& RedHat

Red Hat AMQ 7.3

Using the AMQ .NET Client

For Use with AMQ Clients 2.4

Last Updated: 2019-06-18






Red Hat AMQ 7.3 Using the AMQ .NET Client

For Use with AMQ Clients 2.4



Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.



Table of Contents

CHAPTER L. OVERVIEW .. . e

11. KEY FEATURES

1.2. SUPPORTED STANDARDS AND PROTOCOLS
1.3. SUPPORTED CONFIGURATIONS

1.4. TERMS AND CONCEPTS

CHAPTER 2. INSTALLATION ... i

2.1. PREREQUISITES
2.2. INSTALLING ON MICROSOFT WINDOWS

CHAPTER3.GETTING STARTED ..o

3.1. PREPARING THE BROKER
3.2. BUILDING THE EXAMPLES
3.3. RUNNING HELLO WORLD

CHAPTERA4.EXAMPLES ... e

4.1. SENDING MESSAGES
Running the example

4.2. RECEIVING MESSAGES
Running the example

CHAPTERS.USING THE APl . . i

5.1. NETWORK CONNECTIONS
5.1.1. Creating outgoing connections
5.2. SECURITY
5.2.1. Configuring SASL authentication
5.2.2. Configuring an SSL/TLS transport
5.3.LOGGING
5.3.1. Setting the log output level
5.3.2. Enabling protocol logging
5.4. MORE INFORMATION

CHAPTER 6. INTEROPERABILITY .. i

6.1. INTEROPERATING WITH OTHER AMQP CLIENTS
6.2. INTEROPERATING WITH AMQ JMS
JMS message types
6.3. CONNECTING TO AMQ BROKER
6.4. CONNECTING TO AMQ INTERCONNECT

APPENDIX A. MANAGING CERTIFICATES ... ..ot

AL INSTALLING CERTIFICATE AUTHORITY CERTIFICATES
A.2.INSTALLING CLIENT CERTIFICATES
A3.HELLO WORLD USING CLIENT CERTIFICATES

APPENDIX B.EXAMPLEPROGRAMS ... ..

B.l. PREREQUISITES

B.2. HELLOWORLD SIMPLE
HelloWorld-simple command line options
HelloWorld-simple sample invocation

B.3. HELLOWORLD ROBUST
HelloWorld-robust command line options
HelloWorld-robust sample invocation

B.4. INTEROP.DRAIN.CS, INTEROP.SPOUT.CS (PERFORMANCE EXERCISER)

Table of Contents

a M~ M BD

[ RN

............................. 22

22
22
23

............................. 24

24
24
24
24
24
25
25
25



Red Hat AMQ 7.3 Using the AMQ .NET Client

Interop.Drain command line options
Interop.Spout command line options
Interop.Spout and Interop.Drain sample invocation
B.5. INTEROP.CLIENT, INTEROP.SERVER (REQUEST-RESPONSE)
Interop.Client command line options
Interop.Server command line options
Interop.Client, Interop.Server sample invocation
PeerToPeer.Client command line options
PeerToPeer.Server command line options
PeerToPeer.Client, PeerToPeer.Server sample invocation

APPENDIX C. USING YOUR SUBSCRIPTION ...ttt eeaieeeeenneeeenannnnneenn,
Accessing your account
Activating a subscription
Downloading ZIP and TAR files
Registering your system for packages

25
26
26
26
27
27
27
27
27
27

29
29
29
29
29



Table of Contents




Red Hat AMQ 7.3 Using the AMQ .NET Client

CHAPTER 1. OVERVIEW

AMQ .NET is a lightweight AMQP 1.0 library for the .NET Framework. It enables you to write NET
applications that send and receive AMQP messages.

AMQ .NET is part of AMQ Clients, a suite of messaging libraries supporting multiple languages and
platforms. For an overview of the clients, see AMQ Clients Overview. For information about this release,

see AMQ Clients 2.4 Release Notes.

AMQ .NET is based on AMQP.Net Lite.

1.1. KEY FEATURES
® SSL/TLS for secure communication
® Flexible SASL authentication
® Seamless conversion between AMQP and native data types
® Access to all the features and capabilities of AMQP 1.0

® Anintegrated development environment with full IntelliSense APl documentation

1.2. SUPPORTED STANDARDS AND PROTOCOLS
AMQ .NET supports the following industry-recognized standards and network protocols:
® Version 1.0 of the Advanced Message Queueing Protocol (AMQP)
® Versions 1.1and 1.2 of the Transport Layer Security (TLS) protocol, the successor to SSL

® Simple Authentication and Security Layer (SASL) mechanisms ANONYMOUS, PLAIN, and
EXTERNAL

® Modern TCP with IPv6

1.3. SUPPORTED CONFIGURATIONS
AMQ .NET supports the following OS and language versions:

® Red Hat Enterprise Linux 7 and 8 with .NET Core 2.0

® Microsoft Windows 10 Pro with .NET Core 2.0 or .NET Framework 4.5

® Microsoft Windows Server 2012 R2 and 2016 with .NET Core 2.0 or .NET Framework 4.5
AMQ .NET is supported in combination with the following AMQ components and versions:

e All versions of AMQ Broker

® Allversions of AMQ Interconnect

e All versions of AMQ Online

® A-MQ 6 versions 6.2.1and higher


https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/amq_clients_overview/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/amq_clients_2.4_release_notes/
https://github.com/Azure/amqpnetlite
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4422
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460

CHAPTER 1. OVERVIEW

For more information, see Red Hat AMQ Supported Configurations .

