
Red Hat Advanced Cluster Management
for Kubernetes 2.2

Security

Read more to learn about the governance policy framework, which helps harden
cluster security by using policies.

Last Updated: 2022-05-18

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

Read more to learn about the governance policy framework, which helps harden cluster security by
using policies.

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read more to learn about the governance policy framework, which helps harden cluster security by
using policies.

. .

. .

Table of Contents

CHAPTER 1. SECURITY
1.1. ROLE-BASED ACCESS CONTROL

1.1.1. Overview of roles
1.1.2. RBAC implementation

1.1.2.1. Cluster lifecycle RBAC
1.1.2.2. Application lifecycle RBAC
1.1.2.3. Governance lifecycle RBAC
1.1.2.4. Observability RBAC

1.2. CREDENTIALS
1.2.1. Provider credentials

1.2.1.1. Amazon Web Services
1.2.2. Agents

1.3. CERTIFICATES
1.3.1. List managed certificates
1.3.2. Refresh a managed certificate
1.3.3. Refresh managed certificates for Red Hat Advanced Cluster Management for Kubernetes
1.3.4. Refresh internal certificates

1.3.4.1. Rotating the gatekeeper webhook certificate
1.3.4.2. Rotating the integrity shield webhook certificate (Technology preview)
1.3.4.3. Observability certificates
1.3.4.4. Channel certificates
1.3.4.5. Managed cluster certificates

1.3.5. Replacing the root CA certificate
1.3.5.1. Prerequisites for root CA certificate
1.3.5.2. Creating the root CA certificate with OpenSSL
1.3.5.3. Replacing root CA certificates
1.3.5.4. Refreshing cert-manager certificates
1.3.5.5. Restoring root CA certificates

1.3.6. Replacing the management ingress certificates
1.3.6.1. Prerequisites to replace management ingress certificate

1.3.6.1.1. Example configuration file for generating a certificate
1.3.6.1.2. OpenSSL commands for generating a certificate

1.3.6.2. Replace the Bring Your Own (BYO) ingress certificate
1.3.6.3. Restore the default self-signed certificate for management ingress

CHAPTER 2. GOVERNANCE AND RISK
2.1. GOVERNANCE ARCHITECTURE
2.2. POLICY OVERVIEW

2.2.1. Policy YAML structure
2.2.2. Policy YAML table
2.2.3. Policy sample file

2.3. POLICY CONTROLLERS
2.3.1. Kubernetes configuration policy controller

2.3.1.1. Configuration policy controller YAML structure
2.3.1.2. Configuration policy sample
2.3.1.3. Configuration policy YAML table

2.3.2. Certificate policy controller
2.3.2.1. Certificate policy controller YAML structure

2.3.2.1.1. Certificate policy controller YAML table
2.3.2.2. Certificate policy sample

2.3.3. IAM policy controller

7
7
7
8
9

10
12
12
13
13
14
14
14
15
15
15
15
16
16
17
17
17
18
18
18
19
19
19

20
20
20
21
22
22

24
24
25
25
26
27
29
29
30
30
31
32
33
33
35
35

Table of Contents

1

2.3.3.1. IAM policy YAML structure
2.3.3.2. IAM policy YAMl table
2.3.3.3. IAM policy sample

2.3.4. Integrate third-party policy controllers
2.3.5. Creating a custom policy controller

2.3.5.1. Writing a policy controller
2.3.5.2. Deploying your controller to the cluster

2.3.5.2.1. Scaling your controller deployment
2.4. SUPPORTED POLICIES

2.4.1. Memory usage policy
2.4.1.1. Memory usage policy YAML structure
2.4.1.2. Memory usage policy table
2.4.1.3. Memory usage policy sample

2.4.2. Namespace policy
2.4.2.1. Namespace policy YAML structure
2.4.2.2. Namespace policy YAML table
2.4.2.3. Namespace policy sample

2.4.3. Image vulnerability policy
2.4.3.1. Image vulnerability policy YAML structure
2.4.3.2. Image vulnerability policy YAML table
2.4.3.3. Image vulnerability policy sample

2.4.4. Pod policy
2.4.4.1. Pod policy YAML structure
2.4.4.2. Pod policy table
2.4.4.3. Pod policy sample

2.4.5. Pod security policy
2.4.5.1. Pod security policy YAML structure
2.4.5.2. Pod security policy table
2.4.5.3. Pod security policy sample

2.4.6. Role policy
2.4.6.1. Role policy YAML structure
2.4.6.2. Role policy table
2.4.6.3. Role policy sample

2.4.7. Role binding policy
2.4.7.1. Role binding policy YAML structure
2.4.7.2. Role binding policy table
2.4.7.3. Role binding policy sample

2.4.8. Security Context Constraints policy
2.4.8.1. SCC policy YAML structure
2.4.8.2. SCC policy table
2.4.8.3. SCC policy sample

2.4.9. ETCD encryption policy
2.4.9.1. ETCD encryption policy YAML structure
2.4.9.2. ETCD encryption policy table
2.4.9.3. Etcd encryption policy sample

2.4.10. Integrating gatekeeper constraints and constraint templates
2.4.11. Compliance operator policy

2.4.11.1. Compliance operator resources
2.4.12. E8 scan policy

2.4.12.1. E8 scan policy resources
2.5. MANAGE SECURITY POLICIES

2.5.1. Deploy policies using GitOps
2.5.1.1. Customizing your local repository

35
36
36
37
37
37
39
41
41
41

42
42
43
43
43
44
45
45
45
46
47
47
47
48
49
49
49
50
51
51
51
52
53
53
53
54
55
55
55
56
57
57
57
58
59
59
61
61

63
63
64
65
66

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

2

2.5.1.2. Committing to your local repository
2.5.1.3. Deploying policies to your cluster
2.5.1.4. Verifying GitOps policy deployments from the console

2.5.2. Managing security policies
2.5.2.1. Creating a security policy

2.5.2.1.1. Creating a security policy from the command line interface
2.5.2.1.1.1. Viewing your security policy from the CLI

2.5.2.1.2. Creating a cluster security policy from the console
2.5.2.1.2.1. Viewing your security policy from the console

2.5.2.2. Updating security policies
2.5.2.2.1. Disabling security policies
2.5.2.2.2. Deleting a security policy

2.5.3. Managing configuration policies
2.5.3.1. Creating a configuration policy

2.5.3.1.1. Creating a configuration policy from the CLI
2.5.3.1.1.1. Viewing your configuration policy from the CLI

2.5.3.1.2. Creating a configuration policy from the console
2.5.3.1.2.1. Viewing your configuration policy from the console

2.5.3.2. Updating configuration policies
2.5.3.2.1. Disabling configuration policies

2.5.3.3. Deleting a configuration policy
2.5.4. Managing image vulnerability policies

2.5.4.1. Creating an image vulnerability policy
2.5.4.1.1. Creating an image vulnerability policy from the CLI

2.5.4.1.1.1. Viewing your image vulnerability policy from the CLI
2.5.4.2. Creating an image vulnerability policy from the console
2.5.4.3. Viewing image vulnerability violations from the console
2.5.4.4. Updating image vulnerability policies

2.5.4.4.1. Disabling image vulnerability policies
2.5.4.4.2. Deleting an image vulnerability policy

2.5.5. Managing memory usage policies
2.5.5.1. Creating a memory usage policy

2.5.5.1.1. Creating a memory usage policy from the CLI
2.5.5.1.1.1. Viewing your policy from the CLI

2.5.5.1.2. Creating an memory usage policy from the console
2.5.5.1.2.1. Viewing your memory usage policy from the console

2.5.5.2. Updating memory usage policies
2.5.5.2.1. Disabling memory usage policies
2.5.5.2.2. Deleting a memory usage policy

2.5.6. Managing namespace policies
2.5.6.1. Creating a namespace policy

2.5.6.1.1. Creating a namespace policy from the CLI
2.5.6.1.1.1. Viewing your namespace policy from the CLI

2.5.6.1.2. Creating a namespace policy from the console
2.5.6.1.2.1. Viewing your namespace policy from the console

2.5.6.2. Updating namespace policies
2.5.6.2.1. Disabling namespace policies
2.5.6.2.2. Deleting a namespace policy

2.5.7. Managing pod policies
2.5.7.1. Creating a pod policy

2.5.7.1.1. Creating a pod policy from the CLI
2.5.7.1.1.1. Viewing your policy from the CLI

2.5.7.2. Creating an pod policy from the console

66
67
68
69
69
70
71
71
73
73
73
73
74
74
74
75
75
75
76
76
76
77
77
77
77
77
78
78
78
79
79
79
79
80
80
80
80
81
81
81
81

82
82
82
82
83
83
83
84
84
84
84
84

Table of Contents

3

Viewing your pod policy from the console
2.5.7.3. Updating pod policies

2.5.7.3.1. Disabling pod policies
2.5.7.3.2. Deleting a pod policy

2.5.8. Managing pod security policies
2.5.8.1. Creating a pod security policy

2.5.8.1.1. Creating a pod security policy from the CLI
2.5.8.1.1.1. Viewing your pod security policy from the CLI

2.5.8.1.2. Creating a pod security policy from the console
2.5.8.1.2.1. Viewing your pod security policy from the console

2.5.8.2. Updating pod security policies
2.5.8.2.1. Disabling pod security policies
2.5.8.2.2. Deleting a pod security policy

2.5.9. Managing role policies
2.5.9.1. Creating a role policy

2.5.9.1.1. Creating a role policy from the CLI
2.5.9.1.1.1. Viewing your role policy from the CLI

2.5.9.1.2. Creating a role policy from the console
2.5.9.1.2.1. Viewing your role policy from the console

2.5.9.2. Updating role policies
2.5.9.2.1. Disabling role policies
2.5.9.2.2. Deleting a role policy

2.5.10. Managing role binding policies
2.5.10.1. Creating a role binding policy

2.5.10.1.1. Creating a role binding policy from the CLI
2.5.10.1.1.1. Viewing your role binding policy from the CLI

2.5.10.1.2. Creating a role binding policy from the console
2.5.10.1.2.1. Viewing your role binding policy from the console

2.5.10.2. Updating role binding policies
2.5.10.2.1. Disabling role binding policies
2.5.10.2.2. Deleting a role binding policy

2.5.11. Managing Security Context Constraints policies
2.5.11.1. Creating an SCC policy

2.5.11.1.1. Creating an SCC policy from the CLI
2.5.11.1.1.1. Viewing your SCC policy from the CLI

2.5.11.1.2. Creating an SCC policy from the console
2.5.11.1.2.1. Viewing your SCC policy from the console

2.5.11.2. Updating SCC policies
2.5.11.2.1. Disabling SCC policies
2.5.11.2.2. Deleting an SCC policy

2.5.12. Managing certificate policies
2.5.12.1. Creating a certificate policy

2.5.12.1.1. Creating a certificate policy from the CLI
2.5.12.1.1.1. Viewing your certificate policy from the CLI

2.5.12.1.2. Creating a certificate policy from the console
2.5.12.1.2.1. Viewing your certificate policy from the console

2.5.12.2. Updating certificate policies
2.5.12.2.1. Bringing your own certificates
2.5.12.2.2. Adding a label into your Kubernetes secret
2.5.12.2.3. Disabling certificate policies
2.5.12.2.4. Deleting a certificate policy

2.5.13. Managing IAM policies
2.5.13.1. Creating an IAM policy

85
85
85
85
86
86
86
86
86
87
87
87
87
88
88
88
88
89
89
89
89
90
90
90
90
91
91
91

92
92
92
93
93
93
93
93
93
94
94
94
94
95
95
95
95
95
96
96
96
97
97
97
98

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

4

2.5.13.1.1. Creating an IAM policy from the CLI
2.5.13.1.1.1. Viewing your IAM policy from the CLI

2.5.13.1.2. Creating an IAM policy from the console
2.5.13.1.2.1. Viewing your IAM policy from the console

2.5.13.2. Updating IAM policies
2.5.13.2.1. Disabling IAM policies
2.5.13.2.2. Deleting an IAM policy

2.5.14. Managing ETCD encryption policies
2.5.14.1. Creating an encryption policy

2.5.14.1.1. Creating an encryption policy from the CLI
2.5.14.1.1.1. Viewing your encryption policy from the CLI

2.5.14.1.2. Creating an encryption policy from the console
2.5.14.1.2.1. Viewing your encryption policy from the console

2.5.14.2. Updating encryption policies
2.5.14.2.1. Disabling encryption policies
2.5.14.2.2. Deleting an encryption policy

2.5.15. Managing gatekeeper operator policies
2.5.15.1. Installing gatekeeper using a gatekeeper operator policy
2.5.15.2. Creating a gatekeeper policy from the console

2.5.15.2.1. Gatekeeper operator CR
2.5.15.3. Upgrading gatekeeper and the gatekeeper operator
2.5.15.4. Updating gatekeeper operator policy

2.5.15.4.1. Viewing gatekeeper operator policy from the console
2.5.15.4.2. Disabling gatekeeper operator policy
2.5.15.4.3. Deleting gatekeeper operator policy

2.5.15.5. Uninstalling gatekeeper policy, gatekeeper, and gatekeeper operator policy
2.5.16. Managing compliance operator policies

2.5.16.1. Creating a compliance operator policy from the console
2.5.16.2. Updating a compliance operator policy

2.5.16.2.1. Viewing a compliance operator policy from the console
2.5.16.2.2. Disabling a compliance operator policy
2.5.16.2.3. Deleting a compliance operator policy

2.5.17. Managing E8 scan policies
2.5.17.1. Creating an E8 scan policy from the console
2.5.17.2. Updating an E8 scan policy

2.5.17.2.1. Viewing an E8 scan policy from the console
2.5.17.2.2. Disabling an E8 scan policy
2.5.17.2.3. Deleting an E8 scan policy

98
98
98
99
99
99
99

100
100
100
100
101
101
101
101
102
102
102
103
103
104
105
105
105
105
106
106
106
107
107
107
107
108
108
108
108
109
109

Table of Contents

5

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

6

CHAPTER 1. SECURITY
Manage your security and role-based access control (RBAC) of Red Hat Advanced Cluster
Management for Kubernetes components. Govern your cluster with defined policies and processes to
identify and minimize risks. Use policies to define rules and set controls.

Prerequisite: You must configure authentication service requirements for Red Hat Advanced Cluster
Management for Kubernetes to onboard workloads to Identity and Access Management (IAM). For
more information see, Understanding authentication in Understanding authentication in the OpenShift
Container Platform documentation.

Review the following topics to learn more about securing your cluster:

Role-based access control

Credentials

Certificates

Governance and risk

1.1. ROLE-BASED ACCESS CONTROL

Red Hat Advanced Cluster Management for Kubernetes supports role-based access control (RBAC).
Your role determines the actions that you can perform. RBAC is based on the authorization mechanisms
in Kubernetes, similar to Red Hat OpenShift Container Platform. For more information about RBAC, see
the OpenShift RBAC overview in the OpenShift Container Platform documentation .

Note: Action buttons are disabled from the console if the user-role access is impermissible.

View the following sections for details of supported RBAC by component:

Overview of roles

RBAC implementation

Cluster lifecycle RBAC

Application lifecycle RBAC

Governance lifecycle RBAC

Observability RBAC

1.1.1. Overview of roles

Some product resources are cluster-wide and some are namespace-scoped. You must apply cluster role
bindings and namespace role bindings to your users for consistent access controls. View the table list of
the following role definitions that are supported in Red Hat Advanced Cluster Management for
Kubernetes:

Table 1.1. Role definition table

CHAPTER 1. SECURITY

7

https://docs.openshift.com/container-platform/4.7/authentication/understanding-authentication.html
https://docs.openshift.com/container-platform/4.7/authentication/using-rbac.html

Role Definition

cluster-admin A user with cluster-wide binding to the cluster-
admin role is an OpenShift Container Platform
super user, who has all access.

open-cluster-management:cluster-manager-
admin

A user with cluster-wide binding to the cluster-
manager-admin role is a Red Hat Advanced
Cluster Management for Kubernetes super user, who
has all access. This role allows the user to create a
ManagedCluster resource.

open-cluster-management:managed-cluster-x
(admin)

A user with cluster binding to the managed-
cluster-x role has administrator access to
managedcluster “X” resource.

open-cluster-management:managed-cluster-x
(viewer)

A user with cluster-wide binding to the managed-
cluster-x role has view access to managedcluster
“X” resource.

open-cluster-management:subscription-admin A user with the subscription-admin role can
create Git subscriptions that deploy resources to
multiple namespaces. The resources are specified in
Kubernetes resource YAML files in the subscribed Git
repository. Note: When a non-subscription-admin
user creates a subscription, all resources are
deployed into the subscription namespace
regardless of specified namespaces in the resources.
For more information, see the Application lifecycle
RBAC section.

admin, edit, view Admin, edit, and view are OpenShift Container
Platform default roles. A user with a namespace-
scoped binding to these roles has access to open-
cluster-management resources in a specific
namespace, while cluster-wide binding to the same
roles gives access to all of the open-cluster-
management resources cluster-wide.

Important:

Any user can create projects from OpenShift Container Platform, which gives administrator role
permissions for the namespace.

If a user does not have role access to a cluster, the cluster name is not visible. The cluster name
is displayed with the following symbol: -.

1.1.2. RBAC implementation

RBAC is validated at the console level and at the API level. Actions in the console can be enabled or

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

8

RBAC is validated at the console level and at the API level. Actions in the console can be enabled or
disabled based on user access role permissions. View the following sections for more information on
RBAC for specific lifecycles in the product.

1.1.2.1. Cluster lifecycle RBAC

View the following cluster lifecycle RBAC operations.

To create and administer all managed clusters:

Create a cluster role binding to the cluster role open-cluster-management:cluster-manager-
admin. This role is a super user, which has access to all resources and actions. This role allows
you to create cluster-scoped managedcluster resources, the namespace for the resources
that manage the managed cluster, and the resources in the namespace. This role also allows
access to provider connections and to bare metal assets that are used to create managed
clusters.

oc create clusterrolebinding <role-binding-name> --clusterrole=open-cluster-
management:cluster-manager-admin

To administer a managed cluster named cluster-name:

Create a cluster role binding to the cluster role open-cluster-management:admin:<cluster-
name>. This role allows read/write access to the cluster-scoped managedcluster resource.
This is needed because the managedcluster is a cluster-scoped resource and not a
namespace-scoped resource.

oc create clusterrolebinding (role-binding-name) --clusterrole=open-cluster-
management:admin:<cluster-name>

Create a namespace role binding to the cluster role admin. This role allows read/write access to
the resources in the namespace of the managed cluster.

oc create rolebinding <role-binding-name> -n <cluster-name> --clusterrole=admin

To view a managed cluster named cluster-name:

Create a cluster role binding to the cluster role open-cluster-management:view:<cluster-
name>. This role allows read access to the cluster-scoped managedcluster resource. This is
needed because the managedcluster is a cluster-scoped resource and not a namespace-
scoped resource.

oc create clusterrolebinding <role-binding-name> --clusterrole=open-cluster-
management:view:<cluster-name>

Create a namespace role binding to the cluster role view. This role allows read-only access to
the resources in the namespace of the managed cluster.

oc create rolebinding <role-binding-name> -n <cluster-name> --clusterrole=view

View the following console and API RBAC tables for cluster lifecycle:

Table 1.2. Console RBAC table for cluster lifecycle

CHAPTER 1. SECURITY

9

Action Admin Edit View

Clusters read, update, delete read, update read

Provider connections create, read, update,
and delete

create, read, update,
and delete

read

Bare metal asset create, read, update,
delete

read, update read

Table 1.3. API RBAC table for cluster lifecycle

API Admin Edit View

managedclusters.cluster
.open-cluster-
management.io

create, read, update,
delete

read, update read

baremetalassets.invento
ry.open-cluster-
management.io

create, read, update,
delete

read, update read

klusterletaddonconfigs.a
gent.open-cluster-
management.io

create, read, update,
delete

read, update read

managedclusteractions.
action.open-cluster-
management.io

create, read, update,
delete

read, update read

managedclusterviews.vi
ew.open-cluster-
management.io

create, read, update,
delete

read, update read

managedclusterinfos.int
ernal.open-cluster-
management.io

create, read, update,
delete

read, update read

manifestworks.work.ope
n-cluster-
management.io

create, read, update,
delete

read, update read

1.1.2.2. Application lifecycle RBAC

When you create an application, the subscription namespace is created and the configuration map is
created in the subscription namespace. You must also have access to the channel namespace. When
you want to apply a subscription, you must be a subscription administrator. For more information on
managing applications, see Creating and managing subscriptions .

