msg-type” message-annotation is not present, the table below details how the
message will be mapped to a JMS Message type. Note that the StreamMessage and MapMessage
types are only assigned to annotated messages.

Description of Received AMQP Message without “x-opt-jms-msg-type”
annotation

JMS Message Type

An amqp-value body section containing a string or null.

A data body section, with the properties section content-type field set to
a symbol value representing a common textual media type such as
"text/plain", "application/xml", or "application/json”.

TextMessage

An amqp-value body section containing a binary.

A data body section, with the properties section content-type field either
not set, set to symbol value "application/octet-stream”, or set to any
value not understood to be associated with another message type.

BytesMessage

A data body section, with the properties section content-type field set to
symbol value “application/x-java-serialized-object".

An amqp-value body section containing a value not covered above.

An amqp-sequence body section. This will be represented as a List inside
the ObjectMessage.

ObjectMessage

7.1.2.2. Message properties

This section serves to show the mapping of values in the application-properties section of the received
AMQP message to Java types used in the JMS Message.

AMQP application property Type JMS property type

boolean boolean

byte byte

short short

int int

CHAPTER 7. INTEROPERABILITY

31

http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/MapMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-sequence
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-application-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int


long long

float float

double double

string String

null String

AMQP application property Type JMS property type

7.2. CONNECTING TO AMQ BROKER

AMQ Broker is designed to interoperate with AMQP 1.0 clients. Check the following to ensure the
broker is configured for AMQP messaging:

Port 5672 in the network firewall is open.

The AMQ Broker AMQP acceptor is enabled. See Default acceptor settings.

The necessary addresses are configured on the broker. See Addresses, Queues, and Topics .

The broker is configured to permit access from your client, and the client is configured to send
the required credentials. See Broker Security.

7.3. CONNECTING TO AMQ INTERCONNECT

AMQ Interconnect works with any AMQP 1.0 client. Check the following to ensure the components are
configured correctly:

Port 5672 in the network firewall is open.

The router is configured to permit access from your client, and the client is configured to send
the required credentials. See Interconnect Security.

Red Hat AMQ 7.3 Using the AMQ JMS Client

32

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/configuring_amq_broker/#default-acceptor-settings-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/configuring_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/configuring_amq_broker/#security
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/using_amq_interconnect/#security


APPENDIX A. USING YOUR SUBSCRIPTION
AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

Accessing your account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading ZIP and TAR files
To access ZIP or TAR files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ entries in the JBOSS INTEGRATION AND AUTOMATION category.

3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
ZIP or TAR files, this step is not required.

1. Go to access.redhat.com.

2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

APPENDIX A. USING YOUR SUBSCRIPTION

33

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273


APPENDIX B. USING RED HAT MAVEN REPOSITORIES
This section describes how to use Red Hat-provided Maven repositories in your software.

B.1. USING THE ONLINE REPOSITORY

Red Hat maintains a central Maven repository for use with your Maven-based projects. For more
information, see the repository welcome page .

There are two ways to configure Maven to use the Red Hat repository:

Add the repository to your Maven settings

Add the repository to your POM file

Adding the repository to your Maven settings
This method of configuration applies to all Maven projects owned by your user, as long as your POM file
does not override the repository configuration and the included profile is enabled.

Procedure

1. Locate the Maven settings.xml file. It is usually inside the .m2 directory in the user home
directory. If the file does not exist, use a text editor to create it.
On Linux or UNIX:

On Windows:

2. Add a new profile containing the Red Hat repository to the profiles element of the 
settings.xml file, as in the following example:

Example: A Maven settings.xml file containing the Red Hat repository

/home/<username>/.m2/settings.xml

C:\Users\<username>\.m2\settings.xml

<settings>
  <profiles>
    <profile>
      <id>red-hat</id>
      <repositories>
        <repository>
          <id>red-hat-ga</id>
          <url>https://maven.repository.redhat.com/ga</url>
        </repository>
      </repositories>
      <pluginRepositories>
        <pluginRepository>
          <id>red-hat-ga</id>
          <url>https://maven.repository.redhat.com/ga</url>
          <releases>
            <enabled>true</enabled>
          </releases>
          <snapshots>

Red Hat AMQ 7.3 Using the AMQ JMS Client

34

https://access.redhat.com/maven-repository


For more information about Maven configuration, see the Maven settings reference.

Adding the repository to your POM file
To configure a repository directly in your project, add a new entry to the repositories element of your
POM file, as in the following example:

Example: A Maven pom.xml file containing the Red Hat repository

For more information about POM file configuration, see the Maven POM reference .