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. APl terms

Entity Description

Connection A channel for communication between two peers on a network
Session A context for sending and receiving messages

Sender link A channel for sending messages to a target

Receiver link A channel for receiving messages from a source

Source A named point of origin for messages

Target A named destination for messages

Message A mutable holder of application data

AMQ .NET sends and receives messages. Messages are transferred between connected peers over links.
Links are established over sessions. Sessions are established over connections.

A sending peer creates a sender link to send messages. The sender link has a target that identifies a
queue or topic at the remote peer. A receiving client creates a receiver link to receive messages. The
receiver link has a source that identifies a queue or topic at the remote peer.


https://access.redhat.com/articles/2791941

Red Hat AMQ 7.3 Using the AMQ .NET Client

CHAPTER 2. INSTALLATION

This chapter guides you through the steps to install AMQ .NET in your environment.

2.1. PREREQUISITES

To begin installation, use your subscription to access AMQ distribution files and repositories.
Building applications with AMQ .NET requires Visual Studio 2012 or later. Solution files built by Visual

Studio 2012 and Visual Studio 2013 are supplied in the kit, and these files can be opened by any later
version of Visual Studio.

2.2. INSTALLING ON MICROSOFT WINDOWS
AMQ .NET is distributed as an SDK zip archive for use with Visual Studio. Follow these steps to install it.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Clientsentry in the JBOSS INTEGRATION AND AUTOMATION
category.

3. Click Red Hat AMQ Clients The Software Downloads page opens.
4. Download the AMQ .NET Client Windows SDKzip file.

5. Extract the file contents into a directory by right-clicking on the zip file and selecting Extract
All.

When you extract the contents of the zip file, a directory named amqpnetlite is created. This is the top-
level directory of the SDK and is referred to as <install-dir> throughout this document.


https://access.redhat.com/downloads

CHAPTER 3. GETTING STARTED

CHAPTER 3. GETTING STARTED

This chapter guides you through a simple exercise to help you get started using AMQ .NET.

3.1. PREPARING THE BROKER

The example programs require a running broker with a queue named service_queue. Follow these steps
to define the queue and start the broker:

Procedure

1. Install the broker.

2. Create a broker instance. Enable anonymous access.

3. Start the broker instance and check the console for any critical errors logged during startup.
$ <broker-instance-dir>/bin/artemis run

14:43:20,158 INFO [org.apache.activemq.artemis.integration.bootstrap] AMQ101000:
Starting ActiveMQ Artemis Server

15:01:39,686 INFO [org.apache.activemq.artemis.core.server] AMQ221020: Started
Acceptor at 0.0.0.0:5672 for protocols [AMQP]

15:01:39,691 INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now
live

4. Use the artemis queue command to create a queue called service_queue.

<broker-instance-dir>/bin/artemis queue create --name service_queue --auto-create-address
--anycast

You are prompted to answer a series of questions. For yes or no questions, type N. Otherwise,
press Enter to accept the default value.

3.2. BUILDING THE EXAMPLES
AMQ .NET provides example solution and project files to help users get started quickly.

Navigate to <install-dir> and open one of the solution files.

Solution File Visual Studio Version

amgp-sin Visual Studio 2013

amqp-vs2012.sin Visual Studio 2012

Select Build Solution from the Build menu to compile the solution.

3.3. RUNNING HELLO WORLD


https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/getting_started_with_amq_broker/#installing-broker-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

Red Hat AMQ 7.3 Using the AMQ .NET Client

Open a command prompt window and execute these commands to send and receive a message.

D:\>cd <install-dir>\bin\Debug
D:\>HelloWorld-Simple
Hello world!



CHAPTER 4. EXAMPLES

CHAPTER 4. EXAMPLES

This chapter demonstrates the use of AMQ .NET through example programs.

See the AMQP.Net Lite examples for more sample programs.

4.1. SENDING MESSAGES

This client program connects to a server using <connection-url>, creates a sender for target
<address>, sends a message containing <message-body>, closes the connection, and exits.