To perform application lifecycle tasks, users with the admin role must have access to the application

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

10

../manage_applications#creating-and-managing-subscriptions

namespace where the application is created, and to the managed cluster namespace. For example, the
required access to create applications in namespace "N" is a namespace-scoped binding to the admin
role for namespace "N".

View the following console and API RBAC tables for Application lifecycle:

Table 1.4. Console RBAC table for Application lifecycle

Action Admin Edit View

Application create, read, update,
delete

create, read, update,
delete

read

Channel create, read, update,
delete

create, read, update,
delete

read

Subscription create, read, update,
delete

create, read, update,
delete

read

Placement rule create, read, update,
delete

create, read, update,
delete

read

Table 1.5. API RBAC table for application lifecycle

API Admin Edit View

applications.app.k8s.io create, read, update,
delete

create, read, update,
delete

read

channels.apps.open-
cluster-management.io

create, read, update,
delete

create, read, update,
delete

read

deployables.apps.open-
cluster-management.io

create, read, update,
delete

create, read, update,
delete

read

helmreleases.apps.open
-cluster-management.io

create, read, update,
delete

create, read, update,
delete

read

placementrules.apps.op
en-cluster-
management.io

create, read, update,
delete

create, read, update,
delete

read

subscriptions.apps.open
-cluster-management.io

create, read, update,
delete

create, read, update,
delete

read

configmaps create, read, update,
delete

create, read, update,
delete

read

secrets create, read, update,
delete

create, read, update,
delete

read

CHAPTER 1. SECURITY

11

namespaces create, read, update,
delete

create, read, update,
delete

read

API Admin Edit View

1.1.2.3. Governance lifecycle RBAC

To perform governance lifecycle operations, users must have access to the namespace where the policy
is created, along with access to the managedcluster namespace where the policy is applied.

View the following examples:

To view policies in namespace "N" the following role is required:

A namespace-scoped binding to the view role for namespace "N".

To create a policy in namespace "N" and apply it on managedcluster "X", the following roles are
required:

A namespace-scoped binding to the admin role for namespace "N".

A namespace-scoped binding to the admin role for namespace "X".

View the following console and API RBAC tables for Governance lifecycle:

Table 1.6. Console RBAC table for governance lifecycle

Action Admin Edit View

Policies create, read, update,
delete

read, update read

PlacementBindings create, read, update,
delete

read, update read

PlacementRules create, read, update,
delete

read, update read

Table 1.7. API RBAC table for Governance lifecycle

API Admin Edit View

policies.policy.open-
cluster-management.io

create, read, update,
delete

read, update read

placementbindings.polic
y.open-cluster-
management.io

create, read, update,
delete

read, update read

1.1.2.4. Observability RBAC

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

12

To view the observability metrics for a managed cluster, you must have view access to that managed
cluster on the hub cluster. View the following list of observability features:

Access managed cluster metrics.
Users are denied access to managed cluster metrics, if they are not assigned to the view role for
the managed cluster on the hub cluster.

Search for resources.

To view observability data in Grafana, you must have a RoleBinding resource in the same namespace of
the managed cluster. View the following RoleBinding example:

See Role binding policy for more information. See Customizing observability to configure observability.

Use the Visual Web Terminal if you have access to the managed cluster.

To create, update, and delete the MultiClusterObservability custom resource. View the following
RBAC table:

Table 1.8. API RBAC table for observability

API Admin Edit View

multiclusterobservabiliti
es.observability.open-
cluster-management.io

create, read, update,
and delete

- -

To continue to learn more about securing your cluster, see Security.

1.2. CREDENTIALS

You can rotate your credentials for your Red Hat Advanced Cluster Management for Kubernetes
clusters when your cloud provider access credentials have changed. Continue reading for the procedure
to manually propagate your updated cloud provider credentials.

Required access: Cluster administrator

1.2.1. Provider credentials

Connection secrets for a cloud provider can be rotated. See the following list of provider credentials:

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: <replace-with-name-of-rolebinding>
 namespace: <replace-with-name-of-managedcluster-namespace>
subjects:
 - kind: <replace with User|Group|ServiceAccount>
 apiGroup: rbac.authorization.k8s.io
 name: <replace with name of User|Group|ServiceAccount>
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: view

CHAPTER 1. SECURITY

13

../security#role-binding-policy
../observing_environments#customizing-observability

1.2.1.1. Amazon Web Services

aws_access_key_id: Your provisioned cluster access key.

aws_secret_access_key: Your provisioned secret access key.

1. View the resources in the namespace that has the same name as the cluster with the
expired credential.

2. Find the secret name <cluster_name>-<cloud_provider>-creds. For example:
my_cluster-aws-creds1.

3. Edit the secret to replace the existing value with the updated value.

1.2.2. Agents

Agents are responsible for connections. See how you can rotate the following credentials:

registration-agent: Connects the registration agent to the hub cluster.

work-agent: Connects the work agent to the hub cluster.
To rotate credentials, delete the hub-kubeconfig secret to restart the registration pods.

APIServer: Connects agents and add-ons to the hub cluster.

1. On the hub cluster, display the import command by entering the following command:

oc get secret -n ${CLUSTER_NAME} ${CLUSTER_NAME}-import -
ojsonpath='{.data.import\.yaml}' | base64 --decode > import.yaml

2. On the managed cluster, apply the import.yaml file. Run the following command: oc apply
-f import.yaml.

1.3. CERTIFICATES

Various certificates are created and used throughout Red Hat Advanced Cluster Management for
Kubernetes.

You can bring your own certificates. You must create a Kubernetes TLS Secret for your certificate. After
you create your certificates, you can replace certain certificates that are created by the Red Hat
Advanced Cluster Management installer.

Required access: Cluster administrator or team administrator.

Note: Replacing certificates is supported only on native Red Hat Advanced Cluster Management
installations.

All certificates required by services that run on Red Hat Advanced Cluster Management are created
during the installation of Red Hat Advanced Cluster Management. Certificates are created and
managed by the Red Hat Advanced Cluster Management Certificate manager (cert-manager) service.
The Red Hat Advanced Cluster Management Root Certificate Authority (CA) certificate is stored within
the Kubernetes Secret multicloud-ca-cert in the hub cluster namespace. The certificate can be
imported into your client truststores to access Red Hat Advanced Cluster Management Platform APIs.

See the following topics to replace certificates:

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

14

Replacing the root CA certificate

Replacing the management ingress certificates

1.3.1. List managed certificates

You can view a list of managed certificates that use cert-manager internally by running the following
command:

oc get certificates.certmanager.k8s.io -n open-cluster-management

Note: If observability is enabled, there are additional namespaces where certificates are created.

1.3.2. Refresh a managed certificate

You can refresh a managed certificate by running the command in the List managed certificates section.
When you identify the certificate that you need to refresh, delete the secret that is associated with the
certificate. For example, you can delete a secret by running the following command:

oc delete secret grc-0c925-grc-secrets -n open-cluster-management

1.3.3. Refresh managed certificates for Red Hat Advanced Cluster Management for
Kubernetes

You can refresh all managed certificates that are issued by the Red Hat Advanced Cluster Management
CA. During the refresh, the Kubernetes secret that is associated with each cert-manager certificate is
deleted. The service restarts automatically to use the certificate. Run the following command:

oc delete secret -n open-cluster-management $(oc get certificates.certmanager.k8s.io -n open-
cluster-management -o wide | grep multicloud-ca-issuer | awk '{print $3}')

The Red Hat OpenShift Container Platform certificate is not included in the Red Hat Advanced Cluster
Management for Kubernetes management ingress. For more information, see the Security known
issues.

1.3.4. Refresh internal certificates

You can refresh internal certificates, which are certificates that are used by Red Hat Advanced Cluster
Management webhooks and the proxy server.

Complete the following steps to refresh internal certificates:

1. Delete the secret that is associated with the internal certificate by running the following
command:

oc delete secret -n open-cluster-management ocm-webhook-secret

Note: Some services might not have a secret that needs to be deleted.

2. Restart the services that are associated with the internal certificate(s) by running the following
command:

oc delete po -n open-cluster-management ocm-webhook-679444669c-5cg76

CHAPTER 1. SECURITY

15

../release_notes#security-known-issues

Remember: There are replicas of many services; each service must be restarted.

View the following table for a summarized list of the pods that contain certificates and whether a secret
needs to be deleted prior to restarting the pod:

Table 1.9. Pods that contain internal certificates

Service name Namespace Sample pod name Secret name (if
applicable)

channels-apps-open-
cluster-management-
webhook-svc

open-cluster-
management

multicluster-operators-
application-
8c446664c-5lbfk

-

multicluster-operators-
application-svc

open-cluster-
management

multicluster-operators-
application-
8c446664c-5lbfk

-

multiclusterhub-
operator-webhook

open-cluster-
management

multiclusterhub-
operator-bfd948595-
mnhjc

-

ocm-webhook open-cluster-
management

ocm-webhook-
679444669c-5cg76

ocm-webhook-secret

cluster-manager-
registration-webhook

open-cluster-
management-hub

cluster-manager-
registration-webhook-
fb7b99c-d8wfc

registration-webhook-
serving-cert

cluster-manager-work-
webhook

open-cluster-
management-hub

cluster-manager-work-
webhook-89b8d7fc-
f4pv8

work-webhook-serving-
cert

1.3.4.1. Rotating the gatekeeper webhook certificate

Complete the following steps to rotate the gatekeeper webhook certificate:

1. Edit the secret that contains the certificate with the following command:

oc edit secret -n openshift-gatekeeper-system gatekeeper-webhook-server-cert

2. Delete the following content in the data section: ca.crt, ca.key, tls.crt`, and tls.key.

3. Restart the gatekeeper webhook service by deleting the gatekeeper-controller-manager pods
with the following command:

oc delete po -n openshift-gatekeeper-system -l control-plane=controller-manager

The gatekeeper webhook certificate is rotated.

1.3.4.2. Rotating the integrity shield webhook certificate (Technology preview)

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

16

Complete the following steps to rotate the integrity shield webhook certificate:

1. Edit the IntegrityShield custom resource and add the integrity-shield-operator-system
namespace to the excluded list of namespaces in the inScopeNamespaceSelector setting.
Run the following command to edit the resource:

oc edit integrityshield integrity-shield-server -n integrity-shield-operator-system

2. Delete the secret that contains the integrity shield certificate by running the following
command:

oc delete secret -n integrity-shield-operator-system ishield-server-tls

3. Delete the operator so that the secret is recreated. Be sure that the operator pod name
matches the pod name on your system. Run the following command:

oc delete po -n integrity-shield-operator-system integrity-shield-operator-controller-manager-
64549569f8-v4pz6

4. Delete the integrity shield server pod to begin using the new certificate with the following
command:

oc delete po -n integrity-shield-operator-system integrity-shield-server-5fbdfbbbd4-bbfbz

1.3.4.3. Observability certificates

When Red Hat Advanced Cluster Management is installed there are additional namespaces where
certificates are managed. The open-cluster-management-observability namespace and the managed
cluster namespaces contain certificates managed by cert-manager for the observability service.

Observability certificates are automatically refreshed upon expiration. View the following list to
understand the effects when certificates are automatically renewed:

Components on your hub cluster automatically restart to retrieve the refreshed certificate.

Red Hat Advanced Cluster Management sends the refreshed certificates to managed clusters.

The metrics-collector restarts to mount the renewed certificates.
Note: metrics-collector can push metrics to the hub cluster before and after certificates are
removed. For more information about refreshing certificates across your clusters, see the
Refresh internal certificates section. Be sure to specify the appropriate namespace when you
refresh a certificate.

1.3.4.4. Channel certificates

CA certificates can be associated with Git channel that are a part of the Red Hat Advanced Cluster
Management application management. See Using custom CA certificates for a secure HTTPS
connection for more details.

Helm channels allow you to disable certificate validation. Helm channels where certificate validation is
disabled, must be configured in development environments. Disabling certificate validation introduces
security risks.

1.3.4.5. Managed cluster certificates
Certificates are used to authenticate managed clusters with the hub. Therefore, it is important to be

CHAPTER 1. SECURITY

17

../manage_applications#using-custom-CA-certificates-for-secure-HTTPS-connection

Certificates are used to authenticate managed clusters with the hub. Therefore, it is important to be
aware of troubleshooting scenarios associated with these certificates. View Troubleshooting imported
clusters offline after certificate change for more details.

The managed cluster certificates are refreshed automatically.

Use the certificate policy controller to create and manage certificate policies on managed clusters. See
Policy controllers to learn more about controllers. Return to the Security page for more information.

1.3.5. Replacing the root CA certificate

You can replace the root CA certificate.

1.3.5.1. Prerequisites for root CA certificate

Verify that your Red Hat Advanced Cluster Management for Kubernetes cluster is running.

Back up the existing Red Hat Advanced Cluster Management for Kubernetes certificate resource by
running the following command:

oc get cert multicloud-ca-cert -n open-cluster-management -o yaml > multicloud-ca-cert-backup.yaml

1.3.5.2. Creating the root CA certificate with OpenSSL

Complete the following steps to create a root CA certificate with OpenSSL:

1. Generate your certificate authority (CA) RSA private key by running the following command:

openssl genrsa -out ca.key 4096

2. Generate a self-signed CA certificate by using your CA key. Run the following command:

openssl req -x509 -new -nodes -key ca.key -days 400 -out ca.crt -config req.cnf

Your req.cnf file might resemble the following file:

[req] # Main settings
default_bits = 4096 # Default key size in bits.
prompt = no # Disables prompting for certificate values so the configuration file
values are used.
default_md = sha256 # Specifies the digest algorithm.
distinguished_name = dn # Specifies the section that includes the distinguished name
information.
x509_extensions = v3_ca # The extentions to add to the self signed cert

[dn] # Distinguished name settings
C = US # Country
ST = North Carolina # State or province
L = Raleigh # Locality
O = Red Hat Open Shift # Organization
OU = Red Hat Advanced Container Management # Organizational unit
CN = www.redhat.com # Common name.

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

18

../troubleshooting#troubleshooting-imported-clusters-offline-after-certificate-change

[v3_ca] # x509v3 extensions
basicConstraints=critical,CA:TRUE # Indicates whether the certificate is a CA certificate
during the certificate chain verification process.

1.3.5.3. Replacing root CA certificates

1. Create a new secret with the CA certificate by running the following command:

kubectl -n open-cluster-management create secret tls byo-ca-cert --cert ./ca.crt --key ./ca.key

2. Edit the CA issuer to point to the BYO certificate. Run the following commnad:

oc edit issuer -n open-cluster-management multicloud-ca-issuer

3. Replace the string mulicloud-ca-cert with byo-ca-cert. Save your deployment and quit the
editor.

4. Edit the management ingress deployment to reference the Bring Your Own (BYO) CA
certificate. Run the following command:

oc edit deployment management-ingress-435ab

5. Replace the multicloud-ca-cert string with the byo-ca-cert. Save your deployment and quit the
editor.

6. Validate the custom CA is in use by logging in to the console and view the details of the
certificate being used.

1.3.5.4. Refreshing cert-manager certificates

After the root CA is replaced, all certificates that are signed by the root CA must be refreshed and the
services that use those certificates must be restarted. Cert-manager creates the default Issuer from the
root CA so all of the certificates issued by cert-manager, and signed by the default ClusterIssuer must
also be refreshed.

Delete the Kubernetes secrets associated with each cert-manager certificate to refresh the certificate
and restart the services that use the certificate. Run the following command:

oc delete secret -n open-cluster-management $(oc get cert -n open-cluster-management -o wide |
grep multicloud-ca-issuer | awk '{print $3}')

1.3.5.5. Restoring root CA certificates

To restore the root CA certificate, update the CA issuer by completing the following steps:

1. Edit the CA issuer. Run the following command:

oc edit issuer -n open-cluster-management multicloud-ca-issuer

2. Replace the byo-ca-cert string with multicloud-ca-cert in the editor. Save the issuer and quit
the editor.

3. Edit the management ingress depolyment to reference the original CA certificate. Run the

CHAPTER 1. SECURITY

19

3. Edit the management ingress depolyment to reference the original CA certificate. Run the
following command:

oc edit deployment management-ingress-435ab

4. Replace the byo-ca-cert string with the multicloud-ca-cert string. Save your deployment and
quit the editor.

5. Delete the BYO CA certificate. Run the following commnad:

oc delete secret -n open-cluster-management byo-ca-cert

Refresh all cert-manager certificates that use the CA. For more information, see the forementioned
section, Refreshing cert-manager certificates.

See Certificates for more information about certificates that are created and managed by Red Hat
Advanced Cluster Management for Kubernates.

1.3.6. Replacing the management ingress certificates

You can replace management ingress certificates.

1.3.6.1. Prerequisites to replace management ingress certificate

Prepare and have your management-ingress certificates and private keys ready. If needed, you can
generate a TLS certificate by using OpenSSL. Set the common name parameter,CN, on the certificate
to manangement-ingress. If you are generating the certificate, include the following settings:

Include the route name for Red Hat Advanced Cluster Management for Kubernetes as the
domain name in your certificate Subject Alternative Name (SAN) list.

The service name for the management ingress: management-ingress.

Include the route name for Red Hat Advanced Cluster Management for Kubernetes.
Receive the route name by running the following command:

oc get route -n open-cluster-management

You might receive the following response:

multicloud-console.apps.grchub2.dev08.red-chesterfield.com

Add the localhost IP address: 127.0.0.1.

Add the localhost entry: localhost.

1.3.6.1.1. Example configuration file for generating a certificate

The following example configuration file and OpenSSL commands provide an example for how to
generate a TLS certificate by using OpenSSL. View the following csr.cnf configuration file, which
defines the configuration settings for generating certificates with OpenSSL.

[req] # Main settings
default_bits = 2048 # Default key size in bits.

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

20

prompt = no # Disables prompting for certificate values so the configuration file values are
used.
default_md = sha256 # Specifies the digest algorithm.
req_extensions = req_ext # Specifies the configuration file section that includes any extensions.
distinguished_name = dn # Specifies the section that includes the distinguished name information.

[dn] # Distinguished name settings
C = US # Country
ST = North Carolina # State or province
L = Raleigh # Locality
O = Red Hat Open Shift # Organization
OU = Red Hat Advanced Container Management # Organizational unit
CN = management-ingress # Common name.

[req_ext] # Extensions
subjectAltName = @alt_names # Subject alternative names

[alt_names] # Subject alternative names
DNS.1 = management-ingress
DNS.2 = multicloud-console.apps.grchub2.dev08.red-chesterfield.com
DNS.3 = localhost
DNS.4 = 127.0.0.1

[v3_ext] # x509v3 extensions
authorityKeyIdentifier=keyid,issuer:always # Specifies the public key that corresponds to the private
key that is used to sign a certificate.
basicConstraints=CA:FALSE # Indicates whether the certificate is a CA certificate during
the certificate chain verification process.
#keyUsage=keyEncipherment,dataEncipherment # Defines the purpose of the key that is contained
in the certificate.
extendedKeyUsage=serverAuth # Defines the purposes for which the public key can be
used.
subjectAltName=@alt_names # Identifies the subject alternative names for the identify
that is bound to the public key by the CA.

Note: Be sure to update the SAN labeled, DNS.2 with the correct hostname for your management
ingress.

1.3.6.1.2. OpenSSL commands for generating a certificate

The following OpenSSL commands are used with the preceding configuration file to generate the
required TLS certificate.