B.2. USING A LOCAL REPOSITORY

Red Hat provides file-based Maven repositories for some of its components. These are delivered as
downloadable archives that you can extract to your local filesystem.

To configure Maven to use a locally extracted repository, apply the following XML in your Maven
settings or POM file:

${repository-url} must be a file URL containing the local filesystem path of the extracted repository.

Table B.1. Example URLs for local Maven repositories

            <enabled>false</enabled>
          </snapshots>
        </pluginRepository>
      </pluginRepositories>
    </profile>
  </profiles>
  <activeProfiles>
    <activeProfile>red-hat</activeProfile>
  </activeProfiles>
</settings>

<project>
  <modelVersion>4.0.0</modelVersion>

  <groupId>com.example</groupId>
  <artifactId>example-app</artifactId>
  <version>1.0.0</version>

  <repositories>
    <repository>
      <id>red-hat-ga</id>
      <url>https://maven.repository.redhat.com/ga</url>
    </repository>
  </repositories>
</project>

<repository>
  <id>red-hat-local</id>
  <url>${repository-url}</url>
</repository>

APPENDIX B. USING RED HAT MAVEN REPOSITORIES

35

http://maven.apache.org/settings.html
https://maven.apache.org/pom.html


Operating system Filesystem path URL

Linux or UNIX /home/alice/maven-repository file:/home/alice/maven-repository

Windows C:\repos\red-hat file:C:\repos\red-hat

Revised on 2019-06-18 17:14:17 UTC

Red Hat AMQ 7.3 Using the AMQ JMS Client

36


	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS
	1.5. DOCUMENT CONVENTIONS
	The sudo command
	About the use of file paths in this document


	CHAPTER 2. INSTALLATION
	2.1. USING THE RED HAT MAVEN REPOSITORY
	2.2. INSTALLING A LOCAL MAVEN REPOSITORY
	2.3. INSTALLING THE .ZIP FILE

	CHAPTER 3. GETTING STARTED
	3.1. PREPARING THE BROKER
	3.2. RUNNING HELLO WORLD

	CHAPTER 4. CONFIGURATION
	4.1. CONFIGURING A JNDI INITIALCONTEXT
	Configuring an InitialContext using a jndi.properties file
	Configuring an InitialContext using system properties
	Configuring an InitialContext programmatically
	JNDI property syntax
	Variable expansion


	4.2. CONNECTION URIS
	4.3. CONNECTION URI OPTIONS
	4.3.1. JMS options
	Prefetch policy options
	Redelivery policy options
	Message ID policy options
	Presettle policy options
	Deserialization policy options

	4.3.2. TCP transport options
	4.3.3. SSL/TLS transport options
	4.3.4. AMQP options
	4.3.5. Failover options
	4.3.6. Discovery options

	4.4. SECURITY
	4.4.1. Authenticating using Kerberos
	4.4.2. Enabling OpenSSL support

	4.5. LOGGING
	4.6. EXTENDED SESSION ACKNOWLEDGMENT MODES
	Individual acknowledge
	No acknowledge


	CHAPTER 5. EXAMPLES
	5.1. CONFIGURING THE JNDI CONTEXT
	5.2. SENDING MESSAGES
	5.3. RECEIVING MESSAGES

	CHAPTER 6. RECONNECT AND FAILOVER
	6.1. HANDLING UNACKNOWLEDGED DELIVERIES
	Non-transacted producer with an unacknowledged delivery
	Transacted producer with an uncommitted transaction
	Transacted producer with a pending commit
	Non-transacted consumer with an unacknowledged delivery
	Transacted consumer with an uncommitted transaction
	Transacted consumer with a pending commit


	CHAPTER 7. INTEROPERABILITY
	7.1. INTEROPERATING WITH OTHER AMQP CLIENTS
	7.1.1. Sending messages
	7.1.1.1. Message type
	7.1.1.2. Message properties

	7.1.2. Receiving messages
	7.1.2.1. Message type
	7.1.2.2. Message properties


	7.2. CONNECTING TO AMQ BROKER
	7.3. CONNECTING TO AMQ INTERCONNECT

	APPENDIX A. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading ZIP and TAR files
	Registering your system for packages

	APPENDIX B. USING RED HAT MAVEN REPOSITORIES
	B.1. USING THE ONLINE REPOSITORY
	Adding the repository to your Maven settings
	Adding the repository to your POM file

	B.2. USING A LOCAL REPOSITORY