Example: Sending messages

namespace SimpleSend

{

using System;
using Amqp; ﬂ

class SimpleSend

{

static void Main(string[] args)

{

string url = (args.Length > 0) ? args[0] : g
"amqp://guest:guest@127.0.0.1:5672";

string target = (args.Length > 1) ? args[1] : "examples"; 6

int  count = (args.Length > 2) ? Convert.ToInt32(args[2]) : 10; ﬂ

Address  peerAddr = new Address(url); 9

Connection connection = new Connection(peerAddr); G

Session session = new Session(connection);
SenderLink  sender = new SenderLink(session, "send-1", target); ﬂ

for (inti=0;i< count; i++)

{
Message msg = new Message("simple " + i); 6
sender.Send(msg); 9
Console.WriteLine("Sent: " + msg.Body.ToString());

}

sender.Close(); @

session.Close();
connection.Close();

ﬂ using Amgqp; Imports types defined in the Amgp namespace. Amqp is defined by a project
reference to library file Amgp.Net.dll and provides all the classes, interfaces, and value types
associated with AMQ .NET.

9 Command line arg[O] url is the network address of the host or virtual host for the AMQP
connection. This string describes the connection transport, the user and password credentials, and
the port number for the connection on the remote host. ur/ may address a broker, a standalone


https://github.com/Azure/amqpnetlite/tree/master/Examples

Red Hat AMQ 7.3 Using the AMQ .NET Client

peer, or an ingress point for a router network.

Command line arg[1] target is the name of the message destination endpoint or resource in the
remote host.

Command line arg[2] count is the number of messages to send.

peerAddr is a structure required for creating an AMQP connection.

Create the AMQP connection.

sender is a client SenderLink over which messages may be sent. The link is arbitrarily named send-1.
Use link names that make sense in your environment and will help to identify traffic in a busy

system. Link names are not restricted but must be unique within the same session.

In the message send loop a new message is created.

The message is sent to the AMQP peer.

After all messages are sent then the protocol objects are shut down in an orderly fashion.

0900 090066 O

Running the example

D:\lite_kit\amqgpnetlite\bin\Debug>simple_send amqp://10.10.59.182 service_queue
Sent: simple 0
Sent: simple 1
Sent: simple 2
Sent: simple 3
Sent: simple 4
Sent: simple 5
Sent: simple 6
Sent: simple 7
Sent: simple 8
Sent: simple 9

D:\lite_kit\amgpnetlite\bin\Debug>

4.2. RECEIVING MESSAGES

This client program connects to a server using <connection-url>, creates a receiver for source
<address>, and receives messages until it is terminated or it reaches <count> messages.

Example: Receiving messages

namespace SimpleRecv

{

using System;
using Amqp; ﬂ

class SimpleRecv

{

static void Main(string[] args)

{
string url = (args.Length > 0) ? args|0] : g

10



o

0900 090066 O

CHAPTER 4. EXAMPLES

"amqp://guest:guest@127.0.0.1:5672";
string source = (args.Length > 1) ? args[1] : "examples"; 6
int  count = (args.Length > 2) ? Convert.ToInt32(args[2]) : 10; ﬂ

Address  peerAddr = new Address(url); 6
Connection connection = new Connection(peerAddr); G
Session session = new Session(connection);

ReceiverLink receiver = new ReceiverLink(session, "recv-1", source) ;ﬂ

for (int i = 0; i< count; i++)

{

Message msg = receiver.Receive(); G
receiver.Accept(msg); Q
Console.WriteLine("Received: " + msg.Body.ToString());

}

receiver.Close(); @
session.Close();
connection.Close();

using Amgqp; Imports types defined in the Amgp namespace. Amqp is defined by a project
reference to library file Amgp.Net.dll and provides all the classes, interfaces, and value types
associated with AMQ .NET.

Command line arg[O] url is the network address of the host or virtual host for the AMQP
connection. This string describes the connection transport, the user and password credentials, and
the port number for the connection on the remote host. ur/ may address a broker, a standalone
peer, or an ingress point for a router network.

Command line arg[1] source is the name of the message source endpoint or resource in the
remote host.

Command line arg[2] count is the number of messages to send.

peerAddr is a structure required for creating an AMQP connection.

Create the AMQP connection.

receiver is a client ReceiverLink over which messages may be received. The link is arbitrarily named
recv-1. Use link names that make sense in your environment and will help to identify traffic in a busy
system. Link names are not restricted but must be unique within the same session.

A message is received.

The messages is accepted. This transfers ownership of the message from the peer to the receiver.

After all messages are received then the protocol objects are shut down in an orderly fashion.

Running the example

I D:\lite_kit\amqgpnetlite\bin\Debug>simple_recv amqp://10.10.59.182 service_queue

1



Red Hat AMQ 7.3 Using the AMQ .NET Client

Received: simple 0
Received: simple 1
Received: simple 2
Received: simple 3
Received: simple 4
Received: simple 5
Received: simple 6
Received: simple 7
Received: simple 8
Received: simple 9

D:\lite_kit\amqgpnetlite\bin\Debug>

12



CHAPTER 5. USING THE API

CHAPTER 5. USING THE API

This chapter explains how to use the AMQ .NET API to perform common messaging tasks.