1. Generate your certificate authority (CA) RSA private key:

openssl genrsa -out ca.key 4096

2. Generate a self-signed CA certificate by using your CA key:

openssl req -x509 -new -nodes -key ca.key -subj "/C=US/ST=North
Carolina/L=Raleigh/O=Red Hat OpenShift" -days 400 -out ca.crt

3. Generate the RSA private key for your certificate:

openssl genrsa -out ingress.key 4096

CHAPTER 1. SECURITY

21

4. Generate the Certificate Signing request (CSR) by using the private key:

openssl req -new -key ingress.key -out ingress.csr -config csr.cnf

5. Generate a signed certificate by using your CA certificate and key and CSR:

openssl x509 -req -in ingress.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out ingress.crt -
sha256 -days 300 -extensions v3_ext -extfile csr.cnf

6. Examine the certificate contents:

openssl x509 -noout -text -in ./ingress.crt

1.3.6.2. Replace the Bring Your Own (BYO) ingress certificate

Complete the following steps to replace your BYO ingress certificate:

1. Create the byo-ingress-tls secret by using your certificate and private key. Run the following
command:

kubectl -n open-cluster-management create secret tls byo-ingress-tls-secret --cert
./ingress.crt --key ./ingress.key

2. Verify that the secret is created in the correct namespace with the following command:

kubectl get secret -n open-cluster-management | grep -e byo-ingress-tls-secret -e byo-ca-cert

3. Create a secret containing the CA certificate by running the following command:

kubectl -n open-cluster-management create secret tls byo-ca-cert --cert ./ca.crt --key ./ca.key

4. Edit the management ingress deployment and get the name of the deployment with the
following commands:

export MANAGEMENT_INGRESS=`oc get deployment -o custom-columns=:.metadata.name
| grep management-ingress`

oc edit deployment $MANAGEMENT_INGRESS -n open-cluster-management

Replace the multicloud-ca-cert string with byo-ca-cert.

Replace the $MANAGEMENT_INGRESS-tls-secret string with byo-ingress-tls-secret.

Save your deployment and close the editor. + The management ingress automatically
restarts.

5. Verify that the current certificate is your certificate, and that all console access and login
functionality remain the same.

1.3.6.3. Restore the default self-signed certificate for management ingress

1. Edit the management ingress deployment. Replace the string multicloud-ca-cert with byo-ca-
cert and get the name of the deployment with the following commands:

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

22

export MANAGEMENT_INGRESS=`oc get deployment -o custom-columns=:.metadata.name
| grep management-ingress`

oc edit deployment $MANAGEMENT_INGRESS -n open-cluster-management

a. Replace the byo-ca-cert string with multicloud-ca-cert.

b. Replace the byo-ingress-tls-secret string with the $MANAGEMENT_INGRESS-tls-secret.

c. Save your deployment and close the editor. The management ingress automatically restarts.

2. After all pods are restarted, navigate to the Red Hat Advanced Cluster Management for
Kubernetes console from your browser.

3. Verify that the current certificate is your certificate, and that all console access and login
functionality remain the same.

4. Delete the Bring Your Own (BYO) ingress secret and ingress CA certificate by running the
following commands:

oc delete secret -n open-cluster-management byo-ingress-tls-secret
oc delete secret -n open-cluster-management byo-ca-cert

See Certificates for more information about certificates that are created and managed by Red Hat
Advanced Cluster Management. Return to the Security page for more information on securing your
cluster.

CHAPTER 1. SECURITY

23

CHAPTER 2. GOVERNANCE AND RISK
Enterprises must meet internal standards for software engineering, secure engineering, resiliency,
security, and regulatory compliance for workloads hosted on private, multi and hybrid clouds. Red Hat
Advanced Cluster Management for Kubernetes governance provides an extensible policy framework for
enterprises to introduce their own security policies.

2.1. GOVERNANCE ARCHITECTURE

Enhance the security for your cluster with the Red Hat Advanced Cluster Management for Kubernetes
governance lifecycle. The product governance lifecycle is based on defined policies, processes, and
procedures to manage security and compliance from a central interface page. View the following
diagram of the governance architecture:

The governance architecture is composed of the following components:

Governance and risk dashboard: Provides a summary of your cloud governance and risk details,
which include policy and cluster violations.
Notes:

When a policy is propagated to a managed cluster, the replicated policy is named
namespaceName.policyName. When you create a policy, make sure that the length of the
namespaceName.policyName must not exceed 63 characters due to the Kubernetes limit
for object names.

When you search for a policy in the hub cluster, you might also receive the name of the
replicated policy on your managed cluster. For example, if you search for policy-dhaz-cert,
the following policy name from the hub cluster might appear: default.policy-dhaz-cert.

Policy-based governance framework: Supports policy creation and deployment to various
managed clusters based on attributes associated with clusters, such as a geographical region.
See the policy-collection repository to view examples of the predefined policies, and
instructions on deploying policies to your cluster. You can also contribute custom policy
controllers and policies.

Policy controller: Evaluates one or more policies on the managed cluster against your specified
control and generates Kubernetes events for violations. Violations are propagated to the hub
cluster. Policy controllers that are included in your installation are the following: Kubernetes
configuration, Certificate, and IAM. You can also create a custom policy controller.

Open source community: Supports community contributions with a foundation of the Red Hat
Advanced Cluster Management policy framework. Policy controllers and third-party policies are
also a part of the open-cluster-management/policy-collection repository. Learn how to

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

24

https://github.com/stolostron/policy-collection

contribute and deploy policies using GitOps. For more information, see Deploy policies using
GitOps. Learn how to integrate third-party policies with Red Hat Advanced Cluster
Management for Kubernetes. For more information, see Integrate third-party policy controllers .

Learn about the structure of an Red Hat Advanced Cluster Management for Kubernetes policy
framework, and how to use the Red Hat Advanced Cluster Management for Kubernetes Governance
and risk dashboard.

Policy overview

Policy controllers

Supported policies

Manage security policies

2.2. POLICY OVERVIEW

Use the Red Hat Advanced Cluster Management for Kubernetes security policy framework to create
custom policy controllers and other policies. Kubernetes custom resource definition (CRD) instance are
used to create policies. For more information about CRDs, see Extend the Kubernetes API with
CustomResourceDefinitions.

Each Red Hat Advanced Cluster Management for Kubernetes policy can have at least one or more
templates. For more details about the policy elements, view the following Policy YAML table section on
this page.

The policy requires a PlacementRule that defines the clusters that the policy document is applied to,
and a PlacementBinding that binds the Red Hat Advanced Cluster Management for Kubernetes policy to
the placement rule.

Important:

You must create a PlacementRule to apply your policies to the managed cluster, and bind the
PlacementRule with a PlacementBinding.

You can create a policy in any namespace on the hub cluster except the cluster namespace. If
you create a policy in the cluster namespace, it is deleted by Red Hat Advanced Cluster
Management for Kubernetes.

Each client and provider is responsible for ensuring that their managed cloud environment
meets internal enterprise security standards for software engineering, secure engineering,
resiliency, security, and regulatory compliance for workloads hosted on Kubernetes clusters. Use
the governance and security capability to gain visibility and remediate configurations to meet
standards.

2.2.1. Policy YAML structure

When you create a policy, you must include required parameter fields and values. Depending on your
policy controller, you might need to include other optional fields and values. View the following YAML
structure for the explained parameter fields:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:

CHAPTER 2. GOVERNANCE AND RISK

25

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

2.2.2. Policy YAML table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

 annotations:
 policy.open-cluster-management.io/standards:
 policy.open-cluster-management.io/categories:
 policy.open-cluster-management.io/controls:
spec:
 policy-templates:
 - objectDefinition:
 apiVersion:
 kind:
 metadata:
 name:
 spec:
 remediationAction:
 disabled:

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name:
placementRef:
 name:
 kind:
 apiGroup:
subjects:
- name:
 kind:
 apiGroup:

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name:
spec:
 clusterConditions:
 - type:
 clusterLabels:
 matchLabels:
 cloud:

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

26

metadata.annotations Optional. Used to specify a set of security details
that describes the set of standards the policy is trying
to validate. All annotations documented here are
represented as a string that contains a comma-
separated list. Note: You can view policy violations
based on the standards and categories that you
define for your policy on the Policies page, from the
console.

annotations.policy.open-cluster-
management.io/standards

The name or names of security standards the policy is
related to. For example, National Institute of
Standards and Technology (NIST) and Payment
Card Industry (PCI).

annotations.policy.open-cluster-
management.io/categories

A security control category represent specific
requirements for one or more standards. For
example, a System and Information Integrity
category might indicate that your policy contains a
data transfer protocol to protect personal
information, as required by the HIPAA and PCI
standards.

annotations.policy.open-cluster-
management.io/controls

The name of the security control that is being
checked. For example, the certificate policy
controller.

spec.policy-templates Required. Used to create one or more policies to
apply to a managed cluster.

spec.disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform. If
specified, the spec.remediationAction value that
is defined overrides the remediationAction
parameter defined in the child policy, from the
policy-templates section. For example, if
spec.remediationAction value section is set to
enforce, then the remediationAction in the
policy-templates section is set to enforce during
runtime. Important: Some policies might not support
the enforce feature.

Field Description

2.2.3. Policy sample file

apiVersion: policy.open-cluster-management.io/v1
kind: Policy

CHAPTER 2. GOVERNANCE AND RISK

27

metadata:
 name: policy-role
 annotations:
 policy.open-cluster-management.io/standards: NIST SP 800-53
 policy.open-cluster-management.io/categories: AC Access Control
 policy.open-cluster-management.io/controls: AC-3 Access Enforcement
spec:
 remediationAction: inform
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-role-example
 spec:
 remediationAction: inform # the policy-template spec.remediationAction is overridden by the
preceding parameter value for spec.remediationAction.
 severity: high
 namespaceSelector:
 exclude: ["kube-*"]
 include: ["default"]
 object-templates:
 - complianceType: mustonlyhave # role definition should exact match
 objectDefinition:
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name: sample-role
 rules:
 - apiGroups: ["extensions", "apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch", "delete","patch"]

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-role
placementRef:
 name: placement-policy-role
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
subjects:
- name: policy-role
 kind: Policy
 apiGroup: policy.open-cluster-management.io

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-policy-role
spec:
 clusterConditions:
 - status: "True"
 type: ManagedClusterConditionAvailable

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

28

See Managing security policies to create and update a policy. You can also enable and updateRed Hat
Advanced Cluster Management policy controllers to validate the compliance of your policies. Refer to
Policy controllers. To learn more policy topics, see Governance and risk.

2.3. POLICY CONTROLLERS

Policy controllers monitor and report whether your cluster is compliant with a policy. Use the Red Hat
Advanced Cluster Management for Kubernetes policy framework by using the out of the box policy
templates to apply predefined policy controllers, and policies. The policy controllers are Kubernetes
custom resource definition (CRD) instance. For more information about CRDs, see Extend the
Kubernetes API with CustomResourceDefinitions. Policy controllers remediate policy violations to make
the cluster status be compliant.

You can create custom policies and policy controllers with the product policy framework. See Creating a
custom policy controller for more information.

Important: Only the configuration policy controller supports the enforce feature. You must manually
remediate policies, where the policy controller does not support the enforce feature.

View the following topics to learn more about the following Red Hat Advanced Cluster Management for
Kubernetes policy controllers:

Kubernetes configuration policy controller

Certificate policy controller

IAM policy controller

Refer to Governance and risk for more topics about managing your policies.

2.3.1. Kubernetes configuration policy controller

Configuration policy controller can be used to configure any Kubernetes resource and apply security
policies across your clusters.

The configuration policy controller communicates with the local Kubernetes API server to get the list of
your configurations that are in your cluster. For more information about CRDs, see Extend the
Kubernetes API with CustomResourceDefinitions.

The configuration policy controller is created on the hub cluster during installation. Configuration policy
controller supports the enforce feature and monitors the compliance of the following policies:

Memory usage policy

Namespace policy

Image vulnerability policy

Pod policy

Pod security policy

 clusterSelector:
 matchExpressions:
 - {key: environment, operator: In, values: ["dev"]}

CHAPTER 2. GOVERNANCE AND RISK

29

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

Role policy

Role binding policy

Security content constraints (SCC) policy

ETCD encryption policy

Compliance operator policy

When the remediationAction for the configuration policy is set to enforce, the controller creates a
replicate policy on the target managed clusters.

2.3.1.1. Configuration policy controller YAML structure

2.3.1.2. Configuration policy sample

Name: configuration-policy-example
Namespace:
Labels:
APIVersion: policy.open-cluster-management.io/v1
Kind: ConfigPolicy
Metadata:
 Finalizers:
 finalizer.policy.open-cluster-management.io
Spec:
 Conditions:
 Ownership:
 NamespaceSelector:
 Exclude:
 Include:
 RemediationAction:
 Status:
 CompliancyDetails:
 Configuration-Policy-Example:
 Default:
 Kube - Public:
 Compliant: Compliant
 Events:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigPolicy
metadata:
 name: policy-config
spec:
 namespaceSelector:
 include: ["default"]
 exclude: []
 remediationAction: inform
 severity: low
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Pod

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

30

2.3.1.3. Configuration policy YAML table

Table 2.1. Parameter table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to ConfigPolicy to indicate
the type of policy.

metadata.name Required. The name of the policy.

spec Required. Specifications of which configuration
policy to monitor and how to remediate them.

spec.namespace Required for namespaced objects or resources. The
namespaces in the hub cluster that the policy is
applied to. Enter at least one namespace for the
include parameter, which are the namespaces you
want to apply to the policy to. The exclude
parameter specifies the namespaces you explicitly
do not want to apply the policy to.

spec.remediationAction Required. Specifies the remediation of your policy.
Enter inform

spec.remediationAction.severity Required. Specifies the severity when the policy is
non-compliant. Use the following parameter values:
low, medium, or high.

 metadata:
 name: nginx-pod
 spec:
 containers:
 - image: nginx:1.7.9
 name: nginx
 ports:
 - containerPort: 80

CHAPTER 2. GOVERNANCE AND RISK

31

spec.remediationAction.complianceType Required. Used to list expected behavior for roles
and other Kubernetes object that must be evaluated
or applied to the managed clusters. You must use the
following verbs as parameter values:

mustonlyhave: Indicates that an object must exist
with the exact name and relevant fields.

musthave: Indicates an object must exist with the
same name as specified object-template. The other
fields in the template are a subset of what exists in
the object.

mustnothave: Indicated that an object with the
same name or labels cannot exist and need to be
deleted, regardless of the specification or rules.

Field Description

See the policy samples that use NIST Special Publication 800-53 (Rev. 4) , and are supported by Red
Hat Advanced Cluster Management from the CM-Configuration-Management folder. Learn about how
policies are applied on your hub cluster, see Supported policies for more details.

Learn how to create and customize policies, see Manage security policies . Refer to Policy controllers for
more details about controllers.

2.3.2. Certificate policy controller

Certificate policy controller can be used to detect certificates that are close to expiring, and detect time
durations (hours) that are too long or contain DNS names that fail to match specified patterns.

Configure and customize the certificate policy controller by updating the following parameters in your
controller policy:

minimumDuration

minimumCADuration

maximumDuration

maximumCADuration

allowedSANPattern

disallowedSANPattern

Your policy might become non-compliant due to either of the following scenarios:

When a certificate expires in less than the minimum duration of time or exceeds the maximum
time.

When DNS names fail to match the specified pattern.

The certificate policy controller is created on your managed cluster. The controller communicates with

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

32

https://nvd.nist.gov/800-53/Rev4/control/CA-1
https://github.com/stolostron/policy-collection/tree/main/stable/CM-Configuration-Management

The certificate policy controller is created on your managed cluster. The controller communicates with
the local Kubernetes API server to get the list of secrets that contain certificates and determine all non-
compliant certificates. For more information about CRDs, see Extend the Kubernetes API with
CustomResourceDefinitions.

Certificate policy controller does not support the enforce feature.

2.3.2.1. Certificate policy controller YAML structure

View the following example of a certificate policy and review the element in the YAML table:

2.3.2.1.1. Certificate policy controller YAML table

Table 2.2. Parameter table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to CertificatePolicy to
indicate the type of policy.

metadata.name Required. The name to identify the policy.

metadata.namespace Required. The namespaces within the managed
cluster where the policy is created.

apiVersion: policy.open-cluster-management.io/v1
kind: CertificatePolicy
metadata:
 name: certificate-policy-example
 namespace:
 labels: category=system-and-information-integrity
spec:
 namespaceSelector:
 include: ["default"]
 exclude: ["kube-*"]
 remediationAction:
 severity:
 minimumDuration:
 minimumCADuration:
 maximumDuration:
 maximumCADuration:
 allowedSANPattern:
 disallowedSANPattern:

CHAPTER 2. GOVERNANCE AND RISK

33

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

metadata.labels Optional. In a certificate policy, the
category=system-and-information-integrity
label categorizes the policy and facilitates querying
the certificate policies. If there is a different value for
the category key in your certificate policy, the value
is overridden by the certificate controller.

spec Required. Specifications of which certificates to
monitor and refresh.

spec.namespaceSelector Required. Managed cluster namespace to which you
want to apply the policy. Enter parameter values for
Include and Exclude. Notes:

• When you create multiple certificate policies and
apply them to the same managed cluster, each policy
namespaceSelector must be assigned a different
value.

• If the namespaceSelector for the certificate
policy controller does not match any namespace, the
policy is considered compliant.

spec.remediationAction Required. Specifies the remediation of your policy.
Set the parameter value to inform. Certificate policy
controller only supports inform feature.

spec.severity Optional. Informs the user of the severity when the
policy is non-compliant. Use the following parameter
values: low, medium, or high.

spec.minimumDuration Required. When a value is not specified, the default
value is 100h. This parameter specifies the smallest
duration (in hours) before a certificate is considered
non-compliant. The parameter value uses the time
duration format from Golang. See Golang Parse
Duration for more information.

spec.minimumCADuration Optional. Set a value to identify signing certificates
that might expire soon with a different value from
other certificates. If the parameter value is not
specified, the CA certificate expiration is the value
used for the minimumDuration. See Golang Parse
Duration for more information.

spec.maximumDuration Optional. Set a value to identify certificates that
have been created with a duration that exceeds your
desired limit. The parameter uses the time duration
format from Golang. See Golang Parse Duration for
more information.

Field Description

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

34

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

spec.maximumCADuration Optional. Set a value to identify signing certificates
that have been created with a duration that exceeds
your defined limit. The parameter uses the time
duration format from Golang. See Golang Parse
Duration for more information.

spec.allowedSANPattern Optional. A regular expression that must match every
SAN entry that you have defined in your certificates.
This parameter checks DNS names against patterns.
See the Golang Regular Expression syntax for more
information.

spec.disallowedSANPattern Optional. A regular expression that must not match
any SAN entries you have defined in your
certificates. This parameter checks DNS names
against patterns.
Note: To detect wild-card certificate, use the
following SAN pattern: disallowedSANPattern: "
[*]"

See the Golang Regular Expression syntax for more
information.

Field Description

2.3.2.2. Certificate policy sample

When your certificate policy controller is created on your hub cluster, a replicated policy is created on
your managed cluster. See policy-certificate.yaml to view the certificate policy sample.

Learn how to manage a certificate policy, see Managing certificate policies for more details. Refer to
Policy controllers for more topics.

2.3.3. IAM policy controller

Identity and Access Management (IAM) policy controller can be used to receive notifications about IAM
policies that are non-compliant. The compliance check is based on the parameters that you configure in
the IAM policy.

The IAM policy controller checks for compliance of the number of cluster administrators that you allow in
your cluster. IAM policy controller communicates with the local Kubernetes API server. For more
information, see Extend the Kubernetes API with CustomResourceDefinitions .

The IAM policy controller runs on your managed cluster.

2.3.3.1. IAM policy YAML structure

View the following example of an IAM policy and review the parameters in the YAML table:

apiVersion: policy.open-cluster-management.io/v1
kind: IamPolicy

CHAPTER 2. GOVERNANCE AND RISK

35

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/regexp/syntax/
https://golang.org/pkg/regexp/syntax/
https://github.com/stolostron/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-certificate.yaml
https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

2.3.3.2. IAM policy YAMl table

View the following parameter table for descriptions:

Table 2.3. Parameter table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

spec Required. Add configuration details for your policy.

spec.severity Optional. Informs the user of the severity when the
policy is non-compliant. Use the following parameter
values: low, medium, or high.

spec.namespaceSelector Required. The namespaces within the hub cluster
that the policy is applied to. Enter at least one
namespace for the include parameter, which are the
namespaces you want to apply to the policy to. The
exclude parameter specifies the namespaces you
explicitly do not want to apply the policy to. Note: A
namespace that is specified in the object template of
a policy controller overrides the namespace in the
preceding parameter values.

spec.remediationAction Optional. Specifies the remediation of your policy.
Enter inform.

spec.maxClusterRoleBindingUsers Required. Maximum number of IAM role bindings
that are available before a policy is considered non-
compliant.