5.1. NETWORK CONNECTIONS

5.1.1. Creating outgoing connections

This section describes the standard format of the Connection URI string used to connect to an AMQP
remote peer.

scheme = ("amqgp" | "amqgps" )
host = ( <fully qualified domain name> | <hostname> | <numeric IP address> )

URI = scheme "://" [user ":" [password] "@"] host [":" port]

® scheme amqgp - connection uses TCP transport and sets the default port to 5672.
® scheme amqgps - connection uses SSL/TLS transport and sets the default port to 5671.

® user - optional connection authentication user name. If the user name is present then the client
initiates an AMQP SASL user credential exchange during connection startup.

® password - optional connection authentication password.
® host - network host to which the connection is directed.

® port - optional network port to which the connection is directed. The default port value is
determined by the AMQP transport scheme.

Connection URI Examples

amqp://127.0.0.1
amqp://amqgpserver.example.com:5672
amgqps://joe:somepassword@bigbank.com
amqps://sue:secret@test.example.com:21000

5.2. SECURITY

5.2.1. Configuring SASL authentication

Client connections to remote peers may exchange SASL user name and password credentials. The
presence of the user field in the connection URI controls this exchange. If user is specified then SASL
credentials are exchanged; if user is absent then the SASL credentials are not exchanged.

By default the client supports EXTERNAL, PLAIN, and ANONYMOUS SASL mechanisms.

5.2.2. Configuring an SSL/TLS transport
Secure communication with servers is achieved using SSL/TLS. A client may be configured for SSL/TLS

Handshake only or for SSL/TLS Handshake and client certificate authentication. See the Managing
Certificates section for more information.

13



Red Hat AMQ 7.3 Using the AMQ .NET Client

NOTE
TLS Server Name Indication (SNI) is handled automatically by the client library. However,
SNl is signaled only for addresses that use the amqps transport scheme where the host is

a fully qualified domain name or a host name. SNl is not signaled when the host is a
numeric IP address.

5.3. LOGGING

Logging is important in troubleshooting and debugging. By default logging is turned off. To enable
logging a user must set a logging level and provide a delegate function to receive the log messages.

5.3.1. Setting the log output level

The library emits log traces at different levels:
® FError
® Warning
e |nformation
® \erbose

The lowest log level, Error, will trace only error events and produce the fewest log messages. A higher
log level includes all the log levels below it and generates a larger volume of log messages.

/[ Enable Error logs only.
Trace.Tracelevel = TracelLevel.Error

/I Enable Verbose logs. This includes logs at all log levels.
Trace.TracelLevel = TracelLevel.Verbose

5.3.2. Enabling protocol logging

The Log level Frame is handled differently. Setting trace level Frame enables tracing outputs for AMQP
protocol headers and frames.

Tracing at one of the other log levels must be ORed with Frame to get normal tracing output and AMQP
frame tracing at the same time. For example

/[ Enable just AMQP frame tracing
Trace.TracelLevel = TraceLevel.Frame;

/I Enable AMQP Frame logs, and Warning and Error logs
Trace.TracelLevel = TracelLevel.Frame | TraceLevel.Warning;

The following code writes AMQP frames to the console.

Example: Logging delegate

14


https://en.wikipedia.org/wiki/Server_Name_Indication

CHAPTER 5. USING THE API

Trace.TracelLevel = TracelLevel.Frame;
Trace.TracelListener = (f, @) => Console.WriteLine(
DateTime.Now.ToString("[hh:mm:ss.fff]") + " " + string.Format(f, a));

5.4. MORE INFORMATION

For more information, see the APl reference.

15


https://azure.github.io/amqpnetlite/api/Amqp.html

Red Hat AMQ 7.3 Using the AMQ .NET Client

CHAPTER 6. INTEROPERABILITY

This chapter discusses how to use AMQ .NET in combination with other AMQ components. For an
overview of the compatibility of AMQ components, see the product introduction.

6.1. INTEROPERATING WITH OTHER AMQP CLIENTS

AMQP messages are composed using the AMQP type system. This common format is one of the
reasons AMQP clients in different languages are able to interoperate with each other.

When sending messages, AMQ .NET automatically converts language-native types to AMQP-encoded
data. When receiving messages, the reverse conversion takes place.

NOTE

More information about AMQP types is available at the interactive type reference
maintained by the Apache Qpid project.