2.3.3.3. IAM policy sample

See policy-limitclusteradmin.yaml to view the IAM policy sample. Learn how to manage an IAM policy,

metadata:
 name:
spec:
 severity:
 namespaceSelector:
 include:
 exclude:
 remediationAction:
 maxClusterRoleBindingUsers:

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

36

See policy-limitclusteradmin.yaml to view the IAM policy sample. Learn how to manage an IAM policy,
see Managing IAM policies for more details. Refer to Policy controllers for more topics.

2.3.4. Integrate third-party policy controllers

Integrate third-party policies to create custom annotations within the policy templates to specify one or
more compliance standards, control categories, and controls.

You can also use the third-party party policies from the policy-collection/community.

Learn to integrate the following third-party policies:

Integrating gatekeeper constraints and constraint templates

2.3.5. Creating a custom policy controller

Learn to write, apply, view, and update your custom policy controllers. You can create a YAML file for
your policy controller to deploy onto your cluster. View the following sections to create a policy
controller:

2.3.5.1. Writing a policy controller

Use the policy controller framework that is in the governance-policy-framework repository. Complete
the following steps to create a policy controller:

1. Clone the governance-policy-framework repository by running the following command:

git clone git@github.com:stolostron/governance-policy-framework.git

2. Customize the controller policy by updating the policy schema definition. Your policy might
resemble the following content:

3. Update the policy controller to watch for the SamplePolicy kind. Run the following command:

for file in $(find . -name "*.go" -type f); do sed -i "" "s/SamplePolicy/g" $file; done
for file in $(find . -name "*.go" -type f); do sed -i "" "s/samplepolicy-controller/samplepolicy-
controller/g" $file; done

4. Recompile and run the policy controller by completing the following steps:

a. Log in to your cluster.

b. Select the user icon, then click Configure client.

c. Copy and paste the configuration information into your command line, and press Enter.

metadata:
 name: samplepolicies.policies.open-cluster-management.io
spec:
 group: policy.open-cluster-management.io
 names:
 kind: SamplePolicy
 listKind: SamplePolicyList
 plural: samplepolicies
 singular: samplepolicy

CHAPTER 2. GOVERNANCE AND RISK

37

https://github.com/stolostron/policy-collection/blob/main/stable/AC-Access-Control/policy-limitclusteradmin.yaml
https://github.com/stolostron/policy-collection/tree/master/community
https://github.com/stolostron/governance-policy-framework

d. Run the following commands to apply your policy CRD and start the controller:

export GO111MODULE=on

kubectl apply -f deploy/crds/policy.open-cluster-management.io_samplepolicies_crd.yaml

export WATCH_NAMESPACE=<cluster_namespace_on_hub>

go run cmd/manager/main.go

You might receive the following output that indicates that your controller runs:

{“level”:”info”,”ts”:1578503280.511274,”logger”:”controller-
runtime.manager”,”msg”:”starting metrics server”,”path”:”/metrics”}
{“level”:”info”,”ts”:1578503281.215883,”logger”:”controller-
runtime.controller”,”msg”:”Starting Controller”,”controller”:”samplepolicy-controller”}
{“level”:”info”,”ts”:1578503281.3203468,”logger”:”controller-
runtime.controller”,”msg”:”Starting workers”,”controller”:”samplepolicy-controller”,”worker
count”:1}
Waiting for policies to be available for processing…

e. Create a policy and verify that the controller retrieves it and applies the policy onto your
cluster. Run the following command:

kubectl apply -f deploy/crds/policy.open-cluster-management.io_samplepolicies_crd.yaml

When the policy is applied, a message appears to indicate that policy is monitored and
detected by your custom controller. The mesasge might resemble the following contents:

5. Check the status field for compliance details by running the following command:

kubectl describe SamplePolicy example-samplepolicy -n default

Your output might resemble the following contents:

{"level":"info","ts":1578503685.643426,"logger":"controller_samplepolicy","msg":"Reconciling
SamplePolicy","Request.Namespace":"default","Request.Name":"example-samplepolicy"}
{"level":"info","ts":1578503685.855259,"logger":"controller_samplepolicy","msg":"Reconciling
SamplePolicy","Request.Namespace":"default","Request.Name":"example-samplepolicy"}
Available policies in namespaces:
namespace = kube-public; policy = example-samplepolicy
namespace = default; policy = example-samplepolicy
namespace = kube-node-lease; policy = example-samplepolicy

status:
 compliancyDetails:
 example-samplepolicy:
 cluster-wide:
 - 5 violations detected in namespace `cluster-wide`, there are 0 users violations
 and 5 groups violations
 default:
 - 0 violations detected in namespace `default`, there are 0 users violations
 and 0 groups violations
 kube-node-lease:

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

38

6. Change the policy rules and policy logic to introduce new rules for your policy controller.
Complete the following steps:

a. Add new fields in your YAML file by updating the SamplePolicySpec. Your specification
might resemble the following content:

b. Update the SamplePolicySpec structure in the samplepolicy_controller.go with new fields.

c. Update the PeriodicallyExecSamplePolicies function in the samplepolicy_controller.go
file with new logic to run the policy controller. View an example of the
PeriodicallyExecSamplePolicies field, see stolostron/multicloud-operators-policy-
controller.

d. Recompile and run the policy controller. See Writing a policy controller

Your policy controller is functional.

2.3.5.2. Deploying your controller to the cluster

Deploy your custom policy controller to your cluster and integrate the policy controller with the
Governance and risk dashboard. Complete the following steps:

1. Build the policy controller image by running the following command:

make build
docker build . -f build/Dockerfile -t <username>/multicloud-operators-policy-controller:latest

2. Run the following command to push the image to a repository of your choice. For example, run
the following commands to push the image to Docker Hub:

 - 0 violations detected in namespace `kube-node-lease`, there are 0 users violations
 and 0 groups violations
 kube-public:
 - 1 violations detected in namespace `kube-public`, there are 0 users violations
 and 1 groups violations
 compliant: NonCompliant

spec:
 description: SamplePolicySpec defines the desired state of SamplePolicy
 properties:
 labelSelector:
 additionalProperties:
 type: string
 type: object
 maxClusterRoleBindingGroups:
 type: integer
 maxClusterRoleBindingUsers:
 type: integer
 maxRoleBindingGroupsPerNamespace:
 type: integer
 maxRoleBindingUsersPerNamespace:
 type: integer

CHAPTER 2. GOVERNANCE AND RISK

39

https://github.com/open-cluster-management/multicloud-operators-policy-controller/blob/master/pkg/controller/samplepolicy/samplepolicy_controller.go
https://github.com/stolostron/multicloud-operators-policy-controller/blob/master/pkg/controller/samplepolicy/samplepolicy_controller.go#L208

docker login

docker push <username>/multicloud-operators-policy-controller

3. Configure kubectl to point to a cluster managed by Red Hat Advanced Cluster Management for
Kubernetes.

4. Replace the operator manifest to use the built-in image name and update the namespace to
watch for policies. The namespace must be the cluster namespace. Your manifest might
resemble the following contents:

sed -i "" 's|open-cluster-management/multicloud-operators-policy-controller|ycao/multicloud-
operators-policy-controller|g' deploy/operator.yaml
sed -i "" 's|value: default|value: <namespace>|g' deploy/operator.yaml

5. Update the RBAC role by running the following commands:

sed -i "" 's|samplepolicies|testpolicies|g' deploy/cluster_role.yaml
sed -i "" 's|namespace: default|namespace: <namespace>|g'
deploy/cluster_role_binding.yaml

6. Deploy your policy controller to your cluster:

a. Set up a service account for cluster by runnng the following command:

kubectl apply -f deploy/service_account.yaml -n <namespace>

b. Set up RBAC for the operator by running the following commands:

kubectl apply -f deploy/role.yaml -n <namespace>

kubectl apply -f deploy/role_binding.yaml -n <namespace>

c. Set up RBAC for your policy controller. Run the following commands:

kubectl apply -f deploy/cluster_role.yaml
kubectl apply -f deploy/cluster_role_binding.yaml

d. Set up a custom resource definition (CRD) by running the following command:

kubectl apply -f deploy/crds/policies.open-cluster-
management.io_samplepolicies_crd.yaml

e. Deploy the multicloud-operator-policy-controller by running the following command:

kubectl apply -f deploy/operator.yaml -n <namespace>

f. Verify that the controller is functional by running the following command:

kubectl get pod -n <namespace>

7. You must integrate your policy controller by creating a policy-template for the controller to

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

40

7. You must integrate your policy controller by creating a policy-template for the controller to
monitor. For more information, see Creating a cluster security policy from the console .

2.3.5.2.1. Scaling your controller deployment

Policy controller deployments do not support deletetion or removal. You can scale your deployment to
update which pods the deployment is applied to. Complete the following steps:

1. Log in to your managed cluster.

2. Navigate to the deployment for your custom policy controller.

3. Scale the deployment. When you scale your deployment to zero pods, the policy controler
deployment is disabled.

For more information on deployments, see OpenShift Container Platform Deployments.

Your policy controller is deployed and integrated on your cluster. View the product policy controllers, see
Policy controllers for more information.

2.4. SUPPORTED POLICIES

View the supported policies to learn how to define rules, processes, and controls on the hub cluster when
you create and manage policies in Red Hat Advanced Cluster Management for Kubernetes.

Note: You can copy and paste an existing policy in to the Policy YAML. The values for the parameter
fields are automatically entered when you paste your existing policy. You can also search the contents in
your policy YAML file with the search feature.

View the following policy samples to view how specific policies are applied:

Image vulnerability policy

Memory usage policy

Namespace policy

Pod nginx policy

Pod security policy

Role policy

Role binding policy

Security context constraints policy

ETCD encryption policy

Compliance operator policy

E8 scan policy

Refer to Governance and risk for more topics.

2.4.1. Memory usage policy

Kubernetes configuration policy controller monitors the status of the memory usage policy. Use the

CHAPTER 2. GOVERNANCE AND RISK

41

https://docs.openshift.com/container-platform/4.7/applications/deployments/what-deployments-are.html#deployments-kube-deployments_what-deployments-are

Kubernetes configuration policy controller monitors the status of the memory usage policy. Use the
memory usage policy to limit or restrict your memory and compute usage. For more information, see
Limit Ranges in the Kubernetes documentation. Learn more details about the memory usage policy
structure in the following sections.

2.4.1.1. Memory usage policy YAML structure

Your memory usage policy might resemble the following YAML file:

2.4.1.2. Memory usage policy table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-limitrange
 namespace:
spec:
 complianceType:
 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion:
 kind:
 metadata:
 name:
 spec:
 limits:
 - default:
 memory:
 defaultRequest:
 memory:
 type:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

42

https://kubernetes.io/docs/concepts/policy/limit-range/

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

Field Description

2.4.1.3. Memory usage policy sample

See the policy-limitmemory.yaml to view a sample of the policy. View Managing memory usage policies
for more information. Refer to Kubernetes configuration policy controller to view other configuration
policies that are monitored by the controller.

2.4.2. Namespace policy

Kubernetes configuration policy controller monitors the status of your namespace policy. Apply the
namespace policy to define specific rules for your namespace. Learn more details about the namespace
policy structure in the following sections.

2.4.2.1. Namespace policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-namespace-1
 namespace:
spec:
 complianceType:
 remediationAction:

CHAPTER 2. GOVERNANCE AND RISK

43

https://github.com/stolostron/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-limitmemory.yaml

2.4.2.2. Namespace policy YAML table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 kind:
 apiVersion:
 metadata:
 name:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

44

2.4.2.3. Namespace policy sample

See policy-namespace.yaml to view the policy sample.

View Managing namespace policies for more information. Refer to Kubernetes configuration policy
controller to learn about other configuration policies.

2.4.3. Image vulnerability policy

Apply the image vulnerability policy to detect if container images have vulnerabilities by leveraging the
Container Security Operator. The policy installs the Container Security Operator on your managed
cluster if it is not installed.

The image vulnerability policy is checked by the Kubernetes configuration policy controller. For more
information about the Security Operator, see the Container Security Operator from the Quay repository.

Note: Image vulnerability policy is not functional during a disconnected installation.

2.4.3.1. Image vulnerability policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-imagemanifestvulnpolicy
 namespace: default
 annotations:
 policy.open-cluster-management.io/standards: NIST-CSF
 policy.open-cluster-management.io/categories: DE.CM Security Continuous Monitoring
 policy.open-cluster-management.io/controls: DE.CM-8 Vulnerability Scans
spec:
 remediationAction:
 disabled:
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity: high
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: container-security-operator
 namespace:
 spec:
 channel:
 installPlanApproval:
 name:
 source:
 sourceNamespace:

CHAPTER 2. GOVERNANCE AND RISK

45

https://github.com/stolostron/policy-collection/blob/main/stable/CM-Configuration-Management/policy-namespace.yaml
https://github.com/quay/container-security-operator

2.4.3.2. Image vulnerability policy YAML table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name:
 spec:
 remediationAction:
 severity:
 namespaceSelector:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: secscan.quay.redhat.com/v1alpha1
 kind: ImageManifestVuln # checking for a kind

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-imagemanifestvulnpolicy
 namespace: default
placementRef:
 name:
 kind:
 apiGroup:
subjects:
- name:
 kind:
 apiGroup:

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-policy-imagemanifestvulnpolicy
 namespace: default
spec:
 clusterConditions:
 - status:
 type:
 clusterSelector:
 matchExpressions:
 [] # selects all clusters if not specified

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

46

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

Field Description

2.4.3.3. Image vulnerability policy sample

See policy-imagemanifestvuln.yaml. View Managing image vulnerability policies for more information.
Refer to Kubernetes configuration policy controller to view other configuration policies that are
monitored by the configuration controller.

2.4.4. Pod policy

Kubernetes configuration policy controller monitors the status of you pod policies. Apply the pod policy
to define the container rules for your pods. A pod must exist in your cluster to use this information.

2.4.4.1. Pod policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-pod

CHAPTER 2. GOVERNANCE AND RISK

47

https://github.com/stolostron/policy-collection/blob/main/stable/SI-System-and-Information-Integrity/policy-imagemanifestvuln.yaml

2.4.4.2. Pod policy table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

 namespace:
spec:
 complianceType:
 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion:
 kind: Pod # pod must exist
 metadata:
 name:
 spec:
 containers:
 - image:
 name:
 ports:
 - containerPort:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

48

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

Field Description

2.4.4.3. Pod policy sample

See policy-pod.yaml to view the policy sample. Learn how to manage a pod policy, see Managing pod
policies for more details.

Refer to Kubernetes configuration policy controller to view other configuration policies that are
monitored by the configuration controller. See Manage security policies to manage other policies.

2.4.5. Pod security policy

Kubernetes configuration policy controller monitors the status of the pod security policy. Apply a pod
security policy to secure pods and containers. For more information, see Pod Security Policies in the
Kubernetes documentation. Learn more details about the pod security policy structure in the following
sections.

2.4.5.1. Pod security policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-podsecuritypolicy
 namespace:
spec:
 complianceType:
 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion:
 kind: PodSecurityPolicy # no privileged pods
 metadata:
 name:
 annotations:
 spec:
 privileged:

CHAPTER 2. GOVERNANCE AND RISK

49

https://github.com/stolostron/policy-collection/blob/main/stable/CM-Configuration-Management/policy-pod.yaml
https://kubernetes.io/docs/concepts/policy/pod-security-policy/

2.4.5.2. Pod security policy table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

 allowPrivilegeEscalation:
 allowedCapabilities:
 volumes:
 hostNetwork:
 hostPorts:
 hostIPC:
 hostPID:
 runAsUser:
 rule:
 seLinux:
 rule:
 supplementalGroups:
 rule:
 fsGroup:
 rule:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

50

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

Field Description

2.4.5.3. Pod security policy sample

See policy-psp.yaml to view the sample policy. View Managing pod security policies for more
information. Refer to Kubernetes configuration policy controller to view other configuration policies that
are monitored by the controller.

2.4.6. Role policy

Kubernetes configuration policy controller monitors the status of role policies. Define roles in the
object-template to set rules and permissions for specific roles in your cluster. Learn more details about
the role policy structure in the following sections.

2.4.6.1. Role policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-role
 namespace:
 annotations:
 policy.open-cluster-management.io/standards: NIST-CSF
 policy.open-cluster-management.io/categories: PR.AC Identity Management Authentication and
Access Control
 policy.open-cluster-management.io/controls: PR.AC-4 Access Control
spec:
 remediationAction: inform
 disabled: false
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 name: policy-role-example
 spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 namespaceSelector:
 exclude: ["kube-*"]
 include: ["default"]
 object-templates:
 - complianceType: mustonlyhave # role definition should exact match
 objectDefinition:
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:

CHAPTER 2. GOVERNANCE AND RISK

51

https://github.com/stolostron/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-psp.yaml

2.4.6.2. Role policy table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

 name: sample-role
 rules:
 - apiGroups: ["extensions", "apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch", "delete","patch"]

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding-policy-role
 namespace:
placementRef:
 name: placement-policy-role
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
subjects:
- name: policy-role
 kind: Policy
 apiGroup: policy.open-cluster-management.io

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement-policy-role
 namespace:
spec:
 clusterConditions:
 - type: ManagedClusterConditionAvailable
 status: "True"
 clusterSelector:
 matchExpressions:
 []

 ...

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

52

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

Field Description

2.4.6.3. Role policy sample

Apply a role policy to set rules and permissions for specific roles in your cluster. For more information on
roles, see Role-based access control . View a sample of a role policy, see policy-role.yaml.

To learn how to manage role policies, refer to Managing role policies for more information. See the
Kubernetes configuration policy controller to view other configuration policies that are monitored the
controller.

2.4.7. Role binding policy

Kubernetes configuration policy controller monitors the status of your role binding policy. Apply a role
binding policy to bind a policy to a namespace in your managed cluster. Learn more details about the
namespace policy structure in the following sections.

2.4.7.1. Role binding policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name:
 namespace:
spec:
 complianceType:
 remediationAction:

CHAPTER 2. GOVERNANCE AND RISK

53

https://github.com/stolostron/policy-collection/blob/main/stable/AC-Access-Control/policy-role.yaml

2.4.7.2. Role binding policy table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name to identify the policy resource.

metadata.namespaces Required. The namespace within the managed
cluster where the policy is created.

spec Required. Specifications of how compliance
violations are identified and fixed.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.complianceType Required. Set the value to "musthave"

 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 kind: RoleBinding # role binding must exist
 apiVersion: rbac.authorization.k8s.io/v1
 metadata:
 name: operate-pods-rolebinding
 subjects:
 - kind: User
 name: admin # Name is case sensitive
 apiGroup:
 roleRef:
 kind: Role #this must be Role or ClusterRole
 name: operator # this must match the name of the Role or ClusterRole you wish to bind to
 apiGroup: rbac.authorization.k8s.io
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

54

spec.namespace Required. Managed cluster namespace to which you
want to apply the policy. Enter parameter values for
include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

spec.remediationAction Required. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

spec.object-template Required. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

Field Description

2.4.7.3. Role binding policy sample

See policy-rolebinding.yaml to view the policy sample. Learn how to manage a role binding policy, see
Managing role binding policies for more details. Refer to Kubernetes configuration policy controller to
learn about other configuration policies. See Manage security policies to manage other policies.

2.4.8. Security Context Constraints policy

Kubernetes configuration policy controller monitors the status of your Security Context Constraints
(SCC) policy. Apply an Security Context Constraints (SCC) policy to control permissions for pods by
defining conditions in the policy. Learn more details about SCC policies in the following sections.

2.4.8.1. SCC policy YAML structure

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-scc
 namespace: open-cluster-management-policies
spec:
 complianceType:
 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion:
 kind: SecurityContextConstraints # restricted scc

CHAPTER 2. GOVERNANCE AND RISK

55

https://github.com/stolostron/policy-collection/blob/main/stable/AC-Access-Control/policy-rolebinding.yaml

2.4.8.2. SCC policy table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy.

metadata.name Required. The name to identify the policy resource.

metadata.namespace Required. The namespace within the managed
cluster where the policy is created.

spec.complianceType Required. Set the value to "musthave"

spec.remediationAction Required. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

 metadata:
 annotations:
 kubernetes.io/description:
 name: sample-restricted-scc
 allowHostDirVolumePlugin:
 allowHostIPC:
 allowHostNetwork:
 allowHostPID:
 allowHostPorts:
 allowPrivilegeEscalation:
 allowPrivilegedContainer:
 allowedCapabilities:
 defaultAddCapabilities:
 fsGroup:
 type:
 groups:
 - system:
 priority:
 readOnlyRootFilesystem:
 requiredDropCapabilities:
 runAsUser:
 type:
 seLinuxContext:
 type:
 supplementalGroups:
 type:
 users:
 volumes:

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

56

spec.namespace Required. Managed cluster namespace to which you
want to apply the policy. Enter parameter values for
include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

spec.object-template Required. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters.

Field Description

For explanations on the contents of a SCC policy, see Managing Security Context Constraints from the
OpenShift Container Platform documentation.

2.4.8.3. SCC policy sample

Apply a Security context constraints (SCC) policy to control permissions for pods by defining conditions
in the policy. For more information see, Managing Security Context Constraints (SCC) .

See policy-scc.yaml to view the policy sample. To learn how to manage an SCC policy, see Managing
Security Context Constraints policies for more details.

Refer to Kubernetes configuration policy controller to learn about other configuration policies. See
Manage security policies to manage other policies.

2.4.9. ETCD encryption policy

Apply the etcd-encryption policy to detect, or enable encryption of sensitive data in the ETCD data-
store. Kubernetes configuration policy controller monitors the status of the etcd-encryption policy. For
more information, see Encrypting etcd data in the OpenShift Container Platform documentation. Note:
The ETCD encryption policy only supports Red Hat OpenShift Container Platform 4 and later.

Learn more details about the etcd-encryption policy structure in the following sections:

2.4.9.1. ETCD encryption policy YAML structure

Your etcd-encryption policy might resemble the following YAML file:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-etcdencryption
 namespace:
spec:
 complianceType:

CHAPTER 2. GOVERNANCE AND RISK

57

https://docs.openshift.com/container-platform/4.7/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth
https://docs.openshift.com/container-platform/4.7/authentication/managing-security-context-constraints.html#security-context-constraints-about_configuring-internal-oauth
https://github.com/stolostron/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-scc.yaml
https://docs.openshift.com/container-platform/4.7/security/encrypting-etcd.html

2.4.9.2. ETCD encryption policy table

Table 2.4. Parameter table

Field Description

apiVersion Required. Set the value to policy.open-cluster-
management.io/v1.

kind Required. Set the value to Policy to indicate the
type of policy, for example, ConfigurationPolicy.

metadata.name Required. The name for identifying the policy
resource.

metadata.namespaces Optional.

spec.namespace Required. The namespaces within the hub cluster
that the policy is applied to. Enter parameter values
for include, which are the namespaces you want to
apply to the policy to. The exclude parameter
specifies the namespaces you explicitly do not want
to apply the policy to. Note: A namespace that is
specified in the object template of a policy controller
overrides the namespace in the corresponding
parent policy.

remediationAction Optional. Specifies the remediation of your policy.
The parameter values are enforce and inform.
Important: Some policies might not support the
enforce feature.

disabled Required. Set the value to true or false. The
disabled parameter provides the ability to enable
and disable your policies.

 remediationAction:
 namespaces:
 exclude:
 include:
 object-templates:
 - complianceType:
 objectDefinition:
 apiVersion: config.openshift.io/v1
 kind: APIServer
 metadata:
 name: cluster
 spec:
 encryption:
 type:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

58

spec.complianceType Required. Set the value to "musthave"

spec.object-template Optional. Used to list any other Kubernetes object
that must be evaluated or applied to the managed
clusters. See Encrypting etcd data in the OpenShift
Container Platform documentation.

Field Description

2.4.9.3. Etcd encryption policy sample

See policy-etcdencryption.yaml for the policy sample. View Managing ETCD encryption policies for
more information. Refer to Kubernetes configuration policy controller to view other configuration
policies that are monitored by the controller.

2.4.10. Integrating gatekeeper constraints and constraint templates

Gatekeeper is a validating webhook that enforces custom resource definition (CRD) based policies that
are run with the Open Policy Agent (OPA). You can install gatekeeper on your cluster by using the
gatekeeper operator policy. Gatekeeper policy can be used to evaluate Kubernetes resource
compliance. You can leverage a OPA as the policy engine, and use Rego as the policy language.

The gatekeeper policy is created as a Kubernetes configuration policy in Red Hat Advanced Cluster
Management. Gatekeeper policies include constraint templates (ConstraintTemplates) and
Constraints, audit templates, and admission templates. For more information, see the Gatekeeper
upstream repository.

Red Hat Advanced Cluster Management applies the following constraint templates in your Red Hat
Advanced Cluster Management gatekeeper policy:

ConstraintTemplates and constraints: Use the policy-gatekeeper-k8srequiredlabels policy to
create a gatekeeper constraint template on the managed cluster.

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-gatekeeper-k8srequiredlabels
spec:
 remediationAction: enforce # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: templates.gatekeeper.sh/v1beta1
 kind: ConstraintTemplate
 metadata:
 name: k8srequiredlabels
 spec:
 crd:
 spec:
 names:
 kind: K8sRequiredLabels
 validation:

CHAPTER 2. GOVERNANCE AND RISK

59

https://docs.openshift.com/container-platform/4.7/security/encrypting-etcd.html
https://github.com/stolostron/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-etcdencryption.yaml
https://github.com/open-policy-agent/gatekeeper#gatekeeper

 # Schema for the `parameters` field
 openAPIV3Schema:
 properties:
 labels:
 type: array
 items: string
 targets:
 - target: admission.k8s.gatekeeper.sh
 rego: |
 package k8srequiredlabels
 violation[{"msg": msg, "details": {"missing_labels": missing}}] {
 provided := {label | input.review.object.metadata.labels[label]}
 required := {label | label := input.parameters.labels[_]}
 missing := required - provided
 count(missing) > 0
 msg := sprintf("you must provide labels: %v", [missing])
 }
 - complianceType: musthave
 objectDefinition:
 apiVersion: constraints.gatekeeper.sh/v1beta1
 kind: K8sRequiredLabels
 metadata:
 name: ns-must-have-gk
 spec:
 match:
 kinds:
 - apiGroups: [""]
 kinds: ["Namespace"]
 namespaces:
 - e2etestsuccess
 - e2etestfail
 parameters:
 labels: ["gatekeeper"]

audit template: Use the policy-gatekeeper-audit to periodically check and evaluate existing
resources against the gatekeeper policies that are enforced to detect existing
miscongfigurations.

admission template: Use the policy-gatekeeper-admission to check for misconfigurations that

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-gatekeeper-audit
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: constraints.gatekeeper.sh/v1beta1
 kind: K8sRequiredLabels
 metadata:
 name: ns-must-have-gk
 status:
 totalViolations: 0

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

60

admission template: Use the policy-gatekeeper-admission to check for misconfigurations that
are created by the gatekeeper admission webhook:

See policy-gatekeeper-sample.yaml for more details.

Learn how to use Red Hat Advanced Cluster Management gatekeeper operator policy to install
gatekeeper and create a Red Hat Advanced Cluster Management gatekeeper operator policy, see
Creating a gatekeeper policy from the console for more details. Refer to Governance and risk for more
topics on the security framework.

2.4.11. Compliance operator policy

Compliance operator is an operator that runs OpenSCAP and allows you to keep your Red Hat
OpenShift Container Platform cluster compliant with the security benchmark that you need. You can
install the compliance operator on your managed cluster by using the compliance operator policy.

The compliance operator policy is created as a Kubernetes configuration policy in Red Hat Advanced
Cluster Management. OpenShift Container Platform 4.7 and 4.6, support the compliance operator
policy. For more information, see Understanding the Compliance Operator in the OpenShift Container
Platform documentation for more details.

2.4.11.1. Compliance operator resources

When you create a compliance operator policy, the following resources are created:

A compliance operator namespace (openshift-compliance) for the operator installation:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: policy-gatekeeper-admission
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: low
 object-templates:
 - complianceType: mustnothave
 objectDefinition:
 apiVersion: v1
 kind: Event
 metadata:
 namespace: openshift-gatekeeper-system # set it to the actual namespace where
gatekeeper is running if different
 annotations:
 constraint_action: deny
 constraint_kind: K8sRequiredLabels
 constraint_name: ns-must-have-gk
 event_type: violation

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: comp-operator-ns
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high

CHAPTER 2. GOVERNANCE AND RISK

61

https://github.com/stolostron/policy-collection/blob/main/community/CM-Configuration-Management/policy-gatekeeper-sample.yaml
https://docs.openshift.com/container-platform/4.7/security/compliance_operator/compliance-operator-understanding.html#compliance-operator-understanding

An operator group (compliance-operator) to specify the target namespace:

A subscription (comp-operator-subscription) to reference the name and channel. The
subscription pulls the profile, as a container, that it supports:

After you install the compliance operator policy, the following pods are created: compliance-operator,

 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Namespace
 metadata:
 name: openshift-compliance

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: comp-operator-operator-group
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1
 kind: OperatorGroup
 metadata:
 name: compliance-operator
 namespace: openshift-compliance
 spec:
 targetNamespaces:
 - openshift-compliance

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: comp-operator-subscription
spec:
 remediationAction: inform # will be overridden by remediationAction in parent policy
 severity: high
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: compliance-operator
 namespace: openshift-compliance
 spec:
 channel: "4.7"
 installPlanApproval: Automatic
 name: compliance-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

62

After you install the compliance operator policy, the following pods are created: compliance-operator,
ocp4, and rhcos4. See a sample of the policy-compliance-operator-install.yaml.

You can also create and apply the E8 scan policy after you have installed the compliance operator. For
more information, see E8 scan policy .

To learn about managing compliance operator policies, see Managing compliance operator policies for
more details. Refer to Kubernetes configuration policy controller for more topics about configuration
policies.

2.4.12. E8 scan policy

An Essential 8 (E8) scan policy deploys a scan that checks the master and worker nodes for compliance
with the E8 security profiles. You must install the compliance operator to apply the E8 scan policy.

The E8 scan policy is created as a Kubernetes configuration policy in Red Hat Advanced Cluster
Management. OpenShift Container Platform 4.7 and 4.6, support the E8 scan policy. For more
information, see Understanding the Compliance Operator in the OpenShift Container Platform
documentation for more details.

2.4.12.1. E8 scan policy resources

When you create an E8 scan policy the following resources are created:

A ScanSettingBinding resource (e8) to identify which profiles to scan:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-suite-e8
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: musthave # this template checks if scan has completed by checking the
status field
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ScanSettingBinding
 metadata:
 name: e8
 namespace: openshift-compliance
 profiles:
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: ocp4-e8
 - apiGroup: compliance.openshift.io/v1alpha1
 kind: Profile
 name: rhcos4-e8
 settingsRef:
 apiGroup: compliance.openshift.io/v1alpha1
 kind: ScanSetting
 name: default

A ComplianceSuite resource (compliance-suite-e8) to verify if the scan is complete by

CHAPTER 2. GOVERNANCE AND RISK

63

https://github.com/stolostron/policy-collection/blob/main/stable/CA-Security-Assessment-and-Authorization/policy-compliance-operator-install.yaml
https://docs.openshift.com/container-platform/4.7/security/compliance_operator/compliance-operator-understanding.html#compliance-operator-understanding

A ComplianceSuite resource (compliance-suite-e8) to verify if the scan is complete by
checking the status field:

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-suite-e8
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: musthave # this template checks if scan has completed by checking the
status field
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ComplianceSuite
 metadata:
 name: e8
 namespace: openshift-compliance
 status:
 phase: DONE

A ComplianceCheckResult resource (compliance-suite-e8-results) which reports the results
of the scan suite by checking the ComplianceCheckResult custom resources (CR):

apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
 name: compliance-suite-e8-results
spec:
 remediationAction: inform
 severity: high
 object-templates:
 - complianceType: mustnothave # this template reports the results for scan suite: e8 by
looking at ComplianceCheckResult CRs
 objectDefinition:
 apiVersion: compliance.openshift.io/v1alpha1
 kind: ComplianceCheckResult
 metadata:
 namespace: openshift-compliance
 labels:
 compliance.openshift.io/check-status: FAIL
 compliance.openshift.io/suite: e8

See a sample of the policy-compliance-operator-e8-scan.yaml file. For more information on creating
an E8 scan policy, see Managing E8 scan policies .

2.5. MANAGE SECURITY POLICIES

Use the Governance and risk dashboard to create, view, and manage your security policies and policy
violations. You can create YAML files for your policies from the CLI and console.

From the Governance and risk page, you can customize your Summary view by filtering the violations by
categories or standards, collapse the summary to see less information, and you can search for policies.
You can also filter the violation table view by policies or cluster violations.

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

64

https://github.com/stolostron/policy-collection/blob/main/stable/CM-Configuration-Management/policy-compliance-operator-e8-scan.yaml

The table of policies list the following details of a policy: Policy name , Namespace, Remediation, Cluster
violation, Standards, Categories, and Controls. You can edit, disable, inform or remove a policy by
selecting the Actions icon.

When you select a policy in the table list, the following tabs of information are displayed from the
console:

Details: Select the Details tab to view Policy details, Placement details, and a table list of Policy
templates.

Status: Select the Status tab to view a table list of violations. You can filter your view by Clusters
or Templates. To view the compliance status of your policy, select the Status tab. Click the View
history link to view a list of violation messages.

YAML: Select the YAML tab to view, and or edit your policy with the editor. Select the YAML
toggle to view or hide the editor.

Review the following topics to learn more about creating and updating your security policies:

Managing security policies

Managing configuration policies

Managing image vulnerability policies

Managing memory usage policies

Managing namespace policies

Managing pod policies

Managing pod security policies

Managing role policies

Managing role binding policies

Managing Security Context Constraints policies

Managing certificate policies

Managing IAM policies

Managing ETCD encryption policies

Managing gatekeeper policies

Managing compliance operator policies

Managing E8 scan policies

Refer to Governance and risk for more topics.

2.5.1. Deploy policies using GitOps

You can deploy a set of policies across a fleet of managed clusters with the governance framework. You
can add to the open source community, policy-collection by contributing to and using the policies in

CHAPTER 2. GOVERNANCE AND RISK

65

https://github.com/stolostron/policy-collection

the repository. For more information, see Contributing a custom policy. Policies in each of the stable
and community folders from the open source community are further organized according to NIST
Special Publication 800-53.

Continue reading to learn best practices to use GitOps to automate and track policy updates and
creation through a Git repository.

Prerequsite: Before you begin, be sure to fork the policy-collection repository.

2.5.1.1. Customizing your local repository

Customize your local repository by consolidating the stable and community policies into a single folder.
Remove the policies you do not want to use. Complete the following steps to customize your local
repository:

1. Create a new directory in the repository to hold the policies that you want to deploy. Be sure
that you are in your local policy-collection repository on your main default branch for GitOps.
Run the following command:

mkdir my-policies

2. Copy all of the stable and community policies into your my-policies directory. Start with the
community policies first, in case the stable folder contains duplicates of what is available in the
community. Run the following commands:

cp -R community/* my-policies/
cp -R stable/* my-policies/

Now that you have all of the policies in a single parent directory structure, you can edit the
policies in your fork.

Tips:

It is best practice to remove the policies you are not planning to use.

Learn about policies and the definition of the policies from the following list:

Purpose: Understand what the policy does.

Remediation Action: Does the policy only inform you of compliance, or enforce the
policy and make changes? See the spec.remediationAction parameter. If changes are
enforced, make sure you understand the functional expectation. Remember to check
which policies support enforcement. For more information, view the Validate section.
Note: The spec.remediationAction set for the policy overrides any remediation action
that is set in the individual spec.policy-templates.

Placement: What clusters is the policy deployed to? By default, most policies target the
clusters with the environment: dev label. Some policies may target OpenShift
Container Platform clusters or another label. You can update or add additional labels to
include other clusters. When there is no specific value, the policy is applied to all of your
clusters. You can also create multiple copies of a policy and customize each one if you
want to use a policy that is configured one way for one set of clusters and configured
another way for another set of clusters.

2.5.1.2. Committing to your local repository

After you are satisfied with the changes you have made to your directory, commit and push your

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

66

https://github.com/stolostron/policy-collection/blob/main/CONTRIBUTING.md#contributing-a-custom-policy
https://nvd.nist.gov/800-53/Rev4

After you are satisfied with the changes you have made to your directory, commit and push your
changes to Git so that they can be accessed by your cluster.

Note: This example is used to show the basics of how to use policies with GitOps, so you might have a
different workflow to get changes to your branch.

Complete the following steps:

1. From your terminal, run git status to view your recent changes in your directory that you
previously created. Add your new directory to the list of changes to be committed with the
following command:

git add my-policies/

2. Commit the changes and customize your message. Run the following command:

git commit -m “Policies to deploy to the hub cluster”

3. Push the changes to the branch of your forked repository that is used for GitOps. Run the
following command:

git push origin <your_default_branch>master

Your changes are committed.

2.5.1.3. Deploying policies to your cluster

After you push your changes, you can deploy the policies to your Red Hat Advanced Cluster
Management for Kubernetes installation. Post deployment, your hub cluster is conncted to your Git
repository. Any further changes to your chosen branch of the Git repository is reflected in your cluster.

The deploy.sh script creates Channel and Subscription resources in your hub cluster. The channel
connects to the Git repository, and the subscription specifies the data to bring to the cluster through
the channel. As a result, all policies defined in the specified subdirectory are created on your hub.

After the policies are created by the subscription, Red Hat Advanced Cluster Management analyzes the
policies and creates additional policy resources in the namespace associated with each managed cluster
that the policy is applied to, based on the defined placement rule.

The policy is then copied to the managed cluster from its respective managed cluster namespace on the
hub cluster. As a result, the policies in your Git repository are pushed to all managed clusters that have
labels that match the clusterSelector that are defined in the placement rule of your policy.

Complete the following steps:

1. From the policy-collection folder, run the following command to change the directory:

cd deploy

2. Make sure that your command line interface (CLI) is configured to create resources on the
correct cluster with the following command:

oc cluster-info

The output of the command displays the API server details for the cluster, where Red Hat

CHAPTER 2. GOVERNANCE AND RISK

67

The output of the command displays the API server details for the cluster, where Red Hat
Advanced Cluster Management is installed. If the correct URL is not displayed, configure your
CLI to point to the correct cluster. See Using the OpenShift CLI for more information.

3. Create a namespace where your policies are created to control access and to organize the
policies. Run the following command:

oc create namespace policy-namespace

4. Run the following command to deploy the policies to your cluster:

./deploy.sh -u https://github.com/<your-repository>/policy-collection -p my-policies -n policy-
namespace

Replace your-repository with your Git user name or repository name.

Note: For reference, the full list of arguments for the deploy.sh script uses the following
syntax:

./deploy.sh [-u <url>] [-b <branch>] [-p <path/to/dir>] [-n <namespace>] [-a|--name
<resource-name>]

View the following explanations for each argument:

URL: The URL to the repository that you forked from the main policy-collection repository.
The default URL is https://github.com/stolostron/policy-collection.git.

Branch: Branch of the Git repository to point to. The default branch is main.

Subdirectory Path: The subdirectory path you created to contain the policies you want to
use. In the previous sample, we used the my-policies subdirectory, but you can also specify
which folder you want start with. For example, you can use my-policies/AC-Access-
Control. The default folder is stable.

Namespace: The namespace where the resources and policies are created on the hub
cluster. These instructions use the policy-namespace namespace. The default namespace
is policies.

Name Prefix: Prefix for the Channel and Subscription resources. The default is demo-
stable-policies. After you run the deploy.sh script, any user with access to the repository
can commit changes to the branch, which pushes changes to exisiting policies on your
clusters.