Table 6.1. AMQP types

AMQP type Description

null An empty value

boolean A true or false value

char A single Unicode character
string A sequence of Unicode characters
binary A sequence of bytes

byte A signed 8-bit integer

short A signed 16-bit integer

int A signed 32-bit integer

long A signed 64-bit integer
ubyte An unsigned 8-bit integer
ushort An unsigned 16-bit integer
uint An unsigned 32-bit integer
ulong An unsigned 64-bit integer
float A 32-bit floating point number

16


https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/introducing_red_hat_amq_7/#component_compatibility
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc
http://qpid.apache.org/amqp/type-reference.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-char
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ubyte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ushort
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uint
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ulong
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float

CHAPTER 6. INTEROPERABILITY

AMQP type Description

double

array

list

map

uuid

symbol

timestamp

A 64-bit floating point number

A sequence of values of a single type

A sequence of values of variable type

A mapping from distinct keys to values

A universally unique identifier

A 7-bit ASCII string from a constrained domain

An absolute pointin time

Table 6.2. AMQ .NET types before encoding and after decoding

AMQP type

AMQ .NET type before encoding

AMQ .NET type after decoding

null

boolean

char

string

binary

byte

short

int

long

ubyte

ushort

uint

ulong

null

System.Boolean

System.Char

System.String

System.Byte[]

System.SByte

System.Int16

System.Int32

System.Int64

System.Byte

System.UInt16

System.UInt32

System.UInt64

null

System.Boolean

System.Char

System.String

System.Byte[]

System.SByte

System.Int16

System.Int32

System.Int64

System.Byte

System.UInt16

System.UInt32

System.UInt64

17


http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-array
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-list
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-map
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uuid
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-timestamp

Red Hat AMQ 7.3 Using the AMQ .NET Client

AMQP type

float

double

list

map

uuid

symbol

timestamp

AMQ .NET type before encoding

System.Single

System.Double

Amgqp.List

Amgp.Map

System.Guid

Amqp.Symbol

System.DateTime

Table 6.3. AMQ .NET and other AMQ client types (1 of 2)

18

AMQ .NET type before encoding AMQ C++ type
null nuliptr
System.Boolean bool
System.Char wchar_t
System.String std::string

System.Byte[]

System.SByte

System.Int16

System.Int32

System.Int64

System.Byte

System.UInt16

System.UInt32

System.UInt64

proton::binary

int8_t

int16_t

int32_t

int64_t

uint8_t

uint16_t

uint32_t

uint64_t

AMQ .NET type after decoding

System.Single

System.Double

Amgqp.List

Amgp.Map

System.Guid

Amqp.Symbol

System.DateTime

AMQ JavaScript type

null

boolean

number

string

string

number

number

number

number

number

number

number

number



CHAPTER 6. INTEROPERABILITY

AMQ .NET type before encoding AMQ C++ type AMQ JavaScript type
System.Single float number
System.Double double number

Amgqp.List std::vector Array

Amgp.Map std::map object
System.Guid proton::uuid number
Amqp.Symbol proton::symbol string
System.DateTime proton::timestamp number

Table 6.4. AMQ .NET and other AMQ client types (2 of 2)

AMQ .NET type before encoding AMQ Python type AMQ Ruby type
null None nil
System.Boolean bool true, false
System.Char unicode String
System.String unicode String
System.Byte[] bytes String
System.SByte int Integer
System.Int16 int Integer
System.Int32 long Integer
System.Int64 long Integer
System.Byte long Integer
System.UInt16 long Integer
System.UInt32 long Integer
System.UInt64 long Integer



Red Hat AMQ 7.3 Using the AMQ .NET Client

AMQ .NET type before encoding AMQ Python type AMQ Ruby type
System.Single float Float
System.Double float Float
Amgqp.List list Array
Amgp.Map dict Hash
System.Guid - -
Amgqp.Symbol str Symbol
System.DateTime long Time

6.2. INTEROPERATING WITH AMQ JMS

AMQP defines a standard mapping to the JMS messaging model. This section discusses the various
aspects of that mapping. For more information, see the AMQ JUMS Interoperability chapter.

JMS message types

AMQ .NET provides a single message type whose body type can vary. By contrast, the JMS APl uses
different message types to represent different kinds of data. The table below indicates how particular
body types map to JMS message types.

For more explicit control of the resulting JMS message type, you can set the x-opt-jms-msg-type
message annotation. See the AMQ JMS Interoperability chapter for more information.

Table 6.5. AMQ .NET and JMS message types

AMQ .NET body type JMS message type

System.String TextMessage
null TextMessage
System.Byte[] BytesMessage
Any other type ObjectMessage

6.3. CONNECTING TO AMQ BROKER

AMQ Broker is designed to interoperate with AMQP 1.0 clients. Check the following to ensure the
broker is configured for AMQP messaging:

® Port 5672 in the network firewall is open.

® The AMQ Broker AMQP acceptor is enabled. See Default acceptor settings.

20


https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/using_the_amq_jms_client/#interoperability
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/using_the_amq_jms_client/#interoperability
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/configuring_amq_broker/#default-acceptor-settings-configuring

CHAPTER 6. INTEROPERABILITY

® The necessary addresses are configured on the broker. See Addresses, Queues, and Topics.