2.5.1.4. Verifying GitOps policy deployments from the console

Verify that your changes were applied to your policies from the console. You can also make more
changes to your policy from the console. Complete the following steps:

1. Log in to your Red Hat Advanced Cluster Management cluster.

2. From the navigation menu, select Govern risk.

3. Check for the following policy details:

Why is a specific policy compliant or non-compliant on the clusters that it was distributed
to?

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

68

https://docs.openshift.com/container-platform/4.7/cli_reference/openshift_cli/getting-started-cli.html#cli-using-cli_cli-developer-commands
https://github.com/stolostron/policy-collection.git

Are the policies applied to the correct clusters?

If this policy is not distributed to any clusters, why?

4. Identify the GitOps deployed policies that you created or modified. The GitOps deployed
policies can be identified by the annotation that is applied automatically. Annotations for the
GitOps deployed policies resemble the following paths:

apps.open-cluster-management.io/hosting-deployable: policies/deploy-stable-policies-Policy-
policy-role9

apps.open-cluster-management.io/hosting-subscription: policies/demo-policies

apps.open-cluster-management.io/sync-source: subgbk8s-policies/demo-policies

GitOps annotations are valuable to see which subscription created the policy. You can also add
your own labels to your policies so that you can write runtime queries that select policies based
on labels.

For example, you can add a label to a policy with the following command:

oc label policy <policy-name> -n <policy-namespace> <key>=<value>

Then, you can query policies that have labels with the following command:

oc get policies -n <policy-namespace> -l <key>=<value>

Your policies are deployed using GitOps.

2.5.2. Managing security policies

Create a security policy to report and validate your cluster compliance based on your specified security
standards, categories, and controls. To create a policy for Red Hat Advanced Cluster Management for
Kubernetes, you must create a YAML file on your managed clusters.

Note: You can copy and paste an existing policy in to the Policy YAML. The values for the parameter
fields are automatically entered when you paste your existing policy. You can also search the contents in
your policy YAML file with the search feature.

2.5.2.1. Creating a security policy

You can create a security policy from the command line interface (CLI) or from the console. Cluster
administrator access is required.

Important: You must define a PlacementPolicy and PlacementBinding to apply your policy to a specific
cluster. Enter a value for the Cluster selector field to define a PlacementPolicy and PlacementBinding.
View the definitions of the objects that are required for your Red Hat Advanced Cluster Management
policy:

PlacementRule: Defines a cluster selector where the policy must be deployed.

PlacementBinding: Binds the placement to a PlacementPolicy.

View more descriptions of the policy YAML files in the Policy overview .

CHAPTER 2. GOVERNANCE AND RISK

69

2.5.2.1.1. Creating a security policy from the command line interface

Complete the following steps to create a policy from the command line interface (CLI):

1. Create a policy by running the following command:

kubectl create -f policy.yaml -n <namespace>

2. Define the template that the policy uses. Edit your .yaml file by adding a templates field to
define a template. Your policy might resemble the following YAML file:

3. Define a PlacementRule. Be sure to change the PlacementRule to specify the clusters where
the policies need to be applied, either by clusterNames, or clusterLabels. View Creating and
managing placement rules. Your PlacementRule might resemble the following content:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy1
spec:
 remediationAction: "enforce" # or inform
 disabled: false # or true
 namespaces:
 include: ["default"]
 exclude: ["kube*"]
 policy-templates:
 - objectDefinition:
 apiVersion: policy.open-cluster-management.io/v1
 kind: ConfigurationPolicy
 metadata:
 namespace: kube-system # will be inferred
 name: operator
 spec:
 remediationAction: "inform"
 object-templates:
 complianceType: "musthave" # at this level, it means the role must exist and must
have the following rules
 apiVersion: rbac.authorization.k8s.io/v1
 kind: Role
 metadata:
 name: example
 objectDefinition:
 rules:
 - complianceType: "musthave" # at this level, it means if the role exists the rule is a
musthave
 apiGroups: ["extensions", "apps"]
 resources: ["deployments"]
 verbs: ["get", "list", "watch", "create", "delete","patch"]

apiVersion: apps.open-cluster-management.io/v1
kind: PlacementRule
metadata:
 name: placement1
spec:
 clusterConditions:

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

70

../manage_applications

4. Define a PlacementBinding to bind your policy and your PlacementRule. Your
PlacementBinding might resemble the following YAML sample:

2.5.2.1.1.1. Viewing your security policy from the CLI

Complete the following steps to view your security policy from the CLI:

1. View details for a specific security policy by running the following command:

kubectl get securityepolicy <policy-name> -n <namespace> -o yaml

2. View a description of your security policy by running the following command:

kubectl describe securitypolicy <name> -n <namespace>

2.5.2.1.2. Creating a cluster security policy from the console

As you create your new policy from the console, a YAML file is also created in the YAML editor.

1. From the navigation menu, click Govern risk.

2. To create a policy, click Create policy.

3. Enter or select values for the following parameters:

Name

Specifications

Cluster selector

Remediation action

 - type: ManagedClusterConditionAvailable
 status: "True"
 clusterNames:
 - "cluster1"
 - "cluster2"
 clusterLabels:
 matchLabels:
 cloud: IBM

apiVersion: policy.open-cluster-management.io/v1
kind: PlacementBinding
metadata:
 name: binding1
placementRef:
 name: placement1
 apiGroup: apps.open-cluster-management.io
 kind: PlacementRule
subjects:
- name: policy1
 apiGroup: policy.mcm.ibm.com
 kind: Policy

CHAPTER 2. GOVERNANCE AND RISK

71

Standards

Categories

Controls

4. View the following example Red Hat Advanced Cluster Management for Kubernetes security
policy definition. Copy and paste the YAML file for your policy.
Your YAML file might resemble the following policy:

 apiVersion: policy.open-cluster-management.io/v1
 kind: Policy
 metadata:
 name: policy-pod
 annotations:
 policy.open-cluster-management.io/categories:
'SystemAndCommunicationsProtections,SystemAndInformationIntegrity'
 policy.open-cluster-management.io/controls: 'control example'
 policy.open-cluster-management.io/standards: 'NIST,HIPAA'
 spec:
 complianceType: musthave
 namespaces:
 exclude: ["kube*"]
 include: ["default"]
 object-templates:
 - complianceType: musthave
 objectDefinition:
 apiVersion: v1
 kind: Pod
 metadata:
 name: pod1
 spec:
 containers:
 - name: pod-name
 image: 'pod-image'
 ports:
 - containerPort: 80
 remediationAction: enforce
 disabled: false

 apiVersion: apps.open-cluster-management.io/v1
 kind: PlacementBinding
 metadata:
 name: binding-pod
 placementRef:
 name: placement-pod
 kind: PlacementRule
 apiGroup: apps.open-cluster-management.io
 subjects:
 - name: policy-pod
 kind: Policy
 apiGroup: policy.mcm.ibm.com

 apiVersion: apps.open-cluster-management.io/v1

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

72

5. Click Create Policy.

A security policy is created from the console.

2.5.2.1.2.1. Viewing your security policy from the console

You can view any security policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details. The Overview tab, Status tab, and YAML tab are
displayed.
When the cluster or policy status cannot be determined, the following message is displayed: No
status.

2.5.2.2. Updating security policies

Learn to update security policies by viewing the following section.

2.5.2.2.1. Disabling security policies

Your policy is enabled by default. You can disable your policy by completing the following steps:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable policy. The Disable Policy dialog box
appears.

4. Click Disable policy.

Your policy is disabled.

2.5.2.2.2. Deleting a security policy

Delete a security policy from the CLI or the console.

Delete a security policy from the CLI:

a. Delete a security policy by running the following command:

 kind: PlacementRule
 metadata:
 name: placement-pod
 spec:
 clusterConditions:
 - type: ManagedClusterConditionAvailable
 status: "True"
 clusterLabels:
 matchLabels:
 cloud: "IBM"

CHAPTER 2. GOVERNANCE AND RISK

73

kubectl delete policy <securitypolicy-name> -n <open-cluster-management-namespace>

+ After your policy is deleted, it is removed from your target cluster or clusters. Verify that your
policy is removed by running the following command: kubectl get policy <securitypolicy-
name> -n <open-cluster-management-namespace>

Delete a security policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy

To manage other policies, see Managing security policies for more information. Refer to Governance
and risk for more topics about policies.

2.5.3. Managing configuration policies

Learn to create, apply, view, and update your configuration policies.

2.5.3.1. Creating a configuration policy

You can create a YAML file for your configuration policy from the command line interface (CLI) or from
the console. View the following sections to create a configuration policy:

2.5.3.1.1. Creating a configuration policy from the CLI

Complete the following steps to create a configuration policy from the (CLI):

1. Create a YAML file for your configuration policy. Run the following command:

kubectl create -f configpolicy-1.yaml

Your configuration policy might resemble the following policy:

2. Apply the policy by running the following command:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
 name: policy-1
 namespace: kube-system
spec:
 namespaces:
 include: ["default", "kube-*"]
 exclude: ["kube-system"]
 remediationAction: inform
 disabled: false
 complianceType: musthave
 object-templates:
 ...

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

74

kubectl apply -f <policy-file-name> --namespace=<namespace>

3. Verify and list the policies by running the following command:

kubectl get policy --namespace=<namespace>

Your configuration policy is created.

2.5.3.1.1.1. Viewing your configuration policy from the CLI

Complete the following steps to view your configuration policy from the CLI:

1. View details for a specific configuration policy by running the following command:

kubectl get policy <policy-name> -n <namespace> -o yaml

2. View a description of your configuration policy by running the following command:

kubectl describe policy <name> -n <namespace>

2.5.3.1.2. Creating a configuration policy from the console

As you create a configuration policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create a configuration policy from the console:

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Specify the policy you want to create by selecting one of the configuration policies for the
specification parameter. Continue to enter or select the appropriate values for the following
fields:

Name

Specifications

Cluster selector

Remediation action

Standards

Categories

Controls

5. Click Create.

2.5.3.1.2.1. Viewing your configuration policy from the console

You can view any configuration policy and its status from the console.

CHAPTER 2. GOVERNANCE AND RISK

75

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the All policies tab or Cluster
violations tab.

3. Select one of your policies to view more details. The Overview tab, Status tab, and YAML tab are
displayed.

2.5.3.2. Updating configuration policies

Learn to update configuration policies by viewing the following section.

2.5.3.2.1. Disabling configuration policies

Complete the following steps to disable your configuration policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.3.3. Deleting a configuration policy

Delete a configuration policy from the CLI or the console.

Delete a configuration policy from the CLI:

a. Delete a configuration policy by running the following command:

kubectl delete policy <policy-name> -n <namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

kubectl get policy <policy-name> -n <namespace>

Delete a configuration policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your policy is deleted.

See configuration policy samples that are supported by Red Hat Advanced Cluster Management from

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

76

See configuration policy samples that are supported by Red Hat Advanced Cluster Management from
the CM-Configuration-Management folder.

Alternatively, you can refer to Kubernetes configuration policy controller to view other configuration
policies that are monitored by the controller. For details to manage other policies, refer to Managing
security policies.

2.5.4. Managing image vulnerability policies

Configuration policy controller monitors the status of image vulnerability policies. Image vulnerability
policies are applied to check if your containers have vulnerabilities. Learn to create, apply, view, and
update your image vulnerability policy.

2.5.4.1. Creating an image vulnerability policy

You can create a YAML for your image vulnerability policy from the command line interface (CLI) or
from the console. View the following sections to create an image vulnerability policy:

2.5.4.1.1. Creating an image vulnerability policy from the CLI

Complete the following steps to create an image vulnerability policy from the CLI:

1. Create a YAML file for your image vulnerability policy by running the following command:

kubectl create -f imagevulnpolicy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <imagevuln-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get imagevulnpolicy --namespace=<namespace>

Your image vulnerability policy is created.

2.5.4.1.1.1. Viewing your image vulnerability policy from the CLI

Complete the following steps to view your image vulnerability policy from the CLI:

1. View details for a specific image vulnerability policy by running the following command:

kubectl get imagevulnpolicy <policy-name> -n <namespace> -o yaml

2. View a description of your image vulnerability policy by running the following command:

kubectl describe imagevulnpolicy <name> -n <namespace>

2.5.4.2. Creating an image vulnerability policy from the console

As you create an image vulnerability policy from the console, a YAML file is also created in the YAML
editor. Complete the following steps to create the image vulnerability policy from the console:

CHAPTER 2. GOVERNANCE AND RISK

77

https://github.com/stolostron/policy-collection/tree/main/stable/CM-Configuration-Management

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Select ImageManifestVulnPolicy from the Specifications field. Parameter values are
automatically set. You can edit your values.

5. Click Create.

An image vulnerability policy is created.

2.5.4.3. Viewing image vulnerability violations from the console

1. From the navigation menu, click Govern risk to view a table list of your policies.

2. Select policy-imagemanifestvulnpolicy > Status to view the cluster location of the violation.
Your image vulnerability violation might resemble the following:

imagemanifestvulns exist and should be deleted:
[sha256.7ac7819e1523911399b798309025935a9968b277d86d50e5255465d6592c0266] in
namespace default;
[sha256.4109631e69d1d562f014dd49d5166f1c18b4093f4f311275236b94b21c0041c0] in
namespace calamari;
[sha256.573e9e0a1198da4e29eb9a8d7757f7afb7ad085b0771bc6aa03ef96dedc5b743,
sha256.a56d40244a544693ae18178a0be8af76602b89abe146a43613eaeac84a27494e,
sha256.b25126b194016e84c04a64a0ad5094a90555d70b4761d38525e4aed21d372820] in
namespace open-cluster-management-agent-addon;
[sha256.64320fbf95d968fc6b9863581a92d373bc75f563a13ae1c727af37450579f61a] in
namespace openshift-cluster-version

3. Navigate to your OpenShift Container Platform console by selecting the Cluster link.

4. From the navigation menu on the OpenShift Container Platform console, click Administration >
Custom Resource Definitions.

5. Select imagemanifestvulns > Instances tab to view all of the imagemanifestvulns instances.

6. Select an entry to view more details.

2.5.4.4. Updating image vulnerability policies

Learn to update image vulnerability policies by viewing the following section.

2.5.4.4.1. Disabling image vulnerability policies

Complete the following steps to disable your image vulnerability policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

78

Your policy is disabled.

2.5.4.4.2. Deleting an image vulnerability policy

Delete the image vulnerability policy from the CLI or the console.

Delete an image vulnerability policy from the CLI:

a. Delete a certificate policy by running the following command:

kubectl delete policy <imagevulnpolicy-name> -n <namespace>

+ After your policy is deleted, it is removed from your target cluster or clusters.

a. Verify that your policy is removed by running the following command:

kubectl get policy <imagevulnpolicy-name> -n <namespace>

Delete an image vulnerability policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your image vulnerability policy is deleted.

View a sample of an image vulnerability policy, see Image vulnerability policy sample from the Image
vulnerability policy page. See Kubernetes configuration policy controller to learn about other policies
that are monitored by the Kubernetes configuration policy controller. See Managing security policies to
manage other policies.

2.5.5. Managing memory usage policies

Apply a memory usage policy to limit or restrict your memory and compute usage. Learn to create,
apply, view, and update your memory usage policy in the following sections.

2.5.5.1. Creating a memory usage policy

You can create a YAML file for your memory usage policy from the command line interface (CLI) or
from the console. View the following sections to create a memory usage policy:

2.5.5.1.1. Creating a memory usage policy from the CLI

Complete the following steps to create a memory usage policy from the CLI:

1. Create a YAML file for your memory usage policy by running the following command:

kubectl create -f memorypolicy-1.yaml

2. Apply the policy by running the following command:

CHAPTER 2. GOVERNANCE AND RISK

79

kubectl apply -f <memory-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get memorypolicy --namespace=<namespace>

Your memory usage policy is created from the CLI.

2.5.5.1.1.1. Viewing your policy from the CLI

Complete the following steps to view your memory usage policy from the CLI:

1. View details for a specific memory usage policy by running the following command:

kubectl get memorypolicy <policy-name> -n <namespace> -o yaml

2. View a description of your memory usage policy by running the following command:

kubectl describe memorypolicy <name> -n <namespace>

2.5.5.1.2. Creating an memory usage policy from the console

As you create a memory usage policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create the memory usage policy from the console:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Select Limitrange from the Specifications field. Parameter values are automatically set. You can
edit your values.

5. Click Create.

2.5.5.1.2.1. Viewing your memory usage policy from the console

You can view any memory usage policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the policy violations by selecting the Status tab.

2.5.5.2. Updating memory usage policies

Learn to update memory usage policies by viewing the following section.

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

80

2.5.5.2.1. Disabling memory usage policies

Complete the following steps to disable your memory usage policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.5.2.2. Deleting a memory usage policy

Delete the memory usage policy from the CLI or the console.

Delete a memory usage policy from the CLI:

a. Delete a memory usage policy by running the following command:

kubectl delete policy <memorypolicy-name> -n <namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

kubectl get policy <memorypolicy-name> -n <namespace>

Delete a memory usage policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your memory usage policy is deleted.

View a sample of a memory usage policy, see Memory usage policy sample from the Memory usage
policy page. See Kubernetes configuration policy controller to learn about other configuration policies.
See Managing security policies to manage other policies.

2.5.6. Managing namespace policies

Namespace policies are applied to define specific rules for your namespace. Learn to create, apply, view,
and update your namespace policy in the following sections.

2.5.6.1. Creating a namespace policy

You can create a YAML file for your namespace policy from the command line interface (CLI) or from
the console. View the following sections to create a namespace policy:

CHAPTER 2. GOVERNANCE AND RISK

81

2.5.6.1.1. Creating a namespace policy from the CLI

Complete the following steps to create a namespace policy from the CLI:

1. Create a YAML file for your namespace policy by running the following command:

kubectl create -f namespacepolicy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <namespace-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get namespacepolicy --namespace=<namespace>

Your namespace policy is created from the CLI.

2.5.6.1.1.1. Viewing your namespace policy from the CLI

Complete the following steps to view your namespace policy from the CLI:

1. View details for a specific namespace policy by running the following command:

kubectl get namespacepolicy <policy-name> -n <namespace> -o yaml

2. View a description of your namespace policy by running the following command:

kubectl describe namespacepolicy <name> -n <namespace>

2.5.6.1.2. Creating a namespace policy from the console

As you create a namespace policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create a namespace policy from the console:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Select Namespace from the Specifications field. Parameter values are automatically set. You
can edit your values.

5. Click Create.

2.5.6.1.2.1. Viewing your namespace policy from the console

You can view any namespace policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk to view a table list of your policies.

Note: You can filter the table list of your policies by selecting the Policies tab or Cluster

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

82

Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the policy violations by selecting the Status tab.

2.5.6.2. Updating namespace policies

Learn to update namespace policies by viewing the following section.

2.5.6.2.1. Disabling namespace policies

Complete the following steps to disable your namespace policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.6.2.2. Deleting a namespace policy

Delete a namespace policy from the CLI or the console.

Delete a namespace policy from the CLI:

a. Delete a namespace policy by running the following command:

 kubectl delete policy <namespacepolicy-name> -n <namespace>

+ After your policy is deleted, it is removed from your target cluster or clusters.

a. Verify that your policy is removed by running the following command:

 kubectl get policy <namespacepolicy-name> -n <namespace>

Delete a namespace policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your namespace policy is deleted.

View a sample of a namespace policy, see Namespace policy sample on the Namespace policy page. See
Kubernetes configuration policy controller to learn about other configuration policies. See Managing
security policies to manage other policies.

CHAPTER 2. GOVERNANCE AND RISK

83

2.5.7. Managing pod policies

Kubernetes configuration policy controller monitors the status of you pod policies. Pod policies are
applied to define the container rules for your pods. Learn to create, apply, view, and update your pod
policy.

2.5.7.1. Creating a pod policy

You can create a YAML for your pod policy from the command line interface (CLI) or from the console.
View the following sections to create a pod policy:

2.5.7.1.1. Creating a pod policy from the CLI

Complete the following steps to create a pod policy from the CLI:

1. Create a YAML file for your pod policy by running the following command:

kubectl create -f podpolicy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <pod-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get podpolicy --namespace=<namespace>

Your image pod policy is created from the CLI.

2.5.7.1.1.1. Viewing your policy from the CLI

Complete the following steps to view your pod policy from the CLI:

1. View details for a specific pod policy by running the following command:

kubectl get podpolicy <policy-name> -n <namespace> -o yaml

2. View a description of your pod policy by running the following command:

kubectl describe podpolicy <name> -n <namespace>

2.5.7.2. Creating an pod policy from the console

As you create a pod policy from the console, a YAML file is also created in the YAML editor. Complete
the following steps to create the pod policy from the console:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk.

3. Click Create policy.

4. Select Pod from the Specifications field. Parameter values are automatically set. You can edit

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

84

4. Select Pod from the Specifications field. Parameter values are automatically set. You can edit
your values.

5. Click Create.

Viewing your pod policy from the console
You can view any pod policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the policy violations by selecting the Status tab.

2.5.7.3. Updating pod policies

Learn to update pod policies by viewing the following section.

2.5.7.3.1. Disabling pod policies

Complete the following steps to disable your pod policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.7.3.2. Deleting a pod policy

Delete the pod policy from the CLI or the console.

Delete a pod policy from the CLI:

a. Delete a pod policy by running the following command:

kubectl delete policy <podpolicy-name> -n <namespace>

+ After your policy is deleted, it is removed from your target cluster or clusters.

a. Verify that your policy is removed by running the following command:

kubectl get policy <podpolicy-name> -n <namespace>

Delete a pod policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

CHAPTER 2. GOVERNANCE AND RISK

85

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your pod policy is deleted.

View a sample of a pod policy, see Pod policy sample from the Pod policy page. See Kubernetes
configuration policy controller to learn about other configuration policies. See Managing security
policies to manage other policies.

2.5.8. Managing pod security policies

Apply a pod security policy to secure pods and containers. Learn to create, apply, view, and update your
pod security policy in the following sections.

2.5.8.1. Creating a pod security policy

You can create a YAML file for your pod security policy from the command line interface (CLI) or from
the console. View the following sections to create a pod security policy:

2.5.8.1.1. Creating a pod security policy from the CLI

Complete the following steps to create a pod security from the CLI:

1. Create a YAML file for your pod security policy by running the following command:

kubectl create -f podsecuritypolicy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <podsecurity-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get podsecuritypolicy --namespace=<namespace>

Your pod security policy is created from the CLI.

2.5.8.1.1.1. Viewing your pod security policy from the CLI

Complete the following steps to view your pod security policy from the CLI:

1. View details for a specific pod security policy by running the following command:

kubectl get podsecuritypolicy <policy-name> -n <namespace> -o yaml

2. View a description of your pod security policy by running the following command:

kubectl describe podsecuritypolicy <name> -n <namespace>

2.5.8.1.2. Creating a pod security policy from the console

As you create a pod security policy from the console, a YAML file is also created in the YAML editor.

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

86

As you create a pod security policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create the pod security policy from the console:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk.

3. Click Create policy.

4. Select Podsecuritypolicy from the Specifications field. Parameter values are automatically set.
You can edit your values.

5. Click Create.

2.5.8.1.2.1. Viewing your pod security policy from the console

You can view any pod security policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the policy violations by selecting the Status tab.

2.5.8.2. Updating pod security policies

Learn to update pod security policies by viewing the following section.

2.5.8.2.1. Disabling pod security policies

Complete the following steps to disable your pod security policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.8.2.2. Deleting a pod security policy

Delete the pod security policy from the CLI or the console.

Delete a pod security policy from the CLI:

a. Delete a pod security policy by running the following command:

kubectl delete policy <podsecurity-policy-name> -n <namespace>

CHAPTER 2. GOVERNANCE AND RISK

87

+ After your policy is deleted, it is removed from your target cluster or clusters.

a. Verify that your policy is removed by running the following command:

kubectl get policy <podsecurity-policy-name> -n <namespace>

Delete a pod security policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your pod security policy is deleted.

View a sample of a pod security policy, see Pod security policy sample on the Pod security policy page.
See Kubernetes configuration policy controller to learn about other configuration policies. See
Managing security policies to manage other policies.

2.5.9. Managing role policies

Kubernetes configuration policy controller monitors the status of role policies. Apply a role policy to set
rules and permissions for specific roles in your cluster. Learn to create, apply, view, and update your role
policy in the following sections.

2.5.9.1. Creating a role policy

You can create a YAML file for your role policy from the command line interface (CLI) or from the
console. View the following sections to create a role policy:

2.5.9.1.1. Creating a role policy from the CLI

Complete the following steps to create a role from the CLI:

1. Create a YAML file for your role policy by running the following command:

kubectl create -f rolepolicy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <role-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get rolepolicy --namespace=<namespace>

Your role policy is created from the CLI.

2.5.9.1.1.1. Viewing your role policy from the CLI

Complete the following steps to view your role policy from the CLI:

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

88

1. View details for a specific role policy by running the following command:

kubectl get rolepolicy <policy-name> -n <namespace> -o yaml

2. View a description of your role policy by running the following command:

kubectl describe rolepolicy <name> -n <namespace>

2.5.9.1.2. Creating a role policy from the console

As you create a role policy from the console, a YAML file is also created in the YAML editor. Complete
the following steps to create the role policy from the console:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk.

3. Click Create policy.

4. Select Role from the Specifications field. Parameter values are automatically set. You can edit
your values.

5. Click Create.

2.5.9.1.2.1. Viewing your role policy from the console

You can view any role policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the policy violations by selecting the Status tab.

2.5.9.2. Updating role policies

Learn to update role policies by viewing the following section.

2.5.9.2.1. Disabling role policies

Complete the following steps to disable your role policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

CHAPTER 2. GOVERNANCE AND RISK

89

2.5.9.2.2. Deleting a role policy

Delete the role policy from the CLI or the console.

Delete a role policy from the CLI:

a. Delete a role policy by running the following command:

kubectl delete policy <podsecurity-policy-name> -n <namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

kubectl get policy <podsecurity-policy-name> -n <namespace>

Delete a role policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your role policy is deleted.

See the policy-role.yaml for the sample policy. Refer to Kubernetes configuration policy controller to
view other configuration policies that are monitored by the controller.

For details to manage other policies, refer to Managing security policies.

2.5.10. Managing role binding policies

Learn to create, apply, view, and update your role binding policies.

2.5.10.1. Creating a role binding policy

You can create a YAML file for your role binding policy from the command line interface (CLI) or from
the console. View the following sections to create a role binding policy:

2.5.10.1.1. Creating a role binding policy from the CLI

Complete the following steps to create a role binding policy from the CLI:

1. Create a YAML file for your role binding policy. Run the following command:

kubectl create -f rolebindingpolicy.yaml

2. Apply the policy by running the following command:

kubectl apply -f <rolebinding-policy-file-name> --namespace=<namespace>

3. Verify and list the policies by running the following command:

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

90

https://github.com/stolostron/policy-collection/blob/main/stable/AC-Access-Control/policy-role.yaml

kubectl get rolebindingpolicy --namespace=<namespace>

Your role binding policy is created.

2.5.10.1.1.1. Viewing your role binding policy from the CLI

Complete the following steps to view your role binding policy from the CLI:

1. View details for a specific role binding policy by running the following command:

kubectl get rolebindingpolicy <policy-name> -n <namespace> -o yaml

2. View a description of your role binding policy by running the following command:

kubectl describe rolebindingpolicy <name> -n <namespace>

2.5.10.1.2. Creating a role binding policy from the console

As you create a role binding policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create a role binding policy from the console:

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Enter or select the appropriate values for the following fields:

Name

Specifications

Cluster selector

Remediation action

Standards

Categories

Controls

Disabled

5. Click Create.

A role binding policy is created.

2.5.10.1.2.1. Viewing your role binding policy from the console

You can view any role binding policy and its status from the console.

1. Log in to your cluster from the console.

CHAPTER 2. GOVERNANCE AND RISK

91

2. From the navigation menu, click Governance and risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the role binding policy violations by selecting the Status tab.

2.5.10.2. Updating role binding policies

Learn to update role binding policies by viewing the following section.

2.5.10.2.1. Disabling role binding policies

Complete the following steps to disable your role binding policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.10.2.2. Deleting a role binding policy

Delete the role binding policy from the CLI or the console.

Delete a role binding policy from the CLI:

a. Delete a role binding policy by running the following command:

kubectl delete policy <rolebinding-policy-name> -n <namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

kubectl get policy <rolebinding-policy-name> -n <namespace>

Delete a role binding policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your role binding policy is deleted.

View a sample of a role binding policy, see Role binding policy sample on the Role binding policy page.

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

92

View a sample of a role binding policy, see Role binding policy sample on the Role binding policy page.
See Kubernetes configuration policy controller to learn about other configuration policies. See
Managing security policies to manage other policies.

2.5.11. Managing Security Context Constraints policies

Learn to create, apply, view, and update your Security Context Constraints (SCC) policies.

2.5.11.1. Creating an SCC policy

You can create a YAML file for your SCC policy from the command line interface (CLI) or from the
console. View the following sections to create an SCC policy:

2.5.11.1.1. Creating an SCC policy from the CLI

See Creating Security Context Constraints in the OpenShift Container Platform documentation for
more details.

2.5.11.1.1.1. Viewing your SCC policy from the CLI

See Examining an SCC in the OpenShift Container Platform documentation for more details.

2.5.11.1.2. Creating an SCC policy from the console

As you create an SCC policy from the console, a YAML file is also created in the YAML editor. Complete
the following steps to create an SCC policy from the console:

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Enter or select the appropriate values for the following fields:

Name

Specifications

Cluster selector

Remediation action

Standards

Categories

Controls

Disabled

5. Click Create.

An SCC policy is created.

2.5.11.1.2.1. Viewing your SCC policy from the console

CHAPTER 2. GOVERNANCE AND RISK

93

https://docs.openshift.com/container-platform/4.7/authentication/managing-security-context-constraints.html#security-context-constraints-creating_configuring-internal-oauth
https://docs.openshift.com/container-platform/4.7/authentication/managing-security-context-constraints.html#examining-a-security-context-constraints-object_configuring-internal-oauth

You can view any SCC policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the SCC policy violations by selecting the Status tab.

2.5.11.2. Updating SCC policies

Learn to update SCC policies by viewing the following sections.

2.5.11.2.1. Disabling SCC policies

Complete the following steps to disable your SCC policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.11.2.2. Deleting an SCC policy

Delete the SCC policy from the CLI or the console.

See Deleting an SCC in the OpenShift Container Platform documentation to learn more about deleting
an SCC policy from the CLI.

Delete an SCC policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your SCC policy is deleted.

To view a sample of an SCC policy, see the Security context constraint policy sample section of Security
Context Constraints policy. See Kubernetes configuration policy controller to learn about other
configuration policies. See Managing security policies to manage other policies.

2.5.12. Managing certificate policies

Learn to create, apply, view, and update your certificate policies.

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

94

https://docs.openshift.com/container-platform/4.7/authentication/managing-security-context-constraints.html#deleting-security-context-constraints_configuring-internal-oauth

2.5.12.1. Creating a certificate policy

You can create a YAML file for your certificate policy from the command line interface (CLI) or from the
console. View the following sections to create a certificate policy:

2.5.12.1.1. Creating a certificate policy from the CLI

Complete the following steps to create a certificate policy from the CLI:

1. Create a YAML file for your certificate policy. Run the following command:

kubectl create -f policy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <certificate-policy-file-name> --namespace=<namespace>

3. Verify and list the policies by running the following command:

kubectl get certificatepolicy --namespace=<namespace>

Your certificate policy is created.

2.5.12.1.1.1. Viewing your certificate policy from the CLI

Complete the following steps to view your certificate policy from the CLI:

1. View details for a specific certificate policy by running the following command:

kubectl get certificatepolicy <policy-name> -n <namespace> -o yaml

2. View a description of your certificate policy by running the following command:

kubectl describe certificatepolicy <name> -n <namespace>

2.5.12.1.2. Creating a certificate policy from the console

As you create a certificate policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create a certificate policy from the console:

1. Log in to your cluster from the console.

2. From the navigation menu, click Governance and risk.

3. Click Create policy.

4. Select CertificatePolicy for the Specifications parameter. Values for the remaining parameters
are automatically set when you select the policy. You can edit your values.

5. Click Create.

A certificate policy is created.

2.5.12.1.2.1. Viewing your certificate policy from the console

CHAPTER 2. GOVERNANCE AND RISK

95

You can view any certificate policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details. The Details tab, Status tab, and YAML tab are
displayed.

4. To view the compliance status of your policy, select the Status tab. Click the View history link to
view a list of violation messages.

2.5.12.2. Updating certificate policies

2.5.12.2.1. Bringing your own certificates

You can monitor your own certificates with the certificate policy controller. You must complete one of
the following requirements to monitor your own certificates:

Create a Kubernetes TLS Secret for your certificate.

Add the label certificate_key_name into your Kubernetes secret to monitor your certificates.

Create a Kubernetes TLS secret to monitor your own certificates by running the following command:

kubectl -n <namespace> create secret tls <secret name> --cert=<path to certificate>/<certificate
name> --key=<path to key>/<key name>

2.5.12.2.2. Adding a label into your Kubernetes secret

Update the metadata parameter in your TLS Secret by adding the certificate_key_name label. Run the
following command to add the certificate_key_name label:

kubectl label secret my-certificate -n default certificate_key_name=cert

Your updated TLS Secret might resemble the following content:

Note: When you add the label from the console, you must manually add the label into the TLS Secret
YAML file.

apiVersion: policy.open-cluster-management.io/v1
kind: Secret
metadata:
 name: my-certificate
 namespace: default
 labels:
 certificate_key_name: cert
type: Opaque
data:
 cert: <Certificate Data>
 key: <Private Key Data>

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

96

2.5.12.2.3. Disabling certificate policies

When you create a certificate policy, it is enabled by default. Complete the following steps to disable a
certificate policy from the CLI or the console:

Disable a certificate policy from the console:

a. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

b. From the navigation menu, click Govern risk to view a table list of your policies.

c. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box
appears.

d. Click Disable policy.

Your policy is disabled.

2.5.12.2.4. Deleting a certificate policy

Delete the certificate policy from the CLI or the console.

Delete a certificate policy from the CLI:

a. Delete a certificate policy by running the following command:

kubectl delete policy <cert-policy-name> -n <namespace>

+ After your policy is deleted, it is removed from your target cluster or clusters.

a. Verify that your policy is removed by running the following command:

kubectl get policy <policy-name> -n <mcm namespace>

Delete a certificate policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your certificate policy is deleted.

View a sample of a certificate policy, see policy-certificate.yaml. Refer to Certificate policy controller for
more details.

For more information about other policy controllers, see Policy controllers. See Managing security
policies to manage other policies.

2.5.13. Managing IAM policies

Apply an IAM policy to check the number of cluster administrators that you allow in your managed
cluster. Learn to create, apply, view, and update your IAM policies in the following sections.

CHAPTER 2. GOVERNANCE AND RISK

97

https://github.com/stolostron/policy-collection/blob/main/stable/SC-System-and-Communications-Protection/policy-certificate.yaml

2.5.13.1. Creating an IAM policy

You can create a YAML file for your IAM policy from the command line interface (CLI) or from the
console.

2.5.13.1.1. Creating an IAM policy from the CLI

Complete the following steps to create an IAM policy from the CLI:

1. Create a YAML file with the IAM policy definition. Run the following command:

kubectl create -f iam-policy-1.yaml

Your IAM policy might resemble the following YAML file:

2. Apply the policy by running the following command:

kubectl apply -f <iam-policy-file-name> --namespace=<namespace>

3. Verify and list the policy by running the following command:

kubectl get <iam-policy-file-name> --namespace=<namespace>

Your IAM policy is created.

2.5.13.1.1.1. Viewing your IAM policy from the CLI

Complete the following steps to view your IAM policy:

1. View details for specific IAM policy by running the following command:

kubectl get iampolicy <policy-name> -n <namespace> -o yaml

2. View a description of your IAM policy by running the following command:

kubectl describe iampolicy <name> -n <namespace>

2.5.13.1.2. Creating an IAM policy from the console

As you create your IAM policy from the console, a YAML file is also created in the YAML editor.

apiVersion: policy.open-cluster-management.io/v1
kind: IamPolicy
metadata:
 name: iam-grc-policy
 label:
 category: "System-Integrity"
spec:
 namespaceSelector:
 include: ["default","kube-*"]
 exclude: ["kube-system"]
 remediationAction: inform
 disabled: false
 maxClusterRoleBindingUsers: 5

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

98

As you create your IAM policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create an IAM policy from the console:

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk.

3. Click Create policy.

4. Select IamPolicy from the Specifications field. Values for the remaining parameters are set
automatically when you select the policy. You can edit your values.

5. Click Create.

An IAM policy is created.

2.5.13.1.2.1. Viewing your IAM policy from the console

You can view any IAM policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select one of your policies to view more details.

4. View the IAM policy violations by selecting the Status tab.

2.5.13.2. Updating IAM policies

Learn to update IAM policies by viewing the following section.

2.5.13.2.1. Disabling IAM policies

Complete the following steps to disable your IAM policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.13.2.2. Deleting an IAM policy

Delete a configuration policy from the CLI or the console.

Delete an IAM policy from the CLI:

a. Delete an IAM policy by running the following command:

CHAPTER 2. GOVERNANCE AND RISK

99

kubectl delete policy <iam-policy-name> -n <namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

kubectl get policy <iam-policy-name> -n <namespace>

Delete an IAM policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your policy is deleted.

View the IAM policy sample from the IAM policy controller page. See Managing security policies for more
topics.

2.5.14. Managing ETCD encryption policies

Apply an encryption policy to detect, or enable encryption of sensitive data in the ETCD data-store.
Learn to create, apply, view, and update your encryption policy in the following sections.

2.5.14.1. Creating an encryption policy

You can create a YAML file for your encryption policy from the command line interface (CLI) or from
the console. View the following sections to create a encryption policy:

2.5.14.1.1. Creating an encryption policy from the CLI

Complete the following steps to create an encryption policy from the CLI:

1. Create a YAML file for your encryption policy by running the following command:

kubectl create -f etcd-encryption-policy-1.yaml

2. Apply the policy by running the following command:

kubectl apply -f <etcd-encryption-policy-file-name> --namespace=<namespace>

3. List and verify the policies by running the following command:

kubectl get etcd-encryption-policy --namespace=<namespace>

Your encryption policy is created from the CLI.

2.5.14.1.1.1. Viewing your encryption policy from the CLI

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

100

Complete the following steps to view your encryption policy from the CLI:

1. View details for a specific encryption policy by running the following command:

kubectl get etcd-encryption-policy <policy-name> -n <namespace> -o yaml

2. View a description of your encryption policy by running the following command:

kubectl describe etcd-encryption-policy <name> -n <namespace>

2.5.14.1.2. Creating an encryption policy from the console

As you create a encryption policy from the console, a YAML file is also created in the YAML editor.
Complete the following steps to create the encryption policy from the console:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk.

3. Click Create policy.

4. Select EtcdEncryption from the Specifications field. Values for the remaining parameters are
set automatically when you select the policy. You can edit your values.

5. Click Create.

2.5.14.1.2.1. Viewing your encryption policy from the console

You can view any encryption policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the All policies tab or _Cluster
violations+ tab.

3. Select one of your policies to view more details. The Overview tab, Status tab, and YAML tab are
displayed.

2.5.14.2. Updating encryption policies

Learn to update encryption policies by viewing the following section.

2.5.14.2.1. Disabling encryption policies

Complete the following steps to disable your encryption policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

CHAPTER 2. GOVERNANCE AND RISK

101

Your policy is disabled.

2.5.14.2.2. Deleting an encryption policy

Delete the encryption policy from the CLI or the console.

Delete an encryption policy from the CLI:

a. Delete an encryption policy by running the following command:

kubectl delete policy <podsecurity-policy-name> -n <namespace>

+ After your policy is deleted, it is removed from your target cluster or clusters.

a. Verify that your policy is removed by running the following command:

kubectl get policy <podsecurity-policy-name> -n <namespace>

Delete a encryption policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy you want to delete in the policy violation table.

c. Click Remove.

d. From the Remove policy dialog box, click Remove policy.

Your encryption policy is deleted.