® The broker is configured to permit access from your client, and the client is configured to send
the required credentials. See Broker Security.

6.4. CONNECTING TO AMQ INTERCONNECT

AMQ Interconnect works with any AMQP 1.0 client. Check the following to ensure the components are
configured correctly:

® Port 5672 in the network firewall is open.

® The router is configured to permit access from your client, and the client is configured to send
the required credentials. See Interconnect Security.

21


https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/configuring_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/configuring_amq_broker/#security
https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/using_amq_interconnect/#security

Red Hat AMQ 7.3 Using the AMQ .NET Client

APPENDIX A. MANAGING CERTIFICATES

A1l INSTALLING CERTIFICATE AUTHORITY CERTIFICATES

SSL/TLS authentication relies on digital certificates issued by trusted Certificate Authorities (CAs).
When an SSL/TLS connection is established by a client, the AMQP peer sends a server certificate to the
client. This server certificate must be signed by one of the CAs in the client’s Trusted Root Certification
Authorities certificate store.

If the user is creating self-signed certificates for use by Red Hat AMQ Broker, then the user must create
a CA to sign the certificates. Then the user can enable the client SSL/TLS handshake by installing the
self-signed CA file ca.crt.

1. From an administrator command prompt, run the MMC Certificate Manager plugin,
certmgr.msc.

2. Expand the Trusted Root Certification Authorities folder on the left to expose Certificates.
3. Right-click Certificates and select All Tasks and then Import.

4. Click Next.

5. Browse to select file ca.crt.

6. Click Next.

7. Select Place all certificates in the following store

8. Select certificate store Trusted Root Certification Authorities.

9. Click Next.
10. Click Finish.

For more information about installing certificates, see Managing Microsoft Certificate Services and SSL.

A.2. INSTALLING CLIENT CERTIFICATES

In order to use SSL/TLS and client certficates, the certificates with the client’s private keys must be
imported into the proper certificate store on the client system.

1. From an administrator command prompt, run the MMC Certificate Manager plugin,
certmgr.msc.

2. Expand the Personal folder on the left to expose Certificates.

3. Right-click Certificates and select All Tasks and then Import.

4. Click Next.

5. Click Browse.

6. Inthe file type pulldown, select Personal Information Exchange(\.pfx;*.p12).

7. Select file client.p12 and click Open.

22


https://msdn.microsoft.com/en-us/library/bb727098.aspx

APPENDIX A. MANAGING CERTIFICATES

8. Click Next.

9. Enter the password for the private key password field. Accept the default import options.
10. Click Next.

1. Select Place all certificates in the following store

12. Select certificate store Personal.

13. Click Next.

14. Click Finish.

A.3. HELLO WORLD USING CLIENT CERTIFICATES

Before a client will return a certificate to the broker, the AMQ .NET library must be told which
certificates to use. The client certificate file client.crt is added to the list of certificates to be used
during SChannel connection startup.

factory.SSL.ClientCertificates.Add(
X509Certificate.CreateFromCertFile(certfile)

);

In this example, certfile is the full path to the client.p12 certificate installed in the Personal certificate
store. A complete example is found in HelloWorld-client-certs.cs. This source file and the supporting
project files are available in the SDK.

23



Red Hat AMQ 7.3 Using the AMQ .NET Client

APPENDIX B. EXAMPLE PROGRAMS

B.1. PREREQUISITES

® Red Hat AMQ Broker with queue named amgq.topic and with a queue named service_queue
both with read/write permissions. For this illustration the broker was at IP address 10.10.1.1.

® Red Hat AMQ Interconnect with source and target name amgq.topic with suitable permissions.
For this illustration the router was at IP address 10.10.2.2.

All the examples run from <install-dir>\bin\Debug.

B.2. HELLOWORLD SIMPLE

HelloWorld-simple is a simple example that creates a Sender and a Receiver for the same address, sends
a message to the address, reads a message from the address, and prints the result.

HelloWorld-simple command line options

Command line:

HelloWorld-simple [brokerUrl [brokerEndpointAddress]]
Default:

HelloWorld-simple amqp://localhost:5672 amq.topic

HelloWorld-simple sample invocation

$ HelloWorld-simple
Hello world!

By default, this program connects to a broker running on localhost:5672. Specify a host and port, and
the AMQP endpoint address explicitly on the command line:

I $ HelloWorld-simple amqp://someotherhost.com:5672 endpointname

By default, this program addresses its messages to amg.topic. In some Amqp brokers amg.topic is a
predefined endpoint address and is immediately available with no broker configuration. If this address
does not exist in the broker then use a broker management tool to create it.

B.3. HELLOWORLD ROBUST
HelloWorld-robust shares all the features of the simple example with additional options and processing:

® Accessing message properties beyond the simple payload:

o Header

o DeliveryAnnotations
o MessageAnnotations
o Properties

o ApplicationProperties

24



APPENDIX B. EXAMPLE PROGRAMS

o BodySection
o Footer
® Connection shutdown sequence

HelloWorld-robust command line options

Command line:

HelloWorld-robust [brokerUrl [orokerEndpointAddress [payloadText [enableTrace]]]]
Default:

HelloWorld-robust amqp://localhost:5672 amq.topic "Hello World"

NOTE

The simple presence of the enable Trace argument enables tracing. The argument may
hold any value.

HelloWorld-robust sample invocation

$ HelloWorld-robust
Broker: amqp://localhost:5672, Address: amq.topic, Payload: Hello World!
body:Hello World!

HelloWorld-robust allows the user to specify a payload string and to enable trace protocol logging.

I $ HelloWorld-robust amqp://localhost:5672 amgq.topic "My Hello" loggingOn

B.4. INTEROP.DRAIN.CS, INTEROP.SPOUT.CS (PERFORMANCE
EXERCISER)

AMQ .NET examples Interop.Drain and Interop.Spout illustrate interaction with Red Hat AMQ
Interconnect. In this case there is no message broker. Instead the Red Hat AMQ Interconnect registers
the addresses requested by the client programs and routes messages between them.

Interop.Drain command line options

$ Interop.Drain.exe --help
Usage: interop.drain [OPTIONS] --address STRING
Create a connection, attach a receiver to an address, and receive messages.

Options:

--broker [amqgp://guest:guest@127.0.0.1:5672] - AMQP 1.0 peer connection address
--address STRING [] - AMQP 1.0 terminus name

--timeout SECONDS [1] - time to wait for each message to be received

--forever [false] - use infinite receive timeout

--count INT [1] - receive this many messages and exit; 0 disables count based exit
--initial-credit INT [10] - receiver initial credit

--reset-credit INT [5] - reset credit to initial-credit every reset-credit messages

--quiet [false] - do not print each message's content
--help - print this message and exit
Exit codes:

25



Red Hat AMQ 7.3 Using the AMQ .NET Client

0 - successfully received all messages
1 - timeout waiting for a message
2 - other error

Interop.Spout command line options

$ interop.spout --help
Usage: Interop.Spout [OPTIONS] --address STRING
Create a connection, attach a sender to an address, and send messages.

Options:

--broker [amqp://guest:guest@127.0.0.1:5672] - AMQP 1.0 peer connection address
--address STRING [] - AMQP 1.0 terminus name

--timeout SECONDS [0] - send for N seconds; 0 disables timeout

--durable [false] - send messages marked as durable

--count INT [11 - send this many messages and exit; 0 disables count based exit
--id STRING [guid] - message id

--replyto STRING [] - message ReplyTo address

--content STRING [] - message content

--print [false] - print each message's content
--help - print this message and exit
Exit codes:

0 - successfully received all messages
2 - other error

Interop.Spout and Interop.Drain sample invocation
In one window run Interop.drain. Drain waits forever for one message to arrive.

I $ Interop.Drain.exe --broker amqp://10.10.2.2:5672 --forever --count 1 --address amq.topic

In another window run Interop.spout. Spout sends a message to the broker address and exits.

I $ interop.spout --broker amqp://10.10.2.2:5672 --address amq.topic
$

Now in the first window drain will have received the message from spout and then exited.

$ Interop.Drain.exe --broker amqp://10.10.2.2:5672 --forever --count 1 --address amq.topic
Message(Properties=properties(message-id:9803e781-14d3-4fa7-8e39-c65e18f3e8ea:0),
ApplicationProperties=, Body=

$

B.5. INTEROP.CLIENT, INTEROP.SERVER (REQUEST-RESPONSE)

This example shows a simple broker-based server that will accept strings from a client, convert them to
upper case, and send them back to the client. It has two components:

® client - sends lines of poetry to the server and prints responses.

® server - a simple service that will convert incoming strings to upper case and return them to the
requester.

In this example the server and client share a service endpoint in the broker named service_queue. The

26



APPENDIX B. EXAMPLE PROGRAMS

server listens for messages at the service endpoint. Clients create temporary dynamic ReplyTo queues,
embed the temporary name in the requests, and send the requests to the server. After receiving and
processing each request the server sends the reply to the client’s temporary ReplyTo address.

Interop.Client command line options

Command line:
Interop.Client [peerURI [loopcount]]
Default:
Interop.Client amqp://guest:guest@Ilocalhost:5672 1

Interop.Server command line options

Command line:
Interop.Server [peerURI]
Default:
Interop.Server amqp://guest:guest@localhost:5672

Interop.Client, Interop.Server sample invocation
The programs may be launched with these command lines:

$ Interop.Server.exe amqp://guest:guest@localhost:5672
$ Interop.Client.exe amqp://guest:guest@localhost:5672

PeerToPeer.Server creates a listener on the address given in the command line. This address initializes a
ContainerHost class object that listens for incoming connections. Received messages are forwarded
asynchronously to a RequestProcessor class object.