View a sample of an encryption policy, see ETCD encryption policy sample on the ETCD encryption
policy page. See Kubernetes configuration policy controller to learn about other configuration policies.
See Managing security policies to manage other policies.

2.5.15. Managing gatekeeper operator policies

Use the gatekeeper operator policy to install the gatekeeper operator and gatekeeper on a managed
cluster. Learn to create, view, and update your gatekeeper operator policies in the following sections.

Required access: Cluster administrator

Installing gatekeeper using a gatekeeper operator policy

Creating a gatekeeper policy from the console

Upgrading gatekeeper and the gatekeeper operator

Updating gatekeeper operator policy

Deleting gatekeeper operator policy

Uninstalling gatekeeper policy, gatekeeper, and gatekeeper operator policy

2.5.15.1. Installing gatekeeper using a gatekeeper operator policy

Use the governance framework to install the gatekeeper operator. Gatekeeper operator is available in

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

102

Use the governance framework to install the gatekeeper operator. Gatekeeper operator is available in
the OpenShift Container Platform catalog. See Adding Operators to a cluster in the OpenShift
Container Platform documentation for more information.

Use the configuration policy controller to install the gatekeeper operator policy. During the install, the
operator group and subscription pull the gatekeeper operator to install it in your managed cluster. Then,
the gatekeeper operator creates a gatekeeper CR to configure gatekeeper. View the Gatekeeper
operator CR sample.

Gatekeeper operator policy is monitored by the Red Hat Advanced Cluster Management configuration
policy controller, where enforce remediation action is supported. Gatekeeper operator policies are
created automatically by the controller when set to enforce.

2.5.15.2. Creating a gatekeeper policy from the console

Complete the following steps to install the gatekeeper operator policy from the console:

1. Log in to your cluster.

2. From the navigation menu, click Govern risk.

3. Create a policy by selecting Create policy.

4. As you complete the form, select GatekeeperOperator from the Specifications field. The
parameter values for your policy are automatically populated and the policy is set to inform by
default. Set your remediation action to enforce to install gatekeeper. See policy-gatekeeper-
operator.yaml to view an the sample.
Note: Consider that default values can be generated by the operator. See Gatekeeper Helm
Chart for an explanation of the optional parameters that can be used for the gatekeeper
operator policy.

2.5.15.2.1. Gatekeeper operator CR

apiVersion: operator.gatekeeper.sh/v1alpha1
kind: Gatekeeper
metadata:
 name: gatekeeper
spec:
 # Add fields here
 image:
 image: docker.io/openpolicyagent/gatekeeper:v3.2.2
 imagePullPolicy: Always
 audit:
 replicas: 1
 logLevel: DEBUG
 auditInterval: 10s
 constraintViolationLimit: 55
 auditFromCache: Enabled
 auditChunkSize: 66
 emitAuditEvents: Enabled
 resources:
 limits:
 cpu: 500m
 memory: 150Mi
 requests:
 cpu: 500m

CHAPTER 2. GOVERNANCE AND RISK

103

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.7/html/operators/administrator-tasks#olm-adding-operators-to-a-cluster
https://github.com/stolostron/policy-collection/blob/main/community/CM-Configuration-Management/policy-gatekeeper-operator.yaml
https://github.com/open-policy-agent/gatekeeper/blob/master/charts/gatekeeper/README.md

2.5.15.3. Upgrading gatekeeper and the gatekeeper operator

You can upgrade the versions for gatekeeper and the gatekeeper operator. Complete the following
steps:

When you install the gatekeeper operator with the gatekeeper operator policy, notice the value
for installPlanApproval. The operator upgrades automatically when installPlanApproval is set
to Automatic. You must approve the upgrade of the gatekeeper operator manually, for each
cluster, when installPlanApproval is set to Manual.

Upgrade the gatekeeper version manually by completing the following steps:

a. Identify the latest version for gatekeeper, see Red Hat Ecosystem Catalog - gatekeeper .

b. Select the drop-down menu of the Tag filter to find the latest static tag. For example,
v3.3.0-1.

c. Edit the gatekeeper operator policy and update the image tag to use the latest static tag.
View the following example of the updated line in the gatekeeper operator policy:

image: 'registry.redhat.io/rhacm2/gatekeeper-rhel8:v3.3.0-1'

For more information, see How to use Gatekeeper .

 memory: 130Mi
 validatingWebhook: Enabled
 webhook:
 replicas: 2
 logLevel: ERROR
 emitAdmissionEvents: Enabled
 failurePolicy: Fail
 resources:
 limits:
 cpu: 480m
 memory: 140Mi
 requests:
 cpu: 400m
 memory: 120Mi
 nodeSelector:
 region: "EMEA"
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchLabels:
 auditKey: "auditValue"
 topologyKey: topology.kubernetes.io/zone
 tolerations:
 - key: "Example"
 operator: "Exists"
 effect: "NoSchedule"
 podAnnotations:
 some-annotation: "this is a test"
 other-annotation: "another test"

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

104

https://catalog.redhat.com/software/containers/rhacm2/gatekeeper-rhel8/5fadb4a18d9a79d2f438a5d9
https://open-policy-agent.github.io/gatekeeper/website/docs/howto/

2.5.15.4. Updating gatekeeper operator policy

Learn to update the gatekeeper operator policy by viewing the following section.

2.5.15.4.1. Viewing gatekeeper operator policy from the console

You can view your gatekeeper operator policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select the policy-gatekeeper-operator policy to view more details.

4. View the policy violations by selecting the Status tab.

2.5.15.4.2. Disabling gatekeeper operator policy

Complete the following steps to disable your gatekeeper operator policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable your policy by clicking the Actions icon > Disable. The Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.15.4.3. Deleting gatekeeper operator policy

Delete the gatekeeper operator policy from the CLI or the console.

Delete gatekeeper operator policy from the CLI:

a. Delete gatekeeper operator policy by running the following command:

kubectl delete policy <policy-gatekeeper-operator-name> -n <namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

b. Verify that your policy is removed by running the following command:

kubectl get policy <policy-gatekeeper-operator-name> -n <namespace>

Delete gatekeeper operator policy from the console:

a. From the navigation menu, click Govern risk to view a table list of your policies.

b. Click the Actions icon for the policy-gatekeeper-operator policy to delete in the policy
violation table.

c. Click Remove.

CHAPTER 2. GOVERNANCE AND RISK

105

d. From the Remove policy dialog box, click Remove policy.

Your gatekeeper operator policy is deleted.

2.5.15.5. Uninstalling gatekeeper policy, gatekeeper, and gatekeeper operator policy

Complete the following steps to uninstall gatekeeper policy, gatekeeper, and gatekeeper operator
policy:

1. Remove the gatekeeper Constraint and ConstraintTemplate that is applied on your managed
cluster:

a. Edit your gatekeeper operator policy. Locate the ConfigurationPolicy template that you
used to create the gatekeeper Constraint and ConstraintTemplate.

b. Change the value for complianceType of the ConfigurationPolicy template to
mustnothave.

c. Save and apply the policy.

2. Remove gatekeeper instance from your managed cluster:

a. Edit your gatekeeper operator policy. Locate the ConfigurationPolicy template that you
used to create the Gatekeeper custom resource (CR).

b. Change the value for complianceType of the ConfigurationPolicy template to
mustnothave.

3. Remove the gatekeeper operator that is on your managed cluster:

a. Edit your gatekeeper operator policy. Locate the ConfigurationPolicy template that you
used to create the Subscription CR.

b. Change the value for complianceType of the ConfigurationPolicy template to
mustnothave.

Gatekeeper policy, gatekeeper, and gatekeeper operator policy are uninstalled.

See Integrating gatekeeper constraints and constraint templates for details about gatekeeper. For a list
of topics to integrate third-party policies with the product, see Integrate third-party policy controllers .

2.5.16. Managing compliance operator policies

Apply a compliance operator policy to install the Red Hat OpenShift Container Platform compliance
operator. Learn to create, update, apply, and view your compliance operator policy in the following
sections.

2.5.16.1. Creating a compliance operator policy from the console

As you create a compliance operator policy from the console, a YAML file is also created in the YAML
editor. Complete the following steps to create a compliance operator policy from the console:

1. Log in to your hub cluster.

2. From the navigation menu, select Govern risk.

3. Click Create policy. As you complete the YAML form, select ComplianceOperator from the

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

106

3. Click Create policy. As you complete the YAML form, select ComplianceOperator from the
Specifications field.
The following resources are created: compliance operator namespace (openshift-compliance),
an operator group (compliance-operator), and a subscription (comp-operator-subscription).

Note: Enforce is supported. When you set the remediation action to enforce the policy installs
the compliance operator.

A compliance operator policy is created.

2.5.16.2. Updating a compliance operator policy

Learn to update the compliance operator policy by viewing the following section.

2.5.16.2.1. Viewing a compliance operator policy from the console

You can view any compliance operator policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.
Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select policy-comp-operator policy to view more details.

4. View the policy violations by selecting the Status tab.

2.5.16.2.2. Disabling a compliance operator policy

Complete the following steps to disable your compliance operator policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable policy-comp-operator by clicking the Actions icon > Disable. The Disable Policy dialog
box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.16.2.3. Deleting a compliance operator policy

Delete the compliance operator policy from the CLI or the console.

Delete compliance operator policy from the CLI:

1. Delete compliance operator policy by running the following command:

kubectl delete policy <policy-comp-operator-name> -n <namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

2. Verify that your policy is removed by running the following command:

CHAPTER 2. GOVERNANCE AND RISK

107

kubectl get policy <policy-comp-operator-name> -n <namespace>

Delete compliance operator policy from the console:

1. From the navigation menu, click Govern risk to view a table list of your policies.

2. Click the Actions icon for the policy-comp-operator policy to delete in the policy violation
table.

3. Click Remove.

4. From the Remove policy dialog box, click Remove policy.

Your compliance operator policy is deleted.

For more details about the compliance operator policy, see Compliance operator policy .

2.5.17. Managing E8 scan policies

Apply an E8 scan policy to scan master and worker nodes for compliance with the E8 profiles. Learn to
create, update, apply, and view your E8 scan policy in the following sections.

2.5.17.1. Creating an E8 scan policy from the console

As you create an E8 scan policy from the console, a YAML file is also created in the YAML editor. Note:
The compliance operator must be installed. For more details, see Creating a compliance operator policy
from the console.

Complete the following steps to create a E8 scan policy from the console:

1. Log in to your hub cluster.

2. From the navigation menu, select Govern risk.

3. Click Create policy. Select Custom specification from the Specification field. Copy and paste
the policy-e8-scan from the policy-collection repository.
The following resources are created: ScanSettingBinding (e8), a ComplianceSuite
(compliance-suite-e8), and a ComplianceCheckResult (compliance-suite-e8-results).

Note: Automatic remediation is supported. Set the remediation action to enforce to create
ScanSettingBinding resource.

An E8 scan policy is created.

2.5.17.2. Updating an E8 scan policy

Learn to update the E8 scan policy by viewing the following section.

2.5.17.2.1. Viewing an E8 scan policy from the console

You can view any E8 scan policy and its status from the console.

1. Log in to your cluster from the console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

Note: You can filter the table list of your policies by selecting the Policies tab or Cluster

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

108

https://github.com/stolostron/policy-collection/blob/main/stable/CM-Configuration-Management/policy-compliance-operator-e8-scan.yaml

Note: You can filter the table list of your policies by selecting the Policies tab or Cluster
violations tab.

3. Select policy-compliance-operator-e8-scan policy to view more details.

4. View the policy violations by selecting the Status tab.

2.5.17.2.2. Disabling an E8 scan policy

Complete the following steps to disable your compliance operator policy:

1. Log in to your Red Hat Advanced Cluster Management for Kubernetes console.

2. From the navigation menu, click Govern risk to view a table list of your policies.

3. Disable policy-compliance-operator-e8-scan by clicking the Actions icon > Disable. The
Disable Policy dialog box appears.

4. Click Disable policy.

Your policy is disabled.

2.5.17.2.3. Deleting an E8 scan policy

Delete the E8 scan policy from the CLI or the console.

Delete an E8 scan policy from the CLI:

1. Delete an E8 policy by running the following command:

kubectl delete policy <policy-compliance-operator-e8-scan> -n <namespace>

After your policy is deleted, it is removed from your target cluster or clusters.

2. Verify that your policy is removed by running the following command:

kubectl get policy <policy-compliance-operator-e8-scan> -n <namespace>

Delete an E8 scan policy from the console:

1. From the navigation menu, click Govern risk to view a table list of your policies.

2. Click the Actions icon for the policy-compliance-operator-e8-scan policy to delete in the
policy violation table.

3. Click Remove.

4. From the Remove policy dialog box, click Remove policy.

Your E8 scan policy is deleted.

For more details about the E8 scan policy, see E8 scan policy .

CHAPTER 2. GOVERNANCE AND RISK

109

Red Hat Advanced Cluster Management for Kubernetes 2.2 Security

110

	Table of Contents
	CHAPTER 1. SECURITY
	1.1. ROLE-BASED ACCESS CONTROL
	1.1.1. Overview of roles
	1.1.2. RBAC implementation
	1.1.2.1. Cluster lifecycle RBAC
	1.1.2.2. Application lifecycle RBAC
	1.1.2.3. Governance lifecycle RBAC
	1.1.2.4. Observability RBAC

	1.2. CREDENTIALS
	1.2.1. Provider credentials
	1.2.1.1. Amazon Web Services

	1.2.2. Agents

	1.3. CERTIFICATES
	1.3.1. List managed certificates
	1.3.2. Refresh a managed certificate
	1.3.3. Refresh managed certificates for Red Hat Advanced Cluster Management for Kubernetes
	1.3.4. Refresh internal certificates
	1.3.4.1. Rotating the gatekeeper webhook certificate
	1.3.4.2. Rotating the integrity shield webhook certificate (Technology preview)
	1.3.4.3. Observability certificates
	1.3.4.4. Channel certificates
	1.3.4.5. Managed cluster certificates

	1.3.5. Replacing the root CA certificate
	1.3.5.1. Prerequisites for root CA certificate
	1.3.5.2. Creating the root CA certificate with OpenSSL
	1.3.5.3. Replacing root CA certificates
	1.3.5.4. Refreshing cert-manager certificates
	1.3.5.5. Restoring root CA certificates

	1.3.6. Replacing the management ingress certificates
	1.3.6.1. Prerequisites to replace management ingress certificate
	1.3.6.2. Replace the Bring Your Own (BYO) ingress certificate
	1.3.6.3. Restore the default self-signed certificate for management ingress

	CHAPTER 2. GOVERNANCE AND RISK
	2.1. GOVERNANCE ARCHITECTURE
	2.2. POLICY OVERVIEW
	2.2.1. Policy YAML structure
	2.2.2. Policy YAML table
	2.2.3. Policy sample file

	2.3. POLICY CONTROLLERS
	2.3.1. Kubernetes configuration policy controller
	2.3.1.1. Configuration policy controller YAML structure
	2.3.1.2. Configuration policy sample
	2.3.1.3. Configuration policy YAML table

	2.3.2. Certificate policy controller
	2.3.2.1. Certificate policy controller YAML structure
	2.3.2.2. Certificate policy sample

	2.3.3. IAM policy controller
	2.3.3.1. IAM policy YAML structure
	2.3.3.2. IAM policy YAMl table
	2.3.3.3. IAM policy sample

	2.3.4. Integrate third-party policy controllers
	2.3.5. Creating a custom policy controller
	2.3.5.1. Writing a policy controller
	2.3.5.2. Deploying your controller to the cluster

	2.4. SUPPORTED POLICIES
	2.4.1. Memory usage policy
	2.4.1.1. Memory usage policy YAML structure
	2.4.1.2. Memory usage policy table
	2.4.1.3. Memory usage policy sample

	2.4.2. Namespace policy
	2.4.2.1. Namespace policy YAML structure
	2.4.2.2. Namespace policy YAML table
	2.4.2.3. Namespace policy sample

	2.4.3. Image vulnerability policy
	2.4.3.1. Image vulnerability policy YAML structure
	2.4.3.2. Image vulnerability policy YAML table
	2.4.3.3. Image vulnerability policy sample

	2.4.4. Pod policy
	2.4.4.1. Pod policy YAML structure
	2.4.4.2. Pod policy table
	2.4.4.3. Pod policy sample

	2.4.5. Pod security policy
	2.4.5.1. Pod security policy YAML structure
	2.4.5.2. Pod security policy table
	2.4.5.3. Pod security policy sample

	2.4.6. Role policy
	2.4.6.1. Role policy YAML structure
	2.4.6.2. Role policy table
	2.4.6.3. Role policy sample

	2.4.7. Role binding policy
	2.4.7.1. Role binding policy YAML structure
	2.4.7.2. Role binding policy table
	2.4.7.3. Role binding policy sample

	2.4.8. Security Context Constraints policy
	2.4.8.1. SCC policy YAML structure
	2.4.8.2. SCC policy table
	2.4.8.3. SCC policy sample

	2.4.9. ETCD encryption policy
	2.4.9.1. ETCD encryption policy YAML structure
	2.4.9.2. ETCD encryption policy table
	2.4.9.3. Etcd encryption policy sample

	2.4.10. Integrating gatekeeper constraints and constraint templates
	2.4.11. Compliance operator policy
	2.4.11.1. Compliance operator resources

	2.4.12. E8 scan policy
	2.4.12.1. E8 scan policy resources

	2.5. MANAGE SECURITY POLICIES
	2.5.1. Deploy policies using GitOps
	2.5.1.1. Customizing your local repository
	2.5.1.2. Committing to your local repository
	2.5.1.3. Deploying policies to your cluster
	2.5.1.4. Verifying GitOps policy deployments from the console

	2.5.2. Managing security policies
	2.5.2.1. Creating a security policy
	2.5.2.2. Updating security policies

	2.5.3. Managing configuration policies
	2.5.3.1. Creating a configuration policy
	2.5.3.2. Updating configuration policies
	2.5.3.3. Deleting a configuration policy

	2.5.4. Managing image vulnerability policies
	2.5.4.1. Creating an image vulnerability policy
	2.5.4.2. Creating an image vulnerability policy from the console
	2.5.4.3. Viewing image vulnerability violations from the console
	2.5.4.4. Updating image vulnerability policies

	2.5.5. Managing memory usage policies
	2.5.5.1. Creating a memory usage policy
	2.5.5.2. Updating memory usage policies

	2.5.6. Managing namespace policies
	2.5.6.1. Creating a namespace policy
	2.5.6.2. Updating namespace policies

	2.5.7. Managing pod policies
	2.5.7.1. Creating a pod policy
	2.5.7.2. Creating an pod policy from the console
	2.5.7.3. Updating pod policies

	2.5.8. Managing pod security policies
	2.5.8.1. Creating a pod security policy
	2.5.8.2. Updating pod security policies

	2.5.9. Managing role policies
	2.5.9.1. Creating a role policy
	2.5.9.2. Updating role policies

	2.5.10. Managing role binding policies
	2.5.10.1. Creating a role binding policy
	2.5.10.2. Updating role binding policies

	2.5.11. Managing Security Context Constraints policies
	2.5.11.1. Creating an SCC policy
	2.5.11.2. Updating SCC policies

	2.5.12. Managing certificate policies
	2.5.12.1. Creating a certificate policy
	2.5.12.2. Updating certificate policies

	2.5.13. Managing IAM policies
	2.5.13.1. Creating an IAM policy
	2.5.13.2. Updating IAM policies

	2.5.14. Managing ETCD encryption policies
	2.5.14.1. Creating an encryption policy
	2.5.14.2. Updating encryption policies

	2.5.15. Managing gatekeeper operator policies
	2.5.15.1. Installing gatekeeper using a gatekeeper operator policy
	2.5.15.2. Creating a gatekeeper policy from the console
	2.5.15.3. Upgrading gatekeeper and the gatekeeper operator
	2.5.15.4. Updating gatekeeper operator policy
	2.5.15.5. Uninstalling gatekeeper policy, gatekeeper, and gatekeeper operator policy

	2.5.16. Managing compliance operator policies
	2.5.16.1. Creating a compliance operator policy from the console
	2.5.16.2. Updating a compliance operator policy

	2.5.17. Managing E8 scan policies
	2.5.17.1. Creating an E8 scan policy from the console
	2.5.17.2. Updating an E8 scan policy