PeerToPeer.Client opens a connection to the server and starts sending messages to the server.

PeerToPeer.Client command line options

Command line:
PeerToPeer.Client [peerURI]
Default:
PeerToPeer.Client amqp://guest:guest@localhost:5672

PeerToPeer.Server command line options

Command line:
PeerToPeer.Server [peerURI]
Default:
PeerToPeer.Server amqp://guest:guest@localhost:5672

PeerToPeer.Client, PeerToPeer.Server sample invocation
In one window run the PeerToPeer.Server

$ PeerToPeer.Server.exe

Container host is listening on 127.0.0.1:5672

Request processor is registered on request_processor
Press enter key to exist...

Received a request hello 0

27



Red Hat AMQ 7.3 Using the AMQ .NET Client

In another window run PeerToPeer.Client. PeerToPeer.Client sends messages the the server and prints
responses as they are received.

$ PeerToPeer.Client.exe

Running request client...

Sent request properties(message-id:command-request,reply-to:client-57db8f65-6e3d-474c-a05e-
8cab3b69d7c0) body hello 0

Received response: body reply0

Received response: body reply1

"C

28



APPENDIX C. USING YOUR SUBSCRIPTION

APPENDIX C. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

Accessing your account
1. Go to access.redhat.com.
2. If you do not already have an account, create one.
3. Login to your account.
Activating a subscription
1. Go to access.redhat.com.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscriptionand enter your 16-digit activation number.

Downloading ZIP and TAR files
To access ZIP or TAR files, use the customer portal to find the relevant files for download. If you are
using RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQentries in the JBOSS INTEGRATION AND AUTOMATIONCcategory.
3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

Registering your system for packages
To install RPM packages on Red Hat Enterprise Linux, your system must be registered. If you are using
ZIP or TAR files, this step is not required.
1. Go to access.redhat.com.
2. Navigate to Registration Assistant.
3. Select your OS version and continue to the next page.
4. Use the listed command in your system terminal to complete the registration.

To learn more see How to Register and Subscribe a System to the Red Hat Customer Portal .

Revised on 2019-06-18 17:13:27 UTC

29


https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com
https://access.redhat.com/solutions/253273

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS

	CHAPTER 2. INSTALLATION
	2.1. PREREQUISITES
	2.2. INSTALLING ON MICROSOFT WINDOWS

	CHAPTER 3. GETTING STARTED
	3.1. PREPARING THE BROKER
	3.2. BUILDING THE EXAMPLES
	3.3. RUNNING HELLO WORLD

	CHAPTER 4. EXAMPLES
	4.1. SENDING MESSAGES
	Running the example

	4.2. RECEIVING MESSAGES
	Running the example


	CHAPTER 5. USING THE API
	5.1. NETWORK CONNECTIONS
	5.1.1. Creating outgoing connections

	5.2. SECURITY
	5.2.1. Configuring SASL authentication
	5.2.2. Configuring an SSL/TLS transport

	5.3. LOGGING
	5.3.1. Setting the log output level
	5.3.2. Enabling protocol logging

	5.4. MORE INFORMATION

	CHAPTER 6. INTEROPERABILITY
	6.1. INTEROPERATING WITH OTHER AMQP CLIENTS
	6.2. INTEROPERATING WITH AMQ JMS
	JMS message types

	6.3. CONNECTING TO AMQ BROKER
	6.4. CONNECTING TO AMQ INTERCONNECT

	APPENDIX A. MANAGING CERTIFICATES
	A.1. INSTALLING CERTIFICATE AUTHORITY CERTIFICATES
	A.2. INSTALLING CLIENT CERTIFICATES
	A.3. HELLO WORLD USING CLIENT CERTIFICATES

	APPENDIX B. EXAMPLE PROGRAMS
	B.1. PREREQUISITES
	B.2. HELLOWORLD SIMPLE
	HelloWorld-simple command line options
	HelloWorld-simple sample invocation

	B.3. HELLOWORLD ROBUST
	HelloWorld-robust command line options
	HelloWorld-robust sample invocation

	B.4. INTEROP.DRAIN.CS, INTEROP.SPOUT.CS (PERFORMANCE EXERCISER)
	Interop.Drain command line options
	Interop.Spout command line options
	Interop.Spout and Interop.Drain sample invocation

	B.5. INTEROP.CLIENT, INTEROP.SERVER (REQUEST-RESPONSE)
	Interop.Client command line options
	Interop.Server command line options
	Interop.Client, Interop.Server sample invocation
	PeerToPeer.Client command line options
	PeerToPeer.Server command line options
	PeerToPeer.Client, PeerToPeer.Server sample invocation


	APPENDIX C. USING YOUR SUBSCRIPTION
	Accessing your account
	Activating a subscription
	Downloading ZIP and TAR files
	Registering your system for packages


